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Reader’s Guide

The alphabetical organization of an encyclopedia 
facilitates access to information when the reader 
can identify the topic of interest. Some readers, on 
the other hand, may prefer to use the encyclopedia 
as a source for topical study and to sample key 
concepts of an academic discipline sequentially. 
This Reader’s Guide is an attempt to catalog 
essays to mirror the components of the decision- 
making process. Many essays could be grouped 
under more than one category, and some titles 
might have more than one connotation. The fol-
lowing organization is offered as one of many 
possible ways to guide topical reading:

Basis for Making the Decision. These essays 
examine criteria by which the optimal choice 
among available alternatives can be identified. 
Some methods, particularly those drawn from the 
field of health economics or used by decision 
analysts, are quantitative and permit the rank 
ordering of potential decision strategies. However, 
there are also other considerations used in making 
a final decision, sometimes on philosophical or 
ethical grounds.

Biostatistics and Clinical Epidemiology: The 
Assessment of the Likelihood of Possible 
Consequences or Outcomes. These entries present 
some of the techniques used to determine the 
probabilities of health outcomes, to determine if 
the results of a clinical study are due to chance  
or some alternate explanation, and to assess the 
accuracy of diagnostic tests and prognostic 
algorithms. These concepts often underlie the 
approaches described in essays throughout the 
Encyclopedia, and provide background for 
understanding the Methods sections of scientific 
publications.

Decision Analysis and Related Mathematical 
Models. These essays present techniques for a 
rational or prescriptive decision-making process 
for an individual or population. The choice to be 
made, the possible consequences, their value or 
cost, and their likelihood of occurring are combined 
to identify the optimal decision.

Health Outcomes and Measurement. These essays 
discuss some of the possible health outcomes that 
follow a medical or health policy decision and how 
they can be measured or quantified. Some of these 
essays provide a foundation for understanding 
health-related surveys and evaluations of the quality 
of care provided by health professionals or health 
systems.

Impact or Weight or Utility of the Possible 
Outcomes. These essays examine the value or 
“utility” placed on certain health outcomes to 
indicate their relative level of desirability or 
preference in the eyes of patients or the general 
population. Some essays describe the methods for 
determining this value, whereas others describe 
how utilities can be combined and aggregated in 
decision analyses or economic analyses.

Other Techniques, Theories, and Tools to 
Understand and to Assist Decision Making. 
Although the following essays do not fit neatly into 
the other categories, they represent a valuable 
array for understanding patients and healthcare 
delivery systems, and provide potential resources 
for guiding clinicians and patients in making sound 
decisions.

Perspective of the Decision Maker. The relevant com-
ponents of decision making and the considerations 
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used to determine a course of action may differ 
according to the point of view or perspective of the 
person or entity empowered to choose. The 
following essays include examples of health-related 
scenarios for decision making by individuals, 
clinicians, health systems, governments, and other 
entities.

The Psychology Underlying Decision Making. 
These essays represent scholarly work to understand 
how humans appropriate, use, and process 
information when they make their choices. 
Influences on, vulnerabilities associated with, and 
strategies developed to improve decision making 
are discussed.

Basis for Making the Decision
Acceptability Curves and Confidence Ellipses
Beneficence
Bioethics
Choice Theories
Construction of Values
Cost-Benefit Analysis
Cost-Comparison Analysis
Cost-Consequence Analysis
Cost-Effectiveness Analysis
Cost-Minimization Analysis
Cost-Utility Analysis
Decision Quality
Distributive Justice
Dominance
Equity
Evaluating Consequences
Expected Utility Theory
Expected Value of Perfect Information
Extended Dominance
Health Production Function
League Tables for Incremental Cost-Effectiveness 

Ratios
Marginal or Incremental Analysis,  

Cost-Effectiveness Ratio
Monetary Value
Moral Choice and Public Policy
Net Benefit Regression
Net Monetary Benefit
Nonexpected Utility Theories
Pharmacoeconomics
Protected Values
Rank-Dependent Utility Theory

Return on Investment
Risk-Benefit Trade-Off
Subjective Expected Utility Theory
Toss-Ups and Close Calls
Value-Based Insurance Design
Welfare, Welfarism, and Extrawelfarism

Biostatistics and Clinical Epidemiology
Analysis of Covariance (ANCOVA)
Analysis of Variance (ANOVA)
Attributable Risk
Basic Common Statistical Tests: Chi-Square,  

t Test, Nonparametric Test
Bayesian Analysis
Bayesian Evidence Synthesis
Bayesian Networks
Bayes’s Theorem
Bias
Bias in Scientific Studies
Brier Scores
Calibration
Case Control
Causal Inference and Diagrams
Causal Inference in Medical Decision Making
Conditional Independence
Conditional Probability
Confidence Intervals
Confounding and Effect Modulation
Cox Proportional Hazards Regression
Decision Rules
Diagnostic Tests
Discrimination
Distributions: Overview
Dynamic Treatment Regimens
Effect Size
Equivalence Testing
Experimental Designs
Factor Analysis and Principal Components 

Analysis
Fixed Versus Random Effects
Frequentist Approach
Hazard Ratio
Hypothesis Testing
Index Test
Intraclass Correlation Coefficient
Likelihood Ratio
Logic Regression
Logistic Regression
Log-Rank Test
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Maximum Likelihood Estimation Methods
Measures of Central Tendency
Measures of Frequency and Summary
Measures of Variability
Meta-Analysis and Literature Review
Mixed and Indirect Comparisons
Multivariate Analysis of Variance (MANOVA)
Nomograms
Number Needed to Treat
Odds and Odds Ratio, Risk Ratio
Ordinary Least Squares Regression
Parametric Survival Analysis
Poisson and Negative Binomial Regression
Positivity Criterion and Cutoff Values
Prediction Rules and Modeling
Probability
Propensity Scores
Randomized Clinical Trials
Receiver Operating Characteristic (ROC) Curve
Recurrent Events
Recursive Partitioning
Regression to the Mean
Sample Size and Power
Screening Programs
Statistical Notations
Statistical Testing: Overview
Subjective Probability
Subset Analysis: Insights and Pitfalls
Survival Analysis
Tables, Two-by-Two and Contingency
Variance and Covariance
Violations of Probability Theory
Weighted Least Squares

Decision Analysis and Related  
Mathematical Models

Applied Decision Analysis
Boolean Algebra and Nodes
Decision Analyses, Common Errors Made in 

Conducting
Decision Curve Analysis
Decision Tree: Introduction
Decision Trees, Advanced Techniques in 

Constructing
Decision Trees, Construction
Decision Trees, Evaluation
Decision Trees, Evaluation With Monte Carlo
Decision Trees: Sensitivity Analysis, Basic and 

Probabilistic

Decision Trees: Sensitivity Analysis, 
Deterministic

Declining Exponential Approximation of Life 
Expectancy

Deterministic Analysis
Discrete-Event Simulation
Disease Management Simulation Modeling
Expected Value of Sample Information, Net 

Benefit of Sampling
Influence Diagrams
Markov Models
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Markov Models, Cycles
Markov Processes
Reference Case
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Validity
Health Status Measurement, Floor and Ceiling 

Effects
Health Status Measurement, Generic Versus 

Condition-Specific Measures
Health Status Measurement, Minimal Clinically 

Significant Differences, and Anchor Versus 
Distribution Methods
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Foreword

As the chief academic officer in a cancer research 
institution, Fox Chase Cancer Center, I meet with 
each of the new faculty members shortly after their 
arrival. Recently, a young radiation oncologist came 
to my office, where we discussed the usual junior 
faculty issues: adjustment to the center, mentoring, 
the promotion and tenure process. When I asked him 
about his research interests, he startled me by express-
ing a desire to conduct “willingness to pay” studies of 
new modalities in the radiation therapy of prostate 
cancer. Then he asked me if I knew anything about 
this type of research. I admitted I did know a little 
about it, and offered to refer him to various texts on 
cost-effectiveness and cost-utility analysis. I could also 
have sent him to Becker, DeGroot, and Marschak’s 
1964 paper in Behavioral Science, “Measuring Utility 
by a Single-Response Sequential Method,” a founda-
tional article in willingness-to-pay studies, and encour-
aged him to perform a forward citation search using 
a tool such as the Web of Science.

Becker et al. (1964) have been cited 255 times 
since its publication, and the citing articles cover a 
broad range from econometrics to neuroscience. 
This might not be the easiest way to learn about a 
technical topic in valuing health outcomes. Another 
approach might be a keyword search, focusing on 
the biomedical literature. PubMed, the Web-based 
search engine to the comprehensive holdings in the 
U.S. National Library of Medicine, matches more 
than 1,100 articles to the text phrase “willingness to 
pay.” Browsing the most recent 50 or so citations 
turns up a familiar name, Joel Tsevat, a friend who 
trained with my mentor, Steve Pauker. Downloading 
a recent paper of Joel’s from Medical Decision 
Making, I find in the reference list a few contempo-
rary methods papers on willingness to pay. If these 
papers suffice for Joel and his team, they are likely 
good enough for my young colleague.

Such is a typical approach to exploring a  
specific research topic in biomedical research. I 

confess to adding Wikipedia to my routine search 
strategy, as well as Google Scholar. Admittedly, 
the thrill of the hunt motivates some of my explo-
ration, but the field of medical decision making 
could use a comprehensive reference. A field that 
draws from economics, mathematics, medicine, 
philosophy, psychology, and sociology (and occa-
sionally from many others) is particularly in need 
of a compendium of ideas and techniques.

This encyclopedia aims to address this need. 
Didactic articles on more than 300 headwords have 
been prepared by well over 200 contributors from 
around the world. Joel Tsevat is on the advisory 
board for the encyclopedia, along with a number of 
other leaders who span the disciplines within the 
field of medical decision making. The article on 
willingness to pay is written by Obinna Onwujekwe, 
a health economist and clinician from the London 
School of Tropical Medicine and Hygiene, based at 
the University of Nigeria in Enugu, and funded 
through the Gates Malaria Partnership. I don’t 
know Dr. Onwujekwe, but through this contact, I 
have discovered more resources on the Internet that 
can support my research and build my professional 
network. A well-researched encyclopedia can con-
tribute much to the furthering of knowledge and 
the application of appropriate techniques to current 
problems. I look forward to having this reference 
for our current and future trainees.

At the publication of this encyclopedia, the field is 50 
years old if one dates from the publication of Ledley and 
Lusted’s seminal “Reasoning Founda tions of Medical 
Diagnosis” (Science, 1959). Table 1 lists frequently 
cited articles in the field from that point forward, using 
title words and search terms from MEDLINE and Web 
of Science. A number of important technical manu-
scripts are included in this list, as well as “first papers” 
in several disciplines. Of course, this list is subject to the 
vagaries of article indexing; papers that focus on “risk” 
are relatively underrepresented in this set.
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xxxiForeword

A recently proposed measure of scientific promi-
nence, the h-index, ranks articles in order of times 
cited since publication. A scholar’s or institution’s 
h-index is represented by that article whose rank in 
terms of times cited is nearest to the actual number 
of citations. For example, the editor of this encyclo-
pedia, Michael Kattan, has an h-index of 56: His 
56th most cited paper has been cited 56 times 
through this writing. Taking this idea to a search, 
the topic and title phrase “medical decision making” 
in the Web of Science (which, unsurprisingly, incor-
porates more types of articles than covered in  
this encyclopedia) has an h-index of 131. By  

comparison, “bioinformatics” has an h-index of 
122 and “medical informatics,” 40, whereas the 
comprehensive biomedical topic, “chemotherapy,” 
has an h-index of 239. This suggests to me that the 
field has attained a level of maturity where compre-
hensive reference works such as this encyclopedia 
will add value to teachers and learners. I look for-
ward to browsing this reference and to following the 
scholarly output of its distinguished board of editors 
and contributors.

J. Robert Beck, MD 
Fox Chase Cancer Center
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Introduction

Healthcare decisions affect all of us, whether on a 
personal, professional, or societal level. We are 
human, as are all decision makers, and so are 
blessed and bound by the resources and limita-
tions of the human mind. We cannot predict the 
future perfectly; we cannot arrange all positive 
and negative events to our liking; and we may  
not always understand the available choices. More-
over, even if effective treatments are recognized, 
financial constraints may force the selection of 
one option to the exclusion of others. This ency-
clopedia provides an introduction to some of the 
pitfalls and potential solutions our species has 
developed in the quest for achieving better deci-
sions with less regret.

The audience for this encyclopedia is broad, 
and the need for a compilation of short essays over 
an equally expansive range of topics is great. There 
are a number of examples. Patients may wish to 
understand their vulnerability in interpreting the 
level of risks and benefits of treatment options, 
how their decisions are shaped by culture and 
emotions, or how physicians assess evidence and 
make diagnoses. Policy makers may seek firsthand 
knowledge on the basics of economic analyses, 
health measurement, and bioethics. Clinicians may 
desire deeper insights into the influences on their 
own processes of making diagnoses or choosing 
treatments or understanding the steps by which 
decision algorithms found in the literature are con-
structed and evaluated. Ironically, many partici-
pating in medical decision making have not 
accessed the impressive and exciting body of study 
and scholarship available. The anticipated time 
commitment and availability of formal courses 
may have prevented some from exploring the con-
tributions of cognitive psychology, decision analy-
sis, ethics, health economics, health outcomes, 
biostatistics, and clinical epidemiology. Others 

may have tried some self-study but become frus-
trated when confronted with new vocabulary or 
advanced mathematics. Some potential readers 
may have had lectures or training in the past but 
struggle now to retrieve particular points quickly 
and apply them to their current practices. And 
many in the target audience may be experts in one 
aspect of medical decision making but wish to 
enhance or energize their work by understanding a 
different perspective.

Satisfying the interests, needs, and time con-
straints of a diverse audience is challenging. We 
have attempted to address these, first, by making 
the encyclopedia instructional, not simply infor-
mational. The authors have written clearly, 
explained carefully the general sense of the math-
ematical formulae when presented, and provided 
generously the many and varied examples so that 
a wide range of readers can understand and appre-
ciate the material. Certainly no encyclopedia can 
substitute for a textbook or formal course on a 
particular topic; this encyclopedia provides a quick 
and comprehensible introduction. Next, we wanted 
each essay to be understandable on its own 
account, not critically dependent on previous read-
ings or coursework. Nevertheless, the authors have 
also suggested related topics and further readings 
at the ends of the articles. A third consideration 
guiding the development of this work was that it 
should reflect international scholarship. The 
authors represent nearly every continent. Many 
have contributed to the primary foundations of 
medical decision making; to have their work repre-
sented here together may eventually be viewed as 
historical.

Given the universality of medical decision mak-
ing, the list of potential topics to include can 
quickly grow to an unmanageable length. A con-
ceptual framework is needed to identify the key 
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ideas and organize their elaboration. One approach 
is to classify studies of medical decision making as 
either prescriptive (also called normative) or 
descriptive. Work in the prescriptive area investi-
gates the processes and technology by which opti-
mal medical decisions should be determined. In 
contrast, descriptive studies examine how deci-
sions actually are made. Perhaps not surprisingly, 
these two strategies are often in disagreement. 
Prescriptive decision making often employs formal 
analyses and algorithms, often via a computer, to 
calculate the best choice under the circumstances, 
for instance, maximizing benefit relative to the 
costs. These algorithms may be complicated, inac-
cessible, not trusted, and thus not used. In their 
absence, patients, physicians, or policy makers 
might use less formal methods to make decisions 
yet may do as well or better than the more sophis-
ticated approach.

Our encyclopedia addresses both categories—
prescriptive and descriptive—through a conceptual 
structure consisting of six components of classical 
decision analysis. The first component concerns 
identification of the decision maker—in other 
words, who must choose. In general, there are 
three levels of decision makers, each with a par-
ticular perspective: the individual patient or sur-
rogate, the clinician, and society. The second 
component is the identification of the decision to 
be made, for instance, the selection of the most 
likely diagnosis or the therapy with the best chance 
of cure. The essays pertaining to these first two 
components generally fall into the descriptive cat-
egory: how decisions are influenced, finalized, and 
reviewed afterwards. Generally speaking, these 
draw heavily from the field of cognitive psychol-
ogy. The third component concerns the conse-
quences or outcomes of decisions and how these 
are defined and measured. The corresponding 
entries generally concern health econometrics and 
health-related quality-of-life measurement. The 
fourth category is related, and examines the value 
of the potential outcomes, often expressed as a 
monetary sum or a level of desirability termed util-
ity. The fifth component in the conceptual frame-
work involves the likelihood or probability of the 
possible consequences through essays on statistical 
concepts and clinical epidemiology. The sixth cat-
egory concerns the mechanism by which individu-
als, clinicians, and society determine the best 

decision. This involves ethics, cultural consider-
ations informed by sociology and anthropology, 
and prescriptive approaches such as utility maxi-
mization as well as descriptive approaches related 
to cognitive psychology. We have also included a 
seventh category for the encyclopedia, broadly 
characterized as pertaining to methods and tech-
niques used to predict outcomes and analyze deci-
sions, whether at the individual patient, cohort, or 
societal level. The pertinent essays cover mathe-
matical models of disease progression, diagnosis, 
and prognosis as well as economic evaluations.

The encyclopedia was developed in five basic 
steps.

Step 1: Leading medical decision-making experts 
around the world were invited to serve on the edito-
rial board.

Step 2: The senior editorial board editor and the 
associate editor created a master list of topics cor-
responding to the conceptual framework presented.

Step 3: The editorial board was asked to nominate 
individuals to author the list of entries. We also 
searched PubMed and the Web sites of universities 
to find people publishing on certain topics, and  
we consulted with our colleagues for additional 
suggestions.

Step 4: Contributors were given basic guidelines and 
instructions regarding the writing of their entries. As 
previously mentioned, we encouraged them to be 
thorough in describing the entire topic area and to 
write in nontechnical, accessible language.

Step 5: The editor and associate editor then reviewed 
all the entries and asked authors for revisions as 
necessary.

As with the subject matter, this encyclopedia 
has its own limitations and imperfections. The 
first concerns the selection of topics. We antici-
pate surprise with the selection of some included 
and chagrin with those not found. Our generic 
response to those questioning an inclusion is that 
many of the techniques and tools used in medical 
decision making are based on methodology devel-
oped in a related discipline such as statistics or 
psychometrics. We wanted to provide interested 
readers with the opportunity to obtain back-
ground in these supporting topics to enhance their 
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enjoyment of the other essays. For those disap-
pointed in the lack of a particular topic, we beg 
your understanding and trust that your curiosity 
will lead you to the appropriate reference. The 
second limitation concerns our attempt to make 
each essay understandable as a single entity. An 
inevitable consequence of this editorial approach 
is some redundancy of content among related 
essays. We do not foresee this being too problem-
atic with the encyclopedia format. The third limi-
tation concerns the difference between empirical 
evidence and hypothetical examples for teaching 
purposes. The field of medical decision making 
continually develops and includes concepts sup-
ported with various levels of evidence. Many of 
the examples within the essays summarize formal 
studies referenced at the end of the article. 
However, other examples are provided as relevant 

illustrations of the underlying concepts. These 
should not be taken as firm evidence of the deci-
sion practices of a particular culture, profession, 
or specialty, much less a judgment on the deci-
sions or actions of a given individual.

We conclude with some practical advice for those 
still reading this Introduction. Start wherever your 
curiosity is most urgent. If your reading halts due to 
unfamiliar mathematical notation, consult the essay 
on “Statistical Notation.” If you finish an essay with-
out understanding its major points, read a few entries 
on the related topics, then return to the original 
essay. This encyclopedia is a treasure. In the course 
of its compilation, we have reexperienced the initial 
joy of discovering concepts and techniques that ulti-
mately changed the directions of our careers.

Michael W. Kattan and Mark E. Cowen
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AcceptAbility curves And 
confidence ellipses

Acceptability curves and confidence ellipses are 
both methods for graphically presenting the uncer-
tainty surrounding the estimate of cost-effectiveness. 
A confidence ellipse provides a visual representa-
tion of the region containing x% (where x is usu-
ally 95) of the uncertainty. An acceptability curve 
provides a graphical representation of the proba-
bility that an intervention is cost-effective com-
pared with the alternative(s), given the data. 
Confidence ellipses can only be used for compari-
sons between two interventions, whereas accept-
ability curves can be produced for decisions 
involving multiple interventions. Confidence 
ellipses are determined parametrically from infor-
mation about the distribution of costs and effects 
(mean, variance, and covariance). The acceptabil-
ity curve can be determined from the confidence 
ellipse or direct from the data following an assess-
ment of uncertainty through bootstrapping (for 
trial data) or probabilistic sensitivity analysis (of 
modeling analyses). Both are specified as appropri-
ate methods for presenting uncertainty in cost- 
effectiveness in the Guide to the Methods of 
Technology Appraisal produced by the National 
Institute for Clinical Excellence (NICE) in the 
United Kingdom. This entry reviews the concepts 
of confidence ellipses and cost-effectiveness accept-
ability curves (CEACs) for the presentation of 
uncertainty surrounding the cost-effectiveness, 
detailing their construction, use, and interpretation. 

The concept of the cost-effectiveness acceptability 
frontier (CEAF) is also introduced.

Confidence Ellipse

A confidence ellipse provides a visual representa-
tion of the uncertainty surrounding costs and 
effects (or indeed any two variables). The ellipse 
provides a region on the cost-effectiveness plane 
that should contain x% (e.g., 95%) of the uncer-
tainty. By varying x, a series of contour lines can 
be plotted on the cost-effectiveness plane, each 
containing the relevant proportion of the cost and 
effect pairs. Figure 1 illustrates 95%, 50%, and 
5% confidence ellipses.

Construction of the confidence ellipse requires 
the assumption that the costs and effects follow a 
bivariate normal distribution, that is, for each 
value of cost, the corresponding values of effect are 
normally distributed (and vice versa).

The drawback with the confidence ellipse is that 
while it presents the uncertainty around the costs 
and effects, it does not deal with the uncertainty 
surrounding the incremental cost-effectiveness 
ratio (ICER). One solution to this is to use the 
boundaries of the relevant confidence ellipse to 
approximate confidence intervals (e.g., 95%) for 
the ICER. This interval is given by the slopes of the 
rays from the origin, which are just tangential to 
the relevant ellipse (identified in Figure 2). Note 
that these will be overestimates of the confidence 
interval.

The particular shape and orientation of the con-
fidence ellipse will be determined by the covariance 
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2 Acceptability Curves and Confidence Ellipses

of the costs and effects. This will in turn affect  
the confidence intervals estimated from the ellipse. 
Figure 3 illustrates the influence of the covariance 
on the confidence ellipse and the confidence limits.

Cost-Effectiveness Acceptability Curves

In contrast, the acceptability curve (or cost- 
effectiveness acceptability curve [CEAC]) focuses 
on the uncertainty surrounding the cost-effectiveness. 
An acceptability curve provides a graphical presenta-
tion of the probability that the intervention is cost-
effective (has an ICER below the cost-effectiveness 
threshold) compared with the alternative inter ven-
tion(s), given the data, for a range of values for the 
cost-effectiveness threshold. It should be noted that 
this is essentially a Bayesian view of probability 
(probability that the hypothesis is true given the 
data) rather than a frequentist/classical view of 
probability (probability of getting the data, or data 
more extreme, given that the hypothesis is true). It 
has been argued that this is more appropriate to the 
decision maker, who is concerned with the proba-
bility that the intervention is cost-effective (hypoth-
esis is correct) given the cost-effectiveness results. 
However, a frequentist interpretation of the accept-
ability curve has been suggested, as the 1 − p value 
of a one-sided test of significance.
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Figure 1   Confidence ellipses on the  
cost-effectiveness plane
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Figure 2  Estimation of the confidence interval from the confidence ellipse
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Acceptability curves were originally introduced 
as an alternative to presentation of confidence 
intervals around the ICER, given the methodologi-
cal difficulties involved with determining confi-
dence intervals for ratio statistics, including the 
nonnegligible probability of a small or nonexistent 
effect difference that would cause the ICER to  
be undefined and make the variance intractable. 
Figure 4 presents a CEAC for an intervention.

Constructing a CEAC

The CEAC is derived from the joint distribution 
of incremental costs and incremental effects. When 
cost and effect data originate from a clinical trial, 
the joint distribution is generally determined through 
nonparametric bootstrapping. When a model has 
been used, probabilistic sensitivity analysis (Monte 
Carlo simulation) can be used to translate the 
uncertainty surrounding the model parameters into 
uncertainty in costs and effects. As such, the con-
struction of the acceptability curve has no require-
ment for parametric assump  tions regarding the 
joint distribution of costs and effects.

For any specified cost-effectiveness threshold, 
the probability that the intervention is cost-effective 
is calculated simply as the proportion of the cost 
and effect pairs (plotted on the cost-effectiveness 
plane) lying below a ray with slope equal to the 
specific threshold. Since the cost-effectiveness 
threshold is generally not explicitly defined, this 

calculation is repeated for different values of the 
cost-effectiveness threshold. The process usually 
starts with the threshold = 0 (indicating that soci-
ety cares only for reduced costs) and ends with the 
threshold = ∞ (indicating that society cares only 
for increased effects). The acceptability curve  
is constructed by plotting probabilities (y-axis) 
against the cost-effectiveness threshold (x-axis). 
Figure 5 illustrates the process of constructing the 
acceptability curve illustrated in Figure 4.

Rules for the CEAC

1. The value at which the acceptability curve 
cuts the y-axis (i.e., when cost-effectiveness thresh-
old = 0) is determined by the extent of the joint 
distribution that falls below the x-axis on the cost-
effectiveness plane (i.e., involves cost savings). If 
any of the joint distribution involves cost savings, 
the curve will not start at 0.

2. The value to which the acceptability curve 
asymptotes (as the cost-effectiveness threshold 
approaches infinity) is determined by the extent  
of the joint distribution falling to the right of the 
y-axis (i.e., involving increased effects). If any of 
the joint distribution involves negative effects, the 
curve will not asymptote to 1.

3. The shape of the acceptability curve will 
depend solely on the location of the joint distribution 
within the incremental cost-effectiveness plane. 

Incremental Effects Incremental QALYsIncremental QALYs
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Figure 3   Covariance and the confidence ellipse: (a) negative covariance between cost and effect, (b) independent 
cost and effect (0 covariance), and (c) positive covariance between cost and effect
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Figure 4  Cost-effectiveness acceptability curve

Incremental cost-effect pairs that fall in the northwest 
quadrant are never considered cost-effective and, 
therefore, are never counted in the numerator of the 
estimate. Incremental cost-effect pairs that fall in the 
southeast quadrant are always considered cost-effec-
tive and, therefore, are always counted in the numer-
ator of the estimate. As the threshold increases from 
zero to infinity, incremental cost-effect pairs in the 
northeast and southwest quadrants may or may not 
be considered cost-effective (and therefore included in 
the numerator) depending on the value of the thresh-
old. As such, the acceptability curve is not necessarily 
monotonically increasing with the cost-effectiveness 
threshold, and therefore, it does not represent a 
cumulative distribution function.

Interpreting and Misinterpreting the CEAC

For a specific cost-effectiveness threshold (x-axis), 
the acceptability curve presents the probability (read 
off on the y-axis) that the data are consistent with a 
true cost-effectiveness ratio falling below that value. 
It presents a summary measure of the joint uncer-
tainty in the estimate of incremental cost-effective-
ness, thus providing the decision maker with a 
measure of the uncertainty associated with the selec-
tion of a particular intervention as cost-effective.

Note that the acceptability curve should not  
be read in the opposite direction (i.e., from the y-axis 
to the x-axis) as this would imply that the  
cost-effectiveness threshold is flexible and determined 

by the required probability level (confidence) rather 
than externally set and based on society’s willingness 
to pay for health effects. For example, the curve should 
not be read to determine the cost-effectiveness thresh-
old (x-axis) required to provide at least a .95 proba-
bility that the intervention is cost-effective (p <.05).

Statements concerning the acceptability curve 
should be restricted to those regarding the uncer-
tainty of the estimate of cost-effectiveness. An accept-
ability curve should not, in general, be used to make 
statements about whether the intervention is actually 
cost-effective compared with the alternative(s).

Presenting Multiple Acceptability Curves

There are two situations in which it may be useful 
and/or necessary to present multiple acceptability 
curves: (1) where there are different patient sub-
groups and (2) where there are multiple interventions 
to be compared. The methods for handling and 
displaying these two situations are very different.

Multiple Patient Subgroups

With analyses involving different patient sub-
groups, the cost-effectiveness of the intervention 
for each subgroup is entirely independent from 
that for other subgroups. Each acceptability curve 
presents the probability that the intervention is 
cost-effective compared with the comparator(s), 
given the data, for a particular subgroup. As such, 
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each acceptability curve should be read and inter-
preted independently. Such curves can be plotted 
separately or, to save space, together, but the inter-
pretation remains the same.

Multiple Interventions

With analyses involving multiple (mutually exclu-
sive) interventions, the cost-effectiveness of each 
intervention must be compared with the available 
alternatives and assessed simultaneously. The same 
is true of the probability that each intervention is 

cost-effective compared with the available alterna-
tives, given the data. With mutually exclusive, col-
lectively exhaustive interventions, the vertical sum 
of the probabilities must equal 1 for every value of 
the cost-effectiveness threshold (i.e., one of the inter-
ventions must be cost-effective). Therefore, in con-
trast to the multiple subgroup case, when presenting 
acceptability curves for multiple (mutually exclu-
sive) interventions, the curves should be read and 
interpreted together. However, this presentation of 
multiple acceptability curves can cause confusion 
with interpretation and lead to a temptation to 
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Figure 5  Creating the cost-effectiveness acceptability curve
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identify the cost-effective intervention from the 
acceptability curves, as that with the highest proba-
bility for each cost-effectiveness threshold. As stated 
above, the acceptability curves present only the 
probability that the intervention is cost-effective 
compared with the alternative(s), given the data. 
They do not identify whether the intervention, or 
which intervention, is cost-effective. This is identi-
fied through comparison of the ICER with the cost-
effectiveness threshold, with the cost-effective 
intervention identified as that with the largest ICER 
falling below the cost-effectiveness threshold.

Acceptability Frontier

One method suggested to avoid the problem of mis-
interpretation associated with multiple acceptability 
curves is the presentation of a CEAF. The CEAF is cre-
ated by graphing the probability that the intervention 

is cost-effective only over the range at which it is 
identified as such on the basis of the ICER. As the 
name suggests, this provides a frontier produced from 
the relevant sections of the individual acceptability 
curves. It should be noted that the appropriate con-
struction of the CEAF requires that the cost-effective 
intervention is identified for each value of the thresh-
old and then the probability is plotted for this inter-
vention for this threshold. Breaks in the acceptability 
frontier may occur at the point where the cost-effec-
tive intervention changes (i.e., where the cost-effec-
tiveness threshold equals the ICER between the two 
interventions). Note that the acceptability frontier, 
created in this way, is not necessarily the same as that 
created from the outermost boundary of the individ-
ual acceptability curves. Figure 6 presents multiple 
acceptability curves and the associated CEAF.

Elisabeth Fenwick

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

$0

$1
0,

00
0

$2
0,

00
0

$3
0,

00
0

$4
0,

00
0

$5
0,

00
0

$6
0,

00
0

$7
0,

00
0

$8
0,

00
0

$9
0,

00
0

$1
00

,0
00

Cost-Effectiveness Threshold

$0

$1
0,

00
0

$2
0,

00
0

$3
0,

00
0

$4
0,

00
0

$5
0,

00
0

$6
0,

00
0

$7
0,

00
0

$8
0,

00
0

$9
0,

00
0

$1
00

,0
00

 

P
ro

b
ab

ili
ty

 T
ec

h
n

o
lo

g
y 

Is
 C

o
st

-E
ff

ec
ti

ve

2

3

1

4

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

P
ro

b
ab

ili
ty

 T
ec

h
n

o
lo

g
y 

Is
 C

o
st

-E
ff

ec
ti

ve

2

3

1

4

Figure 6  Multiple acceptability curves and associated acceptability frontier
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See also Confidence Intervals; Cost-Effectiveness 
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AccountAbility

Accountability refers to the implicit or explicit 
expectation that one may be called on to justify 
one’s beliefs, feelings, and actions to others. 
Although most theories of decision making have 
conveniently assumed that decision makers act as 
isolated individuals, decision makers, including 
those in the field of medicine, seldom think and 
act free from social influences.

Decision making in the field of medicine is 
fraught with complex, conflicting pressures from 
various parties, including patients, physicians, hos-
pitals, health policy makers, and insurers, that 
promote distinct and often competing objectives, 
such as maximizing life expectancy versus optimiz-
ing quality of life, or weighing quality of treatment 
against economic constraints. Therefore, to best 
structure accountability relationships and ulti-
mately to improve the quality of decisions in the 
medical setting, careful analysis of accountability is 
warranted.

This entry reviews findings from empirical 
research that addresses the impact of many 
types of accountability on decision making  
and attempts to identify the conditions under 

which accountability will improve decision  
making.

Many Kinds of Accountability

It is intuitive to think that accountability will breed 
hard thinking and that thinking harder will trans-
late to thinking better. But according to reviews  
of the accountability literature, accountability pro-
motes self-critical and effortful thinking only under 
certain conditions.

Different types of accountability can be distin-
guished based on the specific nature of justifica-
tion an individual is expected to provide for his 
or her decisions: To whom is he or she account-
able, for what, and according to what ground 
rules must he or she justify his or her decisions? 
For example, a decision maker may be account-
able to an audience with known versus unknown 
views, to authority figures whom the decision 
maker may perceive as legitimate or illegitimate, 
and for either the outcome or the process of the 
decision.

Based on their review of the accountability lit-
erature, Jennifer Lerner and Phillip Tetlock 
reported that decision makers engage in more 
careful thinking only when they learn prior to 
forming any opinions about the decision that they 
will be accountable to an audience (a) whose 
views are unknown, (b) who is interested in accu-
racy, (c) who is more interested in processes rather 
than outcomes, (d) who is reasonably well 
informed, and (e) who has a legitimate reason for 
probing the reasons behind decisions. Therefore, 
simply leading decision makers to expect to justify 
their decisions to others is insufficient to promote 
thorough decision making. Instead, organizations 
and authorities must methodically tailor account-
ability structures to promote more careful thought 
processes.

Will Accountability Improve  
Decision Making?

Although making a decision maker accountable to 
an unknown audience before the decision is made 
promotes more careful thought processes, employ-
ing this specific kind of accountability by no means 
ensures improved decision making. Rather, the 
effects of accountability depend on the types of deci-
sions and the cognitive processes involved, resulting 
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in some improved decisions, some unchanged deci-
sions, and some degraded decisions.

When Accountability Improves Decision Making

Predecisional accountability to an unknown 
audience improves decision making to the extent 
that suboptimal decisions would—under default 
conditions—result from lack of effort and self-
critical attention to the decision process. In other 
words, as long as improvements in decision mak-
ing require only greater attention to the informa-
tion provided, and not acquisition of special skills 
or training in formal decision rules, the concen-
trated thinking motivated by accountability pres-
sure will result in thinking better. For example, 
research has shown that accountable decision 
makers with a heightened awareness of decision 
processes made better decisions, specifically, by 
reducing the tendency for happiness from an  
unrelated event to elicit heuristic, stereotypic judg-
ments; by reducing blind commitment to a prior 
course of action in an effort to recoup sunk costs; 
and by decreasing the likelihood of mindlessly rat-
ing a conjunctive event (e.g., shy librarian) as more 
likely than a simple event (e.g., librarian).

When Accountability Has No  
Effect on Decision Making

Predecisional accountability to an unknown audi-
ence has no effect on decision making if knowledge 
of formal decision rules (e.g., Bayes’s theorem, 
expected utility theory) that cannot be acquired 
through increased attention to the decision process is 
critical for improvements on decision tasks. For 
instance, accountability had no effect on insensitivity 
to base rate information; even with increased aware-
ness of their decision process, decision makers often 
failed to adjust their probability estimates for the 
frequency of a specific event in some relevant popula-
tion. As an example, when asked to estimate the 
probability of a woman having breast cancer given a 
positive mammogram with 90% sensitivity and 93% 
specificity, most participants failed to take the base 
rate of breast cancer in the woman’s age group (.8%) 
into account even when it was clearly provided  
to them, no matter how hard they were pressured  
to think.

When Accountability Degrades Decision Making

Predecisional accountability to an unknown 
audience can actually degrade decision making 
when certain decision-making biases result from 
using normatively proscribed information or when 
the option that appears easiest to justify also hap-
pens to be a biased option. For example, increased 
effort in accountable decision makers led them to 
increase integration of nondiagnostic information 
into predictions and resulted in dilution of critical 
diagnostic information.

Decomposing Accountability

To fully understand how accountability influences a 
given decision context, it is worth recognizing that 
even the simplest form of accountability necessarily 
implicates several empirically distinguishable sub-
phenomena: (a) the mere presence of another person 
(decision makers expect that another person will 
observe their performance), (b) identifiability (deci-
sion makers expect that what they say or do will be 
linked to them personally), (c) evaluation (decision 
makers expect that their performance will be assessed 
by another person according to some normative 
ground rules and with some implied consequences), 
and (d) reason giving (decision makers expect that 
they must give reasons for what they say or do). 
More research is needed to clarify how these phe-
nomena might affect the impact of accountability.

Accountability and Medical Decision Making

Assuming that accountability is a social panacea, 
people propose accountability as a solution to all 
sorts of problems. However, research has docu-
mented that accountability is not a singular phe-
nomenon that solves every problem. Only highly 
specialized forms of accountability will elicit 
increased cognitive effort in decision makers. 
More cognitive effort is not always beneficial and 
sometimes makes matters even worse. Moreover, 
accountability inherently implicates empirically 
distinguishable subphenomena, which may or 
may not influence decision makers in a consistent 
direction. Accountability as a whole is a complex 
construct that interacts with individual character-
istics of the decision maker and properties of the 
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decision-making environment to produce an array 
of effects. Decision makers and their superiors 
should carefully research the decision environ-
ment and decision task to use accountability pres-
sure to advantage in medical decision making.

Seunghee Han and Jennifer S. Lerner
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AdvAnce directives And 
end-of-life decision MAking

Advance directives are oral or written statements 
given by competent individuals regarding the 
medical treatment they would like to receive 
should an incapacitating injury or illness preclude 
their ability to make or express their own deci-
sions. They are most often used to make decisions 
when a person is near the end of life, and difficult 
choices must be made about the use or withdrawal 
of life-sustaining medical treatment.

Rapid advances in medical technology over the 
past several decades have made end-of-life deci-
sion making an increasingly important and com-
plex challenge for patients, their families, and 

healthcare professionals. Advance directives play a 
role in many end-of-life decisions, and their use is 
encouraged by medical professionals and sup-
ported by state and federal law. This entry 
describes the main types of advance directives, 
their social and legal history, some of their limita-
tions as aids to effective end-of-life decision mak-
ing, and some strategies suggested for addressing 
these limitations.

Types of Advance Directives

There are two primary types of advance directives. 
Instructional advance directives, also known as liv-
ing wills, contain instructions about the type of 
life-sustaining treatment an individual would like 
to receive should he or she become incapacitated. 
Such instructions can range from legal documents 
prepared with the help of an attorney to verbal 
statements made to a family member or a physi-
cian. They can be general and express values and 
goals that the individual feels should guide medical 
care (e.g., emphasize quality over quantity of life) 
or relevant religious values. Or they can be specific 
and carefully delineate particular medical treat-
ments to be used or withheld in particular medical 
conditions. Most often, instructional directives 
express a desire to withhold aggressive life-sustaining 
treatments, but they can also be used to request 
such treatments. In addition, they can specify pref-
erences regarding pain management, organ  
donation, or dying at home as opposed to in a 
hospital.

Proxy advance directives designate another per-
son as a surrogate decision maker, or a proxy, for 
the patient should he or she become incapacitated. 
Proxy directives are also known as durable  
powers of attorney for healthcare and surrogate 
appointments. The surrogate decision maker is 
usually a spouse or another close family member. 
Proxy directives convey the legal right to make 
treatment decisions but do not necessarily contain 
explicit guidance regarding what those treatments 
should be.

Advance directives can be created without 
using any preprepared forms, but the majority of 
U.S. states provide standard forms that follow 
specific state statutes. Verbal statements are also 



10 Advance Directives and End-of-Life Decision Making

considered legal advance directives, especially if 
recorded by a medical professional in a patient’s 
chart.

Another common kind of instructional advance 
directive is a Do Not Resuscitate (DNR) order, 
which is recorded in a medical chart and indicates 
a desire to not receive cardiopulmonary resuscita-
tion (CPR). Because resuscitating treatments often 
fail, such orders are also sometimes called Do  
Not Attempt Resuscitation (DNAR) orders. Also, 
because decisions besides those involving resusci-
tation must often be made, a more comprehensive 
type of medical order form called Physician 
Orders for Life-Sustaining Treatment (POLST) 
has recently been developed and adopted for use 
in several states. POLST forms record a patient’s 
wishes for a number of different life-sustaining 
treatments and require both patients and physi-
cians to sign, indicating that they have discussed 
these preferences.

Advance Directives Versus  
Physician-Assisted Suicide

Advance directives should not be confused with 
the more controversial issue of physician-assisted 
suicide. Advance directives involve choices about 
whether to accept or refuse particular kinds of life-
sustaining medical treatment in the event of inca-
pacitation. Physician-assisted suicide involves a 
competent, terminally ill person asking a physician 
to knowingly and intentionally provide the means to 
end his or her life. The use of advance directives to 
refuse unwanted medical treatment near the end of 
life is endorsed widely by medical associations and 
supported by U.S. state and federal law. Advance 
directives have achieved similar levels of accep-
tance in a number of European countries. In con-
trast, physician-assisted suicide is much more 
controversial and, at this time, is legal only in the 
state of Oregon and a few European countries 
(e.g., the Netherlands) under very narrow sets of 
conditions.

The Social and Legal History  
of Advance Directives

The concept of advance directives emerged in the late 
1960s as medical technology made it increasingly 

possible to prolong the lives of seriously ill indi-
viduals, especially individuals with minimal cog-
nitive functioning or severe and chronic pain, 
who have little or no hope for ultimate recovery. 
Many people view the use of life-sustaining 
medical treatment in such situations as not so 
much extending life as extending the process of 
dying. This created a challenge to the “techno-
logical imperative” that physicians should use 
all means at their disposal to prolong life. The 
concept of advance directives was thus created 
to allow people to exert some control over the 
medical treatment they receive at the end of  
their lives.

Advance directives were a response to a practi-
cal problem. At the time difficult medical deci-
sions must be made about the use of life-sustaining 
treatments, many patients are already too sick to 
decide for themselves. In 1969, attorney Luis 
Kutner suggested that individuals too ill to make 
decisions for themselves could maintain their 
ability to influence the use of life-sustaining 
medical treatments by documenting treatment 
wishes prior to incapacitation in what he termed 
a “living will.”

The issues of advance directives and end-of-life 
decision making did not enter public conscious-
ness, however, until the controversial 1976 court 
case of In re Quinlan. In that case, the New Jersey 
Supreme Court considered the dilemma of Karen 
Ann Quinlan, a young woman who suffered severe 
brain damage after mixing alcohol and tranquiliz-
ers at a party and was left in a persistent vegetative 
state. Her parents sought to remove her from the 
respirator that was maintaining her life, but hospi-
tal administrators asked for a court ruling on the 
matter because of concerns about legal liabilities. 
The court granted her parents’ request for removal 
of the respirator, finding that it infringed on 
Quinlan’s right to privacy protected under the 
Constitution. The decision was important because 
it concluded that not only did a competent person 
have a constitutionally protected right to refuse 
life-sustaining treatment but that this right was not 
diminished by Quinlan’s incapacitation. The court 
went on to say that while Quinlan could obviously 
not exercise this right herself, her parents could on 
her behalf, using their “best judgment” on how she 
would decide for herself.



11Advance Directives and End-of-Life Decision Making

An even more crucial legal decision support-
ing the use of instructional advance directives was 
Cruzan v. Director, Missouri Department of 
Health, decided by the U.S. Supreme Court in 
1990. The case involved 24-year-old Nancy Cruzan, 
who suffered a car accident that left her in a per-
sistent vegetative state with no hope for recovery. 
Cruzan’s parents sought legal action to remove her 
from life support but were opposed by Missouri 
state officials. The U.S. Supreme Court confirmed 
not only Cruzan’s constitutionally protected right 
to refuse medical treatment but also a state’s right 
to set its own standard for determining sufficient 
evidence of an incompetent person’s wishes. In this 
case, Missouri’s standard required “clear and con-
vincing evidence” of an incompetent patient’s 
prior wishes, and an instructional advance direc-
tive is often seen as the best method of meeting this 
strict evidentiary standard.

The controversy surrounding the Cruzan case 
helped spur important legislation, and in 1990, the 
U.S. Congress passed the Patient Self-Determination 
Act. The act stipulates that all hospitals receiving 
Medicaid or Medicare reimbursement must inform 
patients of (a) their right to accept or refuse treat-
ment, (b) their rights under existing state laws 
regarding advance directives, and (c) any policies 
the institution has regarding the withholding  
or withdrawing of life-sustaining treatments. 
Institutions are also required to engage in ongoing 
educational activities for both their employees and 
the general public regarding the right to accept or 
refuse treatment and the opportunity for drafting 
or signing advance directives. Moreover, state leg-
islation has been passed over the past two decades 
making some form of advance directives (instruc-
tional, proxy, or both) legal in all 50 states and the 
District of Columbia.

More recently, the case of Theresa Marie (Terri) 
Schiavo brought intense worldwide media atten-
tion to the issue of end-of-life decision making. 
Schiavo was a 26-year-old Florida housewife when 
her heart unexpectedly stopped in 1990, leaving 
her immobile and uncommunicative for the next 
15 years. Schiavo left no advance directive and 
members of her immediate family disagreed vehe-
mently about whether or not she should be 
removed from the machines that were supplying 
her with food and fluids. Although a series of court 

decisions had sided with the arguments of Schiavo’s 
husband, Michael, that she should be removed 
from life support, her parents and siblings contin-
ued to battle, both in legal court and in the court 
of public opinion, arguing that she would want  
to be kept alive in her current condition, and  
even that she was currently responsive to external 
stimulation. Schiavo died on March 31, 2005, 13 
days after her feeding and fluid tubes were ordered 
disconnected by a Florida trial judge. The case 
raised public awareness of advance directives and 
the complex and emotionally charged nature of 
end-of-life decision making.

Limitations of Advance Directives

A number of researchers and ethicists now express 
skepticism regarding the effectiveness of advance 
directives to improve end-of-life medical decision 
making. The challenges of making decisions for 
incapacitated individuals are complex and multi-
faceted. End-of-life decisions involve multiple indi-
viduals, including the patient, his or her loved 
ones, and physicians. Information must be passed 
from one individual to another, and each individ-
ual has motivations that may conflict and decision-
making limitations that must be overcome. Of 
particular concern are low completion rates of 
advance directives (particularly among some  
ethnic groups), the stability of preferences for  
life-sustaining treatment across changes in an indi-
vidual’s psychological and medical condition, and 
the effectiveness and accuracy of surrogate deci-
sion making.

The first challenge facing the use of advance 
directives is that most people do not have one. 
Estimates suggest that fewer than 25% of U.S. 
adults have an advance directive. Completion rates 
are not substantially higher for individuals with 
serious chronic diseases, and interventions designed 
to increase the rate of advance directive completion 
have shown limited effectiveness. Completion rates 
are particularly low for some ethnic groups, includ-
ing African Americans, Latinos, and Native 
Americans. One source of cultural differences  
may be differential value placed on autonomy. In 
Western philosophy, family members are generally 
viewed as a source of emotional support, not active 
participants in the decision-making process. In 
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many East Asian and other cultures, however, the 
importance of filial duty or protecting the elderly 
may lead a family to make decisions for a fully 
competent adult and withhold information about 
prognosis. In addition, in traditional Hawaiian, 
Chinese, and Japanese cultures, it is commonly 
believed that talking about death may bring on 
death or spiritual pollution. Planning ahead via 
advance directives is often resisted by individuals 
with these cultural backgrounds because it is seen 
as interfering with deeply held cultural traditions 
and the natural course of life and death.

A second problem with instructional advance 
directives in particular concerns the appropriate-
ness of projecting treatment wishes of competent 
individuals onto future states of incompetence. 
Preferences for life-sustaining treatment have been 
found to be highly context dependent and can be 
altered by an individual’s current psychological and 
physical state, as well as the way questions solicit-
ing treatment preferences are framed. People may 
have difficulty imagining what life would be like in 
severely impaired health states. Research suggests 
that almost one third of individuals change their 
preferences about any given life-sustaining medical 
treatment over a period of 1 to 2 years. Moreover, 
the majority of individuals whose life-sustaining 
treatment preferences change over time are unaware 
of these changes and, thus, are unlikely to revise 
their advance directives. These issues raise concerns 
about whether an instructional directive completed 
years before an incapacitating illness can be taken 
as an accurate representation of a patient’s current 
treatment wishes.

A parallel concern exists for the usefulness of 
proxy directives. Researchers have examined the 
ability of potential surrogate decision makers to 
predict a close relative’s life-sustaining treatment 
wishes. In these studies, an individual records his or 
her treatment preferences for various end-of-life 
scenarios (e.g., irreversible coma, end-stage cancer, 
debilitating stroke), and a surrogate decision maker 
(e.g., a loved one or physician) is asked to predict 
those preferences. Research has consistently shown 
that surrogate accuracy in predicting a patient’s life-
sustaining treatment wishes rarely exceed chance 
levels. Surrogate decision makers have been found 
to show at least two types of prediction biases. The 
first is an overtreatment bias, that is, predicting that 
family members will want life-sustaining treatment 

more often than they really do, thus choosing to 
“err on the side of life.” This bias is weaker in pre-
dictions made by physicians, who have sometimes 
been found to show an undertreatment bias. The 
second is a projection bias in which surrogates 
(both family members and physicians) have been 
found to err by assuming that individuals will have 
wishes for life-sustaining treatment that are similar 
to their own.

Last, it should be noted that decisions about 
treatment for a loved are not purely rational ones. 
Individuals who are placed in the position of being 
directly responsible for taking the action that ends 
the life of a loved one may experience strong emo-
tional conflict. Thus, even if a surrogate knows full 
well that a loved one does not want to receive life-
sustaining treatment, the surrogate may find it dif-
ficult to honor that wish. Another point of conflict 
may occur if the patient’s known wishes conflict 
with religious or other deeply held values of the sur-
rogate, as well as if different family members dis-
agree about what the patient would have wanted.

Improving End-of-Life Decision Making

Although research has uncovered a number of 
important limitations of advance directives, several 
strategies have been advocated that may improve 
their effectiveness.

Studies show that when asked about their per-
sonal wishes, most individuals express generally 
positive attitudes about planning for the end-of-
life, but many express ambivalence toward com-
pleting specific instructional directives and, instead, 
seem more positively inclined toward informal dis-
cussion that focuses on general values and goals. 
Many individuals are comfortable leaving end-of-
life medical decisions to their families and indicate 
that in the event of a disagreement between their 
own documented preferences and the opinions  
of their loved ones, their family’s rather than their 
own directions should be followed. As noted 
above, such attitudes are particularly pronounced 
in some cultural groups. Therefore, broad-based 
attempts to encourage healthy people to document 
increasingly specific instructional advance direc-
tives may be misguided. Instead, some scholars have 
argued that it is better to focus on encouraging the 
completion of proxy advance directives, and virtu-
ally all agree that people should be encouraged to 
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view completion of an advance directive document 
as only one part of a broader strategy of advance 
care planning that includes maintaining an ongoing 
discussion about end-of-life treatment wishes with 
loved ones and physicians.

Another approach that attempts to overcome 
the hypothetical nature of general advance direc-
tives is the use of disease-specific advance direc-
tives. These are directives developed for patients 
with a particular medical condition (e.g., AIDS) 
and allow them to document their wishes for the 
specific decisions that individuals with their condi-
tion are most likely to face. Proponents of this 
approach argue that because the patient already 
has some experience with the illness, treatment 
choices are less hypothetical and, thus, more dura-
ble and authentic.

Finally, some shortcomings of standard advance 
directives may be overcome by the use of medical 
orders for life-sustaining treatment. Like disease-
specific advance directives, medical orders can be 
written based on the individual’s current medical 
condition and, thus, may be more accurate and 
up-to-date expressions of end-of-life wishes than 
generic directives completed months or years prior 
to hospitalization. Advocates of the POLST pro-
gram argue that in contrast to standard instruc-
tional advance directives that are typically more 
philosophical reflections of an individual’s prefer-
ences about an unknown future, the POLST  
is immediately actionable and can be followed  
by licensed medical staff such as nursing facility 
nurses and emergency medical technicians. Some 
recent research supports the effectiveness of the 
POLST program in ensuring that patients’ treat-
ment preferences are honored.

Peter H. Ditto and Spassena Koleva

See also Biases in Human Prediction; Bioethics; Context 
Effects; Cultural Issues; Decision Making in Advanced 
Disease; Surrogate Decision Making
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AllAis pArAdox

The independence axiom of expected utility the-
ory offers a compelling reason for making a deci-
sion. According to this axiom, a choice between 
two alternatives should depend only on features  
in which alternatives differ but not on features in 
which the alternatives are equal. Any feature that 
is the same for both alternatives, therefore, should 
not influence the choice a rational person makes. 
For instance, when choosing between two thera-
pies with exactly the same side effects, a rational 
doctor would ignore these side effects. That is, 
rational choice is independent of the alternatives’ 
shared features.

This axiom seems very intuitive; if two therapies 
have the same side effects, it does not matter 
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whether they are small or severe. Hence, rational 
decision makers base their choices on the distinc-
tive rather than the shared features of the choice 
alternatives. In the early 1950s, however, French 
economist Maurice Allais proposed choice prob-
lems that challenged the independence axiom as a 
descriptive principle for risky choice. To illustrate 
this paradox, known as the Allais paradox, con-
sider the following Allais-type choice problems 
presented by Adam Oliver: Which of the following 
would you prefer?

A: Living for 12 years in full health then death, 
 with a chance of 100%

B: Living for 18 years in full health then death, 
 with a chance of 10%

 Living for 12 years in full health then death,  
 with a chance of 89%

 Immediate death, with a chance of 1%

The majority of people selected Alternative A over B.

C: Living for 12 years in full health then death, 
 with a chance of 11%

 Immediate death, with a chance of 89%

D: Living for 18 years in full health then death,  
 with a chance of 10%

 Immediate death, with a chance of 90%

In the second problem, most people chose 
Alternative D, which constitutes a violation of the 
independence axiom. Table 1 shows why.

Alternatives A and B share an 89% chance of 
living for 12 years. Because this shared feature 
should not influence the choice, it can be cancelled 
out. Similarly, Alternatives C and D share an 89% 
chance of immediate death, which can be cancelled 
out again. Importantly, after the shared features in 
each problem (i.e., the bold column in Table 1) 
have been cancelled out, both problems become 
identical. A rational decision maker, thus, should 
choose A and C or B and D, but not A and D.

Explaining the Allais Paradox

To account for the Allais paradox, two prominent 
explanations have surfaced: prospect theory and 

the priority heuristic. Prospect theory by Daniel 
Kahneman and Amos Tversky explains the Allais 
paradox by adding complex nonlinear transforma-
tions of utilities and probabilities on top of the 
expected utility framework. The priority heuristic 
by Eduard Brandstätter, Gerd Gigerenzer, and 
Ralph Hertwig is motivated by first principles, so 
as to avoid ending up with the worst of two mini-
mum consequences. The heuristic consists of three 
steps (assuming nonnegative consequences). In the 
first step, people compare the alternatives’ mini-
mum consequences. They select the alternative 
with the higher minimum consequence, if this dif-
ference is large (i.e., equal to or larger than 10%  
of the problem’s best consequence). Otherwise, 
they compare the chances of the minimum conse-
quences. They select the alternative with the 
smaller chance of the minimum consequence, if 
this difference is large (i.e., equal or larger than 
10%). Otherwise, they compare the maximum 
consequences and select the alternative with the 
higher maximum consequence.

In the choice between A and B, 12 and 0 years 
represent the minimum consequences. Because this 
difference is large (i.e., 12 years exceeds 10% of 18 
years), people are predicted to select the alternative 
with the higher minimum consequence, which is A. 
That is, the heuristic predicts the majority choice 
correctly.

In the second choice problem, the minimum 
consequences (0 and 0) do not differ. In the second 
step, the chances of the minimum consequences, 
89% and 90%, are compared, and this difference 
is small (i.e., less than 10 percentage points). The 
higher maximum consequence, 18 versus 12 years, 
thus, decides choice, and people are predicted to 

Table 1  Illustration of the Allais paradox

Alternative 10 Blue 89 Red 1 Green

A 12 12 12

B 18 12  0

C 12  0 12

D 18  0  0

Note: The chances in the Allais paradox are symbolized by an urn 
containing 10 blue balls, 89 red balls, and 1 green ball. Cell entries 
represent numbers in years living in full health for each alternative 
in the Allais paradox.
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select Alternative D, which is the majority choice. 
Together, the pair of predictions makes the Allais 
paradox.

Oliver asked participants to think aloud while 
making both decisions. In the first problem, living 
for 12 years with certainty was often a decisive 
reason for choosing Alternative A. In the second 
problem, participants most often stated that the 
difference between a chance of 10% and 11% (i.e., 
the logical complements to 90% and 89%) was 
negligible and that the maximum consequence 
determined their choice. The latter protocol con-
forms with the priority heuristic, which assumes 
comparisons across alternatives, but not with pros-
 pect theory, which assumes utility calculations 
within alternatives.

Adhering to the independence axiom, as implied 
by expected utility theory, is one criterion for ratio-
nal choice. Avoiding the worst consequence, as 
implied by the priority heuristic, is another com-
pelling reason. In conclusion, the Allais paradox 
makes clear that people do not always follow one 
principle only.

Eduard Brandstätter

See also Bounded Rationality and Emotions; Certainty 
Effect; Expected Utility Theory; Prospect Theory
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AnAlysis of covAriAnce 
(AncovA)

Analysis of covariance (ANCOVA) is a statisti-
cal model introduced by Sir Ronald Fisher that  

combines features of analysis of variance (ANOVA) 
with those of regression analysis. The purpose of 
ANCOVA is to examine differences between lev-
els of one or more grouping variables on an out-
come measure after controlling for variation or 
diff erences between populations on one or more  
nuisance variables. The grouping variable often 
represents different treatments, the outcome mea-
sure is the consequence of those treatments, and 
the nuisance variable either obscures true treat-
ment differences or is a confounding variable that 
offers an alternative explanation for differences 
on the outcome other than the treatments.

The ANCOVA model is often underused in 
experimental research and misinterpreted in quasi-
experimental studies. Researchers may not recog-
nize the benefit of using a covariate to reduce 
unexplained variation among units to increase sta-
tistical power in experimental studies. The inclu-
sion of the covariate can substantially increase the 
sensitivity of group comparisons or reduce the nec-
essary sample size to detect meaningful population 
differences. In quasi-experiments, researchers may 
fail to recognize the limitations of the ANCOVA 
model and overinterpret the results of the analyses. 
Because of specification and measurement errors, 
the statistical model cannot totally compensate for 
a lack of random assignment and equate the popu-
lations being compared. However, when used pro-
perly, the ANCOVA model can be an essential 
statistical tool to identify differences among popu-
lations on outcomes of interest.

Research Design

The simplest application of this model involves one 
grouping variable (G) having two levels (e.g., a 
herbal supplement treatment vs. a placebo), a  
single outcome variable (Y) (e.g., blood pressure) 
and a single nuisance variable, referred to as a 
covariate (X) (e.g., body mass index [BMI]) mea-
sured before the formation of the groups or before 
the start of the treatments. While the application of 
the model is identical when groups are formed 
using a random or nonrandom process, the pri-
mary purpose and the interpretation of the results 
are substantially different. When the formation of 
the groups is based on a random process (e.g., use 
of random numbers matched with participant 
identification numbers to assign individuals to 
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treatment levels), the research design is referred to as 
an experiment and is often represented as follows:

R X G1 Y,

R X G2 Y,

where R represents the random assignment of 
units to the treatment groups; X is a covariate; G1 
and G2 represent intervention and placebo groups, 
respectively; and Y is the outcome of interest. 
When group formation is based on a nonrandom 
process (e.g., self-selection) the research design is 
referred to as a quasi-experiment and is often  
represented as follows:

X G1 Y,

X G2 Y,

where terms are defined as above.

Data Example

Suppose a sample of 12 overweight patients having 
high systolic blood pressure volunteered to investi-
gate the usefulness of a herbal supplement over  
a 2-month trial period. Half of the volunteers are 

randomly assigned to receive the herbal supple-
ment, while the other half are given a placebo. 
Before beginning the investigation, each individu-
al’s BMI is computed. When the treatment period 
ends, systolic blood pressure is assessed. Table 1 
presents hypothetical data along with means and 
standard deviations (SDs). These data will be used 
to demonstrate the use and interpretation of the 
ANCOVA model.

Structural Model

The ANCOVA model that can represent data from 
both designs can be written as follows:

Yij = m+ aj + bYjXðXij −XÞ+ eij;

where Yij is the outcome score for individual i in 
Group j (i = 1, . . . , nj; j = 1, . . . , J), µ the grand 
mean on the outcome measure, αj the deviation of 
the mean of population j on the outcome measure 
from the grand mean, by|x the common regression 
slope of the outcome on the covariate, Xij the cova-
riate (e.g., pretest) score for individual i in Group 
j, Yij = m+ j + bY X −X the observed grand mean on the covariate mea-
sure, and εij the model error, a measure of indi-
vidual differences.

Table 1   Body mass index and systolic blood pressure scores (post) for volunteers receiving an herbal diet 
supplement or placebo

Herbal Supplement Placebo

BMI Post BMI Post

50 150 45 147

40 142 26 135

 7 120 40 152

32 129 30 128

45 132 52 165

36 138 37 140

Mean 38.3   135.2   38.3   144.5

SD  8.45     10.51     9.56     13.16
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Before discussing the hypotheses that can be 
tested with this model, it is very important to note 
that a common regression slope, b, of Y on X is 
assumed for this model. That is, the regression 
slope of Y on X is assumed to be identical for all 
populations being compared. This assumption is 
important for two reasons. First, if the slopes are 
not equal, the statistical model is incorrect and the 
subsequent ANCOVA hypothesis tests may be 
statistically invalid. Second, unequal regression 
slopes indicate that there is an interaction between 
the grouping variable and the covariate. That is, 
differences between the populations vary depend-
ing on the value of the covariate. For example, the 
difference in blood pressure between a population 
receiving an herbal supplement and the placebo 
may only occur for individuals having high BMI 
scores. In this context, testing for average differ-
ences between populations can be inappropriate or 
misleading. When an interaction is present, alter-
native analyses (e.g., Johnson-Neyman procedure) 
may be recommended.

Hypotheses

To determine whether the assumption of a com-
mon regression slope is tenable, a statistical test  
for the equality of the separate regression slopes 
should be conducted (i.e., H0: by|x1 = by|x2) with the 
criterion for statistical significance set at a slightly 
elevated level (e.g., α = .10 or .15) to reduce the 
risk of concluding equal slopes when in fact they 
differ.

For the data in Table 1, the regression slopes of 
post on BMI are 1.03 and 1.25, respectively. The 
observed difference between sample estimates is 
not statistically significant (F(1, 8) = .230, p = 
.644). The ANCOVA model is therefore judged 
appropriate for these data.

If the ANCOVA model is appropriate, two 
hypotheses can be tested. One hypothesis exam-
ines the relationship between the covariate and the 
outcome measure: H0: by|x = 0. From a substantive 
perspective, this hypothesis is generally of little 
interest. Often the covariate and the outcome mea-
sures are obtained from the same test administered 
twice, so a relationship is to be expected. If there is 
no relationship between the covariate and the out-
come measure, then X and Y are independent and 
knowledge of X is of little statistical value. For the 

current data set, the pooled or average regression 
slope is 1.15. The relationship between BMI and 
postsystolic blood pressure is statistically signifi-
cant at α = .05 (F(1, 9) = 28.64, p = .000).

A second hypothesis, and the primary hypothe-
sis of interest, that can be tested with the ANCOVA 
model can be written as: H0: αj = 0 for all j, or 
equivalently as H0: adj µ1 = adj µ2 = . . . = adj µj. The 
exact meaning of this hypothesis depends on 
whether the research design is experimental or 
quasi-experimental. An adjusted mean for popula-
tion j is defined as

where adjmj = mYj  and µXj
 are the means for population j on 

the outcome and covariate measures, respectively, 
and µX..

 is the grand mean across all populations 
on the covariate.

If two populations are compared, the hypothesis 
may be written as

H0 : adjm1 − adjm2 = 0;

or

The hypothesis on difference between the 
adjusted population means can be seen as a hypoth-
esis on the difference between the population means 
on the outcome measure minus the product of the 
difference between the population covariate means 
and b y/x. Where b y/x is a measure of the degree to 
which the covariate can predict the outcome mea-
sure. An estimate of the difference between adjusted 
population means is provided by substituting sam-
ple estimates for the parameters in the hypothesis:

ðY1 −Y2Þ− bYjXðX1 −X2Þ:

Experimental Design

When units are randomly assigned to the groups, 
there would be no difference between the popula-
tions on the covariate measure, µx1 − µx2 = 0, and 
no true adjustment is made nor is one necessary. 
In an experiment, the hypothesis on the adjusted 
population means is identical to the hypothesis 

adjmj = mYj
− bYjXðmXj

− mXÞ;

H0 : ðmY1
− mY2

Þ− bYjXðmX1
− mX2

Þ= 0:
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tested in a posttest-only design using analysis of 
variance. The equality of means on the covariate 
measure refers to only the populations, not the 
sample means. Sample means typically differ 
slightly and small differences between adjusted 
and unadjusted sample outcome means are gener-
ally observed. But hypotheses are statements 
regarding populations, not samples, so the small 
differences in sample means can be safely ignored. 
In the present example, sample BMI means are 
identical (i.e.,                     ).

Quasi-Experimental Design

In quasi-experimental studies, populations being 
compared typically differ on the covariate measure 
µx1 − µx2 ≠ 0. For example, individuals who choose 
to take herbal supplements may also exercise more 
than individuals who do not take the supplements. 
The difference in blood pressure between the two 
populations may be related to the amount of exer-
cise rather than the herbal supplement. With the 
ANCOVA model, differences on the outcome mea-
sure can to some extent be adjusted for the differ-
ence on the covariate. The question, however, is 
whether this adjustment is sufficient. The answer is 
generally no. There are two problems when the 
populations being compared are not equivalent on 
all relevant variables that could explain differences 
on the outcome variable other than the treatments. 
First, if populations differ on one variable, X, they 
are likely to differ on other variables as well, and 
these additional variables might also provide an 
alternative explanation for population differences 
on the outcome. It is possible to extend the 
ANCOVA model to include multiple covariates, 
but it is impossible to know and to specify all the 
other relevant confounding variables. This is 
known as the specification error problem. Second, 
even if the populations differed on only one vari-
able, X, the adequacy of the adjustment would 
depend on the estimation of the population slope 
by|x. The reliability (i.e., consistency) with which 
the covariate is measured affects the estimate of 
by|x. The relationship between bY|X and the sample 
estimate bY|X is bY|X = bY|X rXX, where rxx is the reli-
ability of the covariate measure (e.g., BMI). Because 
the covariate is never perfectly reliable, measure-
ment error leads to an underestimation of the rela-
tionship between X and Y, and the pooled regression 

slope, bY|X, is too small and the difference in out-
come means is underadjusted. This is known as the 
measurement error problem. In our example, the 
pooled slope was computed as bY|X = 1.15. If  
the BMI is measured with .70 reliability, the  
correct adjustment should have been 1.64. 
Consequently, the adjustment is insufficient, and it 
is not possible to attribute differences in the out-
come variable solely to the treatment. In the cur-
rent example, the mean BMI score for both groups 
was identical, so the underestimation of the rela-
tionship is irrelevant. No adjustment to postsys-
tolic blood pressure is needed.

The hypothesis regarding the grouping variable 
tested with the ANCOVA model is therefore dif-
ferent when the research design is experimental or 
quasi-experimental. In an experimental design, the 
hypothesis tested is unambiguous. Differences in 
the outcome variable can be attributed to differ-
ences in the grouping variable. But in a quasi- 
experimental study, because of measurement error 
with the covariate and the inability to specify and 
measure all relevant confounding variables, differ-
ences between populations on the outcome mea-
sure cannot be attributed solely to differences in 
the grouping variable. The ANCOVA model can-
not be used to completely compensate for a lack of 
random assignment, and the results of the analysis 
must be interpreted cautiously.

Statistical Power

As discussed above in an experimental study, the 
ANCOVA and ANOVA models test the hypothe-
sis that the population means on the outcome vari-
able are identical. It might then be asked, why go 
to the trouble and expense of collecting additional 
data prior to the formation of the groups? The 
answer is greater sensitivity (i.e., statistical power) 
to detect a difference between populations. Both 
ANOVA and ANCOVA models compute a test 
statistic, F, by taking the ratio of the variation 
among group means multiplied by n, the common 
group size (e.g., n = 6) to the unexplained variation 
of units within the groups. Because in an experi-
ment adjusted and unadjusted means are, within 
sampling error, equivalent, the two statistics differ 
only in terms of the unexplained variation among 
the units. The unexplained variation is individual 
differences attributable to multiple causes (e.g., 

X1 =X2 = 38:3
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initial blood pressure, BMI, activity levels). With 
the ANOVA model, the unexplained variation of 
the units in the populations being compared on the 
outcome measure can be represented as s2

Y|G. If a 
covariate is available and is used, it can explain some 
of the unexplained variation in the outcome mea-
sure, and the remaining variation for the ANCOVA 
model can be written as s2

Y|GX = s2
Y|G (1 − r2), where 

r2 is the population correlation between the covar-
iate and the outcome measure. The greater the 
correlation between the two measures, the smaller 
the unexplained variation in the ANCOVA model 
relative to the ANOVA model, s2

Y|GX < s2
Y|G. The 

smaller the unexplained variation, the more sensi-
tive the analysis to a true population difference 
between the intervention and the placebo. This 
sensitivity is manifested in a larger computed  
F statistic.

In the current data set, if the BMI is ignored,  
s2

Y|G is estimated using the average within-group 
variance on postsystolic blood pressure,

Including BMI scores as a covariate, s2
Y|GX is esti-

mated as 37.7. Ignoring the BMI scores, the 
observed difference between posttreatment means 
(135.2 vs. 144.5) is not statistically significant 
(F(1, 10) = 1.843, p = .204). But after considering 
individual differences in the BMI scores, the differ-
ence between means on the postsystolic blood 
pressure is statistically significant (F(1, 9) = 6.936, 
p = .027).

Effect Size

The statistical evaluation of αj in the ANCOVA 
model is useful in determining whether observed 
difference in the adjusted sample means represent 
a true difference in population means or is an arti-
fact of sampling error (i.e., chance differences 
between units in the samples studied). But this 
analysis provides no information on the magni-
tude of the true difference. Two useful indices of 
effect size are the standardized mean difference 
and h2.

The standardized mean difference (δ) is useful 
when comparing two populations, and it defines 
the difference in population means in terms of the 

population standard deviation on the outcome 
measure:

d= adjmG1
− adjmG2

sYjG
.

A sample estimate of δ is provided by using 
sample estimates of the parameters:

d= adjYG1 − adjYG2

SYjG
;

where SY|G equals the pooled within-group stan-
dard deviation on the outcome measure. Note that 
when computing the standardized-mean differ-
ence, the denominator includes the variation asso-
ciated with the covariate. For the current data, d is 
computed to equal −.78 [(135.2−144.5)/√141.8]. 
The herbal supplement reduced systolic blood 
pressure .78 standard deviation units compared 
with the placebo.

Eta-square is useful when it is desirable to define 
the effect as the proportion of the total variation 
that is associated with the grouping variable:

Z2 = s2
G

s2
G +s2

ID

;

where s2
G is the variation associated with the 

grouping variable and s2
ID the unexplained varia-

tion due to individual differences.
A sample estimate of h2 is provided using sam-

ple estimates of the parameters:

where SSG is the sum of squares for the grouping 
variable and SSID the sum of squares for individual 
differences.

Individual differences include unexplained varia-
tion and variation associated with the covariate,  
that is, SSID = SSx + SSY|GX. Both the results of the 
statistical test for population mean differences and 
effect size should be reported when summarizing the 
results of the ANCOVA model. For the current data,

 

Contrast Analysis

If more than two populations are compared simul-
taneously (e.g., herbal supplement vs. yoga vs. 
placebo) the omnibus hypothesis test H0: αj = 0 for 

141:8= ð10:51Þ2 + ð13:16Þ2

2
:

Ẑ2 = SSG

SSG + SSID
;

Ẑ2 = 0:156 = 261:333
261:333+ 1079:237+ 339:096

 
:
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all j does not identify which populations differ. To 
identify specific differences between and among 
populations, contrasts must be examined and 
tested. A contrast is a linear composite of means: 
y = Scj µj, with Scj = 0, where cj is the contrast  
coefficient for population j. The hypothesis tested is  
H0: y = 0, (e.g., H0(1) : y = µ1 − µ2 = 0, or H0(2) : y = 
.5µ1 + .5µ2 − µ3, = 0). A sample estimate, ŷ, is  
provided using sample estimates of the parame-
ters, for example, ĉ= adjY1 − adjY2. To test the 
hypothesis, a t test statistic is formed by taking the 
ratio of the sample estimate of the contrast to the 
standard error of the contrast,

         .

Because multiple contrasts are generally tested 
in a single study, several strategies have been sug-
gested for evaluating the t statistic depending on 
what is judged to be an acceptable risk of a Type I 
error and statistical power.

Data Assumptions

The statistical validity of the hypotheses tested 
using the ANCOVA model depends on whether 
several assumptions regarding the units in the 
populations being compared are met. In addition to 
the assumption that the separate regression slopes of 
the outcome on the covariate are the same for all 
populations, which was discussed earlier, the 
ANCOVA model also assumes that the relation-
ship between covariate and the outcome is linear 
and that the model errors, εij, are (a) independent 
of each other, (b) normally distributed at each level 
of the covariate, and (c) have equal variance at each 
level of the covariate both within each population 
and between the populations being compared.

The assumption of linearity can be examined by 
testing within each group the statistical significance 
of the Pearson correlation between the covariate 
and the outcome. For the current data, the sepa-
rate correlations between BMI and postsystolic 
blood pressure are .827 and .906 for the herbal 
and placebo groups, respectively. Both correla-
tions are statistically significant at the .05 level. 
Further examining a scatter plot of the data shows 
a consistent increase in postsystolic blood pressure 
with increasing BMI scores for each group. A lin-
ear relationship is reasonable to assume.

Model errors refer to the difference between 
actual postsystolic pressure and predicted postsys-
tolic blood pressure from BMI, Yig − Y^ig. These 
errors are sometimes referred to as residuals. The 
independence assumption implies that individuals 
do not influence each other with respect to the 
outcome under investigation. Determination of 
whether this assumption is tenable is best judged 
based on how data were collected. If there is little 
interaction among the units between and within 
each group, the assumption is likely met.

The assumptions regarding the distributions of 
model errors (normality and equal variance) are 
best examined by plotting the errors (residuals) 
for each group around the separate regression 
lines using the common slope. The homogeneity 
of error variance assumption can also be exam-
ined by comparing mean square error estimates, 
S2

y|xj
 from the regression lines in each group. For 

the current study, S2
y|x1

 = 43.6 and S2
y|x2

 = 38.8,  
so the variance of errors between the groups 
appear similar.

The ANCOVA model is generally robust to 
moderate violations of these data assumptions, 
particularly when the number of units per group is 
equal.

Stephen Olejnik and H. J. Keselman

See also Analysis of Variance (ANOVA); Hypothesis 
Testing
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AnAlysis of vAriAnce (AnovA)

Consider a study in which a randomized trial is 
undertaken to compare a control group, an inter-
vention group receiving a standard treatment, and 
an intervention group receiving a new treatment 
on a single continuous outcome measure, such as 
health status. How can it be determined whether 
there is a statistically significant difference in the 
mean outcome score among the three groups? The 
conventional method of analysis for these data is 
analysis of variance (ANOVA). ANOVA encom-
passes a broad collection of statistical procedures 
used to partition variation in a data set into com-
ponents due to one or more categorical explana-
tory variables (i.e., factors). The topics covered in 
this entry are (a) a description of the applications 
of ANOVA in medical research, (b) a review of the 
computations for the ANOVA test statistic, and 
(c) criteria to assess the reporting of ANOVA 
results in medical literature.

Applications

Data arising from many different types of studies can 
be analyzed using ANOVA, including the following:

One-way independent groups design, in which two 
or more groups of study participants are to be com-
pared on a single outcome measure. This is the sim-
plest type of design in which ANOVA is applied.

One-sample repeated measures design, in which a 
single group of study participants is observed on 

two or more measurement occasions. The measure-
ments for each participant are typically correlated 
(i.e., related).

Factorial independent groups design, in which two 
or more factors are crossed so that each combina-
tion of categories, or cell of the design, comprises an 
independent group of study participants. Interaction 
and main effects will usually be tested in factorial 
designs. A statistically significant two-way interac-
tion implies that the effect of one factor is not con-
stant at each level of the second factor.

Mixed designs, which contain both independent 
groups and repeated measures factors. Within-
subjects interaction and main effects, as well as  
the between-subjects main effect, may be tested in a 
mixed design. A significant within-subjects two-way 
interaction effect indicates that the repeated mea-
sures effect is not constant across groups of study 
participants.

Computing an ANOVA Test Statistic

The sidebar outlines the goal of ANOVA in a one-
way independent groups design, the required com-
putations, and the decision rule for the test statistic. 
The method is described for the simplest situation, 
in which all the group sizes are equal. A numeric 
example is also provided.

In an independent groups design, the assump-
tions that underlie validity of inference for the 
ANOVA F test are as follows:

 1. The outcome variable follows a normal 
distribution in each population from which data 
are sampled.

 2. Variances are equal (i.e., homogeneous) across 
the populations.

 3. The observations that comprise each sample are 
independent (i.e., unrelated).

In one-sample repeated measures designs or 
mixed designs, measurements taken from the same 
study participant are correlated, but measurements 
from different study participants are assumed to be 
unrelated. In these designs, the data are assumed to 
follow a multivariate normal distribution and con-
form to the assumption of multisample sphericity. 
Multivariate normality means that the marginal 
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distribution for each measurement occasion, that 
is, the distribution of scores for each measurement 
occasion, ignoring all other occasions, is normal 
and the joint distribution of the measurement 
occasions (i.e., the distribution of all occasions 
together) is normal. Multisample sphericity means 
that the difference scores for all pairs of repeated 

measurements have a common vari-
ance and also that this common vari-
ance is the same for all groups of 
study participants.

The F test is not robust to assump-
tion violations; this means that it is 
sensitive to changes in those factors 
that are extraneous to the hypothesis 
being tested. In fact, the F test  
may become seriously biased when 
assumptions are not satisfied, result-
ing in spurious decisions about the 
null hypothesis.

The assumptions that underlie the 
ANOVA F test are unlikely to be sat-
isfied in many studies. Outliers or 
extreme observations are often a sig-
nificant concern and can result in a 
substantial loss of statistical power  
to detect study effects. Furthermore, 
study participants who are exposed 
to a particular healthcare treatment 
or intervention may exhibit greater 
(or lesser) variability on the outcome 
measure than study participants who 
are not exposed to it. Inequality of 
variances can have serious conse-
quences for control of the Type I 
error rate, the probability of errone-
ously rejecting a true null hypothesis.

Researchers who rely on ANOVA 
to test hypotheses about equality  
of means may, therefore, unwittingly 
fill the literature with nonreplicable 
results or at other times may fail to 
detect effects when they are present. 
This is of concern because the results 
of statistical tests are routinely used 
to make decisions about the effec-
tiveness of clinical interventions and 
to plan healthcare delivery. In this 
era of evidence-informed decision 
making, it is crucial that the statisti-
cal procedures applied to a set of 

data will produce valid results.
Researchers often regard nonparametric proce-

dures based on rank scores, such as the Kruskal-
Wallis test or Friedman’s test, as appealing alter  
natives to the ANOVA F test when the assumption 
of normality is suspect. However, nonparametric  

Computing the ANOVA F Test When  
Group Sizes Are Equal

Goal of ANOVA: To test the plausibility of the null hypothesis, H0:  
µ1 = µ2 = . . . = µJ, the hypothesis of equal population means for J 
groups, against the alternative hypothesis, HA, at least one of the 
means is different from the others.
Computations: Compute the sample means, y–1, y

–
2, . . . , y

–
J; the grand (i.e., 

overall) mean, y–; and the sample variances s2
1 , s

2
2 , . . . , s

2
J. When the 

same number of study participants are in each group, n, the total 
number of study participants is n × J = N. The numerator of the test 
statistic, the variability between groups, is

The farther apart the means of the groups, the larger this quantity 
will be.

The denominator of the test statistic, the variability within groups, 
is

MSWG= 1
J

s2
1 + s2

2 + . . . + s2
J

h i
:

This quantity will be larger when there is more variability within 
groups.

Test statistic:

Decision rule: Reject H0 if F exceeds a critical value from an  
F distribution with numerator degrees of freedom df1 = J − 1 and 
denominator degrees of freedom df2 = N − J for a prespecified level 
of significance (e.g., α = .05). The F statistic will be large when H0 is 
not true.

Example: Suppose that a researcher collects data for three groups  
of study participants, with 10 participants in each group. Let the 
group means be y–1 = 12.0, y–2 = 8.0, and y–3 = 11.5. Then the grand 
mean, y– = 10.5. Let the group variances be s2

1 = 15.0, s2
2 = 10.5, and  

s2
3 = 18.0. Then the numerator of the test statistic is MSBW = 47.5 

and the denominator is MSWG = 14.5. The test statistic, F = 3.28, is 
compared with a critical value from the F distribution with df1 = 2 
and df2 = 27, which is equal to Fcrit = 2.96 when α = .05. The p value 
is .0362. The null hypothesis, H0: µ1 = µ2 = µ3, is rejected.

MSBG= n
J− 1

ðy1 − yÞ2 + ðy2 − yÞ2 + . . . + ðyJ − yÞ2
h i

:

F = MSBG
MSWG

:
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procedures test hypotheses about equality of distri-
butions rather than equality of means. They are 
therefore sensitive to heterogeneous variances; dis-
tributions with unequal variances will necessarily 
result in rejection of the null hypothesis. Rank-
transform test procedures are also appealing because 
they can be implemented using existing statistical 
software packages. A rank-transform ANOVA F 
test is obtained by converting the original scores to 
ranks prior to computing the conventional F statis-
tic. One limitation of rank-transform procedures is 
that they cannot be applied to tests of interaction 
effects in factorial designs. The ranks are not a linear 
function of the original observations; therefore, 
ranking the data may introduce additional effects 
into the statistical model. Furthermore, ranking may 
alter the pattern of the correlations among the  
measurement occasions in repeated measurement 
designs. Rank-transform tests, while insensitive to 
departures from normality, must therefore be used 
with caution.

Transformations of the data, to stabilize the 
variance or reduce the influence of extreme obser-
vations, are another popular choice. Logarithmic, 
square root, and reciprocal transformations are 
common. The primary problem with applying a 
transformation to one’s data is that it may become 
difficult to interpret the null hypothesis when the 
data are no longer in the original scale of measure-
ment. Also, a transformation may not accomplish 
the goal of getting rid of outliers.

When variance equality cannot be assumed, 
robust procedures such as the Welch test for the 
one-way independent groups design are recom-
mended alternatives to the ANOVA F test. Welch’s 
test does not pool the group variances in the com-
putation of the test statistic denominator and 
modifies the degrees of freedom with a function  
of the sample sizes and the variances. Welch’s test 
does, however, assume that the data are normally 
distributed. If normality is not tenable, then a 
modification of the Welch test should be consid-
ered. One alternative involves substituting robust 
means and variances for the usual means and vari-
ances in the computation of the test statistic. 
Robust means and variances are less affected by the 
presence of outlying scores or skewed distributions 
than the usual mean. There are a number of robust 
statistics that have been proposed in the literature; 
among these, the trimmed mean has received  

substantial attention because of its good theoretical 
properties, ease of computation, and ease of inter-
pretation. The trimmed mean is obtained by 
removing, or censoring, the most extreme scores in 
the distribution, which have the tendency to shift 
the mean in their direction. Current recommenda-
tions are to remove between 10% and 20% of the 
observations in each tail of the distribution. A  
consistent robust estimator of variability for the 
trimmed mean is the Winsorized variance, which is 
computed by replacing the most extreme scores in 
the distribution with the next most extreme obser-
vations. While robust measures are insensitive to 
nonnormality, they test a null hypothesis different 
from traditional estimators. The null hypothesis  
is about equality of trimmed population means. In 
other words, one is testing a hypothesis that focuses 
on the majority (i.e., central part) of the population 
rather than the entire population.

Finally, computationally intensive methods, 
such as the bootstrap method, have also been used 
to develop alternatives to the ANOVA F test. The 
bootstrap method can be described as follows: The 
usual ANOVA F test is computed on the original 
observations, but statistical significance is assessed 
using a critical value from the empirical distribu-
tion of the test statistic rather than a critical value 
from the F distribution. The empirical distribution 
is obtained by generating a large number (e.g., 
1,000) of data sets; each data set is a random 
sample (sampling with replacement) from the 
original observations. Sampling with replacement 
means that any observation can potentially be 
sampled multiple times. The F test is computed  
for each bootstrap data set. The bootstrapped test 
statistics are ranked in ascending order; the critical 
value for assessing statistical significance corre-
sponds to a preselected percentile of the empirical 
distribution, such as the 95th percentile. Bootstrap 
test procedures have good properties in the pres-
ence of assumption violations. For example, the 
bootstrapped ANOVA F test for repeated mea-
sures designs will control the rate of Type I errors 
to α, the nominal level of significance, under 
departures from both normality and sphericity.

Assessing ANOVA Results

For decision makers to have confidence in ANOVA 
results reported in the medical literature, it is 
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important that the choice of test procedures is jus-
tified and the analytic strategy is accurately and 
completely described. The reader should be pro-
vided with a clear picture of the characteristics of 
the data under investigation. This can be accom-
plished by reporting exploratory descriptive analy-
sis results, including standard deviations or 
variances, sample sizes, skewness (a measure of 
symmetry of the distribution) and kurtosis (a mea-
sure of peakedness of the distribution), and normal 
probability plots. As a general rule of thumb, 
skewness and kurtosis measures should be within 
the range from +1 to −1 to assume that the data 
follow a normal distribution. The normal proba-
bility plot is a graphic technique in which the 
observations are plotted against a theoretical nor-
mal distribution; if all the points fall on an approx-
imate diagonal line, then normality is likely to be a 
tenable assumption.

While preliminary tests of variance equality, 
such as Levene’s test, or tests of sphericity, such as 
Mauchly’s test, are available in statistical soft-
ware packages, their use is not recommended in 
practice. Many tests about variances are sensitive 
to departures from a normal distribution, and 
those that are insensitive to nonnormality may 
lack statistical power to detect departures from 
the null hypothesis of equal variances, which can 
result in erroneous decisions about the choice of 
follow-up tests.

For factorial designs, unless there is theoretical 
evidence that clearly supports the testing of main 
effects only, the analysis should begin with tests  
of interactions among the study factors. Graphic 
presentations of the cell means are often useful to 
characterize the nature of the interaction.

Each test of a main or interaction effect should 
be completely described. This includes reporting 
the numeric value of the test statistic, degrees of 
freedom, and p value or critical value.

A statistically significant ANOVA F test is rou-
tinely followed by multiple comparisons to identify 
the localized source of an effect. The choice of a 
multiple comparison test statistic and procedure 
for controlling the familywise error rate, the prob-
ability of making at least one Type I error for the 
entire set of comparisons, should be explicitly iden-
tified in the reporting of results. A simple Bonferroni 
approach may suffice, in which each of m com-
parisons is tested at the α/m level of significance. 

However, this multiple comparison procedure is 
often less powerful than modified Bonferroni pro-
cedures, such as Hochberg’s procedure.

Conclusion

ANOVA is one of the most popular test proce-
dures for analyzing medical data because it can be 
used in a wide variety of research applications. 
Researchers may be reluctant to bypass the con-
ventional ANOVA F test in favor of an alternative 
approach. This reluctance may stem, in part, from 
the belief that the F test is robust to departures 
from derivational assumptions. While Type I error 
rates may be relatively robust to the presence of 
nonnormal distributions, power rates can be sub-
stantially affected. This is a critical issue, particu-
larly for small-sample designs, which are common 
in clinical trials. Departures from variance homo-
geneity and sphericity can result in seriously biased 
tests of between-subjects and within-subjects 
effects, respectively. Statistical procedures that are 
robust to assumption violations have been devel-
oped for both simple and complex factorial designs 
and are now routinely available in many statistical 
software packages.

Lisa M. Lix and H. J. Keselman

See also Analysis of Covariance (ANCOVA); Measures of 
Central Tendency; Multivariate Analysis of Variance 
(MANOVA); Variance and Covariance
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Applied decision AnAlysis

Decision analysis (DA) is a methodology by which 
the various aspects of a decision are represented in 
an explicit and quantitative model to support  
or improve the procedure and/or outcome of deci-
sions under uncertainty. The term decision analy-
sis is used both for the domain and for the actual 
single exercise of construction and quantifying a 
model for a particular problem. DA can be used 
purely for the sake of knowledge itself (such as to 
increase one’s own understanding or that of others 
in a teaching setting) and also with the purpose to 
apply that knowledge to real-life medical dilemma, 
where a choice has to be made. This is called 
applied decision analysis, although the more cor-
rect term might be applicable decision analysis, as, 
however one may be with the model, it remains to 
be seen whether it will convince doctors and 
patients sufficiently to be used in clinical practice. 

In this entry, an overview is given of applied DA, 
its history, the why and how, and its present and 
future potential and limitations.

History

The history of applied DA starts with Stephen 
Pauker’s famous “Clinical Decision Making Rounds 
at the New England Medical Center,” which started 
in 1981 and filled the first 10 issues of the journal 
Medical Decision Making. Typically, these papers 
dealt with problems in individual patients and 
elaborated from that individual to more general 
issues. Since that pioneering time, the number of 
publications on clinically applied DA has increased 
strongly over time and keeps doing so. Papers on 
applied DA increase more than twice as fast as 
those on other clinical issues (with a doubling time 
of 4.2 years as compared with 9.9 years).

The “Why” of Applied Decision Analysis

Why one should perform a DA for a real-life clini-
cal problem may not be clear to everyone in the 
first place. Normally, medical choices in healthcare 
are dealt with in a more or less implicit way, where 
doctors or other healthcare professionals rely on 
their knowledge or experience to estimate which 
choice alternative would (probably) provide the 
best outcome. Dissatisfaction with the subjectivity 
and the lack of transparency of this process and  
its outcomes has over several decennia led to the 
development of more explicit and quantitative 
methods of dealing with clinical issues that include 
not only DA but also evidence-based medicine 
(EBM). DA differs in its ambition from EBM.

EBM builds on the assumption that doctors 
only have an information problem that can be 
solved by providing them with the right data. 
EBM, and in particular the Cochrane collabora-
tion, has therefore put an enormous effort in track-
ing that information and making the data available 
to doctors.

As has been argued by Arthur Elstein and oth-
ers, DA goes one step further and assumes that in 
addition to the information problem, doctors also 
have a judgment problem. That judgment problem 
has to do with the complexity of integrating all the 
available information elements and their relations, 
and condensing it into the right choice, and with 
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the fact that making choices entails taking into 
account not only probabilities but likewise valuing 
potential outcomes. That may be a reason why 
doctors may have a better feel about EBM (here is 
the info, so you can decide) than about DA (here 
is the info and the advice, because you cannot  
be trusted to make the right judgment). The added 
value that DA brings is in structuring and summa-
rizing available knowledge and in supporting or 
steering actual decisions.

There are several advantages of using applied 
DA to tackle clinical problems. First, a global prob-
lem is dissected into parts, so that the intricacies 
and complexities of the decision problem are made 
clearer. Second, using data synthesis methods (an 
abundance of), available data will be combined and 
restructured into a limited number of variables that 
are essential to the (solution of the) problem, so 
that available knowledge is summarized in a clear 
and concise way. Third, far from being mechanistic 
or generalizing, the DA approach allows for indi-
vidualization of choices if variables are used that 
characterize individuals and their (relevant) charac-
teristics. Fourth, the root causes of clinical disagree-
ment (if present) will become more clear by the 
process of dissecting the problem, building the 
model, and combining it with the available infor-
mation. This will pinpoint why clinicians (if they 
do) differ in opinion and will allow for the testing 
of the arguments of each camp against available 
evidence. Finally, and perhaps most important for 
clinical purposes, the (ir)relevance of various  
elements of the problem may be tested by using 
sensitivity and threshold analysis. Thus, the under-
standing of the intricacies of the clinical issues may 
improve considerably, thanks to quantitative 
answers on “what if” questions (albeit about differ-
ent patients, settings, and/or any key variables).

Self-evidently, there are also potential disadvan-
tages to using DA to solve clinical problems. Real-
life problems are inevitably simplified when they 
are translated into DA models, thus providing solu-
tions that fit the model but do not necessarily solve 
the real-life problem. This means that other issues 
(such as feasibility, experience and expertise, safety, 
and acceptability), that go beyond the purely medi-
cal information represented in the model, but may 
be highly relevant, may not be taken into account in 
the model’s advice. Then, the information necessary 
to quantify all the variables in the model may be 

deficient, and the pragmatic use of low-quality data 
entails the risk of “garbage in, garbage out.” One 
should not forget that building a decision model, 
and in particular collecting and summarizing avail-
able evidence into the necessary variables, requires 
decision analytic expertise and experience, and  
it may take a considerable amount of time. Finally, 
however careful a decision model is constructed, 
there is always the risk that errors within the model 
may go unobserved, which will jeopardize the 
validity of the answers supplied (example).

Thus, before one embarks on doing a DA, one 
should take heed. Building a decision tree and 
“playing with it” to better understand the various 
issues may be relatively easy. But upscaling it to 
something that is sufficiently convincing for incor-
poration into guidelines, or for publication in a 
peer-reviewed journal, is an endeavor of a different 
scale.

The “How” of Applied Decision Analysis

The technical execution of an applied DA can be 
subdivided into several stages or aspects:

 1. Identifying the precise nature of the real-life 
medical problem, including

 a. the type of question (diagnosis, therapy, diag-
nostic-therapeutic management), the patient 
category, the setting (primary care, center of 
excellence);

 b. the relevant outcomes such as mortality, 
(quality-adjusted) life expectancy, disease-free  
survival, cost, and so on;

 c. the available policy alternatives, both the real-
istic ones, and the extremes of doing nothing 
and treating everyone always; and

 d. the various arguments in favor of, or against, 
each policy alternative.

 2. Structuring the problem first in a flowchart or 
an algorithm (using “if-then-else” sequences 
only, and no variables yet), and only then in  
a full-fledged decision tree.

 3. Obtaining the necessary data on underlying 
diseases and their natural histories on prior 
probabilities and relations with determinants in 
subgroups, on characteristics of available 
diagnostic tests and of relevant therapies, and 
on (the value of) relevant outcomes.
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 4. Performing calculations on expected outcomes 
and costs, and including sensitivity analysis 
(what matters?), threshold analysis (when 
should one choose differently?), and resulting  
in overall conclusions.

For the first stage, close cooperation with 
experts in the (clinical) field is of the utmost 
importance to make sure that the decision analyst 
understands why there is a problem and what the 
real-life options and outcomes may be. It is par-
ticularly important to identify the relevant stake-
holders and to know their optimization criteria 
(what do they consider important, either as some-
thing to achieve or as something to avoid). To 
convince the stakeholders, and in particular the 
decision makers, one should know which issues 
and aspects of the problem and its potential solu-
tions they hold important. Stage 2 requires ade-
quate logical understanding and sufficient technical 
expertise to create a model in whatever technical 
context, while Stage 3 requires considerable expe-
rience with literature searching and data synthesis. 
Before calculations are performed and any conclu-
sions may be drawn from them, all aspects of the 
model should be checked and double checked, ide-
ally by two or more experts in the field. Most 
experienced decision analysts have had personal 
experience with the impact that mistakes in struc-
ture and formulas may have on model outcomes. 
In general, errors are weeded out before publica-
tion by rigid testing of the model through sensitiv-
ity analyses and other testing procedures and by 
having others check and double check the model. 
However, discussions about the correctness of 
model assumptions and details, in relation  
to the intricacies of the clinical problem, may be 
heated, and may continue even after publication.

Suitability for Real-Life Problems

The choice to perform an applied DA should not 
be taken lightly. One should have a clear idea of 
what a DA may add to the usual clinical (more 
implicit and less quantitative) way of dealing with 
a problem, used by experienced clinicians, and 
whether DA is suitable for the problem at hand. 
Not all clinical problems are ideally suitable for 
this approach, and the overall balance of advan-
tages and disadvantages may strongly differ for 

different clinical problems. In general, DA can be 
used more advantageously for clinical problems

that concern risk or uncertainty, •
that are structurally complex, •
about which sufficient quantitative data are  •
available,
in which solutions differ for different patients or  •
patient categories,
in which different and conflicting interests have  •
to be considered and weighed, and
of which the frequency of occurrence or the  •
magnitude of the problem justifies the effort of 
performing a DA.

Impact on Clinical Performance

The impact of applied DA, in particular to what 
extent papers on applied DA are actually changing 
medical practice, is not easy to assess. Likewise, it 
has long been unclear which factors contribute to 
success or failure in real-life clinical practice. In 
medication prescription, A. Holbrook found that 
factors such as system speed, convenience of use, 
quality, relevance to the task at hand, and integra-
tion with workflow are important determinants  
of success. Recent reviews on the effectiveness  
of clinical decision support systems in improving 
clinical performance have increased our insight in 
these matters. However, many of these decision 
support systems that are assessed in these system-
atic reviews differ from “classical decision analy-
ses” with their decision trees and tables of variables. 
Four factors have been found to independently 
predict success: (1) automatic provision of decision 
support as part of clinician workflow, (2) provi-
sion of recommendations rather than just assess-
ments, (3) provision of decision support at the time 
and location of decision making, and (4) comput-
er-based decision support. These findings confirm 
what decision analysts have experienced over 
many years—that the results of formal decision 
tree calculations should be transformed into clini-
cally more acceptable formats. In addition, auto-
matic prompting to use the system is a success 
factor as it reduces the burden and threshold of 
use. Not surprisingly, most studies where the 
authors were the creators of the system are more 
positive about a system’s ability to improve clinical 
performance.
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Other Issues

Real-life clinical problems are not solved by the 
completion of a DA alone. In practice, actions 
have to be taken by the decision maker. In this 
process, several other issues may come into play, 
which have been described by decision psycholo-
gist Frank yates. For any decision, he identifies 10 
cardinal checks. They range (apart from the first 
question on whether there is the need to decide at 
all) from the “who and how” of the clinical deci-
sion, to more practical issues such as acceptability 
and implementation. All these checks emphasize 
the fact that there is a real-life world out there, 
beyond the model, and that for decisions to be suc-
cessful, one should look beyond the model to real-
life situations and to both their potential and their 
limitations.

Health Technology Assessment

Health technology assessment and cost-effective-
ness analysis are next-generation family members 
of DA. By the fact that they take not only medical 
outcomes into account, but likewise costs and 
equity issues, they are becoming more and more 
relevant to healthcare systems that suffer from the 
strain that expanding medical technologies and 
increasing public demands put on the limited avail-
able healthcare resources in many countries. One 
of the most striking examples of the use of such 
methods at the macrolevel is the use of health tech-
nology assessment to steer policy making in the 
U.K. National Health Service by National Institute 
for Clinical Excellence (NICE). Whether new 
medications or other interventions are allowed and 
are paid for by the National Health Service is 
based on a rigid analysis of both the avail  
able evidence on their effectiveness and of  
the cost burden they would put on the National 
Health Service (and thereby on the British tax-
payer). NICE’s approach has set quite an example 
of methodological rigor and is a success story of 
practical potential of applied DA and health tech-
nology assessment methods. It is therefore all the 
more striking that NICE is quite regularly depicted 
as bureaucratically denying patients the access to 
“wonderful new drugs” on the basis of cost con-
tainment only. This contrast is an illustration of 
the fact that however right one may be from an 

intellectual point of view, the value of being able 
to explain clearly and simply through the right 
channels to all stakeholders (and maybe of using 
the right communication/PR methods while doing 
so) cannot be overestimated, and it confirms the 
relevance of yates’s warnings.

Success and Effectiveness

Applied DA and its descendants such as health 
technology assessment and clinical decision sup-
port systems have come a long way since their start 
in the early 1980s. Research as well as experience 
suggests that the success of applying DA method-
ologies to real-life problems depends on many fac-
tors, not least of all an intense exchange of ideas 
between analysts and potential users right from the 
start and the continuing realization that there is a 
reality beyond the model and its calculations and 
that feasibility, acceptability, and other implemen-
tation issues will codetermine the effectiveness of 
applied DA.

J. Kievit

See also Cost-Effectiveness Analysis; Evidence-Based 
Medicine
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ArtificiAl neurAl networks

Research on artificial neural network modeling 
started in the early 1940s when the first scientific 
paper by Warren McCulloch and Walter Pitts was 
published. The motivation came from the fields  
of artificial intelligence and neuroscience when 
initial investigators attempted to model the work-
ings of neurons in the human brain. One of the 
hypothesized reasons for the brain’s superiority 
compared with common computers lies in the fact 
that neurons function in parallel. There are 
approximately 1012 neurons in the human brain, 
all interconnected and receiving input from many 
other neurons, as well as stimulating many others 
in a conglomeration of complex interconnections. 
Thus, neural networks are able to perform highly 
complex computing tasks in an efficient and pow-
erful manner. In addition, they are able to inte-
grate newly acquired data, or experiences, into 
existing ones, thus allowing for efficient learning 
and inference. Figure 1 illustrates a basic represen-
tation of the neuron and how it gets activated to 
fire (stimulate) other connected neurons.

As shown in Figure 1, the neuron collects and 
processes input from structures referred to as 
dendrites. It then sends out electrical activity 
through a long strand called an axon. This axon 
splits into multiple branches, and at the end of a 
branch, a synapse converts the electrical activity 
from the axon and sends stimuli to the neighbor-
ing neuron. This activity is either excitatory or 

inhibitory. Prior information affects signal trans-
fer functions and influences how neurons respond 
to any future stimuli; synaptic processing mimics 
learning in this sense. Information transmission 
and processing across multiple neurons influence 
the development of artificial neural network 
models.

The simplest representation of a single-layer 
artificial neural network is shown in Figure 2. 
Similar to neuronal processing, information is 
passed between nodes (neurons) interconnected by 
links (synapses) with modifiable weights. In the 
case of a single-layer neural network, input into 
the node is often represented as a vector of features 
X = (x1, x2, . . . , xn). (A single-layer network is also 
referred to as a two-layer network corresponding 
to the number of layers of input and output units. 
Often, it is referred to as a single-layer because 
there is only one layer of modifiable weights.) Each 
of these feature values, xi, is multiplied by a cor-
responding weight, wi. Thus, the effective input at 
the output unit would be the sum of all the prod-
ucts ∑wixi. Adding a constant bias term (x0 = 1) 
with a corresponding weight w0 produces the for-
mula for a single-unit perceptron.

(1)

This could then be represented as

(2)

A clinical scenario where an artificial neural 
network would be useful would be in predicting 
mortality after a procedure (e.g., angioplasty)  
in patients with chronic renal failure. The input 
might comprise several clinical features, such as 
age, gender, hypertension, diabetes, heart failure, 
and coronary artery involvement. The output 
would be mortality after 6 months, which is binary 
in this example although not necessarily so for 
artificial neural networks. The artificial neural net-
work is useful for achieving increased accuracy of 
prediction when the features might have nonlinear 
interactions.

The input into the node is then processed to 
generate an optimal output. This is determined by 
a function y = g(f(x, w)). Typically, f(x, w) is linear 
as in Equation 1. The function g, on the other 

fðx;wÞ=w0+
Xn

i= 1

xiwi:

fðx;wÞ=
Xn

i= 0

xiwi:
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hand, is commonly referred to as the activation 
function. It is chosen from a selection of functions, 
including the following:

 g(x) = x, a linear function. (3)

 g(x) = x+, producing a nonnegative value. (4)

 g(x) = tanh(x), producing  
 output between −1 and 1. (5)

 g(x) = sin(x), where the  
 output is 1 if x ≥ 0 and −1 if x < 0. (6)

g(x) = [sin(x) + 1]/2, where  
 the output is 0 or 1. (7)

g(x) = [1 + e−x]−1, with a sigmoidal  
 output between 0 and 1. (8)

The specifications for an artificial neural  
network are determined by two mechanisms, the 
architecture of the network and optimization of 
the network parameters generally based on perfor-
mance in a given data set.

Architecture

Single Layer

A typical single-layer network is shown in 
Figure 2. As shown in this simplified example, 
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body 
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Figure 1  Structure of a typical neuron and a synaptic junction

Figure 2  Single-layer artificial neural network
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artificial neural networks consist of layers with 
input nodes and corresponding modifiable weights. 
In a single-layer network, all nodes connect to the 
output node(s) where the activation function gen-
erates an output.

The learning process or network optimization 
involves recursive modification of weights as more 
training data get processed. The recursive algo-
rithm is described as follows.

Taking the angioplasty example in the previous 
section, the network learns by adding examples 
from the training data set. Suppose a new observa-
tion datum is to be added into the model (xm, zm), 
where xm corresponds to the feature vector for one 
patient (e.g., 60 years of age, male gender, nonhy-
pertensive, diabetic, with heart failure and left 
main coronary artery involvement), and zm corre-
sponds to the actual output (e.g., death after 6 
months). The weights for each of the current nodes 
would be modified as follows:

 1. Calculate the error derived from the predicted 
output for each output unit, compared with the 
desired (actual) output, zm. This could be 
represented as the mean squared error:

(9)

Following matrix transposition of Equation 2, the 
predicted output for the training data, pr, is 
obtained.

(10)

 2. Given the weights for the nodes in the single 
layer, wi = w1, w2, . . ., wn, the weights change 
according to the following rule: wi = wi + ∆wi, 
where

 (11)

h (greater than 0) is the learning rate. To minimize 
the error, E, using the gradient descent method for 
optimization, the steps include

  (12)

To substitute E, where pmr is the predicted out-
put for the training data,

D = {(xr, zr,), r = 1, . . . , N}

   (13)

Further substituting pmr with Equation 10,

E= 1
2

XN

r= 1

ðzmr−xmrTwmrÞ2:
 

 (14)

For some learning rate h (greater than 0), a 
recursive version of the steepest descent is obtained. 
Further substituting Equation 14 into Equation 12 
results in ∆wi = h(zmr – xmr

Twmr) xmi., which is 
similar to Equation 11.

The single-unit perceptron convergence theo-
rem states that if two classes in a training set can 
be separated by a hyperplane in R, then the delta 
rule (Equation 11) converges to result in a single 
hyperplane in a finite number of steps. This has 
been further developed by investigators who 
worked on cases where the classes are not linearly 
separable and where there are greater than two 
classes. In 1969, M. Minsky and S. Papert released 
a research publication that basically stated that 
single-layer perceptrons were not able to solve 
simple problems, most notably the exclusive-OR 
(xOR) problem. This was addressed subsequently 
using multiple-layer perceptrons.

Multiple Layers

Neural networks typically have more than a 
single layer. The most common form has two lay-
ers, the second corresponding to a hidden layer. 
The architecture is arbitrarily designed, with the 
main components including the number of layers 
and the number of units in each layer. Figure 3 
illustrates a two-layer neural network.

Feedforward Operation

A neural network that has more than a single layer 
typically proceeds forward to process input from 
one layer to the next. The only limitation is that 
each layer only sends signals to the next layer after 
it. In Figure 3, there is an input layer that processes 
the external stimuli. There is a second layer, also 
referred to as a hidden layer. The third column  
of nodes corresponds to the two output  
nodes. Weights are specified and modified for each 

EðwÞ= 1
2

XN

r= 1

zr − prð Þ2:

pr =
Xn

i= 0

xiwi =xT
r wr:

dwi =ZEðwÞxi:

dwi = −Z
∂EðwÞ
∂wi

:

E= 1
2

XN

r=1
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interconnection between nodes. In addition, the 
hidden layer(s) and output node(s) have activation 
functions and biases assigned, as described for sin-
gle-layer artificial neural network. In the multiple-
layer artificial neural network, each hidden node 
computes the weighted sum of all its input from the 
preceding layers. An activation function, in turn, 
computes the signal that it then sends to the next 
group of node(s), which would be another hidden 
layer or the output node(s). A single hidden layer is 
able to solve the xOR problem. In fact, A. N. 
Kolmogorov proved that any continuous function 
from input to output can be implemented in a two-
layer network. However, practical considerations 
limit the applicability of this theorem. The activa-
tion functions would have to be very complex, and 
there is no principled way that has been suggested 
to find nonlinear functions based on training data. 
In addition, some functions are not smooth, which 
is important for gradient descent learning.

Backpropagation

Backpropagation is one of the most commonly 
used and simplest methods for training multilayer 
networks. The simplest way to describe the train-
ing method is to follow what happens when a new 
training datum is added into the network. Suppose 
the entire training data are represented as follows: 
D = {(xr, zr,), r = 1, . . . , N}, where x is the feature 
vector and z is the actual expected output. When a 

new datum is added, (xm, zm), training of the  
network ensues. Similar to the method described  
in the single-layer network, the backpropagation 
proceeds in the following manner:

 1. The output of the network is computed using 
the feedforward operation for each of the 
output nodes.

 2. The training error between the predicted and 
actual output is calculated. Typically, it is based 
on the sum over the output units of the squared 
difference between the predicted and actual output 
(Equation 9), which will be referred to as net.

 3. The weights are initialized with random values 
and are modified in a direction that will reduce 
the error, similar to that of Equation 12. The 
weight update or learning rule is calculated 
based on the first derivative of f(net), the  
unit’s nonlinear activation function.

 4. As was previously done for the hidden-to-
output weights, the input-to-hidden weights also 
get updated.

 5. The steps are repeated until the error reaches a 
specified low threshold.

The description for the two-layer network can 
readily be generalized into more layers. The activa-
tion functions in each node can also vary apart 
from the bias units and the learning rates.

X1

X3

Xn 

 
X2

Figure 3  Two-layer artificial neural network with two output nodes



33Artificial Neural Networks

Special Considerations

Some techniques have been identified to optimize 
backpropagation and to guide the users in build-
ing neural networks. These techniques are briefly 
described below.

Activation Function

As noted previously, backpropagation should 
work with any activation function, given that there 
is continuity of the function and its derivative. 
However, in selecting an activation function, some 
guidelines include selecting functions that are non-
linear, that saturate (functions with a minimum 
and maximum output value), and that have conti-
nuity and smoothness. A sigmoid is one such acti-
vation function.

Criterion Function

The use of the squared error is described  
in Equation 10. There are, however, other alterna-
tives that may be used, including cross-entropy 
error for comparing the separation between prob-
ability distributions and Minkowski error for dis-
tributions that have long tails.

Number of Hidden Layers

Any number of hidden layers is possible as long 
as the activation function in each unit is differen-
tiable. However, since the two-layer network can 
implement any arbitrary function, the addition of 
an extra layer adds complexity and makes the net-
work more prone to getting caught in local min-
ima. A special condition for using an extra layer 
includes data transformations, such as rotation or 
lateral shifts in data.

Number of Hidden Units

The number of hidden units primarily influ-
ences the expressivity of the network and how 
complex the decision boundaries are. Thus, well-
separated data will require fewer hidden units. The 
number of hidden units dictates the number of 
weights in the network (in addition to the dimen-
sionality of the input vector). Thus, it should not 
be more than the total number of the training data, 
n. A rule of thumb is to use n/10 hidden units. This 
can then be adjusted up or down during training.

Initializing Weights

Weights have to be nonzero. The recommended 
range for the hidden-to-output weights is −1√h to 
+1√h, where h is the number of hidden nodes con-
nected to the output. Similarly, the range for the 
input-to-hidden weights is −1√d to +1√d, where  
d is the number of input variables connected to  
the hidden unit.

Learning Rate

The learning rate influences the quality of the 
network in most instances where training does not 
reach the training error minimum. In practice, the 
learning rate is set at .1. It is lowered if the crite-
rion function diverges during learning and is 
increased if learning is very slow.

Stop Training

Excessive training can lead to poor generaliza-
tion, also called overfitting or overtraining. In 
practice, the goal is to stop training when the error 
in a separate validation set reaches a minimum.

Applications

Artificial neural network has been used in multiple 
domains and applications, including image pro-
cessing, speech recognition, and prediction of 
financial indices. The use of artificial neural net-
works in medical decision making ranges from 
recognition of chromosomal abnormalities, detec-
tion of ventricular fibrillation, protein structure 
prediction, pharmacovigilance applications, and 
identifying clinical outcomes. Multiple publica-
tions review various networks that have been 
trained and validated in various clinical domains. 
In addition, many more studies publish the predic-
tive performance of artificial neural network in 
comparison with other predictive modeling tech-
niques. Artificial neural network has shown com-
parable performance to several predictive modeling 
techniques, including logistic regression, decision 
tree, and support vector machine.

In all, the use of artificial neural network should 
be tempered with the known constraints of the 
method. These include the ability to correctly 
specify the architecture and parameters of the net-
work and, more important, the ability to measure 
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the contribution of each of the components of the 
input vector in determining the output of the net-
work. In many clinical domains, the “black box” 
is not ideally suited for understanding what factors 
influence specific clinical outcomes. This, in turn, 
is a deterrent to deciding what interventions to 
modify clinical factors might need to be recom-
mended for clinical care. On the other hand, arti-
ficial neural network has been successfully used for 
clinical domains when nonlinear interactions need 
to be modeled in a complex manner. This was 
illustrated in the successful use of artificial neural 
network for computerized image analysis of 
Papanicolaou smears, used for rescreening for cer-
vical abnormalities not previously identified by 
manual screening. In such clinical settings, more 
accurately predicting an outcome is of paramount 
importance in clinical decision making.

Ronilda Lacson and Lucila Ohno-Machado
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AssociAtive thinking

Associative thinking is used to describe memory-
based judgment processes that require the decision 
maker to infer a diagnosis or other category on the 
basis of the presence or absence of related features 
through the activation of associations—memories 
in which features and categories co-occur. Broadly 
speaking, the mind automatically associates in 
memory those experiences or concepts that  
co-occur. The decision maker later retrieves these 
associations (again, automatically, and typically 
unconsciously) in the performance of judgment and 
decision tasks. For example, when a pediatrician 
repeatedly sees children who present with persis-
tent sore throat and fever and observes that they 
are often positive for strep throat, she or he may 
come to associate the symptoms and the diagnosis, 
and on the next presentation of a child with sore 
throat and fever, strep throat is likely to be high on 
her differential diagnosis. In essence, judgments are 
evoked by considering the similarity or representa-
tiveness of new stimuli to associations previously 
learned. More frequent and salient co-occurrences 
result in more memorable associations.

The study of association in thinking has a long 
history, dating back at least as far as the work of 
English empiricists in the 17th century. In modern 
dual-process theories of cognition, associative 
thinking is often considered to be characteristic of 
System 1 (intuitive) thinking. It is contrasted with 
the more effortful and rule-oriented System 2 
(deliberative) thinking.

Determinants

According to dual-process theories, associative think-
ing is automatically performed, but associations may 
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be suppressed or modified by later deliberation. 
Associative judgments are more likely to be expressed 
when deliberation is limited or infeasible. For exam-
ple, time pressure or cognitive load may increase the 
likelihood of relying on associative thinking. In other 
cases, lack of appropriate information or informa-
tion format may prevent deliberation. For example, 
Windschitl and Wells showed that eliciting judg-
ments using verbal measures of uncertainty (e.g., 
“unlikely”) evoked associative thinking more fre-
quently than when numerical measures were used.

Associations vary in their strength. Hogarth 
notes that associations can be reinforced positively 
or negatively and offers three factors that lead to 
reinforcement. First, human beings may be geneti-
cally predisposed to create particular associations 
very quickly through operations similar to classi-
cal conditioning. Experiences of pain and fear, for 
example, often rapidly produce or reinforce strong 
associations with co-occurring events. Second, 
people can be motivated to increase the strength 
of an association. Motivation can take the form of 
either internal motivation to better understand the 
environment or external motivation (e.g., operant 
conditioning) from rewards or punishments pro-
vided by the environment. For example, associa-
tions that lead to decisions that result in 
approbation are likely to be reinforced. Third, 
associations are strengthened as the frequency of 
the association being observed increases. For 
example, a physician examining a patient within 
his or her specialty is likely to have developed 
strong associations between symptoms and diag-
noses as a result of the frequency with which  
the physician examines such patients; a physician 
examining a patient with a novel diagnosis out-
side his or her specialty may have fewer and 
weaker relevant associations.

Advantages and Disadvantages

Because associative thinking allows for rapid cat-
egorization and judgment, it can be ecologically 
adaptive. This is particularly the case when the 
decision maker has considerable opportunity to 
develop valid associations and must make deci-
sions in limited time or without other resources 
necessary to support a more deliberative process. 
For example, medical decision making in emer-
gent conditions is often greatly facilitated by the 

ability of the physician to make correct associa-
tions rapidly.

On the other hand, when associative knowledge 
is developed that does not accurately match the 
actual state of the world, associative thinking can 
lead to systematic biases in judgment. In addition 
to such common heuristics for likelihood judg-
ments as availability, representativeness, and val-
ue-induced bias, it is also possible to simply make 
incorrect associations. For example, medical stu-
dents exposed to dermatological diagnoses and 
later tested on diagnostic skill have been shown to 
establish (irrelevant, and therefore incorrect) asso-
ciations between diagnoses and the body part on 
which they first learned the diagnosis.

Improving Associative Thinking

Although faulty associative thinking can some-
times be overridden by analytic thinking, associa-
tive thinking itself can be improved by developing 
more veridical and useful associations. This requires 
either selecting or creating learning environments 
that provide sufficient exposure to an appropriate 
set of co-occurring events, information on whether 
correct associations have been learned (feedback), 
and suitable rewards for correct associations and 
adverse consequences for erroneous associations. 
Hogarth broadly divides learning environments 
into those that are kind and those that are wicked. 
Kind environments provide relevant feedback and 
have exacting consequences for errors; the former 
allows the learner to adjust associations through 
observation of their outcomes, and the latter 
ensures that the learner is well motivated to seek 
ongoing improvement in, and refinement of, the 
associations learned. Wicked environments, in 
contrast, provide either no feedback or distorted 
feedback, limiting the learner’s ability to correct 
errors, and are lenient in their tolerance of error, 
reducing motivation to correct errors.

In medical education, learning environments 
can often be manipulated to provide better control 
over exposure to co-occurring events. For example, 
presentation of multiple teaching and practice 
cases for the differential diagnosis of heart failure 
in descending order of typicality has been shown 
to facilitate the development of better associations 
and improved diagnostic performance in medical 
students. Similarly, Ericsson has argued that the 
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development and maintenance of expert-level per-
formance in medicine relies on deliberate practice 
designed to ensure that the expert continues to 
seek, acquire, and assess appropriate associations 
on an ongoing basis.

Alan Schwartz
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Attention liMits

Broadly defined, attention is the focus of cognitive 
resources on processing information. Research  
on attention addresses the following questions:  
(a) What initiates the focus of cognitive resources 
on objects of psychological concern? (b) What 
causes the focus of cognitive resources to shift 
from one object to another? (c) How many 
objects, or how much information, can be kept in 
cognitive focus at one moment in time?

The psychological study of attention has inves-
tigated the three questions of initiation, change, 
and capacity of cognitive focus at many levels of 
information processing. At the lowest level are 
studies of how cognitive resources are focused 
when processing sensory information in the visual, 
auditory, olfactory, gustatory, and tactile domains. 
At the highest level are studies of cognitive focus 
on the rich, meaningful content of human thought 
that underlies making complex, real-world deci-
sions such as those involved in medical diagnosis 
and treatment.

Attention has relevance to medical decision 
making at many levels of information processing. 
At the lowest level of information processing, 
attention supports a physician’s detection of the 
physical characteristics of a patient that lead to a 
medical diagnosis of the patient’s condition. This 
might include visual information about the patient’s 
coloration; auditory information from their heart-
beat, breathing, and gastrointestinal processes; and 
tactile and olfactory information that are unique 
to the patient’s condition.

The important factors that initiate attention and 
limit the capacity of a medical decision maker’s 
attention to sensory input are different from those 
for simple sensory events in abstract laboratory stud-
ies. Whereas the physical characteristics of a stimu-
lus (such as its intensity and duration) have been 
shown to influence attention in simple laboratory 
tasks, a medical decision maker’s expertise (as 
defined by his or her background, beliefs, and under-
standing) creates a mental model (or a schema) that 
plays a central role in determining what information, 
and how much information, the decision maker 
attends to and how that information is interpreted.

A medical decision maker’s expertise also plays 
a central role in determining what information he 
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or she pays attention to when using executive, cog-
nitive processes, in the absence of sensory input, to 
reason through a patient’s medical conditions 
either to arrive at a diagnosis or to select a treat-
ment program. The interplay between a decision 
maker’s mental model of a medical problem and 
the effect of that mental model on directing the 
decision maker’s attention is very important. The 
importance of the interplay is shaped by (a) a limit 
on how much information a decision maker can 
hold in mind at one moment (also known as span 
of apprehension) and (b) the need of the decision 
maker to incorporate the most relevant and impor-
tant information within the span of his or her  
limited attention if he or she has to make a wise 
decision.

The practical importance of attention limits on 
medical decision making is great. Since 1956, psy-
chologists have recognized that the capacity of 
human attention, or the span of human apprehen-
sion, is limited to between five and nine items. 
Thus, a decision maker presented with a complex 
medical problem is unlikely to be able to incorpo-
rate all the available information about that prob-
lem into his or her cognitive focus. Because of 
these limits, it is exceedingly important that the 
decision maker has sufficient expertise to prepare 
him or her to attend to the most important infor-
mation. Otherwise, the quality of a medical deci-
sion is likely to be compromised by being based on 
a small set of less relevant information. The long 
medical education, internship, and residency that 
most doctors go through help develop and hone 
their mental models for making good medical 
decisions.

The practical importance of attention limits is 
especially great for patients involved in their own 
treatment decision making. Patients must acquire a 
reasonable understanding of the mental model that 
medical experts hold of their condition. In the 
absence of this mental model, patients are unlikely 
to discover what the most important issues are for 
understanding, diagnosing, and treating their own 
condition. Thus, patients interested in playing an 
active role in their medical treatment need to 
acquire a mental model that incorporates the set  
of variables medical experts agree are the most 
important for making a wise decision for their 
cases. Otherwise, patients are unlikely to appreci-
ate the medical recommendations made to them 

and may perhaps insist on following a course of 
treatment that is unwise.

David A. Walsh
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AttrAction effect

The attraction effect (also known as the decoy 
effect or the asymmetric dominance effect) refers 
to a phenomenon in which adding an inferior 
alternative into an existing choice set increases the 
probability of choosing an alternative from the 
original set. The term attraction effect comes from 
the fact that an inferior alternative attracts atten-
tion or the choice share to one of the alternatives 
in the choice set. Because the attraction effect is 
caused by the addition of an inferior alternative, 
which is called a decoy, to a core choice set, it is 
also called the decoy effect (the decoy effect is a 
broader term than the attraction effect). Finally, 
the asymmetric dominance effect refers to a spe-
cific case of the attraction effect in which the 
decoy is asymmetrically dominated by one of the 
alternatives in the set.

The attraction effect has important theoretical 
implications because it violates some fundamental 
assumptions of many rational choice models. One 
such assumption is the principle of regularity, by 
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which the probability of choosing one alternative 
from an initial choice set cannot be increased by 
adding a new alternative. The attraction effect also 
violates an assumption that choices are indepen-
dent of irrelevant alternatives.

Experimental Paradigm

For the attraction effect to occur, several conditions 
must be met. In a typical experimental setting (deci-
sion environment) in which the attraction effect  
is demonstrated, alternatives are defined on a few 
(usually two) attributes (or dimensions) in a decision 
space (see Figure 1 for a two-attribute decision 
space). In this decision space, two alternatives (A 
and B) form a core choice set. These alternatives are 
selected so that they are nondominating or competi-
tive to each other. In Figure 1, A is weaker on 
Dimension 1 (e.g., the quality dimension) and stron-
ger on Dimension 2 (e.g., the price dimension), 
while the reverse is the case for B. Then an alterna-
tive that is inferior to only one alternative in the core 
set, which is called a decoy, is added to the set. The 
alternative that is directly superior to the decoy is 
called the target (B) and the other alternative that 
does not have a dominance relation with the decoy 
is called the competitor (A). The attraction effect is 
demonstrated when the proportion of people choos-
ing the target significantly increases when the decoy 
is present compared with when the decoy is absent. 
The decoy is rarely chosen in most cases. The attrac-
tion effect has been demonstrated using both the 
between- and within-subjects designs.

Decoy Types

There are six types of decoys studied in the lit-
erature. These decoys can be broadly divided into 
two categories depending on whether there is an 
asymmetric dominance relation between the target 
and the decoy: asymmetrically dominated decoys 
and nonasymmetrically dominated decoys. There 
are three decoy types in each category. The asym-
metrically dominated decoys have been studied 
more extensively in the literature because they pro-
duce a greater attraction effect.

Asymmetrically Dominated Decoys

The asymmetrically dominated decoys include 
the range (R), frequency (F), and range-frequency 

(RF) decoys (see Figure 1). The range (R) decoy 
extends the range of the target on the dimension 
on which the target is weaker than the competitor. 
The frequency (F) decoy increases the frequency of 
alternatives along the dimension on which the tar-
get is stronger than the competitor. The range- 
frequency (RF) decoy combines the effect of the 
range decoy with the effect of the frequency decoy. 
All these three types of decoys are directly domi-
nated by the target but not by the competitor.

Nonasymmetrically Dominated Decoys

The nonasymmetrically dominated decoys 
include the compromise (C), inferior (I), and range 
with symmetric dominance (RS) decoys (see Figure 
1). The range with symmetric dominance (RS) 
decoy increases the range downward on the dimen-
sion on which the target is weaker than the com-
petitor but is symmetrically dominated by both the 
target and the competitor. The inferior (I) decoy is 
similar to the range decoy in that it increases the 
range on the dimension on which the target is 
weaker than the competitor. But its value on the 
dimension on which the target is stronger than the 
competitor is also raised so that there is no longer 
direct dominance relation between the target and 
the decoy. Although the inferior decoy is not 
directly dominated by the target, it is clearly infe-
rior to the target.

The compromise (C) decoy is produced by rais-
ing the value of the inferior decoy further along the 
dimension on which the target is stronger than the 
competitor. The compromise decoy appears more 
attractive than the inferior decoy and helps increase 
the probability of choosing the target by making 
the target appear to be a good compromise 
between the two extreme alternatives (i.e., the 
decoy and the competitor). The effect produced by 
the compromise decoy is called the compromise 
effect. Although this effect is similar to the attrac-
tion effect in that the decoy increases the choice 
probability of the target (so categorized as the 
decoy effect), it is distinguished from the attraction 
effect because there is no dominance relation 
between the target and the decoy.

Phantom Decoy

A phantom alternative refers to a choice option 
that appears real but is unavailable at the time of 
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decision making. Examples include consumer 
goods that are out of stock, show tickets that are 
sold out, a job candidate who accepted another 
job, and so on. The decoys described above (i.e., 
asymmetrically dominated and nonasymmetrically 
dominated decoys) are available decoys; they have 
a potential to increase the choice share of the tar-
get by being present along with the target and the 
competitor. However, it has been demonstrated 
that the phantom decoy, which is not available 
when making a choice, also has a similar influence 
as the physically available decoys. Although some 
phantom decoys can also increase the choice prob-
ability for dominated alternatives, the phantom 
decoy effect appears to be procedurally similar to 
the attraction effect.

Decision Domains and Populations

The attraction effect has been demonstrated in 
various domains with diverse groups of people. 

The effect has been mostly studied in the consumer 
choice domain using product categories such as 
apartment, battery, beer, bicycle, boat, calculator, 
car, CD player, computer, film, gas barbecue grill, 
house, light bulb, lottery, microwave oven, mouth-
wash, orange juice, parking space, plane ticket, 
printer, restaurant, running shoes, video camera, 
sunscreen, toothpaste, TV sets, and wine. The 
effect has also been shown in the in-store and 
online purchases. In addition to numerous demon-
strations of the effect in the consumer domain, it 
has also been shown in many other domains, such 
as the choices of partners, job candidates, political 
candidates in elections, investment options, and 
medicines. Furthermore, the effect has been shown 
with a wide range of people, including young 
adults ranging in age from the late teens to 30s 
and older adults in their 60s and 70s, undergradu-
ate, graduate, and professional school students, 
grocery store customers, and internal medicine 
residents.
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Figure 1   Graphical representation of the attraction effect with competitor (A), target (B), and six decoy types: (1) 
range, R; (2) frequency, F; (3) range-frequency, RF; (4) compromise, C; (5) inferior, I; and (6) range with 
symmetric dominance, RS
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Factors Affecting the Attraction Effect

The size of the attraction effect is influenced by 
several factors, including perceived information 
relevance or meaningfulness of alternatives (mainly 
attribute values), product class knowledge, task 
involvement, perceived similarity between the 
decoy and the target, relative brand preference, 
choice share captured by the decoy, and perceived 
decoy popularity. More specifically, the attraction 
effect decreases with an increase in the perceived 
information relevance, product class knowledge 
(especially when attribute values are presented 
numerically), task involvement, and preference 
strength. Meanwhile, the effect increases with an 
increase in the perceived decoy-target similarity, 
choice share captured by the decoy, and perceived 
popularity of the decoy. Also, assuming that the 
two attributes on which alternatives are defined 
are quality and price, the attraction effect is stron-
ger when the target is stronger on the quality 
dimension than the competitor compared with 
when the target is stronger on the price dimension 
than the competitor. Finally, the attraction effect 
(along with the compromise effect) is also influ-
enced by motivational factors, such as prevention 
and promotion motivations. Specifically, preven-
tion-focused people are more likely to show the 
compromise effect and less likely to show the 
attraction effect than promotion-focused people.

Theories and Explanations

Several theories and explanations have been pro-
posed. They assume that the attraction effect 
occurs because people with limited knowledge do 
not have strong preformed preferences for attri-
butes (because they do not know which attributes 
are important to them), and as a result, they are 
likely to focus on different attributes in different 
situations as the local decision context changes (as 
occurs when a decoy is present vs. not along with 
the core choice set).

Loss Aversion: Decoy as a Reference Point

Based on Tversky and Kahneman’s reference- 
dependent theory of riskless choice that losses (or 
dis advantages) have greater impact on decision 
making than gains (or advantages), one explanation 

for the attraction effect is that a decoy may play a role 
of a reference point against which other alternatives 
are compared in terms of expected loss. According to 
the reference-dependent theory, an alternative with 
a moderate improvement on one attribute and no 
loss on the other is more attractive than another 
with a large improvement on one attribute and a 
small loss on the other. For example, if the range 
decoy is viewed as a reference point for both the 
target and the competitor, the target represents a 
small improvement on Dimension 2 and no loss on 
Dimension 1, whereas the competitor represents a 
large improvement on Dimension 2 and a small loss 
on Dimension 1 (see Figure 1 for the range decoy), 
and as a result, the target appears more attractive 
than the competitor in the presence of the decoy.

Weight Change: Context-Dependent Weighting

The weight-change model argues that adding a 
decoy changes the relative weights assigned to 
different attributes. That is, according to the 
weight-change model, the attraction effect occurs 
because the decoy causes decision makers to 
increase the relative weight they assign to the 
strong attribute of the target or decrease the rela-
tive weight they assign to the weak attribute of 
the target. For example, the relative weight given 
to a dimension decreases when the range of the 
value is extended because the attribute value dif-
ferences become relatively smaller (see Figure 1 
for the range decoy) or increases when the num-
ber of different attribute values on that dimen-
sion increases because the attribute value 
differences become relatively larger (see Figure 1 
for the frequency decoy).

Value Shift: Perceptual Biases

The value-shift model argues that the subjective 
values assigned to each attribute value are shifted 
by the presence of the decoy, while weights on 
attributes remain constant. According to the value-
shift model, a change in subjective evaluation of 
each attribute value leads to an increase in the 
overall value of the target relative to the competi-
tor. This explanation is based on an idea that the 
decoy in the attraction effect operates in the same 
way as Parducci’s range-frequency theory. For 
example, the addition of a decoy that has an 
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extremely low value on the dimension on which 
the target is weaker than the competitor should 
reduce the difference between the target and the 
competitor in their subjective values on the dimen-
sion (see Figure 1 for the range decoy). In another 
example, the addition of a decoy that has an inter-
mediate value on the dimension on which the tar-
get is stronger than the competitor should increase 
the difference between the target and the competi-
tor in their subjective values on the dimension (see 
Figure 1 for the frequency decoy). As a result, in 
the above examples, these decoys increase the rela-
tive attractiveness of the target by making it appear 
less weak than the competitor on the previously 
weak dimension and stronger than the competitor 
on the previously strong dimension.

Value Addition: Dominance Heuristic

The value-added model argues that relations 
among alternatives, such as presence of dominance, 
add value to the target and, as a result, cause the 
attraction effect. More specifically, the addition of 
a decoy to the core choice set creates a dominance 
relation between the target and the decoy, and this 
dominance relation adds justifiability value  
to the target because choosing the target becomes 
easier to justify with the presence of dominance.

Sunghan Kim
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AttributAble risk

The concept of attributable risk (AR) is usually 
used in public health sciences to quantify the 
population impact of an exposure on overall dis-
ease burden. Such a population impact often has 
two determining factors: (1) strength of an asso-
ciation between the exposure and the disease and 
(2) the prevalence of exposure in the population 
of interest.

When exposure is simply binary, that is, exposed 
versus unexposed, a prototype measure of AR is 
defined by the so-called AR fraction:

AR = 1 – Pr{D\E
—

}/Pr {D},

where Pr{D} is the probability of having a disease 
for anyone in the population, and Pr{D\E

—
} is  

the probability of having a disease only for those 
unexposed in the population. From a disease pre-
vention perspective, Pr{D} can also be considered 
as a measure of overall disease burden on the 
population, while Pr{D\E

—
} is considered as the 

measure of disease burden on the same population 
but with all exposure eliminated ideally.

For example, information was obtained in 
Tasmania during 1988 to 1990 from the parents of 
2,607 1-month-old infants regarding their baby’s 
usual sleeping positions. Table 1 tabulates the 
cumulative incidence of crib death (a sudden infant 
death syndrome) through 1 year of age in these 
infants by their usual positions: sleep prone (on their 
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stomach) and other position (side or back). In this 
example, the overall death rate is calculated as 
Pr{D\E

—
} = 15/2,607 = 5.75/1,000, while the death rate 

of other sleeping positions is calculated as Pr{D\E
—

} = 
6/1,761 = 3.41/1,000. Therefore, the AR is calculated 
as AR = (1 – 3,41/5.75) × 100% = 40.7%.

An alternative form of the AR defined above is 
obtained by an application of Bayes’s theorem:

AR = Pr{E}(RR – 1)/[1 + Pr{E}(RR – 1),

where RR is the relative risk measured by the ratio 
of Pr{D\E}/Pr {D\E

–
}. From this form, it is clear that 

AR is determined by Pr{E} and RR jointly. The AR 
increases as either the prevalence of exposed or the 
strength of association becomes greater, while it 
decreases otherwise. A greater RR alone, however, 
may not necessarily lead to a greater AR, which in 
fact shall additionally depend on the prevalence of 
exposure in the population. As a result, AR usually 
does not have the similar “portability” to the RR 
in etiologic inferences of a disease association 
among different populations. AR may vary from 
population to population. Nevertheless, its ability 
to jointly assess the association and the prevalence 
of exposure may serve itself a good measure in 
policy making to prioritize prevention strategies.

Conceptual Use and Interpretation

In practice, AR is usually used to assess the poten-
tial impact of prevention programs aimed to 
modify the exposure distribution in a target popu-
lation. It can be used as a guide to evaluate and 
compare different preventive strategies.

For a specific prevention program, AR can be 
considered as a measure of impact of modifying 
multiple risk factors at the same time, although it 
is seemingly calculated only for one risk factor. It 
may be interpreted in two ways: one interpretation 
is that AR measures the potential impact due to 
modifying the distribution of the exposure and its 
correlated risk factors in the population, and the 
other interpretation is that AR for all known risk 
factors measures what knowledge has been gained 
about the disease etiology. Specifically in the latter 
interpretation, AR measures the remaining portion 
of overall disease burden that is not explained by 
the known risk 1 – AR factors. For example, most 
of the researchers consider that an AR less than 
50% for known exposure and risk factors means 
that there is a strong need for further research in a 
disease area.

However, AR itself does not entail a comparable 
meaning to any conventional terms for risk. A vari-
ety of alternative terms have been used for AR, 
such as population attributable fraction, etiologic 
fraction, and attributable fraction. Many of these 
terms can be misleading to infer causality. AR itself 
merely reflects the overall impact of an association 
and the prevalence of exposure in a population. To 
avoid such confusion in causal inferences of an 
association, researchers have used AR to quantify 
the proportion of disease that can be related or 
linked, rather than attributed, to an exposure.

Properties

When an exposure is hazardous, that is, with an 
RR greater than 1, AR as a percentage lies between 
0 and 1. When either RR is 1 or no one is exposed, 

Table 1 Crib death by sleeping position among infants

Crib Death

Yes (D) No (D
–
) Total

Sleep Position
Prone (E) 9  837  846

Other (E
–
) 6 1,755 1,761

Total  15 2,592 2,607

Source: Dwyer, Posonby, Newman, and Gibbons (1991).
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AR is 0. When an exposure is protective, that is, 
with RR less than 1, AR is less meaningful with a 
range of (–∞, 0). In practice, researchers can recode 
the exposure by having RR to be always greater 
than 1 to avoid negative AR.

As a joint measure of prevalence of exposure 
and RR, AR increases as the prevalence of expo-
sure increases. This means that the value of AR 
depends on how reference exposure is determined. 
When an exposure is measured on a continuous 
scale, more stringent choice of threshold for haz-
ardous exposure usually leads to higher AR. For 
example, some authors found that the AR was 
estimated at 38% of esophageal cancer attributed 
to an alcohol consumption of more than 80 g/day 
with reference level of 0 to 79 g/day. When the 
reference level changed to 0 to 39 g/day, the value 
of AR jumped to 70%. Therefore, when applying 
AR in prevention of a continuous exposure, it is 
critical to clearly specify the reference exposure for 
any meaningful estimation and comparison.

When a reference exposure is determined and 
the rest of exposure is categorized into several 
mutually exclusive categories, the sum of ARs  
for these categories equals the AR for these cate-
gories combined. This is called the distributive 
property of AR. For example, some authors 
found that the AR estimates are 13%, 6%, and 
64% for malignant mesothelioma attributed to 
moderately low, medium, and high likelihoods of 
exposure, respectively, and summed up to a total 
of 83% of nontrivial (moderately low, medium, 
and high combined) likelihood of exposure. 
Given this property, some researchers argue that 
there is no need to break the exposure into finer 
categories, if the overall AR is of main concern, 
even when risk appears to increase with higher 
exposure levels.

Estimation

The estimation of AR usually depends on the study 
design that dictates how data are collected. In 
three major types of study design that are often 
used in public health research, that is, cross- 
sectional, cohort, and case-control, AR is almost 
always estimable with proper assumptions.

In cross-sectional studies, all the quantities that 
define AR are estimable, and the estimation of AR 
is usually straightforward.

In cohort studies, Pr{D\E}, Pr{D\E
–
}, and Pr{E} 

are usually estimable from the observed data. 
When the sampled cohort is a random sample of 
the population of interest, the estimated Pr{E} is 
likely comparable with that in the population, and 
hence the estimated AR is meaningful to the popu-
lation. When the cohort is sampled with a prede-
termined proportion of exposure, the value of AR 
may be less meaningful for the cohort studies.

For case-control studies, researchers often use 
an alternative form to estimate AR:

Ar = Pr{E | D}(1 – 1/RR).

In this alternative form, Pr{E/D} can be estimated 
among the cases, that is, individuals with disease, 
and RR can be estimated by an approximation of 
the odds ratio (OR), assuming a rare disease.

When only one exposure is of sole concern 
without taking into account other factors, consider 
a prototype 2 × 2 table for observed data in Table 
2, regardless of the underlying study design. Then 
a crude AR can simply be estimated by

AR = (bc – ad)/(nb).

Variance of this AR estimator can be estimated 
by the Delta method for various distributions that 
are assumed in individual study designs. As a 
result, 100(1 – α)% -level confidence intervals can 
be constructed with properly transformed AR,  
for example, log(1 – AR), or log{AR/(1 – AR)}. 
Researchers have discussed extensively in statisti-
cal literature the merits of these transformations in 
confidence interval construction.

Crude AR tends to be biased when it ignores 
potential confounding factors for the association 
between exposure and disease. Adjusted AR has 
been advocated by researchers and methodologists 
to account for potential confounding factors. 
Similar to the usual adjustment techniques for RR 
estimation, adjusted AR can be calculated by a 
variety of nonparametric and model-based 
approaches.

One approach is by stratification. It is similar to 
the Mantel-Haensel approach in estimating OR 
from several strata. A crucial assumption is that a 
common RR or OR exists for all the strata. Based 
on the study designs, either Pr{E} or Pr{D\E} can be 
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calculated for each stratum. Then applying an  
estimate of RR or OR would lead to consistent 
adjusted AR estimates. Variance of the estimators 
obtained by this approach tends to be complex but 
can be computed by the Delta method or the 
maximum likelihood methods for their large sam-
ple asymptotic properties. Empirical simulation 
has shown that their bias and coverage probability 
tend to be satisfactory in large samples as well.

A second approach is by calculating the weighted 
sum of ARs over strata, for example, as in

where s = 1,2, . . . , S, are stratum indicators, and ws 
are the assigned weights for stratum-specific ARs. 
This weighted approach usually does not require 
common RR or OR and yields a variety of types of 
adjusted AR by choosing different sets of weights. 
For example, an adjusted AR can be called “case-
load” adjusted if ws  is the proportion of cases  
in stratum s, and “precision-weighted” if ws is 
inversely proportional to the variance of stratum-
specific AR estimators. Variance of the weighted 
adjusted AR can be similarly computed by the 
Delta method in large sample.

Model-based adjusted approaches have been 
extensively studied as well in statistical literature. 
For example, one such is in the form of

where e = 1,2, . . . , E are the levels of exposure, dse  
are the cases, and RRes 

are the adjusted RR. Note 
that this form is not exactly a maximum likelihood 
estimator. Alternative model-based estimators 
have also been proposed for case-control designs 

under unconditional logistic regression model and 
for cohort designs under unconditional logistic 
regression model and the Poisson model. In prac-
tice, these approaches would yield similar results 
in both small and large samples.

Extensions

The prototype AR is mostly used when both dis-
ease and exposure are dichotomous. Extensions  
of the prototype AR have been studied in various 
scenarios.

When exposure is not limited to be dichoto-
mous, that is, exposed versus unexposed, those 
who are exposed can be further categorized into 
multiple levels of exposure. Then the prototype 
AR can be extended to the so-called partial or 
level-specific AR that represents the level-specific 
AR, which may have practical implication for 
screening high-risk groups. In literature, extended 
AR has been developed for continuous exposure.

When there are several types of exposure, 
researchers have estimated exposure-specific AR 
and the overall AR for all the exposure types 
jointly. Usually the sum of exposure-specific AR 
does not equal the overall AR. When different 
types of exposures are mutually independent and 
their effect on disease is multiplicative, then the 
product of exposure-specific complement AR, that 
is, 1 – AR, equals the complement overall AR.

When disease outcome is time-to-event outcome, 
T, say, extensions of time-varying AR have been 
proposed, such as AR(t) = 1 – F(t | E

– 
) / F(t)at time 

t, where F(t | E
– 

 = Pr{T ≤ t | E
– 

} is the cumulative 
distribution function of unexposed, and F(t) is  
the cumulative distribution function of overall. 
When T is subject to censoring, statistical  
meth ods have been developed for a similar quantity 

Table 2 A prototype 2 × 2 table in epidemiologic studies

Disease (D) No Disease (D
–
)

Exposed (E) a b E

Not Exposed (E
–
) c d n − e

f n − f N

AR=
XS

s= 1

wsARs;

AR= 1−
XS

s= 1

XE

e= 1

dse=RRejs;
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AR(t) = 1 – l(t | E
–
)/ l(t), where l(t) is the hazard 

function of unexposed and l(t) is the hazard func-
tion of overall, under the widely used Cox propor-
tional hazards model assuming that the relative 
hazards of l(t | E)| l(t | E

–
) is constant. Additional 

prognostic factors can be included in this model to 
calculate adjusted AR(t).

AR has also been extended to accommodate 
ordinal data and recurrent disease events. Other 
AR-related quantities include the so-called AR in 
exposed, that is, ARe = 1 – Pr{D | E

–
 / Pr{D | E}, 

which essentially plays the same role as RR, and the 
so-called preventable fraction, that is, PF = 1 – Pr{D} 
| Pr{D | E

–
}, for a protective exposure or intervention, 

which measures the impact of an association between 
disease and the protective exposure at the popula-
tion level.

More generally from a disease prevention per-
spective, a very important concept that generalizes 
AR is the so-called generalized impact fraction 
(IF), which is defined as IF = 1 – Pr{D} / Pr{D\℘}, 
where Pr{D\℘} is the target disease burden due to 
modifying the exposure distribution in the popula-
tion. The generalized IF can be used to assess vari-
ous interventions targeting all subjects, or subjects 
at specified levels, while aiming at modifying the 
exposure distribution but not necessarily eliminate 
exposure. This IF can also be extended to censored 
time-to-event outcomes.

Ying Qing Chen

See also Bayes’s Theorem; Cox Proportional Hazards 
Regression; Logistic Regression; Maximum Likelihood 
Estimation Methods; Screening Programs
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AutoMAtic thinking

It is commonly said that components of medical 
diagnosis and decision making, as well as of pro-
cedural skills, are executed automatically. This is 
not always good news. Patients may not appreci-
ate a physician diagnosing their illness without 
awareness. Physicians, likewise, may not like to 
view themselves as unconscious automatons. 
Nonetheless, performing some task components 
automatically has advantages of speed and effi-
ciency. Indeed, expert performance may depend 
on this automaticity: Allocating some necessary 
tasks to unconscious subroutines frees up atten-
tion for the more difficult customization of plans 
accommodating for the particulars of the situa-
tion. Automatic thinking may have some disad-
vantages, however. As it is difficult to reflect on 
automated thought processes, physicians cannot 
explain what they are thinking or teach students 
how to think that way. They may not notice if an 
automatic process is not going well and hence lose 
the opportunity to correct an error or improve 
execution. Insofar as it requires conscious reflec-
tion to change the way one executes a skill, the 
automated aspects of a physician’s cognition may 
not improve with experience. Finally, it is difficult 
for others, and even for the physicians themselves, 
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to assess if their automated perception or decision 
making is biased by self-interest or is influenced 
by medical advertising or by their relations with 
manufacturer representatives.

Four varieties of automatic, unconscious think-
ing that have been described by cognitive psychol-
ogists can provide insight for understanding 
automated processes that occur in medical deci-
sion making. These characterizations conceive of 
automatic thinking (1) as a part of everyday skilled 
cognition, (2) as a problematic component of 
expertise, (3) as a characteristic of some motiva-
tional components of reasoning, and (4) as a fea-
ture of evolutionarily primitive cognition.

A common framework for all these views is the 
generic cognitive psychology model of knowledge 
and skill. For medicine, this holds that knowledge 
structures pertinent to diagnosis and treatment of 
patients, available in long-term memory, are acti-
vated into the physician’s working memory when 
their pattern matches the pattern of the current 
situation, already attended in working memory. 
When the degree of fit seems adequate, that is, 
when the physician is confident that he or she 
understands the patient’s illness, then the physician 
does the action available in the knowledge struc-
ture. When the knowledge does not seem to ade-
quately fit the case, the physician does further 
work—gathering more case information, seeking 
more knowledge from other physicians or the lit-
erature, or problem solving by consciously rework-
ing the available case information and knowledge. 
New knowledge structures built in this way are 
available for later use—whether or not they prove 
accurate for the present case. A knowledge struc-
ture that is useful because it helps explain a patient’s 
disease or guide successful treatment may be more 
likely to be activated and relied on next time there 
is a similar patient. With experience, a larger set of 
specific knowledge structures is built up, so the 
physician can have a rapid, automatic yet appropri-
ate response to a larger proportion of patients.

Automatic Thinking in the  
Execution of Everyday Skill

The first of cognitive psychology’s explanations of 
automatic thinking in physicians is the account of 
ordinary learned knowledge or skill. Just as an expe-
rienced driver may arrive at a familiar destination 

and realize that he or she can’t remember making 
any particular turns today, a physician may realize 
at the end of a routine day that he or she does not 
remember examining any of the patients. A surgeon 
may not remember the details of each layer of stitch-
ing. yet every decision was made adequately and 
each step of the operation executed competently. 
Factors that would seem to prevent a physician’s 
work life from being completely automatic in this 
way include the necessity to explain treatments  
to patients and helpers, to dictate or type for the 
medical record, or to explain to students. yet with 
enough practice, such acts of communication too 
can be handled automatically.

Physicians are said to use heuristic strategies to 
make medical judgments or decisions, although 
they may not be aware that they do so unless it is 
called to their attention. This is a distinct concept 
from automatic thinking. The task of the physician 
is difficult because of its unavoidable uncertainty. 
Even when the physician is fully attending to a 
decision—not thinking “automatically” at all—
there remains the problem of how to determine 
what is best to do. We can articulate very high 
standards for rational decision making that require 
extensive computation. Shortcut strategies are 
unavoidable, and one hopes that physicians use 
shortcuts that are usually accurate. A physician 
might consciously apply a heuristic strategy, or 
that strategy might be well learned and incorpo-
rated into a script or knowledge structure that 
comes to mind as a unit and thus is applied auto-
matically. Thus, the concept of a heuristic strategy 
is different from automated thinking, even though 
it might be empirically demonstrable that physi-
cians’ behavior is consistent with the use of heuris-
tic strategies more often when they are responding 
automatically to routine patients than when delib-
erating about an unusual case.

Automatic Thinking in Expertise

The second account of automatic thinking, while 
recognizing it may be essential for efficient perfor-
mance, views it as a barrier to the improvement  
of performance that is necessary in the attainment 
of expertise. To put it in perspective, while it may 
take 50 hours of coached training and self-reflec-
tive practice to learn to drive competently enough 
that one can tune out that familiar route, to attain 
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a high level of driving skill (as required by a racer 
or a stunt driver) may require thousands of hours 
of supervised practice. If we assume that a skill that 
is executed automatically cannot be changed, then 
a physician diagnosing or managing a patient with-
out attention cannot improve his or her skill. On 
the other hand, reaching high levels of skill may 
require that most of the constituent components of 
the skill have been overlearned so that they may be 
executed automatically, freeing up the physician’s 
attention to focus on one particular element that 
needs to be adjusted and improved. Thus, auto-
matic thinking is both a barrier to and a necessary 
precondition of the attainment of expertise.

Automatic Thinking in the Motivational 
Components of Reasoning

The third characterization of automatic thinking 
focuses on the human motivations and perceptions 
that imbue the setting in which the physician 
works. Factors in the external social context, 
mediated by internal motivations, may influence 
the thinking process without the physician’s intend-
ing they do so and without the physician’s aware-
ness; these can be characterized as automatic 
processes. Unlike the automated rationality char-
acteristic of everyday skill or expert cognition, 
where it is assumed that the physician previously 
performed these mental operations consciously 
and intentionally, this motivated automatic think-
ing may express all-too-human, irrational motives 
that the physician would not necessarily endorse if 
they were drawn to his or her attention.

The effect of irrelevant aspects of names is an 
example of nonrational automatic thinking. If a 
name carries a value-laden connotation, physicians 
may unwittingly react with respect to those values. 
Consider two physicians, Dr. Goode and  
Dr. Crapp. We might guess that other physicians 
may be more likely to refer patients to Dr. Goode. 
At a deeper level, Dr. Goode himself may have 
been subtly influenced his entire life to live up to 
his name, acquiring a fundamentally more sound 
mastery of medicine and a more conventionally 
upright value system than his colleague, unless the 
colleague became a gastroenterologist.

A more serious effect of the automatic response 
to names may be seen in the effect of the labels 
assigned to ventilation-perfusion scans used when 

pulmonary embolism is suspected. A patient with 
a “low probability” scan has a higher probability 
than normal of having a pulmonary embolism, but 
the automatic connotations of the “low probabil-
ity” label—relief, relaxation, having nothing to 
worry about—may cause a physician to reduce 
vigilance below what would be appropriate.

Merely being reminded of money can change 
the way people think and act. Physicians in the 
United States are daily reminded of its importance, 
in their regular business meetings, phone calls they 
must make to protest insurance company denials 
and justify procedures that patients need, or con-
versations in which staff threaten to work else-
where for higher pay. Studies have shown that 
when people are reminded of money, they tend to 
help other people less, to hold themselves more 
separate from others, and to work harder to solve 
intellectual problems. These automatic changes in 
their way of thinking can affect physicians’ ways 
of gathering information and using it to make deci-
sions for their patients, in ways that may either 
promote or impede their Hippocratic values.

The feelings and norms of friendship, social 
exchange, and mutual obligation can influence 
physicians’ thinking without their awareness. 
Pharmaceutical detailers cordially and generously 
provide physicians food and small gifts in exchange 
for the privilege of delivering brief messages about 
the advantages of the medications they sell. 
Physicians, who feel uncomfortable being paid sim-
ply for listening, engage the sales representatives in 
friendly conversations to express their gratitude, 
and of course the friendliness is reciprocated. As 
an automatic effect of these friendly exchanges, 
shown in multiple studies, the physicians increase 
their use of the products after such visits. This 
increase occurs even when the physicians declare 
that they feel no obligation and that they listen to 
the marketing message with objective skepticism.

Automatic thinking underlies the observation 
that a physician who does not like a patient cannot 
be a good doctor for that patient due to the auto-
matic effects of that dislike on each of the parties. 
The patient perceives some form of disinterest and, 
without intending, talks less, thus providing less 
information about the illness. The physician, 
responding both to sensed patient attitude and to 
own level of interest, is less likely to dig for more 
information or to spontaneously ruminate about 
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the patient’s case. These automatic social responses 
work together to reduce the quality of the cogni-
tion the physician applies to a disliked patient.

A similar confluence of automatic responses 
may underlie the effects of prejudice and stereo-
typed expectations in the structured apprentice-
ships of physicians’ clinical education. A generation 
or less ago, for example, some older male surgeons 
had low expectations of female residents’ perfor-
mance, as well as conflicting social role expecta-
tions. This led to offering them less help and 
coaching and impeded the establishment of warm 
collegial relations. In this environment, the female 
residents’ automatic thinking led them to make 
fewer requests for supervision. The result of these 
enmeshed automatic responses was less educa-
tional progress and lower evaluations for the resi-
dents. Similar tales have been told regarding 
African American medical students, residents who 
graduated from foreign medical schools, and even 
family medicine residents on specialty rotations.

An important class of automatic influence of the 
sociomotivational context on thinking is the influ-
ence of fear and anxiety. This is manifest in the 
widespread habit of excessive testing to protect 
against the remotest possibilities, picked up as a 
standard operating procedure, often without the 
physicians recognizing that this part of their script 
serves more to allay physician anxiety than to pro-
tect the patient.

A more vivid manifestation may be seen in phy-
sicians’ thinking under the real threat of death, in 
the traditional approach to end-of-life care. When 
stunned patients and family members deal with the 
high probability of death, physicians naturally 
strive to do all they can do, to muster all their 
power in line with the traditional injunction to 
preserve life at all costs, despite its futility. Recently, 
new institutions have been developed to redirect 
the automatically activated motivations to exercise 
control in the face of anxiety and to adhere to 
authority’s precepts in the face of the possibility of 
death. The alternative approach is embodied in the 
standards of palliative care, which provides a new 
set of skills to exercise to give the physician some-
thing useful to do when the patient is dying. It 
incorporates a new authoritative framework, 
including the laws authorizing Do Not Resuscitate 
orders and living wills, the legitimacy of the 
Advance Directive, and the proxy decision maker. 

It is a good example of the design of institutions to 
cope with the automatic thinking elicited by the 
most challenging situations physicians face, dem-
onstrating that this form of automatic thinking 
need not be opposed to rationality.

Automatic Thinking as a Feature of 
Evolutionarily Primitive Cognition

The fourth account of physicians’ automatic think-
ing attributes the availability of particular types  
of knowledge structures or reasoning strategies to 
instincts inherited from our mammalian or reptilian 
ancestors. Consider, for example, that for eons we 
have had the capability to hold an object in each 
hand and sense which is heavier. From this, we 
speculate, arises our habit of making comparisons 
between just two treatment options at a time, rather 
than three or more. This unexamined tendency, 
traceable to how our minds are embodied, might 
lead physicians to pay insufficient attention to third 
or fourth options, the error of premature closure.

The generic cognitive model tells us that physi-
cians may have several cognitive processes going 
on in parallel, some of them attended and others 
proceeding automatically. Among the automatic 
background processes may be evolutionarily prim-
itive processes that scan the environment for dan-
ger or for items of appetitive interest. The physician 
may experience this when an ongoing diagnostic 
process is interrupted by an involuntary perception 
of the patient. A holistic assessment of the patient, 
such as “this patient looks sick,” may trump the 
usual 20 Questions diagnosis game and lead 
directly to action. This kind of interruption has 
been characterized as a competition between two 
systems of thinking, although likely there are more 
than just two systems. It has been suggested, fur-
thermore, that ideas from the simpler, more primi-
tive system are more likely to control thinking 
when the physician is tired, distracted, under time 
pressure, or venturing into unfamiliar territory.

For physicians to make decisions at the optimal 
standard of rationality could require cognitively 
intense calculation using all available information, 
but instead physicians use shortcut strategies that 
refer to subsets of the information. Such strategies 
may be traced, it has been suggested, to our evolu-
tion in environments with multiple, partially 
redundant cues, which has endowed us with a  
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special capability to learn particular types of deci-
sion strategy appropriate for such environments. 
(This is analogous to the claim that humans have 
an inborn capability to learn the grammar of lan-
guage.) Thus, while experts might identify 50 signs 
or symptoms associated with the various causes of 
chest pain, those symptoms tend to be correlated 
with each other. One physician could attend to one 
subset of symptoms, another physician to a differ-
ent subset, and each could diagnose chest pain 
accurately. Simple strategies, such as to choose a 
diagnosis by counting the arguments (features) for 
each, may be sufficient to support rapid yet accu-
rate decisions that have important consequences.

There is disagreement about whether it is neces-
sary to invoke evolutionary selection to account for 
the availability of such simple yet effective strate-
gies. In computer simulations, such strategies pro-
duce adequate accuracy while using fewer resources 
and taking less time. With these advantages, even  
if evolution had not provided the strategies, we 
would have had to invent them. If physicians adopt 
such strategies because they are easy and effective, 
then we may not need to invoke an inbuilt gram-
mar of decision making to explain their use. 
Nonetheless, the analysis of the fit between the 
physicians’ simplified decision strategies and the 
structure of the disease environment provides a 
useful perspective on automatic cognition.

Implications

Physicians’ automatic thinking is important because 
it potentially affects decisions whose outcomes 
matter, allowing gains in efficiency and providing 
helpful insights, or perhaps causing the physician 
to ignore some of the information available about 
a patient. With the four competing accounts of 
automatic thinking, there are many opportunities 
for researchers to describe, explain, and assess its 
role in physicians’ decision making, and to resolve 
the unknowns concerning the source, role, and 
malleability of the automatic parts of cognition. 
Such research will be challenging, however; because 
automatic cognition is difficult to self-report, 
experts are reluctant to submit selves to intensive 
observation, and observing such behavior is likely 
to change it.

Robert M. Hamm

See also Associative Thinking; Cognitive Psychology and 
Processes; Context Effects; Decision Making and 
Affect; Dual-Process Theory; Heuristics; Intuition 
Versus Analysis; Irrational Persistence in Belief;  
Pattern Recognition
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Bilalić, M., McLeod, P., & Gobet, F. (2008). Inflexibility 
of experts: Reality or myth? Quantifying the 
Einstellung effect in chess masters. Cognitive 
Psychology, 56, 73–102.

Bursztajn, H., Feinbloom, R. I., Hamm, R. M., & 
Brodsky, A. (1981). Medical choices, medical chances. 
New york: Delacorte.

Cain, D. M., & Detsky, A. S. (2008). Everyone’s a little 
bit biased (even physicians). Journal of the American 
Medical Association, 299(24), 2893–2895.

Ericsson, K. A. (2004). Deliberate practice and the 
acquisition and maintenance of expert performance in 
medicine and related domains. Academic Medicine, 
79(Suppl. 10), S70–S81.

Gigerenzer, G. (1996). The psychology of good judgment: 
Frequency formats and simple algorithms. Medical 
Decision Making, 16(3), 273–280.

Stanovich, K. E., & West, R. F. (2000). Individual 
differences in reasoning: Implications for the 
rationality debate? Behavioral and Brain Sciences, 
23(5), 645–726.

Vohs, K. D., Mead, N. L., & Goode, M. R. (2008). 
Merely activating the concept of money changes 
personal and interpersonal behavior. Current 
Directions in Psychological Science, 17(3), 208–212.

Wood, W., & Neal, D. T. (2007). A new look at habits 
and the habit-goal interface. Psychological Review, 
114(4), 843–863.

AxioMs

Axioms in the days of Euclid (Euclidian Geometry) 
were self-evident truths within logic and mathe-
matics. Axioms today (as considered within a 
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system or theory) are sets of rules that are inter-
nally consistent. For example, axioms in expected 
value decision making are a set of internally con-
sistent rules for rational choice. Axioms are often 
described in terms of how plausible they are, in 
what sense(s) they may or may not be compelling, 
and how the axioms are stated. In the latter case, 
the phrase elegantly simple can be directed at the 
expression of a set of axioms that are viewed 
positively regarding their statement.

Axioms and Theories

One can start with a set of axioms and then move 
toward the development of a theory, or one can 
state a theory and look for or attempt to develop 
the set of axioms needed to support that theory. In 
the latter approach, an axiomatic method is pro-
posed that contains a set of postulates (first prin-
ciples). Within such a set of postulates, the 
postulates that are stated are “all and only” the 
necessary definitions and assumptions from which 
the theory can be derived.

The verb to axiomatize suggests that one can 
take a theory and attempt to derive first principles 
for or in support of that scientific or social scien-
tific theory. For example, one can have a theory, 
such as a form of expected utility theory, and take 
that theory’s claims and attempt to axiomatize that 
form of expected utility theory. Another claim is 
that an axiomatic method can be used to express 
all significant theories of any scientific or social 
scientific discipline and one can further argue that 
any scientific or social scientific discipline should 
be capable of such axiomatic expression.

The Axiomatic Versus the Empirical

Some might argue that “the axiomatic” is con-
trasted with “the empirical,” where, for example, 
the axiomatic refers to logical deduction and the 
empirical refers to data derived from the real 
world (by observation alone, observation with 
measurement, or experimentation) to objectively 
study and test hypotheses. Here, experimentation 
includes baseline observation and measurement, 
introduction of an intervention, and then postin-
tervention reobservation and remeasurement, 
analysis of data, interpretation of analyzed data, 
and the drawing of conclusions. Once tested in one 

environment or setting, a central objective in the 
development of an empirical science is coherence 
in the application of theory obtained from this one 
source to a different source. This coherence then 
confirms the extensibility of the application of that 
theory.

The above proposed distinction between what 
is axiomatically driven and what is empirically 
driven seems to suggest that the axiomatic is based 
on consideration of first principles, while the 
empirical is based on consideration of observa-
tions and measurements at a time and over time 
with or without experimentation. However, this 
assumption can be challenged as an oversimplifica-
tion on two grounds. First, a science or a scientific 
theory itself can be axiomatized. Second, an axi-
omatic theory can be tested as a framework for 
understanding a particular science or social science 
in its application to the real world. For example, as 
a social science, a theory of human decision- 
making behavior can be developed and tested in 
terms of the truth or falsity of its set of axioms as 
explaining real-world behavior.

Let us take an example of an attempt to explain 
human behavior on the basis of first principles. A 
theoretician can be approached about the behavior 
of humans in the real world and asked the ques-
tion: Why do humans when placed in this particu-
lar setting behave in the fashion that they do? This 
was a question posed to Daniel Bernoulli: Why  
do gamblers behave as they do in the St. Petersburg 
paradox—a coin-flipping game in which most 
gamblers do not behave like rational bettors? This 
is a game that has a theoretical return on invest-
ment of an infinite sum of money, but it is coun-
terintuitive to realize that. So a typical person 
won’t appreciate the return on investment and will 
not be willing to pay much in order to play this 
game. Bernoulli’s explanation was that gamblers 
behave in the St. Petersburg paradox as if they were 
maximizing the expectation of some utility function 
of the possible outcomes in the problem facing them. 
The classical resolution of the paradox involved 
the introduction of (a) a utility function, (b) the 
statement of an expected utility hypothesis, and  
(c) the presumption of diminishing marginal utility 
of money. Here, the gambling behavior existed 
(the St. Petersburg paradox was recognized as a 
problem needing a solution), and Bernoulli was 
asked to consider an explanation for the behavior  
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(a solution of the paradox). Bernoulli then devel-
oped the set of first principles to explain the behav-
ior (to attempt to solve the paradox). The main 
contributors to the axiomatic derivation of expected 
utility theory are John Von Neumann and Oskar 
Morgenstern, Frank Ramsey, Bruno de Finetti, 
and Leonard Savage.

Once one has an explanatory hypothesis involv-
ing human decision behavior (as in Bernoulli’s 
solution to the St. Petersburg paradox), one can 
ask whether this hypothesis can be further broken 
down into a set of axioms that can be tested (one 
at a time) in the real world as verifiable or falsifi-
able. It also needs to be recognized that certain 
axioms, hypotheses, and theories can be true to a 
specifiable extent under one set of circumstances 
and false to a specifiable extent under another set 
of circumstances in terms of the real world.

Axioms of Expected Utility Theory

Axioms and what can be done to these first princi-
ples can perhaps be best represented by an “equal-
ity” and what can be done to both sides of the 
equality while still preserving the equality: What 
can be done to one side of an equal sign in an equal-
ity and to the other side of the equal sign of the 
equality and still maintain the equality? Or in the 
statement of an equation, it can be asked, “What 
can be done to both sides of the equation while still 
preserving the truth value of the equation?”

Two axioms of expected utility theory are (1) 
comparability (If A and B are in the alternative set 
S, then either A > B or B > A, or both A = B); and 
(2) transitivity (If A > B, and B > C, then A > C).

Testing an Axiom in a System

Real-world settings can be used to test the viability 
of an axiom of a system or theory to ensure 
through the testing of the complete set of axioms 
used to express a system or theory that it is consis-
tent with what is found in the real world. In such 
a testing setting, one needs to demonstrate that 
real-world decision makers behave according to 
the axioms (verification) or do not behave accord-
ing to the axioms (falsification) of the system or 
theory. And one can proceed to test each axiom of 
the set of axioms in the system or theory under 
consideration.

Testing the Axioms of  
Expected Utility Theory

In testing the axioms of expected utility theory in 
the real world, one can start with the axioms and 
ask in a real-world setting whether humans behave 
according to the axioms. But how does one go 
about testing the axioms of expected utility theory 
in the real world?

Here, one needs to introduce a methodology 
(technique) for elicitation of preferences, for exam-
ple, the standard gamble. Once one has the axioms 
and the methodology, one can test the axioms in 
terms of verification or falsification.

How would one identify the presence of a falsi-
fication of an axiom? If the fundamental value that 
humans place on any particular health outcome 
varies according to the position of the outcome  
in the procedure (i.e., the standard gamble) used  
to elicit that individual’s preferences, then there 
would be a failure of an axiom in the system and, 
thus, an internal inconsistency in the system or 
theory. An internal inconsistency exists when one 
or more of the main axioms fail to be sustained on 
real-world testing.

Inconsistencies

What do internal inconsistencies look like in the 
case of the axioms of expected utility theory? If  
in a real-world economic setting, there is a diver-
gence between what a human is willing to pay for 
a good that he or she does not possess and his or 
her willingness to receive compensation for giving 
up that same good when he or she does possess it, 
then there may be an inconsistency in one of the 
axioms in the system or theory used to explain 
human decision-making behavior in this economic 
decision-making setting.

If, in a real-world medical setting, a patient 
places a greater value on an outcome with a given 
probability when that outcome is described 
(framed, presented) in terms of the chance of “sur-
vival,” then when it is redescribed (reframed,  
re-presented) in an equivalent way in terms of the 
chance of “dying,” there may be an inconsistency 
in one of the axioms in the system or theory used 
to explain human decision-making behavior in 
this medical decision-making setting. For example, 
if a patient is willing to accept surgery when the 
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risk of surgery is described as having a 90% 
chance of surviving the initial surgery and still 
being alive 6 months after the surgery but not 
when that same surgery is described as having a 
10% chance of dying at the time of the surgery 
and not being alive 6 months after the surgery, 
then there may be an inconsistency in one of the 
axioms used to explain medical decision-making 
behavior.

Focusing on the question of the internal consis-
tency of the standard gamble, one can ask, “What 
is to be done about the internal inconsistencies that 
are found with the use of the standard gamble?” 
One research goal is to achieve internal consis-
tency within the standard gamble. Another research 
goal is an intermediate goal to limit the level of 
internal inconsistency found within the standard 
gamble. Here, research studies focus on the attempt 
to incorporate additional elements (e.g., weighting 
and probability transformation parameters) to the 
standard gamble valuation procedure in the attempt 
to limit internal inconsistency.

Future Directions

It is not the case that a theory is captured by one 
and only one set of axioms. In the attempt to 
axiomatize any scientific or social scientific the-
ory, there is always a search under way for the 
most plausible, the most compelling, and the 
most elegantly simple set of axioms used to cap-
ture a theory in any domain. The search for such 
axioms is ongoing in every logical, mathematical, 
scientific, and social scientific field today. In the 
case of the sciences and social sciences, the search 
continues for the most plausible, most compel-
ling, and the most elegantly simple set of axioms 
that can be applied to the real world attempting 
to successfully explain human behavior in deci-
sion making. Such a search should have as its 
ultimate goal not only describing human behavior 
but also optimizing that decision making to help 

people achieve their goals as viewed from their 
perspectives.

Dennis J. Mazur
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Basic common statistical 
tests: chi-square test, t test, 
nonparametric test

A statistical test provides a mechanism for making 
quantitative decisions about a process or processes. 
The intent is to determine whether there is enough 
evidence to “reject” a conjecture or hypothesis 
about the process. The conjecture is called the null 
hypothesis. In medical research, appropriate use of 
a test, correctly interpreting p values, and drawing 
valid conclusions may help to clarify the confusion 
between statistical and clinical significance and 
make judicious decisions. The rest of this entry is 
organized as follows: Beginning with the chi-square 
test, the most applicable test for categorical data, 
this entry introduces t test and analysis of variance 
(ANOVA) for quantitative outcomes, ending with 
the introduction of nonparametric tests.

Chi-Square Test

Chi-square test is a statistical test commonly used to 
compare observed data with data a researcher 
would expect to obtain according to a specific 
hypothesis. Chi-square tests can be used in tests of 
goodness of fit, testing if a sample of data came from 
a population with a specific distribution; or in tests 
of independence when a researcher wants to see  
if there is a relationship between categorical vari-
ables. In this case, the outcome is categorical—for 

example, whether people from different regions dif-
fer in the frequency with which they report that they 
support a political candidate.

Pearson Chi-Square

Pearson chi-square is used to assess the above 
two types of comparison. It is the most common 
test for significance of the relationship between 
categorical variables. The chi-square test becomes 
increasingly significant as the numbers deviate fur-
ther from this expected pattern. The value of the 
chi-square and its significance level depend on the 
overall number of observations and the number of 
cells in the table. Relatively small deviations of the 
relative frequencies across cells from the expected 
pattern will prove significant if the number of 
observations is large.

The Pearson chi-square inherently tests the 
underlying probabilities in each cell; and when the 
expected cell frequencies fall, for example, below 
5, those probabilities cannot be estimated with suf-
ficient precision. Therefore, the assumption under-
lying the use of the Pearson chi-square is that the 
expected frequencies are not very small.

Maximum Likelihood Chi-Square

Based on maximum likelihood theory, the max-
imum likelihood chi-square tests the same hypoth-
esis as the Pearson chi-square statistic, and in 
practice, it is usually very close in magnitude to the 
Pearson chi-square statistic.

B
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Fisher Exact Test

When conducting a chi-square test in which one 
or more of the cells have an expected frequency of 
5 or less, the Fisher’s exact test is used. This test is 
only available for 2 × 2 tables and is based on the 
following rationale: Given the margins of the 
table, and assuming that in the population the two 
factors in the table are not related (null hypothe-
sis), the probability of obtaining cell frequencies as 
uneven or worse than the ones that were observed 
can be computed exactly by counting all possible 
tables that can be constructed based on the mar-
ginal frequencies.

McNemar Chi-Square

This test is primarily used in a before-after design 
study; that is, it assesses the significance of the dif-
ference between two dependent samples. For exam-
ple, researchers may count the number of students 
who fail a test of minimal math skills at the begin-
ning of the semester and at the end of the semester. 
In a 2 × 2 table, the McNemar chi-square tests 
whether the counts in cells above the diagonal differ 
from counts below the diagonal. If the two counts 
differ significantly, this reflects change between the 
samples, such as change due to an experimental 
effect between the before and after samples.

t Test

A parametric test is a statistical test that assumes 
an underlying distribution of observed data. t test 
is one of the most common parametric tests and 
can be categorized as follows.

One-Sample t Test

One-sample t test is used to test whether the 
population mean of the variable of interest has a 
specific value (hypothetical mean), against the 
alternative that it does not have this value, or is 
greater or less than this value. A p value is com-
puted from the t ratio (which equals the difference 
of the sample mean and the hypothetical mean 
divided by the standard error of mean) and the 
numbers of degrees of freedom (which equals 
sample size minus 1). If the p value is small, the 
data give more possibility to conclude that the 
overall mean differs from the hypothetical value.

Two-Sample t Test

The two-sample t test is used to determine if the 
means of the variable of interest from two popula-
tions are equal. A common application of this is to 
test if the outcome of a new process or treatment 
is superior to a current process or treatment.

t Test for Independent Samples

An independent samples t test is used when a 
researcher wants to compare the means of a vari-
able of interest (normally distributed) for two inde-
pendent groups, such as the heights of gender 
groups. The t ratio is the difference of sample 
means between two groups divided by the standard 
error of the difference, calculated by pooling the 
standard error of the means of the two groups.

t Test for Dependent Samples

If two groups of observations of the variable of 
interest (that are to be compared) are based on the 
same sample of subjects who were tested twice 
(e.g., before and after a treatment); or if the sub-
jects are recruited as pairs, matched for variables 
such as age and ethnic group, and one of them gets 
one treatment, the other an alternative treatment; 
or if twins or child–parent pairs are being mea-
sured, researchers can look only at the differences 
between the two measures of the observations in 
each subject. Subtracting the first score from the 
second for each subject and then analyzing only 
those “pure (paired) differences” is precisely what 
is being done in the t test for dependent samples; 
and, as compared with the t test for independent 
samples, this always produces “better” results (i.e., 
it is always more sensitive). The t ratio for a paired 
t test is the mean of these differences divided by the 
standard error of the differences.

Assumptions

Theoretically, the t test can be used even if the 
sample sizes are very small (e.g., as small as 10) so 
long as the variables of interest are normally dis-
tributed within each group, and the variation of 
scores in the two groups is not reliably different.

The normality assumption can be evaluated by 
looking at the distribution of the data (via histo-
grams) or by performing a normality test. The 
equality of variances assumption can be verified 
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with the F test, or the researcher can use the more 
robust Levene’s test.

Analysis of Variance

Analysis of variance (ANOVA) is a statistical test 
that makes a single, overall decision as to whether 
a significant difference is present among three or 
more sample means of the variable of interest (out-
come). An ANOVA is similar to a t test; however, 
it can also test multiple groups to see if they differ 
on one or more explanatory variables. The ANOVA 
can be used to test between-groups and within-
groups differences. There are two types of ANOVAs: 
one-way ANOVA and multiple ANOVA.

One-Way ANOVA

A one-way ANOVA is used when there are a 
normally distributed interval outcome and a cate-
gorical explanatory variable (with two or more 
categories), and the researcher wishes to test for 
differences in the means of the outcome broken 
down by the levels of the explanatory variable. For 
instance, a one-way ANOVA could determine 
whether class levels (explanatory variable), for 
example, freshmen, sophomores, juniors, and 
seniors, differed in their reading ability (outcome).

Multiple ANOVA (Two-Way  
ANOVA, N-Way ANOVA)

This test is used to determine if there are differ-
ences in two or more explanatory variables. For 
instance, a two-way ANOVA could determine 
whether the class levels differed in reading ability 
and whether those differences were reflected by 
gender. In this case, a researcher could determine 
(a) whether reading ability differed across class 
levels, (b) whether reading ability differed across 
gender, and (c) whether there was an interaction 
between class level and gender.

Nonparametric Test

Nonparametric methods were developed to be used 
in cases when the researcher knows nothing about 
the parameters of the variable of interest in the 
population. Nonparametric methods do not rely 
on the estimation of parameters (such as the mean 

or the standard deviation) describing the distribu-
tion of the variable of interest in the population.

Nonparametric methods are most appropriate 
when the sample sizes are small. In a nutshell, 
when the samples become very large, then the 
sample means will follow the normal distribution 
even if the respective variable is not normally dis-
tributed in the population or is not measured very 
well.

Basically, there is at least one nonparametric 
equivalent for each parametric general type of 
test. In general, these tests fall into the following 
categories.

One-Sample Test

A Wilcoxon rank sum test compares the median 
of a single column of numbers against a hypo-
thetical median that the researcher enters. If the 
data really were sampled from a population with 
the hypothetical mean, one would expect the sum 
of signed ranks to be near zero.

Differences Between Independent Groups

Nonparametric alternatives for the t test for inde-
pendent samples are the Mann-Whitney U test, the 
Wald-Wolfowitz runs test, and the Kolmogorov-
Smirnov two-sample test. The Mann-Whitney U 
test, also called the rank sum test, is a nonparametric 
test assessing whether two samples of observations 
come from the same distribution. This is virtually 
identical to performing an ordinary parametric two-
sample t test on the data after ranking over the 
combined samples. The Wald-Wolfowitz runs test is 
a nonparametric test of the identity of the distribu-
tion functions of two continuous populations against 
general alternative hypotheses. The Kolmogorov-
Smirnov two-sample test is one of the most useful 
and general nonparametric methods for comparing 
two samples, as it is sensitive to differences in both 
location and shape of the empirical cumulative dis-
tribution functions of the two samples.

An appropriate nonparametric alternative to 
the one-way independent-samples ANOVA can be 
found in the Kruskal-Wallis test, which is applica-
ble when the researcher has the outcome with two 
or more levels and an ordinal explanatory vari-
able. It is a generalized form of the Mann-Whitney 
test method, since it permits two or more groups.
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Differences Between Dependent Groups

For the t test for dependent samples, the non-
parametric alternatives are the Sign test and 
Wilcoxon’s matched pairs test. The sign test can 
be used to test that there is “no difference” 
between the continuous distributions of two ran-
dom samples. The Wilcoxon test is a nonparamet-
ric test that compares two paired groups, through 
calculating the difference between each set of 
pairs and analyzing that list of differences. If the 
variables of interest are dichotomous in nature 
(i.e., “pass” vs. “no pass”), then McNemar’s chi-
square test is appropriate. If there are more than 
two variables that were measured in the same 
sample, then the researcher would customarily 
use repeated measures ANOVA. Nonparametric 
alternatives to this method are Friedman’s two-
way ANOVA and Cochran Q test. Cochran Q is 
an extension to the McNemar test and particu-
larly useful for measuring changes in frequencies 
(proportions) across time, which leads to a chi-
square test.

Relationships Between Variables

Spearman R, Kendall tau, and coefficient gamma 
are the nonparametric equivalents of the standard 
correlation coefficient to evaluate a relationship 
between two variables. The appropriate nonpara-
metric statistics for testing the relationship between 
the two categorical variables are the chi-square 
test, the phi coefficient, and the Fisher exact test. 
In addition, Kendall coefficient of concordance is a 
simultaneous test for relationships between multi-
ple cases, which is often applicable for expressing 
interrater agreement among independent judges 
who are rating (ranking) the same stimuli.

Li Zhang
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Bayesian analysis

Bayes’s theorem is often used in decision analysis, 
so it would be natural to think that Bayesian 
analysis is a generic term to describe decision 
analyses using the Bayes’s theorem. On the con-
trary, Bayesian analysis refers to a school of 
thought in statistical analysis. It differs both 
operationally and conceptually from the two 
other traditional ways of carrying out statistical 
analysis: frequentist and likelihood based. 
Statisticians who adhere to the principles of 
Bayesian analysis sometimes call themselves 
Bayesians.

The goal of most statistical analysis is to make 
inferences about population parameters. These 
parameters are not observable directly but can be 
estimated using data. For example, incidence of  a 
particular disease in a given country is a parame-
ter. It is practically impossible to find the true 
incidence, but it is quite possible to estimate it 
based on an appropriately chosen sample. In tradi-
tional statistical analysis only the information in 
the sample will be used for the purpose of estima-
tion. In Bayesian analysis, information external to 
the sample, such as prior related findings, expert 
information, or even subjective beliefs can be 
incorporated into the analysis. Results of a Bayesian 
analysis will reflect a weighted combination of the 
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information in the sample and the prior informa-
tion. These weights are intrinsically chosen by the 
analyst based on the study design (especially sam-
ple size) and the precision of prior information.

Example

A simple example might help clarify the concepts 
and the process. Suppose we want to estimate the 
mean age of patients seen at a pediatric emergency 
care facility. Based on our knowledge about the 
patient profile of this particular institution, we 
expect the mean to be around 7. We think it could 
be as low as 5 or as high as 9. We can represent our 
prior information about the mean age in the form 
of a normal distribution with mean 7 and standard 
deviation 1. This means that, a priori, the proba-
bility that the mean age is below 5 or above 9 is 
approximately 5%. The data we collect on a par-
ticular day based on 10 consecutive admissions are 
7, 6, 8, 12, 15, 10, 4, 8, 11, 9 (sample mean of 9). 
How can we reconcile our prior information with 
the observed data?

If we let µ denote the mean age (not the sample 
mean, but the population mean), and the prior 
information on µ with π(µ), then π(µ) is a normal 
distribution with mean 7 and variance 1, to be 
denoted by N(7, 1). We are assuming that X (the 
observations) also follows a normal distribution 
N(µ, σ2), where σ2 is the (population) variance of 
age. Call this distribution L(X|µ, σ2). For the time 
being, let us assume that we know that σ2 = 10; we 
will comment later on how to handle the more 
realistic case of unknown variance. We can now 
use Bayes’s theorem to find the distribution of µ, 
given X:

P mjXð Þ=
p mð ÞL Xjm;s2 = 10

 
Ð
p mð ÞL Xjm;s2 = 10ð Þdm

:

This is called the posterior distribution of µ (con-
trast with prior distribution). The fundamental 
premise of Bayesian analysis is that the posterior 
distribution contains all the available information 
about µ and hence should form the basis of all 
statistical inference.

The analytical evaluation of the integral in the 
denominator is tedious but possible. It turns out 
that P(µ|X) also follows a normal distribution with 
mean

and variance

s2
p =

1
1

s2
p

 
+ n=s2ð Þ

:

Here, n is the sample size, mπ and σ2 

π are the prior 
mean and variance, and mp and σ2 

pare the poste-
rior mean and variance, Substituting

 
the values 

from the example, we have

s2
p =

1
1

s2
p

 
+ n=s2ð Þ

= 1
1=1ð Þ+ 10=10ð Þ

= :5:

By going through the calculations we see that 
the posterior distribution is N(8, .5). A sensible 
estimate of the mean patient age in this facility, 
then, is 8. Notice how the sample mean of 9 is 
shrunk toward the prior mean 7. In fact, the 
equation for the posterior mean above can be seen 
to be a weighted average of prior and sample 
means, where the weights are inversely propor-
tional to the variances. Since the variance of the 
sample mean (σ2/n) decreases with the sample 
size, increasing the sample size will make the pos-
terior mean closer to the sample mean. For exam-
ple, if the sample size was 100 with the same 
mean (9) and variance (10), the posterior mean 
would be 8.8.

Figure 1 displays the three distributions at work 
for this example. The prior is shifted right to 
become the posterior because the bulk of the data 
lies to the right of the prior. But the variance of the 
posterior is largely determined by the prior. This 
suggests a weakness in this analysis, namely, that 
we were too confident in our prior information to 
begin with. We were absolutely sure that the mean 
age would be between 4 and 10, since the prior we 
chose places negligible mass of probability outside 
this range. Yet four of our data points were greater 
than 10. This could of course be due to pure chance, 
but there could be other reasons. Perhaps the sam-
ple was not representative. Since it reflects the expe-
rience on a single afternoon, it might have been 
biased by outside factors that we are not aware of 
(such as a soccer tournament of 10-plus-year-olds 

mp =
mp


s2
p

 
+ nx


s2

 

1

s2
p

 
+ n=s2ð Þ

;

mp =
7=1ð Þ+ 10  9=10ð Þ

1=1ð Þ+ 10=10ð Þ = 16
2

= 8;
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held nearby). Or we might have judged our confi-
dence in the prior incorrectly. It behooves a good 
analyst to investigate this further.

We can also form a confidence interval based on 
this distribution. For example, µ will be within the 
interval (µp ± 2σp) approximately 95% of the time, 
and hence this defines a 95% confidence interval 
for µ. Confidence intervals are usually called poste-
rior intervals if they are calculated from a Bayesian 
perspective. In this case, the 95% posterior interval 
for µ is (6.61, 9.39). It is quite wide because it is 
based on 10 samples only. For purposes of com-
parison, the standard 95% confidence interval can 
be calculated as (2.8, 15.3). The Bayesian interval 
is narrower due to the contributions from the prior 
information as well as the data. Remember the 
discussion from the above paragraph suggesting 
that the prior was perhaps too precise (it had a 
small variance). If the prior had the same mean but 
a larger variance, for example, 10, then the poste-
rior distribution would be N(8.8, 0.9) and the 95% 
posterior interval would be (6.9, 10.7). Notice how 
the posterior mean shifted closer to the sample 
mean. This is because the weight that the prior 
mean received is much smaller now because the 
prior variance is higher.

Finally, we can compute the posterior probabil-
ities of a hypotheses. If we wanted to test, for 
example, the hypothesis that H0: µ > 10, we could 
simply compute P(µ > 10|X), that is, the posterior 
probability that µ is greater than 10. Based on the 
N(8, 0.5) posterior, this turns out to be .002. Since 
this probability is very small, we can safely con-
clude that µ is less than 10. Note that the small 
prior variance is influencing this inference in the 
same way in which it influenced the posterior 
intervals. If the prior variance had been 10, then 
the posterior probability of this hypothesis would 
have increased to .103, and it would have been 
likely for the analyst to conclude that there was 
not sufficient information to reject the hypothesis 
that µ > 10 (although it is still less likely than the 
alternative µ ≤ 10). The practice of varying the 
prior parameters and observing the effects on the 
posterior is known as sensitivity analysis and is 
further discussed below in more general terms.

The interpretation of Bayesian findings is very 
different from the interpretation of traditional sta-
tistical results. For example, with a posterior inter-
val, we can conclude that µ lies within the posterior 
interval with 95% probability. With a confidence 
interval, we have to resort to the frequentist inter-
pretation that 95% of the intervals constructed in 
this manner will contain the true µ. Similarly, with 
hypothesis testing, we can directly conclude that 
the probability of the hypothesis is low or high. 
With a p value, however, the interpretation is more 
cumbersome: If the null hypothesis is true, then the 
probability of observing a result at least as extreme 
as what is observed is the p value. Most people 
find the Bayesian interpretations more palatable.

Generalization to Multiple Parameters

The ideas in this simple example can be general-
ized to any statistical model with an arbitrary 
number of parameters. If we let θ represent the set 
of parameters (θ will be a vector) we are interested 
in, and X denotes the observations in our sample, 
the same version of Bayes’s theorem holds:

This time, both π and L will be multivariate distri-
butions. In the example above, if we relax the 
assumption of known σ2, despite the fact that we 
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Figure 1  Prior, data, and posterior distributions

Note: Prior (--), data (..), and posterior (__) distributions for 
the pediatric emergency room example.

P yjXð Þ= p yð ÞL Xjyð ÞÐ
p yð ÞL Xjyð Þdy

:
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will have two parameters, we can apply the same 
principles to arrive at the posterior distribution.

If both π (the prior) and P (the posterior) are 
from the same family, then we have a conjugate 
family for L. For example, normal distribution is 
the conjugate for itself (i.e., if π and L are normal, 
then P will also be normal). A conjugate family 
makes calculations easier, and its use deserves seri-
ous consideration, if it exists. The problem is that 
for most problems of practical importance, such as 
regression and analysis of variance, there are no 
conjugate families. Since the integral in the denom-
inator is often intractable, application of Bayesian 
methods in practice used to be very limited. The 
emergence of particular numerical methods that 
collectively came to be known as Markov chain 
Monte Carlo (MCMC) enabled statisticians to 
generate a sample from P without explicitly deriv-
ing an equation for it. Since this sample has distri-
bution P, it can be used to mimic the properties of 
P. For example, one can form a 95% posterior 
interval from this sample by truncating it at the 
2.5th and 97.5th percentiles. In other words, 
MCMC methods enable an analyst to bypass the 
integration in the denominator of the Bayes’s theo-
rem above. This has fueled an explosion of 
Bayesian applications, including the ones with very 
large numbers of parameters that cannot be solved 
within the regular statistical paradigm.

Objections to Bayesian analysis often include 
the difficulty of choosing a prior distribution. 
While most people will agree that some prior infor-
mation exists in most real-world problems, they 
rarely agree on how to formulate it in the form of 
a probability distribution. It is ostensibly true that 
one can replace the prior of the analyst with 
another one and repeat the analysis to arrive at his 
or her own conclusions. This is rarely done, how-
ever, leaving Bayesian analysts with the responsi-
bility of choosing a π that will be acceptable to 
most analysts (in addition to choosing such an L, 
which is the responsibility of most other statisti-
cians as well) or performing an extensive sensitivity 
analysis with the hope that wide variations in π 
will not result in wide variations in conclusions. In 
the example above, we performed an informal 
(and highly incomplete) sensitivity analysis by 
changing the variance of the prior from 1 to 10 and 
recomputing the posterior distribution. In most 
cases, sensitivity analysis will define a range within 

which the inferences are robust to prior specifica-
tions, but this range can be unacceptably narrow.

Defenders of Bayesian analysis point to the flex-
ibility it brings as well as the formal incorporation 
of external information. It is often argued that 
most scientists are implicit Bayesians, evaluating 
others’ findings in light of their subjective out-
look—something that can be explicitly done in the 
Bayesian framework. Another advantage is that, 
since θ is random, one can make probability state-
ments about θ and the interpretation of Bayesian 
intervals and tests is very straightforward. In con-
trast, most nonstatisticians struggle with the appro-
priate definition of frequentist statistical results 
such as p values.

Mithat Gönen
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Bayesian evidence synthesis

Evidence synthesis has come to replace meta-
analysis as a term referring to the statistical  
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combination of multiple sources of evidence. In 
its simplest form, each evidence source is repre-
sented by a sufficient statistic, which may be, for 
example, a numerator and a denominator, a mean 
with its standard error, or a summary estimate 
such as an estimate of the log odds ratio and its 
standard error. The evidence synthesis is then the 
process of finding a suitable weighted average of 
these quantities. However, meta-analysis need not 
be restricted to summary statistics and has, for 
example, been extended to analyses of data from 
individual patients in multiple studies. Fur-
thermore, evidence synthesis may be used to 
imply much more general forms of statistical syn-
thesis, involving data sources of multiple types, 
each perhaps providing information on one or 
more parameters.

Bayesian evidence synthesis is then the use of 
Bayesian statistical methods in evidence synthesis. 
This can be formulated as follows: There are K 
unknown basic parameters, θ, and N data points 
Yi, i = 1, . . . , N, each representing, let us assume, a 
sufficient statistic from study i, in this case consist-
ing of numerators ri and denominators ni. We may 
also define additional functional parameters 
θ K+1, . . . , θ M. To rule out recursive definitions, it 
must be possible to define these as functions 
GK+1, . . . , GM of the basic parameters. Finally, each 
data point provides an estimate of a Gi(θ) that is 
some function of parameters.

One approach to computation, the maximum 
likelihood solution, assuming that the N data 
points are independent, would be to find values of 
θ that maximize

 L = Pi = 1, . . . , N Li (Yi|θ 1, θ2, . . . , θK), (1)

bearing in mind that the likelihood contribution 
from each study might take a different distribu-
tional form (normal, binomial, Poisson, etc.).

Bayesian evidence synthesis specifies a prior 
distribution for the basic parameters only P(θ). 
There is no requirement that the parameters be 
independent, so we may consider this to be a joint 
prior distribution, if necessary. We then find the 
joint posterior distribution by application of 
Bayes’s theorem:

 P(θ1, . . . , θK|Y1, . . . , YN) ∝ P(θ) L (2)

The data to be synthesized form a connected 
network that can be described in terms of a 
directed acyclic graph (DAG). However, the syn-
thesis problems are capable of being reparameter-
ized in many different ways, so that items of data 
that inform, for example, a basic parameter in one 
parameterization may inform a functional param-
eter in another. Hence, several DAGs may describe 
the same network. Some evidence networks may 
also be described in terms of graphs. One impor-
tant feature that remains invariant under reparam-
eterization is the inconsistency degrees of freedom, 
N − K. This can be thought of as representing the 
number of independent ways in which the evidence 
can be inconsistent under a given model. For 
example, in the DAG presented in Figure 1 and 
discussed in more detail below, there are three 
basic parameters and four independent data items 
to inform them. The inconsistency degrees of free-
dom is therefore 4 − 3 = 1. The Bayesian formula-
tion, which forces the investigator to be explicit 
about which parameters are basic, and therefore 
have a prior distribution, and which are functional, 
yields valuable insights into the structure and 
dynamics of the data and model.

The Bayesian framework is, of course, essen-
tially the same in evidence synthesis as it is in other 
areas of statistics, but it takes a slightly different 
flavor in this context. Instead of combining a 
“prior” based, formally or informally, on the accu-
mulated evidence so far, together with the likeli-
hood in the latest study, the whole exercise is 
concerned with combining all the available evi-
dence. For this reason, the priors put on most 
parameters are typically vague. Nevertheless, the 
focus on putting together all available evidence, to 
obtain the best possible estimates with the most 
realistic assessment of uncertainty, is very much in 
tune with the Bayesian spirit.

History

The origins and development of Bayesian evidence 
synthesis lie more in decision making than in tra-
ditional statistical inference. On the other hand, 
Bayesian methods have brought to decision model-
ing the advantages of formal posterior inference, 
and of statistical methods for model diagnosis, 
that have otherwise tended to be lacking. The 
decision-making context is inevitably associated 
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with multiple parameters and multiple sources of 
uncertainty. Probabilistic methods were introduced 
in the 1980s at the time when the development of 
computers made it possible to evaluate complex 
models by Monte Carlo simulation. Each param-
eter is represented by a statistical distribution, one 
Monte Carlo cycle value is drawn from each distri-
bution, and the costs and benefits are computed. 
The expected costs and benefits are then taken as 
an average over the simulated sequence. This 
scheme has been regarded as essentially Bayesian 
in that it focuses on the probability distributions of 
parameters. Essentially, it samples from a (infor-
mative) prior P(θ) but unlike Equation 2 does not 
update this with further data.

Forward simulation from a prior is, however, 
severely limited. Typically, each parameter repre-
sented by a separate distribution, as well as each 
distribution, is informed by a separate item from 
the data, either from a single study or from a meta-
analysis. This means that the number of data 
sources must equal the number of parameters, no 
more and no less. A scheme with Bayesian updat-
ing, in contrast, can incorporate multiple functions 
of parameters so that, if the data are available, 
there can be more sources of data than there are 
parameters. Furthermore, Bayesian hierarchical 
models can be deployed to share information over 
the parameter space and thus to manage situations 
where there are fewer data items than there are 
parameters.

A related advantage of full Bayesian updating is 
that the ability to incorporate data on more func-
tions of parameters than there are parameters 
represents an opportunity to validate the model. 
This can also be regarded as a form of probabilistic 
model calibration. Model diagnostics are available 
to check the consistency of the different sources of 
evidence with respect to any parameter.

The above formulation of the Bayesian evidence 
synthesis model is due to David M. Eddy and his 
colleagues, whose 1992 book, Meta-Analysis by the 
Confidence Profile Method, appears to have been 
the first systematic exposition of Bayesian evidence 
synthesis in the context of medical decision making. 
Although the book introduced extremely powerful 
statistical methods and ideas to a wider audience, it 
failed to have the impact it deserved. This was due, 
perhaps, to the somewhat stylized examples and the 
specialized software required.

In fact, Bayesian forms of statistical synthesis 
seem to have emerged independently in related 
fields, in each case based on different computa-
tional approaches. The Confidence Profile Method 
was based on a fully Bayesian computation using 
Monte Carlo simulation and on two further 
approximate methods that are not always accurate 
for small sample sizes. Another set of computa-
tional methods that have been used for synthesis, 
named Bayesian Monte Carlo, is based on weighted 
Monte Carlo sampling, where the weights were 
given by the likelihood of the data at each set of 
parameters. This approach became popular in the 
Environmental Health Risk Assessment field, 
beginning with simple accept-reject algorithms and 
then evolving to a fully Bayesian approach. Typical 
applications included updating prior distributions 
for contaminant release, environmental transport, 
and biological effects, with field data on pollution 
levels.

A further series of methods, called variously 
Bayesian Synthesis, Bayesian Melding, and Bayesian 
Pooling, were developed for deterministic models 
of animal and plant populations. These algorithms 
are also based on various types of noniterative 
reweighting schemes.

Bayesian Markov chain Monte Carlo (MCMC) 
has become the standard software for Bayesian 
evidence synthesis, certainly in the medical deci-
sion-making context. The development of freely 
available user-friendly MCMC software, such as 
WinBUGS, has opened the possibilities of Bayesian 
evidence synthesis to a wide range of researchers. 
Users of the package need only specify priors and 
likelihoods and define functional parameters. As a 
result, a wide and increasing range of applications 
is appearing in health technology assessment liter-
ature. The expression multiparameter evidence 
synthesis, coined by Victor Hasselblad, another 
founder of the Confidence Profile Method, is often 
used for applications of this sort.

Many of these are examples of comprehensive 
decision analysis, a term used when a Bayesian 
statistical synthesis is embedded within a decision 
analysis, an approach first seen in publications 
from Duke University in the 1990s. More recently, 
the increasing adoption of net benefit analysis has 
made this conceptually appealing, and the simula-
tion format for MCMC, of course, fits in readily 
with the simulation approach that has become 
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familiar from probabilistic modeling based on 
simple Monte Carlo methods.

Examples

This section outlines some examples of Bayesian 
evidence synthesis. Figure 1 shows a fragment of a 
model of HIV epidemiology in the form of an 
influence diagram, in which four sources of data 
inform three basic probability parameters. The 
basic parameters would most naturally be given 
Beta prior distributions. The three surveys that 
directly inform the basic parameters provide prev-
alence data and would, therefore, each contribute 
a binomial likelihood. The fourth source of evi-
dence would provide the observed number of diag-
nosed cases, which would be represented as a 

Poisson distribution. This type of evidence struc-
ture is quite common in epidemiology applica-
tions. Note that the model in effect “calibrates” 
the basic parameters so that their product is con-
sistent with the routine surveillance data.

As noted earlier, the inconsistency degrees of 
freedom is 1. Therefore, the investigator can assess 
whether or not the four sources of data are consis-
tent with each other, under this model. If they are 
not, this would suggest that one or more of the 
studies is not estimating the presumed target 
parameter but is biased. Which study is biased, of 
course, cannot be determined without further data 
or expert judgment, and very possibly more than 
one is biased.

Another very common structure for Bayesian 
evidence synthesis is illustrated in Figure 2. Mixed 

HIV
seroprevalence
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Nπρδ N

Prevalence of drug
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Figure 1 Schematic influence diagram (directed acyclic graph)

Note: Ellipses indicate stochastic nodes, rectangles constants or data, and edges the direction of influence. There are three basic 
parameters: HIV prevalence in injecting drug users (IDUs), π; proportion of the population who are IDUs, ρ; proportion of 
infected IDUs who are diagnosed, δ. With population size N, a constant, these define the product Nπρδ, a functional parameter, 
which is the number of diagnosed IDUs. There are four sources of data: Three directly inform the basic parameters; the fourth 
directly informs a functional parameter.
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Treatment Comparison structures allow the syn-
thesis of data from pairwise, or multiarm, random-
ized controlled trials of treatments. For example, 
the evidence base may consist of one or more trials 
making each of the following comparisons: A ver-
sus B, A versus C, B versus C, A versus B versus 
D, C versus D, and so on. If we arbitrarily choose 
A as the reference point, we may choose the rela-
tive treatment effects of B, C, D, and so on, rela-
tive to A as the basic parameters. All the other 
contrasts, dXY, may then be expressed in terms of 
the basic parameters:

 dXY = dAY − dAX (3)

For example, if we take Streptokinase (SK) as ref-
erence treatment, then we can express the relative 
efficacy of percutaneous transluminal angioplasty 
(PCTA) relative to accelerated t-PA (At-PA) as  
follows:

 dPCTA, At-PA = dSK, PCTA − dSK, At-PA (4)

The key assumption being made of the data, of 
course, is that each of the randomized controlled 
trials included would, if all the treatments had 
been included, be providing estimates of the same 
relative effect parameters. If there are T treatments 
and information on N pairwise contrasts, then 
there are (T − 1) basic parameters and the incon-
sistency degrees of freedom is (N − T + 1). 
Equations 3 and 4 effectively reduce the parameter 
space from N unrelated comparisons to (T − 1). In 
this case, we have T = 7 treatments and evidence 
on N = 10 contrasts, giving 4 degrees of freedom 
for inconsistency, though where multiarm trials are 
involved, this simple formula requires adjustment.

Bayesian methods have been used to synthesize 
many other evidence structures. These include, for 
example, collapsed frequency tables; regression mod-
els based on different subsets of variables; surrogate 
or intermediate endpoints in trials with clinical end-
points; multiple outcomes, or the same outcome 
reported at multiple time points in clinical trials; 
Markov rate models; and individual and aggregate 
data. Collapsed category methods are becoming 
increasingly common in genetic epidemiology.

Bayesian evidence synthesis in cost-effectiveness 
analysis is often associated with expected value of 
information analysis. Because multiple parameters 

are estimated from a common data set, their pos-
terior distributions are invariably correlated. This 
can introduce additional complexity in expected 
value of information calculations.

A E Ades

See also Cost-Effectiveness Analysis; Expected Value of 
Perfect Information; Meta-Analysis and Literature 
Review; Net Benefit Regression
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Bayesian networks

A Bayesian network is a graphical representation 
of a multivariate probability distribution on a set 
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of discrete random variables. Representational 
efficiency is achieved by explicit separation of 
information about conditional independence rela-
tions between the variables (coded in the network 
structure) and information about the probabili-
ties involved (coded as a set of numeric parame-
ters or functions). The network structure is 
expressed as a directed acyclic graph (DAG) that 
makes the representation amenable to an intui-
tively appealing, causal interpretation. Algorithms 
exist for learning both network structure and 
parameters from data. Furthermore, Bayesian 
networks allow for computing any marginal or 
conditional probability regarding the variables 
involved, thus offering a powerful framework for 

reasoning with uncertainty. Bayesian networks 
are also called belief networks and causal proba-
bilistic networks.

Bayesian networks are suited to model the 
uncertainty that inheres in many biomedical 
domains and are, therefore, frequently used in 
applications of computer-assisted decision making 
in biomedicine. Furthermore, extensions of 
Bayesian networks (called influence diagrams) can 
be used to perform decision analyses.

This entry first sketches the historical back-
ground of Bayesian networks. Subsequently, it 
elaborates on model structure, approaches for net-
work construction, inference methods, medical 
applications, and software.

Streptokinase

t-PA

Streptokinase + t-PA
Accelerated t-PA

Tenecteplase

Reteplase

PCTA

Figure 2 A Mixed Treatment Comparison network involving six thrombolytic treatments following acute 
myocardial infarction and one surgical treatment, percutaneous transluminal angioplasty (PCTA)

Note: Each edge indicates that the treatments have been compared in at least one randomized, controlled trial.
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Historical Background

Bayesian networks originated in the mid-1980s 
from the quest for mathematically sound and com-
putationally tractable methods for reasoning with 
uncertainty in artificial intelligence. In the preced-
ing decade, the first applications of computer- 
assisted decision making had found their way to 
the medical field, mostly focusing on the diagnos-
tic process. This had required the development of 
methods for reasoning with uncertain and incom-
plete diagnostic information.

One popular method was the naive Bayesian 
approach that required specification of positive 
and negative predictive values for each of a set of 
predefined diagnostic tests and a prior (i.e., mar-
ginal) probability distribution over possible diag-
nostic hypotheses. The approach assumed that all 
test results were mutually independent markers of 
disease and used Bayes’s theorem to compute pos-
terior (i.e., conditional) probabilities on the 
hypotheses of interest. The approach is simple and 
fast and requires a relatively small number of mar-
ginal and conditional probabilities to be specified. 
However, the assumption of independence is 
mostly wrong and leads to overly extreme poste-
rior probabilities.

Another approach arose in the field of expert 
systems, where algorithms had been devised to 
reason with so-called certainty factors, parameters 
expressing the strength of association in if-then 
rules. The underlying reasoning principles were 
mostly ad hoc and not rooted in probability theory, 
but large sets of if-then rules allowed for a domain 
representation that was structurally richer and 
more complex than naive Bayesian models. 
Bayesian networks bring together the best of both 
approaches by combining representational expres-
siveness with mathematical rigor.

Model Structure

Bayesian networks belong to the family of proba-
bilistic graphical models (PGMs), graphs in which 
nodes represent random variables, and the (lack 
of) arcs represent conditional independence 
assumptions. Let G = (V(G), A(G)) be a directed 
acyclic graph, where the nodes V(G) = {V1, . . . , Vn} 
represent discrete random variables with a finite 
value domain. For each node Vi ∈ V(G), let πi 

denote the set of parent nodes of Vi in graph G. A 
Bayesian network now is a pair B = (G, Θ), where 
Θ = {θi|Vi ∈ V(G)} is a set of parametrization func-
tions. The function θi describes a local model for 
node Vi ∈ V(G) by specifying a conditional prob-
ability θi(v|s) for each possible value v of variable 
Vi and all possible value assignments s to its par-
ents πi. The Bayesian network B defines a unique 
multivariate probability distribution Pr on V1, . . . , 
Vn using the factorization

An example Bayesian network is shown in Figure 
1. This network has eight variables and is a simpli-
fied representation of diagnosing a patient present-
ing to a chest clinic, having just come back from a 
trip to Asia and showing dyspnea. This symptom 
may be caused by tuberculosis, lung cancer, or 
bronchitis. In this example, the local model for the 
variable “dyspnea” specifies that there is a .80 
probability that dyspnea is present when the patient 
has bronchitis but no tuberculosis or lung cancer 
and a .70 probability of dsypnea when the patient 
does have tuberculosis or cancer but no bronchitis.

It follows from the definition of Bayesian net-
works that each variable is conditionally indepen-
dent of its nondescendants in the graph given its 
parents; this is called the local Markov condition. 
It induces a more general notion of conditional 
independence, the global Markov condition, which 
builds on the graphical criterion of path blocking. 
Let X, Y, and Z be nonintersecting sets of nodes in 
V(G), and consider an arbitrary path from a node 
in X to a node in Y. The path is blocked by the set 
Z if it includes a node such that either (a) the 
arrows on the path meet head-to-tail or tail-to-tail 
at the node, and the node is in the set Z, or (b) the 
arrows meet head-to-head at the node, and neither 
the node, nor any of its descendants, is in the set 
Z. For example, the set {smoking, bronchitis} 
blocks the path lung cancer—smoking—bronchi-
tis—dyspnea. Sets X and Y are conditionally inde-
pendent given Z in probability distribution Pr if 
each path from a node in X to a node in Y in graph 
G is blocked by Z. In words, this means that once 
Z has been observed, knowing X will not influence 
our beliefs about Y and vice versa.

A Bayesian network represents the conditional 
independence relations between a set of variables, 

PrðV1; . . . ;VnÞ=
Yn

i=1

yiðVijpiÞ:
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not their causal dependencies. Under certain con-
ditions, however, one can assume that the arcs in a 
Bayesian network permit a causal interpretation. 
The crucial observation is that the occurrence of 
an uncertain event is independent of its noneffects, 
given its direct causes. Therefore, if a directed 
graph accurately depicts causality, it will also obey 
the local Markov condition, and one can use it as 
the graphical part of a Bayesian network. In such 
cases, one can basically think of conditional inde-
pendence relations as byproducts of causality. This 
applies to the example network from Figure 1.

In the most basic representation, the parametri-
zation function θi of each node Vi ∈ V(G) is simply 
stored as a contingency table. The size of such a 
table, however, grows exponentially in the number 
of parents of Vi in the graph. There exist various 
ways of reducing the size of the representation. 
Popular examples are the noisy OR gate, which 

assumes that the influence of each parent on Vi is 
independent of other parents, and local tree struc-
tures for representing the table.

Construction

Two different approaches to developing Bayesian 
networks can be distinguished. The first one is 
manual construction in collaboration with domain 
experts and was frequently applied in early medi-
cal applications of Bayesian networks. The second 
approach learns the network from data; this 
approach has become more feasible in the medical 
field with the large amounts of patient data that 
are currently recorded in information systems and 
is, consequently, being applied in more recent 
medical applications.

Manual construction of Bayesian networks 
involves the use of knowledge engineering techniques 

Visit to Asia Smoking

Bronchitis
Lung

cancer
Tuberculosis

Tuberculosis
or lung cancer

X-ray result Dyspnea

Figure 1 Example Bayesian network for diagnosing dyspnea after a visit to Asia

Source: From Table 2 (p. 164) of Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on 
graphical structures and their application to expert systems (with discussion). Journal of the Royal Statistical Society, Series B, 
50(2), 157–224. Reprinted with permission of Wiley-Blackwell.
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and, thus, resembles the manual construction of 
knowledge bases and decision models such as deci-
sion trees. In the development process, a number of 
stages can be distinguished that are iterated, induc-
ing further refinement of the network under con-
struction. The first stage is the selection of relevant 
variables that form the nodes in the network. 
Variable selection is generally based on expert opin-
ion (interviews) and descriptions of the domain. 
Subsequently, dependency relationships among the 
variables are identified and added as arcs in the net-
work. For this purpose, the notion of causality is 
generally employed in interviews with domain 
experts by asking for the causes and consequences of 
manifestations. In the third stage, qualitative proba-
bilistic constraints (e.g., the probability of an adverse 
outcome with severe comorbodities is at least as high 
as with moderate comorbidities) and logical con-
straints (e.g., the occurrence of pregnancy is limited 
to females) among the variables are identified. These 
constraints are also helpful in the next stage of 
assessing the local (conditional) probability distribu-
tions for each variable and in their verification. 
Elicitation methods that originate from the field of 
medical decision making (e.g., for translation of ver-
bal expressions of probabilities to numbers) can be 
used for deriving subjective probabilities from 
domain experts.

In the second approach of constructing Bayesian 
networks, both the graphical structure and the con-
ditional probability distributions are learned from 
data. As an exhaustive search through the space of 
all possible network structures (DAGs) is computa-
tionally prohibitive, most algorithms apply a heu-
ristic search strategy, starting with a single structure 
(either an empty or a randomly chosen graph) and 
incrementally modifying this structure until a ter-
mination condition is reached. There are two main 
types of algorithms. The first type of algorithm 
evaluates the current network structure and its 
closest resemblers using a goodness-of-fit scoring 
function and continues with the structure having 
the highest score. The second type of algorithm 
employs statistical independency tests on the data 
to determine, for each pair of variables, whether an 
arc should be added between them in the graph. 
After the network structure has been established, 
the parametrization functions are estimated from 
the data using maximum likelihood estimation; the 
expectation maximization (EM) algorithm can be 

used in case of incomplete data. In addition to net-
work learning in a frequentist approach, Bayesian 
statistical methods can be used in which prior 
probabilities are assigned to the network structure 
and the probability distributions.

In practice, often mixtures of the above 
approaches are used for construction of Bayesian 
networks, for example, by employing data to esti-
mate or update conditional probability estimates in 
an otherwise manual construction process or by 
placing constraints on the network structure based 
on domain knowledge before inducing a network 
from data. In each approach, construction of 
Bayesian networks is completed with the evalua-
tion of the performance of the network constructed, 
preferably on independent data.

Inference

Given a Bayesian network B = (G, Θ), we can iden-
tify a number of probabilistic inference tasks. Let 
Pr denote the multivariate probability distribution 
that is defined by B, let e denote evidence  
(i.e., observed states) on a subset V′ ⊂ V(G) of 
network variables, and let V″ ⊂ V(G)\V′ be a sub-
set of variables of interest. Inference tasks fall into 
two categories.

Evidence Propagation: Given evidence e, what is 
conditional probability distribution on the set V″? 
Special cases are computation of the conditional 
probability Pr(h|e) of a particular state h of the set 
V″ and of the marginal (i.e., unconditional) proba-
bility Pr(e).

Maximum a Posteriori (MAP) Assignment: Given 
evidence e, what is the most likely state h of V″; that 
is, h = argmaxs {Pr(s, e)}, where s ranges over all pos-
sible states of V″? The special case of MAP assign-
ment, where V″ consists of all network variables 
except those in V′, that is, V″ = V(G)\V′, is called 
most probable explanation.

Generally speaking, both inference categories 
become more complicated when V″ gets larger 
because the associated set of possible states grows 
exponentially in size. The main difference between 
the categories is that evidence propagation infers 
probabilities for given states, while MAP assignment 
infers a state. In both cases, it does not matter 
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whether the evidence variables V′ are located above 
or below the variables of interest V″, because infor-
mation can travel both in the direction of network 
arcs and against it. The former situation corresponds 
to causal (or predictive) reasoning, the latter situa-
tion to diagnostic reasoning.

Both inference categories constitute challenging 
computational problems. Much research effort 
has therefore been devoted to designing efficient 
inference methods. It is common to distinguish 
between exact and approximate inference. The 
most popular method for exact inference, the join 
tree algorithm, converts the Bayesian network 
into a tree structure in which each junction repre-
sents a cluster of network variables. Evidence 
propagation proceeds by applying a message-
passing scheme to the join tree. The join tree rep-
resentation may take a long time to construct and 
become very large when the network is densely 
connected. It need only be constructed once, 
though, and the message-passing phase is fast. 
Other exact inference methods are variable elimi-
nation and recursive conditioning.

Approximate inference methods can be used 
when exact inference methods lead to unaccept-
able computation times because the network is 
very large or densely connected. Popular approaches 
are simulation methods and variational methods. 
Simulation methods use the network to generate 
samples from the conditional probability distribu-
tion Pr(V″|e) and estimate conditional probabilities 
of interest when the number of samples is suffi-
ciently large. Variational methods express the 
inference task as a numerical optimization prob-
lem and then find upper and lower bounds of the 
probabilities of interest by solving a simplified ver-
sion of this optimization problem.

Medical Applications and Examples

In a medical context, Bayesian networks are 
mainly developed to support three types of prob-
lem solving: (1) diagnostic reasoning, (2) prognos-
tic reasoning, and (3) therapy selection. Bayesian 
networks form a suitable formalism for modeling 
the uncertainties in diagnostic tests due to false-
positive and false-negative findings and enable the 
computation of the conditional probability Pr(h|e) 
of a diagnostic hypothesis h given the evidence of 
diagnostic test results e by evidence propagation. 

Early examples of diagnostic applications of 
Bayesian networks are the MUNIN system for 
diagnosis of peripheral muscle and nerve diseases, 
the Pathfinder system for diagnosis of lymph node 
diseases, and a network for diagnosis in internal 
medicine and neurology, a reformulation of the 
rule-based expert system, INTERNIST-1/QMR. 
Diagnostic Bayesian networks are often equipped 
with methods for determining the optimal order of 
diagnostic tests for reducing the uncertainty in a 
patient’s differential diagnosis.

Prognostic Bayesian networks have a pro-
nounced temporal structure with the outcome 
variable as final node in the network and pretreat-
ment variables and treatment variable as its ances-
tor nodes. With MAP assignment, most probable 
prognostic scenarios can be determined using the 
network. In the literature, a relatively small num-
ber of prognostic applications of Bayesian network 
have been described, including applications for 
non-Hodgkin lymphoma, for malignant skin mela-
noma, and for cardiac surgery.

The medical task of therapy selection involves 
both diagnostic and prognostic reasoning. Bayesian 
networks for therapy selection are, therefore, usu-
ally extended to decision-theoretic models that 
include utility functions to guide the choice among 
different decisions. A suitable extension of 
Bayesian networks for representing probabilistic 
knowledge, decisions, and utility information are 
influence diagrams. Examples of this type of 
medical application include Bayesian networks 
for therapy selection for esophageal cancer and 
for treating infectious diseases in intensive care 
medicine.

Software

A large number of software packages are available 
for inference with Bayesian networks, manual con-
struction, and network induction from data. A 
widely used package is Hugin, which includes 
algorithms for both inference and network induc-
tion (structure and parameter learning). Similar 
functionality is provided by the BayesiaLab soft-
ware and the Bayes Net Toolbox that can be used 
within the Matlab mathematical software pack-
age. The Netica software supports parameter 
learning only. A Web directory of Bayesian net-
work software is available at http://directory 



69Bayes’s Theorem

.google.com/Top/Computers/Artificial_Intelligence/ 
Belief_Networks/Software.

Niels Peek and Marion Verduijn

See also Bayes’s Theorem; Causal Inference and 
Diagrams; Computer-Assisted Decision Making; 
Conditional Independence; Conditional Probability; 
Diagnostic Process, Making a Diagnosis; Diagnostic 
Tests; Expert Opinion; Expert Systems; Frequentist 
Approach; Influence Diagrams; Markov Models; 
Probability; Probability, Verbal Expressions of; 
Problem Solving; Subjective Probability
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Bayes’s theorem

A Bayesian approach to inference implies combin-
ing prior judgment with new information to 
obtain revised judgment. Prior judgment is 
expressed in a prior probability that a hypothesis 
is true. The prior probability is subsequently 
updated with new data that become available  
to yield the revised posterior probability of the 

hypothesis. Bayesian updating can be applied to 
the results of diagnostic tests (which is explained 
here), to a research hypothesis under investigation, 
or to a parameter being estimated in a study.

Bayesian Updating  
of the Probability of Disease

Estimates of probabilities of disease conditional on 
diagnostic test results are usually not readily avail-
able. One is more likely to have an assessment of 
the probability of a test result among patients with 
or without the disease. Converting conditional 
probabilities of the latter type (test results given 
disease) to probabilities of the type needed for 
decision making (disease given test results) should 
take into account the pretest (or prior) probability 
of disease, p(D+), the test characteristics (sensitiv-
ity and specificity), and the test result (positive or 
negative) to obtain a posttest (revised or posterior) 
probability of disease, p(D+|T+) or p(D+|T−). This 
process is called Bayesian probability revision and 
can be done using one of several methods.

As an example, consider a 47-year-old female 
patient who presents with atypical angina in whom 
you would like to exclude coronary artery disease 
(CAD). Based on the literature, her pretest (prior) 
probability of having CAD is 13%. You refer her 
for a CT to determine her coronary calcium score 
(CTCS), which is 0 (i.e., a normal/negative test 
result). Now you wonder whether she still could 
have CAD in spite of the negative CTCS result. 
CTCS has a sensitivity of 96% and specificity of 
60% for the diagnosis CAD.

Bayesian Probability Revision  
With a 2 × 2 Table

Given the prior probability of disease p(D+), sen-
sitivity p(T+|D+), and specificity p(T−|D−), we can 
construct a 2 × 2 table of a hypothetical popula-
tion and, with the numbers of TP, FN, FP, and 
TNs, calculate the posttest (revised) probabilities. 
The steps are as follows:

 1. Pick an arbitrary number n for the total 
hypothetical population (e.g., n = 10,000).

 2. Using the prior probability p(D+), partition the 
total number of patients across those with and 
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without the disease, that is, n(D+) = n . p(D+) 
and n(D−) = n . (1 − p(D+)).

 3. Using sensitivity p(T+|D+), determine the 
number of patients with disease who have a 
true-positive versus a false-negative test result, 
that is, TP = n(D+) . p(T+|D+) and  
FN = n(D+) . (1 − p(T+|D+)).

 4. Using specificity p(T−|D−), determine the 
number of patients without disease who have a 
true-negative versus a false-positive test result, 
that is, TN = n(D−) . p(T−|D−) and FP = 
n(D−) . (1 − p(T−|D−)).

 5. Calculate the posttest (revised or posterior) 
probabilities as follows:

 Postpositive test probability of disease o =  
  p(D+|T+) = TP/(TP + FP).

 Postpositive test probability of absence of o 
  disease = p(D−|T+) = FP/(TP + FP).

 Postnegative test probability of disease o = 
  p(D+|T−) = FN/(TN + FN).

 Postnegative test probability of absence of o 
  disease = p(D−|T−) = TN/(TN + FN).

Note:

Postpositive test probability of disease = positive 
predictive value.

Postnegative test probability of absence of disease = 
negative predictive value.

For our example patient, the 2 × 2 table is as 
follows:

CAD+ CAD−

CTCS+ 1,248 3,480 4,728

CTCS− 52 5,220 5,272

1,300 8,700 10,000

The postnegative CTCS probability of CAD = 
52/5272 = 1%. In other words, with a  
0 calcium score on CT, the likelihood of CAD in 
this patient is really very low.

Probability Revision Using Bayes’s Formula

Consider a test result R, which may be any finding, 
for example, a positive or negative test result for 

dichotomous tests or a particular result on a cate-
gorical, ordinal, or continuous scale for tests with 
multiple results. Consider the true disease status Dj, 
which indicates a particular disease status j, one of 
a set of disease statuses j = 1, . . ., J. From the defini-
tion of a conditional probability we know that

p(Dj|R) = p(R, Dj)/p(R);

that is, the probability of Dj (the disease status j) 
among patients with a test result R equals the pro-
portion of those with R that also have Dj. Test 
result R can occur among patients with any disease 
status j = 1, . . . , J; that is,

p(R) = p(R, D1) + p(R, D2)  
+ p(R, Dj) + . . . + p(R, DJ) 

 = p(R|D1) . p(D1) + p(R|D2) p(D2) + 
 p(R|Dj) . p(Dj) + . . . + p(R|DJ) p(DJ).

Substituting the expression for p(R) in the first 
equation, we get the generalized version of Bayes’s 
formula:

For a dichotomous (+ or −) test, R becomes 
either T+ or T−, and for disease present versus 
disease absent, Dj becomes D+ or D−, in which 
case Bayes’s formula becomes

which is the same as

For our example, we are interested in the post-
negative test probability of CAD, so the appropri-
ate equation is

pðD+ jT − Þ= pðT − jD+ ÞpðD+ Þ
pðT − jD+ ÞpðD+ Þ+ pðT − jD− ÞpðD− Þ

= ð1− :96Þ · :13
ð1− :96Þ · :13+ :60 · ð1− :13Þ

= :01:

.

pðDjjRÞ= pðRjDjÞpðDjÞP
j

pðRjDjÞpðDjÞ
:

pðD+ jT + Þ pðT + jD+ ÞpðD+ Þ
pðT + jD+ ÞpðD+ Þ+ pðT + jD− ÞpðD− Þ ;

Postpositive test probability

= Sensitivity× Pretest probability
Sensitivity× Pretest probability+ ½1− Specificity
× ½1− Pretest probability:
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Probability Revision With the Odds-Likelihood-
Ratio Form of Bayes’s Formula

Consider a test result R and true disease status D+ 
and D−. From the definition of a conditional prob-
ability, we know that

p(D+|R) = p(R, D+)/p(R)  
= p(R|D+) . p(D+)/p(R),

and

p(D−|R) = p(R, D−)/p(R)  
= p(R|D−) . p(D−)/p(R).

Dividing the first by the second equation, we 
get

, 

which is Bayes’s in odds-likelihood-ratio form and 
can also be rewritten as

Posttest (posterior) odds = Pretest (prior)  
odds × Likelihood ratio for R.

In plain English this means the following: 
Our judgment that the patient has the disease 

after doing the test (posterior odds) equals our 
judgment that the patient has the disease before 
doing the test (prior odds), updated with the infor-
mation we get from the test result R (likelihood 
ratio for R).

The likelihood ratio (LR) for test result R sum-
marizes all the information we need to know about 
the test result R for purposes of revising the prob-
ability of disease. LR for test result R is the ratio 
of the conditional probability of R given the dis-
ease under consideration and the probability of R 
given absence of the disease under consideration.

The posttest (posterior) odds can be converted 
back to a probability using

In our example, we have a 0 calcium score, so 
we need to use the LR for a negative test result:

Probability= Odds
1+Odds

:

= (1 − .96)/.60 = .067.

Prior probability = .13

Prior odds = .13/(1 − .13) = .15

Posterior odds = Prior odds × LR(CTCS−) = .15 × 
.067 = .0100

Posterior probability = .01/(1 + .01) = .0099

Note that the posterior odds and posterior proba-
bility are practically equal because the probability 
is very low.

M. G. Myriam Hunink

See also Conditional Probability; Diagnostic Tests; 
Likelihood Ratio; Odds and Odds Ratio
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Beneficence

In biomedical research, generally, the success of 
new therapeutic approaches relies on three condi-
tions: specificity, efficacy, and lack of toxicity. 
These conditions are often tested in cell cultures, 
mouse models, and clinical trials before a drug is 
offered to patients. Hence, if biomedical approaches 
are to be used therapeutically, one should balance 
the possible harms and the possible benefits of 
these methods (perform a risk-benefit analysis). 
The terms harms and benefits are ethically relevant 
concepts, since ethical obligations or principles 
about not inflicting harm (nonmaleficence) and 
promoting good (beneficence) are generally 
accepted. The ethical principles of nonmaleficence 
and beneficence form part of several different ethi-
cal theories. For instance, they are the foundation 

Probability= Odds
1+Odds

:

pðD+ jRÞ
pðD− jRÞ =

pðD+ Þ
pðD− Þ ×

pðRjD+ Þ
pðRjD− Þ
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of the utilitarian theory, which says that ethically 
right actions are those that favor the greatest good 
for the greatest number. Another example is the 
Hippocratic Oath, which expresses an obligation 
of beneficence and an obligation of nonmalefi-
cence: I will use treatment to help the sick accord-
ing to my ability and judgment, but I will never use 
it to injure or wrong them.

This entry analyzes the ethical principles of 
beneficence and nonmaleficence in biomedicine by 
drawing on the bioethical theory of principles of 
the American bioethicists Tom L. Beauchamp and 
James F. Childress. These ethicists have published 
their theory in several editions of the book, 
Principles of Biomedical Ethics.

Risk-Benefit Analysis

According to Beauchamp and Childress, the evalu-
ation of risk in relation to possible benefit in bio-
medicine is often labeled risk-benefit analysis. They 
say that the term risk refers to a possible future 
harm, where harm is defined as a setback to inter-
ests, particularly in life, health, and welfare. 
Statements of risk are both descriptive and evalua-
tive. They are descriptive because they state the 
probability that harmful events will occur, and they 
are evaluative because they attach a value to the 
occurrence or prevention of the events. Commonly 
in the field of biomedicine, the term benefit refers to 
something of positive value, such as life or health. 
Beauchamp and Childress state that the risk-benefit 
relationship may be conceived in terms of the ratio 
between the probability and magnitude of an antic-
ipated benefit and the probability and magnitude of 
an anticipated harm. Use of the terms risk and ben-
efit necessarily involves an evaluation. Values deter-
mine both what will count as harms and benefits 
and how much weight particular harms and bene-
fits will have in the risk-benefit calculation.

Risk and benefit identifications, estimations, 
and evaluations are all stages in risk-benefit analy-
sis; the next step is risk management, which 
Beauchamp and Childress define as the set of indi-
vidual or institutional responses to the analysis 
and assessment of risk, including decisions to 
reduce or control risks. These ethicists believe that 
while risk-benefit analysis may seem like a techni-
cal issue, in which risks and benefits are defined, 
quantified, and compared, the definition of risk 

and benefits and the evaluation of how much risk 
is acceptable (risk management) are clearly ethical 
issues. Beauchamp and Childress offer an example: 
Risk management in hospitals includes establish-
ing policies aimed at reducing the risk of medical 
malpractice suits.

Required Actions

According to Beauchamp and Childress, the bal-
ancing of the general ethical principles of nonma-
leficence and beneficence is not symmetrical, since 
our obligation not to inflict evil or harm (nonma-
leficence) is more stringent than our obligation to 
prevent and remove evil and harm or to do and 
promote good (beneficence). These authors state 
that our obligation of beneficence requires taking 
action (positive steps) to help prevent harm, remove 
harm, and promote good, whereas our obligation 
of nonmaleficence only requires intentionally 
refraining from actions that cause harm; hence, 
nonmaleficence usually involves omissions. Thus, 
according to Beauchamp and Childress, possible 
harms associated with potential therapeutics are 
given more weight in a risk-benefit analysis than 
the possible benefits. For clarity, Table 1 presents a 
brief formulation of the principles of beneficence 
and nonmaleficence of Beauchamp and Childress.

Different Kinds of Beneficence

The question remains, however, whether we are  
obligated to sacrifice ourselves to benefit others. 
Beauchamp and Childress believe that there are limits 
to the demands of beneficence. They distinguish 
between obligatory beneficence (in the forms of gen-
eral beneficence and specific beneficence) and optional 
beneficence (in the form of ideals of beneficence).

General Beneficence

According to Beauchamp and Childress, a per-
son X has a determinate obligation of beneficence 
toward Person Y if and only if each of the condi-
tions listed in Table 2 is satisfied (assuming X is 
aware of the relevant facts).

Specific Beneficence

Beauchamp and Childress state that obligations 
of specific beneficence usually rest on special moral 
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relations (e.g., in families and friendships) or on 
special commitments, such as explicit promises 
and roles with attendant responsibilities (such as 
healthcare professional and patient).

Ideal Beneficence

Beauchamp and Childress make a distinction 
between ideal beneficence and obligatory benefi-
cence in terms of the costs and the risks to the 
agents of beneficence. Ideals of beneficence involve 
severe sacrifice and extreme altruism in the moral 
life (e.g., giving both of one’s kidneys for trans-
plantation). According to Beauchamp and 
Childress, persons do not have an obligation of 
ideal beneficence; other persons can admire those 
who fulfill the ideal, but they cannot blame or 
criticize those who do not practice it.

Strength of Principles

According to Beauchamp and Childress, ethical 
issues of biomedicine not only include the balance 
of the possible harms and the possible benefits 
(risk-benefit analysis), it also includes consider-
ations about respecting the autonomy of the patient 
or the human subject and justice considerations 

regarding healthcare allocation. They argue  
that the four ethical principles of (1) beneficence, 
(2) nonmaleficence, (3) respect for autonomy, and 
(4) justice are central to and play a vital role in 
biomedicine. Table 3 presents a brief formulation 
of the bioethical principles of respect for autonomy 
and justice of Beauchamp and Childress.

According to Beauchamp and Childress, no one 
principle ranks higher than the others. Which prin-
ciples should be given most weight depends on the 
context of the given situation. Beauchamp and 
Childress consider the four principles as prima 
facie binding; that is, they must be fulfilled, unless 
they conflict on a particular occasion with an 
equal or stronger principle. These ethicists believe 
that some acts are at the same time prima facie 
wrong and prima facie right, since two or more 
principles may conflict in some circumstances. 
Agents must then determine what they ought to do 
by finding an actual or overriding principle. This 
means that the agents must find the best balance of 
right and wrong by determining their actual obli-
gations in such situations by examining the respec-
tive weights of the competing prima facie principles. 
For instance, in modern medicine, patients’ right 
to make judgments about treatment is valued. It is 
discussed in biomedical ethics whether respect for 

Table 1   Two of the four principles of biomedical ethics: beneficence and nonmaleficence (a brief formulation of the 
bioethical principles of beneficence and nonmaleficence of Beauchamp and Childress)

The principle of beneficence

·  One ought to prevent and remove evil or harm.
·  One ought to do and promote good.
·  One ought to weigh and balance the possible goods against the possible harms of an action.

The principle of nonmaleficence

·  One ought not to inflict evil or harm. Or, more specifically, one ought not to hurt other people mentally or 
 physically.

Table 2  Conditions determining the obligation of general beneficence of Beauchamp and Childress

1.  Y is at risk of significant loss of or damage to life or health or some other major interest.
2.  X’s action is needed (singly or in concert with others) to prevent this loss or damage.
3.   X’s action (single or in concert with others) has a high probability of preventing it.
4.  X’s action would not present significant risks, costs, or burdens to X.
5.  The benefit that Y can be expected to gain outweighs any harms, costs, or burdens that X is likely to incur.
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the autonomy of patients should have priority 
over professional beneficence directed at those 
patients; hence, there are conflicts between benefi-
cence and respect for autonomy (the problem of 
paternalism).

Beauchamp and Childress believe that the prin-
ciples find support across different cultures. They 
claim that the principles are part of a cross-cultural 
common morality and that in all cultures people 
who are serious about moral conduct accept the 
norms of this common morality. However, even 
though these principles are generally acknowl-
edged, this does not mean that there is consensus 
about what is good and bad; the principles are to 
be specified, balanced, and interpreted in different 
cultural settings.

Although Beauchamp and Childress’s theory is 
widely used and outstanding in bioethics, it is also 
subject to much philosophical discussion. For 
example, in an attempt to criticize philosophical 
bioethics in general, the ethicist Adam M. Hedgecoe 
points to Beauchamp and Childress’s theory in his 
2004 article, Critical Bioethics: Beyond the Social 
Science Critique of Applied Ethics, because princi-
plism is the dominant way of doing bioethics. 
Hedgecoe claims that philosophical bioethics gives 
a dominant role to idealized rational thought and 
tends to exclude social and cultural factors. He 
believes that principlism defends abstract universal 

principles without empirical evidence and that 
principlism develops and justifies theories without 
paying attention to the practical application of 
those theories. As an alternative to principlism, 
Hedgecoe defends the position of what he calls 
critical bioethics, where the results of empirical 
research feed back to challenge and even under-
mine the theoretical framework of bioethics.

Some ethicists do not think that Hedgecoe’s cri-
tique of Beauchamp and Childress’s theory is justi-
fied. First of all, according to Beauchamp and 
Childress, there is no straightforward movement 
from principles to particular judgments. Principles 
are only the starting points and, as such, general 
guidelines for the development of norms of appro-
priate conduct. The principles need to be supple-
mented by paradigm cases of right action, empirical 
data, organizational experience, and so on. 
Beauchamp and Childress state that rights, virtues, 
and emotional responses are as important as prin-
ciples for ethical judgment. Secondly, in his 2003 
article, A Defense of the Common Morality, 
Beauchamp stresses the importance of empirical 
research for ethical principles. He claims that the 
usefulness of the four principles can be tested 
empirically and that the question of whether they 
are part of a cross-cultural common morality can  
be explored. Beauchamp does not present any empi-
rical data generated systematically by qualitative 

Table 3   Two of the four principles of biomedical ethics: respect for autonomy and justice (a brief formulation of the 
bioethical principles of respect for autonomy and justice of Beauchamp and Childress)

The principle of respect for autonomy

•  As a negative obligation: Autonomous actions should not be subjected to controlling constraints by 
others.

•  As a positive obligation: This principle requires respectful treatment in disclosing information, probing 
for and ensuring understanding and voluntariness, and fostering autonomous decision making.

This principle does not count for persons who are not able to act autonomously: Infants and drug-dependent 
patients are examples. However, these persons are protected by the principles of beneficence and 
nonmaleficence.

The principle of justice

Beauchamp and Childress examine several philosophical theories of justice, including egalitarian theories that 
emphasize equal access to the goods in life that every rational person values. Beauchamp & Childress propose 
that society should recognize an enforceable right to a decent minimum of healthcare within a framework for 
allocation that incorporates both utilitarian and egalitarian principles.
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research to support this position. But he does invite 
the design of an empirical research study to investi-
gate the issue. For example, a Danish empirical 
study by Mette Ebbesen and B. D. Pedersen shows 
that the four bioethical principles of Beauchamp 
and Childress are reflected in the daily work of 
Danish oncologist physicians and Danish molecular 
biologists. Empirical research can likely improve 
the bioethical theory of principles by bringing it 
into concord with practice.

Mette Ebbesen

See also Bioethics; Risk-Benefit Trade-Off 
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Bias

In statistics, bias generally refers to a systematic 
distortion of a statistical result. Bias can occur in 
both the process of data collection and the statisti-
cal procedures of data analysis. Very few studies 
can avoid bias at some point in sample selection, 
study conduct, and results interpretation. Analysis 
of results without correcting the bias can be mis-
leading and harmful in decision making. With 
careful and prolonged planning, researchers may 
reduce or eliminate many potential sources of 
bias. Collaboration between the statistician and 
the domain expert is very important, since many 
biases are specific to a given application area. This 
entry discusses two different aspects that the term 
bias is commonly used to describe.

Bias in Sampling

Bias in sampling is the tendency that the samples 
differ from the target population from which the 
samples are drawn in some systematic ways. A few 
important concepts include the following.

Biased Sample

Most biases occur during data collection, often 
as a result of taking observations from an unrep-
resentative subset of the population rather than 
from the population as a whole. A sample is said 
to be a biased sample if the probability of a mem-
ber in the population being sampled depends on 
the true value(s) of one or more variables of inter-
est of that member. The sampling process that 
leads to a biased sample is called biased sampling. 
For example, if women with a family history of 
breast cancer are more eager to join a mammog-
raphy program, the sample of women in the mam-
mography program is a biased sample of all 
women. If the variable(s) is important to a study, 
conclusions based on biased samples may not be 
valid for the population of interest.
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Sample weights can sometimes be used for cor-
recting the bias if some groups are underrepre-
sented in the population. For instance, a hypothetical 
population might include 50 million men and  
50 million women. Suppose that a biased sample  
of 100 patients included 70 men and 30 women. A 
researcher can correct for this imbalance by attach-
ing a weight of 5/7 for each male and 5/3 for each 
female. This would adjust estimates to achieve the 
same expected value as a sample that included 
exactly 50 men and 50 women.

Response Bias

Response bias is a type of cognitive bias that 
occurs when the sampled members from a popula-
tion tend to produce values that systematically 
differ from the true values. It happens frequently in 
survey studies and affects the results of a statistical 
survey, especially when the questions on a survey 
are not properly worded or if the question relates 
to some variables that are sensitive to the members 
being surveyed, such as household income or drug 
history. In such situations, respondents answer 
questions in the way they think the questioner 
wants them to answer rather than according to 
their true beliefs.

Nonresponse Bias

Nonresponse bias is an extreme form of biased 
sampling. Nonresponse bias occurs when responses 
are not obtainable from all members selected for 
inclusion in the sample. Nonresponse bias can 
severely affect the results if those who respond dif-
fer from those who do not respond in important 
ways. Online and phone-in pools may be subject to 
nonresponse biases because many members in the 
target population may not have a phone or access 
to the Internet.

Measurement Bias

The term measurement error bias usually refers 
to systematic deviation from the true value as a 
result of a faulty measurement instrument, for 
instance, an improperly calibrated scale. Several 
measurements of the same quantity on the same 
experiment unit will not in general be the same. 
This may be because of natural variation in the 

measurement process. In statistical analysis, mea-
surement error in covariates has three main effects: 
(1) It causes bias in parameter estimation for sta-
tistical models; (2) it leads to a loss of power, 
sometimes profound, for detecting interesting rela-
tionship among variables; and (3) it masks the 
features of the data, making graphical model 
analysis difficult.

Censoring Bias

Censoring bias occurs when a value occurs out-
side the range of a measuring instrument. 
Limitations in censoring at either end of the scale 
can result in biased estimates. For example, a bath-
room scale might only measure up to 250 pounds. 
If a 320-pound individual is weighed using the 
scale, the observer would only know that the indi-
vidual’s weight is at least 250 pounds. Censoring 
bias is also common in survival analysis. Special 
techniques may be used to handle censored data.

Bias in Estimation

Another kind of bias in statistics does not involve 
biased samples but does involve the use of a statis-
tic whose average value differs from the value of 
the quantity being estimated. In parameter estima-
tion, bias refers to the difference between the 
expected value of an estimator and the true value 
of the parameter being estimated. An estimator 
with zero bias is called an unbiased estimator, and 
an estimator having nonzero bias is said to be a 
biased estimator.

Suppose a researcher is trying to estimate the 
parameter µ using an estimator m̂  (i.e., a certain 
function of the observed data). The bias of the esti-
mator µ is defined as the expected value of the dif-
ference between the estimator and the true value. 
This can be written mathematically as

A famous example of a biased estimator is the 
sample variance. Suppose X1, X1, . . . , Xn  are inde-
pendent and identically distributed (i.i.d.) random 
variables with expectation µ and variance σ2. The 
sample mean is defined as

Biasðm̂Þ=Eðm̂− mÞ=Eðm̂Þ− m:

X= X1 +X2 +    +Xn

n
;
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and the sample variance is defined as

It can be shown that the sample mean is an 
unbiased estimator, while the sample variance is a 
biased estimator, where

EðXÞ=m; EðS2Þ= n− 1
n

s2 6¼ s2:

Although biased estimators sound pejorative, 
they may have desirable statistical properties. For 
example, they sometimes have a smaller mean 
squared error than any unbiased estimator. Biased 
estimators are used in some special cases of statisti-
cal analysis.

Xiao-Feng Wang and Bin Wang

See also Bias in Scientific Studies; Probability Errors
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Biases in human prediction

In the language of cognitive psychology, the abil-
ity to predict is the ability to infer, estimate, and 
judge the character of unknown events. By this 
definition, a large part of clinical medicine requires 
that physicians make medical predictions. Despite 
its importance, it remains subject to many biases. 
There are a number of important biases affecting 
medical prediction in diagnosis, prognosis, and 
treatment choices. This is particularly true in emo-
tionally intense medical circumstances at the end 
of life. Physicians, patients, and policy makers 
should be aware of these biases when confronted 
with decisions in all these circumstances to help 
avoid their consequences. This entry outlines ways 
in which cognitive biases often prevent accurate 
medical predictions across a number of decision-
making situations.

Medical Prediction

One major type of medical prediction is the diag-
nosis of patients’ disease. Diagnosis involves gath-
ering and integrating evidence, testing hypotheses, 
and assessing probabilities. This requires that a 
clinician be able to generate accurate predictions 
from incomplete data about the underlying cause(s) 
of the patient’s symptoms. For example, the symp-
tom “pelvic pain” might be caused by a urinary 
tract infection, a sexually transmitted infection, or 
by cancer, among other possible diagnoses. A phy-
sician who sees a patient with this symptom must 
accurately predict the likelihood of multiple pos-
sible underlying causes to effectively gather evi-
dence (i.e., ask about other possible symptoms 
and order appropriate tests), cognitively integrate 
that evidence, and determine the most probable 
diagnosis.

Once the physician has made a diagnosis, he or 
she must, along with the patient, make another 
medical prediction when they decide together on a 
treatment decision. Selecting the optimal treatment 
from multiple options requires that a clinician be 
able to predict which treatment will provide the 
patient with the best possible health outcome, 
accounting for both positive and negative effects. 
For example, a patient with localized prostate can-
cer has multiple treatment options available, 
including surgery, radiation therapy (of two types), 
hormone deprivation therapy, and surveillance. To 
make a treatment recommendation, a physician 
must predict the patient’s response to various treat-
ments, both in terms of disease control and poten-
tial burden from treatment side effects. The 
physician must also consider the patient’s overall 
health, comorbidities, resources, social support, 
and preferences for possible health states.

Physicians also make medical predictions when 
necessary to provide prognoses, which are predic-
tions of the likely duration, course, and outcome 
of a disease based on the treatment chosen. This is 
particularly important in diseases, such as terminal 
cancer, where patients and their families wish to 
form appropriate timelines for goals of care and to 
have access to certain types of care, such as hos-
pice, when they would most benefit from them. 
Unfortunately, as Nicholas Christakis has shown, 
prognosis is particularly difficult in emotionally 
intense situations such as this.

S2 = 1
n

Xn

i= 1

ðXi −XÞ2:
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Given the centrality of accurate predictions to 
medical decision making and the common assumption 
that medical training improves physician’s decisions, it 
is disheartening that research has repeatedly shown 
that physicians’ medical predictions are as susceptible 
to cognitive biases as others are in nonmedical 
domains. The mistakes are systematic, not random, 
errors that are likely due to the difficulty of the predic-
tion task combined with human psychology. Thus, 
these biases are not significantly reduced by current 
medical training. As Reid Hastie and Robyn Dawes 
argue, one of the most persistent of these biases is 
overconfidence concerning one’s predictions. The dan-
ger of overconfidence is that one cannot begin to cor-
rect other biases affecting the quality of one’s 
predictions; simply recognizing their existence is some-
thing that overconfidence prevents. For example, an 
overconfident surgeon might regularly predict better 
surgical outcomes for his or her patients and perform 
surgeries on patients who are poor candidates for sur-
gery. This overconfidence bias will go uncorrected 
because it is unrecognized as a systematic error.

Biases Affecting Diagnosis

The way in which possible diseases are represented 
has been shown to give rise to systematically dif-
ferent probability predictions in diagnosis. In one 
study, house officers were given a case description 
of a 22-year-old woman with right lower quadrant 
abdominal pain of 12 hours’ duration. Half were 
asked to estimate the probabilities of the compet-
ing diagnostic possibilities gastroenteritis, ectopic 
pregnancy, or neither. The other half were asked 
to estimate the probabilities of five diagnoses:  
(1) gastro enteritis, (2) ectopic pregnancy, (3) appen-
dicitis, (4) pyelonephritis, (5) pelvic inflammatory 
disease, or “none of the above.” Although physi-
cians in both groups were told that their probabili-
ties must sum to 100%, the judged probability of 
“none of the above” was significantly smaller in the 
shorter list (50%) of diagnoses than in the longer 
list (69%). Logically, the opposite should be true, 
since the additional choices decrease the chances of 
none of the available diagnoses being correct.

This suggests that physicians do not think 
enough about diagnoses that are either not listed or 
that are not what they are currently thinking that 
the underlying problem might be, and that they 
don’t pay close enough attention to probabilistic 

information such as the “base rate” of the disease 
in the population. In medicine, this can lead to 
inappropriate confirmatory testing, where physi-
cians increase costs without increasing the likeli-
hood of a correct diagnosis. That is, they order tests 
that will confirm what they already know, making 
them overly confident of their diagnoses without 
actually providing any new information. In the 
long term, overconfidence and failure to correct for 
cognitive biases cause more experienced physicians 
to be more confident, but not more accurate, than 
less experienced physicians. It is easy to see how 
this can perpetuate a pattern of misdiagnosed and 
inappropriately treated patients because, as find-
ings from social psychology have demonstrated, 
less confident and experienced people are more 
likely to defer to more experienced experts than to 
try to find alternative explanations.

The first step in correcting such biases is to demon-
strate their existence and to alert physicians to their 
presence. However, another common cognitive bias, 
the hindsight bias, makes it difficult to learn from 
cases that show the errors of others. This bias has 
been demonstrated experimentally in physicians. In 
the relevant experiment, five different groups of phy-
sicians were presented with a challenging diagnostic 
case describing a patient with a mix of symptoms 
along with four potential diagnoses. Physicians in the 
control group were asked to predict the likelihood of 
each of the four diagnoses given the symptoms. Those 
in the other four groups were told which of the poten-
tial diagnoses was the “actual” one (each group was 
given a different one) and asked for the probabilities 
that they would have assigned to each of the four 
diagnoses. Physicians in each of the four “hindsight” 
groups inflated the probability that they would have 
assigned to the diagnosis they were told was correct. 
This has an important clinical implication because of 
the similarity of the experimental conditions to teach-
ing rounds presentations. Challenging diagnostic 
cases presented authoritatively at teaching rounds 
may seem far more obvious than they really are 
because of hindsight bias, leading medical team mem-
bers to fail to learn the difficulty of prediction illus-
trated by the case because they “knew it all along.”

Biases Affecting Prognosis

Physicians also often commit the value-induced bias 
in medical prediction in which they unknowingly 
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distort relevant probabilities regarding patient prog-
nosis so as to justify poorly justified treatment choices. 
This bias helps explain why such a high percentage of 
the U.S. healthcare budget is spent on patients in the 
last 6 weeks of life. No physician wants to give up on 
a desperately ill patient (who may be cured) by stop-
ping treatment, so physicians exaggerate the likeli-
hood of success from treatment. This often leads to 
prolonging invasive (and often painful) treatments in 
the face of overwhelming odds against success in the 
belief that the patient might benefit, even though sta-
tistics are clearly against such an outcome.

Accurate prognosis is most valuable to patients 
and their families, and most difficult for physicians, 
in life-limiting illnesses such as terminal cancer. 
Physicians are remarkably poor at predicting the 
life expectancies of patients with terminal illnesses. 
In his book on medical prognosis at the end of life, 
Christakis points out that while prognosis can be a 
technically difficult task for physicians in many 
circumstances, the emotional difficulties associated 
with prognosis at the end of life make their prog-
noses in such cases even worse.

One of the biases that Christakis emphasizes is 
the superstitious belief in self-fulfilling prophecies 
of prognoses. In these situations, physicians seem to 
feel that by acknowledging a limited prognosis and 
treating appropriately with palliation, physicians 
will hasten a patient’s demise. Evidence demon-
strates that this is not the case; patients undergoing 
palliative care live just as long (or longer) as simi-
larly diagnosed patients who have been given overly 
optimistic prognostic information. He demonstrates 
that physicians are far more likely to ameliorate 
patient pessimism or provide encouragement, even 
when unwarranted, than they are to correct unreal-
istic optimism. Although the motivation to provide 
hope to one’s patients that motivates this response 
is largely a positive and compassionate one, the 
responsibility to provide accurate prognostic infor-
mation and appropriate treatment planning is 
equally important, something this bias prevents.

Biases Affecting Treatment

To select the best treatment for a patient, a physician 
must predict the patient’s adherence to the therapy. 
This is more challenging than it might at first appear, 
because even though patients generally do want to 
adhere to their treatment regimes, it is much easier 

to talk about changing a future behavior (e.g., tak-
ing a medicine regularly) than it is to actually do it. 
This “empathy gap” between one’s current situation 
and one’s future situation makes it very hard for 
physicians to appreciate the power of various vis-
ceral factors causing patients to make choices that 
they know are not good for their health.

For example, studies show that adherence to a 
medication schedule drops with the number of 
pills a patient is to take. So a physician might pre-
scribe a blood pressure medication to a hyperten-
sive patient (who is already taking several other 
medications), only to find out at a follow-up visit 
that the patient’s hypertension has not improved. 
The problem may be that the patient needs a 
higher dose of the medication. However, there is 
also a sub stantial probability that the patient has 
not managed to adhere to the medication sche dule. 
Nevertheless, studies comparing physician- 
prescribing behavior with patient prescription- 
filling behavior indicate that physicians almost 
always respond by prescribing the higher dosage, 
even when the prescription for the lower dosage is 
not being refilled. Physicians fail to predict that pati-
ents are not taking the currently prescribed dose.

Most people, including physicians, tend to 
underweight statistical evidence relative to other 
forms of evidence such as personal experience. 
Even though physicians are now trained in evi-
dence-based medicine (EBM), which emphasizes 
following statistical guidelines based on the medi-
cal literature, they often fail to apply relevant sta-
tistical data. For example, statistical data tell us 
that there is no survival advantage to using pulmo-
nary artery catheterization in the intensive care 
unit to guide fluid management for patients, mak-
ing this an unnecessary procedure for guiding 
treatment choices. However, it is still commonly 
practiced because it is experientially convincing to 
closely monitor a patient’s pulmonary artery pres-
sures, even knowing that doing so does not 
improve patient outcomes. Before EBM, monitor-
ing pulmonary arterial pressures via catheteriza-
tion seemed like a logical thing to do based on 
pathophysiology; however, data do not support 
this practice. Thus, the practice continued beyond 
its statistical justification.

William Dale, Liz Moliski,  
and Joshua Hemmerich 
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Bias in scientific studies

In empirical science, bias is any factor that may 
systematically distort quantitative or qualitative 
conclusions and recommendations. Psychological 
sources of biases have separate encyclopedia 
entries.

Delimitation

Bias must be distinguished from fraud, oversights, 
misunderstandings, and nonsense arithmetic. It must 
further be distinguished from the field of statistical 
pitfalls, illusions, and paradoxes, though each of 
these, when unrecognized, may bias perceptions and 
recommendations.

The classical borderline between random error 
and bias is sometimes fuzzy. The label “bias” is 
often used about poor data recording, regardless 
of whether it will affect conclusions and, if so, 
how. Moreover, blunt procedures (imprecise mea-
surements) may delay the recognition of a health 
hazard, or benefit, and in that sense pure random-
ness is itself “biased” against public interests.

Recognition of Bias

Just as, while there is no checklist for the quality of 
poems, one can develop one’s flair for good poetry, 
the field of bias is open ended. Notwithstanding 
attempts, it is impossible to devise an exhaustive 
list of mutually exclusive bias types. Even broad 
categories such as selection bias and information 
bias meet at hazy frontiers. But everybody can 
train his or her flair for detecting bias.

Overly critical readers sometimes find bias 
where it isn’t (bias bias), or reject investigations on 
grounds of bias even when the bias is obviously 
negligible or purely hypothetical.

Texts often explain a bias by means of hypo-
thetical examples from which all unnecessary 
adornment has been peeled off. This is the strength, 
not the weakness, of such examples. “Real patients 
do not look like that!” is an often-heard but invalid 
objection. Precisely, the complexity of clinical data 
often lies behind an investigator’s failure to realize 
that his or her research procedure is biased.

The Estimand

One cannot discuss hits and misses without a 
bull’s-eye. So any discussion of bias presupposes a 
defined target, the estimand. Not until agreement 
about the estimand has been reached can the stat-
istician and client proceed to discuss bias and, 
subsequently, random uncertainty. Key questions 
are as follows: What do we want to measure? What 
is a rational measure thereof? For example, What is 
a rational measure of successful rehabilitation after 
multitrauma? What precisely is meant by “the 
waiting time for liver transplantation in 2006”?

There are four rules of thumb for establishing 
the estimand. (1) It should be conceptually well-
defined (often by imagining an ideal method being 
applied to 10,000 truly representative cases). (2) Its 
definition should be detached from study design 
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(i.e., it should parameterize the object process, not 
the inspection process, with its potential sources of 
bias). (3) In predictive settings, prospectivity should 
be built into the definition. This calls for a notion 
of “a population of naturally occurring identical-
looking instances” (case stream), to which predic-
tions are meant to apply. Anything that requires 
hindsight should be weeded out. Care must be 
taken to define the right units of prediction (women 
vs. pregnancies; bladder tumors vs. control cystos-
copies). (4) Biased and data-driven agendas should 
be avoided. These remarks apply, mutatis mutan-
dis, to qualitative research questions as well.

In studies whose key purpose is comparative, 
internal validity refers to the comparison being fair 
and external validity to the comparison’s matching 
an envisaged target population. Generalizability (a 
broader term) refers to the applicability of study 
results outside the population sampled.

Formal Definitions of Bias

In theoretical statistics, the bias of a data- 
summarizing estimator is defined as the amount by 
which its expected value departs from the popula-
tion (object-process) parameter, the estimand:

Bias = E(Estimator) – (Estimand).

An estimator is unbiased when the departure is 
zero for all values of the parameters in the statisti-
cal model of the object process. As an example, for 
the purpose of estimating a population mean, any 
average of independent observations is— 
provably—unbiased, no matter what their com-
mon distribution looks like. Their median, on the 
other hand, is rarely unbiased, except when the 
distribution is symmetric.

The logarithm of an unbiased estimator is not an 
unbiased estimator of the log estimand; the same 
holds true for other nonlinear transformations. In 
practical biostatistics, many ratio statistics, such as 
epidemiological odds ratios (OR), are unbiased on 
log scale, at least approximately. Neither the esti-
mated OR nor its inverse is then unbiased for its 
estimand. However, unlike the biases engendered 
by methodological flaws, these “mathematical” 
biases are often small and tend to zero as sample 
sizes increase (asymptotic unbiasedness) typically 
faster than the associated standard error (SE).

Bias-variance trade-off: In moderately compli-
cated statistical models, the analyst may face a 
choice between two or more estimator statistics, 
one of which has little bias, another a low vari-
ance. If the loss associated with misestimation is 
proportional to squared error, [(Estimator) – 
(Estimand)]2, one would choose the estimator that 
minimizes the mean square error (MSE). The way 
this quantity depends on estimator bias and vari-
ance is simple:

MSE = E{[(Estimator) – (Estimand)]2} =  
Bias2 + Variance.

Typical applications are those with an inherent 
risk of overfitting the data: probability density 
estimation, multivariate discrimination (statistical 
diagnosis), recursive partitioning trees, and so on.

Conditional bias and unbiasedness, given a 
(hidden or observable) event E, refer to the condi-
tional distribution of the estimator given that E is 
present.

A median-unbiased estimator overrates and 
underrates the estimand equally often.

A significance test is said to be biased if the 
probability of rejecting the null hypothesis is some-
times smaller when it is false than when it is true: 
With a test at the 5% level, certain alternatives 
enjoy a power <5% (Type II error risk > 95%). 
Everyday statistical tests are designed to maximize 
power and have little or no bias.

Confidence limits: Confidence intervals around 
a biased estimator typically inherit the bias, but 
there is no standard notion of bias in connection 
with confidence limits. Relevant concerns include 
the following. Incorrect coverage is when a nomi-
nal 95% interval will straddle the true value of the 
estimand either more or less than 95 times out of 
100. More appropriately, an upper 97.5% limit 
can be said to be biased if the probability that it 
exceeds the estimand is not .975: The limit is 
either misleadingly large or does not offer the 
claimed protection. Analogous remarks apply to 
the lower limit. Confidence intervals offer protec-
tion against random variation only; protection 
against bias must rest on plausible assumptions 
concerning systematic errors, preferably built into 
sensitivity analyses. If a data summary is beset 
with a bias of unknown magnitude, the protection 
offered by a confidence interval is spurious, unless 



82 Bias in Scientific Studies

the bias is obviously small relative to the width of 
the interval.

Biases in the Scientific Process

Biased Agendas

Sticking to easy, noncontroversial, and fundable 
aspects of a health problem could count as biased 
question asking. Health outcomes, for example, 
are easier to handle than questions of patient-
physician rapport.

Data-Driven Agendas

The decision of what questions to answer and 
what parameters to estimate should be made before-
hand (frequentist statistical theory presupposes that 
estimates and tests are reported no matter how the 
observations turn out). When clinical trialists selec-
tively report those outcomes that have produced 
statistically significant differences, we have an 
instance of data-driven question asking, and their 
report should be received with skepticism due to the 
perils of multiplicity (multiple tests bombarding the 
same null hypothesis) and data dredging. Selective 
reporting also presents a severe obstacle to meta-
analyses that try to amalgamate several studies.

Data Dredging

Data dredging is when researchers keep ran-
sacking their data set until something “significant” 
turns up. One can have equally little trust in diag-
nostic indices, or indices of therapeutic success, 
constructed by combining the variables on file in 
myriad ways and choosing the “best” fit (almost 
certainly an overfit). Repeated peeking at the data 
as they accrue is similar: When trends in the data 
themselves codetermine when to stop and produce 
a report, we have an “informative” (bias-prone) 
stopping rule. Stopping as soon as, but only when, 
the data look sufficiently promising will bias 
results in an optimistic direction.

Conceptual Bias

The interpretation of a given data set is restricted—
one may say biased—by narrowness of theoretical 
outlook (or Kuhnian paradigm). One straight-
jacket is the idea of the natural course of a disease 

process. Cholecystectomy was once suspected of 
causing gastrointestinal cancer. This reflected a 
failure to realize that premonitory cancerous dys-
pepsia plus silent gallstones sometimes triggered a 
cholecystectomy: The association was the diagnos-
ticians’ own fault! In sum, disease processes—and 
the hypotheses formed about them—are shaped, in 
part, by healthcare culture, its imperfections, and 
its self-image.

Publication Bias

Investigations having something new or signifi-
cant to tell are more promptly and widely pub-
lished. Hence the published literature on any 
particular date remains biased relative to the body 
of data analyses actually completed. Double publi-
cation adds a further slant, as does citation bias: 
Not only are investigators likely to cite preferen-
tially the studies they agree with, but there also 
appear to be much-cited papers that become cited 
just because everybody else cites them. The net 
effect is a self-perpetuating body of knowledge, or 
prejudice, with insufficient built-in bias correction.

Additional Biases

Unlike the preceding “sociological” topics, the 
flaws that follow are primarily the responsibility of 
the individual research team. Again, dishonest 
action and simple oversights will be bypassed, as 
will breaches of good research practice.

Bias-prone handling of numerical data includes 
rounding problems (e.g., age on last birthday vs. 
exact age). Misleading design of graphs and tables 
should be caught by senior authors or at peer 
review. Narrow-minded interpretation, or an 
attempt to save words, may lie behind misleading 
conclusions. A statistical association may easily 
become “Young taxi drivers were more accident 
prone,” suggesting causality. “Analgesic A proved 
superior to B” deprives readers of a chance to 
question the choice of doses.

Blunt analyses are biased toward the “nothing 
new” conclusion:

 1. Unnecessary dichotomization is wasteful of 
information.

 2.  Chopping up the data set, with the laudable aim 
of comparing like with like (stratification), may 
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produce several nonsignificant tests and leave a 
cross-stratum effect undocumented.

 3. Investigators taught to observe certain rules, such 
as reserving t tests for normally distributed data, 
give up halfway due to “violated assumptions” 
instead of exploiting the robustness of most 
statistical procedures. Again, results will be valid 
but vague. Replace the virtuous stance with a 
valiant one, and the data will speak.

Biased Data Collection

Overall distortions of answers or measurements 
may or may not bias results, as in the case of 
observer-interviewer effects, including interactions 
(elderly people may balk at the jargon and man-
ners of young interviewers); Hawthorne effects 
(disciplined behavior when under observation); 
framing effects (wording of questions); or effects 
of embarrassing questions and forced choices.

Changes in data collection over time lead to 
treacherous biases. Examples include training and 
fatigue effects when interviewers have to conduct 
interviews over several months and unnoticed slip-
page or change of reagents in the lab.

Selection bias is a common term for bias due to 
the sampling of study units being misaligned with 
the intended population (despite a random or 
exhaustive sampling scheme). The little fish slip 
through the net; the big fish tear it apart. Death 
notices in newspapers are a biased source of lon-
gevity data.

Ascertainment bias refers to the data source: 
Telephone interviewing was notorious for reaching 
mostly middle-class people. Clinical materials that 
comprise a woolly mix of prevalent and incident 
cases are not representative of any recognizable 
population and, therefore, are biased regardless of 
study purpose. People who volunteer are self- 
selected and probably special.

In clinical studies, consecutive enrollment is the 
primary safeguard against selective forces. 
Randomized allocation serves to prevent skewed 
recruitment of comparison groups, and, by facili-
tating blinding, it helps prevent other types of bias. 
Concealment of allocation extends the veil of blind-
ing backward to cover enrollment deliberations.

Chronic-disease trials preferentially recruit those 
who are dissatisfied with their current treatment; 

the result is a potential bias in favor of any new 
drug and a selection skew relative to an unselected 
stream of “my next patient” (first-time as well as 
chronic cases).

Healthy-worker, or healthy-survivor, effects 
refers to the notion that those who do not give in 
or succumb to occupational and other stresses are 
the strong and healthy; even after years of toil and 
exposure, they may still be healthier, or appear 
sturdier, than others.

Once selected, cases may be subjected to flawed 
intervention or flawed data recording. Flawed inter-
ventions lead to performance bias (think of unequal 
surgical skills) and collateral treatment bias due to 
secret use of supplementary medication.

As to data recording, information bias arises 
when the study objects “influence” the amount, 
kind, or quality of their data records. When chem-
ical exposure is documented through labor union 
records, comparisons may end up being misleading 
because some trades are associated with less orga-
nized lifestyles (even in the absence of solvent- 
induced brain damage). Recall bias in a narrower 
sense would exist if those with neuropsychological 
impairment were, or were helped to become, more 
aware of past exposure. Missing data will cause 
bias if reluctance to provide data is somehow 
related to the study question (if an eligible subject’s 
very existence also remains unrecorded, a selection 
problem is added).

Unequal contact with healthcare providers may 
skew the records (surveillance, detection, verifica-
tion, workup, access bias). The risk of endometrial 
neoplasia in women on menopausal hormone 
replacement therapy once seemed high, but the 
excess was explained by occasional curettage 
prompted by bleeding.

Attrition bias: Dropouts from clinical trials pose 
a major problem, whether unbalanced or not, as 
the strict intention to treat (ITT) paradigm requires 
all outcomes to be recorded and utility assessed, 
preferably with equal precision.

Investigator-induced information bias: In the 
context of diagnostic test evaluation, discrepant 
analysis consists in trying to resolve discrepancies 
between the study test and the reference test by 
appealing to one or more arbiter tests in the hope 
of proving the reference test wrong; cases of agree-
ment are not similarly challenged. An optimistic 
bias ensues.
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Purity bias: Clinical investigators are sometimes 
obsessed with purity. They are reluctant to delve 
into the muddy waters of everyday case streams. 
Patients are thrown out arbitrarily when they look 
“atypical,” even retrospectively. The resulting 
biases mostly involve violations of prospectivity. 
Downright short-circuits may occur, for example, 
when drugs intended to reduce infarct size sup-
press the infarct markers and lead to a final diag-
nosis of no infarction. Here, the prospective 
indication (clinical problem) was, and should 
remain, presumptive infarction.

In a quest for precision—a variant of purity— 
an oncologist in one study chose to disregard can-
cer recurrences not datable within ±2 months. As 
X-ray intervals rose to 6 months after 2 years with-
out recurrence, many late recurrences were dis-
carded, biasing not just the frequency and timing 
of recurrences but also the ratio between symp-
tomatic and silent ones.

Uncertain Predictors and Covariates

Borrowing a term from radio engineering, statisti-
cians use the word noise as a shorthand for unwanted 
random variation, regardless of source and cause. 
Noise affecting predictors or covariates gives rise to 
bias problems quite different from those connected 
with noisy response variables. One distinguishes 
between nondifferential and differential misclassifi-
cation/distortion; that is, given the true predictor, is 
the noise independent of the response, or not?

Nondifferential Distortion

In a linear regression context, proportional mis-
representation of the predictor causes a propor-
tional change in the apparent regression coefficient 
(in the opposite direction), whereas a fixed addi-
tive term is innocuous; tests are unaffected. 
Independent measurement variation (additive 
noise) attenuates the regression coefficient by a 
factor S2/(S2 + s2), where S is the SD of the true 
predictor and s the noise SD; tests also lose power. 
Other regression models are affected in roughly 
the same way. Multivariate-covariate adjustments 
also bias regression coefficients, but there is no 
general rule about the direction. In two-group 
comparisons, group differences are also attenuated 
or destroyed by misclassification.

However, additive noise in predictors may inter-
act with data selection to produce insidious biases, 
especially when the protocol requires a predictor, 
such as fasting blood glucose, to stay within the 
normal range.

Differential Misclassification

Differential misclassification is serious and 
always subtle. A dietary habit that has been falsely 
accused of being harmful is given up by those who 
want to lead, and do lead, a healthy life. The inci-
dence of a disease now proves higher among those 
who confess to the habit: False suspicion = 
Conviction (due to population [self-]manipula-
tion). Related is the treatment paradox: When 
known danger signals during pregnancy prompt 
referral and special care, neonatal outcomes are 
equalized, falsely suggesting that referrals are 
unnecessary.

Dependent Observations

Dependent observations may bias comparisons, 
in addition to invalidating the SE formulae. For 
example, in an individually randomized trial of 
intensive versus standard poststroke support, 
patients in the gym share their experiences, pro-
ducing correlated follow-up interviews; cross-talk 
between the randomization arms weakens the 
apparent intervention effect. So neither the observed 
effect nor its nominal SE can be trusted.

Special Bias Mechanisms

Time-related phenomena cause bias if ignored, 
censoring being a familiar example. Similar infor-
mation biases arise when what happens outside a 
time window is unobservable or when enrollment 
is conditional on some event occurring within the 
window (a truncation). For example, conditionally 
on giving birth within a study window, women are 
interrogated concerning time to conception; sub-
fertile women are thereby preferentially excluded.

Length bias, size bias: The larger the stone on 
the beach, the more seagull droppings, but not 
because the gulls take aim. The longer the duration 
of a condition, the less likely it is that the case will 
escape admission or notification. Chronic cases 
dominate cross-sectional snapshots (prevalence). 
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Conversely, rapidly growing cancers are unlikely 
to be caught at screening.

Cross-sectional surveys of outpatient clienteles 
conducted on January 1 will be dominated by 
chronic and late-autumn cases, whereas an analy-
sis of treatments begun and ended within a calen-
dar year are dominated by quick recoveries or by 
winter cases (in the northern hemisphere). A 
September case-control study comparing miscar-
riages with childbirths would show that hay fever 
at the time of conception is a cause of fetal loss. 
Even in all-year studies, seasonal variation is 
warped by weekends and holidays, both on the 
patient and on the healthcare side.

Lack of observational synchronization: Screen-
detected cancer patients live longer after diagnosis 
than other patients even if death dates are unaf-
fected by therapy (lead bias). Responders to cancer 
therapy live longer than nonresponders, if only 
because the predicate “responder” takes some time 
to acquire.

Berkson’s fallacy concerns a bias in hospital 
studies. To statisticians, the distinguishing feature 
is this: An attempt to compare the frequencies of 
some property A given presence and absence of 
disorder B is made in a clinic that receives patients 
with B or C (note the disjunction!), thereby effec-
tively comparing P{A|B} with P{A|(C but not B)} 
instead of P{A|not B}.

Regression toward the mean: An outlying lab 
value probably holds a random swing, so when the 
test is repeated, a less extreme value is normally 
obtained. The pitfall is that of thinking that the 
change requires a biological explanation. Patients 
with fluctuating diseases are seen during exacerba-
tions: Improvement follows, even without treat-
ment; causal speculations are misplaced.

Noisy stratification inherits the regression prob-
lem: A drug made the heart beat faster in some 
subjects and slower in others, due to random fluc-
tuation. Convinced that it was a real difference 
between two classes of people, the pharmacologist 
documented his result with a t test. Not biology, 
however, but his sorting of subjects into high and 
low had made the no-difference hypothesis false. 
Had he repeated the experiment, the two groups 
would have slipped back toward a joint mean. 
(Had another inactive drug been added in the sec-
ond round, he would have discovered an antidote!) 
Groupings based on noisy criteria are dangerous.

Biased matching: In designs with individual 
matching, a tiny person will often get a somewhat 
taller control, and so on. A “sister closest in age” 
control scheme preferentially picks the middle sis-
ter of three, so mid-sib characteristics will be 
prevalent among controls. With “best friend” 
schemes, friends-making personalities will be over-
represented among controls.

Jørgen Hilden
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Bioethics

Ethics or moral philosophy is the branch of phi-
losophy that concerns itself with the analysis of 
moral propositions and judgments. Bioethics, a 
neologism first used in the late 1960s, is currently 
used to describe two slightly different fields of 
applied ethics: (1) as a broad term covering the  
ethics of the life sciences and all their applications, 
including environmental and animal ethics—this  
is the common usage in Europe—and (2) as a  
narrower term covering the ethics of new  
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biotechnological developments and medical/health-
care ethics—this is the common usage in North 
America. It is the second, narrower, use of the term 
that is adopted in this entry.

Bioethics differs from traditional medical pro-
fessional ethics, or medical deontology, in its 
emphasis on the role of the patient in decision 
making and the need to respect the patient’s self-
determination. Ethical considerations play a role 
in many medical decisions and form part of the 
background to many kinds of healthcare regula-
tion. Areas where bioethics play a major role in 
decision making include reproductive medicine, 
end-of-life decision making, decision making for 
incompetent patients, and research ethics.

The involvement of bioethics and bioethicists in 
the development of healthcare regulation may 
sometimes lead to confusion, especially if the even-
tual regulation or regulatory body has “ethics” as 
part of its title. This does not necessarily mean that 
all the regulations are justified by good ethical rea-
soning. Research ethics as a regulatory system 
does, for instance, contain many elements that are 
not easily derivable from ethical analysis of research 
practices.

In the present entry, the focus is on bioethics as 
a branch of applied moral philosophy of use to 
individual healthcare professionals in their clinical 
decision making.

One specific feature that sets bioethics some-
what apart from other fields of applied ethics is the 
development of a number of bioethical frame-
works specifically designed to be of direct use in 
clinical decision making. The most prominent of 
these is the “four principles” approach.

The Four Principles Approach

The four principles approach was initially devel-
oped in the United States. The impetus for the 
development of this approach was the observation 
that people can often agree on what should be 
done, that is, agree on a specific course of action, 
without being able to agree on why this course of 
action is the right one.

The basic idea in the four principles approach, 
or principlism, as it is often called by its critics, is 
that a healthcare professional should consider 
four ethical principles when making a clinical 
decision:

 1. Respect for autonomy

 2. Nonmaleficence (do not cause harm)

 3. Beneficence (do good)

 4. Justice

The principles are not ranked and none of them 
is absolute. They are all prima facie in the sense 
that they can be overridden if there are stronger 
reasons for following one of the other principles.

When making a decision with ethical implica-
tions, a healthcare professional should consider 
the following: (a) which of these principles are 
engaged in the decision, (b) how the principles  
are engaged, and (c) if two or more principles are 
engaged, whether they point to the same decision 
or whether they are in conflict and have to be bal-
anced against each other.

In a conflict situation, three questions need to 
be answered: (1) Does the situation really fall 
within the scope of the principles? (there may, for 
instance, be no autonomy to respect if the patient 
is a fetus or is in a coma), (2) What is the exact 
entailment of each principle? (What does it tell us 
to do?), and (3) What is the right decision when 
the principles are weighed against each other? 
These three steps are referred to as determining 
scope, specification, and balancing.

Within moral theory, the four principles occupy 
a space in between overarching moral theories and 
specific moral judgment, and they are, in this 
sense, midlevel principles (see Figure 1). They can 
be derived top-down from moral theory. Any seri-
ous moral theory must support some version of 
these principles. No moral theory could, for 
instance, claim that harming others was not bad. 
The principles can also be derived bottom-up from 
the concrete judgments of everyday, common 
morality. If we reflect on these judgments and try 
to systematize them, we will also reach the four 
principles. After the derivation of the principles, 
we can then dispense with both in-depth consider-
ation of moral theory and the messiness of com-
mon morality and use the principles instead.

The claim for the four principles is thus that 
they can resolve or mediate two kinds of moral 
disagreement, disagreement at the theoretical level 
and disagreement at the level of concrete judg-
ments. They are furthermore useful for structuring 
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moral reflection and discussion concerning specific 
decisions.

Critiques of Principlism

The four principles approach has been the subject 
of considerable criticism focusing on two issues: 
(1) The principles may hide various forms of moral 
disagreement and (2) the decision process when 
two or more principles cannot be satisfied at the 
same time is unclear.

The first set of criticisms point out that the level 
at which we can agree on the principles is the level 
of contentless labels but that if we dig deeper dis-
agreement reappears. Whereas we can all agree 
that we should be beneficent, that is, that there is 

some obligation to help others in need, we disagree 
concerning how strong this obligation is. How 
much of my wealth should I give to disaster relief, 
or how strong is my obligation to be a good health-
care Samaritan outside working hours? Many crit-
ics link this point to an ambiguity in the bottom-up 
derivation of the principles from common moral-
ity. Is common morality the same everywhere, and 
will we get similar content in the principles if 
derived from the common morality of the United 
States as we get when derived from the common 
morality of one of the Scandinavian welfare states? 
Or, put more strongly: Are the four principles 
really the principles of American bioethics?

The second set of criticisms focuses on the deci-
sion procedure when principles are in conflict. 

Midlevel principles
AgreementDisagreement

Theory 1 Theory 2 Theory 3

Concrete
judgments –

Common morality

New concrete
judgments 

Figure 1  The justification of the four principles
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There are many situations in healthcare where, for 
instance, the principle of respect for autonomy will 
be in conflict with considerations of justice, and to 
be action-guiding, the four principles approach 
needs an unambiguous decision procedure to 
resolve such conflicts. It has been argued that the 
three steps of determining scope, specification, and 
balancing are neither individually nor in combina-
tion sufficiently clear to provide unambiguous and 
unbiased decisions. It has especially been pointed 
out that it is unclear how principles are to be bal-
anced against each other and that intuitions about 
this may be culturally specific. This links to a fur-
ther criticism that, although the proponents of the 
four principles claim that there is no intrinsic or 
explicit ranking of the principles, there is an 
implicit ranking, with respect for autonomy and 
nonmaleficence trumping beneficence and justice. 
This trumping effect comes about because respect-
ing the autonomy of others and not harming oth-
ers are what moral philosophers call perfect 
duties—duties where it is possible to fulfill them 
completely. But doing good and being just are 
imperfect duties; there is always something more 
that can be done, and it is difficult to say precisely 
when a person is doing too little in respect of one 
of these duties. In any given situation, it is there-
fore easier to identify and estimate the importance 
of a breach of one of the perfect duties than of one 
of the imperfect duties.

Proponents of the four principles approach 
respond to these criticisms by claiming that  
(a) there is actually substantial agreement concern-
ing the content of the principles, despite the protes-
tations of the critics and (b) healthcare 
professionals find the approach helpful in making 
decisions, so it must be sufficiently action-guiding 
despite any inherent vagueness.

Variants of Principlism and Other Frameworks

Several variations on the principlist theme have 
been developed. These include the Ethical Grid 
and a transposition of the four principles into an 
ethics of love.

One impetus behind the development of the 
Ethical Grid is the argument that it is not enough 
to respect autonomy. An important element of 
healthcare practice is to create, promote, and sup-
port autonomy in patients and clients. Another is 

that nonmaleficence and beneficence are two sides 
of healthcare’s central focus on needs and not 
wants. Based on these considerations and the per-
ceived need to provide more guidance concerning 
how to think through an ethical problem, a graph-
ical aid—the Ethical Grid—has been developed for 
analyzing ethical problems in clinical practice and 
healthcare policymaking. In the grid, core ethical 
values in healthcare are at the center, more specific 
rules in the next level, considerations of benefi-
cence in the third level, and more general consider-
ations at the outer level. In using the grid, the first 
step is to identify which boxes are engaged in the 
problem at hand. If a problem, for instance, has no 
resource implications and no other repercussions 
for anyone else than the patient and the healthcare 
team, a number of boxes are irrelevant and can be 
left out of further consideration. In the second 
step, the implications of the possible choices are 
then considered for each relevant box in light of 
the core values in the center. This will identify the 
reasons for and against each possible choice. Based 
on this, it should then be possible to reach a con-
clusion concerning which action is best supported 
in the present context.

The Ethical Grid has been developed into a 
more comprehensive Web-based tool for exploring 
values, The Values Exchange.

Because of the focus on creating and promoting 
autonomy, the Ethical Grid has become popular 
in nursing and other professions allied to medi-
cine, where care is seen as equally important to 
treatment.

Another variation on the principles theme pro-
ceeds from the following arguments: (a) that the 
basis for any ethics must be love in both its emo-
tional and cognitive sense and (b) that the four 
principles as originally proposed appeal exclusively 
to the cognitive elements of our relationship with 
ourselves and with others. It is suggested that we 
will gain a better understanding of the scope and 
importance of the principles by understanding 
them as four different aspects of love, according to 
the following transposition:

 1. Respect for autonomy = Love of self

 2. Nonmaleficence = Love of life

 3. Beneficence = Love of good

 4.  Justice = Love of others
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Other frameworks that have been proposed for 
clinical bioethics are the 10 so-called moral rules:

 1. Do not kill.

 2. Do not cause pain.

 3. Do not disable.

 4. Do not deprive of freedom.

 5. Do not deprive of pleasure.

 6. Do not deceive.

 7. Keep your promises.

 8. Do not cheat.

 9. Obey the law.

10. Do your duty.

The primary difference between the 10 moral 
rules and the four principles is that the rules are 
more specific and that positive obligations to ben-
efit others are less prominent. The implications of 
the moral rules for healthcare practice have been 
explicated in a number of publications.

Liberal Utilitarianism

Within academic bioethics, there is considerable 
skepticism toward the use of bioethics decision 
frameworks. Many professional academic bioethi-
cists suggest that the search for midlevel principles 
or similar devices is misguided and that any proper 
bioethical decision making needs to be based on 
moral theory. There is, however, significant disagree-
ment concerning which moral theory to choose.

In what can broadly be described as Anglo-
American bioethics (including the north of Europe, 
Canada, Australia, and New Zealand), liberal 
utilitarianism has become the preferred approach. 
Utilitarianism, which is a type of consequential-
ism, states that the morally right action is the one 
that maximizes net good consequences. It is, how-
ever, well known that unmodified utilitarianism 
can lead to strongly counterintuitive and very illib-
eral results.

In contemporary bioethics, utilitarianism is 
therefore almost always combined with some form 
of liberal restriction on allowable state or societal 
action, most often in the form of John Stuart Mill’s 
so-called harm principle:

That principle is, that the sole end for which 
mankind are warranted, individually or collec-
tively in interfering with the liberty of action of 
any of their number, is self-protection. That the 
only purpose for which power can be rightfully 
exercised over any member of a civilized com-
munity, against his will, is to prevent harm to 
others. His own good, either physical or moral, 
is not a sufficient warrant.

If this principle is accepted as a restriction on 
allowable actions by the state or by individual 
actors, then individuals have liberty to pursue their 
own projects as long as they do not harm others, 
although they may still be morally obligated to sac-
rifice their own interests for the maximization of 
good consequences. This has the desirable conse-
quence for the liberal that most decisions made by 
patients are protected from interference even if they 
do not maximize good consequences overall. In the 
healthcare setting, this means that a healthcare pro-
fessional should respect a patient’s choices even if 
they seem to be to the detriment of the patient.

Liberal utilitarianism does, however, face prob-
lems in the context of resource allocation or prior-
ity setting in healthcare. Standard utilitarianism is 
broadly consistent with welfare economics and 
with health economics approaches to resource 
allocation, for instance in the form of maximiza-
tion of quality-adjusted life years (QALY maximi-
zation). But the consistency with welfare economics 
is lost in liberal utilitarianism because of its 
emphasis on the liberty rights of persons. This has 
led some liberal utilitarians to argue that any allo-
cation that deprives a person of a treatment that 
has health benefits is problematic, unless the allo-
cation is done through some kind of lottery that 
provides everyone a chance to get the treatment 
that will benefit them, irrespective of resource 
implications.

Bioethics, the Embryo, and the Fetus

Reproductive decision making has been consider-
ably influenced by bioethical analysis of the status 
and moral importance of the human embryo and 
fetus. It is traditionally assumed that embryos and 
fetuses are morally important in themselves or 
intrinsically, but this is denied by many writers in 
bioethics, who hold that they are not morally 



90 Bioinformatics

important and that there is nothing morally prob-
lematic in terminating them.

The arguments for the view that embryos and 
fetuses have no intrinsic moral importance but are 
only important if others (e.g., their progenitors) 
value them vary in their details. The main line of 
argument is, however, fairly constant and based on 
the idea that what is wrong with killing an entity 
is that it frustrates a preference or conscious inter-
est that that entity has. It is thus only wrong to kill 
people who do not want to be killed, and volun-
tary euthanasia is by implication acceptable. But 
embryos and fetuses have no preferences or con-
scious interests concerning their future existence, 
either because they are not conscious at all (embryos 
or early fetuses) or because they do not have the 
concept of a future existence (late fetuses).

On this view, the creation and destruction of 
embryos for good reasons, for instance, as part  
of assisted reproduction or for stem cell research, 
is morally neutral as is abortion on demand. 
Although no country has legislation on reproduc-
tive medicine that is as liberal as this view of 
embryos and fetuses requires, it has influenced the 
move toward liberalization in many countries. 
Critics of this line of argument point to the fact 
that it has very wide application. Not only does it 
entail that abortion on demand is acceptable at 
any time during a pregnancy but also that infanti-
cide, or the killing of normal infants, on the 
request of their parents becomes a morally neutral 
action, since infants are unlikely to have the con-
scious concept of a future existence. It also entails 
that persons with severe cognitive deficits are 
without intrinsic moral value.

Søren Holm

See also Cultural Issues; Rationing; Religious Factors; 
Shared Decision Making
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Bioinformatics

We are on the cusp of an explosion of biological 
data generated by the human genome project and 
sequencing projects in multiple organisms, cou-
pled with advances in both experimental and 
information technologies. All this is contributing 
to a new era of personalized medicine, using a 
deeper understanding of our bodies and their dis-
eases at the molecular level. The huge demand to 
manage, analyze, and interpret these various data 
has led to the growing stature of the field of infor-
mation science that is called bioinformatics.

Bioinformatics encompasses all aspects of bio-
logical information—acquisition, processing, stor-
age, distribution, analysis, and interpretation—and 
combines the tools and techniques of mathematics, 
computer science, and biology with the aim of fur-
thering the understanding of diseases. The National 
Institutes of Health defines bioinformatics as  
“research, development, or application of compu-
tational tools and approaches for expanding the 
use of biological, medical, behavioral or health 
data, including those to acquire, store, organize, 
archive, analyze, or visualize such data.”

Bioinformatics can be viewed as a bottom-up 
approach, working with molecular data to deter-
mine physiological information. In contrast, medi-
cal informatics can be viewed as a top-down 
approach, working with patient clinical data to 
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determine underlying physiological processes. 
Together, bioinformatics and medical informatics 
are key methods shaping the future of personalized 
medicine. This means that, due to bioinformatics 
analysis of genomic data, medical decision making 
is evolving to be based on a person’s individual 
genomic information instead of on studies relying 
on statistics about the general population.

History

As a field of biological and information science, 
bioinformatics has been present since the discovery 
of DNA, when proteins and cell forms became 
known as the building blocks of life. The cardinal 
functions of bioinformatics have been (a) handling 
and presentation of nucleotide and protein 
sequences and their annotation; (b) development 
of databases to store, analyze, and interpret these 
data; and (c) development of algorithms for mak-
ing predictions based on available information. To 
address these topics, the field drew from the foun-
dations of statistics, mathematics, physics, com-
puter science, and molecular biology. Bioinformatics 
still reflects this broad base.

The Human Genome

The genome’s language is a DNA code containing 
an alphabet of just four letters, or bases: G, C, A, 
and T. Remarkably, the entire human genome con-
tains 3 billion of these DNA bases. While sequenc-
ing the human genome to decode these billions of 
bases in multiple people from different ethnicities, 
bioinformatics technologies were used and 
improved to view, combine, compare, and find 
patterns across this enormous amount of data. By 
comparing sequences of known and unknown 
genes, bioinformatics programs were developed 
that used probabilities and modeling to predict the 
function and roles of previously unknown genes. 
This vast amount of completed genomic sequence 
data and individual gene information now also 
needed to be stored, bringing about the creation of 
various gene databases that are publicly available.

During this genomic era, bioinformatics tools 
played a pivotal role in allowing researchers to 
generate and compare the DNA sequences of many 
genes to identify their roles and to determine 
whether a particular gene sequence has different 

DNA bases than seen normally. This information 
has provided insights into many biochemical, evo-
lutionary, and genetic pathways. It has also pro-
vided an important building block for potential 
medical decision making by making it possible to 
identify whether a patient’s specific gene is normal 
or mutated.

Bioinformatics in the Postgenomic Era

The map of the human genetic code provides infor-
mation that allows researchers and physicians to 
pursue new options for diagnosing and eventually 
treating many diseases, symptoms, and syndromes. 
Bioinformatics has enabled these discoveries via 
analysis and comparison of the various data sets of 
the genomic era.

Advances in experimental technologies for 
detecting the multiple levels of biological organiza-
tion (DNA, RNA, or protein) on a high-through-
put scale have required the bioinformatics field to 
develop increasingly more sophisticated methods 
and systems for analyzing and storing data. The 
emerging era of medicine depends strongly on a 
broad array of these new technologies, such as 
DNA sequencing, gene expression profiling, pro-
tein profiling, and developing new algorithms for 
finding patterns across large, sometimes dissimilar 
data sets. Bioinformatics methodologies are useful 
due to their ability to sift through this vast array of 
information to converge on a few relevant facts. 
Together, these new high-throughput technologies 
and bioinformatics analyses are providing the abil-
ity to understand and predict the behavior of com-
plex biological systems, giving rise to the field of 
systems biology. We have arrived at a point in biol-
ogy where the underlying mechanisms behind dis-
eases are becoming known.

Gene expression microarrays and single nucle-
otide polymorphism (SNP) genotyping are two 
major areas where bioinformatics plays a vital role 
in interpreting the data generated from these high-
throughput technologies. Analysis of the gene- 
expression profiles from healthy and diseased persons 
can provide the identification of what genes may be 
responsible for that disease, which can be investi-
gated further using several technologies. Genotyping 
identifies an individual’s DNA sequence, and bioin-
formatics analysis across genotypes provides a 
measurement of the genetic variation between 
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those genotypes, or between members of a species. 
SNPs are changes in a single base of the DNA 
sequence, and these are often found to be the etiol-
ogy of many human diseases and are becoming 
particularly important in pharmacogenetics. SNPs 
can also provide a genetic fingerprint for use in 
identity testing.

Scientific advances coupled with novel bioinfor-
matics algorithms have helped uncover other func-
tional elements of the genome such as miRNAs 
(microRNAs), RNAi (RNA interference), and so 
on, depicting the complex nature of the genome 
and its regulation. As newer molecules are discov-
ered, the need to manage, analyze, and interpret 
them is also being addressed, using bioinformatic 
tools.

In the postgenomic era, bioinformatics has 
helped create integrated resources of databases, 
pathways, functions, and visualization tools to 
assimilate and integrate multiple layers of a per-
son’s molecular data. These resources and capa-
bilities are enabling researchers to understand how 
the molecular processes of cells are linked to higher 
physiological functions.

Applications of Bioinformatics in  
Medical and Health-Related Research

Bioinformatics has the potential to influence a 
wide range of medical and health-related research, 
with subsequent downstream effects translated 
into more individualized medical decision making.

The mining, or comparison, of similar sets of 
patient gene expression data from microarray 
chips can find which genes are differentially 
expressed in patients as compared with the normal 
population. To further understand how changes in 
certain genes are linked to the clinical outcome, 
bioinformatics can be leveraged to provide infor-
mation on the genes of interest, such as their pro-
cesses, functions, interactions with other genes or 
proteins, genetic pathways, and any known drug 
targets associated with them.

Genotyping and bioinformatics play a key role 
in the search for genes that increase the susceptibil-
ity to specific diseases; for their genetic variations 
(SNPs); for SNP patterns that can be used to pre-
dict patient response to medicines; for identifying 
tractable drug targets; and for defining the func-
tion of the genes and proteins they produce.

Understanding the relationship between genetic 
variation and biological function on a genomic scale 
is expected to provide fundamental insights into the 
biology, evolution, and pathophysiology of humans 
and other species. Analyzing and comparing the 
genetic material of different species is an important 
method for studying the functions of genes and the 
mechanisms of inherited diseases. For example, by 
comparing the sequences in newly identified genes 
with those of genes whose functions are already 
known, scientists can make educated interpreta-
tions about which genes might be related to specific 
biochemical pathways in the body and how they 
might affect the occurrence or treatment of the dis-
ease. This information can also be used to experi-
mentally model those sequence changes to verify 
these gene functions and to test if there is a better or 
worse response to drug treatment. Based on the dif-
ferences in the genetic variants among ethnic 
groups, one can predict the appropriate dosage for 
a drug to be effective or to avoid serious side effects. 
This growing body of information from bioinfor-
matics analysis is the basic foundation of the field of 
pharmacogenomics.

Pharmacogenomic approaches, which involve 
the study of how an individual’s genetic inheri-
tance affects the body’s response to drugs, are 
emerging across broad classes of therapeutics to 
assist practitioners in making more precise deci-
sions about the correct drugs to give to the appro-
priate patients to optimize their benefit-to-risk 
ratio. Bioinformatic analysis of data helps elimi-
nate false-positive leads in the early stages of the 
drug discovery process, thus substantively com-
pressing the time, resources, and costs needed in 
the drug discovery efforts. These approaches are 
continuously evolving to address the complexity 
and multivariate nature of increasing amounts of 
data. There are many clinical drug trials, spon-
sored by the pharmaceutical industry, that lever-
age bioinformatics with medical informatics, which 
will undoubtedly continue to change and improve 
therapeutic decisions for patients.

Classification of clinical syndromes by bioinfor-
matics molecular profiling can advance the use of 
gene testing in the broadest sense (as a molecular 
diagnostic tool) in the diagnosis, therapy, and 
counseling of individuals affected with genetic dis-
orders. For these advances to have real use, there 
needs to be equally robust phenotypic data that are 
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meticulously mapped to DNA, RNA, and protein 
genotype. Databases have been and are being 
made available for storing, indexing, and querying 
patient data, clinical phenotypes, and genotypic 
data; however, an understanding of the types of data 
to be objectively documented, and the standards to 
be adopted regarding terminologies and storing 
data in query-compatible forms, is still evolving. 
With the proliferation of all these biological data-
bases, tools, and resources, there is a high likeli-
hood of compromised data quality and reliability; 
thus, caution is the watchword while using these 
resources judiciously for decision making.

Personalized Medicine

Personalized medicine is the use of information 
and data from a patient’s genotype, or level of gene 
expression, to stratify disease, select a medication, 
provide a therapy, or initiate a preventive measure 
that is particularly suited to that patient at the time 
of administration. In addition to genetic informa-
tion, other sources of information, including imag-
ing, laboratory tests, and clinical knowledge about 
the disease process and the patient play equally 
important roles.

Translational bioinformatics has emerged as a 
field that bridges bioinformatics and medical 
informatics, with the potential of immense benefit 
for the medical community in reaching the person-
alized medicine era. This field uses translational 
tools and techniques to analyze and integrate the 
data resulting from high-throughput technologies 
to facilitate smooth translation of important infor-
mation. This brings the information from bench to 
bedside by enabling medical providers to incorpo-
rate information into their routine medical practice 
of diagnosis and treatment.

Together, these tools will enable a paradigm 
shift from genetic medicine—based on the study of 
individual inherited characteristics, most often 
single genes—to genomic medicine, which by its 
nature is comprehensive and focuses on the func-
tions and interactions of multiple genes and gene 
products, among themselves and with their envi-
ronment. The information gained from such analy-
ses, in combination with clinical data, is now 
allowing us to assess individual risks and guide 
clinical management and decision making, all of 
which form the basis for genomic medicine.

As medical technology has advanced rapidly 
over the past century to cure major diseases and 
discover drugs and therapies, there also has been 
major variability in therapeutic responses and 
ensuing side effects. The new insights from study-
ing human diseases from an information science 
perspective helps in understanding that humans 
are a system of interconnected and dynamically 
organized cells, proteins, and genes. The new 
molecular data have given evidence that the vari-
ability in drug response is genetically determined, 
with age, sex, nutrition, and environmental expo-
sures also playing contributory roles. Thus, classi-
fying patient data among these various parameters 
and studying genetic distinctions in different sub-
classes of relevant data, via bioinformatics, will 
facilitate a more direct route to a patient’s wellness 
and disease prevention than has yet been possible.

Future Direction

Sequencing of the human genome has ushered in 
prospects for personalized care. There is growing 
evidence that the practice of medicine might soon 
have a new toolbox to predict and treat disease 
more effectively. The Human Genome Project has 
spawned several important “omic” technologies 
that allow “whole genome” interrogation of 
sequence variation (“genomic”), transcription 
(“transcriptomic”), proteins (“proteomic”), and 
metabolites (“metabolomic”), which all provide 
more exacting detail about the disease mechanisms 
being investigated. In the field of molecular imag-
ing, researchers are developing chemical and bio-
logical probes that can sense molecular pathway 
mechanisms that will allow medical professionals 
to monitor health and disease on an individual 
basis.

As genetic and genomic data proliferate from 
various public and government efforts worldwide, 
notably in the United States, Europe, and Japan, 
the push to cull meaningful insights from these 
mountains of data has also gathered speed, neces-
sitated by seeking cures for elusive diseases and by 
pharmaceutical companies’ desire for break-
throughs in drug discovery. This gold hunt for the 
perfect molecule and perfect drug target is largely 
facilitated by bioinformatics tools and technolo-
gies employed in the early phases of the drug dis-
covery and development process.
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As innovators race toward getting a person’s 
DNA sequenced for $1,000, down from $100 mil-
lion a decade ago, the field of bioinformatics has 
paralleled this rapid technology advancement. 
Leveraging bioinformatics and medical informatics 
is crucial for giving medicine and medical care a 
preventive, predictive, and personalized form in 
the near future.

Banu Gopalan and Petra Platzer

See also Genetic Testing 
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Boolean algeBra and nodes

A Boolean, or logical, variable is one that can take 
the values T (true) or F (false); and the Boolean, or 
logical, algebra pioneered by George Boole (1815–
1864) holds the formal machinery that allows 
such truth values to be logically combined. Boolean 
principles offer a framework for handling ques-
tionnaire and symptom data of the common 
binary kind (yes vs. no, normal [“negative”] vs. 
abnormal [“positive”], etc.), for clinical decisions, 
even measurements, probabilities, and so on, often 
have to be dichotomized (binarized). Library 
searches exploit Boolean AND, OR, and NOT, 
and the digital computer is essentially a huge num-
ber of electronic switches (on vs. off) connected in 
a Boolean manner, marching to the beat of a clock. 
Boolean principles also underlie logical checking 
of rule-based decision support systems for incon-
sistencies, incompleteness, and redundancy.

The Algebra

Let A, B, C, . . . be diagnostic tests or, more precisely, 
the Boolean variables that hold the answers to “Did 
test A come out positive?” and so on. Boolean nega-
tion, alias NOT, swaps T and F, indicating, in our 
example, whether a test came out negative:

¬A = (not A) = (false if A is true; true if A is 
false) = (F if A, otherwise T).

Note that ¬(¬A) = A. Other basic operations are 
AND and OR:

AND (“Did both A and B come out positive?”):

A ∧ B = (A and B) = (T if both A and B, 
otherwise F);

OR (“Did A, B, or both, come out positive?”):

A ∨ B = (A or B) = (F if neither A nor B, 
otherwise T) = ¬(¬A ∧ ¬B).

The mirror image of the rightmost identity also 
works:

A ∧ B = ¬(¬A ∨ ¬B) = (F if one or both of A and 
B are false, otherwise T).
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Set theory involves set intersection (∩), union 
(∪), and complementing, which are the precise 
analogs of ∧, ∨, and ¬, respectively.

OR and AND are associative operations: More 
than two terms can be ORed (or ANDed), in arbi-
trary order, to reflect “at least one true” (“all 
true”). Distributive properties include

(A ∧ B) ∨ (A ∧ C) = A ∧ (B ∨ C), 
(A ∨ B) ∧ (A ∨ C) = A ∨ (B ∧ C).

The former may be read: To be a “female diabetic 
or female with hypertension” means to be a “female 
with diabetes or hypertension.” Self-combination:

(A ∧ A) = (A ∨ A) = A.

Finally, test A must be either positive or nega-
tive, but cannot be both:

(A ∨ ¬A) = T, (A ∧ ¬A) = F.

The former expression is a tautology, that is, a 
necessarily true proposition.

The OR described so far is the inclusive OR, as 
in the “or both” above. Informatics (checksums, 
cryptography) makes frequent use of the exclusive 
OR, abbreviated EXOR. Equivalence (≡), in the 
sense of having the same truth value, and EXOR 
are each other’s negations:

(A ≡ B) = (A and B are both true or both false);

(A EXOR B) = ¬(A ≡ B) = (one of A and B is 
true, not both).

Now, ((A EXOR B) EXOR C) is true if just one or 
all three terms are true. Extending this rule to 
repeated EXORs of multiple Boolean terms, one 
finds that the result is true if the number of true 
terms is odd and false if it is even.

The Implication Symbol

The implication symbol (→) is a treacherous 
abbreviation:

(A → U) = (A “implies” U) = (U ∨ A) = (if A, 
then U; otherwise T).

That is, if A, then the expression reproduces the 
truth value of U; if not A, then the result is 
T—regardless of U!

This is different from “A causes U,” however 
construed. It is also different from the language of 
decision recommendations and deductions in rule-
based decision support systems. When you come 
across a statement such as “If symptom A is pres-
ent, diagnosis U is applicable,” you take it to be 
telling you nothing about patients without symp-
tom A. If told that the statement is untrue, you 
take that to mean that A alone should not trigger 
label U. This is exactly how a rule-based system 
would react to cancellation of “If A, then U.” The 
Boolean negation ¬(A → U) = (¬U ∧ A), on the 
other hand, would claim that, despite symptom A, 
diagnosis U was not made (in a particular case), or 
every patient has symptom A and diagnosis U is 
never made (when read as a general rule).

Physical Analogs

A and B may be gates. When they must be 
passed one after the other, entry is possible if and 
only if both gates are open. Symbolically, E = A ∧ B. 
If, on the other hand, A and B are alternative 
routes of entry, E = A ∨ B (Is at least one gate 
open?). Electrical switches connected “in series” or 
“in parallel” are analogous.

Boolean Data in Programming: Boolean Nodes

Most programming languages make available a 
Boolean, or logical, data type. It may look thus:

Boolean L; #declares L to be a Boolean 

variable#

L: = (n < 20); #L becomes true or false 

depending on the value of n#

if(L)print(“n small”); #to be printed 

only if n is below 20#

Programming languages have different ways of 
writing AND and OR. Often, however, it is conve-
nient to let T and F be represented by 1 and  
0, leading to

¬A = (1 − A),

A ∧ B ∧ C ∧L = ABC [an ordinary product  
of 0s and 1s]
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= min(A, B, C, . . . ),

A ∨ B ∨ C ∨L = max(A, B, C, K).

Conversely, mathematicians often write ∧ and ∨ 
for min and max; so x ∧ y = min(x, y), the smaller 
of x and y. Checksum calculations, involving 
EXORing of multiple 0 or 1 digits, produce the 
result 1 precisely when the number of component 
1s is odd, as stated above; that is, when their ordi-
nary sum is odd:

EXOR(A, B, C, K) = (1 if A + B + C + ∧ is odd; 
otherwise, 0).

Boolean Nodes

A standard decision tree has a stem (clinical 
problem) and two types of splits: chance nodes and 
decision nodes. Between the stem and the leaves, 
each of which represents a possible clinical diary, 
the tree gets increasingly bushy because there is no 
way branches can rejoin. In practice, many sub-
trees are nearly identical and can be drawn, and 
programmed, just once. They can then be entered 
from various points as subroutines, with argu-
ments that let them inherit patient features from 
the calling point.

Numerical arguments allow probabilities and 
utilities to be context dependent (e.g., age depen-
dent); Boolean arguments allow the subtree to be 
structurally modified. They govern special Boolean 
nodes, which act as switches. The Boolean argu-
ment “Has the patient already had a hemicolec-
tomy?” may govern a switch that blocks a decision 
branch involving hemicolectomy. Likewise, in 
modeling an annual screening program, the same 
annual subtree may have to be entered recursively: 
A Boolean switch may serve to prevent endless 
recursion.

Boolean nodes allow compact, minimally redun-
dant trees to be drawn—sometimes at the expense 
of intelligibility. (Some authors have used the term 
for other kinds of two-way nodes.)

Boolean Matrices

Consider a graph of N interconnected nodes (ver-
tices). An N × N matrix C = {Cij} of Boolean elements 
may represent the interconnections (arcs, edges),  

Cij being T if and only if node i is directly connected 
to node j. Both directed and nondirected graphs may 
be represented in this way; in the latter case, the 
matrix is symmetric (Cij = Cji). The diagonal ele-
ments, Cii, are set to F unless self-referring nodes 
make sense, as they do in state-progression models, 
including Markov chains. Matrix C is called the 
adjacency matrix of the graph.

The matrix product D = CC, with addition and 
multiplication replaced with OR and AND, now 
answers the question of whether one can pass in 
precisely two steps from node i to node k. Readers 
familiar with matrices will see that

Dik = ∨ j = 1, K, N{Cij ∧ Cjk} = (Ci1 ∧ C1k) ∨  
(Ci2 ∧ C2k) ∨ L.

= (Is there at least one node j that can be  
used as a stepping stone?).

This idea can be elaborated to answer many 
types of connectedness questions. For example, in 
the directed graph in Figure 1, the arcs are num-
bered for convenience, and in Figure 2, the ele-
ments in matrix C that go into the calculation of 
DA,D are shaded.

The Boolean Approach to Diagnostic Tests

The 2k possible outcomes of k binary tests and the 
k! possible sequences of execution may render 
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Figure 1  Boolean graph
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ordinary decision trees unmanageable: One ends 
up with 2kk! leaves, or 48 when k = 3 (80 when 
tests may be executed simultaneously). A shortcut 
is offered by the following, much simpler, Boolean 
procedure, supplemented, if necessary, by an ad 
hoc analysis to find the least costly or risky execu-
tion scheme (flowchart).

After tabulating the 2k outcomes and the associ-
ated clinical actions found by utility maximization, 
suppose it turns out that intervention U is recom-
mended when, and only when, Tests A, B, and C 
have the result patterns: (+ + +), (+ + −), (− + +), or 
(− − +). The Boolean representation U = (A ∧ B ∧ 
C) ∨ (A ∧ B ∧ C) ∨ (A ∧ B ∧ C) ∨ (A ∧ B ∧ C) 
reduces to U = (A ∧ B) ∨ (A ∧ C), suggesting that 
test A should be performed first and, depending on 
the result, B or C will decide. However, it also 
reduces to U = (B ∧ C) ∨ ((B EXOR C) ∧ (A ≡ B)), 

suggesting that one should begin with B and C and, 
if they disagree, check whether A sides with B.

The former execution scheme is attractive when 
A is inexpensive and risk-free, the latter when A is 
costly or risky. Unless the choice is obvious, one 
must go through all contingencies and calculate 
expected money and utility costs. These concerns, 
as well as the constraints that arise when tests are 
technically intertwined, can be handled in a deci-
sion tree, but the answer found by the Boolean 
procedure is otherwise exactly the one a decision 
tree would give.

In other words, the two procedures lead to the 
same test interpretation scheme, but the Boolean 
procedure may require ad hoc supplementary cal-
culations to find the optimal test execution scheme. 
Warning: Speaking of Tests A and B being applied 
in parallel (in series) may refer to the tests being 
executed simultaneously (vs. one after the other). 
Some authors, thinking of the gate analogy above, 
therefore use the parallel versus series terminology 
to characterize two interpretation schemes, namely, 
U = (A ∨ B) versus U = (A ∧ B).

As a by-product, the Boolean procedure reveals 
whether any tests are mandatory (needed in all 
cases) or redundant (dispensable). In the small arti-
ficial example, this did not happen.

The 1986 paper that popularized these tech-
niques also illustrated some geometric features 
that the ROC diagram will possess when the lattice 
of all Boolean combinations of several binary tests 
is plotted.

Jørgen Hilden

See also Causal Inference and Diagrams; Diagnostic 
Tests; Markov Models; Receiver Operating 
Characteristic (ROC) Curve; Subtrees, Use in 
Constructing Decision Trees
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Adjacency matrix C (edge absent marked with a dot; 
edge numbers shown for clarity)

To

From

A B C D E

A . T (1) . . .

B . . T (2) T (3) .

C . . . . .

D . . . . T (4)

E . . . . T (5)

Matrix D = CC (by aligning the "From A" row with the "To 
D" column in matrix C, both shaded, one sees that the 
only match is in the second position, implying that node 
B is the only stepping stone from A to D, i.e., route 1–3)

To

From

A B C D E

A . . T (12) T (13) .

B . . . . T (34)

C . . . . .

D . . . . T (45)

E . . . . T (55)

Figure 2  Boolean tables
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Bounded rationality 
and emotions

The rational decision maker with limitless capaci-
ties to process information does not exist. People’s 
cognitive and emotional resources are bounded 
(limited), thereby motivating them to engage in 
strategies to maximize effective use of these 
resources. It has been increasingly recognized that 
deliberation and intuition are two resources essen-
tial for adequate decision making. This entry dis-
cusses not only rationality and emotions but also 
the role they play in decision making and the strat-
egies people use to approach decision problems. 

Bounded Rationality

In 1957, Herbert Simon proposed the notion of 
bounded rationality to account for the fact that 
perfectly rational decisions are often not feasible in 
practice due to the finite information-processing 
capacities of humans. Simon points out that most 
people are only partly rational and are in fact emo-
tional or irrational in the remaining part of their 
actions. Human beings are limited in their capacity 
for storing and processing information. As a conse-
quence, people process information sequentially 
and use heuristics, or rules of thumb, to keep the 
information-processing demands of complex tasks 
within the bounds of their cognitive capacities. 
These heuristics are procedures for systematically 
simplifying the search through the available infor-
mation. The use of heuristic strategies improves the 
performance of the individual as a limited informa-
tion processor and is, as Simon argues, “at the 
heart of human intelligence.” In this vein, Gerd 
Gigerenzer and colleagues argue that simple alter-
natives (i.e., heuristics) to a full rational analysis as 
a mechanism for decision making frequently lead to 
better decisions than the theoretically optimal pro-
cedure. These heuristics are generally successful, 

but in certain situations they lead to systematic 
cognitive biases.

Heuristics

People use heuristics for multi-attribute decision 
problems such as choosing a car or choosing a 
hospital for treatment as well as for risky decision 
making such as the choice between an operation 
and a wait-and-see policy with different mortality 
risks. Two approaches to the use of heuristics in 
decision making can be distinguished: the accu-
racy/effort approach and the heuristics-and-biases 
approach. According to the accuracy/effort 
approach, people process and evaluate only a part 
of the information and use noncompensatory deci-
sion rules to limit the information-processing 
demands of multi-attribute decision problems. For 
instance, people eliminate options because of an 
unsatisfactory score on one attribute, as, for exam-
ple, when choosing among cars, a decision maker 
eliminates all options above a certain price, irre-
spective of the evaluation of the other attributes. 
John Payne and colleagues see humans as adaptive 
decision makers who weight the benefits of a deci-
sion strategy (i.e., the probability that a strategy 
will select the best alternative) against the costs 
(i.e., the mental effort, time, and money needed).

Another approach is the heuristics-and-biases 
approach. This approach is most prominently rep-
resented by the research of Amos Tversky and 
Daniel Kahneman and emphasizes the biases and 
errors in human judgment that are due to the use 
of heuristics. Contrary to the earlier approach, it 
does not consider the use of heuristics as a rational 
trade-off between accuracy and effort but as a fail-
ure to recognize the “correct” solution. Tversky 
and Kahneman consider these heuristics as highly 
economical and usually effective but add that in 
some cases they may lead to systematic and pre-
dictable errors. An example of such a heuristic is 
the availability heuristic: Objects or events are 
judged as frequent and probable or causally effica-
cious to the extent that they are readily available in 
memory. This heuristic is likely to erroneously 
affect the evaluation of information whenever 
some aspect in the environment is made dispropor-
tionally salient or available to the perceiver.

These two approaches are both related to the 
limited information-processing capacities or the 
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bounded rationality of people. The heuristics-and-
biases approach focuses on the first stage of the 
decision process, that is, the editing phase, which 
occurs in a more or less automatic way. The accu-
racy/effort approach is concerned with the stages 
after the initial coding process, which seem more 
controlled. According to this approach, people 
resort to the use of heuristics if an analytical 
approach to decision making becomes too demand-
ing. A more complete understanding of decision 
making should include the accuracy/effort as well 
as the heuristics-and-biases approach, as decision 
behavior is likely to consist of multiple systems 
that interact in various ways.

Dual-Processing Theories

It is an old idea in psychology that human process-
ing of information takes place on many levels that 
can operate simultaneously and relatively indepen-
dently. These dual-process models of human rea-
soning and decision making have become more 
popular in the past decade or so. In a recent article, 
Kahneman relates the heuristics-and-biases research 
to the dual-processing theories about reasoning 
and decision making. This ancient idea that cogni-
tive processes can be distinguished into two main 
categories, roughly corresponding to the everyday 
concepts of intuition and reason, is now widely 
embraced under the general label of dual-process 
theories. These two categories of cognitive pro-
cesses can be distinguished by their speed, their 
controllability, and the contents on which they 
operate. The dual-process models distinguish cog-
nitive operations that are quick and associative 
from others that are slow and governed by rules. 
Intuitive or System 1 thinking is closely related to 
perception and quickly proposes intuitive answers 
to judgment problems as they arise. Operations are 
fast, automatic, associative, and effortless, and 
they are often emotionally charged. They are also 
governed by habit and are therefore difficult to 
control or modify. Deliberative or System 2 rea-
soning monitors the quality of these proposals, 
which it may endorse, correct, or override. The 
processes of System 2 are slower, serial, effortful, 
and deliberatively controlled. They are also rela-
tively flexible and potentially rule governed. A 
characteristic of System 2 is that it is limited or 
bounded by working memory capacity and is 

assumed to be linked to general intelligence, while 
System 1 functions independently of working 
memory. These characteristics that have been 
attributed to the two modes are related to con-
sciousness (unconscious and holistic vs. conscious 
and analytic) and functionality (e.g., associative, 
automatic, and parallel vs. rule-based, logical, and 
sequential). In a recent article, Jonathan Evans 
gives an overview of the several dual-processing 
theories of reasoning, judgment, and social  
cognition.

Emotions: Immediate Emotions

Emotional processing, although not included in all 
dual-processing theories, is placed in System 1 
rather than in System 2. In several theories, a fast 
emotional basis for decision making is contrasted 
with a slower and more deliberative cognitive 
basis. The emotional side of judgment and decision 
making has recently received more attention in 
judgment and decision research. Research shows 
that every stimulus evokes affective evaluation that 
is not always conscious. Affective valence is a 
natural assessment and can, according to Paul 
Slovic and colleagues, be used as a heuristic attri-
bute for making complex decisions. They propose 
that representations of objects and events in peo-
ple’s minds are tagged, to varying degrees, with 
affect. When making a judgment or a decision, 
people consult or refer to an “affect pool” contain-
ing all the positive and negative tags consciously or 
unconsciously associated with the representations. 
Affect may serve as a cue to judgments in the same 
way as availability.

Slovic and colleagues argue that the affect 
heuristic guides the perception of risk and benefits 
in the sense that a positive affect generalizes to 
other aspects of the activity or technology. Thus, 
when benefits of a technology are seen as high, this 
positive affective evaluation generalizes to a posi-
tive evaluation of the risk associated with this 
technology, that is, to a lower perceived risk. 
Conversely, technologies with low perceived indi-
vidual benefits are associated with higher perceived 
risks. The affect heuristic may also work with 
other heuristics. Slovic and colleagues suggest that 
the availability heuristic may work not only 
through ease of recall or imaginability but also 
because remembered images are associated with 
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affect. As is the case with other heuristics, the 
affect heuristics, presented by Slovic and colleagues 
as the centerpiece of experiential or System 1 
thinking, may also have drawbacks leading to 
erroneous judgments. When emotional responses 
to risky situations (e.g., worry, fear) diverge from 
cognitive evaluations, these may have a greater 
impact on risk-taking behavior than do cognitive 
evaluations. Risks of positive-valued activities, 
such as fast driving (for some people), may be 
underestimated, while negative-valued activities, 
such as flying in airplanes, may lead to an overes-
timation of risks. When emotions are more inten-
sive, they can even overwhelm deliberative decision 
making altogether. Some people experience intense 
fear when they think about flying in airplanes, 
even though they recognize that the risks are low.

Immediate emotions can have a direct 
effect, as is the case in the affect heuristic in which 
affect is used as information for judgment, or an 
indirect effect. The indirect influence of immediate 
emotions occurs by influencing people’s judgments 
of expected consequences and their emotional 
reactions to these outcomes. For instance, when 
people are not hungry or not in pain, they under-
appreciate what it will feel like to be hungry or in 
pain. Furthermore, immediate emotions can bias 
the interpretation of information in such a way 
that decision makers selectively attend to and 
retrieve emotionally relevant information. Studies 
have found that negative emotions narrow atten-
tional focus, while positive emotions broaden 
attentional focus. Negative emotions are also 
found to trigger more systematic processing than 
positive emotions. One explanation given by 
George Loewenstein and Jennifer Lerner for this is 
that negative emotions alert the individual to the 
possibility that something is wrong and action has 
to be taken. Happiness or positive mood may have 
the meaning that everything is all right and, there-
fore, may lead to more heuristic processing. It has 
been found, for instance, that happiness increased 
reliance on stereotypes, which indicates a categori-
cal, holistic way of processing information rather 
than an analytical way.

Emotions: Anticipatory Emotions

The effect of immediate emotions on decision  
making should be distinguished from anticipatory 

emotions. People often compare the consequences 
of their decisions with what could have happened 
under different circumstances, which results in 
counterfactual emotions. One of these emotions is 
anticipatory regret that results from the compari-
son between the outcome one will experience as a 
consequence of a decision and the outcome one 
would experience if one were to choose differently. 
For instance, women may choose to attend public 
health screening for breast cancer in spite of very 
low chances of having breast cancer because not 
going may result in strong negative feelings in case 
they might have a cancer that would then be detected 
much later. Anticipatory emotions may also explain 
the finding that patients having to make decisions 
that are emotionally charged, such as whether to 
go for prenatal testing or have an operation, usu-
ally do not take into account the probabilities. An 
explanation of people’s lack of responsiveness to 
probabilities is that anticipatory emotions arise as 
reactions to mental images of the outcome of a 
decision. Such images are discrete and not very 
much affected by probabilities. The impact of the 
image of having a probability of 1 out of 50 of car-
rying a child with Down syndrome may be the 
same as the impact of the image of having a prob-
ability of 1 out of 500. The decision of women to 
opt for or against prenatal testing may therefore be 
more influenced by how they feel about having a 
child with Down syndrome than by the probabili-
ties. These anticipatory emotions are partly cogni-
tive, in the sense that people may think of them 
consciously and take them into account when 
weighing the pros and cons of several options. On 
the other hand, as they are affect laden, they are 
part of System 1 thinking and largely intuitive.

Danielle R. M. Timmermans

See also Bias; Dual-Process Theory; Emotion and Choice; 
Heuristics; Intuition Versus Analysis
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Brier scores

Brier scores are used to assess the precision of prob-
ability predictions. For an event that can only occur 
in a set of mutually exclusive categories, the Brier 
score is the sum of the squared differences between 
the predicted probabilities that the event will occur 
in a specific category (numbers in the interval from 
0 to 1) and the observed outcomes (1 if the event 
occurs in a specific category, 0 otherwise). Brier 
scores were originally proposed as a means to 
describe the precision of probabilistic weather fore-
casts (e.g., categories “rain,” “no rain”). Here, they 
were appreciated because they allow for a finer 
assessment of a forecaster’s ability to generate accu-
rate predictions than mere counts of numbers of 
correct predictions. For the same reason, Brier 
scores have been proposed in the medical context 
as an alternative to receiver operating characteristic 
(ROC) methods in diagnostic testing for the cali-
bration of the quality of medical decision makers, 
for tuning statistical prediction rules, and for the 
assessment of predictions in survival analysis.

General

Consider an event that can only occur in one of  
r distinct categories. For example, a medical  
decision maker might assign probabilities to each 
category, where the probabilities should sum up to 

1. Let πj ∈ [0,1] denote the prediction for the prob-
ability that the event occurs in category j, for j = 
1, . . . , r, and let Yj denote the random outcome, 
where Yj = 1 if the event occurs in category j and Yj 
= 0 if it does not. The Brier score is a loss function 
that has been proposed as a measure to quantify 
the loss incurred if π is predicted, and Y is the out-
come. It is the squared difference (π − Y)2. In a sam-
ple of size n where πij and yij are the ith prediction 
and the ith actually observed outcome for category 
j, respectively, the empirical Brier score is given by 
(1/n)∑i ∑j (πij − yij)

2. For example, when the events 
“relapse” versus “no relapse” are of interest, and 
there are two patients, the first with a relapse and 
the second without, a naive predicted probability of 
.5 for both patients results in a Brier score of 1/2 × 
(((.5 − 0)2 + (.5 − 1)2) + ((.5 − 1)2 + (.5 − 0)2)) = .5. 
If, however, for the patient with relapse, the pre-
dicted probability of relapse is .6, and for the patient 
without relapse the predicted probability of relapse 
is .3, then the Brier score reduces to 1/2 × (((.4 − 0)2 
+ (.6 − 1)2) + ((.7 − 1)2 + (.3 − 0)2)) = .25.

Brier Scores With Dichotomous Data

In a setting with dichotomous data, that is, with 
only r = 2 categories (e.g., when one predicts 
whether a patient will survive for a certain period 
of time), it is common to consider only one of the 
categories for calculation (dropping the subscript 
j). While in the original formulation, the Brier 
score takes values in the range from 0 to 2 when 
there are only 2 categories, the modified version 
ranges from 0 to 1; that is, the resulting value is 
only half of the original Brier score.

Brier scores can generally be applied to predic-
tions πi with 0 ≤ πi ≤ 1. These predictions may  
have been derived from a careful statistical model-
building process. They can, however, stem from 
diverse sources and might also, for example, con-
stitute a summary of expert guesses. For calculat-
ing the Brier score, predicted probabilities are 
needed. When only classifications are available 
and these are taken as predicted probabilities, so 
that all πi are 0 or 1, the squared differences take 
only the values 0 and 1, and the Brier score is the 
proportion of observations where classification 
and outcome are identical. Therefore, in these 
cases, the empirical Brier score coincides with the 
misclassification rate.
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Properties

The Brier score is a strictly proper scoring rule. 
This means that, when prediction error is quanti-
fied by the Brier score, the best predictor is the true 
probability of the event: Let p = P(Y = 1); then  
E(π − Y)2 attains its unique minimum for π = p. 
This can be seen by the following decomposition 
of the expected Brier score, E(π − Y)2 = E(p − π)2 + 
E(p − Y)2, which means that inaccuracy (measured 
by the Brier score) can be split into imprecision 
and inseparability. Using the Brier score to judge 
prediction error, thus, forces forecasters to give 
their best probabilistic predictions, not just classi-
fications. However, imprecision and inseparability 
primarily are theoretical quantities that cannot be 
measured directly.

Comparison With ROCs

Another popular technique for judging the per-
formance of medical decision makers is ROC 
curves. These are obtained from the predicted 
probabilities πi by using a cutoff for arriving at 
actual predictions and then varying this cutoff. For 
each value of the cutoff, the proportion of correctly 
classified observations with outcome yi = 1 is 
recorded and plotted against the proportion of 
wrongly classified observations with yi = 0 for that 
cutoff. The area under the resulting ROC curve is 
an indicator for the performance of the decision 
maker, with larger values indicating better perfor-
mance. However, since ROC curves are a rank-
based method, two decision makers who rank the 
observations in the same order will have identical 
ROC curves, even if their actual predicted probabil-
ities differed. Since it has been argued that the pre-
dicted probabilities might be even more important 
than the actual classification in medical settings, a 
technique for evaluating performance should be 
more focused on the former, and therefore, the 
Brier score should be preferred over ROC curves.

Calibration of Medical Decision Makers

Given predicted probabilities from decision 
makers, feedback should not only be given on 
accuracy, that is, on how effective objects could be 
assigned to the correct category (using a cutoff on 
the probabilities), but also on precision, that is, on 

how close the predicted probabilities are to the 
true probabilities. While the misclassification rate 
only gives information on accuracy, the Brier score 
also considers precision. For the dichotomous set-
ting, it is a sum of a measure of imprecision (a 
property of the decision maker) and a measure of 
inseparability (a property of the situation at hand). 
The difference of the Brier scores for two decision 
makers in the same situation therefore gives their 
difference in precision.

There are several decompositions of the Brier 
score that result in explicit values for precision, 
which in this context is also called reliability or 
calibration. These decompositions, therefore, also 
provide for estimates of the theoretical quantities 
of imprecision and inseparability. Similar to the 
procedure used for constructing calibration plots, 
the predictions are grouped by the value of the 
predicted probabilities; that is, predictions with 
the same or similar predicted probability are com-
bined into groups j, where j = 1, . . . , J, for which 
the predicted probability is dj and the proportion 
of events is pj. With nj being the number of obser-
vations in group j, the Brier score can be decom-
posed into a reliability component (1/n)∑jnj 

(dj − pj)
2 and a resolution component (1/n)∑jnjpj 

(1 − pj). The former indicates how close the pre-
dicted probabilities are to the true probabilities 
(with smaller values indicating better calibration 
of the decision maker), while the latter indicates 
the ability of the decision maker to sort the obser-
vations into categories such that the proportions of 
outcomes pj are maximally diverse. From this 
decomposition, it can again be seen that the Brier 
score takes its minimum value when the true prob-
abilities are used as predictions.

Assume that there are 20 patients, where a pre-
dicted probability of relapse is wanted and that  
8 of these patients actually suffer a relapse. If the 
predicted probability is .5 for all patients, there is 
only one group (J = 1) with predicted probability 
d1 = .5 and proportion of events p1 = .5. The reliabil-
ity component therefore is 1/20 × 20 × (.5 – .4)2 = 
.01, which seems to be very good. However, the 
resolution, which is 1/20 × 20 × .4 × .6 = .24, is 
rather poor, resulting in a Brier score of .25. If, in 
contrast, a decision maker provides two predicted 
probabilities, .6 for a group of 10 patients, where 
5 have an event, and .2 for the remaining  
10 patients, where 3 suffer relapse, the value of the 
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reliability component will also be equal to .01, that 
is, very good. However, the resolution now is 1/20 
× ((10 × .5 × .5) + (10 × .3 × .7)) = .23, resulting in 
a Brier score of 0.24, indicating better overall pre-
diction performance.

Reliability, either by explicitly reporting its 
value or by means of calibration plots, which 
graph pj against dj, has often been used for giving 
feedback to decision makers, that is, for improving 
calibration, while resolution seems to have been 
neglected. In addition, there exist several other 
decompositions that allow for detailed analysis of 
decision-maker performance.

Evaluation of Statistical Prediction Rules

Besides analyzing the performance of decision 
makers, the Brier score can also be used for evalu-
ating statistical prediction rules. The basis for the 
latter is formed by statistical models, which are 
typically built from some training data, where, in 
addition to the outcome for each observation, a set 
of informative variables is given (e.g., “age” and 
the concentration of some biomarker for patients, 
for which survival up to some time is the event of 
interest). Many statistical models can not only 
provide classification for new observations (given 
the information from the variables), thus compris-
ing prediction rules, but also predicted probabili-
ties. Using a cutoff for classification on the latter, 
performance could be judged by misclassification 
rate on new data. However, many statistical mod-
els require choice of some tuning parameters, 
which should be selected to maximize perfor-
mance. Optimizing by means of misclassification 
rate may easily result in overfitting; that is, use of 
tuning parameters results in more complexity than 
is supported by the data, as this criterion is most 
sensitive to the fit of a statistical model for obser-
vations with large ambiguity (i.e., which have true 
probabilities close to the classification cutoff). 
When it is expected, for example, that the cutoff 
for classification might be changed later, the Brier 
score is a more reasonable criterion for selecting 
tuning parameters, as it is sensitive to the model fit 
for all observations, regardless of their true prob-
ability. Therefore, it is also more appropriate if 
interpretation of the prediction rule is wanted, as 
the structure of the fitted model will be equally 
valid for all observations.

Brier Scores With Survival Data

In survival analysis, the outcome of interest Y is 
the time until a specific event (e.g., death) occurs. 
Here, probability predictions often refer to the 
survival status Y(t*) at a specific time t*, Y(t*) = 0 
meaning dead/event occurred, Y(t*) = 1, alive/
event not yet occurred at t*. Let π(t*) denote the 
prediction for the survival status at t*.

Brier Score at a Specific Time  
and Integrated Over Time

The Brier score at t* is [π(t*) − Y(t*)]2, if sur-
vival status π(t*) is predicted and Y(t*) is the out-
come. When predictions are to be assessed over a 
period from time 0 to time t* rather than for one 
specific time t*, the prediction error at t can be 
averaged over this interval, yielding the integrated 
Brier score, ∫0

t*[π(t) − Y(t)]2dW(t), where W(t) is a 
suitable weight function, for example, t/t*. For a 
sample of size n, the empirical versions are given 
by (1/n)∑i[πi(t*) − yi(t*)]2 and (1/n)∑i∫0

t*[πi(t) − 
yi(t)]

2dW(t), respectively.

Censoring

In studies of survival time data or time-to-event 
data, a common problem called censoring occurs 
when some, but not all, individuals can be followed 
up until death (or until the event of interest occurs). 
This may happen for many reasons, for example, 
when a medical study on mortality is evaluated 
before all patients have died. In that case, the out-
come data are (Y, δ), where Y denotes the observa-
tion time when the individual was observed to 
survive, and δ is the event indicator containing the 
censoring information: δ = 1 indicates that death 
was observed after Y time units, whereas δ = 0 
means that the individual was observed to survive 
for Y time units before it was censored, so that the 
exact time of death is unknown.

Empirical Brier scores can be devised to estimate 
the true expected Brier score even in the presence of 
censoring, which, however, needs to be accounted 
for. To this end, the individual contributions to the 
empirical Brier score are weighted according to the 
censoring information. Thus, the empirical Brier 
score at t* in the presence of censoring is (1/n)∑i 
wi(t*) [πi(t*) − yi(t*)]2, where wi(t*) is the weight for 
individual i. In the simplest case, where censoring 
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can be assumed not to depend on the individual’s 
survival chances, the weights incorporate the 
Kaplan-Meier estimator G of the censoring or 
potential follow-up distribution, which is obtained 
from (Y, 1 − δ) by exchanging the roles of censored 
and uncensored observations. Then wi(t*) = δi/G(Yi) 
if yi ≤ t*, and wi(t*) = 1/G(t*) if yi > t*. With this 
approach, individuals whose survival status at t* is 
unknown due to censoring receive weight 0 (these 
individuals contribute indirectly to the empirical 
Brier score, because they are used in the calculation 
of G). Individuals whose survival status at t* is 
known receive weights >1, so that they represent 
the contributions of individuals whose Brier score is 
unobservable in addition to their own contribution. 
Again, to average prediction error at t over an inter-
val from 0 to t*, an integrated version of the empir-
ical Brier score can be used: (1/n)∑i∫0

t*wi(t)[πi(t) 
− yi(t)]

2dW(t).

Dynamic Predictions

Similar techniques can be used to devise empiri-
cal Brier scores when the predictions for a survival 
status are updated as time progresses. Such updated 
predictions can arise, for example, when physi-
cians’ probability estimates of survival are updated 
during daily morning rounds or from joint statisti-
cal models of longitudinal biomarkers and survival 
data. Here, the survival status at time t* is pre-
dicted at time s with 0 ≤ s < t* by the probabilistic 
predictor πi(s;t*).

Evaluation of Statistical Prediction Rules

Similar to the selection of tuning parameters for 
statistical prediction rules with a categorical out-
come, the Brier score can also be used for model 
complexity selection for survival models. When 
the empirical version of the Brier score (with 
proper weights) is obtained for a range of times 
and plotted against time, this results in prediction 
error curves. The tuning parameter of a statistical 
prediction rule should then be chosen such that the 
area under this curve, that is, the integrated Brier 
score, is minimal. However, as with a categorical 
outcome, the empirical version of the Brier score 
should not be calculated from the data that the 
prediction rule was fitted to. One can, for example, 

set aside a test set, but this has the disadvantage of 
losing observations for the fitting of the prediction 
rule. An attractive alternative is provided by the 
bootstrap procedure, where the drawing of new 
data sets is imitated by randomly drawing observa-
tions from the original data set. The statistical 
prediction rule is then fitted to each of these boot-
strap data sets, and the empirical version of the 
Brier score is calculated separately for each one 
based on the observations that are not in the 
respective bootstrap data set. The final prediction 
error curve estimate is then obtained from the 
averaged Brier score over all bootstrap samples. 
This can then be used not only for selecting tuning 
parameters for one statistical prediction rule but 
also to compare the prediction performance of 
several prediction rules.

Harald Binder and Erika Graf

See also Calibration; Diagnostic Tests; Kaplan-Meier 
Analysis; Prediction Rules and Modeling; Receiver 
Operating Characteristic (ROC) Curve; Survival 
Analysis
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Calibration

Calibration refers to the degree of correspondence 
between probabilities and observed relative fre-
quencies. Suppose that when a patient is admitted 
to an intensive care unit (ICU), a physician assesses 
the probability that the patient will survive until 
hospital discharge. If data on these probabilities 
and the resulting outcomes (survival or death) are 
collected for a large number of patients, the data 
can be organized by the numerical probabilities. 
For example, the relative frequency of survival 
among all the patients for whom a probability of 
70% was assessed can be determined. If this rela-
tive frequency is 70%, and the relative frequencies 
for other probability values also match those 
probabilities, the probabilities are said to be per-
fectly calibrated. If the probabilities and their 
associated relative frequencies differ, the probabil-
ities are miscalibrated, with the degree of miscali-
bration increasing as the differences increase.

The relevance of calibration relates to the use  
of probabilities in decision making. Medical deci-
sions are typically made under uncertainty, such  
as the uncertainty about whether a surgical proce-
dure will be successful if performed on a particular 
patient. The likelihood of success quantifies this 
uncertainty and should be a key factor in the deci-
sion about whether to perform the surgery. Thus, 
the calibration of the numerical probability assessed 
for success is relevant. If the relative frequency of 
success is only 40% among patients for whom a 
probability of success of 70% had been assessed, a 

decision based on a probability of 70% could be 
suboptimal.

Measuring Calibration

Measures of calibration are based on pairs of 
probability values pi and the corresponding rela-
tive frequencies ri = 100(fi /ni), where ni  is the num-
ber of times the probability value pi is used and fi 
is the number of times the event occurs when the 
probability is pi. For example, if the probability  
of survival is assessed to be 70% for 100 of the 
patients who are admitted to an ICU, and 68 of 
those patients survive, ri = 100(68/100), or 68%. If 
there are m probability values p1, . . . , pm, there will 
be m pairs (pi, ri).

Calibration is often studied graphically, through 
a plot of ri as a function of pi. This plot is called a 
calibration diagram, and an example of such a plot 
is shown in Figure 1. Here the values of pi 
(expressed in percentages) are 0, 10, 20, . . . , 100, 
and each square represents a pair (pi, ri). If the 
probabilities were perfectly calibrated, the squares 
would all be on the line from (0, 0) to (100, 100). 
Of course, a statistical variation in ri given pi is 
likely to cause some deviation from this perfect-
calibration line, and such deviations will tend to  
be larger for small values of ni (small samples with 
probability value pi).

The calibration diagram shown in Figure 1 
demonstrates good calibration, although it does 
reflect a bit of a tendency for ri to be greater than 
pi for lower probability values and to be less than 
pi for higher probability values. This tendency is 

C
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often called overconfidence because the probabili-
ties are more extreme (lower than the relative  
frequencies for low probabilities and higher for 
high probabilities) than justified by the data. Many 
empirical studies of calibration display overconfi-
dence to varying degrees, whereas other studies 
demonstrate better calibration.

Calibration diagrams are quite informative, 
providing at a glance an indication of how far the 
data points are from the perfect-calibration line, 
which points are more distant from the line, and 
whether they are above or below the line. Summary 
measures of overall calibration are also used, just 
as summary statistics such as a mean are used in 
addition to histograms in statistics. The most com-
mon summary measure is the weighted average of 
the squared differences between the probabilities 
and relative frequencies, with the weights propor-
tional to the sample sizes for the different data 
points:

Here (pi – ri)
2 is a measure of the calibration of the 

probability value pi, and the calibration score C  
is a weighted average of these calibration measures 
for the m probability values. A lower value of C 
indicates better calibration, with perfect calibra-
tion corresponding to C = 0.

A measure such as C is especially useful in com-
paring the calibration of probabilities from diff-
erent sources. Probabilities in medical decision 
making are often subjective in nature, being 
assessed by experts such as physicians. It can be 
informative to compare the calibration of proba-
bilities from different physicians or from different 
groups of physicians. Probabilities can also be gen-
erated through models or from past data, in which 
case comparisons between physicians’ subjective 
probabilities and model-based or data-based prob-
abilities are possible. The methods used to measure 
calibration can be used regardless of the source of 
the probabilities.

Calibration and Sharpness:  
The Evaluation of Probabilities

What characteristics are of interest in the evalua-
tion of probabilities? Calibration is a characteristic 
that often receives much attention. But it is not the 
whole story.

It is possible for probabilities to be very well-
calibrated but not very informative. For example, 
suppose that the overall success rate of a surgical 
procedure at a given hospital is 80% and that the 
rate has remained quite steady over the past sev-
eral years. To aid in decisions about whether to 
perform this procedure on particular patients, a 
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physician assesses the probability of success for 
each patient. Information from a patient’s records 
and an examination of the patient should be help-
ful in assessing the probability for that patient.  
But if good calibration is the only measure of how 
good the probabilities are, the physician could just 
assess a probability of 80% for each patient and be 
confident of good calibration. Here 80% is the 
base rate, and the expertise of the physician should 
make it possible to distinguish between patients 
for whom the surgery is more likely to be success-
ful and patients for whom the surgery is less likely 
to be successful. A base rate forecast ignores this 
expertise and is uninformative in the sense of not 
distinguishing among different patients.

In this example, what would be “perfect” prob-
abilities? A physician would be perfect in predict-
ing the outcomes if the assessed probability was 
100% for all patients who then had successful 
surgery and 0% for all patients with unsuccessful 
surgery. Of course, this is an ideal that is not likely 
to be achieved in practice. Nonetheless, it provides 
a benchmark indicating the most informative 
probabilities, just as base rate probabilities provide 
a benchmark indicating relatively uninformative 
probabilities. To the extent that a set of probabili-
ties can move away from the base rate toward the 
ideal of perfect forecasts, the probabilities are con-
sidered more accurate.

A class of measures called scoring rules has been 
developed to measure the accuracy of probabilities. 
The most frequently used scoring rule is a quadratic 
scoring rule, sometimes called the Brier score. For 
the surgery example, let p be expressed in percent-
age terms and let the outcome, e, of the surgery for 
a particular patient be coded as 100 if it is success-
ful and 0 if it is not successful. Then the quadratic 
score for that patient is a squared-error function:  
Q = (p – e)2. A lower score is better, with the best 
possible score being 0 for a perfect probability.

Letting eij denote the outcome (0 or 100) for the 
jth patient among the ni patients for whom the 
probability, pi, was assessed, the average quadratic 
score across all patients is

Q=
Xm

i= 1

Xni

j= 1

ðpi − eijÞ2:

This average score can be decomposed into two 
terms and written as

Here C is the calibration score defined earlier, and 

S = Q
Xm

i 1
wiri (100 – ri) is a measure of the sharpness of 

the relative frequencies, with a lower S indicating 
greater sharpness. The term ri(100 – ri) relates to 
the sharpness of the relative frequency corre-
sponding to the probability value pi, and the 
sharpness score, S, is a weighted average of these 
sharpness measures for the m probability values. 
The best possible Q

–
 is 0, and less-than-perfect 

sharp ness (S > 0) or calibration (C > 0) lead to a 
worse score.

To understand the sharpness and calibration 
terms better, think about the assessment of a prob-
ability of successful surgery for a patient as if it 
were separated into two steps. First, the patient  
is classified into a “bin” with other patients per-
ceived to have roughly the same likelihood of suc-
cessful surgery. Then a label is assigned to each bin 
in the form of a probability number. Suppose that 
some patients are put into a bin with probability 
value 80%, which means that each of them is 
judged to have an 80% probability of successful 
surgery. If they all undergo the surgery, with suc-
cess for 74% of them, the calibration measure for 
the bin is (80 – 74)2 = 36, and the sharpness mea-
sure is 74(100 – 74) = 1924. If we calculated these 
measures for all m bins and then took weighted 
averages, we would get S and C, from which we 
could find Q

–
 = S + C. The sharpness, S, is related  

to how discriminatory the bins are and not to the 
probability values; note that S does not depend  
on the pi values. The calibration, C, on the other 
hand, has to do with how consistent the probabil-
ity values are with the relative frequencies. In other 
words, the sharpness has to do with the effective-
ness of the separation of patients into bins, and the 
calibration has to do with the fidelity of the bin 
labels (the probability numbers) to the data.

A scoring rule such as the quadratic score, then, 
measures overall accuracy, taking into account 
both the sharpness and calibration. If just a single 
bin is used, with a base rate probability assigned to 
all cases, the calibration should be excellent but the 
sharpness weak. If the separation into bins is very 
effective but the labeling of the bins is poor, the 
sharpness can be excellent while the calibration  

Q=
Xm

i=1

wirið100− riÞ+
Xm

i= 1

wiðpi − riÞ2 = S+C:
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is poor. An extreme example of the latter occurs 
when all patients are given probabilities of 0 or 
100 but those with a probability of 0 have suc-
cessful surgery and those with a probability of 100 
have unsuccessful surgery. Sharpness measures the 
true discriminatory power of the division into bins, 
but poor calibration can render that power ineffec-
tive by causing poor decisions if the probability 
labels are taken at face value. For the extreme 
example just given, those assigned probability 
labels of 100 would most likely go ahead with the 
surgery, only to see it fail, whereas those assigned 
probability labels of 0 would avoid the surgery, not 
knowing that it would be successful if performed.

If probabilities are quite sharp but poorly cali-
brated, perhaps their calibration can be improved. 
Training through relevant experience and feedback 
might help an individual improve calibration. Alter-
natively, a decision maker can recalibrate probabili-
ties as deemed appropriate. Essentially, this amounts 
to relabeling the bins. If past data on the probabili-
ties from a particular physician indicate a tendency 
toward overconfidence, future probabilities might 
be adjusted, making low probabilities a bit higher 
and high probabilities a bit lower, in an attempt to 
calibrate the physician’s probabilities. The difficulty 
is that the decision maker may not be aware of the 
degree of miscalibration.

A goal to strive for in probability assessment is 
to make the probabilities as sharp as possible while 
still maintaining good calibration. The sharpness 
indicates the true discriminatory power of the 
probabilities, and the calibration guarantees that 
this power can be used appropriately by decision 
makers. In a sense, sharpness is more important 
than calibration because it is possible to try to 
improve calibration, as noted above. Improvements 
in sharpness are more difficult, requiring addi-
tional information (e.g., more tests) or greater 
effort in understanding the implications of the 
existing information; they cannot be gained by 
mere relabeling. Nonetheless, miscalibrated prob-
abilities can send misleading messages to decision 
makers, so striving for good calibration as well as 
sharpness is desirable.

Robert L. Winkler
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Case Control

Case-control studies are a nonexperimental form 
of medical research that informs cause-effect rela-
tionships. Their main purpose is the identification 
of risk factors for events of interest. Most famously, 
case-control studies provided the first evidence of 
a strong association between cigarette smoking 
and lung cancer. However, findings from a num-
ber of recent case-control studies have been subse-
quently contradicted or found to overestimate  
the strength of relationships compared with more 
robust epidemiological study designs. An example 
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is the case-control finding that hormone replace-
ment therapy (HRT) had a protective effect 
against coronary heart disease, following which 
randomized trial evidence identified a small 
increased risk associated with HRT.

Case-control studies identify cases as patients 
who already have a disease or condition of inter-
est, and then attempt to identify characteristics  
of these patients that differ from those who do not 
have the condition of interest (the controls). For  
a defined exposure (e.g., walking alongside golf 
courses) and a defined outcome (e.g., experience  
of head injury), Table 1, a 2 × 2 table, represents 
hypothetical findings and informs analysis of an 
odds ratio.

The odds are expressed as the ratio of the prob-
ability that the event of interest occurs to the prob-
ability that it does not. In the example, the 
probability that a golf course walker experiences a 
head injury is 10/100 or .1, and the probability 
that he or she does not suffer such an injury is 
90/100 or .9. The odds are therefore 10/90, or .11 
(the number of events divided by the number of 
nonevents). The corresponding odds for non–golf 
course walkers are 5/150, or .03.

The odds ratio is estimated as the odds in the 
case group divided by the odds in the control 
group, that is, .11/.03 or 3.67 in the hypothetical 
golf course example. This is interpreted as golf 
course walkers being at more than 5 times the 
odds of suffering a head injury compared with 
non–golf course walkers.

Traditional case-control studies only inform 
estimates of the odds ratio between exposure 
states; they do not enable the estimation of abso-
lute or relative risk because the full size of the 
population from which the cases (with and with-
out the exposure(s) of interest) are drawn cannot 
be estimated in a straight case-control study.

Accounting for Bias

The strength and interpretation of identified rela-
tionships is first dependent on a study’s ability to 
match the cases and controls, such that both 
groups can be defined as random samples from the 
same underlying population. A second significant 
issue in the application of case-control studies is 
the accurate identification of the existence or 
absence of all potentially relevant factors. The 
exclusion of factors that are associated with both 
included exposures and the outcome of interest 
may introduce a bias in the association estimates 
due to confounding. A third form of bias is labeled 
recall bias and may occur when the outcome acts 
as a stimulus to aid the recall of the experience or 
timing of exposures in cases, which tends to inflate 
risk estimates in case-control studies.

To illustrate these issues, the study of the safety 
effects of bicycle helmets is used. The representa-
tion of the issues is necessarily brief, and the inter-
ested reader is referred to a lively discussion in the 
journal Accident Analysis and Prevention. Case-
control studies in this area have generally defined 
cases as persons experiencing head injuries follow-
ing a bicycle accident. Control groups have included 
random samples from a population of bicyclists, as 
well as patients presenting at an emergency depart-
ment with nonhead injuries sustained following  
a bicycle accident. Selecting controls from the full 
population of bicyclists reflects a random sample 
from the same underlying population from which 
the cases were drawn and so avoids selection bias. 
However, such a control group may be subject to 
both confounding and recall bias. Confounding 
may occur if cyclists who wore helmets were gen-
erally more careful riders than nonwearers (and 
therefore less likely to experience a bicycle acci-
dent), and so more careful riders would be over-
represented in the control group. If this was the 
case, then one would want to control for riding 
care in the analysis. A potential solution could 
involve the elicitation of risk-taking characteristics 
from the cases and controls, so as to control for 
differences in the data analysis. Recall bias may 
not be perceived as a significant problem but 
would occur if the controls were less likely to accu-
rately recall their use of a helmet.

The nonrandom selection of controls as indi-
viduals presenting with nonhead injuries was the 

Table 1  Hypothetical 2 × 2 table

Cases (Head 
Injury)

Controls (No 
Head Injury)

Exposed (walk 
by golf course)

10  90

Nonexposed (do 
not walk by golf 
course)

5 150
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more common approach. As the research question 
specifies the effect of helmets on reducing head 
injuries following bicycle accidents, the population 
of interest is cyclists who crashed, and this is a 
reasonable approach if hospital presentation by 
controls is not related to helmet wearing. The use 
of hospital-based controls may also reduce the 
effects of recall bias as all respondents have a 
similar stimulus (hospital visit) to aid recollection. 
It also may reduce the impact of differential risk-
taking characteristics between controls and cases 
as a confounding factor as both groups were hurt 
sufficiently to seek medical care. However, risk dif-
ferences may remain: For example, cases and con-
trols may have differing distributions of cycle 
speed at the point of accident.

There are various methods available to control 
for possible confounding factors (assuming they 
can be identified and measured). In the bicycle 
example, analysis can be restricted to accidents 
occurring at high speed (or low speed) only. 
Alternatively, cases and controls could be matched 
with respect to accident speed. Both these approaches 
require the specification of sufficiently narrow 
speed categories that represent important differ-
ences. A more flexible approach is to use regression 
analyses to statistically adjust the risk ratio of inter-
est to capture the effect of potential confounders.

Nested Case-Control Studies

An adaptation to the traditional case-control study 
design is the nested case-control study, which 
involves applying a case-control study within the 
confines of an established cohort. Cohort studies 
follow individuals over time to observe outcome(s) 
of interest as they occur, with exposure status 
being defined at the beginning of the study (i.e., 
prospectively). Advantages of cohort studies (over 
case-control studies) include the fact that all indi-
viduals in the study analysis are automatically 
derived from the same population (the cohort)  
and that there is no uncertainty around the time 
sequence of the exposure preceding the outcome in 
the establishment of a cause-effect relationship.

A nested case-control study selects cases on the 
basis of events occurring (either prospectively or 
retrospectively). A risk set is defined for each case 
that includes individuals at risk of the event at the 
time of the observed case (on the cohort time axis) 

and may include some matching criteria. One or 
more controls are then randomly selected from the 
defined risk set for each case.

The advantages of this study design include the 
natural satisfaction of the requirement that con-
trols are randomly sampled from the same popula-
tion within which the cases occurred (selection 
bias) and the fact that data on all individuals in the 
cohort are more easily obtained (recall bias). The 
nested approach also enables the estimation of 
relative risks, as well as odds ratios.

Establishing Causal Relationships

Evidence on the existence of a causal relation-
ship between an exposure and an outcome is 
required to directly inform public health deci-
sions and the design of clinical interventions. 
The likelihood of confounding can never be 
completely eliminated (even in a randomized 
trial), particularly so in case-control studies, and 
so the presentation and interpretation of study 
results should always be accompanied by an 
open and explicit assessment of the probability 
that results may be confounded and of the direc-
tion and size of any confounding bias.

If an association is adequately demonstrated  
by a case-control study, the next step is to assess 
whether the observed association is likely to be 
causal. A range of criteria have been proposed for 
testing the existence of a causal relationship:

Detailed Review of Potential Confounders

A detailed and explicit consideration, involving 
literature reviews, of factors that could be related 
to the exposure and outcome will increase the 
credibility of proposed causal relationships.

Temporal Relationship

The exposure will always occur before the out-
come in a case-control study, but if the outcome 
develops too soon after the exposure, then the like-
lihood of causality is reduced.

Size of Odds Ratio

A higher odds ratio (greater than 1) or a 
lower odds ratio (less than 1) is, ceteris paribus, 
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indicative of a greater probability of causation. 
However, levels of uncertainty should also be 
considered when interpreting the size of the 
mean odds ratio.

Etiological Plausibility

Further evidence is provided if the observed 
odds ratio and hypothesized causal relationship is 
supported by existing knowledge around the path-
way to the outcome.

Repeated Findings

Similar findings of significant differences 
between cases and controls in alternative popula-
tions increase the chances that an association is 
causal.

Dose-Response Relationship

Further evidence of causality is provided if a 
consistent trend showing the odds ratio increases 
or decreases with increasing or decreasing levels of 
exposure.

Application to Technology Assessment

In the context of intervention evaluation studies, 
case-control studies have a limited role in the 
evaluation of therapeutic interventions as such 
studies generally evaluate homogeneous popula-
tions within which interventions have the same 
expected effect. There may be some scope for case-
control studies to inform downstream effects  
in decision model-based evaluations; for example, 
post–disease recurrence pathways may be related 
to factors observed between treatment initiation 
and point of recurrence. In breast cancer, the likeli-
hood of progression to metastases following loco-
regional recurrence is influenced by the duration of 
the prior disease-free interval.

Case-control studies have much greater poten-
tial in secondary evaluations of preventive and 
screening interventions. Such evaluations describe 
the pathway of full populations with respect to a 
disease, and often an important component is the 
description of separate pathways for different  
risk groups within an aggregate population. For 
example, a screening program for anal cancer in 

homosexual men might differentiate between  
HIV-negative and HIV-positive men.

Advantages and Disadvantages

The main advantage of case-control studies is that 
they can be undertaken at relatively low cost and 
within a shorter time frame than other prospective 
study designs, particularly around outcomes that 
are rare. However, case-control studies are gener-
ally less reliable than either randomized controlled 
trials or cohort studies, and causal relationships 
are often difficult to establish. The results of case-
control studies are most often used to generate 
hypotheses that can be tested using more robust 
study designs.

Jonathan Karnon

See also Attributable Risk; Bias in Scientific Studies; 
Causal Inference and Diagrams; Causal Inference in 
Medical Decision Making; Confounding and Effect 
Modulation; Odds and Odds Ratio, Risk Ratio
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Causal inferenCe and diagrams

Causal inference is the science of attributing a 
particular outcome (or effect) to one or more par-
ticular causes. In addition to concluding that there 
is an association between two variables, causal 
inference implies that the effect is the direct result 
of a measurable cause. In medical research, the 
cause is often an intervention or treatment, and 
the outcome is often a disease or complication. 
Outcomes from those receiving the intervention, 
perhaps a particular drug, are often compared with 
those of a control group. When the difference in  
outcomes between the experimental and control 
groups is attributed to the intervention, causal 
inference is being made.

Causal inference is made most cleanly in a ran-
domized, blinded study. However, even in a non-
randomized setting, some degree of qualified 
causal inference may be possible. This depends on 
the extent of thorough understanding of the rela-
tionships involved, careful design, and data collec-
tion and analysis. Causal inference relationships 
can be visualized and clarified using causal dia-
grams—modern tools that use arrows to visualize 
the purported relationships between causal vari-
ables, outcome variables, and confounding vari-
ables in both randomized and nonrandomized 
studies.

Randomized Studies

In a randomized research study, each subject is 
randomly assigned to receive one of the inter-
ventions to be compared. At randomization, but 
before receiving intervention, randomized groups 
are very similar to each other with respect to base-
line predictors of outcome, the only systematic 
difference being the assigned intervention. Unless 
the process of randomization has been systemati-
cally altered, other baseline differences would be 
due to chance.

Thus, in a properly conducted randomized 
study, there is no selection bias or treatment assign-
ment bias; neither patients nor doctors choose 
which intervention an individual will receive. 
Because a confounder is a variable that is associ-
ated with both intervention and outcome, and 
because there is usually no association between 

treatment assignment and baseline predictors of 
outcome in a randomized study, confounding does 
not usually exist. Differences in outcome between 
randomized groups are correctly interpreted as 
cause-effect.

Fundamental Problem of Causal Inference

Causal inference is a missing-data problem. It 
has its basis in individuals, not group averages. Let 
Y1 and Y0 represent an individual’s potential (or 
hypothetical) response on treatment and control, 
respectively. An individual causal effect is defined 
as the difference between these two potential out-
comes at the same point in time, or δ = Y1 − Y0. 
The average of the individual causal effects, or the 
average causal effect (ACE), can be written as  
E[Y1 − Y0] = E[δ], where E is the expectation sign, 
indicating the average of all subjects. Causal effects 
may well differ across individuals.

However, individual causal effects are never 
observable because more than one intervention 
cannot be independently given to the same indi-
vidual at the same time. In a parallel-group ran-
domized study, each patient receives only one 
intervention, either treatment or control, and so 
the outcome is observed for only one of the poten-
tial outcomes for that patient. Causal inference is 
thus a huge missing data problem, in which half of 
the data for each individual is unobserved. How, 
then, can causal inference be made? This is the 
Fundamental Problem of Causal Inference.

Average Causal Effect

While individual causal effects cannot be 
observed, the average of the individual causal 
effects, the ACE, is estimated in a randomized 
study. If the individual causal effects were observ-
able, it is mathematically true that the average  
of the individual differences (i.e., causal effects) 
would equal the difference in average response for 
treatment and control, ignoring individuals, such 
that E[δ] = E[Y1 − Y0] = E[Y1] − E[Y0]. Thus, 
although no patient receives both treatments, in  
a randomized study, researchers can estimate the 
ACE from the difference in mean outcome between 
the treatment and control groups. This is true 
because treatment assignment is independent of 
potential confounders, and as a result, patients in 
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the two groups are very similar, on average, on fac-
tors that might affect outcome. When randomized 
groups are compared on the outcome, the esti-
mated difference between groups estimates the 
ACE for individuals.

Nonrandomized Studies

Researchers sometimes strive to make causal infer-
ence from nonrandomized studies in which patients 
have received either one or another of two inter-
ventions. The major problem with achieving this 
goal is selection bias since the treatment assign-
ment has not been random and the groups to be 
compared likely differ on variables (other than  
the treatment) that cause the outcome of interest. 
Selection bias results in confounding, or distortion, 
of the causal effect of interest. In some situations, 
it may not be possible to conduct a randomized 
study due to time, resources, or ethics, making  
the option of causal inference in a nonrandomized 
study appealing.

Because it is quite difficult to make causal infer-
ence in a nonrandomized study, the traditional 
practice in biomedical research has been to not try 
to make causal inference. Instead of a cause-effect 
relationship, researchers have typically made infer-
ences about the association between an interven-
tion and an outcome in nonrandomized studies. 
For example, researchers might conclude that 
patients taking Drug A during surgery are less 
likely to have a postoperative complication than 
are patients taking Drug B. They would be less 
likely to conclude that Drug A causes a reduction 
in outcome compared with Drug B, and rightly so. 
However, special methods are available to attempt 
some degree of valid causal inference in nonran-
domized studies.

Correlation Does Not Imply Causation

It is critical to remember that correlation does 
not imply causation. Other than a true cause-effect 
relationship, there are four main reasons why a 
statistically significant result might be obtained  
in a nonrandomized study: chance (random error), 
bias (systematic error), effect-cause relationship, 
and confounding. To entertain causal inference, 
each of these four reasons must be considered and 
ruled out to the best of a researcher’s ability.

Random error and bias can lead to spurious 
findings that do not represent true effects in the 
population. Random error may occur as a result of 
measurement error or from the variability inherent 
in sampling (i.e., Type I error). Significant results 
due to systematic bias may result from off-target 
measurements by the observer, the instrument, or 
the patient. These errors can also occur in random-
ized studies.

Effect-cause and confounding are based on true 
effects, but they are not cause-effect. A positive or 
negative association between an exposure and  
an outcome might represent a true effect-cause 
relationship, instead of cause-effect. For example, 
researchers might conclude that maintaining deep 
anesthesia (vs. light) causes poor intraoperative 
and postoperative outcome for patients, when in 
truth patients who are already developing compli-
cations intraoperatively are the ones who require 
(or “cause”) deeper anesthesia to keep them stable 
during surgery.

Finally, confounding by one or more variables 
might explain the association between the expo-
sure and outcome, where a confounder is a vari-
able associated with both. In confounding, a third 
factor (e.g., smoking) is a cause of the outcome 
(e.g., cancer) and also of the exposure (e.g., coffee 
drinking), resulting in an association between cof-
fee drinking and cancer that is real but not causal. 
Confounding is often due to the unavoidable 
selection bias or treatment assignment bias in non-
randomized studies. Patients are likely to differ on 
variables responsible for them being in one treat-
ment group versus the other. Since some of these 
variables are also likely to be related to the out-
come of interest, the treatment effect of interest is 
confounded, or distorted, by these baseline vari-
ables unless addressed in the design or analysis 
phase.

Adjusting for Confounding in Design Stage

In the design phase of a nonrandomized study, 
confounding can be tackled by narrowing the 
inclusion criteria to focus on certain level(s) of a 
confounder, or by matching. In matching, nonex-
posed patients may be chosen to be very similar 
to the exposed patients on important confound-
ing variables (e.g., age, sex, body mass index). 
Alternatively, case-control designs might match 
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diseased and nondiseased on important confound-
ers. Matching can be done on individual patients 
(1:1 or 1:k) or by choosing patients so that distri-
butions are similar (i.e., frequency matching). 
However, it is logistically difficult to match on a 
large number of confounders. To the extent that 
all confounders are accounted for, and explana-
tions other than cause-effect have been ruled out, 
some degree of cause-effect relationship may be 
inferred when matched groups are compared on 
outcome.

Adjusting for Confounding in Analysis Stage

In the analysis phase, confounding can be 
addressed by stratification, multivariable regres-
sion models, and propensity score methods. More 
complex methods, including instrumental vari-
able analysis and structural equation models, may 
sometimes be used when the above are not ade-
quate or feasible. A common concern is whether all 
confounding variables are known and observed.

Stratification analysis consists of estimating the 
relationship of interest between a hypothesized 
cause and an outcome within levels of a variable 
believed to confound the relationship. For exam-
ple, if patients are selected to receive one interven-
tion versus another based on baseline severity, 
analysis comparing intervention and outcome 
could be done within each level of baseline sever-
ity, and results averaged across levels.

Multivariable regression statistically adjusts  
for confounding variables by including them in the 
statistical model used to assess the relationship 
between the intervention and outcome.

Propensity score analysis is becoming main-
streamed as one of the best ways to remove con-
founding via selection bias in nonrandomized 
studies. First, a logistic regression model predict-
ing treatment assignment from available baseline 
potential confounders is used to assign each patient 
a score representing the probability that he or she 
would receive treatment (vs. control). Intervention 
and control patients are then compared on the 
outcome(s) of interest after adjusting for the pro-
pensity scores through stratification, matching, or 
weighting.

There is a growing body of literature and practice 
using special statistical methods where researchers 
are sometimes able to legitimately make some degree 

of causal inference in nonrandomized studies. The 
extent to which causal inference is justified in a  
nonrandomized study depends on the nature and 
knowledge of the research question, design of the 
study, knowledge and availability of all true con-
founding variables, quality of the available data, and 
skill with which analytical methods are employed.

Causal Diagrams

A causal diagram is a concise way to explore and 
explain causal relationships among variables. It 
was popularized by Judea Pearl as a method of 
displaying adjustment for a third variable or set of 
variables (Z) to allow causal inference between a 
cause (X) and effect (Y). Confounding of a causal 
relationship of interest and the correct (or incor-
rect) adjustment for confounding can be visualized 
in a causal diagram. Causal diagrams depend on 
subject matter experts to guide the plausibility of 
the postulated relationships. The most common 
and basic causal diagram is called a directed acy-
clic graph, or DAG.

Directed Acyclic Graph

A DAG is a graphical description of causal rela-
tionships among variables. Many different statisti-
cal models would fit any particular DAG. A DAG 
consists of vertices or nodes representing variables, 
edges connecting some of the variables, and arrows 
indicating the direction of relationships among 
variables. An edge marked by a single arrow is 
“directed” and indicates the direction of the causal 
relationship. For example, X → Y → Z implies 
that X causes Y, Y causes Z, and X causes Z only 
through its effect on Y. Variables that are not 
directly connected in the DAG are assumed to not 
be causally related. Acyclic indicates that the DAG 
does not allow representation of mutual causation 
or feedback processes such as X → Y, Y → X. Each 
causal relationship can only go in one direction in 
a DAG, and, typically, only causal relationships 
are of interest.

Conditioning on variables that block back-
door paths from causal variables to outcome is 
the first and most widely used strategy to adjust 
for confounding. A backdoor path is a connected 
set of variables going from the cause to the effect 
of interest through an indirect route. A backdoor 
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path indirectly connects the exposure and out-
come, and includes at least one variable pointing 
to (i.e., causing) the exposure and one to the 
outcome.

For example, researchers may want to compare 
two anesthetic regimens for a particular type of 
surgery on a postoperative complication outcome 
by analyzing a patient registry. Patients with higher 
baseline severity are more likely to receive regimen 
A than B, and severity is also a strong indicator of 
outcome apart from its effect on treatment assign-
ment. The causal diagram in Figure 1 displays the 
relationships between severity, regimen, and out-
come, with backdoor path D ← C → Y.

Severity (C) confounds the relationship between 
treatment (D) and outcome (Y) because it is a 
cause of both D and Y. The confounding effect of 
C could be removed by conditioning on C in one 
of several ways. In stratification, the D → Y effect 
of interest would be estimated within levels of C 
and then averaged. Multivariable regression could 
account for the C → Y relationship when assess-
ing D → Y and would simultaneously compare 
levels of D at the average value of C. Finally, pro-
pensity score analysis could be used to match 
patients who did and did not receive D on the 
predicted probability that they would receive D, 
based on severity. Each of these methods would 
enhance the validity of making a causal inference 
between D and Y by conditioning on C.

When conditioning strategies are not feasible, 
instrumental variable (IV) techniques can some-
times be used. An IV has a causal effect on out-
come Y only through its effect on the treatment 
variable D, as in the DAG IV → D → Y. Such 
variables are rare since variables responsible for 

treatment assignment are often related to outcome 
through additional causal paths. A true instru-
mental variable can be used to estimate the causal 
effect of D on Y by assessing IV → D and IV → Y 
and then using the ratio between these two effects 
to isolate the relationship between D and Y.

Finally, structural equation models can establish 
an isolated and exhaustive mechanism that relates 
the causal variable to the outcome and then calcu-
late the causal effect as it propagates through the 
mechanism.

Using a DAG to Decide  
Which Variables to Condition On

Causal diagrams are useful in deciding which 
variables need to be adjusted for, to remove con-
founding in the cause-effect relationship of inter-
est. First, all arrows emanating away from the 
exposure of interest are removed. Then, if there 
remains a backdoor path connecting the exposure 
and outcome, one adjusts for variables on the 
path. Variables not on a backdoor path do not 
need to be adjusted for.

A D-separation criterion, also called blocking, 
was introduced by Pearl as a method to determine 
if confounding has been removed from a causal 
pathway in a DAG. A set of variables (or nodes)  
Z is said to D-separate a set of confounders X 
from Y if and only if Z blocks every path from a 
node in X to a node in Y. D-separation requires 
either causal chains or causal forks or both. Z 
must not include so-called collider variables (see 
Figure 2), which can unblock a backdoor path by 
adjusting for them, thus introducing confounding.

Causal chains (i → m → j) and causal forks  
(i ← m → j) show D-separation because the two 
extreme variables are marginally dependent but 
become independent of each other, or blocked, 
once the researchers condition on (i.e., adjust for) 
the middle variable, m. In a causal chain, after 
conditioning on m, the potential confounder, i, has 
no effect on the probability of outcome, j.

Figure 1 is an example of a causal fork. 
Adjusting for severity of disease, the middle vari-
able in the fork, removes the confounding on the 
relationship between the treatment and outcome. 
The relationship between treatment and outcome 
can then be estimated free of confounding by m.

Inverted forks (i → m ← j), which include col-
liders, act the opposite way (Figure 2). A collider is 

Severity of disease effects
treatment and outcome

C

        

D
Treatment received
based on severity

Y
Outcome

Figure 1   Directed acyclic graph showing confounding 
of D-Y causal effect by C
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variable m on a backdoor path that is caused  
by two or more known or unknown variables. If 
the extremes, i and j, are independent, they will 
become dependent once m or any of its descen-
dents is conditioned on. This dependence will cre-
ate confounding if, for example, i is also a cause of 
the outcome, Y, and j is also a cause of the expo-
sure, D. So if a backdoor path between the cause 
and effect of interest includes a collider variable, 
confounding will be introduced if researchers 
adjust for it alone.

Consider the potential causal relationship 
between anesthetic technique D and postoperative 
complication Y. Suppose covariables severity of 
disease, I, and surgeon, J, are causes of an intraop-
erative variable M (blood loss), which is also a 
cause of outcome Y. Furthermore, suppose the 
variables are related as in Figure 2, with J also 
causing D and I also causing Y. There would be no 
confounding if we adjust for all three variables—I, 
J, and M—since that would completely block the 
backdoor path between D and Y. Also, there 
would be no confounding if we adjust for none of 
the three variables, since I and J are independent. 
However, confounding would be introduced if we 
only adjust for the intraoperative variable, M, 
since that would introduce dependence between 
surgeon (J), a cause of D, and severity of disease 
(I), a cause of Y. This underappreciated problem 
due to colliders often surfaces when the variable M 
is observable, such as at baseline measurement  

of outcome, but there exist unobserved variables  
(I and J) causing M and also related to the expo-
sure and the outcome.

In analyses attempting causal inference in  
the nonrandomized setting, a crucial limitation is 
that all confounding can usually not be accounted 
for because variables are either unknown or un-  
available. In nonrandomized studies, causal infer-
ence can only be attempted with this important 
qualification.

Ed Mascha
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Figure 2  Conditioning on a collider variable
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Causal inferenCe in mediCal 
deCision making

One of the most important tasks of decision ana-
lysts is to derive causal interpretations, on both 
the level of decision modeling and the level of sta-
tistical analyses of original data sets. Usually, an 
intervention, action, strategy, or risk factor profile 
is modeled to have a “causal effect” on one or 
more model parameters (e.g., probability, rate, or 
mean) of an outcome such as morbidity, mortal-
ity, quality of life, or any other outcome.

This entry introduces the key concepts of 
causal inference in medical decision making and 
explains the related concepts such as counterfac-
tuals, causal graphs, and causal models and links 
them to well-known concepts of confounding. 
Finally, two examples are used to illustrate 
causal inference modeling for exposures and 
treatments.

Background

Decision analyses on risk factor interventions fre-
quently include parameters derived from clinical 
or epidemiologic studies such as single relative 
risks or multivariate risk prediction functions (e.g., 
Framingham risk index for coronary heart disease, 
cancer risk scores, osteoporosis score). When 
applied in a decision model, changes in risk factors 
are then translated to causal effects on the risk of 
a disease or other outcome in the model. Thus, the 
causal interpretation of the modeling results 
strongly depends on the causal interpretation of 
each modeled risk factor. Therefore, this entry has 
a strong focus on epidemiologic modeling, which 
yields the parameters for the decision model.

Study Designs

The gold standard design to evaluate causal effects is 
the randomized controlled clinical trial. However, 
most decision models include (at least some) param-
eters or risk functions derived from epi demiologic 
(i.e., observational) studies, which have the potential 
for confounding. It is, therefore, crucial that all 
model parameters derived from epi demiologic stud-
ies be properly adjusted for confounding if one wants 
to use the results to derive causal interpretations.

Confounding

Definition of Confounding

Time-Independent Confounding

Standard textbook definitions of confounding 
and methods to control for confounding refer to 
independent risk factors for the outcome that are 
associated with the risk factor of interest but are 
not an intermediate step in the pathway from the 
risk factor to disease.

Time-Dependent Confounding

The more complicated (but probably not less 
common) case of time-dependent confound ing 
refers to variables that may vary over time and 
simultaneously act as confounders (e.g., common 
cause of both exposure and disease) and intermedi-
ate steps (on the causal pathway from exposure to 
disease). In other words, confounder and exposure 
of interest mutually affect each other. For example, 
in a model evaluating the effect of weight loss on 
the risk of coronary heart disease, physical activity 
could be a time-dependent confounder because it  
is an independent risk factor for coronary heart 
disease, it influences weight, and it can also be influ-
enced by weight.

C2 DC1 ED

C

E
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Figure 1  (a) Time-independent confounding and (b) time-dependent confounding
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Control for Confounding

Traditional textbook techniques to control for 
time-independent confounding include restriction, 
stratification, matching, and multivariate regres-
sion analysis. However, these methods have been 
criticized for being inadequate to control for time-
dependent confounding. Other methods such as 
g-computation, marginal structural models, or 
structural nested models have been suggested as 
approaches to this problem.

Relevant Questions

To do a proper causal analysis, one must answer 
three questions:

 1. Which a priori assumptions can be made about 
the causal relationships between the variables of 
an epidemiological study?

 2. Under these assumptions, are the observed data 
sufficient to control for confounding?

 3. What methods are appropriate to control for 
confounding?

Causal graphs can guide us in answering these 
questions.

Causal Graphs

Causal diagrams have a long history of informal 
application. More recently, formal concepts and 
rules have been developed for the use and inter-
pretation of causal graphs, for example, in expert 
systems and operational research. Causal graphs 
can guide the process of identification of variables 
that must be measured and considered in the 
analysis to obtain unbiased (unconfounded) effect 
estimates. In their milestone paper “Causal 
Diagrams for Epidemiologic Research,” published 
in 1999 in the journal Epidemiology, Sander 
Greenland, Judea Pearl, and James M. Robins pro-
vide an introduction to these developments and 
their use in epidemiologic research.

Use of Directed Acyclic Graphs in  
Epidemiology and Medical Decision Making

Directed acyclic graphs (DAGs) are a specific 
form of causal graph that can be used to under-
stand and explicitly state causal a priori assump-
tions about the underlying biological mechanisms. 
DAGs consist of a set of nodes and directed links 
(arrows) that connect certain pairs of nodes. In 

medical decision-making research and epidemiol-
ogy, nodes are used to represent variables, and 
arrows denote causal relationships. A set of formal 
and precise graphical rules and assumptions for 
DAGs has been developed, including a graphical 
method called d-separation, the causal Markov 
assumption, and a graphically oriented definition 
of confounding named the backdoor criterion. 
These methods allow researchers to determine

whether they can estimate an unbiased effect  •
from the observed data,
which variables must be adjusted for in the  •
analysis, and
which statistical methods can be used to obtain  •
unbiased causal effects.

Specific Applications of Directed Acyclic Graphs

Besides helping with the questions mentioned 
above, DAGs offer a readily accessible approach to 
understanding complex statistical issues, includ-
ing the fallibility of estimating direct effects (i.e., 
controlling for intermediate steps), the rationale  
for instrumental variables, and controlling for com-
pliance in randomized clinical trials (when both 
“intention to treat” and “per protocol” analyses 
can fail to yield the true causal intervention effect).

Key Lessons Learned From Causal Graphs

There are several lessons to be learned from causal 
graph theory. In particular, applying the formal rules 
of DAGs, one can derive four key messages.

Key message 1: Controlling for nonconfounders can 
induce severe bias in any direction.

The second lesson follows directly from message 1.

Key message 2: The selection of confounders must 
be based on a priori causal assumptions.

Further messages follow.

Key message 3: Estimating direct effects (i.e., con-
trolling for a known intermediate step variable) can 
be problematic.

As traditional regression analysis can either con-
trol for a variable or not, it cannot appropriately 
adjust for confounders that are simultaneously 
affected by the intervention or risk factor of inter-
est (i.e., time-dependent confounding). This leads 
to the last message.
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Key message 4: Traditional adjustment methods (e.g., 
stratification or multivariate regression analysis) may 
fail to control for time-dependent confounding.

The following section provides some cases.

Quantitative Models of Causal Inference

Counterfactual Principle

Whereas causal graphs allow for deducting 
qualitative information about causal effects, medi-
cal decision making usually needs quantitative 
results to inform decisions. One type of quantita-
tive model originating with Neyman and Fisher in 
the early 20th century is the counterfactual model. 
In such a model, an association is defined as causal 
when it is believed that, had the cause been altered, 
the effect would have changed as well. This defini-
tion relies on the so-called counterfactual principle, 
that is, what would have happened if, contrary to 
the fact, the risk factor or intervention had been 
something other than what it actually was.

Classes of Quantitative Causal Models

There are several classes of quantitative models 
for causal inference that are able to deal with both 
time-independent and time-dependent confound-
ing. The following model classes are the most recent 
innovations and increasingly used in medical deci-
sion making and epidemiology:

inverse probability of treatment weighting  •
(marginal structured models),
g-estimation, and •
parametric g-formula. •

In the case of time-dependent confounding, all 
three of these methods require longitudinal data. 
This is not—as has been erroneously mentioned—a 
weakness of these modeling techniques. It is rather 
quite obvious that disentangling the causality of the 
feedback loop between the intervention of interest 
and the time-dependent confounder (which is a 
cause and effect of the intervention of interest) 
requires repeated measurements of the same vari-
able. Hence, it is due to the inherent causal nature 
that observational data with time-dependent con-
founding can only be solved with longitudinal data.

All these techniques are quite complex and 
require special programming. The following para-
graphs give an overview of how the key approaches 
differ between these models.

Inverse Probability of Treatment  
Weighting (Marginal Structured Models)

The imbalance regarding the confounder variable 
in each of the treatment (or exposure) categories is 
resolved in the following way: The technique of 
inverse probability of treatment weighting creates a 
pseudo population (i.e., counterfactual population); 
that is, for each subject receiving treatment, another 
(counterfactual) subject that does not receive the 
treatment but has the same properties regarding the 
past variable history is added to the data set. This 
weighting procedure yields a balanced (unconfoun-
ded) data set, and the crude effect estimates derived 
from this data set represent causal effects. In the 
presence of time-depending confounding, this step is 
repeated for each repeated measurement time.

g-Estimation

This approach is based on the assumption of 
no unmeasured confounding. Under this assump-
tion, the outcome is independent of the exposure, 
given the past history of covariables. The g-esti-
mation procedure is started with assuming a 
mathematical model. Then the model parameters 
are systematically varied in a grid search until the 
outcome is in fact independent of the exposure in 
the data set. The final values of the parameters 
are the ones with a causal interpretation.

Parametric g-Formula

The data set is divided into intervals. For each 
interval, traditional multivariate regression analy-
sis can be performed (separately or pooled) con-
trolling for the past history of variables but not 
including future measurements into the regression 
model. Subsequently, simulation techniques (e.g., 
Monte Carlo simulation) can be used to simulate 
the overall effect of one exposure or treatment ver-
sus another based on the parametrized regression 
equations.

Examples

Causal Analysis of Risk Factors: The Causal  
Effect of Public Health Interventions on the Risk  
of Coronary Heart Disease

Background

The World Health Organization (WHO) has 
established a project on comparative risk assessment 
for coronary heart disease (CHD) that evaluates the 
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overall impact of several public health interventions 
on the risk of CHD. The causal diagram for CHD 
was defined by a WHO panel of epidemiologists. 
This diagram represents the prior knowledge about 
the causal links among CHD risk factors, potential 
risk factors, confounders, intermediate variables, 
and the outcome, CHD.

Given that multiple direct and indirect risk fac-
tors are part of the causal web of CHD, such an 
evaluation not only must consider the direct effect 
of the risk factors under intervention but should 
also include their effects mediated through other 
risk factors. As various risk factors simultaneously 
act as confounders and as intermediate steps,  
traditional regression analysis is not an appropri-
ate method to control for confounding, and a 
causal method must be used.

Methods

The analysis was based on the Framingham 
Offspring Study longitudinal data (n = 5,124) with 
a 20-year follow-up. The parametric g-formula was 
used to adjust for time-dependent confounding and 
to estimate the counterfactual CHD risk under each 
intervention. Pooled logistic regression models 
were used to predict risk factors and CHD distribu-
tions conditional on given risk factor history. The 
Monte Carlo technique and the bootstrap method 

were used to estimate relative CHD risks with 95% 
confidence intervals. Evaluated strategies included 
interventions on smoking, alcohol consumption, 
body mass index (BMI), and low-density lipopro-
tein (LDL), and a combined strategy.

Results

The simulated 12-year risk of CHD under no 
intervention was about 8% for males and 3% for 
females. Smoking cessation at baseline in all smok-
ers had a statistically significant relative risk of 
.8 in males and females (p < .05). The relative risk 
after shifting the LDL distribution to the distribu-
tion of the Chinese population was .7 for men and 
.5 for women (both p < .05). Shifting alcohol con-
sumption to moderate alcohol intake or constantly 
lowering BMI to 22 kg/m2 did not change CHD risk 
significantly. The combined intervention on smok-
ing cessation, BMI, and LDL reduced the CHD risk 
by more than 50% in men and women (p < .05).

Conclusions

The parametric g-formula could be applied in a 
multiple risk factor analysis with time-dependent 
confounding, where traditional regression analy-
sis fails. It showed that combined interventions 
have a joint potential of reducing CHD risk by 
more than 50%.

Age
Physical
Activity

Diabetes

Fat Intake

CHDLDL-Chol

BMI

Blood
pressure

Smoking
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Figure 2  Causal diagram for CHD
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Causal Analysis of Treatment: The Adherence-
Adjusted Effect of Hormone Therapy on  
Coronary Heart Disease

Background

The Women’s Health Initiative (WHI) random-
ized trial found greater CHD risk in women 
assigned to estrogen/progestin therapy than in 
those assigned to a placebo. Observational studies 
had previously suggested reduced CHD risk in 
hormone users.

Methods

Miguel A. Hernán and colleagues used the data 
from the observational Nurses’ Health Study. They 
emulated the design and intention-to-treat (ITT) 
analysis of the WHI randomized trial. Because the 
ITT approach causes severe treatment misclassifica-
tion, the authors also controlled for time-dependent 
confounding and estimated adherence-adjusted 
effects by inverse probability weighting. Hazard 
ratios of CHD were calculated comparing initiators 
versus noninitiators of estrogen/progestin treatment.

Results

The results showed ITT hazard ratios of CHD 
similar to those from the WHI. The results from 
inverse-probability of treatment weighting analysis 
suggest that continuous hormone therapy causes a 
net reduction in CHD among women starting ther-
apy within 10 years of menopause, and a net increase 
among those starting later. However, the authors 
mentioned that it cannot be excluded that either of 
these effects could be due to sampling variability.

Conclusions

These findings suggest that the discrepancies 
between the WHI and Nurses’ Health Study ITT 
estimates could be largely explained by differences 
in the distribution of time since menopause and 
length of follow-up. The probability of treatment 
analysis allowed adjustment for adherence and 
determination of the CHD risks of hormone therapy 
versus no hormone therapy under full adherence.

Uwe Siebert

See also Applied Decision Analysis; Bias in Scientific 
Studies; Causal Inference and Diagrams; Confounding 
and Effect Modulation
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Certainty effeCt

Within decision making, the certainty effect is used 
to describe the impact of certainty on the decision 
maker. People are drawn to certainty, giving 
higher preference to options that have high levels 
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of certainty. An option with high certainty (close 
to 0% or 100%) is more appealing to people than 
a complex or ambiguous probability. This causes 
many decision makers to choose options that go 
against the expected utility of the problem. A 
reduction in probability has a greater impact on 
the decision maker if the initial outcome is certain. 
For example, a reduction in survivability from 
100% to 90% would have a greater impact than a 
reduction in survivability from 70% to 60%.

The underlying reason for the certainty effect 
falls on a person’s preference for certain or absolute 
values. People will bear psychological effects from 
feelings both of certainty and of uncertainty. They 
prefer certainty, rather than complexity and ambi-
guity. Most decision makers cannot clearly define 
the difference between two probabilities, especially 
if they are ambiguous. Rather than consider exact 
probabilities, people often lump outcomes into cat-
egories such as “likely” and “unlikely.” This makes 
comparison between two “likely” probabilities dif-
ficult. For example, if a healthcare provider explains 
two courses of treatment to a patient, he or she may 
present some probability of full recovery. If both 
options presented a midrange probability, it would 
be difficult for the patient to decipher the true differ-
ence between them. Consider the case where the 
first course of treatment presents a 70% chance of 
full recovery, whereas the second presents a 60% 
chance of full recovery. Most people would be 
unable to differentiate between these two probabili-
ties but would rather refer to them as “good 
chances,” “likely,” or “better than average.” If one 
course of treatment had extreme certainty (close to 
100% in this example), the decision maker would 
put a higher weight on the certain treatment. This is 
due to the fact that decision makers tend to elimi-
nate uncertainty altogether by overweighting the 
certain outcomes.

Consider the following case, originally pre-
sented by Amos Tversky and Daniel Kahneman. 
Treatment A leads to a 20% chance of imminent 
death and an 80% chance of normal life, with a 
longevity of 30 years. Treatment B leads to a 
100% chance of normal life with a longevity of 18 
years. According to expected utility theory, ratio-
nal decision makers would choose Treatment A as 
it provides a higher utility in terms of lifespan  
(24 years compared with 18 years). However, the 
majority of decision makers choose Treatment B. 
This is a prime example of the certainty effect in 

practice. Decision makers, be they physicians or 
patients, have a high preference for certain out-
comes, regardless of the comparative utilities asso-
ciated with them.

Decision makers are confident when handling 
extreme probabilities (near 0 or 1.0). When the prob-
abilities are not as certain, however, the weighting of 
alternatives becomes disproportionate. Decreasing a 
risk from 5% to 0% should have the same utility as 
decreasing that risk from 20% to 15%. However, 
decision makers greatly prefer the first.

An experiment introduced by Richard 
Zeckhauser illustrates the certainty effect phenom-
enon. Respondents in the experiment were asked 
to imagine that they were compelled to play 
Russian roulette. They were given the opportunity 
to purchase the removal of one bullet from the 
loaded gun by choosing one option. Option 1 
allowed them to reduce the number of bullets from 
four to three. Option 2 allowed them to reduce the 
number of bullets from one to zero. The respon-
dents were asked to how much they would be will-
ing to pay for each option. The result was that a 
majority of respondents would pay much more for 
the second option. This is the option that reduced 
their chances of being shot to 0.

On examination of both options, it is clear that 
the utility of each option is equal. Option 1 has a 
probability of being shot of 67%, which is reduced 
to 50% on removal of one bullet. Option 2 has a 
probability of being shot of 17%, which is reduced 
to 0% on removal of one bullet. Both options 
experienced a reduction of probability (or risk) of 
17%. From the perspective of utility, both options 
are the same. However, people strongly preferred 
the option that led to certainty: Option 2.

The certainty effect is noticeable in situations 
that have positive prospects as well as those with 
negative prospects. In the positive domain, deci-
sion makers address scenarios in which there is a 
probability of a gain. Examples could include win-
ning money in a lottery or increasing life expec-
tancy. The key component of the certainty effect, 
one’s overweighting of certainty, favors risk aver-
sion in the positive domain. The decision maker 
would prefer a sure gain over a larger gain that is 
merely probable. In the negative domain, decision 
makers consider effects when presented with a loss 
scenario. This could include loss of life, increased 
illness, or side effects. The overweighting of cer-
tainty favors risk seeking in the domain of losses. 
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In the negative domain, the same effect leads to  
a risk-seeking preference for a loss that is merely 
probable over a smaller loss that is certain.

The certainty effect is a demonstration of how 
humans do not make rational decisions. This is not 
to say that they make incorrect decisions but rather 
that they have a stated preference toward things that 
are absolute. The certainty effect should be consid-
ered when evaluating how people make decisions.

Lesley Strawderman and Han Zhang
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Certainty equivalent

When examining the potential outcomes a given 
event may hold, a person is likely to approximate 
the probability of each possible result. Taken into 
consideration by the individual is the degree to 
which any of these outcomes may be certain. That 
is, although the benefit derived from an event with 
a lesser or unknown likelihood of occurring may be 
much greater, people often tend to opt for the less 
advantageous, although more certain, outcome. An 
influential variable, however, is to what degree the 
individual finds the certain outcome to be of value. 
Thus, certainty equivalents are the amount of util-
ity, or usefulness, that a person will consider to 
forgo an offered gamble. When the person becomes 
indifferent between the choice of a certain event 
and a probabilistic one, the value of the certain 
event is called the certainty equivalent.

Certainty equivalents are used most frequently 
in an outward sense within the realm of economic 
ventures, though individuals may subconsciously 
use the framework for any scenario in which a 
gamble presents itself. The utility terms will there-
fore vary with the application as what is consid-
ered beneficial is highly circumstantial. Within 
medical decision making, however, certainty equiv-
alents could include financial aspects relating to 
choices in care, various measures of quality of life 
for the self and for others, or potential recovery 
periods. The difference between the expected value 
of indefinite outcomes and the certainty equivalent 
is referred to as the risk premium.

Finding Certainty Equivalents

A number of mathematical methods exist for find-
ing the certainty equivalent based on the utility func-
tion being presented. However, in practice, a person’s 
certainty equivalent can be found more pragmati-
cally by asking a series of questions. Each question 
should ask the person to choose one of two options. 
The first option presents a gamble, whereas the sec-
ond option presents a certain outcome. If the person 
chooses the gamble, a second question is posed. This 
time, the first option remains the same, but the con-
ditions of the gamble are altered. The question is 
presented to the individual so that the perceived 
benefit or the probability of such has been increased. 
This line of questioning continues until the person 
either chooses the second option (a given payout) or 
says he or she cannot decide. At this point, the value 
of the payout becomes the certainty equivalent.

Responses to Risk

Enhancements to actual gain or likelihood ratios 
will produce varying responses, many of which are 
dependent on the individual’s bearing. While one 
person may be inclined to accept a gamble for a 
larger disbursement based on a lower probability, 
another may require a large probability for even 
the lowest of disbursements. While these variances 
are indeed environmentally produced, it has been 
suggested that inherent personality differences 
affect an individual’s willingness to entertain the 
idea of a gamble over a more certain outcome.

Most people are considered risk-averse. That is, 
they avoid risk whenever necessary, rather opting 
for a certain outcome. For a risk-averse person, the 
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certainty equivalent is generally lower than the 
expected value of the gamble. This condition is pres-
ent in individuals who desire to behave in a way so 
as to reduce potential uncertainties. That is, people 
of this nature are likely to respond to expected out-
comes, however smaller the advantage of a less 
assured event may be. The risk premium for a risk-
averse person would be positive. He or she would 
require an extra incentive to take the gamble, usu-
ally found in the form of an increase in the probabil-
ity of a given event occurring rather than an 
augmentation of the prospective payout.

A risk-seeking person, however, would have a 
certainty equivalent that is higher than the expected 
value of the gamble, indicating his or her preference 
for scenarios in which the outcome is less certain. 
The risk premium for a risk-seeking person would 
be negative. He or she would require an extra 
incentive to not take the gamble. It should be noted, 
however, that people who possess this characteris-
tic are more likely to respond to rewards than to 
punishments. For example, given the same outcome 
for two given events, one certain and one probabi-
listic, an individual who is risk-seeking is unlikely 
to be deterred by the potential loss or detriment 
caused by an unsuccessful gamble. That is, the pay-
out is of more importance than the probability; 
decreasing the likelihood of success in the gambling 
scenario is unlikely to dissuade that choice. Rather, 
a more efficient dis   couragement would come in the 
form of increasing the payout of the certain event 
or decreasing the payout of the gamble.

A risk-neutral person would have a certainty 
equivalent equal to the expected value of the gam-
ble, leading to a risk premium of zero. Whereas 
people averse to risk require alterations in probabil-
ities, and people attracted to risk require alterations 
in perceived benefits, those who are risk-neutral 
may respond to either of these variants. Individuals 
exhibiting indifference toward two more or less cer-
tain outcomes will be equally influenced by altera-
tions to probability as well as to benefit. As opposed 
to other scenarios, within medical decision making 
it should also be considered that individuals are apt 
to take into account not only the expected benefit 
but the prospective harm that may result as well.

Application to Healthcare

As with other concepts within expected utility 
theory, frameworks of certainty equivalents can 

be applied to healthcare. Particularly when a 
patient is capable of receiving treatment through 
multiple options, the treating physician as well as 
the individual and his or her family are likely to 
consider certainty equivalents. The utility at hand 
becomes the treatment outcomes (recovery period, 
additional life expectancy), rather than the tradi-
tional financial outcomes. Therefore, within 
healthcare, although financial considerations are 
certainly taken into account when determining 
courses of treatment, the degrees of likelihood and 
their associated risks and benefits are more influ-
ential. Within more conventional gambling sce-
narios, the perceived benefit is often what drives 
the decision to participate or forgo the opportu-
nity. When considering medical decision making, 
however, patients are likely to weigh equally the 
potential risks, such as the amount of pain 
expected or the risks associated with a given 
course of treatment.

For example, consider a patient who is pre-
sented with two treatment options. Treatment A  
is a lottery. Treatment A gives the patient a 50% 
chance of living an additional 10 years and a 
50% chance of living an additional 5 years. 
Treatment B, however, is certain, giving the 
patient a 100% chance of living X years. 
According to expected utility theory, these two 
treatment options would have equal utility when 
X = 7.5 years. If the patient is risk-averse, their 
certainty equivalent would be lower, possibly X 
= 6 years. This means that he or she would 
choose Treatment B only if X ≥ 6. A risk-seeking 
patient, however, would have a higher certainty 
equivalent, possibly X = 8 years. In this case, the 
patient would choose Treatment B only if X ≥ 8 
years. Otherwise, he or she would opt for 
Treatment A, preferring to take a gamble. The 
above example assumes, however, that the most 
important consideration when determining 
courses of medical treatment is the additional life 
expectancy gained. A more holistic approach 
realizes that multiple considerations are often 
influential within medical decision making, such 
as the expected quality of life associated with 
varying treatments.

Lesley Strawderman and Lacey Schaefer
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Aversion
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Chained gamble

Chaining (also called indirect linking) as used in the 
expression chained gamble or chained lottery is best 
conceived of as a strategy of adjusting preference 
measurement used within preference elicitation tech-
niques such as the standard gamble and time trade-
off methodologies. The approach of chaining gambles 
(or chaining lotteries) has been offered as a solution 
to the problem of within-technique inconsistency 
found with real-world use and testing of the stan-
dard gamble as a preference elicitation methodology 
in economic and medical decision making. The goal 
here is to understand why such chaining is proposed 
as an attempt to solve problems of lack of internal 
consistency (presence of internal inconsistency) in 
preference elicitation methodologies. This entry illus-
 trates chained gambles for the standard gamble.

Detecting a Lack of Internal Consistency

Internal consistency can be examined in the fol-
lowing way. One technique is based on a more 
direct value preference elicitation. This more basic 
technique is used to generate values based on a 
“basic reference exercise,” which is in fact the 
basic technique used to generate (elicit from 
patients) values across a set of outcomes. Such a 
basic reference exercise may invoke a simple elici-
tation exercise where the individual is asked to 
rank order outcomes on a scale from most desir-
able to least desirable. The second strategy, indirect 

value elicitation through a chained exercise, gen-
erates values based on the use of the standard 
gamble technique. Adam Oliver, who has exam-
ined the internal consistency of a variety of tech-
niques, including standard gambles, argues that if 
the first and the second strategies yield results that 
do not significantly or systematically differ from 
one another, then one might be able to say that 
the strategies are each internally consistent in that 
they yield the same ordering of preferences. If 
individuals distinguish between and among states 
on the basis of the basic simple direct rank order-
ing of preferences strategy but are unable to dis-
tinguish between their preferences for outcomes in 
the preference elicitation procedure, then there are 
potential problems.

Once an inconsistency is found in the use of a 
preference elicitation methodology, the search is on 
for what is causing this inconsistency. Initial con-
siderations may fall on issues related to the patients 
as respondents whose preferences are being elicited 
and who may lack experience with the use of the 
technique. To eliminate the inexperienced respon-
dent as the potential source of the problem, an 
attempt is then made to seek out and to study more 
experienced respondents, for example, more expe-
rienced professionals more familiar with the use of 
such techniques, to see if the experienced profes-
sionals also have problems with internal consis-
tency of results using the techniques. If the same 
problems (or roughly the same problems) are found 
with both groups, then the next question that 
comes up is whether the problem is with the tech-
nique being used in preference elicitation itself.

If the same type of inconsistency is found in the 
elicitation of preferences from both inexperienced 
respondents and experienced professionals, then 
the technique itself may be causing the inconsis-
tency. Chaining is a technique aimed at amending 
the inconsistencies found in the use of the standard 
gamble as a preference elicitation technique.

It should be noted, though, that any time one 
has to introduce a technique (a methodology or a 
procedure) into an arena of decision making of 
any sort, one needs to recognize that the arena 
being studied is of such a level of complexity that 
simply straightforward asking and answering of 
questions cannot always be employed to achieve 
the desired result, that is, the understanding of 
what the individual’s (the patient’s) preferences 
are across a set of outcomes.
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Cross-Technique Inconsistencies

Inconsistencies between techniques and among 
techniques may exist, but the question that needs 
addressing is inconsistency within techniques. If  
an inconsistency between or among techniques is 
found, one still needs a counting procedure for 
determining answers to the following three ques-
tions: (1) What is to count as an inconsistency?  
(2) When does an inconsistency exist within a tech-
nique? (3) What is to be used as the gold standard 
for a consistent technique? Here, there must be an 
agreement on some basic preference ordering tool 
(instrument) that then serves as the basis for decid-
ing which technique is “better” and on what 
grounds. In the example of chaining, better is 
defined in terms of more degrees of agreement 
with the results of the basic ordering tool.

Within-Technique Inconsistency  
and Standard Gamble

Using a basic ordering tool, within-technique 
inconsistency has been found with the standard 
gamble technique. Before elucidating the type of 
within-technique inconsistency that has been dem-
onstrated with the standard gamble, it is impor-
tant to understand the following definitions and 
concepts that exist within contemporary standard 
gamble discussions.

To understand chained gambles, one needs to 
understand the following basic assumptions about 
the division of healthcare states: extreme states, 
moderate states, and minor states. Extreme, mod-
erate, and minor health states may be described in 
terms of severity of state, in terms of permanence 
(degree of irreversibility) of state, or in terms of 
severity and permanence of state.

Extreme States

Typically, in the decision sciences, there are two 
extremes of health states considered. At the negative 
extreme, there is death (considered in many frame-
works as “immediate death”); at the other, positive 
extreme, there is “full or perfect health.” Yet there 
are questions whether the state “immediate death” 
is itself the extreme end of the negative range of ill 
health states. More extreme states than death as 
considered by reasonable patients may include (a) 
end-staged neurodegenerative disease processes or 
severe cerebrovascular accidents (strokes) causing 

loss of memory, loss of thinking capacity, and pro-
gressive motor loss, and (b) end-stage cardiopulmo-
nary disease (heart and lung failure) where there is 
a tremendous work of breathing and inability to 
carry out any exertion in one’s daily life.

Moderate States

In neurology, any “less severe” state of loss of 
memory, loss of thinking capacity, loss of motor 
abilities, or less severe sensory loss may be consid-
ered a more moderate state of impaired health. In 
cardiology, states of increasingly severe chest dis-
comfort or increasing limitations on one’s abili-
ties to exert oneself in walking can be described 
by some individuals as moderate states of ill health.

Minor States

Minor states are impaired states of a much 
lower intensity or severity or shortened temporal 
course than moderate states. In neurology, a minor 
degree loss of motor strength, 4.9 on a scale of 5.0, 
or in cardiovascular disease, 5 minutes of mild 
chest discomfort per week, may be considered as 
minor health states. However, as one walks patients 
down from extreme to moderate to minor heath 
states and then on down to full or perfect health, 
some patients may find it hard to distinguish 
between minor states of impaired health and states 
of full or perfect health.

Interestingly, within-technique inconsistency 
has been found as a problem within standard 
gambles when minor states are being considered by 
the patient whose preferences are being elicited.

When individuals are asked their willingness  
to trade chance of survival for improvements in 
health status in a standard gamble, oftentimes they 
are unwilling to trade chances of survival for 
improvements in health status. In a basic simple 
direct rating exercise given prior to a preference 
elicitation of an individual, the individual reports 
that he or she is able to distinguish between states, 
but then when approached with a standard gam-
ble, he or she reports that he or she is unwilling to 
trade. For example, an individual who is able to 
order full or perfect health as “better than” (more 
desirable than) a state of minor adverse or poor 
health in the basic reference exercise above is 
unwilling to trade chances of survival for improve-
ments in health status in a standard gamble.
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In the case of medical decision making, the 
approach of standard gambles has been found to 
be inconsistent in the following way: When minor 
or temporary states of health, most notably nega-
tive (adverse) states of ill health (poor health), are 
being evaluated, it is difficult for patients to evalu-
ate the preferences for minor states of poor health 
as different from states of full or perfect health. 
Thus, there is an inability to truly assess minor 
states of poor health through the standard gamble 
elicitation methodology.

Chained Gambles

One way that has been proposed to improve on 
the standard gamble as a preference elicitation 
technique is to use chained gambles. Chaining 
links minor or temporary health states to death 
through intermediate states that then all become 
the links of a chain. Here, instead of valuing a 
minor or temporary health state against immediate 
death, one values the minor state with a moderate 
(intermediate) state and then the moderate (inter-
mediate) state with immediate death.

For example, in neurology, if a slight hand tremor 
is the adverse outcome being valued, the treatment 
failure outcome in the chained comparison could be 
hand paralysis. The hand paralysis could then  
be “chained” in to form a further gamble where the 
paralysis of a hand is valued against a treatment that 
offers a chance of full or perfect health or immediate 
death. Another example can be found in the area of 
vascular surgery and peripheral vascular disease. If 
an individual is considering a state of intermittent 
claudication (cramplike discomfort felt in the lower 
legs and thighs often due to blockages in the supply 
of blood to the lower legs), intermittent claudication 
could be valued as the intermediate state in the chain 
against the loss of the ability to walk.

Here, minor and temporary adverse health states 
are valued relative to moderate and severe health 
states that are then valued against full or perfect 
health and immediate death. This use of chaining 
then assumes that through the use of such interme-
diate states, preferences will be preserved (more 
matching of preferences with the standard gamble 
when compared with preferences elicited by the 
basic reference exercise) and will be detected and 
picked up in a standard gamble that had previously 
been considered as “sufficiently insensitive” to pick 
up key nuances in patient preferences. Oliver  

phra ses the goal of chaining as the achievement of a 
consistent methodology where “direct value prefer-
ence elicitation through a basic reference exercise” 
and “indirect value elicitation through a chained 
exercise” generate values that do not significantly or 
systematically differ from one another.

Future Use and Research

There is much need for preference elicitation strat-
egies beyond disease states requiring surgery of 
terminal medical conditions. Possible uses of chain-
ing are with patients with chronic illnesses, such  
as rheumatoid arthritis. Here, many patients are  
in chronic states of compromised health and need 
help with comparing management or treatment 
strategy states of consideration of “degree of 
increase in bodily versus mental functioning” on 
one therapy versus another therapy, without con-
sideration of immediate death or full (or perfect) 
health because immediate death or full perfect 
health are not reasonable short- or medium-term 
outcomes in these patients with chronic diseases.

More research needs to be done in states of func-
tion through all their degrees of severity and states 
of permanence (degrees of irreversibility) as chronic 
diseases will continue to progress in these individu-
als over time throughout their lives. Challenges 
also exist in the area of developing new techniques 
for preference elicitation that aim to further reduce 
or eliminate internal inconsistency as a problem 
within preference elicitation methodologies.

Dennis J. Mazur

See also Expected Utility Theory; Utility Assessment 
Techniques
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Chaos theory

A major breakthrough of the 20th century, which 
has been facilitated by computer science, has been 
the recognition that simple rules do not always 
lead to stable order but in many circumstances 
instead lead to an apparent disorder characterized 
by marked instability and unpredictable variation 
for reasons intrinsic to the rules themselves. The 
phenomenon of rules causing emerging disorder, 
counterintuitive to many people, is the environ-
ment currently being explored as self-organiza-
tion, fractals (a fragmented geometric shape that 
can be split into parts, each of which is a reduced-
size copy of the whole, a property called self- 
similarity), nonlinear dynamical systems, and chaos.

Chaos theory, also called nonlinear systems 
theory, provides new insights into processes previ-
ously thought to be unpredictable and random. It 
also provides a new set of tools that can be used to 
analyze physiological and clinical data such as the 
electric signals coming from the heart or from the 
brain.

Chaos theory was born originally as a branch of 
mathematical physics in the 20th century thanks to 

the work of Edward Lorenz in meteorology. Chaos 
theory is concerned with finding rational explana-
tions for such phenomena as unexpected changes in 
weather and deals with events and processes that 
cannot be modeled or predicted using conventional 
mathematical laws and theorems, such as those of 
probability theory. The theory basically assumes 
that small, localized perturbations in one part of a 
complex system can have profound consequences 
throughout the system. Thus, for nonlinear systems, 
proportionality simply does not hold. Small changes 
can have dramatic and unanticipated consequences. 
The fascinating example often used to des cribe this 
concept, which is known as the butterfly effect, is 
that the beating of a butterfly’s wings in China can 
lead to a hurricane in Brazil, given a critical combi-
nation of air pressure changes.

The key word is critical, and many of the efforts 
of scientists working on chaos theory are concerned 
with attempts to model circumstances based on spe-
cific conditional conjunction. Unpredictable events 
in medicine, such as ventricular arrhythmias and 
sudden cardiac death in athletes, the course of cer-
tain cancers, and the fluctuations in frequency of 
some diseases, may be attributable to chaos theory.

Nonlinear Dynamics in Human Physiology

Chaos theory can be considered a paradigm of the 
so-called nonlinear dynamics. The issue of nonlin-
earity of medical data has very rarely been raised 
in the literature. Clearly, epidemiologists and  
statisticians devoted to the medical field are quite 
happy with linear techniques since they have been 
trained from the beginning with them; physicians 
and other health professionals, due to their prover-
bial poor mathematical competence, are also 
happy, provided that statisticians and regulatory 
agencies do not think differently.

What does a linear function signify? If one con-
siders a Cartesian chart in which axis x represents 
the money a person gets and axis y measures the 
degree of happiness that person obtains as a result, 
then the more money a person has, the happier he or 
she is. In this scenario, one can easily predict the 
value of one variable by the value of the other, with 
a simple (linear) equation. However, this scenario, as 
with many others in real life, is actually more an 
exception than a rule. In real life, the relations are 
generally more complex. In fact, as many people can 
witness, an increase in earning can sometimes  
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produce fears of losing money or uncertainties on 
how to invest this money, and this can reduce the 
feeling of happiness. This complex (nonlinear) rela-
tion does not permit one to understand, at first 
glance, from data gathered experimentally, the rela-
tionship between money and happiness.

Therefore, persisting in the linear approach is 
not without danger: If, for instance, for two given 
variables a correlation coefficient of .018 is calcu-
lated under the linear hypothesis and a p value of 
.80 is added, a relationship between the two is 
ruled out. Revisiting the relationship between these 
two variables through the nonlinear approach could 
change the situation dramatically since fuzzy and 
smooth interactions may determine significant 
effects through a complex multifactorial interplay.

Mathematical analyses of physiological rhythms, 
such as those of Jerry Gollub, show that nonlinear 
equations are necessary to describe physiological sys-
tems. The physiological variation of blood glucose, 
for example, has traditionally been considered to  
be linear. Recently, a chaotic component has been 
described both in diabetic patients and in normal sub-
jects. This chaotic dynamic has been found to be com-
mon in other physiologic systems. Table 1 summarizes 
some of the best examples of nonlinear dynamics in 
human physiology. It has, for instance, been shown 
that the interbeat interval of the human heart is cha-
otic and that a regular heart beat is a sign of disease 
and a strong predictor of imminent cardiac arrest.

The work of Ary L. Goldberger has pointed  
out how traditional statistics can be misleading in 

evaluating heart time series in health and disease. In 
fact, there are circumstances in which two data sets 
belonging to two subjects can have nearly identical 
mean values and variances and, therefore, escape 
statistical distinction based on conventional com-
parisons. However, the raw time series can reveal 
dramatic differences in the temporal structure of 
the original data, wherein one time series is from a 
healthy individual and the other from a patient dur-
ing episodes of severe obstructive sleep apnea. The 
time series from the healthy subject reveals a com-
plex pattern of nonstationary fluctuations. In con-
trast, the heart rate data set from the subjects with 
sleep apnea shows a much more predictable pattern 
with a characteristic timescale defined by promi-
nent, low-frequency oscillations at about .03 Hz. 
Both the complex behavior in the healthy case and 
the sustained oscillations in the pathologic one sug-
gest the presence of nonlinear mechanisms. 

Other researchers such as Bruce McEwen and 
John Wingfield have introduced the concept of 
allostasis—maintaining stability through change— 
as a fundamental process through which organisms 
actively adjust to both predictable and unpredictable 
events. Allostatic load refers to the cumulative cost 
to the body of allostasis, with allostatic overload 
being a state in which serious pathophysiology can 
occur. In this regard, chaos theory seems to fit quite 
well with biological adaptation mechanisms.

The importance of chaotic dynamics and related 
nonlinear phenomena in medical sciences has been 
only recently appreciated. It is now quite clear, as 
noted by David Ruelle, that chaos is not mindless 
disorder—it is a subtle form of order—and that 
approximate results of treatment can be predicted.

Chaotic dynamics are characterized most of the 
time by what is called a strange attractor. This 
roughly means that during the chaotic evolution, 
the variables characterizing the state of the system 
remain in a restricted range of values. This leads to 
the possibility of characterizing the system evolu-
tion in terms of probabilities.

Applications to Medical Settings

One promising application of dynamic analysis 
involves strategies to restore complex biological 
variability, including fractal fluctuations (i.e., har-
monic changes to self-similar heart rhythms), to 
cardiopulmonary systems. Initial results using  
artificial ventilation in experimental animals and 

Table 1   Examples of nonlinear dynamics in human 
physiology

 Processes With 
Processes With Complex Fractal  
Chaotic Behavior Fluctuations

Shape of EEG waves Heart frequency
Insulin blood levels Respiration
Cellular cycles Systemic arterial pressure
Muscle action potential Gait control
Esophagus motility White blood cells number
Bowel motility Liver regeneration 
 patterns
 Uterine pressure

Source: Glass, L., & Mackey, M. C. (1988). From clocks to 
chaos: The rhythms of life. Princeton, NJ: Princeton University 
Press.
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clinical settings suggest the possibility of improv-
ing physiologic function with “noisy” versus “met-
ronomic” parameter settings. The use of dynamic 
assays to uncover basic and clinical information 
encoded in time series also promises to provide 
new, readily implemented diagnostic tests for 
prevalent conditions such as sleep-disordered 
breathing. The extent to which dynamic measures 
and complexity-informed models and inter ventions 
will enhance diagnostic capabilities and therapeu-
tic options in chronic obstructive lung disease is an 
intriguing area for future study.

Another paradigmatic area of interest and appli-
cation is represented by electroencephalography 
(EEG). The 19 channels in the EEG represent a 
dynamic system characterized by typical asynchro-
nous parallelism. The nonlinear implicit function 
that defines the ensemble of electric signals series 
as a whole represents a meta-pattern that translates 
into space (hypersurface) what the interactions 
among all the channels create in time.

The behavior of every channel can be considered 
as the synthesis of the influence of the other channels 
at previous but not identical times and in different 
quantities, and of its own activity at that moment. 
At the same time, the activity of every channel at a 
certain moment in time is going to influence the 
behavior of the others at different times and to dif-
ferent extents. Therefore, every multivariate sequence 
of signals coming from the same natural source is a 
complex asynchronous dynamic system, highly non-
linear, in which each channel’s behavior is under-
standable only in relation to all the others.

The neurophysiologic community has had the 
perception that in the EEG signals there is embed-
ded much more information on brain function 
than is currently extracted in a routine clinical 
context, moving from the obvious consideration 
that the sources of EEG signals (cortical postsyn-
aptic currents at dendritic tree level) are the same 
ones attacked by the factors producing symptoms 
of chronic degenerative diseases such as dementia. 
The main problem, then, is the signal (relevant 
information)-to-noise (nonrelevant information) 
ratio, in which at the present moment the latter is 
largely overwhelming the former. As an example, 
when considering the EEG fluctuations at the 19 
recording electrodes, it is like the fluctuation of  
19 stock exchange securities in time (minutes, 
hours, days, etc.) due to the purchases/sales ratios 
as carried out by millions of invisible investors, 

following a logic that is unknown to the analyzer 
but that is based on the intrinsic mechan  ism regu-
lating the market. In this context, the “analyzer” 
ignores all the following variables:

 1. why at each time the value of a given security 
(EEG signal) is going up or down;

 2. how many investors (neurons, synapses, 
synchronous firing) are active on that security  
at a given time; and

 3. when new investors, eventually organized, 
suddenly enter the market that is regulating that 
security and significantly alter the trend of the 
previous fluctuations (i.e., the subject’s condition 
is altered because of an external or internal event).

The only two variables that the analyzers know 
for sure are the following:

 1. The chaotic stock market entirely depends on 
the interplay of a large number of investors 
(brain, neurons, synapses).

 2. Within the dynamics (variability) of the stock 
securities are embedded the investors’ styles  
and abilities.

A 2007 article by Massimo Buscema and col-
leagues presents the results obtained with the  
innovative use of special types of artificial neural 
networks (ANNs) assembled in a novel methodol-
ogy named IFAST (Implicit Function as Squash-
ing Time) capable of compressing the temporal 
sequence of EEG data into spatial invariants (pat-
terns of structures that remain stable across time). 
The principal aim of the study was testing the 
hypothesis that automatic classification of mild 
cognitive impairment (MCI) and Alzheimer’s dis-
ease (AD) subjects can be reasonably corrected 
when the spatial content (the inherent structure) of 
the EEG voltage is properly extracted by ANNs.

Resting eyes-closed EEG data were recorded in 
180 AD patients and in 115 MCI subjects. The spa-
tial content of the EEG voltage was extracted by the 
IFAST stepwise procedure using ANNs. The data 
input for the classification operated by ANNs were 
not the EEG data but the connections weights of a 
nonlinear auto-associative ANN trained to repro-
duce the recorded EEG tracks. These weights repre-
sented a good model of the peculiar spatial features 
of the EEG patterns at the scalp surface. The clas-
sification based on these parameters was binary 
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(MCI vs. AD) and was performed by a supervised 
ANN. Half of the EEG database was used for the 
ANN training, and the remaining half was used for 
the automatic classification phase (testing).

The results confirmed the working hypothesis 
that a correct automatic classification of MCI 
and AD subjects can be obtained by extracting 
the spatial information content of the resting 
EEG voltage by ANNs and represents the basis 
for research aimed at integrating the spatial and 
temporal information content of the EEG. The 
best results in distinguishing between AD and 
MCI reached up to 92.33%. The comparative 
result obtained with the best method so far 
described in the literature, based on blind source 
separation and Wavelet preprocessing, was 
80.43% (p < .001).

Future Outlook

The advancement of knowledge and progress in 
understanding the nature of bodily rhythms and 
processes have shown that complexity and nonlin-
earity are ubiquitous in living organisms. These 
rhythms arise from stochastic (involving or con-
taining a random variable or variables), nonlinear 
biological mechanisms interacting with fluctuating 
environments.

There are many unanswered questions about 
the dynamics of these rhythmic processes: For 
example, how do the rhythms interact with each 
other and the external environment? Can research-
ers decode the fluctuations in physiological rhythms 
to better diagnose human disease? Mathematical 
and physical techniques combined with physiolog-
ical and medical studies are addressing these ques-
tions and are transforming our understanding of 
the rhythms of life.

Enzo Grossi

See also Complexity
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ChoiCe theories

Choice theories can be classified in a number of 
ways. Normative theories seek to clarify how deci-
sions should be made; descriptive theories try  
to understand how they are made in the real world. 
Theories may also concentrate on decisions  
made by individuals, groups, or societies. Normative 
theo ries tend to emphasize rational decision mak-
ing and provide the underpinnings for economic 
evaluations, decision analysis, and technology 
assessment. Variations, including shared decision 
making, often focus on who should be making 
decisions but retain the assumptions of rationality. 
In contrast, descriptive models often emphasize 
psychological factors, including heuristics and 
biases. At the policy-making level, however, the 
recognition of the difficulties in constructing social 
welfare functions has led to intermediate models 
with both normative and descriptive elements, 
including bounded rationality, incrementalism, 
and mixed scanning.
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Normative Theories

Rational Decision Making

Rational choice theory assumes that individuals 
act to maximize their own utility. A rational indi-
vidual must therefore

 1. determine the range of possible actions that 
might be taken,

 2. determine the possible outcomes that might 
result from each of these actions,

 3. affix a probability to each possible outcome 
(these must sum to 1.0),

 4. affix values to the costs and consequences of 
each possible outcome, and

 5. do the math.

The rational choice will be the one that produces 
the “best” outcome, as measured in terms of costs 
and consequences.

Rational decision making is highly data-inten-
sive. It requires a decision maker to collect extensive 
information about all potential choices, outcomes, 
costs, and consequences. He or she must be able to 
order his or her preferences for different outcomes, 
and these preferences must satisfy the requirements 
of being complete (i.e., all potential outcomes are 
assigned preferences) and transitive (i.e., if some-
one prefers A to B, and B to C, he or she must 
prefer A to C). In the real world, these assumptions 
are often unrealistic.

Economists have adopted the theory of revealed 
preferences to omit some of these steps. Rather 
than attempt to measure preferences directly, this 
approach assumes that if someone has chosen a 
particular outcome, he or she must, by definition, 
prefer it to the alternatives. Associated with Paul 
Samuelson, this approach has been highly influen-
tial in the study of consumer behavior. It is also 
tautological and does not leave much room for 
improving choices (e.g., through providing addi-
tional information).

Rational Choice in Medical Decision Making

Decision Analysis

Medical decision making relies heavily on ratio-
nal choice theory. One common way of analyzing 
treatment choices, decision analysis, employs the 
same structure. Constructing a decision tree requires 

specifying the possible actions (“choice nodes”), 
specifying the possible outcomes of each action 
(“chance nodes”), attaching probabilities to each 
outcome (which must sum to 1.0), and then affixing 
costs and consequences to each outcome. The tree is 
then “folded back” by computing the expected value 
at each node by multiplying the probability by the 
costs and by the consequences.

For example, in their five-part primer, Medical 
Decision Analysis, Allan Detsky and colleagues 
work through the example of how to model the 
choice of management strategies for patients pre-
senting with clinical features that suggest giant cell 
arteritis (GCA). In this simplified model, the only 
treatment considered is treating with steroids, which 
can involve side effects. The rational model they 
employ thus involves a choice between three possible 
actions at the choice node—treating, not treating, 
and testing and treating only if the test result is 
positive. The possible outcomes can be simplified to 
four possibilities, depending on whether or not there 
was an adverse outcome as a result of the disease (in 
that case, blindness), and whether or not the person 
had side effects as a result of the treatment. Note 
that some of these outcomes cannot occur on some 
branches—for example, someone who did not 
receive treatment could not experience any outcomes 
involving side effects. The next step for the decision 
maker is to determine how likely each of these pos-
sible outcomes would be at each choice node (e.g., 
how likely would an untreated individual with those 
symptoms be to experience blindness if the person 
was not treated). Next, the decision maker would 
affix costs and utilities to each possible outcome. For 
example, these papers assigned a value of 1.0 to the 
state with no disease and no side effects, and a value 
of .5 to the state of having the disease without treat-
ment (or side effects) but ending up with blindness. 
Sensitivity analysis can be used to modify these val-
ues (e.g., change the probability of adverse outcomes 
or the value attached to particular outcomes) and see 
how much they affect the resulting choices.

One way to simplify decision trees is to see 
whether any alternatives are “dominated” by others. 
Dominated choices are clearly inferior. In a condi-
tion of strong dominance, other alternatives are both 
less costly and of greater benefit. Rational decision 
makers can accordingly “prune” their decision trees 
to eliminate all dominated alternatives.

There is an extensive literature relating to how 
best to model these decisions (including the use of 
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Markov models) and how to compute costs and 
consequences. Sensitivity analysis can allow sys-
tematic variation in the values assigned to proba-
bilities and outcomes. The underlying assumptions, 
however, are of rational decision makers maximiz-
ing their expected utilities.

Economic Analysis

Economic analysis refers to a family of related 
methods for weighing costs against consequences. 
All involve costing the potential outcomes; they 
vary only in how they assess consequences.

 1. Cost minimization assumes that the outcomes 
are identical. In that case, it is not necessary to 
value them. The decision can be based solely on 
costs, and a rational decision maker will select 
the lowest-cost alternative.

 2. Cost benefit assumes that consequences can also 
be valued in monetary terms. In that case, the 
rational decision maker will determine return  
on investment and select the alternative that 
produces the highest ratio of consequences  
to costs.

 3. Cost-effectiveness assumes that consequences 
can be valued in a single, albeit nonmonetary, 
measurement of outcome. Again, the rational 
decision maker will select the alternative 
producing the highest ratio of consequences  
to costs.

 4. Cost utility analysis is a variant of cost-
effectiveness, which computes the “utility” 
attached to each outcome (on a scale of 0 to 1).

Again, there are many details about how to 
conduct these analyses, including how to value 
costs and consequences occurring in the future 
(e.g., discounting) and how to incorporate differ-
ent ways of valuing risk. The underlying model, 
however, continues to assume that rational indi-
viduals will act to maximize their expected return, 
however defined and measured.

Technology Assessment

Technology assessment shares the underly-
ing premise that rational individuals will seek to 
maximize outcomes for the given inputs. It can be 
considered a subset of economic models, and pre-
sents similar variation in which costs to include (and 
whose costs), and how to measure consequences. 

Modern technology assessment is heavily influ-
enced by such organizations as the Cochrane 
Collaboration and places considerable emphasis 
on ensuring that data are of high quality. 
Accordingly, there is often considerable dispute as 
to where to gather the data and what counts  
as evidence. Nonetheless, the underlying model 
remains rational choice.

Decision Makers

Multiple Decision Makers

An additional complexity occurs if there are 
multiple decision makers. In that case, the deci-
sion makers must be able to determine preference 
orderings that apply to the society. These are 
referred to as social welfare functions; Kenneth 
Arrow won a Nobel prize for demonstrating the 
General Possibility Theorem, which proves that, 
under many circumstances, it is not possible to 
construct a transitive preference ordering for a 
society, even given that all members of that soci-
ety have individual preference orderings satisfying 
this requirement. For that reason, choice theories 
for multiple decision makers differ from those for 
individuals.

Shared Decision Making

If individuals are considered consumers, then 
the person paying for a particular service should be 
sovereign. Professionals may provide expert advice 
but would not determine the preference ordering. 
If there are externalities, however, such that one 
person’s choice affects the outcomes for others, it 
is less simple to decide whose preferences should 
count. If costs are pooled (e.g., through insurance 
or public financing), then presumably those paying 
would have some say in the matter. If the consumer 
is misinformed (e.g., wants a clinical intervention 
where professionals do not believe that the benefits 
outweigh the risks), again, there may be disputes 
about whose preferences should matter. Note that 
these models do not necessarily require that there 
be a social welfare function but do require some 
methods for dispute resolution. Raisa Deber and 
colleagues have suggested distinguishing between 
problem-solving tasks (defined as preference- 
independent, where expertise is required) and 
decision-making tasks (which involve deciding 
based on personal preferences). A substantial lit-
erature has attempted to examine shared decision 
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making in medicine; note that it assumes that 
patient preferences should be decisive. These mod-
els can be seen as subsets of rational models.

Descriptive Models

Heuristics and Biases

In contrast, another set of models seeks to 
understand how choices are actually made. These 
models draw heavily on psychology. One key lit-
erature examines the simplifying assumptions (often 
termed heuristics and biases) often made by  
individual decision makers. Even here, the strong 
dominance of rational decision making persists; the 
theory of cognitive dissonance stresses that people 
tend to be adept at justifying choices they have 
made, even when this requires distorting facts to 
convince themselves that they are being rational.

Other descriptive models examine how deci-
sions are made within groups and how various 
pressures exist to influence the choices made.

Modification of the Model

Bounded Rationality

Another set of modifications recognize that  
it may not be rational to collect full information. 
Whereas a rational decision maker seeks to maxi-
mize, what Herbert Simon terms administrative 
man seeks to “satisfice” and select the first alter-
native that is “good enough.” Some of this litera-
ture incorporates the information about cognitive 
limitations.

Incrementalism and Mixed Scanning

Policy analysts have suggested that most poli-
cies begin with what is. Charles Lindblom sug-
gested that policy making is usually incremental, 
consisting of a series of small adjustments to exist-
ing policy resulting from a series of “successive 
limited comparisons.” In this model, rather than 
beginning by setting goals and objectives, policy 
makers will perform limited analyses of immediate 
issues and implement a series of small decisions. 
This model has the advantage of being low-risk; 
smaller decisions have fewer short-term conse-
quences and are less likely to elicit opposition. 
Continuous feedback allows the policies to be 
modified as required. The weakness is that the big 

picture is rarely examined. The incremental model 
is both normative and descriptive. It describes how 
policy usually occurs. However, some authors also 
consider it a desirable normative model, particu-
larly under circumstances where bounded rational-
ity is likely to be appropriate, where the risks of 
error are high, or where interest groups are highly 
invested.

Amitai Etzioni has suggested an intermediate 
stance he termed mixed scanning. In this model, 
incrementalism is the default mode, but policy-
makers are scanning for areas where more in-
depth, rational decision making could be beneficial. 
His analogy is the job of a sentry, who scans the 
landscape to see where there is movement that 
calls for further investigation.

Social psychologists have noted the importance 
of the system within which decisions are made. 
The patient safety movement, for example, has 
noted that improving clinical performance is less a 
matter of removing bad apples than it is a matter 
of ensuring that systems are set up to encourage 
optimal performance. These models thus draw on 
the descriptive material and seek to set up models 
within which optimal choices are more likely to  
be made.

Raisa Deber

See also Applied Decision Analysis; Bounded Rationality 
and Emotions; Cognitive Psychology and Processes; 
Decision Psychology; Heuristics; Treatment Choices
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ClassifiCation and regression 
tree (Cart) analysis

See Recursive Partitioning

CliniCal algorithms 
and PraCtiCe guidelines

Clinical algorithms and practice guidelines may  
be viewed as a targeted effort to provide the best 
clinical advice about specific management condi-
tions. They are most useful if clinicians incorpo-
rate them as additional tools to specifically improve 
patient outcomes while offering holistic clinical 
care to patients.

Clinical Algorithms

Definition

Algorithms are branching-logic pathways that 
permit the application of carefully defined criteria 
to the task of identifying or classifying different 

types of the same entity. Clinical algorithms are 
often represented as schematic models or flow dia-
grams of the clinical decision pathway described in 
a guideline.

Clinical findings, diagnostic test characteristics, 
and treatment options are abbreviated into their 
basic components. Algorithmic flow diagrams are 
then constructed as branching logical pathways 
with decision points represented as yes/no nodes. 
Such a flowchart sequence is useful in identifying 
or classifying entities based on carefully devised 
criteria (Figure 1). Application of clinical algo-
rithms is most defensible when the evidence sup-
ports choices in the decision tree. Although very 
useful for clinical decision making, algorithms  
cannot account for all patient-related variables. 
Therefore, algorithms are not intended as a substi-
tute for the clinician’s best judgment.

Proposed Standards

The Society for Medical Decision Making 
Committee on Standardization of Clinical Algo-
rithms has proposed certain standards for con-
struction of clinical algorithms. Their technical 
note has specific recommendations on the types 
and shapes of algorithm boxes (clinical state box—
rounded rectangle; decision box—hexagon; action 
box—rectangle; and link box—small oval), titles, 
abbreviations, annotations and their format, and 
schemes for arrows, numbering, and paging.

Classification

Simple Classification Algorithms

Simple classification algorithms serve only as 
diagnostic aids and do not advocate any clinical 
intervention. They contain question nodes (algo-
rithmic boxes) leading to yes or no exit arrows.

Management Algorithms

Management algorithms encompass both diag-
nostic and treatment modalities. They employ deci-
sion-relevant yes/no question nodes. Each question 
node in turn leads to an instruction node, denoted 
by a single exit arrow. Instruction nodes advocate 
for specific interventions. Thus, patients get classi-
fied into distinct clinical subgroups that would ben-
efit from specifically targeted management strategies. 
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Outcome studies are essential to providing support 
for each management strategy.

Validity and Flexibility

It is often argued that algorithms are not always 
backed by empirical data, are infrequently linked 
to the literature, and are not adequately flexible 
when dealing with clinical uncertainties. To circum-
vent these inadequacies, two important modifica-
tions have evolved.

First, in an attempt to enhance the validity, 
annotated management algorithms have been 
devised. Here, each node concerned with specific 
findings, characteristics, or interventions is anno-
tated with the intent of summarizing the guide-
line’s detailed textual material. The textual material 
is in turn replete with citations. Thus, in this fact-
based approach, the algorithm links the recom-
mendations of the guideline to systematic literature 
reviews or, when appropriate, to expert consensus. 
The Agency for Health Care Policy and Research 
guideline development process exemplifies this 
approach.

Second, counseling and decision nodes are spe-
cifically implanted in the algorithm where thera-
peutic decisions are expected to be constrained due 
to a gap in current knowledge. This is particularly 
relevant when patient preferences vary with respect 
to two (or more) different therapeutic options 
(e.g., medical vs. surgical management). At  
each decision node, the expected outcome associ-
ated with each option is indicated to the extent 
possible. Thus, counseling and decision nodes 
facilitate thera  peutic deliberations between 
physician(s) and patient.

Methodological Considerations

Four methodological issues are commonly cited 
as influencing the development of annotated man-
agement algorithms.

1. Selection of a descriptor variable: The best 
descriptor variables are easily observed and have 
great discriminatory power to categorize patients 
into different subtypes suited for separate manage-
ment strategies. Discriminatory power of the variable 

Presenting
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Specific
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Specific
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recommended  
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Specific
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recommended  

Specific
diagnostic test
recommended
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No

1
2

3

45

Figure 1  Schematic model of a management clinical algorithm

Note: Management algorithm for a patient with a hypothetical set of presenting symptoms/signs.
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is gauged in terms of its sensitivity, specificity, and 
predictive value. So, ideally, these data should result 
from controlled studies. Often, evidence is sparse and 
expert panels develop a consensus about the best 
discriminatory variables to be used, based on certain 
stated rationales. Nevertheless, future research should 
aim to address such gaps in knowledge.

Variables can be optimally selected using sound 
statistical techniques. Regression analyses are the 
most common statistical methods used for estimat-
ing the discriminatory power of a variable. They 
quantify the impact of a given variable on outcome 
probabilities. Recursive partitioning, on the other 
hand, is an algorithmic strategy that identifies homo  -  
geneous, meaningful patient subtypes for guide-
line/algorithm development. Here, the patient 
population is reclassified into ever smaller sub-
groups based on Boolean combinations of vari-
ables. An example cited in the literature is as 
follows: age > 65 years and hematocrit < 30 and 
systolic blood pressure > 160 mmHg.

2. Incomplete literature and consequent uncer-
tainties: Annotated algorithms depicting the lowest 
common denominator on which there is reason-
able consensus may be used to clarify algorithms 
when uncertainty exists. In addition, the expert 
panel may identify and explicitly delegate possible 
management strategies into one of the four proto-
type categories defined in the literature: (1) neces-
sary care (practice standard, recommendation),  
(2) appropriate, but not necessary care (option), 
(3) equivocal care (not recommended), and (4) 
inappropriate care (recommendation against use).

3. A dilemma may be encountered when 
attempting to integrate qualitative descriptor vari-
ables (e.g., increased postvoid residual urine) with 
quantitative information (e.g., specific cutoff vol-
ume for increased postvoid residual urine): Often, 
such an approach may not be backed by literature 
or panel consensus. Such dilemmas should be high-
lighted in the algorithm. Additionally, the annota-
tion should include a tally of panelists’ quantitative 
recommendations and any ensuing discussion  
of factors that permit the calculation of such  
variables.

4. Optimal representation of health outcomes: 
Health outcomes must be precisely defined and 
properly annotated, and they should be relevant to 

the algorithm. Therapeutic side effects and their 
estimated occurrence risk should also be reported.

Technical Suggestion

Algorithms should be logically and succinctly 
laid out with carefully selected nodes representing 
the lowest common denominator. Nodes should 
apply to a significant proportion of patients. Other-
 wise they should be incorporated as annotations or 
combined with other nodes to reduce excessive and 
unnecessary detail.

Practice Guidelines

Definition

Clinical practice guidelines (CPGs) attempt to 
transform evidence into practice to improve patient 
outcomes. The approach of evidence-based CPGs 
is to define clinical questions, review current evi-
dence, and determine grades of recommendation. 
Patient questions are also addressed. While CPGs 
reflect a broad statement of good practice with 
little operational detail, protocols are the result of 
their local adaptation.

Contents of High-Quality  
Clinical Practice Guidelines

This is best exemplified by the National 
Guideline Clearinghouse (NGC) Guideline 
Summary Sheet, available from the NGC’s Web 
site. The Web site also provides links to NGC’s 
Brief and Complete Guideline Summary, Guideline 
Comparison, Guideline Synthesis, and Classification 
Scheme.

The NGC Complete Guideline Summary 
describes the guideline’s title, scope (includes dis-
ease/conditions, intended users, and target popul-
ation), methodology, recommendations (major 
recommendations and clinical algorithms), evi-
dence supporting the recommendation(s) and  
benefits and risks of its implementation, con traindi-
cations, qualifying statements, implementation 
strategy, and Institute of Medicine (IOM) national 
healthcare quality report categories. In addition, 
identifying information and availability of the 
guideline is provided, including details about bib-
liographic sources, adaptation from any previous 
guidelines, date of release, guideline developers, 
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committees and endorsers involved, funding 
source(s), financial disclosure, guideline status and 
availability, and patient resources.

Characteristics of High-Quality  
Clinical Practice Guidelines

The IOM expert committee on guidelines has 
identified validity as the most important attribute. 
Validity is based on strength of scientific evidence 
underlying the recommendations and their impact 
on health and cost outcomes. Reproducibility,  
reliability, clinical applicability, clinical flexibility, 
cost-effectiveness, and clarity are other key aspects. 
CPGs should be a multidisciplinary process, with 
documentation of participants, assumptions, and 
methods, and be subjected to scheduled reviews.

Strength of Recommendation Taxonomy

Strength of recommendation is graded based  
on evidence into A (consistent and good-quality 
patient-oriented evidence), B (inconsistent or lim-
ited quality patient-oriented evidence), and C (con-
sensus, usual practice, opinion, disease-oriented 
evidence, or case series for studies of diagnosis, 
treatment, prevention, or screening). The quality of 
a study measuring patient outcome(s) is similarly 
graded into levels 1 (good quality evidence),  
2 (limited quality evidence), and 3 (other evidence).

Grades of Recommendation

It is controversial whether the level of evidence 
and grade of recommendation (GOR) should be 
standardized across CPGs in different areas. One 
such GOR proposed by the Joint Committee of 
Development of Clinical Practice Guidelines for 
the Treatment of Stroke is as follows: A (strongly 
recommended), B (recommended), C1 (acceptable 
although evidence is insufficient), C2 (not recom-
mended because evidence is insufficient), and D 
(not recommended).

Role and Utility of Clinical Practice Guidelines

CPGs play an important role in enhancing clini-
cians’ knowledge by keeping them abreast of the 
latest developments in medicine. This is intended 
to change their attitude about standard of care and 

shift their practice pattern, leading to improved 
patient outcomes. Healthcare policy makers can 
use CPGs to assign resources to the most needed 
areas. CPGs also guide plan administrators and 
insurers to arrive at reimbursement decisions for 
patients. In addition, public and patient education, 
research priorities, and medicolegal issues are 
influenced by CPGs.

Perspective of Clinicians and Patients

Most clinicians agree that CPGs are helpful edu-
cational tools intended to improve quality of care. 
Nevertheless, CPGs have been variously described 
as anti-intellectual, impractical, limiting clinical 
autonomy and discretion, cost-cutting, standard-
izing practice around the average, and causing 
increased litigation. Apart from negative attitudes 
and resistance to change, other barriers to CPGs 
include administrative and financial obstacles as 
well as limited time and resources for education 
and implementation. Sometimes, patients’ choices 
may also be in conflict with the guidelines.

Successful Implementation

Successful implementation involves organiza-
tional commitment and raising awareness among 
intended users through dissemination of infor-
mation (conferences, meetings, and publications), 
alongside education and preparation of staff. 
Other useful strategies include use of local clinical 
leadership; inclusion of CPGs within the contract-
ing process; support of practitioners, including 
information giving and feedback; reminders and 
incentives; audit and feedback of results; and 
patient/client-mediated interventions.

Chenni Sriram and Geoffrey L. Rosenthal
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Cognitive PsyChology 
and ProCesses

Cognitive psychology is the study of the thinking 
mind. It emerged as a field of psychology in the 
1980s and includes perception, attention, memory, 
decision making, problem solving, reasoning, and 
language among its areas of study. Using theory 
and empirical study, cognitive psychology aims to 
understand the cognitive processes used and what 
influences their use. In medical decision making, 
for decisions relevant to individuals, systems, and 
society, understanding the cognitive processes that 
people typically use, and why, would help (a) 
developers of decision support interventions target 
the interventions most effectively and (b) identify 

outcomes appropriate for judging the effectiveness 
of particular decision-making strategies.

Decision making in cognitive psychology focuses 
on how people make choices. The field is distinct 
from problem solving, which is characterized by 
situations where a goal is clearly established and 
where reaching the goal is decomposed into sub-
goals that, in turn, help clarify which actions need 
to be taken and when. In the medical world, mak-
ing a diagnosis, for example, typically requires 
problem-solving processes. Decision making is also 
distinct from reasoning, which is characterized  
as the processes by which people move from what 
they already know to further knowledge. Although 
historically, decision making, problem solving, and 
reasoning were studied independently within cog-
nitive psychology, it is recognized that in complex 
decisions both reasoning and problem-solving pro-
cesses can be required to make a choice.

Decision making requires the integration  
of information with values. The information in a 
medical decision is often about a health state and 
the options for addressing it. Values are the quali-
ties that underlie worth or desirability. A decision 
maker’s values determine the particular subset  
of information that is most germane to his or her 
decision. Although both information and values 
are part of most medical decisions, the particular 
cognitive processing required can vary significantly 
from one decision to another.

Levels of Decisions

Four levels of decisions have been described—the 
higher the level, the greater the energy required 
and the more complex the decision processes.

Level 1—simple, familiar decisions: They are made 
quickly and largely automatically (unconsciously). 
An example occurs when people prone to headaches 
automatically reach for a particular painkiller in 
response to early headache signs.

Level 2—decisions that use static mappings when 
evaluating options: An example occurs when people 
choose particularly invasive treatments only because 
they believe that the more a treatment makes one 
suffer, the more likely it is to be successful.

Level 3—decisions that belong to a class of decision 
that is familiar to the decision maker, although the 
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particular instance is not and can include options 
that have both pros and cons: An example occurs 
when people choose a family doctor after losing 
their doctor for the third time and therefore know 
what is important to them in the decision, but they 
need to learn about the new choices.

Level 4—decisions in unfamiliar situations when the 
choices are also not familiar: These decisions often 
require problem-solving (and possibly reasoning) 
processes to learn about the situation and the options. 
An example is a person, newly diagnosed with a 
relatively unfamiliar medical condition, needing to 
choose a treatment.

Cognitive Processes

Making decisions beyond lower-level decisions is 
typically protracted in time, requiring many types 
of cognitive processes. Ola Svenson is an early 
pioneer in describing decision processes, and he 
still provides one of the most comprehensive 
descriptions of those processes. He suggests that 
the process goal of decision making is to select one 
option that is superior enough over the other 
options that it can protect the decision maker from 
experiencing cognitive dissonance (discomfort 
from having values that conflict with the decision) 
and regret later. He describes three phases of pro-
cessing: the initiation phase, differentiating the 
options, and after the decision.

Initiation Phase

Decision-making processes begin with the deci-
sion maker establishing the goal(s) of the deci-
sion and identifying options and attributes of the 
options that are important. Salient aspects of the 
situation tell the decision maker where to start. 
This phase structures the decision in the decision 
maker’s mind. Therefore, the early-identified 
salient aspects can have important implications for 
the processing that follows. For example, a diag-
nosis of cancer generating fear of death can trigger 
the automatic elimination of a do-nothing-for-now 
option. Early screening of options is not unusual in 
situations where there are many options.

The initiation phase can include singling out 
one option. Sometimes it is a reference option, 
against which other options can later be compared. 

When there are many options to consider, the  
singled-out option tends to be a preliminary pre-
ferred choice. Such a strategy limits energy demands 
that can become huge very quickly in situations 
where there are multiple options.

In addition to possible screening or selection of  
a preliminary preferred option, this early stage can 
involve information search. Exactly what informa-
tion is searched for and retained can follow, to some 
extent, the salient attributes mentioned above.

Differentiating the Options

The major cognitive processing involved in deci-
sion making focuses on differentiating the options, 
one from the other. Svenson has identified three 
types of differentiating processes: 

 1. Holistic differentiation is quick, automatic (not 
within conscious control) processing. 

 2. Structural differentiation involves changes to the 
way the decision problem is represented in the 
mind of the decision maker. The structure can 
be altered by changing 

 a. how attractive a particular aspect of an 
option is judged to be (e.g., shifting from a 
judgment that saving 10 of 100 people is not 
significant to considering that it is significant), 

 b. the importance given to a specific attribute 
(e.g., shifting from being very concerned 
about possible incontinence to not being con-
cerned about it), 

 c. the facts about an option (e.g., shifting from 
believing that most men diagnosed with  
prostate cancer die of the disease to learning 
that most men do not die of their prostate 
cancer), and 

 d. the particular set of attributes used to 
describe the options (e.g., shifting from  
interest in only treatments’ effects on survival 
to their impact on quality of life). 

 3. Process differentiation involves using 
information about the options to arrive at a 
decision, following decision rules. Some rules 
involve combining all available information in a 
process of weighing pros against cons, while 
other rules involve using only some of the 
information, such as judging an attribute 
against a threshold.
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For complex decisions, differentiation can be 
intermingled with information searches. In new 
situations, the decision maker may also need to 
discover which values are relevant to the deci-
sion, sometimes needing to figure out what their 
values are and, when values are in conflict with 
one another, their relative weightings. Because 
these processes are extended in time, research  
at different time points can suggest that values 
shift from one time to the next. Evidence sug-
gests, however, that the processes eventually 
stabilize.

After the Decision

After the decision is made, the decision maker 
continues cognitive processing of the decision. 
Postdecision processes can include both the struc-
tural and process differentiation described above. 
Both implementation of the decision and outcomes 
of the decision can also be followed by yet further 
differentiation, though the specifics of what is pro-
cessed may be altered. The postdecision processes 
manage the emotional consequences of having 
made the decision, potential cognitive dissonance, 
or regret.

Factors That Complicate  
Cognitive Decision Processes

Several factors about decision situations compli-
cate both the actual processes used and our ability 
to learn about what is being done.

Uncertainty

Situations with information missing about a 
potential outcome are often distinguished from 
situations where an outcome is known but has a 
less-than-certain chance of occurring. People find 
it hard to act in the first type of situation; bad 
news is better than no news. In medical decision 
making, when making a decision for an individual, 
the two types of situations are not very different; 
knowing that, of a particular group of people, 
some will experience an outcome but others will 
not does not clarify what will happen to the indi-
vidual. Discomfort with uncertainty can lead some 
patients, for example, to decide that they know 
what will happen to them.

Structure of the Environment

People are sensitive to the structure of the envi-
ronment when judging a situation; thus, chang-
ing one aspect of the environment can change 
responses. Framing effects, where responses shift 
according to how a situation is described, is one 
example of such a change; an example of a fram-
ing effect in medical decisions is the response shift 
seen when an outcome is described as numbers of 
lives saved rather than numbers of lives lost. 
People’s sensitivity to the environment means that 
asking questions in one way can produce different 
results compared with asking the apparently same 
question in a different way. It has been suggested, 
for example, that issues around compatibility 
between inputs (how the problem is described,  
an environmental structure) and outputs (the 
responses requested, another environmental struc-
ture) contribute to a broad range of what have 
been identified as nonnormative “biases” in 
human decision making.

Stress

Stress describes people’s responses to what they 
judge to be threats. While mild stress can actually 
improve cognitive performance, high stress is gen-
erally seen as detrimental. It can increase distrac-
tion, making it harder to focus attention that can, 
for example, reduce the numbers of options or the 
numbers of attributes of each option being consid-
ered. It can also compromise the organization of 
the information in the decision maker’s mind.

Intuition

Intuition has been defined as thinking processes 
that occur when the input is mostly knowledge 
acquired automatically (without conscious control) 
and the output is a feeling that can then be used as 
the basis for judgments and decisions. In some 
types of situations, intuitive decisions are more 
accurate than deliberate (with conscious control) 
decisions, but in other types of situations, deliber-
ate decisions are more accurate. Intuition seems 
favored when people have prior experience with 
the relevant options and when the automatically 
acquired knowledge matches the demands of the 
decision. Intuitive attitudes are more likely to 
reflect the entire corpus of information acquired 
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about the options, whereas attitudes related to 
deliberate learning are more likely to reflect only 
part of that information.

Heuristics

Heuristics are general rules of thumb that peo-
ple use in cognitive processing to reduce mental 
energy demands. While the general thinking has 
been that using heuristics reduces the accuracy of 
processing, evidence now suggests that in some 
situations heuristics can actually improve the accu-
racy of decisions. Heuristics include simple rules 
about how to search for more information, when 
to stop the search, and estimating the likelihood of 
an event. For example, the representative heuristic 
can lead a teenager to ignore warnings about smok-
ing because the typical image is that people with 
lung cancer are old.

Why Understand Cognitive  
Decision-Making Processes?

Understanding the cognitive processing used can 
naturally provide several types of guidance in the 
field of medical decision making. It can help iden-
tify the specific challenges that make a particular 
decision difficult, which, in turn, clarifies how to 
make decision support interventions most effec-
tive. Understanding the cognitive processing also 
reveals important complexities in human behav-
ior that should be considered when creating inter-
ventions. For example, sensitivity to environ- 
mental structure implies that how information 
is presented (not just what is presented) can 
make a big difference in whether an interven-
tion is helpful or not.

Understanding the particular processes people 
use and why they use them can also help guide 
selection of outcomes that indicate good quality 
decisions. For example, people naturally aiming 
their decision processes to protect them from expe-
riencing cognitive dissonance and postdecisional 
regret suggests that measures of value concordance 
and of regret are important quality indicators.

Deb Feldman-Stewart
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CoinCidenCe

A coincidence is a random co-occurrence of two 
or more events that are perceived to be meaning-
fully associated with each other, even though 
there is no meaningful causal relationship linking 
them. A collision between an ambulance carrying 
an injured bullfighter and a cattle truck would 
constitute a coincidence, while internal bleeding 
following ingestion of broken glass would not. 
The need to distinguish true associations from 
coincidences is critical to good medical decision 
making, yet the human mind is ill equipped to 
make this distinction.

Co-occurrences of events can be perceived as 
meaningful when they happen along a number  
of dimensions, such as time (e.g., when a patient 
develops symptoms shortly after taking a drug), 
space (e.g., when multiple cases of a rare disease 
occur in the same town), or heredity (e.g., when 
several members of a family tree are found to have 
the same disorder).

While co-occurrences often indicate the exis-
tence of a direct causal relationship or a common 
underlying factor, many are simply the result of 
chance, and their constituent events should be con-
sidered independent of each other. However, deter-
mining whether a co-occurrence reflects meaningful 
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or random covariance is often difficult. In fact, 
research shows that the human mind is limited in 
its ability to distinguish meaningful associations 
from coincidences. People (even those with medi-
cal degrees) tend to commit predictable errors 
when trying to distinguish random chance events 
from meaningful causal processes. As a result, we 
often overreact to coincidences and underreact to 
co-occurrences that deserve our attention.

Some events are, by their very nature, especially 
likely to capture our attention and generate an emo-
tional response. Accordingly, they are more likely to 
be initially encoded in memory and are later more 
accessible for recall. As a result, we tend to notice 
their co-occurrences much more and infer more 
from these than from co-occurrences of other events. 
For example, we are overly influenced by the prob-
ability of each event occurring on its own. The more 
unlikely each of the events is thought to be, the more 
surprising we find their individual occurrences, and 
this makes their co-occurrence seem all the more 
surprising and meaningful. Taking vitamins and 
experiencing mild stomachaches are both relatively 
common events, so their co-occurrence is likely to 
go unnoticed. In contrast, taking a new experimen-
tal drug and experiencing acute abdominal pains are 
both relatively uncommon events, so their co- 
occurrence is likely to raise suspicion of a causal 
link. Another closely related factor is the number of 
events co-occurring: The greater the number of 
events that co-occur, the more we tend to find this 
co-occurrence meaningful. A physician is more 
likely to suspect the presence of a disease when his 
or her patient shows five unusual symptoms than 
when the patient shows two unusual symptoms.

While these two factors can provide rational 
bases for judging the meaningfulness of co-occur-
rences (though not always), others are much less 
justifiable. For example, co-occurrences are per-
ceived to be more indicative of a causal relation-
ship when they are experienced firsthand than 
when they are experienced by others. This helps 
explain why patients and their loved ones are more 
likely to see, in the co-occurrence of symptoms, the 
threat of a serious medical condition, where the 
physician sees harmless coincidence.

The need to distinguish meaningful co-occurrences 
from simple coincidences regularly arises across a 
variety of medical decision-making contexts. 
Physicians and other medical professionals are often 

confronted with the difficult task of recognizing 
when co-occurrences are meaningful or coincidental: 
Does the simultaneous occurrence of certain symp-
toms imply the presence of a disease, or did it happen 
by chance? Does the apparent relationship between 
administration of a new medical drug and improved 
health signal effectiveness, a placebo effect, or a 
meaning less coincidence? Should a physician be con-
cerned when his or her patient reports experiencing 
unpleasant symptoms following a medical procedure, 
or is this mere happenstance? Are multiple out-
breaks of a rare disease within a small geographic 
area the sign of a growing epidemic or just random 
clustering?

Separating coincidence from causality is a prob-
lem that also confronts patients and nonmedical 
professionals: Are feelings of nausea following a 
dining experience the first signs of serious food 
poisoning, which calls for a trip to the emergency 
room, or are they unrelated? Are the higher rates 
of surgical death associated with a particular hos-
pital the result of malpractice or bad luck? Even 
when medical professionals are able to recognize 
coincidences, they must confront the objections  
of patients and loved ones who are quick to see 
meaningful associations in the co-occurrence of 
significant events (e.g., two family members dying 
from a rare disease) and resistant to the possibility 
that these could happen by chance alone.

A number of real-life examples illustrate the 
importance of distinguishing causation from coin-
cidence. One striking case is the controversy that 
erupted in a number of Western countries, when 
many parents were convinced, by anecdotal evi-
dence, that vaccination for measles, mumps, and 
rubella (MMR) caused autism. A number of stud-
ies were carried out in response to the resulting 
public outrage, with the majority of them finding 
no association between MMR vaccination and the 
occurrence of autism. As it turns out, children tend 
to be diagnosed with autism around the time they 
turn one, which also happens to be when they are 
administered the MMR vaccine. As result, a num-
ber of children who would have been diagnosed 
with autism, even without the vaccine, received 
this diagnosis shortly after receiving the MMR 
vaccine, leading many parents to perceive a direct 
link between the two.

Because of biases in human probabilistic rea-
soning, medical professionals and their patients 
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are subject to misunderstanding coincidental occur-
rences as causally related. For this reason, teaching 
medical professionals to be aware of these biases is 
a prerequisite for good medical decision making 
and effective communication with patients.

Christopher Y. Olivola and  
Daniel M. Oppenheimer
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ComPlexity

Complexity science is the study of systems charac-
terized by nonlinear dynamics and emergent prop-
erties. In contrast, simple mechanical systems  
are describable by sets of linear equations lending 
themselves to conventional scientific methods. But 
living systems and systems composed of living 
things display and adapt to changes in unpredict-
able ways. Complexity science studies systems as 
complete wholes instead of components or subsys-
tems to effectuate better decisions that are more 
realistic for clinical and policy decisions.

Complexity is a term that describes how system 
components interact with one another. For instance, 
conventional medical science may be less able to 
predict which patients will experience unantici-
pated side effects from a new drug. Likewise, 
healthcare delivery and its many elements are not 
likely to respond predictably to policy or reim-
bursement changes.

As knowledge of health and illness progressed 
through the 20th century, Cartesian notions of a 
mechanical and predictable universe were inade-
quate to describe some natural phenomena. 
Researchers believed that multi faceted and com-
plex findings associated with the health sciences 
might benefit from more advanced or comprehen-
sive frameworks than the mechanical ones  
typically employed. To this end, a science of com-
plexity was sought to improve predictability and 
quality of medical decision making with the use of 
specialized scientific methods.

Healthcare interventions draw on accumulated 
knowledge and wisdom concerning disease pro-
cesses, formalized as science, to prevent, ameliorate, 
or cure conditions. Given that diseases, treatment 
options, and patients are often complex and unpre-
dictable systems, perhaps clinical decision making 
could benefit through a deeper understanding of the 
system dynamics impinging on individual patients 
to a greater or lesser degree. For instance, complex 
patient ecologies include in addition to physiology, 
the cultural, local community, social, psychological, 
genetic, emotional, and relational domains, all of 
which can augment or impede treatment.

A science of complexity is attractive because  
of a potential to describe and predict systems  
phenomena more congruently with what is known 
about actual living system attributes and behaviors. 
For instance, the inputs, processes, and outputs 
associated with living systems are often described 
as nonlinear since system inputs yield unpredict-
able outputs. Furthermore, system behaviors may 
be deterministic, stochastic, or random responses 
to environmental challenges and changes; and all 
types of system responses may appear similar. Also, 
describing the “essence” of a given system through 
conventional repeated sampling methods of sys-
tem outputs may never converge on fixed system 
parameters. Furthermore, living whole systems are 
logically irreducible to description and prediction 
by simple “reductionist” methods. Slicing a system 
conceptually or literally for study has limits. At 
some threshold, the emergent and nonlinear prop-
erties of a whole system cease to function normally, 
and the subject of inquiry is lost.

Important too is the tendency for conventional 
scientific tools that tend to favor group responses 
over individual or idiographic ones. Emergent or 
unexpected clinical or policy system behaviors are 
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likely to be dismissed as measurement errors under 
conventional research methods.

Complex systems share some characteristics:  
(a) many nonlinearly interacting components;  
(b) system ordering initiated from the bottom up; 
(c) emergent structures to meet environmental 
demands; (d) self-organization; and (e) nonstation-
ary characteristics. Paul Plsek challenges us when 
he says that “the real power [in understanding 
systems] lies in the way the parts come together 
and are interconnected to fulfill some purpose” (p. 
309). Plsek further charts the domain of command 
and control, chaos, and complexity in Figure 1.

History

The scientific method and discourse since Descartes 
(1596–1650) progressed under two main assump-
tions: (1) System components could be analyzed as 
independent entities and then (2) added linearly 
together to describe and predict the behavior of the 
entire system. Thus was the Cartesian mechanistic 
worldview a radical and welcome departure from 
the previous scholastic forms of inquiry. Cartesian 
mechanics carried scientific inquiry for nearly three 
centuries and persists in various forms to this day.

Pierre Simon de Laplace formalized the continu-
ity of a Cartesian “clockwork” universe over time 
by suggesting that the current system state is a con-
sequence of its state in the moment immediately 
preceding the current one. Thus, by comprehending 
all nature’s laws, a system’s past may be described 
all the way back to its initial state and its future 
predicted. Over a century later, Henri Poincaré 
disagreed. He said that subtle factors in complex 
systems are amplified over time, leading to diffi-
culty in perceiving earlier system state conditions 
and making long-range prediction of the future 
impossible. Importantly, both Laplace and Poincaré 
described deterministic models—but the Laplacian 
universe was defined as stable and predictable 
through time and a thorough understanding of 
individual system components. The universe 
described by Poincaré was more uncertain and best 
understood from its most recent states. But Poincaré 
did assert that complex-appearing system outputs 
might be produced by simple deterministic mecha-
nisms but that some systems may be so sensitive to 
initial and slight perturbations that long-term pre-
diction of a system is nearly impossible. While 

Poincaré’s ideas led the way for modern chaos 
theory, Werner Heisenberg was showing that at 
least subatomic systems were unpredictable and best 
describable in probabilistic—or stochastic—terms.

Cartesian mechanics (Descartes’s The World, 
1633) became inadequate to the task of explaining 
scientific observations as the 20th century began. 
In 1928, Ludwig von Bertalanffy proposed a gen-
eral systems theory to correct Cartesian assump-
tions of reductionism and linear additivity. By 
1951, he had extended general systems theory spe-
cifically to biology. In 1956, Kenneth Boulding 
classically defined general systems theory as “a 
level of theoretical model-building which lies 
somewhere between the highly generalized con-
struction of pure mathematics and specific theories 
of specialized disciplines” (p. 197).

Meanwhile, two other forms of systems science 
were emerging. Economists adopted system dynam-
ics, which studied information amplified through 
systems, circular causality, and the self-regulating 
and self-influencing of systems. System dynamics 
found that systems can be self-destructive or self-
sustaining. Engineers found useful the system 
properties of information feedback and transmis-
sion between system components for describing, 
predicting, and modifying system behavior—the 
field of cybernetics.

Ultimately, complexity science emerged from 
systems theory with computer-based weather sim-
ulations by Edward Lorenz in 1961. Lorenz found 
that complex systems are highly sensitive to initial 
conditions, making nearly impossible accurate pre-
dictions for complex systems, depending on system 
stability. Thus, according to Kerry Emanuel, 
Lorenz had driven “the last nail into the casket of 
the Cartesian universe.” Complexity science might 
offer a more realistic model of systems as stochas-
tic and ever changing, rather than mechanical and 
stable from the beginning of time. Decision mak-
ing about systems required a new set of parameters 
and tools to estimate them.

Complex Systems: Description  
and Measurement

Ruben McDaniel and others remind us that the 
terms complexity and chaos do not refer to the same 
phenomena. Three types of systems output illustrate 
the differences: (1) noncomplex deterministic (simple 
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mechanical), (2) complex deterministic (a chaos or 
chaotic system), and (3) complex random (from a 
complex system). Automobile engines are mechani-
cal, noncomplex deterministic systems. All future 
behaviors of a specific automobile are predictable, 
given enough data.

Chaotic systems produce complex output that 
can be generated by a simple deterministic process. 
The formal definition and notion of a chaotic sys-
tem is that a chaotic system is very sensitive to ini-
tial conditions. Chaotic processes describe electrical 
heart activity and nerve impulse transmission. The 
weather is a classic example of a chaotic system.

Chaotic systems, though deterministic, cannot 
be predicted over the long run. This is because of 
their sensitivity to initial conditions. Chaotic sys-
tem behavior “drifts” over the course of time. The 
best predictor of tomorrow’s weather is today’s 
weather, and not the weather of 2 weeks ago. 
Equations that could predict system behavior yes-
terday become increasingly unstable or poor pre-
dictors into the future. Thus, each chaotic system’s 
behavior is a consequence of, and best predicted 
by, its behavior in the preceding moment—a prop-
erty called dynamical (see below).

Complex systems produce deceptively simple 
looking output from either complex or random 
processes. The problem is that chaotic (complex 
output/simple generator) and complex systems 
(simple or complex output/unknown processes) 

are difficult to distinguish by simple observation. 
Biological and genetic evolution is an example of 
an ongoing random process in a complex system.

Not unexpectedly, measurement of complex 
systems may require some unconventional descrip-
tors and tools. Fractals can describe dynamic pro-
cesses or output outside familiar fixed Gaussian 
parameters that are assumed to converge to fixed 
or “true” values in conventional research. For 
instance, increasing the numbers of fractal samples 
causes fractal parameters to approach zero or 
positive infinity as their asymptotic limits, rather 
than an estimate of central tendency with disper-
sion of measurement errors. Fractal dynamics are 
used to describe bacterial growth in an inoculated 
petri dish, recapillarization after muscle trauma, or 
other biological space-filling potentials. The fractal 
dimension is a ratio of the number of branches 
produced by a living system compared with the 
resolution of measurement. For instance, how fast 
does respirable anthrax grow in lung tissue, and 
how much of the lung will be damaged irreparably 
in how much time? On a more constructive note, 
how much reperfusion of damaged heart muscle 
may occur if a heart attack victim is administered 
a certain drug within a certain time?

System bifurcation is graphic evidence that the 
behavior of a complex system is undergoing a 
major shift from extreme environmental pres-
sures. Dissipative structures are distinctive physi-
cal changes observed in a system as it moves into 
a new equilibrium state after taking on too much 
information or energy for a system to maintain its 
current state. Boiling water is such an example, as 
liquid water becomes steam. Figure 2 is a graphi-
cal depiction of system bifurcation for the relation 
xn+1 = rxn(1 − xn).

System state or type distinctions become cru-
cial when attempting to predict system behavior. 
Clinicians may have to infer the kind of system 
they are dealing with based only on immediate 
observation. System behaviors determined only by 
previous states are dynamical systems. Dynamical 
systems output is not random, though it may 
appear to be. However, it is nearly impossible to 
identify all dynamical influences of chaotic system 
output. Five dynamical determinants constitute a 
natural upper limit for modeling chaotic systems. 
Some dynamical systems are more stable than oth-
ers, that is, they generate self-similar outputs over 
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longer times. Dynamical stability is measured with 
low Lyapunov exponents, lambda (λ) in the 
dynamical function f(x) = xλ. High Lyapunov 
exponents indicate less stable systems, and shorter 
time horizons for decision making. Variance in time 
horizons and individual patient outcomes are not 
captured in conventional reductionistic science.

Phase spaces and attractors are also complex 
system concepts. Phase space sets are plots of out-
put variables as a function of either time of obser-
vation or its immediate prior state. Observing 
system output over a phase space set yields clues 
to the nature of the system processes. While ran-
dom and chaotic data appear similar when plot-
ted in a phase space set over time, a chaotic 
deterministic pattern may emerge when each out-
put datum is plotted as a function of the previous 
one (Figure 3).

Random output homogeneously fills the phase 
space. Chaotic system output also may appear to 
fill phase space randomly. However, when each 
event is plotted as a function of the event immedi-
ately preceding it, the “noise” reveals a serial 
determinacy if the system is truly chaotic and not 
just random. Poincaré originally formalized the 
strange attractor, a type of dynamical system out-
put. New information or vectors entering into an 
attractor system tend to settle into a small range  
of values, giving the appearance of attraction to a 

“center of gravity” (see Figure 4). If the center is 
described as a fraction and not an integer, the 
attractor is called strange. If the attractor parame-
ter (called a fractal dimension) is not an integer,  
the attractor is called strange. Normally one, two, 
three, or more dimensions are conceivable for 
locating an observation in space and time; it is 
indeed strange to conceive of 1.2619, or some 
other noninteger number of dimensions.

Strange attractors were developed by Lorenz  
to describe the fluid dynamics in weather patterns 
when two air masses of different temperatures con-
verge. Initially, there is turbulence, followed by a 
new equilibrium state. Small changes in initial con-
ditions can make for large differences in the new 
state—a phenomenon called the butterfly effect. 
Biological applications of strange attractors include 
ecological breeding patterns, dynamics of neuron 
action potentials, and heart rate variability. Fractal 
dimensions can describe the extent of physiological 
damage from pulmonary hypertension.

Medical Decision Making

Complexity science may play an important role in 
medical decision making in the future by adding 
new descriptors, predictors, and parameters of 
complex system behavior. At the clinician level, 
patient care decisions based on clinical judgment, 
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Figure 2  Graphic depiction of a system in bifurcation from environmental challenges

Note: The patterns of angled lines to the right represent dissipative structure as the system changes in outputs. A homogeneous 
pattern without lines would depict a system not undergoing bifurcation.
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tacit knowledge, and current evidence may be 
improved by acknowledging limits of conven-
tional clinical trial research but also by recogniz-
ing the remarkable successes of conventional 
research methods. If complexity science improves 
medical decision making, then system quality, 
cost, efficiency, efficacy, and safety should mea-
surably improve in the future as more benefit 
from reduced uncertainty and fewer risks. Ideally, 
uncertainty would be reduced in the healthcare 

system and in clinical practice. Eventually, knowl-
edge added by complexity science may reach some 
practical limits, to be replaced by other decision-
informing tools.

At the policy level, complexity science perhaps 
also has potential to reduce system uncertainty and 
improve efficiencies. Even the simple exercise of 
thinking systemically can be helpful. The notion of 
time horizons is useful; so is appreciating the fact 
that systems adapt and that attempting system 
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Figure 3  An example of chaos output plotted as (a) a function of time and (b) a function of preceding state

Note: The first plot (a) is the distribution of data as a function of time; the second plot (b) shows the same data plotted as a 
function of its immediately preceding value.

Figure 4  Phase space of the strange attractor

Note: A three-dimensional plot of data converging on a smaller area as they enter a three-dimensional system.
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change often precipitates reorganizing and unan-
ticipated responses. Recognizing the signs of a dis-
tressed system expressed as “dissipative structures” 
may give health and financial decision makers 
more notice, more control, and the ability to effec-
tively anticipate, adapt to, and manage accelerat-
ing change.

J. Michael Menke and Grant H. Skrepnek
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ComPliCations or adverse 
effeCts of treatment

Complications, adverse effects, and adverse out-
comes are the downside of disease and treatment. 
If they occur, they lower the quality of care as 
experienced from the patients’ perspective while 
increasing cost. The result is worse care at a higher 
price, the opposite of what we all strive for; better 

care at a lower price. Thus, complications have 
lately attracted much attention, and much effort is 
spent trying to prevent them. By studying them 
and the mechanisms that underlie them, measures 
of prevention or reduction may be identified and 
implemented, thereby improving the quality and 
cost-effectiveness of care.

Definitions

There are various definitions available on the con-
cepts of “complications” and “adverse effect” in 
the medical context. Although they may differ on 
details, common denominators in most definitions 
are the focus on four elements.

Harm

This element describes the fact that the patient 
experienced some event or condition that had a 
negative effect on the patient’s health and maybe 
even resulted in (severe) harm to the patient or in 
death. It is not clear in all studies how unfavorable 
an event, outcome, or experience must be with 
respect to health-related harm to be considered a 
complication or an adverse effect. If a patient expe-
riences some pain after an operation, does not sleep 
well, or must stay in the hospital one or two days 
longer than expected, or if there is a small hema-
toma, or some wound reddening that disappears in 
a few days without treatment, most people will 
agree that this is not really a complication but more 
an inherent and acceptable consequence of the inter-
vention that was deemed necessary. On the other 
hand, if a wound abscess or the size of a hematoma 
and its pressure on the skin necessitate an operation, 
or if a patient is still in severe pain 6 weeks after 
discharge and still needs morphine for that, most 
people will agree that a complication has arisen.

Quality of Care

This element refers to the extent to which the 
care delivered caused, or contributed to, the harm 
that was experienced.

Unintentional Harm

This element refers to the fact that the harm was 
indeed unintentional and not an intentional sacrifice 
(as, for instance, is quite common in oncological 
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surgery to achieve a radical cancer resection), either 
as a calculated risk, deemed acceptable in light of an 
intervention’s greater or more likely expected ben-
efit, or as an unpleasant and unexpected surprise to 
both patient and doctor.

Harm Caused by Substandard Performance

This element addresses the question of the 
extent to which the harm was (in part) caused by 
professional substandard performance or even by 
an obvious error or mistake on the part of a per-
son, group, organization, or other entity. If this is 
con sidered to be the case, it will easily lead to the 
additional questions of whether those substandard 
elements in the delivery of care could have been 
prevented or should have been prevented. From a 
legal perspective, a positive answer to both the 
“could” and “should” questions would suggest 
that some form of compensation might be justi-
fied, by a liability procedure or otherwise, depend-
ing on the extent of the harm and the extent of the 
causality.

The worldwide interest in these concepts and in 
patient safety in general was strongly increased by 
the Harvard Medical Practice Study (HMPS) and 
by the report To Err Is Human that followed it. In 
the HMPS, an adverse event was defined as

an injury that was caused by medical manage-
ment (rather than the underlying disease) and 
that prolonged the hospitalization, produced  
a disability at the time of discharge, or both. 
(Brennan et al., 2004, p. 145)

The fact that this definition takes element 4, the 
causality criterion, on board opens it up to the accu-
sation of subjectivity. For many outcomes, the cause 
may not be entirely clear, or it may be attributed to 
several risk factors that may even reinforce one 
another in their causality. The subjective and over-
simplified “yes/no somebody’s fault” assumption 
does not often lead to an appropriate representation 
of causality. The HMPS defined the quality element  
(negligence) as “care that fell below the standard 
expected of physicians in their community.”

In the current era in which guidelines abound, 
the “expected standard” is generally reasonably 
clear. However, at the time of the HMPS, even this 
may have been less unambiguous.

Complication Registry: An Example

In the Netherlands, around the turn of the century, 
a nationwide initiative to standardize the prospec-
tive registration and analysis of complications 
took a different approach. Here the issue of causal-
ity was intentionally left out of the definition, 
assuming that at the time a complication or adverse 
effect is noticed or registered, there will often be 
insufficient insight into the causality or prevent-
ability of the harm inflicted. The Dutch definition 
of complication does include an unambiguous 
harm threshold, thereby providing a clear-cut cri-
terion for when something is serious enough to be 
considered a complication. It states,

An unintended and unwanted event or state 
occurring during or following medical care, that 
is so harmful to a patient’s health that (adjust-
ment of) treatment is required or that permanent 
damage results. The adverse outcome may be 
noted during treatment or in a predefined period 
after discharge or transfer to another depart-
ment. The intended results of treatment, the 
likelihood of the adverse outcome occurring, and 
the presence or absence of a medical error caus-
ing it, are irrelevant in identifying an adverse 
outcome. (Marang-van de Mheen, van Hanegem, 
& Kievit, 2005, p. 378)

Thus the assessment of causality is postponed to 
a later date, when more information is available. 
This has the advantage of providing the opportu-
nity to standardize or improve the way causality is 
analyzed, thus providing a clearer answer on epi-
demiological questions about attributable risk.  
As a consequence, both judgment subjectivity and 
interobserver variation should be lower.

As the Dutch complication registry is not con-
fined by a limited set of specified “complications-
to-register” at the exclusion of all others, the result 
is that an essentially unlimited number of different 
complications could meet the definition. Registering 
them inevitably may require that free text be used. 
For analysis purposes, however, free text is useless 
and must be recoded into a meaningful set of 
dimensions. Within the Dutch system, a so-called 
Master Classification has been created that charac-
terizes complications on three main dimensions, 
and in addition on a severity scale.
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The first dimension defines the nature of the 
complication, answering the “What?” question. Its 
subcategories have been adapted from the ICD9/10, 
to better fit the adverse outcome registration pur-
pose, and include types such as bleeding, dysfunc-
tion, and infection/inflammation.

The second dimension answers the “Where” 
question and specifies location, both by organ sys-
tems and organs, and by body topography (chest, 
abdomen, etc.).

In the third dimension, contextual information 
and (potential) determinants are recorded, while 
the fourth dimension specifies the harm inflicted 
on a patient (varying, for the surgical specialties, 
from full recovery without reoperation, to requir-
ing reoperation, leaving permanent damage, and 
resulting in death).

The main purpose of the Master Classification 
is not so much the recoding itself as the facilita-
tion of later data analysis. In combination with a 
minimum data set, in which elementary patient 
and context characteristics are recorded, the 
three-dimensional Master Classification provides 
maximum analytic flexibility. Sampling and ana-
lyzing complications can vary from broad catego-
ries such as “all bleeding complications” to very 
specific subsets such as “all infections in hip 
replacements leading to death in male patients 
over 70.”

The Dutch approach may not be unique. What 
is good about it is that the definition and the cod-
ing system used, in combination with a minimum 
data set and the database structure, make it possi-
ble to address a wide range of questions without 
having to return to patient records. That is a cru-
cial characteristic of any online system that aims at 
monitoring (and improving) the safety of health-
care by analyzing and reducing complications and 
adverse outcomes.

Causality and Complication Rates

Whether the issue of causality was or was not 
tackled adequately by the HMPS is still, after all 
these years, a matter of debate. The treatment  
of severe, sometimes life-threatening disease may 
require the weighing of potential benefits and 
potential harms. Choices will have to be made, and 
it is not unusual that the higher the goal is, the 
graver the risks are.

However, unintentional harm does occur to 
patients on quite a large scale. That in itself is suf-
ficient reason to strive for a reduction of its occur-
rence or impact. To what extent this harm results 
from some event totally beyond anyone’s control, 
is the consequence of a calculated risk, or is the 
consequence of below-standard care may not 
always be immediately clear, even to insiders.

In the field of patient safety, of complications 
and adverse effects, simple notions of one-cause-
with-one-effect rarely hold. Instead, multiple 
causes, some within the grasp of doctor or patient, 
and some totally beyond their control, may com-
bine or even reinforce one another and bring about 
a single but multicausal complication. Likewise, a 
single underlying cause may contribute to more 
than one complication, some less severe and some 
more so (see Figure 1).

The epidemiologically correct way to deal with 
the causality of complications would be to calcu-
late the relative risk or odds ratio per determinant, 
for instance using logistic regression. This, how-
ever, does not immediately solve the problem as it 
requires adequate identification of all relevant 
covariates. The problem is thus transformed into 
adequately identifying all potential causal ele-
ments, obtaining relevant data of sufficient qual-
ity, and correctly analyzing those data using 
state-of-the-art statistical methods, such as logistic 
regression or multilevel analysis. Subsequently, 
relative risks can be used to calculate the attribut-
able risk of one or more particular determinants. 
An important advantage of this statistically more 
refined approach, over an assumed simple one-to-
one cause-effect relationship, is that such an attrib-
utable risk will provide a realistic notion of the 
health gains that can be expected when this short-
coming is eliminated or reduced, where an  
inappropriately simple causal relationship will 
overestimate the health gains of interventions tar-
geting the assumed causes.

Given the definition and other issues, it is not 
surprising that for many comparable treatments or 
procedures, there are large differences in published 
complication rates. The fact that many studies nei-
ther provide specific information on the definition 
used nor have common standards in methodology 
may explain part of the variation in reported com-
plication rates. In particular, how the definition 
deals with the issue of causality has been found to 
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be an important determinant in the differences 
between complication rates.

Other methodological issues that are related to 
the reported incidence of complications or adverse 
outcomes are the type of data collection (prospec-
tive or retrospective) and the number of reviewers 
used. Most important are patient characteristics, 
which, apart from age, sex, and disease diagnosis, 
include more subtle determinants such as disease 
spectrum, comorbidity, the context in which 
patients are seen, and the type of admissions.

Relevance to Healthcare Providers, Patients, 
and Medical Decision Making

Complications and adverse effects are, because 
they compromise quality and increase cost, rele-
vant to many interested parties, not in the least to 
patients and healthcare providers. For healthcare 
providers, they are relevant because adequate deci-
sion making in medicine requires a weighing of 
potential harms and benefits. Doctors, when they 
must make choices on risky interventions for 
severe diseases, must have a keen insight into the 
risks of any treatment they consider and into the 
determinants that define this risk, which may dif-
fer between different subgroups of patients.

For patients, information about complications 
and adverse effects is even more relevant because it 
is they who bear the consequences. Therefore, 
patients have a right to know what their risks are 
and what the consequences are if such a risk mate-
rializes and the harm really occurs. It goes without 
saying that such risk information should not be 
limited to the risk of mortality but should include 
morbidity, both less and more severe. Only on the 
basis of appropriate information can expected ben-
efits and expected harms be adequately weighed.

For the field of medical decision making, com-
plications and adverse outcomes are relevant in 
more than one way. First, there is the classical 
threshold approach to medical decision making, 
which holds that costs (C) and benefits (B) of treat-
ment are weighed in light of an uncertain disease 
diagnosis. Treatment is the preferred policy if the 
chance of the disease being present exceeds the 
treatment threshold, defined by

C
C+B

:

Thus, the higher the cost is (i.e., the risk of 
adverse effects), the more certain one should be 
that the disease is indeed present for the benefits 
to outweigh the harm. Thus, the treatment thresh-
old will be closer to 1. Likewise, the more effective 
a treatment is, the lower the diagnostic certainty 
and thus the treatment threshold will be. Or, 
under the same treatment threshold, the higher the 
potential risk of harm may be that is deemed 
acceptable.

Second, modern medical decision making lays 
great emphasis on shared decision making. 

1 Cause 1 Effect

Cause 1

Cause 2

Cause 1

Cause n

Effect 1

Effect 1

Effect 2

Effect n

. .
 .

. .
 .

Figure 1  Causal relationships

Note: With respect to complications and adverse effects, 
one-to-one causality rarely holds. Instead, multiple causes 
may work together to bring about a single harm, or one 
cause may lead to several types of harm.
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Essential in shared decision making is that patient 
and caregiver communicate openly about risks 
and benefits of various choices and decide on the 
way to go taking into account not only objective 
evidence, but in addition priorities and preferences 
of the patient.

Third, a lot of research in the field of medical 
decision making is on risk perception and on the 
way that patients, doctors, and others transform 
an objective chance into a subjective notion of 
risk. Such research will improve insight into how 
patients (and doctors) perceive the risks of adverse 
effects, and weigh them into a final healthcare 
choice.

J. Kievit and P. J. Marang-van de Mheen

See also Causal Inference in Medical Decision Making; 
Complexity; Risk Communication
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ComPutational limitations

There are two aspects to computational limita-
tions in decision making. On the one hand, there 
is the idea that the human brain is computational 
and that optimal decisions require lengthy compu-
tations but that the human computational capac-
ity is limited, and therefore human decision 
performance is less than optimal and humans 
must use alternative strategies (heuristics, etc.) to 
make decisions.

The second aspect is that computers are limited 
as well from recommending optimal decisions 
because the algorithms required, by necessity, take 
too much time. So computers too must use alterna-
tive approaches.

The primary dialectic in decision making pits the 
rational-man model, where decisions are made in 
accordance with the goal of maximizing utility, 
against the natural-man model, where decisions are 
made in a way that has been evolutionarily designed 
to best fit our environment. One engine of this dia-
lectic is the issue of how much computational 
power is available to the decision maker. Computer 
scientists have attempted to model both sides in 
their machines, with results that have important 
implications for decision makers and those trying 
to help them. On the other side, psychologists have 
tried to apply computational models to observed 
and experimentally induced behavior.

As steam engines provided the motivating anal-
ogy in 19th-century science beyond mechanical 
engineering, computation provides the current 
leading analogy for many fields, including theories 
of the mind. Colloquially and even scientifically, 
authors discuss the brain as if it were a von 
Neumann computer: We separate thinking mem-
ory from storage memory, and we ask what opera-
tions our thinking self can perform with how many 
memory “cells.” Research results need to be clear 
whether they mean computation in its strict sense 
or in its analogous sense. This entry first addresses 
machine-based computational limitations and then 
explores these difficulties in human cognition.

Machines

The field of artificial intelligence is the primary 
field where computational models of decision 
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making get computer scientists’ full attention and 
where their models get tested. Traditional areas of 
artificial intelligence—game playing, visual under-
standing, natural-language processing, expert advice 
giving, and robotics—each requires processing 
data taken from the environment to result in a 
conclusion or action that embodies knowledge and 
understanding. The nature of “computation” dif-
fers in each case. In speech recognition, the current 
leading methods involve numerical calculation of 
probabilities. In game-playing, the methods call for 
deriving and considering many alternative game 
configurations. For expert systems—beginning 
with the program MYCIN, whose goal was sup-
porting the management of fever in a hospitalized 
patient—the computer explores pathways through 
rules. Thus, the computations involve a mix of 
quantitative and “symbolic” processing.

In computer science, computational limitations 
refer to two primary resources: time and space. 
Space refers to how much computer memory (gen-
erally onboard RAM) is needed to solve a prob-
lem. Time refers not only to the amount of time 
needed to solve a problem, in seconds or minutes, 
but also to the algorithmic complexity of prob-
lems. Problems whose solution time doubles if the 
amount of data input into the solver doubles have 
linear complexity; problems whose solution qua-
druples have quadratic complexity. For example, 
inverting a matrix that may represent transition 
probabilities in a Markov model of chronic disease 
has cubic complexity, and sorting a list has 
between linear and quadratic complexity. These 
algorithms are said to be polynomial (P) in the size 
of their data inputs. On the other hand, problems 
whose solution time doubles even if only one more 
piece of information is added have exponential 
complexity, and their solution takes the longest 
amount of time (in the worst case). For instance, 
enumerating by brute force all possible potential 
strategies for treatment in a specific clinical prob-
lem, where order matters, such as the question of 
which tests should be done in which order (diag-
nosing of immunological disease being a classic 
case, with the multitude of tests available), leads to 
an exponential number of pathways. If a single 
new test, for instance, becomes available, then 
every single pathway would have to consider using 
that test or not, thereby doubling the number of 
possibilities to be considered. If these strategies are 

represented as decision trees, the number of termi-
nal nodes would double.

There is a complexity class between polynomial 
and exponential called nonpolynomial (NP). Most 
of the interesting problems in decision making 
have been shown to be in this class, or NP com-
plete. For instance, the problem of diagnosis is NP 
complete, meaning that a general solution could 
potentially take an unlimited amount of time (for 
all intents and purposes) of coming up with the 
best list of diagnoses for a particular patient. A 
central mystery of computer science is whether an 
algorithm can be found that would make NP com-
plete algorithms polynomial: Is P = NP? If yes, 
then, with the right programming, the process of 
diagnosis would not take an “unlimited amount of 
time.” However, most computer scientists believe 
this equation not to be the case, that is that P ≠ 
NP, and that these time-saving algorithms do not 
exist. Their belief stems from the fact that it has 
been shown that, if one NP complete problem can 
be shown to be solved in polynomial time, then all 
other NP complete problems can be solved in poly-
nomial time as well. However, so many problems 
are NP complete and so many people have been 
looking for solutions for 30 years that it appears 
unlikely that a solution will be found.

If it is true that P ≠ NP, then the most important 
problems for which we want computers to supple-
ment human thought, processing, and decision mak-
ing will not be able to provide the correct answers in 
the time in which we need them to do so.

The result in computer science has been the reli-
ance on heuristics that, when used, give good-
enough results. The support for this use of reliance 
was provided by Herbert Simon, who called this 
primary heuristic satisficing.

Heuristic methods were the hallmark of early 
expert systems that provided decision advice. These 
were mostly rule-based systems with basically ad 
hoc methods of adjudicating conflicting rules, such 
as certainty factors or other measures. Metarules, 
in particular, were carefully crafted to look “rea-
sonable.” Thus, in the case of conflicting rules, a 
heuristic to be used might be the more “specific” 
rule (i.e., one where there were more “left-hand 
side” [antecedent] conditions that were met) over 
the less specific rule. For instance, a rule that per-
tained to a specific white blood cell count would  
be chosen over a rule that simply cited “WBC > 
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15,000.” If costs were represented, the metarule 
would counsel using the less costly rule (e.g., get a 
complete blood count rather than biopsy).

Other heuristic systems included blackboard 
systems, where rules or (later) agents, with both 
data-gathering and action-taking capabilities, 
shared a common data space. The agents reacted 
relatively autonomously to data available on the 
common blackboard. Coordination among the 
agents relied, again, on metarules: More specific 
agents “won” over less specific ones.

In logic-based systems, the inference systems 
were based on the soundness and consistency of 
logical derivation: modus ponens (if all men are 
mortal and Socrates is a man, then Socrates is mor-
tal) and modus tollens (if all men are mortal and 
Thor is not mortal, then Thor is not a man) in 
predicate logic, or binding and resolution in logic 
programming, such as is used in Prolog and XSB. 
However, to deal with uncertainty and apparently 
conflicting rules, modal logics were created that 
could reason about rules, much as metarules in 
expert systems were needed to adjudicate among 
conflicting rules. Some modal logics, for instance, 
made the implicit assumptions that, unless excep-
tions were explicitly stated, no exceptions were 
assumed to be present. While this assumption is 
reasonable, it may fail in environments where the 
knowledge base is assembled by experts who do 
not realize that the system has no idea of what an 
exception might be or who may be inconsistent in 
pointing out what exceptions indeed arise.

These disparate efforts converge on a common 
conclusion: If rational (computer-based) systems 
want to act rationally in the world, then their meta-
cognition cannot follow straightforward utility-
maximization procedures. Satisficing and heuristics 
will play major roles.

Humans

Researchers in cognitive science address decision 
making as computational in a number of ways. At 
the conscious level, they point to the language of 
decision making: We “weigh” evidence and “bal-
ance” pros and cons. At the preconscious level, we 
make choices based on some sort of psychological 
version of conscious weighing and balancing—but 
with the limitations imposed by time and by cogni-
tive boundaries.

A classic limit due to “space” is embodied in the 
truisms of the magic number 7: that our short-term 
memory (note the computer-like label) can accom-
modate 7 ± 2 chunks. Since 1956, this limit has 
become part of social lore. We can remember 
phone numbers, along with satellite access and 
secret codes (a potential total of 21 digits), by 
chunking them into three entities and then recall-
ing each number as 3 chunks (area code, “exchange,” 
number) or 7 digits of access (usually divided into 
a unit of 3 digits and then 4 remaining digits). 
Chess masters apparently remember board arrange-
ments because they chunk patterns of many pieces 
into one pattern, much as expert diagnosticians 
recall many details about a patient because many 
findings may be chunked into syndromes that 
explain the findings or make the findings memo-
rable specifically because they are exceptions to 
the syndromic rule. For instance, a patient with no 
crackles in the lung fields but with fever, cough, 
diminished air entry, infiltrate on an X-ray, and 
sputum culture positive for pneumococci has 
pneumococcal pneumonia, notable for the absence 
of crackles, much like Sherlock Holmes’s dog was 
notable for not barking.

Cognitive scientists have gone further, to opine 
that the computational limits forced evolution to 
mold in humans heuristics that are successful pre-
cisely because of these limits. Gerd Gigerenzer and 
Reinhard Selten title their compendium on the 
subject Bounded Rationality as a direct response 
to Simon and match specific information environ-
ments to specific heuristics. Thus, in a noisy but 
stable information environment, people use the 
Imitate Others heuristic. Where rational-man theo-
rists see deficiencies in people’s abilities to act 
totally rationally, as defined by the rules of maxi-
mizing expected utility, these experimentalists see 
strength and power in people’s abilities to do as 
well as they can in the limits nature set them.

Thus, the psychologists see people using heuris-
tics in much the way that computer scientists 
learned to rely on them: for metacognition. In 
Gary Klein’s famous example, firemen, when 
faced with a new and clearly dangerous situation, 
rather than calculate all the possibilities and 
choose the optimal path, use the heuristic of mov-
ing to the last safe place (“Take the Last”) and 
consider the options from there. These major heu-
ristics, according to Girgerenzer, fall under the 
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general class of Fast and Frugal—to arrive at a 
conclusion quickly and with the use of minimal 
resources is itself a goal.

Other cognitive researchers have gone deeper, 
delving into the structure of memory that under-
girds much decision making. Fuzzy Trace theory 
points out that memory, beyond short-term and 
long-term, contains two further types: gist and 
verbatim. The fuzzy-processing preference is to 
operate at the least precise level of representation 
that can be used to accomplish a judgment or deci-
sion. This preference is clearly related to the  
“frugal” aspect of Girgerenzer’s conception.

Behavioral-economist researchers, such as Amos 
Tversky and economics Nobel prize winner Daniel 
Kahnemann, discovered many biases, discussed 
elsewhere in this encyclopedia, by comparing 
human behavior with behavior that maximizing 
expected utility would dictate. In this sense, the 
heuristics are biases to be corrected. From the cog-
nitive psychologist’s perspective, each “bias” 
reflects a mental mechanism built on a particular 
strength of the human brain. Thus, people’s pow-
erful abilities in pattern matching become the  
representativeness bias; efficient memory retrieval 
becomes the availability bias; the abilities to dis-
cern salience and signals become the anchoring 
and adjusting biases.

Synthesis

The demand for decision support delivered by 
computers in practice forces developers to con-
front this dialectic. On the one hand, the computer 
is expected to be correct, evidence-based, and 
rational. On the other hand, it participates in a real 
work environment with all the limitations of its 
users and the time pressures of their jobs. An ideal 
synthesis would have the knowledge infrastructure 
of the decision support based on the rational-man 
model but with a user interface built on principles 
of bounded rationality and heuristic actions. 
Current research and practice work toward these 
ideals on several fronts, although no solution is 
currently offered. The rational-man-based decision 
support is reserved for policy recommendations, 
while frontline decision making depends on heuris-
tics-based decision support that generally does not 
take human cognitive thinking or relations with 
the human-computer interface into account. 

Hopefully, we shall see proper syntheses in the 
future.

Harold Lehmann

See also Bounded Rationality and Emotions; Clinical 
Algorithms and Practice Guidelines; Cognitive 
Psychology and Processes; Computer-Assisted Decision 
Making; Expected Utility Theory; Fuzzy-Trace Theory; 
Heuristics
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ComPuter-assisted 
deCision making

Computer-based decision support software can 
assist in arriving at decisions regarding diagnoses 
and diagnostic workup, therapy choices, and 
prognoses. Generally, such software systems func-
tion by interpreting data about patients using 
biomedical knowledge that has been encoded into 
the software. The results of these interpretations 
are often decision alternatives that are pertinent to 
the patient under consideration and are presented 
to the users of the software to assist them in their 
decision making. The users of the software may be 
clinicians or patients.
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Approaches

A decision support software system has several 
conceptual components:

 1. An inferencing approach typically embodied in 
an algorithm that enables the system to interpret 
patient data based on the knowledge available 
to the system. Examples of such approaches 
include Bayesian inferencing and production 
rule evaluation.

 2. A knowledge base that comprises the 
biomedical knowledge available to the system. 
The knowledge is encoded in a form that 
corresponds to the inferencing approach being 
used. For example, a knowledge base for 
trauma diagnosis might consist of a Bayesian 
network relating patient symptoms and findings 
to internal organ injuries.

 3. Optional interfaces to other computer systems 
to obtain data about a patient.

 4. A user interface to interact with the user, such 
as to obtain data, and to present the results 
from the inferencing.

Based on the mode in which the decision sup-
port is invoked, the system may be characterized as 
one providing solicited advice or one providing 
unsolicited advice. In the former case, a clinician 
may seek recommendations from a decision sup-
port system to assist with making a differential 
diagnosis in a patient with an unusual presenta-
tion. Such systems usually contain a large knowl-
edge base that spans a domain of clinical interest 
such as internal medicine or infectious diseases. 
Unsolicited advice is rendered by systems (a) in 
response to clinical events that are being moni-
tored, such as the reporting of a critically low 
value for a serum potassium test, or (b) as a cri-
tique of a proposed physician intervention such as 
prescribing a medication to which the patient is 
hypersensitive. Decision support systems that offer 
unsolicited advice, to be able to function, must  
be integrated with sources of patient data such as 
an electronic medical record (EMR) system or a 
computer-based provider order entry (CPOE) sys-
tem. Systems that offer solicited advice may be 
integrated with sources of patient data or may be 
freestanding.

An important aspect of decision support systems 
for clinical use is how it integrates into the clinical 
workflow. In other words, the successful use of 
these systems depends on when and where the sys-
tem’s advice is presented to the clinicians. Thus, 
various kinds of tools have been created to present 
advice at particular points in the clinical workflow. 
For example, reminder systems are used often to 
advise clinicians in the ambulatory setting about 
preventive care actions that are applicable to a 
patient. Electrocardiography (ECG) machines incor-
porate features to analyze the ECG and print or 
display the resulting interpretation of the findings 
with the ECG trace. Rule-based systems critique 
physician orders and prescriptions in the CPOE 
application to prevent orders that might have the 
potential to harm the patient or those that might be 
ineffective. Such systems also might suggest addi-
tional orders called corollary orders: For example, 
an order for a nephrotoxic medication might lead to 
a corollary order for performing kidney function 
tests. Abnormal laboratory test results are high-
lighted on the screen to draw the attention of the 
clinician to those values. Furthermore, links to 
didactic informational resources, also known as 
infoButtons, can be shown next to the results. These 
information resources can be used by the clinicians 
to help interpret the test result and decide on an 
appropriate action. Treatment planning systems for 
surgery or radiation therapy are used in a labora-
tory setting initially to plan the treatment. The out-
puts of these systems are presented to the clinician 
during the treatment in the operating room.

Applications and Examples

One of the well-known, early examples of soft-
ware for computer-assisted medical decision mak-
ing is MYCIN, developed by Edward Shortliffe at 
Stanford University. MYCIN provided, on solici-
tation by physicians, antimicrobial therapy recom-
mendations for patients with bacterial infections. 
MYCIN was capable of explaining how it arrived 
at its recommendations.

Internist-1, another early system, assists in diag-
nostic decision making. It is capable of making 
multiple diagnoses from patient symptoms and 
findings in the domain of internal medicine using a 
very large knowledge base. Internist-1 is available 
commercially as the Quick Medical Reference 
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(QMR) system. Over the years, many other com-
puter-based decision support systems have been 
created to assist with making diagnoses. Among 
these are the DXplain system for diagnoses in 
internal medicine, and a Bayesian network-based 
system for diagnosing the cause of abdominal pain, 
created by F. T. de Dombal and colleagues.

Computer-assisted decision aids have been used 
for complex tasks such as radiation therapy treat-
ment planning and surgical planning. In the former 
case, computer-based tools are used for designing a 
treatment plan that optimizes the delivery of radia-
tion to a tumor. In the latter case, computer soft-
ware is used with three-dimensional images of the 
patient to plan and simulate the surgical procedure.

A separate class of decision-making systems has 
been investigated to support the need for planning, 
coordinating, and executing care over extended 
time periods. The intended use of such systems is 
often to implement decision support based on 
clinical practice guidelines. The systems support 
decision making around the diagnosis, evaluation, 
and long-term management of a patient. Examples 
of these systems include the Guideline Interchange 
Format, ProForma, EON, and Asbru.

Effectiveness and Usage

In clinical studies, clinical decision support (CDS) 
systems have been shown largely to affect the per-
formance of practitioners in a desirable manner. 
For example, reminder systems have increased the 
frequency with which preventive care actions are 
carried out; diagnostic decision support systems 
have been shown to help make the correct diagno-
sis; and CDS embedded in CPOE systems has 
reduced the ordering of drugs that might cause 
harm to the patient. Systems that provide unsolic-
ited advice are more likely to affect practitioner 
performance than are systems that require the 
practitioner to seek advice. Few studies on  
computer-assisted decision-making systems have 
measured the impact of such systems on patient 
outcomes. Among these studies, relatively few 
have demonstrated an improvement in patient 
outcome.

In spite of the beneficial impact of computer-
assisted decision-making tools on practitioner per-
formance, these tools are not being used widely 
yet. One of the challenges in the adoption of CDS 

systems is the lack of specificity of the decision sup-
port, especially for the systems that offer unsolic-
ited advice. These systems must have access to 
codified patient data. If such data are lacking or 
are imprecise for a patient, advice is delivered to 
the practitioner that may not apply to that patient. 
For example, if there is a record of an allergy to a 
particular medication, but the severity is not docu-
mented for a patient, a decision support system 
might advise the physician to not order the medica-
tion, even though the sensitivity is very mild in this 
patient and the clinical benefit potentially is large. 
Another major barrier to the widespread usage of 
CDS systems is the availability of knowledge bases 
to cover the different domains of healthcare and of 
clinical practice. The creation and maintenance of 
knowledge bases requires much effort from sub-
ject matter experts and knowledge engineers. 
Furthermore, such knowledge bases must be usable 
in a variety of different host CDS systems and 
many different practice environments. Financial 
incentives can also help increase the adoption  
of computer-assisted decision-making tools. The 
increasing use of pay-for-performance measures, 
where providers are reimbursed by payers based 
on their performance in a range of quality mea-
sures, might lead to increases in adoption of tools 
for decision making.

The use of standards for representing the knowl-
edge and providing patient data to the CDS system 
will reduce technical barriers for implementing and 
using CDS systems. The Clinical Decision Support 
Technical Committee at Health Level Seven (HL7), 
an organization with international participation 
that creates standards for healthcare data inter-
change, is leading the effort for developing knowl-
edge representation standards. HL7 sponsors the 
Arden Syntax standard for representing rules that 
are used in a number of commercially available 
clinical information systems.

Aziz A. Boxwala
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Conditional indePendenCe

The concept of conditional independence plays  
an important role in medical decision making. 
Conditional independence itself concerns whether 
information about one variable provides incremental 

information about another variable. The concept is 
also important in articulating assumptions needed to 
reason about causality.

Independence and Conditional Independence

The concepts of independence and conditional 
independence concern whether information about 
one variable also contains information about 
another variable. Two variables are said to be 
independent if information about one gives no 
information about the other. For example, one 
might expect that whether an individual is left-
handed or right-handed gives no information 
about the likelihood of developing pneumonia; it 
would then be said that being left-handed or right-
handed is independent of the development of 
pneumonia. More formally, if P(Y = y|Z = z) is the 
probability that Y = y given Z = z and if P(Y = y) 
is the overall probability that Y = y, then the vari-
ables Y and Z are said to be independent if  
P(Y = y|Z = z) = P(Y = y); in other words, Y and Z 
are independent if the information that Z = z gives 
no information about the distribution of Y; equiv-
alently, Y and Z are independent if P(Z = z|Y = y) 
= P(Z = z). When two variables X and Y are not 
independent, they are said to be correlated or to be 
statistically associated. Independence is also often 
referred to as “marginal independence” or “uncon-
ditional independence” to distinguish it from con-
ditional independence.

The concept of conditional independence is a 
natural extension of the concept of independence. 
Conditional independence is similar to indepen-
dence, except that it involves conditioning on a 
third variable (or set of variables). Thus suppose 
that one is interested in the relationship between X 
and Y within the strata of some third variable C. 
The two variables, X and Y, are said to be condi-
tionally independent given C if information about 
X gives no information about Y once one knows 
the value of C. For example, a positive clinical 
breast exam is predictive of the presence of breast 
cancer; that is to say, a positive clinical breast 
exam and the presence of breast cancer are not 
independent; they are statistically associated. 
Suppose, however, that in addition to the results of 
a clinical breast exam, information is also avail-
able on further evaluation procedures such as 
mammogram and biopsy results. In this case, once 
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one has information on these further evaluation 
procedures, the results from the clinical breast 
exam give no additional information about the 
likelihood of breast cancer beyond the mammo-
gram and biopsy results; that is to say the presence 
of breast cancer is conditionally independent of the 
clinical breast exam results given the results from 
the mammogram and biopsy. More formally, if 
P(Y = y|Z = z, C = c) is the probability that Y = y 
given that Z = z and C = c and if P(Y = y|C = c) is 
the probability that Y = y given that C = c, then the 
variables Y and Z are said to be conditionally inde-
pendent given C if P(Y = y|Z = z, C = c) = P(Y = 
y|C = c). When two variables Y and Z are not con-
ditionally independent given C, then they are said 
to be associated conditionally on C or to be condi-
tionally associated given C. The notation Y∐Z|C 
is sometimes used to denote that Y and Z are con-
ditionally independent given C; the notation Y∐Z 
is used to denote that Y and Z are unconditionally 
independent. A. P. Dawid’s article “Conditional 
Independence in Statistical Theory” gives an over-
view of some of the technical statistical properties 
concerning conditional independence. The focus 
here will be the relevance of the idea of conditional 
independence in medical decision making.

Conditional Independence  
in Causal Reasoning

For medical decision making, the idea of condi-
tional independence is perhaps most important 
because of its relation to confounding and the esti-
mation of causal effects. Suppose that a researcher 
is trying to compare two drugs, Drug A and Drug 
B, in their effects on depression. Suppose that it has 
been demonstrated in randomized trials that both 
drugs result in higher recovery rates than a placebo 
but that it is unclear whether the recovery rate for 
Drug A or for Drug B is higher. Suppose that 
observational data are available to compare Drugs 
A and B but that no randomized trial has been 
conducted to make such a comparison. Let Xi be 
the variable that indicates which treatment indi-
vidual i in fact received, so that Xi = 1 denotes 
individual i’s receiving Drug A and Xi = 0 denotes 
individual i’s receiving Drug B. Let Yi denote 
whether or not individual i is clinically depressed 
1 year after the initiation of drug therapy. For each 
individual, it might be of interest whether the 

individual’s depression status would be different 
under Drug A compared with Drug B. Let Yi(1) 
denote individual i’s depression status 1 year after 
the initiation of drug therapy had the individual, 
possibly contrary to fact, been given Drug A. Let 
Yi(0) denote individual i’s depression status had the 
individual, possibly contrary to fact, been given 
Drug B. The variables Yi(1) and Yi(0) are some-
times referred to as counterfactual outcomes or 
potential outcomes. For any given individual, one 
only gets to observe one of Yi(1) or Yi(0). For indi-
viduals who in fact received Drug A, one observes 
Yi(1); for individuals who in fact received Drug B, 
one observes Yi(0). Because only one of the poten-
tial outcomes is observed, it is not possible to cal-
culate the causal effect, Yi(1) − Yi(0), for individual 
i since one of Yi(1) or Yi(0) is always unknown.

Although it is not possible to estimate individual 
causal effects, one can in some contexts, under 
assumptions articulated below about conditional 
independence, estimate average causal effects for a 
particular study population. In what follows, the 
index i is generally suppressed, and the variables 
are treated as random, assuming that the subjects 
in the study are randomly sampled from some 
study population. One might thus be interested in 
comparing the average depression rate for the 
population if the whole study population had been 
given Drug A, denoted by E[Y(1)], with the aver-
age depression rate for the population if the whole 
study population had been given Drug B, denoted 
by E[Y(0)]. Although it is not possible to observe 
Y(1) or Y(0) for each individual, one might con-
sider comparing the observed depression rates for 
the group that in fact received Drug A, denoted by 
E[Y|X = 1], and the observed depression rates for 
the group that in fact received Drug B, denoted by 
E[Y|X = 0]. The problem with such an approach is 
that the group that received Drug A and the group 
that received Drug B might not be comparable. For 
example, the group that received Drug A might 
have had more severe depression or might have 
consisted of older subjects or might have had 
worse diets. To attempt to make the groups com-
parable, control may be made for as many con-
founding variables as possible, variables that affect 
both the treatment and the outcome, denoted by 
C. It is then hoped that within strata of the con-
founding variables C the group receiving Drug A is 
comparable with the group receiving Drug B.



161Conditional Independence

More formally, to estimate the average causal 
effect, E[Y(1)] − E[Y(0)], by control for confound-
ing, it is necessary that the counterfactual variables 
Y(1) and Y(0) be conditionally independent of the 
treatment received, X, given the confounding vari-
ables C. This conditional independence assump-
tion can be written as P(Y(1)|X = 1, C = c) = 
P(Y(1)|X = 0, C = c) and P(Y(0)|X = 1, C = c) = 
P(Y(0)|X = 0, C = c); in other words, within strata 
of the confounding variables C, what happened to 
the group that received Drug A is representative of 
what would have happened to the group that recei-
ved Drug B if they had in fact received Drug A; and 
similarly, within strata of the confounding variables 
C, what happened to the group that received Drug B 
is representative of what would have happened to 
the group that received Drug A if they had in fact 
received Drug B. If this holds, then average causal 
effects can be estimated using the following formula:

E[Y(1)] − E[Y(0)] = ∑c{E[Y|X = 1, C = c] 
 − E[Y|X = 0, C = c]}P(C = c).

Average causal effects can be estimated because, 
within strata of the confounding variables C, the 
groups that received Drug A and Drug B are compa-
rable. The assumption that the counterfactual vari-
ables Y(1) and Y(0) are conditionally independent of 
the treatment received, X, given the confounding 
variables C is sometimes referred to as the  
assumption of “no-unmeasured-confounding” or as 
“exchangeability” or as “ignorable treatment assign-
ment” or as “selection on observables” or sometimes 
as simply the “conditional independence” assump-
tion. The assumption plays an important role in 
causal inference. In practice, data are collected on a 
sufficiently rich set of variables C so that the assump-
tion that the groups are comparable within strata of 
C is at least approximately satisfied. Different tech-
niques are available to make adjustment for the 
covariates C; adjustment can be made by stratifica-
tion, regression, or propensity score modeling.

In the context of medical decision making, con-
ditional independence is also important for a num-
ber of other problems. In many studies subjects 
drop out of a study before an outcome can be 
observed. It is not always clear that those subjects 
that remain in the study are comparable to those 
that drop out of the study. To make such problems 
tractable, a certain conditional independence 

assumption is sometimes made, namely that cen-
soring status is conditionally independent of the 
potential outcomes Y(1) and Y(0) given the covari-
ates C. In other words, it is assumed that within 
strata of the covariates C, the groups dropping out 
of the study are comparable with those who do not 
drop out; the set C contains all variables that affect 
both the dropout and the outcome. Conditional 
independence is also important in the analysis of 
surrogate outcomes in which some intermediate 
outcome is taken as a surrogate for the final out-
come, which may be more difficult or expensive to 
collect data on than the surrogate. For example, 
the Prentice criteria for a valid surrogate outcome 
consist of the following three conditions: (1) the 
surrogate outcome, S, must be correlated with the 
true outcome, Y (i.e., S and Y must not be inde-
pendent); (2) the surrogate outcome, S, must be 
affected by the exposure, X; and (3) the exposure, 
X, and the outcome, Y, should be conditionally 
independent given the surrogate, S. The third crite-
rion captures the notion that all information about 
Y contained in the exposure A is in fact also avail-
able in the surrogate outcome, S.

Graphical Representation

More recently, graphical models and causal dia-
grams have been used to reason about independence 
and conditional independence relations. The techni-
cal details concerning such reasoning are beyond 
the scope of this entry. These diagrams make it clear 
that statistical association (lack of independence) 
can arise in a number of ways. The variables X and 
Y may be associated if X causes Y or if Y causes X. 
Even if neither X nor Y causes the other, the vari-
ables X and Y may be associated if they have some 
common cause C. In this case, if C contains all the 
common causes of X and Y, then X and Y will not 
be marginally independent but will be conditionally 
independent given C. Finally, if X and Y are inde-
pendent but if they have some common effect C, 
then it will in general be the case that X and Y are 
conditionally associated given the common effect, 
C, that is, they will not be conditionally indepen-
dent given C. Another interesting property relating 
conditional independence to these diagrams can be 
stated as follows: If the set C contains all variables 
that are common causes of X and Y and contains no 
common effects of X and Y, then if neither X nor Y 
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causes the other, then X and Y must be condition-
ally independent given C; thus, if X and Y are found 
not to be conditionally independent given such a set 
C, then one could conclude that either X has an 
effect on Y or Y has an effect on X.

These causal diagrams and their relation to con-
ditional independence can also be helpful in under-
standing different forms of selection bias. Suppose 
that the occurrence of pneumonia and the level of 
sugar intake are such that sugar intake has no effect 
on pneumonia and that sugar intake and pneumo-
nia are completely independent in the population. 
Sugar intake is however a risk factor for diabetes. 
Suppose now that all the subjects in a study are 
taken from a particular hospital. Hospitalization is 
then a common effect of both pneumonia and of 
diabetes, which is in turn an effect of sugar intake. 
By restricting the study to those subjects who are 
hospitalized one is implicitly conditioning on a 
common effect of pneumonia and sugar intake/
diabetes, namely hospitalization. Thus, in the study 
it will appear that sugar intake and pneumonia are 
statistically associated because of the conditioning 
on the common effect, hospitalization, even though 
sugar intake has no effect on pneumonia; although 
sugar intake and pneumonia are marginally inde-
pendent, they are not conditionally independent 
given hospitalization. This is an instance of what is 
often now called Berkson’s bias. It is one of several 
types of selection bias that can be viewed as result-
ing from conditioning on a common effect and 
thereby inducing conditional association. See 
Hernán, Hernández-Diaz, and Robins (2004) for a 
discussion as to how the ideas of independence and 
conditional independence, causal diagrams, and the 
conditioning on a common effect can be used to 
understand better other forms of selection bias.

Tyler J. VanderWeele
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Conditional Probability

The probability that event E occurs, given that 
event F has occurred, is called the conditional 
probability of event E given event F. In probability 
notation, it is denoted with p(E|F). Conditional 
probabilities express the probability of an event (or 
outcome) under the condition that another event 
(or outcome) has occurred. You could also think 
of it as the probability within a particular subset, 
that is, in the subset of patients with event F in 
their history, the proportion that develop event E.

The conditional probability p(E|F) is the ratio of 
the joint probability of events E and F, which is 
denoted as p(E, F) or as p(E and F), and the mar-
ginal probability of event F, denoted with p(F):

If the conditional information (“given event F”) 
makes no difference to the probability of event E, 
then the two events E and F are said to be condi-
tionally independent. For example, if F made no 

pðEjFÞ= pðE; FÞ
pðFÞ

:
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difference to the estimate of the probability of E, 
that is, if p(E|F+) = p(E|F−) = p(E), then E and F 
are said to be conditionally independent.

M. G. Myriam Hunink
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ConfidenCe intervals

Any decision in medicine is arrived at through a 
careful process of examining the evidence and 
deciding what would be the best course of 
action. There are many parts to this process, 
including the gathering of evidence that is of as 
high a quality as possible, the critical examina-
tion of this evidence, and a consideration of the 
interests of all those likely to be affected by the 
decision.

This entry concentrates on the process of criti-
cally examining the evidence and in particular the 
importance of confidence intervals to this process. 
Some key concepts will be defined, before discussing 
what is meant by statistical and clinical significance 
and then demonstrating the relevance and impor-
tance of confidence limits to medical decision mak-
ing through examples from the literature.

Key Concepts

In classical statistical inference, the null hypothesis 
is the hypothesis that is tested. It is assumed to be 
true and is only rejected if there is a weight of evi-
dence against it. The p value provides evidence in 
support of the null hypothesis. Technically speak-
ing the p value is the probability of obtaining the 
study results (or results more extreme) if the null 
hypothesis is true. Thus a “small” p value indicates 
that the results obtained are unlikely when the null 
hypothesis is true and the null hypothesis is 
rejected in favor of the alternative hypothesis. 

Alternatively, if the p value is “large,” then the 
results obtained are likely when the null hypothesis 
is true and the null hypothesis is not rejected. 
However, a large p value does not mean that the 
null hypothesis is correct: Absence of evidence 
does not equate to evidence of absence. The power 
of a study refers to the probability that a study will 
reject the null hypothesis if it is not true. While a 
nonsignificant p value may be indicative of the null 
hypothesis being correct, it may also be the result 
of the study lacking the power to reject the null 
hypothesis even though it is incorrect.

A result is said to be statistically significant if 
the p value is below the level set for defining sta-
tistical significance. This level is set before a 
study is undertaken. Conventionally, the cutoff 
value or two-sided significance level for declaring 
that a particular result is statistically significant is 
.05 (or 5%). Thus if the p value is less than this 
value, the null hypothesis is rejected and the 
result is said to be statistically significant at the 
5% or .05 level.

For example, researchers in Australia (J. B. 
Dixon and colleagues) recently investigated whether 
adjustable gastric banding resulted in better glyce-
mic control for type 2 diabetes compared with 
standard approaches to weight loss. At the end of 
the study, the 30 patients randomized to gastric 
band surgery (surgical) weighed, on average, 19.6 
kg less than the 30 patients randomized to conven-
tional weight loss therapy (standard), and the p 
value associated with this difference was less than 
.001. As this is less than .05, the authors were able 
to conclude that there was a statistically significant 
difference in the amount of weight lost between 
the two therapy groups.

However, a p value is not everything as it gives 
no information about the likely size of the result 
or the range of plausible values for it. This addi-
tional information is given by calculating a confi-
dence interval for the result. Strictly speaking, a 
confidence interval represents the limits within 
which the true population value will lie for a 
given percentage of possible samples, and it can 
be calculated for any estimated quantity from the 
sample, including a mean or mean difference, 
proportion, or difference between two propor-
tions. In practice, while not strictly speaking cor-
rect, it is not unreasonable to interpret; for 
example, the 95% confidence interval for the 
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mean as being the interval within which the true 
population mean is likely to lie with 95% cer-
tainty, or probability .95. For large samples (say 
greater than 60), the 95% confidence interval is 
calculated as

x− 1:96× s= n
p

to x+ 1:96× s= n
p

;

where

x– is the sample mean,

s is the sample standard deviation,

n is the number of observations in the sample, and

1.96 is the two-sided 5% point of the standard nor-
mal distribution.

The reason why we can use this simple formula 
is that, according to the Central Limit Theorem, 
the mean follows a Normal distribution. The 
Normal distribution is one of the fundamental 
distributions of statistics, and it is characterized 
such that the middle 95% of the data lie within 
+/− 1.96 standard deviations of its mean value. 
Conversely, only 5% of the data lie outside of 
these limits. The sample mean is an unbiased esti-
mator of the true population mean, and while s is 
the sample standard deviation (for the data col-
lected), the standard deviation of the mean is given 
by s/√n

—
 and is often referred to as the standard 

error of the mean. Thus 95% of possible values for 
the true population mean will lie within 1.96 × 
s/√n

—
 of the sample mean.

While the 95% confidence interval is the stan-
dard, it is possible to calculate a confidence inter-
val to have greater or lesser coverage, that is, a 
90% confidence interval or a 99% confidence 
interval, and this is done by changing the value of 
the cutoff point of the standard normal distribu-
tion in the expression above. For 90% limits, this 
changes to 1.64, and for 99% limits, this changes 
to 2.58.

For the above example, the 95% confidence 
interval for the mean difference in weight lost 
was 15.2 to 23.8 kg. Thus, the true mean dif-
ference in amount of weight lost between those 
with surgical intervention and standard ther-
apy lies between 15.2 and 23.8 kg with 95% 
certainty.

Statistical Versus Clinical Significance

For medical decision making, in addition to statis-
tical significance, it is essential to consider clinical 
significance, and it is in contributing to this that 
confidence intervals demonstrate their importance. 
A clinically significant difference is defined as a 
difference that is sufficiently large as to make a dif-
ference to patients or cause a change in clinical 
practice. Clinical significance is not a statistical 
concept, and its level cannot be set by a statisti-
cian. It must be arrived at through debate with 
knowledgeable subject experts, and the value set 
will depend on context. What is important to 
patients might be very different from what is con-
sidered important by policy makers or clinicians.

Even if a result is statistically significant, it may 
not be clinically significant, and conversely an esti-
mated difference that is clinically important may 
not be statistically significant. For example, con-
sider a large study comparing two treatments for 
high blood pressure; the results suggest that there is 
a statistically significant difference (p  < .001) in the 
amount by which blood pressure is lowered. This  
p value relates to a difference of 2 mmHg between 
the two treatments, with a 95% confidence interval 
of 1.3 to 2.7 mmHg. Although this difference is 
statistically significant at the .1% level, it is not 
clinically significant as it represents a very small 
change in blood pressure and it is unlikely that 
clinicians and indeed their patients would change 
to a new treatment for such a marginal effect.

This is not simply a trivial point. Often in 
research presentations or papers, p values alone 
are quoted, and inferences about differences 
between groups are made based on this one statis-
tic. Statistically significant p values may be mask-
ing differences that have little clinical importance. 
Conversely, it may be possible to have a p value 
greater than the magic 5% but with a genuine dif-
ference between groups, which the study did not 
have enough power to detect. This will be shown 
by the confidence interval being so large that it not 
only includes the null difference but also includes 
a clinically important difference.

There are two sides to clinical significance, 
depending on whether it is important to demonstrate 
that two treatments are different from one another 
(superiority) or whether it is of interest to demon-
strate that their effect is the same (equivalence), and 
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confidence intervals have a part to play in both, as 
outlined below.

Importance in Medical Decision Making

Treatment Superiority

The importance of confidence intervals in stud-
ies to demonstrate superiority is best explained  
by reference to Table 1 and Figure 1. These display 
the results of seven (theoretical) studies comparing 
the same two treatments for superiority; that is, the 
object is to demonstrate that the two treatments 
are different. The table shows some possible point 
estimates of the effect size, together with the asso-
ciated p values.

It is clear from this table that three of the studies 
are not statistically significant at the 5% level and 
four are. However, even assuming that a clinically 
important difference is two units on the measure-
ment scale, it is impossible to tell which of these 
results are definitely of clinical importance, based on 
the p values and effect sizes alone. This information 
can only be obtained by reference to the confidence 
intervals as these will show the range of plausible 
values for the effect size, as shown in Figure 1. The 
left-hand vertical line in the figure represents the 
value that indicates the two treatments are equiva-
lent and the right-hand line represents the value of a 
clinically important difference between the two 
treatments. Looking at Figure 1, it is clear that while 
four studies are statistically significant (C, D, F, and 
G), only one, Study G, is definitely clinically signifi-
cant, as not only is the point estimate of the effect 

greater than the clinically significant difference of 2, 
but also the lower limit for the confidence interval is 
beyond this value. Of the other six studies, four, 
including two nonsignificant studies, may possibly 
be clinically significant as the upper limit of the con-
fidence intervals includes the value set as being clini-
cally important; however, given that the lower limit 
of the confidence interval is below the limit of clini-
cal significance, clinical significance cannot definitely 
be inferred.

This examination of the confidence intervals of 
the effect size is particularly important in the case of 
studies that do not reach statistical significance, as 
mentioned above. Even if the p value is greater than 
.05, it may be that the null hypothesis is genuinely 
true, or it may be that the study lacked the power 
to reject the null hypothesis. Looking at Figure 1, 
Study B represents a case of the former—this result 
is neither statistically significant nor clinically  
significant—while Study E is an example of the 
latter. The point estimate for E is larger than a 
clini cally important difference, but the confi-
dence interval is so large that it includes the null 
difference.

Treatment Equivalence

Confidence intervals are equally important in 
studies that examine whether two treatments are 
equivalent in their effect. For equivalence studies, 
conclusions will always be based on an examina-
tion of the confidence intervals. Before an equiva-
lence trial is carried out the limits of equivalence 
are agreed on, so that after the trial a decision can 
be made as to whether the treatments are, to all 
intents and purposes, the same in their effect. 
These prespecified limits should be narrow enough 
to exclude any difference of clinical importance. 
After the trial, equivalence is usually accepted if 
the confidence interval for any observed treatment 
difference falls entirely within the limits of equiva-
lence and includes a value of zero difference. If one 
of the limits falls outside the limits of equivalence, 
it would imply that one of the plausible values for 
the treatment effect was at least as large as a clini-
cally important difference.

A study by I. F. Burgess and colleagues published 
in 2005 examined whether 4% dimeticone lotion 
was equivalent to phenothrin, the most commonly 
used pediculicide, for the treatment of head louse 

Table 1   Results of six studies examining the 
difference between two treatments

Study Size of Difference p value

A 0.8 >.05

B 0.8 >.05

C 0.8 <.05a

D 1.8 <.05a

E 2.5 >.05

F 2.5 <.05a

G 2.5 <.05a

a. These values are statistically significant.
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infestation. The main outcome was cure of infesta-
tion or reinfestation after cure. Before the study 
began, it was decided that the two treatments 
would be declared equivalent if the results were 
within 20% between treatment groups, based on 
the 95% confidence intervals, that is, if the upper 
and lower limits for the 95% confidence interval 
for the difference between groups were both less 
than 20% either side of no difference. Of the 127 
individuals randomized to receive dimeticone, 89 
were either cured or reinfested after cure at fol-
low-up (70%), while 94 of the 125 followed up in 
the phenothrin group were cured or reinfested after 
cure (75%). Thus, 5% fewer individuals in the 

dimeticone group were cured or reinfested after 
cure, and the 95% confidence interval for this dif-
ference was −16% to 6%. As these 95% limits were 
within the 20% limits of equivalence set before the 
study was undertaken, as illustrated by Figure 2, 
the researchers were able to conclude that the two 
treatments were equivalent to within 20%.

While a p value is a useful starting point, it 
would be ill advised to make a decision based on 
this single piece of information, and it is vital to 
examine the estimate of any effect and its associ-
ated confidence interval before making a decision. 
This will give a range of plausible values for the 
effect size and will assist one in deciding whether 

Treatments
are equivalent

Study A (p ≥ .05): Not statistically significant
 Possibly clinically significant

Study B (p ≥ .05): Not statistically significant
 Not clinically significant

Study C (p < .05): Statistically significant
 Not clinically significant

Study D (p < .05): Statistically significant
 Possibly clinically significant

Study E (p ≥ .05): Not statistically significant
 Possibly clinically significant

Study F (p < .05): Statistically significant
 Possibly clinically significant

Study G (p < .05): Statistically significant
 Clinically significant

Clinically important
difference

Figure 1   Statistical and clinical significance: Results of seven studies (point estimates together with confidence 
intervals)

−30 −20 −10 Null difference

Percentage difference in cure rates (phenothrin − dimeticone)

Range of equivalence

10 20 30

Figure 2   Estimated difference in cure and reinfestation after cure rates between dimeticone and phenothrin, 
together with the 95% confidence interval for the difference.
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any difference found is of clinical importance or 
whether the study had sufficient power to reject 
the null hypothesis.

Jenny V. Freeman

See also Effect Size; Hypothesis Testing; Managing 
Variability and Uncertainty; Sample Size and Power
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Confirmation bias

Confirmation bias is the tendency for people to 
search for or interpret information in a manner 
that favors their current beliefs. This entry com-
municates psychological research on confirmation 
bias as it relates to medical decision making. This 
will help medical professionals, patients, and policy 
makers consider when it might pose a concern and 
how to avoid it. The focus is on choosing a test for 
a simple case of medical diagnosis. The first sec-
tion discusses how inference and information 
search ought to take place; the second section dis-
cusses confirmation bias and other possible errors; 

the final section discusses how to improve infer-
ence and information search.

How Should Inference and Information 
Acquisition Proceed?

No choice of diagnostic tests can cause confirma-
tion bias if the test results are assimilated in a sta-
tistically optimal manner. Therefore, this section 
first discusses how to incorporate test results in  
a statistically optimal (Bayesian) way. It then dis-
cusses various strategies to select informative tests.

Suppose that the base rate of a disease (d) in 
males is 10% and that a test for this disease is 
given to males in routine exams. The test has 90% 
sensitivity (true positive rate): 90% of males who 
have the disease test positive. Expressed in proba-
bilistic notation, P(pos|d) = 90%. The test has 
80% specificity: P(neg|~d) = 80% (20% false-
positive rate), meaning that 80% of males who do 
not have the disease correctly test negative. Suppose 
a male has a positive test in routine screening. 
What is the probability that he has the disease? By 
Bayes’s theorem (see Figure 1, Panel A),

P(d|pos) = P(pos|d)P(d)/P(pos),

where

P(pos) = P(pos|d)P(d)  + P(pos|∼d)P(∼d).

Therefore,

P(d|pos) 
 = (.90 × .10)/(.90 × .10 + .20 × .90)
 = .09/.27 = 1/3.

Alternately (see Figure 1, Panels B and C), it is 
possible to count the number of men with the dis-
ease and a positive test, and who test positive 
without having the disease:

P(d|pos) = num(d & pos)/num(pos)  
 = 9/(9 + 18) = 1/3,

where

num(pos) = num(pos & d) + num(pos & ∼d).
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But how should a diagnostic test be chosen in 
the first place? The fundamental difficulty is that 
which test is most useful depends on the particular 
outcome obtained, and the outcome cannot be 
known in advance. For instance, the presence of a 
particular gene might definitively predict a disease, 
but that gene might occur with only one in a mil-
lion probability. Another test might never defini-
tively predict the disease but might always offer a 
high degree of certainty about whether the disease 
is present or not.

Optimal experimental design ideas provide a 
reasonable framework for calculating which test, 
on balance, will be most useful. All these ideas are 
within the realm of Savage’s Bayesian decision 
theory, which defines the subjective expected use-
fulness (utility) of a test, before that test is con-
ducted, as the average usefulness of all possible test 
results, weighting each result according to its prob-
ability.

In the case of a test T that can either be positive 
(pos) or negative (neg), the test’s expected utility 
(eu) would be calculated as follows:

eu(T) = P(pos) × u(pos) + P(neg) × u(neg),

where u corresponds to utility. Various optimal 
experimental design ideas quantify, in different 
ways, the usefulness of particular test outcomes. 
Suppose one wishes to use improvement in proba-
bility of correct diagnosis to quantify the usefulness 

of possible diagnostic tests. (This equates to mini-
mizing error.) The probability gain (pg) of a test, 
with respect to determining whether or not a 
patient has disease d, is calculated as follows:

eupg(T) = P(pos) × [max(P(d|pos), P(∼d|pos)) 

− max(P(d), P(∼d))] + P(neg) × [max(P(d|neg),

P(∼d|neg)) − max(P(d), P(∼d))].

Suppose the goal is to learn whether or not  
a patient has a disease that occurs in 10% of 
patients. Test 1 has 95% sensitivity and 85% 
specificity. Test 2 has 85% sensitivity and 95% 
specificity. Which test maximizes probability gain? 
Test 1 has probability gain 0, though Test 2 has 
probability gain .04. Although Test 1 has high 
sensitivity, its low specificity is problematic as the 
base rate of the disease is only 10%. Test 1 does 
not change the diagnosis of any patient, because, 
irrespective of whether it is positive or negative, 
the patient most likely does not have the disease. 
Test 2’s much higher specificity, however, reduces 
false positives enough so that a majority of people 
who test positive actually have the disease.

It can be helpful, as an exercise, to consider pos-
sible tests’ probability gain before ordering a test, in 
situations where the relevant environmental proba-
bilities are known. In real medical diagnosis, addi-
tional factors, such as a test’s cost and its potential to 
harm the patient, should also be taken into account.

Figure 1   Different formats for presenting probabilistic information

Notes: The means by which probabilistic information is presented have a large impact on how meaningful the information is to 
people. The standard probability format (Panel A) is complicated for people to work with, although they can be trained to do so. 
Both the frequency tree (Panel B) and frequency grid diagram (Panel C) provide more meaningful representations of the information. 
The term “d” denotes the disease; “~d” absence of the disease; “p” denotes a positive test. In Panel C, shaded cells denote presence 
of the disease.

A. Standard Format

P(d ) = 10%

P(~d ) = 90% 

P(p | d ) = 90%

P(p | ~d ) = 20%

100

10 d

9 p 18 p1 n 72 n

90 ∼d

B. Frequency Tree C. Frequency Grid Diagram
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Confirmation Bias and Other Errors

Do people typically reason following Bayes’s theo-
rem? Do physicians intuitively select useful tests for 
medical diagnosis? If human cognition and behavior 
are suboptimal, do they reflect confirmation bias?

From early research on Bayesian reasoning 
through the present, there has been evidence that 
people are either too conservative or too aggressive 
in updating their beliefs. Some research suggests 
that people make too much use of base rates (the 
proportion of people with a disease), as opposed to 
likelihood information (a test result). Other research 
suggests that people make too little use of base 
rates, relying on likelihood information too much.

Do these errors lead to systematically over-
weighting one’s working hypothesis (e.g., the most 
probable disease)? Note that test results can either 
increase or decrease the probability of a particular 
disease. Because of this, neither being too conser-
vative nor being too aggressive in updating beliefs 
in response to test results would consistently give a 
bias to confirm one’s working hypothesis. Thus, 
while there is plenty of evidence that people 
(including physicians) sometimes update too much 
and sometimes too little, that does not necessarily 
imply confirmation bias.

If people have personal experience with envi-
ronmental probabilities, their inferences are often 
quite accurate. In routine diagnostic and treatment 
scenarios, in which individual practitioners have 
previously experienced dozens, hundreds, or even 
thousands of similar cases and have obtained feed-
back on the patients’ outcomes, physicians’ intu-
itions may be well-calibrated to underlying 
probabilities. Little if any confirmation bias would 
be expected in these situations. In situations in 
which relevant data are available but practitioners 
do not have much personal experience, for instance 
because rare diseases are involved, intuitions may 
not as closely approximate Bayes’s theorem.

Confirmation Bias in Inference

Apart from the general difficulty in probabilistic 
reasoning, how might people fall victim to confir-
mation bias per se? Below, several situations are 
described that might lead to confirmation bias.

1. If people obtain useless information but think 
it supports their working hypothesis, that could 

lead to confirmation bias. Suppose a physician 
asks a patient about the presence of a symptom 
that, if present, would support a particular disease 
diagnosis. Suppose the patient tends to answer 
“yes” in cases where the question is unclear, so as 
to cooperate. If the physician does not take the 
patient’s bias to answer “yes” into account when 
interpreting the answer to the question, the physi-
cian could be led, on average, to be excessively 
confident in his or her diagnosis.

2. Sometimes a test’s sensitivity (its true positive 
rate) is conflated with its positive predictive value 
(the probability of the disease given a positive 
result). In situations where the sensitivity is high, 
but specificity is low or the base rate of the disease 
is very low, this error can cause confirmation bias. 
For instance, among people from low-risk popula-
tions, a substantial proportion of people with 
positive HIV test results do not have HIV. Some 
counselors, however, have wrongly assumed that a 
positive test means a person has HIV.

3. There are many situations in which people 
want to reach certain conclusions or maintain cer-
tain beliefs, and they are quite good at doing so. 
Imagine that a physician has diagnosed a patient 
with a serious illness and started the patient on a 
series of treatments with serious side effects. The 
physician might be more likely than, say, an 
impartial second physician, to discount new evi-
dence indicating that the original diagnosis was 
wrong and that the patient had needlessly been 
subjected to harmful treatments.

4. Finally, people sometimes interpret ambigu-
ous evidence in ways that give the benefit of the 
doubt to their favored hypothesis. This is not nec-
essarily a flaw in inference. If one’s current beliefs 
are based on a great deal of information, then a bit 
of new information (especially if from an unreli-
able source) should not change beliefs drastically. 
Whether a physician interprets a patient’s failure 
to return a smile from across the room as indicat-
ing the patient didn’t see him or her or as a snub 
will likely be influenced by whether the patient has 
previously been friendly or socially distant. 
Similarly, suppose an unknown researcher e-mails 
his or her discovery that AIDS is caused by nefari-
ous extraterrestrials. Given the outlandish nature 
of the claim, and the unknown status of the 
“researcher,” it would be wise to demand a lot of 
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corroborating evidence before updating beliefs 
about causation of AIDS at all, given this report. 
The overriding issue is that one’s degree of belief, 
and amount of change of belief, should correspond 
to the objective value of the evidence.

Information Acquisition and Confirmation Bias

Do people use statistically justifiable strategies for 
evidence acquisition, for instance when requesting a 
test or asking a patient a question? Are people prone 
to confirmation bias or other errors?

Psychological experiments suggest that people 
are very sensitive to tests’ usefulness when deciding 
which test to order. Any testing strategy not solely 
concerned with usefulness will be inefficient. 
However, if test results are evaluated in a Bayesian 
way, then although some information acquisition 
strategies are more efficient than others, none will 
lead to confirmation bias. Thus, improving proba-
bilistic inference is a first step toward guarding 
against confirmation bias.

Positivity and extremity are additional factors 
that may contribute to people’s choices of tests. 
Positivity is the tendency to request tests that are 
expected to result in a positive result, or a “yes” 
answer to a question, given that the working 
hypothesis is true. Extremity is a preference for tests 
whose outcomes are very likely or very unlikely 
under the working hypothesis relative to the alter-
nate hypothesis. The evidence substantiating peo-
ple’s use of these particular strategies is somewhat 
murky. However, use of these testing strategies, 
together with particular biased inference strategies, 
could lead to confirmation bias.

Improving Inference and  
Information Acquisition

Improving Inference

The means by which probabilistic information 
is presented are important, and evidence suggests 
that either personal experience or appropriate 
training can help people meaningfully learn par-
ticular probabilities. The literature suggests several 
strategies to improve Bayesian inference:

 1. Present information in a meaningful way. Figure 
1, Panels B and C, illustrates two means of 
presenting equivalent information, in which the 

information is presented in terms of the natural 
frequencies of people with (and without) the 
disease who have a positive or negative test. 
These formats better facilitate Bayesian reasoning 
than does the standard probability format (Figure 
1, Panel A). Simulating personal experience and 
providing feedback may be even more effective.

 2. Teach Bayesian inference. Although people do 
not intuitively do very well with standard 
probability format problems, people can be 
trained to do better, especially when the training 
helps people use natural frequency formats for 
representing the probabilistic information.

 3. Obtain feedback. Feedback is critical for 
learning environmental probabilities, such as 
base rates of diseases, and distribution of test 
outcomes for people with and without various 
diseases. Feedback is also critical for learning 
when those probabilities change, for instance 
because of an outbreak of a rare disease. Both 
individual practitioners and policy makers could 
think about how to ensure that feedback can be 
obtained, and patients and citizens should 
demand that they do so.

Improving Information Acquisition

People are not adept at maximizing either prob-
ability gain or individually specified utilities when 
information is presented in the standard probabil-
ity format. Taking care to ensure that known sta-
tistical information is meaningful may be the single 
most important way to improve practitioners’ 
capacity for good inference and information acqui-
sition in medical decision making. Use of personal 
experience and feedback to convey probabilistic 
information in simulated environments can also 
facilitate Bayesian performance.

Beyond Confirmation Bias

While confirmation bias in inference and infor-
mation acquisition may exist, it should be seen 
in the broader context of statistical illiteracy and 
misaligned incentives. Those problems may be 
the root of what can appear to be confirmation 
bias, rather than any inherent cognitive limita-
tions that people have. For instance, the desire 
to make a patient feel that he or she is being 
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treated well, and to guard against the possibility 
of litigation, might lead to ordering a medically 
unnecessary (and potentially harmful) CT scan 
following mild head trauma. At the level of basic 
research, the source of funding can influence  
the conclusions that are reached. From a policy 
standpoint, the goal should be to make individual 
and institutional incentives match public health 
objectives as closely as possible.

Jonathan D. Nelson and Craig R. M. McKenzie
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ConfliCts of interest and 
evidenCe-based CliniCal 
mediCine

Physicians’ financial interests may have an uncon-
scious influence on their interpretation of the scien-
tific evidence relevant to the treatments they choose 
for their patients. This indirect determinant of physi-
cian behavior has not been extensively studied, but 
the causal process can be sketched using general prin-
ciples of cognitive and social psychology and of mar-
keting. The influence of financial interests on clinician 
knowledge is a distinct topic from their influence on 
clinician action. The latter topic has been the main 
concern in discussion of conflicts of interest induced 
by gifts from pharmaceutical or medical device 
manufacturers, by managed care or insurance rules, 
or by payments from interested industries to the 
directors of nonprofit hospitals or accompanying the 
intrusion of the commercial management of hospi-
tals and clinics into the doctor-patient relationship.

Ideally, the physician applies medicine’s best 
treatments appropriately for each patient, ratio-
nally considering the scientific evidence concerning 
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the treatment’s efficacy as well as the patient’s 
unique circumstances. Evidence that would sup-
port a treatment generally includes scientific stud-
ies proving it works as well as or better than the 
alternatives, and evidence that the burden of side 
effects or costs, per unit of health improvement 
produced, is not excessive. Relevant considerations 
for the particular patient may include individual 
characteristics that change the probable success of 
a treatment, such as being more robust or more 
fragile than the typical patient. It is also rationally 
and ethically appropriate to consider the patient’s 
financial or social resources, such as ability to pay 
for a treatment without bankrupting the family or 
the capability of adhering to required behavioral 
changes or medical care demands over the long 
term. Potential biases in physician judgments of 
patient resources are not considered further here.

Financial interests may exert an unconscious influ-
ence on physicians’ interpretation of evidence relevant 
to the treatment of their patients. An individual clini-
cian’s reading of the literature regarding the benefits 
and costs of patients’ treatments can be distorted by 
the fact that he or she is able to provide some treat-
ments but not others. The same sort of process can 
sway the production and interpretation of profes-
sional association guidelines in a way that promotes 
the profession, as against the interests of the compet-
ing specialties, the patient, or society in general.

Sometimes, financial interests may induce in the 
physician a kind of psychological blindness that 
impedes the ability of otherwise ethical people to 
recognize that the scientific evidence does not sup-
port their way of practice. Physicians may not be 
aware that their judgment is distorted this way even 
though an objective observer might call their deci-
sions “irrational” with respect to the evidence. In 
contrast, a physician who consciously chose to use 
treatments that she or he knew to be ineffective or 
harmful for the patient because she or he could col-
lect higher fees would be described as “unethical.”

Example of Irrational Treatment  
Decisions Due to Financial Motivation

An orthopedic surgeon opted to simplify his work 
life by concentrating on only a few types of back 
surgery, to be able to spend more time with his family. 
He put out the word seeking referrals and organized 
the clinic to allow himself to spend as little time in 

the office and as much in the operating room as pos-
sible. During 10 years of this arrangement, evidence 
accumulated in the literature that back surgery is 
indicated for a smaller proportion of those who 
complain of low back pain than had previously been 
thought and that an elaborate sequence of diagnostic 
measures and trial treatments can identify patients 
who likely won’t be cured by surgery but may be 
helped by alternative measures. The physician none-
theless has continued doing the same familiar opera-
tions on most patients who come through his door, 
after only a brief discussion of the surgical options in 
an initial consultation in the office. There is a com-
pelling financial motivation for the physician to 
maintain his surgical volume. His family depends on 
the current level of income, as do the clinic employ-
ees, his partners who co-own the clinic with him, 
and the bank. At this point in his career, doing these 
procedures is the only skill the physician has that can 
bring in this much income. However, he has never 
suggested, even in jest, that he is “just in it for the 
money,” and his friends and coworkers know him to 
be honestly concerned about his patients. When 
asked about the studies suggesting more discerning 
assessment of the patient is required, the physician 
says they are not applicable to his practice because 
he is following professional guidelines.

Unconscious Irrationality  
Due to Conflict of Interest

The physician in the vignette, whose practice is 
concentrated on a few lucrative surgical proce-
dures, ignored or dismissed the evidence suggest-
ing the procedures are not indicated for many 
patients. Physicians often experience conflict 
between the demand for billable activity and their 
commitment to do what is best for the patient. 
When they weigh the evidence in resolving this 
conflict between the competing values, they may 
give unconscious priority to their own financial 
interests. It is better for both patient and physician 
if physicians can be conscious of motivations that 
may blind them to the scientific evidence.

To promote accurate physician self-awareness, it 
has been recommended that physicians should dis-
close their financial interests to patients, as well as 
the constraints imposed by their employers or the 
patients’ insurance. Thus, the back surgeon could 
acknowledge that his fee covers his expenses and 
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supports him comfortably, and in exchange he does 
his best for his patients and makes ongoing efforts 
to keep up with the state of the art. Talking about 
what the fees buy—the physician’s expert interpre-
tation of the emerging evidence—is as pertinent as 
discussing the expected efficacy of the treatment and 
its alternatives, the probabilities of various morbidi-
ties, and how other people have adjusted to the 
outcomes, especially if there is the possibility that 
patient distrust may undermine adherence. The phy-
sician’s frank discussion of his interests and his 
efforts helps the patient engage in informed decision 
making. Such conversations can also help the physi-
cian maintain rationality and integrity: when the 
motives are acknowledged, the physician is less 
likely to be unconsciously influenced to recommend 
a treatment of inferior efficacy just because it is con-
venient or profitable, or is what others in his subspe-
cialty do. Anticipation of such conversations can 
motivate the physician to keep up with the evidence 
so he or she can say in good faith that he or she is 
offering the patient the best treatments known.

The Role of Professional Organizations  
in the Interpretation of Scientific Evidence

Physicians associate with similar physicians in pro-
fessional organizations that provide mutual sup-
port, including information on the newest treatment 
modalities and guidelines on the manner of prac-
tice judged to help the members thrive through the 
appropriate use of their special knowledge and 
skills to care for patients. Delegating the burden of 
evaluating treatments in this way can muffle the 
physician’s awareness of the balance of evidence 
regarding the recommended treatment modalities. 
As a result of such informational filters, a patient 
with localized prostate cancer, for example, might 
be given radiation if he visits almost any radiation 
oncologist, surgery if he visits any urologist, or 
expectant management if he visits any general 
internist. It is not simply that these options are in 
equipoise for all such patients; these contradictions 
highlight the impact of professional organizations’ 
shaping of members’ views.

Unconscious psychological processes may con-
tribute to this influence at two stages, in the produc-
tion and the utilization of the guidelines, as illus trated 
in Figure 1. First, members of professional organi-
zations who have been honored with appointment 

to a task force that will produce a guideline state-
ment may experience expectations related to soli-
darity with the group. The committee may manifest 
polarization, in which the group’s decision may 
express a more extreme position on a shared value 
than most of the individuals would hold on their 
own. Figure 1 shows the relation between the 
guidelines (B) and the possible treatments consis-
tent with the scientific evidence (A). The effect of 
polarization is that the guideline highlights only a 
subset of the supportable interpretations of the 
scientific literature, and it may extend a little 
beyond what the general field may find supported. 
Committees are less likely to produce self-serving 
guidelines (though it is still possible) when they 
adopt the discipline of formally meta-analyzing 
only randomized controlled trials. The competing 
guidelines authored by Gharib and Surks regarding 
screening for subclinical hypothyroidism illustrate 
this point. The second process has to do with the 
reader’s comprehension and recall of the published 
guidelines. Most guidelines consist of a general 
recommendation and a list of exceptions or quali-
fications. When individual practitioners read the 
guidelines (C in the figure), and again when they 
recall them at the point of use (D), often the gist is 
recalled while the detailed exceptions are forgot-
ten. Lines carefully drawn when a guideline state-
ment was composed may be missed or forgotten by 
the reader.

Beneficial Effects of Financial Motivation

Financial motives do not always interfere with 
rational patient treatment. Administrative power, 
including monetary bonuses or penalties contin-
gent on individual or clinicwide performance, is 
one of the most powerful tools available for chang-
ing physicians’ behavior. Aligning the rewards 
with the evidence-based practices can be an effec-
tive component of a program to improve medical 
care. But financial reward schemes can have unin-
tended consequences, distorting physician behav-
ior without benefit to the patient. For example, in 
the United States, to sustain themselves, the private 
(e.g., insurance) and public (e.g., Medicaid) sys-
tems that pay for medical care impose limits on 
allowable charges per visit. This has the unin-
tended side effect that low-priority concerns such 
as prevention may be neglected. To compensate for 
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this, local administrators may advise physicians to 
deal with just one patient concern during each 
visit, and schedule additional visits to address 
other issues. While this stratagem may help a clinic 
be financially viable, it imposes an additional bur-
den on those patients responsible for co-payment 
or lacking transportation.

Contributing Factors

Individual clinicians’ interpretation of the litera-
ture’s evidence regarding the benefits and costs of 
their patients’ potential treatments can be uncon-
sciously distorted by how much they can be paid for 
providing the treatments. The rewards physicians 
receive for some practices may make it difficult for 
them to see that they need to give up those practices 
when a different method of treatment is proven bet-
ter. Group polarization effects in the production  
of guidelines, and simplification processes in the 
comprehension and recall of recommendations, 
also contribute to the persistence of nonoptimal 
treatment practices that are financially rewarded.

Robert M. Hamm

See also Bias in Scientific Studies; Clinical Algorithms and 
Practice Guidelines; Evidence-Based Medicine; 
Irrational Persistence in Belief; Motivation
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Figure 1  Psychological influences on guideline production and utilization

Note: Illustration of psychological influences on the guideline production and utilization process that may bias physician 
practices. A: the set of possible treatments supported by evidence. B: impact of group polarization on the guideline writers. C 
and D: impact of gist highlighting processes in comprehension and recall of guidelines.
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Confounding and effeCt 
modulation

The relationship between a predictor or study 
variable and an outcome variable may vary 
according to the value of a third variable, often 
called a confounding variable or an effect modula-
tor. This entry clarifies the distinction between 
confounding and effect modulation (also called 
moderation or mediation) through the use of path 
diagrams. The statistical tests for establishing 
these three relationships are somewhat different 
(main effects model only for establishing con-
founding variables; main effects model with inter-
action term for establishing moderating variables 
and Sobel-like tests based on a series of regression 
for establishing mediating variables), so they are 

discussed separately and their interpretation clari-
fied by example.

Overview

An important feature of a regression model is its 
ability to include multiple covariates and thereby 
statistically adjust for possible imbalances in the 
observed data before making statistical inferences. 
This process of adjustment has been given various 
names in different fields of study. In traditional 
statistical publications, it is sometimes called the 
analysis of covariance, while in clinical and epide-
miologic studies it may be called control for con-
founding. Interactions between covariates may 
also be included in the model and regarded as 
effect modifiers in the sense that the effect on the 
outcome differs according to the level of the mod-
erator variable. When an outcome is correlated 
with a study variable but the relationship disap-
pears when adjusted by a third variable, the third 
variable is often called a mediating variable or 
mediator. In an epidemiological study of the  
str ength of the association between smoking status 
and lung cancer, the relationship may be affected 
by other variables such as the drinking habits, 
extent of exposure to tobacco smoke, or age of the 
subject, or other personal or environmental condi-
tions. Variables other than smoking that affect the 
relationship of smoking and lung cancer are often 
described as modulating variables. Modulating 
variables are further classified as confounding 
variables, effect moderators, effect modifiers, or 
mediating variables according to their finer prop-
erties. Some terms and interpretations used to dis-
tinguish different types of modulation are based on 
statistical definitions and may thus be measured 
and tested objectively. In other instances, judg-
ments regarding causality will be required, thus 
introducing concepts not readily amenable to sta-
tistical analysis.

Definitions of terms such as mediation, modera-
tion, and confounding have been questioned 
because of their implied dependence on the unquan-
tifiable concept of causality. This entry illustrates 
these through simple statistical modeling and fig-
ures, and provides examples of the roles of con-
founding, mediating, and moderating variables. 
The first example illustrates the role of “helpless-
ness” as a moderating variable where patients with 
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a “low” helplessness index could have decreasing 
depression even with an increasing “swollen joint 
count,” whereas patients with a “high” helpless-
ness index have the opposite relationship (increas-
ing depression with an increasing swollen joint 
count). The second example illustrates the “medi-
ating” role of pain and comorbidities on the 
association observed between body mass index 
(BMI) and total unhealthy days (TUD). The asso-
ciation vanishes when the mediating variables are 
adjusted in the model. The analyses for each of 
the examples are adjusted for various confound-
ing variables.

Terms and Definitions

The purpose of many epidemiological studies is to 
determine the effect of a predictor variable or risk 
factor X on an outcome variable Y while account-
ing for the effects of another influential variable, 
denoted by Z. To facilitate the discussion, a simple 
statistical model can be written as

Y = a + bX + cZ + dXZ + ε,

where the unknown coefficients a, b, c, and d are 
to be determined by statistical model fitting and  
ε denotes a random error. The variable X, whose 
effect on Y is to be studied, may be called the 
study, experimental, or condition variable in an 
experimental study or a risk factor in an observa-
tional study. Variable Z provides information in 
addition to the study variable, which may affect 
the relationship of outcome Y to predictor X. The 
variable Z is generally described as modulating or 
modifying the effect of X on Y but may further be 
classified as a confounding, moderating, or medi-
ating variable. The relationship of Y, X, and Z is 
often depicted schematically as in Figures 1, 2, and 
3, respectively, for illustrating the three types of 
relationship.

When either the estimated coefficient of a vari-
able in the model or the relevant (Pearson’s) cor-
relation is statistically different from zero (usually 
at the 5% level), the role of the variable is described 
as “significant.” The variable Z may have any of 
the several different roles that may affect the rela-
tionship of Y to X. These roles are often described 
in the epidemiological and psychological literature 
using the following terms and definitions.

Confounding Variable

Variable Z is called a confounding variable or 
confounder of the effect of X on Y if Z is associ-
ated with Y, varies over the levels of X (with rela-
tionship both ways), and is not considered to be a 
cause of Y. This definition requires evaluation of 
the change in the relationship of Y and X due to Z 
and a subjective judgment that Z does not lie on 
the causal pathway between X and Y. A confound-
ing variable may also be called a lurking variable. 
Since the relationship between X and Y changes 
with the value of Z, uncorrected confounding can 
result in the effect of X on Y being inappropriately 
increased or diminished or even reversed in direc-
tion. Confounding may be controlled by matching, 
stratifying on values of Z, or including Z in the 
statistical model.

Predictor
X

Confounder
Z

PM

PO

MO

Outcome
Y

Figure 1   Conceptual model of confounding variable

Predictor
X

Moderator
Z

Outcome
Y

Figure 2  Conceptual model of a moderating variable

Predictor
X

Mediator
Z

Outcome
Y

Figure 3  Conceptual model of a moderating variable
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Moderating Variable or Effect Modifier

Variable Z is called a moderating variable or 
effect modifier when its magnitude affects the 
magnitude or direction of the effect of X on Y and 
the interaction term XZ is statistically significant.

Mediating Variable

Variable Z is called a mediating variable or 
mediator of the effect of X on Y if X significantly 
affects Z, Z has a significant effect on Y, X affects 
Y in the absence of Z, and the effect of X on Y is 
diminished to nonsignificance when Z is added to 
the model. Some authors also require that Z be 
considered to be a cause of Y. A mediator is the 
same as a confounder except for the subjective 
judgment that the mediator is considered a “cause” 
of the outcome whereas a confounder is not. A 
mediator is a variable that is in a causal sequence 
between two variables, whereas a moderator is not 
part of a causal sequence between the two vari-
ables. The extent to which a variable may be con-
sidered a mediator may be assessed statistically by 
the Sobel-Goodman test. This test requires coeffi-
cients estimated from a separate regression fit of 
the path PM, MO, and PO.

Examples

Example of Mediating Effect

Obesity is an increasingly prevalent public health 
concern due to the increased risk of mortality asso-
ciated with excess body fat and the increased risk 
of developing a variety of diseases such as type 2 
diabetes, coronary heart disease, sleep apnea, knee 
osteoarthritis, and certain cancers. Obesity also has 
a substantial negative impact on a person’s func-
tional capacity and health-related quality of life 
(QoL). Heo and colleagues attempted to under-
stand to what extent the association between obe-
sity and QoL is mediated by those health problems 
that often arise in conjunction with obesity such as 
diabetes, hypertension, and (musculoskeletal) joint 
pain. In their article “Obesity and Quality of Life: 
Mediating Effects of Pain and Comorbidities,” they 
hypothesized potential mediating effects of pain 
and comorbidities on the association between obe-
sity and QoL and tested their hypotheses using data 
on 154,074 participants from the cross-sectional 

survey data from the 1999 Behavioral Risk Factor 
Surveillance Survey (BRFSS).

The predictor variable of obesity was measured 
by the BMI. This was calculated from the self- 
reported weight and height and was classified in 
six categories (< 18.5 kg/m2, underweight; 18.5 to 
24.9 kg/m2, desirable weight; 25 to 29.9 kg/m2, 
overweight; 30 to 34.9 kg/m2, Obesity Class I; 35 
to 39.9 kg/m2, Obesity Class II; and ≥ 40 kg/m2, 
Obesity Class III). Although they considered four 
outcome variables, for keeping the illustration 
simple here, we consider only one outcome vari-
able of TUD dichotomized at 14 days. Potential 
mediator variables of joint pain (PAIN) were 
derived from the question “During the past 12 
months, have you had pain, aching, stiffness, or 
swelling in or around a joint?” (0 = No, 1 = Yes) 
and obesity-related comorbidities (ORCs) were 
derived from the sum of responses to the nine 
dichotomous variables arising from questions such 
as “Have you ever been told by a doctor, nurse, or 
other health professional that you have high blood 
pressure?” (0 = No, 1 = Yes). Covariates consisted 
of the following characteristics: age, sex, marital 
status (married vs. other), educational attainment 
(< high school vs. ≥ high school), annual income  
(< $25,000 vs. ≥ $25,000), smoking status (current, 
former, never), and employment status (employed 
vs. other).

Figure 4 shows the conceptualization of the 
statistical analysis. To estimate and test the sig-
nificance of the association between BMI and 
TUD, the authors ran multiple logistic regressions 
on the BMI-defined categories on TUD (Path A of 
Scheme a in Figure 4). To examine mediator effects 
of PAIN and ORCs on the BMI-TUD association 
if this association is significant, they followed the 
guidelines suggested by Baron and Kenny. 
Specifically, they assessed whether or not (1) BMI 
effects on PAIN and ORCs (Path B of Scheme b in 
Figure 4) are significant; (2) the effects of PAIN 
and ORCs on TUD (Path C of Scheme b in Figure 
4) are significant; and (3) the effects of BMI classes 
on TUD are reduced when Paths B and C (Figure 
4) are controlled for, that is, when PAIN and 
ORCs are added into the model of Path A (Figure 
4). If all these conditions are met, the data are con-
sistent with the hypothesis that PAIN and ORCs 
mediate the relation between BMI and TUD, sup-
porting Scheme b in Figure 4.
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Collectively, from all the mediation analyses, 
the mediator effects of PAIN and ORCs on the 
relationship between high BMI and TUD are found 
significant. Moreover, controlling for the putative 
mediators resulted in nonsignificant effects of all 
BMI classes on TUD.

Example of Moderating Effect

Naidoo and Pretorius hypothesized that the 
stress-reducing function of helplessness (Z) has a 
moderating effect on the relationship between the 
rheumatoid arthritis (RA) health outcome of 
depression (Y) and the clinical measurement of 
the number of swollen joints (X) out of 28 joints 
in total. A cross-sectional study with 186 patients 
was undertaken for testing this moderating effect. 
The moderating variable of “helplessness” (Z) 
was measured by the Arthritis Helplessness Index 
(AHI). The AHI is a 15-item self-report inventory 
based on a 4-point Likert-type format that 
assesses the extent to which patients believe that 
they are able to control and cope with arthritis 
symptoms.

To test the hypotheses that Z moderates the 
relationship between X and Y, a regression model 
was fit with “depression” as outcome; swollen 

joint count (SJC) and helplessness as main effects; 
and an interaction term of SJC × Helplessness to 
test for moderation. Potentially confounding vari-
ables of age, sex, education, and income were also 
adjusted. Since the interaction term was found sig-
nificant, the role of helplessness was established as 
a moderating variable. The patients with a “low” 
helplessness index were found to have decreasing 
depression even with an increasing number of 
swollen joint counts, whereas patients with a high 
helplessness index showed an opposite relationship 
(increasing depression with increasing number of 
swollen joint counts).

Causality

One of the fundamental goals of statistical design 
and analysis is to bring evidence based on data 
toward supporting causality. Understanding con-
founding and effect modulation are essential parts 
of getting as close as one can to causality, and 
separating the ideas of “confounding,” “modera-
tion,” and “mediation” helps with use of the 
appropriate level of modeling.
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Conjoint analysis

Conjoint analysis (CA) is a quantitative technique 
used to elicit preferences. When faced with multi-
ple alternatives, people often make decisions by 
making trade-offs between the specific features of 
competing products. CA derives preferences by 
examining these trade-offs through a series of rat-
ing, ranking, or choice tasks. Data generated from 
CA studies can then be used to determine which 
combination of features should be most preferred 
by each respondent.

CA was originally described by Luce and Tukey 
in 1964 and has since been widely used in market 
research, in economics, and most recently to exam-
ine preferences for competing programs, services, 
and treatment options in healthcare. This technique 

is based on three main assumptions. The first is 
that each product is a composite of different attri-
butes and that each attribute is specified by a 
number of levels. For example, imagine that you 
are a researcher interested in eliciting patient pref-
erences for competing pain medications. In this 
context, attributes might include specific medica-
tion characteristics such as route of administra-
tion, probability and magnitude of benefit, adverse 
effects, and out-of-pocket cost. The term levels 
refers to the range of estimates for each attribute. 
The levels for the attribute “out-of-pocket” costs 
for an insured population might range from $0 to 
$30.00 per month.

The second assumption underlying CA is that 
respondents have unique values, or utilities, for 
each attribute level. In this context utility is a num-
ber that represents the value a respondent associ-
ates with a particular characteristic, with higher 
utilities indicating increased value.

The final assumption underlying CA is that a 
subject’s value for a specific product can be calcu-
lated by combining the discrete utilities associated 
with each attribute. Therefore, if the sum of a 
patient’s utilities for the attributes of Medication A 
is greater than the sum of utilities for the attributes 
of Medication B, the patient should prefer 
Medication A to B.

Data generated from a CA study can answer 
important clinical questions, such as the following: 
Which attributes most strongly influence prefer-
ences? Which treatment is preferred and why? 
How much risk are patients willing to accept for a 
specified benefit? If cost is included as an attribute, 
CA can also estimate patients’ willingness to pay.

Steps Involved in Performing a  
Conjoint Analysis Study

Step 1: Choose the Options,  
Attributes, and Levels

The investigator must first decide on the set of 
options to be evaluated. Is the objective to study 
preferences for all available treatment options for 
a particular condition or only those options appro-
priate for a particular subset of patients? Should 
hypothetical options representing potential future 
advances be included? If one is examining treat-
ment preferences, are both pharmacologic and 
nonpharmacologic options to be included?
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Once the set of options to be studied are identi-
fied, the investigator must choose which attributes 
and levels to include. Undoubtedly, this is the most 
difficult step in performing a CA study. Ideally, all 
the attributes required to choose between compet-
ing options should be included in the study. In 
some cases, the set of attributes is chosen based on 
data available from published studies. However, 
whenever possible, obtaining input from relevant 
stakeholders, via individual interviews or focus 
groups, is preferred. The estimates, or levels, for 
each attribute should be based on the best avail-
able evidence to date. With computerized pro-
grams it is possible to design separate versions of a 
survey to be able to present patients with individu-
alized information.

Step 2: Choose a Conjoint Analysis Method

There are three main methods of conducting a 
CA study: full profile, choice-based, and adaptive 
(ACA, Sawtooth Software). These methods differ 
primarily in the way respondents are presented 
with information.

In full profile CA surveys, respondents are pre-
sented with complete profiles of hypothetical 
products that include a specified level for each 
attribute. Figure 1 describes two profiles from a 
hypothetical set of profiles examining preferences 
for pain medications.

Preferences are elicited by asking respondents to 
rate each profile or to rank a set of profiles. The 
main advantage of this technique is that it provides 
respondents with the most realistic descriptions of 
the products being evaluated. However, respon-
dents tend to employ simplifying tactics to compen-
sate for information overload when presented with 
full profiles using as few as four attributes, making 
this technique impractical for complex options.

Choice-based CA (CBC) is currently the most 
popular method of performing CA studies. As with 
the full profile approach, traditional CBC studies 
present respondents with profiles that include all 
attributes. Respondents are shown a choice set, 
usually composed of three or four profiles, and 
asked to indicate which they prefer. An example of 
a choice task evaluating treatment options for pain 
using the same attributes as those described above 
is provide in Figure 2.

CBC is preferred among many researchers 
because asking patients to perform a choice, rather 
than a rating or ranking task, is felt to be an easier 
task and more representative of how people make 
choices in the real world. In addition, CBC allows 
the investigator to include a “None” option—
which enables respondents to refuse or defer.

ACA (Sawtooth Software, Inc., Sequim, WA) 
collects and analyzes preference data using an 
interactive computer program. This method is 
unique in that it uses individual respondents’ 
answers to update and refine the questionnaire 
through a series of graded paired comparisons. 
Because it is interactive, ACA is more efficient than 
other techniques and allows a large number of 
attributes to be evaluated without resulting in 
information overload or respondent fatigue. This 
is an important advantage, since complex treat-
ment decisions often require multiple trade-offs 
between competing risks and benefits. ACA sur-
veys begin with a self-explicated set of questions 
that are followed by a set of paired comparison 
tasks. Figure 3 provides an example of the latter.

Step 3: Formulate an Experimental Design

The next step in developing a CA survey is to 
formulate an experimental design to decrease the 
number of scenarios each respondent evaluates. 
Imagine a very simple survey evaluating three 
attributes each having two levels. This small set 
of attributes and levels yields 2 × 2 × 2 = 8 pos-
sible combinations. Increasing the number of 
levels by only one would yield 3 × 3 × 3 = 27 
possible combinations. Since most surveys 
include more than three attributes, experimental 
designs are required to identify an efficient sub-
set of the total possible combinations of profiles 
to enable respondents to evaluate a practical 
number of scenarios. Fractional-factorial designs 

Drug 1 Drug 6

Route of administration Cream Pill

Probability of benefit 30% 80%

Risk of dyspepsia 10% 30%

Monthly cost ($) $10 $20

Figure 1   Example of profiles used in full-profile 
conjoint analysis
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can be generated using software programs, 
including SAS and Excel. There are also special-
ized CA software packages such as Sawtooth 
Software, Inc.

Step 4: Interpreting Conjoint Analysis Data

CA studies generate a utility or part-worth 
value for each level of each attribute. Part-worths 
can be calculated using several approaches. One 
of the most commonly used models is ordinary 
least squares regression. Recent advances include 
calculation of part-worths using Hierarchical 
Bayes Estimation. A full discussion of the models 
underlying CA is beyond the scope of this entry, 
however.

CA part-worths are scaled to an arbitrary con-
stant within each attribute and are interval data. A 
set of hypothetical data are provided in Figure 4. In 
this example, the constant is the least preferred 
level of each attribute and is assigned a value of 0.

The significance of the part-worths is found 
within relative differences between the levels. 
Because the zero point is arbitrarily set, the abso-
lute value of any specific level has no meaning. 
Therefore one cannot state that the utility or part-
worth assigned to a 1% risk of dyspepsia is the 
same as that assigned to a $10 monthly cost. Nor 
can one state that an 80% chance of benefit is 
three times better than a 50% benefit. However, 
one can conclude that this respondent prefers pills 
over creams and that injections are least preferred. 

If these were your only options, which would you choose?

 
Cream

30% benefit

10% risk of  
dyspepsia

Costs $10 per month

 
Injection

50% Benefit

No risk of dyspepsia

Costs $30 per month

 
Pill

80% Benefit

30% risk of dyspepsia

Costs $20 per month

None

¡ ¡ ¡ ¡

Figure 2  Example of a choice-based conjoint analysis choice task

Figure 3  Example of an ACA paired-comparison task

Which would you prefer?
3 out of every 10 people have less pain

Injection

or

8 out of every 10 people have less pain

  

Cream 

Strongly Prefer Left No Preference Strongly Prefer Right
 1 2  3  4 5 6 7 8  9
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One can also conclude that for this respondent the 
value gained from changing a medication from a 
cream to a pill (10 additional utility units) is the 
same as that obtained by decreasing the monthly 
cost from $10 to $5.

CA surveys also allow the investigator to calcu-
late the relative importance of each attribute. In 
this context, relative importance refers to the 
amount of importance respondents place on each 
treatment characteristic and is calculated by divid-
ing the range of each characteristic (difference 
between levels) by the sum of ranges of all charac-
teristics and multiplying by 100. These values sum 
to 100 and reflect the extent to which the differ-
ence between the levels of each characteristic 
affects each respondent’s preferences. Relative 
importances are ratio measures and therefore sup-
port multiplicative functions. For example, based 
on the relative importances displayed in Figure 5, 
the respondent was influenced most by the proba-
bility of benefit and felt that route of administra-
tion was twice as important as the risk of dyspepsia. 

Of note, the relative importances are strongly 
influenced by the range of the levels chosen. For 
instance, in this example, one would expect cost to 
have a greater influence on preference if the maxi-
mum cost was $100 per month as opposed to 
$30.

In CBC studies, it is also possible to gain insight 
into respondents’ preferences by counting the 
number of times each level was chosen. These data 
can be presented as proportions (with the denomi-
nator being the total number of times the level was 
presented in the survey). These proportions are 
ratio data and, unlike part-worths, can be com-
pared within an attribute.

CA studies are most frequently used to predict 
preferences for available or hypothetical options 
defined by the researcher. For example, imagine 
that a researcher is interested in describing prefer-
ences for four treatment options for knee pain: 
capsaicin, acetaminophen, anti-inflammatory drugs, 
and cortisone injections. Using the attributes 
defined in Figure 4, the researcher defines each 
option by assigning an appropriate level to each 
attribute (see Figure 6).

Respondents’ utilities are subsequently entered  
into a simulation model that yields a preference 
measure for each product. Sensitivity analyses to 
estimate the impact of changing specific character-
istics on preference can also be performed. For 
example, using the example above, the investigator 
could examine how preferences for each of the 
four options are affected by changing cost, proba-
bility of benefit, or risk of toxicity.

Several simulator models are available, such as 
the first-choice and share-of-preference models. 
Each model uses different “rules” to estimate prefer-
ences. For example, in the first-choice model, the 
part-worths are summed and the respondent is 
assumed to choose the product with highest utility. 
In the share-of-preference model, preferences are cal-
culated by first summing the utilities of the levels 
corresponding to each option. The utilities are then 
exponentiated and rescaled so that they sum to 100.

Previous studies of patient treatment preferences 
have (1) documented significant variability in treat-
ment preferences, (2) found that patient preferences 
are frequently not aligned with treatment guide-
lines, and (3) shown that patient preferences may 
not be concordant with common medical practices. 
These findings each emphasize the importance of 

Attribute Level Part-Worth

1. Route of administration Cream 30

 Pill 40

 Injection 0

2. Probability of benefit 30% 0

 50% 30

 80% 90

3. Risk of dyspepsia 1% 20

10% 5

25% 0

4. Monthly cost $5 30

$10 20

$30 0

Figure 4   Hypothetical part-worths generated by a 
conjoint analysis study
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Attribute Level Part-Worth Range Relative Importance

Route of administration Cream 30 40 40/180 × 100 = 22

 Pill 40

 Injection  0

Probability of benefit 30%  0 90 90/180 × 100 = 50

 50% 30

 80% 90

Risk of dyspepsia  0% 20 20 20/180 × 100 = 11

10%  5

25%  0

Monthly cost $5 30 30 30/180 × 100 = 17

$10 20

$30  0

Figure 5  Example of relative importances generated by a conjoint analysis study

 
Option

Attribute 1 
(Route)

Attribute 2 
(Benefit)

Attribute 3 
(Dyspepsia)

 
Attribute 4 (Cost)

Option 1 (Capsaicin) Level 1 Level 1 Level 1 Level 2

Option 2 (Acetaminophen) Level 2 Level 1 Level 2 Level 1

Option 3 (Anti-
inflammatory)

Level 2 Level 2 Level 3 Level 2

Option 4 (Cortisone 
injection)

Level 3 Level 2 Level 1 Level 3

Figure 6  Modeling preferences for knee pain
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incorporating individual patient preferences into 
the medical decision-making process.

Important Features

CA has been used increasingly frequently to 
describe patient preferences for health-related ser-
vices and treatment options. CA is also a means by 
which patients’ views can be included in setting 
research priorities, designing trials, and developing 
policy.

CA has many properties that make it a valuable 
tool to elicit patient preferences and facilitate 
medical decision making:

It can be designed to ensure that patients are  •
made aware of all essential information related 
to appropriate treatment options and therefore 
should improve patient knowledge and informed 
consent.
It improves the quality of decisions by making  •
the trade-offs between competing options 
explicit. This is of direct clinical relevance since 
choices based on explicit trade-offs are less likely 
to be influenced by heuristics (errors in 
reasoning), which can lead to poor decisions.
CA can be used to examine the amount of  •
importance respondents place on specific 
treatment characteristics. This feature should 
enable physicians to gain insight into the reasons 
underlying their patients’ preferences, tailor 
discussions to address individual patients’ 
concerns, and ensure that decisions are made 
based on accurate expectations.
It provides simulation capability. This feature  •
allows the investigator to assess the impact of 
varying specific treatment characteristics on 
choice. For example, researchers can determine 
how much benefit patients require before 
accepting the risk of drug toxicity, whether 
decreasing the burden or inconveniences of 
therapy might increase patient acceptance of 
treatment, or which treatment option fits best 
with an individual patient’s values.

Future Research

A reasonable body of evidence has now shown 
that CA is a feasible and valuable method of elicit-
ing preferences in healthcare. Future research is 

now needed to determine if CA can be imple-
mented as a decision support tool to improve 
informed decision making in medicine at the popu-
lation as well as the individual patient level.

Liana Fraenkel

See also Utility Assessment Techniques
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ConjunCtion Probability 
error

The conjunction rule applies to predictive judgment 
or forward conditional reasoning. It is a normative 
rule that states that the probability of any combina-
tion of events cannot exceed the probability of 
constituent events. For example, the probability of 
picking the queen of spades from a card deck can-
not exceed the probability of picking a spade and a 
queen from the deck. Typically, people can success-
fully apply the conjunction rule to transparent 
problems such as the card selection problem. 
However, there is overwhelming evidence that when 
problems are less transparent, people often ignore 
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the rule and judge the conjunction of events as more 
probable than a constituent event, thereby commit-
ting the conjunction probability error. Because of 
the pervasiveness of the conjunction error and its 
clear violation of normative probability theory, it is 
important to understand conditions that tend to 
produce the error, procedures that may reduce its 
occurrence, and instances where it does not apply.

Conditions That Produce  
the Conjunction Error

The initial investigation of the conjunction error 
was conducted within the framework of under-
standing how heuristic thought processes may pro-
duce systematic biases in judgment and choice. In 
their seminal investigation, Amos Tversky and 
Daniel Kahneman first explored the conjunction 
error as resulting from the use of the representative-
ness heuristic for judging probabilities. According 
to this heuristic, people judge probabilities for spe-
cific outcomes by making a similarity comparison 
with a model of the population from which the 
outcomes were sampled. For example, knowing 
that a person is a member of a particular group, 
one may use a stereotype of that group as a model 
to predict behaviors or attributes of the person.

The Linda Problem

An often used example that has been shown to 
produce robust conjunction errors is the Linda 
problem. As described by Tversky and Kahneman, 
Linda is 31 years old, single, outspoken, and intel-
ligent. Participants are told that when she was a 
philosophy major at school, she was concerned 
with social justice and participated in protests and 
demonstrations. This background establishes a 
model of Linda as a sophisticated individual con-
cerned with social issues. After reading the descrip-
tion, participants typically rank the relative 
likelihoods of predicted occupations and activities 
that apply to Linda. Three key statements that may 
be evaluated include the following:

(U) Linda is a bank teller.

(L) Linda is active in the feminist movement.

(U & L) Linda is a bank teller and is active in the 
feminist movement.

The first statement is unlikely (U) based on the 
model of Linda and is given a relatively low prob-
ability ranking. The second statement is likely  
(L) based on the model of Linda and is given a rela-
tively high probability ranking. The third statement 
is the key statement as it conjoins the unlikely and 
likely events (U & L). As such, it represents a subset 
of both these events and cannot have a higher prob-
ability than either of these. Yet nearly all partici-
pants indicate that the conjunction is more probable 
than the unlikely event. These results are obtained 
with both statistically naive and statistically sophis-
ticated participants and in situations in which par-
ticipants are directly assessing the relative likelihoods 
of the events. Furthermore, a majority of partici-
pants still commit the error even when they are 
asked to bet on these outcomes, implying the effect 
does not disappear with monetary incentives for 
correct application of the conjunction rule.

The conjunction error in the Linda problem is 
constructed by pairing an unlikely outcome from 
the model with a likely outcome from the model. 
In the probability calculus, the probability of the 
combined events can be expressed as follows:

Pr(U & L) = Pr(U) Pr(L|U).

This formula makes it explicit that the probabil-
ity of Linda being a bank teller and active in the 
feminist movement, Pr(U & L), must be less than 
or equal to the probability of her being a bank 
teller, Pr(U), as the probability of being active in the 
feminist movement given she is a bank teller, 
Pr(L|U), must be less than or equal to 1.0. But 
according to similarity-based heuristic thinking, 
combining an outcome that is dissimilar to the 
model with one that is similar to the model results 
in an evaluation of moderate similarity for the com-
bined events. If probabilities are then based on such 
similarity evaluations, the mixed outcome case is 
judged as more probable than the unlikely constitu-
ent outcome, resulting in the conjunction error.

A Second Recipe for Conjunction Errors

The Linda problem used the recipe of combin-
ing an unlikely outcome with a likely outcome  
to produce the conjunction error. A second recipe 
for creating conjunction errors is to add an out-
come that makes the other outcome more likely 
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or plausible. Tversky and Kahneman illustrated 
this recipe in a health-related example in which 
participants were told that a health survey had 
been administered to a large sample of adult 
males of all ages and occupations. They were then 
asked to indicate which statement was more likely 
of a randomly selected person from the survey:

 1. This person has had one or more heart attacks.

 2. This person has had one or more heart attacks 
and is over 55 years of age.

The majority of respondents chose the conjunc-
tion to be more probable in this instance. The 
specified age makes it easier for people to imagine 
this person having had one or more heart attacks. 
More generally, this type of conjunction error may 
be attributed to scenario thinking. In the first case, 
there is no reason to think that the selected indi-
vidual might have had a heart attack. In the second 
case, the age-related information fills in some of the 
causal linkages that make the scenario more plau-
sible and hence seem more probable. This type of 
scenario-based conjunction error can occur when-
ever a conjoined outcome provides a causal mecha-
nism for the occurrence of the other outcome.

Application to Medical Decision Making

Tversky and Kahneman also demonstrated the 
applicability of the conjunction error directly to 
medical decision making. One of the problems they 
administered to two different groups of internists 
indicated that “A 55-year-old woman had pulmo-
nary embolism documented angiographically 10 
days after a cholecystectomy.” The doctors were 
asked to rank order the probability that the patient 
would be experiencing each of a set of conditions. 
These included “dyspnea and hemiparesis” and 
“hemiparesis.” Across the two samples, 91% indi-
cated that the conjunction of conditions was more 
likely than the constituent condition. When physi-
cians in an additional sample were confronted with 
their conjunction errors, they did not try to defend 
their decisions but simply indicated their surprise 
and dismay at having made such elementary errors. 
This last result suggests that the conjunction error 
is not simply due to misunderstanding how the 
alternatives are presented in the problem but 

instead represents a serious threat to risk assess-
ment that can take place with experts within their 
own domain of expertise.

Procedures That May Reduce  
the Conjunction Error

Several criticisms of the work on the conjunction 
effect have been leveled over the 25 years since it 
was first reported. These criticisms focus on vari-
ous features of how the problems are presented. 
One class of criticisms suggests that the problems 
may be ambiguously stated so that errors are due 
to participants misunderstanding what the experi-
menter is trying to communicate. For example, in 
several versions of the Linda problem, one simply 
chooses which is more probable, that “Linda is a 
bank teller” or that “Linda is a bank teller and is 
active in the feminist movement.” One might argue 
that the pragmatics of conversation norms lead 
individuals to interpret the first statement as mean-
ing “Linda is a bank teller and is not active in the 
feminist movement.” Through the years, numerous 
ways of clarifying the options have been explored. 
The bottom line, however, is that although some 
versions may lead to fewer conjunction errors, they 
generally do not eliminate conjunction errors (i.e., 
the majority of participants still commit the error 
even with the reworded statements).

Another criticism has been directed against the 
normative force of the conjunction error. This 
argument is based on a strict frequentistic interpre-
tation of probability, which states that it is reason-
able to judge probabilities for samples from a 
population but it is not reasonable to judge prob-
bilities for propensities of unique events. In the 
Linda problem, either she is or she is not a bank 
teller, and hence probability is not applicable. Rather 
than resolve this interpretation at the normative 
level, researchers have probed whether the conjunc-
tion error occurs when people are evaluating prob-
abilities of samples from a population. For example, 
we can conceive of 100 women fitting Linda’s 
description and estimate the probability that a ran-
dom sample from this population would have these 
characteristics. Although some studies have shown 
a marked reduction of conjunction errors in this 
case, most have demonstrated very strong conjunc-
tion errors still occur. The health survey example 
discussed above is one case in point.
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Related to the issue of interpreting probabilities 
is the assertion that probabilities are not a natural 
way of processing frequency information and so 
people will make errors when forced to consider 
probabilities rather than frequencies. Several 
researchers have tested this idea by comparing per-
formance on problems requiring probability assess-
ments versus frequency assessments. Note that the 
frequency assessment requires that one talk about 
sampling from a population rather than talk about 
propensities of individuals. The health survey 
problem described above has been formulated in 
frequency terms by asking participants to estimate 
how many of a sample of 100 individuals from the 
survey would fit each description. In general, the 
response format of estimating frequencies sampled 
from a large population has led to a significant 
reduction of conjunction errors, with the majority 
of participants not committing the error. This 
method would then appear to be a good way to 
reduce reasoning errors and de-bias judges.

However, a closer look at the pattern of results 
across numerous studies indicates that it is not the 
frequency format itself that is strongly reducing 
conjunction errors; rather, it is the requirement of 
making estimates that is critical. Numerous studies 
have shown that choosing which alternative would 
result in the highest sampled frequency does little 
to reduce conjunction errors. It is only when esti-
mates must be generated for each option that con-
junction errors are dramatically reduced. This 
occurs even when the estimates are of probabilities 
rather than of frequencies. This result supports the 
idea that people have at least two distinct ways to 
process probability information. One may be more 
qualitative and heuristic-based and the other more 
numerical and algorithmic. When the response 
mode is qualitative in nature, as in ranking and 
choice, people tend to apply the qualitative heuris-
tic mode of thought and commit conjunction 
errors. When the response mode requires numeri-
cal assessments, people are more inclined to apply 
the quantitative algorithmic approaches and hence 
reduce conjunction errors.

Applicability of the Conjunction Rule

It is important to note when the conjunction rule 
does and does not apply when considering the vari-
ous tasks associated with assessing probabilities. 

The conjunction rule applies to predictive judgment 
or forward conditional reasoning. In this type of 
reasoning, events are conditioned on a premise rep-
resented as a hypothesized model or hypothesized 
sampling procedure. In the medical decision-mak-
ing context, it applies to predicting symptoms given 
a disease or outcomes given a procedure. In these 
cases, one must be careful to consider whether 
probability assessments are being inappropriately 
increased by the consideration of a conjunct that 
makes a particular outcome easier to envision. It is 
important to avoid scenario thinking or similarity-
based thinking in making these assessments.

The conjunction rule does not apply to diagnos-
tic judgment or backward conditional reasoning. 
In this kind of reasoning, one is inferring the prob-
ability of a hypothesis based on an outcome or a 
conjunction of outcomes. In medical decision mak-
ing, this is by far the more common type of assess-
ment. Given a particular set of symptoms one must 
estimate the likelihood of a given disease as the 
cause. Here, Bayesian updating applies so that 
conjoining a diagnostic symptom with a nondiag-
nostic symptom should lead to an increase in the 
overall probability of the disease. One possibility is 
that people commit the conjunction error because 
they do not correctly differentiate between these 
two tasks and hence incorrectly apply diagnostic 
reasoning to a prediction task.

Douglas H. Wedell

See also Bayesian Evidence Synthesis; Biases in Human 
Prediction; Frequency Estimation; Heuristics; 
Probability Errors
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Constraint theory

Diagnosis—the process by which examination and 
existing knowledge are used to establish the nature 
and circumstances of a particular condition—has 
always been the basis of the practice of medicine. 
It is the focal point of the doctor-patient relation-
ship. But given rapid advancements in medical 
science and technology over the past 50 or so 
years, diagnostic methods have emerged elsewhere 
across the healthcare system: in all manner of rela-
tionships, decision-making processes, manage-
ment structures, and work in general. Individuals 
and organizations have, as a consequence, sought 
new ways to manage these transformations. One 
such way has been through the application of con-
straint theory, through which one can organize 
existing thoughts about complex systems and 
communicate them through scientific algorithms.

Information Is the Transformation

The basic features, challenges, and opportunities 
of today’s healthcare system are not all-too-differ-
ent from those of the past. Since the early days of 
the American republic, there has been plenty of 
thought about how to integrate a host of general, 
though interconnected needs related to patients, 
physicians and other practitioners, government, 
taxes, insurance, access to and quality of care, and 
business interests, to name a few.

Yet, in the interim, the vast improvements in 
science and technology that have been applied to 
the practice of medicine have produced an increas-
ing amount of data. This has both benefited and 
swamped the system.

The amount of data available to people through-
out the healthcare system, and the capacity to 
process it, is ever increasing. But for the data to be 
useful, it must be converted into information; for 
this to happen, the data must be oriented toward a 

particular purpose or given some relevance. As 
medicine becomes more specialized and healthcare 
more complex, the importance of information and 
how it flows—whether information is good or not, 
how people choose to share it, and whether it 
passes easily between people—makes a difference 
in the performance of people and organizations 
throughout the system. In response, a number of 
models have been developed in an attempt to effec-
tively process data, convert it into information, 
and capture the flow of that information so that it 
can be used to make the right decisions.

Quality Improvement Methods

Flawless performance and attention to detail are 
highly regarded qualities in the medical and health-
care professions. This reality, plus today’s eco-
nomic dimensions and the fact that organizations 
within healthcare have grown larger and more dif-
ficult to manage, has increased the demand for 
nonmedical professionals who have experience in 
management techniques that could be applied to 
improve organizational behavior and, thereby, 
patient care. High on the list of innovative con-
cepts that have infiltrated the workings of the 
modern healthcare organization is the implemen-
tation of quality improvement programs. Adapted 
from the engineering and service-outcome approaches 
that are popular, especially in the business of 
manufacturing, these programs are highly disci-
plined, statistically driven methods by which to 
measure and eliminate any number of “defects” in 
a production process. In form and function, they 
require a high level of systematic predictability and 
a low tolerance for human fallibility. Such pro-
grams are intended to be a reliable means by which 
to use input and output data to achieve the goal of 
delivering to customers a product or service that 
satisfies their needs.

A good portion of these programs come out of 
the Total Quality Management (TQM) philosophy 
developed in the mid- to late 20th century by, 
among others, W. Edwards Deming, Joseph Juran, 
and Kaoru Ishikawa. The TQM movement gener-
ally considers that every person and all activities in 
an organization must be managed toward cus-
tomer requirements for a product or service. To 
accomplish as much, especially over the long term, 
TQM programs begin with four basic assumptions 
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about quality, people, organizations, and manage-
ment. These assumptions include the beliefs that 
(a) the production of quality products and services 
is preferred over compromising quality in an 
attempt to keep costs low; (b) employees care 
about the quality of their performance and will 
work to improve it so long as management pays 
attention to their ideas, provides them with the 
means necessary for improvement, and creates a 
positive work environment; (c) organizations are 
constituted of interdependent parts that must func-
tion as a system; and (d) senior management  
is responsible for the creation, organization, and 
direction of the overall system that leads to quality 
outcomes.

From there, the interventions intended to actu-
ally bring about change and improve quality must 
focus on work processes, analysis of variability and 
variation in those processes, systematic collection 
and analysis of data at precise points in the pro-
cesses, and a commitment to learning and “con-
tinuous improvement.” Regard for these factors 
permits the development of new and better meth-
ods for performing work, which in turn improves 
the quality of the product or service being worked 
on. In all, the outcome relies on giving meaning to 
an increasing number of variables that must be 
variously and appropriately integrated into deci-
sions across and through the system.

One of today’s acknowledged, though contro-
versial, interventions for service outcome and 
quality improvement is the theory of constraints, 
developed by Eliyahu Goldratt. It is grounded in 
the notion of a “weakest link” in any complex 
system. That is, at any point in time, there is some 
phenomenon that limits the function of the system 
to move beyond its current capacity and closer to 
achieving its goal. In this cause-and-effect relation-
ship, the phenomenon—the constraint—must be 
identified and the entire system managed accord-
ingly if the system is to improve. Yet the theory of 
constraints should not be confused with constraint 
theory.

Theory of Complexity  
and Constraint Theory

In complex systems, while the prevailing condi-
tions of a certain environment are stable and pre-
dictable, the actions and effects of the elements 

within it are not. Over the past four decades, with 
the rise of digital computation and data process-
ing, mathematical proofs have been used to show 
that complex systems are determined by number-
less internal and external factors. These factors are 
not necessarily statistically significant and, there-
fore, do not allow prediction in the classical sense. 
And it may be that one of the statistically insig-
nificant factors turns out to be that which has the 
greatest impact on the entire system. There have 
lately emerged across the study of modern mathe-
matics several theorems that clearly identify such 
factors, including the constraint theory cast by 
George J. Friedman.

The traditional way to achieve a complete, cor-
rect, and consistent method for managing a com-
plex system has been to divide a specific model 
into submodels that could be refined by specialists 
and later connected into an aggregate model. But 
Friedman’s contention is that there is no assurance 
of consistency in the aggregate model even if there 
is consistency in every submodel. Through the 
development of constraint theory, he has shown 
that model structure can be used by cross- 
functional teams, analysts, and managers to dis-
cern inconsistencies in an aggregate model.

Friedman’s constraint theory uses the “Four-
Fold Way,” which is a progressive collection of 
“views”: set theoretic; family of submodels; bipar-
tite graph; and constraint matrix. It separates a 
given model from computations and chronicles the 
existence and flow of constraints throughout the 
model. Each constraint may be tagged and valued 
as an overconstraint—an instance in which more 
variables exist than the number required for solv-
ing a group of equations—or an underconstraint, 
in which fewer variables exist than the amount 
required for solving a group of equations. The 
entire operation is typically represented on a bipar-
tite graph (see Figure 1), with a nodes vertex that 
denotes the relations within the model and a knots 
vertex that signifies its variables; nodes are repre-
sented by squares and knots by circles, and a knot 
will be connected to a node by an edge if and only 
if the corresponding variable is present in the cor-
responding functional relationship of a model. In 
effect, the nodes are central points, and the knots 
are points at which the values of the variables pass 
from one central point to another. The end result 
is that visualization of the system, before returning 



190 Construction of Values

to the original group of model equations, can  
benefit the development of a strategy that ideally 
would lead to some solution.

The essence of constraint theory is that it 
enhances the use of computer assistance to bring 
some level of control to numberless variables in a 
system. It intends to identify decisive factors, yet 
does not, as a rule, convey how to eliminate extra-
neous ones. This, in any case, helps one more 
accurately analyze the behaviors and performance 
of the people and forces within the system—and at 
its various stages, under its various criteria, and 
with respect to its various needs of integration and 
design. But for anyone to become proficient—or at 
least—in the technique of constraint theory requires 
that one first comprehend the basic concepts of set 
theory and graph theory, which is more often the 
domain of mathematicians and engineers than of 
physicians and healthcare professionals. That is, 
while they could well have the capacity and knowl-
edge to grasp the particulars of constraint theory, 
it is more likely that physicians and other health-
care professionals’ time, contributions, strengths, 
and priorities are better invested in the tasks and 
practices specific to their work.

There is no question that new realities during 
the mid- to late 20th century—primarily, advances 
in medical science and technology and the advent 
of managed care—have necessitated new applica-
tions of new knowledge. Nor is there doubt that 
with such transformations there is a need to incor-
porate every relative complexity—however overt 
or subtle, close or remote, old or new—into capa-
ble analysis. Being able to understand and act on 
constraints at a given point in a system is especially 
imperative today as the healthcare system increas-
ingly relies on the use of knowledge and learning 
as a basis for skills that allow its highly specialized, 
productive work to be performed. It therefore 

needs programs that demand that decision makers 
be precise in every decision-making capacity, that 
they know precisely what to do with the available 
information, and that they are listening to and ask-
ing questions that encourage critical thinking and 
the careful development of ideas. Only then can 
medical and healthcare professionals tend to the 
care for and cure of the sick patient.

Lee H. Igel
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ConstruCtion of values

Construction of values refers to the process 
whereby an individual’s preference for a particu-
lar health state or more generally, a “good” of any 

Figure 1   Bipartite graph: A nonspecific, simple 
example (see Friedman, 2005, for specific 
and complex examples)
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sort, is developed or built (constructed) at the time 
when that state or good is encountered, either 
actually or hypothetically. Preference in this con-
text refers to the desirability or undesirability of 
something, from the subjective perspective of the 
person assessing or evaluating it. Preferences are 
the external manifestation of underlying values, 
and are commonly referred to interchangeably. 
Value construction occurs in clinical contexts 
when medical decisions are imminent or in fore-
casting decision making. In research settings, 
value construction occurs usually in the consider-
ation of hypothetical choices, such as in prefer-
ence elicitation surveys or choice experiments. 
Value construction can be contrasted with value 
retrieval, in which values already exist and are 
known to the individual, and are simply retrieved 
from memory.

Definition

Preferences about goods, health states, or even 
issues are thought to exist on a continuum, from 
those that are basic to those that are highly com-
plex. Basic values are easily known and expressed 
by an individual; these values are quite possibly 
innate. Complex values require extensive cognitive 
effort to understand and express and may not be 
immediately available to an individual. For exam-
ple, an infant’s preference for its mother over 
another person could be considered a basic, innate 
preference or value. Similarly, the value one person 
places on Pepsi versus Coke is basic and known 
and easy to express. At the other extreme, the value 
placed on a painful and debilitating yet life-extending 
therapy might not be known to an individual with-
out the benefit of extensive thought, consideration, 
and deliberation. The value for this therapy is 
based on more basic values but is some combina-
tion of many considerations and preferences, 
including trade-offs among conflicting values, 
resulting in a complex preference. The construction 
of values refers to this latter process in which an 
individual uses information and more basic values 
to construct, or build, the more complex value.

Construction Process

Values are constructed at the time when an indi-
vidual is faced with a situation that demands 

knowledge or expression of his or her values. In 
general, values are called on every time an indi-
vidual makes a choice or decision, from purchas-
ing one brand versus another to casting a ballot. In 
the context of health and medicine, values are usu-
ally called on when an individual is faced with a 
decision about a medical intervention or treat-
ment, from something as simple as receiving a flu 
shot to consenting to surgery. Values are also 
invoked during surveys and experiments asking 
about choices and decisions, wherein much of our 
knowledge about preference construction has been 
demonstrated.

The construction process generally begins when 
an individual is faced with a choice or decision that 
defies basic values. For example, if a person is 
asked which political party he or she supports, he 
or she may reply “Democrat” or “Republican.” If 
a person is asked whether she supports Candidate 
A or Candidate B, she may ask about the candi-
dates’ positions on an issue important to her, such 
as environmental protection. On learning of the 
candidates’ positions, she will choose A or B. If 
then she is told Candidate A is female and 
Candidate B is male, and this person prefers to 
support a female candidate, she will have to con-
sider both the candidates’ genders and their posi-
tions on environmental protection to make a 
choice. If the male candidate is a stronger propo-
nent of environmental protection, the person has 
to weigh the importance of her gender preference 
against her environmental protection preference to 
arrive at a decision. This type of choice would be 
considered to invoke complex values because it is 
not readily apparent what choice would be dic-
tated from the basic values regarding gender and 
environmental protection. Values for the candi-
dates hence would be constructed from the infor-
mation and basic values. Value construction occurs 
when basic values would suffice but information is 
unknown, when basic values do not exist for the 
options encountered, or when the complexity of 
the choice involves combinations of or trade-offs 
among basic values.

Value construction in medical decision making 
often involves multiple and conflicting trade-offs, 
and information is often lacking. Basic values 
regarding medical decisions can be well-known 
and accessible, such as the value placed on quality 
of life or longevity. Yet these values are often 
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encountered in contradiction, making complexity 
inherent in most medical choices.

Elicitation Process

While value construction occurs implicitly when 
choices are made, the process becomes more 
explicit when values or preferences are specifically 
elicited for decision making or in the context of 
surveys. Because complex values are based on basic 
values and potentially information, time and con-
sideration are necessary components of the con-
struction process, though it can be highly person 
and situation specific. Lacking any of these ele-
ments, complex values may be expressed inaccu-
rately as their more basic components, or as entities 
entirely different from those that would be articu-
lated given sufficient information and consider-
ation. Such occurrences have been demonstrated as 
preference reversals, which are basically situations 
in which a person directly contradicts himself or 
herself in matched choices, or as framing effects, in 
which the context in which a choice is presented 
unduly influences the outcome. Such incidents are 
not adequately described by the theories that 
underlie decision making and in this context indi-
cate the need for value construction to maximize 
expression of true preferences, unaffected by con-
text and other external factors. Value elicitation 
processes should therefore take the necessary ele-
ments of value construction into account to pro-
duce valid and stable expressions of complex values.

Importance in Medical Decision Making

Acknowledging that values are constructed implies 
that a process should be followed when decisions 
are made. Since medical decisions commonly 
involve complex values and multiple trade-offs, 
the elements necessary for value construction 
should be provided to ensure fully informed and 
formed choices. Complete information and  
thorough consideration may enable a construction 
process that leads to decisions that accurately 
reflect underlying basic values. Understanding of 
the processes that motivate value formation can 
provide guidance in eliciting and articulating qual-
ity decision making in health and medicine.

Eve Wittenberg
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Consumer-direCted  
health Plans

Consumer-directed healthcare is an approach to 
financing healthcare services wherein individuals 
are given fixed allowances with which they can 
purchase specified services. Most plans couple this 
with catastrophic coverage, usually with a high 
deductible. These plans often receive tax advan-
tages. Variants may be termed medical savings 
accounts, health savings accounts, or flexible 
spending accounts. They have been employed in a 
number of countries, including the United States, 
Singapore, South Africa, and China. There are dif-
ferences in terms of such details as who contributes 
(employer, employee, or both), the levels of deduct-
ibles and co-payments payable, which services can 
be purchased with these funds, and whether unused 
contributions can be carried over to subsequent 
years. Some models employ a “use it or lose it” 
approach, whereas others allow savings to be accu-
mulated, often tax-free. Consumer-directed models 
are predicated on the assumption that potential 
users of care should be the ones making the deci-
sions about what care to receive and from whom.

The Case For

Market Approaches to Allocation

Consumer-based models are based on the prem-
ise that, like other commodities, healthcare is a 
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market good and as such its utilization is subject to 
the predictions of economic theory. In economics, 
price is the signal that ensures a balance between 
supply and demand. Economic theorists would 
thus predict that reducing price would increase 
demand. In addition, they note that insurance may 
create what is termed moral hazard, a term refer-
ring to the prospect that insulating people from 
risk (a major purpose of insurance) may make 
them less concerned about the potential negative 
consequences of that risk than they otherwise 
might be. For example, those with flood insurance 
may be more willing to build in flood plains, in the 
confidence that insurance would cover their losses. 
Similarly, economic theory would predict that 
those with health insurance, because they do not 
have to pay the full cost of any care they receive, 
would have an incentive to over-use it. Advocates 
thus argue that consumer-driven models are the 
best way to achieve cost control because wise con-
sumers will shop around for the best buy, mea-
sured in terms of both quality and price. They 
suggest that an additional benefit of high deduct-
ible plans is that insurers will save money by not 
having to process small claims.

In contrast, other theorists argue that utilization 
of health services differs from purchases of con-
sumer goods in that it is (or at least should be) 
based on need rather than demand. Because need 
is defined by experts rather than by consumers, 
they further argue that those individuals receiving 
care are not always in the best position to make 
treatment decisions, for a number of reasons, 
including “asymmetric information.”

Who Is the Decision Maker?

Consumer-directed models are often presented 
as an alternative to managed care, which is 
described as representing control by technocrats, 
who inhibit innovation, and instead attempt to 
control costs with “just say no” policies, to the 
detriment of both patients and providers. Others 
note that they also represent a rejection of agency 
models, whereby expert providers are expected to 
determine what care their patients need, in favor of 
models wherein the recipients of care act as the 
decision makers about both what care to purchase 
and from which providers. Consumer-directed 
plans are therefore justified as empowering users 

of services and being linked to informed decision 
making. Discussion of these models is thus often 
associated with language speaking of patient 
empowerment and of putting patients in control.

Who Pays for What?

In contrast to approaches that pool risks and 
guarantee coverage for “necessary” services, con-
sumer-directed models try to minimize the extent 
of cross-subsidization. Consumer-directed care is 
accordingly associated with a major shift of costs 
from insurers to consumers, in the form of high 
deductibles and co-payments; this shift is justified 
as necessary to make individuals act as informed 
consumers. In this model, insurance is reserved for 
catastrophic costs, with the more predictable costs 
expected to be covered through personal savings. 
To encourage that transition, governments may 
define minimum or maximum levels for deduct-
ibles and give preferable taxation treatment to the 
savings account components. Plans may also 
extend the range of insured benefits if they allow 
savings to be used for services not traditionally 
covered by insurance.

The Case Against

Opponents contest most of the aforementioned 
assumptions.

Impact of Cost Sharing on Utilization

One data source, referred to by both sides of the 
debate, is the RAND Health Insurance Experiment 
(HIE), a randomized experiment of various cost-
sharing arrangements conducted between 1971 and 
1982. The researchers found that cost sharing 
reduced the use of nearly all health services among 
study participants (which excluded the elderly and 
many of those with preexisting serious health condi-
tions). Extrapolating these findings, proponents 
argue that consumer-directed care will reduce costs 
and increase efficiency. However, as the RAND 
group has itself pointed out, this reduced use of 
services resulted primarily from decisions not to 
seek out care. Once in the healthcare system, there 
were only modest effects on the cost of an episode 
of care. Cost sharing was equally likely to deter 
appropriate (and effective) care as to deter more 
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marginal (ineffective) visits. In general, the reduc-
tion in services did not lead to adverse health out-
comes, at least in the short run. However, there 
were exceptions, particularly for the poorest patients. 
This evoked concerns that cost sharing might deter 
preventive and follow-up care and ultimately lead 
to higher costs and worse outcomes. The experi-
ment did not find any discernible differences in the 
quality of care, or in how well people took care of 
themselves. Patient satisfaction tended to be lower 
in the plans with higher cost sharing. Extrapolating 
these findings, opponents worry that needed care 
will not be received. Advocates suggest that certain 
services (including some preventive care) can be 
exempted from cost sharing requirements.

Availability of Information for Decision Making

A related set of arguments stresses agency rela-
tionships, and the difficulty of individuals attempt-
ing to be wise purchasers in areas requiring 
expertise. Some argue that, left to their own 
devices, individuals may delay receiving appropri-
ate care. Others respond that this objection is 
paternalistic and can be overcome if good informa-
tion is made available about costs and quality.

Adverse Selection

Another set of arguments relates to the highly 
skewed nature of health expenditures. As studies 
in the United States and Canada have confirmed, a 
very small proportion of individuals represent the 
bulk of health expenditures. The lowest spending 
50% account for less than 5% of costs, and similar 
patterns apply within every age-sex category. 
Insurers have a strong incentive to avoid those 
individuals likely to generate high costs, a phe-
nomenon referred to as adverse selection. Similarly, 
consumer-directed plans are likely to be most 
attractive to those with better health status. To the 
extent that risk pooling breaks down, these authors 
note that there is likely to be a negative impact on 
the sustainability of an insurance model, with the 
healthier benefiting from lower premiums, and the 
sick finding themselves uninsurable.

Choice

Another set of arguments relates to the meaning 
of patient choice. To the extent that market-based 

models assume enough excess capacity to react to 
increases in demand, choice may be illusory. This 
may apply where there are not multiple potential 
providers, including in rural/remote areas, and for 
certain highly specialized services. It may also apply 
when individuals do not have sufficient resources 
to purchase care.

Empirical Results

Consumer-directed plans are relatively recent, and 
evaluation is therefore limited. The international 
evidence is mixed, with growing suggestions that 
they create gaps in access. In the United States, 
they represent a small proportion of insured indi-
viduals (about 3%) but are growing rapidly. The 
literature suggests a mixed picture. The empirical 
evidence to date suggests that the bulk of the 
population—which tends to be healthier—may 
well reduce use without adverse health effects but 
that already vulnerable populations (by income, 
and by health status) may show worse results. 
Because costs are so highly skewed, the overall sav-
ings are likely to be minimal and potentially offset 
by higher costs among those not receiving neces-
sary care. Premiums are lower, which is to the 
advantage of those paying for coverage (employers 
or potential consumers). However, coverage is 
less, and out-of-pocket costs can be considerable; 
Bloche estimates that they can exceed $10,000 per 
year for families. To date, analysts have not yet 
found impacts on quality of care and have found 
that few individuals feel confident with the infor-
mation available to them to date.

The Government Accountability Office Report

A 2006 review by the U.S. Government Account-
ability Office (GAO) surveyed early experiences 
with one kind of plan—Health Savings Accounts 
(HSAs). They found the following:

The sorts of services covered were similar. •
Those enrolled were much more likely to have  •
higher incomes (51% vs. 18% of all tax filers 
younger than age 65).
Costs for enrollees were higher than for those  •
enrolled in traditional (PPO) plans when 
extensive care was used but lower when use was 
low to moderate.
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Few participants researched costs before  •
obtaining services; if consumerism were to 
increase, it “will likely require time, education, 
and improved decision support tools that 
provide enrollees with more information about 
the cost and quality of health care providers and 
services” (p. 30).
“Most participants were satisfied with their  •
HSA-eligible plan and would recommend these 
plans to healthy consumers but not to those who 
use maintenance medication, have a chronic 
condition, have children, or may not have the 
funds to meet the high deductible.”

Outlook

Given ongoing problems with both access and cost 
control in the United States, consumer-directed 
health plans are likely to play a role. The extent to 
which they can fulfill their stated goals, however, 
remains unclear. More evidence is clearly needed, but 
to date the claims of advocates appear problematic, 
both in their assumptions about the nature of deci-
sion making in healthcare and about the differences 
between medical care and other consumer goods.

Raisa Deber
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Context effeCts

Normative decision theory is often formulated to 
assume that decision makers have perfect infor-
mation, a perfect grasp of their objectives, and the 
perfect ability to use that information to make 
uncertain decisions and further their objectives. It 
is common for psychologists to criticize the use of 
such strong assumptions as indefensible because 
they ignore the effects of important situational 
and contextual factors. In this respect, the term 
context can be defined in two distinct but concep-
tually related ways: (1) context as the presentation 
(description), or framing, of the decision problem, 
which determines how the task is conceptualized 
by the individual, and (2) context as the set of 
available choice options (e.g., in decision making 
under risk). Both types of context affect how the 
decision problem is cognitively represented by  
the agent, which in turn affects the outcome of the 
decision making process. Here, these two types of 
context effects are discussed separately.

Context Effects Caused by Task Framing

In these accounts, the term context refers to a set 
of facts describing a particular situation from a 
specific point of view. There is evidence that minor 
changes in the presentation or framing of risky 
choice problems can have dramatic impacts on 
choices. Such effects are failures of description 
invariance because different answers are elicited if 
decision problems are presented in different but 
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logically equivalent forms, or contexts. A famous 
example of framing effects is a study by Tversky 
and Kahneman, in which two groups were  
presented with an Asian disease story and their 
choice was between two probabilistically equiva-
lent medical policies—one with a certain outcome 
and one with a risky outcome having higher poten-
tial gain. However, the description for the first 
group presented the information in terms of lives 
saved while the information presented to the sec-
ond group was in terms of lives lost. There was a 
striking difference in responses to these two pre-
sentations: 72% of participants preferred the first 
policy when it was described as lives saved, while 
only 22% of participants preferred this option 
when it was in terms of lives lost. Such failures of 
description invariance appear to challenge the very 
idea that choices can, in general, be represented by 
any single preference function.

Prospect theory was proposed as a psychological 
account of such framing effects on behavior toward 
risk. In this theory, choices among prospects are 
determined by a preference function, in which out-
comes are interpreted as gains and losses relative to 
a reference point (e.g., status quo wealth). Empirical 
estimates find that losses are weighted about twice 
as strongly as gains, that is, the utility function is 
steeper for losses than for gains, which means that 
the disutility of losing $100 is twice the utility of 
gaining $100. In the Asian disease problem, when 
outcomes were framed as lives saved, the majority 
of choosers were attracted to a sure gain of lives; 
when framed as losses the majority rejected the 
sure loss of deaths, which according to the loss 
function hurts much more, preferring instead to 
take the more risky policy.

Consistent with prospect theory, the rating of 
different health states varying in severity is influ-
enced by the perspective of the rater (i.e., his or her 
own current health relative to the rated health con-
ditions). For example, a mild lung disease scenario 
and a severe one are rated differently by lung  
disease patients, whereas healthy nonpatients rate 
the two scenarios as much more similar. Because 
patients and nonpatients have a different status 
quo reference point, they have different percep-
tions of the same health condition. For a patient 
suffering from a moderately severe lung disease, a 
milder case of the same disease would represent a 
gain in health generating a steep improvement in 
life quality, whereas a severe case of lung disease 

would represent a loss in health with a steep cost 
in quality. In contrast, for a healthy person, both 
mild and severe cases of lung disease would repre-
sent a loss in health.

A similar test of the validity of prospect theory 
in medical context showed that hospitalization 
causes a decline in patients’ desire for very unpleas-
ant life-sustaining treatment (i.e., individuals 
express different treatment preferences when they 
are healthy compared with when they are ill). 
Thus, direct experience with the discomforts of 
hospitalization changed patients’ attitudes about 
the value of extending life via aggressive medical 
treatment. Therefore, the task of divining a patient’s 
“true” end-of-life wishes becomes difficult because 
decisions to receive life-sustaining treatment stated 
by healthy individuals may be particularly suscep-
tible to contextual change.

In summary, these recent studies are examples 
of expanding research questioning the stability of 
treatment preferences over time and across changes 
in an individual’s health condition, and the general 
ability of individuals to predict accurately their 
future feelings and behavioral choices.

Context Effects Caused by the Choice Set

A number of decision experiments have investi-
gated the effect of the context defined in terms of 
the set of available options. This research draws 
attention to a general and pervasive feature of 
human cognition, which is related to how people 
judge the magnitudes of attributes of choice 
options such as utilities, payoffs, and probabilities, 
which are essential ingredients of every decision 
problem. The basic question is whether there is  
a cognitive ability to represent absolute cardinal 
scales on any magnitude, and judgments involving 
such magnitudes are determined solely by the con-
text. The research is based on evidence from psy-
chophysics and perceptual judgment, which shows 
that people are not able to represent the absolute 
magnitudes of the attributes of any stimuli, for 
example, light, brightness, weight, loudness, hap-
piness, satisfaction, and so on, and instead, they 
represent such magnitudes on a ordinal scale 
purely in relation to other magnitudes. For exam-
ple, people were asked to choose a tone half as 
loud as a comparison tone. Some people were 
given a set of candidate tones that included the 
half-as-loud tone but were mostly quiet. Another 
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group was given a set of tones that also included 
the half-as-loud tone but were mostly loud. In both 
groups, people just selected a tone in the middle of 
the range, so in the quiet group people’s estimates 
of the half loudness were much lower than in the 
loud group. The conclusion is that people have no 
real grip on absolute loudness. Other similar find-
ings are consistent with the idea that people are 
unable to make reliable decontextualized judg-
ments of absolute magnitudes.

A closely related phenomenon indicates that 
such psychophysical principles carry over to choice. 
In one study, people choose to trade off risk and 
return by choosing a gamble (of the form “p 
chance of x”) from a varying range of options that 
was found to almost completely determine the 
choice. That is, people chose based not on absolute 
risk-return level but on the risk-return level rela-
tive to the other gamble options available. Parallel 
work on game playing and financial decisions 
found similar effects of skew and range, in line 
with the range-frequency theory of magnitude 
judgment. This pattern of responses (causing pref-
erence reversals) cannot be explained (produced) 
by any absolute measure of utility or related con-
cepts such as the value-function in prospect theory 
and rank-dependent utility models.

Similar effects are discovered in medical deci-
sion making, in which the context of the rating 
task was found to influence the way participants 
distinguish between mild and severe scenarios. In 
one such study, both patients and nonpatients gave 
less distinct ratings to the two scenarios when each 
was presented in isolation than when they were 
presented alongside other scenarios that provided 
contextual information about the possible range of 
severity for lung disease. These results raise con-
tinuing concerns about the reliability and validity 
of subjective quality-of-life ratings, which appear 
sensitive to the particulars of the rating task. These 
effects are all predicted by the relativistic (contex-
tual) judgment effects in psychophysics and risky 
decision making.

An extensive review of the literature also shows 
that people’s judgments about the effectiveness of 
treatments and the healthcare decisions they make 
seem to be influenced by the different ways in 
which evidence from clinical trials can be pre-
sented. In particular, three different formats of 
data presentation have been the focus of a number 
of research studies: relative risk reduction, absolute 

risk reduction, and number of people who need to 
be treated to prevent one adverse event. For exam-
ple, people gave higher mean ratings of a medical 
intervention’s effectiveness when the benefits were 
described in terms of a relative risk reduction 
(34% relative decrease in the incidence of fatal 
and nonfatal myocardial infarction) rather than 
as an absolute risk reduction (1.4% decrease in 
the incidence of fatal and nonfatal myocardial 
infarction—2.5% vs. 3.9%) or a number-needed-
to-treat format (77 persons must be treated for an 
average of just over 5 years to prevent one fatal or 
nonfatal myocardial infarction). This tendency is a 
robust finding across respondents (physicians, 
health professionals, patients, and the general 
public) and medical domains. These results can be 
explained by the relativistic account presented 
above. Due to a lack of stable underlying scales, 
people use the lower and upper bounds of 0% (the 
worst treatment available) and 100% (the best 
treatment available) of the probability scale as 
some sort of natural reference scale to map onto 
when they evaluate the attractiveness of some-
thing. Thus, both the relative and absolute risk 
reductions are evaluated with reference to the 
same 0% to 100% scale (and usually the former is 
bigger than the latter as in the example above). 
The number-needed-to-treat format presents an 
unbound psychological scale without natural 
upper limit on that number, and hence 1 out of 77 
does not sound as convincing as 34% out of 
100%. Similar effects are found in the marketing 
literature on price perception, where price reduc-
tions presented as percentages (save 10%) have 
stronger effect than amounts (save $3).

Implications

The accumulated evidence suggests that decision 
making is fundamentally context-dependent and 
judgments of the value of choice options are con-
text-specific. The implications of this cognitive 
limit in medicine and public policy are serious, 
because they strike at the central methodologies 
used to measure preferences. Popular methods such 
as functional measurement and conjoint analysis 
measure trade-offs by asking respondents for attrac-
tiveness ratings of stimuli (e.g., policies) consisting 
of pairs of attributes (e.g., a reduction of x% in the 
annual risk of death for $y). Ratings of this sort are 
useful if the trade-offs are independent of what 
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other options are available. Such rationally irrelevant 
contextual factors are, for example, the range of 
values on each attribute within the session. Thus, if 
policy makers judge that a decrease from 20% to 
15% in the annual risk of death is worth an expen-
diture increase from 10% to 30% of the medical 
(healthcare) budget, then this should be true regard-
less of whether the range of available expenditure 
options is from $10 million to $30 million or from 
$1 million to $100 million. Utility should depend on 
what happens (i.e., the actual outcomes in terms of 
5% risk reduction and $20 million expenditure 
increase), not what options were considered. 
However, such independence is often not found and 
depends on various contextual factors. Therefore, 
professionals practicing medical decision making 
should be aware of such context effects to minimize 
the detrimental impact on clinical outcomes.

Ivo Vlaev

See also Attraction Effect; Bias; Contextual Error; 
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Relativism; Heuristics
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Contextual error

Overlooking contextual information in the process 
of medical decision making can have predictable 

and avoidable adverse effects as significant as 
those that result from overlooking biomedical 
signs of a pathophysiologic condition. The failure, 
for instance, to recognize that a patient is not able 
to take a medication correctly (e.g., because of 
cognitive disabilities or cost) may have the same 
consequences as the failure to prescribe the medi-
cation correctly. While the latter type of error has 
been termed a diagnostic or medication error, the 
former is designated a contextual error.

Contextual Error Versus Biomedical Error

According to the Institute of Medicine (IOM), mis-
guided clinical decision making or care delivery 
rises to the level of medical error when it results in 
either a wrong plan to achieve an aim (i.e., error of 
planning) or the failure of a planned action to be 
completed as intended (i.e., error of execution). 
Errors may be due either to failures to elicit essen-
tial information during the clinical encounter or, if 
elicited, to recognize the significance of essential 
information when formulating or implementing a 
plan of care.

Medical errors may be classified as contextual 
when they occur because of inattention to pro-
cesses expressed outside the boundaries of a 
patient’s skin (i.e., to processes that are part of the 
context of a patient’s illness). They are distinguish-
able from biomedical errors, which are due to inat-
tention to biomedical processes (i.e., to processes 
that occur within the patient). For instance, treat-
ing poor glucose control in a diabetic with met-
formin is a biomedical error if the patient has 
concomitant severe diabetic kidney disease because 
metformin can cause lactic acidosis in patients 
with poor renal function. Insulin is an acceptable 
alternative. On the other hand, prescribing self-
administered insulin is a contextual error if the 
patient’s poor control is due to dementia because 
dementia renders this approach unreliable and 
unsafe. Note that although dementia has biomedi-
cal origins, it is its expression outside the skin in 
the actions (or inactions) of the patient that are 
relevant here. It is a part of the context of his or 
her diabetes management.

Figure 1 presents a framework for comparing 
contextual error with biomedical error, organized 
according to failures to elicit or incorporate clini-
cally significant information and to the IOM’s 
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classification of medical error. Consider, for 
instance, examples of mechanisms B1 and C1: 
Overlooking signs of congestive heart failure in an 
asthmatic patient who is short of breath, unaware 
that he or she also has heart disease, is due to 
“incorrect/incomplete biomedical information.” 
Overlooking medication nonadherence in a patient 
who is failing to respond to a medical therapy, 
unaware he or she is uninsured, is due to “incor-
rect/incomplete contextual information.” Although 
one is a biomedical oversight and the other a con-
textual one, both cognitive processes lead to errors 
of planning in the IOM framework.

A typology of error that includes contextual 
error also illustrates the interdependence of bio-
medical and contextual information: Note that in 
mechanisms B2 and C2, biomedical and contex-
tual information each determine whether the other 
is correctly processed. For example, attributing 
weakness to a patient’s congestive heart failure, 
unaware that he or she fears exercising after his or 
her heart attack, represents “overlooking contex-
tual information because of an incorrect biomedi-
cal explanation” (C2). Conversely, disregarding 
signs of dementia in a patient who is not taking his 
or her medication correctly, assuming he or she is 

Process IOM Classification

B
I
O
M
E
D
I
C
A
L

Error

C
O
N
T
E
X
T
U
A
L

Error

Inattention to
aspects of a
patient’s physiology
or anatomy, or to
substances or
procedures directly
affecting his or her
physiology or
anatomy (e.g.,
pharmaceuticals,
surgical
procedures),
adversely affecting
care

Inattention to
factors with
expression outside a
patient’s physical
boundaries (e.g.,
economic situation,
caretaker
responsibility) that
are relevant to his or
her care     

Error of
planning

Error of
execution

Type Definition

Failure to elicit info

(B1) Incorrect/incomplete
biomedical information

(B2) Failed to pursue
biomedical information based
on an incorrect contextual
explanation

Failure to incorporate info

(B3) Correct/complete
biomedical information,
incorrect/incomplete plan

(B4) Correct/complete
biomedical plan,
incorrect/incomplete
implementation   

Failure to elicit info

(C1) Incorrect/incomplete
contextual information

(C2) Failed to pursue
contextual information based
on an incorrect biomedical
explanation

Failure to incorporate info

(C3) Correct/complete
contextual information,
incorrect/incomplete plan

(C4) Correct/complete
contextual plan,
incorrect/incomplete
implementation

Figure 1  Biomedical versus contextual error
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just not interested in complying with the recom-
mended treatment plan, represents “overlooking 
biomedical information because of an incorrect 
contextual explanation” (B2).

B3 and C3 errors occur when correctly elicited 
information (biomedical or contextual) is not 
incorporated into the care plan. Finally, B4 and C4 
pertain to errors in the implementation process. 
They represent errors of execution, per the IOM 
definition.

The problems caused by contextual and bio-
medical errors are remarkably similar. Problems 
caused by biomedical error have been classified as 
overuse, misuse, or underuse of medical services. 
Contextual errors may be classified similarly. For 
instance, overlooking poor medication adherence 
leads to overprescribing of additional medication. 
Sending a patient for elective surgery when he or 
she is unable to care for himself or herself postop-
eratively and lacks social support constitutes mis-
use. And not recognizing when an elder patient 
warrants evaluation for driving safety results in 
underuse of services.

Contextual Reasoning and Cognition

Contextualizing care requires cognitive skills dis-
tinct from those applied to biomedical decision 
making. Whereas biomedical reasoning classifies 
patients into known categories for which there are 
specific therapies, contextualized decision making 
explores how they differ from others with similar 
conditions in ways that require individualized 
care. Identifying when a diabetic patient with poor 
glucose control requires the addition of a second 
medication based on American Diabetes Association 
guidelines reflects the former; unmasking that the 
problem is, instead, poor medication adherence 
related to a diminishing capacity for self-care 
reflects the latter.

Categorization is generally arrived at through 
hypothesis testing: During an encounter, the clini-
cian suspects that a patient has a particular condi-
tion that requires an accepted approach to care. 
The hypothesis is tested through clinical or labora-
tory examination. The process of reducing uncer-
tainty continues until the patient falls into a 
sufficiently discrete category to prompt initiation 
of a specific therapy. Such an approach is essen-
tially algorithmic.

The challenge of contextualization is in then dis-
covering from the infinite complexity of the patient’s 
life that which is unique to his or her life situation 
and relevant to the considered plan of care. As such, 
it requires moving from a deductive to a theory 
building approach to clinical reasoning in which 
unique elements of a patient’s life are uncovered 
and assessed for clinical relevance. It involves a 
transition from asking “How is this patient similar 
to others?” to “How are they different?” Having 
asked and answered the question “Does this patient 
have diabetes?” one is now asking “Is there any-
thing special about this individual’s situation that is 
relevant to their diabetes management?”

Avoiding contextual errors requires considering 
contextual factors essential to planning patient 
care. Broadly these factors have been grouped into 
10 categories to consider for each patient: cognitive 
abilities, emotional state, cultural beliefs, spiritual 
beliefs, access to care, social support, caretaker 
responsibilities, attitude toward illness, relationship 
with healthcare providers, and economic situation. 
Such factors may or may not have contextual rele-
vance, depending on their relationship to the clini-
cal problem. Simply getting to know a patient is not 
the objective here; rather, it is understanding how 
his or her life situation relates to his or her care.

When contextual factors are identified in the 
course of evaluating a clinical problem, they should 
prompt further inquiry. For instance, in the setting 
of deteriorating medication adherence, the clinician 
might ask of a patient with progressive dementia, 
“Is she still capable of taking these medications 
correctly?” If the context is economic, the question 
could be “Should I choose another medication 
because of the cost?” For social support, one might 
ask, “Now that he is weaker, will his wife still be 
able to care for him at home?” For spiritual beliefs, 
“Could her minister help her reach a decision?” 
The goal of these questions is not to place the 
patient into a predefined category for which there 
is a preconceived solution. Rather they are to 
unmask the particulars of a patient’s life situation, 
pointing the way to an individualized plan of care.

Identifying Contextual Errors

The first challenge to identifying contextual errors 
is defining them. For many medical errors res ipsa 
loquitur, “the thing speaks for itself.” If a surgeon 
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operates on the wrong limb or a pediatrician over-
looks laboratory evidence of a serious infection in 
a newborn, there can be little disputing that an 
error occurred. It may be less clear when a physi-
cian’s inattention to contextual factors also consti-
tutes a medical error.

A second challenge is finding them. Many medi-
cal errors can be discerned from record reviews and 
incident reports. Contextual errors, however, rarely 
leave a footprint. The problem is that such errors 
are, by definition, errors only in a particular con-
text. That context is the patient’s life situation, 
and, if the error occurred, the relevant contextual 
factors were likely overlooked or their significance 
unrecognized and undocumented. Hence it is not 
feasible to identify the presence or absence of con-
textual errors by examining the medical record. For 
instance, two patients with a history of atrial fibril-
lation on warfarin may both meet evidence-based 
guidelines for anticoagulation; however, one of 
them may also have contextual contraindications 
such as transportation difficulties that compromise 
safe monitoring of the medication, a process that 
requires frequent blood draws. The clinician who 
did not attend to the transportation problems is 
also unlikely to have documented them.

It may not therefore be possible to define and 
identify contextual errors in clinical practice. An 
alternative, however, is an experimental rather 
than observational approach: Rather than looking 
for errors, one can create simulated situations 
where errors could occur and then see whether  
and how often they do. Current research employs 
incognito or unannounced, standardized patients 
(USPs) to present as if they are real patients in phy-
sician practices with scripted cases embedded with 
contextual information that is essential to care. If 
the provider fails to incorporate the contextually 
relevant factors into the plan of care, he or she will 
cause a medical error. Since the patient is only an 
actor, no real harm is done.

A critical component of the method is a proto-
col for validating each case as an instrument for 
assessing physician performance at contextualizing 
care: First a script is drafted based on a real sce-
nario in which contextual factors seem essential to 
planning appropriate care. Then the narrative is 
presented to board certified clinicians with content 
expertise who are randomly assigned to review the 
text either with or without the critical contextual 

information. For instance, if the case involves 
unexplained weight loss in an impoverished home-
less man, 10 reviewers are informed that the 
patient had inadequate access to food and the 
other 10 are not given this information. Both 
groups are told that all clinically relevant informa-
tion has been provided and each clinician is 
instructed to propose appropriate care. The con-
textual information (i.e., inadequate access to 
food) is confirmed as clinically essential when all 
reviewers with the information propose an alter-
nate plan from those without it. None of the 
reviewers may confer with one another about the 
cases. A case is considered validated when the two 
groups are internally consistent but 100% discor-
dant in their recommended plans of care.

The use of standardized patients and validated 
cases addresses the challenges of defining and iden-
tifying contextual errors outlined above. Such an 
approach also enables comparison of physician 
performance across multiple providers in the same 
discipline. Standardized patients are intrinsically 
risk-adjusted in that every physician sees the same 
subject with the same narrative, providing an 
equivalent and objective standard for comparing 
practicing physicians.

Preventing Contextual Errors  
in Medical Decision Making

Considering psychosocial factors in the process of 
planning care is, of course, not new. In his seminal 
writing on the biopsychosocial model, George Engel 
introduced general systems theory as a framework 
for broadening the biomedical perspective to include 
social, psychological, and behavioral dimensions. In 
subsequent writing, he illustrated how perturba-
tions in biomedical and psychosocial systems affect 
one another. Engel’s model has stimulated many 
projects to define and describe the medical interview 
in a manner that incorporates psychosocial and 
biomedical elements into patient care. What has 
been missing, however, is a benchmark and metric 
for assessing how well clinicians perform at contex-
tualizing or individualizing care. Contextual error is 
a discrete phenomenon that reflects the failure of 
the clinician to adequately integrate psychosocial 
with biomedical aspects of patient care.

With a metric it becomes possible to identify 
physician and practice characteristics that are 
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associated with contextual error making and to 
test interventions that may prevent it. Empirical 
research is limited but evolving. One recent pilot 
study of standardized patients and internal medi-
cine residents demonstrated that about two thirds 

of clinicians in training made contextual errors 
involving cases with common ambulatory com-
plaints when contextual information was essential 
to medical decision making. Remarkably, over half 
were due not to failures to elicit the information 
but to failures to incorporate it into the plan of 
care. Obtaining basic knowledge of how and why 
contextual errors occur should be invaluable to 
any subsequent effort to prevent their occurrence 
and ultimately improve patient outcomes.

Saul J. Weiner
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Contingent valuation

Contingent valuation (CV) is a survey-based 
method to derive monetary values for the benefits 

of goods that are not available for purchase in the 
market. It specifies a hypothetical market where-
upon the provision of the good is contingent on 
the respondent’s maximum willingness to pay 
(WTP) for it (or, in a minority of cases, the mini-
mum compensation they are willing to accept to 
be deprived of it). A hypothetical market is the 
construction, specification, and presentation of 
the imagined scenario on which respondents value 
the nonmarketed good. Individual values are 
aggregated to arrive at an overall societal value of 
the good. This value can then be compared with 
the societal cost of providing the good, in a cost-
benefit analysis.

Why the Interest?

Interest in CV reflects dissatisfaction with other 
outcome measures, especially quality-adjusted life 
years (QALYs), in two principal respects. First, 
QALYs are based on preferences for health out-
comes only, whereas CV imposes no restriction on 
which attributes of a program generate value, 
encompassing (a) health outcomes, including health 
state, duration, and probability; (b) other attributes, 
related to the process of care; (c) maintaining the 
good as an option for future consumption rather 
than for current consumption (option value); and 
(d) obtaining satisfaction from others, in addition 
to or rather than oneself consuming the good 
(externalities). Second, CV values benefits in the 
same unit as costs. This is required to assess whether 
the good represents an overall benefit in absolute 
terms (allocative efficiency), rather than a benefit 
relative to another option (technical efficiency). 
However, the reality is that few CV studies achieve 
these advantages in practice. Most studies use cur-
rent patients, so they tend to capture only health 
outcomes, and few studies use their results to per-
form a cost-benefit analysis. The theoretical superi-
ority of CV is thus seldom realized in practice.

How Has Contingent Valuation Developed?

CV has been used extensively in transport and 
environmental economics since the 1960s. It was 
first applied to healthcare in the mid-1970s, but 
only a handful of studies were completed before 
the late 1980s. The development of CV in health 
economics was led by researchers in the United 
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States, the United Kingdom, Canada, and Sweden, 
largely focused on cardiovascular disease. Since 
2000, CV studies have been conducted in 35 coun-
tries, covering a vast range of diseases and inter-
ventions, although the single largest number of 
applications has been for pharmaceutical interven-
tions (33%). However, CV studies remain rare, 
with only 265 studies published (as of December 
31, 2005) compared with more than 35,000 other 
forms of economic evaluation on the OHE Health 
Economic Evaluation database.

Why So Few Studies?

Contingent valuation studies are incredibly com-
plex, difficult, time-consuming, and costly to do 
well. This is because such studies face a number of 
methodological issues, for instance, framing effects 
(how the scenario is described), scale or scope 
biases (where WTP values are insensitive to the 
size or range of benefits described), payment vehi-
cle and mode effects (where WTP values are 
affected by the payment method, e.g., taxation, 
out-of-pocket payment, or insurance) and pay-
ment frequency (e.g., weekly, monthly, or annu-
ally), and question order effects (where question 
order can affect results). These issues can be dealt 
with through adequate specification and adminis-
tration of the market so that incentives to answer 
honestly are maximized. However, the issue of 
hypothetical bias, where respondents who do not 
actually have to part with money may state unre-
alistic valuations, may still be an issue even in a 
well-designed study since few opportunities exist 
to test this in practice in healthcare.

The most critical component is the specification 
and administration of the hypothetical market 
itself. Specification refers to, among other things, 
detailed information on the health problem, speci-
fying the (attributes of the) good valued, determin-
ing the appropriate payment vehicle, how any 
element of uncertainty will be presented (as indi-
viduals are generally not risk-neutral), the relevant 
time period for valuation (which provides the foun-
dation for the respondent’s budget constraint), and 
the questionnaire format. This last aspect is espe-
cially controversial, and there remains considerable 
debate over the relative benefits of the five princi-
pal elicitation formats: (1) open-ended, where 
respondents are asked directly for their maximum 

WTP; (2) bidding, where respondents who accept 
or reject a given amount are bid up or down until 
maximum WTP is achieved; (3) payment card (or 
categorical scales), where a specified range of val-
ues is presented and respondents are asked to  
indicate which they would pay; (4) dichotomous 
choice, where respondents are presented with a 
single WTP value that they either accept or reject; 
and (5) multibounded dichotomous choice, where 
a single-bound dichotomous-choice question is fol-
lowed with subsequent questions. The greatest dif-
ference is between the former three and latter two 
formats, where these surveys require different sub-
samples to be offered different values and logistic 
regression to be used to estimate the societal WTP.

Values drawn from a CV survey are determined 
by the characteristics of the hypothetical market 
specified, as above, as well as the characteristics of 
the respondent (preferences and income). The key 
to ensuring that only the latter varies is to under-
take behavioral, rather than attitudinal, surveys. 
Behavioral surveys generate values that, although 
hypothetical, are substantive rather than formal 
and require a clearly defined market. This requires 
researchers to give detailed thought to what and 
how information is presented to respondents in the 
survey.

Administration of the hypothetical market refers 
to the use of face-to-face interview, remote inter-
view (usually by telephone), and self-complete 
questionnaires (typically postal). In determining 
the mode of administration to be used, there is a 
balance to be struck between three factors: (1) the 
response rate (nonresponse is problematic if the 
sample not responding is likely to have a signifi-
cantly different WTP compared with those who 
did respond); (2) the perceived validity of results 
(generally that a respondent’s WTP will be more 
valid where respondents are encouraged to consider 
carefully the questions and their answers); and  
(3) the cost of the survey. Face-to-face interviews 
are overwhelmingly recommended to address 
points 1 and 2 but are very costly, and in health 
economics other methods are more typically used.

Analysis of results is also complex, particularly 
ensuring validity and reliability. Validity refers to 
the correspondence between what one wishes to 
measure and what is actually measured. Ideally 
validity is determined by comparing the measure-
ment of interest to another measurement that is,  
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a priori, known to be correct (criterion validity)—in 
this case some form of market value is usually 
taken to be this external gold standard, reflecting 
the amount the individual would actually pay. 
Unfortunately, such a market value with which CV 
measurements can be compared rarely exists—
which is the reason for conducting the CV survey, 
of course. Research has thus mostly looked to two 
different approaches to infer validity: construct 
validity (how well the measurement is predicted by 
factors that one would expect to be predictive  
a priori, e.g., that WTP is positively associated with 
income) and convergent validity (how comparable 
the values are from two different techniques for the 
measurement of a phenomenon, such as comparing 
the implied WTP ranking with ordinal ranking). 
Reliability refers to the reproducibility and stability 
of a measure. This may be cross-sectional (i.e., 
results are replicable when administered to indepen-
dent samples) or temporal (i.e., results are stable 
when administered to the same sample at two dif-
ferent points in time). The first measure of reliability 
concerns the reliability of the measurement instru-
ment itself—the instrument obtains the same infor-
mation on repeated samples. The latter is a measure 
of the reliability of the WTP values themselves, 
commonly assessed using the test-retest method, 
where an initial sample of respondents is later rein-
terviewed using the same survey instrument. It is the 
latter that is important for policy purposes.

Although these issues should have been consid-
ered throughout the design and development of the 
study, surprisingly little work has been undertaken 
in these areas with respect to the use of CV in 
healthcare.

How Useful Is Contingent Valuation?

The ultimate purpose of conducting CV studies is 
to assist in medical decision making. However, 
there is a significant method-policy gap. While 
studies are increasingly being undertaken, most do 
not combine CV values with cost, so that a cost-
benefit analysis cannot be undertaken. Furthermore, 
CV values themselves are not comparable due to 
considerable heterogeneity of methods.

In addition to incorporating cost information 
with CV studies, an obvious step in tackling the 
heterogeneity of methods is the development of 
guidelines. Such an agenda has already been 

applied in the cost-per-QALY arena, with conven-
tions widely known and used. The closest steps 
made toward this in CV for health economics have 
been the five recommendations, made by Richard 
Smith, that need to be met by good-quality CV 
studies (response rate, association between WTP 
and socioeconomic status, sensitivity of WTP to 
scale and scope of the good, predictive validity, 
and reliability of elicitation methods), although 
even if these were met, studies could still fall short 
of providing the information needed to actually 
use the values elicited.

An objection to the development of guidelines 
could be the continued uncertainty around “best 
practice.” However, guidelines for QALY studies 
were proposed despite methodological uncertain-
ties. While it might be argued that uncertainties 
surrounding CV studies are larger, and that medi-
cal decision-making researchers actually want 
guidelines for cost-benefit studies rather than CV 
studies, it would still improve the usefulness of 
values elicited if methods were common because, 
relative to another value elicited using the same 
methods, researchers could infer the degree to 
which preferences were stronger or weaker. Such 
an approach need not hinder divergences from the 
guidelines for further methodological research to 
be undertaken; guidelines simply impose a con-
straint to include specific minimum design but do 
not preclude the use of other approaches or per-
spectives within the same study.

An alternative viewpoint is that CV is just not 
up to the job of informing cost-benefit analyses in 
healthcare (for the reasons mentioned) and there-
fore should not be used. However, such an opinion 
might accept the technique as very good at repre-
senting the public’s intensity of preferences if one 
accepts the fact that people are familiar with the 
money metric used. Therefore, while CV should 
not be used to decide which alternative interven-
tion to provide, it could be used to determine 
which of the alternative interventions the public 
really do prefer. Such an approach suggests a very 
limited and specific role for CV. Proponents of this 
approach may draw on the fact that results from 
CV studies are specific to the prevailing income 
distribution, such that if the current income distri-
bution is not deemed equitable, then the results of 
CV may well overrepresent the interests of the 
most affluent in society.
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Contingent valuation as applied in health eco-
nomics is still experimental. Most studies fall far 
short of the requirements and recommendations in 
transport and environmental economics, and yet 
there has been no systematic evaluation of the spe-
cific developments that may be required in health-
care to justify such divergences from accepted 
practice in these other areas. Contingent valuation, 
and even more so full cost-benefit studies, remain 
rare in health economics, and their results are not 
comparable. Without the development of guide-
lines for the conduct of CV in healthcare, CV 
holds much unfulfilled promise.

Richard D. Smith and Tracey H. Sach

See also Cost-Benefit Analysis; Cost-Effectiveness 
Analysis; Cost-Utility Analysis; Discounting; 
Willingness to Pay
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Cost-benefit analysis

Cost-benefit analysis is a form of economic evalu-
ation that can be used to assess the value in terms 
of money of healthcare interventions. In contrast 
with cost-effectiveness analysis and cost-utility 
analysis, which were developed specifically for the 

healthcare field, cost-benefit analysis has a long 
history of use in economics and is particularly 
linked to the theory of welfare economics. Its link 
with economic theory has led to some favoring 
this form of evaluation as the “correct” approach 
to problems of resource allocation in health sys-
tems, although it is worthy of note that other 
commentators have argued that the cost-utility 
analysis embodies its own theoretical properties 
and have coined the term extrawelfarism to coun-
ter the suggestion that only cost-benefit analysis 
has a grounding in economic theory.

The characterizing feature of cost-benefit analy-
sis is the measurement of costs and benefits in the 
same units. In practice, this almost always means 
that the benefits are measured in monetary terms. 
For many noneconomists, the concept of placing a 
monetary value on health, and indeed on life itself, 
has seemed anathema. Indeed, this apparent aver-
sion to monetary quantification of health outcomes 
explains the relative infrequency of the use of cost-
benefit analysis in health economic evaluation, and 
the relative popularity of alternative evaluative 
forms such as cost-effectiveness and cost-utility 
analysis.

Nevertheless, advocates of the cost-benefit 
approach have continued to develop methods for 
the monetary valuation of health outcomes. Many 
early cost-benefit analyses were based on the human 
capital approach, which takes the (discounted) 
stream of lifetime earnings for an individual as a 
valuation of life. However, this approach implies a 
zero value for individuals outside formal paid 
employment and has become less used in recent 
years. More popular are stated preference methods 
that involve subjects responding to questions con-
cerning their willingness to pay for health outcomes. 
When subjects are asked to reveal their willingness 
to pay for health outcomes directly, this is known 
as the contingent valuation approach. As with any 
method of preference elicitation, how such ques-
tions are framed can have important consequences 
for how a subject responds. However, the problems 
of framing effects and “protest” responses (where a 
respondent refuses to answer a question or gives a 
null value) seem particularly acute in contingent valu-
ation of health outcomes. This may explain why 
much recent research has been based on using a class 
of methods known as discrete choice experiments 
that estimate preferences for different attributes at 
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different levels using a series of dichotomous 
choices across a carefully chosen choice set. When 
one of the attributes is cost, it is possible to generate 
indirect estimates of willingness to pay for the other 
attributes in the experiment. By specifying a profile 
of levels of the attributes associated with a health 
state or treatment under consideration it is possible 
to estimate a monetary value of that health state or 
treatment.

One of the problems associated with stated 
preference methods is the danger that respondents 
overstate their willingness to pay due to the hypo-
thetical nature of the question. That is, if they 
really had to pay, it is likely that we would observe 
a lower willingness to pay for the health state or 
treatment under consideration. In general, revealed 
preference, where willingness to pay is estimated 
from observed actions in the marketplace, is pre-
ferred to stated preference methods. However, the 
opportunity for revealed preference studies in the 
healthcare field, where patients rarely pay for their 
own healthcare, is limited. One example where 
revealed preference has been used is in studies of 
behavior regarding radon gas remediation mea-
sures taken by households. Radon gas is a natu-
rally occurring phenomenon that is associated 
with an increased risk of lung cancer and occurs in 
geographical areas where the geology of the area 
has a high proportion of granite in the bedrock. 
Since radon is heavier than air, the simple installa-
tion of a sump pump in low-lying areas, such as 
basements, can reduce the risk of lung cancer. 
Therefore, the willingness to pay at the household 
level for such remedial measures can be used to 
infer the willingness to pay for a reduced risk of 
lung cancer.

The measurement of both costs and benefits in 
monetary terms encourages the use of a net-benefit 
approach to decision making, whereby if a pro-
gram’s benefits exceed its costs, the program 
should be implemented. Indeed, the ability of cost-
benefit analysis to make this comparison is argued 
by advocates of the approach to be one of its 
major advantages over other evaluative approaches. 
Nevertheless, notwithstanding the issues surround-
ing overestimating in stated preference techniques, 
many health systems work within a fixed budget 
for healthcare. In the face of a fixed budgetary 
constraint, efficient allocation of resources requires 
the prioritization of programs to be implemented 

in terms of their cost-benefit ratio rather than sim-
ply the condition that benefits exceed costs. From 
this perspective, the cost-benefit approach to 
resource allocation is similar to that when cost-
utility analysis is employed.

Much debate has taken place over whether 
cost-benefit and cost-utility approaches are for-
mally equivalent, in particular when a monetary 
value is placed on the quality-adjusted life year 
(QALY) in cost-utility analysis since this allows 
net-benefit analysis in monetary terms. The 
remaining difference between the approaches goes 
back to the theoretical foundations of cost-benefit 
analysis in terms of welfare economics. The cost-
benefit approach assumes consumer sovereignty, 
that is, the principle that the individual is the best 
judge of his or her own welfare and it is therefore 
the individual’s values that count. It is reasonable 
to ask whether this is generally true in healthcare, 
where there is an asymmetry of information 
between the physician and the patient regarding 
the consequences of healthcare intervention. It 
might be argued, therefore, that cost-benefit 
analysis in healthcare might work better in those 
situations where patients have more experience 
(e.g., visits to the dentist, frequently occurring and 
more minor problems such as infections and 
colds, and some chronic conditions such as 
asthma) and less well for infrequent and more 
severe problems where patients have little experi-
ence (e.g., life-threatening experiences such as 
cancer treatment).

Andrew H. Briggs
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Cost-ComParison analysis

A cost-comparison analysis estimates the total 
costs of two or more interventions, including 
downstream costs, and the numbers of individuals 
affected by each intervention but does not esti-
mate cost-effectiveness ratios relative to health 
outcomes. This approach was developed in the 
early 1970s as a method of cost accounting with 
specific applications to ascertaining the lowest-
cost methods of pharmacologic dosing and labo-
ratory testing. An assumption that is usually either 
explicit or implicit in such analyses is that health 
outcomes are comparable across interventions. 
Otherwise, the lowest-cost strategy would not 
necessarily be desirable.

A cost-comparison analysis, which is also com-
monly referred to as a cost-consequences analysis, 
is less demanding to perform because it does not 
require clinical or epidemiologic data on health 
outcomes, such as long-term morbidity or mortal-
ity, although short-term clinical outcomes or 
healthcare use are typically reported. This approach 
is attractive in assessing interventions for which it 
is difficult to ascertain ultimate health outcomes or 
to calculate summary measures of health that  
integrate multiple outcomes. The cost-comparison 
approach is particularly well-suited to assessing 
screening and diagnostic-testing strategies. It is 
typical for such analyses to report summary cost 
ratios, such as cost per individual tested or cost per 
case detected, for each strategy, as well as incre-
mental cost ratios for pairwise comparisons.

The time horizon, or the period during which 
healthcare utilization and costs are included in the 
analysis, is variable for cost-comparison (or cost-
consequences) studies. For analyses of pharmaco-
logical or surgical interventions, the time horizon 
that is used is typically quite short, often 12 months 
to several years from the time of intervention. On 
the other hand, cost-comparison analyses of genetic 
testing strategies typically project the costs of 
monitoring tested individuals over their remaining 
lifetimes, which can be 40 years or more.

Most published cost-comparison analyses are 
conducted from the perspective of a healthcare 
system and only include direct medical costs. 
However, it is also valuable to calculate cost- 
comparison analyses from the societal perspective 

and to include costs occurring outside the health-
care system. Costs of time spent by patients and 
family members are important to include for inter-
ventions requiring substantial time by individuals 
and relatives. The exclusion of such costs can make 
such interventions appear more cost-effective than 
they are. In particular, if one is interested in com-
paring the actual costs of clinic-based and home-
based therapeutic or rehabilitative strategies from 
a societal perspective, it is essential to include the 
costs of unpaid or informal caregiving services.

Prior to the mid-1990s, clear distinctions were 
generally made between cost-comparison, cost-
minimization, and cost-consequence analyses. Since 
then, differences among these methods have become 
blurred, and articles using them frequently over-
lap one another. A given analysis that reports or 
assumes equivalent outcomes of different interven-
tions might be labeled as a cost-comparison analy-
sis, cost-consequence(s) analysis, cost-minimization 
analysis, or even cost-effectiveness analysis, depend-
ing on the preferences of the authors. Consequently, 
readers should not assume that the terminology 
used to describe such studies necessarily corre-
sponds to differences in the analytic methods 
employed. Originally, cost-comparison analyses 
reported data only on costs, not on outcomes; cost-
minimization analyses reported on costs only after 
ascertaining that health outcomes were equivalent 
for the interventions being compared; and cost-
consequence analyses reported both costs and 
health outcomes but did not explicitly compare the 
two in terms of ratios (to let decision makers decide 
which information is needed to draw inferences).

Cost-comparison analyses differ from a cost- 
effectiveness or cost-utility analysis because they 
do not require a summary measure of health such 
as QALYs or number of symptom-free days to 
capture health gains. In addition to requiring less 
data, comparisons that are restricted to financial 
measures are often easier for healthcare payers and 
decision makers to understand and appreciate. If 
the costs included are restricted to short- or medi-
um-term costs incurred within a single healthcare 
system or paid by a single payer, such a cost- 
comparison analysis can also be classified as a 
budget impact analysis, a business case analysis, or 
a return on investment analysis.

Many studies that report one intervention to be 
comparably effective but less costly than another 
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appear to have begun as standard cost-effectiveness 
or cost-utility analyses. It is likely that after inves-
tigators were unable to establish that one interven-
tion was significantly more effective than another 
in preventing morbidity or mortality, they focused 
on showing that one particular intervention might be 
cost-saving. Rather than reflecting an a priori differ-
ence in study goals or analytic methods, as is 
assumed in textbook discussions of cost-consequence 
analyses, such studies likely indicate an absence of 
evidence of incremental effectiveness. If one inter-
vention had been found to be more effective, incre-
mental cost-effectiveness ratios would in most 
cases have been calculated and reported.

A sensitivity analysis allows one to determine the 
robustness of conclusions with regard to a decision 
rule. In a cost-comparison analysis that reports that 
an intervention is cost-saving, a sensitivity analysis 
can determine the extent to which variation in 
parameters affects the likelihood of the intervention 
being cost-saving. Although it is recommended that 
all economic evaluations include sensitivity analyses, 
not all cost-comparison analyses do so. This depends 
on the intended audience and the professional back-
ground of the investigators.

Scott D. Grosse

Disclaimer: The findings and conclusions in this entry 
are those of the author and do not necessarily represent 
the official position of the Centers for Disease Control 
and Prevention.
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Cost-ConsequenCe analysis

A cost-consequence analysis (CCA) requires an 
estimation of the costs as well as the health conse-
quences and other consequences associated with 
one intervention compared with an alternative 
intervention for a health condition; these estimates 
then are presented in a disaggregated tabular or 
graphical format. This type of analysis has been 
described in texts on economic evaluation of new 
healthcare interventions. However, it is generally 
mentioned only briefly and categorized as either a 
formal or an informal variant of a cost-effective-
ness analysis (CEA).

Types

When a CCA is performed as a variant of a CEA, 
it takes an incidence-based perspective and esti-
mates the costs and consequences for an individual 
or disease cohort for as long as the health condition 
lasts. However, a CCA also can be performed from 
a prevalence-based perspective, where the costs and 
consequences of alternative mixes of interventions 
can be compared over a 1-year time frame for a 
population with the condition of interest. This type 
of analysis is an expanded version of a budget 
impact analysis (BIA). Health and other conse-
quences of the alternative mixes of interventions 
are presented annually for the population, as are 
the costs, which are aggregated by cost category.

Since a single overall number is not generated as 
a result of a CCA, the perspective does not have to 
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be chosen by the analyst. The perspective of a 
CCA should be as broad as possible, since the user 
of the analysis should be able to view a compre-
hensive listing of the various costs and conse-
quences of alternative interventions. The user then 
can choose which variables are relevant for their 
perspective and can ignore the others.

Time Horizon

The time horizon for a CCA should be chosen in 
the same way as the time horizon for the CEA, the 
cost-utility analysis (CUA), or the BIA. For an 
incidence-based CCA, the time horizon will vary, 
depending on the health condition and the type of 
intervention, as shown in Figure 1. The duration of 
the impact of the intervention on the individual 
with the health condition is the primary determi-
nant of the appropriate time horizon, with acute 
nonfatal illness requiring a shorter time horizon 
and chronic or fatal illness requiring up to a life-
time time horizon. Whether or not a healthcare 
intervention is for prevention or treatment also is 
a determinant of the appropriate time horizon for 
the analysis. For a prevalence-based CCA, the cho-
sen time horizon should be relevant to the decision 
maker. Typically, annualized costs and conse-
quences for 1 to 5 years after a change in treatment 
patterns is the most relevant time horizon.

Scope

As with other types of economic evaluation, the 
question of scope of the analysis is important: For 
example, with interventions that affect life expec-
tancy, should the costs and consequences of alter-
native interventions include their impact only on 
condition-related outcomes, or should the impact 
on healthcare costs and outcomes for other condi-
tions be considered? Generally, costs and conse-
quences for unrelated health conditions are not 
considered in economic evaluations. Also, which 
specific costs and consequences should be included 
is less restricted in a CCA than in a typical CEA or 
CUA. For a CCA, outcomes may be included that 
are not typically part of a CEA, a CUA, or a BIA, 
such as social service costs and dosing convenience. 
Finally, alternative interventions may have differ-
ent impacts on different population subsets, and a 
separate analysis for these different population 

subsets is important for all types of economic 
evaluations, including the CCA.

The following are types of costs that can be 
included in a CCA: direct healthcare costs; other 
direct costs, including social service costs and 
transportation costs; indirect costs, including pro-
ductivity losses and criminal justice costs; and 
intangible costs, including costs related to the 
quality-of-life impact of pain and concern about 
disease prognosis. Since the goal of the CCA is to 
give the decision maker as broad a view as possible 
of the costs of alternative healthcare interventions, 
all costs that are relevant for the condition of inter-
est should be included. Clearly, the types of costs 
included will vary with the condition: For example, 
for an acute illness such as influenza, direct health-
care costs and productivity losses are the most 
important costs to include. For a chronic psychiat-
ric illness such as schizophrenia, social service 
costs and criminal justice costs also will be impor-
tant to include. In addition, intangible costs are 
important in the analysis of all chronic illnesses.

The following are types of consequences that 
can be included in a CCA:

Disease symptoms •
Cure rates •
Mortality rates •
Treatment side effects •
Treatment convenience •
Treatment adherence and persistence •
Patient and family quality of life •
Patient and family overall well-being •
Patient and family satisfaction with treatment •

Since the goal of the CCA is to give the decision 
maker as broad a view as possible of the conse-
quences of the alternative interventions, all aspects 
of the alternative interventions should be included 
in the analysis, including convenience and patient 
and family satisfaction with treatment. These 
types of consequences generally are not included 
in CEAs and frequently are not included in CUAs. 
For example, for influenza, the two neuramini-
dase inhibitors have different dosing modes: via 
inhalation (zanamivir) and tablets (oseltamivir). 
For the treatment of a human immunodeficiency 
virus infection, many combination treatments are 
now available that have easier dosing regimens for 
the patient, which may increase adherence and 
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persistence with treatment and thus increase the 
effectiveness of the treatment.

As with all economic evaluations, the scope and 
accuracy of a CCA is limited by the data available. 
Figure 2 shows the primary data sources for a 
CCA. Although randomized, controlled clinical 
trials provide an important data source for CCAs, 
such trials may have limited external validity 
because of their generally restrictive inclusion and 
exclusion criteria. Naturalistic clinical trials or 
observational data may provide data that more 
closely approximate the likely costs and conse-
quences in standard clinical practice. Finally, for a 
chronic illness, the results from a disease progres-
sion model can be used to generate estimates of the 
long-term consequences of alternative interven-
tions when only short-term outcomes data are 
available.

Sensitivity

Sensitivity analysis is an important component of 
any economic evaluation because of uncertainty in 

the input data as well as the modeling assumptions 
and other assumptions used to estimate the costs 
and consequences of the intervention. Thus, the 
sensitivity of the results of the CCA to changes in 
the input parameter values and all assumptions 
should be estimated. One possible way to present 
this component of the analysis is to use estimates 
of the ranges of different input parameter values 
(e.g., 95% confidence intervals for data taken 
from clinical trial data) to estimate a range of  
values for each of the costs and consequences  
estimated.

Presentation

The key distinguishing feature of a CCA is the 
presentation of the results in a simple, disaggre-
gated format. An example of a CCA presentation 
is given in Table 1. The cost information should be 
presented in units (e.g., days in the hospital, physi-
cian visits) as well as by cost. The costs also should 
be presented separately for different cost catego-
ries as well as in total. Treatment modes and  

Single use

Use
Example of

Health Condition
Time Horizon

for CCA
Intervention

Type

Prevention

Treatment

Vaccination
Prevented disease

duration

30 days post surgery

Remaining lifetime or
time to surrogate endpoint

Disease duration

Remaining lifetime or
time to surrogate endpoint

Antibacterial prophylaxis
during surgery

Hypertension

Antibacterials for
bacterial infections

Antiretroviral for
HIV infection

Continuous
ongoing use

Single use or
short course

Short course

Continuous,
ongoing use

Figure 1  Time horizon for cost-consequence analysis

Source: Adapted from Mauskopf, J. A., Paul, J. E., Grant, D. M., & Stergachis, A. (1998). The role of cost-consequence analysis 
in healthcare decision making. PharmacoEconomics, 13, 277–288.

Note: CCA, cost-consequence analysis; HIV, human immunodeficiency virus.
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convenience can be included in the tabular listing 
of the consequences of treatment. In addition to 
the outcomes for the alternative treatments, a 
tabular presentation of the results should include 
two columns showing the difference between the 
interventions, in units and costs, for each outcome. 
For an incidence-based CCA, the tabular listing of 
results applies to one individual or a cohort of 
individuals over the appropriate time horizon. For 
a prevalence-based CCA, the tabular listing of 
results applies to the population of interest to the 
decision maker and gives annualized results for a 
1- to 5-year time horizon.

Advantages and Limitations

There are two types of CCA: An incidence-based 
CCA can be considered to be a variant of a CEA 
for a representative individual or for a disease 

cohort, without the limitation of the consequences 
to a single outcome and without the calculation of 
a single ratio of costs to outcomes. The time hori-
zon for an incidence-based CCA is the same as for 
a CEA, and the data sources will be the same as 
those for the CEA, with additional sources required 
for additional cost and consequence measures. A 
prevalence-based CCA is an extension of a BIA for 
a prevalent population with the health condition 
of interest; a prevalence-based CCA includes a 
broader range of cost categories as well as annual-
ized population estimates of the health and other 
consequences of a change in the intervention mix.

There are several advantages of a thorough 
CCA of alternative interventions as an adjunct to 
other economic value measurements:

It provides disaggregated information and well- •
understood measures for a decision maker’s review.

Clinical trial data
Robust estimates of clinical impact of therapy; preliminary
evidence of pharmacoeconomic impact

Real-world experience and data on disease stages, rare
events, and subpopulations

Estimates for productivity losses associated with disease;
indirect cost

Longitudinal outcomes and resource
utilization information

Patient utility scores or ranks for costs and consequences
of disease; quality-of-life measurement

Long-term costs and
health outcomes

Clinical treatment (medical chart) information in electronic form
accessible in a timely fashion for a large number of people

Epidemiological data

Employment data/labor
statistics

Administrative/
health-claims data

Patient-level surveys
and studies

Estimates from
disease-progression models

Computerized patient
records (in future)

Figure 2  Data sources for cost-consequence analysis

Source: Adapted from Mauskopf, J. A., Paul, J. E., Grant, D. M., & Stergachis, A. (1998). The role of cost-consequence analysis 
in healthcare decision making. PharmacoEconomics, 13, 277–288.

Note: CCA, cost-consequence analysis.
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Table 1  Example of table of results of cost-consequence analysis for two drugs

Cost Components
Drug A 
Units

Drug A 
Costs

Drug B 
Units

Drug B 
Costs

Difference 
(A − B)
Units

Difference 
(A − B) 
Costs

Direct medical care use and costs

Drug A or Drug B
Other drugs
Physician visits
Hospital days
Home care
Other medical care (e.g., dialysis)

Direct nonmedical care use and costs

Transportation
Social service costs
Crutches or other equipment
Paid caregiver time

Indirect resource use or cost

Time missed from work for patient
Time missed from other activities 
for patient
Time missed from work for unpaid 
caregiver
Time missed from other activities 
for unpaid caregiver
Criminal justice costs

Total direct and indirect costs

Symptom impact

Patient distress days
Patient disability days

Quality-of-life impact

Quality-of-life profile scores for 
patient
Quality-of-life profile scores for 
family
Quality-adjusted life-years 
decrement for patient
Quality-adjusted life-years 
decrement for family

Patient perception of treatment

Patient satisfaction scores
Family satisfaction scores
Dosing convenience
Drug adherence 
Drug persistence

Source: Adapted from Mauskopf, J. A., Paul, J. E., Grant, D. M., & Stergachis, A. (1998). The role of cost-consequence analysis 
in healthcare decision making. PharmacoEconomics, 13, 277–288.

Note: CCA, cost-consequence analysis.
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It allows a decision maker to assign his or her  •
weights to health and other consequences, rather 
than having an analyst assign weights.
There is no loss of information when compared  •
with other value measures.
It can include many consequences that may not  •
be accounted for in other measures, such as 
dosing, convenience, and patient satisfaction.
The results can be used as the inputs for a CEA,  •
CUA, or BIA estimate.

There are also some limitations to a CCA:

Benchmark values and league tables of  •
alternative interventions cannot be developed.
Direct comparison of value across disease areas  •
is not possible.
There is no overall quantitative assessment of the  •
value of a new treatment.
The application of decision-maker weights to the  •
outcome measures may result in decisions based 
on self-interest rather than on societal value.

Healthcare decision makers need information 
about the costs and consequences of alternative 
interventions for different reasons: to determine 
whether or not to reimburse the different interven-
tions for all the population with the condition of 
interest or a subset of that population and to deter-
mine the extent to which additional healthcare 
funding will be needed to pay for new interven-
tions for all the population with the condition of 
interest or a subset of that population. To make 
these determinations, different national and local 
healthcare decision makers require information on 
the costs and consequences of alternative interven-
tions in different formats and with different per-
spectives, scopes, and time horizons. The CCA can 
be considered to be a variant of a CEA or an exten-
sion of a BIA and can allow the decision maker to 
choose the combination of costs and consequences 
that is relevant to him or her and to apply his or 
her own weights to the consequences.

Because of its limitations in terms of providing 
overall societal or payer value measures and the 
associated lack of benchmark values and ability  
to perform cross-disease comparisons, a CCA will 
provide the most value when presented together 
with the results of a CEA, a CUA, and a BIA.  
Such a package of information will provide a  

comprehensive assessment of the economic value 
that can meet all the information requirements of 
local or national healthcare decision makers.

Josephine Mauskopf

See also Cost-Effectiveness Analysis; Cost-Utility Analysis
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Cost-effeCtiveness analysis

Cost-effectiveness analysis involves comparison  
of the additional costs and health benefits of  
an intervention with those of the available 
alternative(s). The aim of such an analysis is to 
determine the value in terms of money of the 
intervention(s). Within a cost-effectiveness analy-
sis, the health benefits associated with the various 
interventions are measured in terms of natural 
units (e.g., survival, life years gained, the number 
of clinical events avoided). This entry introduces 
the concept of cost-effectiveness analysis and 
reviews the key elements, including the incremen-
tal cost-effectiveness ratio (ICER), the cost- 
effectiveness plane, the cost-effectiveness threshold, 
and the cost-effectiveness frontier.

Concept

The objective of economic evaluation of healthcare 
interventions is to inform resource allocation deci-
sions in the healthcare sector, through determining 
whether a proposed intervention is a “good” use 
of scarce resources. This is assessed through com-
parison of the additional resources consumed 
(costs) for the improvement in health benefits gen-
erated (e.g., life years gained) associated with one 
health intervention compared with another. Cost-
effectiveness analysis, where the health benefits are 
measured in terms of a single dimension repre-
sented by natural units, is just one type of eco-
nomic evaluation. It is used to determine which of 
the alternative interventions provides the most 
efficient method to achieve a particular outcome 
(technical efficiency). As such, the units chosen  
to represent the effect in a cost-effectiveness analy-
sis should be deemed worthwhile (to society or the 
policy maker), appropriate for measuring the key 
impact of the intervention, and common across the 
alternatives to be compared. For example, the 
cost-effectiveness of a screening test may be estab-
lished in terms of the cost per case detected, the 
cost per percent survival at 5 years, the cost per life 
saved, or the cost per life year gained. Ideally, the 
measure of effect chosen will relate to a final out-
come (e.g., life years gained), but where this is not 
possible, there should be a way to link it to final 
effect (e.g., symptom days averted), or it should be 

deemed to have value in itself (e.g., cancers 
detected). Alternative methods for economic evalu-
ation include cost-benefit analysis (where health 
benefits are measured and valued in monetary 
terms) and cost-utility analysis (where quality of 
life is considered alongside quantity of life and 
health benefits are valued according to patient 
preferences to construct a composite measure of 
health outcome, e.g., the quality-adjusted life year 
or QALY). It should be noted, however, that 
sometimes the term cost-effectiveness is used to 
cover any of these methods of economic evalua-
tion, where the comparison need not be measured 
in natural units.

Perspective

The perspective of the analysis determines the 
extent of the costs and health benefits measured 
and incorporated. Taking a societal perspective, as 
advocated by economists, requires the measure-
ment and valuation of all the effects of the 
intervention(s) irrespective of where, or whom, 
they affect, including all healthcare costs, all non-
healthcare costs, and all costs to the patient, his or 
her family, and carers. Narrower perspectives 
restrict the impacts that are included within the 
analysis, making them more manageable. For 
example, adopting the commonly used third-party 
payer perspective for costs would restrict measure-
ment to the costs that fall on the payer (e.g., health 
insurance company) but would exclude any costs 
which fall directly on the patient or his or her fam-
ily and carers. Restricting the perspective for health 
benefits to the patient would exclude any health 
benefits received by his or her family, friends, or 
carers or an altruistic society.

Incremental Cost-Effectiveness Ratio

Cost-effectiveness is assessed by relating the addi-
tional costs incurred to provide an intervention to 
the additional health benefits/effects received as a 
result of the intervention compared with the avail-
able alternative(s). This information is generally 
reported as an incremental cost-effectiveness ratio 
(ICER)—a measure of the additional cost per unit 
of health gain:

ICER= Costnew intervention

Effectnew intervention
− Costcurrent intervention

Effectcurrent intervention
:
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Incremental cost-effectiveness ratios are only 
calculated between interventions that address the 
same patient group with the aim of identifying and 
selecting the most efficient of these competing 
(mutually exclusive) interventions. For example, 
different methods of managing adult women with 
symptoms of urinary tract infection are mutually 
exclusive and can be compared within a cost- 
effectiveness analysis. Cost-effectiveness ratios are 
not calculated between interventions that address 
distinct (independent) patient groups. This is 
because both, or all, the independent interventions 
may be selected as cost-effective. For example, 
methods for managing children with symptoms of 
urinary tract infection should not be compared 
within a cost-effectiveness analysis with methods 
for managing men or women. However, once the 
analysis is done and the ICERs are calculated, 
independent interventions can (and should) be 
compared with each other to determine which are 
funded in a resource-constrained system. This is 
only plausible where the units of outcomes are 
measured on the same scale (e.g., life years) for the 
various interventions or where there is a known 
common trade-off between the various outcomes.

When determining ICERs for a set of mutually 
exclusive interventions, the interventions should be 
ranked in ascending order of effect (or cost) and a 
ratio calculated for each intervention relative to 
the next best (more costly) viable intervention by 
dividing the additional cost by the additional 
health benefit involved.

Interventions that are both less effective and more 
costly than other interventions are deemed “domi-
nated” and are not considered viable (Step 2 below). 
This is because a decision maker should never select 
an intervention that is both more costly and less 
effective than an alternative. Interventions that 
involve larger ICERs than other, more effective, 
alternatives are deemed “extended dominated” and 
are also not considered viable (Step 5 below). This is 
because the intervention would be “dominated” by a 
program that consisted of a mixture of the next most 
effective and the next less effective interventions and 
therefore should not be selected (see Figure 3).

Calculating the ICER: An Example

Consider a situation where there are six mutu-
ally exclusive interventions (A to F) that could be 

adopted. These interventions are characterized by 
the costs and effects given in the table below.

Effects Costs ($)

B  2   211,500

A 10    41,868

D 38   256,731

C 48   879,500

E 68 1,138,000

F 73 1,601,500

Step 1:(1)  Rearrange in order of ascending  
effect.

Step 2:(2)  Exclude any interventions where the 
cost is higher than for an alternative intervention 
with a greater effect (dominated).

Step 3: (3) Calculate the incremental effect and 
incremental cost of each intervention in comparison 
with the prior (less effective) intervention.

 
Effects

 
Costs ($)

Inc. 
Effect

Inc. Cost 
($)

B  2   211,500 Dominated by A

A 10    41,868 — —

D 38   256,731 28 214,863

C 48   879,500 10 622,769

E 68 1,138,000 20 258,500

F 73 1,601,500  5 463,500

Step 4: (4) Calculate the incremental cost-
effectiveness ratio for each successively more 
effective intervention, compared with the previous 
intervention in the list.

 
Effects

 
Costs ($)

Inc. 
Effect

Inc. 
Cost ($)

 
ICER

B  2 211,500 Dominated by A

A 10  41,868 — — —
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D 38  256,731 28 214,863 $7,674

Ca 48  879,500 10 622,769 $62,277a

E 68 1,138,000 20 258,500 $12,925

F 73 1,601,500  5 463,500 $92,700

a. Extended dominated.

Step 5: (5) Identify and exclude any interventions 
that have a higher ICER than more effective 
interventions (extended dominated), and recalculate 
the ICERs.

 
Effects

 
Costs

Inc. 
Effect

Inc. Cost 
($)

ICER 
Recalculated

B  2   211,500 Dominated by A

A 10    41,868 — — —

D 38   256,731 28 214,863  $7,674

C 48   879,500 Extended dominated

E 68 1,138,000 30 881,269 $29,376

F 73 1,601,500  5 463,500 $92,700

Repeat Step 5 until all dominated interventions 
are removed and ICERs have been calculated for 
all nondominated interventions.

Cost-Effectiveness Plane

A cost-effectiveness (CE) plane can be used to pro-
vide a visual representation of the results of a cost-
effectiveness analysis by plotting the costs against 
the effects for the various interventions. When 
comparing just two mutually exclusive interven-
tions, the incremental cost-effectiveness (ICE) plane 
can be presented as in Figure 1. Here the figure 
shows a plot of the additional (or incremental) 
costs and effects of the intervention compared with 
the alternative (represented by the origin).

The horizontal axis divides the plane according 
to incremental cost (positive above, negative below), 
and the vertical axis divides the plane according to 
incremental effect (positive to the right, negative to 
the left). This divides the incremental cost-effective-
ness plane into four quadrants through the origin. 
These four quadrants are commonly referenced 
according to the compass points. The northwest 

(NW) quadrant involves negative incremental effect 
but positive incremental cost, as such an interven-
tion falling in this quadrant would be “dominated” 
by the alternative and therefore not be considered 
cost-effective. The southeast (SE) quadrant involves 
negative incremental cost but positive incremental 
effect; an intervention falling in this quadrant 
would dominate the alternative and therefore be 
deemed cost-effective. The northeast (NE) quad-
rant involves positive incremental cost and positive 
incremental effect, while the southwest (SW) quad-
rant involves negative incremental cost and nega-
tive incremental effect. An intervention falling into 
either of these quadrants may be deemed cost-effec-
tive compared with the alternative, depending on 
the trade-off between costs and effects. Note that 
the incremental cost-effectiveness ratio associated 
with an intervention in either the NE or SW quad-
rant is given by the slope of a line connecting the 
intervention to the origin.

When comparing more than two mutually 
exclusive interventions, a cost-effectiveness plane 
can be plotted, where all interventions appear 
within the cost and effect space. Alternatively, and 
more commonly, the interventions can be plotted 
relative to the least costly, least effective alternative 
(represented by the origin) on the incremental cost-
effectiveness plane (see Figure 2). Note that this 
requires calculation of the additional costs and 
effects of each alternative with respect to the same 
least costly, least effective comparator. In this case, 
identifying dominant or dominated interventions 

NW

SW SE

NE

Incremental
effect

Incremental
cost

Figure 1  Incremental cost-effectiveness plane
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can be done by systematically dropping a horizon-
tal line and a vertical line through the point repre-
senting each comparator. This essentially replicates 
the process undertaken above for two interven-
tions by making each point in turn the origin. The 
incremental cost-effectiveness ratio associated with 
an intervention is determined by the slope of a line 
connecting it with the next less effective, nondom-
inated, alternative. Steeper slopes represent larger 
incremental cost-effectiveness ratios.

Plotting an ICE Plane for Multiple  
Interventions: An Example

Figure 2 illustrates the incremental cost-effec-
tiveness plane for the six mutually exclusive inter-
ventions (A to F) under consideration.

The figure clearly indicates that Intervention B 
is dominated by Intervention A, which involves 
greater health benefits for a lower cost. In addi-
tion, the figure indicates that Intervention C is 
extended dominated as it involves a higher ICER 
than a more effective intervention, E (the slope of 
the line joining D and C is greater than the slope 
of the line joining C and E). Figure 3 illustrates 
that a mixed strategy involving programs D and E, 
represented by any point between M1 (a strategy 
with identical health benefits to C that can be 

achieved at cheaper cost) and M2 (a strategy 
involving identical costs to C that involves greater 
health benefits) dominates Intervention C.

Cost-Effectiveness Frontier

On the cost-effectiveness plane, the cost-effective-
ness frontier is established by connecting together 
progressively more effective, nondominated inter-
ventions. This frontier has a gradually increasing 
slope (ICER), representing the increased price that 
must be paid for additional effects. The cost- 
effectiveness frontier for Figure 3 is represented by 
the line ADEF.

Cost-Effectiveness Threshold: Identifying  
the Cost-Effective Intervention

Once the dominated interventions have been 
excluded, the ICERs calculated, and the cost- 
effectiveness frontier established, one of the remain-
ing (viable) interventions is identified as cost-effective 
and providing value for the money. Traditionally, 
the cost-effective intervention is identified as the one 
associated with the largest ICER that falls below a 
specified monetary threshold (often denoted by λ). 
This externally set cost-effectiveness threshold rep-
resents the maximum amount that the decision or 
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Figure 2  Interventions on the incremental cost-effectiveness plane
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policy maker is willing to pay for health effects. The 
threshold can be derived in two ways. The first 
method involves establishing and fixing the thresh-
old at the maximum price that society is willing to 
pay for health benefits. The second approach 
involves deriving the shadow price of health benefits 
purchased from a fixed budget, that is, the amount 
by which the health benefits achievable will be 
improved by relaxing the fixed budget by a small 
amount. This approach, while theoretically correct, 
has an enormous informational requirement. 
Initially it involves selecting interventions onto a 
list, lowest ICER first, until the budget is expended. 
During the process, independent interventions are 
added to the budget while mutually exclusive inter-
ventions with higher ICERs replace those with 
lower ICERs that were included earlier. The follow-
ing hypothetical example considers a situation 
where there are three independent programs (cancer 
screening, management for diabetes, and treatment 
for heart failure) and each program involves a 

choice between four viable mutually exclusive  
interventions (1 to 4) that could be considered cost-
effective. These interventions are characterized by 
the costs and effects given in the table below.

Assuming a budget of 100,000, the initial bud-
get determination would be as follows:

Step 1:(6)  Implement b1 based on lowest ratio of 
cost to effect.

b1 → Budget used = 1,500  
       → Shadow price = 1,250

Step 2:(7)  Add a1 based on ratio of cost to effect.

a1 + b1 → Budget used = 6,000  
              → Shadow price = 2,813

Step 3: (8) Replace b1 with b2 based on ratio of 
incremental cost to incremental effect.

a1 + b2 → Budget used = 6,500  
              → Shadow price = 3,846
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Figure 3  Cost-effectiveness frontier

Cancer Screening (a) Management of Diabetes (b) Treatment for Heart Failure (c)

Costs Effects ICER Costs Effects ICER Costs Effects ICER

1  4,500 1.60 —  1,500 1.20 —  26,000 3.00 —

2 18,000 2.30 19,286  2,000 1.33  3,846  43,000 3.50 34,000

3 27,000 2.69 23,077  7,100 1.67 15,000  65,900 4.10 38,167

4 47,000 3.15 43,478 14,800 1.80 59,231 178,000 5.30 93,417
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Step 4:(9)  Add c1 based on ratio of cost to effect.

a1 + b2 + c1 → Budget used = 32,500  
                    → Shadow price = 8,667

Step 5:(10)  Replace b2 with b3 based on ratio of 
incremental cost to incremental effect.

a1 + b3 + c1 → Budget used = 37,600  
                     → Shadow price = 15,000

Step 6: (11) Replace a1 with a2 based on ratio of 
incremental cost to incremental effect.

a2 + b3 + c1 → Budget used = 51,100  
                     → Shadow price = 19,286

Step 7: (12) Replace a2 with a3 based on ratio of 
incremental cost to incremental effect.

a3 + b3 + c1 → Budget used = 60,100  
                     → Shadow price = 23,077

Step 8:(13)  Replace c1 with c2 based on ratio of 
incremental cost to incremental effect.

a3 + b3 + c2 → Budget used = 77,100  
                     → Shadow price = 34,000

Step 9:(14)  Replace c2 with c3 based on ratio of 
incremental cost to incremental effect.

a3 + b3 + c3 → Budget used = 100,000  
                    → Shadow price = 38,167

Following the initial budget determination, 
including new interventions (whether independent 
or mutually exclusive) will involve displacing 
intervention(s) already included on the list. Thus, 
when considering a new intervention, the associ-
ated ICER is compared with that of the last 
intervention(s) included in the list that will be dis-
placed by the new program (in the example, this is 
38,167). It is the ICER of the displaced interven-
tion that implicitly provides the shadow price for 
health benefits.

Identifying the Cost-Effective  
Intervention: An Example

Returning to the example, once the ICERs have 
been calculated for the nondominated interventions, 

they should be compared with the cost-effectiveness 
threshold to establish which intervention provides 
value for the money.

Assuming a cost-effectiveness threshold of 
$50,000, Intervention E would be identified as 
cost-effective as this provides the largest effect at 
an acceptable “price” (i.e., largest ICER below the 
cost-effectiveness threshold).

 
Effects

 
Costs ($)

Inc. 
Effect

Inc. Cost 
($)

ICER 
Recalculated

B  2   211,500 Dominated by A

A 10    41,868 — — —

D 38   256,731 28 214,863  $7,674

C 48   879,500 Extended dominated

E 68 1,138,000 30 881,269 $29,376

F 73 1,601,500  5 463,500 $92,700

A threshold of $20,000 would mean 
Intervention D was cost-effective, while a thresh-
old of $100,000 would mean Intervention F was 
cost-effective.

Elisabeth Fenwick

See also Cost-Benefit Analysis; Cost-Utility Analysis; 
Dominance; Marginal or Incremental Analysis, Cost-
Effectiveness Ratio
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Cost-identifiCation analysis

Cost-identification analysis is the assignment of a 
value to healthcare use. The costs of healthcare 
encounters, treatment episodes, or healthcare inter-
ventions are found to consider the economic impact 
of medical decisions. Cost identification is part of 
budget impact analysis, cost-minimization analy-
sis, cost-comparison analysis, cost-consequences 
analysis, cost-effectiveness analysis, cost-utility 
analysis, and cost-benefit analysis.

Cost-identification analysis is affected by the 
choice of analytic perspective and time horizon. 
This choice depends on the type of application and 
its intended audience. Cost-identification analysis 
is also affected by simplifying assumptions that 
may sacrifice comprehensiveness or precision to 
save research expense.

Standardized Methods

Medical decision models are commonly used to 
assess the cost-effectiveness of new healthcare 
interventions. Guidelines for cost-effectiveness 
analysis (CEA) have been developed so that the 
cost-effectiveness ratios of different interventions 
conducted by different analysts may be compared 
without concern that differences are methodologi-
cal artifacts. Standardization also enhances the 
generalizability of study findings, allowing them to 
be applied to new settings.

Although there are a number of different guide-
lines for CEA, they largely agree on the principles 
of cost identification. These guidelines recommend 
that all relevant costs be included, that resources 
be valued at their opportunity cost, and that cost 
be estimated from the societal perspective using a 
long-term time horizon.

Standards have also been developed for budget 
impact analysis (BIA). This type of study provides 
healthcare plans or healthcare providers with infor-
mation on the total cost of implementation. BIA 
generally uses a short-term horizon and the per-
spective of a particular health plan or provider.

Perspective of Analysis

Most studies consider all costs incurred in the 
healthcare system. Adoption of the societal  

perspective requires inclusion of costs incurred by 
patients and their families. These include cost of 
unpaid caregivers, cost of travel to medical care 
providers, and the value of time seeking care. A 
cost-identification analysis sometimes includes the 
value of wages lost due to illness. In practice, many 
studies ignore costs incurred by patients and their 
families. This may result in analyses that are biased 
in favor of interventions that shift costs from 
health system to patient.

Time Horizon

The time horizon is the period over which costs are 
identified. CEA guidelines recommend a long-term 
perspective, one that includes lifetime costs and 
outcomes. The use of a short time horizon may 
result in bias. A short-term horizon may favor an 
intervention that defers costs to the future or dis-
advantage one in which benefits are realized after 
significant delay. A short-term horizon may be 
appropriate to the immediate concerns of a BIA.

Cost-identification analysis ordinarily expresses 
the cost of care that spans more than 1 year in real 
(inflation-adjusted) terms. Future costs are dis-
counted (expressed as the present value) to reflect 
the lower burden imposed by healthcare costs that 
will not be incurred until the future. Inflation 
adjustment and discounting are separate adjust-
ments; both adjustments are needed.

The time horizon has an additional effect on cost-
identification analysis; it determines whether fixed 
costs and development costs are included. In the 
short run, the decision to provide an additional 
health service does not increase institutional over-
head (e.g., the cost of nonpatient care hospital 
departments such as human resources, finance, 
administration, and environmental services). These 
costs are fixed in the short run. In economic terms, 
the short-run marginal cost is the cost directly attrib-
utable to producing an extra unit of output and does 
not include the fixed costs of the enterprise.

In the long run, the institution must adjust the 
size of overhead departments to provide the right 
amount of services needed by its patient care 
departments. Additional health services increase 
institutional overhead over the long run. In eco-
nomic terms, the long-run marginal cost is equal to 
the average cost. In other words, the long-run cost 
of producing an extra unit of output includes the 
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variable cost associated with that output, and a 
share of the fixed costs of the enterprise.

The difference in time horizon means that BIA 
ordinarily involves marginal cost and excludes 
facility overhead. Since guidelines recommend a 
long-term time horizon, institutional overhead is 
included in CEA.

The time horizon may also determine whether 
the cost of developing a new intervention is 
included. In the short run, the decision maker may 
regard these as sunk costs, an expenditure that has 
already been made and is not relevant to subse-
quent decisions. The long-run horizon requires 
inclusion of development costs.

The market price of pharmaceuticals must 
result in sufficient revenue so that over the long 
run the manufacturer can recoup development 
costs and earn a return on investment. Managerial 
and behavioral interventions are often developed 
as part of a research study, and their development 
costs are often ignored by analysts. Consistency 
requires inclusion of the cost of developing these 
interventions. This cost should be amortized over 
the expected size of the population of beneficiaries. 
Failure to include development costs may bias 
analyses against interventions such as pharmaceu-
ticals and devices, which include development cost 
as part of their market price.

Methods of Determining Cost

Cost should be representative of the healthcare 
system where the study will be applied. Cost-
identification methods include gross costing, use of 
data from claims and cost allocation systems, and 
microcosting. The choice between these methods 
represents a trade-off between precision and 
expense. Microcosting is the most accurate method, 
but it is labor-intensive. Gross costing is less accu-
rate but much easier to employ. Each method has 
its limits and appropriate use. Multiple methods 
may be needed within a single study.

Gross Costing

Gross costing requires information on the quan-
tity of each type of health service used and infor-
mation on unit costs. A count of the resources 
employed in a particular healthcare strategy may 
be based on a hypothetical model or expert  

opinion. Alternatively, actual use may be recorded 
during the course of a clinical trial. Gathering ser-
vice use from a study participant involves a trade-
off between accuracy and expense. Accuracy can 
be improved by more frequent surveys and by 
employing logs and other memory aids. Counts of 
resources may also be obtained from administra-
tive data of providers or health plans.

The cost of hospitalization may be estimated 
with different unit costs, including an average 
daily rate, a specialty-specific daily rate, or a 
diagnosis-weighted rate. Use of an average daily 
rate makes the assumption that all days of hospi-
talization have the same cost. Daily costs vary 
markedly by diagnosis, however. The accuracy of 
cost estimates is enhanced if they reflect the effect 
of diagnosis and the use of surgery and intensive 
care. Separate rates should be used to estimate the 
cost of hospitalization in psychiatric and long-term 
care facilities.

The cost of ambulatory care can be estimated 
by multiplying a count of visits by a unit cost. Not 
all ambulatory care visits have the same cost. The 
accuracy of cost estimates can be improved if they 
reflect differences in care, such as a hospital clinic 
or other facility, medical and surgical procedures, 
emergency room care, or a visit to a specialist or 
office-based care physician.

Estimates of pharmacy use are often based on 
patient self-report. The average wholesale price 
should not be used as the unit cost for pharmacy 
as healthcare payers receive substantial discounts 
from this price. Unit cost should also reflect the 
dispensing fee paid to pharmacies.

It is not desirable to estimate unit costs based on 
the fee schedule or cost data from a single provider 
as they may not be representative. Gross costing is 
not appropriate if the intervention affects the 
resources employed in care without affecting the 
units chosen to measure cost.

In the United States, Medicare is the predomi-
nant payer, and its payment schedule is often used 
for unit costs. Physician fee schedules are also 
available in countries outside the United States. A 
set of standard unit cost estimates have been 
offered as part of CEA guidelines used in the 
Netherlands and Australia. These unit costs have 
helped standardize estimates of health services 
costs in CEA studies of new pharmaceuticals. Such 
standard estimates must be used with care. If a 
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standard estimate for an ambulatory visit includes 
the cost of associated laboratory tests, it will not 
capture the incremental effect of an intervention 
that generates additional laboratory orders.

Gross costing is an important method appropri-
ate for many studies, but the analyst should avoid 
any analytic assumption that interferes with identifi-
cation of the effect of intervention on resource use.

Cost Estimates Based on Claims Data

Charges, cost-adjusted charges, and reimburse-
ments from administrative data are widely applied 
by economic analysts based in the U.S. healthcare 
system. Administrative data are much less freely 
available outside the United States. Even within 
the United States, claims data may not always be 
available. Managed care organizations are reim-
bursed according to the number of patients served, 
and not for the type or quantity of services they 
provide. As a result, they may not prepare a claim, 
or they may not be required to provide claims data 
to the healthcare sponsor.

Claims data provide information on cost from 
the point of view of the healthcare payer or pro-
vider, and this is often the economic cost. Raw 
charges should not be used as an estimate of the cost 
of care as they greatly exceed the economic cost.

Charges are cost-adjusted by multiplying by a 
ratio of cost to charges. This ratio may be deter-
mined from data in publicly available cost reports 
that U.S. hospitals submit to Medicare. Use of cost-
adjusted charges makes the strong assumption that 
the charge for a specific service is proportionate to 
its economic cost. This assumption is not always 
warranted. Hospitals may set their charges without 
knowing the relative cost of different services. 
There are strategic reasons to overcharge for some 
services and undercharge for others.

Some analysts have found costing to be more 
accurate if cost adjustment is done at the depart-
ment level. A ratio of cost to charges is found for 
each department in the hospital and applied to the 
charges incurred in that department. It may be dif-
ficult to obtain charges at the department level. 
Departments may be defined differently in cost 
reporting and billing systems, making department-
level adjustment problematic.

U.S. hospital bills exclude physician charges for 
inpatient services, and these must be estimated 

separately. When ambulatory care is provided by a 
facility, the facility and physician bill separately, 
and neither cost should be ignored.

Cost information is rarely available to adjust 
charges for physician services. When charges can-
not be cost-adjusted, reimbursement may be a 
more appropriate estimate of cost. It should 
include any co-payment made by the patient.

An important limitation to administrative data 
is their coverage. The analyst must take care not to 
ignore significant costs not recorded in administra-
tive data.

Activity-Based Costing (ABC) Systems

Activity-based costing (ABC) systems are used 
in some hospitals in the United States, Taiwan, and 
Canada. ABC systems are more complex than the 
cost reports U.S. hospitals submit to the Medicare 
program to determine reimbursement rates. Costs, 
services, and products are identified at a much 
finer level of detail. ABC systems extract databases 
to determine the quantity of all different services 
provided. The costs of staff time, supplies, and 
equipment are assigned to departments. Overhead 
expenses are distributed to patient care depart-
ments. A schedule of relative values is used to find 
the cost of specific products. The cost of these 
products is assigned to specific stays or encounters 
according to products used in providing care.

An important limitation of ABC systems is that 
they have not been widely adopted. Hospitals may 
regard ABC estimates as confidential information 
needed to negotiate contracts. The analyst must 
consider that hospitals using ABC systems may not 
have typical costs.

Microcosting

Microcosting is the direct measurement of cost 
by observation and survey. It is needed when no 
unit cost is available from fee schedules or claims 
systems. A common application is to estimate the 
cost of a novel intervention. Microcosting may be 
needed when claims data are not sensitive to the 
effect of an intervention. Since microcosting is too 
labor-intensive to use for all healthcare, its use 
must be limited to activities most likely to be 
affected by the intervention under study.

To find the cost of a treatment innovation, all 
intervention-related activities must be identified. 
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When patients must be screened to determine if 
they are eligible for treatment, this cost is not a 
research cost but a cost that should be included as 
it will be incurred when the intervention is repli-
cated in clinical practice.

The cost of labor should not be limited to wage 
costs. It should also include the employer’s share 
of taxes and benefits. Labor cost is often estimated 
by determining the number of minutes each worker 
spends in direct activities involved in providing the 
service. This effort is measured by direct observa-
tion, staff activity logs, supervisor report, or other 
methods. When the long-run perspective is used, 
labor costs should include nonpatient care activi-
ties: training to maintain credentials, answering 
the phone, meeting with colleagues, taking vaca-
tions, and going on sick leave.

For hospitals and other large institutions, it is 
not feasible to use microcosting to determine over-
head. One approach is to apply the ratio of over-
head to direct expense for a similar department in 
the hospital cost report.

Choice of Cost Method

Guidelines agree that more exact methods should 
be used to determine the cost of services most 
affected by the intervention under study. Simpler 
methods may be employed to avoid spending scarce 
resources on precise measurement of unimportant 
services. Each method involves assumptions, and 
the analyst must review whether these assumptions 
are appropriate. An important additional concern 
for CEA studies is the wider applicability of cost 
estimates and resulting study findings to other pro-
viders, health plans, or countries.

Reporting Cost-Identification Analysis

The quality of economic evaluations of healthcare 
has been studied in a large number of reviews. 
Some reviews have found modest improvements in 
the quality of economic analyses since the promul-
gation of CEA guidelines. Reviews have noted 
problems with the CEA studies in general and cost-
determination methods in particular.

Studies should separately identify the cost of the 
intervention being evaluated and include all rele-
vant costs. The analyst should identify the cost 
determination method used, source of cost data, 

time horizon, analytic perspective, price index 
used to adjust for inflation, and discount rate used 
to express costs in their present value.

Paul G. Barnett
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Cost measurement methods

Cost measurement is fundamental to all economic 
evaluations for healthcare, which have become 
increasingly important throughout the world in 
policy decision making concerning new medical 



224 Cost Measurement Methods

interventions. Appropriate cost measurement can 
contribute to the efficient allocation of resources 
within the health system. The goal of cost mea-
surement is to assess the costs that are needed to 
produce or are consequent to the outcomes of the 
intervention of interest, relative to an alterative 
intervention such as standard of care.

Cost measurement involves identifying, measur-
ing, and valuing all relevant resource uses that are 
attributable to the medical interventions, including 
the resources needed for implementing the interven-
tions and those that are associated with medical and 
nonmedical outcomes of the interventions. The costs 
related to a healthcare intervention and its outcomes 
can include direct medical and nonmedical costs, as 
well as indirect costs (e.g., work productivity loss).

Generally, cost measurement methods include 
the following steps: (a) specifying the perspective 
of the study, (b) identifying relevant resources 
used, (c) deter mining the quantity of resources, 
and (d) valuing these resource items (services, 
goods, time).

Specification of Study Perspective

Economic evaluation studies can frame decision 
problems from different perspectives, which will 
lead to different costs and even the final decision. 
Therefore, specifying the perspective of the cost 
analysis plays a crucial role in determining the 
relevant resources and how they should be mea-
sured and valued.

Societal perspective is a standard for cost-effective-
ness analysis. From a societal perspective, all resources 
and their net costs to the society should be taken into 
account, including patient and unpaid caregivers’ 
time, as well as work productivity loss. A government 
purchaser may only bear the costs incurred to the 
government; thus the patient and unpaid caregivers’ 
time would not be included from a government payer 
perspective. A commercial insurer may only be con-
cerned with the direct medical costs; thus direct 
medical costs will be included. Therefore, the per-
spective of the study will determine the relevance of 
the resources, their quantity, and their costs.

Identification of Relevant Resources

A healthcare intervention has various and  
far-reaching effects with economic implications. 

Ideally, any use of resources that are associated 
with the alternative healthcare interventions and 
their effects on health outcomes should be identi-
fied. Depending on the study perspective, the 
nature of the intervention, and health outcomes, 
many or all of the following resources should be 
considered in the process of cost measurement: the 
acquisition and administration of the healthcare 
intervention (e.g., drug, provider service for the 
intervention, patient’s time involved in the inter-
vention), additional services (e.g., follow-up lab 
tests) associated with the intervention, change in 
healthcare resource uses associated with change  
in health status and outcomes, and change in non-
healthcare resource uses associated with change in 
health status, such as improved work productivity 
and reduced unpaid caregivers’ time. The study 
perspective should be considered in determining 
whether each component should be finally included.

The timelines during which these resources have 
implications should be considered, which deter-
mines the appropriate time horizon of the eco-
nomic study. An appropriate time horizon should 
allow inclusion of the full consequences of the 
intervention.

Though theoretically all relevant resources and 
costs should be included, the availability of infor-
mation, resources, and research time are often 
limited. Some resource items are likely to form the 
largest components (i.e., cost drivers) of the total 
and incremental costs. They often involve only a 
few resource items. These cost drivers should be 
considered first, especially those resources on 
which the intervention has a measurable impact. 
Therefore, the process of resource identification 
and costing requires scientific rigor as well as 
researchers’ discretion because costing is a meth-
odology for practical purposes.

Measurement of Resource Use

Depending on the list of identified resource uses, 
the data sources to quantify these resources can 
include randomized clinical trials (RCTs), an 
administrative and accounting database, observa-
tional studies such as a large national survey and 
patient registry, the published literature, clinical 
practice guidelines, and expert opinions. It is com-
mon for a variety of data sources to be used in 
economic modeling studies. The quantification of 
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resources in measurement units also depends on 
the costing method to be used, such as gross cost-
ing or microcosting methods.

It is an increasingly common practice to conduct 
economic evaluation alongside an RCT, which is 
often termed a piggyback evaluation. Such an evalu-
ation has the advantage of leveraging randomiza-
tion (thus with good internal validity for incremental 
costs), and availability of individual patients’ data 
that provide variation and distribution for costs 
estimation. Some resource use data may be avail-
able among those collected for the purposes of the 
clinical trial. For example, an occurrence of hospi-
talization is almost always recorded as a serious 
adverse event because it is a necessary component 
for reporting in RCTs. Additional resource uses 
often need to be collected. Patient medical records 
or patient diaries/interviews can be used. Medical 
records provide accurate patient-level resource use 
information without an additional burden on the 
patients enrolled in the trial, but the records may 
not include all relevant resources, and the recording 
method may not be standard across different cen-
ters (especially for internal studies). Patient diaries 
or interviews allow the recording of nonmedical 
resource uses, such as time (e.g., transportation), 
that are incurred with the intervention.

In piggyback evaluation, special issues should 
be noted in resource quantification. In RCTs, extra 
resources could be consumed due to more frequent 
lab monitoring, additional scheduled follow-up 
visits, and better compliance. Such protocol-driven 
resource use should be excluded to approximate 
the costs incurred in the real-world practice better. 
In addition, RCTs often have a short follow-up 
period, and therefore not all resource use differ-
ences between two treatment arms are fully real-
ized. Additional research effort could be expended 
to overcome such limitations, including conduct-
ing an open-label extension study if possible; 
extrapolating from final endpoints observed in the 
trial using modeling techniques; and predicting 
final outcomes from intermediate outcomes based 
on established models.

Resource Valuation

The assignment of costs to resources, or costing, 
can be performed from an aggregate (gross) level 
to a more detailed microlevel. Three basic costing 

methods are gross costing (top-down costing), unit 
costing, and microcosting (bottom-up costing).

In gross costing, health services or healthcare 
interventions are broken down into large compo-
nents, and these large cost items have to be identi-
fied. As a result, gross costing can be simple and 
transparent. Gross costing estimates an event or 
diagnosis as a whole. National tariffs are prefera-
bly used whenever available, such as diagnosis- 
related group (DRG) payments in the United 
States and Australia and health resource group 
(HRG) payments in Great Britain. These rates are 
often reliable and standard and allow interna-
tional comparison.

Unit costing applies costs to each type of 
resource consumed, such as emergency room vis-
its, inpatient hospitalization stays, physician visits, 
lab tests and procedures performed, and drugs 
administered. Unit costs can be obtained from the 
national payment schedule (e.g., Medicare reim-
bursement rates), administrative claims database, 
and published literature.

The microcosting (bottom-up costing) method 
establishes a very detailed service delivery process 
(inventory) and identifies the relevant resource 
items and measures them separately. It is based on 
direct observation, on an item-by-item basis; thus 
it could be expensive and time-consuming. 
Microcosting methods include time-and-motion 
studies, activity logs, and surveys of patients, pro-
viders, and managers. In a piggyback evaluation, 
microcosting can also be conducted by reviewing 
medical bills of patients in trials. In the United 
States, a common method for estimating the eco-
nomic cost of medical services is to adjust the 
charges through the use of cost-to-charge ratios to 
reflect their true economic costs.

A patient can incur loss of time due to time 
spent in seeking treatment, impaired productivity 
while at work, and short- or long-term absences 
from work associated with poor health status. Two 
methods that are generally used to measure work 
loss are the human capital method and friction cost 
method. The human capital method estimates the 
production cost during the employment period 
that is lost due to illness. However, the friction 
method restricts the period of the productivity loss 
to the period needed to replace the sick employee. 
So the productivity loss to society is limited to the 
time before the sick person is replaced.
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Special attention should be given to determining 
drug cost, especially costs of patented drugs. 
Though the price of the brand drug is often used in 
economic evaluation, this can overestimate drug 
cost because the price of the brand drug is not the 
true market price of the drug with a complex 
rebate and co-payment system. From a payer per-
spective, the net drug payment incurred by the 
payer should be used, which is net of all rebates, 
co-payments, and other adjustments. From a soci-
etal perspective, because the cost transfer from one 
party to another within the society should be 
excluded from the costs, the drug price should be 
greatly discounted for economic evaluation. This is 
because a portion of the cost is transferred to a 
pharmaceutical company for rewarding innova-
tion in drugs.

In perfectly competitive markets, the prices of 
inputs are equal to opportunity costs, but this does 
not hold for many components in healthcare. 
Consequently, tariffs and other prices in the 
healthcare sector should be applied with care, and 
often other valuation methods are used instead. 
Ideally, a resource used should be valued at its 
opportunity cost, that is, the value of  its best alter-
native use. The concept of opportunity costs can 
help determine the value of those resources.

Incremental costs, instead of total costs, are of 
central interest because often two or more treat-
ments are compared and evaluated during the 
decision-making process. Therefore, the cost mea-
surement should focus on the difference in costs 
between treatments, and common costs that are 
invariant to treatments should be excluded.

Because costs can be measured in different 
ways, the choice of cost measurement should 
depend on the purpose of the study, and it has 
consequences for the identification of resource 
items and the measurement of resource use. 
Some general elements should be clarified in the 
cost measurement, including the perspective, the 
list of assumptions, the role of prices, the time 
horizon, and allocation of overhead costs. The 
choice of costing method in practice will be 
highly conditional on the information available, 
the limited resources available to undertake the 
analysis, and whether the study involves multiple 
countries.

Andrew Peng Yu

See also Cost-Comparison Analysis; Cost-Effectiveness 
Analysis; Cost-Identification Analysis; Costs, Direct 
Versus Indirect; Costs, Opportunity; Marginal or 
Incremental Analysis, Cost-Effectiveness Ratio; Time 
Horizon

Further Readings

Brouwer, W., Rutten, F., & Koopmanschap, M. (2001). 
Costing in economic evaluations. In M. Drummond & 
A. McGuire (Eds.), Economic evaluation in health 
care: Merging theory with practice (pp. 68–93). 
Oxford, UK: Oxford University Press.

Glick, H. A., Doshi, J. A., Sonnad, S. S., & Polsky, D. 
(2007). Economic evaluation in clinical trials. Oxford, 
UK: Oxford University Press.

Luce, B., Manning, W. G., Siegel, J. E., & Lipscomb, J. 
(1996). Estimating costs in cost-effectiveness analysis. 
In M. R. Gold, J. E. Siegel, L. B. Russell, & M. C. 
Weinstein (Eds.), Cost-effectiveness in health and 
medicine (pp. 200–203). New York: Oxford 
University Press.

Oostenbrink, J. B., Koopmanschap, M. A., & Rutten, F. F. 
(2002). Standardisation of costs: The Dutch Manual 
for Costing in economic evaluations. 
PharmacoEconomics, 20, 443–454.

O’Sullivan, A. K., Thompson, D., & Drummond, M. F. 
(2005). Collection of health-economic data alongside 
clinical trials: Is there a future for piggyback 
evaluations? Value in Health, 8, 67–79.

Cost-minimization analysis

Cost-minimization analysis is a special form of 
cost-effectiveness analysis where the health out-
comes can be considered to be equivalent between 
two treatment alternatives and therefore the inter-
est is only on which of the two strategies has the 
lower cost. Cost-minimization analysis appears  
to have much to commend it: in particular, it 
embodies an apparently simplified approach to 
decision making by looking at only the cost side 
of the equation. However, there are a number of 
potential pitfalls that exist in terms of the practi-
cal use of cost-minimization analysis.

The first of these represents a problem of defini-
tion. Many apparent examples of cost-minimization 
studies fail to present any justification of the 
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equivalence of health outcomes between two treat-
ments and are therefore more accurately described 
as cost analysis. A simple cost analysis should not 
be considered a true cost-minimization study with-
out some form of evidence for the equivalence of 
health outcomes being presented. Note that these 
cost analyses are also often incorrectly described  
as “cost-benefit analyses” due to the net-benefit 
approach to decision making, particularly in the 
early health economic evaluation literature.

More recently, as economic evaluation along-
side clinical trials has become more common, the 
problem has become one of interpretation. It is all 
too common to see “cost-minimization analyses” 
presented that turn out to be based on the interpre-
tation of lack of significance of an effect measure 
in a clinical trial as evidence of equivalence. In the 
clinical trial field, there is a well-known adage that 
“absence of evidence is not evidence of absence.” 
To interpret the lack of a significance as evidence 
of no effect is to place the importance of the Type 
I error (concluding a difference exists when the 
null hypothesis of no difference is true) above that 
of the Type II error (concluding that no difference 
exists when in fact the alternative hypothesis  
of a difference is true). To properly show that two 
treatments are no different (within a small margin 
of error) requires an appropriately designed equiv-
alence study that typically requires a greater sam-
ple size to reliably demonstrate equivalence than is 
recruited to many superiority (difference) trials.

Furthermore, clinical trials typically are powered 
to detect differences in only a single effect measure 
(primary trial endpoint). In contrast, health eco-
nomic analyses are multidimensional, often trading 
off different effects (risks and benefits) to obtain a 
composite measure of outcome. It would be very 
rare indeed for two treatments to be truly equiva-
lent on all measures of outcome and rarer for a 
clinical trial to be adequately powered to demon-
strate such a multidimensional equivalence.

As a consequence of these difficulties, examples 
of true cost-minimization studies are rare. One of 
the most popularly cited (though rather old) exam-
ples relates to a cost-minimization study of alterna-
tive oxygen delivery methods, with the underlying 
assumption that the treatment (oxygen) is truly 
equivalent between alternative delivery systems. It 
is worthy of note that the original analysis (in  
common with the healthcare perspective of many 

economic studies) did not include any convenience 
to the patient in the analysis.

Although conceptually appealing, due to the sim-
plified approach to decision making, the practical 
problems associated with cost-minimization analy-
sis have led some commentators to argue the “(near) 
death of cost-minimization analysis.” The appropri-
ate framework for analysis of most studies will be 
the estimation of cost-effectiveness. It is clear that 
the use of separate and sequential tests of hypothesis 
of cost and effect based on superior study designs 
does not constitute appropriate grounds for using 
cost-minimization as a decision-making tool.

Andrew H. Briggs

See also Cost-Benefit Analysis; Cost-Effectiveness 
Analysis; Marginal or Incremental Analysis, Cost-
Effectiveness Ratio
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Costs, direCt versus indireCt

Within economic evaluation, the analysis of costs 
is meant to provide a valuation of the resources 
consumed as a result of an intervention. Such an 
analysis, like that involved in the valuation of out-
comes, would result in different answers depend-
ing on the perspective of the analyst. The pers  pective 
adopted is, in turn, determined by the policy ques-
tion that the evaluation is seeking to answer. For 
instance, the health sector perspective generally 
includes costs of treatment and cost offsets, that is, 
costs and cost savings to the health sector through, 
say, differences in hospitalizations associated with 
differences in outcomes between intervention 
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alternatives. Such a perspective typically includes 
out-of-pocket payments incurred by patients and 
charges on other funders of healthcare, including 
government and health insurers. A narrower per-
spective on costs might be justified if the evalua-
tion is to address specific funding questions, for 
instance, to an individual insurer where costs 
incurred beyond the organization are deemed not 
to be relevant. Alternatively, a broader societal 
perspective might be relevant in instances where it 
is of interest to compare the intervention with 
options outside the health sector or if the policy in 
question is concerned with the potential economic 
impact on patients and their households.

The adoption of the societal perspective gener-
ally means the inclusion of indirect costs. These 
refer to resources incurred outside the health sec-
tor, including costs to patients, carers, and firms. 
Direct costs, in contrast, pertain to the specific 
resources involved in the delivery of a health inter-
vention, for example, costs of medications, medi-
cal consultations, and equipment used in treatment. 
These terms have very specific definitions in eco-
nomic evaluation that may differ from their mean-
ings in common parlance. For instance, the term 
indirect costs is sometimes used to refer to the cost 
of infrastructure such as building and core admin-
istrative staff, particularly in the context of univer-
sity funding.

For purposes here, indirect costs are potentially 
factored into an economic evaluation in two ways:

 1. Time inputs into an intervention such as 
waiting, treatment, and travel time. Such costs 
may be incurred by patients, their household, or 
other parties such as firms that employ patients. 
These enter into the evaluation specifically as 
costs.

 2. Production gains to the economy resulting from 
improvements in health to patients. 
Confusingly, these are generally treated as 
benefits within an evaluation although it could 
be argued that such benefits are savings in 
disease costs that have been brought about by 
health gains. Again, such benefits are deemed to 
be to society rather than to any specific party. 
This approach to valuation is used in cost-
benefit analyses and is typically labeled the 
“human capital approach.”

Both aspects of evaluation have in common the 
problem of how to value a unit of time, whether it 
is time spent in accessing and receiving treatment 
or time gained as a result of improved health 
(through improved survival or improved function-
ing translating into increased work or leisure time). 
The issues considered in this entry are thus gener-
ally relevant to both aspects of evaluation although 
the focus will be on Item 1, given that the primary 
interest is in the assessment of costs.

The Valuation of Time Inputs

Economic theory suggests that any such measure 
should reflect the opportunity cost of the time 
input. In practice, this entails first identifying the 
nature of the displaced activity. Based on such a 
perspective, it is relevant to consider whether such 
activity is work or nonwork.

The valuation of the opportunity cost of work 
time is dependent first on whether output is 
replaced. In instances where it is not, the opportu-
nity cost is set at the value of the marginal product 
of labor (e.g., if Fred takes a day off work, then the 
opportunity cost of that would be measured by his 
productivity of the previous workday). The value 
of the marginal product of labor is in turn depen-
dent on a number of macroeconomic variables 
such as the level of competition in product markets 
and the presence of income and sales taxes. In gen-
eral, the full wage rate, which is the gross wage 
plus other costs to the employer, is a good bench-
mark estimate for the marginal product of labor 
since employers will only incur such a cost if the 
value of additional output exceeds this cost. 
However, if there is any error caused by imperfect 
product markets and the presence of taxes, this 
benchmark will be rendered an underestimate.

Where production is replaced, then the oppor-
tunity cost of this time input is best estimated by 
the marginal cost of labor. This is proxied by the 
net wage rate (an individual’s wage after taxes) 
and can be seen as an individual’s reservation price 
for selling his or her labor, reflecting the marginal 
utility (or satisfaction) gained from leisure time 
balanced against the marginal (dis)amenity of 
work (the more unpleasant one finds work, the 
greater the take-home pay an individual would 
need to be remunerated to forgo leisure). The pres-
ence of involuntary unemployment will introduce 
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some error in this estimate, causing the reservation 
wage to be an overestimate of opportunity cost.

To determine the opportunity cost of nonwork 
time, a distinction needs to be made first between 
whether the individual is currently in paid employ-
ment or not. For those currently in paid employ-
ment, a proxy for this time input is the net wage 
(in spite of some possible error) since it reflects the 
marginal valuation of time for that person (for the 
same reason as stated in the previous paragraph).

For those not in employment and where activ-
ity, say housework, is not replaced (for instance, if 
it means there are certain household chores that 
ultimately do not get done), then the average wage 
of a housekeeper is a suitable proxy (the value of 
the foregone housework). Where it is replaced, 
that is, done at a later date, then the average net 
wage across all occupations would be a useful 
proxy recognizing that there will be some error 
depending on whether the individual is voluntarily 
or involuntarily unemployed. Table 1 summarizes 
the various proxies that are available for valuing 
the opportunity cost of time.

The friction cost method is an alternative to the 
valuation of the opportunity cost of time, although 
its relevance seems only to apply to work time. It 
essentially values the lost production from time off 
work by assuming that firms are able to make cer-
tain adjustments to absences, in both the short 
term and the long term, which will to some extent 
offset potential production losses. In the short 
term, factors such as the spare capacity within 
firms and the possibility of workers making up for 
lost production mean that the value of lost produc-
tion from short-term absence is less than the mar-
ginal cost of labor as reflected in the full wage rate. 
This contrasts with the usual approach, which val-
ues lost production at the full cost to the firm, that 
is, the wage paid for the entire period of absence. 
Those advocating the friction cost approach have 

estimated that in the short term, the friction cost 
represents 80% of the full cost of labor. In the 
longer term, beyond what is known as the friction 
period, which is based on the average amount of 
time a particular labor market is able to fill vacan-
cies caused by illness, the costs are deemed to be 
zero. One criticism of the friction cost approach is 
that by ignoring leisure time, it implicitly values it 
at zero. Its advocates have argued that the value of 
leisure time is instead factored into health out-
comes of an economic evaluation (such as quality-
adjusted life years) and therefore need not be taken 
into account in the analysis of costs.

Issues Around the Inclusion of Indirect Costs

The inclusion of indirect costs into an economic 
evaluation enables a societal perspective, thereby 
allowing for a complete picture of the resource 
implications associated with an intervention. A 
societal perspective is consistent with the notion of 
social welfare maximization underlying cost-bene-
fit analysis, that is, the maximization of the well-
being of individuals within society.

A limitation of narrower perspectives to evalua-
tion is that by definition they do not account for 
costs that fall outside the organizations or health 
systems on which they are based and thereby 
implicitly encourage cost-shifting. For instance, a 
regulatory agency that evaluates new technologies 
for public subsidy based strictly on a health sector 
perspective tends to favor technologies that cost-
shift onto households (such as to carers) and other 
sectors of the economy. Aside from the equity 
implications of potentially adding to hardships 
experienced by households already faced with ill-
ness, these narrower perspectives can fail to distin-
guish between new technologies that are genuinely 
cost-effective and those that simply shift costs 
away from the health sector.

Table 1  Summary of proxy measures for measuring opportunity cost of time

Paid Work Time Nonpaid Work Time

When outputs/activities are replaced Net wage Net wage for employed individuals
Average net wage for unemployed individuals

When outputs/activities are not replaced Gross wage Wage of housekeeper
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The argument against adopting a societal per-
spective that will enable the inclusion of indirect 
costs is that such a perspective is often not rele-
vant to decision making in the health sector. 
Decisions are generally made by organizations 
geared toward specific secular interests, and there-
fore evaluation is required to reflect these. For 
instance, a health sector perspective is often 
adopted simply because ministries of health are 
generally not accountable for the downstream 
implications of healthcare on employment, social 
services, schooling, and so on. Based on this line 
of argument, the merits of an evaluation tool ulti-
mately lie simply in the ability of such a tool to 
match the objectives of those making decisions 
rather than its comprehensiveness.

One of the difficulties of including indirect 
costs is the complexities inherent in their measure-
ment and valuation. As highlighted above, the 
value of time inputs needs to reflect the opportu-
nity cost of that time. The fundamental problem 
with the empirical analysis of opportunity cost is 
that it is not directly observable. Ultimately, it 
needs to be implied from a number of indicators 
such as employment status of the individual and 
the nature of the product and employment mar-
kets in which the evaluation is taking place. In 
practice, this opens up certain ambiguities in the 
methods for estimating time costs, in measuring 
both the time inputs (e.g., where there is joint 
production) and their subsequent valuation.

There are also strong equity implications in the 
way in which indirect costs are generally mea-
sured. Because wage rates are used as markers of 
opportunity cost, the time costs of high-income 
earners are generally valued more highly than the 
time costs of low-income earners. This means tech-
nologies that benefit the wealthy tend to be favored 
over those that benefit the poor. This has been 
used as a further argument for their exclusion from 
economic evaluation.

The Decision-Making Context  
and the Inclusion of Indirect Costs

This entry explores the arguments around the 
inclusion of indirect costs in economic evaluation. 
Pivotal is the adoption of a societal perspective 
consistent with the welfare principles underlying 
cost-benefit analysis. Nevertheless, in healthcare, 

such costs often tend to be excluded from analy-
sis, probably because of their lack of relevance to 
the perspective taken in evaluation and also  
the equity implications around their valuation. 
Ultimately, the merits of whether to factor in such 
costs in evaluation need to be judged pragmati-
cally and based on whether such an approach is 
consistent with the specific policy questions under 
consideration.

Stephen Jan

See also Cost-Benefit Analysis; Costs, Opportunity; 
Costs, Out-of-Pocket
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Costs, fixed versus variable

Costs refer to the economic input required to 
achieve a certain outcome, that is, the amount 
one spends to produce a service or a product, or 
the value imputed to a resource. Costs are distin-
guished from charges, which are the prices of 
services and do not reflect the actual costs of all 
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inputs. Costs are usually divided into fixed and 
variable costs. With regard to healthcare, fixed 
costs are expenses that do not vary with physi-
cian care decisions or treatment—such as rent, 
salaries, mortgage payments, and fire insurance—
and that do not vary with the level of patient 
activity, or products, and once sunk, they cannot 
be easily recovered. They are also called sunk 
costs because they are beyond the control of the 
entrepreneur. Other types of costs such as wages 
of production workers or doctors, medical sup-
plies, drugs, electric power to run machines, and 
bed-days change with the number of patient visits 
or products offered for sale. These are called 
variable costs.

In a world of limited healthcare resources, 
medical decision makers must make challenging 
management decisions. Without a systematic eval-
uation of benefits of health interventions or pro-
grams in relation to their costs, it is difficult to 
make rational and sound judgments. This entry 
reviews key elements related to identification, 
measurement, and valuation of costs.

Identification

By identifying and controlling all relevant costs, 
healthcare managers are better able to earn a 
profit and be successful. Fixed costs are those that 
generally do not vary between payment intervals. 
Generally, these costs cannot be altered on a 
short-term basis because of contractual agree-
ments. Variable costs are those that increase with 
increasing units of service. For example, an 
increase in the number of patient visits would 
result in the use of additional materials, extra 
labor, and wages. One way to determine fixed 
costs is to consider the expenses that would con-
tinue to be incurred if a healthcare facility were to 
be temporarily closed and no patients were to be 
treated. In this case, rent, fees, and loan payments 
would still be due. They generally do not change 
with increases or decreases in facility activity. It is 
important to note that fixed costs are unvarying 
only within a certain range of facility activity. For 
example, if the facility activity grows enough to 
require additional space or additional employees, 
the fixed costs associated with rent or salaries will 
change as well. Variable costs are those that 
change as the level of facility activity changes. 

Examples of the variable costs within a healthcare 
facility would be supplies used for each patient 
visit, and wages for hourly, part-time employees. 
These costs are driven primarily by the facility’s 
activity and would stop only if the facility were to 
close for a period of time, such as a month. Once 
the difference between fixed and variable costs is 
understood, it is important to know how to dis-
tinguish one from the other. For instance, con-
sider a clinic that has fixed costs of $3,800 and 
variable costs of $7 per patient. To cover its 
monthly expenses, the clinic would have to earn 
$3,800 in fees plus $7 per patient treated. If the 
clinic had only one patient visit per month, it 
would have to charge $3,807 for that one treat-
ment to cover its fixed and variable costs! If the 
practice had 1,000 patient visits during the month, 
its total costs would be $10,800 ($3,800 in fixed 
costs plus 1,000 patient visits at $7 each). 
Therefore, this clinic would only have to charge 
$10.80 per patient visit to cover its fixed and vari-
able costs. This example illustrates that the amount 
of fixed costs that each patient visit must cover 
depends on the total number of patient visits 
across which these fixed costs are to be spread.

For example, for cost control purposes, it is 
possible to determine a flexible budget using a for-
mula expressed as a linear equation in which the 
slope is the variable cost per unit (or per direct 
labor hour). Graphically, this would appear as 
shown in Figure 1.

By definition, fixed costs do not change with the 
level of activity. As a result, the budget for cost 
control purposes would be displayed graphically 
as shown in Figure 2.

It is important to note that the costs to be 
included depend on whose perspective is being 
used and on the question of whose costs matter? 
The view can be that of the healthcare facility, the 
insurance company, the patient, or society. They 
are not interchangeable. An action that reduces 
facility cost, such as early discharge, may increase 
the cost to the patient or insurance company by, 
for example, the need to pay for home healthcare 
or a stay at an extended-care facility. If the societal 
perspective is adopted, then all costs must be con-
sidered. If the perspective is that of the facility, 
costs such as patient and caregiver time would be 
excluded since they are not part of the facility’s 
financial responsibility.
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Measurement

The measurement of costs is similar regardless of 
the type of analysis being undertaken. Measurement 
refers to the resource changes included in the 
analysis. Resources consumed can be divided in a 
number of different ways. Typically, these will be 
amounts of labor inputs or outputs but may also 
include patients’ time.

Valuation

The most accurate method of cost estimation  
is that known as microcosting, in which every 
resource use is identified, measured, and quanti-
fied into a unit cost. Microcosting refers to 
detailed analysis of the changes in resource use 
due to a particular intervention, like time-and-
motion studies. Although many analysts favor 
microcosting, it tends to be costly. Gross or top-
down costing allocates a total budget to specific 
services such as hospital stays or doctors’ visits. 
The simplicity of top-down costing may be offset 
by a lack of sensitivity, which in turn depends on 
the type of routine data available. The choice 
between microcosting and gross costing depends 
on the needs of the analysis. It is common to use 
substitute proxies for cost, such as Medicare or 

Medicaid reimbursement. This method has the 
advantage of using a nationally relevant estimate 
as opposed to a single facility’s cost. Another 
popular technique is to start with a facility’s 
charges and then multiply them by an adjustment 
called the cost-to-charge ratio. Although the cost-
to-charge ratio is convenient, it is usually avail-
able only for a facility and not for an intervention 
or diagnosis.

There are two main limitations to conducting a 
cost study:

 1. Costs may vary from one facility to another. 
They have different purchasing contracts for 
goods and services. Different staffing levels 
affect marginal costs and the labor component 
of variable costs. These may affect the 
generalizability of the results and may need 
confirmation before each facility implements 
changes.

 2. The facility may have old costs listed by the 
accounting system that have not been updated 
to reflect current market conditions, leading to 
inaccurate results.

Economic Evaluation

To carry out an economic analysis alongside a 
study, a researcher can do the following:

Collect information on the costs and the  •
effectiveness of the alternative interventions from 
patients in all arms of the trial
Identify and measure resource volumes, for  •
example, drug quantities for every individual 
trial patient
Attach unit costs to each resource item to obtain  •
a mean cost per patient per arm of the trial
Combine mean patient costs with mean  •
effectiveness measures from the trial to establish 
the cost-effectiveness of each alternative

Finally, cost studies are typically divided into 
cost minimization, cost benefit, cost utility, and 
cost-effectiveness. Cost-minimization studies com-
pare at least two equally effective therapies to find 
the least expensive. Cost-benefit studies call  
for converting all outcomes (pain, emesis, renal 
failure, myocardial infarction, death, etc.) to a 

Variable
cost

Figure 1  Variable costs

Fixed cost

Figure 2  Fixed costs
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monetary value. Cost-utility studies establish the 
price of a utility metric for each quality-adjusted 
year of survival. Cost-effectiveness studies decide 
the cost of avoiding undesirable outcomes (death, 
ventilation-associated pneumonia, etc.). Suggestions 
on carrying out cost-effectiveness studies have been 
disseminated by the U.S. Public Health Service and 
the European Society of Intensive Care Medicine.

Catherine Kastanioti
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Costs, inCremental

See Marginal or Incremental Analysis, Cost-
Effectiveness Ratio

Costs, oPPortunity

The notion of opportunity cost is one of the fun-
damental concepts of economics. If resources are 
limited, then there is a choice to be made between 
desirable, yet mutually exclusive, results. The true 
or opportunity cost of one alternative is the ben-
efit foregone from not being able to have the next 
best alternative. The concept has been encapsu-
lated in the truism that “there’s no such thing as a 
free lunch,” meaning that things that appear free 
are always paid for in some way.

The estimation of the opportunity cost of a pol-
icy will almost certainly vary depending on the 
person or persons who are doing the assessing. For 
example, if a health authority is considering build-
ing and staffing a new hospital from public sector 
funds, the opportunity cost might be the benefit 
that could have been obtained by increasing or 
improving facilities and staffing at neighbouring 
healthcare providers. From this point of view, the 
choices might be represented as between different 
policies with the aim of maximizing health, given 
the funds available to the health authority. However, 
from the point of view of the public sector as a 
whole, the opportunity cost might be that this 
money could have been used to improve the crimi-
nal justice system. From this point of view, the 
choice or trade-off is between improved health and 
improved criminal justice. From a wider, societal 
perspective, the evaluation might consider that 
investment by public services might in some circum-
stances displace investment by the private sector.

Opportunity cost is a wider concept than 
accounting or monetary cost. Accounting cost 
attempts to value the outcomes and resources used 
in a program or policy at their monetary cost or 
price. However, not all the outcomes and resources 
of the policy may have a monetary cost, or there 
may be no market in the good or service with 
which to value that outcome, or the price may be 
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thought to omit some important aspect of the ben-
efits or costs of the good or service. If these benefits 
and costs fall on third parties, they are known as 
externalities. As an example, consider the use of an 
intensive care bed after a surgical operation. The 
monetary value of an hour of care in that bed that 
is charged to the patient’s health insurance or 
health authority might be calculated as the sum of 
the hourly salaries of the medical and nursing staff 
attending the patient, the use of consumables and 
drugs, and the overheads of the hospital. However, 
in many hospitals, intensive care facilities are very 
scarce. The use of this facility by a patient might 
mean that another patient’s planned operation 
must be postponed until a bed becomes spare, in 
case it is needed. In these circumstances, the 
opportunity cost of use of the bed by one patient 
might be considered in terms of the inconvenience, 
risks, and costs of cancelling another person’s 
operation. Irrespective of whether resources are 
allocated to healthcare services by a market mech-
anism or by a government ministry, they must be 
valued at their true or opportunity cost if society is 
to invest its resources efficiently.

One important opportunity cost that is often 
omitted from decisions about resource allocation 
in healthcare is the cost of capital. In some coun-
tries, public-sector hospitals are owned by one 
organization, such as a municipality or local gov-
ernment, and managed by another one, such as a 
health authority. The owner of the facility may 
consider the cost of the land and building a sunk 
cost, that is, one that has been made in the past 
and cannot be recovered. This can result in ineffi-
cient use of resources (e.g., low bed occupancy 
rates or underused wards) if the management of 
the hospital does not pay a rent that appropriately 
takes account of the alternative use of the land, 
building, and working capital tied up in the hospi-
tal, and this ensures that these costs are reflected in 
the prices charged to the healthcare purchaser or 
third-party payer.

People’s preference for benefits now rather than 
in the future is another form of opportunity cost. 
In this case, the discount rate is a means of adjust-
ing future benefits and costs to current values. 
Many policies that have an impact on health, espe-
cially preventive policies that aim to reduce the 
risk of future illness, require an immediate invest-
ment but might not generate benefits for many 

years. In these cases, the choice of discount rate 
can be highly influential in determining whether 
present-value benefits exceed costs.

The evaluation of the opportunity cost of a 
policy necessarily implies that all the outcomes of 
all the feasible alternative policies can be assessed 
on some common scale. The concept of utility is 
convenient to measure the relative satisfaction 
from or desirability of different goods, services, 
or outcomes. If more than one person is affected 
by a policy, the utilities of all those persons must 
be aggregated and compared somehow. An eval-
uation of alternative health service policies might 
take into account the effect on health, on work, 
and on leisure, or the quality of the care pro-
vided. These examples illustrate that opportunity 
cost is a normative concept, that is, it requires an 
element of subjectivity to decide which benefits 
and costs to value and the weight that should be 
given to each type of benefit. A number of con-
ceptual frameworks have been developed to 
maintain scientific rigour in an evaluation of 
health technologies. Cost-benefit analysis aims to 
evaluate all benefits and costs in monetary terms, 
making use of methods such as contingent valua-
tion or hedonistic pricing to identify people’s 
willingness to pay for each type of benefit, 
including health. Cost-utility analysis attempts to 
cut through the debate surrounding the difficulty 
of valuing different kinds of benefits on a com-
mon scale by assuming that health is the only 
benefit to be valued and that the health of the 
population is simply the sum of the health of the 
individuals in it. The Panel on Cost-Effectiveness 
in Health and Medicine (Gold Report) recom-
mended that all health technology assessments 
should include a reference case to ensure as far as 
possible that evaluations by different authors 
include a common set of outcomes valued by 
comparable techniques.

The concept of opportunity cost relies on the 
idea that benefits in one dimension can only be 
obtained by sacrificing other desirable outcomes. 
This trade-off implies that the economy is at a 
point of productive efficiency, that is, it is only 
possible to produce more of one type of good by 
diverting resources from the production of another 
good. However, a principle of Keynesian macro-
economics is that, in some circumstances, there 
can be underemployed resources. The United 
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Nations Commission on Macroeconomics and 
Health assembled considerable evidence that lack 
of health and education are both a cause and a 
consequence of enduring poverty. This suggests 
that policies that tackle the health and education 
of the poor may be an important lever with which 
to increase productivity and generate economic 
growth with benefits for society as a whole.

David Epstein
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Costs, out-of-PoCket

For most goods and services, the full price is borne 
by consumers. However, for healthcare services, 
third-party payers (e.g., government programs or 
private insurers) typically make partial or full pay-
ments on the consumer’s behalf. Therefore, the 
amount paid out-of-pocket (OOP) by consumers 
represents only a fraction of the full payment 
received by the providers of services.

The fundamental purpose of imposing cost-
sharing requirements on consumers is to control 
moral hazard (use of services beyond the quantity 
at which marginal benefit equals marginal cost). 
Although a risk-averse consumer would prefer full 
coverage (no OOP obligations) in the first best situ-
ation, the first best is generally not attainable 
because fully insured individuals have an incentive 
to use care until marginal benefit is zero. These 
low-benefit services will increase the cost of insur-
ance or the burden on public finance without creat-
ing sufficient value to justify the extra cost. Imposing 

OOP obligations on consumers trades some risk 
spreading for the preservation of a partial incentive 
for the consumer to consider the cost of the chosen 
services relative to their expected value.

Determinants of Out-of-Pocket Prices

The gap between the total price paid for a service 
and the OOP price faced by the consumer is a func-
tion of the basic provisions with respect to patient 
obligations contained in the public payment policy 
or the private health insurance contract under 
which third-party payments are made. Such provi-
sions are often complex, including deductibles 
(consumer is fully responsible for the first specified 
amount of spending during a time period), co-
payments (consumer is responsible for a fixed pay-
ment for each unit of service received once the 
deductible has been satisfied) or co-insurance (con-
sumer is responsible for a fixed percentage of the 
price of each unit of service received once the 
deductible has been satisfied), and stop-loss (con-
sumer is fully insured for additional services once a 
prespecified, maximum OOP expenditure has been 
exceeded during a time period).

In addition to these basic policy provisions, the 
OOP price to the consumer can also be modified by 
a number of other factors. Third-party payers often 
place a variety of restrictions on coverage that can 
directly or indirectly change consumers’ OOP obli-
gations. These include service-specific limits (e.g., 
maximum number of visits allowed to a certain 
type of provider during a time period) and overall 
limits (e.g., lifetime maximum expenditures), after 
which the consumer will face the full price of addi-
tional services. In addition, coverage for some ser-
vices may be denied if specific requirements are not 
met (e.g., approval of the service by a “gatekeeper” 
physician or by a third-party payer’s pre-authorization 
or use review process). Third-party payers also 
often specify whether or not providers can engage 
in balance billing. Suppose the third-party payment 
plus the patient’s contractual obligation as deter-
mined by the provisions discussed above (e.g., co-
payments) falls short of the provider’s charges. If 
the provider is allowed to balance bill, the con-
sumer’s OOP obligation would increase by the 
excess of the provider’s charges above the amount 
paid by the third-party payer and the consumer’s 
co-payment obligations. Finally, third-party payers 
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may distinguish between preferred or nonpreferred 
providers (in-network vs. out-of-network) or treat-
ments (e.g., generic vs. brand name pharmaceuti-
cals) by obligating consumers who elect nonpreferred 
providers or treatments to pay a higher OOP price. 
The recent trend toward value-based insurance 
design operates analogously, identifying classes of 
patients who may be exempted from OOP obliga-
tions for specified services deemed clinically valu-
able (e.g., diabetes patients may be exempted from 
insulin co-payments).

Because some of these provisions are based on 
the use of services over a period of time (e.g., 
deductibles, service limits), consumer decision 
making also has an important dynamic aspect. 
Using an annual deductible for purposes of illus-
tration, the consumer’s actual OOP price for any 
given service can deviate from the rationally antic-
ipated OOP price. Suppose a consumer with a 
chronic illness knows that he or she has a very 
high probability of exceeding his or her deductible 
during the year. Consuming an extra service early 
in the year will cause the consumer to satisfy his or 
her deductible sooner, thereby creating an implicit 
“discount” on a service that will be consumed 
later in the year. Conversely, a consumer who has 
not satisfied the deductible late in the year would 
be unlikely to obtain such an implicit discount by 
consuming an additional service. More generally, 
the anticipated OOP price today depends on use 
earlier in the year, and the anticipated OOP later 
in the year depends on the use decisions made 
today.

Richard A. Hirth
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Costs, semifixed versus 
semivariable

Consideration of costs is an important factor in 
medical decisions, including budgeting and plan-
ning, pricing for healthcare products or services, 
operational control, and selection of therapeutic 
options. Costs may be viewed in different ways. 
One approach to describe costs is a cost behavior 
pattern in which a cost is analyzed by its reactions 
to different levels of activity. Understanding the 
cost behavior patterns will facilitate medical deci-
sion making.

Two common types of cost behavior patterns 
are fixed and variable costs. Fixed costs remain 
constant over different levels of activity (e.g., vol-
ume, workload). Variable costs vary with changed 
levels of activity, such as costs for medications and 
medical supplies, which represent a major part in 
healthcare. In some cases, neither fixed costs nor 
variable costs alone can fully describe cost behav-
ior patterns. Semifixed or semivariable costs are 
conceptually used as other types of cost behavior 
patterns. Semifixed or semivariable costs contain a 
portion of fixed costs and another portion of vari-
able costs. Eventually, all costs can be properly 
explained by different combinations of fixed costs 
and variable costs. Semifixed and semivariable 
costs are explained as follows.

Semifixed Costs

Semifixed costs are also called stepped, stepped-
fixed, step-variable, step-fixed, or step-function 
costs. This type of cost remains a constant within 
a particular range of activity and sharply changes 
after exceeding the threshold of this range, and 
then again remains constant during another range 
of activity. In other words, semifixed costs could 
be viewed as a combination of multiple fixed costs 
in which each has a much narrower relevant range. 
If semifixed costs are plotted against levels of 
activity, the pattern of semifixed costs looks like 
steps. Figure 1 illustrates a semifixed cost that 
increases with increased level of activity. The 
activity range may be different within each step, 
and the overall change varies with increased level 
of activity.
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An example of semifixed costs is the total staff 
cost for pharmacists. Suppose a pharmacist can 
handle a maximum of 50 prescriptions per day. 
Accordingly, a pharmacy needs 10 pharmacists to 
deal with 451 to 500 prescriptions or 11 pharma-
cists for 501 to 550 prescriptions. Similar examples 
include medical or nursing staff costs, administra-
tion costs, information technology costs, and 
equipment maintenance costs.

Semivariable Costs

Semivariable costs are sometimes called mixed 
costs. This type of cost contains a portion of fixed 
costs, and the remaining portion varies with an 
increased level of activity. Semivariable costs can 
be further classified as linear or nonlinear semi-
variable costs, and the classification of patterns 
depends on the relation of the variable portion to 
the change of activity. Typical figures of semivari-
able cost patterns are shown in Figure 2. Note that 
the total cost line does not pass through the origin 
because there is a fixed cost component.

An example of linear semivariable costs is labo-
ratory costs. For a diagnosis test, the device cost 
and the annual maintenance cost are fixed, and the 
total cost of test strips varies with an increased num-
ber of tests. A utility cost may be an example of a 
nonlinear semivariable cost. A basic monthly fee is 
charged regardless of the amount of the utility used, 
and an additional charge increases with increased 
use of the utility; however, the rates may vary with 
an increased amount of use. Other examples of 
semivariable costs include car rental (fixed vehicle 
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rental fee plus variable costs for fuel and mileage) 
and facility costs (fixed rental or maintenance costs 
plus various total utility costs in general).

Costing Methods

Costs related to medical decisions may evolve in 
many types of cost behavior patterns, and costs 
usually require further analysis to provide infor-
mation for medical decisions. There are at least 
three methods to analyze cost behavior patterns: 
top-down, bottom-up, and graph analysis. The 
top-down method breaks down aggregated cost 
data into smaller pieces from higher levels (e.g., 
hospital costs) to lower levels (e.g., departmental 
costs) based on a principle of allocation. This 
method is often used for retrospective data, and it 
is often difficult to break down data to the indi-
vidual level (e.g., patients). The bottom-up method 
uses cost data from the individual level and then 
adds up all costs to the total costs. This method can 
use either retrospective or prospective data, and 
patient-level data of use can be further analyzed. 
Therefore, the bottom-up method is frequently 
used in economic analyses. However, this method 
bears several limitations, including difficulty in 
obtaining sensitive personal data (e.g., payment), 
so a proxy (e.g., hospital charge) is often used. The 
graph method is to plot costs against activity lev-
els, as shown in the figures. This method allows 
investigators to evaluate or present cost behavior 
patterns in summarized data, but detailed cost 
information will not be available.

Jun-Yen Yeh
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Costs, sPillover

When producing, selling, buying, or consuming a 
good or service affects people other than those 
directly involved in the market exchange—for 
example, when a factory emits smoke that pol-
lutes the air breathed by those in the vicinity—the 
economic activity is said to “spill over” and 
impose costs (or confer benefits) on people other 
than those directly involved in the transaction. 
Economists call spillover effects externalities. The 
extent of spillover effects in healthcare is one of 
several features that contribute to the failure of 
private markets to achieve efficient results and 
health-related outcomes relative to their costs. 
Externalities serve as one rationale for public-
sector involvement in healthcare.

Spillover effects must be taken into account 
when evaluating the impact of healthcare services, 
their financing, and their delivery in cost-benefit or 
cost-effectiveness analyses and when making deci-
sions about how healthcare resources should be 
invested. The level and distribution of health status 
and longevity within a population can also have 
economic impacts (both financial and in terms of 
well-being) beyond the individual level.

Classic examples of spillover effects in public 
health and health services are the transmission and 
control of communicable diseases and immuniza-
tion, cases for which untreated disease or services to 
the individual have costs or benefits for others. 
Because communicable diseases impose costs (spread 
of disease to others) beyond those borne by the 
individual infected, the willingness of the individual 
to pay for the disease’s prevention or treatment may 
be less than the total value to the community of tak-
ing action to prevent the spread of the disease. This 
circumstance justifies public provision or subsidy of 
services to prevent disease transmission.

Another spillover effect in healthcare stems 
from the value individuals place on others’ access 
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to and use of needed healthcare. In this case, the 
rationale for public financing or provision of 
healthcare is that the welfare of individuals who 
are taxed or otherwise support health services pro-
vided to unrelated others is increased because this 
subsidy satisfies a moral sentiment of altruism or 
justice. The provision of healthcare or health cov-
erage to others in a community (local or national) 
is deemed a “merit good.”

The ability to identify and measure spillover 
effects of an activity or policy depends on what is 
encompassed by an analysis and the perspective 
that is adopted in conducting it. A study of the 
overall use of medical services by Medicare end-
stage renal disease (ESRD) patients exemplifies 
this point. Providers of routine dialysis services 
receive a capitation payment from Medicare for 
outpatient services only. The cost of each dialysis 
treatment depends on its intensity, measured in 
terms of the rate of urea removal during the proce-
dure. Avi Dor found that less intensive dialysis 
treatments resulted in higher rates of hospital 
admissions among Medicare ESRD patients. From 
the perspective of the outpatient dialysis provider, 
the cost of lower intensity of outpatient treatments 
on hospitalization rates accumulates—this cost is 
manifested by the outpatient provider and is most 
pronounced in the worse health of patients receiv-
ing the less intensive treatment and higher overall 
Medicare costs for ESRD care. The full impact of 
the Medicare outpatient ESRD capitation rates 
and provider treatment decisions can be captured 
only when a broader analysis is undertaken.

An ethical conundrum that clinicians face is 
whether they should take costs into account when 
making treatment choices and recommendations 
for their patients, given that spending on the care 
of those with coverage may indirectly make it 
more difficult politically and fiscally to extend 
healthcare coverage to those without it. This con-
stitutes a spillover cost of individual doctor-patient 
transactions. Christine Cassel and Troyen Brennan 
argue that physicians share a “medical commons” 
and that they should be accountable for how 
resources devoted to health services are managed. 
In prepaid group practices and in fixed-budget 
national healthcare systems, physicians’ ethical 
duties to individual patients are linked with a 
shared responsibility for a community’s resources. 
For the larger U.S. healthcare enterprise, however, 

the full cost implications of individual treatment 
choices are not internalized.

Just as the costs of care of people with coverage 
affect those who are uninsured, uninsurance in a 
community can affect those who have coverage. 
The first systematic look at the spillover costs of 
uninsurance was undertaken by the Institute of 
Medicine in a study published in 2003. Although 
healthcare access problems related to lack of cov-
erage are most severe for people who are unin-
sured, other vulnerable population groups 
(Medicaid enrollees, low-income inner-city resi-
dents, members of racial and ethnic minority 
groups) who tend to rely on the same care provid-
ers (e.g., public clinics, hospital outpatient depart-
ments) experience reduced access to care in 
communities with high uninsurance rates due to 
crowding and provider instability because of high 
uncompensated care burdens. Furthermore, com-
munities with higher-than-average uninsurance 
rates tend to have fewer specialized hospital ser-
vices such as trauma, psychiatric, or burn units 
than communities with relatively low rates of 
uninsurance. This reduced access to a variety of 
health services experienced across a community is 
a spillover cost of high uninsurance rates.

As noted by Jeremiah Hurley in his overview of 
the economics of the health sector, spillover effects 
have been the subject of much theoretical discus-
sion and far less empirical analysis in the field. 
Doing a better job of capturing spillover effects will 
require both a wider-angle lens when focusing on a 
subject and ingenuity and persistence in acquiring 
the kinds of data that reveal these effects. The con-
sequence of measuring spillover impacts will be 
more complete information for policy choices.

Wilhelmine Miller
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Cost-utility analysis

Cost-utility analysis is a special form of cost-effec-
tiveness analysis where the health outcomes are 
measured in terms of a preference-based utility 
measure. Like cost-effectiveness analysis, this 
yields an outcome of the evaluation that is 
expressed in terms of a cost per unit effect. 
However, in contrast to cost-effectiveness analysis, 
provided this measure is considered to be a generic 
measure of health, then cost-utility analysis is suf-
ficient to efficiently allocate resources from a fixed 
healthcare budget in terms of maximizing the 
health achievable from those fixed resources. Of 
crucial importance is the validity of the preference-
based utility measure as a generic measure of 
health outcome that can be used to compare the 
allocation of resources across disease areas.

A number of different candidate utility mea-
sures have been proposed. Most popular are the 
disability-adjusted life year (DALY), which has 
been used extensively by the World Health 
Organisation (WHO) to compare the burden of 
disease between countries (particularly in the 
developing world), and the quality-adjusted life 
year (QALY), which is widely used in developed 
countries, such as Australia, Canada, the United 
Kingdom, and the United States. Other measures, 
such as the healthy year equivalent (HYE), have 
not gained widespread acceptance despite appar-
ently addressing some of the acknowledged prob-
lems in the other measures.

All the measures have the same fundamental 
goal—to represent the two dimensions of health, 
morbidity and mortality, in a single measure that 
represents the value of the underlying health state in 
a way that can be validly compared across disease 

areas. The QALY does this by weighting length of 
life by a health-related quality-of-life measure. The 
QALY is simply the area under this quality-adjusted 
survival curve, and the QALY gained from a treat-
ment under evaluation is estimated as the difference 
between two quality-adjusted survival profiles rep-
resenting the treatment under evaluation and the 
relevant alternative treatment.

The accurate measurement of mortality presents 
few challenges due to the definitive nature of the 
health outcome. However, the measurement of 
health-related quality of life is far more controver-
sial. The health-related quality-of-life measure, to 
be suitable for quality adjusting life years, must 
represent a preference for health on a cardinal 
ratio scale (such that an improvement of 0.2 is 
twice as good as an improvement of 0.1) that is 
anchored at the top end by the value of 1 for per-
fect health and where 0 represents death. Negative 
values are allowed and represent health states 
worse than death.

The accurate assessment of health-related qual-
ity-of-life utility has become a major research area. 
Direct utility assessment methods involve asking 
patients or lay populations to provide a value for 
a specific health state—often presented to the 
respondent in the form of a vignette. Popular util-
ity elicitation instruments include the standard 
gamble, time trade-off, and person trade-off tech-
niques. In recent years, much debate has centered 
on whether it is patients or lay populations who 
should form the respondent base for utility assess-
ments. Advocates of the patient-based approach 
cite the experience of patients as the principal 
advantage, while advocates of asking lay popula-
tions cite the role of the layperson as taxpayer and 
potential patient in publicly funded systems and 
suggest that patients may provide strategic 
responses if they realize that their values are being 
used to allocate resources. A popular compromise 
in recent years has been the use of health-related 
quality-of-life instruments such as the EQ-5D 
(EuroQol) and Health Utility Index, which are 
generic descriptive systems for health. These are 
suitable for use with patients to map into the 
descriptive system with tariff utility values assigned 
from large-scale population surveys.

The avoidance of placing a monetary value on 
health, as is required in cost-benefit analysis, is 
seen as a practical advantage by many for whom 
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monetary valuation of health is seen as distasteful. 
Proponents of cost-benefit analysis typically criti-
cize the lack of theoretical foundation for cost-
utility analysis, whereas proponents of the approach 
have claimed it embodies its own justification on 
the grounds of equitable treatment of health out-
comes across individuals, coining the term extrawel-
farism to describe the ethic embodied in the 
approach. Nevertheless, monetary valuation in 
cost-utility analysis cannot be avoided. In the face 
of a fixed budget constraint, utility maximization 
requires ranking of interventions by cost-utility 
ratio with healthcare interventions adopted in 
order of ascending cost-utility ratio until the bud-
get is exhausted. The cost-utility ratio of the last 
program funded “reveals” the (shadow) price 
(willingness to pay) for a unit of health outcome 
implied by the budget constraint.

A more practical approach to allocating 
resources has been to consider a “threshold” value 
of a unit of health output above which a program 
or treatment would not be funded. Although such 
an approach has been criticized for failing to rec-
ognize the budget constraint (and therefore encour-
aging uncontrolled healthcare expenditure), the 
use of arbitrary threshold values as a decision-
making rule of thumb is widespread.

The concept of a decision-making threshold has 
had an important influence on the analysis of cost-
utility (and cost-effectiveness) studies by encourag-
ing the use of the net-benefit approach to decision 
making. By translating health outcome into a 
monetary value, it is possible to analyze the overall 
net benefit of a program or intervention condi-
tional on the threshold value. This has led some 
commentators to question whether there is a prac-
tical difference between cost-benefit and cost- 
effectiveness/utility analyses. Nevertheless, it is 
important to recognize that in the presence of a 
fixed budget constraint, net-benefit decision mak-
ing will not necessarily lead to optimal allocation 
of resources. This is because the budget may not 
allow all “net-beneficial” programs to be pro-
vided. Where this is the case, the health benefit is 
only maximized if programs are implemented in 
order of increasing cost-utility ratio, emphasizing 
the importance of the continued presentation of 
the cost-utility ratio.

Andrew H. Briggs
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CounterfaCtual thinking

Counterfactual thinking in judgment and decision 
making occurs when the decision maker considers 
or imagines outcomes of a decision that could 
have occurred but did not. For example, a patient 
who experiences a surgical complication that 
results in disability might easily imagine counter-
factual worlds in which his outcome was different. 
A great deal of theoretical and empirical work on 
counterfactual thinking in decision making has its 
genesis in the seminal work of Kahneman and 
Miller on norm theory.

Types

In most decisions, there are many counterfactual 
outcomes and several different ways that counter-
factual outcomes can be imagined to occur. First, 
in decisions under uncertainty, chance factors (the 
“state of the world”) could be imagined to have 
been different. For example, the surgical patient 
might imagine that his surgery had proceeded with-
out the complication. Second, decisions taken by 
others could have been different. For example, the 
surgical patient might imagine that his surgeon had 
chosen a different procedure that could not lead to 
the complication. Third, the decision of the deci-
sion maker could have been different. For example, 
the surgical patient might imagine that he had cho-
sen a medical treatment (with a successful outcome) 
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instead. Fourth, the decision maker could imagine 
himself or herself to be a different person, a so-
called social counterfactual. For example, the sur-
gical patient might imagine other people he knows 
with different health problems.

Each counterfactual can potentially result in a 
comparison between the actual outcome and the 
counterfactual outcome. The surgical patient might 
compare his new life with disability to (a) how he 
imagines his life might have been if the surgery had 
been uncomplicated, (b) how he imagines his life 
might have been if the surgeon had chosen a differ-
ent surgery, (c) how he imagines his life might have 
been if he had chosen a medical treatment, or  
(d) how he imagines the lives of his peers (with dif-
ferent health problems) might compare with his 
new life.

Ease of Imagining Counterfactuals

Although multiple counterfactuals are nearly 
always available, the ease with which a particular 
counterfactual outcome is generated or used in 
comparisons varies. The psychological literature 
uses the term mutability to refer to the aspects of 
reality that are most amenable to yielding counter-
factuals. For example, exceptional events are more 
mutable than normal events (so people are more 
likely to imagine what would have happened if an 
exception had not occurred than to imagine what 
would have happened if an exception had occurred). 
Events under the decision maker’s control are 
typically more mutable than uncontrollable events, 
actions are more mutable than inactions or omis-
sions, repeatable events are more mutable than 
one-time events, and effects are more mutable than 
causes.

Direction and Impact on  
Postdecision Emotion

Counterfactuals are also referred to by their direc-
tion or valence. Upward counterfactuals are alter-
native outcomes that the decision maker considers 
superior to the actual outcome. Downward coun-
terfactuals are alternative outcomes that the deci-
sion maker considers inferior to the actual outcome. 
Counterfactual comparisons reliably change the 
way decision makers feel about their actual deci-
sion outcomes (their postdecision affect). Research 

on counterfactual comparisons has demonstrated 
that upward counterfactual comparisons, which 
typically result in lower postdecision satisfaction 
and more negative postdecision affect, are more 
common and carry more weight than downward 
comparisons, which typically result in greater 
postdecision satisfaction and more positive postde-
cision affect. In addition, surprising outcomes, 
which more easily evoke counterfactual alterna-
tives, typically result in more extreme postdecision 
affect. For example, a rare and surprising recovery 
is experienced with greater elation than a common 
and expected return to health.

Functional Impacts

Counterfactual thinking may serve functional pur-
poses. Upward counterfactuals may direct the deci-
sion maker to reflect on aspects of the decision 
process that may have led to a poor outcome and 
could have been undertaken differently. This reflec-
tion may result in an improved decision process if 
the decision maker is again faced with the same or a 
similar decision. Downward counterfactuals may 
reduce postdecision regret by providing the decision 
maker with a comparison in which the decision out-
come can be cast as superior to the counterfactuals.

To the degree to which decision makers actively 
seek to consider potential alternative outcomes 
prospectively, they may also anticipate the coun-
terfactual comparisons that are likely to co-occur 
with particular outcomes. Such anticipated coun-
terfactuals may form the basis for decision-making 
strategies that seek to, for example, minimize 
expected regret.

Alan Schwartz
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Cox ProPortional 
hazards regression

In the analysis of survival data, researchers want 
to ascertain characteristics of the patient that 
influence patient survival time. The relationship 
between a single response variable (survival time) 
and covariates (patient/disease characteristics)  
is often inferred through the use of a regression 
model. Typical regression models, such as linear or 
logistic regression, do not work when the response 
variable is survival time, since the time to death 
may not be recorded for all patients at the time of 
analysis. If a patient is still alive at the time of 
analysis or has been lost to follow-up, the patient 
survival time is said to have been right censored 
(or simply censored) at the time of the last observed 
follow-up. If the patient has been lost to follow-up, 
an important assumption in many survival ana-
lytic methods is that the reason a patient is lost to 
follow-up is unrelated to the risk of death.

In survival analysis, when the survival time, T, is 
possibly right censored, the Cox proportional haz-
ards model is the predominant regression model. 
The proportional hazards model is written as

 h(t|X) = h0(t) exp[bTX], (1)

where h(t|X) is the hazard function conditional on 
a set of patient-specific covariates, which is denoted 
by the vector X, and b represents the vector of 
regression coefficients that determines the relation-
ship between the covariates and the risk of death. 
Covariates in the Cox model are handled using 
standard regression techniques. Thus, categorical 
factors may be entered into the model using dummy 
variables, and interactions may be introduced 
through the multiplication of two covariates. 
However, due to complications that stem from cen-
sored observations, additional methodology, based 
on what is called the partial likelihood, is needed 
for estimation of the regression coefficients b.

The conditional hazard h(t|X) provides the 
patient-specific risk of death over time. The pro-
portional hazards specification, Equation 1, divides 
the conditional hazard into two components, a 
baseline hazard function h0(t) independent of the 
patient characteristic vector and the patient rela-
tive risk function, exp[bTX], independent of time; 

the relationship between the two components is 
multiplicative. The baseline hazard function is left 
unspecified but governs how the patient-specific 
hazard varies over time. Heuristically, the hazard 
function is proportional to the probability of death 
by time t, given the patient has not died prior to 
time t. For any two patients with characteristics X1 
and X2, the ratio of their conditional hazards,

h(t|X1)/h(t|X2) = exp[bT(X1 − X2)],

is independent of time. The term proportional  
hazards refers to the fact that the two conditional 
hazards are proportional to each other, with the 
proportionality constant equal to exp[bT(X1 − X2)].

The widespread popularity of the proportional 
hazards methodology stems from the interpreta-
tion of the regression parameter, b, as a relative 
risk parameter constant with respect to time, the 
accuracy of the estimate of the relative risk param-
eter in the presence of censored data, the develop-
ment of inferential procedures that are easy to 
implement with available software, and the effi-
ciency of the regression parameters for a wide 
range of baseline hazard functions.

An alternative specification of the proportional 
hazards regression model is through the patient 
specific (conditional) survival function,

 S(t|X) = S0(t)
exp[bX], (2)

where the term S(t|X) represents the probability 
that a patient with characteristics denoted by the 
covariate vector X survives beyond time t. This 
specification of the proportional hazards model 
enables the regression model to be used for predic-
tion. For example, using Equation 2, the analyst 
can predict the patient-specific probability of sur-
vival beyond 5 years or the median survival time 
for a given set of patient characteristics. Thus, the 
proportional hazards model enables a refinement 
of the Kaplan-Meier estimate of a survival proba-
bility by providing an estimate for the probability 
of survival beyond t years for a patient with char-
acteristics represented by the covariate vector X.

In addition to ascertaining the risk profile of a 
patient, the proportional hazards model is used to 
adjust for patient risk in testing the equality of the 
survival distributions between exposure and treat-
ment groups. This application, often termed the 
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analysis of covariance, has historically been used 
in the analysis of observational studies. For this 
application, the proportional hazards model may 
be written as

h(t|Z, X) = exp[aZ + bTX],

where Z represents the treatment group classifica-
tion, X represents the vector of potential con-
founding factors, and the parameter of interest, a, 
represents the treatment effect on survival time. 
The analysis of covariance in the setting of survival 
analysis would test whether a = 0, that is, whether 
there is a treatment effect, after adjusting for 
potential confounding factors.

An interesting generalization of the propor-
tional hazards model is the incorporation of time-
dependent covariates,

h(t|X) = exp[bTX(t)].

Under this generalization, the proportional hazards 
specification no longer holds, as the relative risk,

h(t|X1(t))/h(t|X2(t)) = exp[bT(X1(t) − X2(t))],

now changes over time. As a result, the model is 
often referred to as the time-dependent Cox model 
rather than the proportional hazard model. The 
time-dependent Cox model is useful when disease-
related patient characteristics change over the course 
of follow-up. For example, a prostate cancer patient 
who experiences a prostate-specific antigen (PSA) 
relapse after receiving a course of therapy is at 
greater risk of death after relapse than before it. The 
time-dependent covariate Cox model enables the 
analyst to recalibrate the risk of death at the point 
of time during follow-up that the patient experi-
ences the PSA relapse.

Although the proportional hazards model is 
robust, its application is not universal. The pro-
portional hazards model is termed a semipara-
metric model because the baseline hazard function, 
h0(t), and the baseline survival function, S0(t), are 
not specified for the purpose of estimating the rela-
tive risk coefficient, b. This provides a robustness 
quality to this regression model, enabling the pro-
portional hazards regression model to be applied 
to a wide array of survival data. There are charac-
teristics of the data, however, which need to be 

compatible with the assumptions implicit in the 
proportional hazards model, in order for the 
results of the analysis to be meaningful. For exam-
ple, in a simplified version of the proportional haz-
ards model with a single binary treatment covariate, 
the Cox model implies that the survival probability 
for patients on one treat ment dominates the sur-
vival probability for the cohort of patients on the 
other treatment over the entire patient follow-up. 
If, however, the survival curves cross over time, the 
proportional hazards assu mption does not hold, 
and the proportional hazards model is not appro-
priate for data summarization. The validity of the 
proportional hazards specification is more difficult 
to diagnose if there are many (possibly continuous) 
covariates under consideration.

In general, if the proportional hazards assump-
tion is incorrect, application of this model is likely 
to lead to incorrect conclusions regarding the rela-
tionship between the covariates and survival time. 
In this circumstance, it would behoove the data 
analyst to consider alternative regression models 
for survival data. The most common alternative to 
the proportional hazards model is the accelerated 
failure time model

log ti = bTXi + ei,

where the ei represent stochastic errors generated 
independently from a common but unknown distri-
bution, the vector X denotes the patient-specific 
covariates, and b is the regression coefficient vector.

An additional assumption in the proportional 
hazards model is that the relative risk is mono-
tonically increasing or decreasing in the covariates. 
If some of the important covariates in a particular 
data set are continuous, such as age or white blood 
cell count, it is important to assess whether this 
specification is correct. For example, it is plausible 
that a patient with either a low or a high white 
blood count (WBC) is at greater risk of death than 
a patient with a WBC in the normal range, and 
thus Equation 1 is inappropriate. An approach to 
generalizing Equation 1 is based on nonparametric 
estimation methods, such as spline or kernel esti-
mation, which provide a more flexible approach to 
specifying the relative risk function.

Finally, like uncensored regression models, indi-
vidual observations may either provide a poor fit 
for the model or have undue influence of the 
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estimated regression coefficients. In classical statis-
tical terms, these would be defined as data points 
with large residuals or high leverage. These data 
values should be monitored and either down-
weighted or removed during the course of the data 
analysis.

Glenn Heller
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Cues

The term cue in decision making is a broad one 
denoting every piece of information outside the 
decision maker that may help in a decision or 
judgment under uncertainty. Other personal infor-
mation such as goals or preferences also influence 
decisions, but these pieces of information are not 
called cues. Many ways of integrating cue infor-
mation exist, called decision rules. Their accura-
cies crucially depend on the structure of the 
decision environment, and therefore, statistical 
models of the decision domain are necessary to 
derive prescriptions of a good decision strategy.

Cue Values

Cues are variables that can be used to judge, infer, or 
predict the value of an unknown criterion variable 

of interest. In a specific decision situation, a cue may 
take on a certain cue value that is indicative of the 
value of the to-be-inferred criterion. In medicine, for 
example, symptoms and laboratory results are cues 
that are used to infer the underlying disease. 
Likewise, medical parameters such as blood pres-
sure, smoking habits, and symptom severity may 
serve as cues to predict the survival time of a patient. 
Hence, the term cue is neutral as to whether it is a 
cause or an effect of the variable which is inferred. 
Even a merely statistical relation between cue and 
criterion (without causation) can render the cue use-
ful for inferences. The inference or prediction can be 
a classification (categorical variable, e.g., disease), a 
continuous judgment of a quantity (e.g., expected 
survival time), or a comparative judgment concern-
ing several options (e.g., which treatment will be 
most successful?). To be useful for inferences, cues 
must have a high predictive power or correlation 
with the criterion variable, called the ecological cue 
validity.

Cue Validity

Like the criterion, cues can be continuous variables 
(e.g., blood pressure) or categorical variables (e.g., 
symptoms). Depending on the nature of the cues 
and criterion, different measures of cue validity 
may be useful. If cue and criterion are continuous 
variables, Pearson correlations or partial correla-
tions (if a whole set of correlated cues is used for 
pre diction) measure the predictive power. Likewise, 
(point-)biserial correlations or different contin-
gency coefficients can be used to express the degree 
of the statistical relationship between the cues and 
criterion if one or both variables are categorical or 
binary. In pairwise comparisons (e.g., “Who of 
two patients has better survival chances when 
treated first in the emergency room?”) with binary 
cues (e.g., Symptom X present vs. absent), the 
validity is often defined as the conditional proba-
bility of deciding correctly, given that the cue dis-
criminates between the options. A cue discriminates 
if it takes on different values for the compared 
objects. Hence, besides validity, the discrimination 
rate of a cue is another important aspect of its 
usefulness for decisions because a cue is only help-
ful if the values differ between options.

In principle, in a set of statistically related vari-
ables, any of these variables can serve as cues for 



predicting one of the other variables. However, a 
high cue validity in one inference direction does 
not imply high validity in the other direction. For 
instance, there may be a high conditional probabil-
ity of a symptom given a disease (e.g., fever given 
pneumonia), whereas the reverse is not necessarily 
true if the symptom is not specific for the disease. 
Hence, for using cues in a systematic fashion, their 
relation to the criterion must be known. If only 
one valid cue is available for a decision, matters 
are quite easy since the best bet is to go with the 
cue. Typically, however, multiple (and potentially 
contradicting) cues have to be integrated into one 
judgment or decision that requires conflict resolu-
tion and information integration via decision rules. 
The success of a decision rule depends on its fit to 
the statistical structure of the environment. For 
example, if the available cues are highly correlated, 
it may be worthwhile and time-saving to consider 
only a small subset of cues because the other infor-
mation is redundant.

Models of the Environment

The psychologist Egon Brunswik introduced the 
idea of the lens model, which is an attempt to 
model the environment, the decision process, and 
their mutual fit simultaneously. The cues are the 
“lens” through which the distal criterion variable 
can only indirectly be perceived. Further develop-
ments of the lens model in social judgment theory 
use a multiple linear regression to predict the crite-
rion on the basis of the cues. This regression 
informs the investigator how predictable the crite-
rion is given the cues and provides beta weights 
that measure the contribution of each single cue to 
a weighted linear prediction of the criterion, hence 
its ecological validity. On the other side of the lens, 
one can perform a regression of actual judgments 
on the cue values as predictors. This can be seen as 
a model of the decision maker (called policy cap-
turing), and the regression weights measure the 
influence of the cues on judgments, or cue use. 
Both regressions can be compared to see if the 
judgmental cue weighting matches the optimal 
weighting, that is, if use coefficients match the eco-
logical validities. The use of linear regressions has 
dominated research for decades, but the idea of 
analyzing the environmental structure and its match 
with psychological processes can be applied more 

generally, to include nonlinear cue-criterion rela-
tionships (e.g., U-shaped or exponential) or nonlin-
ear cue combinations. Optimal decision algorithms 
can also be identified using machine learning 
approaches or Bayesian networks, which need a 
large amount of training in huge databases.

However, the “optimal” rules often need exten-
sive computation to combine cues in sophisticated 
ways, for example, in Bayesian networks or a 
weighted additive integration. In many instances, 
the accuracy of such complex rules can be approxi-
mated by simpler algorithms or so-called heuristics. 
For instance, extensive simulations have shown that 
linear models often have a flat maximum, which 
means that nonoptimal weighting of cues does not 
hurt the predictive accuracy very much as long as 
the direction of the cue-criterion correlation is cor-
rectly specified. This is especially the case in envi-
ronments with many cues that do not differ too 
extremely regarding their validities. In environments 
with few available cues of very different predictive 
power, simple noncompensatory rules such as trun-
cated decision trees or lexicographic rules can 
approximate the performance of optimal models. In 
a noncompensatory rule, a bad (or good) value on 
one cue cannot be compensated for by other cues. 
For example, if a disease has an obligatory symp-
tom, the missing of this symptom rules out the dis-
ease regardless of other symptoms that may be 
present and fit the diagnosis of the disease. A lexi-
cographic choice rule, for example, would look up 
the options’ values on the most valid cue and ignore 
other cue information unless the best cue does not 
discriminate. In this case, the second best cue is 
searched and so on. The rule is also “noncompensa-
tory” because a choice determined by a better cue 
cannot be revised by less valid cues. For this simpli-
fied rule to work well, one needs an accurate knowl-
edge of the validity hierarchy of cues, that is, which 
cue is best, second best, and so on.

Models of the Decision Maker

In a research tradition called multiple cue proba-
bility learning, psychologists have investigated 
people’s ability to abstract information about cue-
criterion correlations from feedback and to use 
them for prediction. Typically, learning from feed-
back is not overly successful unless there are only 
very few cues with simple linear relationships to 
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the criterion. If the situation gets more complex, 
cognitive feedback or causal models help. Cognitive 
feedback not only provides outcome feedback 
after a choice but also gives further information 
about the direction and the amount of the devia-
tion from the correct judgment or even points to 
explicit cue-criterion relationships. However,  
people are generally not successful if cue-criterion 
relations are nonlinear or cue interactions occur. 
The judgments can often nevertheless be described 
by a weighted linear model. In experimental situa-
tions with novel tasks and explicit cues, partici-
pants sometimes use simplifying noncompensatory 
strategies, especially under time pressure or when 
cue acquisition is costly.

On the other hand, experts who have had 
extensive training and feedback often show remark-
able decision accuracy in their domain. For exam-
ple, weather forecasters are very well-calibrated in 
predicting the probability of precipitation. Also, 
pathologists may be very accurate in judging tissue 
samples as malign or benign although they cannot 
verbalize how they do it. It is obvious that these 
experts use effective cues, but neither all the cues 
used nor the decision rule are accessible to verbal-
ization. In this case, the researcher’s challenge is to 
identify the cues and strategies these experts use. It 
must be acknowledged, however, that judgments 
of experienced experts based on multiple explicit 
verbal cues (e.g., clinical judgments based on per-
sonality profiles or symptom patterns) are often 
outperformed by relatively simple statistical mod-
els of the environment.

Arndt Bröder
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Cultural issues

Culture encompasses the acquired knowledge, 
beliefs, values, and behavior patterns shared by 
the members of a particular group of people. 
Common elements of cultures include language, 
diet, dress, and religion, among others. In the 
past, the typical person in any given culture had 
little if any contact with individuals from other 
cultures. But marked shifts in economic, social, 
and political arrangements, including unprece-
dented worldwide immigration flows, have ended 
such isolation. Thus, people are constantly inter-
acting with others who embrace customs mark-
edly different from their own; they might even live 
right next door to them. This creates the real pos-
sibility that a person faced with a significant 
medical issue will be dealing with a healthcare 
provider from another culture. Such cross-cultural 
encounters pose challenges to how and how well 
the required healthcare decisions are made. This 
entry describes and analyzes some of the most 
important of those challenges. It also outlines 
approaches to meeting them.

The Patient–Provider Relationship

The first key challenges bear on the personal rela-
tionship between the patient and the provider in a 
cross-cultural interaction. Specifically, they con-
cern confidence, comfort, and trust.

Confidence

Healthcare providers can serve several distinct 
decision-making roles vis-à-vis their clients. First, 
they can be agents, making decisions on the 
patient’s behalf, as when the patient says (explicitly 
or merely implicitly), “I realize that the decision is 
mine legally, but would you please decide for me? 
After all, you’re the expert, and besides, I’m just too 
upset by this horrible news to make the decision 
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myself.” Second, they can be co-deciders, in the 
spirit of the shared decision-making paradigm. 
That is, the provider and patient work toward 
mutual agreement about, say, a workable hyperten-
sion management regimen for the patient to follow. 
Third, providers can be consultants, such that the 
patient reserves the right to decide personally but 
seeks the provider’s opinion as input to the decision 
process, for instance, in the form of a prostate cancer 
prognosis or a recommendation for radiation ther-
apy versus radical prostatectomy. Finally, providers 
can be (and invariably are) decision managers, delib-
erately or inadvertently exerting influence over how 
the patient chooses by, say, providing literature that 
favors radiation rather than surgical treatment for 
the patient’s condition. Whether and how the patient 
allows the provider to assume these roles depends 
directly on the client’s confidence in the provider’s 
competence or expertise. And that confidence can 
easily be affected by cultural differences.

Impressions of expertise generally, and of deci-
sion-making expertise in particular, rest on several 
considerations. One consideration is acclamation, 
consensus among people one already respects. 
Such consensus in turn depends on factors such as 
the person’s visibility and regard by one’s peers. In 
the health arena, credentials and accomplishments 
in contemporary science-based medicine undoubt-
edly carry great weight even with people who nor-
mally have little to do with modern societies. Yet, 
all else being the same, a provider from a culture 
different from the patient’s own almost necessarily 
is less well known in that patient’s social circles 
than a provider who shares the patient’s own cul-
ture and therefore suffers a perceived competence 
liability. Another consideration is style of speak-
ing. People recognized as experts tend to speak 
with precision and confidence. A provider from a 
culture different from the patient’s is unlikely to be 
fluent in the patient’s native language and thus is 
incapable of exhibiting the linguistic trappings of 
expertise. Yet another consideration is factual 
knowledge. People expect true experts to be able 
to recite extensive facts about the domain in ques-
tion. And they certainly expect experts to know 
virtually all the facts they know themselves, and 
more. As discussed below, cultures often differ in 
terms of disease prevalence rates as well as com-
mon treatments, including folk remedies. A pro-
vider from a different culture might well be 

ignorant of these facts that the patient knows per-
sonally, thereby suffering damage to his or her 
credibility in the patient’s eyes.

Comfort

Extensive research (e.g., on the “mere exposure 
effect”) has shown that familiarity generally does 
not breed contempt but instead fosters at least 
mild liking. Thus, when a healthcare provider 
shares cultural customs with a patient, such as 
language, memories of the same kinds of schools, 
and similar tastes in entertainment, the patient 
feels at ease. This comfort can be highly beneficial 
for managing the stress that naturally accompanies 
health crises. It also undoubtedly contributes to 
the success of clinics that cater to immigrant and 
expatriate communities and which emphasize ele-
ments of the pertinent cultures, such as their lan-
guages and religious sensitivities. All the common 
provider decision-making roles—agent, co-decider, 
consultant, and decision manager—can be enacted 
more smoothly.

The flip side of the coin is where the greatest 
challenges lie. When there are significant differ-
ences in the cultures of a patient and a provider, 
those differences often constitute barriers that 
must be overcome. Studies on decision “bolster-
ing” have shown that, when a person chooses X 
over Y, in that person’s estimation, the appeal of X 
increases and that of Y diminishes. That person 
wonders, “How could I have ever even considered 
Y?” It only stands to reason that, all else being 
equivalent, people who like and choose Y will be 
seen as having tastes that are not merely different 
but in some sense inferior. Thus, in a broader con-
text, it should not be surprising if, when unchecked, 
other cultures’ “choices” are initially regarded 
somewhat negatively; they are not our own. Their 
music sounds like “noise,” their food tastes too 
bland or too spicy, and some of their worldviews 
seem unreasonable. Unaddressed, the resulting dis-
comfort can stand between the patient and pro-
vider, even when, ostensibly, the cultural differences 
in question have nothing to do with medicine.

Trust

Cultural variations are often accompanied by 
economic and political rivalries. Consider, for 
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instance, the Fleming and Walloon cultures in 
Belgium or the Malay and Chinese cultures in 
Malaysia. The resulting antagonisms can fan dis-
trust in all manner of cross-cultural encounters, 
including medical ones. Initially, at least, patients 
therefore might easily say things such as the fol-
lowing to themselves concerning a provider from  
a rival culture: “They usually don’t like or respect 
us, so I wonder if she’s that way, too. Will she 
really give me her best efforts, just like she would 
one of her own?” Unless and until such fears are 
dispelled, patients are hesitant about having pro-
viders make medical decisions on their behalf.

To address threats to effective cross-cultural 
patient-provider relationships, particularly con-
cerning comfort and trust, those who seek to pro-
mote cultural competency in healthcare offer 
several recommendations for providers:

Undertake exercises intended to uncover one’s  •
personal feelings about various cultural 
variations. As suggested previously, these feelings 
are virtually guaranteed to exist.
Cultivate respect for customs different from  •
one’s own. At minimum, be nonjudgmental 
about them.
Avoid stereotyping. A provider should anticipate  •
and prepare for customs that are especially 
common in a given patient’s culture. At the same 
time, the provider should not lose sight of the 
extensive individual differences that invariably 
exist among the members of that culture. 
Proceeding as if every member of the group is 
the same invites anger and resentment.

And when the concern is nurturing patient  
confidence in a provider’s competence, there is no 
substitute for establishing and publicizing a solid 
track record among patients in a given cultural 
community. That includes learning more about 
that culture, especially facts pertaining to medical 
conditions that are particularly problematic in that 
community and health practices that are distinc-
tive for the people concerned.

Participation

In many societies, particularly in North America 
and Western Europe, decisions about medical 
questions are personal and private affairs, solely 

between the patient and the physician. Expectations 
and reality can be markedly different in other soci-
eties, particularly ones where collectivism rather 
than individualism holds sway, for instance, in 
much of Asia, Africa, and Latin America. By defi-
nition, the term collectivism refers to an outlook 
that emphasizes the interdependence of people and 
the importance of collectives to which they belong. 
In contrast, individualism highlights independence 
and the relative significance of people’s personal 
interests.

In collectivistic cultures, participation in the 
medical decision process tends to be broader than 
in individualistic cultures, with the family often 
assuming especially prominent roles. For instance, 
for a long time in Japan, the norm has been not the 
patient autonomy that is ascendant in the United 
States but, instead, reliance on the beneficence of 
the patient’s family and physician. Thus, in this 
alternative arrangement, a physician could disclose 
to the family that a patient has cancer and the fam-
ily might choose to withhold that diagnosis from 
the patient. Prominent roles for families in medical 
decision making in collectivistic societies are consis-
tent with the high degree of interdependence char-
acteristic of those societies. In those contexts, the 
reality is that events involving any one member of a 
family (e.g., a new, high-paying job or a serious ill-
ness) often have a much greater impact on the other 
members than would be the case in an individualistic 
society where independence is prized. So when one 
family member becomes sick, prescribed changes in 
diet for managing chronic conditions such as diabe-
tes must take into account the impacts for numer-
ous individuals besides the person who is ill.

Beyond the family, the traditions in some cul-
tures reserve decision-making roles for others, too. 
Most notably in some Asian, African, and Native 
American cultures, these might be people with reli-
gious responsibilities, including ones some would 
call shamans. Other participants might be nonreli-
gious traditional or alternative healers. Patients 
from cultures that maintain roles for these addi-
tional parties sometimes attempt to follow the 
guidance of these authorities as well as the instruc-
tions of their doctors practicing contemporary 
scientific medicine. Since patients might be reluc-
tant to volunteer such information, it is wise for 
providers to inquire sensitively about the possibil-
ity. When other parties are involved, the provider 
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must, in effect, negotiate a hybrid treatment plan. 
To do otherwise runs the risk of treatment incom-
patibilities, perhaps tragic ones.

Language

The complications of patients and providers speak-
ing, reading, and writing different formal languages 
are apparent. For instance, the provider’s misun-
derstanding of a patient’s symptom descriptions 
could lead to a misdiagnosis and then an ineffec-
tive, even harmful, treatment choice. This impli-
cates the need for the services of skilled professional 
interpreters. (Reliance on bilingual family mem-
bers and friends is often discouraged because they 
tend to censor remarks on both sides of a conversa-
tion.) But even when a patient and a provider in a 
cross-cultural encounter use a common formal lan-
guage, there remain significant risks. Because their 
life experiences might be so different, so too might 
be the assumptions they make in a given exchange. 
That is why it is often advised that clinicians 
depend especially heavily on open-ended questions 
and requests (e.g., “Would you please tell me what 
you think led to this?”). Communications can also 
be compromised by cultural differences in tradi-
tions of directness, politeness, and deference to 
authority or status. Thus, “Yes” in response to a 
request might not mean “Yes” literally, expressing 
an intention to comply with that request. The 
speaker’s true meaning might have to be inferred 
from other aspects of the situation, including non-
verbal signals such as facial expressions. Becoming 
skilled in nonverbal communication is therefore 
essential although difficult to achieve, especially 
since the same signal (e.g., a smile) can sometimes 
carry opposite meanings in different cultures.

Decision Problem Deliberation

The specific decision problems that patients and 
providers must confront concern acute and chronic 
conditions as well as health maintenance measures. 
Effective decision making requires that deciders 
successfully address certain recurring issues. These 
include anticipating or recognizing problems that 
demand decisions (e.g., slowly developing can-
cers), judging the chances of pertinent events (e.g., 
that a treatment would work), determining values 
(e.g., the patient’s true feelings about possible  

outcomes and side effects), and creating or identi-
fying viable options (e.g., crafting effective, doable 
treatment plans). Specific considerations are likely 
to affect precisely how these issues are resolved in 
cross-cultural encounters.

Correlated Health Facts

An especially significant reality of cultural varia-
tions is that some of them are correlated with 
important health facts. Incidence rates are one 
instance. For genetic reasons, certain diseases are 
more common in some cultural groups than in oth-
ers. Sickle cell disease, with relatively high incidence 
rates among African Americans, provides a ready 
illustration. The disease has sometimes been misdi-
agnosed in African American patients because it 
simply never occurred to their physicians as a pos-
sible explanation for their signs and symptoms. 
That has happened because those doctors had little 
experience with non-Caucasian patients or, perhaps 
in a spirit of fair-mindedness, they simply assumed 
that, physiologically, “people are people.” Other 
incidence rate differences are tied more directly to 
true cultural variations in behavior. Such is the case 
for cultural differences in obesity and hypertension 
traced to customary diets heavy in fats or salt. More 
generally, if a provider is ignorant of incidence rates 
that are distinctive for a cultural group, this fore-
shadows diagnostic errors as well as cases of blind-
siding. These are cases such as those in which a 
serious illness is inadvertently allowed to progress 
to an untreatable state because its actual high-
probability presence was never even imagined.

Differential efficacy rates are another health fact 
sometimes correlated with culture. Treatments that 
are effective for some cultural groups are less useful 
for others. For instance, studies have found espe-
cially high rates of adverse reactions among East 
Asian patients for certain antihypertension drugs. 
The implications of culture-specific efficacy rates for 
the wisdom of treatment choices are readily appar-
ent. Clearly, when a clinician is called on to serve 
patients from an unfamiliar culture, a first order of 
business must be to actively seek out known health 
fact correlations involving that group.

Explanation and Belief

Cultures sometimes differ in how people explain 
what they observe. Related to this, cultures can also 
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differ in how people arrive at what they believe or 
expect to be true. These differences can have impli-
cations for the treatment options that occur to 
patients and providers in cross-cultural encounters 
as well as for their expectations about the effective-
ness of those treatments, if they were to be chosen. 
For example, in numerous African and Asian cul-
tures, people sometimes believe that a person’s ill-
ness is punishment for transgressions that the 
person has committed. Or they suspect that the sick 
person is the victim of malevolent enemies with 
spiritual powers that enable them to cast hexes on 
whomever they wish. These explanations differ 
sharply from the accounts for sickness that underlie 
current scientific medicine. And they rationalize 
radically different treatment alternatives. Whereas 
scientific explanations point toward treatments 
that address factors such as pathogens, spiritual or 
moral explanations implicate actions such as resti-
tution or prayer. A provider who ignores (or worse, 
belittles) a patient’s beliefs in alternative explana-
tions for illness is unlikely to succeed in achieving 
the patient’s cooperation in implementing a purely 
science-based treatment plan.

In order for a clinician to persuade a patient to 
undergo a particular treatment, regardless of its 
character, the clinician must somehow get the 
patient to conclude that the chances of good out-
comes are high. This challenge is conditioned by 
culture, too. Studies have documented reliable cul-
tural variations in people’s probability judgments. 
Surprisingly for many people, one of the most con-
sistent differences is that the overconfidence 
implicit in such judgments is stronger among 
Chinese than among Americans. Further studies 
have demonstrated that these differences are not  
a reflection of “ego.” Instead, they seem to result 
from culturally distinct customs for reasoning 
while arriving at one’s conclusions.

Treatment Options and Expectations

If a treatment option goes unrecognized, then 
neither the patient nor the provider can choose it. 
On the other hand, they could not disagree and 
argue about it either. These truisms highlight the 
importance of cultural variations in the options that 
come to mind when a medical issue arises. There  
is good evidence that cultural differences often 
broaden the pool of alternatives that surface, even 

beyond the kinds of scientific and spiritually inspired 
options suggested previously. For some rural 
Mexican patients, medical conditions are classified 
as either “hot” or “cold.” Furthermore, to reestab-
lish balance, “hot” conditions are thought to 
require “cold” treatments, and vice versa. Pregnancy 
is regarded as a “hot” condition, and thus “hot” 
treatments would not be on the list of options con-
sidered legitimate for a pregnant woman. But vita-
mins are a hot treatment. And therein lies a conflict 
that must be worked through since a practitioner of 
contemporary scientific medicine almost certainly 
would recommend the regular intake of vitamins to 
assure the health of the child and the mother. Or 
consider Japanese family medicine customs. Over 
time, Japanese patients have developed an expecta-
tion that an end result of virtually every visit to the 
doctor should be a prescription for medicine. There 
is also an expectation that the patient will be seen 
again soon, say, in a month. Naturally, then, the 
treatment plans that experienced, wise, and highly 
rated physicians craft for patients’ consideration 
conform to these expectations.

The advice implicit in these kinds of scenarios is 
similar to that articulated earlier with respect to 
culture-correlated health facts. A provider who 
anticipates working with patients from a new, 
unfamiliar culture can at least prepare for the chal-
lenges of broader collections of patient-preferred 
treatment options by studying what the common 
expectations are within that culture.

Value

The final class of cultural variations that have 
special significance in deliberations bear on what is 
perhaps the most fundamental defining character-
istic of decision making generally—value. Decision 
problems are special largely because their solutions 
are not unique. Since people’s ways of valuing 
things tend to differ, outcomes that are highly 
pleasing for one patient (e.g., the ebullient person-
ality of the physician’s assistant assigned to the 
patient) can easily be unbearably annoying for 
another. Cultural variations concerning value are 
particularly important in the provider’s roles as an 
agent, making decisions on the patient’s behalf, 
and as a co-decider, seeking to reach agreement 
with the patient about how to proceed in dealing 
with a medical situation.
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There is evidence that physicians can err substan-
tially in their expectations about the values their 
patients attach to various aspects of medical situa-
tions, such as cancer treatment side effects. This 
should mean that, if a physician is making medical 
choices for a patient, at least sometimes these value 
judgment errors should result in the patient being 
stuck with alternatives that are worse than they 
could be, in terms of what the patient truly desires. 
Importantly, these errors are not haphazard; there 
is evidence for false consensus. That is, people tend 
to believe that others’ values are closer to their  
own than they really are. Suppose that a provider 
attempts to answer the question, “How would my 
patient feel about the limited degree of mobility 
likely to result from this treatment?” The conclu-
sion is essentially, “Pretty much the way I would,” 
and more so than would actually be the case.

There is reason to expect these value assessment 
errors to be especially large in cross-cultural 
patient-provider encounters. That is because the 
values of the patient and provider should differ 
more than in instances where the parties share a 
common culture. It is easy to appreciate sizable 
cross-cultural value differences when the focus is 
something like tastes in food or music. But the 
same underlying principles, such as historical  
isolation of groups of people from one another, 
should yield similar strong value differences for 
aspects of health situations. British versus American 
differences in the appeal of aggressive as opposed 
to conservative treatments for cancer provide a 
good example. Relative to Americans, Britons 
have been more likely to regard the side effects of 
aggressive treatments to be unacceptably harsh. 
Heroic and invasive efforts to extend for a few 
hours the lives of terminally ill patients in Japan 
constitute another illustration. The justification for 
some such actions is to provide time for all close 
relatives to be at their loved one’s side at the 
moment of death, which is extremely important in 
Japanese society, much more so than elsewhere. 
Thus, as co-deciders, there would be little disagree-
ment between a Japanese family and their Japanese 
doctor about undertaking the requested life- 
extending measures. That might not be so if the 

physician were non-Japanese or at least ignorant 
of Japanese traditions and values.

J. Frank Yates and Laith Alattar
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Data Quality

Quality data are at the heart of quality healthcare. 
It is well known that poor data can lead to  
incorrect diagnoses, prescription errors, or surgi-
cal errors with tragic consequences. Similarly, the 
day-in, day-out consequences of poor data are 
enormous as well, leading to added time and 
expense throughout the system. In short, improv-
ing data quality is essential.

There are many approaches to defining data. 
The one that is often used for data quality recog-
nizes that data consist of two interrelated compo-
nents: data models and data values. Data models 
define entities, which are real-world objects or 
concepts, attributes, which are characteristics asso-
ciated with entities, and relationships among them. 
As an example, each reader is an entity, and his or 
her employer is interested in attributes such as 
name, date of birth, and specialty. Relationships 
may include report manager and subordinates. A 
data value is the specific realization of an attribute/
relationship for a specified entity. For example, a 
member of a medical research team may be 
assigned the specialty “statistician.” Clearly, data, 
per se, are abstract. Data records are the physical 
manifestations of data in paper files, forms, spread-
sheets, databases, and so forth.

Physicians are uniquely positioned to initiate 
data quality efforts and have much to gain by 
doing so. However, most are unfamiliar with the 
thinking that underlies data quality management: 
As in healthcare, the steps one takes to improve 

data quality are rooted in the scientific method. 
Thus, this entry focuses on physicians. The first 
part summarizes three key principles of data qual-
ity management and the second part offers eight 
simple prescriptions that physicians can follow to 
make immediate improvements. These will not, of 
course, address all the data quality issues that cur-
rently afflict healthcare. But they form a solid 
beginning: the data quality equivalents of the age-
old dictum, “First, do no harm.”

Principles of Data Quality Management

The “muscle and bone” of data quality are mea-
surement and control. One simply must have the 
facts and work through the laborious process of 
formulating and testing hypotheses to search for 
and eliminate root causes of error. In these ways, 
data quality management most resembles the sci-
entific method.

If measurement and control are the muscle 
and bone, then three simple management princi-
ples form the head and eyes. The first principle is 
that data quality is defined not in some strict, 
technical sense but by customers such as patients, 
doctors, insurance companies, and billing depart-
ments. Specifically, data are of high quality if 
they meet customers’ needs. This is an especially 
demanding approach because each customer may 
have different needs and uses for the data. As a 
consequence, they may rate the quality of data 
provided differently. For instance, while one 
patient may understand his or her diagnoses per-
fectly and take appropriate steps, another may 

D



254 Data Quality

misinterpret the same data and do just the oppo-
site. According to this principle, the same data 
were of high quality in the first case and of poor 
quality in the second.

The second principle is that those who create 
data must be held accountable for its quality. 
Practically, everyone agrees with this principle in 
theory, but implementing it is far from trivial. 
What nurse wants to tell a chief of staff that she 
cannot read his orders? But experience shows that 
finding and correcting errors downstream is unre-
liable, expensive, and time-consuming.

The third principle is that customers and data 
sources must be tightly coupled if high-quality data 
are to result. The customer-supplier (C-S) model, 
depicted in Figure 1, has proven an excellent means 
of enabling the required communications.

The C-S model features three entities: Customers, 
as described above, are on the right; suppliers (or 
data sources) such as laboratories, admissions, and 
other doctors on the left; and the physician and his 
or her work processes in the middle. Physicians use 
data provided by their suppliers to do their work, 
create new data, and pass relevant data onto their 
customers. This data flow is illustrated by the left 
to right arrows in the figure.

More important, the C-S model features four 
communications channels in the opposite direction 
from the data flow. These channels help ensure 
that data needs (i.e., requirements) and feedback, 
both good and bad, are provided to data sources 
from customers. Unless physicians seek to actively 
construct and maintain these channels, they become 
blocked or noisy. In sum, data sources simply can-
not be expected to provide high-quality data with-
out knowing what is expected and understanding 
how well they are performing.

Prescriptions for Physicians

Assuring data quality can be enormously complex. 
But data quality can also be quite straightforward. 
The following are eight prescriptions that physicians 
can follow to initiate data quality improvement.

1. Treat patients like customers when explaining 
their diagnoses, courses of treatment, and progno-
ses. Too often, patients simply do not understand 
what a physician tells them. Of course, they may 
be scared and nervous and may not listen well. 

And they come from a variety of backgrounds. But 
the physician must make himself or herself under-
stood, whatever it takes. Use simple words for 
some people, explain in more complicated terms to 
others, and draw pictures for still others. Make 
sure they understand exactly how they can best 
contribute to their care (e.g., taking their prescrip-
tions). Encourage them to ask questions. And, 
perhaps most important, say “I don’t know” when 
you don’t know the answer.

2. Treat the “next person in the process,” who-
ever it is, as a customer. Patients, and their data 
surrogates, often get lost in the system. Indeed, this 
is a systemic problem and cannot be solved by one 
individual. But treating the next doctor (or clinic) 
the patient will visit, the technician who must fol-
low the orders, the hospital administrator, and the 
insurance companies who pay the bills as custom-
ers is an effective way to promote a culture that 
values high-quality data. Talk and listen well to 
one customer every month (say) and ask them 
what data they really need from you, what data 
they actually get, what you’re doing that helps, 
and what you do that slows them down; then 
make necessary improvements.

3. Become intolerant of simple data errors 
made by others. One reason for data errors in 
healthcare is that people tolerate them, even 
accommodate them, in their work processes. For 
example, the triage nurse in the emergency room, 
caregivers, technicians, indeed everyone who sees 
a patient asks the same questions. This increases 
the chances of error and is considered by some to 
be bad practice. Furthermore, when you spot 
errors, provide feedback to the source of the 
error, as quickly as you can. Don’t blame individ-
uals—most of them are doing their best within 
an imperfect system. Instead, reach out to man-
agers and ask that they find and eliminate root 
causes of error. Finally, keep a log of the errors 
you find. Revisit it from time to time to look for 
patterns.

4. Become extremely intolerant of simple data 
errors made by yourself or your team. It only 
stands to reason that you have to be even more 
demanding of yourself than you are of others. One 
way an orthopedist could make sure that he or she 
was operating on the correct limb would be to ask 
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all in the operating theater to concur before start-
ing. Another way could be to write “Not This 
One” on the left knee when the right is the correct 
one. Both methods help foolproof the orthopedist’s 
work and that of his or her team. It is an example 
of a good, proactive way to prevent data errors. 
Equally important is acknowledging errors when 
they occur, learning from them, and fixing the root 
cause to prevent future errors.

5. Make handwriting legible. Much has been 
written about the frequency and dangers of mis-
read handwriting leading to wrongly filled pre-
scriptions and other errors. As a physician, do 
whatever you need to do to prevent such error, 
even typing or learning to print legibly.

6. Put patient records into a computer. So far, 
healthcare has not yielded much to full automation 
of patient records. It is a complex technical prob-
lem made more complex by not yet fully under-
stood issues such as patient privacy. And 
automation, in and of itself, is no panacea. But the 
computer facilitates better record keeping, and 
better record keeping means better data for mak-
ing diagnoses, deeper analyses that will improve 
healthcare, and smoother pathways between all 
involved. Eventually, all important healthcare data 
will be digitized and all players interconnected. 
Physicians can aid the evolution, even if only 
within their practices and clinics.

7. Learn to distinguish common causes from 
special causes. If an overtired laboratory techni-
cian makes a simple (even if dire) mistake, the 
solution may be to instruct that person on his or 

her responsibilities and the importance of coming 
to work fully rested (importantly, the root cause of 
the error may be something else, such as a mis-
calibrated measurement device). But if seven labo-
ratory technicians make the same mistake over a 
6-month period, then a root cause analysis must 
be conducted—even if each admits that he or she 
was tired! Perhaps the lab is understaffed, perhaps 
shifts are too long, perhaps a particular piece of 
equipment becomes erratic as it heats up late in the 
day. The prescription is to distinguish “common 
causes” from “special causes.” The analogy is not 
perfect, but common causes are like chronic condi-
tions. They always exist and are inherent to the 
process or system. Special causes are like acute 
conditions. They need to be addressed individually 
and in different ways. Distinguishing common 
causes from special causes is not easy. In the 
example above, the bad lab tests come up one at a 
time, are discovered by different people, and each 
may be addressed before the next occurs. So spot-
ting them requires a certain aptitude. But there is 
no substitute. Telling technicians to get more sleep 
will simply not cool down an overheating piece of 
equipment.

8. Lead one improvement project every year. 
Organizations that put forth reasonably diligent 
efforts often reap order-of-magnitude improve-
ments to data quality. And they’ve done so without 
special investment. The secret is completing 
improvement projects on a regular basis. Frequently, 
eliminating a relatively few root causes produces 
dramatic improvement within a department. So 
define a problem, assemble a team (and personally 
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Figure 1  The customer-supplier model
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lead it), uncover the root cause, and figure out how 
to make it go away permanently.

Frank M. Guess, Thomas C. Redman,  
and Mahender P. Singh

See also Constraint Theory

Further Readings

Berwick, D. M. (2003). Escape fire: Designs for the 
future of health care. San Francisco: Jossey-Bass.

Berwick, D. M., Godfrey, A. B., & Roessner, J. (2002). 
Curing health care: New strategies for quality 
improvement. New York: Wiley. (Other publishers 
have translated earlier versions into Japanese and into 
Portuguese.)

Halamka, J. (2008). Vision for hospital’s future HIT. 
Retrieved May 29, 2008, from http://www.thehealth 
careblog.com/the_health_care_blog/2008/05/vision-
for-hosp.html

Redman, T. (2008). Data driven: Profiting from your 
most important business asset (Chapter 3). Boston: 
Harvard Business School Press.

Decisional conflict

Every day, people face healthcare decisions involv-
ing trade-offs between potential benefits and risks. 
Which birth control method should I use? Are my 
symptoms (acne, attention deficit/hyperactivity 
disorder, hot flashes, chronic pain) bad enough to 
warrant stronger medication with potentially 
more serious side effects? Should I have surgery 
for poorly controlled benign uterine bleeding, 
back pain, benign prostatic hyperplasia, obesity, 
osteoarthritis? Should my relative receive care for 
dementia or terminal illness at home or at a care 
facility?

Decision making is the process of choosing 
between alternative courses of action (including 
inaction). Generally, people choose the option that 
they perceive will be effective in achieving valued 
outcomes and in avoiding undesirable outcomes. 
However, many decisions are choice dilemmas or 
conflicted decisions. No alternative will satisfy all 
personal objectives and none is without its risk of 
undesirable outcomes.

Among the 2,500 healthcare interventions eval-
uated by the Clinical Evidence group, 13% were 
classified as “beneficial,” 23% as “probably ben-
eficial,” 8% as “need to weigh benefits versus 
risks,” 6% as “probably nonbeneficial,” 4% as 
“probably useless or dangerous,” and 46%, the 
largest number, as having insufficient evidence of 
usefulness. Consequently, patients need help in 
resolving uncertainty when facing clinical deci-
sions. They may express uncertainty or difficulty 
in identifying the best alternative due to the risk or 
uncertainty of outcomes, the need to make value 
judgments about potential gains versus potential 
losses, and anticipated regret over the positive 
aspects of rejected options.

The aim of this entry is to briefly review what 
has been learned on how patients make difficult 
decisions by highlighting the value of screening for 
decisional conflict. The first section summarizes 
research on patient decisional conflict. It also 
reviews tools for assessing and addressing deci-
sional needs. The second section reports on the 
effects of decision support interventions on deci-
sional conflict. The last section highlights the gaps 
in knowledge and areas needing further research.

Research

Definition of Decisional Conflict

Psychologists Janis and Mann describe decisional 
conflict as the concurrent opposing tendencies 
within a person to accept and decline an option. 
The North American Nursing Diagnosis Association 
(NANDA) defines decisional conflict as personal 
uncertainty about which course of action to take 
when the choice among competing actions involves 
risk, loss, regret, or challenge to personal life values. 
Decisional conflict is an intrapersonal psychological 
construct that is felt by individuals. In lay terms, it 
refers to one’s level of comfort when facing and 
making a health-related decision.

How Much Do Patients  
Experience Decisional Conflict?

NANDA defines verbalized uncertainty as the 
hallmark of decisional conflict (e.g., “I’m not sure 
which option to choose”). In three large surveys 
that have been conducted, about half the respon-
dents reported feeling uncertainty about their best 
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course of action. The first is a Canadian national 
telephone survey in which 59% of respondents 
reported feeling unsure about what to choose when 
facing complex decisions regarding medical or sur-
gical treatments or birth control. In the second 
case, Légaré measured decisional conflict in 923 
patients after they were counseled about options in 
five family practices; 52% of patients had personal 
uncertainty about common treatment options. In 
the third case, Bunn and colleagues conducted a 
household survey of impoverished women in 
Santiago, Chile, and found that 54% reported per-
sonal uncertainty, commonly about decisions 
around navigating the healthcare system (where, 
when, and from whom to seek care).

NANDA describes other manifestations of deci-
sional conflict. The aforementioned Canadian 
survey reported their prevalence as follows: 77% 
of respondents questioned their personal values, 
61% verbalized concern about undesired out-
comes, 40% were preoccupied with the decision, 
27% wanted to delay the decision, 27% had signs 
and symptoms of stress or tension, and 26% 
wavered between choices.

Contributing Factors

Nonmodifiable Factors

The type of decision can influence decisional 
conflict. In the Canadian survey, higher rates of 
physical stress were reported by those who had 
made decisions about placing a relative in an 
institution (54%) or medical treatment (46%) as 
compared with those pondering birth control 
decisions (23%). Decision delay was more com-
mon among those deciding about institutionaliza-
tion (50%), as compared with those making 
surgical decisions (20%).

Personal characteristics also influence personal 
uncertainty. In two studies, which controlled for 
other potential factors, women reported higher 
decisional conflict than men. A clinical study of 
patients considering warfarin therapy found that 
older people had higher decisional conflict scores. 
In contrast, the Canadian survey found that younger 
people had higher decisional conflict scores.

Modifiable Factors

According to NANDA, modifiable factors influ-
encing decisional conflict include deficits in (a) 

knowledge and expectations (condition, options, 
benefits, risks, probabilities); (b) clarity of values 
or priorities (personal desirability or importance of 
benefits vs. harms); and (c) support and resources 
(access to advice, support, pressure from others 
involved in the decision, personal skills, self-confi-
dence, resources). The Canadian survey examined 
these modifiable factors when controlling for the 
inherent factors such as type of decision and per-
sonal characteristics. More manifestations of deci-
sional conflict were observed with those who had 
deficits in knowledge as well as support and 
resources (pressured to select one particular option 
and unready or unskilled in decision making). 
When the hallmark of decisional conflict (personal 
uncertainty about the best course of action) was 
analyzed separately, those reporting feeling uncer-
tain were also more likely to report problems with 
the NANDA modifiable factors as compared with 
those who did not experience uncertainty.

Measuring Decisional  
Conflict and Modifiable Factors

The Decisional Conflict Scale (DCS) has been 
developed for research and clinical assessment pur-
poses. It measures personal uncertainty in patients 
and its modifiable factors such as feeling informed, 
clear about values, and supported in decision mak-
ing. This reliable and valid measure shows that 
greater decisional conflict occurs in those who 
delay decisions, score lower on knowledge tests, 
are in the early phases of decision making, and/or 
have not yet received decision support. High deci-
sional conflict after decision support predicts 
downstream delay or discontinuance of the chosen 
option, regret, and the tendency to blame the prac-
titioner for bad outcomes. More recently, the DCS 
has been adapted for measuring personal uncer-
tainty in health professionals as well.

Decision Support Interventions

Although there are several conceptual frameworks 
of shared decision making, the Ottawa Decision 
Support Framework specifically addresses deci-
sional conflict using conceptual definitions and 
theories from NANDA as well as psychology, 
social psychology, economics, and social support. 
The Ottawa framework applies to all participants 
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involved in decision making, including the indi-
vidual, couple, or family and their health practi-
tioner. The focus here is on patients’ needs and the 
role of the practitioner in supporting them. As 
illustrated in Figure 1, the framework has three 
key elements: (1) decisional needs, (2) decision 
quality, and (3) decision support. The framework 
asserts that unresolved decisional needs will have 
adverse effects on decision quality. However, deci-
sion support can improve decision quality by 
addressing unresolved needs with clinical counsel-
ing, decision tools, and coaching.

Decisional Needs

Unresolved decisional needs that adversely affect 
decision quality include the following: decisional 

conflict (uncertainty), inadequate knowledge and 
unrealistic expectations, unclear values, inadequate 
support or resources, complex decision type, 
urgent timing, unreceptive stage of decision mak-
ing, polarized leaning toward an option, and par-
ticipants’ characteristics (e.g., patients’ cognitive 
limitations, poverty, limited education, or physical 
incapacitation). Therefore, practitioners should be 
skilled at assessing decision needs by first screening 
for decisional conflict. A shorter clinical version of 
the DCS is currently being tested and may hold 
promising in this regard.

Decision Quality

To help resolve decisional needs, it is important 
to describe the goal of an intervention. Generally, 

Decisional Needs
Decisional conflict (uncertainty)
Knowledge and expectations
Values
Support and resources
Decision: type, timing, stage, leaning
Personal/clinical characteristics

Decision Quality
• Informed
• Values-based

Actions
• Delay, continuance

Impact
• Values-based health outcomes
• Regret and blame
• Appropriate use and costs of services

Decision Support
Clarify decision and needs
Provide facts, probabilities
Clarify values
Guide/coach/support skills
Monitor/facilitate progress

Clinical
Counseling

Decision
Aids

Coaching

Figure 1  Ottawa decision support framework

Source: O’Connor, A. M. Ottawa decision support framework to address decisional conflict. © 2006. Available from http://www 
.ohri.ca/decisionaid.
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medical professionals wish to help people make a 
“good” decision. However, what is a good deci-
sion when there is more than one medically rea-
sonable option and the best choice depends on 
how a person weighs the known benefits versus 
harms as well as the scientific uncertainties? 
Although the issue is not completely resolved, 
there is emerging consensus that good decisions 
are ones that are informed and consistent with 
personal values. Does the person understand the 
key facts about their condition, options, benefits, 
and harms? Does the person have realistic expecta-
tions (perceptions of chances of benefits and 
harms)? Is there a match between the option that 
is chosen and the features of options that matter 
most to the informed person?

The consequences of decisions are of interest to 
different groups. For example, behavioral evalua-
tors are often interested in the impact of the deci-
sion on behavior. Did a person delay or make a 
decision? Did the person continue with his or her 
chosen option? On the other hand, clinicians are 
interested in the impact of the decision on health 
outcomes. It is important to note that the types of 
decisions that create decisional conflict often have 
no clear best option that has a positive effect on 
health outcomes. The question the clinician may 
have to ask is “Did the informed patient achieve 
the good outcome and avoid the bad outcome that 
mattered most to him or her?” Health psycholo-
gists may find effects on emotions such as regret or 
blame as most interesting. Health service evalua-
tors and economists often focus on the use of 
health services and costs.

Decision Support

Decision support is aimed to address a patient’s 
unresolved needs through clinical counseling, deci-
sion aids, and coaching. Decision support involves 
the following: (a) clarifying the decision and the 
person’s needs, (b) providing facts and probabili-
ties, (c) clarifying values, (d) guiding/coaching/
supporting in deliberation and communication, 
and (e) monitoring/facilitating progress.

Health professionals tend to overuse factual 
information about options and to underuse other 
strategies. Specific strategies tailored to patients’ 
needs are described in Table 1. Generic and condi-
tion-specific decision aids have been developed to 

assess needs and plan decision support. An exam-
ple of a generic aid is the Ottawa Personal Decision 
Guide. It is a framework-based tool to help people 
and their practitioners structure, record, and com-
municate decisional needs and plans. The guide 
incorporates a short version of the decisional conflict 
scale. It can be self-administered or practitioner-
administered. A computer-based 1-page PDF  
version, as well as a 2-page paper version, is avail-
able from the Ottawa Health Research Institute’s 
Web site.

Condition-specific patient decision aids are inter-
ventions designed to prepare people for decision 
making; they do not replace counseling. They help 
people (a) understand the probable benefits and 
risks of options, (b) consider the value they place 
on the benefits versus the risks, and (c) participate 
actively with their practitioners in deciding about 
options. According to the International Patient 
Decision Aids Standards (IPDAS) Collaboration, 
patient decision aids provide the following: (a) infor-
mation on the disease/condition, options, benefits, 
harms, and scientific uncertainties; (b) the proba-
bilities of outcomes tailored to a person’s health 
risk factors; (c) values clarification such as describ-
ing outcomes in functional terms, asking patients to 
consider which benefits and risks matter most to 
them; and (d) guidance in the steps of decision 
making and communicating with others. Decision 
aids may be administered using various media 
before, during, or after counseling. Most develop-
ers are moving toward Web-based materials that 
can be printed or used online.

Patient decision aids have been developed for a 
variety of screening, diagnostic, medical, therapeu-
tic, and end-of-life decisions. A list of currently 
available decision aids is found in the A to Z 
Inventory of Decision Aids at the Ottawa Health 
Decision Centre Web site. Reviews of randomized 
controlled trials of decision aids conclude that they 
are better than standard care in terms of the fol-
lowing: (a) increasing participation in decision 
making without increasing anxiety, (b) improving 
decision quality (improved knowledge of options, 
benefits, harms), (c) more realistic expectations of 
the probabilities of benefits and harms, (d) better 
match between personal values and choices, (e) low-
ering decisional conflict, and (f) helping undecided 
people to decide. Patient decision aids may also 
have a role in addressing underuse and overuse of 
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Table 1  Decision support strategies tailored to decisional needs

Knowledge deficits. Exposure to information about the health condition, options, and outcomes improves 
knowledge.

·   Help the person access information. Balanced presentations of available options and both potential 
benefits and harms should be presented in sufficient detail for decision making.

·   Adapt medium and pace of information delivery to the person’s needs (literacy, numeracy, impairments in 
sight, hearing, cognition).

·   Assess the person’s comprehension of the information after it is provided; the focus should be on 
information that is “essential” for decision making.

Unrealistic expectations. Exposure to probabilities of benefits and harms creates realistic expectations.

·   Present probabilities in ways that are understandable to patients, for example, event rates using common 
denominators and time periods and with mixed frames. 

·   In labs, the chances of outcomes are perceived to be more likely when they are easier to imagine and when 
you can identify with the people experiencing them. Therefore, in cases where a person overestimates the 
chances of an outcome occurring, the practitioner may acknowledge the possibility but then describe 
anecdotes (vivid stories) in which the outcome did not happen. In cases where a person underestimates the 
chances of an outcome occurring, the practitioner may acknowledge the possibility but then describe 
anecdotes in which the outcomes did happen. The use of narratives to change patients’ expectations has 
not been evaluated in clinical trials.

Unclear values (personal importance). Values clarification and communication is under active study and debate.

·   A person cannot judge the value of unfamiliar outcomes. Therefore, outcomes need to be described in 
familiar, simple, and experiential terms to help the person judge their personal importance. This means 
that, rather than providing a label for an outcome (e.g. pain from osteoarthritis), a person is helped to 
understand how the outcome will affect him or her physically (characteristics of pain, effects on ability to 
walk, work, and carry on daily activities), emotionally (discouraged), and socially (withdrawn, avoid social 
activities). Other examples of meaningful outcomes are (a) for depression: You are more likely to answer 
the phone or go out with your family; (b) for attention deficit disorder: Your child is more likely to read at 
grade level or to have friends.

·   Ask the person to implicitly consider the personal importance of the positive and negative outcomes. 
Sometimes decision support includes explicit values clarification exercises using numerical approaches (e.g., 
rating scales (0 = not at all important to 10 = very important). The relative value of explicit approaches is 
under investigation.

·   A person needs a strategy for communicating his or her values when discussing the options with others. 
People, including clinicians and family members, are not very good at judging the values of others. It may 
be helpful to use rating scales or balance scales showing what is important that can be viewed “at a 
glance.”

Unclear or biased perceptions of others’ opinions. The optimal method for presenting the experiences of others 
in the form of narratives is under active investigation.

·   Explain available options to broaden personal awareness of alternatives.
·   Present examples of others’ choices, in a balanced manner, so that a person is aware that people choose 

different options and there is no “one size fits all” answer.
·   Provide statistics on variation in choice (e.g., the percentage of people who choose the different options that 

are available; the differences in practitioners’ opinions; or the differences in practice guidelines). It is also 
helpful to present the rationales behind the differing opinions. Often, differences in choices reflect scientific 
uncertainty, or differences in people’s circumstances, tolerance for risk or uncertainty, or values.
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Social pressures. Conflict resolution approaches may be useful but have not been tested.

·   Explore the nature of the pressure, including its source, the areas of agreement and disagreement, and the 
reasons behind differences in points of view. 

·   Guide the person to (a) verify his or her perceptions of others’ opinions in case there are misconceptions; 
(b) focus on those whose opinions matter most; and (c) handle relevant sources of pressure. 

·   Strategies for dealing with people who are exerting pressure include (a) planning how to communicate 
information and values; (b) inviting others to discuss their perceptions of options, benefits, harms, and 
values to find areas of agreement and disagreement; (c) mobilizing social support; and (d) identifying a 
mediator, if needed. Role play and rehearsal of strategies may help.

Lack of support or resources. Help a person access support or resources needed to make the decision. Resources 
may include health professionals who are personal advocates, family and friends, support groups, or services 
from voluntary or government sectors. In some cases the practitioner’s support is all that is needed to make the 
decision.

Lack of skills or confidence in decision making. Provide structured guidance, or coaching in the steps of decision 
making (i.e., deliberating about a decision) and communicating preferences. There is limited evidence that 
coaching in addition to information improves decision making.

Preferred role in decision making. The type of guidance will depend on the role people prefer to take in decision 
making. According to Rothert and Talarczyk, the clinicians’ expertise lies in providing information about the 
options available, their outcomes, the associated risk/probability, and the healthcare resources required and 
available. The patients’ expertise includes their preferences or values and personal, social, and available 
economic resources.

·   Degner and colleagues identified three profiles of preference for decisional control: those who want to 
keep, share, or give away control of decision making. “Keepers” might guide the deliberation and ask their 
practitioner for input on the scientific facts. Practitioners might start by providing guidance to “sharers,” 
who would then become actively involved in the decision. A more advisory role might be used by 
practitioners with those who want to give away control, who would then be asked to provide informed 
consent. It is important, however, for practitioners not to take preferred roles in decision making 
completely at face value; providing people with decision support often increases their desire for active 
participation in decision making. Therefore, people need adequate information about the issues and time to 
consider which decision-making role they prefer to take.

Decision type, timing, stage, and leaning. Practitioners need to tailor decision support to the type of decision. For 
example, the approach may differ if the focus is on screening for prostate cancer, treatment of early-stage disease, 
treatment of recurrence, or end-of-life care. Tailoring support also depends on timing. Short timelines to make big 
decisions often increases stress, but very long timelines may increase decision delay. In the very early and very late 
stages of decision making it is important to gauge a person’s receptivity to new information and further 
deliberation. Otherwise, decision support may be irritating or unproductive. The aim of decision support is to 
help the person progress in his or her stage of decision making, not necessarily “change.” Sometimes “maintaining 
the status quo” is a reasonable option (e.g., forgoing PSA testing, amniocentesis, or hormone therapy).

Personal and clinical characteristics. Decision support should be gender-sensitive and appropriate for an 
individual’s age, developmental stage, education, socioeconomic status, and ethnicity. Adjustments should be 
made to accommodate a person’s physical, emotional, and cognitive capacities. Involving the family or a 
personal advocate is important when the person’s capacities are limited. The characteristics of the practitioner 
will also influence decision support, based on a person’s training, experience, and counseling style.

Monitoring and facilitating progress. Once needs have been addressed, monitor progress in resolving needs, 
moving through the stages of decision making, and achieving the goal of decision quality (informed, choice 
matches features that matter most to the informed patient). Decision tools help a patient consider and become 
committed to taking the next steps.
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options. They reduce the uptake of discretionary 
surgical options that informed people don’t value 
when baseline rates of these procedures are high. 
They also increase the uptake of colon cancer 
screening options, which are underused, and lower 
the rates of prostate cancer screening tests, which 
are overused.

Gaps in Research

Although decisional conflict is common and deci-
sion support interventions can address its modifi-
able contributing factors, there are three major 
knowledge gaps. First, most large studies describ-
ing people’s decisional conflict are from North 
America. Therefore, more descriptive research is 
needed on the prevalence of decisional conflict and 
related factors for the many decisions people face 
in more diverse populations. Second, the Decisional 
Conflict Scale elicits people’s “overall comfort 
level” with their knowledge, values, and support. 
These comfort levels are only modestly correlated 
with a person’s knowledge test scores and their 
match between their values and the chosen option. 
Researchers still don’t know the relative contribu-
tion of each of these variables to downstream 
behavior. Third, practitioners should be trained to 
recognize and screen for decisional conflict in their 
patients so they can refer those who require assis-
tance in resolving their decisional needs. A 4-item 
clinical version of the Decisional Conflict Scale 
may hold promise in this regard.

Annette O’Connor and France Légaré

See also Decision Making in Advanced Disease; Patient 
Decision Aids; Shared Decision Making
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Decision analyses, common 
errors maDe in conDucting

Decision analytic modeling (DAM) has been 
increasingly used within the past 30 years to syn-
thesize clinical and economic evidence and sup-
port both clinical and policy-level decision making. 
Decision models often represent complex decision 
and synthesize data from a variety of sources, and 
they may be difficult to validate and interpret. 
Thus, while DAM can be extremely useful, it is 
also difficult to do well. Errors are common 
among neophytes and not uncommon even in 
published decision analyses. This entry reviews 
the steps associated with constructing a decision 
model and describes several of the most common 
errors in model construction, analysis, and inter-
pretation. It considers both conceptual errors in 
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model construction and errors of computation or 
calculation. Although DAM is commonly used in 
economic evaluation, the purview of this entry 
extends only to model-related aspects of economic 
evaluation.

Comparators

Every decision analysis compares at least two 
options. If the decision is a clinical one (e.g., how 
should localized prostate cancer be treated?) all 
feasible and practical options should be consid-
ered. These might include doing nothing (or active 
surveillance), surgery, radiation, brachytherapy, or 
cryotherapy, and more. If the decision is a policy 
decision (say, whether a national human papillo-
mavirus vaccination program should be funded), 
the same criteria apply: Feasible and practical 
options might include no vaccination, universal 
vaccination, vaccination targeted at high-risk 
groups, vaccination targeted at specific age groups, 
and more. Feasible and practical are clearly subject 
to interpretation, but the key ideas are that all 
options that stand a realistic chance of being 
implemented (feasibility) should be examined, 
given the resources available to address the prob-
lem (practicality).

The decision analysis neophyte often is reluc-
tant to include many options because of concerns 
that the model will become unmanageably com-
plex. As a result, many models consider only the 
two or three most intuitively attractive options. 
Options such as “do nothing” or “supportive care 
only,” or alternate frequencies or intensities of an 
intervention may be avoided. This is acceptable if 
the goal is to gain experience in modeling, but it is 
not acceptable if the goal is to choose the best 
therapeutic or policy option.

More advanced analysts may also inappropri-
ately constrain the potential options considered. 
This may be because of a desire to adhere closely 
to the best quality evidence published in high- 
impact journals. Or it may be a strategic decision 
to put a new drug or device in the best possible 
light by choosing a plausible but weak comparator 
or by avoiding comparisons across types of inter-
ventions (e.g., comparing drugs only to drugs but 
not to surgery). Regardless of the reason, inappro-
priately constraining the set of comparators is a 
common and serious error in modeling.

Model Structure

Decision models represent potential outcomes of 
alternate strategies using models, which may be 
simple decision trees, discrete-time state-transition 
(i.e., Markov) models, discrete-event simulation 
models, or dynamic infectious disease models. 
Models may be simple or complex, but should cor-
respond to an underlying theory or biological 
model of disease.

Underrepresentation

In particular, models must capture important 
differences across strategies. For example, if two 
strategies differ mainly in adverse effect profile, the 
structure of the model must represent adverse 
effects. An important and common example of 
underrepresentation is the use of cohort simulation 
models to represent decision problems in which 
events within the cohort affect members outside 
the cohort. For example, vaccination will protect 
individuals within a cohort, but the herd immunity 
associated with high rates of coverage will confer 
benefits beyond the cohort. Failure to represent 
these additional benefits of vaccination will inac-
curately represent the true effect of vaccination on 
the entire population.

Unclear or Inappropriate Target Population

Neophytes in particular are often unclear about 
which population is being represented in the 
model. Models should represent a specific group 
or population. This includes a value or distribution 
for age, sex, disease severity, and prevalence and 
type of comorbid illness.

Perspective

When the perspective of a decision problem 
extends beyond the individual patient, modeling 
outcomes only for the patient represents an error. 
For example, the question of optimal approaches to 
testing for fetal abnormalities potentially affects the 
parents, the fetus, and other family members. While 
appropriate valuation of these outcomes is difficult, 
constraining the decision problem to one perspective 
is incorrect, unless the perspective taken is explicitly 
that of only one individual. Similar errors are often 
present in models that represent health outcomes of 
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children but ignore families, and models that con-
sider the elderly or disabled, but ignore caregivers.

Time Horizon Bias

Every model represents a limited period of time. 
The time horizon of the model should extend to or 
beyond the point at which there are no differences 
between strategies in life expectancy and quality of 
life. Neophytes often prefer short time horizons 
because this reduces model complexity. For exam-
ple, a model designed to compare computed 
tomography with abdominal ultrasound imaging 
for suspected appendicitis in children might focus 
on short-term events around the abdominal pain, 
imaging, surgery, and immediate perioperative 
outcomes. However, one of the main concerns of 
parents and clinicians is avoiding unnecessary 
radiation. Thus, representing the long-term cancer 
risk associated with radiation is an essential aspect 
to correctly representing this decision problem.

This error is also common among more experi-
enced modelers. For example, decision models 
often closely follow randomized trials. Because the 
time horizon of trials is often short, important dif-
ferences in quality of life and mortality that extend 
beyond the horizon of the trials may not be repre-
sented in models, and bias is therefore introduced. 
While experienced modelers are often aware of 
this problem, they may adopt inappropriately 
short time horizons, in the interest of enhancing 
the apparent scientific credibility of the model to 
clinical or policy audiences, by reducing the com-
plexity and the number of assumptions in the 
model. This is a common and often serious error.

Mortality From Other Causes

While focusing on a particular disease, modelers 
may neglect to represent competing causes of mor-
tality in a decision model. This means that subjects 
in the model remain at risk of disease-related adverse 
events for longer. Differences across strategies may 
be exaggerated, and error is therefore introduced.

Half-Cycle Correction Problems

As the name suggests, discrete-time cohort sim-
ulation models represent risk in discrete time peri-
ods. Models represent events as occurring at the 
beginning or end of discrete time intervals, whereas 

events can actually occur throughout the interval. 
Half-cycle correction adjusts for this property of 
discrete time models by adding (or subtracting) the 
value (life expectancy, quality-adjusted life expec-
tancy, or cost) associated with half of one cycle 
length. Neophytes often neglect to introduce a 
half-cycle correction or assign the incorrect sign to 
the correction (subtraction instead of addition of a 
half-cycle or vice versa).

Symmetry

Symmetry refers to consistent representation of 
model events and outcomes across strategies. 
Errors of symmetry often occur when modelers use 
different structural elements (e.g., tree fragments, 
Markov states) or variable names and expressions 
across different strategies that represent the same 
components of the decision problem. Events and 
outcomes may not be represented or be repre-
sented in a different manner when alternate struc-
tures are used. Experienced modelers frequently 
use a common model structure for all strategies to 
avoid this error.

Model Data

Obtaining, analyzing, and adjusting data for use in 
decision analytic models represent perhaps the 
greatest challenge in developing valid models.

Lamppost Bias

The availability of data may constrain and shape 
the structure of decision models. While some 
degree of adaptation may be necessary, it is an 
error to allow the available evidence to play a fun-
damental role in shaping the structure of the model, 
just as it is an error to confine a search to the loca-
tion of the available light. The structure of the 
model must be shaped primarily by the decision 
problem, not the availability of evidence. This 
refers to inclusion of comparators and other aspects 
of structure, as described above. For example, rep-
resenting only treatments or adverse effects for 
which there is strong evidence represents an error.

Rate to Probability Conversion

Transitions between states in Markov models 
for a discrete time period are commonly expressed 
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using probabilities, referred to as transition prob-
abilities. However, these data are commonly 
abstracted from the literature in the form of rates. 
While rates are close to probabilities for very small 
values, this is less true for larger values. A common 
neophyte error is to neglect the conversion of rates, 
as obtained from the literature, into probabilities.

Errors in Value Structure

A complete set of utilities for important health 
outcomes is rarely available from a single source. 
Many variables may affect utility values reported 
in the literature, including source of preferences 
(patients vs. experts or members of the general 
public), scaling method, use of direct or indirect 
utility elicitation, instrument used for indirect util-
ity elicitation (e.g., Health Utilities Index vs. 
EQ-5D), and computer-assisted versus interview-
assisted elicitation, among others. Judgment must 
therefore be applied when utilities from widely 
disparate sources are used. In particular, the ordi-
nal relationships among important health out-
comes should, in general, be reflected in ordinal 
scores among utility values used in the model. 
Uncritical use of published data may result in a 
model value structure that is not internally consis-
tent or does not correspond with an a priori model 
of disease. A common error is to overweight the 
size, quality, or place of publication of a utility 
study, and underweight consistency and appropri-
ate ordinal relationships among model values.

Adjustment for Age and  
Comorbidity-Related Utility

As patients age, utility scores for current health 
status decline. This may be due to acquired comor-
bidity, age-related decline in functional status, 
change in preference structure as patients age, or a 
combination of these. A frequent error in repre-
senting the value structure of a model is to assume 
that the utility of individuals without the disease in 
question can be assigned a value of 1.0. This 
assumption results in overestimation of the differ-
ence in utility scores between those with and with-
out disease, and correspondingly may overestimate 
the benefit of treatment or prevention.

A companion error is to adjust for age-related 
comorbidity among patients without disease but 

fail to adjust among patients with disease. For 
example, if the mean utility for 70-year-old indi-
viduals is .90, and the disutility (1 − utility) asso-
ciated with renal failure is .40, the utility for a 
70-year-old with renal failure should reflect the 
contribution of both factors. A common method 
of adjustment is to assume that utility is multi-
plicative, and simply multiply (e.g., .90 × (1 − 
.40) = .54).

Internal Consistency

Internal consistency refers to the internal math-
ematical structure of a decision model. Internal 
consistency is most frequently evaluated using uni-
variate sensitivity analysis. Changes in values of a 
single variable should have predictable effects on 
model outputs. A common error is to evaluate 
inconsistency in a haphazard or unsystematic way. 
Every variable should be tested across a broad 
range. Any deviation from predicted behavior rep-
resents either a failure of internal consistency  
(a “bug”) or an insight, but more commonly the 
former. An equally common error is to identify 
internal consistency problems but fail to correct 
them because of time or resource constraints.

Murray Krahn and Ava John-Baptiste
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Decision BoarD

The decision board is a visual aid to help clini-
cians present information about different courses 
of action in an efficient and standardized manner. 
The sole goal of the decision board is to improve 
communication (i.e., improve information trans-
fer). The decision board can (and has been) suc-
cessfully modified for other uses: to describe the 
options to choose between in willingness-to-pay 
(WTP) surveys and to elicit treatment options of 
potential patients and patients for policy decision 
making.

Context

What is the best treatment for an individual 
patient? It is important to realize that there is often 
no right or wrong choice. For example, the case of 
adjuvant chemotherapy for patients with breast 
cancer presents a situation of choice between 
potential morbidity and disability now (due to 
therapy, if chosen) and potential morbidity and 
inconvenience later (due to recurrence of the dis-
ease). The uncertainty of the outcome at the indi-
vidual level (i.e., there is no way to know in 
advance what will happen to an individual patient) 
further complicates the problem and makes the 
choice a very difficult one. Thus, the question of 
which course of action to take becomes a prefer-
ence judgment. However, to make an informed 
preference judgment one needs to know the rele-
vant courses of action and their potential risks and 
benefits.

Treatment decision making typically takes place 
within the context of a doctor-patient encounter. 
This process is both complex and dynamic and 
can be done using different approaches (i.e., pater-
nalistic, shared, and informed approaches, with 
myriad in-between approaches that combine com-
ponents of different approaches). Besides the pater-
nalistic approach, the vast majority of approaches 
require that the physician inform the patient about 
the relevant courses of action and their potential 
benefits and risks. This is due to the fact that, typi-
cally, a doctor is required to determine the diagno-
sis about the type and severity of the patient’s 
illness, on the basis of which the determination of 
the available courses of action will be made.

Communication difficulties between doctors 
and their patients are a well-known problem. It 
has been argued that doctors and patients talk to 
each other with different voices. The voice of 
medicine is characterized by medical terminology, 
descriptions of medical symptoms, and the classifi-
cation of these within a reductionist biomedical 
model. The voice of patients, on the other hand, is 
characterized by nontechnical discourse about the 
subjective experience of illness within the context 
of social relationships and the patient’s everyday 
world. Many studies document that communica-
tion misunderstandings experienced by doctors 
and their patients are common.

Goals and Benefits

The decision board should provide all the relevant 
clinical information that a patient needs to make a 
decision or participate in the decision-making pro-
cess, if he or she wishes to do so. The potential 
morbidity and mortality effects are described in a 
probabilistic manner, acknowledging the fact that 
the final outcome and course of any intervention 
are uncertain. In other words, there is no way to 
predict what will happen to an individual patient. 
Scenarios are constructed to describe the treatment 
options (e.g., in the case of early-stage breast can-
cer after surgery, adjuvant chemotherapy vs. no 
further treatment) and the potential side effects 
(e.g., in the case of chemotherapy, hair loss, stom-
ach upset, vomiting). Scenarios are also constructed 
to describe the potential outcome of each treatment 
option (e.g., in the case of chemotherapy, a cancer-
free scenario and a cancer returns scenario).

The decision board can be seen as a specific 
form of decision aid. Various types of decision aids 
have been developed over the years designed to 
help participants in the medical encounter to make 
treatment decisions. In terms of the goals to be 
achieved by using a decision aid, different authors 
have different ideas about what the primary goal 
should be. Two goals are most commonly cited: 
(1) to provide patients with information on the 
potential benefits and risks of different options 
and (2) to help patients clarify their values so that 
they will make treatment choices that are consis-
tent with their values. Some other goals mentioned 
are lowering the cost of care, reduction of deci-
sional conflict, improving patient satisfaction with 
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the decision-making process, encouraging patients 
to be more involved in the decision-making pro-
cess, and improving clinical outcomes. While there 
is agreement on the role of decision aids in infor-
mation transfer (or knowledge acquisition), there 
is still debate on whether the other goals are 
appropriate and feasible.

The sole goal of the decision board is to improve 
communication (i.e., improve information trans-
fer) about potential courses of action by presenting 
information simply, using spoken and written lan-
guage supported by the use of visual aids and rely-
ing on repetition. It has been found that when the 
decision board is administered by the clinician 
(e.g., doctor), it helps build the relationship between 
the clinician and the patient. It helps facilitate two-
way communication and encourages questions 
from patients and responses from the clinician. 
This should be seen as an additional benefit and 
cannot be assumed to happen every time a decision 
board is used. In many cases, a relationship 
between the doctor and the patient already exists 
(e.g., in the case of a family physician or a specialist 
treating a chronic condition). In other cases (e.g., a 
cancer patient meeting his or her oncologist the 
first time), building the relationship between the 
patient and his or her doctor might be important.

Format

It is important to emphasize that the decision board 
does not have a fixed format. It can be seen as a 
“concept” that leaves “artistic freedom” for its 
creators to modify according to the special features 
of the medical problem dealt with. However, within 
that artistic freedom, a few “rules” should be kept 
to. For example, after describing all the informa-
tion about the different courses of action (i.e., the 
different “pieces of the puzzle”), a visual aid where 
all these elements are integrated (i.e., a full picture) 
should be available. This is because it is known that 
most individuals cannot judge a situation only by 
valuing the different parts separately. They need to 
see the full picture to be able to compare the differ-
ent options. Also, a take-home version should be 
available for patients, because few decisions are so 
urgent as to need immediate answers. Where it is 
feasible, agreeing to defer the decision to allow time 
for further understanding of the options and for 
deliberation would be helpful. Finally, the decision 

board should be easy to administer, inexpensive to 
produce, and easily modified to incorporate local 
variations in practice or new clinical information 
that becomes available.

The first decision board was developed in 1990 
for use in the situation of adjuvant chemotherapy 
for node-negative breast cancer. The board was 
made of foamcore, which was found to be both 
lightweight and more durable than cardboard. 
With the advent of computer capability, the deci-
sion board was computerized, too. The move to a 
computer-based version has opened new opportu-
nities (e.g., ease of providing more tailored infor-
mation, ease of supplementing core information on 
an individual basis, and the ability to present tech-
nical information in alternative ways to suit patients’ 
needs) but created other challenges (e.g., difficulties 
in presenting the full picture due to constraints 
regarding screen size). Examples of schematic pre-
sentations of decision boards can be found in arti-
cles mentioned in the Further Readings section.

Research Findings

The decision board was tested in several well- 
conducted studies (including several randomized 
controlled trials, where it was compared with cur-
rent practice). It was found to be clear and under-
standable, valid, and reliable, and improves 
information transfer (e.g., knowledge about poten-
tial treatment options, their potential benefits and 
risks). It was also found to be easy to administer 
and use. It was well accepted by clinicians and 
patients and is currently being used as part of regu-
lar practice in different places. Even though it is not 
the goal of the decision board, it is interesting to 
note that it was also found that patient satisfaction 
with decision making was improved. When tested, 
it was found that the average time of consultation 
with the decision board was not increased as com-
pared with the average time of consultation without 
the board. While it is not the goal of the decision 
board to maintain (or even reduce) the time of con-
sultation, this is still an interesting finding.

Nonclinical Uses

The decision board can be easily modified to serve 
as an instrument describing the options to choose 
between in WTP surveys. In WTP studies, individuals 
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are asked to (a) choose a preferred course of action 
(or program) and then (b) indicate the maximum 
amount they are willing to pay to ensure that their 
preferred option will be available if needed. A weak-
ness that was identified in many WTP questionnaires 
is the lack of clarity in describing the options com-
pared in terms of their potential benefits and risks. 
This cast doubts on the validity of the WTP values 
provided by respondents. The modified decision 
board was offered as a way to explain the choices to 
participants in surveys. Because the concept was 
found to be useful in explaining treatment options to 
real patients (who are often anxious and confused), 
it seemed that it would work with healthy people. 
Indeed, using a modified decision board to explain 
the different courses of action was shown to be help-
ful. It was also felt that the use of the decision board 
can also enhance the credibility of the results among 
users of information, as it makes explicit the exact 
question faced by the respondent in the study. 
However, this point has not been tested yet.

A modification of the decision board is required, 
because typically subjects in a WTP survey are not 
patients who suffer from the disease. They should 
be members of the general population who are 
typically healthy people. The modification of the 
decision board depends on whether the WTP ques-
tion is being asked ex post (i.e., WTP at the point of 
consumption) or ex ante (i.e., insurance-based 
approach). For an ex post–type WTP instrument, a 
preamble is required to describe the medical condi-
tions for which the different courses of action 
described are required. This helps healthy respon-
dents imagine that they are at the point of consump-
tion of the services described. For an ex ante–type 
WTP instrument, the preamble should have addi-
tional information about the risk of the condition/
disease to the individual (or loved ones or other 
people in the population, depending on the nature 
of the disease and the question asked). In other 
words, for an insurance-based question, the respon-
dents need to know the likelihood of their being at 
the point of consumption.

The decision board can also be used to elicit the 
preferences about treatment options of potential 
patients and patients for policy decision making 
(rather than clinical decision making). An example 
of such use is a study which attempted to assess if 
potential patients prefer tissue plasminogen activa-
tor (tPA) over streptokinase (SK). In patients with 

acute myocardial infarction, tPA (compared with 
SK) has been shown to reduce the 30-day mortality 
rate at the expense of an increased rate of stroke. 
The assumption in the literature was that, were it 
not for cost issues (tPA is much more expensive), all 
patients presenting with myocardial infarction 
would choose tPA. A decision board describing the 
treatment options (without mention of the drug 
names) was used in face-to-face interviews with 
individuals at risk for having the event in two hos-
pitals (as it is not possible to ask patients who are 
experiencing the event). It was found that a sub-
stantial proportion of individuals who could poten-
tially require thrombolytic therapy chose SK over 
tPA. This finding, if found to be consistent, has 
significant implications for clinical decision making 
as well as economic and policy implications.

Amiram Gafni

See also Patient Decision Aids; Shared Decision Making; 
Willingness to Pay
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Decision curve analysis

Decision curve analysis is a straightforward tech-
nique for evaluating diagnostic tests, prediction 
models, and molecular markers. Unlike traditional 
biostatistical techniques, it can provide informa-
tion as to a test’s clinical value, but unlike tradi-
tional decision analytic techniques, it does not 
require patient preferences or formal estimation of 
the health value of various health outcomes: Only 
a general clinical estimate is required. Differences 
between biostatistical techniques, decision-analytic 
techniques, and decision curve analysis are shown 
in Table 1.

A common clinical problem is when a physician 
can easily obtain information about T—the result 
of a diagnostic test, the level of a molecular marker, 
or a probability from a statistical prediction mod-
el—but wants to know D, whether or not a patient 
has, or will develop, a certain disease state. From a 
research perspective, the analyst’s task is to deter-
mine whether doctors should obtain T in order to 
make decision about D.

In this entry’s motivating example, D is whether 
the patient has prostate cancer and is used in deci-
sions about whether or not to conduct a prostate 
biopsy; T may be the result of a digital rectal 
examination (normal vs. abnormal) or the level of 

prostate-specific antigen (PSA), or it may be a pre-
diction model based on multiple factors (such as 
age, race, and family history). This example is used 
to discuss drawbacks of the traditional biostatisti-
cal and decision analytic approaches to evaluating 
the value of T, whether a binary diagnostic test, a 
statistical prediction model, or a molecular marker. 
Then this entry discusses the novel method of deci-
sion curve analysis.

Biostatistical Approaches  
and Their Drawbacks

Biostatistical analysis of prediction models, diag-
nostic tests, and molecular markers is largely con-
cerned with accuracy. Such metrics have been 
criticized by decision analysts as having little clini-
cal value. An accurate test, prediction model, or 
marker is, in general, more likely to be useful than 
one less accurate, but it is difficult to know for any 
specific situation whether the accuracy of a test, 
prediction model, or marker is high enough to 
warrant implementation in the clinic. For example, 
if a new blood marker for prostate cancer increased 
the area under the curve (AUC) of an established 
prediction model from .77 to .79, would this be 
sufficient to justify its clinical use?

Decision Analytic Approaches  
and Their Drawbacks

Decision analysis formally incorporates the conse-
quences of test results and can therefore be used to 
determine whether use of a prediction model, diag-
nostic test, or molecular marker to aid decision 
making would improve clinical outcome. A typical 
approach is to construct a decision tree as shown in 
Figure 1. We denote probabilities and values of each 
health outcome, respectively, as pxy and as bxy, 
where x is an indicator for the test result and y is the 
indicator for disease. To determine the optimal deci-
sion, the values of each outcome are multiplied by 
their probability and summed for each decision; the 
decision with the highest expected value is chosen.

To obtain pxys for a statistical model or molecu-
lar marker, the analyst has to choose a cut point in 
order to dichotomize results into positive and 
negative. Different analysts can disagree about the 
appropriate cut point, entailing that the analysis 
may need to be run several times for a range of 
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reasonable alternatives. Choice of bxys can be even 
more difficult. A bxy may require data from the 
literature that can be hard to come by or contro-
versial; moreover, a bxy may require judgments that 
may reasonably vary from patient to patient. The 
need for additional data may be one of the reasons 

why the number of biostatistical evaluations of 
tests, prediction models, and markers dwarfs the 
number of decision analyses: In one systematic 
review of more than 100 papers on cancer mark-
ers, researchers failed to find a single decision 
analysis.

Table 1  Comparison of decision curve analysis with traditional statistical and decision analysis

 Traditional Statistical 
Analysis

Traditional Decision 
Analysis

Decision Curve Analysis

Mathematics Simple Can be complex Simple

Additional data Not required Patient preferences, costs 
or effectiveness

Informal, general estimates

Endpoints Binary or continuous Continuous endpoints 
problematic

Binary or continuous

Assess clinical value? No Yes Yes

Biopsy

No biopsy

Cancer

No cancer

Test

Biopsy

No biopsy

No cancer

No cancer

No cancer

Cancer

Cancer

Cancer

p11

p10

p01

p00

b11

b10

b01

b00

b11

b10

b01

b00

p11 + p01 

p10 + p00

p11 + p01 

p10 + p00

Figure 1   Traditional decision tree to evaluate a test for prostate cancer in men with elevated prostate-specific 
antigen (PSA)



271Decision Curve Analysis

Theoretical Background to  
Decision Curve Analysis

Traditional decision analysis, unlike biostatistical 
analyses, can determine the clinical value of a test, 
prediction model, or marker; however, it requires 
additional parameters, pxy and bxy, that can be dif-
ficult to specify. Decision curve analysis starts by 
showing that pxys and bxys can be related through 
a simple, clinically interpretable quantity: the 
threshold probability of disease at which a patient 
or clinician would opt for further action. The 
threshold probability of disease is then used to 
calculate the “net benefit” of different treatment 
strategies, such as biopsying all men, or biopsying 
on the basis of a marker. The strategy with the 
highest net benefit should be used in the clinic.

Threshold Probability of Disease

It is highly unlikely that a man would consent to 
a prostate biopsy if he was told that his probability 
of prostate cancer was 1%. Conversely, if the man 
was told that he had a 99% probability of cancer, 
there is little doubt as to his course of action. If we 
were to increase the probability of cancer gradually 
from 1% to 99%, there would come a point where 
a man would be unsure of whether or not to be 
biopsied. We define pt, the threshold probability of 
disease for taking some action, such as biopsying a 
man for prostate cancer: If a patient’s estimated 
probability of disease is greater than pt he will opt 
for biopsy; if it is less than pt, he will not opt for 
biopsy. When the probability of disease is equal to 
the threshold probability pt, the benefits of opting 
for biopsy or no biopsy are equal:

b11× pt + b10 × (1 – pt) = b01 × pt + b00 × (1 – pt),

and, therefore,

 (1)

Now b00 − b10 is the benefit of true negative result 
compared with a false positive result; in clinical 
terms, the benefit of avoiding unnecessary treat-
ment such as a negative biopsy. Comparably, 
b11 − b01 is the benefit of a true positive result com-
pared with a false negative result; in other words, 
the benefit of treatment where it is indicated, such 

as a biopsy in a man with cancer. Equation 1 there-
fore tells us that the threshold probability at which 
a patient will opt for treatment is informative of 
how a patient weighs the relative benefit of appro-
priate treatment as compared with the benefit of 
avoiding unnecessary treatment. As an example, if 
a man stated that he would opt for biopsy if his 
risk of prostate cancer were 20% or higher, but 
not if his risk were less than 20%, we can say that 
this man thinks that finding a prostate cancer early 
is worth four times more (i.e., .20 ÷ (1 – .20)) than 
avoiding the risks, pain, and inconvenience of an 
unnecessary biopsy.

We can rearrange Equation 1 to obtain

(2)

Net Benefit

The idea of net benefit is similar to that of 
profit. A business owner choosing between several 
possible investment opportunities will estimate the 
expected income and expenditure for each and 
then choose the option that maximizes the differ-
ence between the two.

In medicine, the corollary to income and expen-
diture is benefit and harm; more specifically, in the 
case of a diagnostic test, prediction model, or 
molecular marker, benefit is true cases identified 
and appropriately treated (T+, D+, or true posi-
tives); harm is unnecessary treatment (T+, D−, or 
false positives). In our prostate cancer example, we 
want to biopsy men with prostate cancer (true 
positives) and avoid unnecessary biopsies of men 
without cancer (false positives). However, “finding 
cancer” and “avoiding unnecessary biopsy” are 
not equivalent in value. Equation 2 gives the num-
ber of false positives we would exchange for a true 
positive in terms of the threshold probability. This 
becomes our way to convert between “finding can-
cer” and “avoiding unnecessary biopsy.” Where n 
is the total number of men in the cohort, net ben-
efit is given as

 (3)

As an illustration, in a cohort of 728 men 
undergoing biopsy, 202 had cancer; 479 of the 
men had a risk of cancer of 20% or higher using 
a prediction model, of whom 163 had cancer. The 

b00 − b10

b11 − b01
= pt

1− pt
:

− b10 − b00ð Þ= b11 −b01ð Þ pt

1− pt

 
:

True positives− False positives× pt
1 pt

 

n
:
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net benefit at a threshold probability of 20% for 
biopsying all men is (202 (true positives) − 526 
(false positives) × .25) ÷ 728 = .0968; the net ben-
efit of using the prediction model is (163 (true 
positives) − 316 (false positives) ×.25) ÷ 728 = 
.1154. Hence, use of the prediction model would 
lead to a higher net benefit and better clinical 
outcome.

The unit of net benefit is the number of true 
positives per patient: It therefore has a maximum 
at the prevalence, but no minimum. A net benefit 
has a simple clinical interpretation. For example, a 
difference in net benefit between two prediction 
models of .02 could be interpreted as “Using 
Prediction Model A instead of Prediction Model B 
is equivalent to a strategy that increased the num-
ber of cancers found by 2 per 100 patients, with-
out changing the number of unnecessary biopsies 
conducted.”

Decision Curve Analysis

The threshold probability pt can be used both to 
define positive and negative test results and to pro-
vide a decision analytic weight. The first stage of 
decision curve analysis is therefore to use logistic 
regression to convert the results of the test, marker, 
or prediction model into a predicted probability of 
disease p̂. Decision curve analysis then consists of 
the following steps.

 1. Choose a threshold probability (pt) for 
treatment. Here, “treatment” is defined 
generally as any further action, such as drug 
therapy, surgery, further diagnostic work-up, or 
a change in monitoring, depending on the 
particular clinical situation.

 2. Define patients as test positive if p̂ ≥ pt and 
negative otherwise. For a binary diagnostic test, 
p̂ is 1 for positive and 0 for negative.

 3. Calculate net benefit of the test, marker, or 
prediction model using the formula for net 
benefit in Equation 3.

 4. Calculate clinical net benefit for the strategy of 
treating all patients. Where π is the prevalence, 
this simplifies to

(4)

 5. The net benefit for the strategy of treating no 
patients is defined as zero.

 6. The optimal strategy is that with the highest 
clinical net benefit.

 7. Repeat Steps 1 to 6 for a range of threshold 
probabilities.

 8. Plot the net benefit of each strategy against 
threshold probabilities.

Interpretation of Decision Curves

To illustrate decision curve analysis, data from 
men undergoing prostate biopsy in Göteborg, 
Sweden, as part of a randomized trial of PSA 
screening for prostate cancer (ERSPC) are used. 
One of the drawbacks of the PSA test is that it 
has a positive predictive value in the 20% to 30% 
range, such that most men with PSA levels above 
the cut point for biopsy do not have prostate 
cancer.

Figure 2 shows decision curves for various 
biopsy strategies in men with elevated PSA in the 
first round of the ERPSC. These strategies are as 
follows: biopsy all men (thick grey line); biopsy no 
man (thick black line); biopsy only those men with 
an abnormal clinical examination (the digital rec-
tal examination [DRE]; thin grey line); biopsy on 
the basis of a statistical prediction model incorpo-
rating PSA level and DRE (dashed line); biopsy on 
the basis of a statistical prediction model of PSA, 
DRE, and an additional molecular marker, the 
ratio of free-to-total PSA (thin black line). Note 
that the decision curves are shown only for prob-
ability thresholds of 10% to 40%. Only these 
thresholds are shown because we have asked clini-
cians about what would constitute a reasonable 
range: A typical response is that few men would 
opt for biopsy if they were told they had a risk of 
prostate cancer less than 10%; on the other hand, 
it is hard to imagine that a man taking a PSA test 
would want at least a 50:50 chance of cancer 
before agreeing to biopsy. The decision curve 
shows that the statistical prediction model includ-
ing PSA, DRE, and free-to-total PSA ratio has the 
highest net benefit across the whole 10% to 40% 
range. We can therefore conclude that using this 
prediction model, and the new marker, will improve 
clinical outcome.

p− ð1− pÞ× pt

1− pt

 
:
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It is informative to imagine Figure 2 if it had only 
shown the decision curve for the PSA and DRE pre-
diction model (the dashed line). The net benefit for 
this prediction model is only superior to the alterna-
tive strategy of biopsying all men for probability 
thresholds of 20% or higher. We would interpret this 
as showing that use of the prediction model would 
help some, but not all men. However, it might also be 
pointed out that the prediction model only requires 
data that is routinely collected and is never worse 
than biopsying all men, so there is little harm in using 
it, perhaps advising risk-averse men to biopsy irre-
spective of their risk from the prediction model. If, on 
the other hand, the prediction model required an 
additional invasive test or measurement of a novel 
marker, the decision curve analysis can be described 
as “equivocal,” and it is recommended that a more 
formal and complex decision analysis be conducted.

Comparison of Decision Curves With 
Conventional Decision Theory

Figure 2 shows several characteristics of decision 
curves that are congruent with conventional  

decision theory. First, the decision curve for 
“biopsy all men” crosses both the x and the y axis 
at the prevalence (26%). If the threshold probabil-
ity is 0 (i.e., x = 0), then false positives have 0 
weight, and so net benefit becomes the proportion 
of true positives, which, in the case of biopsying 
everyone, is the prevalence. For y = 0, imagine 
that a man had a risk threshold of 26% and asked 
his risk under the “biopsy all” strategy. He would 
be told that his risk was the prevalence (26%). 
When a man’s risk threshold is the same as his 
predicted risk, the net benefit of biopsying and not 
biopsying are the same. Second, the decision curve 
for the binary test (DRE) crosses that for “biopsy 
all men” at 1 − negative predictive value, and 
again, this is easily explained: The negative predic-
tive value is 81%, so a man with a negative test 
has a probability of disease of 19%; a man with a 
threshold probability less than this—for example, 
a man who would opt for biopsy even if his risk 
was 15%—should therefore be biopsied even if he 
was DRE negative. Furthermore, although this 
cannot be seen in Figure 2, the decision curve  
for DRE is equivalent to “biopsy no one” at the 
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Figure 2  Decision curve analysis for previously unscreened men with elevated PSA

Notes: Biopsy all men (short dashes); biopsy no man (thick black line); biopsy only those men with an abnormal clinical 
examination (thin grey line); biopsy on the basis of a statistical prediction model incorporating PSA level and DRE (long dashes); 
biopsy on the basis of a statistical prediction model of PSA, DRE, and free-to-total PSA ratio (thick grey line, top).
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positive predictive value. This is because for a 
binary test, a man with a positive test is given a 
risk at the positive predictive value.

Comparison of Decision Curves  
With Accuracy Metrics

To illustrate how decision curves and accuracy 
metrics may diverge, consider the case of a man 
with elevated PSA after repeat screening. It is rea-
sonable to suppose that different statistical models 
will be needed for prostate cancer detection, 
depending on whether a patient has a recent his-
tory of screening. Men without recent PSA testing 
may have an advanced cancer with a high PSA or a 
localized cancer with a moderately elevated PSA; 
only the latter is likely for a man undergoing regu-
lar screening. Accordingly, both the mean probabil-
ity of cancer and the relationship between PSA and 
cancer will differ for previously screened men.

A statistical model for prostate cancer in recently 
screened men was created using data from rounds 
2 to 6 of the ERSPC Göteborg. Differences between 
prediction models are shown in Table 2. We would 
expect these different prediction models to have dif-
ferent properties when applied to a data set. Yet 
when the prediction models are applied to the 
recently screened men, the predictive accuracies are 
virtually identical, with AUCs of .6725 and .6732 
for the “Round 1” and “Rounds 2 to 6” prediction 
models, respectively. Figure 3 shows the decision 
curves for the two prediction models. Although net 
benefits are close at low threshold probabilities, 
the “Rounds 2 to 6” prediction model is always 
superior. An even more extreme case is where we 
compare a prediction model with just PSA and 
DRE. The “Round 1” prediction model built on 
unscreened men has an AUC of .6038 when applied 
to men with a recent PSA test, again very similar to 
a prediction model built on this data set (AUC of 
.6056). However, “Round 1” prediction model has 
absolutely 0 clinical value with net benefit never 
higher than those of both “biopsy all” and “biopsy 
none” (data not shown).

Extensions to Decision Curve Analysis

The formula for net benefit is given in units of true 
positives but is easily rearranged to give units of 
false positives.

Reduction in False Positives=Net Benefit× 1−pt

pt

 

This net benefit can be interpreted as, for exam-
ple, “Using Prediction Model A instead of 
Prediction Model B is equivalent to a strategy that 
reduced the number of biopsies by 10 per 100 
patients, without changing the number of cancers 
found.”

Decision curve analysis can also easily incorpo-
rate harm, for example, if a test was costly or 
invasive. The analyst needs to obtain a clinical 
judgment as follows: “If the test were perfect, how 
many patients would you submit to the test to find 
one case?” The reciprocal of this number is the 
harm and is simply subtracted from the net benefit. 
For example, if there was an additional test for 
prostate cancer that was very costly, and clinicians 
informed us that they would not subject more than 
20 patients to the test to find one cancer, the harm 
of the test would be .05, and the net benefit of any 
prediction model incorporating the test would be 
reduced by .05 for all threshold probabilities.

Several other traditional aspects of prediction 
model evaluation can also be applied to decision 
curve analysis, including correction for overfit; 
confidence intervals for net benefit; application to 
time-to-event data, such as cancer survival; and 
including competing risks. Simple-to-use R and 
Stata software for decision curve analysis is avail-
able from www.decisioncurveanalysis.org.

Andrew J. Vickers

See also Decision Trees, Construction; Decision Trees, 
Evaluation; Receiver Operating Characteristic (ROC) 
Curve; Test-Treatment Threshold
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Decision making anD affect

Intuition allows us to make quick decisions in 
an uncertain environment, not wasting too 
much time on analyzing possible consequences. 
Evaluative judgments and decisions are quite 

often influenced by intuitive feelings rather than 
analytical conclusions. A doctor in an emer-
gency room, for instance, won’t have the time to 
evaluate the benefits and risks of two similar 
treatments analytically. The emotion which 
helps us boost our decision process is called 
affect.

Table 2  Differences in prediction comparing men with and without prior screening

“Round 1 Prediction Model”  
Created Using Results From  
Men Without Prior Screening

“Rounds 2 to 6 Prediction Model” 
Created Using Results From Men  

With Prior Screening

Prevalence of cancer 25.90% 18.90%

Standardized odds ratio 
from multivariable 
prediction model

PSA 1.56 1.19

DRE 4.67 3.34

Free-to-total PSA ratio 0.37 0.58

Note: Change in odds for a 1-standard-deviation increase in the marker.
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Figure 3  Decision curve analysis for men with elevated PSA on repeat screening

Notes: Biopsy all men (short dashes); biopsy no man (thin black line); biopsy on the basis of a statistical prediction model of 
PSA, DRE, and free-to-total PSA ratio; prediction model created using data from unscreened men (“Round 1”: long dashes); 
prediction model created using previously screened men (“Rounds 2 to 6”: thick line).
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Affect is used as a cue when people define the 
positive or negative quality of a stimulus; it is 
experienced as a state and is used whenever quick 
assignments or attributions are needed to make 
decisions or judgments. Hence, affect is used as an 
umbrella term referring to states of valence and 
arousal; it sometimes even includes states of mood, 
although these are of a more diffuse, low-intensity 
and long-lasting character. To give an example of 
experiencing affect, just imagine how fast we asso-
ciate feelings with words like cancer or emergency. 
Thus, some researchers call the reliance on such 
feelings and their utilization in decision making the 
affect heuristic.

In this entry, a short theoretical background of 
affective influence in cognition is given, followed 
by a brief description of psychological models on 
this topic. Then, various examples according to the 
affect heuristic and its possible effects in the medi-
cal context are examined.

Theoretical Background

Two main attempts can provide a theoretical back-
ground for findings on the affect heuristic: First, 
Epstein’s dual-process theory separates “two modes 
of thinking” into analytical and intuitive, emo-
tional ways of information processing. Secondly, 
Damasio’s theory of “somatic markers” accounts 
for the importance of affect in decision making.

Epstein’s development of the cognitive-experi-
mental self theory introduces a dual process of 
thinking, assuming two major systems by which 
people adapt to the world: rational and experimen-
tal. Constructs about the self and the world in the 
rational system refer to beliefs, whereas those in 
the experimental system refer to implicit beliefs. 
Neither of the two thinking styles is predominant; 
they rather function simultaneously. The experi-
mental system is developed through a very long 
historical evolution and therefore operates more 
intuitively and automatically. In contrast, the ratio-
nal system needs more effort to operate; it is mostly 
used within the medium of language due to its 
shorter evolutionary history. A wide range of 
research supports the theory, emphasizing the use 
of the experimental system in heuristic processing.

Damasio’s concept explaining the importance of 
intuition or affect in decision making was devel-
oped by asking the question, “What in the brain 

allows humans to behave rationally?” His obser-
vations led him to the conclusion that human 
behavior is influenced by “somatic markers” 
learned in a lifetime. The theory assumes that 
people mark images with positive or negative feel-
ings, which are directly connected to bodily states. 
As a result, images can be associated with negative 
markers that imply an alarming state, or they can 
be linked to positive markers, meaning a beacon of 
incentive feeling linked to a bodily state. These 
assumptions were tested in experiments with 
patients who had damage to the ventromedial 
frontal cortices of the brain. Patients with this 
damage are unable to experience “feelings” and 
are impaired in their ability to associate affective 
feelings and anticipated consequences. A gambling 
game was provided to the participants, where they 
had to choose cards from any of four card decks. 
Each chosen card resulted in a gain or loss of a 
certain amount of money. Patients with the dam-
age to the ventromedial frontal cortices showed 
their impairment in anticipating future outcomes 
by their inability to avoid card decks with great 
outcomes but also great losses. In contrast, “nor-
mal” subjects and patients with brain damage 
outside the prefrontal sections “learned” how to 
choose the card decks with the lower but continu-
ous payoff. These findings proved that somatic 
markers increase the accuracy and efficacy of the 
decision process.

Models of Affective Influence

Psychological models explaining the affective influ-
ence on decision making and judgments are often 
divided by two general categories. One category 
subsumes associative attempts, when affect is acti-
vated in the semantic memory network or the motor 
network. Research on semantic memory models 
analyzes the influence of affective states on the 
encoding, retrieval, and interpretation of new infor-
mation. Experiments on affective congruency are 
derived from this attempt, stating that individuals in 
a happy mood are more likely to interpret ambigu-
ous information in a positive and more generalized 
way. For instance, a patient in a good mood might 
be too positive in describing his or her symptoms, 
which could complicate the assessment of the right 
diagnosis. Findings concerning the motor network 
focus on approaching and avoiding movements 
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depending on the positive or negative affect, respec-
tively. Therefore, positive valence could be espe-
cially useful in stimulating motor action.

A second category refers to inferential models. 
These are based on the influence inferred by cur-
rent or anticipated absence or presence of an affec-
tive experience. On the one hand, affect can serve 
as information, using a shortcut to decisions and 
judgment when no alternative explanation is 
available—as explained in the following examples 
about the affect heuristic. On the other hand, the 
influence of affect can occur due to the intended 
regulation or maintenance of an emotional state 
and therefore lead to accordant decisions. Following 
this attempt, individuals are not only intending a 
mood-congruency due to their affective state, but 
also seek to modulate their mood depending on the 
contextual needs. Hence, the good mood of the 
patient could be “adjusted” when telling the risks 
of a possible disease—and might lead to an ade-
quate description of experienced symptoms.

The Affect Heuristic

A wide range of research is done referring to the 
affect heuristic, mostly associated with the affect-
as-information model—using affective states as 
useful tools when no other information is avail-
able. Findings due to this affect heuristic have 
various aspects and may interfere with decisions in 
the medical context. Each of these aspects is 
described, followed by examples of the effects 
affect might have on medical decision making.

Preference

Early research already proved that the repetitive 
presentation of objects leads to positive attitudes 
and affect toward these objects—independently of 
any cognitive evaluation. Even more, adding posi-
tive or negative meaning to objects guides evalua-
tive judgments, respectively. People therefore are 
much more susceptible to the affective meaning, 
albeit any cognitive scrutiny. For instance, the pref-
erence of certain drugs and other medical treat-
ments might stem from familiarity or iterated 
application without taking into account other pos-
sibilities. Therefore, medical staff has to be cau-
tious, not wearing blinders or ignoring alternative 
treatments.

Proportion

Another source of affective influence could be 
observed by experiments dealing with people’s 
willingness to save a stated number or proportion 
of lives. Although not rationally comprehensible, 
the preference of a life-saving intervention is rather 
evaluated by the proportion than by the numbers 
of lives that could be rescued. This tendency only 
changed when two or more interventions could be 
compared—then the number of lives became more 
important. Similar findings revealed a study on the 
support for airport safety. To evaluate benefits of 
treatments, health professionals are often provided 
with numbers and statistics—it might be advanta-
geous for them to be aware of the fallacies fol-
lowed by presented proportions and to always 
compare different sources of information.

The Evaluation of Risk

A further example in using affect rather than 
analytical thought concerns the correlation of risks 
and benefits. Although there is a positive relation 
in the world, people perceive a negative relation 
when it comes to everyday decisions: If the benefit 
is perceived as high, risk is perceived as low and 
vice versa. Examples can be found in the use of 
drugs (which are perceived to have a low benefit 
and a high risk potential) and also medical treat-
ments (e.g., X-rays or antibiotics) that are per-
ceived to have a high benefit and a low risk.

Moreover, despite rational knowledge or evalua-
tion, people often respond rather emotionally in 
considering dangerous stimuli. For instance, fear 
can much easier be experienced when people are 
confronted with dangerous stimuli that evolution 
has prepared us for (e.g., spiders, snakes, or heights), 
even when they are cognitively harmless. In con-
trast, stimuli without an evolutionary history tend 
to evoke little fear (e.g., guns, smoking)—although 
they can actually harm us. In the same vein, addic-
tive behaviors tend to be underestimated. Thereby, 
the strength of a positive or negative affect guides 
the perception of risks and benefits of an activity.

Numeracy Formats

Quite often, people make a nonoptional choice 
by “feeling” that this would be the better option. 
Hence, numeracy is found to have a positive 
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influence in comprehending probability numbers. 
In a study analyzing the accuracy in decision mak-
ing of forensic psychologists and psychiatrists, they 
were asked to determine whether a patient would 
commit an act of violence in the following 6 
months. As an orientation, clinicians were provided 
with an assessment of another expert that was 
either given in terms of relative frequency (e.g., “of 
every 100 patients similar to Mr. Jones, 10 are esti-
mated to commit violence to others”) or statistical 
probability (e.g., “10% of patients similar to Mr. 
Jones are estimated to commit violence to others”). 
Although both probabilities were similar, Mr. Jones 
was evaluated to be more dangerous when clini-
cians were informed in terms of relative frequency. 
Consequently, experts are not resistant against their 
affective influence on decision making. However, 
also patients run the risk of misinterpreting infor-
mation when seeking healthcare decisions (e.g., 
cancer screening).

Communication of Medical Risk

Risks and benefits of medical treatments are of 
high relevance for the care seeker. However, as deci-
sion options in the medical context are mostly unfa-
miliar to the patient, “affective cues” could assess 
meaning to the provided information. In a study 
analyzing people’s ability to perceive the quality of 
healthcare information, positive and negative affec-
tive attributes were included to a presented health 
plan. Findings showed that participants preferred 
the health plan more often when positive affective 
categories were added. Furthermore, the risk of a 
certain disease is influenced by people’s experienced 
worry rather than actual numbers of deaths from 
this disease. Therefore, it is important to communi-
cate risks and benefits of illnesses and treatment 
options to give patients an adequate opportunity to 
make their right choice.

Stephanie Müller and Rocio Garcia-Retamero

See also Emotion and Choice; Errors in Clinical 
Reasoning; Mood Effects; Numeracy; Risk Perception
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Decision-making competence, 
aging anD mental status

The term competence in decision making is often 
linked to the phrase legal competence. Here, for 
example, a judge may go by a patient’s bedside to 
determine if the patient is legally competent to 
make a medical decision on his or her own behalf. 
The term decisional capacity and notions related 
to the assessment of decisional capacity belong to 
the realm of physicians in two areas: (1) assessing 
the capabilities of patients to make medical deci-
sions in medical care and (2) assessing the capa-
bilities of individuals to make decisions on whether 
to participate in human research studies as study 
volunteers. This entry provides an overview of 
decisional capacity; addresses the role of physicians 
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in assessing decisional capacity of patients; dis-
cusses various assessment procedures for patients, 
including aging patients and patients with com-
promised mental states; and closes with a brief 
look at the implications for future research.

Overview

Decisional capacity is often phrased as being a 
question of whether a particular individual has the 
ability to make choices on his or her own behalf. 
It has been argued that decisional capacity itself 
has many components, including but not limited to 
cognition, memory, mood, emotion, and valua-
tion, among others, which can be affected by age 
and/or mental status. But the above definition 
overstates the concept of decisional capacity 
because—even if all components are intact in an 
individual—in reality very few individuals make 
decisions solely on their own behalf.

In reality, individuals come to and make choices 
after considering opinions from others and make 
decisions of accepting or rejecting alternatives 
offered to them from a set of options on the basis 
of the opinions of others in any number of areas: on 
what to base a decision, on how to choose among 
a set of alternatives, and on how much to value a 
benefit in the context of related harms. And all this 
information is received and processed into a deci-
sion where it is virtually impossible to ensure that 
all intentional or nonintentional attempts to manip-
ulate the information are able to be identified and 
extracted from the information and the decision. 
This extraction of manipulated information is 
essential in any decision that is worth making.

Physician Assessment

Medical Decision Making

In medical decision making—in absence of an 
emergency where the individual needs to be acted 
upon medically to save his or her life, with that 
emergency further characterized as lacking an 
advance directive developed and signed by this 
patient at some time before the emergent event—an 
individual has three options open to him or her 
when offered a medical opinion. First, the indi-
vidual can accept the proffered opinion. Second, 
the individual can reject the proffered opinion. 

Third, the individual can elect to delay choice until 
a later time in the hope that something will be 
developed scientifically (or that more understand-
ing will be gained scientifically) before the medical 
condition or disease under consideration takes the 
upper hand in the individual and before that med-
ical condition reaches a state where it can no lon-
ger be reasonably eliminated, slowed, or otherwise 
managed medically no matter what attempts are 
made to do so.

The phrase decisional capacity is used in a much 
more basic sense in medical decision making than 
in other arenas of competency of judgment. Issues 
of rejecting physician-recommended medical inter-
ventions may mean that the patient will die from a 
medical condition or disease process that is other-
wise medically considered to be curable, elim-
inable, eradicable, treatable, or at least manageable 
by the physician.

Human Subjects Research

Physicians also have to assess the decisional 
capacity of individuals volunteering their services 
for research. As noted in the U.S. Code of Federal 
Regulations, because the goal of human subjects 
research is to possibly develop scientific knowl-
edge for use in future generations, participation in 
a research study may not guarantee benefit to the 
individual study volunteer. Given this, the individ-
ual study volunteer may be asked to bear consider-
able risk of morbidity and mortality in the name of 
the advancement of scientific knowledge for future 
generations. To what extent an individual with 
mental health conditions, such as severe schizo-
phrenia, understands that research is not aimed at 
helping the individual patient is an active research 
question.

Assessment Procedures

The question of how decisional capacity is best 
assessed is also an active research question. 
Assessment procedures may be unstructured or 
structured. Structured approaches to decisional 
capacity may be by a computer-generated tool, by 
a handheld device, or by a paper-and-pencil assess-
ment. The issues regarding assessment of decisional 
capacity are not related to not having the instru-
ments to record responses to questions. There is a 
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wide range of tools to record the answers to assess-
ment questions. Rather, what is missing in the 
assessment of decisional capacity in medical care 
and medical research is an answer to the following 
question: What are the questions that should be 
asked in the assessment of decisional capacity both 
in medical care and research on human subjects?

Decisional capacity can be assessed as a chang-
ing (evolving) state over time across different 
choices; on a choice-by-choice basis; or on a hier-
archy of choice, where an individual is able to 
make a choice at a very basic level but yet incapa-
ble of choosing at a more complex level where 
choices have to be made.

Hierarchical Choice

The most basic question in decisional capacity 
in medical care of patients is the following: Do you 
want to live or die? For example, if a patient with 
symptomatic valvular heart disease is asked, “Do 
you agree to having the doctor perform surgery on 
your valve?” The patient may respond, “No, I do 
not want surgery on my heart.” The question here 
is, what is the missing piece in the discussion? If the 
patient does not understand that the doctor not 
performing the valvular surgery means that the 
patient will die, then the patient has not under-
stood the surgery question being posed. Two ques-
tions remain: First, has the surgeon given the 
patient enough information to understand that the 
present choice, to accept or reject the valve opera-
tion, has the consequence the patient will die, or 
die sooner without the surgery than if he or she 
had elected to have the surgery and made it through 
the surgery without dying? Second, does the patient 
have the decisional capacity to accept or reject the 
surgical intervention, a surgical operation on his or 
her heart valve, on his or her own behalf?

Surrogate Decision Making

There is a third underlying question: How would 
the surgeon respond, regarding his or her operating 
on a patient, if the patient did not have decisional 
capacity but the patient’s designated surrogate deci-
sion maker wanted the surgery to be done on the 
patient’s behalf? This question about surrogate 
decision making and the response of the surrogate 
decision maker does not stand alone but again 

begets a set of questions: What if the patient gri-
maced each time the surgeon asked the patient 
directly if he or she wanted to have the operation, 
would the surgeon still be willing to operate? What 
if the patient screamed at the surgeon every time 
the surgeon asked the patient directly whether he or 
she wanted to have the operation and only screamed 
at the surgeon when the surgeon broached the issue 
of the operation, would the surgeon still be willing 
to operate? What if the patient grimaced, screamed, 
and attempted to grab and hold onto anything the 
patient could grab onto each time an attempt was 
made to place the patient on a gurney to take the 
patient anywhere outside of the patient’s room, 
would the surgeon still be willing to operate?

This illustrates that there may be definite cir-
cumstances in which the surgeon may object to 
performing a medical procedure on a decisionally 
impaired patient even if the procedure was neces-
sary to save the patient’s life (as in severe valvular 
heart disease) and even if the patient’s designated 
surrogate agreed to the operation (such as valvular 
heart repair) on the patient’s behalf.

Advance Directives

A final question comes up when a patient begins 
to lose decisional capacity, recognizes such, and 
then develops advance directives in clinical care 
and in research specifying what he or she would be 
willing to have done in the clinical and research 
arenas in a variety of circumstances. Here again, 
simply the placement of a preference in a written 
and signed advance directive does not necessarily 
mean that the preference will be carried out or 
acted on in any way. The carrying out of a decision 
in an advance directive assumes that those physi-
cians responsible for caring for the patient (or 
principal investigators and researchers involved in 
recruitment of patients into studies and their insti-
tutional review boards) also agree with what is to 
be done as specified in the advance directive.

Advance directives that specify nonaction (e.g., 
do not resuscitate, do not intubate, do not place a 
feeding tube, do not treat an infection with antibiot-
ics) are more likely to be respected than are certain 
types of advance directive that may specify action 
(e.g., do take me to surgery for valvular heart repair 
should I need it in the future, or do involve me in 
all invasive research studies in schizophrenia, which 
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is a disease that I possess, even if I do not have deci-
sional capacity to make the statement of my willing-
ness to participate). One of the problematic 
characteristics of neurodegenerative disease is the 
change in personality that can accompany the neu-
rodegenerative process. Here the patient who led a 
very mild life of careful decision making may 
become an irascible person quick to anger, and the 
question can be legitimately asked, is the irascible 
patient now present in the room with his or her 
physician or surgeon or with a research principal 
investigator the “same person” as the patient who 
signed the advance directive at an earlier time in 
either a clinical or a research context?

While the phrase decisional capacity often con-
notes the cognitive realm, one of the human mind’s 
key features related to decision making involves 
not only cognition but memory. Without memory 
of past and present events, philosophers have 
argued that there isn’t a thread of holding the 
“same person” together as one unified whole who 
is to be counted as the person who is the decision 
maker choosing among sets of options on his or 
her own behalf.

There is much that is not known about decisional 
capacity in medicine. For example, depression has 
in many mental health circles been considered a 
disorder of mood, yet severe depression is also a 
disorder affecting cognition and memory, where the 
severely depressed individual may pay little atten-
tion to consideration of any option in his or her care 
while in the severely depressed state.

In addition to considering issues related to what 
constitutes the “same person” in the area of 
advancing neurodegenerative disease, consider-
ation should also be given to patients who face 
similar issues with other neurologic conditions 
(e.g., memory problems due to traumatic brain 
injury) and mental health conditions (e.g., alter-
nating states of severe mania and severe depres-
sion). Is the patient in a state of severe mania the 
same person as the patient in the state of severe 
depression? Here, the body may be the same but 
the mental states may be dramatically different.

In addition, memory is no longer viewed in terms 
of the presence or absence of short- versus long-
term memories. Contemporary research on memory 
includes descriptions of gist versus verbatim mem-
ory in normal persons. Individuals volunteering 
their participation in research studies have helped 

the acquisition of further scientific delineations of 
memory including episodic memory; semantic 
memory; the distinction between implicit and 
explicit memory; recollection in anterograde  
and retrograde amnesia; autobiographical memory 
and autonoetic consciousness; long-term memory 
following transient global amnesia; the prospect of 
new learning in amnesia; and the fate of recent and 
remote memory for autobiographical and public 
events, people, and spatial locations.

Implications for Future Research

The development of the notion of substitute con-
sent (advance directives and surrogate decision 
makers) is essential for future scientific research in 
all medical conditions that break down the person 
beyond what he or she was in terms of memory 
and thinking. Yet there is much research to be 
done in identifying what are the key questions that 
humans need to be approached with to determine 
their capacity for decision making at a given time 
and over time to ensure that they are protected 
from intrusions that they not only prefer not to 
have, but that they outright object to as humans.

Dennis J. Mazur

See also Decisions Faced by Institutional Review Boards; 
Informed Consent
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Decision making in  
aDvanceD Disease

Decision making in advanced disease is complex 
and challenging. Decisions are emotional and often 
have irreversible outcomes (e.g., death). For many, 
the desire to live longer is strong, but unrealistic, 
when faced with advanced illness, and goals must 
be realigned toward comfort and quality of life. 
Some medical interventions are invasive and detract 
from quality of life without lengthening life. 
Decision makers include professionals, patients, 
their families, and external parties (institutions, 
insurers, governments). These decision makers may 
have diverse goals, priorities, values, and cultural 
backgrounds, affecting their beliefs about care near 
the end of life. Prognostication and communication 
are critical to good decision making. In advanced 

disease, preferences for decision-making style are 
individual, often unstated, and change over the 
illness course. Advance directives involve decisions 
about theoretical future events. Near the end of 
life, many people lose capacity to make decisions 
and this responsibility falls to their families. This 
is often at a time of great stress and influenced 
by emotions, grieving, and caregiving burdens. 
Sometimes a time-limited trial of therapy is used 
to facilitate decision making in these difficult 
situations.

Why Is Decision Making Needed  
in Advanced Disease?

Patients with advanced disease are faced with com-
plex treatment options (disease-focused or sup-
portive therapy, hospice, clinical trials) and choices 
about commencement, continuation, or with-
drawal of interventions such as artificial hydration 
and nutrition, blood transfusion, cardiopulmonary 
resuscitation, circulatory support, dialysis, and 
invasive ventilation.

Studies of quality of death in America have 
found that death frequently occurs in hospitals and 
is accompanied by the use of highly technical inter-
ventions (e.g., invasive ventilation, cardiopulmo-
nary resuscitation) and significant pain and distress. 
Invasive medical interventions close to death are 
not associated with better outcomes and are some-
times against the expressed wishes of patients. 
Trials of interventions to improve quality of care at 
the end of life (the SUPPORT study) have so far 
been unsuccessful.

When Are Decisions Needed?

Decision making in advanced disease requires rec-
ognition (usually by the clinician) that a decision 
needs to be made. Even not making a decision may 
be a decision itself. Timing of the decision requires 
recognition and communication of the following: 
incurable disease, limited prognosis, potential 
future-course and alternative-management options. 
Decision making may be impaired by the assump-
tion that only one option is available (e.g., active 
treatment is pursued due to failure to recognize 
supportive care as a valid treatment option).

In many advanced illnesses, especially neuro-
logical illnesses, ability to communicate is lost as 
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disease progresses. Decision-making capacity may 
also be lost due to an acute crisis requiring intuba-
tion or sedation or to delirium, which commonly 
occurs close to death. Ideally, patients with 
advanced illness are able to express their treatment 
preferences, write advance directives, and appoint 
a surrogate decision maker (medical power of 
attorney) before they lose capacity.

Prognostication

Decision making in advanced disease relies on pre-
diction of prognosis: the expected duration and 
quality of life, and likely future course of the disease. 
Advanced cancer is often characterized by a short 
decline in function toward death. Advanced nonma-
lignant diseases (chronic organ failure) have a more 
gradual decline worsened by recurrent exacerba-
tions. Death is the result of an acute exacerbation 
that fails to respond to treatment, thus timing is less 
predictable. Chronic frailty or dementia follows a 
slow, drawn-out decline. Instruments are available 
to predict prognosis based on type and stage of dis-
ease, symptoms, physical function (performance 
status), and test results. These instruments predict 
chances of being alive at a certain point or give a 
median survival for a similar group of patients; they 
cannot predict how long an individual will live. 
Physician predictions of individual prognosis are 
often inaccurate and tend to be overly optimistic. 
Physicians are reluctant both to make prognostic 
estimates and to communicate them to patients. 
Patients’ estimates of their own prognosis are also 
often inaccurate. These failures of prognostication 
and communication hinder decision making.

Communication

Physicians may be reluctant to initiate discussions 
about end-of-life care for fear of removing hope. 
However, patients often do prefer to receive prog-
nostic information, and denying them this knowl-
edge may impair preparation for death. Patients 
are willing to discuss preferences but rarely initiate 
these conversations; thus clinicians need to be pro-
active. Communication goals include eliciting pref-
erences (for information, decision making, and 
treatment), understanding values and beliefs, and 
establishing goals of care—priorities (for quality 
or quantity of life), hopes, and legacies. Patients 

may have specific wishes to fulfill, events to live 
for, and preparations to make (financial, practical, 
or legal). Clinicians also must provide information 
about diagnosis, prognosis, and treatment options. 
A majority of patients in English-speaking coun-
tries want detailed information, while patients in 
other countries may prefer less information. When 
presenting treatment options, clinicians have an 
obligation to be realistic. Rather than present a 
laundry list of all possible treatments, only options 
that are feasible given the circumstances should be 
discussed.

Decision-Making Styles

The prevailing attitude in Western medicine is 
respect for individual autonomy, and thus shared 
or autonomous decision making is preferred. 
However, patients express a range of preferences, 
with between 30% and 60% preferring shared 
decision making. Age, gender, and ethnicity may 
influence preferences, but inconsistently; thus, 
individual preferences need to be elicited. 
Preferences may alter with each decision and with 
disease course; patients closer to death are more 
likely to delegate responsibility to their physician. 
Decision style also varies with the magnitude of 
the decision and the certainty of the outcome. For 
example, a decision about which antibiotic to  
prescribe for pneumonia is usually made by a phy-
sician based on established medical knowledge. 
These unilateral decisions are usually communi-
cated to the patient, who then may choose to 
accept or reject the recommendation.

While Western culture highly values autonomy, 
other cultures value family decision-making styles. 
Such families may request that information regard-
ing diagnosis, prognosis, and treatment be with-
held from the patient. This can cause conflict with 
a clinical team focused on individual autonomy; 
however, autonomy includes the right to defer 
decision making to one’s family. These issues can 
be addressed by eliciting cultural beliefs about 
truth telling and decision making of patients and 
their families.

Surrogate decision making is required if patients 
lose decision-making capacity. It is most often per-
formed by a close family member. Ideally surrogate 
decisions are based on substituted judgment (what 
the patient would want in this circumstance) and 
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best interest (what is thought to be best for the 
patient at this time). Substituted judgment is best 
derived from previous conversations or statements; 
however, patients infrequently express their wishes 
to family members. Families are often inaccurate in 
predicting patients’ treatment preferences. They 
also consider factors such as quality of life, emo-
tions, and their own values when making decisions. 
Caregiver anxiety or depression may also influence 
surrogate decisions. Surrogate decision making can 
be burdensome for families if they are asked to 
make decisions without information, assistance, 
and recommendations from clinicians. They may 
feel guilt or responsibility for their relative’s death. 
Surrogate decision making can also be a source of 
conflict if clinicians consider further aggressive 
treatment futile and families insist that it continue.

Perspectives of Decision Makers  
in Advanced Disease

Clinicians

Models of care for advanced disease promote 
multidisciplinary teams; thus, multiple clinicians 
may be involved in decision making. These clini-
cians may have diverse backgrounds and training 
(e.g., physicians, nurses, social workers, psycholo-
gists, and chaplains) and thus diverse views on care 
in advanced disease.

Treatment recommendations may be influenced 
by specialist training and practice location. 
Clinicians untrained in principles of palliative care 
may not feel confident in offering this option. 
Conventional medical teaching (e.g., antibiotics 
for pneumonia) may not always be the best option 
for a person close to death. Clinicians have a  
professional responsibility to provide recommen-
dations rather than abdicating all decisional 
responsibility to the patient. Recommendations 
should be based on both medical knowledge and 
the priorities and values of the patient and family.

Clinicians are also influenced by real and per-
ceived ethical dilemmas. Consensus supports the 
ethical nature of treatment withdrawal and with-
holding artificial nutrition and hydration in termi-
nal illness, surrogate decision making, and the 
principle of double effect (unintentional hastening 
of death with treatment aimed at comfort). 
Physician-assisted suicide and euthanasia are illegal 

in most countries and American states, exceptions 
being the Netherlands, Switzerland, Washington, 
and Oregon.

Physicians sometimes use futility to facilitate 
treatment decisions in advanced disease. This prin-
ciple holds that physicians are not obliged to pro-
vide treatment considered futile. The definition of 
futility is controversial and lacks consensus. Futility 
definitions may be quantitative—the treatment 
won’t work (e.g., cardiopulmonary resuscitation in 
advanced disease), or they may be qualitative—
treatment will only prolong a state of poor quality 
of life (e.g., persistent vegetative state). Definitions 
of futility are subject to value judgments; thus, a 
process of communication and negotiation is  
recommended when futility issues arise.

Patients

Patients faced with life-threatening illness are 
more willing to accept aggressive and toxic treat-
ment, with minimal chance of benefit, than their 
clinicians and healthy people. Decision making is 
influenced by values and priorities (for quantity or 
quality of life), past experiences, family, friends, and 
presence of children. Patients’ perception of their 
prognosis (which is often inaccurate) influences 
their treatment choices. Access to and availability of 
services may influence treatment decisions (e.g., 
geographic access to radiotherapy is often limited). 
Patient priorities near the end of life may include 
pain and symptom management, sense of control, 
avoiding prolonged dying, relieving families’ burden, 
strengthening relationships, and preparation, includ-
ing financial and funeral arrangements. Concerns 
may include treatment toxicity, burden (appoint-
ments, tests, side effects), and financial costs.

Family

Families of people with advanced illnesses may 
be hoping for cure or prolongation of life while 
also experiencing anticipatory grief. Caregiving is 
often characterized by loss of employment and 
financial security and stresses of maintaining family 
function and their own health. Information needs 
of families may be different from those of patients, 
especially as disease progresses. Families may not 
be in close proximity and thus may be faced with 
difficult decisions of timing travel to be with their 
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family member. Surrogate decision making places 
additional burden on families, and preexisting con-
flicts are likely to be escalated by decision-making 
responsibilities. Family conferences are often used 
in advanced disease, especially in the intensive and 
palliative care units. These meetings usually involve 
at least two clinicians (often physician and social 
worker) and all family members (including friends 
or other caregivers) relevant to the patient.

External

External organizational, cultural, and political 
factors influence decision making in advanced dis-
ease. These factors may not be evident on an indi-
vidual level but influence the experiences of groups. 
For example, the number of regional hospital beds 
is a stronger predictor of place of death than 
patient preference. Availability of hospice services 
reduces hospital deaths.

Health insurers and reimbursement options also 
influence decisions. In the United States, the 
Medicare Hospice Benefit is available to patients 
with an estimated prognosis of less than 6 months. 
Because of difficulties in prognosticating for non-
malignant diseases, these patients are underserved 
by hospice. Patients often need to forgo disease-
modifying treatments to be eligible for hospice. 
This condition causes some people to delay hos-
pice until terminal stages of illness.

Decision-Making Processes

Six Thinking Hats

This model was developed by Edward de Bono 
to promote parallel thinking in group decisions. 
Decision makers consider issues from one perspec-
tive simultaneously and then move on to the next. 
Principles of this strategy can also be applied to 
advanced disease.

Information (White Hat)

Information needed includes prognosis, options 
available, and likely outcomes of each option. 
Often, information gathering and provision is the 
role of the clinician. Different styles of presenting 
and framing information influence patients’ deci-
sions. Patients and their families are increasingly 
accessing Internet sources, which may lead to mis-
information. Cancer Web sites frequently discuss 

treatment options and side effects but rarely prog-
nosis. In advanced disease there may be limited 
evidence, thus uncertainty and probabilities play a 
large role. A treatment-response rate may be small, 
but who responds or experiences side effects is 
largely unpredictable.

Emotion and Intuition (Red Hat)

Patients’ and families’ emotions may include 
denial, hope, anger, or a sense of abandonment. 
Patients may be concerned about being a burden to 
others, loss of control, and dignity. Both patients 
and clinicians are influenced by spiritual, religious, 
and cultural beliefs about death. Patients and 
families may also have emotional reactions to the 
decision-making process itself, for example, feel-
ings of anger and resentment toward the process or 
clinical team.

Caution (Black Hat) and Optimism (Yellow Hat)

Consequences of each option (positive and 
negative) need to be considered. While active treat-
ments may extend life, supportive therapy also has 
positives of symptom control and quality of life. 
Costs may include treatment burden, side effects, 
caregiving burden, and financial costs. Patients 
and their families may hold false hopes for prolon-
gation of life or cure. Hope may need to be redi-
rected toward comfort and quality of life.

Creativity (Green Hat)

Creative solutions in advanced disease may 
include flexibility of decisions (e.g., pursue Plan A 
with Plan B if unsuccessful), or two options simul-
taneously (supportive care and active treatment). 
Second opinions and advice from colleagues may 
also suggest creative options.

Process Control (Blue Hat)

The clinician’s role is to summarize, conclude, 
and make plans for follow-up. Retention of infor-
mation in times of stress is poor, and questions are 
often thought of after conversations. Time may be 
needed to consider options and make a decision.

Decision Aids

Question prompt lists are available for advanced 
cancer or those seeing a palliative care team to help 
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patients gather information. Decision aids are 
available for early-stage cancer, but few are avail-
able for advanced disease. Guidelines, care plans, 
and hospital policies can be used to facilitate deci-
sion making, but few have been published.

Practical Decision Making: Issues to Consider

In clinical practice, certain practical considerations 
may facilitate treatment decisions. These include 
the following:

What is the performance status and extent of  ·
disease? These may make aggressive treatment 
unrealistic.
Is the condition reversible or treatable? ·
What are the possible complications or worst  ·
outcome, and are these acceptable to the patient?
Does treatment contribute to patient comfort  ·
and/or safety?
Is it logical, appropriate, and humane? ·
Does it make good medical and common sense? ·
What are the costs? ·
What do the patient and family want? ·

Conflict

Conflict may arise between patient and family and 
clinician (e.g., wanting to continue treatment that 
clinician considers futile), between members of the 
treating team, or between various family mem-
bers. Conflict may be avoided by clear communi-
cation about prognosis, expected outcomes, and 
goals of care. Communication can be facilitated 
by family or team meetings. Approaches to con-
flict resolution include ethics or palliative care 
consultation or independent mediation. If conflict 
cannot be resolved, strategies involve a time- 
limited treatment trial (with explicit outcome 
measures), or transfer of care to another clinician. 
Unfortunately, some conflicts have ended in legal 
and public disputes.

Katherine Hauser and Declan Walsh

See also Advance Directives and End-of-Life Decision 
Making; Decision-Making Competence, Aging and 
Mental Status; Decisions Faced by Surrogates or 
Proxies for the Patient; Physician Estimates of 
Prognosis

Further Readings

Back, A. L., & Arnold, R. M. (2005). Dealing with 
conflict in caring for the seriously ill. “It was just out 
of the question.” Journal of the American Medical 
Association, 293, 1374–1381.

Council on Ethical and Judicial Affairs, American 
Medical Association. (1992). Decisions near the end 
of life. Journal of the American Medical Association, 
267(16), 2229–2233.

Council on Ethical and Judicial Affairs, American 
Medical Association. (1999). Medical futility in end-
of-life care: Report of the Council on Ethical and 
Judicial Affairs. Journal of the American Medical 
Association, 281(10), 937–941.

Covinsky, K. E., Fuller, J. D., Yaffe, K., Johnston, C. B., 
Hamel, M. B., Lynn, J., et al. (2000). Communication 
and decision-making in seriously ill patients: Findings 
of the SUPPORT project (The Study to Understand 
Prognoses and Preferences for Outcomes and Risks of 
Treatments). Journal of the American Geriatrics 
Society, 48(Suppl. 5), S187–S193.

de Bono, E. (1999). Six thinking hats. Boston: Back Bay 
Books.

Matsuyama, R., Reddy, S., & Smith, T. J. (2006). Why 
do patients choose chemotherapy near the end of life? 
A review of the perspective of those facing death from 
cancer. Journal of Clinical Oncology, 24(21),  
3490–3496.

Meisel, A., Snyder, L., Quill, T., & American College of 
Physicians-American Society of Internal Medicine End-
of-Life Care Consensus Panel. (2000). Seven legal 
barriers to end-of-life care: Myths, realities, and grains 
of truth. Journal of the American Medical Association, 
284(19), 2495–2501.

Parker, S. M., Clayton, J. M., Hancock, K., Walder, S., 
Butow, P. N., Carrick, S., et al. (2007). A systematic 
review of prognostic/end-of-life communication with 
adults in the advanced stages of a life-limiting illness: 
Patient/caregiver preferences for the content, style, and 
timing of information. Journal of Pain and Symptom 
Management, 34(1), 81–93.

Quill, T. E., & Brody, H. (1996). Physician 
recommendations and patient autonomy: Finding a 
balance between physician power and patient choice. 
Annals of Internal Medicine, 125, 763–769.

Stagno, S. J., Zhukovsky, D. S., & Walsh, D. (2000). 
Bioethics: Communication and decision making in 
advanced disease. Seminars in Oncology, 27, 94–100.

Weissman, D. E. (2004). Decision making at a time of 
crisis near the end of life. Journal of the American 
Medical Association, 292(14), 1738–1743.



287Decision Modes

Decision moDes

A decision is a commitment to a course of action 
that is intended to serve the interests and values of 
particular people, which often differ sharply from 
one person to the next. A good example is a 
patient’s choice of radical mastectomy over lumpec-
tomy as a treatment for breast cancer, where the 
patient seeks to do what is best for both herself and 
her family, especially her young children. There is 
considerable variability in not only what different 
people (and even the same person on different 
occasions) decide when facing the same dilemmas, 
but also in how they decide. The term decision 
modes is used to characterize such qualitatively 
distinct means by which people reach their deci-
sions. This entry describes and reviews several of 
the major decision modes that have been acknowl-
edged. It also discusses their conceptual and practi-
cal significance, particularly in medicine.

A Big Picture

There are myriad decision modes. But almost all of 
them can be classified into a small number of cat-
egories defined according to several metadecisions 
that are made, consciously or otherwise, in virtu-
ally every decision situation. Here the expression 
metadecision refers to a decision about how to 
decide. The decision mode tree in Figure 1 pro-
vides a big-picture view of the decision modes that 
result from these metadecisions. The discussion 
proceeds from the “Responsibility” node near the 
top of the tree down to the bottom.

Responsibility

In every decision situation, someone—either an 
individual person or a collective—must assume 
responsibility for making the decision in question. 
Thus, for example, in the contemporary United 
States, it is understood that the patient herself has 
the responsibility—or “right,” “privilege,” “author-
ity,” “obligation,” “burden,” even “duty”—for 
deciding how her breast cancer will be treated. 
Usually, on a local basis, at least, assumptions 
about decision-making responsibility are so broadly 
accepted, so “natural,” that the issue never crosses 
people’s minds. Discussions of responsibility do not 

occur except under extraordinary circumstances, 
such as when the assumptions are contested. Only 
then do people realize that responsibility typically 
has been established via earlier metadecisions made 
by others, including society, as suggested by the 
“Prior metadecisions” node in the decision mode 
tree. For instance, many Americans are first spurred 
to think about responsibility for cancer treatment 
decisions when they learn that Japanese responsi-
bility customs are different from their own. They 
are surprised to learn that in some long-standing 
Japanese traditions, a cancer patient might not 
even be told by her physician and her family that 
she has the disease. Or take the case of end-of-life 
decisions. When the patient is incapacitated, as in 
the Terri Schiavo case in Florida, which ended on 
Schiavo’s death in 2005, who has the right to 
decide—the patient’s spouse, the patient’s parents, 
the state legislature, Congress, or the courts? Many 
people had never pondered such knotty questions 
until media coverage of the Schiavo case forced 
them to do so.

Digression: Adequacy of  
Mode Metadecisions

Part of the full scientific story of human decision 
behavior is an understanding of how and why 
people make the mode metadecisions that they do. 
But there is a practical side, too. Suppose that, at 
some metadecision choice point in the mode tree, 
the decider goes down one path rather than some 
other. Furthermore, suppose that this increases the 
odds that the eventual decision will be effective. 
Then it is legitimate to say that that metadecision 
is better than it would have been otherwise. The 
following discussion briefly addresses adequacy 
concerns as well as questions about how particular 
metadecisions are reached.

Choice Point u: Reauthorization

The first metadecision facing the responsible or 
recognized decider—one person or several—is 
about whether and how to shift at least some of 
that responsibility to others, authorizing them  
to take part in the decision process. At one  
extreme, the recognized decider might do nothing, 
retaining full responsibility. For instance, a heart 
disease patient might declare, “Whether I receive 
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angioplasty is my decision and mine alone.” At the 
opposite extreme, responsibility is delegated or 
relinquished entirely, a circumstance sometimes 
described as “agency,” as when a patient says to his 
doctor, “I’m no expert, but you are, so would you 
please decide for me, as if you were choosing for 
your own father?” Between those extremes, the 
recognized decider might elect to bring others into 
the picture to share decision-making responsibility. 
That is, the decision process becomes a (more) col-
lective one, as in the shared medical decision- 
making paradigm, where the patient and the 
physician assume joint responsibility for choosing 
medical treatments.

There are several reasons that recognized decid-
ers sometimes favor either retaining or relinquish-
ing some or all of the responsibility they inherit. 
Especially significant among those reasons are pre-
vailing customs or even laws. A good illustration is 
provided by socially (and sometimes legally) sanc-
tioned personal autonomy principles that encour-
age patients to lean toward making their own 
treatment decisions. Other motivations as well as 
consequences of authorization choices are sketched 
presently.

Retaining Responsibility

Two aims are common for those choosing to 
retain full decision-making responsibility. The first 
is preserving the perquisites of decision-making 
authority. People who have such authority cannot 
help using it to serve their own, personal interests, 
it seems. Thus, relinquishing that authority, or 
even sharing it, poses a significant risk. This is part 
of the rationale for patient autonomy principles 
such as those embodied in informed consent 
requirements: Empowered patients will not know-
ingly choose treatments that harm them. A second 
common goal in holding onto decision-making 
responsibility consists of short-term time con-
straints. If a decision needs to be made in a hurry 
(e.g., triage in an emergency room), all else being 
the same, the fewer people there are who must 
reach agreement, the better things are.

Cast against the sought-after aims of retaining 
extant decision-making authority are several threats 
to decision effectiveness. There is evidence that 
people often overestimate their own skills. Such 
overconfidence would induce deciders to believe 
that they can perform essential decision-making 

Decision Mode
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metadecisions
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Reauthorization
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Rule-based

Experience-driven

1
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Work details—primary3

Modeling

Consultation

Work details—secondary4

Figure 1  Decision mode tree
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tasks better than others whose true expertise is 
actually superior. Such overconfidence is not uni-
versal, however. It appears weakly if at all when 
there is unambiguous evidence of one’s incompe-
tence. Thus, although a trained physician might 
overestimate his ability to make decisions better 
than those of his peers, similar overestimation 
should be less common among naïve patients. A 
second major drawback of retaining decision-
making authority is related to the first—excessive 
workload. Suppose that a physician refuses to del-
egate decision tasks because she incorrectly believes 
that no one else can make those decisions as well 
as she can. Then, in short order, she is likely to be 
so overwhelmed that all her decisions suffer and so 
does her personal well-being.

Sharing Responsibility

The most compelling motivation for a decider 
choosing to share decision-making responsibility is 
embodied in the adage, “Two (or more) heads are 
better than one.” That is, sharing decision-making 
responsibilities seems to promise better decisions 
because of the energy and also the specialized 
knowledge that other people bring to the table. 
“Political” benefits beckon, too. The people 
brought into the decision process are more likely 
to accept instead of resist the resulting decisions, 
since people rarely protest against themselves. 
Similarly, sharing partly shields the originally rec-
ognized decider from the blame that often spews 
forth when decisions turn out badly (e.g., the 
wrath of a family whose loved one dies in a surgi-
cal procedure chosen solely by a physician).

The anticipated rewards of sharing decision-
making responsibility sometimes go unrealized or 
are overshadowed by the costs of sharing. One 
threat to the effectiveness of sharing is free-riding, 
the tendency for members of a group to do less 
than their fair share of the work, partly because 
they expect that others will pick up the slack for 
them. Another is the documented phenomenon 
whereby information that is possessed by every 
participant in a meeting tends to be overly repre-
sented among the topics actually discussed. This 
means that knowledge possessed uniquely by indi-
vidual discussants is neglected. This defeats a pri-
mary aim for broadening participation in the 
decision-making process in the first place, the 

exploitation of specialized expertise (e.g., the 
unique insights that an endocrinologist, an oncol-
ogist, and a gynecologist can bring to a case  
conference). And then, of course, there are the 
increased coordination costs demanded by the 
sharing of decision-making responsibility (e.g., 
the hassles of finding mutually suitable meeting 
times for all participants in the decision process, 
to say nothing of the time spent in the meetings 
themselves).

Delegating Responsibility

The advantages envisioned for delegating deci-
sion-making responsibility to others are partly the 
same as those for sharing (e.g., taking advantage 
of specialized knowledge). But the prospects of 
lower costs are especially alluring. After all, the 
originally recognized decider is freed entirely 
(although typically for a fee, broadly defined) 
from having to work through the decision prob-
lem in question; that problem would belong to 
someone else altogether.

Yet delegation carries with it burdens and risks 
that are easy to overlook. First off, to delegate 
properly, a recognized decider must understand 
decision processes as well as the current decision 
problem in sufficient detail to know what kinds of 
expertise are required to solve that problem effec-
tively. Consider, for example, the challenge of 
determining whether the training of a physician’s 
assistant is sufficient to allow her to decide whether 
to send home patients who do not need further 
attention. Furthermore, the decider must know 
how to appraise others’ expertise (e.g., “Is this 
particular assistant up to the task?”). Ample 
research indicates that our ability to evaluate 
expertise is less than ideal, being vulnerable to 
numerous potentially misleading indicators, such 
as candidates’ skills at mimicking the speaking 
style of recognized authorities. An especially impor-
tant challenge is assuring incentive alignment. This 
means that those to whom decision-making author-
ity is delegated would gain no benefit from making 
decisions that are contrary to the interests and val-
ues of the people the decisions are supposed to 
serve. That is, they have no conflicts of interest. 
Incentive alignment is at the heart of controversies 
about physicians’ dual responsibilities to patients 
and insurers.
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Choice Point v: Work Assignment

Once responsibility for making a decision is set-
tled, the actual work of reaching that decision 
must be carried out. There are two alternatives for 
who performs particular aspects of that work—the 
recognized deciders or someone else. When those 
deciders execute the required tasks themselves, the 
modes are referred to as primary; otherwise they 
are secondary. Decision making typically encom-
passes a wide variety of chores. Therefore, work 
assignment for a given decision problem can easily 
involve both primary and secondary modes for dif-
ferent elements of the overall effort. The problem 
of determining whether a decision task should be 
assigned to a secondary mode is largely the same 
as that of determining whether to delegate an 
entire decision problem to someone else. Thus, the 
same principles apply.

Choice Point w: Work Details—Primary

As indicated in the decision mode tree, there are 
three major classes of primary modes: analytic, 
rule-based, and experience-driven.

Analytic Decision Making

The essential, distinguishing feature of analytic 
decision making is that the decider reasons through 
what makes sense as a solution to the decision 
problem at hand, with no constraints on the infer-
ence process. When most people hear and use the 
term decision making, this is what they have in 
mind. There are two principal variants of analytic 
decision making, substantive and formal.

In substantive analytic decision making, the 
decider reasons according to a conception of how 
nature (broadly conceived) works, that is, how one 
event or action leads to another, which in turn 
yields other occurrences, and so on. Effectively, the 
decider relies heavily on mental simulations of the 
chains of events that plausibly might ensue if vari-
ous alternative actions were chosen. Then the 
decider pursues the option whose simulation turns 
out best in the decider’s eyes. Consider, for example, 
how a physician might reason through the sequences 
of potential biological consequences if she were to 
recommend alternative drug therapies for a patient 
experiencing both hypertension and diabetes. If the 
sequence for one particular therapy includes a 

highly probable severe drug interaction, the physi-
cian backs away from that course of action.

The defining characteristic of formal analytic 
decision making is that significant elements of the 
decider’s reasoning entail operations on symbolic 
representations of key elements of the decision 
situation. These operations might be carried out in 
the decider’s head or perhaps via a computer. As an 
example, consider a decision analysis in which a 
kidney patient’s utilities for various health states 
are, via expected utility formulas, aggregated with 
probability assessments for potential outcomes, to 
yield treatment recommendations.

Rule-Based Decision Making

Rule-based decision making relies on decision 
rules of this form: If Conditions C1, C2, C3, . . . 
hold, then pursue Action A. Sometimes deciders 
develop such rules on their own, summarizing per-
sonal observations and arguments (e.g., when a 
physician says, “Over the years, I have noticed that 
. . .”). But some rules are provided by experts, as 
in the case of the National Comprehensive Cancer 
Network’s practice guidelines for treating osteo-
sarcoma. Rule-based decision making is not as 
simple as it might seem. For instance, it requires a 
prior decision about whether to accept a particular 
decision rule, say, on the basis of its developers’ 
reputations. And applying that rule often demands 
a tough judgment as to whether the current situa-
tion matches the rule’s preconditions sufficiently 
closely.

Experience-Driven Decision Making

The word experience is used in two distinct but 
related senses in the expression experience-driven 
decision making. The first sense implicates decision 
making that is nearly the antithesis of analytic deci-
sion making in that it does not entail breaking deci-
sion problems down into their components, such as 
utilities versus probabilities. Instead, the decider 
has an undifferentiated psychological experience 
that somehow pushes the decider toward one 
potential action rather than its competitors. 
Furthermore, the decider typically cannot explain 
the decision process and it may well be noncon-
scious. Instead, those asserting a reliance on such 
nondeliberative, “intuitive,” “recognition-primed,” 
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or “System 1” decision making often say things 
such as “For some reason, it just felt like the right 
thing to do.” One prominent line of scholarship on 
such decision making is commonly identified with 
the somatic marker hypothesis for risk taking. 
According to this theory, over repeated experiences, 
people gradually develop biologically mediated 
associations with high-risk alternatives, associa-
tions that compel them to shy away from those 
alternatives even before they can offer reasons for 
why they feel the way they do. Significantly, indi-
viduals with damage to the medial prefrontal cor-
tex, who are notorious for poor decision making, 
do not develop these risk-repelling associations.

The second sense of experience in some kinds of 
experience-driven decision making refers more 
directly to the decider’s past cognitive activities. 
The core idea is that, as the decider repeatedly 
encounters—experiences—a particular situation, 
the decider learns, in the broad sense of the term. 
Imagine a teenager who chooses to light up a ciga-
rette for the first time in a certain type of situation, 
as in the presence of particular friends. If this sce-
nario is repeated over and over, eventually the 
teenager no longer deliberately and reflectively 
“chooses” to smoke. Nevertheless, he routinely 
finds himself smoking in that scenario. What was 
once an analytic decision has evolved into an auto-
matic, experience-based one. More generally, auto-
matic decision making is such that If Conditions 
C1, C2, C3, . . . present themselves, then the 
decider will pursue Action A. Furthermore, the 
process has the usual characteristics of automatic-
ity: The decider has no control over the process, 
the process is virtually effortless, and the decider 
has minimal awareness of it.

Considerations

In a given situation, the primary modes are likely 
to be attempted in this order: experience-driven, 
rule-based, analytic. By its nature, experience-
driven decision making, particularly the automatic, 
habitual variety, just pops out when the given rou-
tine has been established and when the triggering 
conditions are encountered. Otherwise, the decider 
has no choice but to seek an applicable decision 
rule or, if that fails, make the decision analytically. 
The latter is a last resort since it is so labor-inten-
sive. But there may very well be no choice since, 

although decision rules are indeed common, they 
do not fit or exist for every situation (e.g., not 
every patient situation matches an available prac-
tice guideline).

It is important to recognize that in a given deci-
sion episode, more than one primary mode might 
be invoked. However, because they “run” so rap-
idly and effortlessly, if they are available, experi-
ence-driven modes are likely to exert inordinate 
influence as compared with more deliberative ana-
lytic and rule-based modes. This can be worrisome 
since the arbitrariness of the events giving rise to 
experience-driven modes (e.g., chance peer encoun-
ters that nurture smoking habits) provides no 
assurance that these modes yield effective deci-
sions. Similar considerations apply to the problem 
of improving decision-making practices. Clearly, 
approaches that work for reshaping analytic deci-
sion-making practices would be useless for experi-
ence-driven ones.

Choice Point x: Work Details—Secondary

For the most part, secondary decision modes can 
be viewed as tools for assisting analytic decision 
making. That is, in the process of reaching a deci-
sion analytically, the decider draws on the efforts 
of other people (or devices) as special resources.

Modeling

The modeling mode is deceptively simple. The 
decider identifies another decider who has faced 
the same dilemma and just mimics that person’s 
decision, allowing that model to do all the work of 
thinking through what is reasonable to do. 
Although seldom discussed, modeling occurs often, 
as when a patient chooses as his own physician the 
same one he learns was selected by the boss he 
admires at work. More generally, modeling is the 
mode implicit in herding behavior, which is 
observed among both lower animals in stampedes 
and humans in financial markets. Modeling is 
unquestionably easy, but it is beset by significant 
risks, too. Simply observing the model’s decision 
without also learning whether it was effective for 
the model is one risk. Another is assuming that the 
model’s interests and values are identical to the 
decider’s own, an assumption that is often highly 
suspect, as when choosing doctors.
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Consultation

In the consultation mode, the decider acquires 
advice about the decision problem from either a 
real person or a device, such as a computer pro-
gram—advice that the decider is free to accept or 
reject. The advice might be a “bottom line” recom-
mendation as to the action the decider should 
pursue. Such is the case when a patient asks for a 
second opinion: “Should I have the proposed sur-
gery or shouldn’t I?” (Note that the consultant 
might have arrived at a recommendation via any of 
the primary decision modes distinguished previ-
ously, e.g., analytic, rule-based, or experience-
driven.) Alternatively, the advice could pertain to 
some specific element of the decision problem, as 
when a patient asks, “What are the available treat-
ments for my condition, and what can go wrong 
with each of them?”

In principle, consultation seems almost perfect 
as a complement to analytic decision making. 
After all, it allows for the application of specialized 
expertise to every critical aspect of the decision 
problem. But therein lies perhaps the greatest haz-
ard: assessing such expertise. Ideally, deciders’ 
conclusions about the expertise of their potential 
consultants should be based on the track records 
of the candidates; that is, they should be evidence 
based. Studies have shown, however, that conclu-
sions are strongly affected by factors that easily 
can have nothing to do with track records (e.g., an 
authoritative manner). They have also demon-
strated that, left to their own devices, people often 
fail to seek such records and are confused about 
how to best use them when they are available.

J. Frank Yates

See also Automatic Thinking; Intuition Versus Analysis; 
Judgment Modes; Shared Decision Making
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Decision psychology

Decision psychology is a scientific discipline with 
two main dimensions: choice and values underly-
ing choice. Decision psychology can be under-
taken to describe how humans make decisions; 
how humans should make decisions; what humans 
can do if they would like to change the way they 
make decisions; how much an individual under-
stands about a decision; how much risk an indi-
vidual is willing to take in an uncertain decision; 
how to influence the decision making of others; 
how to control or prevent unwanted influences by 
others on decision making; if and when to imple-
ment surrogacy decision making (the individual or 
someone on behalf of the individual deciding to 
give over decision making to another); whose 
beliefs and preferences should be incorporated in 
a decision; and how that process of incorporation 
of beliefs and preferences into a decision should 
be carried out.

The psychology of medical decision making can 
focus on individuals making decisions on their 
own; doctors and patients making decisions 
together; competent patients giving over decision-
making authority to others; patients who today are 
fighting to preserve their decision-making abilities 
against progressive neurodegenerative diseases or 
other mental-impairing conditions that if continue 
unabated will eventually lead to those patients 
being characterized as being without decisional 
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capacity; and finally, patients who are now with-
out decisional capacity and for whom decisions 
need to be made.

Types of Decision Making

Descriptive Versus Normative

In all types of research on the psychology of deci-
sion making, including medical decision making, 
the question arises whether the researcher is inter-
ested in describing how decisions are actually made 
by individuals confronted with a decision-making 
task (descriptive decision making) or whether the 
researcher is interested in describing how decisions 
that are actually made by individuals compare with 
a model or framework of how decisions should be 
made (normative decision making).

Population Versus the Individual

The basic distinction with medical decision 
making is whether the decision making under con-
sideration is decision making regarding the popu-
lation as a whole (or at least sizeable groups within 
that population) versus the individual patient. The 
difference between these types of decision making 
can be seen in the arena of immunization against 
disease, where the population may benefit by the 
immunization program but the individual may 
bear the brunt of death or severe morbidity from 
the adverse outcomes associated with the vaccine.

Studies of Decision-Making Psychology

Subjects

The subjects of studies of decision-making psy-
chology may include hypotheses about choices, judg-
ments, or other types of reasoning and include as 
study participants citizens, patients, healthcare pro-
viders (physicians and nurses), and other members of 
the healthcare team (social workers, chaplains, 
among others) and associated administrative teams 
(for example, information technologists), as well as 
students or trainees in all of these areas and more.

Psychological Models

When normative models are tested in the psychol-
ogy of decision making, these models may include 

expected utility theory or game theory as well as 
psychological models, such as prospect theory.

These normative models do not exhaust the 
models of decision-making psychology, which also 
include preference theories, emotive theories, and 
ethical and moral theories.

Decision Making Under Risk

The classic decision-making situation is one that is 
common in all models of decision-making psychol-
ogy: having to choose between alternatives, each 
of which is characterized by an estimated risk. The 
classic examples of medical decision-making psy-
chology are characterized by psychologists Amos 
Tversky and Daniel Kahneman as embodying a 
form of decision making under risk.

The fact that patients do not necessarily think 
solely in terms of risk in decision making has also 
been noted, primarily in ethical perspectives on deci-
sion making. However, the focus on risk has perhaps 
been singled out because of the overattention that is 
often paid to discussions of benefits. This point was 
noted by Barbara J. McNeil and colleagues in one of 
the earliest patient-preference papers in the medical 
literature, published in the New England Journal of 
Medicine. In this scientific paper, McNeil and col-
leagues identify the fact that the very data that physi-
cians use in published research papers in the area of 
oncology is the “5-year survival curve,” which sets 
forth the best treatment as the treatment that offers 
the best 5-year survival. But in their study, McNeil 
and colleagues note that some study participants 
preferred not to take the short-term risks of a treat-
ment that are often necessary to achieve this 5-year 
survival and would rather go with a treatment that 
had a better chance of short-term survival and forgo 
the better chances of long-term survival offered by 
the rival treatment.

Risky Versus Riskless Choices

The basic decision study in medical decision 
making is typically between a gamble (trade-off) 
and a sure thing. Do patients and physicians go for 
the gamble or do they prefer the sure thing? Risky 
choice, as noted by Kahneman and Tversky, is 
undertaken in a circumstance where there is no 
future knowledge about consequences. In addition, 
in medical decision making, the risky choice is 
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made on the basis of data where it may not be clear 
how the individual fits into the published, peer- 
reviewed medical literature related to the decision. 
Indeed, here, it is assumed that peer-reviewed 
medical literature associated with the medical con-
dition or disease process that the patient has can 
shed light on the diagnostic or therapeutic deci-
sions. In the real world of decision making, many 
times there is no published, peer-reviewed medical 
literature that fits the patient’s case, and medical 
decision making thus depends highly on physician 
clinical experience and opinion.

Elicitation Versus Construction of Preferences

One of the key areas of research in the psychol-
ogy of decision making is in the very basic notion 
that underlies its research: Are preferences about 
risky versus riskless choices actually involving pref-
erences that are being elicited from study partici-
pants who already have formulated their preference 
(regarding the point about which a preference is 
being elicited) in the past and—as much research 
has assumed—are now just retrieving their previ-
ously constructed preference in response to a ques-
tion being asked by the researcher? Or are the 
study participants actually formulating (construct-
ing) the preferences they are offering to the research-
ers at the time they are being asked the question?

Future Research Areas

Jerome P. Kassirer, former editor of the New 
England Journal of Medicine, offers the following 
questions that need to be asked as future research 
areas in the psychology of decision making: First, 
have most of the subjects in the published medical 
literature to date experienced the outcomes they 
were asked to assess? Second, have most of the sub-
jects undergone a preference elicitation procedure 
before in their life when they agree to the research-
er’s request to participate in the researcher’s study? 
Third, what is to be done about the fact that prefer-
ences may well change over time? Fourth, what is 
to be done if different preference procedures lead to 
different results in the same subject? Fifth, what is 
to be done when the same subjects reports that he 
or she places the same value on a state of morbidity 
associated with a medical condition or disease pro-
cess as on being in a state of perfect health?

To Kassirer’s questions can be added two oth-
ers: How do aspects such as a patient’s emotions, 
which are present or actually elicited during the 
preference elicitation procedure, to be accounted 
for in the psychology of decision making? How are 
patients with strong belief and value systems to be 
approached by such procedures and methodolo-
gies of assessing preferences when they object to 
the taking of gambles?

Continued research in the psychology of deci-
sion making is needed to better understand how 
humans make decisions now and in what sense 
these same humans may want to change the way 
they make decisions and opt for another frame-
work to achieve in some sense a better decision.

Defective Decision Making

Psychophysiologic correlates of defective decision 
making are most often discussed in relation to the 
dementias, yet contemporary researchers study 
those seemingly healthy older adults who seem to 
be free of obvious neurologic or psychiatric dis-
ease, but have deficits in reasoning and decision 
making. We will first consider decision making in 
the dementias and then decision making in appar-
ently normal aging.

Decision Making and Dementia

The impact of dementias on cognitive processes 
and the psychology of decision making often 
includes a fluctuating cognition with variations in 
attention, alertness, and visual-perceptual prob-
lems with complex (well-formed and often detailed) 
visual hallucinations. Contemporary research in 
aging, neuropsychology, imaging, and neurophysi-
ology are attempting to distinguish early versus 
later stages of dementia of various types (e.g., 
Alzheimer’s disease, Lewy body dementias, demen-
tia of Parkinson’s disease) to aid in research on 
prevention of dementia. Yet contemporary research 
is still trying to distinguish dementias from what 
otherwise seem to be apparent changes of normal 
aging in various groups of people.

Decision Making and Apparently Normal Aging

Natalie L. Denburg and colleagues are interested 
in defining the psychophysiologic correlates of 
defective decision making in normal aging. These 
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researchers investigated the scientific hypothesis 
that some seemingly normal older persons have 
deficits in reasoning and decision making due to 
dysfunction in a neural system. The authors argued 
that this hypothesis (a) is relevant to the comprehen-
sive study of aging and (b) addresses the question of 
why so many older adults fall prey to fraud.

The authors (in a series of three studies) inves-
tigated a cross-sectional sample of community-
dwelling participants and argue that they 
demonstrated that a subset of older adults (approx-
imately 35%–40%) do not perform well and 
appear to be working with a disadvantage on a 
laboratory measure of decision making that closely 
mimics everyday life by the manner in which it 
attempts to factor in reward, punishment, risk, 
and ambiguity.

The authors found that the same poor decision 
makers may also display defective autonomic 
responses such as those previously established in 
patients with acquired prefrontal lesions.

Finally, the authors present data demonstrating 
that poor decision makers are more likely to 
become the victims of deceptive strategies such as 
deceptive advertising. Examples of such deceit may 
include fraud but may also include misrepresenta-
tions encountered in other daily activities, includ-
ing television broadcast advertising designed to 
motivate the sale of prescription medicines within 
the broadcast. Here, we see that the intricacies of 
decision making—initially described by Daniel 
Bernoulli in 1738 in his work on the exposition of 
a new theory on the measurement of risk and built 
by Kahneman and Tversky in the 1970s—are in 
turn affected by the processes of normal aging on 
the human brain; that is, these normal aging pro-
cesses affect the very activities described above as 
the psychology of decision and decision making. 
Clearly, the psychology of decision making has to 
be better understood in terms of the contemporary 
research on normal and abnormal processes of 
aging and the way these affect risk and benefit 
consideration by humans.

Decisional Capacity

Far away from the universities where university 
students served as study participants in the work 
of Tversky and Kahneman, the concept of deci-
sional capacity began to be developed. The notion 

of decisional capacity—that is, the capacity to 
make a decision—is often raised in two arenas: 
clinical care and research on human subjects.

 1. In the clinical setting, the question is raised 
whether that individual has the capacity to 
consent to or reject the medical intervention 
being offered.

 2. In the research setting, the question is raised 
whether that individual has the capacity to 
consent to or reject participation as a study 
volunteer in a research study to which he or she 
is being asked by a principal investigator.

The issue of decisional capacity is appropriately 
raised in areas of cognitive decline or cognitive 
problems, such as dementia; confusion or delirium; 
and mental-health cognitive biases and disease pro-
cesses. The issue of decisional capacity can also be 
raised in the case of adults with symptomatic or 
asymptomatic medical conditions and disease states 
in intensive care units or simply in hospital wards.

Decision making in both clinical care and 
research on humans is complex, whether the indi-
vidual is declared to have decisional capacity or 
not. Let us consider each domain separately.

Clinical Care

In the clinical setting, if the patient is in the hos-
pital and declared to have decisional capacity, the 
question is: How long will that capacity be mani-
fest in that individual?

In the clinical setting, if the patient is in the 
hospital—without an advance directive and with-
out that individual declaring at some prior time a 
family member or significant other to serve as his 
or her surrogate decision maker—and is declared 
not to have decisional capacity, the question 
becomes: What form of substituted judgment will 
be used on the patient’s behalf?

Research on Humans

In the research setting, if the individual has 
come to a hospital emergency room for care, or is 
admitted to the hospital for care, or is transferred 
from the medical ward to the intensive care unit 
for care, how is decisional capacity to be assessed 
in each of these areas? The areas of an “advance 
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research directive” to be prescribed by individuals 
before they lose decisional capacity are also open 
areas for research on human study volunteers.

The domains of substituted judgment in clinical 
care or in research on humans, as yet, have only 
been minimally explored by medical decision mak-
ers, with plenty of opportunities for research as 
our population ages and these issues multiply.

Future Research

All research underlying the psychology of decision 
making, from Tversky and Kahneman to Denburg 
and colleagues, depends heavily on questionnaire 
studies. The accuracy of future research depends 
heavily on the development of the best question-
naires to diagnose and follow individuals with 
cognitive and decision-making decline to make 
certain accurate diagnoses are made at each point 
in development and aging. The evaluation of 
patient response to therapy will also depend on 
treatment versus treatment comparison, which in 
turn will depend on optimal questionnaire studies 
to demonstrate the efficacy between therapies used 
to prevent, manage, and ideally treat, slow, and 
cure these conditions.

Dennis J. Mazur

See also Human Cognitive Systems; Risk Attitude; 
Unreliability of Memory
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Decision Quality

In its landmark report, Crossing the Quality 
Chasm, the Institute of Medicine set out six aims 
for high-quality medical care: that care should be 
effective, efficient, equitable, safe, timely, and 
patient-centered. A significant part of the quality 
of medical care is determined by the large and 
small decisions that doctors and patients make 
every day about seeking care, having tests, starting 
treatments, and stopping treatments. It is impor-
tant to know to what extent decisions contribute 
to or detract from quality of care. To a great 
extent, the quality of a decision depends on the 
decision situation, on the perspective of the per-
son who is judging the quality, and on what is 
being judged (e.g., whether it is the decision or the 
decision maker that is the unit of analysis). Careful 
attention to these issues is important to create 
valid and reliable assessments of decision quality.

Decision Situation

The decision situation plays a big role in determin-
ing the quality of a medical decision. There are 
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situations in medicine where a treatment or 
approach has considerable evidence of a significant 
benefit with considerable evidence of minimal 
harm. Most clinical guideline committees, such as 
the U.S. Preventive Services Task Force (USPSTF), 
set out explicit criteria for grading the clinical evi-
dence for the benefits and harms of different tests 
and treatments. When the benefits are determined 
to outweigh the harms, there is a “right” answer 
that can be termed effective care. For example, the 
use of beta blockers following a heart attack fit the 
criteria for effective care. Most patients have a 
strong desire to reduce the risk of repeat heart 
attacks and death, and most feel the modest side 
effects of the medicines are worth the benefit. As a 
result, high-quality decisions in these situations are 
about efficiently delivering proven, effective care to 
all those who may benefit. Decision quality can be 
inferred by the percentage of eligible patients who 
receive the proved treatment, or the percentage of 
care that is “consistent” with the guidelines.

Not all situations in medicine are examples of 
effective care. In fact, a surprising number of deci-
sions do not have sufficient evidence of benefit  
for one option over another, or have evidence of 
equivalence of two or more options, or have evi-
dence of substantial harm that accompanies the 
benefit. In these situations, often called preference-
sensitive decisions, there is not a clearly superior 
approach, and the preferences of individual patients 
are critical to selecting the “best” choice. Simply 
examining treatment rates will not provide enough 
information to determine the quality of decisions—a 
more sophisticated approach is needed.

Many different stakeholders have recognized 
this complexity and have called for attention to 
this challenge. The Institute of Medicine has 
defined patient-centered care as “healthcare that 
establishes a partnership among practitioners, 
patients and their families (when appropriate) to 
ensure that decisions reflect patients’ wants, needs 
and preferences and that patients have the educa-
tion and support they need to make decisions and 
participate in their own care” (p. 7). Researchers 
in the field of medical decision making have also 
focused on two themes that are in this definition—
that patients are informed and that choices for 
tests and treatments reflect patients’ goals and 
preferences. In an international consensus process, 
researchers, providers, policy makers, and patients 

overwhelmingly supported a definition of decision 
quality as the extent to which a decision reflects 
the considered preferences of a well-informed 
patient, and is implemented.

To assess decision quality in preference-sensitive 
decision situations requires assessing the extent to 
which patients are informed, for example, through 
a set of multiple-choice knowledge items. It also 
requires assessing patients’ considered preferences 
for the potential health outcomes, their risk atti-
tudes, and their willingness to make trade-offs 
over time. And finally, it requires assessing the 
treatment implemented. The patient’s preferences 
would then be used to calculate value concor-
dance, or the amount of association between their 
preferences and the treatments received. One 
approach is to aggregate over a group of patients, 
controlling for other factors that may influence 
treatments, to determine the extent to which the 
variation in treatments is explained by variation in 
patients’ preferences. This could be used to com-
pare different hospitals or providers. For example, 
those who are consistently able to inform their 
patients about the key facts of the situation, and 
those who are able to document that patients’ pref-
erences for key health outcomes are significantly 
associated with their treatment rates would be able 
to demonstrate higher decision quality than those 
who cannot inform their patients and who are not 
able to show any consistent association between 
patients’ preferences and treatments.

Conceptual Framework

This definition reflects the commitments of norma-
tive decision theory, which holds that a decision 
should be judged by the process by which an alter-
native was selected rather than by the outcomes 
that resulted from the decision. Most normative 
theories make the assumption that individuals are 
self-interested and goal-directed in their behavior. 
Actual behavior shows that people make decisions 
that are not consistent with self-interest, as people 
often pay attention to irrelevant factors and make 
suboptimal decisions. Many normative theorists 
ascribe these gaps to inattention, ignorance, or lack 
of adequate elicitation of preferences. Others use 
these as a starting point for research into the heuris-
tics that people use and how they attempt to sim-
plify complex decision situations so as to minimize 
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cognitive load, conflict, and other issues. These pre-
scriptive approaches still assume a fairly analytic 
mode of processing, although recognizing boundar-
ies and limits.

An alternate view of decision making empha-
sizes a very different cognitive mode of informa-
tion processing. Intuitive modes are fast, 
unconscious, and rely on heuristics and rules of 
thumb. The processing is tacit and is colloquially 
referred to as “going with your gut” or “sleeping 
on it.” Studies in the laboratory and in real life 
have found that consumers view some choices 
more favorably when made in the absence of atten-
tive deliberation. In these studies, the “quality” of 
the decision was evaluated by the consumers’ sat-
isfaction or happiness with their choice. Whether 
consumers’ views (e.g., happiness with their selec-
tion) are an appropriate proxy for the quality of 
medical decisions has been debated.

The focus on process does not mean that out-
comes are not important in the evaluation of deci-
sions. In fact, over multiple decisions, it is assumed 
that this type of logical process will achieve better 
outcomes. In financial or economic decisions where 
money is used to measure the “value” or outcome, 
it is fairly easy to evaluate or compare groups of 
decisions (e.g., return on a stock portfolio using a 
dartboard to pick stocks as compared with using a 
more logical process that incorporates information 
and preferences). For healthcare, however, there is 
not a fungible outcome measure that is universally 
valued. Time is not fungible; it cannot be bought or 
sold, and neither can health. Many might assume 
that survival could be a clear outcome measure to 
compare treatments or decision protocols; how-
ever, many studies have documented variable toler-
ance to trading length of life and quality of life. 
Evaluating medical decisions by whether they pro-
duce better outcomes is difficult—in large part 
because there is no fungible measure.

That does not mean that the appropriate 
approach is to ignore outcomes. Studies have 
shown that the laypeople often view the outcomes 
as more important than the process used to get 
there. An oft-cited example is that most patients 
and family members would not be likely to agree 
that a decision to undergo surgery was good when 
the patient died during the procedure. Thus, qual-
ity of the decision depends greatly on the perspec-
tive through which it is being judged and may be 

evaluated differently on an individual basis than 
when combined as a group of events. In this same 
case, the provider, who has a broader context from 
which to evaluate decisions, may recognize that for 
the majority of times it has been used, the proce-
dure has helped and that this was a good decision 
that had a bad outcome.

Policy Makers

Policy makers are important stakeholders in medi-
cal decision making, although their influence is 
often opaque to patients and sometimes to provid-
ers as well. Through decisions about benefits,  
coverage, access, accreditation, accounting, and 
financing of care, policy makers and administrators 
enable and constrain the options that providers 
may offer and that patients may accept, the amount 
of time they have to discuss choices, and the cost to 
the patient of various alternatives. For policy mak-
ers, medical decisions are statistical groupings that 
have economic and health implications. The ten-
sion between making decisions that benefit an indi-
vidual and decisions that benefit a group are real 
and challenging. The quality of decisions from their 
perspective may not be evaluated on the extent to 
which individuals get what they want, but on 
whether, on average, the group gets better outcomes 
at the same or lower costs. Policies may negatively 
affect a minority of people for the benefit of the 
majority. Also, instead of individualization, they 
may favor stability and eliminating variation.

Karen R. Sepucha
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Making; Utility Assessment Techniques
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Decision rules

A decision rule is a decision-making tool combin-
ing fixed history and physical examination items 
and/or a simple diagnostic test used for explicit 
application to a clinical decision. Although many 
decisions about management of patients are accu-
rately made on the basis of clinical judgment, 
some decision making can be improved through 
application of a standardized decision rule that 
has been developed and tested through a rigorous 
evidence-based process. Implementation of a rule 
can bring greater certainty to the clinician about 
the course of action to follow given a particular 
patient presentation, or it may lead to an improved 
ability to predict the probability of disease.

A decision rule is developed in a systematic pro-
cess, using prospective studies often involving large 
numbers of patients, to meet an outcome deter-
mined to be clinically important and necessary for 
improved healthcare. The three stages of rule devel-
opment are those of derivation, validation, and 
implementation. Derivation involves identifying 
decision items of the rule and ensuring that items 
are clearly defined and have demonstrated reliabil-
ity. Validation requires analysis of whether the rule 
is accurate and reliable and meets the intended out-
come; is acceptable to clinicians; can be used by 
different health professionals; and is suitable for 
application to diverse patient populations. The 

final stage of rule development involves analysis of 
the impact of implementation of a rule on patient 
management and healthcare.

Course of Action

A decision regarding referral or not for further 
testing is frequently required in clinical assessment. 
Referral may be to low-cost tests, as in the case of 
plain radiographs for identification of fracture, or 
to more expensive tests such as dual-energy X-ray 
absorptiometry to assess bone mineral density for 
osteoporosis screening. Clinical decision rules have 
demonstrated advantages over clinical judgment in 
these decisions. Further useful applications of 
clinical decision rules include guiding referral for 
cranial computed tomography for minor head 
injury and venous ultrasonography for lower-limb 
deep vein thrombosis.

Ankle and knee decision rules are examples of 
rules designed to explicitly suggest when to refer 
for radiography. The ankle and knee rules were 
developed to inform referral to radiography of 
patients with acute injury and potential fracture in 
primary care and emergency department settings. 
Impetus for development of ankle and knee deci-
sion rules arose from recognition that plain radio-
graphs were commonly ordered for patients 
following ankle and knee blunt trauma from blows 
and falls, in the absence of fracture. High health-
care costs of unnecessary radiographs and patient 
time spent having the procedure were identified. 
Although the plain radiograph is relatively low 
cost, ankle and knee trauma are common, result-
ing in high volumes of ankle and knee radiographs 
and therefore substantial healthcare costs. 
Implementation of ankle and knee rules was 
intended to impact on these costs and lead to 
healthcare savings.

Concern of the clinician or, in some cases, the 
patient that a fracture may be missed can influence 
clinical decisions. Justification for these concerns is 
that if radiography is not ordered for a patient 
with a fracture, there could be serious conse-
quences. Delayed or overlooked diagnosis of frac-
ture can affect clinical outcome and may result in 
increased healthcare costs and lost productivity. A 
clinician who misses an ankle or knee fracture may 
be subject to claims of malpractice. For these rea-
sons, acceptance of a rule by clinicians requires a 
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guarantee that a rule will identify clinically impor-
tant fractures.

Ottawa Knee Rule

Although other ankle and knee decision rules exist, 
the Ottawa ankle and knee rules are credible, with 
well-documented evidence of rule development in 
different countries with some studies conducted 
independent of the developers of the rule. The 
example used to illustrate rule development is the 
Ottawa knee rule.

Five history and physical examination items 
form the basis for decision making in the Ottawa 
knee rule. Rule items are age 55 years or older, 
tenderness at head of fibula, isolated tenderness  
of patella (no bone tenderness of knee other than 
patella), inability to flex to 90°, and inability to 
bear weight both immediately and in the emer-
gency department for four steps (unable to transfer 
weight twice onto each limb regardless of limping). 
Radiographic examination is suggested for patients 
with acute knee injuries with any one or more than 
one of the decision items. Rule items were derived 
in initial prospective investigation from 23 stan-
dardized variables on the basis of interassessor 
reliability, high correlation with fracture, and 
mathematical analysis.

Numerous studies have investigated the validity 
of the Ottawa knee rule in adult patients older 
than 18 years. Different analyses of sensitivity and 
specificity of the rule have shown similar results. 
Sensitivity is the proportion of patients with frac-
ture for whom the results of the rule indicate radi-
ography. Specificity is the proportion of patients 
without fracture for whom the results of the rule 
do not indicate radiography. The Ottawa knee rule 
has high sensitivity with extremely low to zero 
false negative rates, an important factor in accept-
ability of the rule to clinicians, whose main con-
cern is not to miss a fracture. Low specificity tends 
to accompany high sensitivity, and this is true of 
the Ottawa knee rule. This could mean that health-
care costs would not be reduced as much as antic-
ipated by rule implementation, as some patients 
would be inaccurately selected for radiographs. 
Interassessor reliability of physician interpretation 
of the rule is excellent. Examination of the validity 
and reliability of the rule in very small patient 
samples has shown less positive support for use 

of the rule by triage nurses in emergency 
departments.

Implementation of the Ottawa knee rule as 
compared with clinical judgment alone brings sig-
nificant societal cost savings due to decreased use 
of knee radiography and, for those patients dis-
charged promptly as a consequence of no radio-
graphy, less time spent in the clinic. Economic 
analysis has also considered estimates of the value 
of missed fracture in terms of damages awarded 
for delayed diagnosis of knee fracture in the event 
of compensation. Although very small change in 
sensitivity from 1.0 would result in missed frac-
tures, studies consistently report sensitivity of 1.0, 
and therefore economic analysis finds negligible 
impact of missed fracture with implementation of 
the rule. The rule does have exclusion criteria, and 
any benefits identified of rule implementation may 
not apply to patients younger than 18 years and all 
cases where circumstances may make it difficult to 
obtain reliable information from the patient, such 
as serious communication problems for whatever 
reason. The success of implementation of Ottawa 
knee rules and also Ottawa ankle rules has led to 
further proposals of decision rules for other 
regions, with the same intent of assisting decision 
making regarding referral to further testing in 
cases of blunt trauma.

Prediction of Probability of Disease

Prediction of potentially life-threatening disease 
can be problematic as observed in cases of serious 
illness, including acute myocardial infarction, can-
cer, and pulmonary embolism. Decision rules are 
one of the approaches used to improve manage-
ment of these patients.

Development of decision rules for pulmonary 
embolism, for example, occurred in response to 
worrying evidence that this potentially fatal condi-
tion frequently goes undiagnosed. Without a deci-
sion rule, difficulties in accurate separation of 
those with and without pulmonary embolism have 
been demonstrated even when clinical assessment 
is accompanied by a range of sophisticated and 
expensive tests. As well as the problem of a poten-
tially fatal missed diagnosis, patients incorrectly 
diagnosed with pulmonary embolism will receive 
anticoagulant therapy, which they do not need, 
with possibility of serious side effects.



301Decision Rules

Wells Rule

The decision rule developed by Wells and colleagues 
for pretest probability estimate of pulmonary embo-
lism has been thoroughly investigated and is widely 
recognized. The seven decision items of the Wells 
rule and the scoring system were derived from 40 
initial items through mathematical analysis. Rule 
items are clinical signs and symptoms of deep vein 
thrombosis (leg swelling and pain with palpation of 
the deep veins); an alter native diagnosis is less likely 
than pulmonary embolism; heart rate >100 beats 
per minute; immobilization (bed rest, except to 
access the bathroom, for at least 3 consecutive 
days) or surgery in the previous 4 weeks; previous 
objectively diagnosed deep vein thrombosis or pul-
monary embolism; hemoptysis; and malignancy 
(treatment that is ongoing, within the past 6 
months, or palliative). The rule assigns points of 
3.00 to the first two items, 1.5 to the next three 
items and 1.0 to the last two items. Patients are 
categorized according to their score as low proba-
bility if <2; moderate probability if 2 to 6; and high 
probability if >6. The Wells rule has demonstrated 
moderate or better interassessor reliability.

In early stages of rule development, it was 
decided that combining the Wells rule with the 
D-dimer blood test could bring benefit in identify-
ing those without pulmonary embolism and there-
fore those with no need for imaging tests. A 
diagnostic algorithm was created, including Wells 
rule and D-dimer test, which has validated accuracy 
for identifying those patients in whom pulmonary 
embolism can be safely ruled out. A decision regard-
ing probability of pulmonary embolism is made 
first on the basis of the Wells rule. Low, moderate 
and high probability groups all then undergo 
D-dimer test to assess for D-dimer fragments pres-
ent in pulmonary embolism but also present in 
many other conditions. On application of the rule 
and D-dimer test, patients with low probability 
who also have a negative D-dimer test are separated 
out as without pulmonary embolism, and antico-
agulant therapy is withheld from these patients.  
On prospective investigation, no low-probability 
patients in whom pulmonary embolism was 
excluded on the basis of the diagnostic algorithm 
subsequently died of pulmonary embolism. Using 
the algorithm, patients with moderate and high 
probability on the basis of the Wells rule are 

D-dimer tested and then are investigated with pul-
monary angiography or ventilation perfusion scan-
ning, both of which have demonstrated limitations.

Subsequent refinement has resulted in a diagnos-
tic algorithm with two categories—the simple Wells 
rule (as compared with the original Wells rule, with 
three categories). The simple Wells rule categorizes 
patients as pulmonary embolism–unlikely in a case 
of a score <4 and pulmonary embolism–likely if the 
score is >4. Computed tomography is the preferred 
imaging technique in the algorithm for exclusion or 
confirmation of pulmonary embolism in patients 
with a score >4. Those with a score <4 and unlikely 
to have pulmonary embolism have a D-dimer test 
as in the original algorithm and, if this is negative, 
are excluded from diagnosis of pulmonary embo-
lism; if the D-dimer is positive then patients have 
computed tomography. Prospective investigation 
has validated the safety of the algorithm. There is 
low risk for incorrectly diagnosing a patient who 
subsequently goes on to have pulmonary embolism 
and enhanced potential for correctly excluding 
diagnosis of pulmonary embolism with application 
of this algorithm. Wells scores, original and simple, 
have acceptable reliability.

Mathematical Techniques  
in Rule Development

Decision items of a rule are derived from a number 
of variables selected in a transparent process of 
review of the literature and consultation with rel-
evant experts. A methodologically sound approach 
is to evaluate all items with possible relevance to 
the rule prospectively to assess association with 
rule outcomes. Investigation of potential rule vari-
ables involves univariate and multivariate tech-
niques and estimates of reliability.

An accepted exemplar for rule development is the 
Ottawa ankle rule. The two rule outcomes are no 
fracture or insignificant fracture (defined as avulsions 
3 mm or less across) or clinically significant fracture. 
In the preliminary screen of 32 clinical variables, 
chosen on the basis of evidence and clinical experi-
ence of investigators, univariate association and reli-
ability of each variable were assessed. Variables with 
moderate or better reliability (kappa value > .6) and 
found to be strongly associated with a significant 
fracture in univariate logistic regression analysis  
were then analyzed with multivariate techniques of 
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multiple logistic regression analysis and recursive 
partitioning analysis.

Univariate logistic analyses, chi-square test for 
categorical data, and unpaired t test for continu-
ous data compared one variable at a time with the 
outcome. Although these analyses have the advan-
tage of simplicity, a limitation lies in the inability 
to demonstrate relationships between the vari-
ables. Swelling and tenderness over the medial 
malleolus were both initially associated with frac-
ture in univariate analyses. However, swelling was 
excluded on the basis of subsequent multiple 
regression analyses because of finding of high cor-
relation of swelling with tenderness and superior 
interassessor reliability of tenderness. Only tender-
ness was retained in the rule.

Initial multivariate analyses of stepwise logistic 
regression based on logarithmic equations resulted 
in a model that missed more than half the ankle 
fractures. Logistic regression analysis seeks overall 
accuracy rather than an emphasis on sensitivity 
and thus provided an unacceptable model. It had 
been determined that for clinician acceptance the 
ankle rule had to have 100% sensitivity for detect-
ing clinically significant fracture. Recursive parti-
tioning methods create branches of smaller and 
smaller subpopulations of patients, and this analy-
sis yielded the accepted ankle rule, with 100% 
sensitivity though low specificity and the smallest 
number of variables. Reliability of the combina-
tion of rule items was good, kappa = .72.

Accuracy statistics differ depending on the pur-
pose of the decision rule and are not limited to 
reports of sensitivity and specificity. Confidence 
intervals (CI) indicate the range of variability asso-
ciated with rule application and should be reported 
with results of diagnostic accuracy. The Ottawa 
knee rule, for example, reported sensitivity of 1.0 
(95% CI, .94–1.0) and specificity of .48 (95% CI, 
.45–.51). The Wells rule for pulmonary embo-
lism, as a further example, reported in terms of 
probability of the disease for the different catego-
ries as follows: low pretest probability (3.4%; 95% 
CI, 2.2%–5%); moderate pretest probability (28%; 
95% CI, 23.4%–32.2%); and high pretest proba-
bility (78%; 95% CI, 69.2%–86.0%). Likelihood 
ratios indicate how much an individual decision 
item or a rule will raise or lower the pretest proba-
bility that a patient has the outcome of interest and 
can be calculated from sensitivity and specificity 

data. A nomogram proposed by Fagan presents 
pretest probability, likelihood ratio, and posttest 
probability scales in diagrammatic form, allowing 
simple estimation of posttest probability with the 
use of a ruler if the other values are known.

Use of Decision Rules

A number of potential barriers to clinical uptake of 
a rule exist related to clinician knowledge, atti-
tude, and behavior. Acquisition and retention of 
rule knowledge can be problematic. The volume of 
new evidence can be overwhelming, and clinicians 
may have difficulty in selecting out valuable infor-
mation critical to improving their clinical practice. 
Application of a decision rule requires precise 
recall of the rule plus calculations where specified, 
and this may be difficult without pocket prompt 
cards or computer assistance aids. Clinicians may 
have doubts about the quality of a rule, the time it 
will take to implement it in practice, and uncer-
tainty regarding what the rule may deliver for 
them and their patient. It may feel better to the 
clinician to continue to make decisions in the same 
way as they have always made them.

An important advantage of decision rules is cer-
tainty of an accurate decision irrespective of clini-
cian experience. Despite this and other advantages 
of rule use, widespread clinical implementation 
does not automatically follow their development, 
even if the evidence is strongly supportive. 
Investigation of the clinical uptake of the Ottawa 
ankle rules has demonstrated this, with unsatisfac-
tory reports that the rule has not been as widely 
used as anticipated even by informed clinicians. 
Inadequate use of the rule has now directed inter-
est to barriers to uptake. Healthcare benefits of 
decision rules will only be fully realized when bar-
riers to their clinical uptake are addressed.

Kate Haswell, John Gilmour, and Barbara Moore
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Decisions faceD By hospital 
ethics committees

Hospital ethics committees (HECs) are relatively 
new bodies in the field of healthcare. They are 

multidisciplinary hospital groups that assemble 
for the purposes of ethics education, case consul-
tation, and policy development. A minority of 
HECs pursue research activities, typically about 
effectiveness of case consultations and policy 
review. Ethics committees may advise healthcare 
professionals, patients, and family members about 
dealing with troubling cases, ethical conflicts or 
dilemmas, and ought to provide a nonthreatening 
forum that allows for the airing of different opin-
ions, and discussion of the moral justifications for 
choosing one course of action over another.

Ethics committees may facilitate the decision-
making process. Common reasons for consulta-
tions are questions about treatment limitations, 
and/or who ought to be included in the decision-
making process. Recommendations from HECs 
are typically advisory in nature and not binding, 
but in some jurisdictions ethics committee recom-
mendations may have legal weight.

History

Current HECs are derived and expanded from 
decision-making groups from the past. In the 
1950s, some Catholic hospitals formed “medico-
moral” committees, to ensure that Catholic teach-
ing on such matters as contraception, sterilization, 
and abortion were followed.

In the 1960s, some pioneering hospitals devel-
oped committees to choose which patients ought  
to receive experimental dialysis, treatment with an 
artificial kidney for kidney failure. Shana 
Alexander’s article in Life magazine in 1962 
describes a typical meeting of the Seattle Artificial 
Kidney Committee, comprised of a lawyer, a min-
ister, a banker, a housewife, an official of state 
government, a labor leader, and a surgeon. The 
article, titled “They Decide Who Lives, Who Dies,” 
describes a re-creation of the discussion about 
which of several patients ought to receive life- 
saving dialysis. The members discussed such topics 
as the patients’ education, employment status, finan-
cial status, marital status, how often they went to 
church, etc. Some have called this type of committee 
the “God Squad,” having the power to choose who 
would live or die, and many believe the social criteria 
that were addressed by this committee were unfair 
and inadequate. Nevertheless, this article highlighted 
the need for the development of decision-making 
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bodies that could reflect on the ethical problems 
posed by new technologies, and that such commit-
tees ought to have wide representation.

In 1975, pediatrician Karen Teel suggested that 
hospital ethics committees be established to help 
physicians and parents make decisions for impaired 
newborns, to “provide a regular forum for more 
input and dialogue in individual situations and to 
allow the responsibility for these judgments to be 
shared.” Her recommendation was that hospital 
ethics committees composed of “physicians, social 
workers, attorneys, and theologians” might help in 
reviewing difficult cases. Her article was cited by 
the New Jersey Supreme Court in its decision in 
the Quinlan case. 

Karen Ann Quinlan was 21 years old in 1975, 
when she stopped breathing after taking recre-
ational drugs with alcohol. She was placed on an 
artificial breathing machine, but had sustained 
severe brain damage, and remained in a coma. 
Eventually, her parents asked to have her taken off 
the ventilator. Prior to that time, the American 
Medical Association held that withdrawing a ven-
tilator to allow death to occur was unethical. The 
Court’s Quinlan decision in 1976 authorized the 
removal of the respirator, and recognized that 
HECs, as described by Teel, might be useful in the 
review of difficult cases, and might possibly keep 
such cases out of the judicial system. Still, HECs 
did not become common in the 1970s, although 
that is the era that Institutional Review Boards 
(IRBs) were begun, to more closely regulate human 
experimentation in medicine.

After a series of court cases, “Baby Doe” regu-
lations were devised in the 1980s, in response to 
parents who chose to refuse medical therapy for 
infants born with abnormalities. In turn, these 
cases stimulated some centers to form Infant Care 
Review Committees, to review which treatments 
made sense for impaired newborns, and to ensure 
that treatments were not withheld without careful 
review.

Despite the sporadic and ad hoc formation of 
all these ethics committee forebears, by 1983, only 
1% of U.S. hospitals had developed HECs. That 
same year, the President’s Commission published 
the guide Deciding to Forego Life-Sustaining 
Treatment and, as an appendix to this publication, 
described a recommendation for roles and compo-
sition of HECs.

After the Baby Doe cases, and the President’s 
Commission report, HECs became much more 
common. Finally, in 1992, the Joint Commission 
on Accreditation of Health Care Organizations 
(JCAHO) added a requirement that hospitals have 
procedures for dealing with ethical issues. For a 
hospital to remain accredited it is required to have 
an ethics committee or some process that could 
provide for the functions of an ethics committee; 
HECs are now found in almost all hospitals.

Hospital Ethics Committee Functions

Ethics committees typically address three main 
responsibilities: education, policy development, 
and case consultation. A small minority of ethics 
committees, usually at larger academic centers, 
may also be involved in research activities.

Ethics committees typically are composed of 
physicians, nurses, social workers, and clergy as 
members. Some committees also have lawyers, 
hospital administrators, community representa-
tives, and, if available, may have specialists from 
psychiatry, palliative care, neurology, pediatrics, 
transplantation, intensive care units, and/or allied 
health services, such as physical therapy. Larger 
committees are typically found at academic medi-
cal centers. It is critical that committee member-
ship be diverse, to facilitate broad discussion from 
those of different backgrounds. Committee com-
position can be widely variable, depending on the 
size and resources of the hospital.

Education

The first task of an HEC is education of its own 
members. Members should be willing to attend 
regular meetings and share in the education of the 
group. Education may include review of previous 
ethics consultations, hospital policies, and relevant 
state laws, as well as reports from various authori-
tative bodies and ethics commissions. Members 
may share ethical problems from their discipline, 
or areas of expertise.

Some committee members may also plan educa-
tional activities, such as regular hospital rounds to 
help identify cases of concern, and conferences to 
educate hospital staff members and trainees. Ethics 
presentations, such as How to Fill out an Advance 
Directive, or How to Select a Health Care Proxy, 
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may be offered to educate the community. HEC 
members may review troubling cases in retrospect, 
to explore justifications for the actions taken, and 
may consider whether policy changes are necessary 
if multiple cases identify a common problem in the 
hospital.

Policy Development

HECs also help develop or review hospital poli-
cies. For example, HECs commonly write or 
review policies on topics such as informed consent, 
surrogate decision making, how to enact a do not 
resuscitate (DNR) order, brain death, blood trans-
fusion and Jehovah’s Witnesses, utilization of 
scarce resources, organ donation after cardiac 
death, and the hospital’s code of ethics, and some 
may even review business contracts as part of 
JCAHO’s requirement for organizational ethics.

Case Consultation

Not all members of HECs are prepared or 
trained to perform case consultation, and it can 
certainly be intimidating for a family member to be 
asked to meet with a dozen strangers to discuss dif-
ficult medical decisions for their loved ones. Instead, 
most clinical ethics case consultations are per-
formed by small teams or individuals who have 
undergone more extensive training in bioethics and 
mediation. The consultant or team of consultants 
may review the cases later with the larger commit-
tee, or a subgroup dedicated to the consultation 
process. In some centers, particularly smaller hos-
pitals, where the committee may be smaller, the 
entire committee may review cases. More than 
81% of U.S. hospitals now have an ethics consulta-
tion service of some kind. In 1998, the American 
Society for Bioethics and Humanities (ASBH) pub-
lished Core Competencies for Health Care Ethics 
Consultation, a guide to knowledge areas and skills 
useful for ethics consultation, which has been fol-
lowed up by the publication of several books and 
series of ethics cases by clinical ethics consultants.

Although ethics consultations may be requested 
for a wide variety of specific problems, there are 
common underlying themes of conflict. The conflict 
may be between the patient and the healthcare team, 
the family and the healthcare team, different special-
ists within in the healthcare team, or the family and 

the patient. Generally, conflicts are about two major 
questions. These general questions are

What is the right or best thing to do in this situa-
tion? And, because there may be different choices or 
opinions about what is the best course of action,

Who gets to decide?

So the first category of questions above asks 
about treatment options or limitations. More spe-
cific examples include the following: Should we 
take this elderly lady off the breathing machine, 
and allow her to die? Should we put her on mul-
tiple machines to keep her alive as long as her 
heart is beating? Are we allowed to turn off her 
pacemaker? Should we provide dialysis, now that 
her kidneys have failed, even though she is uncon-
scious? Should we feed her through a tube into her 
stomach, since she can no longer eat? Should we 
attempt resuscitation efforts if her heart stops 
beating? How long will it take before we can know 
if she will improve or recover? Can we treat her 
with natural herbs instead?

The second category of questions asks who 
ought to make decisions when there are differences 
of opinions about the best course of action. Specific 
examples include the following: Does this patient 
have the capacity to make choices herself? That is, 
can she express an understanding of risks, benefits, 
and alternatives to the treatment offered and make 
an informed choice? If she is too sick to make a 
choice, did she leave an Advance Directive or 
Living Will that serves as a written expression of 
her wishes? Did she name someone to make 
healthcare decisions for her if she is unable? How 
do we know what she would want? Did she ever 
make statements about what types of treatments 
she would or would not want? Does the whole 
family have to agree with the treatment option 
offered? What role does her distant relative have, 
who hasn’t seen her in many years but demands 
that everything be done to keep her alive?

A third category of questions that commonly 
lead to ethics consults are not truly ethics questions, 
but are questions about communication, policy 
clarification, or support. Large hospitals are busy 
places, and the healthcare system is fragmented. 
Sometimes, it is hard to know “what to do” or 
“who gets to decide” because there are communi-
cation difficulties. Ethics consultants can help 
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identify and bring the right people together who 
need to share in the decision-making process. 
Consultants often facilitate family meetings, to get 
family members and key members of the treating 
healthcare team together at one time to clarify the 
situation. The following are some examples: What 
is the prognosis? How ought we decide what to do 
when one doctor tells us one thing, but another doc-
tor tells us something else? Would a consultation 
from a specialty service such as neurology clarify the 
prognosis? Is physician-assisted suicide allowed in 
this state? What does the hospital policy say about 
making an order for DNR if the family objects?

Often, a healthcare professional will offer a 
treatment choice but may want extra support or 
agreement from other knowledgeable but neutral 
third parties that the choice offered was reason-
able, and the ethics consult service can assist the 
patient, family, and healthcare professionals about 
evaluating justifications for making that choice. 
Ethics consultants must be careful to decide whether 
the consults they receive are appropriate for them-
selves to handle, or whether they should be more 
appropriately directed to a psychiatrist, the hospi-
tal lawyer, palliative care team, or chaplain.

Sample Process for Ethics Case Analysis

Ethics consultants must be practical, because solu-
tions need to be found for problems involving real 
patients, rather than mere theoretical concerns. No 
one theory of ethics may be sufficient to adequately 
address all the questions an HEC may encounter.

Many committees use some form of casuistry 
for case review. In casuistry, there are no absolute 
moral rules. Casuistry is a method of reasoning 
that examines known example cases where there is 
general agreement that certain paradigm cases 
should be treated in certain ways. The case at hand 
is then compared with the paradigm cases, to 
assess the similarities and differences from them to 
determine an appropriate moral response. Casuistry 
starts with paradigmatic cases in which principles 
clearly apply and moves to complex or ambiguous 
cases.

The more similar a case is to a paradigm, the 
more clear the recommendation may be, and the 
better moral justification for a recommendation. A 
question often asked is, “Are there morally rele-
vant differences why we should treat this case 

differently than another case?” State and federal 
laws, hospital policies, and the results of prior 
well-known cases may set limitations on possible 
recommendations. It is the specific details of  
the case in question that determines the final  
recommendation.

A number of approaches to case review using an 
underpinning of casuistry have been developed. 
These approaches are ways of organizing the infor-
mation of a particular case that may allow for 
comparison with other cases. One well-known 
approach has been called the Four Topic method, 
described by Albert Jonsen, Mark Siegler, and 
William Winslade. For each case, details must be 
evaluated in each of four main areas: Medical 
Indications, Patient Preferences, Quality of Life, 
and Contextual Features.

Another more recent approach developed by 
the National Center for Ethics in Health Care of 
the Veterans Health Administration uses the acro-
nym CASES. The CASES approach recommends 
the following steps: Clarify the consultation 
request, Assemble the relevant information, 
Synthesize the information, Explain the synthesis, 
Support the consultation process. More details of 
this method can be found on the National Center 
for Ethics Web pages.

Authority of Ethics Consultants

In most instances, the role of the ethics consultants 
is to facilitate the decision-making process, not to 
make decisions themselves. Decision making in 
healthcare is properly left between the physician 
who has knowledge of the treatment options and 
the patient who has to undergo some treatment or 
his or her appropriate representative.

Although the ethics consultant may offer a rec-
ommendation, the final decisions are often left to 
those who will be most affected by the decision. 
Ethics consults are most often advisory in nature, 
and not binding. However, some jurisdictions allow 
ethics committees to have more legal weight.

One of the most common reasons physicians 
request ethics consultation is when they believe the 
therapy they are providing is futile or nonbenefi-
cial, but the patient or his or her representative 
asks to continue treatment, even though the chance 
of meaningful recovery is exceedingly low. 
Physicians and ethicists tried to better define 
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“futile” treatment in the 1990s, but were unable to 
come to an agreed-on definition. In 1999, Texas 
was the first state to adopt a law regulating end-of-
life decisions, providing a due process mechanism 
for resolving futility disputes. This law, signed by 
then Governor George W. Bush, has been tested in 
the courts. The Texas Advance Directives Act 
directs if an attending physician refuses to honor a 
patient’s or family’s request for continued treat-
ment, the refusal shall be reviewed by an ethics 
committee. If the ethics committee determines that 
the life-sustaining treatment is medically inappro-
priate, the family may attempt to transfer the 
patient to another physician or another facility. If 
no facility agrees to accept the patient in 10 days, 
then the life-sustaining treatment can be with-
drawn, even over the family’s objections. The first 
case that received national attention was that of 
Baby Sun Hudson, who was taken off a ventilator 
in March 2005, after a court reviewed the process 
followed by the hospital. The Hudson infant had a 
condition that would not allow his lungs to grow. 
No other state has enacted such a process yet, but 
under the support of this law, multidisciplinary 
ethics consultation has helped families accept treat-
ment limitations in many of the cases brought for 
review by the ethics committees in larger Texas 
hospitals.

How ethics committees ought to reach a conclu-
sion is not stated in the Advance Directive Act. 
There is no regulation that notes whether there 
needs to be unanimous consensus or simply a 
majority vote of the ethics committee. Ethical deci-
sion making is not typically the result of demo-
cratic activities such as voting, it is about 
determining appropriate justification for individual 
actions; that is one reason why most ethics com-
mittee decisions are advisory in nature.

Common Topics

Common topics addressed by HECs or consultants 
include decision-making capacity, informed con-
sent, surrogate decision making, advance direc-
tives, end-of-life decision making, privacy and 
confidentiality, reproduction and perinatal issues, 
failure to cooperate with medical recommenda-
tions, decision making for minors, critically ill 
infants, discharge dilemmas, quality-of-life issues, 
allocation of scarce resources, and genetic testing 

and gene therapy. Some HECs may tackle topics 
and policies on human research, but intensive 
review of research activities is accomplished by 
IRBs, which are more closely regulated by federal 
policy. Finally, decisions about whether a patient 
meets criteria for listing for organ transplantation 
is usually addressed by transplantation commit-
tees, which may request the presence of an ethics 
consultant for review of a case or policy develop-
ment, but is handled much differently than the 
dialysis committee God Squads of the 1960s.

Richard A. Demme

See also Advance Directives and End-of-Life Decision 
Making; Bioethics; Decisions Faced by Institutional 
Review Boards; Decisions Faced by Surrogates or 
Proxies for the Patient; Law and Court Decision 
Making; Shared Decision Making
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Decisions faceD By 
institutional review BoarDs

Institutional review boards (IRBs) are part of the 
main committees within institutions authorized to 
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provide independent scientific and ethical review 
and evaluation of research studies on humans. 
Their tasks are to optimally protect human study 
participants by the review and evaluation of the 
risks and benefits of a research study from scien-
tific and ethical perspectives in the context of 
making as certain as possible that the study is 
aimed at developing appropriate scientific knowl-
edge for use by future generations of humans. 
IRBs accomplish these tasks by carrying out their 
own systematic review and evaluation of the sci-
ence and the ethics of the study from the primary 
perspective of protecting human research study 
participants.

While regional IRBs and private IRBs exist, 
most IRBs are local to allow for the recognition of 
and sensitivity to local issues in the consideration 
of research on humans. Historically, review boards 
evaluated research by peer review, review by the 
principal investigator’s peers in good standing. 
Today, U.S. federal regulations require IRBs to be 
composed of a more representative community 
membership—including members of vulnerable 
populations or those knowledgeable about and 
familiar with the research the IRB is charged with 
evaluating with respect to vulnerable subjects—in 
the attempt to bring multiple perspectives into the 
scientific and ethical review and evaluation of 
research studies.

Vulnerable subjects include the following:

children, pregnant women, prisoners, and  ·
individuals who are permanently or temporarily 
challenged or disabled physically, mentally, or 
emotionally;
individuals who because of the temporary states  ·
when exacerbations of their medical, 
psychological, or psychiatric conditions occur 
will have impaired capacity to make medical 
decisions; and
individuals who are challenged by their  ·
educational level or social status, with regard to 
their capacity to enter into the discussions 
entailed in understanding the nature of research 
on humans and the implications of their 
participation in research.

While the importance of decisional capacity is 
essential to the participation of anyone in a research 
study, IRBs lack precise criteria defining “decisional 

capacity.” This entry reviews key elements related 
to understanding the nature of voluntary research 
participation and an IRB’s responsibilities relating 
to research involving human subjects.

Research Participation

Research as defined by the U.S. Code of Federal 
Regulations is a “systematic investigation including 
. . . development, testing, and evaluation, designed 
to develop or contribute to generalizable knowl-
edge” (38 CFR 16.102 d and 45 CFR 46.102 d). 
Any development of innovative therapies in clinical 
care needs to be formulated into a research study as 
soon as feasible. For example, a radiologist may 
devise a stent for a patient with an abdominal aor-
tic aneurysm where the patient has a variant anat-
omy that will not allow use of a regular-sized and 
regular-shaped stent in an emergency. But the con-
cept that a different form of stent for repair of 
abdominal aortic aneurysms can be designed and 
developed that better meets the various anatomical 
requirements of variously sized and shaped human 
beings is a research hypothesis that needs to be 
submitted to regulators as a new research medical 
device and subsequently reviewed by an IRB as a 
research study with a well-developed scientific pro-
tocol and well-developed informed consent form 
for consideration of approval as a research study 
within an institution or set of institutions.

Research studies are designed to attempt to 
develop general knowledge for use by future popu-
lations by recruiting study participants to serve as 
human subject volunteers who will bear risks of 
study participation even though they may not ben-
efit in any way from their research participation 
and who may be reversibly or irreversibly men-
tally, physically, or emotionally harmed by their 
participation in a research study.

Therapeutic Misconception

Although a survey has found that individuals 
volunteering their participation in a research study 
prefer to be referred to as study participants, the 
term human subject is often used in an attempt to 
make certain that study volunteers do not misinter-
pret that they are involved in research, not clinical 
care. The term therapeutic misconception has been 
used in the peer-reviewed medical literature to 
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identify the phenomenon of study participants mis-
understanding what they are getting involved with 
when they volunteer for a research study. Some 
study participants may mistakenly assume research 
participation is a form of clinical care.

Clinical Care

Participating in a research study is not clinical 
care. In clinical care, in absence of emergency, a 
patient presents himself or herself to a physician 
for care which typically involves diagnosis (history, 
physical examination, laboratory testing of bodily 
fluids, imaging of various parts of the body) to 
identify the medical cause of a patient’s symptoms. 
Once a clinical diagnosis is made, the physician 
then develops a management and treatment plan 
to cure, manage, or alleviate the patient’s symp-
toms. Diagnosis, management, and treatment may 
be the results (end products) of previous research 
on humans, but they do not constitute research.

The peer-reviewed medical literature postulates a 
set of reasons why research can be mistaken for 
clinical care: (a) Research on humans is conducted 
in the same clinical environment as patients see 
their clinicians and within which the patients receive 
their care, (b) research is conducted by the same 
physicians who care for the patient for their clinical 
medical conditions, and (c) research is conducted 
by the same medical providers who the patient sees 
assisting in or providing their clinical care.

In 1978, the National Commission for the 
Protection of Human Subjects of Biomedical and 
Behavioral Research pointed out in the Belmont 
Report that research is not clinical care because the 
patient seeing a medical provider is expecting to 
benefit from the medical opinions and recommen-
dations of that provider. In contrast, research is 
conducted in those circumstances where there is no 
answer as to what is the best way to help or benefit 
a patient or a group of patients with specific medi-
cal complaints or condition. Therefore, research is 
conducted to attempt to get better answers to the 
medical questions that are not understood in terms 
of the best way to diagnose, manage, or treat a 
patient; for example, how a treatment will com-
pare with a placebo (placebo-controlled trial) or 
how one treatment (Treatment 1) will compare 
with another treatment (Treatment 2). There is no 
certainty in the outcome of any research study.

Also, research is not clinical care because the 
primary goal of the research team is to observe 
and evaluate potential participants at time0 (the 
time before any research activities have been 
started) until timen (where n = the time of study 
closure or a time after study closure). The key to 
the majority of research studies is to determine by 
observation and measurement whether and to 
what extent the research intervention causes a 
change in the study participant. A study interven-
tion may be an exposure to a newly developed 
medical product (device or prescription medicine), 
instrument, or intervention (invasive or noninva-
sive) used to screen (identify disease in asymptom-
atic individuals), diagnose (identify disease or 
medical conditions in symptomatic individuals), 
manage, or treat disease.

The purpose of the research study in the above 
cases is to determine if the newly developed medi-
cal product, instrument, or intervention compares 
in terms of benefits and risks with the study pla-
cebo, product, or intervention to which it is being 
compared in the research study. These compari-
sons are done by techniques used to observe, mea-
sure, and compare the newly developed research 
entity with the entity now used in the standard 
practice of care.

Obligations of an Institutional  
Review Board

The obligation of an IRB is to best protect human 
study volunteers. This is accomplished by the 
thorough systematical review and evaluation of 
the research study, its scientific objectives and its 
scientific goals, and the scientific methods selected 
by the principal investigator and the study spon-
sor to achieve those objectives and goals. The IRB 
meets its obligation by reviewing and evaluating 
each research study in terms of its science and its 
ethics.

Science and Ethics Evaluation

The IRB has a dual role in review of proposed 
research studies. First, the IRB must be certain that 
it fully understands the science that is being under-
taken. Second, after fully understanding the sci-
ence, the IRB must fully explore the ethical issues 
surrounding that science. While one may argue 
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that in particular research studies, the evaluation 
of the science and ethics can go on simultaneously, 
this is not always true. In the evaluation of some 
research study proposals, if the IRB does not 
understand the science that is being proposed, it 
cannot understand the ethical issues surrounding 
that science.

The evaluation of the science and ethics of a 
submitted research study is done to achieve the 
best possible science to both minimize risks to 
study volunteers and to generate the best possible 
scientific knowledge. To begin to achieve the 
above goals, the principal investigator and study 
sponsor submit to the IRB for review and evalua-
tion a study protocol and an informed consent 
form.

Scientific Protocol

The scientific protocol describes the research 
question (study objective), the scientific methodol-
ogy that will be used to answer the research ques-
tion, the composition and qualification of the 
research team, and the surveillance practices that 
will be put into place to identify any potential 
harm to a study participant. The ongoing observa-
tion of all study participants to look for any harm 
occurring related to study participation is an ongo-
ing obligation of the principal investigator, research 
team, and study sponsor. The aim is to identify a 
harm and begin the chain of communication that 
will result in that harm being minimized and the 
research subject being treated as soon as that harm 
is identified.

There are three ongoing chains of obligations. 
The first chain of obligation is to attempt to make 
sure that no harms befall a study participant. The 
second chain of obligation is the obligation to recog-
nize the occurrence of a harm to a study participant 
as soon as possible after that harm occurs. The third 
chain of obligation is to contact the study partici-
pant regarding the harm as soon as possible so that 
the extent of the harm can be minimized, if possible, 
through management and treatment. Part of this 
third chain of obligation is for the research team to 
contact those who will be responsible for the care of 
the participant until that harm is optimally treated 
and managed until resolution. It is the primary obli-
gation of the principal investigator and study spon-
sor to include explicit descriptions of all three chains 
(prevention, recognition, and communication and 

care) in the study protocol and informed consent 
form and to ensure research team members  
are trained in prevention, early recognition, early 
communication, and early establishment of care for 
the injured study participant.

Informed Consent Form

The informed consent form is a form that is 
given to the individual considering research study 
participation that specifies in language that is 
accessible to nonscientists the study objectives, the 
risks of the study, alternatives available in clinical 
care that could be opted for instead of participat-
ing in the research study, who is funding the study, 
who are the members of the study team who are 
responsible for the conduct of the study, and the 
chains of obligation of recognition, communica-
tion, and care related to any harm that might befall 
a study participant. The informed consent form 
also specifies the study participant’s rights should 
an adverse outcome happen to him or her during 
study participation.

Identification of Conflicts of Interest

Within the overall tasks of review and evalua-
tion of research studies in their ethical and scien-
tific dimensions, the IRB is responsible for 
identifying any and all conflicts of interest that 
are present in the research study and in its 
review. There may be conflicts of interest present 
in relationships on an IRB with respect to a par-
ticular study being evaluated. These conflicts of 
interest may be financial or nonmonetary. A 
financial conflict of interest would be illustrated 
by stock ownership of an IRB member in a com-
pany that is the study sponsor of the research 
study being submitted to the IRB for review. A 
nonfinancial conflict of interest may be a work 
relationship between an IRB member and the 
principal investigator. For example, the principal 
investigator of a study being submitted to an IRB 
may be the direct supervisor of the IRB member 
in question. All conflicts of interest on an IRB 
with regard to a particular study must be elimi-
nated. Elimination of conflict of interest is the 
recusal of the IRB member from any participa-
tion in the review and evaluation of the particu-
lar study in question.
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Time-Appropriate Continuing Review

The IRB is also responsible for the identification 
of time-appropriate continuing review points 
whereby the IRB rereviews and reevaluates the 
research study for the development of new risks, 
excessive risk borne by study volunteers, and 
prevalence and types of adverse outcomes. When 
an IRB, after careful systematic review, decides to 
approve a study it then assigns a date to review 
that study.

For example, any research study involving new 
prescription medicines that have new mechanisms 
of action will require early review of adverse out-
come occurrence by the IRB to determine whether 
new risks are occurring in study participants. 
Here, the IRB receives, reviews, and evaluates all 
new risks that are occurring in study participants 
at all sites where the study is being conducted. 
The IRB reviews all new risks to make certain that 
the research team is handling the risks, that the 
study participants are notified about the adverse 
outcome that has occurred, and that optimal care 
is being provided to the injured study participant. 
Optimal care is provided by making all appropri-
ate contacts with the study participants and the 
study participants’ physicians, ensuring transpar-
ent communication about the adverse outcomes 
and that the study participants receive appropri-
ate care, management, and treatment.

If problems do occur, the IRB makes certain 
that the study is suspended until the study is mod-
ified to minimize any subsequent occurrence of the 
adverse outcomes in other study participants and 
to make certain that all study participants are will-
ing to continue in the research study after these 
new risks are identified. This latter point may 
require that all study participants reconsent regard-
ing their willingness to continue in the research 
study with the new identified risks reported. If 
there is unwillingness on the part of the principal 
investigator or study sponsor to follow IRB recom-
mendations regarding the safety of the study vol-
unteers, the IRB must terminate the study and 
notify appropriate regulators and authorities.

Communication of Risks

The IRB ensures that the principal investigator 
and study sponsor have correctly and clearly 

identified and communicated all known risks and 
that reasonably estimated risks are clearly described 
in the study protocol and in the informed consent 
form. For example, there must be a true concep-
tual search for what risks a new prescription 
medicine with a new mechanism of action might 
reasonably have. This may demand consultation 
with experts in the field. And at minimum, the 
IRB conducts its own searches of the peer-re-
viewed medical and scientific literature to ensure 
that all risks are being recognized and stated 
clearly in the informed consent form.

Patients’ Understanding of Rights

The IRB ensures that the informed consent 
form does not attempt to mislead study volunteers 
about their rights regarding research participation. 
Rights here include the right to terminate partici-
pation in the research study at any time when they 
can do so safely. The inclusion of the point of 
safely terminating research participation is crucial 
because, for example, in the study of a prescrip-
tion medicine, it must be recognized by the par-
ticipant (and made clear in the informed consent 
form at study entry) that some study prescription 
medicines (e.g., beta blockers) cannot simply be 
stopped at any time, but rather must be tapered off 
safely under a physician’s supervision to minimize 
adverse outcomes.

Another example where a research study cannot 
simply be stopped is that of a medical device 
requiring surgical placement. In these cases, an 
operation must be scheduled to surgically remove 
the device. Again, it is necessary that all study vol-
unteers understand these points at their entry into 
the study and all points must be transparently dis-
closed in the study’s informed consent form.

Decision-Making Tasks

The IRB’s main decision-making tasks involve 
protection of human subjects. These tasks at mini-
mum are dependent on the IRB making as certain 
as possible that (a) it has all known information 
related to the research study and (b) the informa-
tion in the informed consent form is translated 
into nonscientific language and its exposition and 
presentation are as clear as possible to the study 
participant.
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Relevant Information

Before the IRB can begin to protect study par-
ticipants, it must have all relevant information from 
principal investigators and study sponsors regard-
ing what is known about the research entity to be 
studied. The IRB then on its own systematically 
rechecks the peer-reviewed medical literature and 
calls on experts to make certain that the informa-
tion provided by the principal investigator and 
study sponsor is consistent with what is medically 
known and scientifically understood about the 
research entity being studied, including all risks that 
are reasonably foreseeable. The concept of what it 
means for a risk to be “reasonably foreseeable” 
must be explored by the IRB because a precise 
operational definition is open to debate. Securing a 
wide range of expert opinion and the IRB’s own 
thorough exploration of the peer-reviewed medical 
and scientific literature are good places to start in 
determining reasonably foreseeable risks.

Scientific and Legal Information

The IRB must be certain that the language used 
in the scientific protocol and informed consent 
form is not being used to hide information. For 
example, it is not sufficient to simply say to the 
study volunteer considering study participation (or 
to state in an informed consent form) that there are 
“unknown risks” when those unknown risks are 
in fact known risks that can be specified. The prin-
cipal investigator and study sponsor’s obligations 
are to disclose risks, not to hide risk from disclo-
sure. In addition, medical terms need to be trans-
lated into nonscientific language, and legal terms 
need to be translated into nonlegal language.

From the scientific perspective, while it is possible 
that any new research entity may possess unknown 
risks, including risks of severe adverse outcomes or 
increasing risk factors for other disease or medical 
conditions, the IRB needs to fully explore all fore-
seeable risks related to the research entity being 
studied and independently verify if the estimates 
provided by principal investigators and study spon-
sors are declared and fully described to each study 
participant as he or she considers whether to volun-
teer participation in a study.

From the legal perspective, there should be 
no use of language that attempts to minimize the 

liability of study sponsors, research institutions, 
and principal investigators. There must also be a 
full disclosure of participants’ rights to seek court 
opinion in specific areas of liability.

Dennis J. Mazur

See also Informed Consent
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The concept of private indemnity insurance in 
healthcare refers to a fee-for-service plan where 
beneficiaries are compensated for their out-of-
pocket costs, up to the limiting amount of the 
insurance policy. Unlike managed care organiza-
tions (MCOs), which overlay tools to control the 
utilization and cost of services, private indemnity 
insurance policies allow beneficiaries unrestricted 
provider choice and reimburse providers on a fee-
for-service basis. Many indemnity plans are offered 
with deductibles, where the beneficiary will be 
required to pay copays (generally determined with 
percentages) for additional services required above 
the deductible amount.

When a private indemnity plan begins to con-
trol costs by restricting the choice of providers, it 
is typically referred to as an MCO. It is useful to 
think of MCOs on a continuum of loosely to more 
heavily managed products and from highest to 
lowest patient cost-sharing, beginning with private 
indemnity plans on the loosest end, progressing to 
preferred provider organizations (PPOs), open 
panel health maintenance organizations (HMOs), 
and finally closed panel HMOs with the tightest 
control over cost combined with the lowest patient 
cost sharing. In general, physicians are most 
affected in their medical decision-making ability in 
dealing with the most tightly managed MCOs.

Introduction to Managed Care

Managed care refers to the systematic method of 
reducing healthcare costs while attempting to 

improve the quality of patient care. A managed 
care organization uses these methods to finance 
and deliver healthcare to people enrolled in the 
organization’s plan. Prompted by the Health 
Maintenance Organization Act of 1973, which 
provided grants and loans to assist in the startup 
of health maintenance organizations, today’s man-
aged care environment consists of a variety of pri-
vate health benefit programs. Widely credited with 
restraining the runaway medical cost inflation of 
the late 1980s, managed care has come under 
attack in recent years by those who say it focuses 
on efficiency at the expense of patient care. Despite 
criticism, managed care has become an entrenched 
foundation of today’s national healthcare system, 
with roughly 90% of insured Americans enrolled 
in plans with some form of managed care.

Characteristics of Managed Care Organizations

Managed care organizations typically provide a 
panel or network of healthcare professionals who 
deliver a comprehensive assortment of healthcare 
services to enrollees. MCOs usually have specific 
standards for selecting the providers in the net-
work and for establishing formal quality improve-
ment and utilization review programs. In addition, 
they tend to focus on preventive care and to offer 
economic incentives that encourage enrollees to 
use care efficiently.

MCOs employ a number of techniques to 
reduce costs and make the delivery of services 
more efficient while ensuring high quality stan-
dards. These may include the following:

Financial incentives for physicians and patients  ·
to select more efficient forms of care from 
providers who are in the panel
Mechanisms for reviewing the medical necessity  ·
of services
Beneficiary cost sharing ·
Restrictions on inpatient hospital admissions and  ·
length of stay
Selective contracting with healthcare providers ·
Rigorous management of the most costly  ·
healthcare cases

Additionally, MCOs often cut expenses by nego-
tiating favorable fees from their panel of healthcare 
providers, choosing cost-effective providers, and 
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offering economic incentives for providers to prac-
tice more efficiently. MCOs may also rely on dis-
ease management, case management, wellness 
incentives, patient education, utilization manage-
ment, and utilization reviews as indirect ways of 
lowering costs.

On the surface, there appears to be a conflict 
between the goals of an MCO and the goals of a 
physician, with the MCO focusing on cost and effi-
ciency and the physician focusing on quality of care 
and the best care for the patient. However, when 
managed care works as intended, the final outcome 
is the most appropriate evidence-based care deliv-
ered by providers and producing the highest-quality, 
best value outcomes for the patient.

Contracting With Health Plans

The contracts that physicians develop with health 
plans can have a major impact on their medical 
decision making. The following are key factors in 
selecting contracts.

The scope of the plan’s network. This affects a 
physician’s ability to refer patients to the healthcare 
providers they want.

Carve-out networks. These are specialty-specific 
and ancillary health networks with which the plan 
has subcontracted to provide services—such as 
behavioral health, laboratory work and imaging—
that either fall outside of the medical insurance 
benefit (e.g., vision and dental care) or that 
traditionally represent a high-cost service.

The plan’s medical director. A good rapport with 
the plan’s medical director can be helpful when 
navigating the health plan rules and appeals 
processes for noncovered services, such as additional 
testing and extended lengths of stay for inpatients.

Clinical guidelines. Physician decision making can 
be affected by the clinical guidelines that health 
plans follow. Most plans adhere to industry 
standards, such as those found in Milliman Care 
Guidelines. Such guidelines are typically updated 
annually with evidence-based authorization criteria 
that encourage high-quality care through tools 
such as care pathways, flagged quality measures, 
and integrated medical evidence.

Premium physician networks and rating systems. 
Some plans sell their subscribers “premium 
networks,” which are groups of physicians who 
have demonstrated a high volume of successful 
outcomes. Certain plans even rate their physicians 
and publish this information to members. These 
plans usually provide regular feedback to 
physicians regarding their performance, with the 
goal of improving quality and efficiency. A low 
rating may be cause for removing a physician 
from the plan’s premium network.

Pay-for-performance programs. These programs 
base provider reimbursement on high-quality results 
and appropriate decision making. Consequently, 
pay-for-performance programs tend to encourage 
physicians to make the most appropriate medical 
decisions to achieve optimal patient outcomes.

Following Health Plan Rules

Physicians who contract with a health plan are 
obligated to follow the rules of that plan. These 
directives will directly affect the physician’s medi-
cal decisions and may vary from plan to plan. 
Health plan rules may include the following.

Precertification. Since a lack of precertification 
may result in the denial of payment, physicians 
may avoid ordering specific medical treatments or 
procedures that they know will be denied.

Referrals. Physician referral patterns are affected 
by the plan’s provider network, as patients receive 
their maximum benefit level when referrals are 
made within the network.

Disease management programs. This is the process of 
using integrated care to reduce healthcare costs and 
improve the quality of life for people with chronic 
disease, such as coronary heart disease, cancer, 
hypertension, and diabetes. In the United States, 
disease management has become a big business, with 
more than half of all employer-sponsored health 
plans offering disease management programs. 
Effective disease management can reduce labor costs 
by cutting down on absenteeism and insurance 
expenses. Many disease management vendors even 
offer a return on investment for their programs. 
Disease management programs generally have their 
own sets of evidence-based rules. When a plan 
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employs disease management programs, physicians 
will support the care management guidelines of the 
program for the benefit of the patient.

Medical management. This refers to the activities, 
such as utilization management and quality 
assurance, that MCOs employ to control the cost 
and quality of healthcare services provided to their 
members. A plan’s medical management guidelines 
may affect the physician’s decision making as the 
plan manages resource utilization to contain costs 
while promoting high-quality care.

Pharmacy formularies. As established by a health 
plan, a formulary is a list of approved drugs that 
physicians may prescribe and that pharmacies may 
dispense. Health plan formularies are continually 
evaluated by groups of experts working together in 
committees that are commonly called “pharmacy 
and therapeutics” (P&T) committees. Health plans 
often use formularies as a managed care mechanism 
for controlling inventories and promoting the use 
of the most cost-effective products that are safe 
and beneficial to patients. Formularies can differ 
from plan to plan, and this will affect the physician’s 
decision making when it comes to prescribing 
medications for patients.

Denials and appeals. In case payment or a certain 
treatment is denied, it is helpful if physicians and 
practice administrators understand the appeals 
process, so that they can assist patients.

Legal issues. Medical decision making is also 
affected in general by laws and regulations that 
govern the healthcare, insurance, and other related 
industries. These may include federal regulations 
such as the Health Insurance Portability and 
Accountability Act (HIPAA), compliance, antitrust, 
antikickback, and Stark laws, and Medicare fraud 
and abuse laws. With respect to medical decision 
making, ethics dictates and laws uphold that 
physicians should base their medical decisions on 
what is right for the patient rather than on 
payments or benefits the physician will receive as a 
consequence of a medical decision.

Conversations With Patients

When developing treatment plans and discussing 
medical options with patients, it is helpful if  

physicians are familiar with the basics of the 
patient’s health insurance coverage. These details 
will affect the physician’s decisions for each 
patient and may include the following:

Health plan and product · , including whether or 
not the patient is in a high-deductible or 
consumer-directed health plan that may generate 
high out-of-pocket costs due to the benefit 
design
Benefits coverage · , including noncovered services 
and the patient’s financial responsibility for 
treatment
Coverage of drug formularies · , which may be 
limited to a list of preferred drugs or to generics 
for certain medications
Referral network · , keeping in mind that patients 
appreciate referrals to healthcare providers that 
are within their network

A physician who is familiar with the main ele-
ments of the market’s major health plans will be on 
the same page with many of his or her patients.

Physician Perspectives on Managed Care

Attitudes of healthcare professionals regarding 
how managed care affects medical decisions may 
vary, depending on their affiliation and the experi-
ences they have had. While many advocate that 
measures be taken to reduce unnecessary costs, 
a large number of physicians are understandably 
negative about managed care techniques that 
appear to take medical decision-making capabili-
ties out of the hands of medical professionals.

Managed care has been successful in reining in 
costs and promoting quality in recent years; how-
ever, there is still a way to go in terms of easing the 
administrative burden that the MCO cost-cutting 
techniques place on physician practice. Such “has-
sle factor” issues may include the following.

Requirements regarding drugs. It is a challenge for 
physicians to keep current on the different plan 
formularies, recognizing that the patient’s financial 
responsibility will change depending on what drug 
is prescribed. In addition, some managed care 
organizations require preauthorizations for certain 
medications.
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Medical testing. Managed care can reduce 
unnecessary or inappropriate medical tests and 
procedures. This is a cost-saving technique that can 
improve patient care, but it also means that 
physicians who want to order medical tests are 
required to share clinical information with the 
patient’s health plan. Establishing and managing 
this process can be resource-intensive.

Medical case management. Most health plans have a 
medical management function that coordinates the 
efforts of all healthcare providers and facilitates 
recommended treatment plans to ensure that 
appropriate medical protocols are followed and that 
patients achieve medical rehabilitation. Medical case 
management can reduce unnecessary costs while 
streamlining patient care, leading to faster, more 
successful recoveries. This process can sometimes 
create an adversarial relationship between physicians 
and health plans—with physicians wanting patients 
to stay in hospitals longer, on the one hand, and 
insurance companies seeking to keep costs low, on 
the other. As a result, hospitals have had to set up 
denial databases and invest significant resources to 
track down and get reimbursed for claims that were 
initially denied by the health plans.

Advocacy and Stewardship

In general, nonprofit hospitals and other health-
care organizations exist to serve the community by 
providing healthcare services that the population 
needs, as well as outreach programs, such as health 
education and wellness programs. Consequently, 
most physicians and other individuals who are 
affiliated with hospitals have a sense of steward-
ship in regard to the community.

A number of physician leaders urge other doc-
tors to speak up and actively work for what they 
believe is right for patients and for the healthcare 
system in general. Through their involvement in 
legislative reform, the formation of physician and 
consumer groups, and other activities, physicians 
can bring about change and protect the interests of 
themselves, their patients, their communities, and 
the hospitals they serve.

Michael McMillan and Wendy Kornbluth
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Government Perspective, Public Health Issues

Further Readings

Austrin, M. S. (1999). Managed health care simplified: A 
glossary of terms. Clifton Park, NY: Delmar Thomson 
Learning.

Blakely, S. (1998, July). The backlash against managed 
care. Nation’s Business. Retrieved October 5, 2007, 
from http://findarticles.com/p/articles/mi_m1154/is_
n7_v86/ai_20797610/pg_1?tag=artBody;col1

Cairns, K. D. (2002). Contemporary managed care issues 
for physicians (2nd ed.). Newtown, PA: Handbooks in 
Health Care.

Harris, D. M. (1999). Healthcare law and ethics: Issues 
for the age of managed care. Washington, DC: 
AUPHA Press.

The Henry J. Kaiser Family Foundation. (2004). Kaiser 
public opinion spotlight: The public, managed care, 
and consumer protections. Retrieved October 5, 2007, 
from http://www.kff.org/spotlight/managedcare/index 
.cfm

Kaiser Family Foundation Health Care Marketplace 
Project. (2007). Health care costs: A primer. Retrieved 
October 5, 2007, from http://www.kff.org/insurance/
upload/7670.pdf

Kaiser Family Foundation Health Care Marketplace 
Project. (2007). Trends in health care costs and 
spending. Retrieved October 5, 2007, from http://
www.kff.org/insurance/7692.cfm

Kongstvedt, P. R. (2001). The managed health care 
handbook (4th ed.). New York: Aspen.

Price Waterhouse Coopers for America’s Health Insurance 
Plans. (2006). The factors fueling rising healthcare 
costs 2006. Retrieved October 5, 2007, from http://
www.ahipbelieves.com/media/The%20Factors%20
Fueling%20Rising%20Healthcare%20Costs.pdf

Reschovsky, J. D., Kemper, P., & Tu, H. (2000). Does 
type of health insurance affect health care use and 
assessments of care among the privately insured? 
Health Services Research, 35(1, Pt. 2), 219–237.

Tindall, W. N. (2000). A guide to managed care medicine. 
Sudbury, MA: Jones & Bartlett.

Decisions faceD By patients: 
primary care

Primary care is defined as the level of the health-
care system that provides individuals with (a) the 
gateway into the system for all their needs and 
problems; (b) care focused on the individual and 
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his or her context (not disease-oriented); (c) care 
for all but very uncommon or unusual conditions; 
(d) continuity of care; and (e) the coordination or 
integration of the care provided by other levels of 
the system or by other professionals. Thus, pri-
mary care is defined by a series of functions which, 
in combination, are unique at this level. Countries 
with a strong primary care component have better 
health outcomes and are better at keeping costs 
under control.

In the United States, the ecology model of 
medical care reveals that on average each month, 
out of 1,000 individuals, 800 experience symp-
toms, of whom 327 will consider seeking medical 
care. Of those, only 217 will visit a physician in 
the office (113 visit a primary care physician and 
104 visit other specialists). Of those visiting a phy-
sician, 21 will visit a hospital-based outpatient 
clinic, and of these, 8 will be hospitalized. Although 
it is essential to ensure quality of care at every level 
of the healthcare system, it is apparent that oppor-
tunities are being missed by limiting quality and 
safety programs to hospitals when the largest pro-
portion of individuals seeking medical advice  
are doing so in primary care. Consequently, it is 
important to study communication and decision 
making in primary care because of the potential 
beneficial impact on the quality of care for a large 
number of individuals.

This entry reviews the characteristics and nature 
of decisions faced by patients in the context of 
primary care. The first part explores the character-
istics and nature of decisions that are most fre-
quently encountered in primary care. The second 
part outlines some examples of interventions that 
address the specific challenges that patients face 
when making decisions in this clinical context. The 
last section of the entry summarizes the lessons 
learned from these initiatives.

Characteristics and Nature of the Decisions

The National Ambulatory Medical Care Survey 
estimated that in 2004, a total of 910.9 million 
visits were made to physician offices in the United 
States. Although 58.9% of visits were to physi-
cians in the specialties of general and family prac-
tice, internal medicine, pediatrics, and obstetrics 
and gynecology, 87.2% of all preventive care visits 
were covered by primary care physicians. The 

leading illness-related primary diagnoses were 
essential hypertension, malignant neoplasms, acute 
upper respiratory infection, and diabetes mellitus. 
In a large comparative study of 115,692 visits in 
primary care in Australia, New Zealand, and the 
United States, in each country, primary care physi-
cians managed an average of 1.4 morbidity-related 
problems per visit. The relative frequency of health 
problems managed was similar across the three 
countries, with the five most frequent health prob-
lems covering the following clinical areas: muscu-
loskeletal, cardiovascular, ear/nose/throat, skin, 
and psychosocial.

Results from cross-sectional studies of decision 
making also provide valuable insight into the char-
acteristics and nature of decisions that are most 
frequently faced by patients in primary care. For 
example, in a study of 1,057 audiotaped encoun-
ters of routine office visits to both primary care 
physicians and surgeons, the authors observed that 
a total of 3,552 clinical decisions were made. 
However, only 9.0% of these decisions met the 
definition of completeness for informed decision 
making. In another study of family physicians’ 
views on difficult decisions faced by their patients, 
participants identified the five most frequent deci-
sions as follows: cancer therapy, antidepressant 
drug therapy, level of care, lifestyle issues, and 
screening tests. In a third study of 212 video- 
recorded doctor-patient consultations for routine 
appointments in 12 general practice surgeries in 
the United Kingdom, it was observed that in addi-
tion to those involving medical treatment, there 
was a range of decision-making opportunities that 
were not dealt with satisfactorily. More important, 
it was also observed that most decisions were 
made by physicians with little effort on their part 
to foster active participation of their patients in 
decisions.

Taken together, results from these studies sug-
gest that decision making in primary care is influ-
enced by the following principal characteristics:  
(a) Many problems and decisions are experienced 
in one single clinical encounter; (b) decisions are 
more likely to be about chronic conditions, pre-
ventive care, and lifestyle issues; and (c) primary 
care providers rarely foster active participation of 
their patients in decisions, which in turn might 
partly explain the low prevalence of informed deci-
sion making.
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Interventions

In population-based surveys, individuals facing 
health-related decisions indicate that their pre-
ferred method for obtaining information remains 
the counseling offered by their physician. Patients 
facing decisions in primary care are no excep-
tion. Therefore, most patients expect their physi-
cian to have the necessary skills to give them 
adequate support for making informed decisions. 
Given their systematic approach to evidence, 
clinical practice guidelines—defined as system-
atically developed statements to assist practitioners 
and patients with decisions about appropriate 
healthcare for specific circumstances—have been 
very popular with medical organizations. 
However, most studies that aim at improving 
adherence of clinicians to recommendations of 
clinical practice guidelines have met with very 
little success.

In recent years, growing concerns regarding the 
absence of evidence about patient preferences in 
clinical practice guidelines have fostered an inter-
national interest in patient decision aids. Patient 
decision aids are tools designed to help patients 
participate in clinical decision making. They pro-
vide information on the options and help patients 
clarify and communicate the personal values they 
associate with different features of an option. 
When compared with usual care or simple infor-
mation leaflets, patient decision aids improve 
decision quality and the measures of feeling 
informed and clear about values during the deci-
sion process.

Single Clinical Encounter

A promising initiative that may help primary 
care providers and their patients access a wide 
variety of patient decision aids consists of the 
implementation of call centers staffed by nurses 
coupled with a database of patient decision aids 
made available online. A second strategy that 
might assist decision making when many prob-
lems and many decisions are encountered in one 
single clinical encounter is to train healthcare 
providers in a generic manner so that they can 
improve their own decision-making process, rec-
ognize decisional conflict in their patients, and 
then foster better decisions.

Chronic Conditions, Preventive  
Care, and Lifestyles Issues

Ongoing intervention initiatives suggest that it 
is feasible to implement patient decision aids for 
chronic conditions in primary care. Indeed, many 
trials of patient decision aids have already focused 
on chronic conditions such as type 2 diabetes, 
osteoporosis, benign prostatic hyperplasia, or men-
tal conditions and showed beneficial impact on 
patients and physicians. Interestingly, in the case of 
chronic conditions, patient decision aids have the 
potential to foster quality decision-making pro-
cesses across time, places, and healthcare provid-
ers. The underlying hypothesis is that the decision 
aid will ensure that all healthcare providers involved 
in the pharmaceutical care of the patient will use 
the same evidence-based information to improve 
the quality of care. Notwithstanding when and 
where the patient receives care for his or her spe-
cific condition and who provides this care, a com-
mon procedure to support informed decisions by 
patients in primary care is being used.

Patient decision aids also reduce overuse of con-
troversial medical procedures such as prostate 
cancer screening tests and lessen the underuse of 
beneficial public health measures such as child-
hood vaccination. Therefore, promoting the use of 
such aids in the context of primary care has the 
potential of improving the quality of the decision-
making process of patients regarding lifestyle issues 
and public health recommendations. However, 
addressing lifestyle issues with patients in primary 
care contexts will require involving other health-
care professionals and extending the concept of 
high-quality health-related decision making from 
the medical office into the mainstream. Thus, in 
the years to come, it is expected that there will be 
more initiatives applying an interprofessional 
approach to decision making in primary care.

Active Participation of Patients

In a review of optimal matches of patient prefer-
ences for information, decision making, and inter-
personal behavior, findings from 14 studies showed 
that a substantial portion of patients (26% to 95% 
with a median of 52%) was dissatisfied with the 
information given (in all aspects) and reported a 
desire for more information. Nonetheless, in the con-
text of primary care, although patients and doctors 
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agree that more information needs to be made avail-
able to patients to help them make difficult decisions, 
they do not agree about patients’ acceptance of deci-
sion aids or patients’ willingness to participate 
actively in decision making. This is congruent with 
the existing literature indicating that the current level 
of participation of patients in decisions in clinical 
contexts is low. Results from a systematic review of 
28 studies on the barriers and facilitators to fostering 
participation of patients in decisions as perceived by 
health professionals suggest that health professionals 
may be screening, a priori, which patients they 
believe are competent to participate in decisions. 
This is of some concern because physicians may mis-
judge patients’ desire for active involvement in deci-
sion making. Therefore, interventions directed at 
patients and the system will be needed for patients to 
have direct access to the needed information.

Lessons Learned

Ensuring quality of care is dependent on ensuring 
the quality of the decision-making processes in 
clinical settings at every level of the healthcare sys-
tem. This entry briefly reviewed the characteristics 
and challenges of decision making in primary care. 
It also highlighted how some intervention initia-
tives have addressed these specific challenges. 
Although several gaps in knowledge remain, there 
are signs that the agenda is beginning to focus on 
improving the quality of primary care patients’ 
decision making by providing them with innova-
tive decision support interventions. In turn, the 
impact of these interventions should translate into 
improved patient and population health outcomes, 
the ultimate goal of improved clinical decision 
making.

France Légaré

See also Decision Making in Advanced Disease; Patient 
Decision Aids; Shared Decision Making
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Decisions faceD By surrogates 
or proxies for the patient, 
DuraBle power of attorney

Ideally, medical decisions are made collaboratively 
by the patient and the healthcare provider. 
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However, when patients cannot fully participate in 
their own decisions, an alternative decision- 
making model must be implemented. Surrogates 
may be required for medical decision making 
regarding issues of morbidity, mortality, hospital 
discharge, and research participation. Physicians 
are faced with the challenge of evaluating deci-
sions made by surrogates. Patients who are unable 
to contribute to their medical decisions include 
children and adults who lack capacity, because 
they either lost or never attained capacity. Adults 
may lose capacity temporarily or permanently. 
Temporary loss of capacity may be due to a psy-
chiatric or acute illness, while permanent loss may 
be the result of an acute event such as brain 
trauma or a degenerative condition such as 
Alzheimer’s disease. When patients are unable to 
fully participate in medical decisions, healthcare 
professionals look to a surrogate or proxy to make 
decisions on behalf of patients. The issues that sur-
rogates and healthcare professionals face, as well 
as controversies around the role of the surrogate 
as representative of patient values, are discussed in 
this entry. Although some details of these issues 
may be culturally specific, the broad ethical chal-
lenges can be found throughout all of Western 
medicine. For this entry, the context of American 
healthcare is used to illustrate these challenges.

Patients may appoint a surrogate in advance by 
using legal forms such as a Durable Power of 
Attorney for Healthcare. In the absence of such an 
advance directive, state laws and customs usually 
dictate who may act as a surrogate. These may be 
family members, close friends, or legal guardians 
appointed by the court. To make appropriate 
medical decisions, the surrogates should have 
knowledge of the patient’s values and be able to 
adequately represent those values; it is helpful if 
the surrogate has specific knowledge about the 
patient’s wishes. Most important, the surrogate 
should understand the role: to decide in the man-
ner in which he or she believes the patient would 
decide and not based on the surrogate’s own 
wishes in the situation. This standard is usually 
referred to as substituted judgment. When a sur-
rogate does not sufficiently know the patient’s 
wishes or values, the decision should be made 
based on the patient’s best interests. Important 
cultural aspects of decision making may require 
increased communication and consideration by the 

healthcare professional. Decision-making consid-
erations for surrogates vary depending on the 
nature of the choice, life and death, quality of life, 
research participation, or a discharge planning 
decision. A discussion of these areas would be 
incomplete without highlighting the contemporary 
controversies involved in the utilization of surro-
gates in healthcare settings.

Life and Death Decisions

Decisions about life and death include a variety of 
medical treatment choices, such as the use of dialy-
sis, pressors, antibiotics, chemotherapy, ventilators, 
and artificial nutrition. Healthcare professionals 
should be aware of the law in the state in which 
they practice because the legal scope of the surro-
gate’s role varies greatly among states and regions. 
For example, the surrogate’s decision making may 
be limited only by the requirement to act consis-
tently with the patient’s best interests. However, 
some states, such as Missouri, New Jersey, and 
New York, use the clear and convincing evidence 
standard, which requires clear and convincing evi-
dence of the patient’s wishes regarding withdrawal 
of life-sustaining treatment. The U.S. Supreme 
Court validated this standard in the landmark case 
of Cruzan v. Director, Missouri Department of 
Health, 497 U.S. 261 (1990). Furthermore, some 
states place additional limitations on the power of 
the surrogate. For example, the New York Health 
Care Proxy Law places decisions regarding artifi-
cial nutrition and hydration outside the scope of  
a surrogate’s authority unless a written advance 
directive specifically grants the surrogate such 
decision-making power. Healthcare professionals 
should understand the patient’s values and local 
laws regarding life and death decisions to properly 
facilitate a surrogate decision maker’s role.

Decisions about life and death, whether made in 
an intensive care unit, on a regular patient ward, 
or while receiving care at home, may be emotion-
ally burdensome for some surrogates, while it 
provides a positive opportunity to interact with the 
patient for others. Although emotions play funda-
mental roles in good decision making, they also 
may obscure the decision-making process. The role 
of deciding for someone else may lead surrogates 
to second-guess decisions to the extent that they 
become emotionally paralyzed and incapable of 
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making good, reasoned medical decisions. 
Surrogates may mistakenly believe that they alone 
are responsible for deciding whether and when the 
patient will die. The residual impact of these emo-
tions may be significant on both individuals and 
families. Emotions need to be recognized and, 
when appropriate, either affirmed or redirected. 
Identifying the emotions overlaying a decision may 
lead to better decision making by increasing the 
surrogate’s awareness of the impact of his or her 
emotions on decision making.

Healthcare professionals may lessen the burden 
on surrogates by providing accurate information 
as well as clear treatment recommendations. The 
plan should be goal centered as defined by known 
patient values. For example, it would be inconsis-
tent for a patient or surrogate who has chosen a 
pure hospice goal to insist on certain resuscitative 
measures. A goal-centered plan entails a coherent 
set of medical choices. It is the responsibility of the 
healthcare professionals to explain the role of the 
surrogate and continue to focus the discussion on 
the patient’s global wishes and moral values. This 
usually includes advising the surrogate to use all 
sources of information and support, including the 
patient’s friends, family, and spiritual advisors. 
This collaborative approach has the added benefit 
of distributing the sense of responsibility for 
choices that the patient may have wanted but that 
surrogates find morally troubling.

Research Participation

When medical decisions include the enrollment of 
a patient into research, issues of surrogate consent 
become more complex. Research exposes the 
patient to additional procedures beyond those per-
formed only for the patient’s benefit within a pre-
ferred treatment regimen established by a clinician. 
It is unclear in which circumstances a surrogate 
has the right to enter the patient into a research 
trial. Controversial instances in which even surro-
gate consent is waived to conduct research high-
light concerns in this area. For example, the study 
of an artificial blood substitute, PolyHeme, chal-
lenges whether patients who lack capacity to con-
sent can be ethically enrolled in any research. In 
general, enrollment of decisionally incapacitated 
patients in research where the risks are greater 
than minimal can only be undertaken when the 

patient might benefit directly and there are appro-
priate safeguards. In these cases, the level of justi-
fication for enrollment by a surrogate decision 
maker must meet a higher standard due to the 
increased degree of uncertainty of harm.

Advance directives for research constitutes one 
proposal to provide guidance to surrogates and 
healthcare providers about whether to enroll 
someone in clinical research. In such directives, a 
patient agrees to participate in research in general 
while they have decision-making capacity and 
before a decision must be made. Despite the 
attempt by the National Institutes of Health to use 
these documents, they are very rare and often offer 
little help in making particular decisions about 
unique, unanticipatable circumstances. In the end, 
the decision concerning whether to enroll an inca-
pacitated patient into research falls to the health-
care provider and healthcare surrogate. In rare 
instances, states have prohibited this type of enroll-
ment in an effort to provide protection from abuse 
to vulnerable populations. This protection may 
actually harm patients by not allowing them access 
to potential therapies in situations without a good 
treatment standard.

The protections for vulnerable populations were 
developed in the historical context of significant 
abuses and a recognition that the clinician researcher 
may have conflicting motivations. In cases of high-
abuse potential or significant harms, a surrogate 
decision maker may be augmented by a patient 
advocate or a special independent review commit-
tee. A third-party moderator provides a perspective 
less entangled by the emotional responsibility to 
the particular person when assessing the level of 
acceptable risk. These third parties generally have 
the power to exclude patients from research par-
ticipation but cannot demand their inclusion.

Controversies

Controversies in surrogate consent include fluctu-
ations in patient capacity, retention of some capac-
ity, evaluation of surrogates for capacity, and 
variations of standards by country and culture. 
For some illnesses, a patient’s capacity to under-
stand fluctuates over time. In these cases, a patient 
may have the ability to participate at one point but 
not at another. For example, a patient may under-
stand the situation in the morning but not later the 
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same day or the next day. Except in emergency 
cases, capacity assessments should be performed 
over a length of time before the utilization of a 
surrogate for decision making. In cases where 
capacity may soon be lost, every effort should be 
made to consent a patient during a lucid time for 
anticipatable events. It is illegitimate to rely on a 
surrogate out of simple ease when direct consent 
can be attained.

Although most literature on surrogate cases 
describes unconscious patients as the paradigm for 
discussion, there are many instances where patients 
retain (or develop) degrees of capacity. In these 
cases, the surrogate and healthcare providers 
should allow degrees of patient participation. For 
instance, a normal teenager who requires a surro-
gate for legal reasons should still be included in the 
discussion about healthcare matters. Similarly, a 
mildly demented patient may still be able to pro-
vide broad input on values and pleasures. These 
cases create increasingly complicated situations for 
interpreting whether patient expressions are appro-
priate for consideration in the particular decision.

When a surrogate decision maker is identified, 
he or she is assumed to have decision-making 
capacity. However, this assumption may be chal-
lenged when inconsistent decision making arises. 
The healthcare provider must grapple with how to 
assure that good decision making occurs, while 
respecting the surrogate. Since the surrogate is not 
a patient, there may be a limited ability to formally 
evaluate the surrogate for cognitive capacity. In 
removing a surrogate from the decision-making 
role, the healthcare provider must articulate clear 
reasons for doing so beyond a simple disagreement 
of choice.

Finally, the way in which surrogates act may 
vary considerably by region and culture. This 
becomes most trying when there are mismatched 
expectations of surrogate decision making between 
patients and the generally accepted model within 
the region in which they are being treated. For 
instance, in the United States, competent patients 
are fully informed and make their own decisions. 
However, there are cultures in which healthcare 
decisions are deferred to a surrogate, often a hus-
band, father, or eldest son. The healthcare provider 
must adjudicate when the patient has opted out of 
a cultural background and the degree to which the 
tradition might be considered unjust. Healthcare 

providers should carefully account for these vari-
ous complexities when relying on surrogates.

Conclusion

A surrogate decision maker may be called on to 
make a variety of difficult decisions. Although 
only research and life and death decisions have 
been discussed, a similar set of issues may be 
applied to choices of quality of life, which may 
include where to send patients to reside for their 
best healthcare and social benefit. Because of the 
general value of patient participation in decision 
making, there is always a preference to avoid the 
need for surrogate decision making. However, 
when there are no better alternatives, the surrogate 
has an obligation to decide carefully, and the 
healthcare provider has an obligation to confirm 
that the surrogate enacts the role properly.

Margot M. Eves and Paul J. Ford

See also Advance Directives and End-of-Life Decision 
Making; Bioethics
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Decision tree: introDuction

A decision tree is a powerful method for classifica-
tion and prediction and for facilitating decision 
making in sequential decision problems. This 
entry considers three types of decision trees in 
some detail. The first is an algorithm for a recom-
mended course of action based on a sequence of 
information nodes; the second is classification and 
regression trees; and the third is survival trees.

Decision Trees

Often the medical decision maker will be faced with 
a sequential decision problem involving decisions 
that lead to different outcomes depending on 
chance. If the decision process involves many 
sequential decisions, then the decision problem 
becomes difficult to visualize and to implement. 
Decision trees are indispensable graphical tools in 
such settings. They allow for intuitive understand-
ing of the problem and can aid in decision making.

A decision tree is a graphical model describing 
decisions and their possible outcomes. Decision 
trees consist of three types of nodes (see Figure 1):

 1. Decision node: Often represented by squares 
showing decisions that can be made. Lines 
emanating from a square show all distinct 
options available at a node.

 2. Chance node: Often represented by circles 
showing chance outcomes. Chance outcomes 
are events that can occur but are outside the 
ability of the decision maker to control.

 3. Terminal node: Often represented by triangles 
or by lines having no further decision nodes or 
chance nodes. Terminal nodes depict the final 
outcomes of the decision making process.

For example, a hospital performing esophagec-
tomies (surgical removal of all or part of the 
esophagus) for patients with esophageal cancer 
wishes to define a protocol for what constitutes an 
adequate lymphadenectomy in terms of total num-
ber of regional lymph nodes removed at surgery. 
The hospital believes that such a protocol should 
be guided by pathology (available to the surgeon 
prior to surgery). This information should include 

histopathologic cell type (squamous cell carcinoma 
or adenocarcinoma); histopathologic grade (a 
crude indicator of tumor biology); and depth of 
tumor invasion (PT classification). It is believed 
that number of nodes to be removed should 
increase with more deeply invasive tumors when 
histopathologic grade is poorly differentiated and 
that number of nodes differs by cell type.

The decision tree in this case is composed pre-
dominantly of chance outcomes, these being the 
results from pathology (cell type, grade, and tumor 
depth). The surgeon’s only decision is whether to 
perform the esophagectomy. If the decision is made 
to operate, then the surgeon follows this decision 
line on the graph, moving from left to right, using 
pathology data to eventually determine the termi-
nal node. The terminal node, or final outcome, is 
number of lymph nodes to be removed.

Decision trees can in some instances be used to 
make optimal decisions. To do so, the terminal 
nodes in the decision tree must be assigned termi-
nal values (sometimes called payoff values or end-
point values). For example, one approach is to 
assign values to each decision branch and chance 
branch and define a terminal value as the sum of 
branch values leading to it. Once terminal values 
are assigned, tree values are calculated by follow-
ing terminal values from right to left. To calculate 
the value of chance outcomes, multiply by their 
probability. The total for a chance node is the total 
of these values. To determine the value of a deci-
sion node, the cost of each option along each deci-
sion line is subtracted from the cost already 
calculated. This value represents the benefit of the 
decision.

Classification Trees

In many medical settings, the medical decision 
maker may not know what the decision rule is. 
Rather, he or she would like to discover the deci-
sion rule by using data. In such settings, decision 
trees are often referred to as classification trees. 
Classification trees apply to data where the y-value 
(outcome) is a classification label, such as the dis-
ease status of a patient, and the medical decision 
maker would like to construct a decision rule that 
predicts the outcome using x-variables (dependent 
variables) available in the data. Because the data 
set available is just one sample of the underlying 
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population, it is desirable to construct a decision 
rule that is accurate not only for the data at hand 
but over external data as well (i.e., the decision 
rule should have good prediction performance). At 
the same time, it is helpful to have a decision rule 
that is understandable. That is, it should not be so 
complex that the decision maker is left with a 
black box. Decision trees offer a reasonable way to 
resolve these two conflicting needs.

Background

The use of tree methods for classification has a 
history that dates back at least 40 years. Much of 
the early work emanated from the area of social 
sciences, starting in the late 1960s, and computa-
tional algorithms for automatic construction of 
classification trees began as early as the 1970s. 
Algorithms such as the THAID program devel-
oped at the Institute for Social Research, University 
of Michigan, laid the groundwork for recursive 
partitioning algorithms, the predominate algo-
rithm used by modern-day tree classifiers, such as 
Classification and Regression Tree (CART).

An Example

Classification trees are decision trees derived 
using recursive partitioning data algorithms that 
classify each incoming x-data point (case) into 
one of the class labels for the outcome. A classifi-
cation tree consists of three types of nodes (see 
Figure 2):

 1. Root node: The top node of the tree comprising 
all the data.

 2. Splitting node: A node that assigns data to a 
subgroup.

 3. Terminal node: Final decision (outcome).

Figure 2 is a CART tree constructed using the 
breast cancer databases obtained from the 
University of Wisconsin Hospitals, Madison (avail-
able from http://archive.ics.uci.edu/ml). In total, 
the data comprise 699 patients classified as having 
either benign or malignant breast cancer. The goal 
here is to predict true disease status based on nine 
different variables collected from biopsy.

2 Decision 2 Uncertainty (external event)

Outcome 1

Outcome 2

Outcome 3

Outcome 4

Outcome 5

Outcome 6

Outcome 7

A

C

2

B

1

Figure 1  Decision trees are graphical models for describing sequential decision problems.
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The first split of the tree (at the root node) is on 
the variable “unsize,” measuring uniformity of cell 
size. All patients having values less than 2.5 for 
this variable are assigned to the left node (the left 
daughter node); otherwise they are assigned to the 
right node (right daughter node). The left and right 
daughter nodes are then split (in this case, on the 
variable “unshape” for the right daughter node 
and on the variable “nuclei” for the left daughter 
node), and patients are assigned to subgroups 
defined by these splits. These nodes are then split, 
and the process is repeated recursively in a proce-
dure called recursive partitioning. When the tree 

construction is completed, terminal nodes are 
assigned class labels by majority voting (the class 
label with the largest frequency). Each patient in a 
given terminal node is assigned the predicted class 
label for that terminal node. For example, the left-
most terminal node in Figure 2 is assigned the class 
label “benign” because 416 of the 421 cases in the 
node have that label. Looking at Figure 2, one can 
see that voting heavily favors one class over the 
other for all terminal nodes, showing that the deci-
sion tree is accurately classifying the data. However, 
it is important to assess accuracy using external 
data sets or by using cross-validation as well.

Unsize < 2.5

Nuclei = 1,2,3,4,5,? Unshape < 2.5

Clump < 5.5 Nuclei = 1,2,?

Unshape < 3.5

Unsize > = 2.5

Nuclei = 10,6,7,8 Unshape > = 2.5

Clump > = 5.5 Nuclei = 10,3,4,5,6,7,8,9

Unshape > = 3.5

Benign
458/241

Benign
417/12

Benign
416/5

Malignant
1/7

Malignant
41/229

Benign
18/5

Benign
18/1

Malignant
0/4

Malignant
23/224

Malignant
13/23

Benign
7/0

Malignant
6/23

Malignant
10/201

Figure 2  Classification tree for Wisconsin breast cancer data

Note: Light-shaded and dark-shaded barplots show frequency of data at each node for the two classes: benign (light shaded); 
malignant (dark shaded). Terminal nodes are classified by majority voting (i.e., assignment is made to the class label having the 
largest frequency). Labels in black given above a splitting node show how data are split depending on a given variable. In some 
cases, there are missing data, which are indicated by a question mark. 
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Recursive Partitioning

In general, recursive partitioning works as fol-
lows. The classification tree is grown starting at the 
root node, which is the top node of the tree, com-
prising all the data. The root node is split into two 
daughter nodes: a left and a right daughter node. 
In turn, each daughter node is split, with each split 
giving rise to left and right daughters. The process 
is repeated in a recursive fashion until the tree can-
not be partitioned further due to lack of data or 
some stopping criterion is reached, resulting in a 
collection of terminal nodes. The terminal nodes 
represent a partition of the predictor space into a 
collection of rectangular regions that do not over-
lap. It should be noted, though, that this partition 
may be quite different than what might be found 
by exhaustively searching over all partitions cor-
responding to the same number of terminal nodes. 
However, for many problems, exhaustive searches 
for globally optimal partitions (in the sense of pro-
ducing the most homogeneous leaves) are not com-
putationally feasible, and recursive partitioning 
represents an effective way of undertaking this task 
by using a one-step procedure instead.

A classification tree as described above is referred 
to as a binary recursive partitioned tree. Another 
type of recursively partitioned tree is multiway 
recursive partitioned tree. Rather than splitting the 
parent node into two daughter nodes, such trees 
use multiway splits that define multiple daughter 
nodes. However, there is little evidence that multi-
way splits produce better classifiers, and for this 
reason, as well as for their simplicity, binary recur-
sive partitioned trees are often favored.

Splitting Rules

The success of CART as a classifier can be 
largely attributed to the manner in which splits are 
formed in the tree construction. To define a good 
split, CART uses an impurity function to measure 
the decrease in tree impurity for a split. The purity 
of a tree is a measure of how similar observations 
in the leaves are to one another. The best split for 
a node is found by searching over all possible vari-
ables and all possible split values and choosing 
that variable and split that reduces impurity the 
most. Reduction of tree impurity is a good princi-
ple because it encourages the tree to push dissimi-
lar cases apart. Eventually, as the number of nodes 

increases, and dissimilar cases become separated 
into daughter nodes, each node in the tree becomes 
homogeneous and is populated by cases with simi-
lar outcomes (recall Figure 2).

There are several impurity functions used. These 
include the twoing criterion, the entropy criterion, 
and the gini index. The gini index is arguably the 
most popular. When the outcome has two class 
labels (the so-called two-class problem), the gini 
index corresponds to the variance of the outcome 
if the class labels are recoded as being 0 and 1.

Stopping Rules

The size of the tree is crucial to the accuracy of 
the classifier. If the tree is too shallow, terminal 
nodes will not be pure (outcomes will be heteroge-
neous), and the accuracy of the classifier will suf-
fer. If the tree is too deep (too many splits), then 
the number of cases within a terminal node will be 
small, and the predicted class label will have high 
variance—again undermining the accuracy of the 
classifier.

To strike a proper balance, pruning is employed 
in methodologies such as CART. To determine the 
optimal size of a tree, the tree is grown to full size 
(i.e., until all data are spent) and then pruned back. 
The optimal size is determined using a complexity 
measure that balances the accuracy of the tree as 
measured by cost complexity and by the size of  
the tree.

Regression Trees

Decision trees can also be used to analyze data 
when the y-outcome is a continuous measurement 
(such as age, blood pressure, ejection fraction for 
the heart, etc.). Such trees are called regression 
trees. Regression trees can be constructed using 
recursive partitioning similar to classification trees. 
Impurity is measured using mean-square error. The 
terminal node values in a regression tree are 
defined as the mean value (average) of outcomes 
for patients within the terminal node. This is the 
predicted value for the outcome.

Survival Trees

Time-to-event data are often encountered in the 
medical sciences. For such data, the analysis 
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focuses on understanding how time-to-event var-
ies in terms of different variables that might be 
collected for a patient. Time-to-event can be time 
to death from a certain disease, time until recur-
rence (for cancer), time until first occurrence of a 
symptom, or simple all-cause mortality.

The analysis of time-to-event data is often com-
plicated by the presence of censoring. Generally 
speaking, this means that the event times for some 
individuals in a study are not observed exactly 
and are only known to fall within certain time 
intervals. Right censoring is one of the most com-
mon types of censoring encountered. This occurs 
when the event of interest is observed only if it 
occurs prior to some prespecified time. For exam-
ple, a patient might be monitored for 2 weeks 

without occurrence of a symptom and then 
released from a hospital. Such a patient is said to 
be right censored because the time-to-event must 
exceed 2 weeks, but the exact event time is 
unknown. Another example of right censoring 
occurs when patients enter a study at different 
times and the study is predetermined to end by a 
certain time. Then, all patients who do not experi-
ence an event within the study period are right 
censored.

Decision trees can be used to analyze right-cen-
sored survival data. Such trees are referred to as 
survival trees. Survival trees can be constructed 
using recursive partitioning. The measure of impu-
rity plays a key role, as in CART, and this can be 
defined in many ways. One popular approach is to 
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Figure 3  Binary survival tree for breast cancer patients

Note: Dependent variables NKI70 and TSP are gene signatures. For example, extreme right terminal node (Node 5) corresponds 
to presence of both the NKI70 and TSP gene signatures. Underneath each terminal node are Kaplan-Meier survival curves for 
patients within that node.
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define impurity using the log-rank test. As in 
CART, growing a tree by reducing impurity 
ensures that terminal nodes are populated by indi-
viduals with similar behavior. In the case of a sur-
vival tree, terminal nodes are composed of patients 
with similar survival. The terminal node value in a 
survival tree is the survival function and is esti-
mated using those patients within the terminal 
node. This differs from classification and regres-
sion trees, where terminal node values are a single 
value (the estimated class label or predicted value 
for the response, respectively). Figure 3 shows an 
example of a survival tree.

Hemant Ishwaran and J. Sunil Rao

See also Decision Trees, Advanced Techniques in 
Constructing; Recursive Partitioning
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Decision trees, aDvanceD 
techniQues in constructing

Decision trees such as classification, regression, 
and survival trees offer the medical decision maker 
a comprehensive way to calculate predictors and 
decision rules in a variety of commonly encoun-
tered data settings. However, performance of deci-
sion trees on external data sets can sometimes be 
poor. Aggregating decision trees is a simple way to 
improve performance—and in some instances, 
aggregated tree predictors can exhibit state-of-the-
art performance.

Decision Boundary

Decision trees, by their very nature, are simple and 
intuitive to understand. For example, a binary 
classification tree assigns data by dropping a data 
point (case) down the tree and moving either left 
or right through nodes depending on the value of 
a given variable. The nature of a binary tree 
ensures that each case is assigned to a unique ter-
minal node. The value for the terminal node (the 
predicted outcome) defines how the case is classi-
fied. By following the path as a case moves down 
the tree to its terminal node, the decision rule for 
that case can be read directly off the tree. Such a 
rule is simple to understand, as it is nothing more 
than a sequence of simple rules strung together.

The decision boundary, on the other hand, is a 
more abstract concept. Decision boundaries are 
estimated by a collection of decision rules for cases 
taken together—or, in the case of decision trees, 
the boundary produced in the predictor space 
between classes by the decision tree. Unlike deci-
sion rules, decision boundaries are difficult to 
visualize and interpret for data involving more 
than one or two variables. However, when the data 
involve only a few variables, the decision bound-
ary is a powerful way to visualize a classifier and 
to study its performance.

Consider Figure 1. On the left-hand side is the 
classification tree for a prostate data set. Here, the 
outcome is presence or absence of prostate cancer 
and the independent variables are prostate-specific 
antigen (PSA) and tumor volume, both having been 
transformed on the log scale. Each case in the data 
is classified uniquely depending on the value of 
these two variables. For example, the leftmost ter-
minal node in Figure 1 is composed of those 
patients with tumor volumes less than 7.851 and 
PSA levels less than 2.549 (on the log scale). 
Terminal node values are assigned by majority vot-
ing (i.e., the predicted outcome is the class label 
with the largest frequency). For this node, there are 
54 nondiseased patients and 16 diseased patients, 
and thus, the predicted class label is nondiseased.

The right-hand side of Figure 1 displays the 
decision boundary for the tree. The dark-shaded 
region is the space of all values for PSA and tumor 
volume that would be classified as nondiseased, 
whereas the light-shaded regions are those values 
classified as diseased. Superimposed on the figure, 
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using white and light-gray dots, are the observed 
data points from the original data. Light-gray 
points are truly diseased patients, whereas white 
points are truly nondiseased patients. Most of the 
light-gray points fall in the light-shaded region of 
the decision space and, likewise, most of the white 
points fall in the dark-shaded region of the deci-
sion space, thus showing that the classifier is clas-
sifying a large fraction of the data correctly. Some 
data points are misclassified, though. For example, 
there are several light-gray points in the center of 
the plot falling in the dark-shaded region. As well, 
there are four light-gray points with small tumor 
volumes and PSA values falling in the dark-shaded 
region. The misclassified data points in the center 
of the decision space are especially troublesome. 
These points are being misclassified because the 
decision space for the tree is rectangular. If the 
decision boundary were smoother, then these 
points would not be misclassified. The nonsmooth 

nature of the decision boundary is a well-known 
deficiency of classification trees and can seriously 
degrade performance, especially in complex deci-
sion problems involving many variables.

Instability of Decision Trees

Decision trees, such as classification trees, are known 
to be unstable. That is, if the original data set is 
changed (perturbed) in some way, then the classifier 
constructed from the altered data can be surprisingly 
different from the original classifier. This is an unde-
sirable property, especially if small perturbations to 
the data lead to substantial differences.

This property can be demonstrated using the 
prostate data set of Figure 1. However, to show 
this, it is important to first agree on a method for 
perturbing the data. One technique that can  
be used is to employ bootstrap resampling. A 
bootstrap sample is a special type of resampling 
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Figure 1   Decision tree (left-hand side) and decision boundary (right-hand side) for prostate cancer data with 
prostate-specific antigen (PSA) and tumor volume as independent variables (both transformed on the log 
scale)

Note: Barplots under terminal nodes of the decision tree indicate proportion of cases classified as diseased or nondiseased, with 
the predicted class label determined by majority voting. Decision boundary shows how the tree classifies a new patient based on 
PSA and tumor volume. Gray-shaded points identify diseased patients, and white points identify nondiseased patients from the 
data. 
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procedure. A data point is randomly selected 
from the data and then returned. This process is 
repeated n times, where n is the sample size. The 
resulting bootstrap sample consists of n data 
points but will contain replicated data. On aver-
age, a bootstrap sample draws only approxi-
mately 63% of the original data.

A total of 1,000 different bootstrap samples of 
the prostate data were drawn. A classification tree 
was calculated for each of these 1,000 samples. 
The top panel of plots in Figure 2 shows decision 
boundaries for four of these trees (bootstrap sam-
ples 2, 5, 25, and 1,000; note that Tree 1 is the 
classification tree from Figure 1 based on the 
original data). One can see clearly that the decision 
spaces differ quite substantially—thus providing 
clear evidence of the instability.

It is also interesting to note how some of the 
trees have better decision spaces than the original 
tree (recall Figure 1; also see Tree 1 in Figure 2). 
For example, Trees 2, 5, 25, and 1,000 identify 
some or all of the four problematic light-gray 
points appearing within the lower quadrant of the 
dark-shaded region of the original decision space. 
As well, Trees 5, 25, and, 1,000 identify some of 
the problematic green points appearing within the 
center of the original decision space.

An important lesson that emerges from this 
example is not only that decision trees can be 
unstable but also that trees constructed from dif-
ferent perturbations of the original data can pro-
duce decision boundaries that in some instances 
have better behavior than the original decision 
space (over certain regions). Thus, it stands to rea-
son that, if one could combine many such trees, the 
classifier formed by aggregating the trees might 
have better overall performance. In other words, 
the whole may be greater than the sum of the parts 
and one may be able to capitalize on the inherent 
instability using aggregation to produce more 
accurate classifiers.

Bagging

This idea in fact is the basis for a powerful 
method referred to as “bootstrap aggregation,” or 
simply “bagging.” Bagging can be used for many 
kinds of predictors, not just decision trees. The 
basic premise for bagging is that, if the underlying 
predictor is unstable, then aggregating the predictor 

over multiple bootstrap samples will produce a 
more accurate, and more stable, procedure.

To bag a classification tree, the procedure is as 
follows (bagging can be applied to regression trees 
and survival trees in a similar fashion):

 1. Draw a bootstrap sample of the original data.

 2. Construct a classification tree using data from 
Step 1.

 3. Repeat Steps 1 and 2 many times, 
independently.

 4. Calculate an aggregated classifier using the trees 
formed in Steps 1 to 3. Use majority voting to 
classify a case. Thus, to determine the predicted 
outcome for a case, take the majority vote over 
the predicted outcomes from each tree in Steps 
1 to 3.

The bottom panel of plots in Figure 2 shows the 
decision boundary for the bagged classifier as a 
function of number of trees (based on the same 
prostate data as before). The first plot is the origi-
nal classifier based on all the data (Tree 1). The 
second plot is the bagged classifier composed of 
Tree 1 and the bootstrap tree derived using the first 
bootstrap sample. The third plot is the bagged 
classifier using Tree 1 and the first four boot-
strapped trees, and so forth. As number of trees 
increases, the bagged classifier becomes more 
refined. Even the decision boundary for the bagged 
classifier using only five trees (third plot) is sub-
stantially smoother than the original classifier and 
is able to better classify problematic cases. By 
1,000 trees (last plot), the bagged classifier’s deci-
sion boundary is fully defined. The accuracy of the 
bagged classifier is substantially better than any 
single bootstrapped tree. Table 1 records the mis-
classification (error) rate for the bagged predictor 
against the averaged error rate for the 1,000 boot-
strapped trees. The first column is the overall error 
rate, the second column is the error rate for dis-
eased patients, and the third column is the error 
rate for nondiseased patients. Error rates were cal-
culated using out-of-bag data. Recall that each 
bootstrap sample uses on average 67% of the 
original data. The remaining 33% of the data is 
called out-of-bag and serves as test data, as it is not 
used in constructing the tree. Table 1 shows that 
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the bagged classifier is substantially more accurate 
than any given tree.

Random Forests

“Random forests” is a refinement of bagging that 
can yield even more accurate predictors. The 
method works like bagging by using bootstrapping 
and aggregation but includes an additional step 
that is designed to encourage independence of 
trees. This effect is often most pronounced when 
the data contain many variables.

To create a random forest classifier, the proce-
dure is as follows (regression forests and random 
survival forests can be constructed using the same 
principle):

 1. Draw a bootstrap sample of the original data.

 2. Construct a classification tree using data from 
Step 1. For each node in the tree, determine the 
optimal split for the node using M randomly 
selected dependent variables.

 3. Repeat Steps 1 and 2 many times, 
independently.

 4. Calculate an aggregated classifier using the trees 
formed in Steps 1 to 3. Use majority voting to 

classify a case. Thus, to determine the predicted 
outcome for a case, take the majority vote over 
the predicted outcomes from each tree in Steps 
1 to 3.

Step 2 is the crucial step distinguishing forests 
from bagging. Unlike bagging, each bootstrapped 
tree is constructed using different variables, and not 
all variables are used (at most M are used at each 
node in the tree growing process). Considerable 
empirical evidence has shown that forests can be 
substantially more accurate because of this feature.

Boosting

Boosting is another related technique that has 
some similarities to bagging although its connec-
tion is not as direct. It too can produce accurate 
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Figure 2   Top row shows decision boundary for a specific bootstrapped tree (1,000 trees used in total), and the 
bottom plot shows different aggregated (bagged) decision trees

Note: Bagged trees are more robust to noise (stable) because they utilize information from more than one tree. The most stable 
bagged tree is the one on the extreme right-hand side and shows decision boundary using 1,000 trees.

Table 1   Misclassification error rate (in percentage) for 
bagged classifier (1,000 trees) and single tree 
classifier

Classifier  All  Diseased  Nondiseased

Bagged tree  27.2  28.8  25.9

Single tree  34.9  36.7  33.0
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classifiers through a combination of reweighting 
and aggregation. To create a boosted tree classi-
fier, the following procedure can be used 
(although other methods are also available in the 
literature):

 1. Draw a bootstrap sample from the original data 
giving each observation equal chance (i.e., 
weight) of appearing in the sample.

 2. Build a classification tree using the bootstrap 
data and classify each of the observations, 
keeping track of which ones are classified 
incorrectly or correctly.

 3. For those observations that were incorrectly 
classified, increase their weight and 
correspondingly decrease the weight assigned to 
observations that were correctly classified.

 4. Draw another bootstrap sample using the newly 
updated observation weights (i.e., those 
observations that were previously incorrectly 
classified will have a greater chance of 
appearing in the next bootstrap sample).

 5. Repeat Steps 2 to 4 many times.

 6. Calculate an aggregated classifier using the trees 
formed in Steps 1 to 5. Use majority voting to 
classify a case. Thus, to determine the predicted 
outcome for a case, take the majority vote over 
the predicted outcomes from each tree in Steps 
1 to 5.

The idea of reweighting observations adaptively 
is a key to boosting’s performance gains. In a 
sense, the algorithm tends to focus more and more 
on observations that are difficult to classify. There 
has been much work in the literature on studying 
the operating characteristics of boosting, primarily 
motivated by the fact that the approach can pro-
duce significant gains in prediction accuracy over 
a single tree classifier. Again, as with bagging, 
boosting is a general algorithm that can be applied 
to more than tree-based classifiers. While these 
aggregation algorithms were initially thought to 
destroy the simple interpretable structure (topol-
ogy) produced by a single tree classifier, recent 
work has shown that, in fact, treelike structures 
(with respect to the decision boundary) are often 
maintained, and interpretable structure about how 

the predictors interact with one another can still be 
gleaned.

Hemant Ishwaran and J. Sunil Rao

See also Decision Tree: Introduction; Recursive 
Partitioning
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Decision trees, construction

A decision model is a mathematical formulation 
of a decision problem that compares alternative 
choices in a formal process by calculating their 
expected outcome. The decision tree is a graphical 
representation of a decision model that represents 
the basic elements of the model. The key elements 
of the model are the possible choices, information 
about chance events, and preferences of the deci-
sion maker. The choices are the alternatives being 
compared in the decision model. The information 
consists of an enumeration of the events that may 
occur consequent to the choice and the probabili-
ties of each of their outcomes. Preferences are 
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captured by assessing utilities of each outcome 
that measure the desirability of each outcome. In 
addition to a utility, each outcome may be associ-
ated with a financial cost.

The decision tree is a convenient method, analo-
gous to a high-level graphical language, of specify-
ing the elements of the decision model in a way 
that leads naturally to a method for quantitatively 
evaluating the alternative choices, in a process 
known as averaging out and folding back the tree.

Formulating the Problem

Decision tree construction requires a properly for-
mulated decision problem.

Decision Context

The first step is determining the context of the 
decision. This consists, at a minimum, of the clini-
cal problem (e.g., chest pain), the healthcare set-
ting (e.g., a hospital emergency room), and any 
characteristics of the patient to which the analysis 
is restricted (e.g., the age range, gender, or existing 
comorbid conditions). The context also specifies 
the timeframe being considered.

Specific Question

The second step is formulating a specific ques-
tion that is to be answered by the decision analysis. 
It must be a comparison of specific alternative 
actions that are available to the decision maker. In 
healthcare decision making, choices generally 
involve diagnostic tests and treatments. An exam-
ple of a clearly formulated decision is whether a 
patient with a suspected condition should be 
observed without treatment, given a diagnostic 
test, or treated empirically. Each choice must be 
unique. Choices may also contain combinations of 
actions with later decisions contingent on results 
of tests or outcomes of observation. These combi-
nations of choices are referred to as policies. 
Typically, decision models involve multiple succes-
sive choices, which, in combinations, correspond 
to alternate policies. These combinations may dif-
fer according to the specific elements (e.g., one test 
or treatment as compared with another) or accord-
ing to how these elements are applied (e.g., using 
differing rules for responding to the outcome of a 

diagnostic test or varying the amount of time 
before contingent action is taken). For these rea-
sons, the number of decision alternatives that can 
be considered in a decision model can become very 
large as the number of combinations of the various 
factors increases.

Node Types

Standard decision trees contain three basic types of 
nodes. Decision nodes are typically represented by 
an open square, chance nodes by an open circle, 
and terminal nodes by rectangular boxes. Branches 
are represented as straight lines connecting nodes.

Overall Tree Structure

A simple decision tree is shown in Figure 1. By 
convention, the root of the tree is a decision node 
and is represented at the left of the figure, and the 
terminal nodes (referred to as the “leaves” of the 
tree) are at the right. According to conventions for 
drawing decision models that are published in the 
journal Medical Decision Making in the first issue 
of each year, lines representing branches of the 
same node are parallel and vertically aligned. 
Medical Decision Making also specifies that the 
branches should be attached to lines at right angles 
to nodes, as in Figure 1, but a common variation 
uses a fan of angled lines from each node leading 
directly to branches, as in Figure 2.

There can be any number of branches of a deci-
sion node as long as they represent distinct alterna-
tives. The branches of a chance node must represent 
a mutually exclusive and collectively exhaustive set 
of events. In other words, the branches must all 
represent distinct events, and the set of branches 
must cover all possible outcomes at the chance 
node. Consequently, the probabilities of the 
branches must sum to exactly 1. There is no uni-
versal convention for the order in which the 
branches of a node appear. Branches of decision 
nodes are specified in an order that makes clinical 
sense to the analyst, keeping in mind that this 
order will determine the order in which the 
expected value of each branch is displayed after 
evaluation. When there are many choices, they 
may be arranged so that groups of similar strate-
gies are adjacent. Branches of chance nodes  
are usually arranged so that if there are branches 
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representing occurrence of specific events, they 
appear on top, and the branch representing nonoc-
currence of a specific event is last; however, the 
order makes no difference to the evaluation when 
a complete set of probabilities is specified.

Branches are labeled with the names of the 
choices or events they represent. Terminal nodes 
may be labeled with a symbolic description of the 
outcome, as in Figure 1, or with an expression 
indicating the value or utility of the outcome, as in 
Figure 3. Branches of chance nodes may also be 
labeled with the probability of that branch as 
shown in Figure 4. Note that the probability of 
“disease present” is the same for both decision 
branches, but the probability of “cure” is higher 

for the “empiric treatment” than for “observa-
tion.” Similarly, utilities can be represented by 
numbers as shown in Figure 4. The lowest utility 
is for the worst outcome, which is having the dis-
ease, being treated, but not being cured. The high-
est utility is for the best outcome, which is being 
observed and not having the disease. Others are 
intermediate, and their exact values will depend 
on the specifics of the disease and the treatment. 
For example, the utility loss due to untreated dis-
ease may be worse than the utility loss due to the 
treatment.

Elements of the model that require assignment 
of quantitative values (probabilities, utilities, and 
others) are called model parameters.

Decision node

Branch

Chance node

Empiric Therapy

Disease present

Cure

Terminal node

Disease treated
Cured

Disease treated
Not cured

No disease
Treated

Disease not treated
But cured

Disease not treated
Not cured

No disease
Not treated

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

Observation

Root

Proximal

Upstream

Leaves

Distal

Downstream

Figure 1  Example decision tree

Figure 2  Alternate format for branches

Disease present

Disease absent

Cure

No cure

85

50

Figure 3  Numerical utilities
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Navigation and Orientation

Upstream Versus Downstream

Nodes and branches closer to the root of the 
tree are said to be proximal or upstream. Those 
farther from the root are said to be distal or down-
stream. The designation of upstream versus down-
stream has additional meaning in terms of applying 
bindings and context-specific variables. A path 
through the tree is defined as the sequence of nodes 
and branches between any two points in the tree. 
In general, proximal events occur earlier in time 
than distal events, but this is not an absolute rule, 
and nodes at many levels of the tree may represent 
events that occur simultaneously.

Tree Context

The context of a branch or node in a decision 
tree is defined as the path from the root of the tree 
to that branch or node and incorporates all the 
decisions and consequences that precede them. So, 
for example, in Figure 1, the context of “cure” 
indicated by the dotted ellipse is (empiric therapy 
given, disease present, cured), whereas the context 
of “cure” indicated by the solid ellipse is (observa-
tion, disease present, cured). These often differ in 
their impact on the probabilities of any down-
stream events and in determinants of the utilities of 
the terminal nodes or economic costs.

Variables and Expressions

In the above discussion, probabilities and utilities 
were expressed either as descriptive labels (Figure 1) 
or as numerical quantities (Figure 4). It is conve-
nient to represent these quantities symbolically 
using mathematical expressions composed of vari-
ables (Figure 5). There are several reasons for 
using symbolic variables:

 1. To express the model in terms of the meanings 
of values, allowing alternate values to be 
specified as input.

 2. To facilitate sensitivity analysis by allowing 
model parameters to vary systematically. For 
example, the value of pDIS represents the 
probability of disease and can be varied to 
determine how the model is affected by changes 
in disease prevalence.

 3. To permit values in specific tree contexts to 
depend systematically on previous, upstream 
values. The value of pCure in contexts 
downstream from “Empiric Treatment” will 
differ from the value of pCure in contexts 
downstream from “Observation.”

 4. To permit the use of subtrees that permit 
reusing elements of tree structure while allowing 
values of parameters to change.

Empiric Therapy

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

.15

.80
.8

.2

.95

.9

.3

1.0

.20

.50

.50

.85

.15

.85

Observation

Figure 4  Probabilities on branches
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 5. To express and maintain relationships (linkage) 
between variables during model evaluation 
using mathematical expressions, thus promoting 
greater consistency and clarity. This is especially 
important when parameters are defined 
functionally, rather than prespecified. For 
example, the posttest probability of disease may 
be calculated from the pretest probability in 
terms of the sensitivity and specificity of a 
diagnostic test. This not only ensures that the 
posttest probability is calculated correctly, but 
linkage of these variables avoids errors during 
sensitivity analysis. It would be incorrect to vary 
only the pretest probability of disease or the test 
sensitivity without also varying the posttest 
probability. Variables and expressions ensure 
that these relationships are maintained as 
models are constructed, modified, and 
evaluated.

 6. To maintain internal statistics of the events that 
occur at various points in a model.

Expressions

The use of algebraic expressions to express 
probabilities and utilities permits building them up 
systematically from more elemental parameters.

More complicated expressions can be con-
structed in models using a variety of mathematical 
operators and functions. Application of Bayes’s 
rule is one example. Other examples include the 
computation of disease prevalence and probabili-
ties in terms of varying factors such as age, and 
calculating costs as a function of events in specific 
tree contexts, and employing counting and track-
ing variables to determine whether and how often 
specific events occur in a model. Modern decision 
analysis software implements a full complement of 
mathematical operators and functions, permitting 
a great deal of representational power in creating 
expressions.

The use of variables rather than fixed parame-
ters also facilitates maintenance of the model by 
enabling the analyst to make lists of parameters. 
Entire sets of variables can be substituted in the 
model to represent distinct scenarios or decision 
contexts.

Utilities

The values of terminal nodes (leaves) of the tree 
are referred to generically as utilities. The underly-
ing theory and method of assessing and assigning 
utilities is discussed elsewhere. In practical terms, 

Empiric Therapy

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDis

pCure
URxDisCure

URxDisNoCure

URxNoDis

UObsDisCure

UObsDisNoCure

UObsNoDis

1 − pCure

pCure

1 − pCure

1 − pDis

pDis

1 − pDis

Observation

Figure 5  Symbolic probabilities and utilities
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the values of terminal nodes are expressed in terms 
of health outcomes and financial costs.

The use of algebraic expressions to express 
utilities is illustrated by the terminal nodes in the 
tree in Figure 5. There are six unique utilities in 
this model. While it is feasible to assign each of 
them a unique variable name as is done in Figure 
5, it can be easier to express these utilities in terms 

of four parameters as in Figure 6. Each utility is 
calculated by subtracting all applicable disutilities 
from 1, the value of the “no disease, no treat-
ment” state. When there is a much larger number 
of terminal nodes, this approach can greatly sim-
plify the assignment of utilities and can greatly 
reduce the number of parameters the analyst 
needs to maintain.

Empiric Therapy

Disease present

Cure

No Cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDis

pCure
1 − UDisCure − URx

1 − UDisNoCure − URx

1 − URx

1 − UDisCure

1 − UDisNoCure

1

1 − pCure

pCure

1 − pCure

1 − pDis

pDis

1 − pDis

Observation

Figure 6  Tree with algebraic expressions

Empiric Therapy

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDis

pCure
CostRx + CostCure, URxDisCure

CostRx+CostNoCure,
URxDisNoCure

CostRx, URxNoDis

CostCure, UObsDisCure

CostNoCure, UObsDisNoCure

0, UObsNoDis

1 − pCure

pCure

1 − pCure

1 − pDis

pDis

1 − pDis

Observation

Figure 7  Costs at terminal nodes
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Dual Utilities in Cost-Effectiveness Models

In cost-utility analysis, a financial cost must be 
applied to each path through the tree in addition 
to its quality measures. Most conveniently, these 
costs are assigned to the terminal nodes along with 
the utilities, as shown in Figure 7. Each cost can be 
calculated as the sum of component costs attrib-
uted to treatment, testing, and costs of any of the 
effects of the disease itself. For the outcome of 
“observation-disease absent,” there are no costs.

Computer Applications for Tree  
Construction and Evaluation

Several software applications are available for con-
structing and evaluating decision trees. Using soft-
ware has many advantages over constructing 
models manually. By integrating the graphical and 
mathematical components of the model, such tools 
greatly speed model construction and minimize 
errors, allowing much more complicated, clinically 
realistic models to be considered than would be 
possible by manual calculation. The ability to load 
complete sets of variables permits evaluating a 
model for different scenarios, without manually 
changing the variables one at a time. Furthermore, 
the ability to automate the evaluation of models 
encourages more complete exploration of a model 
through sensitivity analysis. Graphical representa-
tions of models and their results can then be gen-
erated, often automatically, for papers and 
presentations. Models can also be built incremen-
tally and adapted in future applications or work 
sessions allowing components to be reused, thus 
providing a systematic means for sharing knowl-
edge and models among analysts.

Frank A. Sonnenberg and C. Gregory Hagerty

See also Cost-Utility Analysis; Decision Trees, Evaluation; 
Decision Trees: Sensitivity Analysis, Deterministic; 
Disutility; Expected Utility Theory; Multi-Attribute 
Utility Theory; Tree Structure, Advanced Techniques
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Decision trees, evaluation

A decision tree is a branched structure used as a 
tool to support decision making by displaying key 
elements of the choices among alternatives and the 
consequences of each choice. This entry uses sev-
eral examples to illustrate the evaluation of deci-
sion trees.

The following examples of surgery versus 
radiation therapy for Stage 1 (early stage) versus 
Stage 4 (late stage) disease demonstrate the visual 
benefits of a decision tree without needing to 
comple tely elaborate the tree or to perform any 
calculations. These examples also explore why 
the decision analyst in charge of the construction 
and elaboration of a decision tree needs to be in 
full control of the key aspects of the decisions 
that may influence (a) the patient’s decision in 
each stage of this disease process, from Stage 1 
(early in life) to Stage 4 (later in life), when the 
disease is identified early enough in a patient’s 
care, or (b) the patient who presents at the time 
of diagnosis with Stage 1 disease versus the 
patient who presents at the time of diagnosis 
with Stage 2 disease. These examples also explore 
the difficulties in capturing alternative strategies 
open to patients in a simple decision tree 
structure.

Decision Tree for Early Stage 1 Disease

The following decision tree lays out the decision for 
early Stage 1 disease in a patient for whom physi-
cians believe there are two options open: surgery 
for Stage 1 disease versus radiation for Stage 1 dis-
ease. The decision node ( ) represents the decision 
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for surgery for Stage 1 disease and radiation therapy 
for Stage 1 disease (Figure 1).

Even at this point in the elaboration of the 
decision tree in a patient with early Stage 1 dis-
ease, many patients would say that this tree is 
complete. Because both surgery and radiation 
therapy have outstanding chances for survival 
in this individual, complications become the 
focal point. Here, there would be a shift in dis-
cussion away from the decision tree represent-
ing short-term survival to discussions related to 
differences in quality of life after surgery and 
quality of life after radiation therapy. Here, 
after hearing about the 100% chance of surgical 
cure of the disease and the quality of life after 
surgery and the 97% cure rate for radiation 
therapy and the complications of radiation 
therapy, the patient may well decide to accept 
the surgery without any additional exposition 
of the decision tree or discussion of quality of 
life. Here, the demonstrated strength of the 
decision tree is to show the outcomes and fea-
tures of the comparison between surgery versus 
radiation therapy for early Stage 1 disease and a 
simplification for the patient in understanding 
options.

Laying Out a Decision Tree

The expression “laying out a decision tree” refers to 
the structuring of a decision tree, with tree growth 
through the addition of alternatives, outcomes, and 
their related chances (probabilities) of occurring. 
We will now structure a set of decision trees to rep-
resent a patient’s decision problem related to con-
sideration of surgery versus radiation therapy for a 
progressive disease. Here, we will represent this 
progression of disease process and disease state in 
terms of early disease (labeled Stage 1) to the most 
severe form (labeled Stage 4). We will also consider 
an intermediate form of progression of this disease 
(labeled Stage 3). With consideration of these 
stages, we will examine two strengths of a decision 
tree: (1) using a decision tree to help visualize the 
patient’s decision problem and (2) using a decision 
tree in a calculation to determine which of the two 
treatments would have a survival advantage in a 
patient with intermediate Stage 3 disease.

In a more complicated patient with Stage 4 dis-
ease, the decision tree might take the form as 
shown in Figure 2.

Here, the complexity of the decision in terms  
of the questions raised even at the point of the 

Surgery
(Stage 1
disease)

Radiation
therapy
(Stage 1
disease)

Disease present
after radiation therapy
3%

No disease present
after surgery (surgical cure)
100%

Operation-related death
0%

No disease present
after radiation therapy
97%

RT-related death
0%

Figure 1  Decision tree for early Stage 1 disease

Surgery
(Stage 4
disease)

Radiation
therapy
(Stage 4
disease)

Survive surgery
90%

Surgery-related death
10%

RT-related death
0%

Survive radiation therapy
100%

Figure 2  Decision tree for Stage 4 disease
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elaboration of the decision tree can be seen. In 
Stage 4 disease, the patient notes that there is a 
10% chance of dying with the surgery and no 
chance of dying with the radiation therapy and 
also the suggestion that there is disease still pres-
ent (which will continue to progress after each 
therapy).

While one might take this opportunity to fur-
ther elaborate this tree in terms of the amount of 
residual disease left after each therapy, another 
approach would be to see how the disease behaves 
over time and proceed with an elaboration of a 
graphical comparison of the 5-year survival curve 
for surgery and the 5-year survival curve for 
radiation therapy; the visual comparison of each 
curve may drive the patient’s decision, seeing the 
difference in 5-year survival at Year 5 after sur-
gery (e.g., 35% of patients sill alive after surgery) 
in contrast to 5-year survival at Year 5 after radia-
tion therapy (e.g., 25% of patients still alive after 
radiation therapy).

Here, the patient’s decision may be driven by 
the chance of 5-year survival. However, the 5-year 
survival curve comparison would also demon-
strate the crossover point, which is the point 
where the shorter-term benefit of survival after 
radiation therapy is lost and the longer-term ben-
efit of survival after surgery is realized and contin-
ues to 5 years, where there would be a 10% 5-year 
survival benefit at Year 5 with surgery as opposed 
to radiation therapy (35% – 25% = 10%). Here, 
a 5-year survival curve comparison between sur-
gery and radiation therapy could be used along 
with the decision tree to provide the patient fuller 
information about the decision over time, from 
Year 0 to Year 5, a time 5 years after the initial 
treatment.

A decision tree for Stage 3 disease may be more 
complex because both therapies (a) may not have 
a clearly defined peer-reviewed medical literature, 
in contrast to Stage 1 and Stage 4 disease, and (b) 
there will be more questions about what is going 
on with survival and quality of life during the time 
period from Stage 3 to Stage 4 disease (Figure 3).

Given that phase 1 of this decision tree shows 
the same rates of cure (0%) and disease presence 
(100%) in this Stage 3 disease, one can simplify 
the construction by eliminating the first part of 
the decision tree and move on to Phase 2.

Calculating a Decision Tree

Once a decision tree is laid out, it can be evaluated 
or calculated. One needs to recognize that for 
many situations where a specific mathematical cal-
culation is not needed, the process of laying out the 
decision tree (reviewing the peer-reviewed medical 
scientific literatures, acquiring expert opinion, elic-
iting an individual’s preferences regarding out-
comes, and allowing individuals an opportunity to 
see the risks and benefits associated with alterna-
tives) is a powerful visual procedure in its own 
right, without the need for any specific mathemati-
cal calculation. This laying out of a decision tree 
may be very useful in areas of consent and informed 
consent in medicine and in information disclosure 
in economic and legal contexts. This said, this entry 
now discusses how a decision tree is evaluated.

Decision Tree Evaluation

The term decision tree evaluation usually refers to 
the calculation of a decision tree. A decision tree is 
calculated by folding back (averaging out or roll-
ing back) the decision tree.

Referring to the above example, in Phase 2 of 
the decision tree, we go to the peer-reviewed med-
ical literature and find that there are no studies on 
Stage 3 disease, so we go to local experts (the phy-
sicians who actually are doing the surgery and 

Surgery
(Stage 3
disease)

Radiation
therapy

Disease present after surgery
100%

Disease absent after surgery,
operation-related death
0%

Disease present
after radiation therapy
100%

Disease absent
after radiation therapy
0%

Figure 3  Decision tree for Stage 3 disease, Phase 1
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performing the radiotherapy). These local experts 
may rely on their own data collection on the 
patients that have been treated in both depart-
ments (surgery and radiation therapy), and we 
need to rely on these data.

From these data, derived from the database in 
both departments, we see that patients with Stage 
3 disease who had surgery on average have 15 
years of life expectancy, or 15 life years (LY), and 
that patients with Stage 3 disease who underwent 
radiation therapy have 10 years of life expectancy, 
or 10 LY (Figure 4).

Folding Back the Decision Tree

Once reliable baseline probabilities and out-
come values are attained from the peer-reviewed 
medical scientific literature, expert opinion, and 
patient preferences (through the elicitation of 
patient preferences from a standard gamble), the 
tree is ready to be folded back or rolled back. 
Theoretically, the expression folding back (averag-
ing out or rolling back) the decision tree is an 
overall calculation that is executed at a particular 
point in time, when all outcomes are enumerated 
and listed, all probabilities have been gathered, 

and all preferences have been elicited. However, 
with any expressions where the term all is used, as 
in the above expressions, including all outcomes, 
all probabilities, and all preferences, caveats are in 
order and must be examined.

We will now perform the calculations based on 
the data set obtained from the hospital that is pro-
viding the patient’s care (Figures 5, 6, and 7).

Based on this decision tree, surgery (13 years – 
10 years = 3 years) would offer the patient a better 
survival than radiation therapy, and for the patient 
whose primary preference is survival, surgery would 
be the dominant choice given the above numbers.

Pruning

The above example of radiation therapy versus 
surgery for early Stage 1 disease did not consider 
chemotherapy as one of the alternative treatments. 
Here, the medical-scientific point may be that this 
early-stage disease does not respond well to exist-
ing chemotherapies. And even if chemotherapy did 
exist for Stage 1 disease, the patient may not want 
to consider any therapeutic options. In both cases, 
the chemotherapy alternative was pruned away 
from the decision structure in Tree 1 above.

Surgery
(Stage 3
disease)

Radiation
therapy
(Stage 3
disease)

Survive surgery for palliation (15 LYs)
90%

Surgery-related death (0 LYs)
10%

RT-related death
0% 

Survive radiation therapy for palliation (10 LYs)
100%

Figure 4  Decision tree for Stage 3 disease, Phase 2
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Future Treatment Options

In later stages of the disease under consideration 
after either surgery or radiation therapy (or both 
surgery and radiation therapy) have been exhausted, 
there may be a role for palliative chemotherapy, 
that is, therapy intended to palliate, not cure, the 
disease. Early surgery, for example, may well have 
been intended to offer an option for cure for the 
patient, based on review of the peer-reviewed medi-
cal scientific literature. However, if a cure was not 
secured and the disease returned, radiation therapy 
could be offered. And when the disease recurs after 
both surgery and radiation therapy, there may be a 
role for palliative chemotherapy in a patient whose 
main goal is to survive as long as possible.

Certain patients may want to see how surgery 
followed by chemotherapy versus radiation therapy 

followed by chemotherapy look in a decision tree. 
In Figure 8, one can see that when chemotherapy 
for palliation is considered as an option after sur-
gery and after radiation therapy as requested by 
the patient, the surgery alternative becomes stron-
ger in terms of survival over radiation therapy 
because the palliative chemotherapy after surgery 
provides a longer survival than palliative chemo-
therapy after radiation therapy. Thus, the addition 
of a future treatment option (palliative chemo-
therapy) may change a patient’s mind toward sur-
gery as an initial therapy after seeing the tree in 
Figure 8.

Addition of a Wait-and-See Alternative

It is important to recognize that decision trees are 
not optimal for structuring all types of decisions. 
One of the key alternatives in patient care is the 
wait-and-see alternative (or watchful waiting). 
Here, no intervention is made in a disease state. 
Rather, the patient elects to wait and see how his 
or her disease acts over time and then decides to 
act at the time when there is an increase in tumor 
activity noted on the basis of a worsening of symp-
toms, a change in physical examination suggesting 
an increase in growth of tumor mass, a change in 
laboratory testing measurement, or a change in 
biopsy results suggesting a move from a lower-
stage tumor to one that is more aggressive.

In this case, one can construct a decision tree 
that considers surgery for palliation versus radia-
tion therapy for palliation versus watchful waiting 
(wait and see) and then palliative chemotherapy 
for survival for Stage 3–4 disease in a patient 
whose main goal is to live as long as possible 
regardless of quality of life. Given the added 
emphasis that is being placed by oncologists on the 
offering of palliative care options to patients with 
oncologic diseases, one can add a wait-and-see pal-
liative care decision option with palliative chemo-
therapy to the tree in Figure 8, creating the tree 
shown in Figure 9.

Figure 9 illustrates the pruning of the tree in 
Figure 8 and the elimination of branches from the 
tree structure.

Figure 10 shows the pruning of the tree in Figure 
9 and the LY expectancy with the three approaches 
that can be offered to the patient. Figure 11 shows 
the comparison of the LY expectancy of three 

Surgery
(Stage 3
disease)

Survive surgery for palliation (15 LYs)
90%

Surgery-related death (0 LYs)
10%

Figure 5   Calculation of the average life years for 
surgery

Radiation
therapy
(Stage 3
disease)

RT-related death
0% 

Survive radiation therapy for palliation (10 LYs)
100%

Figure 6   Calculation of the average life years for 
radiation therapy

Figure 7   Calculations of the average life years for 
surgery and radiation therapy

Stage 3
disease

Surgery (Stage 3 disease):  13 LYs

Radiation therapy (Stage 3 disease):  10 LYs
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treatments—palliative surgery versus palliative 
radiotherapy versus wait-and-see and then treat 
with palliative chemotherapy—for a patient who is 
focused on survival rather than quality of life in his 
or her decision making.

The problem with the trees in Figures 9 through 
11 is that by displaying wait-and-see as simply 

another alternative similar to surgery and radiation 
therapy, there is no reflection of the fact that there 
may be vast differences in time that is accorded to 
a wait-and-see state, such that a patient may spend 
various times (from days, weeks, months to years) 
in a wait-and-see state, and this time variability is 
not reflected in the basic decision tree structure. 

Surgery
(Stage 3
disease)

Radiation
therapy
(Stage 3
disease)

Survive surgery for palliation (15 LYs)
90%

Surgery-related death (0 LYs)
10%

Chemotherapy for palliation (.2 LY)
60%

Death (0 LYs)*
40%

RT-related death
0% 

Survive radiation therapy for palliation (10 LYs)
100%

Chemotherapy for palliation (.01 LY)
5%

Death (0 LYs)*
95%

Figure 8  Decision tree with the addition of palliative chemotherapy

Surgery (Stage 3–4 disease): 2 LYs

Radiation therapy (Stage 3–4 disease): 1 LY

Same (chance of occurring: 0%)

Wait and see (Stage 3–4 disease) Better lives (chance of occurring: 0%)

Treat
Palliative
chemotherapy

Worse
Dies (chance of occurring: 80%)

Dies

Dies

Lives (chance of occurring: 20%): .25 LYs

Figure 9  Decision tree with addition of wait-and-see alternative
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Here, there is a call for procedures and analyses, 
such as Markov models, to portray wait-and-see 
states, to allow for a more real and dynamic inter-
pretation of wait-and-see attitudes and alternatives 
in patient decision making.

Caveats

The fact of the matter is that in any decision anal-
ysis, all the outcomes, all the probabilities, and all 
the preferences will not have been derived and 
enumerated as extensively as required by physi-
cians and providers. And there will be missing, 
problematic, or illusory numbers appearing in the 
tree as considered by physicians and other provid-
ers. Decision scientists may examine the same tree 
and find it to be acceptable. Viewed from another 
perspective, a physician may view a decision tree 
and see all the unanswered questions that exist 

regarding outcomes, probabilities, and preferences 
and say that more work is needed before the tree 
can be folded back.

Decision to Stop Building a Decision Tree

Folding back a decision tree is a procedure that 
can begin only when one stops building a decision 
tree or pauses in the building of a decision tree. 
Some authors will say that one can stop building 
a decision tree at any point, with one provision: 
that one is able to describe the terminal outcome 
at each endpoint in such a way that the unmod-
eled future from that endpoint onward in time can 
be accounted for and approximated. Other authors 
will argue that one can elaborate the tree to the 
point where one feels comfortable with the 
approximations made and their analytical impli-
cations for the immediate choice of action that 
needs to be made.

Each attempt at approximation will be made by 
those who will agree with the approximation or 
those who will accept the approximation to see 
where it leads (how it performs), while others will 
reject the approximation as outlandish from its 
outset of construction to its conclusion. At some 
point, some will be happy with the probabilities as 
gathered; others will be insistent that the peer- 
reviewed medical literature, expert opinion, and 
patient preference must be more thoroughly 
searched for. The only limitation on continued 
folding back of a decision tree in the case of an 

Surgery (Stage 3–4 disease): 2 LYs

Radiation therapy (Stage 3–4 disease): 1 LY

Wait and see (Stage 3–4 disease)
with palliative chemotherapy

Treat
Palliative
chemotherapy

Worse
Dies (chance of occurring: 80%)

Dies

Lives (chance of occurring: 20%): .25 LYs

Figure 10  Decision tree showing life years expectancy of three treatments

Surgery (Stage 3–4 disease): 2 LYs

Radiation therapy (Stage 3–4 disease): 1 LY

Wait and see (Stage 3–4 disease): .05 LY
with palliative chemotherapy

Figure 11   Decision tree showing the years of life 
expectancy for three treatments
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individual’s decision making is the estimated length 
of time a decision can be postponed or delayed 
without significant impact on the patient’s survival 
and quality of life.

Dennis J. Mazur

See also Decision Trees, Evaluation With Monte Carlo; 
Expected Utility Theory; Markov Models
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Decision trees, evaluation 
with monte carlo

Monte Carlo simulations are based on Monte 
Carlo methods. Monte Carlo method refers to a 
method of solving sets of equations using an algo-
rithm dependent on repeated random sampling. 
The Monte Carlo method is used in the process of 
simulating (approximating) a system. Monte Carlo 
methods are computational algorithms that rely 
on repeated random sampling to compute their 
results. Monte Carlo simulation involves repeated 
random sampling from input distributions and 
subsequent calculation of a set of sample values 
for the output distributions with the repeating of 
the process over several iterations.

The term Monte Carlo method was used in the 
1940s in the more rapid solving of equations and 
algorithms possible on the first electronic digital 
computer, the ENIAC computer. The term was used 
by Nicholas Metropolis and Stanislaw Ulam in 
1949. Metropolis attributed the initial insights on 
the use of the method to Enrico Fermi. The refer-
ence to the gaming tables of Monte Carlo, Monaco, 
shows the importance of randomness and chance 
events in the entities that are being simulated.

Today, the major uses of the Monte Carlo 
method involve examining real-life phenomena 
that need to be approximated or simulated rather 
than tested in the sense of real-world testing of 
scientific hypotheses. In testing, for example, in 
research on humans, there would be the tasks of 
developing scientific protocols, collecting data in 
trials, and conducting research on humans that in 
turn would need to be derived in conjunction with 
existing federal laws and approved by an institu-
tional review board. If alternative strategies can be 
effectively modeled, sparing humans lives and 
costs, then real-world testing may not be needed as 
extensively as it is needed today.

Use of Monte Carlo simulation has expanded 
exponentially into many areas where random 
behavior, uncertainty, and chance events character-
ize the system being simulated in a diverse range of 
real-world endeavors: economics; finance (interest 
rates and stock prices); business (inventory, staff-
ing needs, and office tasks); the sciences; and 
medical decision making with economic implica-
tions (e.g., impact of colonoscopic referral for 
small and diminutive polyps detected on CT 
colonography screening).

Monte Carlo Simulation

Monte Carlo simulation selects value variables at 
random in the attempt at simulating a real-life situ-
ation whose outcome needs to be estimated or pre-
dicted. The variables of interest will have a known 
range or at least a range that can be estimated.

A variable may be uncertain, but if that variable 
is known to have a range of values (or estimated to 
have a range of possible values), this range of pos-
sible values can define a probability distribution. A 
simulation calculates multiple scenarios by repeat-
edly sampling values from the probability distribu-
tions for the uncertain variables.
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Monte Carlo simulations depend on the com-
putational tools available at the time a simulation 
is run. Simulations run during the days of the 
Manhattan Project in the 1940s are dwarfed by 
computations performed on a laptop computer 
today.

Deterministic Models  
Versus Iterative Models

When a model is created with a spreadsheet, one 
has a certain number of input parameters and a 
few equations that use those inputs to give a set of 
outputs (or response variables). This type of model 
is usually termed deterministic in that one gets the 
same result no matter how many times one per-
forms a recalculation.

A basic decision tree is an example of a deter-
ministic model. Although inputs may differ in terms 
of the chance success of a surgery versus a radio-
therapy intervention on a cancer at different medi-
cal centers based on the specific patient data found 
in one medical center versus another medical center, 
when one calculates the model based on the same 
data, everyone who performs the calculation should 
come up with the same result.

One sense of Monte Carlo simulation is as an 
iterative model for evaluating a deterministic model. 
Here, the Monte Carlo simulation uses a set of ran-
dom numbers as the input numbers for the model.

The Monte Carlo method is one of many meth-
ods that can be used to understand how (a) ran-
dom variation, (b) lack of knowledge, or (c) error 
rates affect the sensitivity, performance, or reliabil-
ity of the system being modeled. Monte Carlo 
simulation is categorized as a sampling method 
because the inputs are randomly generated from 
probability distributions used to simulate the pro-
cess of sampling from an actual population. Hence, 
there must be a choice of a distribution for the 
inputs that most closely matches the data that is 
available on the question about which an answer 
is sought. The data generated from the simulation 
can be represented as probability distributions and 
in turn converted to confidence intervals.

Input and Output Variables

A simulation begins with the development of a 
model of a system that one wishes to test. The 

model comprises mathematical equations describ-
ing relationships between one or more input (inde-
pendent) variables and one or more output 
(dependent) variables. By selecting specific values 
for the input variables, corresponding output val-
ues may be calculated for the output variables. In 
this manner, one can determine how the system, to 
the extent that it is accurately represented by the 
model, will respond to various situations repre-
sented by the input values. Note that, as used 
herein, a “system” may comprise virtually any-
thing that can be represented by an appropriately 
constructed mathematical model, for example, the 
impact of referral to a colonoscopist for direct 
visualization of small and diminutive polyps 
detected on indirect imaging, for example, visual-
ization on a CT scan.

In Monte Carlo simulations, a range of plausible 
input values is designated for each input variable. 
Likewise, a distribution for each input variable 
(i.e., a probability distribution function) is also 
designated. Thereafter, the Monte Carlo simulation 
generates random inputs for each input variable 
based on the designated range of values and distri-
butions for the corresponding variables. The  
random input values are then used to calculate cor-
responding output values. This process is repeated 
many times, typically numbering in the hundreds, 
thousands, ten thousands, or more, and is used to 
create statistically meaningful distributions of one 
or more of the output variables. In this manner, the 
analyst performing the Monte Carlo simulation 
can develop insight into how the model will per-
form under certain sets of assumed input condi-
tions. The analyst needs to have intimate knowledge 
of the underlying system and its simulation 
model.

Incorporation of Monte Carlo  
Simulation Into a Decision Tree

The incorporation of Monte Carlo simulation into 
a decision tree allows examination of “probability 
distributions” rather than “single expected values” 
or “ranges of expected values.” Some describe 
Monte Carlo simulation as replacing the analysis 
of point estimates with fuzzy values (or better, 
ranges of fuzzy values).

For example, monetary values can be replaced 
with normal distribution functions (e.g., a normal 
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distribution with a specified mean and a standard 
deviation). One can present the distribution of 
results for the expected value after a Monte Carlo 
simulation with 10 trials, 100 trials, 1,000 trials, 
10,000 trials, and so on.

Probability Distributions

The probability distributions selected must describe 
the range of likely values for each parameter. This 
is a selection problem for the analyst, who must be 
able to represent the best probability distribution 
for a particular setting.

Probability distributions may be of standard 
form (normal or lognormal distributions) or may 
have empirical forms (rectangular, triangular, 
among others). Here, an analyst can start with the 
historical data of the parameters being considered 
and attempt a “best-fit” approach of a distribution 
to the historical data.

The parameters of the distribution (mean and 
standard deviation in the case of normal distribu-
tions) may be based on data derived from (a) the 
peer-reviewed medical scientific literature (if pres-
ent and available), (b) historical data as is con-
tained in the databases of surgery departments or 
radiation therapy departments in medical centers 
(if accessible), or (c) the experience of experts.

In absence of specific knowledge about the form 
of a distribution, assumptions are made about 
what the distributions should look like, and certain 
distributions may be selected, for example, normal 
or lognormal distributions. Some properties may 
need to be bounded, as it may not be possible to 
have specific properties outside of specific ranges.

Statistics Obtained From a  
Monte Carlo Simulation

The statistics obtained from any simulation are 
estimates of the population parameters; the exact 
values of the population parameters will never be 
known. The assumption is that as the number of 
iterations increases, the probability that an esti-
mate of a population parameter is within a specific 
amount of the actual population also increases.

The analyst himself or herself selects the number 
of iterations, the accuracy required from the proce-
dure. The analyst’s assumptions regarding number 
of iterations and accuracy required in a task are 

issues that can be argued about and taken up with 
the analyst. Nonanalyst-related impacts on Monte 
Carlo simulation include the complexity of the 
initial problem being modeled and cost of the pro-
cedure (e.g., analyst’s time, computing time).

Simulation Analysis

In simulation analysis, a decision tree is “rolled 
forward.” A bank of data is generated by the 
simulation analysis that, if interpreted correctly, 
can give a probabilistic picture of the consequences 
of a decision strategy.

Example

Let us take a medical example using a Monte 
Carlo simulation. A patient with adult respiratory 
distress syndrome (ARDS) has a diffuse injury to 
lung tissue due to diffuse damage to the smallest 
air sacs of the lungs (alveoli) in the absence of con-
gestive heart failure. (The fluid in the lung of the 
ARDS patient is not due to heart failure.) ARDS is 
a serious medical condition of acute onset with 
infiltrates found in both lungs on chest X-ray and 
has as its origin a diverse array of predisposing 
conditions causing fluid buildup in the lungs, 
including direct pulmonary injury (lung infection 
or aspiration of materials into the lung) and indi-
rect injury (blood infection, pancreatitis, moderate 
to severe trauma). Here, a patient with ARDS may 
undergo care in the following states:

Patient intubated in the intensive care unit ·
Patient nonintubated on a hospital ward ·
Patient in offsite long-term care ·

In an offsite long-term care facility that o 
 accepts respirators

In an offsite long-term care facility that does o 
 not accept respirators

Patient in home care ·

The patient will not stay in any one state but 
will transition between states (home care, long-
term care facility without respirator, long-term 
care facility with respirator, medical ward extu-
bated, intensive care unit intubated until death) 
with time at home decreasing and time in all care 
states increasing until death.
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In this setting, neuromuscular blocking (NMB) 
has potential benefits (NMB drugs may facilitate 
mechanical ventilation and improve oxygenation) 
and potential risks (NMB drugs may result in pro-
longed recovery of neuromuscular function and 
acute quadriplegic myopathy syndrome [AQMS]). 
The researchers attempted to answer the question 
whether a reduction in intubation time of 6 hours 
and/or a reduction in the incidence of AQMS from 
25% to 21% provide enough benefit to justify an 
NMB drug with an additional expenditure of $267 
(the difference in acquisition cost between a generic 
and brand name NMB drug, the neuromuscular 
blocker). They performed this task by (a) con-
structing a Markov computer simulation model  
of the economics of NMB in patients with ARDS 
(b) using Monte Carlo simulation to conduct a 
probabilistic sensitivity analysis considering uncer-
tainties in all probabilities, utilities, and costs.

If one attempted to model ARDS in terms of 
decision trees (a deterministic approach), these 
trees and their analysis would be limited in their 
abilities to model the events of ARDS because of 
the need to model “multiple times” in the care of 
a patient who transitions from state to state, mov-
ing from one extreme, the most severe state with 
most intensive care (patient intubated), to the least 
severe state, the stable state of having resolved 
ARDS and being now with minimal care at home.

The researchers, Macario and colleagues, used 
probabilistic sensitivity analysis to consider uncer-
tainties in all probabilities, utilities, and costs 
simultaneously. In their model, mean values of the 
net monetary benefit were calculated for results of 
N = 10,000 Monte Carlo simulations, where trian-
gular distributions were used for parameter values, 
with the mode being the case and the 5th and 95th 
percentiles of the lower and upper limits of the 
ranges reported. They reported all costs in year 
2004 U.S. dollars and discounted all future costs 
and quality-adjusted life years at 3% per annum.

This report of the results of a Monte Carlo 
simulation followed the recommendation of 
Doubilet and colleagues that the following results 
be recorded:

The mean and standard deviation of the  ·
expected utility of each strategy
The frequency with which each strategy is  ·
optimal

The frequency with which each strategy “buys”  ·
or “costs” a specified amount of utility relative 
to the remaining strategies

Macario and colleagues reported the results of 
the simulation by noting that the net monetary 
benefit was positive for 50% of simulations with a 
ceiling ratio of $1,000 versus 51% if the ceiling 
ratio was increased to $100,000. They argued that 
lack of sensitivity was caused by the mean changes 
in quality-adjusted life year (QALY) and cost being 
small relative to their standard deviations.

Their Markov model noted that the following 
variables had the largest influence on their 
results: (a) probability from ICU intubated to 
death, (b) probability from ICU intubated to extu-
bated, and (c) probability from ICU extubated to 
ward. The model showed that the better the patients 
do overall, the larger the net monetary benefit of a 
drug that reduces AQMS and/or intubation times.

First-Order and Second-Order Uncertainty

There are two categories of uncertainty related to 
the ARDS model above and similar models. First-
order uncertainty refers to variability among  
individuals. Second-order uncertainty refers to 
parameter uncertainty. First-order uncertainty can 
be captured in the phrase overall variability 
between patients and is reflected in standard devia-
tion associated with a mean value. Second-order 
uncertainty is parameter uncertainty, where uncer-
tainty exists in mean parameter values and is 
reflected in standard error of the mean.

To understand the uncertainty within a model, 
Monte Carlo simulation techniques can be applied 
using both first-order and second-order simula-
tions. A first-order simulation is also called a run 
of a random trial, a microsimulation, or a random 
walk. A first-order simulation is performed by  
running each patient in the hypothetical cohort 
through the model, one at a time. First-order simu-
lation trials can be used to model the variability in 
individual outcomes. First-order simulation reflects 
what can be described as first-order uncertainty 
involving the variability among individuals.

Variability between individuals can be modeled 
using first-order Monte Carlo microsimulation. But 
what about questions of second-order uncertainty? 
In practice, the most commonly used measures are 
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those that are based on formulating uncertainty in 
the model inputs by a joint probability distribution 
and then analyzing the induced uncertainty in out-
puts, an approach which is known as probabilistic 
sensitivity analysis. Probabilistic sensitivity analysis 
is more readily applied to an aggregate cohort of 
patients.

Probabilistic Sensitivity Analysis

Probabilistic sensitivity analysis uses a probabilis-
tic approach where all the input parameters are 
considered random variables, endowed with 
known prior probability distributions. Why is 
probabilistic sensitivity analysis needed? First, 
there are numerous parameters in decision models. 
Second, each parameter has an estimated uncer-
tainty. There is a need to “propagate” parameter 
uncertainty. The use of an analysis approach to 
estimate the effect of uncertainties on model pre-
diction is referred to as uncertainty propagation. 
Second-order simulation—as an analysis app-
roach—relies on sampling parameter values to 
estimate the effect of uncertainties on model  
prediction.

Probabilistic sensitivity analysis requires one to 
identify sources of parameter uncertainty, to char-
acterize uncertain parameters as probability distri-
butions, and to propagate uncertainty through the 
model using Monte Carlo simulation.

When applied to groups of patients rather than 
individual patients, Halpern and colleagues note 
that implementing a probabilistic sensitivity analy-
sis may lead to misleading or improper conclu-
sions. The authors argue that the practice of 
combining first- and second-order simulations 
when modeling the outcome for a group of more 
than one patient can yield an error in marginal 
distribution, thus underrepresenting the second-
order uncertainty in the simulation. It may also 
distort the shape (symmetry and extent of the tails) 
in any simulated distribution, resulting in prema-
ture or incorrect conclusions of superiority of one 
strategy over its alternatives being modeled.

The complexity of Monte Carlo simulations—
how they are conducted and how they are inter-
preted—is still being unraveled in relation to 
first- and second-order effects.

Dennis J. Mazur

See also Decision Trees, Evaluation; Expected Utility 
Theory; Markov Models; Quality-Adjusted Life Years 
(QALYs)
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Decision trees: sensitivity 
analysis, Basic anD 
proBaBilistic

Sensitivity analysis is defined as systematically 
varying one or more parameters in a decision 
model over a specified range and recalculating the 
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expected utility of the model for each value. There 
are four reasons to employ sensitivity analysis:

 1. to determine the effect of reasonable variations 
in the estimates of parameters on the results of 
the analysis;

 2. to determine which variables are most critical to 
the analysis—and, therefore, may justify further 
efforts to estimate them more precisely;

 3. to determine what the analysis would 
recommend for various scenarios (combinations 
of parameters); and

 4. to explore the model for bugs or anomalies.

The best estimate of the value of each parameter 
in a model is called the baseline value. When all 
parameters are at their baseline values, the model is 
said to be the base case model. Without sensitivity 
analysis, one can say only that the results of the 
analysis apply to the base case model. When small 
changes in a parameter affect the recommended 
choice or cause significant changes in the results, 
the analysis is said to be sensitive to that parameter. 
Some changes in parameters affect the decision only 
if they are combined with specific changes in one or 
more other variables. Therefore, complete sensitiv-
ity analysis must examine more than one variable at 

a time. Sensitivity analyses may examine any  
number of variables at a time, although in practical 
terms, only one-, two-, or three-way sensitivity 
analyses can be illustrated graphically. Examination 
of more than three variables simultaneously requires 
probabilistic sensitivity analysis (PSA).

One-Way Sensitivity Analysis

The decision tree shown in Figure 1 models a 
simple decision between Observation and 
Treatment. The prior probability of disease (.3) 
and the utilities of each combination of treatment 
and disease state are indicated. The expected utili-
ties are 21.98 for the Treatment strategy and 22.38 
for the Observation strategy. Figure 2 shows a 
one-way sensitivity analysis on the probability of 
disease. When pDis = 0, the difference between the 
Observe and Treatment strategies represents the 
“cost” of treatment (in this case the morbidity 
cost). When pDis = 1, the difference in utility 
between the Observe and Treatment strategies rep-
resents the net benefit of treatment. It is intuitive 
that when pDis = 0, Observation must be the pre-
ferred strategy and when pDis = 1, Treatment must 
be the preferred strategy. If not, then the treatment 
is worse than the disease and the analysis makes 
no sense.

Treatment

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

.3

.8
22.5

10

22.5

25

12.5

25

.2

.8

.2

.7

.3

21.98

.7

Observation

22.38

Figure 1  Empiric therapy versus observation decision tree
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Threshold Approach

It is apparent from Figure 2 that the lines repre-
senting the two strategies cross at a point. This 
point is called a threshold because it represents the 
value of the independent variable above or below 
which the preferred strategy changes. In the case of 
the Observe/Treatment choice, the threshold is 
referred to as the treatment threshold. Figure 3 
shows a simple geometric way of calculating the 
treatment threshold. Assuming that the expected 
utilities of both strategies are straight lines (i.e., 
they vary linearly with the independent variable), 
the combination of the expected utility lines forms 
a set of similar triangles. The “height” of the left-

ward triangle is the threshold value. The width  
of the base of the left triangle is the cost of treat-
ment. The width of the base of the right triangle  
is the benefit of treatment. For similar triangles, 
the ratios of the heights are equal to the ratios of 
the bases:

C
B

= t
1− t

:

Solving for t,

t= C
C+B

or
1

1+ B
C

:
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Test positive

Empiric therapy

Test

Observation

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDis

pCure

1 − pCure

pCure

1 − pCure

1 − pDis

pDis

1 − pDis

Test negative

pPOS

pNEG

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDis

pCure

1 − pCure

pCure

1 − pCure

1 − pDis

pDis

1 − pDis

Figure 4  Tree with diagnostic test

C and B can be calculated by evaluating the model 
for pDis = 0 or pDis = 1, respectively.

Consider the more complicated tree shown in 
Figure 4, which adds a third Test strategy. Figure 5 
shows a one-way sensitivity analysis on pDis, 
which now has three lines. There are now two new 
thresholds. The Testing threshold is the value of 
pDis above which Test is favored over Observe. 
The Test-Treatment threshold is the value of pDis 
above which Treat is favored over Test.

Two-Way Sensitivity Analysis

A two-way sensitivity analysis looks at variations 
in two independent variables simultaneously. 
Since a one-way sensitivity analysis requires a 
two-dimensional graph, as in Figure 2, a two-
way analysis would require a three-dimensional 
graph, plotting one independent variable on each 
horizontal axis and the expected utilities on the 
vertical axis. However, a more convenient way 

has been devised of representing a two-way 
analysis on a two-dimensional graph.

Figure 6 illustrates a two-way sensitivity analy-
sis considering simultaneously pDis and SENS 
(test sensitivity). For each value of pDis, the Test-
Treatment threshold is calculated and plotted on 
the vertical axis. The resulting points define a 
curve that divides the plane of the graph into two 
regions. Points above the curve represent combi-
nations of pDis and SENS for which Test is 
favored. Points below the curve represent combi-
nations of pDis and SENS for which Treat is 
favored. Figure 7 illustrates the same kind of two-
way analysis in which all three strategies are con-
sidered. There is an additional curve representing 
the Testing threshold, thus dividing the plane of 
the graph into three areas, each favoring one 
strategy. Note that below the test sensitivity at 
which the Testing threshold equals the Test-
Treatment threshold, testing is not favored regard-
less of the value of pDis.
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Three-Way Sensitivity Analysis

As with the two-way analysis, a three-way sensi-
tivity analysis can be represented on a two- 
dimensional graph by using threshold curves. 
Figure 8 shows a series of Test-Treatment thresh-
old curves, one for each value of a third variable 
(test specificity, or Spec). Each curve divides the 
plane of the graph into a different pair of 
regions.

Probabilistic Sensitivity Analysis

Sensitivity analyses, as illustrated above, perform 
deterministic calculations on the model. While 
they explore variations in key parameters, they 
do not represent actual uncertainty in the param-
eters since nothing in the results indicates which 
scenario is more likely. In PSA, uncertainty in 
parameters is represented by using probability dis-
tributions to represent the values of parameters.
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Mathematical Distributions

A mathematical distribution describes the likeli-
hood that the value of a parameter will be in a 
certain range. It is usually represented by a prob-
ability density function (PDF), as illustrated in 
Figure 9. The height of each bar (or point on the 
curve) represents the relative likelihood of the cor-
responding value (on the horizontal axis) occur-
ring. Probability distributions are characterized by 
bounds (e.g., 0 to 1 or unbounded), mean value, 
and shape. A complete discussion of probability 
distributions is beyond the scope of this entry but 
may be found elsewhere.

Useful Distributions

The most important distributions in PSA are 
those representing probabilities. Thus, they must 
be bounded between 0 and 1. The beta distribution 
has many desirable characteristics for representing 
probabilities and is therefore commonly used. 
Parameters for determining the parameters of the 
distribution (mean and shape) may be determined 
by analyzing sets of data or by estimating the range 
of likely values.

In PSA, any number of variables may be repre-
sented by distributions. During evaluation, each 
value is drawn from its distribution according to 
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its PDF, and the model is evaluated with the result-
ing set of parameters. This is repeated a large num-
ber of times, typically 1,000 to 10,000 times. 
Because each iteration has a different set of param-
eters and a different result, the process is said to be 
stochastic rather than deterministic. The resulting 
expected utilities of each of the model’s strategies 
are themselves combined into a results distribution 
(Figure 10) and thus provide measures of the uncer-
tainty of the results (e.g., variance). The results may 
be interpreted as the difference in the means of the 
distributions and also in terms of the percentage of 

iterations for which one strategy is favored over 
the other.

Detecting Model Bugs and Errors  
With Sensitivity Analysis

Another important purpose of sensitivity analysis is 
detecting errors in the model. The sensitivity analy-
sis illustrated in Figure 11 shows the expected utili-
ties of medical management (MedRx) and cardiac 
catheterization (Cath) as a function of the probabil-
ity of left main disease (pLeftMain). Because the 
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analyst has neglected to include pLeftMain in the 
model for medical therapy, it appears that MedRx 
is favored more when pLeftMain is higher. The 
opposite is true. This is an example of asymmetry 
error, in which different strategies model the under-
lying disease or outcomes differently.

Frank A. Sonnenberg

See also Cost-Effectiveness Analysis; Decision 
Trees: Sensitivity Analysis, Basic and Probabilistic; 
Decision Trees: Sensitivity Analysis, Deterministic; 
Test-Treatment Threshold; Threshold Technique
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Decision trees: sensitivity 
analysis, Deterministic

All decision analyses have to deal with various 
forms of uncertainty in a manner that informs the 
decisions being made. In particular, it is essential 
to establish the degree to which the results of an 
analysis are sensitive to a change in a parameter or 
an assumption and the extent to which the conclu-
sions of the analysis are robust to such changes. 
The assessment of sensitivity or robustness is 
known as sensitivity analysis. Such an analysis 
would consider, for example, the fact that the 
mean length of inpatient hospital stay associated 
with a particular clinical event is estimated with 
uncertainty (reflected in its standard error) and 
would consider how the results of the study would 
change if a higher or lower value were used for 
this parameter. Two different forms of sensitivity 
analysis are used in this situation: (1) deterministic 
analysis, which varies the parameter (or assump-
tion) in one or a small number of stages and 
assesses the implications for results, and (2) prob-
abilistic analysis, which uses simulation methods 
to simultaneously vary a number of parameters in 
terms of a large number of possible alternative 
values they could take. This entry considers deter-
ministic sensitivity analysis.
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Different Types of Uncertainty  
in Decision Analysis

The uncertainties relevant to a decision model 
have been categorized in various ways in the litera-
ture. The main distinction is between parameter 
and model (or structural) uncertainty. The former 
refers to the uncertainty that exists in the parame-
ter inputs that are incorporated into models—for 
example, the baseline risk of a clinical event in a 
particular patient group under current treatment, 
the risk reduction in the event associated with a 
new intervention relative to current practice, the 
mean cost of the event, or the mean decrement in 
health-related quality of life associated with the 
event. Model uncertainty relates to a range of pos-
sible assumptions that are made in developing a 
model. These could include the extent to which the 
baseline risk of an event changes over time, the 
duration of the risk reduction associated with a 
new intervention, or whether or not to include a 
particular study in a meta-analysis to estimate the 
relative treatment effect. The distinction between 
parameter and model uncertainty is blurred in that 
many forms of model uncertainty could be 
expressed in terms of an uncertain parameter.

Deterministic sensitivity analysis can also be 
used to address heterogeneity rather than uncer-
tainty—that is, to assess the extent to which the 
results of an analysis change for different types of 
patients. For example, a treatment may be more 
effective in females than in males, so the results of 
the analysis could be separately reported for the 
two genders. This is probably more correctly 
labeled as a subgroup, rather than a sensitivity, 
analysis and is not further discussed here.

Different Forms of Deterministic  
Sensitivity Analysis

Deterministic sensitivity analysis can be character-
ized in a number of ways. One is whether a param-
eter is varied across a range or simply takes on 
discrete values. In the case of model assumptions 
that have not been formerly parameterized, the use 
of discrete values is usually required. Table 1 shows 
an example of this form of sensitivity analysis 
(which can also be described as a scenario analysis) 
in the context of a cost-effectiveness model of 

endovascular abdominal aortic aneurysm repair 
(EVAR) compared with open surgery for abdomi-
nal aortic aneurysm. It shows the impact of varia-
tion on the difference in costs, quality-adjusted life 
years (QALYs), and the incremental cost-effective-
ness ratio relative to the “base-case” or primary 
analysis. It also shows the results of a probabilistic 
sensitivity analysis in terms of the probability that 
EVAR is more cost-effective conditional on a 
threshold cost-effectiveness ratio. The table mostly 
includes assessment of uncertainty in the parameter 
estimates used in the model. However, there are 
also examples of modeling assumptions that have 
been varied, for example, Scenario 6 (source of a 
parameter); and some subgroup analyses are 
reported (e.g., Scenarios 10 and 11).

An alternative form of deterministic sensitivity 
analysis is to vary a parameter along a continuous 
scale and to present this diagrammatically. An 
example of this is presented in Figure 1, which 
shows how the incremental cost per QALY gained 
of primary angioplasty, relative to the use of 
thrombolysis, in patients with ST-elevation myo-
cardial infarction varies with the additional capital 
cost per patient required for the angioplasty ser-
vice. The results are shown for two assumptions 
regarding the time delay to provide angioplasty 
compared with thrombolysis.

A second way in which deterministic sensitivity 
analysis can be characterized is in terms of the 
number of uncertain parameters/assumptions that 
are varied simultaneously. Table 1 generally shows 
analyses that vary one parameter/assumption at a 
time (one-way sensitivity analysis). There are, 
however, examples of analyses where two param-
eters are varied at a time (e.g., Scenarios 12 and 
13) (two-way sensitivity analysis). Figure 1 also 
represents an example of two-way sensitivity 
analysis in that two uncertain parameters are 
being varied together: the additional capital cost 
of angioplasty per patient (as a continuous vari-
able) and the time delay associated with angio-
plasty (as a categorical variable) compared with 
thrombolytics.

It becomes very difficult to present deterministic 
sensitivity analyses when more than two variables 
are being varied at a time—this is one of several 
reasons why probabilistic sensitivity analysis might 
be preferred. One way of looking at multiple 
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Table 1  Example of deterministic sensitivity analysis

Probability EVAR is 
cost-effective†

 
 
Scenario

 
Base-case 
assumption

 
Secondary 
analysis

 
Difference 
in cost (£)

 
Difference 
in QALYs 

ICER for 
EVAR 

versus open* 

 
L = 

£20,000

  
L = 

£40,000

1 Base case 3758 −0.020 EVAR 
dominated

0.012 0.080

2 Hazard of 
cardiovascular 
death is twice 
that of the 
general 
population

Baseline 
hazard of 
cardiovascular 
death is the 
same as the 
general 
population

4105 0.017 239,000 0.028 0.161

3 Lower rate of 
cardiovascular 
death 
following 
open surgery

Same hazard of 
cardiovascular 
death following 
each treatment 
strategy

3687 0.087 42,000 0.098 0.481

4 1 CT and 1 
outpatient 
visit per year 
after EVAR

Same cost of 
monitoring 
following each 
treatment 
strategy

2613 –0.020 EVAR 
dominated

0.045 0.145

5 Cost of EVAR 
device is  
£4800

Cost of EVAR 
device is £3700 

2669 –0.020 EVAR 
dominated

0.048 0.147

6 Odds ratio of 
30-day 
mortality from 
EVAR 1 only

Odds ratio 
from a meta-
analysis of 
DREAM2 and 
EVAR trials

3765 –0.015 EVAR 
dominated 

0.012 0.084

7 Discount rate 
of 3.5%

No discounting 
of costs nor 
health benefits

4103 –0.041 EVAR 
dominated

0.016 0.084
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8 Odds ratio of 
AAA-related 
death during 
follow-up 
from EVAR 1

No difference 
between EVAR 
and open repair 
of the long-
term rate of 
AAA-related 
death

3859 0.080 48,000 0.076 0.419

9 5% die within 
30 days of 
open repair

8% die within 
30 days of open 
repair

3795 0.090 42,000 0.147 0.463

10 Age 74 years Age 66 years 4513 –0.144 EVAR 
dominated 

0.001 0.025

11 Age 74 years Age 82 years 3072 –0.015 EVAR 
dominated

0.047 0.138

12 Age 74 years 
and lower 
long-term 
rate of 
cardiovascular 
death after 
open surgery

Age 66 years 
and no 
difference in 
rate of 
cardiovascular 
death after 
open repair or 
EVAR

4468 –0.075 EVAR 
dominated

0.006 0.068

13 Age 74 years 
and lower 
long-term 
rate of 
cardiovascular 
death after 
open surgery

Age 82 years 
and no 
difference in 
rate of 
cardiovascular 
death after 
open repair or 
EVAR

2960 0.110 27,000 0.262 0.670

Source: Modelling the long-term cost-effectiveness of endovascular or open repair for abdominal aortic aneurysm. Epstein, 
D. M., Sculpher, M. J., Manca, A., Michaels, J., Thompson, S. G., Brown, L. C., et al. British Journal of Surgery, 95, 183–190. 
Copyright © 2008 British Journal of Surgery Society Ltd., first published by John Wiley & Sons Ltd.

Note: AAA, abdominal aortic aneurysm; CT, computed tomography; EVAR, endovascular abdominal aortic aneurysm repair; 
ICER, incremental cost-effectiveness ratio (difference in mean cost divided by difference in mean health benefits); QALY, quality-
adjusted life year.

*“EVAR dominated” means EVAR, on average, costs more and has fewer QALYs than open repair and is not expected to be 
cost-effective.

†The probability EVAR is cost-effective is evaluated at threshold ICERs (λ) of £20,000 and £40,000 per additional QALY20. 
The National Institute for Health and Clinical Excellence in the United Kingdom has not to date funded interventions with an 
ICER above £40,000. Given the uncertainty in the model parameters, this represents the probability that a decision to implement 
EVAR will be better than open repair.
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sources of uncertainty is to undertake threshold 
analysis, a variant on sensitivity analysis. This 
involves identifying a particular threshold in the 
results of an analysis that is expected to trigger a 
policy shift—for example, a point where the incre-
mental cost-effectiveness ratio is equal to a policy 
maker’s cost-effectiveness threshold or when an 
intervention is expected to generate a net cost sav-
ing. The uncertain parameters/assumptions are 
then varied across a range until the threshold in 
results is reached, indicating the value(s) of the 
uncertain variable(s) that, if true, would poten-
tially change a policy decision.

Figure 2 presents an example of a threshold 
analysis. The context is a cost-effectiveness study 
of alternative hip prostheses. The analysis provides 
a general framework for addressing the question of 
how effective a particular new prosthesis needs to 
be (in terms of a reduction in the rate of revision 
procedures) for a given additional cost (compared 
with a standard prosthesis) to be cost-effective. 
The example defines cost-effectiveness in terms of 
combinations of additional cost and effectiveness 
that result in the new prosthesis meeting three 
alternative thresholds: cost neutrality (including 
the cost of the prosthesis and other costs of care), 

an incremental cost per QALY gained of £6,500, 
and an incremental cost per QALY gained of 
£10,000.

Mark Sculpher

See also Applied Decision Analysis; Decision Trees: 
Sensitivity Analysis, Basic and Probabilistic; Managing 
Variability and Uncertainty; Uncertainty in Medical 
Decisions

Further Readings

Bravo Vergel, Y., Palmer, S., Asseburg, C., Fenwick, E., 
de Belder, M., Abrams, K., et al. (2007). Results of a 
comprehensive decision analysis. Is primary 
angioplasty cost effective in the UK? Heart, 93,  
1238–1243.

Briggs, A. H. (2000). Handling uncertainty in cost-
effectiveness models. PharmacoEconomics, 17(5),  
479–500.

Briggs, A., Sculpher, M., Britton, A., Murray, D., & 
Fitzpatrick, R. (1998). The costs and benefits of 
primary total hip replacement. How likely are new 
prostheses to be cost-effective? International Journal 
of Technology Assessment in Health Care, 14(4),  
743–761.

10,0008,000

30 minutes

60 minutes

6,000

Additional Capital Investment Cost per Patient (£)

4,0002,0000
0

10,000

20,000

30,000

40,000

50,000

60,000

In
cr

em
en

ta
l C

o
st

 p
er

 Q
A

L
Y

 (
£)

Figure 1  Example of a graphical deterministic sensitivity analysis

Source: Bravo Vergel, Y., Palmer, S., Asseburg, C., Fenwick, E., de Belder, M., Abrams, K., et al. (2007). Results of a comprehensive 
decision analysis. Is primary angioplasty cost effective in the UK? Heart, 93, 1238–1243. Reprinted with permission of BMJ 
Publishing Group Ltd.
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Decision weights

A decision weight reflects a person’s subjective 
interpretation of an objective probability. Almost 
all medical decisions involve probabilistic out-
comes. For example, there is some chance that a 
treatment will cure a disease and some chance that 
the treatment will have a side effect. Data are 
often available to help patients and providers 
know the probability that an outcome, such as a 
serious side effect, will occur. When people face 

decisions involving uncertain outcomes, how do 
they use these probabilities?

Theories of rational decision making recom-
mend using the exact value of the probability in 
evaluating a decision. For example, in expected 
utility theory, a rational decision maker should 
evaluate the overall worth of an option by (a) mul-
tiplying the probability of each possible outcome 
by the utility of that outcome and (b) summing the 
products across all possible outcomes. However, 
people making actual decisions do not use the real, 
or “objective,” probability when making deci-
sions; the subjective sense of a given probability p 
is not necessarily the same as p. This phenomenon 
is analogous to the psychophysics of light percep-
tion, in which the brightness a person perceives 
does not have a 1:1 relationship with the actual 
luminous energy in the environment.

In the most well-known descriptive theory of 
decision making, prospect theory, the subjective 
sense of a probability is known as the decision 
weight corresponding to that probability, denoted 
by π. Understanding how a person uses objective 
probabilities in decision making requires knowledge 
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of that person’s decision weight function, which 
describes how probabilities are related to decision 
weights.

Figure 1 shows a typical decision weight func-
tion and illustrates some typical findings from 
research on decision weights.

First, people tend to overweight small probabil-
ities. Because people have difficulty conceptualiz-
ing small probabilities, they translate them into 
decision weights that are greater than the actual 
probabilities. This finding might help explain why, 
for example, both patients and investigators over-
estimate the small chances of benefit and harm 
associated with participation in early-phase oncol-
ogy trials.

Second, people tend to be less sensitive to the 
differences among probabilities near the middle of 
the probability scale. Theories of rational decision 
making state that changes in objective probabili-
ties should make a difference to people. However, 
actual decision weight functions are relatively flat 
for intermediate objective probabilities. Thus, a 
patient might appear to disregard information 
about the probabilities of success or failure when 
those probabilities are in the intermediate range 
(e.g., p = .25 to .75). In fact, the patient might be 
attending to the probabilities presented but assign-
ing them similar decision weights.

Third, the decision weight function is usually 
steepest as it approaches 0 and 1.00. People tend 

to prefer changes in probabilities that will result in 
a state of certainty, something known as the cer-
tainty effect. Consider a patient deciding between 
medical and surgical therapies for a heart condi-
tion. If the probabilities of success are .80 and .90, 
respectively, there is a .10-point difference between 
the treatments. Now imagine that the .10-point 
difference arises from the probabilities of .90 and 
1.00. In expected utility theory, these two scenar-
ios should not be different, because the difference 
between the options is .10 in both. Yet people do 
not typically experience these scenarios as equiva-
lent. The decision weight function shows that this 
is the case because people assign greater weight to 
the elimination of uncertainty.

Another feature of decision weights is that they 
are not necessarily additive. Consider a treatment 
in which only one of two outcomes can occur:  
(1) a .40 probability of cure and normal life expec-
tancy and (2) a .60 probability of immediate death. 
Because these are the only possible outcomes, the 
probabilities sum to 1.00. However, a patient with 
the decision weight function shown in Figure 1 
would convert the probabilities to decision weights 
that do not sum to 1.00. When people operate 
according to nonadditive decision weights, their 
behavior may be contrary to most tenets of ratio-
nal decision making.

Decision weight functions make it possible to 
describe many types of situations. For example, 
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some people appear to use a decision weight func-
tion that has only three regions. They interpret a 
probability of 0 as a decision weight of 0 (i.e., 
there is no chance that the outcome will occur), 
probabilities between 0 and 1.00 as decision 
weights equal to .50 (i.e., there is some chance that 
the outcome will occur), and a probability of 1.00 
as a decision weight of 1.00 (i.e., the outcome will 
occur). Alternatively, some people use a threshold 
function. For example, in deciding which potential 
side effects to discuss with a patient, a physician 
might regard all side effects with an objective 
probability less than .001 to be essentially 0. 
Because the physician’s decision weights for the 
outcomes are 0, the physician might not mention 
the side effects to the patient.

Decision weights have implications for the 
standard gamble method of eliciting health utili-
ties. In a simple standard gamble, a patient might 
be asked to choose between two treatments. 
Treatment 1 will produce Health state A with a 
probability of 1.00. Treatment 2 will produce 
either perfect health (utility = 1.00) with proba-
bility p or instant death (utility = 0) with a prob-
ability of 1 − p. The value of p is the point at 
which the patient is indifferent between Treatments 
1 and 2. Assume that p = .60. In expected utility 
theory, the utility of Health state A is calculated 
as .60. However, this conclusion is only correct if 
the patient’s decision weight for the probability is 
.60; that is, there is no subjective distortion in the 
underlying probability. Because the patient’s deci-
sion weight is generally not known, most research-
ers interpret standard gamble results as though 
there is a 1:1 relationship between probabilities 
and decision weights.

Approaches other than prospect theory extend 
the use of decision weights to more complex situa-
tions. For example, rank-dependent models can 
order multiple possible outcomes in terms of how 
good or bad they are for the person. In these 
approaches, it is desirable to understand how 
people interpret the cumulative probabilities of the 
outcomes. Imagine that a patient with advanced 
cancer is examining different treatment options. 
The possible outcomes of treatment are disease 
progression, stable disease, partial tumor response, 
and complete tumor response. Here, the patient is 
less likely to think about the probabilities of each 

outcome one at a time. Rather, the patient might 
think about the chance that a treatment will result 
in an outcome “at least as good as,” say, stable 
disease. A model of such ranked outcomes posits a 
cumulative decision weight function to correspond 
to the cumulative probabilities of the outcomes. 
This promising approach has yet to take hold in 
studies of medical decision making.

Kevin Weinfurt

See also Expected Utility Theory; Probability; Prospect 
Theory
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Declining exponential 
approximation of life 
expectancy

The declining exponential approximation of life 
expectancy (DEALE) is a model that simplifies the 
problem of handling life expectancy calculations 
in clinical decision analyses. During the early 
years of clinical decision analysis, much of the 
focus was on tree construction and probability 
estimation. Utility or outcome measures were less 
of a focus; measures such as “percent chance of 
cure” or “5-year survival” were commonly used 
in lieu of life expectancy values. In large part, this 
was because the clinical literature reported results 
that way. Combining medical risks to estimate 
survival was rarely done. As decision modelers 
focused on chronic diseases over short-term 
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problems, the need arose to model life expectancy 
for healthy persons and those battling disease.

The Mathematical Formulation

Life expectancy has been studied for 180 years. 
Benjamin Gompertz, a self-educated English math-
ematician, published a demographic model in 
1825. The Gompertz function is a sigmoid curve, 
shallow at the beginning and at the end, that 
represents general-population survival with a 
fair degree of accuracy. The Gompertz survival 
function is

S(t) = e–be
ct

,

where

b is the base rate (i.e., initial mortality) and is nega-
tive (decreasing survival),

c is the growth rate (i.e., accelerating mortality), 
and

e is Euler’s constant (= 2.71828 …).

Figure 1 shows the Gompertz survival curve for 
a healthy population near 70 years. The curve falls 
slowly at the beginning, with 90% of the popula-
tion alive after 7 years. By 10 years, however, only 
80% of the population is alive, and after 20 years, 
less than 15% of the cohort is surviving. Thereafter, 
the curve flattens out, as the still increasing force of 
mortality acts on the fewer people remaining alive.

Although the Gompertz curve reflects the sur-
vival of a healthy population rather well, it offers 
a basic mathematical challenge: Its integral does 
not have a closed-form solution. Therefore, the 
expected value of t in Figure 1 (expected survival 
time, or life expectancy) cannot be solved exactly. 
Of course, with modern computational assistance, 
the area under the survival curve can be calculated 
to any degree of precision, which would be fine if 
the only issue were to calculate life expectancy for 
the general population.

The problem faced in medical decision making 
adds complexity to this mathematical issue. In a 
clinical decision analysis, the mortality attached to 
a disease, or disease-specific mortality, needs to be 
considered. In many cases, however, the mortality 
attached to a disease can be estimated from the 

literature. For many chronic illnesses, a constant 
specific mortality force can be applied. Assuming 
that disease-specific mortality rate is independent 
and additive, the survival function for a person 
with a chronic disease with constant-mortality rate 
m would be

S(t) = e–(be
ct
 + m).

This additional mortality force would depress the 
Gompertz curve, more at the beginning than later, 
as the constant additive risk acts on a larger popu-
lation early. Of course, this function also cannot be 
integrated directly, so an expected survival cannot 
be calculated exactly.

However, if the population mortality were a con-
stant M, then the joint survival function would be

S(t) = e–(M + m)t,

which would be easy to calculate and simple to 
integrate. The expected value of a probability 
function is

∫
∞

-∞ tf(t)dt.

For the joint mortality function, which is a 
probability, the expected value (i.e., life expec-
tancy) is ∫

w
0 te

–(M + m)tdt. The value of this integral 
is 1/(M + m); that is, the life expectancy associated 
with a constant mortality µ is 1/µ.

Of course, the population mortality is not con-
stant. The conceptual attractiveness of the mathe-
matics led Beck, Kassirer, and Pauker to model 
Gompertz mortality with various clinically plausi-
ble constant excess mortality rates, to determine 
how this constant-mortality assumption would 
affect overall-survival calculations. They discov-
ered that this DEALE tended to overestimate mor-
tality, especially in later years, and underestimated 
survival. For diseases with overall life expectancy 
at or below 10 years, the DEALE model proved a 
good approximation to detailed calculations using 
the “correct” formulation.

The DEALE in Medical Decision Making

The first application of the constant-mortality 
model was in traditional clinical decision analyses, 
where life expectancy was the desired outcome 
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measure. General-population mortality was sub-
divided by many authors into age-, gender-, and 
race-specific rates, taken from Vital Statistics of 
the United States. One to three competing disease-
specific mortalities, modified by surgical and 
medical therapies, were added to the population 
mortality, and reciprocals were taken to generate 
outcome measures. Until these models were super-
seded by Markov cohort software, they were stan-
dard practice for medical decision analyses where 
life expectancy was the clinically relevant out-
come. Over 30 papers employed this strategy in 
the 5 years after the DEALE was first published, 
and the method diffused into many areas of clini-
cal medicine over the ensuing 20 years. Somewhat 
surprisingly, articles continue to appear in the lit-
erature that use the DEALE model as an outcome 
measure, although with the worldwide availability 
of personal computers that run decision analysis 
software, stochastic modeling approaches should 
be in routine use.

The DEALE as a Bedside  
Approximation of Mortality

The fact that mortality and life expectancy are 
reciprocals under the assumption of constant-

mortality rate (the negative exponential function) 
led to another early use of the DEALE, one that 
has persisted. Suppose a male patient is 65 years 
of age. According to a life table, his life expec-
tancy is 14.96, or approximately 15 years. The 
reciprocal of this is .067, or 6.7%. If this patient 
has a malignancy that has a 10% excess-mortal-
ity rate, then his risk of death due to cancer is 1.5 
times as great as his general-population mortal-
ity. Thus, he has a 60% lifetime risk of death 
from cancer versus a 40% risk of death from 
other causes. This approach can be extended to 
multiple risk factors. Over the past several years, 
this comparison has been used in oncology to 
compare therapeutic regimens for patients of 
varying ages.

The DEALE as a Technique 
for Probability Estimation

As clinical decision models became more complex, 
and as trees were supplanted by Markov models 
for chronic diseases, the DEALE’s role as an out-
come estimator waned, to be replaced by its endur-
ing value as an aid to probability calculation. The 
approach has several steps:
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 1. Obtain a life-expectancy-related value from a 
study or the literature.

 2. Determine what form the value takes: overall-
mortality rate, excess mortality, 5-year survival, 
median survival, and so on.

 3. Transform the value into an excess-mortality 
rate.

 4. Transform the excess-mortality rate into a 
probability.

Table 1 illustrates the first three of these steps 
(adapted from Beck et al., 1982). Four types of 
data are commonly found in the literature. 
Mortality rates are often presented as overall val-
ues, which include the underlying population mor-
tality as well as disease-specific excess mortality. 
These rates are transformed into excess mortality 
(µD) by simply subtracting the population mortal-
ity (µpop) from the overall or compound mortality 
(µC). Life expectancy values are reported as time 
units, most often years. Taking a reciprocal gives 
the corresponding constant-mortality rate (an 
approximation given the Gompertz behavior of 
general-population mortality). From this, one pro-
ceeds as above to obtain µD.

Five-year survivals require a bit more calcula-
tion. From the survival function S(t) above, some 
algebra transposes it to µ = –(1/t)InS. Substituting 
5 for t (5-year survival), the reported value for S 
(38% in Table 1) will yield µC. Similarly, median 
survival is transformed into mortality by substitut-
ing the survival time for t and .5 for S (median 
survival is the time at which half of the cohort, or 
50%, has died).

The final step in using the DEALE to generate 
transition probabilities is to use the equation

p = 1–e_rt,

where r is the rate, in this case a mortality rate, t 
the time period (in most cases 1 year or one unit, 
but not necessarily so), and e the natural logarithm 
base. Of the nearly 150 articles from 2000 to 2008 
that cite the original DEALE papers (and several 
hundred more that do not), most use probability 
transformation techniques.

Extensions to the DEALE

Although the DEALE was developed to simplify the 
problem of handling life expectancy calculations in 
clinical decision analyses, the “fun” mathematics of 
the model led to refinements and extensions. Stalpers, 
van Gasteren, and van Daal extended the model to 
handle multiple time periods, each with different 
partial DEALE calculations. Durand-Zaleski and 
Zaleski showed that the DEALE model could admit 
discounting of present values as a pseudomortality. 
Keeler and Bell, and van den Hout looked at other 
mortality functions and showed how some could 
admit direct or approximate closed-form solutions 
that would improve the fidelity of the model. These 
extensions have found uses in clinical decision 
analyses. Other refinements essentially put the cart 
before the horse: The math involved in some sophis-
ticated remodeling was so complex that computer 
assistance was required to use it.

Gompertz functions and mortality modeling 
have helped increase the rigor of formal clinical 

Table 1  Examples of excess mortality rates

Source Study Population
Reported 

Data
Compound 
Rate (µC) Baseline Rate (µpop)

Excess Rate 
(µD)

Mortality rate 66-year-old men .230 per year .230 .070 .160

Life expectancy
55-year-old 
women 4.5 years .222 .037 .185

5-year survival 60-year-olds 38% .194 .045 .148

Median survival 44-year-old men 7.2 years .096 .032 .065
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decision analyses and risk analyses. Despite the 
limitations of the approximation, over the past 25 
years the approach has meant a good “DEALE” 
for medical decision making.

J. Robert Beck

See also Decision Tree: Introduction; Life Expectancy; 
Markov Models
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DecomposeD measurement

The decomposed approach to the measurement of 
preferences for health states, services, or treat-
ments expresses the overall preference as a decom-
posed function of the attributes of the health state, 
service, or treatment. It requires the systematic 

decomposition of the decision problem into smaller 
parts. It enables the investigator to obtain values 
for all health states, services, or treatments with-
out requiring the judge to assign values to every 
one. Decomposition of complex decisions has 
been shown to aid the decision-making process 
and its outcomes.

Valuing Health States,  
Services, or Treatments

Basically, there are two different approaches to mea-
suring preferences for health states, services, or treat-
ments. The holistic approach requires the rater to 
assign values to each possible health state or treat-
ment, where a state or treatment represents a combi-
nation of many attributes. The rater is thus required 
to simultaneously consider all the relevant attributes 
during the assessment. The decomposed approach 
expresses the overall value as a decomposed function 
of the attributes. The decomposed approach can also 
be used to simply obtain values for aspects (attri-
butes) of health states or treatments.

As an example, preoperative adjuvant radio-
therapy for rectal cancer may increase survival and 
local control over surgery alone, but at the expense 
of continence and sexual functioning. The relative 
value patients place on each of these attributes will 
determine whether they are prepared to undergo 
radiotherapy as an adjunct to surgery.

The decomposed models that reveal how a 
patient values different attributes can be based on 
statistical inference or explicit decomposition. 
They have several purposes. First, as in the case of 
multi-attribute utility theory (MAUT), discussed 
below, relative importance ratings for attributes 
can be used to identify global preferences for 
health states or treatments. Second, where there 
are individual differences in preferences, the values 
underlying those preferences can be identified. 
Such an analysis can highlight the key issues that 
carers should raise when discussing treatments 
with patients. For example, conjoint analysis may 
reveal that lack of energy is an important determi-
nant of preferences for the management of non-
metastatic prostate cancer. With this in mind, 
patient treatment could focus on increasing the 
energy levels. Such analysis may thus identify new 
treatment packages that, with minimum cost or 
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effort, create a much preferred alternative. Third, 
knowledge of other patients’ preference patterns 
may aid individuals in making choices about their 
own treatment.

Multi-Attribute Utility Theory

The best-known application of a decomposed 
method is that based on MAUT, which uses explicit 
decomposition. Each attribute of a health state (or 
similarly of a treatment) is given an importance 
weight. Next, respondents score how well each 
health state (or treatment) does on each attribute. 
These scores are weighted by the importance of the 
attributes and then summed over the attributes to 
give an overall multi-attribute score for each state 
(or treatment). For this summation, the theory 
specifies utility functions and the independence con-
ditions under which they would be appropriate. 
Gretchen Chapman has used a MAUT model to 
assess prostate cancer patients’ preferences for 
health states. She describes metastatic prostate can-
cer by the attributes pain, mood, sexual function, 
bladder and bowel function, and fatigue and energy, 
each at three levels of functioning. The attributes 
had been predefined, and the patients were asked to 
rate the relative importance of these by dividing 100 
points among them. Next, the patients indicated 
their current level of health for each attribute. 
MAUT scores were computed by multiplying, for 
each attribute, the level by the attribute importance 
weight and summing across the attributes.

Analytical Hierarchy Process

The analytical hierarchy process (AHP) decom-
poses options into a hierarchy of criteria that 
include a person’s ultimate goal for the decision. 
First, participants identify their ultimate goal (e.g., 
maximum possible health and well-being) and the 
subgoals (criteria) that contribute to it (e.g., avoid-
ing side effects, decreasing the risk of cancer). The 
participants compare options in a pairwise fashion 
in terms of these criteria: They give them a rating 
to indicate which is better or whether they are 
similar. These pairwise ratings can be combined to 
give each option a score in terms of each criterion 
and to work out how the attributes describing an 
option contribute to achieving the criteria. The 
participants then prioritize these criteria, giving 

them a weight to indicate how much they contrib-
ute to achieving the ultimate goal. These can be 
combined to give each option a score in terms of 
the ultimate goal.

Health State Classification Systems

Both MAUT and statistically inferred regression 
methods have found well-known applications in 
the health state classification systems. The two 
most often used systems are the Health Utilities 
Index (HUI) and the EQ-5D. Health state classifi-
cation systems, or health indexes, are customarily 
composed of two components: a descriptive sys-
tem and a formula for assigning a utility to any 
unique set of responses to the descriptive system. 
The descriptive system consists of a set of attri-
butes, and a health state is described by indicating 
the appropriate level of functioning on each attri-
bute. For instance, in the EQ-5D, the attributes, or 
domains, are mobility, self-care, usual activities, 
pain/discomfort, and anxiety/depression. Each 
domain is divided into three levels of severity, cor-
responding to no problem, some problem, and 
extreme problem. By combining each of the three 
levels from each of the five domains, a total of 
35—that is, 243—EQ-5D health states are defined. 
The formula is generally based on utilities that 
have been obtained in part from direct measure-
ment and in part from application of MAUT (in 
the HUI) or statistical inference (in the EQ-5D) to 
fill in values not measured directly. In both 
instances, only a limited number of valuations 
have been obtained from the surveyed population, 
usually the general public. Of more recent date is a 
scoring formula based on the SF-36 descriptive 
quality-of-life instrument. Researchers in the 
United Kingdom have created from this instrument 
a six-dimensional health classification system 
called the SF-6D.

Valuing Aspects of Health  
States and Treatments

Whereas the ultimate aim of techniques such as 
MAUT is to assess preferences for health states, or 
treatments, via decomposition, other techniques 
aim to measure how treatment or health state attri-
butes in themselves are valued. Judgment analysis, 
conjoint analysis, discrete choice experiments, and 
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the repertory grid method each examine how 
aspects of a treatment or health state influence 
preferences. In these methods, a holistic valuation 
technique is used to derive the underlying value of 
the dimensions described in scenarios. In these 
cases, a rater holistically values a set of scenarios 
in which the dimensions appear together in various 
combinations. The full set of these holistic scores is 
then analyzed with multiple regression techniques 
to derive the underlying value each rater was 
assumed to have assigned to each dimension while 
making a holistic judgment.

Conjoint Analysis

Conjoint analysis has been widely used to 
examine consumer preferences, particularly in 
marketing, and its use in examining patient prefer-
ences is increasing with the availability of both 
generic and specialist software. The principle of 
conjoint analysis is that evaluations of options are 
compared to reveal the importance of differences 
between them. Similar to the statistically based 
decomposition techniques described above, par-
ticipants judge hypothetical cases (health states or 
treatments) that are described in terms of combi-
nations of attributes at particular levels. Statistical 
analysis reveals the relative importance weights of 
attributes and identifies sets of attribute-level utili-
ties. Discrete choice experiments are variations on 
forced-choice conjoint analysis with their roots in 
economics. Analysis of the data is based on ran-
dom-utility theory. Judgment analysis is technically 
similar to conjoint analysis but has its roots in a 
Brunswikian tradition of psychology, seeking to 
describe participants’ natural judgment processes 
as they happen, rather than what they would pre-
fer if they had a range of options.

Repertory Grid Technique

The use of repertory grid techniques has been 
proposed as a bottom-up approach to analyzing 
what is of more or less importance to patients 
choosing between treatments. While conjoint anal-
ysis and other statistical inference techniques have 
their roots in psychophysics, perception, and cogni-
tion, repertory grid techniques emerged from Kelly’s 
construct theory in social psychology. It has been 
used to assess patients’ quality-of-life measures in 

relation to their previous and desired states of 
health. In the statistical inference techniques dis-
cussed above, option attributes are defined or iden-
tified by the researcher prior to analyzing their 
relative importance. In the case of the analytical 
hierarchy process, this may happen after discussion 
with respondents. In repertory grid analysis, the 
defining attributes, and their hierarchical combina-
tions, emerge from participants’ contrasts between 
options.

Repertory grid analysis involves four steps. 
First, in a series of judgments, a participant indi-
cates which of three options (such as treatments) 
differs from the other two and in what way. This 
is repeated for all possible triplets of options. 
Second, each option is rated to indicate to what 
degree it has this characteristic. Third, characteris-
tics are rated to indicate how important they are. 
Fourth, a grid of options by characteristics (termed 
constructs) is analyzed, using simple frequency 
counts (the number of times a particular construct 
appears in the option set or the number of overlap-
ping constructs that options have is counted) or 
using some sort of computer-based cluster analy-
sis. Principal components analysis identifies the 
correlations between patterns of constructs for 
each option to reveal which are similar to each 
other and which constructs tend to co-occur and 
form a principal component. Generalized pro-
crustes analysis (GPA) is similar to principal com-
ponents analysis, but it can summarize results 
across participants even if they have not produced 
an identical set of constructs.

Anne M. Stiggelbout

See also Conjoint Analysis; Discrete Choice; EuroQoL 
(EQ-5D); Health Utilities Index Mark 2 and 3 (HUI2, 
HUI3); Holistic Measurement; Multi-Attribute Utility 
Theory; SF-6D; Social Judgment Theory
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DeliBeration anD  
choice processes

Deliberation is consideration of the reasons for 
and against an action, issue, or measure. 
Deliberation may be carried out with attention and 
without attention. The notion of deliberation with-
out attention brings to realization the notion of 
dual (or multiple types of) processing of informa-
tion underlying and affecting acts of deliberating.

Much attention is directed to the notion of how 
individuals can better focus mentally on their deci-
sion problems and structure (formulate) their deci-
sion problems to better optimize the decisions they 
make. These issues become even more of a concern 
for individuals with declining brain function. A 
population whose members have a susceptibility to 
developing neurodegenerative diseases focuses public 
attention on the loss of the affected individuals’ con-
tribution to society and their increased dependence 
on societal resources to care for them as they con-
tinue to age. Today, we have rough estimates of the 
levels of success in slowing cognitive deterioration 

from neurodegenerative disease through various 
modalities. A Dutch team of investigators used 
brighter daytime lighting to improve patients’ sleep 
and mood and cut aggressive behavior. These 
researchers found that brighter daytime lighting can 
slow cognitive deterioration by 5%. This figure is 
judged at this time to compare well with the rate of 
slowing of cognitive deterioration in humans through 
the use of current prescription medicines.

Deliberations With Attention

Research on deliberations with attention may be 
carried out in nonmedical and medical contexts. 
In the research arena, investigators have studied 
nonmedical deliberations involving purchase deci-
sions, which they describe as “simple” (a choice of 
which towels to buy among a set of towels avail-
able at a time) or “complex” (a choice of which 
car to buy among a set of cars available). One 
characteristic shared by such simple and complex 
product purchase decisions is that deliberations 
with attention regarding such purchases (barring 
extenuating circumstances) do not have to neces-
sarily be made at that time but can be delayed 
until a future time, as long as the items are avail-
able and the price is right.

Medical Decision Making

While investigators may study simpler and more 
complex choices in medical deliberations, medical 
deliberations have a unique quality: the nondelay 
factor. Many decisions in medicine are a matter of 
life and death—act now or face the consequences 
later. Deliberations may not be delayed without 
adverse consequences for the patient.

The issue of nondelay of medical decisions 
arises because of the chance that a medical condi-
tion will advance if it is not acted on quickly or 
soon enough. A delay in medical intervention in an 
individual may cause consequences for that indi-
vidual in the future. The delayed decision may no 
longer be about the initial medical condition or 
disease process but may evolve into a different 
decision wherein the medical condition or disease 
considered for intervention is more advanced than 
it was at that earlier time when first identified.

Consider the following example. The treatment 
decision in an oncologic disease, such as early-stage 
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Hodgkin’s disease, when it is first diagnosed in a 
patient is much different from a delayed decision. 
In the latter case, Hodgkin’s disease may have pro-
gressed because the intervention was not applied in 
the early stage. Here, because the competent adult 
(for whatever reason) chooses not to undergo treat-
ment when the disease is first diagnosed (and is 
most responsive to therapy), the decision is delayed. 
Delaying this particular decision means that the 
disease will continue to grow and continue to prog-
ress in its development; the disease may evolve 
from being curable to being potentially curable and 
then to being incurable. At the incurable stage, the 
only treatment option available will be palliation.

Medical Care and Medical Research

Deliberation is at the very heart of some con-
ceptions of decision making in two very different 
areas: medical care and medical research. The fact 
that medical care needs to be distinguished from 
medical research is a view traceable to The 
Belmont Report (1979), created by the National 
Commission for the Protection of Human Subjects 
of Biomedical and Behavioral Research.

Medical care and medical research are distin-
guished in the following ways. In medical care,  
(a) the care is being provided with one purpose 
only—that is, to best screen, diagnose, and treat 
the individual patient, and (b) the patient bears all 
risks of the screening, diagnostic, and treatment 
interventions that are undertaken with the patient’s 
permission, but the interventions themselves for 
the most part have undergone study with the 
approval of regulatory bodies within government 
for their use in the population. This is particularly 
true of medical care with the use of medical prod-
ucts such as prescription medicines and medical 
devices. These medical products have gone through 
preapproval research studies, which have devel-
oped an evidentiary base for the medical product, 
and the medical product is approved based on the 
scientific evidence developed during its research 
and development phases. In medical care, it is rec-
ognized that a competent adult individual—except 
in the context of a medical emergency—chooses to 
come to the physician for medical care.

In medical research, the principal investigator 
(or designee) pursues the individual as part of an 
act of recruitment, where the individual in many 

cases is not aware at all of the study’s existence 
prior to being pursued as a study volunteer. Here, 
the individual is made aware of the study’s exis-
tence by the pursuit and recruitment processes that 
have been put into place for a particular research 
study. This individual is asked to consider study 
participation and asked to engage in an informed-
consent session, where the principal investigator or 
designee presents the research study, its goals, its 
methods, its risks, and how liability for injury will 
be handled within the research study, among other 
points. Part of the information provided to the 
individual being recruited into a research study is 
a discussion of the nature of “research” itself as an 
activity with one focus only: to attempt to develop 
new scientific knowledge that might benefit future 
generations. This new scientific knowledge will 
then become the evidentiary base for the medical 
product or medical intervention that may result in 
approval for its use in the population.

Legal Concepts

Disclosure

The imparting of information for deliberation is 
termed disclosure. The notion of disclosure in the 
court-defined concepts of consent and informed 
consent refers to disclosure of information by the 
physician to the patient (or by the principal inves-
tigator to the study volunteer) for the purposes of 
the patient’s deliberations about whether to accept 
a physician-recommended intervention for the 
patient’s care (or the deliberations of an individual 
being recruited into a medical research study con-
sidering whether or not he or she will enroll in a 
research trial as a study volunteer). Yet the 
courts—for example, the landmark 1972 U.S. fed-
eral decision in Canterbury v. Spence—are also 
very clear that a competent adult patient in medi-
cal care can base his or her decision on whatever 
grounds the patient sees fit. Similarly, an individual 
can not enroll in a research study and, even after 
enrolling, can terminate his or her enrollment in 
the research study within the bounds of safety for 
any reason that the individual sees fit.

Autonomy, Trust, and Accountability

Autonomy and self-decision have been founda-
tional concepts in court and medical decision making 
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in the United States, Canada, and Australia. In 
England, Onora O’Neill has argued that there are 
foundational truths besides autonomy and self- 
decision on which legal structure can be based for the 
protection of patients and study volunteers. Here, 
O’Neill argues for “trust” in decision making and 
“accountability” of those responsible for medical 
care and medical research as the focus of attention in 
consent and informed consent. Accountability in this 
sense involves increased institutional efforts to check 
on the responsibilities of those overseeing decision 
making in medical care or medical research to ensure 
that the best decisions are being made and carried 
out on the patient’s or study volunteer’s behalf in 
medical care and in medical research on humans, 
respectively.

O’Neill argues that trust and accountability in 
issues of informed consent can provide a level of 
protection that is more durable in decision making 
in medical care and in medical research than con-
siderations solely of individual autonomy. Neil C. 
Manson and O’Neill discuss the notion of informed 
consent in terms of waivers against receiving cer-
tain types of information. Ethicists continue to 
examine the conceptual developments related to 
consent, informed consent, choice, and decision 
making as conscious choices involving deliberation 
with attention.

Deliberation Without Attention

Ap Dijksterhuis and colleagues have described 
what they call the deliberation-without-attention 
effect. The authors argue that it is not always 
advantageous to engage in thorough conscious 
deliberation before choosing in the arena of prod-
uct purchases. As noted earlier, the authors studied 
simple choices (choices between or among differ-
ent towels or different sets of oven mitts) and com-
plex choices (choices between different houses or 
different cars). The authors found that simple 
choices produce better results after conscious 
thought but that choices in complex matters 
should be left to unconscious thought (deliberation 
without attention).

Neuroeconomics

Alan G. Sanfey and Luke J. Chang define “neuro-
economics” as the science that seeks to gain a 

greater understanding of decision making by com-
bining theoretical and methodological principles 
from the fields of psychology, economics, and neu-
roscience. Key among the early findings of neuro-
economics is evidence that the brain itself may be 
capable of employing dual-level (or even multiple 
level) processing of information when making deci-
sions. Sanfey and Chang argue that while behav-
ioral studies provide compelling support for the 
distinction between automatic and controlled pro-
cessing in judgment and decision making, less is 
known about to what extent these components 
have a corresponding neural substrate. Yet there are 
other effects on judgment and decision making that 
need further clarification with neuroeconomics.

Deliberation Deficits

Disinhibition is a process whereby an individual 
with a measurable capacity to edit his or her imme-
diate impulsive response to a stimulus or situation 
is rendered to have a deficit in this capacity. Such 
incapacities are found (a) after brain injuries to the 
orbitofrontal and basotemporal cortices of the 
right hemisphere of the brain (caused by closed-
head traumatic brain injuries, brain tumors, stroke 
lesions, and focal epilepsy), which selectively 
inhibit or release motor, instinctive, affective, and 
intellectual behaviors elaborated in the dorsal cor-
tex; (b) after the application of agents such as 
alcohol; and (c) after the use of prescription medi-
cines such as the benzodiazepines alprazolam and 
flunitrazepam. Benzodiazepines have an effect on 
gamma-aminobutyric acid, the chief inhibitory 
neurotransmitter in the central nervous system and 
the retinas of humans.

Future Research

Future research in the area of deliberations and 
choice will continue to clarify three areas: delibera-
tion with attention, deliberation without attention, 
and the impact of brain lesions, agents, and pre-
scription medicines on choice and deliberation. 
Research is also needed on how best to define and 
measure nonrisky and risky options over which 
deliberations are carried out in research trials on 
medical decision making.

Dennis J. Mazur
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Deterministic analysis

Deterministic analysis and decision analysis are 
not interchangeable. Instead, deterministic analysis 

is one of the analytical approaches under decision 
analysis. Under the framework of decision analy-
sis, deterministic analysis conducts mathematical 
calculations to compare the outcomes of interest.

In medical decision making, the outcome of 
medical interventions is usually measured by clini-
cal efficacy, effectiveness, or cost-effectiveness. 
Deterministic analysis compares outcomes of alter-
native interventions by developing a mathematical 
model to calculate the value of the outcomes asso-
ciated with each intervention. The model is often 
structured in the form of a decision analytical 
model and contains a number of parameters that 
affect the outcome of interventions. Deterministic 
analysis uses the best available estimate of each 
parameter as the model input and the report point 
estimate, such as means or median, of the outcome 
of interest as the model output. For example, 
deterministic analysis of a cost-effectiveness analy-
sis comparing two interventions may include prob-
abilities of the occurrence of certain clinical events, 
utilization patterns of healthcare resources, and 
unit cost associated with each type of healthcare 
resource as the model inputs and may report the 
results in terms of a point estimate of the incre-
mental cost-effectiveness ratio (ICER), calculated 
as the difference in the mean cost between the two 
competing interventions divided by the difference 
in the mean effectiveness between these two inter-
ventions. Deterministic analysis is not only a ter-
minology used in the field of medical decision 
making, it is also mentioned in the literature of 
operational research, civil engineering, and risk 
assessment, among others.

Sensitivity Analyses

Findings from deterministic analyses serve as the 
base case scenario of the model output, and 
researchers apply sensitivity analyses to evaluate 
whether the conclusions derived from the model 
are sensitive to the model parameters. Sensitivity 
analyses vary the model parameters within reason-
able ranges to examine the effect of these parame-
ters on the conclusion of the analyses. The number 
of parameters assessed in sensitivity analyses often 
ranges from one (known as the one-way sensitivity 
analyses) to three (three-way sensitivity analyses) 
because it becomes extremely difficult to interpret 
the findings of sensitivity analyses if the number of 
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parameters exceeds three. For ease of illustration, 
one-way sensitivity analyses are most frequently 
used to address uncertainties in deterministic mod-
eling. In these analyses, researchers will vary 
parameters of interest one at a time to determine 
which parameter(s) has the largest effect on the 
study findings.

When reporting findings from deterministic 
analyses, it is common to add a tornado diagram 
to summarize the results of one-way sensitivity 
analyses graphically. Tornado diagrams are charts 
that use horizontal bars to describe the magnitude 
of effect associated with each parameter. Decision 
makers can visually identify the most influential 
parameters based on the width of each bar in the 
diagram. Another analysis commonly added to 
sensitivity analyses, but not limited to one-way 
sensitivity analyses, is the threshold analysis, in 
which the deterministic model calculates the 
parameter value or values indicating that decision 
makers are indifferent between two interventions 
(i.e., the break-even point). The idea of threshold 
analysis is to inform decision makers of the mini-
mum or maximum value (i.e., the threshold value) 
of a certain model parameter for an intervention to 
be considered effective or cost-effective. Readers 
who are looking for straightforward examples and 
clear graphical illustrations of various forms of 
sensitivity analyses should read the chapter 
“Sensitivity Analysis” in Petitti (2000).

Advantage

The advantage of deterministic analyses is that the 
output of the model is summarized in an exact 
number (e.g., life expectancy, quality-adjusted life 
years [QALY], and ICER), which makes it easier for 
decision makers to select the best intervention. For 
example, in a deterministic analysis comparing the 
life expectancy of various interventions, decision 
makers can simply identify the best intervention by 
picking the intervention that yields the highest 
mean life expectancy calculated from the model. 
Similarly, in a deterministic cost-effectiveness analy-
sis comparing a new intervention with a standard-
of-care intervention, decision makers can determine 
whether the new intervention is cost-effective by 
assessing whether the ICER calculated from the 
model is lower than the level of willingness to pay 
society sets forth for new medical interventions 

(e.g., $50,000 or $100,000 per QALY). However, 
as the model becomes more complex, the number 
of parameters involved increases accordingly, and  
it becomes more difficult to understand the results 
of sensitivity analyses due to the excessive number 
of parameters (for one-way sensitivity analyses) or 
combinations of parameters (for two- or three-way 
sensitivity analyses) to be explored.

Relationship With Stochastic Analyses

Although deterministic analyses have the advan-
tage of being exact, the information presented in 
these analyses is not sufficient to perform hypoth-
esis testing. Therefore, in studies comparing two 
interventions, deterministic analyses are able to 
calculate the mean difference in effectiveness 
between these two interventions but cannot inform 
decision makers whether the calculated difference 
can be considered statistically significant. For the 
purpose of hypothesis testing and to obtain infor-
mation on the uncertainties associated with model 
parameters or estimates, it is necessary to conduct 
another type of analysis known as stochastic 
analysis (or probabilistic analysis). The distinction 
between deterministic and stochastic analyses can 
be clearly understood in the context of assessing 
the effectiveness of health interventions, in which 
deterministic analyses are viewed as analyses that 
use information on the average number of events 
per population, whereas stochastic analyses use 
randomization to simulate the probability distri-
butions of events that may occur.

There are a number of important differences 
between deterministic and stochastic analyses. First, 
deterministic analyses report results as exact num-
bers, while stochastic analyses present findings 
either in 95% confidence intervals or as the prob-
ability that one treatment is more effective (or more 
cost-effective) than the other(s). The former presen-
tation is based on analyses taking a classical statisti-
cal approach (also known as the frequentist 
approach), and the latter uses the Bayesian approach. 
Second, deterministic analyses assume certainty 
about parameter values that are used as model 
inputs, whereas stochastic analyses explicitly 
acknowledge uncertainties in parameter values and 
describe them in probability distributions. For 
example, when incorporating hospitalization cost 
as one of the components in the estimation of total 
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medical costs, deterministic analyses will include 
the average cost per hospitalization as the model 
input, but stochastic analyses will use either lognor-
mal or gamma distribution to characterize this 
parameter. Last, the lack of knowledge about 
model parameters was addressed with sensitivity 
analyses in deterministic analyses and probabilistic 
sensitivity analyses in stochastic analyses. As dis-
cussed previously, sensitivity analyses vary the 
model parameters within a reasonable range to 
determine the impact of each parameter (or a com-
bination of two or more parameters) on the study 
findings. In probabilistic sensitivity analysis, model 
parameters are described as random variables, each 
with its own designated probability distribution, 
and researchers can perform Monte Carlo simula-
tions to estimate the mean and standard deviation 
of the expected outcome(s) or calculate the proba-
bility that one strategy performs better than the 
other(s). Doubilet and colleagues provided a clear 
illustration of probabilistic sensitivity analysis. In 
their article comparing the expected utility among 
three treatment strategies, (1) biopsy but no treat-
ment, (2) treat but no biopsy, and (3) no biopsy and 
no treatment, deterministic analyses showed that 
the expected utilities associated with the above three 
strategies were .558, .566, and .494, respectively. 
That is, the strategy “treat but no biopsy” had the 
highest expected utility. However, such an analysis 
did not inform the decision maker whether this 
strategy was significantly better than the other two 
strategies. On the contrary, the results from the 
probabilistic sensitivity analyses indicated that the 
likelihood that “treat but no biopsy” was the best 
strategy was 80%, as compared with 18% and 2% 
for the “biopsy but no treatment” and “no biopsy 
and no treatment” strategies, respectively.

Deterministic and stochastic analyses should not 
be viewed as rival analytical approaches. Indeed, a 
comprehensive study is expected to present results 
from both deterministic and stochastic analyses. 
Perhaps the best way to describe the relationship 
between these two types of analysis was expressed 
in a review article by Corner and Corner in 1995. 
The authors envisioned a decision problem from a 
systems engineering perspective and characterized 
the decision-making process in four steps. In Step 
1, a basic structure was developed to model the 
decision problem and identify the relevant param-
eters in the model. In Step 2, deterministic analysis 

was performed, along with sensitivity analysis, to 
remove those variables that would not affect the 
final results. Step 3 involved a complete analysis of 
uncertainty using stochastic analysis and concluded 
with a recommendation of the best (or most cost-
effective) strategy. Step 4 related to model valida-
tion and the value of information analysis. Together 
these four steps complete a decision analysis cycle. 
The decision-making process can become iterative 
as information gained from Step 4 may lead to 
modification of the model structure, thus starting 
the decision cycle from Step 1 again.

Recent methodological development has made 
substantial improvements in the statistical and 
computational methods used in stochastic analy-
sis. This does not mean that deterministic analysis 
has lost its role in medical decision making. 
Regardless of how sophisticated the analytical 
techniques have become, the exact value calculated 
from deterministic analyses is often what matters 
most to decision makers, or at least what is most 
remembered by them.

Ya-Chen Tina Shih
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Developmental theories

Developmental theories concern changes that 
occur over the lifespan as a result of maturation 
and experience. The nature of decision making 
shifts as children become adolescents and, as more 
recent research shows, as adolescents become 
adults and adults age. Two major theories of deci-
sion making are discussed that are also theories of 
development: the prototype/willingness model 
and fuzzy-trace theory. When discussing decision 
making in a medical context, it is important to 
keep in mind the key concepts of risk perception 
and informed consent (including issues of auton-
omy). How these theories address each of these 
issues and their implications for development and 
rationality are discussed.

In discussing what rationality in decision mak-
ing is, it important to note two approaches offered 
as criteria: coherence and correspondence. The 
coherence criterion for rational decision making is 
that a decision is rational if the process used is 
internally consistent. For example, decision mak-
ers use a logical rule to combine their assessments 
of the costs and benefits of each option. 
Furthermore, the choice made must reflect the 
decision makers’ goals. This coherence criterion is 
what is traditionally referred to when a process is 

described as rational. For the coherence criterion, 
the outcome of the decision is not involved in 
denoting a decision as rational. The correspon-
dence criterion argues that outcomes do matter. To 
the extent that the decisions made correspond with 
good outcomes in reality (e.g., they cause no harm 
to the decision maker or to others), the decision 
can be considered rational. Researchers who focus 
on the health of children and youth often empha-
size positive outcomes. However, coherent reason-
ing is also relevant for issues such as whether 
young people are capable of giving informed con-
sent for medical treatments.

The two theories discussed here are dual-process 
theories of decision making. These theories argue 
that there are two ways in which a decision maker 
can arrive at a decision. One process is rational (in 
the traditional sense) and analytic. This process 
involves the decision maker combining relevant  
factors using a logically defensible decision rule; 
behavior resulting from this process is a planned and 
intentional action. The other process is described 
as intuitive. This process is quick and does not 
involve deliberation. Although both theories are 
similar in that they propose a dual-process distinc-
tion, they differ in what is proposed for developing 
and what is considered rational. Crucially, intuition 
in prototype/willingness theory is developmen-
tally primitive, whereas intuition in fuzzy-trace 
theory characterizes advanced thinking.

Prototype/Willingness Model

A standard dual-process theory, the prototype/ 
willingness model has been applied to many health 
decisions, such as the decision to smoke or drink, 
and to health-promoting behaviors, such as cancer 
screening and family planning. The prototype/will-
ingness model argues that there are two paths to a 
decision, a reasoned path and a reactive path. For 
the reasoned path, intentions are the direct anteced-
ent to behavior. In turn, intentions are a function of 
subjective norms and attitudes. Decisions using the 
reasoned path are deliberative and planned and 
characterize more mature decision makers. The 
reactive path was proposed to capture behavior 
that is not deliberative and is captured by the con-
struct of willingness. Research has shown that will-
ingness is able to explain unique variance when 
included in a model with behavioral intentions. For 
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the reactive path, individuals are said to form 
images of the prototypical person who regularly 
performs the behavior. What dictates behavior 
from this process is the reaction that the individual 
has to this prototype. For instance, producing a 
prototype of a smoker, an individual can have a 
positive reaction to the prototype, increasing the 
probability that the individual will smoke, or a 
negative reaction to the prototype, decreasing the 
probability that the individual will smoke. (The 
theory also holds that a negative image can some-
times be viewed as a cost of engaging in the behav-
ior.) Furthermore, individuals recognize that the 
more they do the behavior, the more they will come 
to be perceived as similar to the prototype.

For the prototype/willingness model, develop-
ment progresses from greater use of the reactive 
path as children get older to greater reliance on the 
reasoned path as adults. Therefore, the reasoned 
path is considered the rational process. Because 
adolescents are said to be preoccupied with social 
images and identities, they are more likely to rely 
on the reactive path than adults. Studies have 
shown that a positive relationship between inten-
tions and behavior increases with age. Risk percep-
tion for the reactive path is defined by the reaction 
the individual has to the prototype, yet for the 
reasoned path, it is dictated by the knowledge the 
individual has of the risk.

Fuzzy-Trace Theory

A more recent dual-process theory, fuzzy-trace the-
ory is based on studies of memory, reasoning, social 
judgment, and decision making. The theory has 
been applied to children, adolescents, younger 
adults, and older adults as well as to groups varying 
in expertise, such as medical students and physi-
cians. The phrase fuzzy trace refers to a distinction 
between gist memory representations that are 
fuzzy (i.e., they are vague and impressionistic) and 
verbatim memory representations that are vivid. 
Reasoning gravitates to using gist (or fuzzy) repre-
sentations, which minimizes errors. Moreover, this 
adaptive tendency to use gist representations—the 
fuzzy-processing preference—increases with devel-
opment as children and youth gain experience. 
Studies of children (comparing older with younger 
children) and of adults (comparing experts with 
novices in a domain of knowledge) have demon-

strated that reliance on gist representations increases 
with development. People make decisions using 
simple gist representations of information, often 
processing it unconsciously, and engage in parallel 
rather than serial processing of that information 
(leaping ahead based on vague gist impressions of 
the relations and patterns in information without 
fully encoding details). This kind of thinking is what 
is meant by “gist-based intuitive reasoning.” What 
develops with age and experience, therefore, is a 
greater reliance on gist-based intuition in decision 
processes. Fuzzy-trace theory has been used to 
describe developmental trends in adolescent risky 
decision making, HIV prevention, cardiovascular 
disease, and cancer prevention.

Specifically, fuzzy-trace theory relies on four 
basic principles in explaining decision making: 
(1) parallel encoding, (2) the fuzzy-to-verbatim 
continua, (3) the fuzzy-processing preference, and 
(4) task calibration. Parallel encoding states that 
people extract patterns from the environment and 
encode them along with exact surface form infor-
mation. These traces (verbatim and gist) are inde-
pendent, as previously discussed. The second 
principle, the fuzzy-to-verbatim continua, states 
that people encode multiple representations at 
varying levels of precision. At one end are factual, 
detailed verbatim representations, and at the other 
end are simplified, abstracted gist representations. 
These representations are sensitive to environmen-
tal cues, meaning that either could be used in the 
decision process, depending on which representa-
tion is cued in context. Verbatim representations 
support a quantitative, analytic process, while gist 
representations support an intuitive/holistic pro-
cess. Since problems are represented at multiple 
levels of specificity, the same problem can be 
approached analytically (verbatim) or intuitively 
(gist) depending on which representation is 
retrieved. The third principle, task calibration, 
states that the lowest level of gist required is used 
to perform the task. For instance, when deciding 
between Option A, gaining $5, or Option B, gain-
ing $7, one need only remember the ordinal dis-
tinction between the two, B > A, to choose B. 
Finally, the fuzzy-processing preference states that 
individuals prefer to operate on the simplest repre-
sentation (gist) needed to accomplish their goals. 
For development, studies have shown that young 
children are more likely to make decisions based 



378 Developmental Theories

on quantitative differences and that what develops 
with experience is a greater reliance on gist repre-
sentations, a finding predicted by fuzzy-trace the-
ory. Therefore, consistent with fuzzy-trace theory, 
gist-based intuitive reasoning has been shown to 
be the more advanced (and consequently more 
rational) mode of processing.

Risk perception can vary along the fuzzy-to-
verbatim continua in that it can be precise, for 
example, remembering the exact risk that was con-
veyed if the surgery were done, or it can be fuzzy, 
for example, remembering that there is a risk with 
surgery but not the exact number. Fuzzy-trace 
theory explains and predicts the major findings in 
risk perception and risk taking—for example, that 
risk perceptions vary greatly depending on how 
they are elicited. The theory also predicts reversals 
in the relation between risk perception and risk 
taking depending on whether people use gist-based 
intuition or verbatim-based analysis. Paradoxically, 
adolescents often take risks that compromise 
health because they logically analyze the details of 
decisions. Adults avoid unhealthy risk taking by 
considering the gist, or bottom line, of the decision. 
Fuzzy-trace theory also explains most of the biases 
and fallacies exhibited in judgment and decision 
making (ratio bias, framing effects, hindsight bias, 
base-rate neglect, conjunction fallacy, disjunction 
fallacy, and others). Many of these biases and fal-
lacies have been demonstrated in medical decision 
making by patients and healthcare professionals. 
Fuzzy-trace theory also predicts (and this predic-
tion has been borne out by data) that many biases 
increase from childhood to adulthood because they 
are caused by gist-based intuition.

Informed Consent

Recently, there has been an emphasis on increasing 
the role the patient has in his or her medical deci-
sions. The patient-practitioner relationship has 
been steadily growing from paternalism to egali-
tarianism. Evidence has shown that involving 
patients in their own medical decisions has a posi-
tive effect on their well-being. One of the central 
issues of this move centers on the concept of 
informed consent. Informed consent involves a 
decision, or authorization, given without coercion 
and involves the decision maker having a funda-
mental understanding of the risks and benefits. 

Informed consent is given with volition and is usu-
ally assumed to involve an underlying rational 
process. Given that it is rational, it is assumed that 
to give fully informed consent, the decision maker 
must be intellectually competent and mature. In 
discussing the matter of young children, the issue 
is not one of consent, in that it is clear that chil-
dren are not considered on par in maturity and 
cognitive capacity with adults. For young children, 
decisions are left up to the parent or guardian. 
However, the case of whether or not an adolescent 
is capable of providing informed consent is still an 
ongoing debate. Evidence supporting both sides of 
the issue has been found. For instance, older ado-
lescents were found to perform on par with adults 
in a task involving hypothetical medical scenarios. 
These adolescents were able to select options based 
on logical reasoning and give valid evidence for 
their choices, and they had a clear understanding 
of the costs and benefits of the options. However, 
other studies have shown that real differences 
between adults and adolescents do exist. For 
example, adolescents’ goals are more likely than 
adults’ to maximize immediate pleasure, adoles-
cents take more risks in the presence of peers than 
adults, and the brain is still not fully mature in 
adolescence. Therefore, the issue of autonomy in 
adolescence and of whether adolescents can make 
a rational decision is still unresolved. How each 
theory handles consent is important with respect 
to medical decision making.

Prototype/willingness does not specifically 
address the concept of consent. For the prototype/
willingness model, however, using the reasoned 
path is considered the preferred process. Therefore, 
deliberating about details and precise knowledge of 
the options involved in the process matter greatly. 
For fuzzy-trace theory, making an informed deci-
sion requires a grasp of the bottom-line meaning of 
the situation (e.g., there is a fatal risk involved in 
the surgery), not simply regurgitating the minutia. 
For example, imagine that two patients are informed 
that the risk of death from surgery is 2% and each 
is later asked to recall what the risk they were 
informed is. One patient says 0% and the other 
10%. Although the patient reporting 0% is objec-
tively more correct (2% off is closer than 8% off), 
the patient reporting 10% is more informed because 
he or she understands that the surgery does have 
some risk. Research has shown that patients often 
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cannot recall the details of surgical risks and that 
consent is driven instead by their understanding of 
the gist of the options. People low in numeracy, the 
ability to understand and use numbers, have diffi-
culty getting the gist of health information, which 
impairs informed medical decision making. In sum, 
developmental differences related to age, experi-
ence, and knowledge determine informed consent 
and the quality of medical decisions.

Steven Estrada, Valerie F. Reyna, and Britain Mills
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Diagnostic process, 
making a Diagnosis

The diagnostic process is central to clinical medi-
cine. Patients come to a physician with complaints, 

and the physician attempts to identify the illnesses 
responsible for the complaints. The physician 
accomplishes this task by eliciting from patients 
their collection of signs (manifestations of the dis-
ease perceived by the physician, brought forth dur-
ing the physical examination) and symptoms 
(manifestation of the disease perceived by the 
patient and brought forth during the history tak-
ing). Generally, physicians make treatment errors 
as the result of diagnostic errors. If the disease 
responsible for the complaints is correctly diag-
nosed, the correct treatment has a high probability 
of being prescribed. This makes good sense. 
Treatments can be looked up in reference materials; 
making the correct diagnosis is more complex.

Methods of Diagnosis

How physicians make a medical diagnosis has 
received considerable study and attention, although 
our understanding remains incomplete. Traditi-
onally, physicians were thought to first systemati-
cally collect a complete clinical data set on the 
patient. This included the chief complaint, the his-
tory of present illness, the patient’s complete past 
medical history, the patient’s social history, a 
detailed family history, a comprehensive review of 
systems, and, finally, the complete physical exam. 
Only as a second and separate step were physicians 
thought to analyze the data and diagnose the 
responsible disease.

Despite the belief of some physicians that this 
method is central to diagnostic success, when psy-
chologists study the process of diagnosis, they find 
that expert physicians do not blindly collect clini-
cal information. In fact, expert physicians are 
often observed to collect less information than 
novice physicians when making diagnoses but are 
much more likely to make the correct diagnosis. 
While the novice physician collects a great deal of 
information, the novice can miss collecting the 
data needed to make the diagnosis. Expert physi-
cians might be expert in knowing which data to 
collect as well as expert in knowing which data are 
irrelevant to the diagnostic task.

It appears that physicians use intuition, deliber-
ate reasoning, or a combination of these two pro-
cesses when engaged in making medical diagnoses. 
Many psychologists describe two different and 
complementary mental systems used by humans: 
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an automatic, experiential, recognition-based sys-
tem and a rational, conscious, analytic system. The 
recognition-based system generates impressions of 
the attributes of objects of perception and thought. 
These impressions are not necessarily voluntary 
and often cannot be explained by the person. In 
contrast, the conscious, analytic system involves 
deliberate reasoning, which is much slower and 
effortful but more controlled. Although these two 
cognitive systems operate independently, there is 
reason to suspect that skilled diagnosticians learn 
to use their analytical brains to double-check their 
intuitive brains. In the discussion below, three dis-
tinct diagnostic methods are presented. These are 
presented as prototypes; physicians might use one 
of these three methods and a mixture of these 
methods when involved in medical diagnosis.

Pattern Recognition Method

In many studies, physicians appear to use pat-
tern recognition when making diagnoses; that is, 
they make diagnoses based on sensory input and 
without deliberate or conscious analysis. This pro-
cess is typically fast and accurate but difficult for 
the physician to explain. For example, when an 
experienced physician sees a psoriatic plaque on a 
patient’s elbow, the physician will instantly diag-
nose the disease as psoriasis. Ask why it is psoria-
sis, one might observe a pause, and only after a 
few seconds will the physician come forth with the 
observation that the skin plaque is salmon-colored 
and covered with distinct, silvery scales. The 
explanation of the diagnosis takes considerably 
longer and more effort than does making the diag-
nosis itself!

Recognized patterns can be visual (the plaque of 
psoriasis), olfactory (the smell of an anaerobic 
infection), tactile (the hard, gritty feel of a cancer), 
or auditory (the confined speech of a patient with 
a peritonsillar abscess). Patterns can be learned 
through instruction or clinical experience, but nov-
ices frequently need a guiding mentor to point out 
clinically important patterns.

Pattern recognition has another interesting 
characteristic—the accuracy of a diagnosis is 
inversely correlated with the time it takes the phy-
sician to make the diagnosis. Thus, diagnoses that 
are made almost instantaneously are more likely to 
be correct than those made only after a more 

drawn-out review. This finding suggests that pat-
tern recognition involves a cognitive process that is 
not based on deliberate reasoning.

Pattern recognition is a powerful and impressive 
tool when it works, but it also has weaknesses. 
The patient’s signs and symptoms might resemble 
the patterns of two or more diseases. Again turn-
ing to the discussion of psoriasis, a physician might 
come across an isolated scalp lesion that is scaling, 
but it is not clear whether it is psoriasis or sebor-
rheic dermatitis. In this situation, the physician 
needs to use more than pattern recognition. 
Physicians can also perceive specific patterns when 
they are not present, because visual pattern recog-
nition appears to be influenced by nonvisual data. 
For example, researchers showed that they could 
manipulate the findings expert radiologists report 
on radiographs by manipulating the brief clinical 
histories that accompany each radiograph.

Prediction Rules Method

Another strategy used by physicians for arriving 
at a medical diagnosis is the prediction rule. When 
using a prediction rule, the clinician moves through 
a series of predetermined steps of an algorithm 
based on the presence or absence of clinical find-
ings at branch points. Prediction rules can also be 
presented as mathematical functions that generate 
scores based on clinical findings. In contrast to 
pattern recognition, the use of prediction rules is 
slow, deliberate, effortful, and controlled.

Often, prediction rules are in the form of algo-
rithms that are branching flow diagrams. Following 
a flow diagram does not require great domain 
knowledge. Therefore, this is a powerful method 
for physicians and other clinicians when they 
encounter a problem that they infrequently see and 
are unfamiliar with. As long as the algorithm is 
followed, the physician has a good chance of end-
ing with the correct diagnosis.

Prediction rules can be stored mentally, on paper 
(now a prominent feature in review articles, text-
books, and practice protocols), or as Web pages. 
Some prediction rules used by physicians come from 
more expert physician colleagues and are transmit-
ted via curbside consults. The systematic use of a 
prediction rule can improve physicians’ diagnostic 
accuracy. For example, a short algorithm for diag-
nosing acute myocardial infarction in patients with 
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chest pain was shown to perform at least as well as 
third-year internal medicine residents.

Despite this power, prediction rules also have a 
weakness: If a sign or symptom is not in the algo-
rithm, it can not be used in the diagnostic process. 
For example, egophony is a specific finding for 
pneumonia, but its sensitivity is low. In the effort 
to keep a prediction rule manageably simple so 
that it can be easily presented and followed, ego-
phony would not be included in the rule. Therefore, 
the examiner using the prediction rule would not 
be prompted to look for this finding. The lean and 
mean prediction rule might be efficient and helpful 
but not particularly nuanced.

A second problem with using prediction rules to 
make diagnoses is that they force a physician to 
lumber through a series of decision steps that an 
expert would bypass because of a more expert way 
of approaching a diagnostic problem. A final prob-
lem is that while prediction rules are readily avail-
able to physicians, many have never been validated.

Hypothetico-Deductive Method

The hypothetico-deductive approach to medical 
diagnosis can be placed between the sudden insight 
of pattern recognition and the slow, deliberate 
movement through a prediction rule. This is the 
method of medical diagnosis probably most fre-
quently used by physicians. The method involves 
rapidly generating a differential diagnosis based on 
limited information about the chief complaint and 
then deliberately collecting additional clinical 
information to assess the likelihood of the different 
diseases in the differential.

Imagine that a physician is seeing a middle-aged 
patient in the office and has collected some initial 
information about chest pain. Instead of recogniz-
ing a single diagnosis, he or she might have several 
competing hypotheses (the differential diagnosis) 
and will usually set off to collect specific pieces of 
data (e.g., location, duration, provokers and reliev-
ers of the pain) that increase the probability of one 
diagnosis and decrease the probabilities of others. 
The additional data can come from further ques-
tioning, maneuvers on the physical exam, the labo-
ratory, or the radiology suite or by using time to 
observe the change in signs and symptoms.

Central to the hypothetico-deductive method is 
the differential diagnosis. This list of competing 

diagnoses is typically short, usually three to five 
diseases, and is formulated by the physician early 
in the clinical encounter, usually within the first 
few minutes. Physicians spend much of their time 
during the patient visit collecting data to evaluate 
these different diagnostic possibilities. Data not 
pertinent to the differential are not collected by the 
expert clinician because it is not relevant to the 
task at hand.

Physicians use a number of approaches to judge 
the probabilities for the different diseases in a dif-
ferential. One approach is to look up this informa-
tion in a medical reference, although this 
information is often unavailable or difficult to 
find. A more commonly used approach is that of 
employing heuristics—simple, efficient rules, which 
are either hard-coded or learned. These work well 
under many circumstances but in certain situations 
are linked to systematic cognitive biases. These 
biases have gained a great deal of notoriety.

One frequently used heuristic is based on avail-
ability—diseases that come more easily to the phy-
sician’s mind after learning the initial symptoms 
are taken to be more probable. This strategy is 
taught as part of the informal curriculum in most 
medical schools, transmitted through aphorisms 
such as “If you hear hoof beats, think horses, not 
zebras.” However, attributes other than greater 
likelihood might make a disease come easily to 
mind. For example, when a physician has recently 
attended a talk about an uncommon disease, it 
might be more mentally available to him or her 
when he or she next goes to see patients. If a physi-
cian errs by missing an important diagnosis, the 
disease will often easily come to mind when 
encountering a future patient with similar symp-
toms. If the physician has recently been diagnosed 
with a disease, it may more readily come to mind 
when the physician is evaluating patients.

A second commonly used heuristic is basing the 
probability of a disease on the representativeness 
of the symptoms. Using this heuristic, a physician 
will estimate the probability that a person with 
symptom complex A, B, and C has disease X by 
judging the degree to which the complex of symp-
toms A, B, and C is representative or typical of 
disease X. This heuristic is often taught to medical 
students using the aphorism “If it walks like a duck 
and quacks like a duck, it probably is a duck.” 
However, this heuristic ignores the underlying 
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probably of a disease in a population. Because it 
ignores base rates, this heuristic can lead to errors 
in probability estimation. For example, a middle-
aged woman who recently developed truncal  
obesity, excess sweating, telangiectasia, and hyper-
tension might fit our image of Cushing’s disease; 
but this is an uncommon disease. Despite the close 
match to our profile of Cushing’s disease, simple 
obesity accompanied with hypertension is much 
more common and therefore a much more likely 
diagnosis.

The hypothetico-deductive method not only 
requires that physicians determine the correct 
prior probability for a disease, but physicians must 
also correctly revise this probability given the addi-
tional information uncovered during the clinical 
evaluation. Bayes’s theorem is a normative stan-
dard by which intuitive probability revision can be 
assessed. Researchers have raised considerable 
doubt about physicians’ abilities to intuitively 
revise this probability after gathering new infor-
mation. Using Bayes’s theorem as a comparison, 
physicians have been shown to badly err when 
asked about the effect of new information on the 
likelihood of a disease. More recently, other 
researchers have suggested that physicians are 
quite skilled at probability revision. They suggest, 
however, that the format in which physicians are 
provided with the information about probabilities 
is a major determination of whether they revise 
probabilities in a way consistent with Bayes’s theo-
rem. These researchers suggest that physicians do 
poorly with likelihood information in the format 
of probabilities but perform well when the infor-
mation is in the format of natural frequencies.

George Bergus
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Diagnostic tests

Numerous diagnostic tests exist that can provide 
information to guide medical decision making. In 
a broad sense, diagnostic tests include symptoms 
and signs (e.g., chest pain, fatigue, varicose veins, 
ankle edema); measurements on physical exami-
nation (e.g., height, weight, blood pressure); spe-
cial measurements (e.g., ankle-brachial pressure 
index, electrocardiogram [ECG], electroencepha-
logram [EEG]); blood tests (e.g., cholesterol, lipid 
profile, glucose); cytology and histology (e.g., 
Papanicolaou smears, biopsy); and imaging tests 
(e.g., endoscopy, ultrasound, computerized tomog-
raphy [CT], magnetic resonance imaging [MRI], 
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single photon emission computed tomography 
[SPECT], positron-emission tomography [PET]).

Tests results can be dichotomous—that is, the 
result is either positive or negative, or the test may 
have multiple possible results on a categorical, 
ordinal, or continuous scale. Interpreting informa-
tion obtained from diagnostic tests correctly is key 
in optimizing medical decision making.

Tests With Two Results,  
Positive Versus Negative

A test result is said to be “positive” if it shows a 
particular finding to be present and “negative” if 
the finding is absent. Note that a positive test 
result suggests that a patient has the disease in 
question—which is usually not a positive thing for 
the patient—and vice versa.

Most diagnostic information is not perfect but 
rather subject to some degree of error. A positive 
test result may be

true positive (TP) · —the test result indicates 
disease, and the patient has the disease, or
false positive (FP)— · the test result indicates 
disease, but the patient does not have the 
disease.

A negative test result may be

true negative (TN)— · the test result indicates no 
disease, and the patient has no disease, or
false negative (FN)— · the test result indicates no 
disease, but the patient has the disease.

Whether a patient has the disease or not is 
determined by the “truth” as established by a ref-
erence (gold) standard test, which is generally an 
invasive and/or expensive test and one that many 
patients would like to avoid. The occurrence of 
false-positive (FP) and false-negative (FN) test 
results implies that medical professionals need to 
be careful in interpreting diagnostic test informa-
tion to minimize the impact of such errors.

Diagnostic performance (also referred to as 
accuracy or validity) of a test is its correspondence 
with the underlying truth and is expressed using 
the test’s characteristics, sensitivity, and specificity. 
Alternatively, the diagnostic test performance may 
be characterized with true- and false-positive 

ratios, which is particularly convenient when a test 
has more than two possible results. Sensitivity and 
specificity describe how often the test is correct in 
the diseased and nondiseased groups, respectively. 
True- and false-positive ratios describe how often 
the test yields a positive result in the diseased and 
nondiseased groups, respectively.

Sensitivity, or true-positive ratio (TPR), is the 
probability of a positive test result given that the 
disease is present, denoted by p(T+|D+). Specificity, 
or true-negative ratio (TNR), is the probability of a 
negative test result given that the disease is absent, 
denoted by p(T−|D−). The false-negative ratio 
(FNR) is the complement of sensitivity, that is, 
1.0 − TPR, and is the proportion of patients with 
disease who have a negative test result, denoted by 
p(T−|D+). The false-positive ratio (FPR) is the 
complement of specificity, that is, 1.0 − TNR, and 
is the proportion of patients without disease who 
have a positive test result, denoted by p(T+|D−).

Algebraically, these can be summarized as  
follows:

Sensitivity  · = p(T+|D+) = TPR = TP/(TP+FN).
Specificity  · = p(T−|D−) = TNR = TN/(TN+FP).
1  · − Sensitivity = p(T−|D+) = FNR = FN/(TP+FN).
1  · − Specificity = p(T+|D−) = FPR = FP/(TN+FP).

There is an analogy between diagnostic tests 
and research studies. The FPR is the rate of Type I 
errors (α value) that are errors of commission: We 
are saying there is a finding that is in fact not there. 
The FNR is the rate of Type II errors (1 − β value) 
that are errors of omission: We omit to identify the 
finding.

Although sensitivity and specificity are impor-
tant characteristics of a test, they are not the con-
ditional probabilities required to decide how to 
treat a patient. Sensitivity and specificity are the 
probabilities of test results conditional on the pres-
ence versus absence of disease. In practice, medical 
professionals do not know whether or not some-
one has the disease, but rather, they find a test 
result is positive or negative, and from this infor-
mation, they infer the probability of disease. Thus, 
medical professionals usually need to know the 
probabilities of disease given positive or negative 
test results, which are very different. Posttest 
revised (or posterior) probabilities are defined as 
follows:
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The  · post-positive-test probability of disease, or 
positive predictive value (PPV), is the conditional 
probability of disease given a positive test result, 
p(D+|T+)—that is, the probability that a patient 
with a positive test result has the disease.
The  · post-negative-test probability of disease is 
the conditional probability of having the disease 
given a negative test result, p(D+|T−)—that is, 
the probability that in spite of a negative test 
result, the patient does have the disease.
The  · post-positive-test probability of absence of 
disease is the conditional probability of absence 
of the disease given a positive test result, 
p(D−|T+)—that is, the probability that in spite of 
a positive test result, the patient does not have 
the disease.
The  · post-negative-test probability of absence of 
disease, or negative predictive value (NPV), is 
the conditional probability of not having the 
disease given a negative test result, p(D−|T−)—
that is, the probability that a patient with a 
negative test result does not have the disease.

If the number of TP, FN, FP, and TNs in the 
population is known, then these probabilities can 
be calculated as follows:

Post-positive-test probability of disease  · = 
p(D+|T+) = TP/(TP + FP) = PPV.
Post-negative-test probability of disease  · = 
p(D+|T−) = FN/(TN + FN).
Post-positive-test probability of absence of  ·
disease = p(D−|T+) = FP/(TP + FP).
Post-negative-test probability of absence of  ·
disease = p(D−|T−) = TN/(TN + FN) = NPV.

Estimates of probabilities of disease condi-
tional on test results are not readily available, 
and if they are available, they are highly influ-
enced by the pretest (prior) probability of the 
disease in the patient population studied. 
Sensitivity and specificity values are, however, 
generally available and under certain conditions 
can be transferred from one population to another 
in spite of a different prior probability because 
they are conditional on disease status. Converting 
the probabilities of test results given the disease 
to probabilities of disease given the test results is 
done with Bayes’s theorem.

Tests With Multiple Results

Many tests have multiple possible test results, 
which may be on a categorical, ordinal, or con-
tinuous scale. In the setting of multiple test results, 
diagnostic test performance is best characterized 
with true- and false-positive ratios of each of the 
test results and the corresponding likelihood ratio. 
The likelihood ratio (LR) for test result R is the 
ratio of the conditional probability of R given the 
disease under consideration to the probability of R 
given absence of the disease under consideration. 
The LR summarizes all the information medical 
professionals need to know about the test result R. 
A high LR indicates that the test result argues in 
support of the diagnosis. A low LR indicates that 
the test result argues against the diagnosis.

In the setting of multiple test results, medical 
professionals frequently need to choose a cut-off 
value that defines a positive test result that requires 
treatment or further workup versus a negative 
result that does not require further action. Shifting 
the chosen cut-off value will yield pairs of FPR and 
TPR rates that together give the receiver operating 
characteristic (ROC) curve of the test.

M. G. Myriam Hunink
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Differential Diagnosis

The term differential diagnosis is generally thought 
of as both a noun and verb by clinicians. The 
noun form of differential diagnosis is the list of all 
possible conditions that could explain the collec-
tion of signs, symptoms, and test results observed 
in a particular patient at a particular point in time. 
This list of conditions is organized from most 
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likely (high on the list) to least likely (low on the 
list). The verb form of differential diagnosis is the 
medical decision-making process whereby this list 
is continually updated by eliminating conditions 
that are considered to be ruled out and adding 
conditions that may not have been previously con-
sidered based on the acquisition of new informa-
tion. Conditions that remain on the list are also 
moved up and down in priority based on a con-
tinual reanalysis of their likelihood. The goal of 
diagnostic investigation and problem solving is 
the elimination of all conditions from the differen-
tial diagnosis until a single unifying diagnosis 
remains.

Casting a Broad Net

The number of conditions contained in a differen-
tial diagnosis is referred to as its breadth. Generally, 
the smaller the number of signs, symptoms, and 
test results available for consideration, the broader 
the differential diagnosis. A clinician always has 
the least amount of information available at the 
time of the patient’s initial presentation, and so it 
behooves him or her to “cast a broad net” by add-
ing many conditions to the list even if they are only 
remote possibilities. An initial broad differential 
can be winnowed down later using additional 
information obtained during the course of further 
diagnostic investigation. The choice of which con-
ditions to add occurs by pattern recognition, 
whereby clinicians recognize patterns of signs and 
symptoms present in disease states that they have 
seen before. The process of recognizing these pat-
terns, identifying the condition, and adding it to 
the differential diagnosis is referred to as hypoth-
esis generation.

Accurate pattern recognition and hypothesis 
generation are the foundation of accurate differen-
tial diagnosis, because if a condition does not make 
it onto the list of differential diagnoses, it can never 
be confirmed or refuted via further investigation. 
Research has shown that the source of the improved 
accuracy of expert diagnosticians is not better 
acquisition of the signs and symptoms that provide 
the data set for hypothesis generation, nor is it the 
number of hypotheses generated from a given data 
set, but instead, it is the generation of more accu-
rate hypotheses compared with novice diagnosti-
cians. The source of this improved accuracy has 

been the topic of much debate. However, a rule of 
thumb that is used frequently by clinicians to 
describe hypothesis generation is “common things 
are common.” This seemingly obvious adage 
means that a given sign or symptom is more likely 
to be an uncommon manifestation of a common 
disease than a common manifestation of an uncom-
mon disease. In other words, one should focus on 
generating hypotheses that are epidemiologically 
most likely even if they do not seem to fit the pat-
tern perfectly. Recall or availability bias is a type of 
cognitive error in this process wherein the clinician 
has a distorted sense of the prevalence of a particu-
lar condition based on his or her own personal 
experience rather than that reported in the scien-
tific literature.

While the amount of data available to the diag-
nostician is the principal determinant of the 
breadth of an initial differential diagnosis, the par-
ticular characteristics and the quality of the data 
being considered can also have a profound effect. 
Certain findings are considered pathognomonic 
for particular diseases, meaning that the finding is 
so specific and sensitive that a patient should be 
considered to have the condition until proven oth-
erwise. An example would be the presence of 
Kaiser-Fleischer rings in the eyes of patients with 
Wilson’s disease. This single observation on the 
physical exam would eliminate nearly all other 
conditions from consideration. Similarly, the qual-
ity of the data also has dramatic effects on the 
breadth of the differential. Demented, mentally ill, 
or malingering patients may supply a wealth of 
historical details; however, the reliability of this 
information would remain suspect, and it might 
add little value despite its abundance. In these situ-
ations, the differential would remain broad despite 
obtaining a relatively large amount of data.

Narrowing the Differential Diagnosis

Once a broad differential has been established 
based on initial data gathering and hypothesis gen-
eration, the list is narrowed by either confirming 
(ruling in) a single diagnosis or eliminating (ruling 
out) conditions one by one until a single diagnosis 
remains. Usually, both approaches are used simul-
taneously. The order in which conditions in the 
differential are investigated depends on (a) the 
urgent or emergent nature of diagnoses on the list, 



386 Differential Diagnosis

(b) the logistical expediency of obtaining a defini-
tive answer for a particular diagnosis, and (c) the 
particular cognitive preferences of the diagnosti-
cian. Diagnoses that threaten loss of life or func-
tion are always investigated first even if they are 
low on the differential. Dissecting thoracic aortic 
aneurysm is a relatively rare cause of chest pain 
and is often near the bottom of the differential. 
However, it is investigated rapidly, as the conse-
quences of a delayed diagnosis would be devastat-
ing. Once all the life-threatening diagnoses have 
been eliminated from the differential, diagnostic 
investigation can proceed at a more leisurely pace. 
If a condition can be excluded simply and easily, it 
is often pursued next. These are the so-called low-
hanging fruit of the diagnostic process, and an 
example would be excluding a diagnosis of anemia 
with a simple complete blood count. In general, 
ruling in is a quicker way to narrow the differential 
than ruling out because one need only be correct 
once in the former approach and one needs to be 
correct N − 1 times (N being the number of condi-
tions in the differential) in the latter.

Once a diagnosis has been ruled in, the remain-
der of the diagnoses are assumed to be ruled out 
based on the principle of parsimony, or Ockham’s 
razor. The principle is attributed to the 14th-century 
logician William of Ockham and states that “the 
explanation of any phenomenon should make as 
few assumptions as possible, eliminating those that 
make no difference in the observable predictions of 
the explanatory hypothesis.” Practically, this means 
that all of the observable signs, symptoms, and test 
results should be explained by a single diagnosis. If 
a single condition has crossed the threshold of evi-
dence to be accepted as the unifying diagnosis, then 
all other diagnoses must be rejected. Even if a diag-
nosis has been confirmed, the particular cognitive 
preferences of a diagnostician will still factor into 
the ongoing investigation. Some diagnosticians may 
continue to rule out conditions as they prefer to 
“leave no stone unturned.”

Cognitive Bias

All diagnosticians are subject to bias in the 
medical decision making involved in narrowing 
the differential diagnosis. Two common types of 
cognitive bias are confirmation bias and anchoring 
bias. Confirmation bias arises when a clinician 

only performs further testing in an effort to con-
firm a diagnosis that he or she already believes to 
be true and does not test other hypotheses that 
might refute the favored diagnosis. Anchoring bias 
is similar but distinct in that it results from a fail-
ure to add new diagnoses to the differential or 
adjust the position of old diagnoses based on new 
information. The clinician becomes anchored  
to the original differential and is blinded to new 
possibilities.

Negative Diagnostic Workups

“No evidence of disease is not evidence of no dis-
ease” is a phrase often used to describe the fact 
that a clinician’s inability to detect a condition at a 
particular point in time does not mean that it is not 
present currently or was not present in the recent 
past. This is especially true for conditions that 
have waxing-and-waning courses, such as occult 
gastrointestinal bleeding. Commonly, 80% of 
upper gastrointestinal bleeding has stopped by the 
time of presentation to medical attention. 
Nonbleeding ulcers or varices are often found on 
esophagogastroduodenoscopy and presumed to be 
the source, but in a significant number of cases, the 
source of the bleeding cannot be found because 
active bleeding is no longer visible at the time of 
the diagnostic investigation. Failure to find a 
source of bleeding despite thorough investigation 
does not mean that gastrointestinal bleeding has 
been ruled out as a cause of the patient’s present-
ing signs and symptoms, and consequently, it can-
not be eliminated from the differential diagnosis.

When a workup is entirely negative and the dif-
ferential diagnosis still contains more than a single 
diagnosis, watchful waiting is sometimes employed 
as a passive diagnostic strategy if the patient’s condi-
tion is stable. The hope is that the condition causing 
the presenting symptoms will reactivate and new 
observations can be made at that time, which will 
allow the differential diagnosis to be narrowed.

When a workup is negative but the differential 
is relatively small and/or the patient’s condition is 
deteriorating, a strategy of diagnostic and thera-
peutic intervention can be employed to confirm a 
diagnosis. If the therapy is narrowly directed at a 
particular diagnosis and the patient responds to 
treatment, the individual diagnosis in question is 
considered to be ruled in, and further diagnostic 
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workup is unnecessary. When this strategy is 
employed, it is important that a diagnostic response 
to treatment be defined clearly and prospectively 
and that only a single, narrowly directed therapy 
be used at any one time. If multiple therapies are 
employed simultaneously, a causal relationship 
between treatment and disease cannot reliably be 
inferred, and therefore, a diagnosis cannot be reli-
ably confirmed based on response to treatment. 
This type of obfuscation of the differential diagno-
sis often occurs when broad-spectrum antibiotics 
are used to treat an infection of unclear etiology. 
The patient may have improvement in fever, white 
blood cell count, and bacteremia, but the signs and 
symptoms that would have helped localize the 
infection have not been allowed to develop.

The process of differential diagnosis is critical to 
medical decision making, because without an 
accurate diagnosis, decisions about treatment 
become extremely difficult. The medical decision 
making involved in differential diagnosis is com-
plex and subject to the underlying cognitive biases 
of clinicians. Diagnostic testing is not without the 
potential to harm patients. Consequently, risk/
benefit decisions must be made to determine 
whether the additional diagnostic information 
provided by a test or procedure is warranted. 
Skilled differential diagnosticians balance these 
risks with their degree of confidence that the cor-
rect single unifying diagnosis has been selected 
from the list of possibilities generated during the 
process of differential diagnosis.

Robert Patrick
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DisaBility-aDjusteD 
life years (Dalys)

The disability-adjusted life year (DALY) measure 
combines nonfatal outcomes and mortality in a 
single summary measure of population health. 
One DALY represents 1 lost year of healthy life. 
The basic philosophy associated with the estima-
tion of DALYs is (a) use the best available data, (b) 
make corrections for major known biases in avail-
able measurements to improve cross-population 
comparability, and (c) use internal consistency as a 
tool to improve the validity of epidemiological 
assessments. For the latter purpose, a software 
application, DISMOD II, is available from the 
World Health Organization (WHO) Web site.

Uses

DALYs were first employed in the 1993 World 
Development Report to quantify the burden of ill 
health in different regions of the world. The Global 
Burden of Disease (GBD) study, edited by Murray 
and Lopez and published in 1996, used a revised 
DALY measure. The DALY was developed to 
facilitate the inclusion of nonfatal health outcomes 
in debates on international health policy, which had 
often focused on child mortality, and to quantify the 
burden of disease using a measure that could also be 
used for cost-effectiveness analysis. DALYs have 
been widely used in global- and national-burden-of-
disease studies and to assess disease control priori-
ties. They have also been used to make the case for 
primary prevention programs for disorders such as 
stroke prevention in Australia and in assessing fund-
ing allocations in medical research programs in 
Australia, Canada, and the United States in relation 
to the burden associated with different diseases.
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DALYs are also frequently used in economic 
evaluations of public health interventions, particu-
larly in low- and middle-income countries. The 
DALY is the health effect measure that is recom-
mended by the WHO’s Choosing Interventions 
that are Cost Effective (WHO-CHOICE) program 
for generalized cost-effectiveness analysis (GCEA) 
and is also used in the World Bank’s Disease 
Control Priorities in Developing Countries pro-
gram. In GCEA, the costs and effectiveness of all 
possible interventions are compared with the null 
set for a group of related interventions to select the 
mix that maximizes health for the given resource 
constraints. DALYs and quality-adjusted life years 
(QALYs) are both health-adjusted life year (HALY) 
measures that use time as a common metric. 
QALYs were developed for the economic evalua-
tion of clinical interventions and remain the domi-
nant outcome measure used in cost-utility analyses 
that compare the costs and health effects of specific 
interventions using a preference-based measure of 
health. It is standard for cost-utility analyses using 
QALYs to subtract averted direct costs of care (cost 
offsets) from intervention costs to calculate the net 
cost of interventions used to calculate cost-effec-
tiveness ratios, which can be negative. In contrast, 
most analyses that use DALYs do not calculate cost 
offsets, primarily because reliable information on 
such costs is extremely scarce in low- and middle-
income countries.

Components

DALYs are composed of two components, years of 
life lost (YLL) due to premature death and years 
lived with disability (YLD) associated with nonfa-
tal injuries and disease. YLL represents the stream 
of lost healthy life due to premature death at a par-
ticular age. It is calculated as the product of the 
number of deaths due to a specific cause and the 
years lost per death. YLD is calculated as the prod-
uct of incidence of a specific cause and its average 
duration, multiplied by a disability or severity 
weight for that condition. Disability weights are 
assigned on a scale from 0 (representing perfect 
health) to 1 (representing death), in addition to an 
optional age-weighting parameter. The scale of 
DALY weights is inverted from that used to calcu-
late QALYs. Consequently, when DALYs are used 
as the denominator in cost-effectiveness ratios, one 

refers to the cost per DALY averted as opposed to 
cost per QALY gained. Equivalently, the DALY is a 
health gap measure, whereas the QALY is a health 
gain measure. When different interventions are 
evaluated by some studies using DALYs and by 
others using QALYs, ranking interventions accord-
ing to cost-effectiveness ratios may be possible 
even though there is no systematic formula for 
converting between the two measures, as long as 
the same approach is used in each study to calcu-
late costs.

Weights

The GBD study derived DALY weights for 22 indi-
cator conditions through a person trade-off (PTO) 
process, in which panels of health experts from 
various countries were asked to assess the expected 
relative burden of conditions in two trade-off exer-
cises. In one exercise (PTO1), participants were 
asked to trade off extending the lives of different 
numbers of “healthy” people and people with a 
condition such as blindness. In the second exercise 
(PTO2), participants were asked to choose between 
prolonging life for 1 year for people with perfect 
health and restoring to perfect health a different 
number of people with the same condition used in 
PTO1. If the results of the PTO1 and PTO2 exer-
cises differed, participants were required to individu-
ally reconcile their estimates in order to reach 
internal consistency using PTO1-PTO2 equivalence 
tables. Afterward, participants shared their PTO1 
and PTO2 assessments through a deliberative group 
process in which participants were confronted with 
the implications of their choices and allowed to dis-
cuss the basis for their viewpoints, to reflect on the 
implications of their preferences, and to revise their 
assessments. Subsequently, DALY weights were 
derived for several hundred other conditions by 
comparison with the indicator conditions. The PTO 
exercises have been repeated in many countries and 
have generally yielded comparable weights, which 
supports the use of the same weights in different 
populations. Potential facilitator biases in the PTO 
valuation process can be reduced through the train-
ing of facilitators, and potential participant biases 
are minimized by the deliberative process and by 
replication across multiple groups of participants.

The standard DALY used in the GBD study is 
calculated using a 3% discount rate to calculate 
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present values and an age-weighting parameter 
(which is optional). Discounting of future benefits 
is standard practice in economic analysis, but the 
use of age weighting is more controversial. The 
age-weighting parameter gives greater weight to 
young-adult years, peaking at around age 20 years, 
than to years lived in childhood or older adult-
hood. It is also possible to calculate DALYs with 
discounting but without age weighting or with 
neither discounting nor age weighting (see Figure 
1), as has been done, for example, in the Australian 
burden-of-disease study.

One distinctive feature of DALYs as estimated 
in the GBD study is the use of Standard Expected 
Years of Life Lost (SEYLL). To define the stan-
dard, the highest national life expectancy observed 
was used, 82.5 years for Japanese females and 80.0 
years for Japanese males. The use of a standard life 
expectancy, regardless of local life expectancy, is to 
express the social value of people being equal 
regardless of country or location. For the calcula-
tion of DALYs in cost-effectiveness analyses, as 
opposed to burden-of-disease studies, national life 
expectancies are typically used.

“Disability,” as used in DALYs, encompasses 
all nonfatal outcomes and aggregates various 
aspects of an individual’s health such as mobility, 
anxiety, and pain. The calculation of YLD does 
not entail an empirical assessment of functional 
or activity limitations experienced by individuals 
with impairments, which is how disability is con-
ventionally defined and measured. The DALY 
weights reflect the preferences regarding differ-
ent disease/health states or impairments in rela-
tion to the societal “ideal” of good health. The 
health state valuations used to estimate the bur-
den of disease in terms of DALYs lost do not 
represent the lived experience of any disability or 
health state or imply societal value of the person 
in a disability or health state. A relatively high 
DALY weight for a condition means that 1 year 
lived in that condition is less preferable than 1 
year lived in health states with lower disability 
weights. For example, the disability weight of  
.43 for blindness implies that 1 year spent with 
blindness is preferable to 1 year with paraplegia 
(weight .57) and 1 year with paraplegia is prefer-
able to 1 year with unremitting unipolar major 
depression (weight .76). Equivalently, these 
weights imply that 1 year of living in good health 

followed by death (1 year × [1.0 − 0.0 disability 
weight] = 1.0 healthy life year) is less preferable 
than 3 years of living with paraplegia followed 
by death (3 years × [1.0 − .57 disability weight] 
= 1.3 healthy years). Based on these weights, 
other things being equal, it is preferable to pre-
vent or cure a case of paraplegia (weight .57) 
rather than a case of low back pain (weight .06) 
if the prevention or cure for each case would cost 
the same and there were not enough resources to 
do both.

In the GBD study, disability weights for selected 
conditions and sequelae were adjusted according 
to whether a person was assumed to have received 
medical treatment and whether the treatment was 
believed to decrease the severity of the condition. 
For example, the disability weight was .583 for 
patients with untreated bipolar disorder and .383 
for bipolar patients whose condition improved 
due to the treatment but was not in remission. For 
most disabling conditions (e.g., spina bifida, limb 
loss, spinal cord injuries), disability weights 
reflected the assumption that no improvement in 
functioning occurred as the result of rehabilita-
tion. Disability weights could also be modified to 
incorporate data on the effectiveness of rehabilita-
tion therapies.

A major attraction for the use of DALYs in com-
parison with QALYs is that they provide a means 
of comparing the health impact of a wide range of 
medical conditions through the use of a standard-
ized set of disability weights. However, additional 
sources of disability weight estimates are appear-
ing. The Dutch Disability Weights study has pro-
vided additional estimates for disorders or sequelae 
that were not fully included in the GBD study, and 
these have been used in national burden-of-disease 
studies conducted in the Netherlands, Australia, 
and the United States. In particular, the Dutch 
Disability Weights study estimated disability 
weights stratified on the basis of disease stages and 
complications. For example, that study estimated a 
weight of .07 for Type 2 diabetes, with weights of 
increasing severity for complications, such as a 
weight of .17 for moderate vision loss and .43 for 
severe vision loss. To take one more example, the 
GBD study assigned a weight of .73 for adults with 
dementia, whereas the Australian and Dutch stud-
ies calculated weights of .27 for mild dementia 
(with impairments in daily activities of living), 
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.63 for moderate dementia (unable to live indepen-
dently), and .94 for severe dementia (requiring 
permanent supervision). Future empirical studies 
may provide still more detail and better reflect the 
heterogeneity among health conditions. Currently, 
efforts are being undertaken to update disability 
weights for DALYs both globally and in the United 
States, to address the relevance of the social values 
that have been incorporated in the calculation of 
DALYs, and to assess changes in weights due to 
new developments in treatments for various dis-
eases and conditions.

Cost-Effectiveness Ratios

The use of fixed thresholds for cost-effectiveness 
ratios to conclude that a particular intervention is 
or is not cost-effective is widespread but still con-
troversial. Because of the interaction between 

cost-effectiveness, disease burden, and available 
resources, a single threshold for maximum cost 
per health gain cannot be specified. Nonetheless, 
a consensus has emerged that an intervention with 
a cost-effectiveness ratio less than three times the 
per capita gross domestic product (GDP) in a 
given country can be considered cost-effective, 
and one with a cost-effectiveness ratio less than 
one time the GDP per capita is “very cost-effec-
tive.” This does not mean that clinical interven-
tions with higher cost-effectiveness ratios do not 
provide good value but that more health gains 
could be achieved by prioritizing funding to inter-
ventions with lower cost-effectiveness ratios, 
which is the rationale for the Disease Control 
Priorities in Developing Countries program. 
However, even cost-effective interventions may 
not be feasible to implement if the costs are mon-
etary and come from a public budget and the 

Formulas for DALY calculations without discounting or age weighting

DALYi = YLLi + YLDi

YLLi = Number of deaths due to cause i * Years lost per death

YLDi = Number of incident cases of cause i * Average durationi * DWi

DALYi = Disability-adjusted life years due to cause i

YLLi = Years of life lost due to cause i

YLDi = Years lived with disability due to cause i

DWi = Disability weight for cause i

Example using individual-level data (for population data, incidence would be used):

Motor vehicle collision results in two fatalities and two injuries

A 55-year-old woman dies, resulting in 29.37 standard expected years of life lost (SEYLLs)

A 60-year-old man dies, resulting in 21.81 SEYLLs

Total YLL = 51.18 (without discounting or age weighting)

A 35-year-old woman gets a fractured skull, for which she is treated, but the effects are lifelong. The duration is equal 
to 48.38 SEYLLs, with a disability weight of .35. YLD for this injury is 48.38 * .35 = 16.933

A 40-year-old man treated for fractured sternum. The average duration is .115 years, with a disability weight of .199. YLD 
for this condition is .115 * .199 = .022885

Total YLD = 16.95589 (without discounting or age weighting)

Total DALY loss = 68.13589 (without discounting or age weighting)

Figure 1  How disability-adjusted life years (DALYs) are calculated

Source: The SEYLL and DW estimates were taken from Murray and Lopez (1996), in which discounting and age weighting were 
used in the estimation of DALYs.
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benefits are nonmonetary and diffused over the 
population.
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Discounting

Why does a person engage in behaviors, such as 
eating high-calorie foods or keeping a sedentary 
lifestyle, that provide an immediate reward over 
behaviors that offer health benefits in the long 
run? Understanding the time dimension of health 
preferences, or intertemporal health preferences, 
has been an important area of inquiry for medical 
decision making. The concept of discounting over 
time has been central to this understanding. Time 
discounting of preferences refers to the common 
situation where money, goods, services, and other 
outcomes are more highly valued when obtained 
in the present than those occurring in the future. 
When all things are equal, a given reward is more 
desirable when obtained sooner than later. The 
section below provides an introduction to dis-
counting in intertemporal choices and discusses 
the importance of these concepts in medical deci-
sion making.

Preferences for Early Versus Late Rewards

The question as to why money, goods, services, 
and health are more desirable in the present than 
in the future has been answered in several ways. 
Money and some goods can increase in value with 
time, so that it is better to obtain them in the pres-
ent to obtain future growth. Having $100 now 
allows one to invest it and accrue interest over 
time. Waiting a year to receive $100 means that a 
year of interest is lost. Also, waiting for a reward 
may increase the risk of losing it in the future, so it 
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is better to have it in the present. For example, a 
person may choose to spend money on a vacation 
this year over investing in a retirement fund that 
would allow a vacation in the future. Waiting 
introduces the risk that one may not be healthy 
enough to enjoy a vacation during retirement. In 
medical decision making, the concept of discount-
ing provides a way to understand why people 
engage in behaviors, such as smoking, that provide 
immediate gratification but that may contribute to 
risks to health in the future.

Discounting in Health and Medicine

Consideration of the value of health outcomes 
over time is critical to decision analysis and in 
analyses of the costs and benefits of preventive 
health regimens, diagnostic tests, and medical 
treatments. The results of decision analyses and 
cost-and-benefit analyses are important consider-
ations in the development of policy on healthcare. 
In these types of analyses, discounting rates are 
used to provide an adjustment of the present value 
of an outcome for the costs and benefits occurring 
at different time points. While a variety of dis-
counting rates have been used in these studies to 
estimate the value of future outcomes, the U.S. 
Preventive Service Task Force suggests the use of a 
3% discount rate for cost-and-benefit analyses 
with a rate of 5% used for sensitivity analyses. 
However, discount rates have been shown to vary 
in studies of time preferences, and higher rates of 
40% and 50% have been observed. The selection 
of discount rates for decision and economic analy-
ses should depend on whether the interest is in 
group preferences or individual preferences. The 
lower rates may be reasonable to use for group 
analyses, but the higher rates may be appropriate 
to examine individual preferences.

Discounted Utility Theory

Discounted utility theory (DUT) has been used as a 
framework to understand preferences over time. 
Similar to expected utility theory (EUT), DUT is a 
normative decision model. Both models are based 
on the assumption that choices among alternatives 
depend on a weighted sum of utilities where decision 
makers seek to maximize the utility of their choices. 
While EUT describes preferences in situations of 

uncertainty, DUT describes preferences in the domain 
of time. DUT assumes a single discounting rate over 
time; the discounting rate serves as the utility weights 
in DUT. DUT also posits a single discount function 
that is exponential.

The axioms of DUT specify that preferences for 
outcomes over time are monotonic, complete, 
transitive, continuous, independent, and station-
ary. Monotonicity of preferences over time means 
that if an outcome is preferred at Time A over 
Time B, then Time A occurs before Time B. Thus, 
outcomes are more desirable if they occur earlier in 
time. Based on the propositions of DUT, the same 
discounting rate should be observed for all choices 
in time and should be positive in most cases. The 
axiom of completeness of preferences posits that 
there are preferences across different points in 
time. Transitivity of preferences over time means 
that if Outcome 1 is preferred to Outcome 2 at a 
later time and if Outcome 2 is preferred to 
Outcome 3 at a time that is still later, then 
Outcome 1 will be preferred over Outcome 3. 
Continuity of preferences assumes that there are 
points of indifference in preferences for outcomes 
between an earlier time and a later time, where 
outcomes are equally preferred. This axiom ensures 
that there exists a continuous utility function over 
time. The axiom of independence over time means 
that the order of preferences for outcomes should 
not reverse at different points in time. If one out-
come is preferred to another at one time, this order 
of preferences should be preserved over time. 
Stationarity requires that when preferences are 
ranked across time, this ranking should not change 
even if the time interval changes.

Sign Effect

While DUT has proved to be useful in describing 
intertemporal preferences in a range of situations, 
violations in the axioms have been observed. For 
example, based on the assumption of a single dis-
counting rate, DUT would suggest that preferences 
should be equal over time whether the health out-
come is a gain or a loss. However, a number of 
studies provide evidence that the discount rate for 
losses is lower than that for gains. In other words, 
preference for a desirable outcome is discounted 
more over time than preference to avoid a loss. 
This has been termed the sign effect.
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The Value of Health Versus Money

The idea that a single discounting rate can be used 
to describe preferences in all decisions also has been 
challenged. These arguments are especially impor-
tant to medical decision making, where health is 
the desired outcome rather than money. Both 
money and health have been found to have rela-
tively large discount rates, especially as compared 
with what is recommended for use in economic 
analyses. In contrast to what is predicted by DUT, 
decision makers appear to use different rates for 
health as compared with money. This observation 
has been used to understand why it can be difficult 
to encourage people to adopt preventive health 
behaviors to improve future health. A large dis-
counting rate would mean that future health does 
not seem attractive enough in the present to over-
come the desire to engage in behavior that is highly 
rewarding in the short term, such as smoking.

Choice Sequences

Another violation of DUT has been described with 
respect to a series of decisions made over time. For 
example, many health decisions occur in a sequence 
rather than as single choices. A person diagnosed 
with cancer may make a series of decisions about 
surgery, radiation therapy, and adjuvant chemo-
therapy. A person who is diagnosed with diabetes 
may face a series of choices about diet, exercise, 
medication, and self-monitoring. The sequence 
effect refers to the tendency to observe a negative 
discount rate when choices occur in a sequence. In 
other words, people prefer to defer desirable out-
comes, to savor the rewards, and to want to has-
ten undesirable outcomes in order to get them out 
of the way sooner and reduce dread of an adverse 
event.

Hyperbolic Discounting

Alternative theories to DUT have been suggested 
to explain these anomalies. For example, it has 
been suggested that, as compared with the con-
stant discounting posited by DUT, a hyperbolic 
model may better describe the preferences rever-
sals over time. A hyperbolic discounting model 
describes preferences where delayed outcomes are 
discounted in a way that is inversely related to the 

time delay between the early review and the late 
review. Thus, short-term outcomes are discounted 
more than long-term outcomes. This could happen 
if the decision maker is more impatient in making 
judgments about reviews in the short run than in 
the long run. This might describe the case where a 
smoker has greater difficulty deferring a cigarette 
in the short run than in deferring the purchase of 
cigarettes in the long run.

The Neurobiology of  
Intertemporal Preferences

Recent work on discounting has been directed 
toward understanding the neurobiology of inter-
temporal preferences. These studies often employ 
functional magnetic resonance imaging to examine 
the brain activity of research participants who are 
engaged in a choice experiment. Results of these 
studies have described two systems relevant to 
making choices over time. In making intertempo-
ral decisions, humans show several cognitive pro-
cesses: ones that focus on the present and others 
that consider the future. These findings—that 
there may be several cognitive processes that dis-
tinguish between events in time—provide some 
support for the hyperbolic discounting models. 
These studies, while not conclusive, have offered 
innovative methods to more fully understand the 
processes underlying intertemporal choice.

Sara J. Knight

See also Cost-Effectiveness Analysis; Cost-Effectiveness 
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Discrete choice

A discrete choice experiment (DCE) is a type of 
stated preference method used to elicit values for 
goods and services. DCEs rely on the premise that 
any good or service can be described by its char-
acteristics and the extent to which an individual 
values a good or service depends on the levels of 
these characteristics. DCEs have long been used 
by consumer products companies to design new 
products to meet customer preferences by measur-
ing the relative importance of different product 
attributes, but they have only more recently been 
applied in the context of health and environmen-
tal goods. This approach typically provides more 
detailed, yet substantively different, information 
compared with traditional stated preference meth-
ods, such as contingent valuation or health state 
utility assessment.

Comparison With Other Stated  
Preference Methods

Stated preference methods, in which respondents 
value hypothetical descriptions of products or 

choices, are useful in valuing nonmarket goods, 
such as health. They are useful in situations in 
which the market for a good, or for the full range 
of attributes of a good, does not exist and “revealed 
preference” studies cannot be conducted. In a 
revealed preference study, preferences are estimated 
by observing the actual choices that have been 
made in a real-world setting. For example, the rela-
tive value of individual attributes of automobiles, 
such as size, color, make, and model, could be  
measured by analyzing retrospective data on auto-
mobile sales prices along with the specific charac-
teristics of the automobiles sold. For a new model, 
a revealed preference approach would not be pos-
sible since data are not yet available for the new 
model; instead, a stated preference approach could 
be used. Other stated preference methods typically 
used to value health outcomes are health state util-
ity assessment or contingent valuation. Elicitation 
techniques for these stated preference methods 
include standard gamble, time trade-off, or willing-
ness to pay. Compared with these methods, DCEs 
can be used to value health, nonhealth, and process 
attributes and provide information about the trade-
offs between these attributes. DCEs can also be 
used to value willingness to pay for an attribute, 
whereas traditional methods provide a single 
numerical rating for the whole service.

All stated preference methods have the limita-
tion that the valuation task asks about hypotheti-
cal choices and, therefore, may not fully predict 
future choices. Using stated preference methods 
can often provide a valuable starting point for fur-
ther research given the difficulty of obtaining pre-
ference data on nonmarket goods. All stated 
preference methods allow data to be collected on 
programs and interventions while they are still 
under development, similar to how studies might 
be conducted to develop new consumer products. 
Once a program or intervention has been intro-
duced, additional research could combine revealed 
and stated preference data to provide even more 
detailed information about user preferences.

Understanding preferences for different aspects 
of health and health interventions and incorporat-
ing these values into clinical and policy decisions 
can result in clinical and policy decisions that bet-
ter reflect individuals’ preferences and potentially 
improve adherence to clinical treatments or public 
health programs.
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Terminology

The terms discrete choice experiments or conjoint 
analysis are typically used to describe a type of 
stated preference method in which preferences are 
inferred according to responses to hypothetical 
scenarios. These terms are often used interchange-
ably. Conjoint analysis comes from marketing 
applications and DCEs from transportation and 
engineering applications. The common element of 
DCEs and conjoint analysis is that they both allow 
the researcher to examine the trade-offs that peo-
ple make for each attribute, attribute level, and 
combinations of attributes. They differ in that the 
term conjoint analysis is more generally used to 
refer to a method whereby the respondent rates or 
ranks a scenario and DCEs involve a discrete 
choice between alternative scenarios. DCEs, and 
the related approach of conjoint analysis, have 
been successfully applied to measuring preferences 
for a diverse range of health applications, and the 
use of these approaches is growing rapidly.

Example of a Discrete Choice Experiment

An example of the attributes used in a DCE 
designed to identify preferences for a pharmacoge-
netic testing service is shown in Table 1. The ser-
vice offers a test to identify a person’s risk of 
developing a side effect (neutropenia) from aza-
thioprine. This example has five attributes, and the 
attributes have different numbers of levels. Both 
health and nonhealth outcomes are included in the 
evaluation of the service.

Table 2 shows an example of one choice ques-
tion. It is also possible to design discrete choices 
with more than two options.

Conducting a Discrete Choice Experiment

Conducting a DCE includes proper design, field-
ing, and analysis. Elements of design include 
designing the experiment and overall survey devel-
opment, as the survey should include survey ques-
tions in addition to the discrete choice questions.

Designing and Administering a  
Discrete Choice Experiment

The first step in a DCE is to identify and define 
the attributes of the health intervention or program. 

Once the attributes or characteristics have been 
identified, the levels of each attribute must also be 
defined, which must be realistic options for the 
service being valued. Attributes and levels should 
be developed through an iterative process including 
literature review, experts in the field, focus groups, 
and one-on-one interviews.

The second step is to identify the choice task. 
Discrete choice task options include forced choice, 
in which the respondent chooses between one or 
more options. Alternatively, the respondent can be 
offered an opt-out option, which must then be 
addressed in the analysis step. The selection of the 
choice task will have implications about the type 
of analytic approach that is appropriate.

The third step is to set the experimental design 
for the DCE. Depending on the numbers of attri-
butes and levels, it may be possible to use a full-
factorial design in which all possible combinations 
of attributes and attribute levels are used to create 
scenarios. If the number of possible combinations 
exceeds the likely sample size, then efficient com-
binations of a subset of choices can be identified 
through the use of design libraries or other meth-
ods. This is called a fractional-factorial design, 
which uses mathematical properties to ensure non-
association between the variables in the design 
(orthogonality). Choice sets must then be created 
from these scenarios, and again different methods 
exist, including pairing the scenarios or using fold-
over techniques. It is important that key design 
principles are followed when creating the choice 
sets from the scenarios to ensure that the main 
effects—and, if necessary, two-way interactions—
can be estimated.

The fourth step is to construct the survey that 
includes the DCE. A successful DCE survey will 
include an introductory section to provide the 
respondents with enough information to under-
stand the choices they are about to be presented 
in the survey. This will involve a section that 
describes the attributes and levels and introduces 
the valuation task. This section should also 
include a practice question. Key questions for 
survey design will include mode of administration 
and sample selection. Mode of administration 
may determine the number of choices that can be 
included for each respondent. Depending on the 
numbers of attributes and attribute levels, choices 
may need to be divided into choice sets. A choice 
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Table 1  Possible attributes and levels

Attribute Level

Process attributes

The level of information given to the patient about the test None
Low
Moderate
High

How the sample is collected Blood test
Mouthwash
Finger prick
Mouth swab

Who explains the result to the patient Primary-care physician
Pharmacist
Hospital physician 
Nurse

Cost £0
£50
£100
£250

Health outcome

The ability of the test to predict the risk of the side effect 
(neutropenia)

50%
60%
85%
90%

Nonhealth outcomes

How long it takes before the patient receives a result 2 days
7 days
14 days
28 days

Table 2  Example of a pairwise choice

Test A Test B

The level of information given to the patient about the test Moderate High

The ability of the test to predict the risk of the side effect 
(neutropenia)

50% accurate 60% accurate

How the sample is collected Finger prick Mouth swab

How long it takes before the patient receives the result 28 days 2 days

Who explains the result to the patient Pharmacist Hospital doctor

Cost $50 $250

Tick () one option only  
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set is a fixed set of choices presented to a single 
respondent. For example, if the DCE has a total 
of 64 choices, then the choices may be split into 
8 choice sets of 8 choices each to reduce respon-
dent burden. An essential part of survey devel-
opment is to pretest the questionnaire with 
respondents one-on-one until the survey instru-
ment is stable. The survey should also include a 
section on respondent demographics and other 
characteristics that may relate to choices, such as 
experience with the health condition or interven-
tion being valued.

Survey administration should follow the rec-
ommended approaches for the mode of adminis-
tration involved. Most DCEs are administered via 
computer (online) or on paper via a mail survey.

Additional Design Considerations

Additional design considerations include the 
definition of the value attribute, inclusion of an 
opt-out option, and internal validity tests. The 
value attribute is the attribute used to infer value 
for the program or intervention; in health, it is 
typically represented by money or time. Other 
metrics can also be considered, such as risk, but to 
date there has been little research that explores 
how respondents value risk estimates in a DCE. 
The important characteristic of this attribute is 
that it is a continuous variable and can be analyzed 
as such. The inclusion of an opt-out option will be 
appropriate in any situation in which it would be 
a realistic option for the respondent in a real-world 
choice situation. In the survey design process, the 
development of attributes, levels, and choices 
should aim at keeping the hypothetical situations 
presented as close to reality as possible while still 
maintaining the objectives of the study.

Analysis of Discrete Choice Experiments

Analyzing data from a DCE requires the use of 
discrete choice analysis. The survey should have 
been designed to have an appropriate number of 
levels and attributes to produce robust estimates of 
the value for each attribute/level. For example, 
using the sample discrete choice question in Table 2, 
a utility function U is specified for each of the two 
alternatives of Test A or Test B:

 Ui = β1X1i + β2X2i + β3X3i + · · · + βkXki + εi

 = βXi + εi,   (i = A, B).

Xki (k = 1, …, K) are the causal variables for alter-
native i and consist of both the attributes of the 
alternatives (e.g., effectiveness of the test). Further 
analyses can explore preferences in subgroups of 
the population (e.g., race/ethnicity, income). εi is 
the random error.

Assuming utility-maximizing behavior and εi iid 
(independent and identically distributed), extreme 
value distributed leads to the logit probability of 
choosing alternative i:

The survey responses are used to make infer-
ences on the coefficients β. This is performed by 
maximizing the log-likelihood of the sample over 
the unknown coefficients. Variables that should be 
statistically tested for inclusion in the model will 
include all attributes and all levels of each attri-
bute; respondent characteristics such as race/ 
ethnicity, age, sex, and income; appropriate inter-
action variables if these were included in the 
design. Other variables that could affect patient 
choices should also be considered as covariates in 
the analysis, such as a patient’s familiarity with the 
service in question.

The sign of a statistically significant coefficient 
provides a decision maker with information about 
the effect of an attribute. A positive coefficient sug-
gests that improved effectiveness as an attribute of 
the recommendation would make the program 
more attractive. Furthermore, the ratio between 
two coefficients can provide information about the 
trade-off, or marginal rate of substitution, between 
the two corresponding variables. For example, the 
ratio of the coefficient for benefit to the coefficient 
for cost represents the willingness to pay for a par-
ticular level of benefit. Results from a DCE survey 
can also quantify how an individual’s value of 
effectiveness of an intervention compares with, for 
example, having a fast turnaround time. The 
results can provide additional information on 
which programs are likely to provide the most 
value to patients and clues on how to improve 
participation by aligning program characteristics 
with patient preferences.

In the past, the results of DCEs have been used 
to place the attributes in relative order of impor-
tance according to the size of the coefficient. 
Analysts have also attempted to compare the results 

PðiÞ= expðbXiÞP
j=A;B;C

expðbXiÞ
:
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from DCEs conducted in two populations by 
directly comparing the size of the coefficients. Both 
these approaches are problematic because they do 
not make allowances for the scale parameter.

The analytic approach described above uses 
standard discrete choice methods. Advanced dis-
crete choice methods can be used to both (a) 
improve the statistical efficiency of the coefficient 
estimates (by capturing serial correlations over 
multiple responses from the same individual) and 
(b) capture unobserved heterogeneity through esti-
mation of random coefficients.

Future Research

Future research opportunities, some of which are 
under way, include methodological issues such as 
identifying optimal design sets, including risk as an 
attribute, understanding potential bias in using the 
cost attribute to estimate willingness to pay, esti-
mating individual preferences, accounting for het-
erogeneity in preferences, and measuring the 
external validity of DCEs.

Lisa Prosser and Katherine Payne

See also Utility Assessment Techniques; Willingness to Pay
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Discrete-event simulation

Discrete-event simulation (DES) is a very flexible 
modeling method that can be used when the 
research question involves competition for 
resources, distribution of resources, complex inter-
actions between entities, or complex timing of 
events. The main advantage and disadvantage of 
DES is its large but constrained modeling vocabu-
lary. That is, though there is more to learn ini-
tially, there is more freedom regarding the kinds 
of systems one can model.

DES was originally developed in the 1960s to 
model industrial and business processes, finding its 
first home in industrial engineering and operations 
research. Since then, DES has been used to gain 
insight into a wide range of research and business 
questions. Because of its unique strengths, DES 
began to be applied to healthcare problems in the 
mid-1980s.

Since its introduction, DES has been used to 
examine a broad array of healthcare and health-
care-related problems. Areas in which it has been 
applied have been mental health; disease manage-
ment; infectious disease; disaster planning and 
bioterrorism; biology model and physiology; can-
cer; process redesign and optimization in laborato-
ries, clinics, operating rooms, emergency services, 
healthcare systems, and pathways of care; geo-
graphic allocation of resources; trial design; policy 
evaluation; and survival modeling. DES is often 
the preferred simulation method in healthcare 
when (a) there is competition for resources, 
(b) systems are tightly coupled, (c) the geographic 
distribution of resources is important, (d) informa-
tion or entity flow cannot be completely described 
a priori, (e) the timing of events may be asynchro-
nous or cannot be modeled on a fixed clock, and 
(f) entities in the system require memory.

Simulation Modeling

In general, models allow researchers to explicitly 
explore the elements of a decision/problem and 
mediate understanding of the real world by render-
ing it comprehensible. Simulation modeling is any 
activity where the actual or proposed system is 
replaced by a functioning representation that 
approximates the same cause-and-effect relationship 
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of the “real” system. Simulation allows researchers 
to generate evidence for decision making or to 
develop understanding of underlying processes in 
the real world when direct experimentation (due to 
cost, time, or ethics) is not possible. Experimentation 
with simulation models is performed through sensi-
tivity analyses, where the parameters of the system 
are varied, or through what-if experiments, where 
the number or types of resources of the system are 
varied.

Decision trees and Markov models have, to 
date, been the most common types of computer 
simulation models used in healthcare. These meth-
ods are used to create highly structured representa-
tions of decision processes and alternative strategies. 
This is done by constraining the formulation of 
these models to a limited vocabulary, essentially 
three building blocks—decision nodes, chance 
nodes, and outcome nodes. The main advantage of 
this type of formulation is that the highly struc-
tured format is relatively transparent and easy to 
interpret. The disadvantage is that the highly struc-
tured framework restricts the types or problems 
that can be articulated, often forcing significant 
compromises on the model and the modeler. With 
over 100 building blocks, DES has a much broader 
vocabulary (than tree models), allowing a broader 
array of problems to be modeled, with fewer com-
promises. This means that though there is more to 
learn initially there, is a greater range of problems 
one can model.

DES models differ from decision trees and 
Markov models in several ways. First, unlike tree 
models, DES allows entities within a system (e.g., 
patients) to interact and compete with each other. 
For example, two or more end-stage liver patients 
may be competing for a newly available donor liver. 
Second, DES allows for more flexible management 
of time than in tree models. Unlike simple trees, 
which handle time in the aggregate, or Markov 
models, which restrict changes in the system to 
fixed time intervals (Markov cycles), in DES, the 
time interval between events can be either fixed or 
treated as completely stochastic. In DES, each inter-
action provokes a change in the state of the system. 
Every interaction of entities with each other or with 
the resources in the system is an event. Every inter-
action changes the state of the entity involved and 
of the system as a whole. The time between events 
may be handled probabilistically, using fixed time 

increments, or both depending on the nature of the 
system being modeled.

There are generally four approaches for manag-
ing events in DES platforms: the process interac-
tion, event-scheduling, activity-scanning, and 
three-phase methods. The differences are in how 
the software reacts to or anticipates interactions in 
the system. Third, every entity in the system can 
have memory. This means that the modeler can not 
only have entities interact but also can have the 
entities carry the memory of the interaction and 
have this information influence future interactions.

Key Features

The key features of a DES model are entities, attri-
butes, queues, and resources. Entities are objects. 
They can move or be static within the system. 
They have the ability to interact with other enti-
ties. They represent persons, places, or things and 
so, metaphorically, act like nouns. The types of 
objects represented are not constrained to physical 
objects. For example, entities may also represent 
packages of information, such as phone calls, 
e-mails, or chemical signals. DES packages have 
been primarily written in object-oriented computer 
programming (OOP) languages, and entities may 
be considered to represent a class of objects.

Attributes are variables local to the entity 
object. This means that entities may carry informa-
tion with them describing, for example, their age, 
sex, race, and health state, acting metaphorically 
as both the memory of the entity and as an adjec-
tive describing the entity. This information may be 
modified during any interaction within the system 
and may be used to determine how an entity will 
respond to a given set of circumstances. In DES, 
much of the information driving changes in the 
state of the model are embedded in the entities 
themselves in the form of attributes. This is in con-
trast to other modeling methods (e.g., trees, 
Markovs), where the information and knowledge 
are embedded in the nodal structure of the model. 
As a result, entities in DES have potentially many 
more degrees of freedom in how they transit the 
system being modeled.

A resource is an entity or object that provides a 
service to a dynamic entity. A service can be 
described as any activity requiring the simultane-
ous presence of the active entity. Providing a  
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service requires time. The number of entities a 
resource can serve simultaneously is the resource’s 
capacity. For example, a bank with a single cashier 
can serve one person at a time. A bank with three 
tellers can serve up to three customers simultane-
ously. A mobile resource, such as a motorcycle, can 
transport 2 persons, whereas a school bus can 
transport 40 people. If a resource is occupied when 
a new entity seeks its use, the new entity must wait 
until the resource is free.

A queue is any place or list in which an entity 
waits for access to a resource. If an entity arrives 
seeking service and the resource is already occu-
pied, it must wait somewhere. Queues have logic. 
For example, the line at a cashier may follow 
first-in/first-out (FIFO) logic, getting on or off an 
airplane may follow last-in/first-out (LIFO) logic, 
and the waiting room in an emergency department 
or the waiting list for a transplant may follow 
highest-value-first (HVF) logic. Queue theory is 
the mathematical study of queues or waiting lists.

Queue Theory

DES explicitly embeds queue theory. The simplest 
queuing model is the M/M/1 (Kendall’s nomencla-
ture), which translates as Markovian interarrival 
time/Markovian process time and one server, or 
M/G/1, which is Markovian interarrival time/ 
general or arbitrary and one server. Simple systems 
such as these may be solved analytically and give 
insight into the behavior of more complex systems 
that cannot be analytically solved. This is impor-
tant because every system from sufficient distance 
may be modeled as an M/M/1 system.

Interarrival rate is the rate of entity arrival (λ) 
(1/λ = mean interarrival time). For example, the 
time between patient arrivals at a clinic may aver-
age 1 patient every 10 minutes. This may be sta-
tionary or nonstationary; for example, patients 
may arrive every 5 minutes around lunchtime. The 
service rate (µ) (1/µ = mean service time) is the rate 
at which the resource/server can process entities. 
The utilization rate (β) is λ/µ. If the average interar-
rival time = 10 minutes and the average service 
time = 7.5 minutes, the average utilization = .75. 
Another way to conceive of utilization is busy time/
total time resource available. For example, if a 
nurse is busy 4 hours out of an 8-hour shift, then 
the utilization rate is .5. If the interarrival rate is 

less than the service rate (e.g., patients are arriving 
at longer intervals than the time required to pro-
cess them), then the system is stable. If entities 
arrive faster than the system can process them, 
then waiting list length rises rapidly. Bottlenecks 
are temporary or permanent disequilibria between 
processing capacity and arrival rate at some point 
in the system—for example, a person calling in sick 
or an out-of-order elevator serving an apartment 
complex. Congestion occurs when a stable system 
has a utilization rate that is very close but slightly 
less than 1; that is, mean process time is very close 
to mean arrival rate (e.g., a tunnel or bridge into a 
major city). These are interesting systems because, 
first, they are very common and, second, they often 
experience large variations in behavior over time. 
Unexpected bottlenecks may occur randomly. 
These systems generally require longer run times to 
estimate expected system behavior. The breaks 
from normal behavior may be more interesting 
than the typical system behavior.

Flow time is the time from the moment an entity 
enters a system to the time the entity exits. The 
average flow time for a simple system may be 
described as ((σ2

serverλ + β2λ)/2(1– β)) + µ,, where 
σ = standard deviation of process time, µ = mean 
process time, and λ = arrival rate. The average wait 
time is the flow time number minus µ. The average 
number in queue is β2 (1+ µ2σ2

server)/2(1–β).

Measures of Performance

In addition to the standard outputs, such as quali-
ty-adjusted life years and cost, DES also provides 
operational outcome measures, such as through-
put, utilization, flow time, and wait time. Flow 
time is usually defined as time from entry into the 
system to time of exit. Wait time is usually defined 
as time from entry into the system to time of 
receipt of service. Throughput is usually defined as 
total system production over measurement period. 
Utilization is usually defined as total busy time of 
a resource over total time resource available. 
Queue theory allows researchers to predict or 
approximate these measures.

Software

There are many software packages available for 
conducting DES. However, most of these are  
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custom built for specific purposes. The Institute for 
Operations Research and the Management Sciences 
provides an extensive list of vendors on its Web site. 
Currently, some of the most commonly used gener-
al-purpose DES packages are GPSS, Arena/SIMAN, 
AutoMod, Extend, ProModel, Simu18, and Witness. 
There is also freeware available on the Internet, 
although these tools generally require a higher 
degree of computing skill to use.

James Stahl

See also Decision Trees, Construction; Markov Models
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Discrimination

In statistics, discrimination is the ability of a pre-
diction (judgment scheme, statistical model, etc.) 
to distinguish between events and nonevents (or 
cases from controls, successes from failures, dis-
ease from nondisease, etc.). In the simplest form, 
a prediction scheme focuses on a single event with 
two possible states and assigns some estimate of 
the chance that one state will occur. This predic-
tion comes from the set of cues and other factors, 
both measurable and immeasurable, available to 
the researcher.

Whether it is meteorologists forecasting the 
weather, business analysts predicting the rise and 
fall of the stock market, bookmakers predicting 
the big game, or physicians diagnosing disease, 
predictions have some degree of “correctness” 
relative to the actual occurrence of some unknown 
or future event. In medicine, we commonly predict 
the presence or absence of disease (diagnosis) or 

the likelihood of development of disease progres-
sion (prognosis). Measures have arisen to gauge 
the quality of a given set of predictions and to 
quantify prediction accuracy.

Multiple methods for forming these predictions 
exist, and each has associated strengths and weak-
nesses. One aspect is the “difficulty” that is set by 
nature. Outcome index variance is a measure of 
this difficulty. In addition, calibration addresses the 
relationship of the subgroup-specific predictions to 
the subgroup-specific observed event rate. The part 
of prediction accuracy that is often of highest inter-
est is discrimination. The task of discrimination is 
to determine with some degree of certainty when 
the event will or will not occur. It measures the 
degree to which the prediction scheme separates 
events from nonevents. Discrimination is therefore 
influenced by variation in the predictions within 
the event/nonevent groups. Discrimination strength 
is related to the degree to which a prediction 
scheme assigns events and nonevents different 
probabilities—in other words, how well a scheme 
separates events into distinct “bins” (e.g., alive vs. 
dead or first vs. second vs. third). The sole focus of 
discrimination is this ability to place different 
events into different categories. The labels placed 
on those categories are somewhat arbitrary.

“Perfect” discrimination will occur when each 
appropriate category contains 100% or 0% of 
events. Perfect nondiscrimination, or nil discrimi-
nation, occurs when the group-specific event rate 
is the same as the overall percentage of events (also 
called the prevalence or mean base rate). In this 
case, the prediction scheme is no better than 
chance, and the groups are essentially assigned at 
random. One can, however, do worse than this by 
predicting groups in the wrong direction. However, 
this is, in a sense, still better than nil discrimina-
tion, but it is classifying groups incorrectly. Any 
discrimination that is better than the overall event 
prevalence improves the discrimination. In this 
case, simply reversing the labels of event and non-
event associated with the predictions can improve 
the discrimination.

Discrimination Types

Discrimination can be thought of in three distinct 
ways, each of use in different situations. These 
three types of discrimination arise from thinking 
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of discrimination like types of data. Data can be 
nominal, having no order but simply labels (e.g., 
color or gender). Ordinal data have associated 
order (e.g., mild/moderate/severe) but no measur-
able distance between groups. Continuous data 
have a distance between two groups that can be 
measured. Discrimination can be thought of 
along a similar continuum: nominal, ordinal, and 
continuous.

The simplest conceptualization is to partition 
items into similar event groups—that is, strictly 
labels without an associated order. Separation 
occurs through labeling similar predicted event 
groups with the same name or probability. These 
labels have no rank or relative position. The labels 
have no intrinsic meaning and serve no purpose 
other than to form bins to place the groups into. 
Discrimination is measured by the degree to which 
these bins are used for distinct event types. This 
level of discrimination can be measured when no 
probability measurement is assigned to the groups. 
Observations need only be assigned to differing 
groups with a similar likelihood of event occur-
rence (e.g., Group A vs. Group B, red vs. blue, or 
common vs. rare).

The Normalized Discrimination Index (NDI) is 
typically used to measure this type of discrimina-
tion and is most often found in the meteorological 
literature. A hypothetical example of looking at 
the NDI would be a study comparing the ability of 
two new screening exams to separate cancerous 
lesions from noncancer lesions. All other things 
being equal, it would be favorable to choose the 
new test that has the higher NDI.

Next, one can conceive a measure of rank order 
discrimination—for example, when only rank 
order predictions are available. In this case, the 
available information separates groups into situa-
tions where “A will have a higher event rate than 
B.” With rank order discrimination, a group of 
events can be placed in terms of least to most 
likely. Rank order discrimination occurs when the 
events have predictions consistently higher (or 
lower) than the nonevents. Rank order discrimina-
tion measures the ability of a judge to correctly 
assign the higher likelihood of occurrence when 
the outcome of interest actually occurs. This is 
similar to nominal discrimination, but bins now 
have an associated rank, thus requiring at least 
ordinal predictions.

The area under the receiver operating charac-
teristic (ROC) curve, or C statistic, best measures 
this sort of discrimination and is the most used 
method in medicinal research. The C statistic 
ranges from 0 (perfect discrimination, wrong 
labels) to 1.0 (perfect discrimination), with nil dis-
crimination at .50. Returning to the hypothetical 
example, we would look to the C statistic if instead 
of the lesion being declared cancerous versus non-
cancerous, the screening tests returned a four-level 
scale (e.g., high, medium, low, or no risk of being 
cancerous).

Finally, actual probability estimates used can be 
compared among the groups. By comparing actual 
probabilities, the focus is on a continuous discrimi-
nation, drawing an arbitrary cut-point where sepa-
ration is most distinct. Continuous discrimination 
determines how far apart groups are on a probabil-
ity scale, and it requires continuous predictions to 
be calculated. The difference between the mean 
probabilities assigned to events and nonevents 
defines the slope index (SI), the primary measure of 
this type of discrimination. If we had two screening 
models that returned the exact probability of the 
lesion being cancerous, we could use the SI to com-
pare the models’ discrimination ability.

Discrimination Measurements

Except for the C statistic, these measures are on a 
–1 to +1 scale, where 1 is perfect discrimination, 0 
is nil discrimination, and –1 indicates perfect dis-
crimination with the wrong labels. The C statistic 
can be transformed into Somer’s D by subtracting 
0.5 and doubling the result. Somer’s D is on the 
same –1 to +1 scale as NDI and SI. Unfortunately, 
no rule of thumb exists to define “weak” or 
“strong” discrimination. Since what might be 
“strong” discrimination in one area might be 
“weak” in another, discrimination strength is rela-
tive to the scientific area of interest; thus, this entry 
is reluctant to provide a rule of thumb for good 
versus poor discrimination. Whether a .7 score 
(70% of the total scale) is a strong discrimination 
really depends on the situation under study. In 
areas where little is known and any relationship is 
of value, a smaller amount of discrimination might 
be more important than in an area where much is 
understood and the research is trying to distin-
guish between degrees of perfection.
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Any given prediction scheme will have degrees 
of the three types of discrimination. So long as 
predictions are given in terms of probabilities, for 
example, the results of a logistic regression, all 
three of these measures can be calculated. By creat-
ing ordered bins of probability of some fixed 
width, the SI, Somer’s D, and NDI can all be cal-
culated. This can be especially useful when dis-
crimination ability of one type is capped and the 
goal is to determine tests that are “more perfect,” 
or stronger but on a differing scale. For example, 
when taking a drug from the ideal conditions of a 
randomized clinical trial and using it in day-to-day 
practice, “ROC shrinkage” or a slightly less effec-
tive test is often observed. Examinations of con-
tinuous discrimination can help gauge the degree 
of ROC shrinkage, that is, the reduction in rank 
order discrimination expected to be observed, 
when variation in predictions increases.

Matthew Karafa

See also Calibration; Diagnostic Tests; Logistic 
Regression
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Disease management 
simulation moDeling

Simulation is a general term describing a method 
that imitates or mimics a real system using a 

model of that system. Models vary widely and 
may be a physical object, such as a mannequin 
used in training healthcare providers, or a concep-
tual object, such as a supply-demand curve in 
medical economics. This entry is confined to com-
puter models that are based on a logical or math-
ematical/statistical structure and use the computer 
to examine a model’s behavior. Models can repre-
sent various types of healthcare systems that are 
engaged in disease management of patients, allow-
ing, for example, examination and comparisons of 
alternative clinical decisions for patient care, 
insurance coverage policies, or the processes for 
delivering safe, effective, and efficient preventive 
or therapeutic care.

The best practices for disease management use 
evidence-based medicine, such as the outcomes 
from observational and experimental human stud-
ies, including clinical trials. However, such studies 
are not always possible and may be impractical. 
Consider, for example, studies that seek to deter-
mine the most effective (balancing risks and bene-
fits) and cost-effective (balancing costs and 
effectiveness) strategies for colon cancer screening. 
An effective strategy might include ignoring small 
polyps in low-risk people, but a prospective human 
study that includes such a component might never 
be approved. Determining the best age to initially 
screen for colon cancer would require an experi-
ment that tested perhaps 25 different ages. 
Determining the frequency and type of follow-up 
testing based on a person’s family history, biologi-
cal and social profile, and past test results, includ-
ing the size and type of past polyps, would require 
such a large study over such a long period of time 
as to be essentially impossible. In engineering and 
in the physical sciences, computational models 
have been frequently used to complement and to 
substitute for direct experimentation.

Key Components of Simulation Models

Simulation models can be used to integrate evi-
dence from observational and experimental human 
studies and extend insights into the consequences 
of different disease management strategies. The 
fundamental concept involves constructing a model 
of the natural history of the disease in an individual 
patient from a specific patient group. The model 
can be simulated on the computer to produce the 
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experience of many patients with this disease over 
their lifetimes. Then the model is altered to repre-
sent a medical strategy of care that includes an 
intervention, such as a screening test, a diagnostic 
test, medical therapy, or a surgical procedure. The 
population of patients with the intervention is 
simulated using the new model, and the results for 
the new model are compared with the results from 
the baseline model. Statistical comparisons can 
readily be made across myriad clinical strategies.

Validating the Simulation Model

A model is a representation of reality, not real-
ity itself. As a representation, it attempts to repli-
cate the input and the essential logical structure of 
the real system. A valid model can be exercised and 
the results inferred to the real world being studied. 
Consider Figure 1.

Here, the real world is the experience of real 
patients. The modeled world is the simulated expe-
rience of those patients. In addition to the proper 
representation of the logical and temporal rela-
tionships among the patients and their disease and 
the accurate description (including higher-order 
moments beyond the mean) of the probabilities 
of events and the importance of the outcomes 
of the various events, a third important key to 
any successful modeling activity is its validation. 
For purposes of assessing strategies for disease 

management, construct validity is supported by 
including model elements, relationships, and data 
derived from the published literature and assessed as 
appropriate by clinical experts. Criterion-based valid-
ity, comparing a model’s output with real-world data 
when input conditions are held similar, provides 
significant assurance of the overall validity of the 
model for the purposes for which it is intended.

Notably, all models have limitations in their 
ability to represent the totality (complete detail) of 
actual patients or systems of care. Nonetheless, the 
simulation model should ideally represent patient- 
and/or system-level experiences that are indistinct 
from real patients or systems of care. For example, 
when computer-generated (simulated) histories are 
compared with a set of real patient histories (at the 
same level of detail), physicians (or other medical 
personnel) should not be able to tell them apart. 
Ultimately, the level of detail should depend on the 
questions being asked of the model, and sufficient 
detail should be included to allow model valida-
tion and provide for useful results.

Performance Measures From the Simulation

The amount of detail in a disease management 
simulation model is a direct reflection of the pur-
pose for doing the simulation, such as comparing 
health outcomes or healthcare system perfor-
mance. For example, the model can record the 

Real
World

Model

Input

Correspondence

Structure

Similarity

Validation

Inference

Figure 1  Relationship of model to real world
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time a simulated patient spends in various health 
states (precancerous, healthy, cancerous, etc.), 
with each health state representing a different level 
of quality of life. A summary estimate from many 
simulated patients of the overall quality-adjusted 
life years (QALYs) can then be computed. Costs 
could be collected as a patient moves through the 
care system and summarized for many simulated 
patients to assist in the assessment of cost-effec-
tiveness. Various healthcare resource utilization 
metrics may also be collected, such as the number 
of screening or diagnostic tests, laboratory proce-
dures, or days of hospitalization. Performance 
measures need to be delineated during the con-
struction of the simulation model so that appropri-
ate data are being collected during execution of the 
model and summarized for analysis.

Data collections relative to performance mea-
sures are implemented in the simulation as patients 
traverse the care system. These performance mea-
sures are generally statistically presented at the end 
of the simulation. By sampling a statistically suffi-
cient number of people, adequate statistical confi-
dence intervals for the averages can be constructed. 
Fortunately, since individual patients are being 
individually simulated, the performance measures 
for the patients provide independent and identically 
distributed observations, which make traditional 
statistical analysis applicable. Advanced statistical 
methods related to statistical design of experiments 
can also be applied to simulation models.

Modeling the Care Cycle

A disease management simulation model should be 
a model of the care cycle for that disease, namely, 

from onset of the disease to eventual resolution or 
death. For example, a woman who died from 
colon cancer may have experienced the medical 
timeline shown in Figure 2.

In this case, two undetected adenomas occur 
(A1 and A2), each of which would eventually 
result in invasive cancer (C1 and C2). Surgery is 
performed to remove the invasive cancer from C1 
at time CO. But because of late detection, she dies 
from this colon cancer at CD, which occurs before 
the second adenoma develops into invasive cancer 
(C2). Had A1 been detected and removed with a 
screening strategy, she would have survived to 
natural death (i.e., from some cause other than 
colon cancer). Each of these occurrences is consid-
ered an “event” since each changes the health sta-
tus of the individual.

A valid model of this “natural history” must 
recognize that almost all the causes for these 
events that affect the timeline need be described 
by random variables. A random variable is a vari-
able whose exact value is unknown but is 
described by a probability distribution or proba-
bilistic process. The time for an undetected ade-
noma to become invasive cancer is an example of 
a “time until” random variable, whereas the inci-
dence of undetected adenomas is a random pro-
cess. Also, note that there is an “order” or 
pathway to the events in that an invasive cancer 
cannot occur without first being an undetected 
adenoma.

So a comprehensive model of the natural his-
tory for this case would include the following: 
(a) incidence of the disease based on an overall 
risk modified by the individual risk, (b) the dis-
ease pathways, (c) the rate and trajectory of 

A1

A1 – Undetected first adenoma
A2 – Undetected second adenoma

C1 – Invasive cancer form A1
C2 – Invasive cancer form A2

CO – Colonoscopy/surgery to remove C1
CD – Cancer death
ND – “Natural” death

A2 C1 C2CO CD ND0

Birth Death

Figure 2  Medical timeline for a colon cancer death
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progression, (d) the state and progress of the 
end disease, and (e) the time until natural death. 
Corresponding to the intervention (e.g., a screen-
ing strategy), the model changes would poten-
tially alter any of the processes to produce 
longer life or more quality-adjusted life years or 
different costs in relation to quality-adjusted life 
years.

Modeling Details

There are several possible approaches to model-
ing these kinds of disease processes. One approach 
would be a state-based model, such as a Markov 
process. The modeling approach would identify 
patient states and the potential transitions between 
states. Figure 3 is an example of a Markov model.

Here, the “ovals” represent states relative to 
cancer, and the “arrows” represent the possible 
transitions between states at fixed points in time. 
Transitions are usually probabilities and may be a 
function of patient characteristics, such as age, 
gender, and genetic profile. The arrows that are 
directed back to the same state indicate that one 
possible transition is to remain in the same state. 
An alternative is to model “time in state” as a ran-
dom variable. If the arrows represent transition 
probabilities, then the total probability “out” for 
each state must sum to 1.

Markov models are usually used to compute 
change in the state of a particular population. 
Time is incremented, and the transitions are 
applied, yielding populations in different states. 

For example, if 100 people start with no cancer, 
then after one time step, some people may move to 
the “Death” state, while others may move to the 
“Local cancer” state. Yet, depending on the prob-
abilities, most will remain in the “No cancer” 
state. When a Markov model is used to model 
individual experiences, the simulation must be 
manipulated to employ tracker variables to report 
the events that a patient has suffered over time. In 
general, when the model employs random vari-
ables to describe state transitions and time-in-state 
variables, the simulation is called a Monte Carlo 
simulation. One of the popular uses of Monte 
Carlo simulations is in probabilistic sensitivity 
analysis, in which the parameters of a decision 
model are represented by random variables and 
the decision model is examined by sampling from 
these uncertain parameters.

A generalization of the Monte Carlo simulation 
model is the discrete-event simulation. Discrete-
event simulations typically focus on the experi-
ences of individuals throughout a process (such as 
healthcare delivery) and statistically aggregate the 
individual experiences to a population at risk. The 
description of a discrete-event simulation begins 
with the identification of events. Events are points 
in time when the individual changes health state—
namely, when a patient experiences something that 
moves him or her from one state to another. The 
simulation operates by maintaining a calendar of 
future events, removing one event at a time, updat-
ing time to the time of that event, and executing all 
the processes associated with that event. Execution 

Local cancerNo cancer Stage 1

Stage 2MetastaticDeath

Figure 3  A Markov model
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of these processes may add new events to the cal-
endar of future events. What makes a discrete-
event simulation most flexible is that it deals with 
only the immediate event. The immediate event 
may change other potential future events, so that, 
for example, more than one adenoma can be rep-
resented in the colon and each has its own charac-
teristics. Diseases with multiple precursors and 
multiple consequences are readily included in the 
model. A discrete model can be visualized as an 
event diagram, as shown in Figure 4.

In this diagram, the “boxes” represent events, 
while the arrows represent the event-scheduling 
requirements. For example, suppose a “Nonvisible 
adenoma” event occurs. From this event, three pos-
sible new events are scheduled: (1) possibly another 
nonvisible adenoma event, (2) an advanced ade-
noma event if the progression type is progressive, 
and (3) a cancer event when the progression type is 
progressive or if the cancer is immediate. Note that 
an event graph is not a flowchart, since it only 
schedules future events. Furthermore, the time 
when a future event is scheduled may be described 
by a random variable. Thus, time to the next event 
is also part of the “arrow.” It is the scheduling of 
future events that distinguishes the discrete-event 
simulation from its Monte Carlo counterpart.

Choosing to Do a Simulation

Simulation modeling provides a very flexible and 
powerful method to represent the evolution of dis-
ease and the management of its treatment. However, 
part of the power of the technique is derived from 

the detailed data input requirements, which is also 
a challenge when using the method. While a simu-
lation of the natural history of a disease may 
employ local and national databases, it is often the 
case that critical information related to the sto-
chastic nature of the disease and treatment process 
must be estimated or inferred from experience and 
nominal group or survey techniques.

Disease management simulation models pro-
vide a viable method to synthesize the complex 
natural history of a disease replete with the sto-
chastic and statistical elements that describe real 
experiences. Interventions in the process make it 
possible to consider alternative management 
choices quantitatively.

Stephen D. Roberts and Robert S. Dittus

See also Discrete-Event Simulation; Markov Models
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DistriButions: overview

In medical decision making, distribution functions 
are used for two main purposes. The first is to 
model variability in data at the individual obser-
vation level (often subjects or patients). The sec-
ond is to model uncertainty in the parameter 
estimates of decision models.

Distributions for Modeling Variability

Distributions that are used to model variability 
can be either discrete or continuous. Examples of 
discrete distributions include the binomial distri-
bution, commonly used to model the occurrence 
or not of an event of interest from a total sample 
size, and the Poisson distribution, commonly used 
to model counts of events. Examples of continu-
ous distributions that are used to model data vari-
ability are the normal distribution and gamma 
distribution. The modeling of variability is par-
ticularly important for discrete-event simulation 
(DES) models, which are often employed to look 
at service delivery methods that involve queuing 
problems. For example, patients might be assumed 
to arrive at an emergency room and queue up to 
see the receptionist before waiting to see a physi-
cian. Arrival times could be modeled as random 
while following an underlying exponential distri-
bution, and different methods of organizing the 
procedures for receiving and attending to patients 
could be modeled to maximize throughput and 
minimize waiting time. More generally, individual 
patient simulation models describe medical deci-
sion models that model an individual’s pathway 

through disease and treatment. Monte Carlo sim-
ulation is typically used to represent the stochastic 
nature of this process and is termed “first-order” 
simulation when the focus is on variability in the 
patient experience rather than uncertainty in the 
parameters.

Distributions for Modeling  
Parameter Uncertainty

The use of probability distributions to represent 
parameter uncertainty in decision models is 
known as probabilistic sensitivity analysis. 
Distributions are chosen on the basis of the type 
of parameter and the method of estimation. 
Monte Carlo simulation is then used to select 
parameter values at random from each distribu-
tion, and the model is evaluated at this set of 
parameter values. By repeating this process a 
large number of times, the consequences of uncer-
tainty over the input parameters of the model on 
the estimated output parameters is established. In 
contrast to modeling variability, only continuous 
distributions are used to model parameter uncer-
tainty. Monte Carlo simulation used in this way 
is termed “second order” to reflect the modeling 
of uncertainty of parameters. Probability param-
eters are commonly modeled using a beta distri-
bution, since a beta distribution is constrained on 
the interval 0 to 1. Parameters such as cost of 
quality-of-life disutility, which are constrained to 
be 0 or positive, are often modeled using the log-
normal or gamma distributions since these distri-
butions are positively skewed and can only take 
positive values. Relative-risk parameters are often 
used as treatment effects in decision models and 
can be modeled using a lognormal distribution, 
reflecting the standard approach to the statistical 
estimation of uncertainty and confidence limits 
for these measures.

Central Limit Theorem

The normal distribution is of particular note for 
two reasons. First, it turns out that many naturally 
occurring phenomena (such as height) naturally fol-
low a normal distribution, and therefore, normal 
distributions have an important role in modeling 
data variability. Second, the central limit theorem is 
an important statistical theorem that states that 
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whatever the underlying distribution of the data, 
the sampling distribution of the arithmetic mean 
will be normally distributed with sufficient sample 
size. Therefore, the normal distribution is always a 
candidate distribution for modeling parameter 
uncertainty, even if the parameters are constrained 
(in technical terms, if there is sufficient sample size 
to estimate a parameter, the uncertainty represented 
as a normal distribution will result in negligible 
probability that a parameter will take a value out-
side its logical range).

Statistical Models

Decision models in the medical arena often include 
statistical models as part of their structure. For 
example, a multivariate logistic regression may be 
used to estimate the probability of an event, or an 
ordinary least squares regression model may be 
used to explain how quality-of-life disutility is 
related to a particular clinical measure. Statistical 
regression models are of interest in that they 
simultaneously assume a distribution for the data 
and for the parameters of interest. For example, 
suppose that a transition probability in a Markov 
model is to be estimated from a survival analysis 
of time to event. A common parametric distribu-
tion for the time-to-event data themselves might 
be a Weibull distribution, which is capable of 
modeling time dependency of the underlying haz-
ard function of the event of interest. However, the 
parameter uncertainty relates to the estimated 
coefficients from the regression of how the (log) 
hazard depends on patient characteristics. Since 
the scale of estimation in survival analysis is the 
log hazard scale and since a multivariate normal 
distribution of regression coefficients is assumed, 
this means that the underlying distribution of any 
particular parameter (coefficient) of the model is 
lognormal.

Bayesian Interpretation

As a brief aside, it is perhaps worth noting that the 
use of parametric distributions to represent uncer-
tainty in decision models underlies the fundamen-
tally Bayesian nature of medical decision making. 
The classical approach to probability does not 
allow uncertainty in the parameters themselves; 

rather, uncertainty relates to the estimation pro-
cess and the likelihood that the true (but unob-
served) parameter takes a particular value given 
the data. The Bayesian paradigm more naturally 
allows distributions to be chosen to reflect not 
only the data (equivalent to the frequentist data 
likelihood) but also the parameter itself.

Effective Modeling

Many distributions exist and have potential appli-
cations in medical decision making. Nevertheless, 
the appropriate distribution typically depends on 
the purpose of the model, on the constraints on the 
data or parameter, and on the method of estima-
tion. Careful consideration of the appropriate dis-
tribution is required for effective modeling. 
Typically, such careful consideration will reduce a 
wide set of all possible distributions to a small set 
of candidate distributions for a particular applica-
tion within the model.

Andrew H. Briggs
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DistriButive justice

Distributive justice is the branch of theories of 
justice that is concerned with the distribution  
of available resources among claimants. Theories 
of distributive justice all accept the central claim 
of formal justice that “equal claims should be 
handled equally” but differ in terms of what fea-
tures they accept as relevant to the judgment of 
equality in claims and in outcomes. Considerations 
of distributive justice in health and healthcare are 
important because being healthy is a prerequisite 
for full or equal participation in a whole range of 
social activities, from employment to politics.

Within healthcare, considerations of distribu-
tive justice are especially important in the context 
of priority setting or rationing of healthcare ser-
vices. This raises specific problems because one of 
the main outcomes of interest, namely, health, can-
not be distributed directly. Health is not fungible 
and not detachable from the person who is healthy. 
Many discussions about justice in health therefore 
focus on access to healthcare, on the social deter-
minants of health, or on justice in aggregate out-
comes for groups of claimants. A further issue of 
current debate is whether justice in health or 
healthcare can be detached from much more gen-
eral questions of social justice.

The main approaches to distributive justice that 
are of relevance to medical decision making are 
egalitarianism, maximization, equal opportunity, 
and procedural.

Egalitarianism

The most stringent theory of distributive justice is 
egalitarianism, which simply states that the resource 
in question should be distributed equally among 
claimants. Egalitarianism also implies that if com-
plete equality cannot be obtained, then the distribu-
tion must at least reduce any preexisting inequalities.

In the healthcare context, most egalitarians hold 
that what determines the strength of a healthcare 
claim is exclusively the size of the healthcare need. 
The further from complete health a person is, the 
stronger is his or her claim to healthcare. However, 
the concept of health need probably also contains 
elements related to urgency and to the possibility 
of intervention.

Most people hold egalitarian views of varying 
strengths, and such views probably underlie the 
common idea that healthcare resources should be 
allocated primarily to those who have the greatest 
need, that is, those who are most ill.

Egalitarianism is open to two significant coun-
terarguments: (1) the leveling-down objection and 
(2) a potential conflict between equality and mak-
ing people better off. The leveling-down objection 
is simply that one of the ways of making people 
(more) equal is to take something away from those 
who have the most without redistributing it. In the 
medical context, health equality could be increased 
by taking health away from those who are com-
pletely healthy. A strict egalitarian would have to 
claim that that is an improvement, but that judg-
ment seems highly counterintuitive. A world where 
some people have been harmed and no one bene-
fited cannot be ethically better than the one before 
the change.

The potential conflict between equality and 
making people better off arises in its starkest form 
when one is contemplating a change that will 
improve the situation of everyone while also wid-
ening inequalities. A strict egalitarian would have 
to say that the position after the intervention is 
worse than before, and this is again strongly coun-
terintuitive, at least in cases where the improve-
ment for the least well-off is significant.

Maximization

Another prevalent theory of justice is the theory 
held by consequentialists. For consequentialists, 
what matters is the maximization of good out-
comes from a distributive decision, not whether 
the distribution increases or decreases equality. 
The strength of a claim is thus not based on need 
but on how much good can be generated if the 
claim is met. In the healthcare context, this view 
underlies or is at least compatible with many 
health economic approaches to resource alloca-
tion—for instance, the quality-adjusted life year 
(QALY) approach. This compatibility with health 
economics is partly a result of an isomorphism 
between consequentialism and economic theory in 
their approach to maximization.

Most people hold maximizing views of some 
strength, and this underlies the general belief that 
a healthcare system has a strong, but perhaps not 
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overriding, obligation to allocate resources in 
order to get the largest benefit possible.

The most significant counterarguments to 
understanding distributive justice as the maximiza-
tion of good outcomes are (a) that it is completely 
need independent, unless need is redefined as “pos-
sibility of benefiting,” and (b) that maximization 
may in some cases be achieved by distributive deci-
sions that take away resources from those who are 
a priori worst off and thus increase inequalities.

Prioritarianism

Prioritarianism is a recent revision of the conse-
quentialist maximizing approach, aimed at dealing 
with some of the counterintuitive distributive 
effects of maximization. Prioritarians argue that 
when good consequences are assessed and added 
up, benefits to the worse off should count for more 
than comparable benefits to the better off. This 
will have the effect of strengthening the claims of 
those who are worse off and make it less likely that 
resources are taken away from them to benefit  
others. In the healthcare context, a prioritarian 
approach will thus lead to more resources being 
directed to those who are most ill than nonpriori-
tarian maximization.

Equal Opportunity

A third approach to distributive justice argues that 
what is important is not equality in or maximiza-
tion of outcomes but equality in initial opportuni-
ties or capabilities. If we distribute so that everyone 
has an equal starting point in relation to whatever 
resources are important for success in a given area, 
then we have distributed justly. This implies that 
the claims of those who are worst off in terms of 
opportunities or capabilities should be given prior-
ity. In the healthcare context, this would, for 
instance, imply that public health interventions 
aimed at socioeconomically deprived groups should 
be given priority; and this view also has significant 
implications for the distribution of resources for 
healthcare research.

The main counterargument against the equal 
opportunity approach is that it is often difficult to 
define who is worst off in a given situation because a 
person may be worst off on one parameter and not 
worst off on another. For instance, should priority be 

given to the claim of the poor person with a minor 
illness or the rich person with a major illness?

A further problem arises in the healthcare area 
because there are good reasons to believe that this 
is an area where it is impossible to create equality 
of opportunity. There are people with such severe 
disabilities or illnesses that there is no intervention 
that can improve their health to such a degree that 
they have equal opportunities with respect to 
health status.

The equal opportunities approach is very simi-
lar to an approach toward compensation for bad 
outcomes, including bad health outcomes that 
depend on a distinction between “brute luck” and 
“option luck.” Brute luck refers to those outcomes 
that are not dependent on the choices of the per-
son; it is, for instance, a matter of brute luck 
whether a person is born with a disability. Option 
luck refers to those outcomes that are dependent 
on a person’s prior choices; it is, for instance, a 
matter of option luck if a smoker develops chronic 
obstructive lung disease. On the basis of this dis-
tinction, an argument can be made that persons 
should be compensated for large differences in 
brute luck, but that differences in option luck do 
not justify compensation or redistribution.

Procedural Approaches

It has long been recognized that there are situa-
tions where we know what the just outcome is but 
do not have any easy way of achieving it except by 
devising a procedure leading as close to the just 
outcome as possible. If X children are to share a 
birthday cake they should each get 1/X of the cake, 
but given the practical difficulties in cutting cakes, 
this is difficult to achieve. The procedural solution 
is to let one child cut the cake, knowing that he or 
she will be the last to pick a piece.

In healthcare it has recently been argued that the 
situation is even more complex. Not only do we 
not know how to bring about the just outcome 
(e.g., equal access to tertiary services if we believed 
that that was what justice required), there are many 
cases where we cannot fix the just outcome with 
any degree of precision. We may be able to identify 
clearly unjust distributions of resources but find it 
difficult to identify which of the remaining distri-
butions is the most just. This argument has led 
many to shift focus from further elaboration of the 



412 Disutility

details of the theories of distributive justice to pro-
cedural approaches that can ensure that our dis-
tributive decisions are (a) not clearly unjust and (b) 
legitimate to those who are affected. These devel-
opments have been linked with the more general 
developments of ideas concerning deliberative 
democracy.

A number of different procedural approaches 
have been developed, but all aim at ensuring that 
(a) all stakeholders have a voice, (b) all reasonable 
arguments are put on the table, and (c) the decision 
processes are transparent.

The currently most popular and well-researched 
procedural approach is the so-called accountabil-
ity for reasonableness (or A4R) approach. It has 
four distinct components: publicity, relevance, 
appeals, and enforcement. In conjunction, these 
four components emphasize reason giving and cre-
ate a process with successive opportunities for all 
interested parties to challenge priority decisions.

Publicity is a call for explicitness. Relevance 
entails a requirement for reasonableness in priority 
setting. That is, priority decisions must be made in 
accordance with reasons that stakeholders will 
agree are relevant and adequate. The appeals com-
ponent is an institutional mechanism that provides 
patients with an opportunity to dispute and chal-
lenge decisions that have gone against them. 
Finally, enforcement entails public or voluntary 
regulation of the decision process to ensure that 
the three other components are maintained. Proper 
enforcement of the decisions that are made through 
agreement on fairness will ensure that reasoning is 
decisive in priority setting and not merely a theo-
retical exercise.

Søren Holm

See also Bioethics; Rationing

Further Readings

Daniels, N. (1985). Just health care. Cambridge, UK: 
Cambridge University Press.

Daniels, N. (2000). Accountability for reasonableness: 
Establishing fair process for priority setting is easier 
than agreeing on principles. British Medical Journal, 
321, 1300–1301.

Nozick, R. (1977). Anarchy, state and Utopia. New 
York: Basic Books.

Rabinowicz, W. (2001). Prioritarianism and uncertainty: 
On the interpersonal addition theorem and the 
priority view. Retrieved August 14, 2008, from http://
mora.rente.nhh.no/projects/EqualityExchange/
ressurser/articles/rabinowicz2.pdf

Rawls, J. (1999). A theory of justice (Rev. ed.). Harvard, 
MA: Belknap Press.

Sen, A. (1992). Inequality reexamined. Oxford, UK: 
Clarendon Press.

Temkin, L. S. (1993). Inequality. Oxford, UK: Oxford 
University Press.

Disutility

Where utility reflects the positive value of a health 
state to an individual (its desirability) and is 
expressed as the fraction of perfect health it entails, 
disutility reflects the complement of this fraction 
(its undesirability), 1 minus the utility. Thus, if a 
disability state is assigned a utility of  .85, its dis-
utility, relative to good health, is .15. Disutility is 
mostly used in comparative contexts, where states 
are compared relative to one another. In these 
cases, disutility is the difference in the average util-
ity reported by persons with a given problem com-
pared with those without the problem. An example 
is that of a treatment for menopausal symptoms 
that is 80% effective. If the utility for the health 
state “living with menopausal symptoms” is .6, a 
way to calculate utility with treatment is the fol-
lowing: The disutility of the remaining symptoms 
will be (1 – Effectiveness of treatment) × Disutility 
from symptoms = .20 ×  .40 = .08, and thus, the 
utility for “living with the remaining menopausal 
symptoms” will be 1 – .08 = .92.

Expected Utility Theory

The utility of a health state is a cardinal measure 
of the strength of an individual’s preference for 
particular outcomes when faced with uncertainty, 
on a scale from 0 to 1, where 0 generally reflects 
death and 1 reflects perfect health. A distinction is 
usually made in the decision-making literature 
between utilities, or strengths of preferences under 
uncertainty, and values, strengths of preferences 
under certainty. This concept of utilities dates back 
to 1944, when John von Neumann and Oskar 
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Morgenstern developed a normative model for 
decision making under uncertainty—expected util-
ity theory. This model calculates the utility that 
can be expected from each option in terms of the 
desirability of its outcomes and the probability 
with which they will occur. For most decisions in 
healthcare, outcomes may occur with a certain 
probability, and the decision problem is thus a 
problem of choice under uncertainty. Decision 
analysis is indeed firmly grounded in expected 
utility theory, and the most common use of 
utilities is in decision analyses. In decision analy-
ses, the strategy of preference is calculated by com-
bining the utilities of the outcomes with the 
probabilities that the outcomes will occur.

Anne M. Stiggelbout
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Dominance

In cost-effectiveness analyses, costs and effective-
ness of different decision alternatives are estimated. 
They can then be presented in the two-dimensional 
cost-effectiveness plane (Figure 1).

A decision alternative A is called strongly domi-
nated (or dominated) by a different alternative B if 
the costs and effectiveness of Alternative B are at 
least as favorable as those of Alternative A:

EffectA ≤ EffectB and CostA ≥ CostB,

with strict inequality for either effectiveness or costs. 
In Figure 1, all alternatives in the light gray top-left 
area are strongly dominated by Alternative B.

A

C
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s

Effectiveness

B

D

C

Figure 1  Cost-effectiveness plane

Note: The light gray area is (strongly) dominated by Alternative B. The dark gray area is weakly dominated by Alternatives 
C and D together.
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Decision alternative A is called weakly domi-
nated by two different alternatives C and D if 
Alternative A is strongly dominated by a mixture 
of those alternatives C and D:

EffectA ≤ α × EffectC + (1 − α) × EffectD

and

CostA ≥ α × CostC + (1 − α) × CostD,  
for some 0 ≤ α ≤ 1,

with strict inequality for either effectiveness or 
costs. Mixtures can be thought of as if one alterna-
tive is applied to a fraction α of the patients and 
the other to a fraction (1 − α) of the patients. All 
such mixtures together form a straight line seg-
ment between alternatives C and D. In Figure 1, all 
alternatives in the dark gray area are weakly dom-
inated by Alternatives C and D.

The main difference between strong dominance 
and weak dominance is illustrated by the dashed 
triangle in Figure 1. Decision alternatives in this 
triangle (like Alternative B) are not strongly domi-
nated by Alternative C or by Alternative D, but 
they are weakly dominated by Alternatives C and 
D together. Strong and weak dominance are also 
referred to as strict and extended dominance.

Preference

Dominance is closely related to preference. Which 
alternative is preferred, in general, depends on 
the properties of the utility function on effective-
ness and costs. In Figure 1, Alternative A has 
lower effectiveness and higher costs than 
Alternative B. Nevertheless, an individual is free 
to prefer A over B. However, it is more reason-
able to assume that higher effectiveness and 
lower costs are preferred. The utility function 
U(⋅) is then strictly increasing in effectiveness and 
strictly decreasing in costs:

EffectA < EffectB ⇒ U(EffectA) < U(EffectB),

CostA > CostB ⇒ U(CostA) < U(CostB).

If Alternative A is strongly dominated by 
Alternative B, then this strict monotonicity of the 
utility function is sufficient for B to be preferred 
over A:

U(EffectA, CostA) ≤ U(EffectB, CostA)  
≤ U(EffectB, CostB),

with strict inequality for either of the inequalities.
For weak dominance, strict monotonicity of the 

utility function is not sufficient to determine pref-
erence. For example, in Figure 1, Alternative B 
may be preferred over Alternatives C and D. A 
common stronger assumption is that the utility 
function is linear in costs and effectiveness—that 
is, the utility function equals the net benefit:

U(Effect, Cost) = WTP × Effect − Cost,

where the positive WTP stands for the willingness 
to pay in monetary terms for one unit of effective-
ness. For this linear utility function, a weakly 
dominated alternative cannot be preferred; if A is 
weakly dominated by Alternatives C and D, then A 
is less preferred than the hypothetical mixture (due 
to strong dominance) and the hypothetical mixture 
is not more preferred than the better of alternatives 
C and D (due to the linearity of the line segment 
and the utility function). This reasoning holds 
regardless of whether the decision alternatives C 
and D are actually divisible into mixtures. 
Therefore, weakly dominated alternatives are not 
the most preferred in standard cost-effectiveness 
analyses (i.e., with linear utility functions and 
positive WTP).

Example

Consider the numerical example presented in Table 
1 and Figure 2. Alternative A is strongly dominated 
by B, C, and D because A has lower effectiveness 
and higher costs. Therefore, Alternative A is not 
preferred if the utility function is strictly increasing 
in effectiveness and decreasing in costs.

Alternative B is not strongly dominated by any 
of the alternatives. If the utility function were 
nonmonotone, then Alternative B could be the 
most preferred alternative. However, Alternative 
B is weakly dominated by Alternatives C and D, 
since it is above the line segment through C and D. 
The cost-effectiveness ratio of Alternative D com-
pared with Alternative C is ($20,000 − $5,000)/ 
(.8 – .3) = $30,000 per QALY. For WTP below 
$30,000 per QALY, B may be preferred over D 
but B is not preferred over C. For WTP above 
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$30,000 per QALY, B may be preferred over C 
but B is not preferred over D. Regardless of the 
WTP, B is not preferred over both C and D. 
Therefore, Alternative B is not the most preferred 
alternative if the utility function is linear (with 
positive WTP per QALY).

Alternatives C, D, and E are neither strongly 
nor weakly dominated by any of the alternatives. 
Even if the utility function is linear, depending on 
the WTP, C, D, or E can be preferred. The cost-
effectiveness ratios for Alternative C compared 
with D and for Alternative D compared with E are 
$30,000 and $150,000 per QALY, respectively. 
Alternative C is preferred for low WTP (up to 
$30,000 per QALY), Alternative B is preferred for 
intermediate WTP (between $30,000 and $150,000 
per QALY), and Alternative C is preferred for high 
WTP (above $150,000 per QALY).

Wilbert van den Hout
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Figure 2  Example of cost-effectiveness analysis results, presented graphically

Table 1  Example of cost-effectiveness analysis results, presented numerically

Decision alternative A B C D E

Effectiveness (in QALYs) .2 .4 .3 .8 .9

Costs $25,000 $15,000 $5,000 $20,000 $35,000

Note: QALYs, quality-adjusted life years.
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Dual-process theory

Dual-process theories of cognition (also referred 
to as “two-system” theories) posit two distinct 
systems of judgment operating in parallel. Dual-
process theories have been described since 1975, 
with a variety of different names for the two proc-
esses. Since 2000, however, the two processes 
have been conventionally referred to as System 1 
and System 2.

System 1 is an intuitive judgement system that 
shares many features with the perceptual system. It 
operates by tacitly encoding and retrieving associa-
tions between perceived cues in the environment. 
System 1 is fast, holistic, and automatic and under-
lies pattern recognition, prototypicality judgments, 
and heuristic processing. Because it is driven by 
associations acquired through experience, it is sen-
sitive to the features of learning context and envi-
ronmental exposure. It is also influenced by the 
emotional state of the judge and the emotional 
content of the judgment.

In contrast, System 2 is a rule-based system for 
forming judgments. It is slow, effortful, and ana-
lytic and applies rules in an emotionally neutral 
manner. When appropriate data are available, 
System 2 yields the most normatively rational rea-
soning, but because it is relatively difficult and 
demanding, it is easily disrupted by high cognitive 
load or time pressure. The figure, reproduced from 

the psychologist Daniel Kahneman’s Nobel Prize 
lecture on dual-process theories, compares the 
attributes of the two judgmental systems and the 
perceptual system.

A key feature of dual-process theories is that 
System 1 and System 2 operate simultaneously and 
in parallel. Because System 1 is considerably faster, 
System 1 judgments typically emerge first and 
serve as additional inputs to System 2. If a System 
1 judgment does not emerge, the judge must resort 
to System 2 alone; similarly, if a lack of time or 
cognitive resources curtails System 2, the judge 
must resort to System 1 alone.

The two systems can interact in several ways. 
When a System 1 judgment has been made, System 
2 may endorse the judgment, may use the System 
1 judgment as an anchor and adjust the judgment 
on the basis of other situational features, or may 
identify the System 1 judgment as incompatible 
with a subjectively valid rule and block it from 
overt expression. Because System 1 processing 
itself (as distinct from the judge’s response) cannot 
be suppressed, judges often feel drawn to the 
System 1 judgment even when they recognize that 
it is incorrect.

Kahneman has illustrated this effect with the 
bat-and-ball problem: “A baseball bat and a ball 
together cost one dollar and 10 cents. The bat costs 
one dollar more than the ball. How much does the 
ball cost?” Most people who hear this problem 
initially conclude that the ball costs 10 cents, but 
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Figure 1  A comparison of the features of the human perceptual system with human judgment Systems 1 and 2

Source: Kahneman, D. (2003). Maps of bounded rationality: A perspective on intuitive judgment and choice. In T. Frangsmyr 
(Ed.), Les Prix Nobel 2002 [The Nobel Prizes 2002]. Stockholm: Almqvist & Wiksell International. © The Nobel Foundation 
2002. Reprinted with permission.
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they realize, after a moment of reflection, that this 
(System 1) answer is incorrect and, in many cases, 
suppress the response in favor of the System 2 
answer (5 cents), which emerges later.

Paul Slovic provides a more distressing example 
of the power of System 1 and the need for System 
2 regulation. He reviews extensive research on 
willingness to provide life-saving interventions and 
argues that because the perceptual basis of System 
1 is attuned to small changes at the margins, it can 
lead to increasing disregard for absolute numbers 
of lives saved. Saving a small number of lives is 
highly valued; saving 10,000 times as many lives 
(as in the case of preventing genocide), while more 
valuable, is intuitively treated as much less valua-
ble than a factor of 10,000.

Dual-process theories posit System 1 as the 
source of heuristics in judgment; when the results 
of such heuristics produce normatively incorrect 
judgments, they are referred to as biases. However, 
Gerd Gigerenzer and colleagues have argued 
extensively for the adaptive nature of “fast and 
frugal” System 1 heuristics. Fuzzy-trace theory 
specifically argues that gist processing (a System 1 
function) represents the apex of the development 
of reasoning.

Alan Schwartz
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Dynamic Decision making

Most real-life decisions occur in multiple stages—
individuals experience a series of actions and their 
consequences over time. Medical decision making, 
in particular, often involves anticipating uncertain 
future consequences where subsequent decisions 
are contingent on (or constrained by) the out-
comes of patients’ earlier choices. There has been 
a great deal of research on the basic principles 
underlying single-stage decision making but very 
little work on multistage decisions. Decision field 
theory has begun to examine many of the princi-
ples underlying multistage decision making and 
could be used to inform real-life choices involving 
both uncertainty and multiple stages.

Decision Field Theory

Most psychological research focuses on static 
decisions in isolation—a single decision followed 
by a single outcome. Dynamic decisions involve a 
sequence of decisions in which the choices and 
outcomes available at a later stage depend on the 
choices and outcomes that occurred earlier. 
Decision field theory tries to quantify such multi-
stage decisions. A typical study asks subjects to 
take an initial gamble, and then they are given the 
option of taking a second gamble; this process is 
repeated.

Subjects are instructed to make three kinds of 
decisions:

 1. A planned decision: Before subjects begin, they 
are asked to predict what they will decide at the 
end of the decision-making task, contingent on 
both winning and losing the initial gambles.

 2. A final decision: This is what the subjects 
actually decide once they have gone through to 
the end of the task.

3. An isolated decision: All the initial gambles are 
eliminated so that only the final gamble remains. 
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Subjects are then asked to make the same final 
decision as above but without the experience of 
going through the previous decision-making 
tasks.

The normative procedure for selecting a strat-
egy for these three decisions involves three consis-
tency principles: dynamic, consequential, and 
strategic. The first requires the decision maker to 
follow through with his or her plans to the end, the 
second requires the decision maker to focus solely 
on future events and final outcomes given the cur-
rent information available, and the third is the 
conjunction of the first two.

Decision field theory predicts (and has found 
that) there will be

 1. a difference between planned and final 
decisions—a violation of dynamic consistency, 
that is, the plan for action differs from the final 
choice taken;

 2. no difference between isolated and final 
decisions—no violation of consequential 
consistency; and

 3. a difference between planned and isolated 
decisions—a violation of strategic consistency.

Dynamic Inconsistency

Two types of dynamic inconsistencies can be 
found: (1) Subjects who planned to take the second 
gamble but then won the second gamble (i.e., 
experienced a gain) become risk-averse and reverse 
their original plan; that is, they now want to play 
it safe and keep their winnings, so they choose not 
to take the gamble. (2) Subjects who planned not 
to take the second gamble but then lost the second 
gamble (i.e., experienced a loss) become risk seek-
ing and reverse their original plan; that is, they 
now want to recoup their losses, so they are willing 
to take the risk and gamble.

The explanation for this reversal of preference 
was a change in the reference point. The planned 
decision was made against a reference point of 
zero (i.e., nothing gained or lost yet), but the final 
decision was made by incorporating the outcome 
of the first gamble. Consequently, the reference 
point was shifted such that the gamble seemed 
more or less risky, as shown above.

An alternative explanation is that the planned 
decision was made in a “cold” or rational state, 
whereas the final decision was made during the 
actual decision-making task, when subjects were in 
a “hot” or emotional state. Therefore, the final 
decision may be based more on immediate hedonic 
and affective processes, leading subjects to make a 
different choice in the “heat of the moment” from 
what they had planned to do.

Consequential Consistency

The consequential consistency finding is sup-
ported by the goal-gradient hypothesis. This 
hypothesis comes from approach-avoidance theo-
ries, which state that a decision anticipated from a 
distance feels very different from the decision one 
experiences as one gets closer to actually having to 
make a choice. Therefore, the hypothesis argues 
that the decision maker faces identical conse-
quences from the same distance in both the final- 
and the isolated-decision conditions and, therefore, 
the two choices should also be identical.

Multistage Medical Decision

An important multistage medical decision individ-
uals commonly face today involves cancer screen-
ing tests. Prostate and breast cancer are the most 
commonly occurring cancers in U.S. men and 
women and the second leading cause of cancer 
deaths. However, both tests are surrounded by 
controversy.

Prostate-specific antigen (PSA) testing has led to 
both overdiagnosis of and unnecessary treatment 
for prostate cancer. It is estimated that 75% of 
early-stage prostate cancers detected through PSA 
testing would never have become clinically signifi-
cant. Therefore, men may be exposed to unneces-
sary prostate cancer treatment and suffer from the 
side effects of impotence and incontinence need-
lessly. Even professional organizations disagree 
about whether PSA screening is more beneficial 
than harmful.

Increased mammography screening has qua-
drupled the diagnosis of ductal carcinoma in situ 
(DCIS). Neither the prognosis nor the treatment 
for DCIS is known, and it is not necessarily a pre-
cursor to invasive breast cancer. However, this 
diagnosis has led some young women to undergo 
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prophylactic mastectomies that are potentially 
unnecessary in order to avoid developing cancer.

Therefore, the multistage decision individuals 
face for these screening tests is (a) whether to have 
prostate or breast cancer screening tests and, if so, 
when to have them done; (b) whether to undergo 
an invasive diagnostic procedure after a potentially 
false-positive test result; and (c) how to proceed if 
something is detected that may not lend itself to 
standard treatment options. A dynamic decision 
theory could be used to guide patients through this 
process.

Strategies for Success

According to dynamic decision theories, two tasks 
are crucial for success: goal setting and informa-
tion collection. The most accomplished dynamic 
decision makers are able to integrate the goals of 
the decision-making task with the current state of 
the environment in order to identify tactics that 
have worked in analogous situations from their 
past. If no such situations exist, they are able to 
generate strategies using problem-solving tech-
niques. Second, they systematically gather infor-
mation relevant to achieving their goals. Third, 
they continually evaluate their advancement 
toward their goals.

Those who are less successful tend to shift from 
one goal to another or focus too narrowly on a 
single goal. To improve performance, dynamic 
decision theories suggest three strategies. First, con-
strain information processing. This may be accom-
plished by asking patients to focus on the next two 
or, at most, three goals rather than thinking about 
everything at once, which is the tendency of many 
newly diagnosed patients. Second, encourage a 
more focused information-gathering strategy, per-
haps by pointing patients toward specific educa-
tional materials or online resources, as the nearly 
endless amount of medical information available 
both in print and online can quickly become  
overwhelming.

Finally, if patients do not have relevant past 
experiences to inform their decision making, intro-
duce them to more experienced others from whom 
they can learn, such as former patients who have 
successfully completed their treatment. This may 
help patients envision what it is like to face the 
decisions they are contemplating and to experience 

the outcomes. By doing so, they may be better able 
to anticipate the “hot” or more emotional state of 
mind they are likely to be in as they get closer to 
making their treatment choice.

Julie Goldberg
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Dynamic treatment regimens

A dynamic treatment regimen (DTR) is a sequence 
of individually tailored decision rules that specify 
whether, how, and when to alter the intensity, type, 
or delivery of treatment at critical decision points in 
the medical care process. DTRs operationalize 
sequential decision making with the aim of improv-
ing clinical practice. Ideally, DTRs realize this goal 
by flexibly tailoring treatments to patients when 
they need it most, thereby improving the efficacy 
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and effectiveness of treatment and reducing inap-
propriate variance in treatment delivery. DTRs can 
be used to develop clinical guidelines, including 
clinical decision support systems. All the following 
are types of DTRs: (a) structured treatment inter-
ruptions in the HIV/AIDS literature; (b) clinical 
strategies, treatment strategies, or treatment 
algorithms in the psychiatric disorders literature; 
(c) adaptive therapy or multiple-treatment courses 
in the cancer literature; and (d) adaptive treatment 
strategies, stepped-care models, or continuing-care 
models in the alcohol and other substance abuse 
treatment literature. A variety of statistical meth-
ods exist to inform the development of DTRs.

Structure

A DTR consists of four key ingredients. The first 
ingredient is a sequence of critical decision points 
in the medical care process. These decision points 
may represent time in the form of patient visits to 
the clinic (first visit, second visit, and so on); or if 
critical decisions are to be made on a monthly 
basis, the decision points may represent calendar 
time in months since disease diagnosis. More gen-
erally, though, the sequence of critical decision 
points is not required to be aligned with a pre-
specified set of discrete time points. For example, 
critical decision points may, instead, be defined by 
patient events, such as the point at which a patient 
fails to respond to prior treatment.

The second ingredient is a set of one or more 
treatment options at each critical decision point. 
Possible treatment options may be switch medica-
tion, augment medication, or continue medication; 
or there may be more complex options, such as 
any of the three-way combinations of treatment 
type (medication, physical therapy), treatment 
intensity (high, medium, low), and treatment deliv-
ery (specialty clinic, general clinic). The set of 
potential treatment options may differ at different 
decision points. For example, initially, the empha-
sis may be on treatment suitable for an acute epi-
sode of the illness, whereas subsequent decisions 
may involve options for intensifying or augment-
ing treatment for nonresponding patients or 
transitioning to lower-intensity treatments or mon-
itoring for responding patients.

The third ingredient is a set of one or more tai-
loring variables at each critical decision point. The 

tailoring variables form the set of key measures 
that will determine subsequent treatment. For 
example, tailoring variables may include patient 
severity, number and type of comorbidities, side 
effects resulting from prior treatment, treatment 
preference, adherence to prior treatment, and, per-
haps most important, response to prior treatment. 
Tailoring variables can also be summary measures 
over the full course of prior treatment; for exam-
ple, subsequent treatment could depend on the rate 
of improvement in symptoms during prior treat-
ment or the pattern of nonadherence to prior treat-
ment. The set of tailoring variables may differ at 
different time points; for instance, history of 
comorbidities or genetic background may be used 
to choose from the options for initial treatment, 
while the choice of subsequent treatment might be 
based on response to the present treatment and the 
type of present treatment.

The final ingredient in a DTR is the specifica-
tion of a decision rule at each of the critical deci-
sion points. For every patient and at each time 
point, the decision rule inputs values of the tailor-
ing variables and outputs one or more recom-
mended treatments from the set of treatment 
options. Importantly, the decision rules specify 
recommended treatment(s) for every feasible level 
of the tailoring variables. In the context of treat-
ment for alcohol abuse, for example, a decision 
rule may state that as soon as the patient incurs 2 
or more heavy drinking days following initiation of 
the medication, augment the medication with one 
of a set of cognitive behavioral therapies; other-
wise, if the patient incurs less than 2 heavy drink-
ing days during the 8 weeks following initiation of 
the medication, then keep the patient on medica-
tion and provide telephone disease monitoring.

The full set of decision rules over all of the 
critical decision points, taken together, constitutes 
one DTR. From the patient’s point of view, a DTR 
is a sequence of treatments over time. This sequence 
of treatments is dynamic and patient specific 
because it is tailored in response to the patient’s 
variable and evolving clinical status.

Clinical Settings

DTRs can be used to enhance clinical practice in 
any clinical setting in which sequential medical 
decision making is essential for the welfare of the 
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patient. In settings in which treatment response is 
widely heterogeneous and/or patients are insuffi-
ciently responsive to any one treatment, clinicians 
must often consider a series of treatments to 
achieve a desired response. Furthermore, in set-
tings in which relapse rates are high, treatment 
decisions during the acute phase of the disease are 
often followed by decisions concerning the best 
suitable treatment to prevent subsequent relapse. 
The treatment of many chronic disorders such as 
cardiovascular disease, HIV/AIDS, cancer, diabe-
tes, epilepsy, obesity, substance abuse disorders, 
mental disorders, and behavioral disorders require 
these types of sequential decisions. Furthermore, 
since chronic disorders are often characterized by 
a waxing-and-waning course, it is important to 
reduce treatment burden by reducing treatment 
intensity whenever possible. DTRs are ideally 
suited for these settings because they can be 
designed to respond over time to the changing 
course of a patient’s illness.

Development

Currently, DTRs are formulated using a combina-
tion of expert opinion, clinical experience, and 
biological/behavioral theory. Either by scientific 
consensus or by relying on more quantitative 
methods (e.g., meta-analyses), scientists using this 
approach rely on summarizing the results of sepa-
rate randomized trials to inform their view about 
DTRs. This strategy does not involve research 
designs or data-analytic methods designed explic-
itly for the purpose of developing DTRs.

A variety of statistical methods currently exist 
that can be used to inform the development of 
DTRs. These methods can be used either with lon-
gitudinal data arising from specialized trials 
designed to inform their development or with 
existing longitudinal data sets. These tools are used 
in conjunction with clinical experience and bio-
logical/behavioral theory to arrive at recommended 
DTRs for implementation in clinical practice.

Basic Structure and Sources of Data

Data Structure

To be useful for developing a DTR, a data set 
must have both treatment measures and potential 
tailoring measures (or time-varying covariates) 

observed at each of the critical decision points. In 
addition, the data set should have (possibly time 
varying) measures that define a clinically meaning-
ful primary outcome measure. The choice of the 
primary outcome is crucial because the DTR will 
be developed explicitly to improve (or optimize) 
this outcome variable. In most cases, the primary 
outcome is a summary measure of response to 
treatment over time. For example, the outcome 
variable may be the percentage of time in remis-
sion over the full (dynamic) treatment course, or 
the outcome may involve a measure of functional-
ity or may even be a composite measure involving 
cost and patient burden.

Existing Longitudinal Data

Longitudinal data sets having the characteristics 
described above are commonly collected as part of 
observational studies or can be extracted from 
large medical databases. In addition, longitudinal 
data sets of this type may arise from experimental 
studies. These include intervention studies that 
randomize patients to one of two (or more) single-
shot treatments at baseline and follow them 
repeatedly over time, measuring the actual receipt 
of the assigned treatment and other treatments as 
well as a variety of other outcomes and time-
varying covariates.

One of the primary challenges with using exist-
ing longitudinal data sets is the likely existence of 
unknown or unobserved, fixed or time-varying 
variables that affect both actual treatment receipt 
and the primary outcome. These variables con-
found (bias) the comparisons of different treat-
ment regimens and present an important obstacle 
in data analyses aimed at informing the develop-
ment of DTRs.

Sequential Multiple-Assignment Randomized Trials

Sequential multiple-assignment randomized tri-
als (SMARTs) have been proposed explicitly for 
the purpose of developing new DTRs or refining 
already established ones. The key feature of a 
SMART is that patients are randomized multiple 
times over the course of the trial; that is, they are 
randomized at each critical decision point among 
feasible treatment options. Randomizing patients 
multiple times in this fashion ensures comparabil-
ity among patients assigned to different treatment 
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options at each time point, thereby resolving the 
problem of confounding described earlier.

Statistical Methods

A variety of statistical models and methods are 
currently available that allow researchers to com-
pare the effectiveness of different decision rules, 
examine the effect of different timing and sequences 
of treatments, and discover the important tailoring 
measures for use in a DTR. These methods can be 
used with data arising from a SMART or with exist-
ing longitudinal data sets. They include the marginal 
mean model and the structural nested mean model, 
and adaptations of them; Bayesian methods; meth-
ods to discover DTRs connected with time-to-event 
outcomes; and methods designed explicitly for dis-
covering optimal DTRs. Recently, as well, methods 
and models from computer science, called reinforce-
ment learning algorithms, are emerging as viable 
options for informing the development of DTRs.

Susan A. Murphy and Daniel Almirall
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Economics, HEaltH Economics

Health economics investigates how scarce resources 
are used, or should be used, to satisfy health 
wants. Although in high-income countries 10% or 
more of wealth is spent on healthcare, resources 
are still scarce compared with the potentially 
unlimited want for physical, psychological, and 
social health.

The health market is not a competitive market 
in which price setting resolves differences between 
demand and supply, among others because insur-
ance interferes with the relation between price and 
demand; new healthcare providers are often not 
free to enter the market and patients do not have 
perfect information about their needs. As a result, 
active decision making may be necessary to pre-
vent supply of inefficient healthcare. Health eco-
nomics intends to provide information on the 
economic aspect of such decision making.

Health economics includes several fields such  
as organization, management, finance, and insur-
ance. Most relevant for medical decision making is 
the field of economic evaluation, which investi-
gates whether costs of different medical decisions 
are justified by the value of associated effective-
ness. Economic evaluation is a component of the 
wider research field of health technology assess-
ment, which also includes evaluation of ethical, 
social, and legal aspects. It has its roots in evidence-
based medicine, in trying to derive conclusions 
from explicit and judicious use of the best avail-
able evidence.

Types of Analysis

Economic evaluation in healthcare requires that 
costs and effectiveness of interventions are some-
how measured and analyzed. Different types of 
analysis can be distinguished, depending on how 
costs are related to effectiveness. Two types of cost 
analysis that do not compare decision alternatives 
are cost price analysis and cost of illness analysis. 
Cost price analyses estimate the costs of a particular 
intervention. They are an essential starting point for 
economic evaluations, but by themselves they are 
often only part of the picture. Cost of illness analy-
ses estimate the costs associated with a particular 
illness or condition, without comparing decision 
alternatives. As a result, they are largely irrelevant 
to decision making: How high costs are is not neces-
sarily linked to whether these costs are justified.

For medical decision making, analyses that 
explicitly compare decision alternatives are more 
relevant: cost-minimization analysis (CMA), cost-
consequence analysis (CCA), cost-benefit analysis 
(CBA), cost-effectiveness analysis (CEA), and cost-
utility analysis (CUA). These types of analyses dif-
fer in how costs are compared with effectiveness. 
CMA only looks at which alternative is the least 
expensive, without considering the effectiveness. It 
is therefore only applicable when effectiveness is 
known to be equal for all alternatives, for exam-
ple, when different ways to provide the same care 
are compared. CCA provides a list of both cost 
and effectiveness outcomes, but without explicitly 
combining these outcomes: The overall judgment 
is left to the decision maker. CBA, CEA, and CUA 

E
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do explicitly combine costs and effectiveness, to 
suggest which decision alternative provides best 
value for the money. They differ in how effective-
ness is quantified. CBA measures effectiveness by 
its monetary value, for example, by asking patients 
how much they would be willing to pay for effec-
tiveness. Converting effectiveness to money is 
problematic, but does facilitate a direct assessment 
of whether the value of effectiveness exceeds the 
costs. CEA measures effectiveness in physical 
units, rendering cost-effectiveness ratios such as 
the costs per identified cancer patient, costs per 
prevented death, or costs per gained life year. 
CEAs can be used to compare the relative effi-
ciency of interventions with the same goal, but are 
not useful for a more general framework for eco-
nomic assessment across the wide field of health-
care. For that purpose, CUAs are advocated. 
CUAs are a special case of CEAs, measuring effec-
tiveness in terms of quality-adjusted life years 
(QALYs). QALYs measure the two general goals 
of healthcare: to prolong life and to improve life.

Measuring Value of Effectiveness

Effectiveness of medical interventions can be mea-
sured in many ways. Intermediary outcome mea-
sures, such as cholesterol levels, bone density, and 
cancer recurrence, are relatively easy to measure 
and are essential to understanding how interven-
tions work. However, to assess whether an inter-
vention actually helps improve patients’ health 
requires measures for disease burden, which 
includes both survival and quality of life. In addi-
tion, economic evaluation requires measuring the 
value of improving survival and quality of life.

Key to measuring value in economic evaluations 
is the concept of utility, which is the value of qual-
ity of life at a particular moment in time. Utility is 
measured on a scale anchored at 0 (as bad as 
death) and 1 (perfect health). It may even be less 
than 0 (for quality of life worse than being dead). 
Since utility tries to aggregate the multifaceted 
concept of health into a single index, measuring 
utility is not without problems. The simplest 
approach is to ask respondents to indicate the 
overall value of their quality of life on a visual 
analog scale (Figure 1). Other, more complicated, 
utility assessment techniques (such as the time 
trade-off and the standard gamble) are considered 

more valid ways to directly assess utility, because 
they value quality of life compared with some 
other commodity (lifetime and mortality risk, 
respectively). These direct methods can be used to 
assess utility from the patients’ perspective. Indirect 
utility measures, such as the EQ5D, HUI, and 
SF6D, ask the respondents not to value their health 
but to describe their health on a classification sys-
tem. An existing formula is then used to assign a 
utility value to that description. Such formulae 
reflect the general public’s valuation of the health 
described by the patient, which is preferred for 
economic evaluations from a societal perspective.

Life expectancy has long been an accepted mea-
sure of health. QALYs combine life expectancy 
with utility, to obtain a single generic value mea-
sure for both survival and quality of life. QALYs 
measure the value of a patient’s health over a 
period of time by the product of the length of that 
period and the average utility during that period. 
This is equivalent to measuring the area under the 
utility curve. This way, both prolonged life and 
improved quality of life lead to higher QALYs. 
Conceptually, QALYs are very similar to DALYs 
(disability-adjusted life years) and Q-TWiST (qual-
ity-adjusted time without symptoms or toxicity).

As a schematic example of QALYs, consider the 
course of life shown in Figure 2. This person had 
depression from age 20 to age 40, contracted cancer 
at age 74, and died at age 80. The depression led to 
an average 25% utility loss over a 20-year period, 
which corresponds to a loss of 5 QALYs. The can-
cer period of 6 years has an associated QALY loss 
of 3 QALYs. Therefore, adjusted for quality of life, 
the 80 life years correspond to 72 QALYs. Measured 
in terms of QALYs, postponing cancer and death by 
2 years would gain 2 QALYs. Reducing the severity 
of depression by 50% would gain 2.5 QALYs.

Measuring Costs

In economic evaluation, costs represent the mone-
tary value of the investments that are associated 
with a particular medical decision. An important 
first step is to determine the relevant perspective of 
the cost evaluation, which can be the healthcare 
perspective, the societal perspective (including pro-
ductivity and patient costs), or a particular institu-
tion (such as a hospital or insurer). The perspective 
determines not only which cost categories should 
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be included but also how they should be valued. In 
the end, it is the differences in costs between the 
decision alternatives that need to be estimated, so 
all cost categories that can be expected to show an 
appreciable cost difference should be measured.

An essential part of a cost evaluation is usually 
the costs of a primary intervention. For this inter-
vention, a detailed cost price analyses should be 
performed, including costs of personnel, equipment, 
materials, housing, and overhead. For other cost 
categories, standard prices or cost estimates from 
the literature can be used. For evaluations from an 
institutional perspective, charges may be relevant, 
but it should be realized that charges are not neces-
sarily good approximations of costs. For example, 
costs of radiotherapy are partly proportional to the 
number of sessions and partly fixed per treatment, 
whereas charges for radiotherapy are often either 
fixed per session or fixed per treatment. When the 
number of sessions per treatment is changed, then 
estimating costs from charges per session or from 
charges per treatment will, respectively, overesti-
mate and underestimate the impact on costs.

For many types of costs, costs can be distinguished 
as the product of volumes and prices. Volumes, such 
as the number of GP (general practitioner) visits or 
days absent from work, are more generalizable to 
other settings than costs. Patients can be asked to 
report volumes, using diaries, questionnaires, or 
interviews. They are aware of all the care they receive 

but may have difficulty in accurately remembering 
less salient types of care. Providers of care can rely on 
the accuracy of information systems but can only 
report on care that they themselves are involved in.

Study Designs

Typically, two types of study designs are used for 
economic evaluations. On the one hand, there is 
research measuring costs and effectiveness in one 
single patient population. On the other hand, there 
are modeling studies, aggregating data from differ-
ent sources.

In patient research, data should ideally originate 
from research in which patients are first selected and 
then randomly allocated to the different decision 
alternatives. This procedure ensures that the decision 
alternatives are all applied to the relevant patient 
population, without selection bias. Measuring costs 
and effectiveness in a single patient population is 
important to provide internal validity of the research. 
For external validity, it is important to use a prag-
matic design with conditions that are close to those 
in practice, in how treatments are provided and to 
which patients. Typical for pragmatic trials is that it 
is more relevant to study whether and how much a 
treatment helps than why.

For many reasons, performing patient research 
to compare decision alternatives may not be feasi-
ble. The number of alternatives may be too large 
(e.g., when evaluating follow-up strategies), the dif-
ferences between alternatives may be too small (to 
be demonstrated with the number of patients avail-
able), one of the decision alternatives may be gener-
ally considered unethical (obstructing new research), 
or the time to make a decision may be too limited 
(more limited than the duration of patient  
follow-up). In such situations, mathematical mod-
els may help evaluate decision alternatives and to 
aggregate effectiveness and cost data, obtained 
from different sources. Models can have varying 
degrees of detail, ranging from aggregate epidemio-
logical models to patient-level models for day-to-
day disease progression, and can be evaluated with 
techniques ranging from spreadsheet calculations 
and regression models to microsimulation. The use 
of models allows for sensitivity analysis to see  
how model parameters influence the conclusions, 
in order to validate the model’s reliability for sup-
porting decision making.
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Figure 1  Visual analog scale (indicating a 70% utility)
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Figure 2   A schematic example of utility throughout 
life

Perfect health is a state of complete physical, mental, and 
social well-being. Please indicate on the line below how 
good or bad your health was in the past week. Mark the 
appropriate point on the line with a cross, somewhere be-
tween 0 (as bad as dead) and 100 (perfect health).
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Cost-Effectiveness Analysis

Once costs and effects of different decision alter-
natives have been determined, CEA is used to 
decide which decision is optimal. CEA is intrinsi-
cally two-dimensional. When comparing two 
decision alternatives, one option is clearly pre-
ferred over the other alternative if it has lower 
costs and better effectiveness. The decision 
becomes difficult when one option is preferred 
based on better effectiveness and the other is pre-
ferred based on lower costs. In that case, a trade-
off needs to be made between costs and 
effectiveness, to decide whether the more expen-
sive decision alternative is justified by its better 
effectiveness.

Because of their two-dimensional nature, cost-
effectiveness results are best presented graphically. 
Figure 3 shows costs and effectiveness for five dif-
ferent decision alternatives. Alternative A is said to 
be (strongly) dominated by Alternatives B, C, and 
D, because A has higher costs and lower effective-
ness. As a result, Alternative A will not be the 
optimal decision, at least with respect to the eco-
nomic aspect.

Alternative B is not dominated by any of the 
other alternatives, but it is dominated by a mixture 
of Alternatives C and D. This type of dominance is 
called weak, or extended, dominance. If Alterna-
tives C and D were both applied to half of  
the patient population, then overall effec tive-
ness and costs would be (.3 + .8)/2 = .55 and  

($5,000 + $20,000)/2 = $12,500. Alternative B is 
(strongly) dominated by this 50:50 mixture of 
Alternatives C and D. The straight line CD between 
Alternatives C and D depicts the results that would 
be obtained by all possible mixtures of Alternatives 
C and D. The lines CD and DE together form the 
so-called efficient frontier. All alternatives above or 
to the left of this frontier are strongly or weakly 
dominated. All possible optimal alternatives are on 
the efficient frontier.

Which alternative on the efficient frontier is 
optimal depends on how much one is willing  
to pay to improve effectiveness. Cost-effectiveness 
should always be considered incrementally, that is, 
compared with the next best alternative. Compared 
with Alternative C, Alternative D provides .5 
additional units of effectiveness and $15,000 addi-
tional costs, with a cost-effectiveness ratio of 
$15,000/.5 = $30,000 per unit. Similarly, the cost-
effectiveness ratio comparing Alternatives D and E 
is $30,000/.1 = $300,000 per unit. The improve-
ment by Alternative E is 10 times more expensive 
than the improvement by Alternative D, but with-
out specifying the effectiveness measure, it is 
impossible to say which alternative is optimal. If 
effectiveness measures prevented mortality, then 
$300,000 per prevented death is likely to be 
acceptable and Alternative E would be optimal. If 
effectiveness measures prevented days with the flu, 
then $30,000 per day is unlikely to be acceptable 
and Alternative C would be optimal.
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Figure 3  Cost-effectiveness plane
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The economic aspect of a decision is rarely the 
only relevant aspect for decision making. Therefore, 
no strict thresholds exist for how much improved 
effectiveness is allowed to cost. Nevertheless, for 
effectiveness measured in terms of QALYs, there is 
some consensus on the rule of thumb that costs are 
definitely acceptable below $20,000 per QALY, 
are acceptable up to $50,000 per QALY, and are 
possibly acceptable up to $100,000 per QALY. 
According to this rule, Alternative D would be 
optimal: It provides good value for the money 
compared with Alternative C, and the costs of 
Alternative E would be too high.

Wilbert van den Hout
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Editing, sEgrEgation  
of ProsPEcts

In medical decision making, a prospect can be a 
medical treatment that will yield different out-
comes with different probabilities. When patients 
are offered multiple treatment options, they will 
have to make a decision and follow one treatment 
that they think is the best. This selection process 
includes editing and segregation of the different 
prospects. A prospect (x1, p1; . . . ; xn pn) is a contract 

that yields outcome xi with probability pi, where p1 + 
p2 + . . . + pn = 1. To simplify this notation, we omit 
null outcomes and use (x, p) to denote the prospect 
(x, p; 0, 1 − p), which yields x with probability  
p and 0 with probability 1 − p. The riskless pros-
pect that yields x with certainty is denoted by (x).

Within prospect theory, there are two distinct 
phases in the decision-making process: an early phase 
of editing and a subsequent phase of evaluation. The 
editing phase consists of a preliminary analysis and 
process of the offered prospects, which often yields a 
simpler representation of these prospects. In the sec-
ond phase, the edited prospects are evaluated, and 
the prospect of highest value is chosen.

The objective of the editing phase is to organize 
and reformulate the options so as to simplify sub-
sequent evaluation and choice. Editing is a mental 
process that transforms the probabilities of the 
various prospects. In medical decision making, the 
patient will edit the prospect of every treatment 
and then segregate the obvious undesirable treat-
ments from the others according to the preliminary 
results from the editing phase.

Editing can be divided into six separate phases: 
(1) coding, (2) combination, (3) segregation,  
(4) cancellation, (5) simplification, and (6) detec-
tion of dominance.

Coding

Patients normally perceive the treatment outcomes 
as gains and losses, rather than as final states of 
health or life quality. This coding process will pri-
marily rely on the choice of reference point. The 
reference point usually corresponds to the patients’ 
current health level, in which case gains and losses 
can be interpreted as improvement or deterioration 
of their current health level. For example, consider 
a percentage as an indicator of people’s health level, 
with 100% as healthy and 0% as dead. Also, con-
sider the case of two patients, with health levels of 
20% and 70%, respectively. Both patients are 
offered a treatment that provides an 80% chance of 
achieving an 80% health level and a 20% chance of 
decreasing to a 10% health level (.8, .8; .1, .2). 
Although the treatment is the same, the two patients 
would code this prospect differently. The first 
patient (current health level of 20%) will regard this 
as a good, acceptable gain choice, as his reference 
level is low and this treatment will increase his 
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health level remarkably with a high probability. 
However, the second patient (current health level of 
70%) would code this as a losing choice because she 
has a relatively high reference point. Therefore, she 
can increase her health level only trivially, while fac-
ing a 20% probability of losing most of her health.

In real medical decision-making cases, patients’ 
reference points are usually influenced and shifted 
because of their expectation of the treatment, 
which comes from the prediagnosis, and their 
adaptation to the prognosis, which will also change 
their coding results over time.

Combination

Prospects can sometimes be simplified by combining 
the probabilities associated with identical outcomes. 
For example, a single treatment will result in four 
health outcomes with probabilities .1, .2, .3, and .4. 
The four health outcomes result in a life expectancy 
of 5, 10, 5, and 10 years, respectively. The patients 
will then combine the prospect into simply 5 years 
of life expectancy with probability .4 and 10 years 
of life expectancy with probability .6 (5, .4; 10, .6).

Segregation

Some prospects contain a riskless component 
along with an uncertain component. Patients can 
mentally segregate the risky part and simplify the 
decision making by addressing only the risky part. 
For example, a treatment has only two outcomes: 
(1) increase in life expectancy to 20 years with a 
probability of .3 and (2) increase in life expectancy 
to 30 years with a probability of .7. This can be 
naturally decomposed into a sure gain of 20 years 
of life expectancy and a risky prospect of 10 years 
of life expectancy with probability of .7 (10, .7).

Cancellation

Most patients tend to discard or exclude some com-
ponents that are shared by the offered prospects. 
They rely on the cancellation of the common parts 
of the two prospects to help them make decisions. 
For example, consider two treatments. Both of 
them have a probability of success of .25. After the 
treatment is successful, Treatment A has an 80% 
chance of increasing life expectancy by 30 years 

(30, .8) while Treatment B has a 100% chance of 
increasing life expectancy by 20 years (20, 1.0). 
When facing this choice, most patients will ignore 
the precondition that both treatments have a 25% 
success rate, which is shared by both prospects. 
After they edit the two prospects, most of the 
patients will choose Treatment B. Inter estingly, 
however, if we edit the prospects differently and 
apply the precondition, it will be a choice between 
(30, .20) and (20, .25), in which case most patients 
will choose Treatment A.

Simplification

This refers to the simplification of prospects by 
rounding probabilities or outcomes. For example, 
the prospect (101, .49) is likely to be recoded as an 
even chance to achieve 100.

Detection of Dominance

Many prospects may be dominated by the others. 
This can be mentally detected so that the domi-
nated prospects will be segregated from the poten-
tial choices of patients. For example, Treatment A 
will achieve 10 years of life expectancy with a 
probability of .3 and 20 years of life expectancy 
with a probability of .7 (10, .3; 20, .7). Treatment 
B will achieve 8 years of life expectancy with a 
probability of .5 and 15 years of life expectancy 
with a probability of .5 (8, .5; 15, .5). It is obvious 
to the decision maker that Treatment A dominates 
Treatment B. Therefore, B is discarded without 
any further consideration.

One thing that needs to be stressed is that the 
editing process will vary between people, as well  
as within a single decision maker. The process is 
dynamic and highly dependent on the context of 
the problem, thus producing different results.

After editing the prospects, people will form a 
mental representation of all the existing prospects, 
which will segregate the prospects that they think 
are undesirable from the prospects that they would 
like to further evaluate. This editing and segrega-
tion phase simplifies the process of decision making 
and preclude some prospects so that the decision 
makers will reach their decision much more easily.

Lesley Strawderman and Yunchen Huang
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EffEct sizE

In statistics, an effect size is a measure of the mag-
nitude of a treatment effect. It is an indicator of 
how important an obtained effect is. Unlike sta-
tistical significance tests, effect size does not 
depend on the sample size of an underlying study. 
It is helpful to report the effect size, not just the 
statistical significance, when assessing the effec-
tiveness of a specific intervention in medical stud-
ies as well as studies in other sciences. It has been 
also widely used in meta-analysis, which com-
bines and compares estimates from different but 
relevant studies.

In medical studies, such as comparison of a 
new treatment with other traditional ones, the 
following question is often asked: How well does 
the new treatment work? In answering this ques-
tion, the researchers are actually trying to quan-
tify the difference between the effect of the  
new treatment and those of the traditional ones. 
Similar things happen in social studies and 
studies in educational and behavioral sciences. 
Effect size is a simple way of answering the ques-
tion, and it has many advantages over the use of 
tests of statistical significance alone. Effect size 
measures directly the size of the difference rather 
than confounding this with the sample size of 
the study. It is easy to calculate and to interpret, 
and it can be applied to any measured outcome 
of medical, social, and educational sciences to 

quantify the effectiveness of a particular interven-
tion in comparison with others.

Effect Size for Two Independent Groups  
With Continuous Outcomes

Let us consider comparing the outcome of two 
groups, the experimental group (the one for which 
a new treatment is going to be applied) and the 
control group (the one for which a traditional 
treatment is going to be applied). The outcome of 
the study is a kind of continuous measurement. 
The effect size in such a case is defined as the stan-
dardized difference in means between the two 
groups. In other words,

Effect size= ½Mean of experimental group ½Mean of control group
Standard deviation

:

It is very natural to take the difference of two 
group means when comparing the two groups  
of measurements. The standard deviation in the 
denominator, which is a measure of the spread of 
a set of values, is to standardize this difference. The 
same value of difference may represent totally dif-
ferent meanings when the standard deviations are 
different. It could be explained as a huge difference 
if the standard deviation is small, such that the two 
groups of values are completely separated; whereas 
if the corresponding standard deviation is large, 
the two sets of values might be well overlapped 
and the same value of difference might mean just 
nothing. The difference in means is standardized 
when it is divided by the standard deviation.  
In practice, however, the standard deviation is not 
known. It can be estimated either from the control 
group or from a pooled value of both groups.

The above-defined effect size is exactly equiva-
lent to the z score of a standard normal distribu-
tion. For example, an effect size of 1 means that the 
average of the experimental group is 1 standard 
deviation higher than that of the control group. 
With the assistance of a graph of standard normal 
distribution curve, one can observe that the aver-
age of the experimental group, which is 1 standard 
deviation higher than that of the control group, is 
indeed the 84th percentile of the control group. In 
other words, 84% of the measurements of the con-
trol group are below the average of the experimen-
tal group. The value of 84% is calculated from the 
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standard normal distribution as the probability 
that the standard normal random variable is less 
than or equal to 1. In case the effect size takes dif-
ferent values, the underlying effect size will replace 
the value 1 in the calculation. Another percentage 
rather than 84% will be obtained correspondingly. 
This provides an idea of how the two groups over-
lap with each other.

Effect Size for Experiments With  
Dichotomous Outcomes

Effect size can be defined differently within differ-
ent settings of the studies. Another commonly used 
effect size in medical studies is the odds ratio. 
When the experimental outcome is dichotomous—
for instance, success versus failure, or survival 
versus death, the comparison of a new treatment 
with a control experiment can be conducted based 
on the odds ratio. If success and failure are the 
only two possible outcomes, the odds of success is 
defined as the ratio of the probability of a success 
to that of a failure. For each group, an odds can be 
calculated that equals the ratio of the number  
of successes to the number of failures in the group. 
The odds ratio is then defined as the ratio of the 
two odds. Let nS,exp 

denote the number of successes 
in the experimental group, nF,exp the number of 
failures. Let nS,con 

and nF,con denote the numbers of 
successes and failures in the control group, sepa-
rately, then the odds ratio can be calculated as

OR=
ODDSexperimental

ODDScontrol
= nS;exp=nF;exp

nS;con=nF;con
:

If the treatment effect is remarkable, the odds ratio 
should be much greater than 1. Otherwise, it 
should be very close to 1.

Examples

Example 1

Suppose that there was a study conducted to 
investigate the weekly weight gain of 3-month-old 
infants fed with different formulae. There were  
20 infants randomly assigned to Group A and  
30 infants assigned to Group B. The infants in 
Groups A and B were fed with Formulae A and B, 
separately. Formula B is newly developed. The 
infants were followed up for 4 weeks, and their 

individual average weekly weight gains (oz.) were 
recorded as

Group A:

10.41 10.38 9.16 10.01 11.07 10.47 10.18 9.59 
8.77 9.75 8.37 8.95 10.27 9.70 11.61 9.43 8.36 
10.23 10.23 9.69

Group B:

13.13 13.88 14.04 10.48 13.06 10.13 11.49 11.03 
10.17 10.71 11.05 12.42 13.03 11.67 11.50 11.06 
10.86 12.26 11.95 13.49 11.18 13.43 11.91 13.43 
13.53 12.58 12.02 11.43 11.65 12.62

The mean of Group A is mA = 9.83 oz. The mean 
of Group B is mB = 12.04 oz. Group A has standard 
deviation sA = .84. Group B has standard devia-
tion sB = 1.13. The pooled standard deviation of 
both groups is

spooled =
ðnA − 1Þs2

A + ðnB − 1Þs2
B

ðnA + nB − 2Þ

s

= ð20− 1Þð:84Þ2 + ð30− 1Þð1:13Þ2

20+ 30− 2

s

= 1:03:

The effect size is then

ES= mB − mA

spooled
= 12:04− 9:83

1:03
= 2:15:

If we treat Group B as the experimental group 
and Group A as the control group, the effect size 
of this treatment (Formula B) is 2.15. Looking at 
the standard normal distribution table, the value 
2.15 corresponds to a probability of .9842. This 
tells us that about 98% or 19 of the 20 values 
observed from Group A are below the mean of 
Group B. This is a big effect size.

Example 2

Suppose that there was a medical study investigat-
ing the effect of a newly developed medicine. There 
were 100 patients assigned to a group where the new 
treatment (medicine) was applied, and 80 were 
assigned to the control group, where the placebo 
was applied. Within 2 weeks of this experiment, 80 
patients from the experimental group and 45 patients 
from the control (placebo) group had been cured.
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OR=
ODDSexperimental

ODDScontrol
= 80=20

45=35
= 3:11:

This effect size is much greater than 1. It tells us 
that the patients assigned to the experimental group 
have a much better chance to be cured, or that the 
new medicine is very effective.

Alternative Measures of Effect Size

A number of statistics were proposed as alternative 
measures of effect size, other than the standardized 
mean difference and odds ratio. In studies that 
employ linear statistical models to analyze the 
experimental outcome, the effect size can be defined 
as the square of the correlation coefficient of the 
two involved variables, denoted by R2. This mea-
sure is the proportion of variance in one variable 
accounted for by the other. It can extend automati-
cally to the case of multiple regression models.

It can be shown that the effect size measured  
by standardized mean difference is sensitive to the 
assumption of normality of data. For this reason, 
many robust alternatives were suggested. Peter 
Tymms and colleagues proposed a method for cal-
culating effect sizes within multilevel models. José 
Cortina and Hossein Nouri discussed the effect 
sizes in analysis of covariance designs and repeated 
measures designs. To understand different effect 
size measures under different models, the mono-
graph of Robert Grissom and John Kim gives a 
comprehensive discussion on effect sizes.

Xiao-Feng Wang and Zhaozhi Fan
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Efficacy VErsus EffEctiVEnEss

The terms efficacy and effectiveness refer to 
different concepts and are not interchangeable. In 
general, efficacy refers to whether an intervention 
works under ideal conditions for a specific out-
come. Effectiveness refers to a broader view of the 
usefulness of an intervention in the routine care of 
patients in the day-to-day practice of medicine. 
Efficacy is measured using controlled clinical tri-
als, using specific outcome measures, such as 
prespecified changes in rating scales or laboratory 
parameters. Examples of efficacy studies are 
medication registration trials testing drug versus 
placebo. Effectiveness is measured by a variety of 
methods, including synthesis of efficacy and toler-
ability clinical trial data, clinical trials that incor-
porate broad outcomes such as quality of life, 
longitudinal prospective naturalistic studies, and 
retrospective studies using large-scale clinical, 
pharmacy, and administrative databases. Examples 
of effectiveness studies are studies examining all-
cause discontinuation in the use of antipsychotics 
for the treatment of schizophrenia.

Efficacy

Efficacy refers to whether an intervention works 
under ideal conditions for a specific outcome. 
Regulatory agencies such as the U.S. Food and 
Drug Administration require that medications 
demonstrate efficacy prior to their approval for 
commercialization. These premarketing studies are 
referred to as drug registration trials and generally 
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aim to show superiority of the proposed agent 
versus placebo. This superiority is measured using 
a very specific outcome, such as reduction of 
symptoms using a rating scale designed and vali-
dated for that purpose, or a reduction in a labora-
tory measure, such as decrease in blood cholesterol 
levels. These clinical trials can be very large, enroll-
ing multiple hundreds of patients across many 
study centers in several countries. Attempts are 
usually made to ensure a homogeneous test popu-
lation. Intervention choice is randomized and sub-
jects are followed double-blind. These clinical 
trials also monitor for adverse events, usually rely-
ing on spontaneous reporting but also including 
safety scales when certain tolerability problems are 
anticipated, such as extrapyramidal symptoms 
encountered with the use of antipsychotics. Clinical 
registration trial reports include information on 
both efficacy and tolerability under these artificial 
study conditions, but the aim of these reports  
is not to provide a synthesis for clinical guidance 
but to prove that the intervention is efficacious. 
Whether or not the intervention is efficacious and 
effective in a routine clinical practice is not certain. 
This is especially problematic when the patients 
who receive the intervention in clinical practice are 
unlike the subjects who received the intervention 
under controlled conditions. A good example of 
this are the registration trials of intramuscular 
antipsychotics for the treatment of agitation asso-
ciated with schizophrenia or bipolar mania. 
Patients in these trials were required to provide 
informed consent and may represent a population 
that is very different from the agitated patient 
involuntarily brought to an emergency department 
by the police in terms of level of cooperation, 
degree of agitation, comorbid medical conditions, 
and presence of active alcohol or drug use. Perhaps 
the biggest objection to the use of registration trial 
data is that the comparator of placebo is not 
appropriate for the clinician whose main interest is 
to know how the new intervention compares with 
the old established one.

Effectiveness

Effectiveness is a term that refers to the broad util-
ity of an intervention under the usual conditions of 
care. This utility includes efficacy (whether or not 
the intervention reduces the symptoms and signs  

of the disease), tolerability (whether or not the 
adverse events intrude on the well-being of the 
patient), and adherence (whether the patient com-
plies with the treatment as prescribed). These three 
components are necessary for the intervention to 
be effective in the “real world.” Efficacy is a neces-
sary but not sufficient condition for an interven-
tion to be useful.

Effectiveness can be estimated by the pooling 
together of clinical trial data that include informa-
tion on both efficacy and tolerability. However, the 
predicted adherence or acceptability of the inter-
vention in general clinical populations cannot be 
directly ascertained from this synthesis of efficacy 
studies. To accurately identify drug effects under 
the conditions of routine clinical care, different 
methods are needed. These methods include clini-
cal trials that incorporate broad outcomes, longi-
tudinal prospective naturalistic studies, and 
retrospective studies using large-scale clinical, 
pharmacy, and administrative databases. The sub-
jects in effectiveness studies are usually more het-
erogeneous than those in a medication registration 
study, and this can facilitate the comparison of dif-
ferent active treatments.

An example of a controlled double-blind effec-
tiveness trial is the Clinical Antipsychotic Trials  
of Intervention Effectiveness (CATIE) study for 
schizophrenia, where patients were initially ran-
domized to one of five antipsychotics for up to 18 
months. This is in direct contrast to the usual effi-
cacy trial of an antipsychotic whose design is to 
compare a drug with a placebo over a relatively 
brief period ranging from 3 to 8 weeks. CATIE’s 
primary outcome measure was time to all-cause 
treatment failure marked by discontinuation of the 
medication. The assumption was that if a medica-
tion was continued to be prescribed, then it was 
thought to be of acceptable value by both the 
patient and the clinician. The three principal rea-
sons for discontinuation were patient decision, 
lack of adequate efficacy, or poor tolerability. The 
study included three main phases that allowed for 
switching from one antipsychotic to another. When 
enrolled, patients were made aware that these 
switches were possible. This mirrors clinical prac-
tice in that switching of antipsychotics is not 
uncommon. Moreover, unlike registration trials, 
subjects were not excluded if they had psychiatric 
comorbidities such as substance use disorders.
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Effectiveness studies such as CATIE can answer 
questions that registration trials cannot, but there 
are several practical limitations to conducting 
large-scale effectiveness trials, including their 
length, size, and expense. Informed consent is also 
required, limiting generalizability. This patient 
selection bias can be extreme when studying 
chronic mental disorders such as schizophrenia, 
where impaired decisional capacity is not unusual. 
The use of naturalistic data from large-scale clini-
cal and administrative databases produced by the 
ordinary, day-to-day operations of healthcare 
delivery systems is another option. Data for very 
large numbers of patients (thousands and tens of 
thousands) are available. Advantages include gen-
eralizability (the whole population across multiple 
diagnoses can be studied as they receive routine 
care). Multiple interventions or sequences of inter-
ventions can be assessed. The major limitation  
is the lack of randomization and the presence of 
substantial treatment selection biases (e.g., more 
chronically ill patients may receive different and/or 
multiple medications). Another criticism is that the 
retrospective analysis of databases is prone to data 
mining, where many outcomes are evaluated but 
only a select few are ever reported.

Evidence-Based Medicine

Clinicians often struggle to find interventions  
that make a difference in the well-being of their 
patients. It is not always easy to discern whether or 
not a study result should actually change clinical 
practice. Evidence-based medicine (EBM) is a phi-
losophy that can help answer a clinical question 
that a practitioner may have about two different 
interventions for an individual patient. Clinical 
judgment and clinical expertise are still required to 
make the best decision possible, but the ability to 
formulate the question, seek out clinical trial evi-
dence, appraise this evidence, and then to apply it 
and assess the outcome forms the nucleus of EBM. 
The evidence base can vary in quality, from anec-
dotal reports that are subject to bias, and hence of 
lower value, to the gold standard of randomized 
clinical trials and systematic reviews of random-
ized clinical trials. Both efficacy and effectiveness 
studies can help answer the clinical questions,  
but the limitations of each approach need to be 
understood. The clinician will need to identify 

evidence that can quantify the differences between 
treatments, ensuring that there are clinically sig-
nificant differences. A discussion of effect sizes, 
such as the number needed to treat (NNT), is 
beyond the scope of this discussion but is integral 
to the clinical interpretation of efficacy and effec-
tiveness studies.

Leslie Citrome
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EfficiEnt frontiEr

Efficient frontier is an economics term commonly 
used in performance measurement, although it has 
more recently also been applied to decision analy-
sis. Another term for it is production possibilities 
curve. It shows the maximum output attainable 
from various combinations of inputs: the bound-
ary between what is possible with the given resources 
and technologies and what is not.

Performance of Firms

Economists speak of firms or decision-making 
units, which convert a variety of inputs (materials, 
capital, and labor) into outputs. These outputs can 
be goods and/or services, and the firms may be 
public, for-profit, or not-for-profit. A variety of 
methods have been used to measure the perfor-
mance of firms. One common measurement is the 
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productivity ratio, which is related to concepts of 
efficiency.

Defining Productivity and Efficiency

Productivity is defined as the ratio of outputs to 
inputs, both weighted by their prices. If it is pos-
sible to define the maximum output attainable 
from each input level, analysts can use this infor-
mation to draw a production frontier. If a firm is 
operating on that frontier, they are classified  
as technically efficient; conversely, if they are 
beneath the frontier, they are technically ineffi-
cient. However, it may still be possible to move 
along the production frontier. One common way is 
to take advantage of economies of scale (or avoid 
diseconomies of scale). Technological changes may 
also shift the entire production frontier, allowing 
greater productivity for a given level of input.

Since most firms use multiple inputs, and pro-
duce multiple outputs, these must often be aggre-
gated. Analysts may examine the productivity of 
particular inputs (e.g., labor productivity), but  
this can be misleading, particularly if substitution 
is possible. Total factor productivity refers to the 
productivity of all inputs used to produce the given 
outputs, each weighted by its price.

Productivity does not incorporate the costs of 
production but considers only the volume of out-
puts producible. Allocative efficiency for a given 
quantity of output is the term used to select the 
mix of inputs that will produce those outputs at 
minimum cost; this procedure assumes that  
the prices for the inputs are known and requires 
incorporating information about all firms that 
might produce the desired outputs. Depending on 
how broadly the outputs are defined, this may 
require assessment of the mix to produce a par-
ticular service (e.g., renal dialysis treatment),  
services within a particular sector (e.g., hospital 
care), or services across sectors within a society 
(e.g., trade-offs between education and health-
care). Data requirements increase with scope, 
such that determining allocative efficiency for an 
economy is extremely challenging. Total economic 
efficiency (also referred to as productive effi-
ciency) must consider both technical and allo-
cative efficiency. Economists will usually 
incorporate considerations of Pareto efficiency, 
defined as requiring that no alternative allocation 

of goods is possible without causing a net loss to 
one or more consumers.

These concepts are similar, but not identical, to 
cost-effectiveness. Unlike allocative efficiency, cost-
effectiveness does not fix the desired output levels 
and mix; instead, it looks at the marginal cost to 
produce an additional marginal unit of benefit.

Measuring Productivity and Efficiency

Although some authors use the terms productiv-
ity and efficiency interchangeably, others stress 
that they have slightly different meanings and dif-
ferent operational definitions.

Economists have devised a number of methods 
for measuring efficiency and productivity. Many 
require computing index numbers, to allow ana-
lysts to compute productivity compared with a 
reference case. These relative measures of perfor-
mance may look at how much more output could 
be produced for a given level of inputs (the output-
oriented measures) or, conversely, at how little 
input would be required to produce a given level of 
outputs (input-oriented measures), as compared 
with the reference case.

One problem with using these efficiency mea-
sures is the high data requirements. They assume 
that the production functions of maximally effi-
cient firms are known; this is rarely the case. 
Various approaches for estimating these functions 
using various techniques have been suggested; 
good reviews can be found in Coelli et al. and 
Worthington.

One approach is to use statistical techniques to 
construct a deterministic frontier, which is taken to 
represent the most efficient approach. Accordingly, 
any deviation from this frontier is assumed to  
represent inefficiency. This approach assumes that 
there is no noise and no measurement error. It also 
requires a large sample size (often not available) 
and sufficient spread of the observations through-
out the distribution. Accordingly, it is used less 
commonly than the alternatives noted below.

Another family of approaches, stochastic fron-
tiers, uses econometric models to estimate the 
frontier. These resemble the deterministic models 
in that they use parametric models that require 
assumptions as to the functional form but differ in 
introducing a disturbance term to allow for mea-
surement error and noise. A third family, Data 
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Envelopment Analysis (DEA), uses linear program-
ming techniques and is classified as nonpara metric. 
Because this approach does not include stochastic 
(i.e., random) components, it assumes that all 
deviations from the frontier represent inefficiency. 
DEA, however, is more flexible than the alterna-
tives in its data requirements and in how models 
are specified. Note that all these modeling 
approaches differ in the underlying assumptions 
made (e.g., whether it is assumed that firms are 
fully efficient), the ability to deal with noise and 
outliers, the assumptions about functional forms, 
and the data requirements. All are also subject to 
omitted variable bias.

Applications to Healthcare

Frontier efficiency has been applied to a wide 
range of firms, typically within public or quasi-
public sectors. More recently, some efforts have 
been made to use these techniques to study the 
productivity of various healthcare organizations, 
including hospitals, nursing homes, and physician 
practices. An ongoing issue has been whether effi-
ciency measures should be incorporated into reim-
bursement schedules and, if so, whether these 
approaches might be helpful in determining them.

One set of issues is defining what is meant by 
outputs. Technical efficiency may be used to refer 
to intermediate outputs such as the number of 
patients treated or their waiting time. It may also 
be defined in terms of health outcomes, such as 
mortality or life expectancy. Because health out-
comes are related to many factors, often outside 
the healthcare system, analysts may have diffi-
culty in defining the production function link-
ing particular interventions to overall outcomes. 
This dilemma becomes even more pronounced if 
efforts are made to aggregate outputs (e.g., to 
look at the performance of a healthcare system, 
as opposed to the results of a particular drug or 
surgical procedure).

In 2004, Worthington identified 38 studies that 
applied frontier efficiency approaches to the study 
of healthcare organizations. Over half referred to 
organizations in the United States, although exam-
ples were found for Spain, Sweden, the Netherlands, 
Finland, Taiwan, and the United Kingdom. Most 
studies (68%) analyzed the performance of hospi-
tals, with other examples examining nursing homes, 

health maintenance organizations, local-area health 
authorities, and other settings.

More recently, these approaches have been 
applied to decision analysis through the construc-
tion of a cost-effectiveness frontier. This analysis 
equates cost efficiency with the production of tech-
nically efficient combinations of inputs and out-
puts at the least cost. If it is possible to create a 
cost function, one can construct a production fron-
tier that represents the best currently known pro-
duction techniques. Accordingly, Eckermann and 
colleagues have recommended shifting the two- 
dimensional representation of cost-effectiveness 
from the commonly accepted incremental cost- 
effectiveness (which plots difference in effectiveness 
against difference in cost) to a production function 
approach. This application shares advantages, and 
disadvantages, with the previously noted efforts to 
use these methods.

Cautions

As Worthington cautions, this approach may not 
always be appropriate. One problem is how to 
ensure that studies do not compare apples with 
oranges. One way to ensure homogeneous out-
comes is to aggregate; studies have accordingly 
categorized outputs in terms of age or type of 
treatment. As Newhouse noted, such aggregation 
can be problematic. Frontier techniques appear to 
be designed for homogeneous outputs, which is 
rarely true in healthcare. It is particularly difficult 
to capture variations in quality unless these lead to 
unambiguous impacts on the chosen measure (e.g., 
mortality). In general, many important outputs 
will not be included, and their omission is likely to 
distort the findings. Similarly, many inputs may be 
omitted (e.g., capital, physicians), and case-mix 
controls are likely to be inadequate. Hospitals 
treating sicker patients may thus be seen as being 
inefficient rather than as delivering a different mix 
of services.

Despite these caveats, frontier analysis is being 
more widely used by policy makers seeking to 
increase accountability in the use of public funds. 
This has been particularly evident in the United 
Kingdom. These techniques are being used as an 
alternative to the “performance indicator” move-
ment; they seek to aggregate multiple indicators 
into a single measure of efficiency, based on the 
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difference between observed performance and that 
which would be predicted from the best case. A 
2005 review by Jacobs and Street concludes that 
the approach is still not ready to be used to inform 
policy but recommends further research.

One key limitation to all these approaches is 
that they are not intended to deal with whether 
particular outputs are worth producing. Efficient 
markets assume that anything demanded should 
be produced as long as there are willing buyers and 
sellers. In contrast, appropriateness is a major con-
cern for many healthcare services, and there is a 
widespread agreement that services that are not 
needed should probably not be provided, regard-
less of how efficiently they can be produced.

Raisa Deber and Audrey Laporte
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Emotion and cHoicE

It is increasingly recognized that emotions can 
have an important impact on judgment and deci-
sion making. However, in many respects, it remains 

an undeveloped area of judgment and decision 
making, particularly in medicine. First, emotions 
are difficult to characterize or define. Second, the 
causal mechanisms by which emotions influence 
decisions—independent of purely cognitive inter-
actions—are poorly understood. Third, the cir-
cumstances in which emotions are most important 
in changing decisions are only partially under-
stood. Finally, most of the well-controlled empiri-
cal data on emotions and decision making are 
outside the field of medicine, rarely involving phy-
sicians and patients. Each of these limitations is 
important when describing the role emotions play 
in medical decision making, so the sections that 
follow address each of these points in turn.

Defining Emotions

Clear definitions are crucial for outlining the role 
of emotions in judgment and decision making. 
Definitions or characterizations of emotion range 
across multiple disciplines. The philosopher Paul 
Griffiths proposes dividing what we commonly 
call emotions into two categories of mental phe-
nomenon: lower-level “affect programs” and  
higher-level “irruptive emotional states.” The first 
category of emotions consists of automated, ste-
reotypical reactions that provide rapid responses 
to stimuli, seem rooted in evolutionarily justified 
patterns, are cross-cultural, and are correlated 
with survival needs in all higher animals. They are 
represented by the “lower” emotions of fear, anger, 
happiness, sadness, surprise, and disgust. The sec-
ond category of emotions consists of those with 
complex mixtures of cognitive and emotional ele-
ments that occur more passively and interrupt 
other cognitive processes and tie together our men-
tal lives in the long run. They are characterized by 
emotions such as love, guilt, envy, jealousy, and 
pride. They remain separate from other, more  
diffuse dispositional or visceral states referred  
to most accurately as “moods,” such as anxiety, 
depression, and elation.

The political scientist Jon Elster presents a clus-
ter of “features” that are robustly associated with 
human emotions, but none of which are essential 
to them. These features include being unbidden in 
occurrence, possessing cognitive antecedents, hav-
ing intentional objects, being arousing, leading to 
action tendencies, and having specific valence. He 
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specifically distinguishes human emotions from 
emotions that have a sudden onset, brief duration, 
and characteristic expressions. These correspond 
to the affect programs Griffiths describes, which 
we largely share with other animals and across 
human societies and cultures.

The psychologists Reid Hastie and Robin Dawes 
define emotions as reactions to motivationally sig-
nificant stimuli and situations that usually include 
three components: (1) a cognitive appraisal, (2) a 
signature physiological response, and (3) an accom-
panying phenomenal experience. This captures, at 
least operationally, the features of emotions that 
are most relevant for decision making.

Overall, there seems to be agreement that there 
are two groups of emotions. The first group con-
sists of those that are more basic and stereotypical, 
are rooted most obviously in evolutionary survival, 
and suddenly interrupt ongoing cognition to cause 
different behavior. The second group consists  
of more complex cognitive states, with cognitive 
antecedents, less obviously tied to our evolution-
ary roots and less obviously interrupting other 
cognitive states. A third category, which is left 
aside here, consists of moods, which are more dif-
fuse mental states that seem to be predispositions 
or precursors to other states and less obviously tied 
to specific actions.

Impact of Emotions on Decisions

There are two methodological approaches to  
decision making: the economic approach and the 
psychological approach. The economic approach 
emphasizes rationality, response to incentives, and 
maximization of utility (i.e., benefits) subject to 
constraints (i.e., costs). Such an approach mini-
mizes the role emotions play in decision making, 
treating them as inputs to valuation or utility. 
Choice is fundamentally cognitive and rational, 
with a dispassionate consideration of costs and 
benefits. The psychological approach focuses on 
two mental operations, judgments and decisions, 
both of which can be, and often are, influenced by 
emotions. Psychologists identify persistent excep-
tions to rational behavior, showing how systematic 
biases shape human behavior. The maturing field of 
behavioral economics brings psychological realism 
and attention to human biases, including the impact 
of emotions, to the rational utility-maximization 

approach of economics. It is the approach taken 
here.

A causal framework for understanding the role 
of emotions in decision making from a behavioral 
economics perspective has been advanced by 
Loewenstein and Lerner. The framework high-
lights how emotions can influence decisions 
through two pathways: (1) immediate emotions 
and (2) expected emotions. Immediate emotions 
are experienced at the time a decision is made. 
These emotions can influence decision making in 
two ways: directly or indirectly. They can directly 
affect a decision as it is being made. For example, 
a patient might feel fearful at the time of choosing 
a treatment and therefore decline a riskier option, 
even if it has a better possible outcome. Immediate 
emotions can also indirectly influence a decision 
by altering expectations of the probability or desir-
ability of an anticipated future outcome. In this 
case, a patient who is feeling happy may optimisti-
cally expect a good outcome from risky therapy 
and “go for it,” even it is it riskier. The second 
pathway of influence, expected emotions, are cog-
nitive appraisals about the emotional consequences 
of decisions rather than the emotions currently 
being experienced. These are possible emotions 
that one considers when making a current deci-
sion. An example of an expected emotion’s impact 
on decision making is a patient with prostate can-
cer projecting how he might feel if he developed 
impotence as a result of surgery, then choosing 
watchful waiting to avoid the undesired emotional 
consequences of that surgical outcome.

This general framework can be understood in 
specific circumstances based on the particular 
emotions involved and the context of the decision. 
Affect-program emotions—those that are most 
immediate, universal, and disruptive to current 
actions—can strongly influence immediate emo-
tions. Consider, for example, a physician heading 
to the office after an unresolved spousal argument. 
Anger is a negative emotion, an activating one, and 
one that leaves one feeling less in control. The 
source of the anger is not relevant to the medical 
decisions that will be made that day; yet it is prob-
able that those decisions will be more negative, 
aggressive, and definite, independent of the rele-
vance of these features to the calculation of what 
is best for the patients. The important feature 
about affect-program emotions is that they can 
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have big impacts on decisions with relatively little 
input from cognition.

When considering the other type of more com-
plex emotions, the framework for application 
becomes more complicated. Other higher-level 
emotions seem to have longer-standing cognitive 
underpinnings that accompany them, making it 
more difficult to see their specific causal role. For 
example, emotions such as love, envy, vengeance, 
and empathy, to name a few, are quite different in 
character from those of the affect programs. 
Because they are accompanied by underlying, pre-
ceding thought processes that influence the emo-
tions, it is more difficult to assign specific influences 
regarding decisions to these more complex emo-
tional states. In the medical context, empathic 
physicians are thought to provide better care for 
their patients, all other considerations being equal, 
through more thoughtful decision making. How-
ever, characterizing the influence of empathy on 
decision making is very difficult.

Another reason emotions can be difficult to study 
with regard to choices is that many of the precursors 
of emotional responses are unconscious. Therefore, 
people are unaware that their decision processes are 
affected by these emotions, making them difficult to 
assess accurately. This is particularly true of the 
affect-program types of emotions. Evolutionarily, 
they are believed to protect the organism by causing 
certain actions to avoid specific situations. These 
more basic, universal emotions use neural pathways 
such as the amygdala that bypass other, more cogni-
tive pathways such as the frontal cortex. Using  
animal models and functional magnetic resonance 
imaging (fMRI), neuroscientists have done an 
impressive job outlining the relevant neural path-
ways and showing how they bypass higher centers. 
For example, if one “sees” a snake in one’s path and 
immediately reacts to get away, that might be 
important for survival from an evolutionary per-
spective. However, if that snake turns out to be a 
harmless stick, one has responded to a false judg-
ment. These responses to fear, anger, and happiness 
still exist, but they can lead to false judgments and 
decisions in the modern world. A patient’s fear 
about a disease such as cancer or Alzheimer’s disease 
may derail his or her ability to consider rationally 
the probabilities involving a treatment decision.

In a similar vein, it has also been shown that 
damage to specific brain areas that disconnects our 

emotional responses from cognitive assessment 
can profoundly affect decision making. Damage to 
prefrontal cortex areas seems to disconnect our 
emotional centers from our more cognitive ones, 
leading those with such damage to become exces-
sively risk taking and unable to conduct straight-
forward cost-benefit calculations. The mechanism 
seems to be a loss of the normal emotional response 
to losses, which makes undamaged individuals 
loss-averse. Patients with dementia are also prone 
to such behavior, and they may be unable to make 
decisions regarding their own care.

Typical Circumstances

The role of emotions in decision making is best 
understood in decisions that involve risky and/or 
uncertain choices over time. In the economic, utili-
ty-based conception of choice, risk and uncertainty 
are modeled with the assumption of expected utility 
represented by a “risk preference.” Choices over 
time are modeled by discounted utility models in 
which future values are assumed to be worth less 
than the current values. However, a number of 
examples have been found showing that both of 
these models have important, persistent exceptions.

Under expected utility models of risky choice, 
risk is conceived as an outcome’s expected value, 
the product of its likelihood of occurring and the 
subjective value of that outcome. People are said to 
have risk preferences if, when the expected values 
of competing outcomes are equal, they prefer one 
based on the distribution of it occurring. This 
explanation has been invoked to explain people’s 
general willingness to purchase health insurance 
because they are risk-averse. However, there are a 
number of empirical situations in which people 
prefer riskier options in some situations and safer 
options in other situations, something that is 
inconsistent with expected utility. This is the result 
of the hedonics of valuing—people generally dis-
like a loss much more than they like the same-sized 
gain. As a result, people tend to avoid risks in a 
gain situation but to accept the same risks in a loss 
frame, an effect called loss aversion. One of the 
explanations of such findings is that emotions 
regarding risk change valuation.

Considering time-based decision making, the 
standard economic model is the discounted utility 
model. This model assumes that future values are 
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worth less than current values at a constantly 
decreasing discount rate. Once again, a number  
of exceptions to this model have been found.  
For example, when asked to give the preferred 
time for a kiss from a chosen movie star, people 
choose 3 days from now rather than immediately, 
to “savor” the anticipation of the event. Once 
again, emotions are likely explanations for the 
failure of the economic models and the need for 
alternative explanations.

Emotions are thought to have important effects 
on decisions. However, characterizing the exact 
role emotions play in choices is very difficult. The 
best characterized emotions are the affect-program 
emotions, such as anger, fear, disgust, and happi-
ness. These basic, evolutionarily preserved, and 
universal emotions appear to bypass the usual neu-
ral pathways and influence choices by disrupting 
other cognitive inputs. This is most important 
when the emotions are immediate but unrelated to 
the decisions being made, thereby deviating most 
strongly from balanced cost-benefit assessments. 
Other, more complex emotions have more cogni-
tive underpinnings, and their effects on behavior 
are more indirect. Choices that involve risk, uncer-
tainty, and “distance” are most likely to be influ-
enced by emotions. There remains much work to 
be done to characterize how these emotions affect 
medical decisions.

William Dale
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Equity

Equity in medical decision making is an area  
that has received little attention. One strategy to 
reduce disparities in care that often arise during 
the medical encounter, and thus increase equity, is 
shared decision making between providers and 
patients. The shared decision-making model 
includes a number of critical factors that can 
improve care: better communication; patient- 
centered, culturally competent care; and patient 
involvement in deliberations and decisions. Each 
of these elements can mitigate the sociopolitical 
factors that have been institutionalized in medi-
cine through the unbalanced relationship between 
physician and patient. This model appears to be  
a powerful tool that could reduce disparate care 
and improve overall health outcomes for minority 
patients.

Background on Disparities in Healthcare

Disparities in healthcare in the United States are 
widespread and well documented. Multiple stud-
ies show that minorities are less likely to receive 
important healthcare services, including preven-
tive services and regular physicals, as well as 
clinically appropriate interventions. They are also 
more likely to receive care from providers with 
fewer resources, lower qualifications, and less 
experience than whites. This disparate care results 
in less satisfaction with care, lower compliance 
with prescribed treatments, and poorer health 
outcomes for many minority Americans.

The poor quality of care provided to minority 
groups can be explained in part by failures in the 
healthcare system. Insurance status is a powerful 
predictor of healthcare use and type of provider 
seen, and minority groups are more likely to be 
uninsured than whites. Access problems, including 
geographic proximity to care and linguistic and 
cultural barriers, also hinder minority patients’ 
ability to seek out high-quality care.

Disparities are not, however, solely a conse-
quence of these system-level factors. Differences in 
care persist even when controlling for insurance 
status and access issues. Some researchers suggest 
that lower-quality care for minorities may be 
explained in part by patient preference, but the 
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evidence is inconsistent, and the effect has been 
found to be small.

Given that patient preference cannot adequately 
explain disparities in care, researchers have begun 
to examine whether disparities emerge from the 
medical encounter and the process that physicians 
and patients go through to make important deci-
sions about patients’ health and healthcare. 
Provider bias in decision making, for example, can 
lead to disparate care for minorities. While provid-
ers resist believing that they provide disparate care, 
studies suggest that intentional and unintentional 
stereotyping and bias by race, ethnicity, and gen-
der influence clinical decisions and lead to inferior 
care for minorities.

Poor communication, lack of information, and 
mistrust between patient and provider can influ-
ence patients’ understanding of their health and 
the decisions they make regarding their care. Care 
for minority patients is often less patient centered 
than care for white patients, particularly when the 
patient-physician relationship is not racially or 
ethnically concordant. Minorities are less likely 
than whites to report that their physicians engage 
in participatory care and patient-centered commu-
nication and more likely to report that their physi-
cians treat them with disrespect. Misunderstandings 
and a lack of culturally competent care on the part 
of the provider also contribute to disparate care.

A physician-patient interaction in which there is 
poor communication, bias, and mistrust is likely to 
result in uninformed decision making. Under-
standing and improving the decision-making pro-
cess may mitigate some of these effects and 
substantially improve care for minority patients.

The Decision-Making Process  
and Disparities in Care

In their seminal research on shared decision mak-
ing in the medical encounter, Cathy Charles et al. 
identify different theoretical approaches to medical 
decision making and espouse the benefits of shared 
decision making over the more traditional pater-
nalistic model. In the paternalistic model, patients 
defer all decisions to the physician, who has the 
professional authority, training, and experience to 
make the “right” decisions for the patient. In each 
of the three stages of decision making—exchanging 
information, deliberating options, and deciding on 

a treatment—the physician controls the process, 
with little to no input from the patient.

In this model, information exchange is restricted, 
flowing largely in one direction from the provider 
to the patient. During the deliberation stage, the 
physician alone or in consultation with other phy-
sicians considers the risks and benefits of alterna-
tive treatment options. Finally, the decision of the 
most appropriate treatment is made solely by the 
physician.

Within the context of social, economic, and 
political inequities experienced by minorities, the 
power asymmetry of the medical encounter is 
fraught with tension; the paternalistic model of 
decision making perpetuates this imbalance when 
the relationship is not racially or ethnically con-
cordant. The one-way direction of information 
exchange (Phase 1) from physician to patient con-
trols not only the amount but also the content of 
information shared with the patient. Minority 
patients might experience this information imbal-
ance as a form of coercive authority and a way of 
dismissing patients’ desire to be involved in their 
own care decisions. In fact, studies suggest that phy-
sicians’ communication style is more verbally domi-
nant with black patients than with white patients 
and that black patients have significantly less par-
ticipatory visits with their physicians than white 
patients, particularly when the physician is white.

Without information provided by the patient, 
the physician may be unaware of important clini-
cal concerns that could inform his or her treatment 
decisions and recommendations for certain inter-
ventions. For example, minority patients may 
experience illness differently than white patients; 
they may also have different expectations of the 
role of healthcare in their lives. In a paternalistic 
model, however, these issues are unlikely to emerge 
or be considered during the care process.

The deliberation and decision phases of the 
paternalistic model (Phases 2 and 3) also exclude 
the patient. For minorities, this is an especially 
important issue when their physician relationships 
are not concordant, and the physician is unlikely 
to be familiar with or knowledgeable about the 
unique racial and cultural contexts of their minor-
ity patients. Physicians who infer patients’ needs 
and preferences rarely get them right, which can 
result in misunderstandings, confusion regarding 
care, lower patient compliance with treatments, 
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distrust of the system, and overall dissatisfaction 
with care.

In the paternalistic model, the physician will pro-
vide the patient with a recommendation based on 
what he or she believes to be the “best” course of 
treatment despite imperfect information. Phy sicians’ 
personal biases and stereotypes are reinforced as 
assumptions regarding what the patient wants and 
needs go largely unchallenged. Preconceived notions 
can very likely influence physicians’ treatment rec-
ommendations and convey messages regarding 
minority patients’ competence, self-efficacy, and 
deservingness.

The paternalistic model of decision making may 
still be the prevalent mode in which most physi-
cians practice. Given its potential for inequitable 
practices and outcomes, however, a more patient-
centered model of decision making should be con-
sidered. A model of shared decision making could 
be used to mitigate many of the negative factors 
inherent in the paternalistic model.

In the shared decision-making model, the patient 
(sometimes including the patient’s family) and the 
physician work together through all three stages  
of the decision-making process. At the core of  
this model is the concept of patient-centered care. 
Through communication, information exchange, 
and partnership in the deliberation and final deci-
sion processes, the physician and the patient 
together identify the patient’s needs and prefer-
ences and incorporate them into their decision.

In a patient-physician relationship that is not 
racially or ethnically concordant, this model of 
decision making is critical to developing mutual 
trust and understanding of how the patient’s social 
and cultural context influences his or her presenta-
tion of illness and compliance with care. Providers 
must approach minority patients in a manner  
that is appropriate and respectful of their cultural 
mores. This requires that the physician and patient 
participate in open communication, exchange infor-
mation, and develop a relationship where both par-
ties are partners in the decision-making process.

In this model, providers must also try to recog-
nize their own limitations. For example, physi-
cians must use interpreters and seek help in 
understanding racial and ethnic groups’ styles of 
communication. They must learn about their 
patients’ backgrounds and value systems to under-
stand better the most appropriate course of action 

for their minority patients—one that will be 
accepted and followed. Finally, physicians must 
be frank with themselves about their assumptions 
and beliefs regarding racial and ethnic groups and 
understand that they may be intentionally or 
unintentionally reinforcing disparate behavior 
based on stereotypes.

The exchange of information is critical to this 
process (Phase 1). In the shared decision-making 
model, the responsibility of exchanging informa-
tion falls on both participants in the medical 
encounter. The provider is expected not only to 
provide information but also to elicit information 
from the patient regarding his or her needs, prefer-
ences, and values. The patient is also expected to 
share his or her experiences and expectations. If 
both participants are clear about their expecta-
tions and share their knowledge and values, then 
the decision-making process can be used to elimi-
nate many of the inequities that may emerge from 
the patient-physician encounter.

As part of this process, the physician and patient 
should clearly establish the preferences of the 
patient regarding the roles each will play in deci-
sion making. It may be that not all patients want 
to take a participatory role in their own care pro-
cess. For example, recent studies have suggested 
that black patients want information and full dis-
closure regarding medical tests and procedures but 
are hesitant to have autonomous decision-making 
power and prefer to follow the recommendations 
of their providers. For some ethnic groups, deci-
sion making is a family-centered process, including 
multiple family members. Understanding that some 
patients may prefer to delegate final responsibility 
of the treatment decision to others, including the 
physician, is part of the shared decision-making 
process.

Information exchange and patient involvement 
in this model of medical decision making may be 
able to reduce provider assumptions, improve 
communication, and achieve congruence in per-
spectives of health and approaches to treatment. It 
also sets the stage for the deliberation and final 
treatment decision phases of the care process. 
When engaged in shared decision making, the phy-
sician helps the patient weigh different treatment 
options with a better understanding of that patient’s 
unique cultural context. When a decision regarding 
the best course of action is agreed on, the physician 
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can probe the patient to ensure that he or she fully 
understands the implications of their (the physician 
and the patient’s) choice. Understanding the 
patient’s perspective is critical for the provider to 
fully comprehend the patient’s experience of ill-
ness, how he or she perceives risks and benefits of 
treatment, and how he or she might accept and 
comply with medical intervention.

Katherine Mead and Bruce Siegel
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EquiValEncE tEsting

Frequently, the objective of an investigation is not 
to determine if a drug or treatment is superior  
to another but just equivalent. For instance, it is 
often of interest to investigate if a new drug, with 
say fewer side effects or lower price, is as effica-
cious as the one currently used. This situation 
occurs when new or generic drugs are evaluated 
for approval by the Food and Drug Administration 
(FDA).

In standard hypotheses testing, equivalence (i.e., 
equality) is the null hypothesis, and the alternative 
is the nonequivalence hypothesis. One problem 
with using this procedure, and determining equiva-
lence when the null is not rejected, is that the test 
is designed to reject the null hypothesis only if the 
evidence against it is strong (e.g., p < .05). In other 
words, the burden of proof is in nonequivalence. 
The correct procedure to establish equivalence 
reverses the roles of null and alternative hypotheses 
so that the burden of proof lies in the hypothesis 
of equivalence. Consequently, the Type I error is 
tantamount to favoring equivalency when the 
drugs are not equivalent. This is the error that the 
FDA wants to minimize, and its probability is con-
trolled at a low level (e.g., .05 or lower).

Some issues arise when testing for equivalence. 
A critical one is that perfect equivalence is impos-
sible to establish. This problem is solved by intro-
ducing limits of equivalence that establish a range 
within which equivalence is accepted. Frequently, 
these limits are symmetric around a reference value. 
An example should help clarify the situation.

Suppose that a new drug for eliminating  
(or reducing to a prespecified level) a toxin in the 
blood is being evaluated. It has fewer side effects 
and the manufacturer is interested in proving that 
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it is as efficacious as the currently used drug. Let 
pC and pN be the true (population) proportion of 
patients who respond to the current and the new 
drug, respectively. The problem consists of testing

H0: | PC – PN | ≥ d (nonequivalency)
H1: | PC – PN | < d (equivalency).

A more informative way to write the alternative 
is H1: pC − d < pN < pC + d, which states that the 
efficacy of the new drug is within d units from that 
of the current drug. The role of d is crucial, and its 
value should be chosen with great care. Clearly, 
the probability of favoring equivalency increases 
as d increases, so its value should be based on 
acceptable levels of deviation from perfect equiva-
lence. The value of d should be determined based 
on sound medical and biological considerations, 
independently of statistical issues. For example, if 
the potential benefits (fewer side effects) of the 
new drug are high, a larger value of d could be 
justified. When the effect of the current drug is 
well established, the value of pC is fixed and the 
test becomes a one-sample equivalence test.

Using data from the National Immunization 
Survey (NIS), in 2002, Lawrence Barker and col-
leagues investigated whether vaccination coverage 
was equivalent between children of three minority 
groups and white children. Since the NIS data for 
2000 were supposed to detect coverages at the  
5 percentage point level, d was chosen to be 5. 
Thus, the alternative hypothesis was H1: −5 < pM 
− pW < 5, where pW and pM are the coverage for 
white and minority children, respectively. The 
equivalence of the coverage was to be established if 
the data provided enough evidence to support H1.

Procedure

An intuitive method to test equivalency is known 
as the two-one-sided test (TOST) procedure. At 
an α level, the TOST procedure will accept the 
hypothesis of equivalence if a (1 − 2α) × 100% 
confidence interval (CI) for the difference in pro-
portions is contained in the interval (−d, d). If 
either limit is outside the interval, nonequiva-
lency cannot be rejected (i.e., equivalency cannot 
be established). The TOST procedure can be 
used in situations that involve other parameters 
(i.e., means, medians, odds ratios, etc.). It is 

important to note that, even though the TOST 
procedure is two sided, it achieves an α = .05, 
using a 90% CI.

Barker and colleagues found that the vaccina-
tion coverage for the 3-DTP vaccine was 95.0% 
for whites and 92.1% for blacks, with a 90% CI 
for the difference of (1.5, 4.3). Since this interval 
is included in the interval (−5, 5), equivalence 
was established at a .05 level. It is important to 
note that this interval does not include 0, so the 
standard procedure would have found a signi-
ficant difference between the coverages (i.e., a 
lower coverage for black children). A contradic-
tion also occurs when the CI includes 0, but is 
not within (−d, d). In fact, Barker and colleagues 
found that contradictions occurred in 9 out of  
21 comparisons (three minority groups and seven 
vaccines). In 7 of the 9 cases, the TOST proce-
dure favored equivalency in contradiction with 
the standard procedure; in 2 cases the results 
were reversed.

In some cases, symmetric limits of equivalency 
are not appropriate. That would be the case when 
the “costs” of erring in either direction are not the 
same. In such a case, the procedure would be 
based on whether the CI is contained in an interval 
(d1, d2).

Sample-Size Considerations

The main problem in equivalence testing is that 
the samples needed to achieve acceptable levels of 
power are, frequently, fairly large. Using the TOST 
procedure with α = .05, samples of n = 2,122 per 
group are needed to achieve a power of .95 to 
establish equivalence when pN = .4, pC = .3, and d 
= .15. Under the same circumstances, a standard 
procedure requires n = 589 per group to reject the 
null hypothesis of equivalence and conclude (incor-
rectly) nonequivalence. As mentioned earlier, larger 
values of d increase the power to detect equiva-
lence and thus reduce the required sample size. For 
example, if d = .2, the sample size needed  
to establish equivalence in the previous situation is 
n = 531.

Testing equivalence is particularly applicable in 
public health, where the sample sizes are usually 
large. The NIS contains millions of records of chil-
dren nationwide, yielding a high power for any test. 
However, in clinical studies, large samples are hard 
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to obtain, thus limiting the application of equiva-
lence testing. In this respect, Stefan Wellek states,

In equivalence testing power values exceeding 
50% can only be obtained if either the equiva-
lence range specified [d] by the alternative hypoth-
esis is chosen extremely wide or the sample size 
requirements are beyond the scope of feasibility 
for most if not all applications. (p. 63)

Noninferiority Testing

Noninferiority, or one-sided equivalence, testing is 
appropriate when the objective is to establish that 
one arm is not inferior to another (and possibly 
superior). Actually, the example of the toxin- 
reducing drug might be better suited for a noninfe-
riority test. That is, the objective is to establish that 
the new drug is not inferior in efficacy to the drug 
in current use. As before, let pC and pN be the true 
efficacy of the current and the new drug, respec-
tively. The test of interest is

H0: PC – PN  ≥ d (inferiority)
H1: PC – PN  < d (noninferiority).

It is informative to write the noninferiority 
hypothesis as H1: pN > pC − d, which states that the 
efficacy of the new drug is not more than d units 
lower than the efficacy of the current drug. In cases 
where higher values imply inferiority, the alterna-
tive hypothesis becomes H1: pN − pC < d.

Noninferiority testing differs from a standard 
one-sided test only by the use of the “offset” term 
d. Thus, noninferiority is established at an α level 
if the upper limit of a (1 − 2α) × 100% CI for the 
difference pC − pN is less than d. Significant confu-
sion in the medical literature is caused by the fact 
that the upper limit of a (1 − 2α) × 100% CI is also 
the upper limit of a (1 − α) × 100% one-sided CI. 
That is, the upper limit of a 90% CI is also the 
upper limit of a 95% one-sided CI.

Warfarin prevents ischemic stroke in patients 
with nonvalvular atrial fibrillation, but dose adjust-
ment, coagulation monitoring, and bleeding limit 
its use. In 2005, SPORTIF (Stroke Prevention 
Using an Oral Thrombin Inhibitor in Atrial 
Fibrillation) was created to conduct a study to 
compare ximelagatran with warfarin for stroke 
prevention. Ximelagatran has a fixed oral dosing, 

does not require coagulation monitoring, and has 
few drug interactions. The objective was to estab-
lish noninferiority of ximelagatran with respect to 
stroke prevention. An absolute margin of d = 2% 
per year was specified. Therefore, if pX and pW are 
the yearly stroke rates for ximelagatran and warfa-
rin, respectively, the noninferiority hypothesis was 
H1: pX < pW + 2. The observed yearly event rates 
were 1.62% and 1.17% for ximelagatran and war-
farin, respectively. The difference was .45%, and 
the 95% upper limit of the CI for the difference 
was 1.03%. Since it was less than 2%, noninferior-
ity was established. Note that for d = 1%, the data 
do not support noninferiority.

Other Situations

Equivalence testing, just as standard testing, can  
be applied to a variety of problems. This includes 
differences or ratios of measures of location (e.g., 
means, proportions, medians) and dispersion (e.g., 
standard deviations). Wellek describes parametric 
and nonparametric tests of equivalence for depen-
dent observations, multiple samples, linear models, 
survival times, hazard rates, and bioequivalence.

A natural application of the equivalence con-
cept is in lack of fit where the objective is to deter-
mine if an observed distribution is equivalent to 
another. In the standard chi-square test for lack of 
fit, the null hypothesis is of equivalence, and thus, 
it is not designed to establish equivalence to the 
reference distribution and tends to favor equiva-
lence too frequently. Wellek presents an equiva-
lence test for this situation that has the desired 
properties.

p Values

Reporting p values in testing equivalence is not 
done routinely. This is unfortunate because p val-
ues are not difficult to calculate. In the noninferi-
ority case, the p value is obtained from a standard 
test with an offset value of d. This procedure can 
be carried out with any standard statistical pro-
gram. To calculate the p value in the case of 
equivalence, one uses the fact that establishing 
equivalence is tantamount to establishing non-
superiority and noninferiority, simultaneously. 
Thus, the p value for equivalence is the larger of 
the two p values.
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Final Thoughts

Testing equivalence or noninferiority is the appro-
priate procedure for many biological and medical 
situations in which the objective is to compare a 
new therapy with a standard. The procedures to 
perform these tests are simple modifications of 
those used in standard testing but in many cases 
result in completely different conclusions. The 
margin of equivalence is critical and sometimes is 
the most critical issue. In spite of their apparent 
simplicity, there is still considerable confusion  
in the medical literature on how to perform and 
interpret equivalence and noninferiority tests. In a 
recent study, Le Henanff and colleagues found that 
out of 162 published reports of equivalence and 
noninferiority trials, about 80% did not justify  
the choice of the equivalence margin. They also 
observed that only about 50% of the articles 
reported a p value, and only 25% interpreted it.

The main obstacle in the application of these 
methods is the large samples needed to achieve 
acceptable levels of power. In the study by Le 
Henanff and colleagues, the median number of 
patients per trial was 333. However, 28% of the 
studies reviewed did not take into account the 
equivalence margin, so it is likely that many were 
underpowered to detect equivalency. Finally, the 
decision between testing equivalence or noninferi-
ority involves similar issues as in choosing between 
a two-sided or a one-sided alternative in standard 
testing. This decision should be based on the objec-
tives of the study and not on the observed data.

Esteban Walker

See also Efficacy Versus Effectiveness; Hypothesis Testing
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Error and Human 
factors analysEs

The study of human error in diverse sociotechni-
cal systems may be conducted by examining the 
human factors that contribute to error. A human 
error may be broadly defined as failure to take 
required action, failure to meet a performance 
standard for that action, or performing the 
wrong action. In the medical domain, human 
error may or may not adversely affect the patient. 
Patient safety is a medical providers’ principal 
concern; thus, much attention has been placed on 
uncovering errors that have the potential to 
cause patient injury. Any patient injury (i.e., 
adverse medical event) that is attributable to 
human error is described as a preventable adverse 
event. Two prolific studies conducted in New 
York, Colorado, and Utah suggested that between 
2.9% and 3.7% of hospitalizations produce 
adverse events. The proportion of these adverse 
events that was attributable to error (i.e., pre-
ventable adverse event) was between 53% and 
58%. The New York study estimated that pre-
ventable adverse events in hospitals causes 
approximately 44,000 to 98,000 deaths annually 
when extrapolated to the 33.6 billion hospital 
admissions the United States experienced in 
1997. Even if these statistics underestimate the 
magnitude of the problem, as some have argued, 
they would still place preventable adverse events 
among the leading causes of death in the United 
States, ranking higher than motor vehicle acci-
dents, breast cancer, and AIDS. Results of these 
studies prompted the Institute of Medicine to 
produce the report To Err Is Human: Building a 
Safer Health System, which strongly recom-
mended that the healthcare community look to 
other high-risk industries, such as nuclear power 
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and aviation, for ways to improve their own record 
on the quality and safety of healthcare delivery. 
The authors of that report endorsed the study and 
application of human factors analyses to measure 
and improve human-system performance.

Human factors analyses are used to study how 
humans interact psychologically and physically 
with their particular environment (i.e., system). 
This includes the study of both human-human 
and human-system interactions. The objective of 
human factors analyses is to understand the 
nature of these interactions in order to improve 
system performance and human well-being. The 
field of human factors originated in aviation, but 
its current scope is as broad as it is deep, with 
specialization ranging from safety and human 
error to aging and virtual reality. The results of 
many years of research from the human factors 
community have yielded valuable insights into 
crucial aspects of human performance that can be 
affected by the design of work in light of human 
capabilities and limitations and the specialized 
nature of work involved in different aspects of 
healthcare.

Human factors analyses can be used to create 
assessments of the requirements of work involving 
demands on human performance in the physical, 
cognitive, and social domains. This includes the 
ways in which task demands, workload, and  
situational awareness are likely to interact to 
influence the performance of individuals. This 
knowledge can be translated to work process and 
system design such that human performance is 
optimized and system safeguards prevent human 
error from translating to patient injury. Formal 
human factors methods and measurement tech-
niques are available, and many demonstrations  
of their uses exist to guide their application to 
healthcare. Each provides potentially useful infor-
mation about factors that can limit or improve 
human performance. Measuring and accounting 
for human factors associated with healthcare 
delivery is likely to lead to safer and more reliable 
patient care.

The human factors analyses methods described 
in this entry are a subset of the methods most rel-
evant to the study of error in medicine. This entry 
focuses on error in medicine and how human fac-
tors analyses may be applied to study and improve 
the quality and safety of healthcare delivery.

Human Error

Human error is often classified into one of two 
groups. The first group describes errors of omis-
sion—failing to perform a task or failing to act 
within a time period required by the situation. In 
this case, something that should have been done 
was not done because it was either skipped or not 
performed in time. The second group encompasses 
errors of commission—performing the wrong 
action or performing the right action incorrectly. 
Regardless of whether an action was performed or 
not, if it fails to meet an established performance 
standard, then it may be said to result in a state of 
error. Both errors of omission and commission 
describe a failure to achieve prescribed results in 
such a way that action was not performed or not 
performed to an acceptable standard. This includes 
both actions that are intentionally undertaken and 
those that are unintentionally committed.

Exposure to Human Error in Medicine

Medical systems function either directly or indi-
rectly under the control of humans. This ranges 
from frontline medical care to the management 
and administrative work needed to support front-
line care. For the patient, this encompasses a range 
of activities that begins at admission, continues 
through diagnosis and treatment, and ends with 
discharge or death. Patients may be exposed to 
errors through a variety of clinical and administra-
tive activities over the course of their care. Lucian 
Leape and others categorized the most prevalent 
types of errors that patients are exposed to in  
an article titled “Preventing Medical Injury.” 
Diagnostic errors were described as delays in diag-
nosis, failure to order appropriate tests, and failure 
to act on monitoring or test results. Treatment 
errors included, but are not limited to, errors in 
performance of a procedure, errors in administer-
ing a treatment, and errors in drug dose or admin-
istration. Preventive errors included failure to pro  vide 
prophylactic treatment and inadequate monitoring 
or follow-up treatment. Other errors included 
communication failures, equipment failures, and 
other system failures. As the healthcare system has 
evolved to be more disaggregated and complex, it 
is helpful to study the causes of human error and 
preventable adverse events within the context of 
complex systems.
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Human-System Error in Complex Systems

Medical specialization and advancements in 
medical knowledge and technology have created a 
complex healthcare delivery system. This complex-
ity and disaggregation have greatly increased the 
opportunity for adverse events attributable to 
human error (i.e., preventable adverse events). 
Charles Perrow has discussed the propensity of 
human error in complex systems in other indus-
tries and attributes them in part to the nature of 
the systems themselves. Healthcare has been cate-
gorized as a complex and tightly coupled system. 
System complexity arises from the system’s numer-
ous specialized interdependent components (e.g., 
departments, providers, equipment). From a 
patient’s perspective, complexity is reflected in the 
number of processes that must be accounted for 
and the dynamic nature of their relationships and 
response to medical treatment. Coupling refers to 
the degree of dependency between the system com-
ponents and processes. Complex, tightly coupled 
systems are at greater risk for adverse events due 
to their inability to foresee the consequences of 
component interactions and the unique situations 
that are prone to error.

James Reason illustrates the human contribu-
tion to error in complex systems as either active  
or latent. Active errors occur only at the point  
of patient-provider interaction. The consequences 
of these errors are usually evident and experienced 
immediately. Latent errors are more suppressed, 
unknown, and await the appropriate initiating 
event or signal to trigger their effects on the sys-
tem. In some cases, latent errors represent known 
or accepted conditions that either await correction 
or are not appreciated for the types of effects they 
may eventually unleash. Examples of latent errors 
include poor design, incorrect installation, poor 
management decisions, and poor communication 
processes. Latent errors are most dangerous in 
complex systems because of their ability to cause 
numerous active errors.

The study of human factors that contribute to 
error and preventable adverse events focuses on 
minimizing the risk of active and latent errors. 
Human factors methodologies assume that humans 
are imperfect and that errors are to be expected. 
However, there are specific factors within the 
work environment (i.e., system) that provoke the 

occurrence of errors. Just as the systems should be 
designed to minimize error-provoking circum-
stances, defense barriers and safeguards should be 
put in place to eliminate the ability of human error 
to create adverse medical events. Human factors 
analyses are meant to bridge the gap between sys-
tem influences and human error and are especially 
relevant to complex systems such as healthcare. 
Human factors analyses may be used to study and 
understand human error within an environmental 
context and facilitate improvements, leading to 
better system performance and reliability.

Human Factors Analyses

Human factors analyses methods are concerned 
with the interaction of humans with the tools, sys-
tems, and other humans that make up their work 
environment. The design for these tools, systems, 
work, and communication processes are meant to 
strongly consider the characteristics, capabilities, 
and limitations of humans. Human factors analyses 
grew from work in aviation during World War II to 
improve cockpit design and aircrew performance. 
Cognitive psychology, engineering, computer sci-
ence, sociology, anthropology, and artificial intelli-
gence represent the roots of human factors methods. 
To date, human factors methods have been used 
extensively by other high-risk industries to improve 
human performance and organizational reliability. 
The application of human factors analyses in medi-
cine has been less prevalent but is not necessarily 
new. Human factor analyses were first documented 
in medicine in the 1970s, and their application has 
steadily increased since then. Human factors analy-
ses have been applied to a number of healthcare 
topics, including the following:

Error reduction •
Hospital design •
Anesthesia delivery •
Patient safety •
Time and motion studies •
Workload management •
Communications and distractions •
Pharmacy operations and accuracy •
Team performance in operating rooms •
Curriculum development for medical schools •
The impact of information technologies on  •
healthcare management and delivery
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As is evident from this list, the field of human 
factors has always emphasized research and its 
application in work settings. As a result, a number 
of methods and tools are now available to analyze 
human performance. Although unique in purpose, 
these methods produce data that can be used 
within a workplace or system setting to assess 
requirements for safe, efficient, and economical 
operation in light of human capabilities and limita-
tions. Three human factors methods that are 
among the most highly relevant to individuals and 
organizations involved in healthcare (i.e., task 
analyses, workload analyses, and situational 
awareness analyses) are described.

Task Analyses

The most common human factors method for 
studying human behavior in the work environment 
is task analysis. Task analysis involves the observa-
tion of people as they perform their work, struc-
tured interview techniques to elicit information 
from workers, and analysis of the resulting obser-
vations and data to describe an integrated set of 
activities that represent human performance in a 
work domain of interest. These methods employ a 
structured description or “decomposition” of work 
activities or decisions and classification of these 
activities as a series of tasks, processes, or classes. 
Each task is systematically described in terms of 
the mental and physical activities needed to per-
form the task successfully. The product of a task 
analysis is a description of tasks, the sequence and 
duration of their execution, conditions for task 
initiation and completion, the physical and mental 
dimensions of task performance, communications 
between work teams and between team members, 
and the tools and systems used to perform work. 
The results of task analysis are used to estimate the 
characteristics of predefined tasks, such as the fre-
quency, complexity, time needed, equipment and 
tools needed, and communication performed.

Task analysis is an important analytical method 
for describing the way work is intended to be  
carried out. It works particularly well for sets of 
activities that occur in well-prescribed sequences. 
Results of task analysis are often ultimately used to 
develop or validate operational procedures, develop 
qualification requirements, develop training pro-
grams, and support the design of assistive tools 

employed in the workplace. The results may also 
be used to verify that the expectations for human 
activity are compatible with the capabilities and 
limitations of those expected to perform the work. 
This includes requirements for precision and accu-
racy, speed, strength, endurance, and other psy-
chophysiological factors such as anthropometry 
(e.g., physical ability) and ergonomics.

Workload Analyses

Workload is a multidimensional, multifaceted 
concept that is difficult to define concisely. The 
elusiveness of a single satisfactory definition has 
challenged human factors researchers on many 
fronts and has fueled a lively and active debate 
among them. Even without consensus on a defini-
tion, human factors professionals agree that work-
load is a very valuable concept to understand and 
to measure in sociotechnical systems. Presently, the 
onset of technology and automation has greatly 
shifted the workload paradigm from the physical 
domain to the mental domain. Mental workload 
relates to the demands placed on a human’s limited 
mental resources by a set of tasks being performed 
by an individual. The assumption behind this the-
ory is that humans have a fixed amount of process-
ing capacity. Tasks inherently demand processing 
resources, and the more difficult the task or tasks, 
the higher the processing capacity required for 
acceptable performance. If at any time the process-
ing demands exceed the available processing capac-
ity, performance quality may decrease. Thus, high 
levels of mental workload can lead to errors and 
poor system performance. Conversely, excessively 
low levels of mental workload can lead to com-
placency and errors, albeit for different reasons.  
As this implies, workload consists of an external, 
objective, observable referent as well as a subjec-
tive and mostly perceived referent. Both are impor-
tant in understanding and predicting workload.

There are three primary methods for measuring 
workload: procedural, subjective, and physiologi-
cal. Each of these methods can be applied in isola-
tion, but generally, they are measured concurrently 
to obtain an integrated assessment of workload. 
Procedural measurement involves directly monitor-
ing human behavior in the working environment. 
Task analysis, discussed above, is the most common 
method of procedural workload measurement. 
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Task analysis is used by observing a worker in an 
actual or simulated work setting and discerning 
changes in behavior as task loads vary. Subjective 
workload measures require a worker to rate or 
distinguish a level of workload required to perform 
a task. There are two major classes of subjective 
workload assessment techniques—unidimensional 
and multidimensional. Unidimensional techniques 
involve asking the subject for a scaled rating of 
overall workload for a given task condition. More 
comprehensive, multidimensional methods include 
various characteristics of perceived workload and 
are able to determine the nature of workload for a 
specific task or set of tasks. Validated workload 
measurement instruments include the NASA Task 
Load Index (NASA-TLX) and the Subjective Work-
load Assessment Technique (SWAT). Physiological 
techniques measure changes in subject physiology 
that correspond to different task demands. Most 
techniques emphasize cognitive task demands as 
opposed to actual physical demands. Studies have 
used physiological parameters such as heart rate, 
eye blink rate, perspiration, and brain activity to 
assess the state of workload of a human subject.

Situational Awareness Analyses

Mica Endsley defines situational awareness (SA) 
as a human’s ability to perceive components within 
his or her environment (i.e., system), comprehend 
their meaning, and forecast their status in the 
future. This encompasses three distinct levels of 
SA. Level I SA refers to the perception of compo-
nents within the environment. Level II SA involves 
comprehension of the current situation. Level III 
SA involves projecting the status of components 
and the situation picture in the near future. 
Progression through the levels of SA depends on 
the cognitive abilities and experience of an indi-
vidual (and other team members) in performing 
mental operations on information from a dynamic 
process. SA is the product of cognitive activities 
and synthesis across the three levels of SA.

SA measurement can be used to evaluate system 
design and facilitate system improvements. Like 
workload measurement, SA measurement can be 
done using several methodologies. These methods 
include performance measures, subjective mea-
sures, questionnaires, and physiological measures. 
Again, these measurement techniques can be 

administered separately, but usually, they are used 
simultaneously to obtain a more global assessment 
of SA.

Performance measures are the most objective 
way to measure SA. These measures are divided 
into two major types—external task measures and 
embedded task measures. External task measures 
involve removing information from a subject’s 
environment and then measuring the amount of 
time it takes the subject to notice this difference 
and react. Imbedded task measures involve study-
ing subtasks of subjects and noting subtle devia-
tions in expected performance versus actual 
performance. Subjective measures of SA continue 
to be popular because of their ease of use, low cost, 
and applicability to real-world environments. One 
of the most well-known and validated ways to 
subjectively measure SA is by the Situational 
Awareness Rating Technique (SART), developed 
by R. Taylor in 1990. SART is a measure based on 
subjects’ opinions that is broken up into 14 com-
ponent subscales. All these subscales are integrated 
to create an overall SART score for a system. 
SART measures have shown high correlation with 
SA performances measures. Questionnaires allow 
for an objective assessment of SA, eliminating the 
disadvantages of subjective measures. They evalu-
ate SA on a component basis and compare a sub-
ject’s assessment of a situation with actual reality. 
The most popular questionnaire method is Endsley’s 
Situational Awareness Global Assessment Tech-
nique (SAGAT). SAGAT executes randomized time 
freezes in simulation scenarios. At the time of the 
freeze, questions are asked of the subject about the 
situation to accurately evaluate the subject’s knowl-
edge of the situation. Physiological measures of SA 
are similar to physiological workload measures, 
but they have been proven thus far to be much 
more difficult to interpret. Electroencephalograms 
(EEG) and eye-tracking devices have been used to 
measure SA.

Bruce P. Hallbert, Scott R. Levin,  
and Daniel J. France

See also Cognitive Psychology and Processes; 
Complications or Adverse Effects of Treatment; 
Human Cognitive Systems; Medical Errors and Errors 
in Healthcare Delivery; Unreliability of Memory
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Errors in clinical rEasoning

Physicians make diagnostic and therapeutic deci-
sions at every moment in their daily lives. Quality 
of care and patient outcomes, including some-
times distinction between life and death, come out 
of such decisions. In most cases, physicians’ judg-
ments are correct, but of course, they also fail. 
Errors, in fact, occur in medicine, and the Institute 
of Medicine’s well-known report To Err Is Human 
recently called the public’s and professionals’ 
attention to this reality. Since then, the frequency 

and impact of adverse patient effects provoked by 
medical errors have been increasingly recognized. 
In the United States, it is estimated that medical 
errors result in 44,000 to 98,000 unnecessary 
deaths and around 1 million injuries each year. 
Even considering the lower estimate, deaths due  
to adverse events resulting from medical errors 
exceed the deaths attributable to motor vehicle 
accidents, breast cancer, or AIDS. Similar phe-
nomena have been reported by studies in other 
countries. In Australia, for instance, medical 
errors are estimated to result in as many as 18,000 
deaths, and more than 50,000 patients become 
disabled each year.

Medical errors occur in a variety of healthcare 
settings and in different stages of care. They may 
arise due to drug misuse or failures during the 
therapeutic phase, for instance, but due to their 
frequency and impact, diagnostic errors have 
received growing attention. Diagnostic error may 
be defined as a diagnosis that was unintentionally 
delayed (sufficient information for establishing the 
diagnosis was available earlier), incorrect (another 
diagnosis was made before the correct one), or 
missed (no diagnosis was ever made), as judged 
from the analysis of more definitive information. 
When a diagnosis is incorrect or does not entirely 
address the patient’s problem, treatment can be 
delayed and/or wrong, sometimes with devastating 
consequences for patients and healthcare provid-
ers. Diagnostic mistakes represent a substantial 
and costly proportion of all medical errors. In the 
Harvard Medical Practice Study, the benchmark 
for estimating the amount of injuries occurring in 
hospitals, diagnostic errors represented the second 
largest cause of adverse events. In a recent study of 
autopsy, diagnostic discrepancies were found in 
20% of the cases, and in half of them, knowing the 
correct diagnosis would have changed the case 
management. Indeed, postmortem studies indicate 
that the rates of diagnostic errors with negative 
impact on patient outcomes hover around 10%; 
this rate is stable across hospitals and countries 
and has not been affected by the introduction of 
new diagnostic technologies.

Undoubtedly, not all diagnostic errors can be 
attributed to faults in physicians’ clinical reasoning. 
In a typology of medical errors that has been fre-
quently used by Mark Graber and other authors, the 
so-called system-related errors come out from latent 
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flaws in the health system that affect physicians’ per-
formance. This type of error derives from external 
interference and inadequate policies that affect 
patient care; poor coordination between care provid-
ers; inadequate communication and supervision; and 
factors that deteriorate working conditions, such as 
sleep deprivation and excessive workload. In a sec-
ond category of errors, referred to as no-fault errors, 
the correct diagnosis could hardly be expected due 
to, for example, a silent illness or a disease with 
atypical presentation. However, a third category of 
errors, namely, cognitive errors, occur when a diag-
nosis is missed due to incomplete knowledge, faulty 
data gathering or interpretation, flawed reasoning, 
or faulty verification. As arriving at a diagnosis 
depends largely on a physician’s reasoning, cognitive 
faults play an important role, particularly in diagnos-
tic errors. Indeed, a recent study in large academic 
hospitals in the United States found that cognitive 
factors contributed to 74% of the diagnostic errors 
in internal medicine.

This entry addresses this latter category of 
errors: diagnostic failures generated by errors in 
clinical reasoning. First, the mental processes 
underlying diagnostic decisions are briefly reviewed, 
and subsequently, origins of medical errors are 
discussed. Finally, the nature of reflective reason-
ing in clinical problem solving and its role in mini-
mizing diagnostic errors are discussed.

The Nature of Clinical Reasoning

Throughout the past decades, research on clinical 
reasoning has generated substantial empirical evi-
dence on how physicians make diagnoses. Two main 
modes of processing clinical cases—nonanalytical 
and analytical—have been shown to underlie diag-
nostic decisions. Experienced doctors diagnose 
common problems largely by recognizing similari-
ties between the case at hand and examples of 
previously seen patients. As experience grows, this 
so-called pattern-recognition, nonanalytical mode 
of clinical reasoning tends to become largely auto-
matic and unconscious. Complex or uncommon 
problems, however, may trigger an analytical mode 
of reasoning, in which clinicians arrive at a diagno-
sis by analyzing signs and symptoms, relying on 
biomedical knowledge when necessary.

Cognitive psychology research indicates that 
these two different types of reasoning result from 

diverse kinds of knowledge used for diagnosing 
cases. According to Henk Schmidt and Henny 
Boshuizen, medical expertise development entails 
a process of knowledge restructuring, and there-
fore, knowledge structures available to medical 
students and physicians change throughout train-
ing and practice. In the first years of their training, 
medical students develop rich networks of bio-
medical knowledge explaining causal mechanisms 
of diseases. This biomedical knowledge is gradu-
ally “encapsulated” under clinical knowledge, 
and with clinical experience, illness scripts (i.e., 
cognitive structures containing little biomedical 
knowledge but a wealth of clinically relevant 
information about a disease) and examples of 
patients encountered are stored in memory. 
Experienced physicians’ diagnostic reasoning is 
characterized largely by nonanalytical processing 
that relies extensively on illness scripts, examples 
of patients, and encapsulated knowledge. In fact, 
not only have illness scripts been shown to play a 
crucial role in hypotheses generation, but they 
also organize a search for additional data and 
interpretation of evidence, thereby acting on 
hypotheses refinement and diagnosis verification. 
However, the diverse knowledge structures devel-
oped throughout training apparently do not decay 
but remain as layers in memory, and earlier 
acquired structures may be used to deal with 
problems when necessary. Physicians have been 
shown to make use of knowledge of pathophysi-
ological processes, for example, to understand 
signs and symptoms in a patient when cases are 
unusual or complex and when immediate expla-
nations do not come to mind. Indeed, expert clini-
cians’ reasoning seems to be characterized by 
complexity and flexibility, and apparently, differ-
ent mental strategies are adopted in response to 
different problems’ demands.

Origins of Medical Errors

Studies of medical errors point to possible failures 
in the generation of hypotheses, in hypotheses 
refinement through data gathering and interpreta-
tion, and in diagnosis verification. These failures 
may come from multiple sources. First, it is to be 
acknowledged that uncertainty is inherent to clini-
cal decision making. Despite the high value attrib-
uted to the rational use of objective, well-established 
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scientific knowledge within the medical domain 
and the growth of the medical knowledge base, 
this knowledge will always be insufficient to tell 
physicians what is to be done in a particular situa-
tion. Clinical judgment is a complex process that 
always involves perception and interpretation of 
findings within the context of a particular patient. 
The way diseases present themselves ranges from 
typical to very atypical manifestations, sometimes 
hardly recognizable. Physicians always have to 
interpret the scientific literature for making deci-
sions in light of each patient’s unique configura-
tion of signs and symptoms, context, and needs. 
Second, traditional views of the physician as a neu-
tral observer who objectively identifies and inter-
prets a patient’s signs and symptoms to make 
decisions have been increasingly questioned. Every 
physician always brings to a clinical encounter a 
body of medical knowledge that includes both 
theoretical knowledge from several disciplines and 
knowledge acquired through his or her own pro-
fessional experience. From the interaction between 
this idiosyncratic body of knowledge and each 
unique patient, clinical knowledge required to 
solve the patient’s problem is generated. Empirical 
studies have shown that physicians’ experience, 
beliefs, and perspectives influence their perception 
and interpretation of features in a patient. Signs 
that corroborate a certain perspective may be rec-
ognized and emphasized, whereas another line of 
reasoning may not receive appropriate attention. 
Studies have shown that a suggested diagnosis 
influences identification and interpretation of clin-
ical features in a patient. Misperceptions and mis-
interpretation of evidence, therefore, are not 
unusual in clinical problem solving and may com-
pel physicians to make incorrect judgments.

Particular attention has been recently directed to 
the role of heuristics in medical errors. Heuristics 
are mental shortcuts or maxims that are used, 
largely unconsciously, by clinicians to expedite 
clinical decision making. Heuristics come out from 
professional experience or tradition, without being 
necessarily based on scientific evidence. They can 
be a very powerful instrument in the hands of expe-
rienced physicians, allowing them to take appropri-
ate decisions, particularly within situations of time 
constraints. Nevertheless, heuristics can insert 
biases and distort reasoning throughout the diag-
nostic process, thereby generating cognitive errors. 

A set of biases have been frequently pointed as 
underlying diagnostic errors and exemplify the 
potential negative effects of the use of heuristics. 
Availability bias, for instance, occurs when the 
judgment of the probability of a disease is influ-
enced by readily recalled similar events. Recent or 
frequent experiences with a disease may, therefore, 
unduly increase the likelihood that it is considered 
as a diagnostic hypothesis. Confirmation bias, 
another frequent distortion, compels physicians to 
gather and value evidence that confirms a hypoth-
esis initially considered for the case rather than 
searching for and considering evidence that refutes 
it. Confirmation bias is frequently associated with 
another bias, namely, anchoring, which occurs 
when the clinician remains fixed on the initial 
impression of the case instead of adjusting hypoth-
eses in light of new data. As a last example, prema-
ture closure, accounting for a high proportion of 
missed diagnoses, occurs when an initial diagnosis 
considered for the case is accepted before all data 
are considered and other alternatives are verified. 
These are only examples of a large set of biases, of 
different types, that may distort diagnostic reason-
ing. Some of them tend to affect the generation of 
hypotheses, whereas others influence processing of 
information or hypotheses verification.

A diversity of mechanisms may act, therefore, as 
underlying causes of diagnostic errors. These 
mechanisms may be favored by an excessive reli-
ance on nonanalytical reasoning. Nonanalytical, 
pattern-recognition reasoning allows physicians to 
efficiently diagnose most of the routine problems 
but may introduce distortions in clinical reasoning, 
thereby leading to errors. This tends to happen 
particularly when physicians are faced with com-
plex, unusual, or ambiguous problems, which 
would require them to adopt a more analytical 
reasoning mode. Studies have indicated that expert 
doctors may in fact shift from the usual automatic 
way of reasoning to an analytical, effortful diag-
nostic approach in some situations. This happened, 
for instance, when doctors diagnosed cases out of 
their own domain of expertise and adopted an 
elaborate biomedical processing approach for 
understanding signs and symptoms. More recent 
empirical studies have confirmed that doctors may 
engage in effortful reflection for diagnosing cases, 
which affects the quality of their diagnoses. These 
studies reflect a recent interest in the analytical 
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mode of diagnosing clinical cases. Research on 
clinical reasoning has traditionally focused on how 
physicians diagnose clinical problems through 
nonanalytical reasoning, and therefore, a substan-
tial amount of empirical data about this mode  
of case processing are available. Not so much is 
known, however, about physicians’ reasoning 
when they engage in reflection for solving clinical 
problems. Only recently, stimulated by concerns 
with avoidable medical errors, attention has been 
directed to the analytical diagnostic reasoning, and 
research conducted within the framework of reflec-
tive practice in medicine has contributed to shed 
some light on the nature and effects of reflection 
while solving clinical cases.

Reflective Reasoning and Diagnostic Errors

Reflective practice has been conceptualized as doc-
tors’ ability to critically reflect on their own rea-
soning and decisions while in professional activities. 
Critically reflecting on one’s own practice has long 
been valued as a requirement for good clinical per-
formance. Ronald Epstein suggested that by insert-
ing “mindfulness” in their practice, physicians 
would become aware of their own reasoning pro-
cesses during clinical problem solving. Mindful 
practice, as he called it, would compel physicians 
to observe themselves while observing the patient. 
It would then enable physicians to realize how 
their own body of knowledge, beliefs, values, and 
experiences influences their perception and inter-
pretation of features encountered in a patient, 
thereby leading them to questioning and improv-
ing their own judgments.

Other authors, such as Pat Croskerry, have 
emphasized the potential role of metacognition, 
which means critically reflecting on one’s own 
thinking processes as a crucial condition for good 
diagnostic performance. Metacognition consists of 
the ability to explore a broader range of possibili-
ties than those initially considered for a case, the 
capacity to examine and critique one’s own deci-
sions, and the ability to select strategies to deal 
with decision-making demands.

Although they are easily encountered in the lit-
erature on medical errors, only recently did concep-
tualizations such as mindful practice, reflection, or 
reflective practice start to be investigated by empir-
ical research. Recent studies provided empirical 

evidence of the nature of reflective practice in 
medicine. Reflective practice comprises at least five 
sets of behaviors, attitudes, and reasoning pro-
cesses in response to complex problems encoun-
tered in professional practice: (1) an inclination to 
deliberately search for alternative hypotheses in 
addition to the ones initially generated when seek-
ing explanations for a complex, unfamiliar prob-
lem; (2) an inclination to explore the consequences 
of these alternative explanations, resulting in pre-
dictions that might be tested against new data; (3) a 
willingness to test these predictions against new 
data gathered from the case and synthesize new 
understandings about the problem; (4) an attitude 
of openness toward reflection that leads reflective 
doctors to engage in thoughtful, effortful reasoning 
in response to a challenging problem; and (5) a 
willingness and ability to reflect about one’s own 
thinking processes and to critically examine con-
clusions and assumptions about a particular prob-
lem, that is, metareasoning.

A physician who is open to reflection tends to 
recognize difficulties in solving a problem and to 
accept uncertainty while further exploring the 
problem instead of searching for a quick solution. 
By engaging in reflective practice, physicians would 
bring to consciousness and critically examine their 
own reasoning processes. Patients’ problems would, 
therefore, be explored more thoroughly; alternative 
hypotheses would be more easily considered and 
more extensively verified. Clinical judgments would 
improve, and errors would be reduced. Although 
theoretically justified, these statements have only 
recently been supported by empirical studies. 
Experimental studies with internal medicine resi-
dents have explored the effects of the two main 
modes of reasoning—nonanalytical and reflective— 
on the quality of diagnoses. Residents were asked 
to diagnose simple and complex cases by follow-
ing, in each experimental condition, instructions 
that led to either a nonanalytical or a reflective 
approach. Reflective reasoning was shown to 
improve the accuracy of diagnoses in complex 
clinical cases, whereas it made no difference in 
diagnoses of simple, routine cases. In a subsequent 
study with internal medical residents, this positive 
effect of reflective reasoning on the diagnosis of 
difficult, ambiguous clinical cases was reaffirmed.

These recent studies indicate that diagnostic 
decisions would improve by adjusting reasoning 
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approaches to situational demands. While nonana-
lytical reasoning seems to be highly effective for 
solving routine cases, complex, unusual, or unique 
clinical problems would require physicians to shift 
to a more analytical, reflective reasoning. This 
statement, however, is not so simple and obvious 
as it seems at first sight. As nonanalytical reason-
ing is inherently associated with expertise develop-
ment, how would experienced physicians, who 
tend to reason highly automatically, recognize 
when a problem requires further reflection? It has 
been demonstrated that physicians in fact shift to 
analytical reasoning approaches, but conditions 
that break down automaticity are still under inves-
tigation. An experimental study with medical resi-
dents indicated that, as could be expected, the 
complexity of the case to be diagnosed seems to be 
one of these conditions. However, not only may 
the characteristics of the case itself trigger reflec-
tion, but apparently, contextual information may 
also play a role. In another study with residents, 
only information that other physicians had previ-
ously incorrectly diagnosed the case led partici-
pants to adopt a reflective approach. It is likely 
that factors related to the environment where the 
case is solved or to physicians’ characteristics 
restrict or favor reflection. As an example, a study 
exploring correlates of reflective practice suggested 
that physicians with more years of practice and 
those working in primary-care settings in which 
high standards of performance are not so much 
valued tend to engage less frequently in reflection 
for diagnosing patients’ problems.

These first studies shed some light on the condi-
tions that trigger reflective reasoning and its effect 
on the quality of diagnoses, but much more 
remains to be explored. What seems clear now is 
that minimization of avoidable diagnostic errors 
depends on physicians’ ability to adjust reasoning 
strategies to the problem at hand and appropri-
ately, flexibly combine nonanalytical and reflective 
reasoning. While the usual pattern-recognition, 
nonanalytical approach allows physicians to effi-
ciently solve familiar problems, diagnoses of com-
plex or unusual problems would benefit from 
reflection. Much more, however, needs to be 
known about the knowledge structures and men-
tal processes that constitute reflective reasoning, 
the conditions that lead physicians to effortful 
reflection while diagnosing cases, and the relative 

effectiveness of the different reasoning modes in 
various situations. By further investigating these 
issues, it would be possible to open perspectives 
for designing and testing educational interventions 
aimed at refining medical students’ and practicing 
physicians’ clinical reasoning.

Sílvia Mamede, Henk G. Schmidt,  
and Remy Rikers

See also Automatic Thinking; Bias; Cognitive Psychology 
and Processes; Heuristics; Medical Errors and Errors 
in Healthcare Delivery

Further Readings

Corrigan, J., Kohn, L. T., & Donaldson, M. S. (Eds.). 
(2000). To err is human: Building a safer health 
system. Washington, DC: Institute of Medicine/
National Academy Press.

Croskerry, P. (2003). The importance of cognitive errors 
in diagnosis and strategies to minimize them. 
Academic Medicine, 78, 775–780.

Epstein, R. M. (1999). Mindful practice. Journal of the 
American Medical Association, 282, 833–839.

Graber, M. L., Franklin, N., & Gordon, R. (2005). 
Diagnostic error in internal medicine. Archives of 
Internal Medicine, 165, 1493–1499.

Kassirer, J. P., & Kopelman, R. I. (1991). Learning 
clinical reasoning. Baltimore: Williams & Wilkins.

Kempainen, R. R., Migeon, M. B., & Wolf, F. M. (2003). 
Understanding our mistakes: A primer on errors in 
clinical reasoning. Medical Teacher, 25(2), 177–181.

Kuhn, G. J. (2002). Diagnostic errors. Academic 
Emergency Medicine, 9, 740–750.

Mamede, S., & Schmidt, H. G. (2004). The structure of 
reflective practice in medicine. Medical Education, 38, 
1302–1308.

Mamede, S., Schmidt, H. G., & Penaforte, J. C. (2008). 
Effect of reflective practice on accuracy of medical 
diagnoses. Medical Education, 42, 468–475.

Rikers, R. M. J. P., Schmidt, H. G., & Boshuizen, 
H. P. A. (2002). On the constraints of encapsulated 
knowledge: Clinical case representations by medical 
experts and subexperts. Cognition and Instruction, 
20(1), 27–45.

Schmidt, H. G., & Boshuizen, H. P. A. (1993). On 
acquiring expertise in medicine. Educational 
Psychology Review, 5, 1–17.

Schmidt, H. G., & Rikers, R. M. J. P. (2007). How 
expertise develops in medicine: Knowledge 



455Ethnographic Methods

encapsulation and illness script formation. Medical 
Education, 41, 1133–1139.

Weingart, S. N., Wilson, R. M., Gibberd, R. W., & 
Harrison, B. (2000). Epidemiology of medical error. 
British Medical Journal, 320, 774–777.

EtHnograPHic mEtHods

The term ethnography describes both a literary 
genre (writings that attempt to capture people’s 
cultural beliefs/practices) and a qualitative research 
methodology (a way of collecting social scientific 
data based on long-term, face-to-face interac-
tions). In the current era, ethnographic analysis 
seems to have lost some of its authority, especially 
since human genomics and the statistical analysis 
of massive data sets are privileged in the search for 
contemporary solutions to social problems. Even 
still, ethnography is alive and well and can be used 
to inform medical decision making.

Data Collection

Anthropology and sociology are the two academic 
disciplines that traditionally cornered the market 
on ethnographic methods, but other social sciences 
have become more interested in the kinds of nuanced 
information that is gathered during intimate and 
ongoing interactions between qualitative research-
ers and their research subjects, interactions euphe-
mized as “deep hanging out.” Ethnographers 
spend time drinking beers with the folks they 
study, eating meals at their dinner tables, and shad-
owing them on the job—all in an effort to figure 
out what people’s everyday lives actually look like 
and to determine how people make sense of those 
lives.

When they first start conducting research in a 
particular community, ethnographers may stand 
out like sore thumbs, drawing attention to them-
selves and making their research subjects self- 
conscious, which means that they run the risk of 
witnessing things that probably wouldn’t have 
taken place at all without the conspicuous seduc-
tions of an outside audience. But as ethnographers 
spend more and more time observing and partici-
pating in the same community, among the same 
community members, they eventually begin to lose 

some of their distracting influence on people’s 
behaviors. They transform into proverbial flies on 
the wall. The ethnographer is still there, asking 
questions and watching people’s daily reactions, 
but is hardly noticed any more, not in ways that 
might compromise the reliability of what the eth-
nographer sees or hears.

Ethnography’s value is based on the kinds of 
intimate and unguarded data that researchers gain 
from extended contact with one particular social 
group. When the discipline first emerged, this 
meant relatively small-scale and remote societies. 
Bronislaw Malinowski’s early-20th-century work 
with Trobrianders is taken as a powerful marker 
for the birth of full-fledged ethnographic research 
within anthropology. He crossed the seas, pitched 
his tent, and found a way to live among people 
whose cultural world seemed radically different 
from his own. Part of the point, of course, was 
about making it clear to the European audience 
back home that those foreign practices could be 
understood only with the fullest knowledge of how 
people’s entire belief systems fit together—even 
and especially when those cultural systems seemed 
spectacularly exotic to the Western eye.

Ethnography in  
Anthropology and Sociology

Anthropology was traditionally about studying 
societies unsullied by the advances of modernity. 
From the attempts at salvage ethnography among 
Native American tribes in the early 19th century 
(archiving cultural practices before they disap-
peared forever) to the constructions of primitive 
societies as examples of the modern Western 
world’s hypothetical pasts, anthropologists used 
ethnographic methods to study those populations 
most removed from the taint of modern living.

Sociologists also embraced ethnographic meth-
ods in the early 20th century, and people like 
Robert Park at the University of Chicago helped 
institutionalize the ethnographic imagination as a 
method for studying not just faraway villages but 
also modern urban life in a teeming American city. 
That dividing line (between the anthropological 
ethnographer who studies some distant commu-
nity and the sociological ethnographer who focuses 
her eyes on the modern Western metropolis) still 
defines most people’s assumptions about how 
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those two fields carve up the social landscape for 
qualitative examination (even though there are 
certainly sociologists who study small-scale societ-
ies and anthropologists who have been working in 
urban America for a very long time).

Both fields sometimes seem to place a premium 
on something close to the scientific equivalent of 
roughing it. They each have the highest regard for 
the “gonzo” ethnographer, the kind of heroic or 
mythical figure willing to put his or her very life at 
risk for the sake of ethnographic access. The more 
remote, removed, and potentially dangerous the 
location of the fieldwork experience, the more 
explicit and awestruck are the kudos offered up to 
any ethnographer bold enough to go where few 
have gone before. This search for dangerous exoti-
cism can lead one halfway around the world or 
just to the other side of the tracks, the other end of 
town. But in either case, an added value is placed 
on access to the everyday lives of human beings 
and cultural perspectives that most middle-class 
Western readers know little about.

During the 1960s, anthropologists and sociolo-
gists in the United States wrote classic ethnographic 
offerings on the urban poor—specifically, the black 
poor, who were struggling to make ends meet in 
America’s ghettos. Ethnographers were trying to 
explain the hidden realities of urban poverty, a tra-
dition that continues today. Anthropologists and 
sociologists working in American cities still dispro-
portionately study poor minority communities. 
That’s because it may be harder to entice wealthier 
Americans to accept such scholarly intrusions. A 
$20 bill might suffice as an incentive for unem-
ployed urbanites to answer some open-ended ques-
tions about their life history (and to allow an 
ethnographer to shadow them on an average after-
noon), but it may not be enough to persuade mid-
dle-class citizens to expose their raw lives to an 
ethnographic gaze. Middle-class and wealthier 
Americans also sometimes live in gated communi-
ties or attend restricted social clubs, to which 
anthropologists may not have access. These same 
kinds of biases also tend to predetermine the kinds 
of communities ethnographers have access to 
abroad.

Traditionally, ethnographers have been taught 
that they must master the culture of the groups 
they study so completely that they should almost 
be able to see the world from that group’s point of 

view, almost as if they were born into the commu-
nity. Anthropologists call this an “emic” perspec-
tive, something that can only be acquired with 
long-term participant observation—many months, 
even years, of deep hanging out with the people 
being studied.

Medical Anthropology

The growing subfield of medical anthropology 
interrogates the often masked cultural assumptions 
that subtly inform medical decision making on the 
part of both doctors and their patients. Medical 
anthropologists deploy ethnographic methods 
(a) to uncover the hidden ethnocentricisms that 
might sometimes allow doctors trained in the West 
to underestimate the value of folk medicinal 
practices; (b) to describe how the roles of “doctor” 
and “patient” are constructed from social and 
cultural templates that usually go unexamined or 
unspoken; and (c) to emphasize how broader cul-
tural expectations and interpretations configure 
the way medical practitioners conceptualize/ 
operationalize diseases and translate medical theo-
ries for a lay audience. Ethnographers such as 
Rayna Rapp and Paul Farmer mobilize ethno-
graphic methods (studying medicine as an ines-
capably cultural—not just biological or genetic— 
domain) to mount critiques of presuppositions that 
sometimes obstruct professional attempts to nego-
tiate the political, moral, and biological dilemmas 
of medical treatment.

Future Directions

Ethnographers have started to retool this method-
ological intervention for the newness of the empir-
ical present, calling for (a) multisitedness, (b) a 
specific focus on the culture of medical research, 
and (c) particular emphasis on the challenges that 
come with studying a media-saturated world. 
Even still, there remains something inescapably 
troubling to some ethnographers about ethno-
graphic attempts to study several places at once, 
to engage phenomena spread out over large 
expanses of space in ways that outstrip any eth-
nographer’s ability to experience them directly 
and holistically. Does it mean sacrificing depth  
for breadth, and how much does that compro-
mise ethnography’s specific contribution to the 
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constellation of methodological options open to 
social scientific researchers?

John L. Jackson Jr.

See also Cultural Issues; Qualitative Methods
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Euroqol (Eq-5d)

EuroQol, also referred to as EQ-5D, is one of the 
multi-attribute health status classification systems. 
It is a generic instrument for measuring the health-
related quality of life. Along with other multi- 
attribute health status classification systems, such 
as Health Utilities Index (HUI) and Quality of 
Well-Being (QWB), EuroQol is used as an alterna-
tive to measure the utility or health preference. 
Measuring utilities or preferences can be a com-
plex and time-consuming task. EuroQol is attrac-
tive due to its simplicity. Thus, it has been widely 
used throughout the world in both clinical inves-
tigations and health policy determinations.

The EuroQol questionnaire was developed by 
the EuroQol group, original members of which 
came from various research teams in Europe. The 

name EuroQol comes from European Quality  
of Life. There are three components within the 
EuroQol questionnaire. The first component, the 
most important one, comprises five dimensions 
(5D): mobility, self-care, usual activities, pain/ 
discomfort, and anxiety/depression.

EuroQol Questionnaire

The EuroQol group was established in 1987, with 
investigators coming from various countries in 
western Europe. The group has expanded into an 
organization with members from all over the world 
in 1994. The EuroQol questionnaire is designed 
for self-completion by the respondents, and it was 
initially developed to complement other health- 
related quality-of-life measures. The primary com-
ponent of the EuroQol questionnaire originally 
had six dimensions: mobility, self-care, main activ-
ity, social relationships, pain, and mood. EuroQol 
has become a stand-alone questionnaire subse-
quently, and the primary component was revised to 
five dimensions, including mobility, self-care, usual 
activities, pain/discomfort, and anxiety/depression. 
It has been publicly available since 1990.

The EuroQol questionnaire has three compo-
nents. The first component is the primary one that 
includes five dimensions. Each dimension is mea-
sured by a question that has three possible 
responses: no problem, some problem, or severe 
problem. A preference-based index score can be 
created based on the answers to these five dimen-
sions. The second component of the EuroQol 
questionnaire is a visual analog scale, where 
respondents can indicate their current health status 
on a “thermometer” scaled from 0, the worst 
imaginable health state, to 100, the best imagin-
able health state. The third component of the 
EuroQol questionnaire is for respondents to answer 
their background information, including disease 
experience, age, gender, smoking status, education, 
and others. The first two components are the 
instruments to be used if the researchers are only 
interested in knowing the health-related quality of 
life from the respondents.

Preference-Based Scoring Algorithm

Since the first component of the EuroQol ques-
tionnaire has five dimensions, with each having 
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three levels of answers, the combination of 
responses results in 243 (35) possible health states. 
Methods were developed to assign preference 
scores to each of the 243 health states that repre-
sent an average preference for one state versus 
another. By adding two additional health states, 
“unconscious” and “dead” for a total of 245 
health states, this method was initially developed 
based on a random sample of about 3,000 adults 
in the United Kingdom. The scoring function was 
developed using econometric modeling based on 
the time trade-off technique. The final preference-
based index scores were assessed on a scale where 
0 represents a health state of being dead and 1 
represents perfect health.

The first component of the EuroQol has also 
been weighted according to the social preferences 
of the U.S. population. Similarly, the U.S.-based 
EuroQol preference-based scoring algorithm was 
developed using econometric modeling through 
the time trade-off technique. A representative 
sample of the U.S. general adult population with 
approximately 4,000 participants completed the 
interview. The interview was carried out in the 
United Kingdom and the United States in 1993 
and 2002, respectively.

Application

As a quick and well-validated instrument, the 
EuroQol has been widely used in clinical and eco-
nomic evaluations of healthcare as well as in 
population health surveys. The EuroQol is avail-
able in many languages. Most researchers use the 
first two components of the EuroQol question-
naire for respondents to rate their current health 
states. Both the preference-based index and the 
visual analog scale have been used in various 
ways, including establishing national and local 
population health status, comparing patients’ 
health status at different times, and evaluating the 
seriousness of disease at different times. The 
EuroQol has also been used in a number of clinical 
areas to provide effectiveness outcomes during the 
drug approval process. Recent work has furnished 
a national catalog of the EuroQol preference-
based index for all chronic conditions in the 
United States.

The score provided by the EuroQol is important 
in cost-effectiveness analysis, where quality-adjusted 

life year (QALY) has become increasingly used to 
assess the treatment outcomes in clinical trials and 
health economic evaluations. However, EuroQol is 
designed to measure generic and global health- 
related quality of life. It is not sensitive or compre-
hensive enough to measure disease-specific quality 
of life.

Analyzing the EuroQol  
Preference-Based Index in Regressions

Previous research has noted that the EuroQol 
preference-based index score is, similar to other 
utility scores, far from being normally distributed. 
Methods designed for continuous data, such as 
the ordinary least squares (OLS) regression, are 
often inappropriate for such data. The OLS mod-
els the conditional mean as a linear function of  
the covariates. The idiosyncrasies of the EuroQol 
index distribution demand that the residuals 
should not be assumed to be normal or have con-
stant variance. Although versions of OLS exist 
that are valid without any distributional assump-
tions on the residuals, the special features of the 
EuroQol index are neglected by only modeling the 
conditional mean.

Several other methods have been proposed, 
including the Tobit model and the censored least 
absolute deviations estimator (CLAD). One impor-
tant feature of the EuroQol index score distribu-
tion is that many individuals reported perfect 
health with their EuroQol index at 1.0, thus form-
ing a spike. The Tobit model and the CLAD 
model are extensions of the OLS that treat the 
health status of these patients as being censored at 
1.0; that is, their health status, if it can be mapped 
onto the scale of EuroQol index, would be larger 
than 1.0. In other words, these methods assume 
that there is an underlying latent health status 
variable. When it is less than 1.0, it is observed as 
the EuroQol index; when it is larger than 1.0, we 
only observe EuroQol = 1 as an indicator of cen-
soring. These methods then model the conditional 
mean of the latent variable, instead of EuroQol 
itself, as a linear function of the covariates. The 
difference between the Tobit model and the CLAD 
model is that Tobit model assumes that the latent 
variable has a normal distribution, while in the 
CLAD model, the latent variable can have any 
continuous distribution. Therefore, the Tobit 
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model can be viewed as a special case of the 
CLAD model.

A two-part model approach has also been pro-
posed to model the special features of the EuroQol 
index, particularly a large proportion of subjects 
having the score at 1.0. The first part is a logistic 
model for the probability of reaching the maxi-
mum score. The second part is a model for the rest 
of the scores that are less than 1.0, which can be 
either a least squares regression with robust stan-
dard errors for the conditional mean or a quantile 
regression for conditional quantiles such as the 
median. It has been shown that the two-part model 
has some desirable features that are not available 
in the aforementioned regression methods for the 
EuroQol preference-based index score.

Alex Z. Fu

See also Expected Utility Theory; Health Utilities Index 
Mark 2 and 3 (HUI2, HUI3); Quality of Well-Being 
Scale; Utility Assessment Techniques
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EValuating and intEgrating 
rEsEarcH into clinical 
PracticE

The impetus for evidence-based medicine (EBM), 
or its younger brother, evidence-based practice, 
has been that it takes too long for efficacious and 
effective treatments to be brought to bear in rou-
tine clinical practice. The usual time given is a 
17-year delay between demonstration of efficacy 
and routine practice, although the evidence for 
this specific time frame is sparse. However, as a 
social value in medicine, most believe that it is bet-
ter for patients to receive effective care than none, 
so regardless of the true time delay, researchers, 
healthcare administrators, policy makers, clini-
cians, and patients all now recognize as crucial  
the systemic issues that delay the integration of 
research into practice. Like medical care, address-
ing this issue requires diagnosis of the systemic 
issues that prevent the translation of research into 
practice (TRIP) and requires treatment based on 
those diagnoses.

Diagnosis

A number of different approaches have been used 
to diagnose the systemic barriers. One is the diffu-
sion of innovation formalism. Rogers identified five 
components of diffusion: (1) relative advantage,  
(2) compatibility, (3) complexity, (4) trialability, 
and (5) observability. Berwick and Greenhalgh pro-
vide a general framework for applying these to 
medical care. Early studies documented the slow 
uptake of basic innovations and documented, for 
instance, from the physician’s point of view, the 
need for observability—the need for a local cham-
pion. Later studies showed that apparently not 
much had changed; from the patient’s perspective, 
only about 55% received recommendation-based 
care for preventive, acute, or chronic care. Cabana 
showed the application of a barrier-based frame-
work to the (non)use of clinical practice guidelines 
(CPGs), touted as one solution to the TRIP prob-
lem. He discerned that barriers ranged from issues 
of physician self-efficacy to systemic difficulties in 
getting access to the guidelines as well as traditional 
concerns such as disagreement over applicability.
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Treatment

There are two basic approaches to the incorpora-
tion of research-based evidence into practice: 
active and passive. Active means that the clinical 
practitioner must make the explicit effort of find-
ing the evidence and evaluating it. Passive means 
that the environment has been architected to bring 
the evidence to bear automatically.

Active Approaches

The primary active approach has been to teach 
clinicians the process of EBM in the hope that they 
would use those methods at the bedside. Supporting 
this agenda has required several components. First, 
EBM resources have been needed. The primary 
one has been PubMed, which references several 
thousand journals and several million articles. 
Almost all EBM searches end up at PubMed (in 
English-speaking countries), because the latest, 
authoritative results are available there. Searches 
there depend on skillful use of the PubMed-
controlled vocabulary—MeSH (Medical Subject 
Headings)—as well as free text and other specifics 
of the indexing system. The Cochrane Database of 
Systematic Reviews houses systematic reviews of 
studies (primarily randomized controlled trials) 
that, themselves, are often indexed on PubMed. 
However, these reviews are extensive, reproduc-
ible, and go beyond PubMed, to include unpub-
lished articles or novel data provided by published 
authors. Perforce, these reviews are not as current 
as PubMed. CPGs go beyond Cochrane reviews in 
authority, because they include the definition of 
standard of practice, as defined by professional 
societies. Because of this added layer of vetting, 
CPGs are the least up-to-date but the most author-
itative. Thus, a reasonable search strategy is to 
start with CPGs (as indexed or contained at the 
National Guideline Clearinghouse), then move on 
to Cochrane to see if there is anything newer, and 
then move on to PubMed to look for anything 
newer still.

Evidence searching goes beyond the searching 
of reference or full-text databases to include evalu-
ation or appraisal of the report found. Tools that 
support this process include the JAMA reading 
guides and worksheets; both are available via the 
University of Alberta.

There are many sites on the Web that cater to 
clinicians. Each of them requires clinicians to go 
on their own through the cycle of searching and 
evaluating the retrieved evidence. Some sites such 
as the TRIP site in the United Kingdom search 
many sites for the user and bring them together. 
Choosing, appraising, and using any specific source 
is left to the user.

There are also a number of commercial tools 
that supply resources and levels of evidence, are 
kept up-to-date, and are available on handheld 
devices.

Finally, there is a small industry in teaching 
EBM methods to clinicians, whether in medical 
school, through journals, on the Web, or in con-
tinuing medical education (CME) classes.

Evidence shows that medical students can learn 
the methods, that physicians do not have time to 
use them, and that CME lecturing is the least effec-
tive way of learning a skill.

Passive Approaches

In passive approaches, barriers are broached by 
others. Pharmaceutical companies invest more 
than any others in educating clinicians about avail-
able evidence, but they are generally not thought 
to have the clinician’s EBM process as their pri-
mary goal. On the other hand, pharmaceutical 
methods have been tried through academic detail-
ing, where trained staff attempt to teach clinicians 
about the best evidence and most effective thera-
pies with one-on-one encounters. While there have 
been successes, they have been frustratingly Pyrrhic 
and not clearly worth the investment required.

Decision support systems, embedded in clini-
cians’ workflow, have been thought to offer the 
best possibility of getting the best evidence and 
practice before a clinician’s eyes, with the system’s 
blessing. There are several degrees of decision sup-
port relevant to TRIP.

The first type is generic access to relevant mate-
rial. This access is usually to the CPG and leaves the 
user to read the text (if guided to it) and apply it as 
seen fit. The next level of access is more tailored, 
using an “Infobutton,” where the computer system 
uses generic patient information to find generic 
information about that patient. So a patient’s diag-
nosis of sickle-cell disease will be used by the sys-
tem to provide the user with instant access to 
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definitions, normal values, textbook entries, and 
CPGs on sickle-cell disease. The next level of access 
is customized, where the system takes several pieces 
of information about the patient and provides 
access to yet more specialized information, say, a 
relevant PubMed reference. Systems providing such 
access are rare and, because of the difficulty of 
automating the EBM process, end up leaving it to 
the user to judge the applicability or evidential 
quality of the linked article, since there can be no 
ante vetting by the system builders.

The next class of decision support is guided 
choice, where evidence can be put into the work-
flow by making it difficult to act on the basis of 
bad evidence. Thus, the generic guided choice may 
be a calculator for total parenteral solution order-
ing that would prevent generic conditions such as 
high osmolarity or simultaneous inclusion of cal-
cium and bicarbonate in the solution. The next 
level of decision support is tailored guided choice, 
such as order sets. Here, guideline-based care can 
be instituted by the healthcare organization by 
specifying, for example, that any discharge of a 
patient with a myocardial infarction will include a 
prescription for a beta blocker. Thus, rather than 
rely on the physician having read the CPG, the 
systematic review, and the most recent articles con-
firming the effectiveness of such prescribing; rather 
than rely on the physician remembering this effec-
tiveness at the time of discharge; and rather than 
rely on the physician ordering it, the system pro-
vides a checkbox for the physician; checking that 
box represents the entire evidence search and 
evaluation cycle. The challenge is for the system to 
know that the specific patient had a myocardial 
infarction at the time of discharge and to make 
sure that the physician is using the computer sys-
tem to enter discharge orders.

Customized guided choice is possible as well 
but is generally not available. Here, the system 
composes a checklist, say, for the specific patient. 
While composing a checklist from a union of other 
checklists is clearly easily done, checking for inter-
ferences, dependencies, and other interactions is 
much less so.

The third class of decision support is knowledge-
based prompts; these are the classic alerts, where the 
physician has ordered something and the machine 
responds that that order is in error, or the physician 
has not ordered something and the computer  

recommends an action. The knowledge behind 
these alerts is generally framed as rules, and these 
rules are usually referenced to the literature. While 
the knowledge of effectiveness would seem to be the 
same across institutions, the ideal of sharing rules 
has not been borne out by the realities of system 
implementation because of the variety of ways in 
which different systems store the information needed 
by the rules. Thus, each institution is left to vet its 
own rules on its own. In addition, commercial enti-
ties that sell knowledge bases, such as those con-
taining evidence-based drug-drug interactions, are 
concerned with their own risk profile and so include 
a wide range of interactions that make the systems 
generally unusable, leaving institutions, again, to 
face the decisions themselves over what alerts to 
keep and what not even to show the physician.

The evidence on all such systems is mixed. 
Kawamoto and colleagues’ systematic review 
showed the systems to have a positive impact 68% 
of the time and confirmed the factors most likely to 
lead to success: providing decision support within 
the context of the workflow at the place and time 
the action was needed, providing action items (not 
just assessments), and using a computer-based sys-
tem. The harms that provider-order entry systems 
have demonstrated recently have not been related 
to evidence-based decision support. However, too 
much experience shows that the low specificity and 
high sensitivity of the alerts leads to “alert fatigue” 
and inattention when the system cries wolf.

The Future

Interventions for evidence-based practice are 
based on the experience of EBM but with applica-
tion to different domains. Evidence-based nursing 
has led to specific resources for nurses but not the 
depth of computer-based support that clinicians 
have available to them. Evidence-based public 
health has focused on clinical issues and not on 
the more systemic interventions that public health 
practitioners must effect nor on the more global 
concerns that affect their work. There are some 
generic and guided-choice-based tools for decision 
support, but outside of biosurveillance, there is 
little decision support based on knowledge-based 
prompts, and in biosurveillance, the alerts are not 
necessarily based on research evidence. Each of 
these areas will likely grow in the future.
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The National Institutes of Health’s initiative 
regarding Clinical and Translational Science 
Awards will push innovation to the “left” side of 
the translation and evidence-generation process. 
The new innovations may aggravate matters by 
generating too many technologies to accommo-
date—or may induce a new attention to the entire 
translation process on the “right”-hand side. Such 
attention jibes well with the new attention given to 
the care provider system itself. Computer-based 
decision support systems seem to be the best  
bet for bringing evidence into practice. A further 
source of evidence will be the electronic patient 
record itself, as the data from operational use are 
stored in clinical data warehouses for mining and 
local research. Such research will overcome several 
of Roger’s barriers:

 1. Relative advantage could be assessed directly or 
modeled, based on local data.

 2. Compatibility could be assessed by reviewing 
the number and types of patients to whom the 
new evidence (technology) applies.

 3. Complexity could be assessed through an 
environmental scan of clinic, unit, and staff 
capabilities.

 4. Trialability could be assessed through pilot 
projects whose data are made available in a 
regular manner.

 5. Observability could be achieved by review of 
the data warehouse data of patients treated with 
the new technology.

It may just require linking the workaday, sloppy 
observational data of routine care with the pristine 
results of carefully constructed studies to achieve 
the long-wished-for goal that patients receive the 
best care that science says they should receive. This 
possibility provides researchers with further chal-
lenges in providing healthcare institutions and cli-
nicians the new tools they need to achieve this 
synthesis.

Harold Lehmann
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Randomized Clinical Trials
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EValuating consEquEncEs

Decisions in medical contexts have immediate  
and obvious consequences in terms of health and 
sometimes death or survival. Medical decisions 
also have less obvious and less immediate conse-
quences, including effects on the long-term physi-
cal and mental well-being of patients, their families, 
and caregivers, as well as on the distribution  
of scarce medical resources. Some of these conse-
quences are hard to measure or estimate. Even 
harder, perhaps, is the determination of the rela-
tive value of different consequences. How should 
consequences be evaluated? How do uncertainties 
and biases affect our evaluations? What influence 
should our evaluations of consequences have on 
our actions? These questions are all philosophical 
in nature.

Consequences and Value

To evaluate something is most basically to deter-
mine its value or to determine its effect on that 
which has value. The positive value of health may 
be taken as a given in medical decision making. 
Sometimes, however, it is not clear what concrete 
outcomes contain more health. Will a patient in 
chronic pain be more healthy taking opiates that 
reduce her mental abilities and may create depen-
dency, or will she be more healthy without opiates 
but with more pain? Will an elderly patient with 
myeloma enjoy better health after treatment with 
cytostatics that pacify the disease but weaken the 
immune system, or will his health be better with-
out the treatment? Depending on the details of the 
case, the answers to these questions are far from 
obvious, showing that the concept of health is 
complex and will sometimes stand in need of 
specification.

Health may be defined biomedically as the 
absence of disease and infirmity. This is the com-
mon definition in medical practice, though seldom 
explicitly stated. Alternatively, health may be 
defined biopsychosocially, which is common in 
theoretical contexts. The 1946 constitution of the 
World Health Organization (WHO) states that 
health is “a state of complete physical, mental and 
social well-being.” Several recent definitions aim 
to avoid the somewhat utopian character of the 
WHO definition and to shift focus from outcome 
to opportunity, by defining health in terms of 
potential or ability rather than well-being.

Quantitative measurements of health have 
increasingly been made in terms of quality- 
adjusted life years (QALYs), that is, the number 
of person life years adjusted by a factor represent-
ing the quality of the person’s life. Like health, 
quality of life may be defined biomedically or 
biopsychosocially, and more or less broadly. 
What will be said in the following about values in 
general and health in particular holds equally for 
quality of life. Regardless of how exactly quality 
is defined, evaluating consequences in terms of 
QALYs incorporates a richer understanding of 
why we value life, as opposed to measuring only 
years of life of whatever quality or only death or 
survival. A strategy of QALY maximization has 
the further advantage of allowing quantitative 
comparisons of different alternatives, such as 
treatment programs, but has the disadvantage 
that other values may be disregarded, such as 
equity and autonomy.

Like any value, the value of health may be final 
and/or instrumental. Health is obviously instru-
mental to other values such as happiness and 
achievement. In other words, we need health to 
promote or protect these other values. In addition, 
however, health may also be of final value—of 
value in itself, independently of its impact on other 
values. Whether or not health has final value 
becomes important in conflict cases, where it must 
be balanced against other values. If, for example, 
health, defined biomedically, is important only 
because of its instrumental contribution to the 
higher value of happiness, a healthy life without 
happiness has no value. This conclusion may have 
direct relevance for important medical decisions 
concerning life and death, including the issue of 
euthanasia.
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Values may be subjective or objective. That the 
value of health is subjective would mean that 
health is of value only to the extent that the indi-
vidual patient considers it to be of value or to the 
extent that she desires it. That the value is objec-
tive, on the other hand, would mean that health 
may be of value despite the fact that the patient 
does not subjectively value it. That a value is objec-
tive does not mean that it is insensitive to individ-
ual preferences, since objective values depend  
on individual preferences indirectly. Even if happi-
ness, for example, is objectively valuable, what 
makes people happy depends on their preferences. 
Similarly, even if health is objectively valuable, 
what makes people healthy will depend on their 
physical constitution and individual character, 
including preferences. Whether values are subjec-
tive or objective naturally affects how we should 
treat each other in medical and other contexts.

Beyond the somewhat related values of health, 
quality of life, well-being, and happiness, auton-
omy is arguably the main value relevant for medi-
cal decision making. This value is institutionalized 
through the practice of informed consent, but it 
may be affected also in other ways. For example, 
addictions may be considered to decrease auton-
omy, and so treatment of addiction may promote 
autonomy. Further values of possible relevance 
include dignity, equity, personal relationships, and 
perfection or excellence. Dignity may be relevant 
to hospice care and other care of dying patients, 
equity to any decision affecting the distribution of 
scarce medical resources, relationships to how 
families are treated and to decisions affecting the 
patients’ potential to uphold personal relationships 
after treatment, and perfection to neonatal screen-
ing and genetic and medical enhancement.

Which things have objective value, if any, is a 
fundamental philosophical question, and opinions 
and theories diverge. Lacking agreement, we may 
look to social value as determined by willingness 
to pay or stated preference; to politically, ideally 
democratically, determined values; to expert judg-
ment; or to our own judgment. Again, opinions 
and theories diverge. The consequences of deci-
sions should be evaluated in terms of those things 
that are determined to have value.

If more than one value is affected by a decision, 
as seems likely for most medical decisions, we 
must determine how these values relate to each 

other. Most fundamentally, values may or may not 
be commensurable. If the value of health and the 
value of autonomy are incommensurable, we can-
not weigh one against the other and so must make 
decisions that affect both values without guidance 
from such weighing. If the values are commensu-
rable, they may be more or less open to compari-
son. At one end of the spectrum, we may know 
only that a little health is less important than a lot 
of autonomy, but we may not know how to com-
pare much of each or little of each. At the other 
end of the spectrum, any amount of each value 
may be represented by a number and the values 
aggregated in multi-attribute utility analysis. The 
very different character of some values may make 
them seem incommensurable, while the need to 
make decisions that affect more than one value 
forces us to compare them, or at least to act as if 
we had compared them.

Uncertainties and Biases

In evaluating consequences, we are inescapably 
faced with a number of uncertainties and biases. It 
is widely recognized that we do not even know if 
established medical practice on the whole effi-
ciently promotes best outcomes (though the grow-
ing field of outcomes research aims to address that 
question). The uncertainty is naturally greatest for 
consequences of decisions not yet made. We often 
do not know what consequences will follow from 
alternative courses of action. In evaluating possible 
future consequences, these uncertainties can to 
some extent be handled by decision theoretical 
methods. If we are uncertain about what conse-
quences will follow, we may at least know, or be 
able to estimate approximately, the probabilities of 
different possible outcomes, each with a set of con-
sequences. Given these probabilities, we may esti-
mate the expected value of different alternatives. 
To a large extent, however, uncertainty about the 
future must simply be accepted as a fact of life.

Uncertainty does not pertain only to future con-
sequences but also to the value of consequences, 
future as well as past and present. Even if we know 
that we value health and we know the conse-
quences of a certain decision, we might not know 
to what extent those consequences further our val-
ues. This may be because we are not certain how 
exactly our values should be specified or because 
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we are not certain how much the concrete conse-
quences contribute to our values, however thor-
oughly specified. For example, if health is defined 
in terms of ability, we may not know to what 
extent successful treatment of radical mastectomy 
will contribute to this value. A person’s overall 
ability depends partly on her attitudes, and patients 
may react differently to this medical procedure 
even when the physical outcome is the same.

Uncertainty about the value of consequences is 
increased by different sorts of biases. We tend to 
exaggerate the impact of certain things and belittle 
the impact of others. Some biases concerning our 
own well-being have been rather straightforwardly 
proven by psychological research. For example, 
we tend to overvalue variation in our consumption 
in the sense that we opt beforehand for variation 
but regret this once we get it. Other biases are 
harder to prove. For example, we value good 
things in the near future higher than similarly 
good things in the more distant future, and the 
reverse for bad things. This means, for example, 
that the social value of QALYs in the distant 
future is much lower than the social value of the 
same number of life years and QALYs in the near 
future. Whether this is an irrational bias that 
should be compensated for or an indication of our 
true values is a matter of controversy.

Uncertainties about consequences introduce 
another level of value—it requires us to determine 
how much we value certainty. A program of maxi-
mization of expected QALYs presumes that 1 
QALY for sure is as good as a one-in-two chance 
of 2 QALYs. This is not so if we are risk-averse, 
that is, if we value goods that we are certain to get 
higher than goods we may or may not get, even 
when the expected value is the same. In fact, peo-
ple tend to be risk-averse. However, this may be 
considered an irrational bias.

Consequences and Principles

In bioethics, principles are often understood as 
nonrigid rules and recommendations that must be 
interpreted in concrete cases with a large dose of 
moral judgment. Such principles are essentially 
statements of what has value, with the add-on 
that we have a duty to promote or protect that 
value. The question of which bioethical principles 
there are and how they should be understood  

corresponds to the question of what values there 
are and how they should be understood. Whether 
one prefers duty talk or value talk depends on 
whether one finds duty or value to be the more 
fundamental moral category. This is another mat-
ter on which opinions or sentiments diverge.

There are other kinds of principles, however, 
that do not as closely resemble values but that 
rather regulate the evaluation of consequences. 
Some of these principles are rules of thumb, stating 
that for practical reasons such as time constraint 
and limited information and information process-
ing capacity, we should restrict our evaluation of 
consequences in different ways. A rule that the 
most severely injured should be treated first may 
be such a rule. It is not a deep moral truth that the 
most severely injured deserves the first treatment, 
but in most cases, the rule is fair and efficient and 
reasonably easy to follow without time-consuming 
judgment. That this is a rule of thumb rather than 
a fundamental principle is shown by our reactions 
to the hypothetical case where there are obvious 
reasons to diverge from the rule, for example, 
when it is clear that the most severely injured will 
not benefit from quick treatment while others will. 
If diverging from the rule in such circumstances  
is morally unproblematic, then the rule is one of 
thumb. In contrast, while a moral principle may be 
overridden, this is not unproblematic but normally 
gives cause for regret and may give rise to residual 
obligations.

Rules of thumb replace or restrict evaluations of 
consequences for practical reasons. Moral princi-
ples do so for moral reasons. There are essentially 
two sorts of moral principles. Action-focused prin-
ciples, or side constraints, state that certain things 
must or may not be done, regardless of other con-
siderations. Examples include general principles 
such as “never lie” as well as specific medical prin-
ciples such as “never force medical care on a 
patient against her explicit wish.” Reason-focused 
or value-focused principles, in contrast, state that 
certain reasons or values should be disregarded in 
the molding of various considerations into an  
all-things-considered judgment of what should be 
done. An example is the principle that a patient’s 
estimated future contribution to society should not 
influence our medical treatment of the patient.

Many principles are tied to our social and 
legal roles, for example, as medical practitioners. 
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These roles come with social expectations, rules, 
and laws, which regulate how and to what extent 
we may consider certain consequences of our 
actions. If such role principles are motivated only 
by expedience, they may be seen as rules of 
thumb. However, if they become ingrained in the 
culture of a society, they acquire the status of 
moral principles. Even as rules of thumb, role 
principles are unusually rigid, because they are 
motivated by practical reasons on a collective or 
system level. While individual practitioners may 
on occasion have the time and capacity to judge 
a case on its own merits, they may be obliged to 
follow rules nonetheless, because this makes for 
stability and transparency in the medical system 
as a whole. The rigidity of role principles should 
not be exaggerated, however. The social and 
legal frameworks rarely, if ever, determine in 
detail how we should act and think. Even in 
applying well-defined rules, we need value judg-
ments to guide our application of those rules to 
particular circumstances. Furthermore, as ratio-
nal and moral beings, we can always question 
the social and legal framework within which we 
live and work.

A Model for Evaluating Consequences

The different aspects of evaluating consequences 
covered above may be captured in the following 
model. This somewhat novel model incorporates a 
series of not-so-novel considerations. The model 
does not describe how evaluations are performed 
in practice but rather proscribes what steps should 
be taken in order that all the aspects of evaluation 
discussed above be considered. In other words, the 
model is not psychological but philosophical. If 
implemented in practice, the steps of the model 
should not necessarily be taken in strict order. In 
particular, Steps 2, 3, and 4 may all require glanc-
ing ahead to subsequent steps.

  1. Determine which things have value—that is, 
which values there are. This includes deciding 
whether values are subjective or objective, and 
final or instrumental.

  2. Determine the available alternatives.

  3. Decide whether an alternative is demanded by 
principle. If so, act.

  4. Decide whether some alternatives are 
forbidden by principle. If so, exclude them 
from further consideration. If only one 
alternative is not forbidden, act.

  5. Estimate for each alternative the possible 
outcomes and the (approximate) probability 
of each outcome.

  6. Estimate the consequences of each outcome in 
terms of each value; adjust for bias.

  7. Decide whether the consideration of some 
values is forbidden by principle, and if so, 
disregard these values.

  8. Estimate the expected consequence of each 
alternative in terms of each value.

 9a. If values are commensurable, estimate or 
decide the overall value of each alternative and 
act on the best alternative.

 9b. If values are incommensurable, act on the 
alternative with the most appealing or most 
acceptable mix of expected consequences.

Kalle Grill

See also Bioethics; Construction of Values; Decision 
Rules; Expected Utility Theory; Health Outcomes 
Assessment; Moral Factors; Multi-Attribute Utility 
Theory; Outcomes Research; Protected Values; 
Quality-Adjusted Life Years (QALYs); Quality of Well-
Being Scale; Risk Aversion; Values; Willingness to Pay

Further Readings

Beauchamp, T. L., & Childress, J. F. (2001). Principles of 
biomedical ethics (5th ed.). Oxford, UK: Oxford 
University Press.

Bircher, J. (2005). Towards a dynamic definition of health 
and disease. Medicine, Health Care and Philosophy, 8, 
335–341.

Griffin, J. (1986). Well-being: Its meaning, measurement 
and moral importance. Oxford, UK: Oxford 
University Press.

Hastie, R., & Dawes, R. M. (2001). Rational choice in 
an uncertain world. Thousand Oaks, CA: Sage.

Kane, R. L. (2006). Understanding health care outcomes 
research. Sudbury, MA: Jones & Bartlett.

O’Neill, O. (2001). Practical principles and practical 
judgment. Hastings Center Report, 31(4), 15–23.

Raz, J. (2003). The practice of value. Oxford, UK: 
Oxford University Press.



467Evidence-Based Medicine

Savulescu, J., Gillon, R., Beauchamp, T. L., Macklin, R., 
Sommerville, A., Callahan, D., et al. (2003). 
Festschrift edition in honour of Raanan Gillon. 
Journal of Medical Ethics, 29, 265–312.

Schroeder, M. (2008). Value theory. In E. N. Zalta (Ed.), 
The Stanford encyclopedia of philosophy (Spring 2008 
ed.). Retrieved February 2, 2009, from http://plato 
.stanford.edu/archives/spr2008/entries/value-theory

World Health Organization. (1946). Constitution of the 
World Health Organization. In Basic documents. 
Geneva, Switzerland: Author.

EVidEncE-BasEd mEdicinE

Evidence-based medicine (EBM) is the judicious 
application of the best, relevant clinical study 
results to patient care. EBM is not a new form of 
medical practice. It neither replaces medical exper-
tise nor ignores patient preferences. EBM is a tool 
to enhance medical practice. While it is axiomatic 
that clinicians are interested in using the results  
of clinical studies for their patients’ benefit, until 
recently, lack of access, limited critical analysis 
skills, and overreliance on expert opinion, per-
sonal experience, and clinical habit have hampered 
the rapid integration of high-quality clinical study 
evidence into clinical practice. This entry discusses 
how EBM and the EBM process address this issue 
and reviews the origins of EBM and its scope, 
resources, and role in modern clinical practice.

Origins

The term evidence-based medicine was coined  
in 1990 by Gordon Guyatt. While there have been 
many contributors to the development of EBM, 
Guyatt and his colleagues at McMaster University—
principal among them David Sackett and Brian 
Haynes—have played major roles in developing 
the principles of EBM and have been instrumental 
in popularizing it throughout the world. In 1985, 
Sackett, Haynes, and Guyatt, together with Peter 
Tugwell, published the book Clinical Epidemiology: 
A Basic Science for Clinical Medicine. In this book, 
the authors explained, simplified, and organized 
the basic EBM principles (though not yet referred 
to as EBM) for the practicing clinician. In essence, 
this was the first EBM book, which served as the 

basis for their later books and articles that gener-
ated and developed the EBM approach to clinical 
practice.

Scope

EBM was developed for practicing physicians. 
However, over the past decade, it became increas-
ingly clear that many other professions participat-
ing in patient care would benefit equally from the 
EBM approach. In recent years, dentistry, nursing, 
pharmacy, physical therapy, occupational therapy, 
public health, library sciences, and other disci-
plines have developed a strong interest in EBM. 
With this broadened focus, the term EBM is slowly 
being replaced with EBP, evidence-based practice.

The past decade also has seen the rapid spread 
of EBM learning in all aspects of medical training. 
It is routine now in medical schools and residency 
programs in North America, Europe, and else-
where to include EBM as a standard part of their 
curriculum. The acquisition of skills of critical 
judgment is a requirement of the Liaison Committee 
on Medical Education (accreditation committee 
for medical schools) in the United States. EBM 
learning is explicitly mentioned in the standards of 
the Accreditation Council for Graduate Medical 
Education and is included among the subcatego-
ries of their six core competencies for residency 
programs in the United States.

One remarkable corollary of EBM’s increasing 
popularity has been the encouragement and expec-
tation of scientific rigor in clinical research. This 
has led to the ubiquitous use of statistical methods 
to evaluate results, the rise of the randomized con-
trolled trial as the standard for determining thera-
peutic benefit, and greater attention generally to 
methodological validity across all areas of clinical 
investigation.

Finally, the emergence of EBM has brought 
about a changed relationship of the practicing  
clinician to the medical literature. Previously, the 
busy clinician was forever attempting to catch up 
on journal reading—most poignantly represented 
by unread stacks of journals lying forlorn in the 
corner of one’s office. The EBM process has 
encouraged decreasing catch-up journal reading 
and increasing patient-focused journal reading. 
The patient encounter has become the catalyst of 
learning about new treatments, diagnostic tests, 
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and prognostic indicators and the focus of a per-
sonal program of continuing medical education.

Process

The EBM process begins and ends with the patient. 
The patient is the impetus for and genesis of a four-
step approach to knowledge acquisition, ending in 
application of that new knowledge to the care of 
the patient. The four steps include (1) formulating 
the clinical question, (2) searching for and acquir-
ing evidence from the medical literature, (3) assess-
ing that evidence for methodological validity and 
analyzing the study results for statistical signifi-
cance and clinical importance, and (4) applying, 
where appropriate, the valid important study 
results to the patient.

Formulating the Clinical Question

The first step in the process is recognizing that 
one has a knowledge gap in some aspect of a spe-
cific patient’s management and to craft this knowl-
edge gap into a focused question. One of the more 
popular approaches is the PICO (patient/problem, 
intervention, comparison, outcome) format. An 
example of this type of format is as follows. P: In 
otherwise healthy infants with presumed herpetic 
gingivostomatitis, I: what is the therapeutic effi-
cacy of acyclovir, C: compared with placebo, O: in 
reducing the time to resolution of symptoms. The 
PICO format helps clarify and focus the clinician’s 
specific evidence needs as well as to suggest an 
evidence search strategy, employing the terms in 
the question as online literature search terms. Carl 
Heneghan and Douglas Badenoch reviewed the 
mechanics of using the PICO approach in their 
book Evidence-Based Medicine Toolkit. A useful 
tool is the PICOmaker from the University of 
Alberta (www.library.ualberta.ca/pdazone/pico), 
which provides a palm-based platform for devel-
oping and saving clinical questions.

Searching for the Evidence

Primary Evidence

The next step in the EBM process is to look for 
an answer. Brian Haynes has suggested an infor-
mation hierarchy to assist clinicians in their search 

for evidence. There are five levels in the hierarchy 
(from lowest to highest): primary studies, syn-
theses, synopses, summaries, and systems—the 
assumption being that the higher one ascends the 
hierarchy, the more reliable and applicable the evi-
dence. It follows that one would begin an evidence 
search at the highest level. However, in practice, 
the systems level of evidence is rarely encountered. 
Summaries are more commonly found, synopses 
even more common, and so on. At the lowest level 
are primary studies. These are the individual clini-
cal investigations that form the corpus of the clini-
cal scientific literature. In many instances, one’s 
search for evidence will end here as the other levels 
of the hierarchy are not available. The two most 
commonly employed search engines for identifying 
primary studies include PubMed and Ovid, the 
former being free. PubMed searches the U.S. 
National Library of Medicine online medical data-
base MEDLINE. Ovid can search other databases 
as well (such as the European-based EMBASE). 
Methodological quality filters, designed to identify 
only the highest-quality studies, have been incor-
porated into PubMed, under the “Clinical Queries” 
section, and are available for Ovid as well.

Syntheses

The next level up in the information hierarchy 
is syntheses, including systematic reviews and 
meta-analyses. A systematic review is a study that 
answers a focused clinical question using all rele-
vant primary research studies. When appropriate, 
these results may be mathematically combined, 
resulting in a new, combined estimate of the out-
come. This last step is termed meta-analysis. The 
assumption underlying placing systematic review/
meta-analysis at this level of the hierarchy is that 
consideration of results from multiple studies is 
more reliable than consideration of the results of 
any one individual study.

Systematic reviews and meta-analyses are 
increasingly popular in the medical literature. 
They are indexed in the clinical databases, and 
there are specific search engines to help locate 
them, including one in PubMed. A key source for 
these types of studies is the Cochrane Collabo-
ration, named in honor of Archie Cochrane, a 
British physician and researcher who, in 1979, 
challenged the medical community to critically 
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summarize—by specialty and with periodic 
updates—all relevant scientific literature. The 
Cochrane Collaboration is a fellowship of volun-
teers from around the world who produce sys-
tematic reviews following the exacting Cochrane 
guidelines. In addition to the collection of sys-
tematic reviews, the Cochrane Collaboration 
Web site is home to a listing of hundreds of thou-
sands of controlled therapeutic trials. Cochrane 
reviews are listed in PubMed, but the full review 
is available only by subscription.

Synopses

The next level up on the information hierarchy 
is the synopsis. A synopsis is a brief review of a 
primary study or systematic review, summarizing 
the key methodological issues and results, as well 
as pointing out areas of concern and caution. The 
purpose of this type of resource is to free the clini-
cian from the bother of critically appraising the 
methodology and results of a study. Synopses 
come in many shapes and sizes, ranging from high-
quality, peer-reviewed sources, such as ACP Journal 
Club, Bandolier, DARE, and Evidence-Based 
Medicine, to private online collections of study 
reviews of questionable quality.

Summaries

Summaries are reviews of all the methodologi-
cally sound evidence on a medical topic. An exam-
ple of a topic would be “the treatment of asthma 
with bronchodilators,” in contrast to a question 
relating to a specific outcome and a specific bron-
chodilator. Summaries allow for comparison of 
various competing therapeutic options for a spe-
cific problem, all evaluated using the analytical 
tools of EBM. Sources for summaries include 
clinical evidence and PIER (Physicians’ Information 
and Education Resource; http://pier.acponline.org/
index.html).

Systems

The highest level in the information hierarchy is 
systems. The most sophisticated of these would be 
a computerized decision support system, linking a 
patient’s specific medical characteristics and pref-
erences to the best available evidence and then 
recommending a specific management approach. 
These are not widely available. Included in this 

category, though much less sophisticated, are clini-
cal guidelines. However, a note of caution is in 
order. Similar to the situation mentioned above 
with regard to synopses, the quality of guidelines 
varies. Guyatt and others have developed a grad-
ing system (the GRADE approach) for assessing 
the quality of a guideline based on methodological 
validity and the results of the guideline’s evidence 
base.

Analyzing the Evidence

This is the EBM step that has been called “criti-
cal appraisal.” If one has found a piece of evidence 
in the synopsis, summary, or systems categories 
above, this step should have been completed by  
the authors. If not, the methodology and results 
require critical analysis. Medical schools, residen-
cies, and other clinically oriented programs are 
now providing instruction in EBM, much of which 
focuses on critical appraisal. There are many 
online and print resources that can aid in critical 
appraisal of a study and in critical appraisal skill 
learning. This is the crucial step in the EBM pro-
cess determining whether the results of the study 
are reliable and important and therefore worthy of 
consideration in the management of one’s patient. 
This is also the point at which one may decide that 
the study validity is insufficient and therefore one 
should look for other evidence.

Applying the Results

This is the final step of the EBM process—
bringing the results of the EBM analysis back  
to the patient. At times, this step may be very 
straightforward—when benefits clearly outweigh 
costs, such as vaccination against pneumococcal 
infection and IVIG treatment in Kawasaki disease. 
At other times, the decision is not straightforward, 
even when the results of a study are highly valid, 
such as surgery versus medical treatment for pros-
tate cancer. In all cases, patient peculiarities and 
preferences need to be factored into the medical 
decision. There is an entire discipline, medical 
decision making, which is dedicated to aiding clini-
cians and their patients in making medical man-
agement choices. The field is still relatively new, 
and results from research are only beginning to be 
applied in the clinical setting.
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Future Directions

The rise of EBM has changed the way clinicians 
approach patient management problem solving, 
medical education at all levels, and the scientific 
basis for clinical investigations. There is a significant 
amount of work currently under way to simplify the 
EBM process, automate it, and generally make it 
more user-friendly for the clinical consumer. On the 
horizon are the decision systems discussed above 
that will link high-quality, current research with 
specific patient characteristics and preferences. 
Given the remarkable ascendancy of EBM in a rela-
tively short period of time and its broad acceptance, 
the demand among clinicians for such systems will 
likely spur their rapid development.

Jordan Hupert and Jerry Niederman
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EVidEncE syntHEsis

There is a plethora of information in almost  
every area of healthcare. For example, a search of 
MEDLINE (the U.S. National Library of Medi-
cine’s bibliographic database) using only the terms 
depressed, depressive, or depression yields more 
than 3,000 hits of articles published since 1980—
and MEDLINE is only one of many health-related 
electronic bibliographic databases. The same terms 
on the search engine Google on the World Wide 
Web yield upward of 84,000,000 hits. Yet 
informed health-related decision making is depen-
dent on having access to current knowledge. 
Without some help in assembling, organizing, and 
summarizing this information, the patient, health-
care practitioner, or policy maker would be at a 
loss to navigate through this mass of information. 
The vast amount of information available gives 
rise to the need for literature reviews that synthe-
size the available evidence to provide an overall 
reflection of the current knowledge base. Yet evi-
dence synthesis itself is not a simple or straightfor-
ward task. There are many different factors that 
should be considered and many different views on 
how evidence synthesis should be conducted.

Types and Sources of Evidence

One of the important factors to be considered in 
both carrying out and making use of a synthesis is 
the tremendous diversity in the types and sources of 
evidence that a synthesis might potentially consider. 
Most current evidence syntheses restrict themselves 
to research studies published in peer-reviewed jour-
nals. Yet even this restriction can yield an over-
whelming amount of evidence, given the numerous 
electronic biographic databases that can be searched 
(of which MEDLINE, PubMed, PsycINFO, and 
EMBASE are only a few examples) and the number 
of languages in which health research studies are 
published. Other evidence synthesis methodologies 
also strive to include “fugitive” literature, that is, 
the search for evidence is expanded to include 
unpublished studies through searching conference 
proceedings and the Internet, by including relevant 
government reports and unpublished studies con-
ducted by pharmaceutical companies, and by using 
personal networking to identify other studies that 
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may not have been submitted to or published by 
peer-reviewed journals. The main advantage of this 
strategy is that there is still a bias on the part of 
journals to publish studies that report positive find-
ings. However, an important limitation of includ-
ing these reports is that they have not undergone 
(or passed) a peer review process. Plus, attempting 
to include all published and unpublished studies 
can become an overwhelming task because of the 
sheer volume of information.

Still other evidence syntheses draw on pro-
fessional expertise and opinion. Although profes-
sional expertise must surely be considered a form 
of evidence, good research studies, where they are 
available, should take precedence in an evidence 
synthesis. However, professional expertise and 
expert consensus can be especially useful when 
there are few studies available, and they are invalu-
able in helping interpret the meaning of and impor-
tance of study findings where they do exist. Issues 
of practicality and evidence of public acceptance of 
a particular practice (e.g., a particular prevention 
or intervention strategy) should also be important 
considerations, although not all evidence syntheses 
attend to these issues. However, in using an evi-
dence synthesis to aid in clinical or policy decision 
making, these are important issues to consider.

Currently, most evidence syntheses combine evi-
dence from quantitative studies only, and most 
synthesis methodologies do not consider the role of 
theoretical frameworks or the context in which  
a particular study (with its particular findings)  
was conducted. This may be of more relevance in 
reviews of some health issues (such as the prognosis 
in whiplash-associated disorders or most effective 
strategies for prevention of teen pregnancies) and of 
less relevance in reviews of other health issues (such 
as the efficacy of a particular medication for treat-
ing a particular disease). A recently emerging area, 
requiring a very different synthesis methodology, is 
the synthesis of evidence from qualitative studies. 
The combination of evidence from both quantita-
tive and qualitative studies is even less well devel-
oped but would conceivably yield a rich and more 
complete understanding of many health concerns.

Considerations for Users of Syntheses

Even where the primary source of information is 
published quantitative studies, there is a great 

diversity in the particular questions addressed in 
those studies. For example, when synthesizing 
information from published intervention studies, 
there are a number of different questions that the 
study might address. Among others, these ques-
tions might include the following: Can an interven-
tion be effective? What happens when a particular 
intervention is used on a widespread basis with  
the “usual” patient in the “usual” clinical setting? 
What interventions do patients prefer? Is that inter-
vention cost-effective when used on a large-scale 
basis? In studies of a single intervention strategy, 
these questions might yield very different answers. 
An evidence synthesis is useful to a particular 
reader only when it addresses the same question 
that concerns the reader and where the study par-
ticipants and clinical care providers are similar to 
those of the reader’s interest. For example, a par-
ticular procedure carried out on the “ideal” patient 
by a highly specialized healthcare provider may 
yield very different results when carried out on 
“usual” patients (who may have comorbid condi-
tions that are different or more serious than those 
in the studies included in the evidence synthesis). 
Similarly, some procedures have a higher success 
rate and lower complication rate when carried out 
at highly specialized and selected facilities than at 
facilities providing more varied and generalized 
care. The reader of an evidence synthesis needs to 
ensure that the synthesis is relevant to the particu-
lar decisions that he or she needs to make.

The reader of an evidence synthesis should also 
keep in mind that different research questions 
require different research designs. For example, 
wherever possible, questions about the effective-
ness of a particular intervention strategy are best 
answered using a randomized controlled trial 
(RCT). Most Cochrane Collaboration reviews and 
evidence syntheses are of this sort, and many such 
reviews exclude observational studies. However, 
designs other than RCTs are better suited to 
answering other important clinical questions. In 
particular, RCTs are rarely the design of choice to 
assess diagnostic techniques and have little to offer 
us when studying the usual course and prognosis 
of a health condition. The types of evidence needed 
to develop an evidence synthesis and the methods 
employed to synthesize the information once the 
evidence is assembled are highly dependent on the 
particular question being asked.
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Another important source of diversity in evi-
dence syntheses relates to the methodological qual-
ity of that evidence. Some synthesis procedures, but 
not all, evaluate the methodological quality of the 
studies included. Moreover, some methodological 
quality assessments use rating scales (and may or 
may not use these ratings for establishing weights 
for each study in developing their conclusions). 
Others use dichotomous criteria by which only 
those studies judged to have adequate method-
ological soundness are included in the synthesis. 
Still others use combinations of these strategies. An 
important consideration is that the conclusions in 
the synthesis have been shown to differ depending 
on which method is used to appraise the quality of 
the evidence. Even in peer-reviewed publications, 
the methodological quality of studies varies widely. 
Generally, an evidence synthesis that does not con-
sider the methodological quality of the evidence  
it combines should be viewed with caution. The 
evidence synthesis should alert the reader to the 
strength of the findings so that the reader can assess 
how much confidence he or she should place on the 
synthesis conclusions and what populations these 
findings might apply to. As stated previously, a 
crucial consideration in interpreting evidence from 
studies is whether the findings from a series of care-
fully selected participants and settings can be gen-
eralized to the wider clinical setting or population.

Different stakeholders also have different needs 
from a synthesis of evidence. For example, a policy 
maker and a clinician may have different require-
ments in an evidence synthesis, since the types  
of decisions to be made are quite different. The 
healthcare provider is responsible for considering 
his or her patient’s individual needs and ensuring 
that his or her patient receives the most appro-
priate diagnostic and treatment options. A policy 
maker must consider the needs not only of health-
care patients but also of the community in general. 
Decision making in this situation considers not 
only efficacy of clinical practice but also allocation 
of resources; the general values, standards, and 
beliefs of the community; and the practicality of 
incorporating, on a larger scale, what the evidence 
tells us. This has implications for the type of evi-
dence required for the synthesis, how the synthesis 
is interpreted, and even the makeup of the group 
doing the evidence synthesis. The creators of the 
evidence synthesis should alert the reader as to the 

target audience of their synthesis; in addition, 
readers should consider for themselves whether 
the evidence synthesis is appropriate for their own 
particular needs.

Combining the Evidence

Once a researcher has addressed these important 
questions and has a well-formulated question, has 
clarified the target audience, has adequately 
searched for evidence, and has appraised the qual-
ity of the study (or has decided against such 
appraisal), he or she comes to the issue of how to 
perform the actual synthesis of the evidence. What 
then? How does one combine the evidence? In an 
ideal world, the researcher would have a substan-
tial number of studies of excellent methodological 
quality, all with consistent findings. These would 
provide sufficient variability in the populations 
studied to assure him or her that the findings can 
confidently be generalized to the broader popula-
tion with that particular health problem. Outcomes 
considered would cover the range of relevant out-
comes and would provide the researcher with con-
fidence that the findings are robust. Where this is 
the case, the evidence is clear, unambiguous, and 
strong. The researcher knows what the evidence 
shows and how strong the associations are: The 
particular strategy used for combining the evidence 
becomes largely irrelevant.

However, that scenario is the exception for 
most areas of medical research. More frequently, 
the researcher has many studies of (at best) moder-
ate-quality evidence, which may or may not con-
tradict each other; one or two studies of adequate 
methodological quality, which may or may not 
contradict other studies of poor methodological 
quality; or many studies of poor methodological 
quality, which may or may not contradict each 
other. Even studies examining the same research 
question, using the same research design, and of 
similar methodological quality may have widely 
diverse findings and come to different conclusions. 
And where the available studies are all method-
ologically strong, they may lack relevance in real-
world settings because all include only highly 
selected patients, who may not reflect the usual 
clinical practice.

This is one of the main challenges in developing 
a useful and valid evidence synthesis. There are 
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two main ways of combining evidence. These are 
meta-analysis, whereby findings from the relevant 
studies are combined statistically to yield an over-
all direction and size of an effect, and a more nar-
rative, descriptive approach to synthesizing the 
information from the relevant studies.

A meta-analytic approach is most often seen in 
evidence syntheses that address issues of interven-
tion effectiveness—for example, many Cochrane 
Collaboration reviews. To be valid and useful, this 
approach requires that the studies be reasonably 
homogeneous, that is, similar with respect to the 
particular intervention assessed, the population 
being studied, the context or setting in which the 
intervention is being assessed, the nature of the out-
comes of interest, the measures used to assess those 
outcomes, and the follow-up time—when the out-
comes are assessed. This, of course, requires that 
the studies to be included report this information in 
sufficient detail and that the findings (the estimate 
and variability of the effect) are reported clearly and 
in a manner that permits statistical combination  
of these effects. Where these conditions are present, 
this strategy can overcome some of the limitations 
of multiple small, underpowered studies that fail to 
achieve statistical significance because of low sam-
ple size. It should be remembered, however, that 
small RCTs may not only lack statistical power, but 
they are also at greater risk that random group allo-
cation may have failed to equalize groups, thus 
introducing confounding. This problem is not nec-
essarily eliminated by pooling studies in a meta-
analysis. In addition, where an “overall effect size” 
is reported, some important explanations for diff-
erences among the individual studies might be 
neglected. For example, differences in patient char-
acteristics among study settings might be responsi-
ble for differences in the effectiveness of a particular 
treatment. If these issues are not explored, the user 
of the synthesis may miss some important informa-
tion necessary for successful implementation of the 
intervention with individual patients.

However, in many cases, there is too much het-
erogeneity in the studies to justify statistical pool-
ing of study findings. In this case, a qualitative 
(rather than a quantitative) synthesis of the avail-
able evidence must be employed. It is important to 
distinguish this from a traditional, narrative review. 
In a traditional, narrative review, the search for 
studies is neither comprehensive nor systematic, 

nor is there a systematic critical appraisal per-
formed. Although traditional narrative reviews 
can be useful sources of information, they are 
often based on a selected number of studies, which 
may reflect the biases of the author. Even when a 
meta-analysis cannot occur because of heterogene-
ity in the studies, a qualitative synthesis (such as  
a best-evidence synthesis) based on studies ascer-
tained using a comprehensive and systematic 
search and a thorough critical review of the stud-
ies’ methodological soundness can be an important 
strategy for summarizing the available literature. A 
sound, informative qualitative analysis of the lit-
erature can be a complex and challenging task, 
since not only similarities but also dissimilarities in 
studies (e.g., study populations, context and set-
ting, exact nature of the intervention, type and 
timing of outcomes measured) need to be described 
and explored as they relate to similarities and dif-
ferences among study findings.

Where meta-analytic techniques can be 
employed, they can provide very important infor-
mation to the clinician and policy maker. Meta-
analytic techniques are relatively well standardized 
and codified. However, meta-analyses rarely 
explore theoretical or conceptual issues and gener-
ally do not address the mechanisms through which 
the intervention has its effect. A qualitative analy-
sis of the evidence produced by a systematic search 
and critical review of the literature requires more 
judgment, and the procedures are less codified. 
Such approaches lend themselves more easily to an 
exploration of theoretical issues and of the mecha-
nisms of the intervention, although not all qualita-
tive analyses address these issues.

Whichever approach is used in the evidence syn-
thesis, the reader should have access to a descrip-
tion of each study included in the synthesis, 
preferably in tabular form so that the studies can be 
easily compared. At a minimum, this should include 
a description of the research design used (if more 
than one research design is included in the synthe-
sis), the study setting, the study sample (source of 
sample, sample characteristics, number in each 
group at inception and at follow-up), a summary of 
the intervention (if more than one is included in the 
synthesis), the outcomes assessed, their timing and 
measures used, and the findings (estimates and the 
variability around those estimates, e.g., confidence 
intervals). This allows readers to determine for 
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themselves how closely the study samples and set-
tings relate to their own patient populations and 
healthcare settings, whether the outcomes being 
assessed are of relevance in their own particular 
circumstances, and how much variability there is in 
the literature.

Finally, it should always be remembered that no 
matter how the evidence is combined in an evi-
dence synthesis, both the individual studies and the 
synthesis of these studies report average, not indi-
vidual, risks and benefits. Whether the decisions 
being made are policy decisions or clinical deci-
sions, the quality of the decision depends on having 
access to both good evidence and good judgment.

Linda Jean Carroll

See also Meta-Analysis and Literature Review; 
Qualitative Methods; Randomized Clinical Trials
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ExPEctEd utility tHEory

Expected utility theory (EUT) states how an EUT 
decision maker makes choices among options that 

have specified characteristics. Each option is in 
some sense viewed by the EUT decision maker  
as beneficial to the EUT decision maker, but the 
option also has risks associated with the benefits 
and the EUT decision maker must bear the adverse 
outcomes associated with these risks should they 
occur. In addition, both the benefits and the risks 
of the options are uncertain, hence EUT decision 
makers must consider a set of uncertainties of ben-
efits and risks among options (or alternatives) as 
they make their way through the decisions they 
face. Compared with other types of decision mak-
ers who pursue different routes in coming to a 
choice among alternatives with trade-offs, the EUT 
decision maker makes his or her choice in one way: 
by comparing the weighted sums of the options 
that are open to him or her. The weighted sums of 
options are obtained by adding the utility values of 
each of the outcomes multiplied by each outcome’s 
respective probability of occurrence across the set 
of outcomes open to the EUT decision maker.

The origins of the EUT can be traced back to 
1738, when Daniel Bernoulli wrote what he 
described as a new theory of the measurement of 
risk. But what assumptions was Bernoulli coming 
up against that required a “new” formulation?

Floris Heukelom traces the history of the math-
ematics of rational behavior to 1654, when 
Chevalier de Méré instigated Blaise Pascal, and 
therewith Pierre Fermat, to consider gambling 
problems. Heukelom notes that from an examina-
tion of a large body of literature on Enlightenment 
mathematicians who were interested in probabil-
ity, it seemed as if these mathematicians were not 
making a real distinction between the determina-
tion of what they considered to be an answer  
to the question “What should the rational solution 
to the problem be in situations of uncertainty?” 
and the question “What would a rational person 
actually do (or how would a rational person act) 
in those same situations of uncertainty?” For these 
mathematicians, the two questions were one and 
the same.

One such construction of a gamble is the  
St. Petersburg game that came under the scrutiny 
of Bernoulli. Chris Starmer notes the following 
about EUT as it was first proposed by Bernoulli to 
the St. Petersburg game. Starmer notes that 
Bernoulli proposed EUT in response to an appar-
ent puzzle surrounding what price a reasonable 
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person should be prepared to pay to enter a  
gamble. It was the conventional wisdom at the 
time that it would be reasonable to pay anything 
up to the expected value of a gamble. But Bernoulli 
proposed making a game out of flipping a coin 
repeatedly until a tail is produced, and let us make 
a game of this situation. The game rules are as fol-
lows: If one is willing to participate in the game, 
one will receive a payoff of, say, $2n, where n is the 
number of the throw producing the first tail (T). If 
one goes about looking for players for this game, 
one finds that people do not want to get involved 
in this game, where, in fact, the expected monetary 
payoff is infinite. In fact, and to the surprise of 
theoretical mathematicians, people are only pre-
pared to pay a relatively small amount to even 
enter the game. Bernoulli argued that the “value” 
of such a gamble to an individual is not, in general, 
equal to its expected monetary value as theoretical 
mathematicians believe. Rather, Bernoulli argued 
and proposed a theory in which individuals place 
subjective values, or utilities, on monetary out-
comes. Here, for Bernoulli, the value of a gamble 
is the expectation of these utilities.

Heukelom notes that instead of the “objective 
value of the monetary gain” being taken as the 
expectation in people, the “subjective value of  
the utility” should be taken as the mathematical 
expectation of a game or gamble. Here, when con-
sidering the subjective value of the utility, the St. 
Petersburg paradox does not go to infinity but, 
depending on the exact parameters of Bernoulli’s 
equation, will asymptotically go to a number that 
is in fact quite reasonable.

Bernoulli’s Theory of  
the Measurement of Risk

Bernoulli’s first paragraph of his formulation of 
the St. Petersburg game, translated from Latin into 
English by Louise Sommer, notes that ever since 
mathematicians first began to study the measure-
ment of risk, there has been general agreement on 
the proposition that “expected values” are com-
puted by multiplying each possible gain by the 
number of ways in which it can occur and then 
dividing the sum of these products by the total 
number of possible cases where, on this theory, the 
consideration of cases that are all of the same 
probability is insisted on.

Bernoulli then notes that the proper examination 
of the “numerous demonstrations of this proposi-
tion” all rest on one hypothesis: Since there is no 
reason to assume that of two persons encountering 
identical risks, either should expect to have his or 
her desires more closely fulfilled, the risks antici-
pated by each must be deemed equal in value.

Bernoulli then focuses in on the term value 
above and argues that the determination of the 
value of an item must not be based on its price but 
rather on the utility it yields. The price of the item 
depends only on the thing itself and is equal for 
everyone; the utility, however, depends on the par-
ticular circumstances of the person making the 
estimate. Bernoulli concluded by making explicit 
the point that there is no doubt that a gain of 
1,000 ducats is more significant to a poor person 
than to a rich person, although both the poor per-
son and the rich person gain the same amount.

For Bernoulli, what becomes evident is that no 
valid measurement of the value of a risk can be 
obtained without consideration being first given to 
its utility, that is, the utility of whatever gain 
accrues to the individual or how much profit is 
required to yield a given utility.

Exceedingly Rare Exceptions

Bernoulli, however, was quick to recognize that he 
needed to consider the case of what usually hap-
pens and not place his focus solely on the case of 
exceedingly rare exceptions. The exceedingly rare 
exception referred to was the case of a prisoner. 
For although a poor person generally obtains more 
utility than does a rich person from an equal gain, 
it is nevertheless conceivable, for example, that a 
rich prisoner who possesses 2,000 ducats but 
needs 2,000 ducats more to repurchase his free-
dom will place a higher value on a gain of 2,000 
ducats than does another person who has less 
money than he.

Bernoulli’s Risk Aversion

Excluding these rare exceptions, Bernoulli argued 
that we should consider what usually happens  
and assume that there is an imperceptibly small 
growth in the individual’s wealth, which proceeds 
continuously by infinitesimal increments. For 
Bernoulli, it is highly probable that any increase in 
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wealth, no matter how insignificant, will always 
result in an increase in utility, which is inversely 
proportionate to the quantity of goods already 
possessed.

Daniel Kahneman notes that Bernoulli sug-
gested that people do not evaluate prospects by 
the expectation of their monetary outcomes but 
rather by the expectation of the subjective value of 
these outcomes. This subjective value of a gamble 
is again a weighted average, but now it is the sub-
jective value of each outcome that is weighted by 
its probability. Kahneman then argues that to 
explain “risk aversion” within this framework, 
Bernoulli had to propose that subjective value, or 
utility, is a concave function of money. Hence, the 
concavity of the utility function entails a risk-
averse preference for the sure gain over a gamble 
of the same expected value, although the two 
prospects have the same monetary expectation.

Commentary on Bernoulli’s Work

Heukelom gives Bernoulli credit for successfully 
introducing a theory of maximizing expected util-
ity (EUT) as the basis for the study of rational 
decision behavior under uncertainty and adds 
that—as anachronistic as it may seem—what is 
being seen in these discussions is the beginnings of 
today’s decision theory.

Writing on the early history of experimental eco-
nomics, Alvin E. Roth considers Bernoulli’s work 
on the St. Petersburg paradox as perhaps the best 
candidate for the first economic experiment. Roth 
is referring here to Bernoulli’s paper “Exposition of 
a New Theory on the Measurement of Risk.” For 
Roth, Bernoulli did not simply rely on and attempt 
to publish only his own intuitions but rather 
adopted the practice of asking other famous schol-
ars for their opinions on difficult choice problems. 
Here, Bernoulli is argued by Roth to be using a 
similar information report methodology to what is 
now being used in the hypothetical choice problems 
that generate hypotheses about individual choice 
behaviors today, and furthermore, it can be argued 
that this can be seen as a continuum from Bernoulli’s 
work to the work of theorists of individual choice 
behavior in cognitive psychology today.

In this history of experimental economics, Roth 
gives credit to L. L. Thurstone’s 1931 experiment on 

individual choice and the problem of experimentally 
determining an individual’s indifference curves. 
Here, Roth argues that Thurstone was concerned 
with testing the indifference curve representation of 
preferences and with the practicality of obtaining 
consistent choice data of the sort needed to estimate 
these indifference curves.

Kahneman also traces the psychophysical 
approach to decision making to this essay by 
Bernoulli on risk measurement.

Starmer considers Bernoulli’s theory the first 
statement of EUT with his solution to the St. 
Petersburg puzzle but asserts that modern econo-
mists in the 1950s only discovered and built on 
Bernoulli’s insight. Here, Starmer argues that a 
possible explanation for this time delay in theory 
development is at least partly explained by the 
fact that the form of Bernoulli’s theory presup-
poses the existence of a cardinal utility scale. And 
this assumption about cardinal utilities did not sit 
well with the more modern theorists’ drive toward 
ordinalization in the first half of the 20th century. 
John von Neumann and Oskar Morgenstern 
revived interest in Bernoulli’s approach and 
showed that the expected utility hypothesis could 
be derived from a set of apparently appealing  
axioms on preference.

Paul J. H. Schoemaker notes that U(x), the utility 
function proposed by Bernoulli, was logarithmic 
and thus exhibited diminishing increases in utility 
for equal increments in wealth. However, 
Schoemaker notes that Bernoulli did not explicitly 
address the issue of how to measure utility, nor did 
Bernoulli address why his expectation principle 
should be considered as rational. Without such fur-
ther exploration, Shoemaker argues that Bernoulli’s 
theory may only be interpreted as a “descriptive 
model” by some commentators, even though the 
expectation principle at the time may have enjoyed 
face validity as a “normative model.”

Medical Decision Making

Today, in the area of medical decision making, 
the following questions regarding work like 
Bernoulli’s on risk are still being asked: Is expected 
utility theory supposed to describe individuals’ 
choices? Is it supposed to be prescriptive for 
medical decision making? Is it supposed to be 
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normative for medical decision making? Is it nor-
mative or just simply practical? These challenges 
to expected value theory’s strengths and further 
defining of expected values theory’s weaknesses 
have followed expected value theory since its 
early formulation by Bernoulli, and these per-
spectives continue to challenge ethicists, research-
ers, and theorists in medical decision making, 
economics, and EUT today.

Dennis J. Mazur

See also Nonexpected Utility Theories; Risk Aversion; 
Subjective Expected Utility Theory
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ExPEctEd ValuE of PErfEct 
information

Simply basing decisions on expected cost-effectiveness 
or, equivalently, net health or monetary benefit 
will ignore the question of whether the current 
evidence is a sufficient basis for adopting or reim-
bursing a health technology. It would fail to 
address the question of whether further research is 
needed to support such a decision in the future. 
The value of evidence or the health costs of uncer-
tainty can be illustrated using a simple example as 
shown in Table 1. Each row represents a realiza-
tion of uncertainty, that is, the net health benefit 
(commonly measured in quality-adjusted life years, 
or QALYs) that results when all the parameters 
that determine expected costs and effects each 
take one of their many possible values. These real-
izations may be generated by probabilistic sensi-
tivity analysis, which commonly randomly samples 
(Monte Carlo simulation) from each of the distri-
butions assigned to parameters. Therefore, each 
row can be thought of as representing one of the 
ways things could turn out given our current 
uncertainty. The expected net benefit for 
Treatments A and B is the average over all these 
possibilities (in this example, the range of poten-
tial values is simplified to only five possibilities).

On the basis of current evidence, we would con-
clude that Treatment B was cost-effective, and on 
average we expect to gain an additional 1 QALY 
per patient treated compared with Treatment A. 
However, this decision is uncertain, and Treatment 
B is not always the best choice (only 3 times out of 
5), so the probability that B is cost effective is .6. For 
some realizations (2 out of 5), Treatment A would 
have been the better choice. Therefore, a decision to 
adopt B based on current evidence is associated 
with an error probability of .4. This is substantially 
greater than the traditional benchmarks of statisti-
cal significance, such as .05. But whether or not this 
level of uncertainty “matters” depends on the con-
sequences, that is, what improvement in net benefit 
(or avoidance of harm) could have been achieved if 
this uncertainty had been resolved.

The decision maker is faced with three choices: 
(1) adopt Technology B based on current evidence, 
(2) adopt the technology now but conduct further 
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research so that this initial decision can be recon-
sidered once the new evidence is available, or (3) 
withhold approval until further research resolves 
some of the uncertainty. Therefore, some assess-
ment of whether uncertainty matters and of the 
value of additional evidence is required.

For example, if uncertainty could be completely 
resolved, that is, through complete evidence or 
perfect information about effect and cost, then we 
would know the true value of net health benefit 
before choosing between A and B. Therefore, with 
perfect information, we should be able to adopt 
whichever technology provided the maximum net 
benefit for each realization of uncertainty (the fifth 
column in Table 1). Of course, we can’t know in 
advance which of these values will be realized,  
but on average (over the fifth column) we would 
achieve 13.6 rather than 13 QALYs—a gain of .6 
QALYs. It should be clear that the cost of uncer-
tainty or the value of evidence is just as “real” as 
access to a cost-effective treatment, as both are 
measured in terms of improved health outcomes 
for patients. In principle, evidence can be just as, 
or even more important than, access to a cost- 
effective technology. In this case, the expected 
value of perfect information is .6 QALYs, which is 
more than half the value of the technology itself, 
that is, 1 QALY gained by adopting B.

Additional evidence can be used to guide the 
treatment of all other current and future patients. 
Therefore, the maximum value of evidence to the 
healthcare system as a whole requires estimates of 

this current and future patient population (where 
the population expected value of perfect informa-
tion [EVPI] is the discounted sum). This requires a 
judgment to be made about the time over which 
additional evidence that can be acquired in the 
near future is likely to be useful and relevant. 
Generally, fixed time horizons of 10, 15, and 20 
years have commonly been used in the health lit-
erature as well as the environmental risk and engi-
neering literature. There is some empirical evidence 
that suggests that clinical information may be valu-
able for much longer (a half-life of 45 years). 
However, any fixed time horizon is really a proxy 
for a complex and uncertain process of future 
changes, all of which affect cost-effectiveness and 
the future value of evidence. In health, some future 
changes can be anticipated (a new technology will 
be launched, a trial that is recruiting will report, or 
a branded drug will go generic), and differing judg-
ments about time horizons in different contexts 
might be appropriate.

As well as a simple metric of the relative impor-
tance of uncertainty across different clinical deci-
sion problems, the population EVPI can be 
expressed as net monetary benefit and compared 
with the expected cost of additional research, 
which includes the net benefit forgone if conduct-
ing research requires delaying approval of a tech-
nology that appears to be cost-effective based on 
current evidence. If these expected opportunity 
costs of research exceed the population EVPI 
(maximum benefits), then the research is not 

Table 1  Expected value of perfect information

How Things Could
Net Health Benefit

Best We Could 
Turn Out Treatment A Treatment B Best Choice Do if We Knew

Possibility 1  9 12 B 12

Possibility 2 12 10 A 12

Possibility 3 14 17 B 17

Possibility 4 11 10 A 11

Possibility 5 14 16 B 16

Average 12 13   13.6
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worthwhile—the resources could generate more 
health improvement by being used elsewhere in 
the healthcare system, and coverage should  
be based on current estimates of expected cost-
effectiveness. Therefore, EVPI provides a neces-
sary condition for conducting further research 
and a means to start to prioritize the allocation of 
research and development resources within the 
healthcare system.

Expected Value of Perfect Partial  
(Parameter) Information

If further research is potentially worthwhile (EVPI 
exceeds the expected cost of research), it would be 
useful to have an indication of what type of addi-
tional evidence might be most valuable. This can 
inform the decision of whether approval should be 
withheld until the addition research is conducted 
or whether a “coverage with evidence develop-
ment” would be appropriate.

The analysis of the value of information associ-
ated with different (groups of) parameters is, in 
principle, conducted in a very similar way to the 
EVPI for the decision as a whole. The expected 
value of perfect information for a parameter or 
group of parameters (EVPPI) is simply the differ-
ence between the expected net benefit when their 
uncertainty is resolved (and a different decision 
can be made) and the expected net benefit given 
the existing uncertainty.

EVPPIs can be used as a simple metric of the 
relative importance (sensitivity) of different types 
of parameters and sources of uncertainty in con-
tributing to the overall EVPI. As a simple measure 
of sensitivity, it has a number of advantages: (1) It 
combines both the importance of the parameter 
(how strongly it is related to differences in net 
benefit) and its uncertainty; (2) it is directly 
related to whether the uncertainty matters (whether 
the decision changes for different possible values); 
and (3) it does not require a linear relationship 
between inputs and outputs. In addition, it can be 
expressed in health or money values and either 
per patient or for the population of current and 
future patients.

When population EVPPI is expressed in mon-
etary terms, it can be directly compared with the 
expected opportunity costs of the type of research 
that might be needed to provide the evidence. 

This is important as some uncertainties are rela-
tively cheap to resolve (in terms of time and 
resource) compared with others (e.g., an observa-
tional study to link a clinical end point to quality 
of life compared with a randomized clinical trial 
of long-term relative treatment effect). Which 
source of uncertainty is most important requires 
a comparison of these benefits and opportunity 
costs.

Evaluating EVPPI often comes at a computa-
tional cost. For linear models, each estimate of 
EVPPI requires some additional computation (the 
manipulation of the simulated values rather than 
repeated simulations). When the model itself is not 
computationally expensive, it is a generally man-
ageable expense. However, if the model is nonlin-
ear, EVPPI may require many repeated runs of the 
same probabilistic model, which can become pro-
hibitively expensive. Therefore, the computational 
expense of EVPPI needs to be justified, that is, if 
the analysis of population EVPI suggests that addi-
tional evidence might be required. It is also more 
efficient and more informative to first consider a 
limited number of groups of parameters, informed 
by the types of research required, for example, 
randomized clinical trial, survey of QALYs, or an 
observational epidemiological study. If there is 
substantial EVPPI associated with a particular 
group, only then conduct additional analysis to 
explore which particular source of uncertainty 
within the group matters the most.

Expected Value of Sample Information

The EVPI and EVPPI place an upper bound on the 
returns to further research so can only provide a 
necessary condition for conducting further research. 
To establish a sufficient condition, to decide if fur-
ther research will be worthwhile and identify effi-
cient research design, estimates of the expected 
benefits and the cost of sample information are 
required.

The same framework of EVPI analysis can be 
extended to establish the expected value of the 
sample rather than perfect information. For 
example, a sample from a particular type of 
study that provides information about some or 
all parameters will generate a sample result that 
can be used to update the parameter estimates 
and recalculate net benefits of the alternative 
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treatments. Once the result of this sample is 
known, then the decision maker would choose 
the alternative with the maximum expected net 
benefit when those expected net benefits are 
averaged over the posterior distribution (the 
combination of sample result and prior informa-
tion). Of course, there are many possible results 
that might occur, so the range of possible sample 
results from the sample must be evaluated, that 
is, similar to the realizations in Table 1 but now 
realization of the sample results rather than 
uncertainty itself. Which particular sample result 
will occur should the sample be taken is unknown, 
so the expected value of a decision taken with the 
sample information is the average over all the 
possible predicted results and predicted posteri-
ors, that is, similar to averaging over Column 5 
in Table 1. The difference between the expected 
net benefits with sample information and expect 
net benefit with current information is the 
expected value of sample information (EVSI).

This type of calculation would provide the EVSI 
for a single study design and only one sample size. 
To establish the optimal sample size for this particu-
lar type of study, these calculations would need to 

be repeated for a range of possible sample sizes. The 
difference between the EVSI for the population of 
current and future patients and the costs of acquir-
ing the sample information (Cs), which should 
include both resource and opportunity costs, is the 
expected net benefit of sample information (ENBS) 
or the societal payoff to proposed research. The 
optimal sample size for a particular type of study is 
simply the sample size that generates the maximum 
ENBS. This is illustrated in Figure 1 and shows how 
the EVSI will increase with sample size but at a 
declining rate (it will approach the relevant EVPI or 
EVPPI in the limit). In this case, the costs of sam-
pling increase at a constant rate and the ENBS 
reached a maximum at n = 1,100.

There are usually a number of different ways 
in which a particular type of study could be 
designed. For example, a randomized clinical 
trial can be designed to collect information on 
limited clinical end points or include quality of 
life and costs. A range of follow-up periods is 
also possible, providing information on either 
short- or long-term effects. Patients recruited to 
the trial can also be allocated in different ways 
to the different arms. The efficient design of a 
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particular type of study will be one that provides  
the maximum ENBS. However, in most decision 
problems, a range of different types of study can 
be conducted at the same time to provide infor-
mation about different types of parameters, for 
example, a randomized clinical trial to inform 
relative effect, a survey of the quality of life asso-
ciated with a clinical end point, and an epidemio-
logical study to inform other events. The problem 
is now to evaluate each possible portfolio of 
research, including the optimal allocation of 
sample (patients) to these different types of study. 
Of course, these dimensions of design space 
become even larger once the sequence in which 
studies might be conducted is considered. In prin-
ciple, a measure of societal payoff to research 
provides a means to explore this design space and 
identify efficient research design and optimal 
portfolios of research.

Karl Claxton

See also Decision Trees: Sensitivity Analysis, Basic and 
Probabilistic; Expected Value of Sample Information, 
Net Benefit of Sampling; Managing Variability and 
Uncertainty; Net Benefit Regression
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ExPEctEd ValuE of samPlE 
information, nEt BEnEfit 
of samPling

Information has a value in utility terms. Consider 
a diagnostic test. It provides data, which, when 
duly interpreted, become information that may 
allow treatment to be individualized and expected 
outcome utility to increase. Three qualifications 
include the following:

First, a test may be too uninformative to influence treat-
ment: VOI (value of information) = 0. However, expected 
utility cannot decrease: VOI is never negative.

Second, these are average statements. New diagnos-
tic tests, even when correctly interpreted, will often 
cause outcome utility to decrease for some patients. 
When population screening is introduced, false 
positives pay a price.

Third, misinformation does carry negative value. 
Utility may suffer when decisions rest on biased 
research or when diagnostic test results are wrongly 
interpreted, for example, due to overly optimistic 
ideas concerning sensitivity or specificity.

In this clinical, single-case illustration, the 
expected value of (perfect) test information is the 
expected utility gained by a (perfect) diagnostic  
or therapy-guiding test. Analogous concepts find 
application in the collection of data to inform clini-
cal policies. Complete elimination of uncertainty or 
biased opinions by means of properly conducted 
research offers a benefit, called the expected value 
of perfect information (EVPI), which ideally should 
outweigh research costs. Once again, however, 
some may pay a price. Suppose a vigorously pro-
moted new drug is proven dangerous. However 
welcome this result may be—misinformation car-
ries a negative value!—the result may deprive an 
unrecognized minority of the only drug that would 
save their lives.

A Pared-Down Example

Consider patients with a complaint that may sig-
nal a special endocrine disorder. The composition 
of the case stream is known (Table 1a), except 
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that the sensitivity (Se) of a relevant imaging test 
is uncertain: It may be .60 or .80, giving rise  
to the question-marked numbers. The specificity 
(Sp) is .90.

Decisions have good and bad consequences. 
Here, we focus on human costs and, more specifi-
cally, on regret, that is, the “cost” of not treating 
the patient as one would were his or her condition 
fully known. As PVneg is high anyhow, the test 
negatives will always be treated by the wait-and-
see policy, and either 16 or only 8 false negatives 
(out of 1,000 patients) will incur a regret B associ-
ated with a delayed clarification of their condition. 
There are 96 false positives that pay C units; this is 
the human cost of the invasive tests they must 
undergo. Obviously, this leaves two promising 
policies: W = wait and see (no need to test) or  
F = follow the test’s advice.

Experts and ex-patients reach a consensus on C 
and B: C = 1 month (= 1/12 quality-adjusted life 
year, or QALY), B = 3.5 months. As an unfortu-
nate result, the optimal policy depends on the 
unknown Se (see Table 1b): If Se is only .60, PVpos 
is too low to have any consequences, and W is 

optimal (as its cost of 140 is less than 152). If Se = 
.80, F is optimal (as 124 < 140).

Now assume that the endocrinologists after 
studying the literature decide that the two values 
for Se are equally likely: This gives rise to an 
a priori mean number of (16 + 8)/2 = 12 false 
negatives (see the third row of Table 1b marked “F 
(average)”), so F beats W with a narrow margin of 
2 months (= 140 – 138).

This was an assessment based on a priori 
hunches. What is the expected value of perfect 
information about Se? With prior probability .5, the 
Se proves to be .60, causing a change of policy from 
F to W for a mean regret of 140; with probability 
.5, the Se proves to be .80, in which case one sticks 
to F for a mean regret of 124. This pre-posterior 
assessment (we are guessing the situation that will 
prevail after obtaining some hoped-for information) 
leads to an average of (140 + 124)/2 = 132. That is, 
the EVPI = 138 − 132 = 6 months per 1,000 cases.

The situation, one may say, involves 6 units of 
uncertainty due to “cross-case” uncertainty con-
cerning the performance of a clinical tool—and 
132 (either 140 or 124, or the average of the two) 

Table 1a  Composition of case stream (1,000 cases with prompting complaint)

Image Test If Se Equals Diseased Healthy Total

Positive .60
.80

(Se) × 40 = 24?
32?

96 120? PVpos = .20
128? PVpos = .25

Negative .60
.80

(1 – Se) × 40 = 16?
8?

864 (as Sp = .90) 880? PVneg > .98
872? PVneg > .98

Total Total 40 960 1,000

Table 1b  Choosing a management policy (Wait and see vs. Follow test result)

 
Policy 

 
Se

Regret 
(per 1,000 Cases)

Regret (per 1,000 Cases) With Consensus Values 
for B and C (Low Value Desirable)

W .60 or .80 40B 140 months

F .60
.80

16B + 96C?
8B + 96C?

56 + 96 = 152 months?
28 + 96 = 124 months?

F (Average) 12B + 96C 42 + 96 = 138 months
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units of uncertainty that can only be eradicated by 
introducing a perfect diagnostic test, not by learn-
ing more about the present diagnostic tool (“intra-
case” uncertainty due to an imperfect tool). The 
132 units constitute an immutable dead weight in 
the calculations.

One starts out with either C = 1 or B = 3.5 
months at stake per patient and ends up conclud-
ing that improved knowledge of the situation can 
only save 6/1,000 month, or 4 hours, per patient. 
Clearly, this is because everything is known apart 
from a minor uncertainty as to the Se. Ceteris pari-
bus, Se will therefore have low research priority. 
Perhaps one should rather try to eat into the 132 
months load by perfecting the imaging procedure.

Expected Value of (Research)  
Sample Information (EVSI)

Suppose a patient presents with verified disease. 
Hoping to benefit future patients, we seize the 
opportunity to obtain an improved Se estimate by 
testing this sample of n = 1 case.

If the patient proves test positive, it only rein-
forces the high-Se alternative and hence the prior 
decision in favor of F. Actually, the expected regret 
drops from its prior value of 138 to 136; this hap-
pens with prior probability .7 (the calculations in 
Table 1c). With probability .3, the patient will be 
test negative. This is the interesting case because it 
favors the low-Se alternative and hence W. Will it 
prompt a policy change to W? Yes. If the negative 
result materializes, the expected regret on Policy F 
increases (deteriorates) from its prior value of 138 
to 142.67 (Table 1c), which is >140, so W now 
beats F.

Overall, what does the prior distribution predict 
the world to look like once the patient has been 
tested (pre-posterior assessment)? Foreseen is an 
expected regret of .7 × (updated consequences of 
F) + .3 × (consequences of W (which happen to be 
unchanged)) = .7 × 136 + .3 × 140 = 137.2, and 
EVSI is the gain from the prior level of 138 to 
137.2, that is, .8 month.

The EVSI/EVPI fraction is here (.8 month)/ 
(6 months) = .13, so the very first patient with the 

Table 1c  Updated consequences of Policy F in light of data from a single verified case

Unknown Parameter Se = .60 Se = .80 Probability Sum

Parameter-dependent mean 
regret on Policy F

152a 124a . .

Prior probabilities .5 .5 1

Prior mean regret 152 × .5 + 124 × .5 = 138

Data = “Test is positive” with 
probability

.60 × .5 = .3 .80 × .5 = .4
.7b

Mean regret if positive (152 × .3 + 124 × .4)/.7 = 136c

Data = “Test is negative” with 
probability

(1 – .60) × .5 = .2 (1 – .80) × .5 = .1
.3b

Mean regret if negative (152 × .2 + 124 × .1)/.3 = 142.67

a. From Table 1b.

b. Bayes’s denominator.

c. Quick route to this result: The odds of high versus low Se change from prior odds {1:1} to posterior odds = (prior odds) × 
(likelihood ratio) = {1:1} × {.80:.60} = {4:3}; that is, the updated chance that Se is .80 is 4/7. The expected regret associated with 
Policy F is the correspondingly weighted average of 152 and 124 (months per 1,000 cases).
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disease that one gets a chance to study will elimi-
nate 13% of the overall uncertainty.

Theoretical Formulation

Proper management of a prospectively delimited 
class of cases depends on some unknown para-
meter(s) θ (for notation, see Table 2), such as Se in 
the example. Had the true value of θ, θ°, been 
known, there would be complete elucidation of the 
decision task; expected utility would attain the 
best possible level attainable with θ°, and there 
would be 0 expected regret, because regret, by 
definition, is utility deficit relative to optimal han-
dling of whatever happens to be the latent truth. 
The clinician’s job is to minimize expected regret.

Before sampling, only the policy maker’s prior 
knowledge is available, and the resulting expected 
regret is the deficit that perfect knowledge of θ 
would eliminate and thus constitutes the EVPI. It 
is 0 only if there is no residual uncertainty as to 
how to act. As defined in the table, R(a|θ) is the 
(expected) regret of action a when θ° = θ, and A(θ) 

is the prior probability that θ° = θ, so the ensuing 
optimal policy, a*(A), is the a that minimizes Sθ 
A(θ)R(a | θ),, and the minimum expected regret 
thus attained, symbolically R*(A), is also the EVPI, 
as just explained. In sum,

EVPI = R*(A) = S
θ
 A(θ)R(a*(A)|θ)  

= min
a    {S

θ
 A(θ)R(a|θ)},

which is ≥0 because all terms are.
In the example above, policy a may be W or F; 

and θ, that is, Se, has two equally likely values: 
A(Se = .60) = A(Se = .80) = .5. So

EVPI = min{.5 × R(W|.60) + .5 × R(W|.80), 
5 × R(F|.60) + .5 × R(F|.80)}.

Now, R(W|.60) is 0 because, if we knew that  
Se = .60, we could do nothing better than adopt 
Policy W, whereas F would be an inferior choice. Key 
figures from Table 1b tell us that its use would entail 
an unnecessary loss of 152 − 140 months per 1,000 

Table 2  Notation and probability model

θ parameter, or vector of parameters, describing a clinical population

θ° the true value of θ

R( . . . ) the expected regret associated with . . .

a available policy options

R(a|θ) expected regret, given θ, were option a to be chosen

a*( . . . ) optimum policy choice based on . . .

R*( . . . ) the expected regret when . . . is optimally responded to

Standard Bayesian data model

A the policy maker’s prior distribution of θ

x observed study data

Q(x|θ) probability of observing x given θ, when

 ProbAQ(θ, x) = A(θ)Q(x|θ),

                  ProbAQ(x) = S0 A(θ)Q(x|θ).

B posterior distribution based on prior A, observation x, and model Q:

                  B(θ) = ProbAQ(θ|x) = ProbAQ(θ, x)/ProbAQ(x)
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cases. That is, R(F|.60) = 152 − 140 = 12. By analo-
gous arguments, R(F|.80) = 0, while R(W|.80) =  
140 −124 = 16. Substituting these figures, we have

 EVPI = min{.5 × 0 + .5 × 16, .5 × 12 + .5 × 0} 
 = min{8, 6} = 6 months,

as previously calculated in a more transparent 
way; and a*(A) = F as F beats W with a margin  
of 8 − 6 = 2 months, again confirming the original 
analysis.

Once a data set x is available, the Bayesian 
policy maker’s updated θ distribution B(θ) can be 
calculated the standard way (Table 2); the letter B 
is short for “Based on A, Q, and x.” Proceeding  
as before, the data-conditional best action, a*(B), 
and associated expected regret are given by

R*(B) = S
θ
 B(θ)R(a*(B)|θ) = min

a    {S
θ
 B(θ)R(a|θ)},

This quantity may be larger than EVPI = R*(A) 
because an outlying x may discredit θ° vis-à-vis 
other θs, but on average, sample information will 
hold a regret reduction, alias the EVSI:

EVSI = EVPI – EAQ {R*(B)} = R*(A)  
– Sx ProbAQ(x)R*(B).

The right-hand term is ≥0 and reflects the mean 
uncertainty left after observing the sample, prov-
ing EVSI ≤ EVPI.

Note 1. In the example, x took two values (the 
only patient studied was positive or negative). It 
was natural to calculate EVSI = .8 as 138 – (.7 × 
136 + .3 × 140) = 138 – 137.2, but both terms 
contain the deadweight of 132 units, so a strict 
application of the formula above would pass via: 
EVSI = (138 − 132) − (137.2 − 132) = 6 − 5.2 = .8 
units. The deadweight term is innocuous because it 
involves the “intracase” burden of diagnostic 
imperfection, represented by the figures 140 and 
124 from Table 1b only, which the policy maker 
cannot change (though he or she may gradually 
learn which of them applies). Formally, a term f(θ) 
that only depends on θ may be added to each 
R(a|θ) without affecting optimal actions or EVSI-
type regret differences (as both terms change by 
EA{f(θ)}).

Note 2. One may dissect the EVSI to prove that it, 
too, is ≥0:

EVSI = min
a    {S

θ
A(θ)R(a|θ)} – S

x 
ProbAQ(x)R*(B).

 = min
a    {S

x
 {S

θ
 A(θ)Q(x|θ)R(a|θ)}}  

 – S
x 
{min

a    {S
θ
A(θ)Q(x|θ)R(a|θ)}}.

That this difference is ≥0 follows from “the funda-
mental trick of utility analysis,” namely, that a sum 
of minima is smaller than, or equal to, the mini-
mum of a sum: You save something by being 
allowed to minimize each term separately.

Note 3. Like the EVPI, the EVSI is subjective, as 
both depend on the point of departure, namely, the 
policy maker’s prior for θ. The EVSI also depends 
on the design of the empirical study and on sample 
size(s).

Note 4. With its focus on Bayesian prediction  
of the situation that may prevail, or on average will 
prevail, once a planned data collection is completed, 
this is an instance of pre-posterior analysis.

Expected Value of (Partial, Alias)  
Parameter Information

When several clinical parameters are unknown, 
separate calculations can be made for each param-
eter or group of parameters, the uncertainty con-
cerning the other parameters being handled as 
before. The expected value of perfect parameter 
information (EVPPI) for any one parameter is the 
EVSI of an imaginary study that reveals the true 
value of that parameter (without providing further 
empirical information). It is therefore ≤ the overall 
EVPI but ≥ the information afforded by real stud-
ies (partial, parameter, EVSI).

Clearly, a parameter that is inexpensive to 
investigate and also has a high EVPPI should 
receive high research priority.

Sample Planning: Expected  
Net Benefit of Sampling

Given an exchange rate between utilities and 
research expenses, the design and dimensions of the 
planned sample can be optimized. When sample 
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size, n, is the issue, the expected net benefit of sam-
pling (ENBS) becomes

ENBS(n) = EVSI(n) − Cost(n).

A Standard Example

If no research is undertaken, everything is zero. 
Otherwise, one faces an initial cost, C, and a cost 
per observation, c. Regrets may be roughly pro-
portional to the squared standard error of the θ 
estimation and therefore inversely proportional to 
n, at least for large n. The regret expectation that 
remains after n observations is then Z/n, where the 
constant Z subsumes some variance and regret fac-
tors. So one gains EVSI(n) = EVPI – Z/n by sam-
pling. Combining the elements, one gets

ENBS(n) = [EVPI – Z/n] – [C + cn]  
for reasonably large n.

A small study is never profitable because of the 
initial cost. As n grows beyond limits, costs also 
become prohibitive. The optimal sample size is  
n  = Z=c

p
; and sampling is profitable if the 

resulting ENBS(n = n*) is positive, thus beating the 
no-research option.

Qualitative Policy Selection

When it suffices to document that θ lies right or 
left of a clinical decision boundary, EVSI(n) usually 
approaches EVPI exponentially fast, and the 
required sample becomes small and less cost depen-
dent than when the actual value of θ matters.

Interpersonal Aspects

Multiple Decision Makers

EVSI (and similar) calculations based on “an 
average policy maker’s prior” may not match a 
sophisticated analysis that acknowledges differ-
ences of prior belief. However, even if rational 
experts start out with different prior beliefs, sound 
data collection will eventually bring about numeri-
cal agreement on parameters; and prior to that, it 
will induce a qualitative consensus about patient 
management policies. Lack of consensus implies 
regret (when two camps recommend different 

interventions, they cannot both be right), but a 
Bayesian formalization of the notion of value of 
professional consensus is difficult.

Ethics

Cool calculi face ethical obstacles. Informed 
consent is problematic toward the end of a ran-
domized trial, when strict equipoise is impossible 
to maintain. What kinds of appeal to altruism are 
justifiable? Can skewed randomization be used in 
the trade-off between the interests of current and 
future patients? To benefit the former, “play the 
winner”; to benefit the latter, maximize VOI, 
which typically means playing the least explored 
alternative.

Jørgen Hilden

See also Economics, Health Economics; Expected Value 
of Perfect Information, Net Benefit Regression; Regret; 
Subjective Expected Utility Theory
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ExPEriEncE and EValuations

The manner by which individuals evaluate how 
good or bad it is to be in a health state is central 
to reaching an informed medical decision. Evidence 
has shown that personal experience with illness, 
such as being diagnosed with cancer, leads to a 
more positive evaluation of that health state than 
the general public’s perception. This disparity has 
been attributed to a focusing bias on the part of 
the general public—the tendency to focus too nar-
rowly on a single event, for example, cancer, while 
forgetting all the other aspects of life that will 
remain unaffected. One potential means for over-
coming such a bias is to ask the public to imagine 
standing in the shoes of the patient. This perspec-
tive-taking exercise might be achieved through 
exposure to a vicarious illness experience, though 
further research is needed to test this hypothesis.

Personal Illness Experience

Researchers have consistently found that the gen-
eral public gives lower evaluations of a particular 
health state, such as having chemotherapy to treat 
cancer, compared with individuals who have had 
personal experience with that health state. This 
has been described as the distinction between pre-
dicted utility, people’s predictions about what they 
think chemotherapy would be like (i.e., unimagin-
ably horrible), versus experienced utility, how the 
experience of chemotherapy actually is like for 
cancer patients (i.e., not as bad as they expected).

Discrepancy Between Patients’  
and Public’s Evaluations

In trying to understand how health state evalu-
ations are affected by personal experience (or the 
lack thereof), researchers seem to have converged 
on a single explanation: focusing bias. This is the 
tendency for the general public to focus too much 
on a particular event (i.e., the cancer diagnosis) 
and not enough on the consequences of other new 
and ongoing future events that will compete for 
one’s attention. For example, the general public 
may evaluate health states as worse than patients 
do because the general public focuses too narrowly 
on the (a) illness, forgetting that other facets of life 

will be unaffected; (b) immediate loss of health, 
forgetting patients’ ability to adapt; (c) intense 
negative emotions aroused by the diagnosis, for-
getting that extreme emotions tend to dissipate 
over time; and so on.

If the general public’s inability to predict the 
effect of illness is due to focusing too narrowly, the 
question then becomes “What can broaden this 
narrow perspective individuals bring to the medi-
cal decision-making process when they have no 
personal experience?”

Vicarious Illness Experience

To broaden the general public’s perceptions, they 
could be asked to imagine what it is like to live 
with a long-term, chronic illness. One means for 
achieving this perspective-taking task could be 
through exposure to a second type of illness expe-
rience: the vicarious experience (VE) of illness. For 
clarity, it is necessary to define the terminology 
used here. Firsthand personal experience is when A 
has been diagnosed with cancer; secondhand expe-
rience is when A tells B about his cancer diagnosis; 
and thirdhand experience is when B tells a third 
party, C, about A’s cancer. Of course, one may 
have multiple types of experiences simultaneously, 
as when a man’s father is diagnosed with cancer. 
The son has his own experience of being with his 
father while he is treated (firsthand) and also hears 
from his father what the experience of being diag-
nosed with and undergoing treatment for cancer 
was like for him (secondhand). Here, VE is defined 
as secondhand, being directly told about another’s 
experience.

Why VE? When patients are newly diagnosed 
with cancer, they are faced with decisions about 
health states they typically have no real under-
standing of. Therefore, many actively seek out 
others with expertise, particularly former cancer 
patients. When former patients vicariously share 
their experiences, they may help newly diagnosed 
patients (a) broaden their focus by stepping back 
from their immediate, narrow fears and, conse-
quently, (b) develop more informed expectations 
of how treatment will (and will not) change their 
lives, but this proposition has not yet been tested.

Theoretically, VE could have a positive impact 
because it provides information typically unavail-
able to individuals for two reasons. First, from an 
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information-processing perspective, learning from 
VE is rational and adaptive for events that are rare 
but of high consequence, such as cancer, because 
direct experience may be fatal. It is not adaptive to 
have to wait until one has a cancer scare to learn 
the importance of, and be motivated to undergo, 
screening for cancer.

Second, real-world personal experiences are 
idiosyncratic and asymmetric in nature. Individuals 
only learn about the outcomes of the particular 
choices they make. They get no information, and 
therefore learn nothing, from the alternatives they 
did not choose. If they develop false beliefs based 
on these experiences, such as the belief that cancer 
treatment is useless, these false beliefs cannot be 
disconfirmed if they do not change their behavior 
and experience different outcomes. However, they 
can learn from the experience of others that treat-
ment may increase the chances of survival.

This is not to imply VE is always beneficial. As 
with anything, if implemented poorly or if inac-
curate information is conveyed, it can have subop-
timal results. Accordingly, one may also learn 
from others that cancer treatment does not lead to 
survival. A poignant example exists in African 
American communities, where many believe that 
cancer is a death sentence. Because of the fear and 
stigma surrounding cancer, neither cancer patients 
nor survivors feel free to discuss their experiences. 
Therefore, the VE most individuals have is attend-
ing the funerals of those who have died from 
cancer.

Real-World Example

There is a real-world experiment that provided 
evidence that being exposed to a positive VE could 
both (a) improve noncompliant individuals’ evalu-
ations of an invasive and uncomfortable cancer-
screening test and (b) motivate them to undergo 
screening. One of the most efficacious and least 
used cancer-screening tests is colonoscopy to detect 
and treat colorectal cancer. In March 2000, the 
NBC anchor Katie Couric underwent a live, on-air 
colonoscopy on the Today show to screen for colon 
cancer, a cancer that had led to the death of her 
husband. Researchers compared colonoscopy utili-
zation rates before and after this powerful VE. 
They found that colonoscopy rates sig  nificantly 
increased after Couric’s program, whereas there 

was no concomitant increase in other cancer-
screening tests.

Vicarious Illness Experience  
Remains Poorly Understood

To an extent, the gap in our knowledge about VE 
reflects the fact that much experimental research in 
psychology has focused on intraindividual factors. 
Therefore, it has been necessary to experimentally 
control potentially confounding factors, such  
as the influence of others’ experiences. Further 
research is needed to draw a more complete pic-
ture of the role that personal experience and VE 
play in the evaluation of health states in medical 
decision making.

Julie Goldberg

See also Biases in Human Prediction; Cognitive 
Psychology and Processes; Construction of Values; 
Context Effects; Decision Making in Advanced 
Disease; Decision Psychology; Expected Utility Theory; 
Health Outcomes Assessment; Hedonic Prediction and 
Relativism; Judgment; Managing Variability and 
Uncertainty; Subjective Expected Utility Theory
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ExPErimEntal dEsigns

As in other branches of science, the time-honored 
method of research in the realm of medicine is one 
factor at a time. This practice of minimizing or 
eliminating changes in all factors of interest and 
then, one by one, changing the levels of each fac-
tor and recording the responses to those changes 
has been and continues to be used for the simple 
reason that it works and because most researchers 
do not realize that better methods exist. From the 
standpoint of efficiency with respect to time, 
money, effort, and quality of results, one-factor-
at-a-time research is a failure.

A factor is any variable whose changes might 
result in responses of interest to an investigator. 
Factors include, but are not limited to, things such 
as dosage levels of one or more medicines, exercise 
regimens, types of sutures, mechanical properties 
of prosthetic devices, and material compositions of 
any medically implanted item or device.

The most efficient method for investigating the 
effects of variables over which an investigator has 
a degree of control is that of experimental design. 
The first work on experimental designs was done 
by R. A. Fisher at the Rothamsted Experimental 
Station in Hertfordshire, England, in the early 
1920s. Work on the development of new designs 
and methods for their analysis continues to the 
present day.

To provide a basic understanding of the con-
cepts of experimental designs, the discussion will 
be limited to the most elementary types of design, 
where the factors are limited to two levels, and the 
discussion will focus only on the assessment of 
single-factor effects.

For the purposes of this discussion, the levels of 
the factors in the design will be referred to as 
“absent” or “present”; however, designs are not 
limited to this simple dichotomy. In most designs, 
“absent” and “present” are usually a “low” and a 
“high” level of some property of a given factor.

Experimental Designs

An experimental design is, at the most basic level, 
nothing more than carefully organized one-factor-
at-a-time experimentation. For example, let us 
assume we have two factors that we need to test on 

a sample population. The simplest basic ideal set 
of one-at-a-time experiments in this case would be 
that of Table 1.

For purposes of illustration, assume that we are 
interested in studying the effects of medicine and 
exercise on the speed of recovery following a surgi-
cal procedure. If Factor 1 was a dose level of a 
given medicine and Factor 2 was the number of 
minutes of treadmill walking at a given speed, then 
the experimental design from Table 1 would look 
like that of Table 1a. Thus, a patient assigned  
to receive the treatment of Experiment 1 would  
be the control—no medicine or exercise, and the 
patient assigned to the treatment of Experiment 4 
would be given medicine and assigned 15 minutes 
of exercise on the treadmill.

This set of experiments is identical to an exper-
imental design of two factors at two values (levels). 
In this case, the values are the simple presence or 
absence of the factor of interest.

For three factors, the basic ideal one-factor-at-
a-time list of experiments would be those in 
Table 2.

Table 1   Matrix of experiments for ideal one-factor-
at-a-time experimental design for two 
factors

Experiment Factor A Factor B

1 (Control) Absent Absent

2 Present Absent

3 Absent Present

4 Present Present

Table 1a   Illustrated examples of actual factor names 
and levels

 
Experiment

 
Dose Level

Minutes  
of Walking 

1 (Control) None None

2 10 mg None

3 None 15

4 10 mg 15
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This list of experiments is identical to a three-
factor design, where each factor has two values 
(levels). This kind of a design is called a full facto-
rial. Thus, for one to truly adhere to the principle 
of one factor at a time, an investigator would need 
to run eight experiments to properly identify the 
effects of three factors.

If the only concern is the ability to assess the 
effects of the three factors and assess them inde-
pendently of one another, then it is possible to use 
the methods of experimental design and fraction-
ate the above design so that the three factors can 
be assessed using only four experiments:

If the third factor was the application of heat 
for 10 minutes to the area of repair, then the final 
fractionated design for three variables would be 
that of Table 3a.

The methods used to fractionate a design will 
not be discussed here. However, the interested 
reader is referred to the Further Readings at the 
end of this entry.

One-Factor-at-a-Time Design Matrix

The design matrices in Tables 1 through 3 are, as 
mentioned, the ideal one-factor-at-a-time design 
matrices. In reality, the typical one-factor-at-a-time 
design matrix for three factors is that of Table 4.

Or we could express the matrix in terms of our 
three hypothetical factors (see Table 4 [Modified]).

At first glance, a simple count of experiments in 
the design tables would seem to suggest that the 
design of Table 4 is superior to that of Table 2 and 

Table 2   Matrix of experiments for ideal one-factor-
at-a-time experimental design for three 
factors

Experiment Factor A Factor B Factor C

1 (Control) Absent Absent Absent

2 Present Absent Absent

3 Absent Present Absent

4 Present Present Absent

5 Absent Absent Present

6 Present Absent Present

7 Absent Present Present

8 Present Present Present

Table 3  Fractionated design

Experiment Factor A Factor B Factor C

1 (Control) Absent Absent Absent

4 Present Present Absent

6 Present Absent Present

7 Absent Present Present

Table 3a  Fractionated design

 
Experiment

 
Dose Level

Minutes of 
Walking

Minutes of 
Heat

1 (Control) None None None

4 10 mg 15 None

6 10 mg None 10

7 None 15 10

Table 4   Typical design of a one-factor-at-a-time 
matrix

Experiment Factor A Factor B Factor C

1 (Control) Absent Absent Absent

2 Present Absent Absent

3 Absent Present Absent

4 Absent Absent Present

Table 4 (Modified)   Typical design of a one-factor-at-
a-time matrix

 
Experiment

 
Dose Level

Minutes of 
Walking

Minutes  
of Heat

1 (Control) None None None

2 10 mg None None

3 None 15 None

4 None None 10
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equal to the design of Table 3. However, Table 4 
only lists the basic combinations an experimenter 
would need to run in a typical one-factor-at-a-time 
experiment involving three factors, whereas Tables 
2 and 3 list the total number of experiments needed 
for a single run of an experimental design.

For a typical one-factor-at-a-time experiment to 
have the same precision of estimate of the effects of 
the factors that would be achieved by a single run 
of the experiments in Table 2, the investigator 
would need to run each of the low and high settings 
of each of the three variables in Table 4 four times 
for a total of 8 runs per factor and a total experi-
mental effort of 24 runs. Thus, the true matrix of 
experiments for a typical three-factor one-factor-at-
a-time experiment would be that of Table 4a.

In some cases, where all the experimentation 
was performed during a short period of time (a 
day or two) and the factors were all biological in 
nature, it might be possible to run a single control 
group of four animals. This would result in some 
decrease in the precision of the estimates of the 
effects, and it would reduce the above matrix from 
24 to 16 runs. However, this would still be twice 
as many experiments as Table 2, and it would have 
the additional assumption that over the ranges of 
the factors of interest, the effect of any given factor 
would be the same regardless of the settings of the 
other variables—that is, over the ranges of the fac-
tors of interest, the effect of the factors on the 
response is that of simple addition. If this is not the 
case, then in addition to better precision with 
fewer experiments, the design in Table 2 will also 
provide the means to detect and estimate the inter-
actions (synergistic effects) that measure this non-
additive behavior.

The reason for the differences in the number of 
experimental runs needed for a one-factor-at-a-
time versus a factorial design is due to the way in 
which the two methods compute the mean esti-
mates of the factor effects.

For the one-factor-at-a-time matrix in Table 4, 
the effect of Factor A is computed by taking the 
sum of the responses to Experiments 1, 3, 5, and 7 
and subtracting this from the sum of the response 
values to Experiments 2, 4, 6, and 8. This result is 
then divided by 4, the number of measurements at 
each of the two values of Factor A (absent and 
present). The result is the average effect of Factor 
A. This same procedure must then be carried out 

for the eight experiments for Factor B and the eight 
experiments for Factor C.

In the full-factorial experimental design in Table 2, 
the effect for Factor A is computed by taking the sum 
of the responses of the experiments where Factor A 
was absent and subtracting them from the sum of the 
responses of the experiments where Factor A was 
present and dividing this difference by 4. To compute 

Table 4a   Typical design of a one-factor-at-a-time 
matrix: Three factors

Experiment Factor A Factor B Factor C

1 (Control) Absent Absent Absent

2 Present Absent Absent

3 (Control) Absent Absent Absent

4 Present Absent Absent

5 (Control) Absent Absent Absent

6 Present Absent Absent

7 (Control) Absent Absent Absent

8 Present Absent Absent

9 (Control) Absent Absent Absent

10 Absent Present Absent

11 (Control) Absent Absent Absent

12 Absent Present Absent

13 (Control) Absent Absent Absent

14 Absent Present Absent

15 (Control) Absent Absent Absent

16 Absent Present Absent

17 (Control) Absent Absent Absent

18 Absent Absent Present

19 (Control) Absent Absent Absent

20 Absent Absent Present

21 (Control) Absent Absent Absent

22 Absent Absent Present

23 (Control) Absent Absent Absent

24 Absent Absent Present
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the effect for Factor B, the same strategy is followed, 
only now we are adding and subtracting the responses 
based on the values of Factor B.

If you are accustomed to thinking in terms of 
one-factor-at-a-time experimentation and analysis, 
the explanation of the computation of the effect  
of Factors A and B in the above paragraph would 
appear to be complete and utter rubbish. How is it 
possible to take the same eight experiments where 
both Factors A and B (and C!) are changing at the 
same time and independently identify the effects of 
these three factors?

The key to understanding this is to visualize the 
sentence “The effect for Factor A is computed by 
taking the sum of the responses of the experiments 
where Factor A was absent and subtracting them 
from the sum of the responses of the experiments 
where Factor A was present and dividing this dif-
ference by 4” in tabular form. If this is done, then 
for Factor A, Table 2 will be modified as shown in 
Table 5.

If we add up Experiments 1 to 8 according to 
the coefficients in the column for Factor A, we will 
have the following:

 1 × Present + 1 × Present + 1 × Present
 + 1 × Present − 1 × Absent − 1 × Absent
 − 1 × Absent − 1 × Absent,

which reduces to

4 × Present − 4 × Absent.

This divided by 4 will give us the average effect of 
Factor A.

If we apply this same pattern of ± values to the 
column for Factor B, we will have Table 6.

If we add up Experiments 1 to 8 according  
to the coefficients in the column for Factor B, we 
have the following:

 1 × Present − 1 × Present + 1 × Present
 − 1 × Present + 1 × Absent − 1 × Absent 
 + 1 × Absent − 1 × Absent,

which reduces to

2 × Present − 2 × Present + 2 × Absent 
 − 2 × Absent = 0.

In other words, the computation of the average 
effect of Factor A results in the simultaneous 
elimination of the effect of Factor B (Factor B’s 
average effect when computed in this manner is 0). 
If the same set of coefficients is applied to the col-
umn for Factor C, it too will disappear. The same 
thing occurs when you compute the effect of Factor 
B—Factors A and C disappear, and similarly for 
the computation of the effect of Factor C.

The computation of factor effects outlined 
above is the key to understanding the power and 
utility of experimental designs. All experimental 
designs, regardless of the name, are based on this 
method of determining factor effects.

Table 5   Illustration of Factor A level coding for 
purposes of computing Factor A effects

Experiment Factor A Factor B Factor C

1 (Control) −1 × Absent Absent Absent

2  1 × Present Absent Absent

3 −1 × Absent Present Absent

4  1 × Present Present Absent

5 −1 × Absent Absent Present

6  1 × Present Absent Present

7 −1 × Absent Present Present

8  1 × Present Present Present

Table 6   Illustration of Factor A and Factor B level 
coding for purposes of computing Factor A 
and Factor B effects

Experiment Factor A Factor B Factor C

1 (Control) −1 × Absent −1 × Absent Absent

2  1 × Present  1 × Absent Absent

3 −1 × Absent  −1 × Present Absent

4  1 × Present   1 × Present Absent

5 −1 × Absent  −1 × Absent Present

6  1 × Present   1 × Absent Present

7 −1 × Absent  −1 × Present Present

8  1 × Present   1 × Present Present
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Reduction of the Experimental Effort

This ability to fractionate a design means that it is 
possible for an investigator to independently exam-
ine the effects of large numbers of factors on one 
or more measured responses. Table 7 illustrates the 
savings in experimental effort that can be achieved 
with this method.

Since biological units (patients and lab animals) 
typically exhibit more natural unit-to-unit varia-
tion than units in an engineering setting (e.g., 
machines, processes), an investigator will want to 
run more than one unit with each experimental 
condition. If one runs as few as four animals per 
experimental condition and is interested in the 
effects of just three factors, the total number of 
animals required to measure the effects of those 
factors using one-at-a-time methods versus that of 
fractional-factorial experimental designs is 16 ver-
sus 96—a sixfold difference. It is easy to see that 
the differences in total number of animals and 
total number of experiments translate into large 
differences in time, effort, and cost.

Benefits

Experimental designs are the most efficient meth-
ods available for identifying significant relation-
ships between factors and responses. They avoid 

the serious methodological problems of one-factor-
at-a-time experimental efforts, and they allow the 
investigator to independently assess the signifi-
cance of the effects of multiple factors on any 
measured response.

Robert S. Butler

See also Equivalence Testing; Hypothesis Testing; 
Statistical Testing: Overview
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ExPErt oPinion

Expert opinion is a judgment that applies knowl-
edge to a domain-specific problem by a person 
with superior knowledge in that domain. The 
term therefore involves two concepts, domain 
specificity and superiority of knowledge—called 
expertise. Both are necessary for one to be in a 
position to offer expert opinion.

Table 7   Number of experiments needed to investigate a given number of factors using fractional-factorial,  
full-factorial, and one-factor-at-a-time methods of experimental design

 
Number of Factors

 
Fractional Design

Ideal One-Factor-at-a-
Time (Full Factorial)

Typical One-Factor- 
at-a-Time

 2  4    4     12

 3  4    8     24

 4  8   16     64

 5  8   32    160

 6  8   64    384

 7  8  128    896

 8 16  256  2,048

 9 16  512  4,608

10 16 1,024 10,240
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Expert opinion is based on judgment. Judgment is 
an integration task, integrating relevant available 
cues while excluding irrelevant cues and inferring 
unavailable information. Judgment becomes opinion 
with the inference of the unavailable information.

Expertise

Domain specificity means that expertise in one 
domain does not necessarily transfer to another. 
An expert in medicine does not likely possess 
expertise in law. Although there are a few indi-
viduals who have training and experience in both 
domains, whether or not they maintain expertise 
in both is open to question. Furthermore, within 
a broad domain such as medicine, expertise  
is generally limited to subsets of domain knowl-
edge. Thus, an expert in orthopedic surgery 
would not likely possess expertise in vascular 
surgery, nor would the expert be likely to have 
expertise in internal medicine. That does not 
mean that an individual with expertise in a spe-
cific domain would not have useful knowledge of 
other domains. It merely means that, generally, 
an individual possesses expertise in only a nar-
row subset of domain-specific knowledge.

Superior knowledge entails a number of prereq-
uisites. Experience is a necessary, but not suffi-
cient, prerequisite for expertise. Experience can 
allow an individual to develop schema for domain-
specific problems. Schemata are mental representa-
tions of a situation. For instance, an internist 
specializing in infectious tropical disease would 
likely have a schema for schistosomiasis. A general 
practitioner practicing in the rural United States 
would not be likely to have such a schema.

Experience may further elaborate schemata 
through feedback and allow for the development of 
ability to discriminate between similar schemata. 
For instance, a specialist with extensive experience 
in tropical infectious disease should be able to dif-
ferentiate between schistosomiasis, Chagas disease, 
and malaria. Other physicians likely would not. 
Experience and the feedback that is gained through 
experience allows for the development of scripts to 
match specific schema. Scripts are behavioral pro-
tocols that are appropriate for specific schemata.

With experience, discrimination of the script 
that accompanies a schema becomes increasingly 
automatic. This is why experts often have difficulty 

articulating their thoughts; the schema and scripts 
have become so automatic that they are processed 
rapidly without conscious awareness. Thus, experts 
may be able to offer an expert opinion more easily 
than they can explain how they reached that opin-
ion. However, if one is not organizing experience 
into schemata, attending to feedback, developing 
scripts to accompany specific schema, and continu-
ally updating these memory structures, one may 
have experience without expertise.

As is implied by the need to update memory 
structures, expertise must be continuously updated. 
Domain knowledge in many fields, medicine being 
a prime example, is not static. An individual who is 
an expert in orthopedic surgery at one point in time, 
but who does not continually update and expand 
his or her knowledge, loses expertise. This is why 
expertise is often found in academic arenas. To 
teach, one must continually update knowledge to 
maintain and further develop schemata and scripts.

Level of expertise in making judgments in any 
specific domain is related to how much knowledge 
is available about how that domain operates and is 
structured and how much feedback is available 
from decisions previously made in that domain. 
People are more likely to become expert if they 
operate in fields where much is known and feed-
back from previous decisions is consistent and 
relevant. Those who practice without these envi-
ronmental elements are handicapped in their abil-
ity to develop expertise.

Experts need not and often don’t agree. Although 
on the surface, this seems like an oxymoron, it fol-
lows from two facts. First, if two people provide 
opinions that disagree, one may later be found to 
be correct, and the other by elimination would be 
incorrect. However, which is correct may not be 
known at the time a decision must be made. 
Sometimes, the correct opinion is not known until 
after the decision is made. Second, since judgment 
is an integration of known information to infer 
otherwise unavailable information, agreement 
between judges does not imply that an agreed-on 
opinion is correct. At one time, experts agreed that 
the sun revolved around the earth.

Types of Expertise

Within a domain, information and performance can 
be separated into three kinds of mental models. This 
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delimitation of expertise is the work of Jens 
Rasmussen. Expertise can be described as skill based, 
rule based, and knowledge based. Skill-based mental 
models allow for the ability to physically manipulate 
the environment within a spatial and temporal frame 
of reference, based on superior sensory motor skill. 
Skill is useful for many domains and necessary for 
some, for example, surgery. Skill qualifies one as an 
expert in a domain of physical practice, such as sur-
gery. Skill-based expertise allows one to physically 
intervene in a situation where skill is required. 
However, superior skill does not qualify one to offer 
an expert opinion on the domain.

Rule-based mental models involve knowledge 
of relationships between cues that activate familiar 
schemata and scripts. Superior skill and superior 
rule-based knowledge may be found in the same 
individual. Recognition-primed decisions are rule 
based. An expert in rule-based decision making 
can quickly identify the schema and scripts that are 
appropriate to a familiar situation. A person who 
has superior rule-based expertise is in a position to 
offer an opinion about which rule should be 
applied to situations for which there are estab-
lished rules, but this person does not necessarily 
have the ability to offer an expert opinion about 
novel situations.

Mental models based on knowledge involve 
understanding of the organization and operation 
of domain phenomena and of relationships between 
structures and concepts within the domain. Know-
ledge-based mental models allow novel situations 
to be understood and appropriate responses to be 
developed. It is possible to have all three levels of 
expertise, but this is not always the case. A unique 
trait of knowledge-based decision makers is the 
ability to know when a rule does not cover a situ-
ation and to develop novel alternatives.

Well-developed knowledge-based mental mod-
els allow one to offer an opinion about how to 
respond to a novel situation for which the rules are 
unclear or for which rules do not exist. Knowledge-
based decision making is not restricted to the abil-
ity to diagnose but rather includes the ability to 
recognize what information is demanded by the 
situation and what tests and procedures will clarify 
that information. Knowledge-based decision mak-
ing includes the ability to select the best treatment 
and to know how to monitor that treatment so 
that it can be evaluated and adjustments made.

Measurement of Superior Knowledge

One measure of expertise is to survey those in the 
domain for which one requires expert opinion and 
choose the person whom most peers judge to be 
the most expert. This approach is likely to confuse 
skill-, rule- and knowledge-based expertise. It has 
the added limitation of a halo effect: Those who 
are most likeable are often judged as more expert. 
Still another method of establishing expert knowl-
edge is to develop a panel of people with domain 
experience and assume that the points on which 
the panel agrees can be considered expert opinion. 
Guidelines for clinical practice often encapsulate a 
consensus view from professionals designated as 
experts. This approach is based on two assump-
tions: first, that experience, and often hierarchical 
position, captures expertise and second, that con-
sensus captures truth. Both assumptions have been 
shown to be invalid, as noted above.

There is no way to measure superior knowledge 
directly. Expert opinion involves making a judg-
ment rather than acting on that judgment. Since 
judgment is necessary prior to decision and action, 
expert opinion involves the knowledge from which 
to make a judgment but does not necessarily involve 
decision making. However, performance implies 
knowledge and can be objectively measured.

The best way to identify expert performance is 
to identify those who exhibit the ability to dis-
criminate relevant cues in a domain of practice and 
do so consistently. The focus on the ability to dis-
criminate relevant cues from irrelevant ones taps 
into cognitive elements underlying performance. 
The focus on consistency in this ability eliminates 
performance that is effective only part of the time 
because the individual does not have a thorough 
grasp of the knowledge necessary to make a con-
sistent decision. Expert opinion might be available 
from those who are able to consistently discrimi-
nate what is important to decisions in a particular 
practice domain.

Application

Expert opinion is often used to provide guidance 
when more objective guidance, such as testing, is 
unavailable or equivocal or in decisions for which 
the rules are unclear. Therefore, expert opinion 
usually refers to knowledge-based expertise. It is 
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not surprising to see much of the literature on 
expert opinion aimed at forensic decisions, such as 
likelihood to reoffend. However, some use of 
expert opinion may involve providing information 
on the correct rules that should be applied, such as 
when an expert is asked to state the standard of 
practice for a given situation.

Selection Criteria

When selecting someone from whom to obtain an 
expert opinion, the selection criteria should include 
the following: (a) The experts must be knowledge-
able, not just skilled, in the specific domain about 
which they are to express an opinion; (b) they 
should understand the rules of that domain as well 
as possess an in-depth understanding of the mech-
anisms that underlie the operation of that system; 
(c) they should have shown that they are able to 
make accurate judgments within that domain on 
the task for which they will offer an opinion; and 
(d) they should have done this with a high level of 
consistency. Nowhere in these criteria is there a 
direct requirement for experience; however, most, 
if not all, of the criteria imply experience as a pre-
requisite.

James Shanteau and 
Alleene M. Ferguson Pingenot

See also Expert Systems; Judgment
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ExPErt systEms

The concept of expert medical systems has changed 
over several decades from that of a system that 

would replace human decision making with 
machines modeled on the behavior of experts to 
that of software systems that provide information 
and support to human decision makers. Expert 
medical systems are computer systems that facili-
tate the work of clinical decision makers, increas-
ing their efficiency and accuracy while remaining 
responsive to changes in knowledge and flexible 
in response to clinical needs. Despite progress in 
design, recent systems still experience failure more 
often than is acceptable, and performance is sub-
optimal in many cases.

It was easy, in the rush to capitalize on the 
ability to store information in computers, to 
design what some considered expert medical sys-
tems without first gaining a thorough under-
standing of the concepts integral to expertise in 
medicine. Furthermore, knowledge in medicine is 
always expanding. Any system designed without 
a mechanism for continual review and updating 
of information quickly becomes out of date and 
is hence worse than useless. A system that does 
not consider the needs of all users is an error-
prone system.

Researchers have gained insights into how effec-
tive human decision makers think as well as 
knowledge of what machines do best and what 
humans do best. They also are learning about how 
the two, man and machine, interact. These are 
tools necessary to accomplish the goal of designing 
functional and reliable expert medical systems.

Human Decision Behavior

It is not necessary to have an exact model from 
which to design a functional system. Rather, it is 
important to identify information that is critical to 
effective decisions in the targeted situations. The 
ability to design a system that includes critical 
information, but is inexact otherwise, allows for 
the development of adaptive systems.

Research on human experts can identify infor-
mation needed for effective decision making. 
Human experts do not use all available informa-
tion. Rather, they use information relevant to the 
decision at hand. They know what information is 
missing and look for disconfirming as well as con-
firming evidence. Experts use feedback from each 
small, incremental decision to adjust their under-
standing of the situation before making the next 
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decision. This approach allows for both flexibility 
and recovery from error.

Interaction of Human and Machine

The interaction of human and machine (computer) 
can be conceptualized as similar to two individuals 
working on a joint project. That is, the human and 
the machine are part of a decision-making dyad. 
Machines can only do what they are programmed to 
do. The human part of the dyad must be able to per-
ceive whether and how some action might be best 
accomplished using the machine. This means that the 
interface must be designed to be intuitive to the user.

The work of humans interacting with machines 
is supervisory. Machines do some things well, such 
as retrieving stored information, conducting com-
plex operations, performing repetitive or routine 
tasks, and maintaining archives. The human 
decides what information to provide to the machine, 
uses information retrieved from storage, directs 
computations to be performed, and updates evi-
dence for practice.

Safety

Keeping the human decision maker in charge is 
especially important when exceptions arise or the 
situation changes—circumstances that machines 
are not designed to accommodate. Experts have 
knowledge of the situation and the goals to be 
accomplished, and can devise novel approaches to 
solve unusual problems that arise.

Change in system state must be collaborative 
between the human user and the machine. Without 
feedback, the behavior of the human user can be 
irrational, even dangerous. Accident investigations 
often reveal that lethal errors occured when a 
human user misunderstood what a machine was 
doing, for example, when the interface did not 
provide information in a way that was intuitive to 
the user. As a result, the human made erroneous 
decisions. Feedback from the machine is important 
even when a program does most of the work 
because when the human takes over, he or she 
needs to know what has happened in the system 
prior to making a decision and taking action.

Constraints should be built into the system. 
Constraints are identified by a thorough under-
standing of the work as a whole, including the 

specific goals, tasks, and options of the operator. 
Constraints identify behaviors that can’t be done; 
for example, one should not order incompatible 
drugs. A well-designed expert system would notify 
the user of drug incompatibility rather than blindly 
documenting administration, as is the case with 
many existing systems. An expert system designed 
with constraints in mind, but that includes flexibil-
ity for situations when the built-in rules do not 
apply, is critical for success.

When expert decision systems are programmed 
with default settings, the default should be a safe 
setting. Fatalities have resulted from machines that 
were programmed for default settings that turned 
out to be lethal. To properly select a default set-
ting, research should identify the typical or “nor-
mal” setting of the system and program that as the 
default, requiring the user to actively change the 
default settings if using other than typical values. 
Expert systems must never be programmed to  
perform outside the safe limits of operation. Any 
change to a setting outside safe operational range 
should require verification for the change.

The issue of locking out behavior that shouldn’t 
be performed has generated lively debate. Decision 
aiding and warning flags should be viewed as 
information exchange between the machine and 
the human decision maker. Experienced clinicians 
can think of examples where exceptions must be 
made to the general rule or where a decision sup-
port simply does not have the relevant informa-
tion. The ability to know when rules don’t apply 
or when critical information is missing is a trait 
identifying human experts.

Flexibility in expert systems allows for human 
experts to modify the system’s behavior based  
on experience or information not available to the 
machine. Clinicians should be able to override 
warnings by documenting their clinical reasoning 
and take responsibility for the decision. In addition, 
it would be useful for clinicians to supply a plan for 
identifying and responding to adverse outcomes to 
their decision. This approach preserves flexibility 
while demanding accountability. Design of warnings 
within decision aids is an area ripe for research.

Decision Support

The usefulness of decision support systems depends 
on how well they are designed. There are areas 
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about which researchers have a great deal of prior 
knowledge and can therefore build “expert sys-
tems” using if-then rules. These systems are par-
ticularly useful for nonexperts, who must sometimes 
make decisions for which they lack the knowledge 
or skills. Also, such systems can be useful for train-
ing students.

Some machine behavior enhances human per-
formance by accomplishing things that humans are 
physically or cognitively unable to perform, such 
as the precise serial radiography of a CT machine. 
However, these machine behaviors serve to enhance 
the behavioral response of the decision maker 
rather than replace the human. Although a CT 
machine incorporates an expert system, it must be 
programmed by humans using specific parameters 
to accomplish the task to be done.

There are a number of ways in which expert 
advice can be designed into medical systems to 
assist in accessing relevant information. Rather 
than simply adapting existing machine structures 
from other applications, such as business, it is 
imperative that clinical decision making be exam-
ined in terms of goals, the needs of the clinician, 
information flow, and a deep understanding of the 
clinical situation. When appropriately designed 
systems meet the needs of users, they will be used. 
However, evidence shows that decision support 
systems do not necessarily lead to better clinical 
decision making, nor do they necessarily increase 
patient safety or reduce costs. It is well known that 
well-intentioned decision support systems are often 
overridden by users.

There are areas where the knowledge needed to 
build an expert system simply doesn’t exist (e.g., 
some complex treatment problems). In these deci-
sion contexts, it is more useful to produce proba-
bilistic advice based on linear modeling of what is 
known, rather than outputting a single decision 
per se. The question to the decision support tool in 
some of these situations might be posed as “the 
probability of x happening if treatment regimen y 
is pursued, given the known facts of the patient 
situation.” Such linear models have been shown to 
outperform human decision makers, particularly 
in situations where information is ill-defined and 
incomplete.

One area where decision supports are being 
developed is for aiding patients in their own 
healthcare decision making. Decision aids designed 

for the lay public are necessarily different in focus 
from those designed for clinicians. Research on 
these decision tools focuses on issues such as how 
best to display information, which information  
is most relevant on specific topics, and designs for 
ease of access and use. Interestingly, it appears that 
more research may be dedicated to the design of 
patient decision aids than to the design of clinical 
decision support for clinicians.

Innovative Uses of Machines  
to Manage Information

The availability of large clinical data sets led to 
research that identifies and categorizes informa-
tion for the study of specific clinical problems. For 
such work (collection and organization of infor-
mation), machine systems are invaluable. Research 
using large clinical data sets includes studies of 
adverse drug reactions and analysis of the relation-
ship of cancer stages to other clinical information. 
In addition, computer systems assist with quality-
of-care assessments by informing clinical decisions 
that improve delivery of care.

The complexity of medical data is at the root of 
many of the problems encountered in developing 
effective expert tools for supporting clinical deci-
sion making. Several research programs studying 
design of expert medical systems have explored the 
use of fuzzy logic systems as a way to model the 
complex flow of information required in medicine. 
This approach seems compatible with the fact that 
human experts use information in an incom-
plete but highly functional way, as was discussed 
above.

It is especially encouraging to find that expert 
system design innovations are now being more 
carefully evaluated than were early systems. 
However, many of these evaluations are based pri-
marily on qualitative feedback from users. As 
research on the design of clinical systems matures, 
it is hoped that more objective measures, such as 
clinical outcomes and efficiency, will become stan-
dards of design excellence.

Future Directions

The outlook for expert medical systems is bright. 
However, the future belongs to systems that aug-
ment human decision making by performing simple 
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repetitive activities and calculations that humans 
do poorly and providing critical information in a 
timely way. Once these systems become functional, 
they will likely be well accepted. It might be useful, 
however, to recognize that interacting with machines 
changes our behavior. It seems likely that the inte-
gration of expert medical systems has already and 
will continue to change the social environment in 
which medicine is practiced, perhaps in ways we 
can’t imagine at present.

James Shanteau and 
Alleene M. Ferguson Pingenot

See also Computer-Assisted Decision Making

Further Readings

Nelson, W. L., Han, P. K. U., Fagerlin, A., Stefanek, M., 
& Ubel, P. A. (2007). Rethinking the objective of 
decision aids: A call for conceptual clarity. Medical 
Decision Making, 27(5), 609–618.

Pingenot, A., Shanteau, J., & Sengstache, D. (2008). 
Cognitive work analysis of an inpatient medication 
system. In Computers, informatics, nursing. 
Hagerstown, MD: Wolters Kluwer/Lippincott 
Williams & Wilkins. Manuscript submitted for 
publication.

Shanteau, J. (1992). The psychology of experts: An 
alternative view. In G. Wright & F. Bolger (Eds.), 
Expertise and decision support (pp. 11–23). New 
York: Plenum Press.

Vicente, K. J. (1999). Cognitive work analysis: Toward 
safe, productive and healthy computer-based work. 
Mahwah, NJ: Lawrence Erlbaum.

Weir, C. R., Nebeker, J. J. R., Hicken, B. L., Campo, R., 
Drews, F., & LeBar, B. (2007). A cognitive work 
analysis of information management strategies in a 
computerized provider order entry environment. 
Journal of the American Medical Informatics 
Association, 14(1), 65–75.

Wright, G., & Bolger, F. (Eds.). (1992). Expertise and 
decision support. New York: Plenum Press.

ExtEndEd dominancE

The term dominance in the context of cost- 
effectiveness analysis refers to the situation in 
which two clinical strategies are being compared. 

One strategy, Strategy X, is said to dominate 
another, Strategy Y, if either (a) the expected costs 
of Strategy X are less than the expected costs of 
Strategy Y and the expected benefits of Strategy X 
are at least as great as the expected benefits of 
Strategy Y or (b) the expected benefits of Strategy 
X are greater than the expected benefits of 
Strategy Y and the expected costs of Strategy X 
are not greater than the expected costs of Strategy 
Y. Usually, the dominant strategy is both more 
effective and less costly than the alternative. This 
concept of dominance is also referred to as strong 
dominance or simple dominance.

The extended dominance principle (also known 
as weak dominance) is applied in cost-effectiveness 
studies that compare mutually exclusive interven-
tions. This is the situation where only one of the 
strategies is available to each participant.

The concept of extended dominance is applied 
in incremental cost-effectiveness analysis to elimi-
nate from consideration strategies whose costs and 
benefits are improved by a mixed strategy of two 
other alternatives. That is, two strategies may  
be used together as a “blended” strategy, instead 
of assigning a single treatment strategy to all mem-
bers of a population. Blending strategies only 
becomes relevant when the most effective strategy 
is too costly to recommend to all.

The concept may have been first suggested when 
a particular clinical strategy was “dominated in an 
extended sense,” thus leading to the term extended 
dominance. Extended dominance rules out any 
strategy with a higher incremental cost-effective-
ness ratio (ICER), which is greater than that of a 
more effective strategy. That is, extended domi-
nance applies to strategies that are not cost-effective 
because another available strategy provides more 
units of benefit at a lower cost per unit of benefit.

Among competing choices, an alternative is said 
to be excluded by extended dominance if its ICER 
relative to the next less costly undominated alterna-
tive is greater than that of a more costly alternative.

Here is a simple example of a competing choice 
problem that can be evaluated for strong domi-
nance and extended dominance. Table 1 shows 
costs and outcomes for standard of care and five 
hypothetical interventions.

From the comparison of costs and outcomes, 
we can rule out Intervention E because it is strongly 
dominated by Intervention D. Intervention D costs 
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less and gives better outcomes than E. Having 
ruled out Intervention E, we can compare the 
remaining strategies based on their ICERs. This is 
where the principle of extended dominance comes 
in. Table 2 shows the remaining interventions 
listed in order of effectiveness. The ICER of each 
intervention is found by comparing it with the next 
most effective option.

We can now use the principle of extended 
dominance to rule out Intervention C. Intervention 
C has an ICER of $15,000 per quality-adjusted life 
year (QALY). To agree to use Intervention C, the 
deciding body would have to agree to adopt all 
interventions with ICERs up to $15,000 per 
QALY. If so, they would be much better off choos-
ing Intervention B over Intervention C, since a 
greater number of QALYs can be obtained with 
this intervention at a lower cost per QALY. The 
logic goes thus: If one is willing to pay a smaller 
amount to gain a life year (or QALY or whatever 
unit of effectiveness) with the more expensive 

strategy, then one should not choose the strategy 
with the higher ICER.

Table 3 shows the interventions and their ICERs 
after the extended dominance principle has been 
applied. It is now up to the decision maker to 
choose among the interventions based on how 
much they are willing to pay for a QALY.

If willingness to pay (WTP) is not even $5,000 
per QALY, then none of the interventions gener-
ates sufficient worth to be adopted. If however, 
WTP is greater than $20,000 per QALY, then 
Intervention A would be adopted.

As mentioned above, when extended dominance 
exists, it is possible to create a mixed strategy  
of two alternatives (i.e., when one portion of the 
population receives one strategy and the remainder 
receives an alternative strategy) that can yield 
greater or equal benefits at an equal or cheaper 
cost than would a third alternative, if applied to all 
members of the population. For those strategies 
that were eliminated from consideration by 
extended dominance, a range of plausible mixed 
strategies that would dominate the eliminated 
alternatives can be computed.

The coefficient of inequity is defined as the mini-
mum proportion of people receiving the worst strat-
egy within a mixture of two strategies when 
invoking extended dominance. The coefficient of 
inequity represents a level of unfairness if a mixed 
strategy were ever to be implemented. Since in 
extended dominance, a linear combination of two 
strategies can be shown to dominate a third strat-
egy, from a practical perspective, this may have 
ethical ramifications. It implies that a strategy is 
dominated because a given fraction of the popula-
tion may be receiving an inferior strategy for the 
overall health of the population to be improved.

Table 2  Strategies after considering simple (strong) dominance

Strategy Cost ($) Effectiveness (QALYs) ICER ($)

Standard of care  5,000 1 —

D 10,000 2 5,000

C 25,000 3 15,000

B 35,000 4 10,000

A 55,000 5 20,000

Table 1   Costs and outcomes for standard of care 
and five hypothetical interventions

 
Strategy

 
Cost ($)

Effectiveness 
(QALYs)

Standard of care  5,000 1

E 12,000 1.5

D 10,000 2

C 25,000 3

B 35,000 4

A 55,000 5
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The above example is graphically represented 
in Figure 1.

In the example, Strategy E is dominated by 
Strategy D (dominance). Strategy C is domi-
nated by a blend of Strategy D and Strategy B 
(extended dominance), with a coefficient of 
inequity equal to .4. The coefficient of inequity 
is calculated as the difference of the cost of the 
more expensive strategy and the cost of the 
weakly dominated strategy divided by the dif-
ference of the cost of the more expensive strat-
egy and the cost of the cheaper strategy; in this 
case, this is

(35,000 − 25,000)/(35,000 − 10,000)  
= 10,000/25,000 = .4.

Lesley-Ann N. Miller and Scott B. Cantor

See also Cost-Benefit Analysis; Cost-Effectiveness 
Analysis; Cost-Utility Analysis; Dominance; Efficacy 
Versus Effectiveness
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Table 3   Strategies after considering extended (weak) dominance 

Strategy Cost ($) Effectiveness (QALYs) ICER ($)

Standard of care  5,000 1 —

D 10,000 2  5,000

B 35,000 4 12,500

A 55,000 5 20,000
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Figure 1  Example of extended dominance
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Factor analysis and PrinciPal 
comPonents analysis

On the surface, the methods of factor analysis and 
principal components analysis (PCA) share simi-
larities and common purposes. In particular, they 
both involve the characterization of multiple vari-
ables into components, or factors. However, fac-
tor analysis is much more ambitious than PCA in 
that it involves modeling assumptions, in particu-
lar the modeling of latent, unobservable factors.

Principal Components

PCA can be used to reduce the dimensionality of 
data in the sense of transforming an original set of 
variables to a smaller number of transformed ones. 
Such a purpose is desirable as it allows for the 
parsimonious explanation of the systematic varia-
tion of data with as few variables as possible. 
Obtaining parsimonious representations of data is 
especially useful when confronted with large num-
bers of variables, such as those found in survey 
data or genetics data. Socioeconomic variables 
have been combined into a smaller number through 
PCA as well. Furthermore, in regression analyses, 
multicollinearity can be a serious concern when 
there are a large number of variables to model. 
Reducing the number of variables used in an 
analysis or transforming the original variables to 
make them uncorrelated, as PCA does, can allevi-
ate this problem.

PCA involves rotating multivariate data, which 
involves transforming the original variables into a 
new set of variables that are linear combinations of 
the original variables. This rotation process yields 
a new set of variables with desirable properties.

Let X1, . . . , Xp (the Xs) denote the original vari-
ables. For instance, the Xs could be clinical vari-
ables, such as X1 being weight measurements, X2 
being heights, X3 being systolic blood pressure, 
and so on. Each Xi, i = 1, . . . , p, is a vector with n 
elements, representing, for instance, n observations 
of the variable Xi from n subjects. A linear combi-
nation of the Xs would take the form a1X1 + . . . + 

 apXp, for some constant weights a1, . . . , ap. Loosely 
speaking, one object of PCA is to find uncorrelated 
linear combinations of the Xs that maximize the 
variance, a measure of the variability in data. 
Weights for the linear combinations being consid-
ered are restricted so that the sum of their squared 
values is 1. This restricts possible solutions under 
consideration to be derivable from rotations. 
Based on elegant theories from linear algebra, a 
sketch of how they are derived is given below (for 
more details, see Tatsuoka, 1988).

Given variables X1, . . . , Xp, one can construct a 
p × p matrix A that is composed of sample covari-
ances A, with the i,jth entry in A corresponding  
to the sample covariance between Xi and Xj. 
Covariances measure the degree to which two vari-
ables vary together, or are correlated. We can solve 
what is known as the characteristic equation for 
the matrix A and generate p nonnegative roots 
(although it is possible that some roots are equal, 

F
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or even zero, depending on the rank of A). This 
equation is derived based on the objective of find-
ing linear combinations of the Xs that maximize 
variance. These roots are known as the eigenvalues 
of the matrix A. Furthermore, given these eigenval-
ues, corresponding vectors, called eigenvectors, 
can be derived where the elements in the eigenvec-
tors give the weights for the desired linear combi-
nations. Moreover, the eigenvalues are equal to the 
corresponding variance of the linear combination 
of the Xs, with weights corresponding to the eigen-
vector. Hence, the eigenvalues and eigenvectors 
that are generated provide the essential practical 
information in attaining the objectives of PCA.

Denote the eigenvalues in descending order as 
λ1, λ2, . . . , λp so that λ1 ≤ λ2  ≤ . . . ≤ λp. More explic-
itly, PCA will generate a new set of variables, or 
components, Y1, . . . , Yn (the Ys), with

Y1 = a(11)X1 + . . . + a(1n) Xn,  
Y2 = a(21)X1 + . . . + a(2n) Xn, . . . ,

where a{ij} are constants such that the sum of the 
squared values of a{ij} is 1. Again, these constants 
are derived from the elements in the associated 
eigenvector. Importantly, the new components 
have conditionally maximal variances in the fol-
lowing sense: Y1 has maximum variance among all 
such linear combinations of the Xs, Y2 has maxi-
mum variance among all such linear combinations 
of the Xs that are uncorrelated with Y1, Y3 has 
maximum variance among all such linear combi-
nations of the Xs uncorrelated with Y1 and Y2, and 
so on. Moreover, the variance of Y1 is λ1, the vari-
ance of Y2 is λ2, and so on.

An important result of this transformation is 
that the sum of the λs is equal to the sum of the 
variances of the Xs. Thus, the variation of the Xs 
can be viewed as “reshuffled” among the Ys, and 
this variation is concentrated on as few variables 
as possible. It is in this variation that the statistical 
information provided by the variables is contained. 
A subset of the Ys can be parsimoniously selected 
for subsequent analyses, and such a subset indeed 
does represent much of the variation in the Xs. We 
can determine this as follows.

If the Xs span a linear subspace with dimension 
r, with r < p, then PCA will find (p − r) degenerate 
components (all zero weights for those components). 
While in practice, purely nondegenerate components 

won’t be found due to random variation, compo-
nents nonetheless could appear to be “essentially” 
degenerate, for instance, as measured by relatively 
small associated eigenvalues. In such cases, the com-
ponents with the larger associated eigenvalues would 
contain most of the variation in data across the X 
variables, and hence little information would be lost 
by retaining only those components.

So a key methodological issue in applying PCA 
involves determining which components to keep for 
an analysis and which to discard. There are many 
approaches and criteria in helping make this deci-
sion. Two basic rules of thumb for selecting compo-
nents are as follows: (1) retain components with the 
highest associated variances (eigenvalues) such that 
the total variation ratio, which is equal to the ratio 
of the sum of eigenvalues associated with the 
retained components to the sum of all eigenvalues, 
is greater than .85 or .90, and (2) choose compo-
nents with a corresponding eigenvalue of at least 
1.0. Another approach is the scree test, where 
eigenvalues are plotted in order of magnitude and 
truncation of components is determined by identi-
fying a cutoff for when the changes in associated 
eigenvalue magnitudes appear to begin leveling  
off as the eigenvalues get increasingly smaller. 
Components are truncated when associated eigen-
values that are of the smallest magnitude are 
deemed to be beyond the cutoff.

Importantly, for PCA, there are no distribu-
tional assumptions that have to be made about the 
Xs. Moreover, there are no modeling assumptions 
to validate either. PCA is thus a widely applicable 
statistical tool with a clearly defined and attainable 
purpose.

Factor Analysis

Factor analysis attempts to describe an observed 
set of variables (the Xs) in terms of a linear model 
of unobservable factors (the Ys), much as in a 
regression model. However, a key difference is that 
the Ys are latent and unobservable. Factor analysis 
can thus be used to explore or reveal an internal 
structure or hidden relationships between observ-
able variables by linking them to underlying latent 
constructs. Because of the presence of latent fac-
tors and the key role they play, factor analysis 
presents a difficult and ambitious statistical model-
ing problem. Yet it is a commonly used method 
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because there are a range of problems in which it 
is desirable to model observable phenomena as a 
function of unobservable factors.

For instance, in psychologically related applica-
tions, such as in psychiatry, quality-of-life mea-
surement, and neuropsychological assessment, it is 
sometimes posited that underlying constructs are a 
driving force in the behavior of observed variables. 
For example, collections of neuropsychological 
measures (the Xs) could be employed to assess the 
impact of a treatment on cognitive functioning. 
Such measures could assess different aspects of 
cognition—for example, through tasks that require 
memory or strategizing. Factor analysis could be 
used to assess what types of underlying cognitive 
functions (the Ys), as represented by latent con-
structs, are in fact being tested. Examples of latent 
constructs that are identified in such applications 
include various types of memory functions, motor 
skills, and executive functions, which are posited 
as higher-order functions used to regulate other 
cognitive abilities.

A factor analysis model can be written as fol-
lows to relate the observable variables Xi, i = 1, . . . , 
p, to unobservable factors Yj, j = 1, . . . , k:

Xi = ai1Y1 + . . . + aikYk + diUi,

where the a{ij}, j = 1, . . ., k, are called the factor 
loadings and are constants; Ui is a unique factor 
associated with Xi; and di is the factor loading for 
Ui. It is assumed that Ui are statistically indepen-
dent from the Ys.

Note then that these models of the observable 
X variables have two components: (1) that which 
can be attributed to, or explained by the latent Y 
factors that are common among all observable X 
variables and (2) that which is unique to each vari-
able, not part of the common-factor structure of 
the Ys. The uniqueness of each Xi is described by 
diUi. Generally, it is assumed that Xi represents a 
standardized variable, in the sense that the mean 
of Xi is 0 and the variance is 1. This can be 
achieved by transforming the original variables 
through subtracting from each Xi variable its 
mean and then dividing this difference by the stan-
dard error of Xi.

For each variable Xi, the variance that is attrib-
utable to the common latent factors is known as its 
communality. Denote this communality by h2

i. 

Thus, 1 – h2
i  is the variance unique to the given Xi 

variable.
Since the unique factors are independent from 

the common factors, if the respective communali-
ties can be substituted along the diagonal of the 
correlation matrix between the Xs, this modified 
correlation matrix thus represents the correlation 
between the common factors, given that the linear 
model is true. Such a modified matrix is called the 
reduced correlation matrix. Unfortunately, com-
munalities are not known in advance and must be 
estimated.

Communalities must be estimated iteratively, 
since we must have an understanding of the factor 
structure (number of factors and loadings) first 
before estimating them. On the other hand, com-
munalities must be known to create the reduced 
correlation matrix on which estimation of the fac-
tor structure depends. Generally, prior estimates 
of the communalities are made, then the factor 
structure is estimated, the communalities are then 
reestimated, and this process is iterated until 
conver gence is met, as defined by some criteria 
that indicate that the estimates have stabilized 
from iteration to iteration.

Based on the reduced correlation matrix, the 
same matrix theory as the one used for PCA can 
be employed to derive uncorrelated factors and 
associated factor loadings. This is done by solving 
for eigenvalues and eigenvectors, as before. Again, 
the number of factors to keep in the model must 
be determined, by using the scree test or other 
methods.

Since factor analysis is used to assess the under-
lying latent structure and relationships between 
the observable variables, it is desired to understand 
and characterize the nature of the latent factors 
that are found. This is done by interpreting the 
sign and magnitude of the factor loadings and 
identifying the patterns that arise in terms of how 
the factor loadings are associated with the observ-
able variables. Generally, though, the factors and 
their relationship to the observable variables do 
not easily lend themselves to interpretation. This 
drawback also is shared with PCA, which also can 
be used to assess if there is some pattern, or struc-
ture, between variables. Yet such interpretation is 
a major aim for many practitioners as they set out 
to conduct factor analysis. Interpretation can be 
improved through rotation, since rotations will 
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change the factor loadings. Transformed factors 
may no longer be uncorrelated, but the reduced 
correlation matrix for the transformed factors 
remains unchanged, and hence the rotated factors 
are an equally plausible statistical formulation of 
the factor structure.

L. Thurstone described target criteria for select-
ing a rotation such that the transformed factors 
have certain characteristics that make interpretation 
easier. The main ones are roughly as follows: 
(a) each row should contain at least one zero so that 
not all variables are related to all factors; (b) each 
column should contain zeros as well so that each 
factor is not related to all variables; and (c) every 
pair of columns should contain rows whose load-
ings are zero in one column but nonzero in the other, 
so that factors are differentially related to the vari-
ables. Of course, no real-life factor-loading pattern 
will satisfy these criteria exactly, but it is certainly 
still desirable that they be approximately satisfied. 
There are a number of rotational techniques that 
have been developed to enhance interpretability of 
factor loadings, such as the varimax rotation.

As an example, using factor analysis, suppose 
two main underlying factors are identified among 
six measures, with the following factor loadings:

Factor 1 Factor 2

Measure 1   0.8   0.05

Measure 2   0.9   0.05

Measure 3  −0.8   0.04

Measure 4    0.05  0.8

Measure 5    0.04  0.8

Measure 6    0.05    −0.9

The above factor structure approximately sat-
isfies Thurstone’s target criteria. Indeed, one 
could now attempt to identify an underlying 
common theme within the collection of the first 
three measures and within the collection of the 
last three measures in order to give interpreta-
tions to the two latent factors, respectively. Note 
that in practice, factor loadings can be negative. 
In terms of interpretation, this would imply that 
larger values of the observed factor are associated 

with smaller values of the underlying associated 
factor.

Factor analysis is used in validating scales, 
where, for instance, certain questions are grouped 
together and the response scores are combined to 
generate a scale score. For instance, in the quality-
of-life survey SF-36, subscales can be generated 
from subsets of questions relating to body pain, 
social functioning, physical functioning, mental 
health, and so on. Justification for such groupings 
is supported if grouped questions share similarly 
high factor loading values on the same factor rela-
tive to other variables. Of course, such groupings 
must also be justified clinically.

Factor analysis is dependent on the informa-
tion provided by correlations to estimate underly-
ing relationships and factor loadings. Correlations 
are suited for measuring the strengths of linear 
relationships. Hence, nonlinear relationships 
between latent factors and observable variables 
may not be modeled well. Interpretation of fac-
tors is not clear-cut, nor is the selection of an 
appropriate rotation. Another critical subjective 
decision that must be made concerns the number 
of factors to keep in the model. These ambiguities 
make the task of detecting underlying structure 
more difficult. Modeling latent factors is an ambi-
tious endeavor, and hence, model fit must be vali-
dated in a thorough manner, such as through 
cross-validation. Replication of findings may be 
elusive given all these issues. In sum, one should 
be cautious in drawing conclusions through fac-
tor analysis.

Curtis Tatsuoka

See also SF-36 and SF-12 Health Surveys; Variance and 
Covariance
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Fear

Fear and anxiety can alter decision making in a 
wide range of domains, not least of all decisions 
about one’s own health or the health of patients 
under a physician’s care. Past research has demon-
strated this influence, including in medicine. 
Understanding the impact that these basic emo-
tions have on medical decisions, particularly those 
involving risky and uncertain options, is essential 
to understanding medical decision making and 
building accurate predictive models of choice. 
Traditional economic models of decision making, 
such as expected utility theory, propose that 
patients and physicians weigh decision options 
rationally and choose an action based on the like-
lihood and the payoff of outcomes. These models 
rarely include psychological influences on behav-
ior, particularly the emotional ones. In the medical 
context, an important omission from these models 
is the effect of patients’ and physicians’ emotions 
as they weigh the options associated with treating 
a serious medical condition and choose an action.

Patients and physicians must consider the pos-
sible consequences of treatment decisions, and 
how likely these would be to occur. Decisions 
involving risky, uncertain outcomes are especially 
susceptible to the influence of emotions such as 
anxiety. Anxiety is common in patients with seri-
ous illness who must make risky treatment deci-
sions with major consequences: death, functional 
disability, diminished quality of life and psycho-
logical well-being. Their fear and anxiety can sig-
nificantly alter their decisions. Both patients and 
physicians can be affected by fear and anxiety 
when making these decisions.

Influence on Decision Making

Fear and anxiety are related emotions that can 
influence decision making in multiple ways. Two 
potential formulations for the role of anxiety are 

that (1) anxiety and fear about risks alter the evalu-
ation process (such as probability assessments) and 
(2) anxiety and fear lead to seeking relief from the 
state. There appears to be a curvilinear relationship 
between escalating anxiety and performance. Under 
this conception, anxiety is emotional arousal, and it 
places a load on central cognitive processing, so 
that anxious decision makers evaluate evidence  
differently than nonanxious ones. At low levels, 
arousal can improve task performance, likely by 
recruiting additional cognitive resources, initiating 
coping strategies, and increasing motivation for 
success. However, when arousal becomes suffi-
ciently high to be appreciable anxiety and fear, it 
then exceeds the cognitive analytic capacities and 
leads to greater use of problem simplification. This 
is most problematic if the decision maker has lim-
ited information, as many patients do, or if one has 
many complex problems and uncertain factors to 
consider, as many physicians do.

Additionally, immediate strong (negative) emo-
tions (i.e., “hot states”) can overwhelm cognitive 
goals and affect the way future dispassionate risks 
(i.e., “cold states”) are evaluated. Initial, primitive 
reactions to personally relevant information con-
sist of a rudimentary “good versus bad” interpreta-
tion. Fearful reactions to risk have been shown to 
cause decision making to diverge from cognitive-
based assessments of risk. Anxiety is formulated as 
a psychic-physiologic state that one is highly moti-
vated to alleviate and from which one wishes to 
return to a nonanxious, or less anxious, baseline.

Influence on Medical Decision Making

In the field of medicine, anxious individuals make 
decisions to alleviate existing anxiety states as well 
as to avoid new situations that cause anxiety. 
Although statistical odds might indicate that con-
tinuing watchful waiting, in lieu of initiating a 
risky treatment, is advisable at an early stage of a 
disease, patients and physicians may fear the con-
sequences of not treating so acutely that the evi-
dence-based statistical guidelines are overruled. 
Likewise, patients may avoid indicated treatment 
due to the anxiety that it evokes. Thomas Denberg 
and colleagues’ investigation of men’s treatment 
choices for localized prostate cancer yielded many 
cases where patients considered risky surgery as 
“dreadful” and associated with likely death.
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William Dale and Joshua Hemmerich’s work  
on watchful-waiting scenarios supports George 
Loewenstein’s hypothesis that the vividness of an 
anxiety-provoking outcome increases the emo-
tional response to like situations and changes phy-
sician behavior. Dale and Hemmerich investigated 
how a preceding premature abdominal aortic aneu-
rysm rupture can influence vascular surgeons’ and 
older adults’ subsequent decisions about the timing 
of surgery. They found that experiencing a rupture 
during watchful waiting accelerated people’s deci-
sion to end watchful waiting, even when statistical 
guidelines suggest patients should continue with 
watchful waiting. Laboratory-based follow-up 
studies show that participants in the simulation are 
significantly anxious following the rupture.

Detecting the presence of anxiety does not com-
plete the task of explaining its influence on deci-
sion making. The locus of anxiety is another key 
determinant of how it will affect treatment deci-
sions. Fear and anxiety can be tied to erroneous 
beliefs or realistic, well-founded concerns. The fear 
of treatment can be as influential as the fear of a 
disease, and it is possible that decision makers have 
multiple and potentially conflicting worries, anxi-
eties, and fears. One must understand the specific 
sources of fear and anxiety if one is to intervene 
and manage the behavior they influence.

Another difficulty is that people have a poor 
appreciation for how emotions such as fear and 
anxiety can alter their decision making about the 
future; to put it succinctly, people are poor affec-
tive forecasters. People poorly predict what they 
would do when placed in a state of anxiety as an 
impending dreaded event approaches. It is impor-
tant for medical-decision-making researchers to 
know what patients and physicians are afraid of 
and how afraid they are of it. Attempts to model 
treatment decisions where uncertainty and risk are 
involved will likely be inaccurate unless anxiety is 
appropriately incorporated into the model.

Fear and anxiety are underappreciated influ-
ences on medical decisions. Anxiety causes patients 
and physicians to make different choices about 
risky, uncertain decisions. Anxiety can distort deci-
sion makers’ ideas of risk and valuation of possible 
options, and it is also a psychophysiological state 
that people take steps to avoid. Many medical 
decisions involve dreaded potential outcomes that 
provoke fear, leading to the avoidance of those 

situations. Understanding this influence is impor-
tant for implementing evidence-based recommen-
dations in practice.

William Dale and Joshua Hemmerich

See also Decision Making and Affect; Decision 
Psychology; Emotion and Choice; Mood Effects
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Fixed Versus random eFFects

The terms fixed and random are commonly used 
in the regression modeling literature and pertain 
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to whether particular coefficients in a model are 
treated as fixed or random values. A statistical 
model is classified as a fixed effects model if all 
independent variables are regarded as fixed, a 
random effects model if all independent variables 
are regarded as random, and a mixed effects 
model if the independent variables constitute a 
mix of fixed and random effects. Analytic meth-
ods vary depen ding on the model. The approach 
selected depends on the nature of the available 
data and the study objectives.

A fixed variable is one that is assumed to be 
measured without error. The values of the fixed 
variable from one study are assumed to be the 
same as the values in any attempted replication of 
the study; that is, they are the only levels of a fac-
tor that are of interest (hence the term fixed). 
Gender and marital status are examples of fixed 
variables because they have a small fixed number 
of categories (levels). There is no larger population 
of gender categories that the levels male and female 
are sampled from. Fixed effects regression and 
analysis of variance (ANOVA) refer to assump-
tions about the independent variable and the  
error distribution. The independent variables are 
assumed to be fixed, and the generalization of 
results applies to similar values of the independent 
variable in the population or in other studies.

A random variable is one whose levels are 
assumed to be a random sample from a larger 
population of levels for that variable. Subjects, 
hospitals, physicians, schools, and litters are 
examples of random factors since investigators 
usually want to make inferences beyond the par-
ticular values of the independent variable that 
were captured to a larger population. Designation 
of variables as fixed or random is not always 
straightforward. Some basic questions an investi-
gator should ask are the following: (a) Is it reason-
able to assume that the levels of an independent 
variable were randomly sampled from some popu-
lation? (b) Is the goal to make inferences to a 
population from which the levels of the variable 
were selected or from the particular levels on 
hand? Treatments or drug doses from a clinical 
trial are usually considered fixed variables since 
they represent all levels of interest for a study; 
however, they can be considered as random if their 
levels are a subset of the possible values one wants 
to generalize to.

Random effects models are referred to as vari-
ance component models, hierarchical linear mod-
els, multilevel regression models, nested models, 
generalized linear mixed models, and random 
coefficient or mixed models (using both fixed and 
random effects). These models can be considered 
as extensions of linear models and have gained 
popularity with advances in computing and soft-
ware availability.

Models

The underlying goal of much clinical research is to 
evaluate relationships among a set of variables. In 
an experiment, a change, or experimental condi-
tion, is introduced (the independent variable) to a 
subject or some experimental unit, and the effect 
of this change is studied on a characteristic of the 
subject (the outcome, dependent, or response vari-
able). An experimental condition can be a treat-
ment or combination of treatments or factors. 
Multiple factors are considered in the experimen-
tal design, such as the levels of treatment or exper-
imental condition, patient population and selection 
of patients, assignment of treatment condition, 
and the response variable of interest.

A linear statistical model where the response 
variable (Yi) is modeled as a function of the inde-
pendent variables (X1, X2, . . . , Xk) is given below:

Yi = b0 + b1X1 + b2X2 + . . .  + bkXk + ei,

where b0, the intercept term, is a constant. X1, X2, 
. . . , Xk are fixed variables assumed to be observed 
without error. The b parameters are fixed effects of 
treatment or experimental condition on response 
and are regarded as constant, although unknown. 
The response variable is subject to error (denoted 
by ei) and is most often, but not necessarily, 
assumed to be normally distributed with zero 
mean and constant variance, σ2. It represents 
unexplained variation in the dependent variable. 
The error terms are assumed to be uncorrelated for 
different subjects. The unknown parameters b0, b1, 
b2, . . . , bk characterize the relationship and are esti-
mated from this equation to provide the best fit  
to the data. The method of least squares is used  
to obtain the best-fitting model. This is done by 
minimizing the sum of squares of the distances 
between the observed responses and those given by 
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the fitted model. The least squares estimator is 
unbiased regardless of whether the error distribu-
tion is normally distributed or not. When the error 
distribution is normally distributed, the least 
squares estimates are equivalent to maximum like-
lihood estimates. The independent variables are 
also sometimes referred to as regressors, explana-
tory variables, exogenous variables, and predictor 
variables.

In a random effects model, an independent vari-
able with a random effect has an infinite set of 
levels (a population of levels). The levels present in 
a study are considered a sample from that popula-
tion. This induces random variation between  
subjects or experimental units. An investigator’s 
interest is in drawing inferences that are valid for 
the complete population of levels. A specific exam-
ple is patients treated in a multicenter study 
whereby a sample of hospitals across a region is 
studied as opposed to all hospitals in that region. 
The goal is to make inference on the population of 
hospitals from which the sample was drawn. This 
is a two-level data structure, with patients at Level 
1 and hospitals at Level 2. In this setting, there are 
two kinds of random variation that need to be 
accounted for: (1) that between patients within a 
hospital and (2) that between different hospitals. 
Extending the notation from above, the random 
effects model that can account for the variability 
due to a single center can be expressed as follows:

Yij = b0 + b1X1j + b2X2j + . . . + bkXkj + tj + eij,

where b0 is an intercept that applies to all patients 
in the study, tj is a random quantity for all patients 
in the jth hospital, and eij is a random quantity for 
the ith patient in the jth hospital. In this model, it 
is assumed that the error and random effects (tj) are 
independent and normally distributed with zero 
mean and constant variance, σ2

j and σ2
e,  respec-

tively. Therefore, the residual variance is parti-
tioned into two components: (1) a between-hospital 
component, the variance of the hospital-level resid-
uals that represent unobserved hospital charac-
teristics that affect patient outcomes, and (2) a 
within-hospital component, the variance of the 
patient-level residuals. The additional term for the 
random effect is what distinguishes this model 
from the ordinary regression model described ear-
lier. If there is no hospital-to-hospital variation, 

then the parameter estimates from the random 
effects model will be identical to those from the 
ordinary regression model. Inferences may be made 
on the fixed effects, random effects, or variance 
components using either least squares or maximum 
likelihood estimation and likelihood ratio tests. 
This model can also be fit with data from a repeated 
measures or longitudinal design, where random 
variation may be due in part to multiple measure-
ments recorded on a single experimental unit or 
multiple measurements taken over time.

There are many extensions to the basic random 
effects model outlined above, including random 
intercept, random slope, nested, cross-classified, 
and generalized linear mixed models. A random 
intercept model would allow for the intercept term 
in the regression equation to vary randomly across 
hospitals (or higher-level units). The effects of the 
independent variables are assumed to be the same 
for each hospital. In this setting, a plot of the pre-
dicted hospital regression lines would show paral-
lel lines for each hospital. If the assumption that 
the effects of explanatory variables are constant 
across hospitals does not hold, then one can fit a 
random slope model (also referred to as a random 
coefficient model), where the hospital prediction 
lines can have different slopes. A nested random 
effects model would be fit with data from three 
levels. For example, suppose one was interested in 
studying the outcomes of patients treated by sur-
geons in hospitals. If it is unreasonable to assume 
that the data are truly hierarchical, or nested—that 
is, if surgeons typically operate at more than one 
hospital—then surgeons and hospitals are non-
nested. A cross-classified random effects model 
can be fit with an additional random effect for 
surgeon included in the model.

If the response or outcome is binary, the meth-
ods are somewhat less well developed and compu-
tationally more burdensome than for normally 
distributed data, primarily due to the lack of a 
discrete multivariate distribution analogous to the 
multivariate normal. An extension of the random 
effects model described above, proposed by 
Breslow and Clayton and by Wolfinger and 
O’Connell, which can accommodate random 
effects for a logistic model, can be used. Such a 
model is referred to as a generalized linear mixed 
model. Complex algorithms are required for esti-
mation of the fixed and random effects; hence, 
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these models are computationally burdensome 
and may be impracticable in some settings. For 
binary outcomes, a common estimation procedure 
is the quadrature method using numerical approx-
imations. Different adaptations for binary data 
have been presented in the literature, such as those 
of Breslow and Clayton; Wolfinger and O’Connell; 
Stiratelli, Laird, and Ware; and Zeger and Karim.

Katherine S. Panageas

See also Logistic Regression; Ordinary Least Squares 
Regression; Report Cards, Hospitals and Physicians; 
Risk Adjustment of Outcomes
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Frequency estimation

Frequency estimation is a judgment task in which 
one conceptualizes and conveys the anticipated 
likelihood of an event. It is often used to measure 
perceptions of personal risk of disease or benefits of 
treatment in quantitative terms and is therefore an 

important component of medical decision making. 
In this entry, a frequency format is distinguished 
from other formats used to present probabilistic 
information, the skills needed to estimate frequency 
are highlighted, and the following pertinent issues 
related to frequency estimation are discussed: 
(a) the reasoning strategies used to estimate fre-
quency, (b) the biases associated with frequency 
estimation, and (c) the importance of response scale 
and format in frequency estimation.

Frequency Format

A frequency format is one way to represent a 
probabilistic statement. Other formats commonly 
used to represent the likelihood of an event are a 
percentage format (with a range of 0–100%) and 
a probability format (with a range of 0.0–1.0). 
Frequency estimation requires consideration of 
both a numerator (the anticipated number of times 
the event will occur) and a denominator (the total 
number of times at risk for the event to occur). 
Representing risk in a frequency format may be a 
more intuitive way to communicate risk informa-
tion for certain types of judgment tasks than using 
other probability formats.

Needed Skills 

Accurate frequency estimation requires some 
knowledge about the outcome being estimated and 
the ability to understand probabilistic information. 
Accurate frequency estimation also requires skills 
in numeracy, including a conceptual understanding 
of the concepts of probability. People are often 
inaccurate in frequency estimates of the likelihood 
of their developing or dying from a given disease 
or the benefit of a given treatment. For example, 
women tend to overestimate their personal risk  
of dying from breast cancer. In contrast, smokers 
tend to underestimate their risk of dying from lung 
cancer.

Types of Reasoning Used

There are two general types of reasoning used  
in frequency estimation: deliberative reasoning and 
experiential reasoning. In deliberative reasoning, 
people will attempt to integrate knowledge of rele-
vant probabilities in formulating an estimation of 
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frequency. In experiential reasoning, people will rely 
to a greater degree on intuition, emotion, and affect 
in formulating an estimate of frequency. One aspect 
of experiential reasoning is use of the availability 
heuristic. The availability heuristic incorporates 
personal experience and exposure to the outcome in 
question in making a frequency estimate. The use of 
a pictograph with a spatial array to convey fre-
quency information has been found to decrease the 
bias that can be associated with anecdotal informa-
tion presented alongside frequency information in 
the context of a medical decision. Frequency esti-
mates may also be influenced by optimistic bias, 
which reflects people’s tendency to view themselves 
as being at lower risk than others. One theory that 
explains how people formulate frequency estimates 
is fuzzy-trace theory. Fuzzy-trace theory holds that 
people will naturally conceptualize frequency esti-
mates in the most general way possible in order to 
solve a problem or make a decision.

Importance of Response Scale and Format

Numeric estimates of frequency are influenced by 
additional factors including the magnitude of the 
risk assessed, the response scale used, and whether 
the frequency estimate is made in isolation or in 
comparison with other risks. There is a tendency 
to overestimate small-frequency occurrences and 
to underestimate large-frequency occurrences. One 
approach to assist people with estimates of small 
frequencies is the use of a scale that has a “magni-
fying glass” to represent probabilities between 0% 
and 1% on a logarithmic scale or to use other 
response scales with greater discrimination among 
smaller probabilities. The choice of response scale 
can influence the magnitude of the frequency esti-
mates assessed. Specifically, frequency estimates 
have been found to differ when using a percentage 
versus frequency format scale. Frequency estima-
tion can also be assessed using a scale with a 1/X 
format, with an increasing value of X indicating a 
lower frequency. However, the 1/X format has 
been found to be a more difficult format for judg-
ment tasks in which a person is asked to compare 
risk magnitudes. In frequency judgments, people 
may find the task easier and be more accurate 
when comparing their risk with that of others ver-
sus providing a frequency estimate for their risk of 
a given outcome in isolation.

Conclusion

Frequency estimation is a judgment task that con-
veys perceptions of risk using quantitative terms. 
Accurate frequency estimation involves some 
knowledge as well as numeric skills, including 
knowledge of the concepts of probability. Frequency 
estimation is an important aspect of risk commu-
nication and decision making. However, when 
assessing frequency estimates or conveying fre-
quency information, one must be cognizant of the 
role of critical and experiential reasoning in fre-
quency estimation as well as the biases associated 
with response scales and numeric and graphic for-
mats used to convey probabilistic information.

Marilyn M. Schapira

See also Biases in Human Prediction; Decision Making 
and Affect; Numeracy; Risk Perception
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Frequentist aPProach

The frequentist (or classical) approach is a branch 
of statistics that currently represents the predomi-
nant methodology used in empirical data analysis 
and inference. Frequentist statistics emerged as a 
prevailing method for inference in the 20th cen-
tury, particularly due to work by Fisher and, sub-
sequently, by Neyman and Pearson. Given that 
distinct differences exist between the research  
conducted by these authors, however, frequentist 
inference may also be subcategorized as being 
either Fisherian or Neyman-Pearson in nature, 
although some view the Fisherian approach to be 
a distinct philosophy apart from frequentist statis-
tics altogether.

Frequentist methods are often contrasted with 
those of Bayesian statistics, as these two schools  
of thought represent the more widely considered 
approaches through which formal inference is 
undertaken to analyze data and to incorporate 
robust measurements of uncertainty. Although  
frequentist and Bayesian statistics do share certain 
similarities, important divergence between the 
approaches should also be noted. In this context, the 
central tenets that differentiate the frequentist para-
digm from other statistical methods (e.g., Bayesian) 
involve (a) the foundational definition of probability 
that is employed and (b) the limited framework 
through which extraneous information (i.e., prior 
information) is assessed from sources outside of the 
immediate experiment being conducted. Ultimately, 
these characteristics affect the breadth of research 
design and statistical inference. By formally focusing 
primarily on data that emanate from an immediate 
experiment being conducted (e.g., a randomized 
clinical trial) and not on additional sources of infor-
mation (e.g., prior research or the current state of 
knowledge), results of a frequentist analysis are 
essentially confined to an immediate study. Reliance 
is thus often placed on a more informal process to 
consider extraneous data from sources beyond the 
immediate study. Although this issue has, in part, 
led to its theoretic appeal among both regulatory 
agencies and scientists as being an “objective” 
method of inference (e.g., the conclusions of a single 
study do not allow for other findings to affect statis-
tical inference), the frequentist approach has also 
been viewed as lacking a full rigor that parallels the 

comprehensive aspects of scientific inquiry and deci-
sion theory. Despite a lengthy debate concerning 
these philosophical issues, the frequentist approach 
remains the most commonly used method of statisti-
cal inquiry. When correctly applied and interpreted, 
frequentist statistics also represent a robust standard 
for point estimation, interval estimation, and statis-
tical/hypothesis testing. Consideration of the fre-
quentist approach is additionally important when 
addressing the overall study design, sample size cal-
culations, and effect sizes.

Within the frequentist paradigm, probability is 
defined as a long-run expected limit of relative 
frequency within a large number of trials or via a 
frequency concept of probability that denotes the 
proportion of time when similar events will occur 
if an experiment is repeated several times. Hence, 
classical statistical analysis and inference yields 
interpretations only within a context of repeated 
samples or experiments. While the theory of infi-
nitely repeatable samples may be viewed as a 
largely hypothetical issue for an analyst (i.e., 
because researchers typically obtain only one ran-
dom draw from a population), the concept becomes 
of fundamental importance in interpreting results 
within the frequentist paradigm. Furthermore, the 
assumption of infinite repeated samples imparts 
asymptotic properties (e.g., the law of large num-
bers, convergence, the central limit theorem), 
which are required for robust inference under the 
frequentist approach.

Samples and populations are key concepts in 
frequentist statistics. Researchers use frequentist 
analysis and inference to generalize findings from 
a given sample to a broader population. In this 
context, research questions often focus on obtain-
ing a point estimate, interval estimate, or statistical/
hypothesis test concerning a population parameter 
whose value is assumed to be both fixed and 
unknown.

Point Estimation

Point estimation is undertaken to find a statistic 
that is calculated from the sample data and ulti-
mately used for inference concerning the fixed, 
unknown population parameter. A common nomen-
clature for this research question involves denoting 
the population parameter θ and its estimator statis-
tic θ̂. Importantly, the frequentist paradigm defines 
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an estimator of the population parameter, θ̂, as a 
random variable that provides inference concerning 
the fixed, unknown population parameter θ under 
the assumption that infinite random samples are 
drawn from the population itself. The exact value 
that an estimator θ̂ takes for any given sample is 
termed an estimate. Procedures for obtaining point 
estimations of population parameters include meth-
ods of moments (MoM), maximum likelihood esti-
mation (MLE), and ordinary least squares (OLS), 
among others. Also contingent on the assumption 
of infinite random sampling, a theoretical sampling 
distribution (i.e., the probability distribution of a 
statistic under repeated sampling of the population) 
exists for the estimator, θ̂, from which a researcher 
ultimately obtains a random draw. Figure 1 graphi-
cally presents the concept of an estimator, a likeli-
hood function that may be estimated via maximum 
likelihood, and a sampling distribution that may be 
represented via infinitely repeated samples.

Robust results in frequentist point estimation 
are produced with minimal bias when the expected 
value of an estimator θ̂ equals the value of the 
population parameter, θ, via infinite repeated sam-
pling. For an estimator to be deemed unbiased, the 
mean value of the sampling distribution would be 

equal to that of a true population parameter. In 
frequentist statistical theory, emphasis is placed on 
obtaining unbiased estimators because it is under 
these conditions that these statistics equal that of a 
true population parameter, specifically when its 
average value is found across an infinite random 
sampling of that population. Given that consider-
able difficulties may emerge in calculating a sam-
pling distribution, it is also common to rely on 
asymptotics to approximate infinite sampling req-
uisites in frequentist statistics.

Interval Estimation

In addition to point estimation, researchers often 
seek to obtain a confidence interval (CI) (i.e., a 
range of values represented by a lower and an 
upper bound) of estimators that have an a priori 
(i.e., “before the fact”) probability of containing 
the true value of the fixed unknown population 
parameter. Based on a given a priori significance 
level chosen for an analysis, α, the straightforward 
“(1 − α)∙100%” CI defined for a population 
parameter θ is

Pr(Lbound < θ < Ubound) = 1 – α,
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Figure 1  Frequentist sampling distribution
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where Pr denotes probability; Lbound and Ubound are 
the lower and upper bounds of the CI, respectively; 
θ is the population parameter being estimated; and 
α is the a priori significance level chosen for the 
analysis. Under conditions wherein a sampling 
distribution is approximately normally distributed, 
the CI is

θ̂  = ±c × SE(θ̂ ),

where θ̂ is the coefficient estimate, c is the critical 
value obtained from a t or Z table (depending on 
sample sizes and adherence to a level of confidence 
and degrees of freedom), and SE(θ̂) is the standard 
error of the mean, equal to the standard deviation 
divided by the square root of the sample size. 
While the most typical CI in frequentist analyses is 
95%, other CIs may be calculated for 90%, 99%, 
or 99.9%. In instances of large sample sizes, the 
critical values for 90%, 95%, 99%, and 99.9% 
CIs are approximately 1.645, 1.96, 2.58, and 3.27, 
respectively, from the standard normal distribution 
table (i.e., Z table). Thus, under the condition of a 
large sample size, the 95% CI would be

ŷ± 1:96×s

− n
p

;

where θ̂ is the coefficient estimate, 1.96 is the 
critical value for a 95% CI, and s


− n
p

 is the 
standard deviation divided by the square root of 
the sample size (i.e., standard error of the mean). 
Figure 2 presents a graphical depiction of a 95% 
CI for a normal sample distribution whose mean 
value of the point estimate is 0.

An area of concern among researchers involves 
the correct interpretation of a CI. Importantly, it 
is incorrect to infer a probability statement con-
cerning a calculated interval itself in that it 
might be a “probability that the true value of a 
parameter is contained within its lower and 
upper bounds.” Rather, CIs are correctly inter-
preted in terms of a certain percentage of the 
intervals (e.g., 95%) that will contain the true 
parameter in the long run. Thus, for example, a 
95% CI is properly presented as representing 
95% of the intervals derived from infinite sam-
pling of the underlying population of interest 
that would include the true value of the fixed 
unknown population parameter. The rationale 
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behind this interpretation is that the probability 
level (e.g., .05) of a CI refers to the interval itself 
and not to the parameter, because the parameter 
is a fixed unknown and not a random variable. 
Furthermore, the lower and upper bounds of a 
CI are considered random only prior to sam-
pling of the population. After sampling, the 
explicit values obtained for the CI are not ran-
dom, and thus, it does not have a probability 
associated with it.

Several methods are available for calculating 
CIs, each of which may be appropriate for a par-
ticular sampling distribution. Researchers, for 
example, have developed methods to obtain exact 
CIs for linear functions of a normal mean and vari-
ance. Given the extensive requirements to calculate 
exact CIs, approximate CIs are often used wherein 
a strong reliance is placed on the assumptions  
of the law of large numbers and the central limit 
theorem.

Significance and Hypothesis Testing

Whereas Fisher developed and popularized signifi-
cance testing to weigh evidence against a given 
hypothesis, Neyman and Pearson developed 
hypothesis testing as a method to assess two 
directly competing hypotheses. Central to these 
inferential techniques is the assessment of whether 
the findings observed within a given experiment 
were based on chance alone. Additionally, central 
to both significance and hypothesis testing is the 
concept of the null hypothesis H0, which is used to 
describe the lack of a treatment effect. Importantly, 
frequentist approaches can never “accept” the null 
hypothesis. Rather, research can either “reject” or 
“fail to reject” the null, suggesting that a treatment 
effect either was or was not observed, respectively. 
The rationale for this decision rule concerning  
the null is one of rigorous scientific method—if an 
investigation fails to reject a null hypothesis, it 
cannot necessarily be concluded that the null is 
true under all circumstances.

Significance and hypothesis testing both require 
that an appropriate test statistic (e.g., t test, F test, 
regression) be employed to summarize the sample 
data relevant to the research hypothesis being 
evaluated. CIs are also related to hypothesis testing 
in that if the CI does not include a null hypothesis, 
then a hypothesis test will reject the null, and vice 

versa. Although significance and hypothesis testing 
are closely related, differences do exist between the 
concepts, so the two are not synonymous. Despite 
this, the term hypothesis testing is routinely used 
to describe the general process of testing for the 
presence of a treatment effect.

Initially, Fisher developed significance testing  
to assess the direct probabilities (i.e., changes in 
observed data θ ̂  within an immediate experiment 
leading to rejection of a hypothesis H, or Pr(θ ̂ |H)) 
rather than relying on the indirect probabilities 
(i.e., the probability of a hypothesis given observed 
data, or Pr(H|θ̂)). Neyman-Pearson hypothesis 
testing built on Fisher’s work by explicitly for-
malizing the specification of a rival alternate 
hypothesis HA, which had only been indirectly 
addressed in frequentist statistics until that point. 
The specification of an alternate hypothesis 
allowed Neyman and Pearson to formalize issues 
concerning sample size, power, and effect size. 
This occurred, in part, because the concepts of 
Type I and Type II errors complemented the 
development of a formal rival hypothesis against 
the null.

Type I and Type II errors involve the potential 
of either incorrectly rejecting or incorrectly failing 
to reject a null hypothesis, respectively, and are 
concepts that play an important role in the broader 
design and interpretation of experiments. The 
probability of committing a Type I error, repre-
sented as α, is the probability of a statistical test to 
incorrectly reject a null hypothesis when the null is 
actually true (i.e., committing a false positive). 
Conversely, the probability of a Type II error, 
denoted by b, is the probability of a statistical test 
to incorrectly fail to reject a null hypothesis when 
the null is actually false (i.e., committing a false 
negative). The power of a test, calculated as 1 − b, 
is defined as the probability of rejecting a false null 
hypothesis when the null is actually false (i.e., a 
correct decision) or, stated differently, the ability of 
a test to detect a statistical relationship. In prac-
tice, the power of a test is often calculated prior to 
conducting an experiment to ascertain sufficient 
sample sizes. Alternatively, post hoc power analy-
ses may be computed to determine if a sufficient 
sample size had been obtained and to determine 
effect sizes for interpretation of a study’s results. 
Beyond establishing if the treatment effect is statis-
tically significant, effect sizes are measures that 
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represent the actual magnitude of a treatment 
effect. In describing the relationships between 
hypothesis testing, Type I and Type II errors, and 
power, Figure 3 graphically presents these afore-
mentioned concepts relating to Neyman-Pearson 
hypothesis testing.

Importantly, the probabilities of committing 
a Type I or Type II error are inversely related 
(i.e., the smaller the probability of one, the 
higher the probability of the other). Thus, the 
smaller the sig ni ficance level specified for an 
investigation, the greater the probability of fail-
ing to reject a false null hypothesis. As such, the 
researcher must weigh the importance of pro-
tecting from committing a false positive versus 
a false negative when establishing an appropri-
ate significance level versus the power of a test. 
Depending on the research question being 
addressed, either a Type I or a Type II error may 
be considered to be the most important to 
avoid. To illustrate, a Type I error would occur 
if a research study concluded that the treatment 
was observed to yield a statistically significant 

effect compared with the placebo control when, 
in reality, there was no difference between 
them. Conversely, a Type II error would occur 
if no difference was observed in the study when 
a difference actually existed. Committing a 
Type I error in this instance concerning efficacy 
may result in the use of an ineffective therapy, 
while a Type II error would suggest that a 
potentially efficacious therapy would not be 
used. If the research question involved safety, 
however, it would be crucial to minimize the 
potential of committing a Type II error (i.e., 
suggesting that safety existed when it actually 
did not) rather than a Type I error. Pragmatic 
methods to reduce the probability of incurring 
either type of error emphasize following a 
robust study design with appropriate sample 
sizes. Figure 4 presents a graphical depiction of 
the relationship between a Type I error, a Type 
II error, and the power of a test for distributions 
of a null hypothesis H0 and an alternate hypoth-
esis HA—noting that shifting the critical value 
ultimately affects each of the representative 
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regions. Additionally, Figure 5 illustrates the 
concept of the inverse relationship between 
Type I and Type II errors according to the prob-
ability of rejecting a null hypothesis versus the 
ratio of the true variances among two popula-
tions, σ2

x / σ2
y , 

noting again that power is the 
probability that a false null hypothesis will 
actually be rejected. Herein, the probability of 
rejecting the null increases when the probability 
of committing a Type I error, α, increases and 
the probability of a Type II error, b, decreases 
(i.e., with increasing power 1 − b, there is an 
increasing ability for a statistical test to detect a 
difference when one truly exists).

In practice, significance and hypothesis test-
ing both use p values, or probability values, to 
express the likelihood that results may have 
been observed by chance alone. A concept 
addressed extensively by Fisher, a p value may 
be formally defined as the probability of obtain-
ing a test statistic at least as extreme as a calcu-
lated test statistic if a null hypothesis were true, 
and thus representing a measure of strength 
against the null itself. Stated differently, the p 
value is the probability that a result at least as 
extreme as that which was observed in an 
experiment would occur by chance alone. 
Notably, p values have been misinterpreted to 

be “the probability that a null hypothesis is 
true.” Overall, a p value is the lowest signifi-
cance level wherein a null hypothesis can be 
rejected.

The p value or a priori α level of .05 as an 
acceptable value for significance or hypothesis 
testing remains a contentious area of discussion, 
albeit corresponding to the most commonly 
chosen figure used to designate statistical sig-
nificance in scientific research. Furthermore, 
criticism concerning the reliance on p values or 
α levels for statistical testing appears in both a 
theoretical and an applied context, particularly 
concerning their association with sample size. 
Additionally, adjustments of p values or α levels 
to more conservative figures may be warranted 
in instances of sequential, subset, or multiple-
comparison analysis (e.g., via Bonferonni, Holm, 
Sidak, or other corrections). Beyond these 
debates, results from an analysis wherein p val-
ues are calculated to be equal to or below an a 
priori α level chosen for significance suggest a 
statistically significant relationship concerning 
a treatment effect that is being researched. 
When reporting results, analysts may choose to 
explicitly present an exact value of a computed 
p value that is obtained from a statistical test or, 
alternatively, report whether a null hypothesis 
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is rejected based on an a priori α level chosen 
for statistical significance (i.e., α = .05) and if 
the computed p value of that statistical test is 
below this α level.

Beyond the statistical significance of a test, 
assessing the clinical significance of a result is 
also warranted. To illustrate, when a statistic is 
found to be significant, it suggests that the statis-
tic itself is a reliable estimate of the population 
parameter or that some treatment effect exists 
(i.e., that such a finding is unlikely due to chance 
alone). For example, an investigation may find a 
statistically significant difference of .5 mmHg 
between two groups. This in itself does not 
prove that the finding is relevant, important, or 
able to support final decision making. Determining 
clinical (or practical) significance involves assess-
ing the broader aspects of clinical practice, the 
study design employed in a given investigation, 
and identifying the smallest magnitude of an 
effect that is typically associated for a clinically 
beneficial or harmful impact.

Conclusion

Frequentist methods currently constitute the most 
widely used approach to empirical data analysis 
and statistical inference. The hallmarks of this  
philosophy involve a definition of probability  
that emphasizes an interpretation over long-run, 
repeated trials and a focus on results that are con-
fined to an immediate empirical investigation. 
While the foundation of frequentist statistics does 
allow for robust inference under several condi-
tions, other statistical approaches may additionally 
offer sound frameworks with which to engage in 
scientific inquiry. To fully capture the positive ele-
ments of any statistical methodology, researchers 
must remain fully cognizant of the specific ele-
ments associated with each approach concerning 
appropriate application and interpretation.

Grant H. Skrepnek
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Fuzzy-trace theory

Fuzzy-trace theory explains how people remem-
ber, reason, and decide. The theory has been 
applied to a variety of domains in health and 
medical decision making, including HIV preven-
tion, cardiovascular disease, surgical risk, genetic 
risk, and cancer prevention and control. Within 
these domains, it explains the mysteries of framing 
effects, ratio bias, frequency-formatting effects, 
and base-rate neglect, among other classic phe-
nomena. Fuzzy-trace theory has led to the dis-
covery of new, counterintuitive effects too. For 
example, studies show that adolescents think 
about risks more logically and quantitatively than 
mature adults do, which, paradoxically, promotes 
risk taking—a surprising but predicted effect.

Fuzzy-trace theory has been applied to a variety 
of populations, including patients and physicians. 
As a developmental theory, it focuses on changes in 
memory, reasoning, and decision making with age 
(differences among children, adolescents, young 
adults, and the aged). It also specifies when age 
does not make a difference; for example, adoles-
cents and expert physicians perform equally poorly 

on base-rate neglect problems involving medical 
diagnosis (underestimating the effects of prior prob-
abilities of disease on subsequent probabilities once 
a diagnostic test result is known). Most recently, 
fuzzy-trace theory has been used to characterize the 
changes in cognition that accompany disease pro-
cesses, such as in Alzheimer’s and Parkinson’s dis-
ease, as well as mild cognitive impairment.

The phrase fuzzy trace refers to a distinction 
between verbatim memory representations that are 
vivid and gist memory representations that are 
“fuzzy” (i.e., vague and impressionistic). The dis-
tinction between verbatim and gist representations 
was initially borrowed from psycholinguists, who 
had amassed substantial evidence for it and had 
applied it to the representation and retention of 
verbal materials. However, despite the continued 
use of the term verbatim in fuzzy-trace theory, 
these types of representations were extended to 
describe memories of nonverbal stimuli, including 
numbers, pictures, graphs, and events.

For example, if a physician tells a patient that 
she has a 22% chance of having a stroke in the 
next 3 years, she forms two kinds of memories for 
that information: (1) a memory of the precise 
details of what was said (“22% chance of stroke”), 
which fades rapidly and is subject to interference 
(e.g., from anxiety), and (2) a memory of the  
bottom-line meaning, or gist, of what was said 
(e.g., there is a good chance of having a stroke in 
the next few years). Multiple gist memories are 
typically encoded into memory for a single piece of 
information.

Research on the major paradigms of judgment 
and decision making and of developmental psy-
chology have shown a common pattern of results 
with respect to verbatim and gist memories: 
Individuals encode parallel representations of infor-
mation along a continuum of precision that is 
anchored at each end by gist and verbatim repre-
sentations, or memory traces. Verbatim traces pre-
serve veridical details at the precise end, and gist 
traces preserve extracted meanings and patterns at 
the fuzzy end. This first tenet of fuzzy-trace theory 
is not an assumption, in the usual sense of that 
term, but, rather, is based on the results of numer-
ous experiments that tested alternative hypotheses 
regarding memory representations.

A second tenet of the theory, central to under-
standing reasoning, is the idea that retrieval of 
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either verbatim or gist representations is cue 
dependent, a conclusion that is also based on 
empirical evidence. That is, the two types of traces 
are stored separately and retrieved independently, 
and their successful retrieval depends on cues, or 
specific reminders, in the environment. As many 
studies have demonstrated, two different cues pre-
sented to the same individual can elicit contradic-
tory responses about what is stored in memory 
(such as those found in false-memory reports). 
Different values and reasoning principles are 
retrieved from memory, depending on cues in the 
environment, which helps explain why reasoning 
and decision making are so variable.

A number of factors conspire to make gist traces 
the default representations used in reasoning. 
Verbatim traces become rapidly inaccessible and 
are sensitive to interference. Reasoning therefore 
gravitates to using gist (or fuzzy) representations, 
which minimizes errors due to the fragile and cum-
bersome verbatim representations. Moreover, this 
adaptive tendency to use gist representations—the 
fuzzy-processing preference—increases with devel-
opment as individuals gain experience at a task. 
Studies of children (comparing older with younger 
children) and of adults (comparing experts with 
novices in a domain of knowledge) have demon-
strated that reliance on gist representations 
increases with development. For example, a study 
comparing medical students and physicians vary-
ing in expertise in cardiology showed that the 
more expert processed fewer dimensions of infor-
mation and processed it in an all-or-none (gist 
based) manner (i.e., patients with chest pain were 
seen as either requiring intensive care or safely 
discharged with a 72-hour follow-up).

People think using simple gist representations of 
information, often processing them unconsciously, 
and engage in parallel rather than serial processing 
of that information (leaping ahead based on vague 
gist impressions of the relations and patterns in 
information without fully encoding details). This 
kind of thinking is what is meant by “gist-based 
intuitive reasoning.” The third tenet of the theory 
is that people exhibit a fuzzy-processing preference 
(a preference for reasoning with the simplest gist 
representation of a problem). This preference pro-
duces more coherent thinking (because working 
with gist representations is easier and less error-
prone) and more positive decision outcomes (e.g., 

less unhealthy risk taking in adolescents). Recent 
research has linked gist-based intuitive reasoning 
to lower HIV risk. The reliance on gist as a default 
mode of processing is associated with more adap-
tive responses to risk as people mature.

From these tenets, it can easily be seen why 
fuzzy-trace theory’s prescriptions to improve health 
communication and medical decision making dif-
fer from those of standard utility or dual-process 
theories. The goal of informed consent, for exam-
ple, is to reach an understanding of the bottom-
line gist of risks and benefits (e.g., of surgery) 
rather than to regurgitate verbatim facts. Similarly, 
the goal of prevention programs in public health is 
to inculcate rapid and unconscious recognition of 
the gist of risky situations and to retrieve relevant 
values (e.g., involving unprotected sex) rather than 
to consciously deliberate about the details and 
degrees of risk. Thus, contrary to other dual- 
process theories, gist-based intuition is an advanced 
form of thought.

Valerie F. Reyna

See also Gain/Loss Framing Effects; Risk 
Communication; Risk Perception
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Gain/Loss FraminG EFFEcts

Amos Tversky and David Kahneman’s work in  
the 1980s on framing (presentation) effects was a 
stimulus for other researchers to examine how 
these effects affect medical decision making. 
Interestingly, the work by Tversky and Kahneman 
in framing effects was based on consideration of a 
transmissible infectious disease in a population.

Tversky and Kahneman’s use of the term frame 
was in the arena of type of description applied to 
data. In its most basic sense, framing refers to the 
way in which medical decision making alternatives 
are presented. For example, in one frame, all data 
might be presented in terms of survival; in the sec-
ond frame, all data could be presented in terms of 
mortality. Here, the term framing effect would be 
similar to the term presentation effect, where a 
frame is a type of presentation of data to study 
subjects in a research survey or research question-
naire. Presenting the data in terms of survival 
would be an example of gain framing; presenting 
the data in terms of mortality would be an example 
of loss framing.

Risky and Riskless Contexts

Tverksy and Kahneman describe this aspect of 
their work as research on the cognitive and psy-
chophysical determinants in risky and riskless 
contexts. For these authors, framing refers to the 
cognitive point at which decision problems can be 
described (framed) in multiple ways, giving rise to 

different preferences being elicited that are depen-
dent on the frame.

They further argue that framing effects can help 
explain some of the anomalies found in consumer 
behavior. Other researchers have extended their 
point to medical decision making in that caution 
needs to be used in deciding how decision prob-
lems are presented to patients.

Early Research in Framing

Attention to the use of data in decision making was 
brought into the medical-decision-making arena  
in a scientific article by Barbara J. McNeil,  
R. Weichselbaum, and S. G. Pauker appearing in 
the New England Journal of Medicine in 1978 on 
the fallacy of 5-year survival in lung cancer. McNeil 
and colleagues focused attention on the 5-year sur-
vival data in lung cancer. This article focused atten-
tion on the importance of choosing therapies not 
only on the basis of objective measures of survival 
but also on the basis of patient attitudes. However, 
while McNeil and colleagues derived their data 
from existing data on 5-year survival from the  
published medical literature, they did not present 
graphical displays of 5-year survival curves to 
study participants. Rather, McNeil and colleagues 
presented data derived from 5-year survival for 
lung cancer in terms of cumulative probabilities 
and life-expectancy data in this study.

In a subsequent article published in the New 
England Journal of Medicine in 1979, McNeil, 
Pauker, H. C. Sox, and Tversky asked study par-
ticipants to imagine that they had lung cancer and 

G
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to choose between two therapies on the basis of 
either cumulative probabilities or life-expectancy 
data. In this study, different groups of respondents 
received input data that differed in the following 
ways: whether or not the treatments were identi-
fied (as surgery and radiation therapy) and whether 
the outcomes were framed in terms of the proba-
bility of living or the probability of dying. The 
authors found that the attractiveness of surgery as 
a treatment choice, relative to radiation therapy, 
was substantially greater (a) when the treatments 
were identified rather than unidentified, (b) when 
the information consisted of life expectancy rather 
than cumulative probability, and (c) when the 
problem was framed in terms of the probability of 
living (survival frame) rather than in terms of the 
probability of dying (mortality frame). The authors 
in their conclusion suggest that an awareness of 
such influences among physicians and patients 
could help reduce bias and improve the quality of 
medical decision making.

Yet two questions can be asked of both studies: 
First, how useful did the study participants find 
cumulative probabilities and life-expectancy data? 
Second, are there other forms of data displays that 
patients may find as useful or more useful to con-
sider for their own choice of therapy in cases where 
surgery is to be contrasted with radiation therapy? 
In the case of Stage 3 lung cancer, surgery has a 
better long-term (and worse short-term) survival 
than radiation therapy, while radiation therapy has 
a better short-term (and worse long-term) survival 
than surgery for the same Stage 3 lung cancer.

Graphical Displays Comparing  
5-Year Survival Curves

In the 1990s, Dennis J. Mazur and David H. 
Hickam studied graphical displays of 5-year data 
as survival curves. These graphical displays and 
comparison of survival curves out to 5 years illus-
trate how framing effects can be illustrated in 
graphical displays of data.

In medical decision making, framing has been 
most typically depicted in comparisons of scenar-
ios within which the data are depicted in one of 
two frames, Frame 1 or Frame 2. Frame 1 depicts 
all outcomes in terms of survival, and the other 
frame, Frame 2, depicts all outcomes in terms of 
mortality.

The time line over which the survival data and 
the mortality data are typically provided to volun-
teers in these research studies goes from the time of 
the initial treatment with a medical intervention 
(T0) to a time 5 years after the initial treatments 
(T5). Five-year survival data are a common form of 
data used by physicians in oncology, and the first 
types of medical conditions (disease processes) 
studied to look for framing effects were more 
aggressive cancers, for example, Stage 3 lung can-
cer. The 5-year survival curve would not be appro-
priate for a cancer such as prostate cancer, where 
the chance of survival goes well beyond 5 years.

Underlying assumptions of the above study 
design include the point that patients cannot shift 
from one treatment to another and must remain 
with the treatment they choose throughout. For 
example, if the two time lines of treatment of 
Treatment 1 and Treatment 2 cross at some mid-
point, the participant cannot shift from the treat-
ment that has a better survival over the time line T0 
to the midpoint to the other treatment that has a 
better survival from the midpoint to the time T5.

An example of two treatments where one treat-
ment has a better short-term (T0 to midpoint) sur-
vival and a worse long-term (midpoint to T5) 
survival are surgery and radiation therapy for Stage 
3 lung cancer. Here, with surgery, there is an initial 
chance of patients dying with a surgical interven-
tion at time T0 but a better chance of their still 
being alive at T5; with radiation therapy, there is 
little to no chance of dying from the radiation 
therapy itself at time T0, but fewer patients are alive 
at T5 with radiation therapy than with surgery.

Here, the following assumptions come into 
play. First, there is the assumption that the patient 
will not die as a result of radiation therapy. In fact, 
a rare patient may die during radiation therapy; 
therefore, it is not necessarily guaranteed that all 
patients will survive the radiation therapy. Second, 
there is the assumption that the patient incurs a 
high risk of dying during surgery. In fact, the 
chance that a patient may die with a surgical inter-
vention is highly dependent on the status of the 
individual patient’s cardiovascular and respiratory 
condition. (The risk of dying from anesthesia is 
built into the surgical death rate, as a surgery can-
not be performed without anesthesia.)

In a typical framing study in medical decision 
making, study participants are randomized to one 
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of two frames, Frame 1 or Frame 2. Participants 
randomized to Frame 1 receive all data in terms of 
survival (number of patients alive after treatment); 
participants randomized to Frame 2 receive all 
data in terms of mortality (number of patients 
dead after each treatment).

In the typical verbal study of framing effects,  
the participant is provided information about the 
number of patients being alive after the initial 
intervention (surgery and radiation therapy) at T0 

and the number of patients still alive after surgery 
and radiation therapy 5 years later at T5.

Researchers present data to the study partici-
pants in two distinct frames. Frame 1 depicts data 
to participants only in terms of survival (the chance 
of still being alive after the initial intervention and 
the chance of still being alive 5 years after that 
intervention); Frame 2 depicts data to participants 
only in terms of mortality (the chance of dying 
during the initial intervention and the chance of 
dying within 5 years after that intervention).

Framing Effects in Tabular  
and Graphic Displays

The initial framing study of McNeil and colleagues 
provided study participants with frames presented 
in terms of quantitative descriptions of data (cumu-
lative probabilities and life-expectancy). Since that 
time in research on human study participants, such 
effects with framing have been demonstrated using 
tabular and graphic expressions of chance (likeli-
hood) as well, where tabular or graphical expres-
sions of chance or likelihood depict the survival 
and mortality data the participants are asked to 
consider.

The depiction of data in terms of words and 
numbers, as contrasted with graphical data dis-
plays, brings into play the following consider-
ations. When attempting to see if framing effects 
are present in a particular study where data are 
provided to participants in terms of words and 
numbers, the researchers may simply provide par-
ticipants with the number of patients alive after the 
surgical or radiation therapy interventions at time 
T0 and time T5 and ask each participant to choose 
which treatment he or she prefers.

However, if data are provided to participants in 
terms of graphical comparisons of two 5-year sur-
vival curves (one 5-year survival curve for surgery 

and one 5-year survival curve for radiation ther-
apy), the researchers are providing patients with 
much more data than simply the number of 
patients alive and dead at T0 and T5. The patients 
being provided the data in terms of 5-year survival 
curves are also being presented with midpoint data 
that can influence their choice.

The other point about the depiction of framing 
effects in terms of words and numbers as con-
trasted with graphical data displays is that even if 
a researcher devises a graphical display of only two 
sets of data (the number of patients alive at T0 and 
the number of patients alive at T5), there may well 
be a point where one survival curve crosses the 
other, and participants could use this point within 
their decision, making the interpretation of the 
graphical data comparison more complex than 
that of the choice depicted in terms of words and 
numbers at T0 and T5 only.

Yet, despite the above considerations, the results 
of such framing studies in medical decision making 
have shown a marked consistency.

Results of Typical Framing Studies

The results of typical framing studies in medical 
decision making are as follows: Participants who 
are presented with data framed solely in terms of 
survival choose the treatment that gives patients a 
better chance of being alive 5 years after the initial 
treatment (T5), that is, the treatment with the better 
long-term (and worse short-term) result; partici-
pants who are presented with data framed solely in 
terms of mortality choose the treatment that has a 
better chance of being alive after the initial treat-
ment at T0, that is, the treatment with the better 
short-term (and worse long-term) result.

Graphical Displays Comparing Survival  
and Mortality Curves

Karen Armstrong and colleagues studied the effect 
of framing in terms of survival versus mortality on 
understanding and treatment choice, randomizing 
study participants to receive one of three question-
naires: one presenting survival curves, one present-
ing mortality curves, or one presenting both 
survival and mortality curves. Armstrong and col-
leagues found that study participants who received 
only survival curves or who received both survival 
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and mortality curves were significantly more accu-
rate in answering questions about the information 
than participants who received only mortality 
curves (p < .05). They found that participants who 
received only mortality curves were significantly 
less likely to prefer preventive surgery than par-
ticipants who received survival curves only or both 
survival and mortality curves (p < .05).

As with the Mazur and Hickam studies with 
graphical displays of 5-year survival curves, 
Armstrong and colleagues’ study participants who 
received information in terms of graphical displays 
of 5-year survival data preferred the long-term 
survival of surgery rather than the short-term sur-
vival advantage with radiation therapy. Armstrong 
and colleagues also showed that adding a graphi-
cal display of mortality curves to a survival curve 
comparison yields similar effects as those that 
result from providing study participants with sur-
vival curves alone. Here, the suggestion remains 
that a well-discussed graphical display of 5-year 
survival curves with appropriate information may 
provide useful information to patients in repre-
senting treatment decisions related to surgery ver-
sus radiation therapy for a disease entity such as 
lung cancer. The research question that remains 
about graphical displays using comparisons of sur-
vival curves alone (or survival curves and mortality 
curves together) is how to best provide that discus-
sion and explanation to patients without unfairly 
influencing their choices about survival (mortality) 
in the short term, medium term, and long term.

Questions About Framing Effects

The main questions about framing effects today  
are not related to whether these effects are demon-
strable in paper-and-pencil type research settings 
where study participants are asked to choose 
between or among treatments in hypothetical sce-
narios. Rather, the questions focus on the actual 
impact that frames have in advertising in general 
and in direct-to-consumer advertising of medical 
products (prescription medicines and medical 
devices).

Future Research on Framing

Further research on framing needs to focus on how 
to best present data to patients in ways that minimize 

the influence of framing on the choices they must 
make. Initial work on the control of framing effects 
has focused on tabular displays of data. This work 
needs to be extended to all verbal and graphical data 
displays and all presentation formats to offer patients 
the best display of data for their decision making 
with the minimum intrusion of influences on the 
choices they are considering at all times.

Dennis J. Mazur
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Decision Psychology
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GambLEs

The standard gamble is a method for eliciting a 
person’s preferences for different outcomes where 
an outcome may be a physical object, a monetary 
gain, a medical condition, or some other state of 
affairs. It uses simulated choices among various 
outcomes of known preference to quantify the 
value (or utility) of the target outcome.

To determine how much a myopic (nearsighted) 
patient values his or her vision, for instance, the 
following standard gamble may be presented: 
“Imagine that your doctor offers you a treatment 
that is known to always permanently reverse myo-
pia with 100% effectiveness and safety. It would 
provide you with perfect vision without the need 
for corrective lenses. The treatment does not cause 
pain, have side effects, wear off, or cost money. 
Would you accept the treatment?” As most patients 
respond “yes” to this all gain/no risk scenario, an 
element of gambling is introduced: “Now imagine 
that the treatment is successful 50% of the time, 
but causes immediate painless death in the other 
half of patients. Your doctor cannot predict whether 
you will have a success or not. Would you accept 
this treatment?” If the patient says “yes,” the prob-
ability of success is decreased (and the complemen-
tary probability of death is increased) and the 
gamble re-presented. If the patient says “no,” the 
probability of success is increased. The gamble is 
repeatedly presented with new probabilities until 
the patient is indifferent between the two choices.

The probability of success at which the patient 
is indifferent is a quantitative expression of the 
patient’s value for his or her vision on a scale that 
is anchored by death at 0.0 and perfect vision at 

1.0. The patient who is willing to accept a treat-
ment with 95% efficacy and 5% chance of death, 
but not at a higher probability of failure, is said to 
have a utility of .95 for their vision deficit. Another 
patient willing to accept a 60% chance of death to 
attain perfect vision has a utility of .40 for their 
current vision.

Uses

Preferences (also called values or utilities) are one 
of the critical aspects of a decision that must be 
specified for decision analysis or cost-effectiveness 
modeling. (The others are the choices that are 
under consideration, their potential outcomes, 
and the probabilities of those outcomes.) The 
standard gamble is one of several methods for 
eliciting preferences.

For instance, the decision to undergo laser eye 
surgery to repair myopia can be modeled as a 
choice between continued use of corrective lenses 
and surgery. Each choice is associated with differ-
ent monetary costs and different probabilities of 
achieving perfect vision, requiring lenses into the 
future, and experiencing complications (including 
pain, blindness, and, rarely, death). These outcome 
states and their probabilities may be more or less 
accurately described by an expert such as a physi-
cian. However, some patients will place a greater 
value on some of the outcomes than other patients 
will. A myopic actor with a tendency to eye infec-
tions from contact lenses and the need to eschew 
eyeglasses on stage may value achieving perfect 
vision more than a graduate student on a limited 
budget. The way people feel about the outcomes is 
important to understanding both how they behave 
when faced with decisions and how medical pro-
viders might advise them.

Utilities are the gold standard measure of qual-
ity of life; combined with life-expectancy, they are 
used to calculate quality-adjusted life years 
(QALYs).

Assumptions

Standard gambles are derived directly from the 
assumptions of John von Neumann and Oskar 
Morgenstern’s expected utility theory, which asserts 
that decision makers must be able to express a  
preference (or indifference) among any two health 
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states; preferences are transitive (if A > B and B > 
C, then A > C); if A > B > C, there is a probability 
p such that the decision maker is indifferent between 
B for certain or A with probability p and C with 
probability 1 − p; the decision maker must prefer 
the gamble with the highest probability of attaining 
the preferred health state; and the decision maker is 
indifferent among results attained through any 
combination of simultaneous gambles.

Assume that A is perfect vision without specta-
cles, B is current vision with spectacles, and C  
is total binocular blindness. If we can assign a 
numeric value to perfect vision (A = perhaps 1.0) 
and to blindness (C = 0.0), the assumptions allow 
us to estimate the value of spectacles. (Remember 
that B must lie between A and C.) The gamble is a 
choice between keeping the status quo (B) for sure 
or accepting the chance of getting either A or C. If 
p = .95, there is a 95% chance of achieving perfect 
vision, but a 5% chance of death. Certainly, some, 
but not all, eyeglass wearers would accept that 
gamble. They are willing to accept at least a 5% 
mortality to improve their vision. Some would be 
willing to accept a higher mortality (perhaps 10% 
or 20%), and some would refuse the gamble unless 
p were higher (perhaps .99) and the chance of 
mortality (1 − p) correspondingly lower (.01). The 
lowest p that the subject is willing to accept is 
called the utility. A subject who is willing to accept 
a 90% chance of success, but not 89%, has a util-
ity for spectacles of .90.

Standard gambles assume that the target health 
state lies on a coherent number line between the two 
anchor states. If the target is much disfavored (per-
haps persistent vegetative state), some subjects may 
value it less than 0 on a scale anchored by death and 
perfect health. Standard gamble values less than 0 
(or greater than 1) are not easily interpretable.

Standard gambles further assume that the value 
of a health state is independent of the time spent in 
that state (“constant proportional trade-off”). A 
headache is no more or less severe for lasting 1 
hour or 1 month. (The effect of duration is mod-
eled independently and combined with the utility 
to generate the expected utility.)

Limitations

The standard gamble actually measures two values 
that are conflated in the single result. In addition to 

the value of the health state itself, the patient must 
deal with loss of control and other risky aspects 
inherent to the gamble. Some patients avoid risk so 
assiduously that they cannot be made to assign a 
utility less than 1.0 to any health state, no matter 
how dire. Others seem to have the attitude of invet-
erate gamblers or adolescents and seek out risky 
alternatives out of all proportion to the benefits, 
apparently because they desire the risk itself.

Some investigators feel that the standard gamble 
is difficult for subjects to complete. It is not clear 
if this is an accurate representation. If so, the dif-
ficulty may stem from dealing with the concept of 
death or the necessity to carefully consider their 
values when answering. In fact, many subjects 
report stopping to think about family obligations, 
personal aspirations and goals, and other essen-
tial issues during the standard gamble exercise. 
Although emotionally and intellectually challeng-
ing, it is unlikely that “easier” methods that avoid 
such introspection yield results that are as valid.

Some subjects (about 3% to 7% in most stud-
ies) fail to rank health states in an apparently ratio-
nal order. For instance, in assessing various vision 
states, some subjects place a higher standard gam-
ble value on binocular (total) blindness than blind-
ness in one eye. In fact, some assessors use these 
two health states to introduce the method to sub-
jects and test comprehension of the task. If the 
utility of binocular blindness is greater than the 
utility of monocular blindness, all the other stan-
dard gamble results for that subject are considered 
invalid.

In common with other methods of eliciting 
utilities, the standard gamble is subject to framing 
effects. People tend to be risk-averse when consid-
ering gains but risk tolerant when avoiding equiva-
lent losses. For instance, many people are willing 
to take a higher risk of death to prevent becoming 
blind than to cure existing blindness.

Alternative Approaches

Utilities can be assessed in a number of ways. The 
most straightforward methods, such as asking the 
patients directly or having them mark a visual ana-
log scale, tend to be subject to a remarkable number 
of cognitive biases. Perhaps chief among these is 
that patients don’t seem to know their preferences, 
at least in quantitative form. Of course, they know 
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what they like and what they don’t like, but putting 
numeric utility values on these preferences is not 
part of their everyday experience. Therefore, the 
answers they give to direct assessments are often 
grossly misleading when used in formal models.

Observing real-world choices is limited by the 
difficulties and expense of data collection and by 
the fact that people often get bargains. A patient 
who is bothered by corrective lenses a great deal 
will make the same observable decision (to have 
surgery) as one who has only a moderate distaste 
for glasses as long as the risks and costs of surgery 
are low enough. In this case, the first patient is get-
ting more value for the same risk as the second, 
but an observer cannot discern the difference.

Simulated decisions, such as the standard gam-
ble, allow the decision to be repeated multiple 
times with slight variations in the conditions of the 
choices until the pattern of decisions reveals the 
underlying value trade-offs. Other approaches to 
utility assessment that take advantage of the simu-
lated trade-off use different anchors to frame the 
decision. For instance, the time trade-off replaces 
the varying risk of death in the standard gamble 
with varying survival times. Rather than “What 
risk of death would you accept to improve your 
health?” the question is “What reduction in length 
of life would you accept to improve your health?” 
Because the time trade-off specifies the time of 
death, it avoids the probabilistic or risky aspects  
of the standard gamble. This has the advantage of 
eliminating risk tolerance from the assessment but 
the disadvantage that the outcomes are delayed. 
Many decision makers value postponed outcomes 
less than current outcomes of similar value. This 
discounting effect, like the risk-tolerance effect in 
the standard gamble, may partially obscure the 
value of the underlying health state.

Willingness-to-pay methods express utilities in 
monetary terms. “How much money would you 
pay to avoid the health state?” Unfortunately, it  
is difficult to compare the values derived from a 
 multibillionaire with those from an indigent farm 
laborer.

Benjamin Littenberg

See also Chained Gamble; Disutility; Expected Utility 
Theory; Quality-Adjusted Life Years (QALYs); Utility 
Assessment Techniques; Willingness to Pay
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GEnEtic tEstinG

Genetic testing includes prenatal and clinical diag-
nosis or prognosis of fetal abnormalities, predict-
ing risk of disease, and identifying carriers of 
genetic disorders. Genetic testing is distinguished 
from genetic screening, which is offered to healthy 
people who might benefit from more information 
about their genetic risk profile. In this context, the 
initiative for a genetic test comes from the health-
care professional and not from the counselee. 
Learning about the perceptions of genetic risks and 
the way people make decisions with regard to these 
risks is becoming increasingly relevant, given the 
rapidly growing knowledge about the human 
genome. Recent developments in molecular genet-
ics have led to speculations that we are moving into 
a new era of predictive medicine in which it will be 
possible to test for a variety of genes to determine 
the chances that an individual will at some point in 
the future develop a disease. At this moment, 
genetic counseling mostly takes place in clinical 
genetic centers. In the future, this will probably be 
done in other settings, and clinicians, primary care 
physicians, and other healthcare professionals will 
be more and more often confronted with persons 
seeking advice about their genetic risks. Furthermore, 
an increasing number of tests will be available for 
screening for genetic diseases (self-help kits are 
already being offered on the Internet).

The aim of individual genetic counseling, but 
also of population genetic screening, is to provide 
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people with information about (future) diseases or 
possible diseases in their offspring and help them 
process the information in such a way that they 
can make informed decisions or take some action, 
for example, therapy or preventive measures. In 
this view, providing probability information in an 
understandable way is one of the most essential 
components of genetic education and counseling. 
An accurate risk perception is assumed to be an 
important determinant for taking preventive mea-
sures, or it may provide a basis on which coun-
selees can make informed decisions about important 
personal matters such as childbearing. However, 
inaccurate perceived risk may also lead to unwanted 
behavior, such as excessive breast self-examination 
in case of heritable breast cancer, and an increased 
vulnerability to worry and distress or an unhealthy 
lifestyle; or it may lead to false reassurance. The 
underlying assumption that accurate perception of 
risk could help counselees make informed and indi-
vidual decisions seems to be based on the principle 
of the autonomous and rational decision maker. 
However, the characteristics of genetic risk infor-
mation as well as of the decisions to be made com-
plicate a rational trade-off of pros and cons of 
genetic testing.

Genetic Risk Perception

Genetic risk information is often complex and 
replete with uncertainties, associated not only with 
the hereditary nature of the disease but also with 
the informativeness of the test results, the effective-
ness of possible preventive measures, and the  
variability of expression of the disease. The uncer-
tainties involved in genetic information differ 
between different genetic testing settings. The fol-
lowing examples illustrate the complexity of genetic 
risk information and the many ways in which these 
risks can be expressed.

Genetic counseling for hereditary cancer, such 
as hereditary breast cancer, includes education 
regarding the genetics of cancer; the probability of 
developing cancer and of carrying a genetic muta-
tion; the benefits, risks, and limitations of genetic 
susceptibility testing; and prevention strategies. A 
woman who wants to have a DNA test for heredi-
tary breast cancer may receive a nonconclusive test 
result, meaning that although she has a family his-
tory of breast cancer, a genetic disposition is not 

found. If, on the other hand, she receives a positive 
test result, she knows for certain that she is a car-
rier of a mutant breast cancer gene, but she is not 
certain about the chance (between 45% and 65%) 
of developing breast cancer during her life. She 
also does not know when she may get breast can-
cer. If she decides for a prophylactic breast ampu-
tation to prevent the development of breast cancer, 
she is not even certain that this drastic intervention 
will reduce her chances of developing breast cancer 
to zero. Besides, she has to consider the potential 
impact that the information about hereditariness 
of breast cancer might have on her family.

Different uncertainties are involved in prenatal 
testing. Pregnant women have to make a decision 
whether or not to have a prenatal screening test on 
congenital disorders, in particular, Down syndrome. 
There are many probabilities that a woman might 
consider before making this decision. If she is 
36 years old, she has an increased age-related 
chance of having a child with Down syndrome of 1 
out of 250. A woman of her age has a large chance 
(about 20%) of receiving a positive test result if she 
opts for screening, that is, an increased risk of larger 
than 1 out of 250 of having a child with Down 
syndrome. However, a negative—favorable—test 
result does not mean that she is not carrying a child 
with Down syndrome. If she decides not to have 
prenatal screening, her chance of being pregnant 
with a child with Down syndrome is based on her 
age. This chance is quite large compared with 
younger women. In case the test result is positive, 
she must also decide whether or not she wants to 
have an amniocentesis, which has a risk of 1 out of 
300 of inducing an abortion of either an affected or 
a healthy fetus. In addition to this information, she 
might also consider the severity of the handicap of 
a child with Down syndrome. The severity of men-
tal retardation cannot be predicted. However, it is 
known that about 40% of children with Down 
syndrome experience heart problems. Deafness and 
other health problems are also possible.

Multifactorial diseases such as type 2 diabetes 
and cardiovascular disease are caused by a com-
plex interplay of many genetic and nongenetic 
 factors. Although genetic testing for susceptibility 
genes for many multifactorial diseases, such as 
type 2 diabetes, is not yet warranted in clinical prac-
tice, an increased susceptibility can be determined 
using family history information. Family history is 
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an important risk factor that may be used as a 
surrogate marker for genetic susceptibility and is 
seen as a useful tool for disease prevention in pub-
lic health and preventive medicine. Family history 
reflects the consequences of a genetic predisposi-
tion, shared environment, and common behavior. 
Based on family history and other factors such as 
lifestyle, an individual’s risk of disease can be deter-
mined. The information may be used either to iden-
tify high-risk groups or as an intervention tool to 
tailor behavioral messages. For an individual with 
an increased susceptibility for cardiovascular dis-
ease, for example, a healthy diet, physical exercise, 
and not smoking are even more important than for 
a person with a population risk of disease.

Research has shown that the perception of 
genetic risks tends to be inaccurate. Genetic coun-
seling for hereditary cancer, for example, has been 
shown to improve accurate risk estimation in some 
women with a family history of breast cancer, 
although the majority of women still have an inac-
curate perception of their lifetime risk after counsel-
ing. Meta-analysis of controlled trials showed that 
genetic counseling improved knowledge of cancer 
genetics but did not alter the level of perceived risk. 
Prospective studies, however, reported improve-
ments in the accuracy of perceived risk. Studies 
about risk perception and prenatal screening showed 
that pregnant women do not have an accurate per-
ception of their risk of being pregnant with a child 
with Down syndrome, which is assumed to be 
important for the decision to have the prenatal test-
ing performed. Research showed that the decision 
to undergo prenatal screening for Down syndrome 
was mainly determined by the woman’s attitude 
toward undergoing prenatal screening and not her 
perceived risk of having a child with Down syn-
drome. The increased risk due to family history of, 
for example, type 2 diabetes, is also underestimated. 
Recent studies indicate that fewer than 40% of 
people with a positive family history of type 2 dia-
betes actually perceive themselves to be at risk.

Genetic Decisions

Genetic testing may enable early disease detection 
and surveillance leading to effective prevention 
strategies, among other benefits. Genetic decisions 
are decisions for which informed decision making 
is seen as particularly important due to the lack of 

curative treatment for certain conditions. However, 
in reality this aim is not always achieved. A Dutch 
study in which prenatal screening for Down syn-
drome was offered in an experimental setting 
showed that only 51% of the pregnant women 
made an informed and reasoned choice despite 
detailed information leaflets. Studies in other 
countries have shown even more pessimistic results. 
Informed decision making in the context of genetic 
testing for monogenetic diseases or diseases caused 
by specific genes, such as hereditary breast and 
colon cancer, has not been studied. For these set-
tings, it is even unclear whether knowing one’s risk 
really increases the freedom of choice or the ratio-
nality of a decision. It has been argued that coun-
selees are not really interested in knowing the 
probability of getting the genetic disease. Tra-
ditionally, genetic counseling has been concerned 
with communicating information about risk largely 
within the context of reproductive decision mak-
ing, and risk was seen as a stimulus that elicited a 
largely predictable response. It was assumed that 
counselees given risk information would make 
reproductive plans that reflect the risk level of the 
birth defect. Investigations of outcomes of genetic 
counseling, however, have not consistently sup-
ported these expectations. Research confirmed 
that it was not the risk factor that influenced 
reproductive decisions but the burden of risk to 
that family and the personal experience with the 
disorder. The magnitude of the genetic risk was of 
relative importance only.

Knowledge of genetic risk for multifactorial dis-
eases, that is, susceptibility to a disease, may moti-
vate people to engage in risk-reducing behaviors 
and might be more motivating than other types of 
risk information because of its personalized nature. 
On the other hand, a genetic susceptibility may be 
perceived as a fixed, unchangeable self-attribute, 
especially when it is established by DNA testing, 
and may trigger feelings of fatalism, the belief that 
little can be done to change the risk, and may 
adversely affect motivation to engage in risk-
reducing behavior. Evidence concerning responses 
to this kind of genetic risk information is limited 
and inconclusive. Some studies show that genetic 
risks are perceived as less controllable and less pre-
ventable, while others find no support for this.

For genetic information for risk of disease, 
whether it is hereditary breast cancer, Down 
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syndrome, or familial diabetes, dilemmas that 
generally are not part of patient decision making in 
many nongenetic contexts play a role. The familial 
quality of genetic information may raise ethical 
dilemmas for physicians, particularly related to 
their duty of confidentiality, especially when mul-
tiple family members are seen at the same clinic. It 
is therefore important to use careful procedures to 
ensure that results and other sensitive information 
are not inadvertently communicated to a third 
party. The principle of confidentiality can expand 
to the social level as well, given the potential for 
genetic discrimination. Testing for multifactorial 
diseases implies different dilemmas. Genetic pre-
diction of disease is based on testing for multiple 
genetic variants. A person’s risk of disease will be 
based on this genetic profile and may have a range 
of different probabilities, mostly associated with 
an increased risk for more than one disease. 
Because multiple genes are involved, family mem-
bers most likely will not share the same profile and 
their susceptibility to diseases will probably differ.

Because of the far-reaching consequences of 
genetic information, it is particularly important 
that decisions be autonomous decisions, that cli-
ents make an informed, noncoerced testing deci-
sion, and that they understand the benefits, risks, 
and limitations of testing. Informed decision mak-
ing presupposes adequate knowledge and should 
be based on the participants’ values. Decision aids 
are a promising type of intervention to promote 
informed decision making, although research is 
not conclusive about whether they indeed lead to 
better-informed decisions. For multifactorial dis-
eases, providing genetic information about an 
increased susceptibility for disease is not enough to 
motivate behavioral change to reduce this risk, and 
tailored education strategies might be needed.

Danielle R. M. Timmermans and 
Lidewij Henneman

See also Informed Decision Making; Patient Decision 
Aids; Shared Decision Making; Uncertainty in Medical 
Decisions
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GovErnmEnt PErsPEctivE, 
GEnEraL HEaLtHcarE

The perspective of the decision maker is a very 
important element of the decision-making pro-
cess. Awareness of the decision maker’s perspec-
tive can help guide the decision prior to it being 
made or understand the decision after it has been 
finalized. This is especially important for the deci-
sions made by government agencies because of the 
important role that those agencies assume with 
respect to healthcare.
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The emphasis here is on government agencies 
rather than the government as a whole because, 
contrary to what some believe, governments are 
usually not monolithic entities with a single soci-
etal perspective. Rather, they are collections of 
individual organizations, each with a distinct role 
(or set of roles) and, hence, perspective. The U.S. 
government is a good example, as it has multiple 
agencies with unique, and sometimes conflicting, 
roles and perspectives. Understanding “the gov-
ernment’s position” requires one to first determine 
which agency is involved and what role it is assum-
ing with respect to the issue at hand. That role 
then determines its perspective—the primary view-
point that goes along with that role.

When it comes to healthcare, the federal gov-
ernment has several different roles that it fills 
through its various agencies. It is a driver of inno-
vation, a protector of public health, a regulator, a 
payer, a payer-provider, and a stimulator of system 
change and quality improvement. In what follows, 
these different roles and the perspectives that they 
imply are discussed. Although this entry focuses on 
the federal government, similar examples could be 
taken from state and local governments as well as 
from large, democratically elected governments in 
other countries.

Driver of Innovation

The federal government drives innovation in a few 
different ways. First, it awards patents to the 
developers of new technologies, such as new drugs 
and new medical devices. This process is handled 
by the U.S. Patent and Trademark Office (USPTO). 
The perspective of the USPTO focuses on getting 
potentially useful inventions to market as quickly 
as possible so that society can benefit from the new 
innovation. It is also focused on the protection of 
intellectual property so as to maintain the incen-
tives for innovation.

The second way the government stimulates 
innovation is through the conduct and sponsoring 
of basic research. Consider, for example, the U.S. 
National Institutes of Health (NIH), a research 
organization that is primarily focused on conduct-
ing basic research aimed at understanding diseases 
and identifying potential biologic interventions 
that could eliminate or reduce the burden of those 
diseases. As such, the perspective of the NIH 

revolves around the generation of new information 
about the biologic causes of disease. Because this 
frequently takes a lot of time, its perspective is also 
more long term in nature.

Protector of Public Health

The federal government also acts as a protector  
of public health. One of the lead agencies in this 
role is the U.S. Centers for Disease Control and 
Prevention (CDC), which investigates disease out-
breaks, sponsors programs to improve the health 
of populations, and conducts applied research that 
is focused on specific interventions that are known 
to reduce the burden of a disease—especially those 
that are concerned with behavior.

Another example of a government agency that 
acts as a protector of public health is the U.S. Food 
and Drug Administration (FDA). Specifically, the 
FDA regulates healthcare technologies, especially 
when they are first being introduced to the health-
care marketplace. Its goal is to ensure that those 
technologies are safe and effective, and its perspec-
tive toward healthcare is centered on that goal.

Because of their roles as protectors of public 
health, the perspectives of these two agencies are 
centered on the health of populations rather than 
the health of single individuals. They also tend to 
value safety above all other concerns.

Regulator

Regulation is an important part of government 
business, and healthcare is one of the areas subject 
to government regulation. The role of the FDA as 
a protector of public health has already been dis-
cussed. Unlike the CDC, though, the FDA also has 
a major role in regulation, with the authority to 
deny market access to drugs and medical devices 
that it deems unsafe.

The USPTO in its role as a driver of innovation 
has also been discussed. Like the FDA, it also has 
regulatory power insofar as it can grant or deny 
patents to the inventors of new technologies. This 
implies that the USPTO acts to regulate the com-
petitiveness of healthcare markets that are created 
by new innovations.

Another example of an agency that assumes the 
role of regulator in the healthcare marketplace is 
the U.S. Federal Trade Commission (FTC). The 
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FTC works to ensure that markets remain com-
petitive (except for those protected by a patent). It 
tries to prevent one firm or a set of firms from 
gaining market power—the power to set prices at 
a higher level than one would otherwise expect in 
a competitive marketplace. This applies to the mar-
ket for healthcare just as it does to other industries. 
An example would be the prevention of anticom-
petitive mergers, such as those involving hospital 
chains or healthcare plans. The FTC perspective is 
focused on ensuring a competitive marketplace, 
even if that means denying mergers that could gen-
erate efficiencies that lower healthcare costs.

Payer and Payer-Provider

The U.S. Centers for Medicare and Medicaid 
Services (CMS) is an example of a government 
agency that takes on the role and perspective of a 
payer, as it has assumed financial responsibility for 
the healthcare given to older citizens (Medicare) 
and those living in poverty (Medicaid). Thus, 
unlike some of the other agencies, CMS is very 
concerned with the cost and quality of healthcare, 
particularly that given to its beneficiaries. This is 
especially true for new technologies that have 
received a patent from the USPTO and been 
approved for use by the FDA. As these new inno-
vations are adopted as part of routine care, CMS 
(and its financial backer, the U.S. Congress) must 
be concerned with the impact the new technologies 
have on its overall budget.

Another agency that shares the payer perspec-
tive is the U.S. Office of Personnel Management 
(OPM), the organization that is responsible for 
overseeing the Federal Employee Health Benefit 
Program (FEHBP). As with CMS, it also has a 
keen interest in the cost and quality of healthcare 
given to its “members”—federal employees and 
their families.

The U.S. Department of Defense (DOD) and the 
U.S. Department of Veterans Affairs (VA) also 
have a payer perspective, with a strong focus on 
the cost and quality of healthcare. However, these 
two agencies also play the role of provider insofar 
as they have clinics, hospitals, and personnel who 
actually provide some of the care to their mem-
bers. This allows them to directly control some of 
the cost and quality of healthcare—an element of 
control that CMS and OPM do not have.

Stimulator of System Change  
and Quality Improvement

Several of the agencies discussed above have some 
role in stimulating system change and quality 
improvement. For example, CMS has pilot pro-
jects that are meant to determine whether the cur-
rent healthcare system and the level of quality 
created by it could be improved. However, these 
kinds of efforts are not the focus of those agencies. 
One agency that does have this as its primary focus 
is the U.S. Agency for Healthcare Research and 
Quality (AHRQ). AHRQ is committed to help 
improve the U.S. healthcare system, primarily 
through health services research that evaluates the 
quality, effectiveness, and efficiency of specific 
medical interventions targeted to individual 
patients. As such, its perspective reflects an interest 
in the care received by individual patients, with 
less emphasis on the health of populations.

Edward C. Mansley
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GovErnmEnt PErsPEctivE, 
inFormEd PoLicy cHoicE

Governmental perspectives on the individual’s 
right to choice in healthcare and, in particular, the 
concept of informed choice, are relatively recent. 
Choice is now seen as being integral to healthcare 
reforms (patient-led care) taking place in the 
United Kingdom, the United States, and elsewhere. 
These policies contrast with some previous poli-
cies in which the government made choices on 
behalf of the population. Current government 
policy toward informed choice, in countries such 
as the United States and the United Kingdom, is 
based on the premise that people have an indi-
vidual responsibility for their own health and are 
able to make their own choices. The provision of 
information (particularly evidence-based informa-
tion) is viewed as being the key to enabling people 
to make rational choices.

Responsibility for Health

Individual choice in modern health policy in the 
West has its origins in the intellectual and eco-
nomic revolutions of the 18th century. Before 
industrialization, attitudes on health and disease 
were largely defined by religion. The effect of the 
Enlightenment and the scientific revolution was to 
replace this with reason. At the same time, the 
industrial revolution brought with it a new wave 
of disease and death related to rapid urbanization. 
Liberal, laissez-faire economic theory initially 
influenced thinking on health, which as a result 
was seen as the responsibility of the individual 
rather than the government. However, investiga-
tions and a report by British politician Edwin 
Chadwick in 1842 linked ill health to water, over-
crowding, and other environmental problems. 
Thereafter the U.K. government took greater 
responsibility for the health of the population, par-
ticularly the sick poor. Public health measures 

included centralization of the provision of drain-
age, water, and sanitary regulations. Such central-
ization was also seen in parts of Europe but took 
longer to happen in the United States.

Responsibility by the government for the health 
of the population was to achieve its greatest 
expression in the United Kingdom with the cre-
ation of the National Health Service (NHS) in 
1946. By the 1970s, however, the triumph of neo-
liberal ideology within the leadership of the 
Conservative Party led to the primacy of ideas of 
competition, deregulation, and individual choice, 
ideas that were to continue to influence the new 
Labour governments from 1997 onward and to 
become the dominant ideology across the political 
spectrum. Their application to health meant that 
users of health services were seen as individualized 
consumers who (it was assumed) would place a 
high value on choice and particularly the concept 
of informed choice.

Informed Choice and Informed Consent

The concept of informed choice is largely based on 
the principles of informed consent, but there are 
significant differences between the two concepts. 
Informed choice usually (although not always) 
implies the stage before a decision has been made 
and concerns providing information for people  
to make rational choices, for example, about the 
place of care, whether to have health screening, or 
what type of treatment to have. Informed consent 
implies that a decision has already been made and 
concerns the disclosure of the risks involved in, for 
example, undergoing surgery or an invasive proce-
dure. Both informed choice and informed consent 
in medical care (and in research), however, have 
one overarching principle: promoting patient 
autonomy by providing information on risks and 
benefits of a healthcare choice, intervention, or 
treatment.

The doctrines of informed consent and informed 
choice have ethical, legal, and clinical interpreta-
tions. It has been argued that medicine has long 
been committed to ethics and morality when deal-
ing with the patient, although this commitment 
may be incomplete at times. Ethical concerns over 
informed consent have been around since the early 
20th century. However, it was not until the mid-
1950s that an autonomy model rather than a 
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beneficence model (which depicts the physician’s 
primary obligation as providing medical benefit) 
governed the justifications for informed consent.

Legal interest in informed consent and the rights 
of patients has been evolving alongside the ethical 
interest. Initially, this concerned consent to treat-
ment, however uninformed. However, it became 
recognized that patients are autonomous human 
beings with rights and interests independent of  
the medical profession. The judicial doctrine of 
informed consent in healthcare is based primarily 
on decisions about treatments.

The doctrine of informed consent in clinical care 
emerged to some extent because of the perception 
that patients were uninformed and thus powerless 
in healthcare (i.e., without autonomy). Informed 
consent was developed in clinical care from an 
obligation by doctors to disclose information on 
the risks of procedures and to act with beneficence 
and nonmalfeasance. One way to redress the 
imbalance of power between patient and clinician 
is to inform the patient. The concomitant of the 
doctrine of informed consent is therefore the right 
to refuse treatment. Thus, there was necessarily a 
shift (in theory), away from paternalism and 
beneficence in medicine (however benign), toward 
a partnership between patient and physician, with 
the transference of information playing a crucial 
role. However, what the information should com-
prise, and how best to inform people (or make 
them informed), is the subject of a large body of 
research.

Information Required to  
Make an Informed Choice

As an ethical principle, provision of unbiased 
information is seen as being the key to respecting 
patient autonomy. However, it has been recognized 
that the provision of information alone will not 
necessarily ensure that people become autonomous 
or fully informed; the information also needs to  
be evidence-based, understandable, unbiased, and 
relevant. Research indicates that people still lack 
knowledge in certain areas, despite information 
given to them. Although policy makers cannot 
assume that the provision of information necessar-
ily results in an informed (i.e., knowledgeable) 
population, they still have a responsibility to pro-
vide such information and ensure that it is the 

information that the population wants and needs 
to make an autonomous choice.

There is also debate and uncertainty as to what 
constitutes “sufficient” information to make some-
one informed. Recent research suggests that people 
want information through which to contextualize 
their choices, not just information on risks and ben-
efits. In addition, many of the organizations that 
develop information resources are the same organi-
zations that are involved in delivering the services. 
This may mean that the information is highly regu-
lated or that it lacks independent scrutiny.

Informed choice is gaining prominence in two 
particular areas of government health policy mak-
ing: giving patients choice about the location or 
types of care (e.g., Hospital A or Hospital B) and 
encouraging healthy choices (e.g., going for health 
screening, exercising more).

Choice of Location of Care

In the United Kingdom, for example, the gov-
ernment’s policies are increasingly aimed at offer-
ing, and expecting, people to make choices about 
the location of their care (e.g., choice of hospital). 
Choice is promoted as being a positive element of 
the health services experience, something that all 
patients want. In 2004 and 2005, a number of 
U.K. government policies were set out that required 
NHS organizations to offer a choice of four to five 
hospitals to patients requiring elective care (“choose 
and book”). The aim of this policy was to achieve 
one of the standards set out in the NHS 
Improvement Plan. This policy of choice of hospi-
tal was thought to benefit both patients and the 
NHS. For the patients, it was viewed as a way of 
providing them with more personalized, flexible, 
convenient care. For the NHS, it was viewed as 
reducing administrative bureaucracy and patient 
cancellations and providing a more standardized 
and improved service.

The policy makers recognized that people would 
need support to make informed choices about 
which hospital to choose and identified four key 
areas of information that they would need. These 
were waiting times, location and convenience of the 
hospital, patient experience, and clinical quality.

Although such government policies involve 
encouraging people to make informed choices 
about various aspects of their healthcare, it is not 
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clear as to what extent people are able, or indeed 
want, to make rational, informed choices about 
their place of care at times when they may be 
already overwhelmed with other information about 
their disease or condition. There is some evidence to 
suggest that not all people see choice as a positive 
element of healthcare, as it can create stress and 
anxiety, especially if the choice that they make is 
later deemed to be the “wrong” choice. Also, the 
choices that they are being offered (e.g., choice of 
hospital) do not necessarily reflect the choices that 
they want (e.g., care at home). There is also scant 
evidence for the impact of choice policies on other 
issues such as equity—for example, some people 
may be more likely than others to get their hospital 
of choice or the maternity service that they 
request.

Informed Choice for Health Screening

Until recently, the focus of health screening pro-
grams and policies has been to maximize cost- 
effectiveness by achieving the highest coverage and 
uptake possible. The benefits of screening for can-
cer were deemed to be so great that any potential 
harm or limitations were given little attention. 
However, there is increasing recognition by U.K. 
government policy makers that, even when it is 
accepted that screening has a net beneficial effect 
(to the population), one of the inherent limitations 
is that some individuals will be harmed. In the 
United Kingdom, screening policy makers now, in 
principle, at least, consider informed choice along-
side more conventional screening parameters such 
as quality assurance procedures and improvements 
in survival. The reasons given by the U.K. National 
Screening Committee in 2000 for promoting 
informed choice were the recognition of change in 
social attitudes and the acknowledged risks and 
consequences. It was observed that the advantage 
of increasing informed choice is that it prevents 
people feeling coerced. It was also seen as having 
economic advantages in that an informed choice 
policy may create opportunities for selective screen-
ing based on individual risk profiles. However, 
there may be conflicting or even contradictory 
motives at work among those involved in screen-
ing. For example, although an informed choice 
policy may be presented as one that promotes indi-
vidual choice and autonomy, other factors (such as 

target payments for uptake of cervical screening) 
may discourage health professionals from actively 
implementing the policy. Therefore, policy makers 
in cancer screening may need to decide whether 
they really want to increase and promote informed 
choice, or whether they want to increase informed 
participation—the choice to decline screening is 
neither promoted nor endorsed.

Informing Healthier Choices

Government policies toward public health may 
involve a combination of encouraging the popula-
tion to take responsibility for their own health  
by making informed, healthier choices (e.g., using 
health promotion initiatives to tell people to stop 
smoking) and the government taking responsibility 
for health (e.g., through legislation and regula-
tion). For example, policies in the United Kingdom 
include “Informing Healthier Choices: Information 
and Intelligence for Healthy Populations.” These 
policies encourage informed choice, but the over-
arching aim is population health improvement by 
people choosing to live a healthier lifestyle.

One of the difficulties for government policies 
promoting individual informed choice is that there 
is only one “choice” that the government wants: 
people choosing healthy lifestyles. As in health 
screening, it is unlikely that the government actu-
ally wants people to exercise autonomous choices 
that result in nonparticipation in screening or  
to choose unhealthy lifestyles. However, as men-
tioned previously, the concept of informed choice 
is based on the premise that both choices are equal 
and people can make an autonomous choice. If 
the principles of informed choice are considered 
valid by policy makers, then the implication is that 
people should be able to choose not to take up the 
healthy living advice if they are informed and 
autonomous.

Current increases in mortality and morbidity 
attributable to unhealthy behaviors (e.g., rise in 
heart disease, diet-related cancers) suggest that 
people are not making healthy choices even when 
informed by mass media campaigns. One way that 
government policies try to respond is to take back 
responsibility for health and try and enforce healthy 
behaviors by, for example, banning smoking in 
public places. However, this approach results in 
people losing their autonomy in exercising choice.
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Tensions Between Informed Choice  
and Public Health Policies

Public health policies such as health screening, 
immunization, and health promotion initiatives are 
often only effective if a high percentage of the 
population complies with the government policies 
and directives. Tensions and dilemmas arise when 
the government is trying to implement policies at a 
population level (e.g., health screening) in tandem 
with policies aimed at individuals within that 
population (e.g., promoting informed choice and 
autonomous decision making). What is not clear is 
whether a policy of informed choice can operate 
within a structure where both information and 
choice are, to some extent, regulated by the need to 
benefit populations (the public good) rather than 
individuals. The central issue is whether govern-
ment-sponsored health initiatives are compatible 
with the concept of respect for individual auton-
omy. Many public health policies, such as health 
screening, are grounded in positions based on out-
comes (the theory of utilitarianism). Thus, there 
may be a tension between policies aimed at the 
benefit of the population and other policies pro-
moting individual autonomous decision making.

Government policies designed to increase 
(informed) choice are difficult to reconcile with 
policies aimed at improving the health of popula-
tions. Those aimed at promoting choice will not 
ensure that desired population health outcomes 
are achieved. Those designed to benefit popula-
tions will mean that a degree of individual choice 
is lost.

Ruth Jepson
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GovErnmEnt PErsPEctivE, 
PubLic HEaLtH issuEs

The perspective of any decision-making entity 
determines which costs and outcomes will be 
included in a decision and is determined by who 
the audience to the decision is and how that audi-
ence will use the information contained in the deci-
sion or disseminated as a result of the decision. In 
questions of government or public health policy, it 
is usually most appropriate to adopt a societal 
perspective, because a more narrowly defined  
perspective will lead to an inefficient allocation  
of scarce public resources. A government public 
health perspective, therefore, would include an 
audience that tends to be society in general, 
including those who do and those who do not 
benefit from a program, policy, or intervention 
and including those who do and those who do  
not pay for the program, policy, or intervention. 
Therefore, from the government public health 
perspective, all benefits and costs, regardless of 
those to whom they accrue, would be included in 
the decision-making process. For example, when 
assessing costs of a mandatory human papilloma-
virus (HPV) screening program, a public health 
perspective would include not just the costs to 
deliver the screening but the losses in productivity 
associated with the persons receiving the immuni-
zation or experiencing illness and the long-term 
costs to society for transmission of disease in the 
absence of disease prevention. Society will use 
information stemming from government public 
health decision making to decide how to improve 
community-level health with societal resources.

Decision making from the government per-
spective is often based on interventions that are 
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population based rather than individual based. 
For example, suppose that the outcome of interest 
is a reduction in lung cancer. Individual interven-
tions to reduce the incidence of lung cancer could 
include a decision between therapeutic nicotine 
patches, gums, or lozenges. Public health interven-
tions from the government perspective, however, 
could consider such population-based policies as 
requiring designated smoking spaces within pub-
lic buildings or banning smoking in public build-
ings altogether. Thus, interventions, programs,  
or policies considered from a government public 
health perspective, by definition, are intended to 
provide a positive return to the population, in 
general, and not to just one individual at a time. 
In the smoking example, the public health inter-
vention is designed to limit the smoking opportu-
nities of the individual and reduce the secondhand 
smoke affecting the nonsmokers in society.

Decision making from a government public health 
perspective may also include community-based 
rather than clinical interventions. Community-
based interventions are those interventions intended 
to promote the community’s health and prevent 
disease and include decisions about interventions 
typically delivered in states or provinces, local 
agencies, healthcare organizations, worksites, or 
schools. Examples of community-based interven-
tions designed to increase physical activity and 
reduce obesity include the promotion of school-
based physical activity programs, urban design 
and land use policies, and social support services in 
community settings. Examples of community-
based interventions designed to prevent violence 
include early home visitation to prevent violence 
against the child, school-based programs to pre-
vent violent behavior, and group-based cognitive 
behavior therapy to reduce the harmful effects of 
traumatic events.

Guidance on how to deliver evidence-based 
community interventions often complements the 
evidence-based guidance available for clinical  
settings. For example, evidence-based community 
interventions that have been recommended to 
reduce tobacco use initiation include increasing the 
unit price for tobacco units, restricting access for 
minors, and conducting mass media campaigns 
combined with clinical interventions and commu-
nity mobilization campaigns combined with clini-
cal interventions.

Regardless of intervention setting, the value of 
government perspective decision making in public 
health is a focus on prevention versus treatment in 
promoting health. In an entirely systematic way, 
the public health perspective examines the effec-
tiveness, economic efficiency, and feasibility of 
interventions to combat risky behaviors such as 
tobacco use, physical inactivity, and violence; to 
reduce the impact of specific conditions such as 
cancer, diabetes, vaccine-preventable diseases, and 
motor vehicle injuries; and to address social deter-
minants of health such as education, housing, and 
access to care.

A focus on prevention, however, makes public 
health decision making often incommensurate with 
clinical decision making. Prevention efforts typi-
cally result in costs that occur in the short term, 
while benefits occur in the longer term. For exam-
ple, the benefits of a nutrition and exercise pro-
gram may not be realized until many years later, 
with future reductions in cardiovascular disease 
and diabetes, whereas clinical decisions often per-
tain to interventions whereby both the costs and 
benefits are realized in the short term: for example, 
statin treatment to lower cholesterol level and 
reduce the incidence of coronary heart disease and 
vascular events such as heart attack and stroke. 
When considering the present value of future costs 
and outcomes, treatment efforts will always appear 
more favorable than prevention efforts, if benefits 
are realized in different time frames.

Another important consideration in public 
health decision making is the challenge of establish-
ing a causal link between intervention and out-
comes because of a lack of longitudinal data to 
show future outcomes or sustained outcomes. For 
example, without longitudinal data, it may be dif-
ficult to establish the long-term benefits to a com-
munity that may result from an environmental 
improvement plan to provide more green space and 
exercise facilities for its residents. Thus, decision 
making from a public health perspective may need 
to be considered separately from decision making 
in a clinical setting, where the value of the decision-
making information serves different purposes.

Phaedra Corso
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Hazard ratio

The hazard ratio in survival analysis is the effect 
of an explanatory variable on the hazard or risk 
of an event. In this context, the hazard is the 
instantaneous probability of the event (such as 
death) within the next small interval of time, 
assuming that one has survived to the start of that 
interval. The hazard ratio then compares the haz
ard of the event under one condition (e.g., treat
ment for a disease) with the hazard of the same 
event under a second (baseline) condition (e.g., 
placebo) by taking the ratio of one hazard over 
the other. A hazard ratio greater than 1 indicates 
an increase in the hazard of the event under the 
first condition over the hazard of the event under 
the second condition.

Survival Analysis

Survival analysis is a class of statistical methods 
that deals with the timing of the occurrence of 
particular events. These methods focus on model
ing the time to an event such as onset of a partic
ular disease. Survival analysis methods were 
originally designed to study death, hence the name. 
However, an event can be defined as the first diag
nosis of cancer, the failure of a manufacturing 
machine, the progression of disease from one stage 
to another, and attrition times among criminals. 
An event can also signify a positive occurrence 
such as marriage, pregnancy, or cure from a dis
ease. Survival analysis is also termed reliability 

analysis or failure time analysis in engineering, 
duration analysis or transition analysis in econom
ics, and event history analysis in sociology. In 
general, survival analysis involves the modeling of 
timetoevent data.

Survival Data

Since survival analysis deals with data collected 
over time until an event occurs, the time origin and 
event or end point of interest need to be clearly 
defined. In clinical research, the time origin is 
typically the time at which a patient is recruited 
into a study. The event or end point would then be 
the occurrence of a particular condition such as an 
adverse event or even death. In another such study, 
the event of interest could be being cured of the 
disease. In general, an event is a clearly definable 
transition from one discrete state to another. 
Examples of these transitions include the follow
ing: from being in pain to pain relief, from being 
diseasefree to having a disease, or from being free 
to being incarcerated. However, in survival analy
sis, it is not sufficient to know only who is disease
free and who is not; one also needs to know when 
the transition occurred. Exact times of the event 
are sometimes known, but often, the timing of an 
event may only be known within a range. For 
example, in a wellmonitored clinical trial, the 
onset of an adverse event may be pinpointed to a 
particular day (e.g., 10 days after study entry). On 
the other hand, in a study of menarche, only the 
year (e.g., age 13) of first menstruation may be 
collected.

H
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There are several reasons why survival data 
cannot be suitably analyzed by standard statistical 
methods. First, survival data are typically not sym
metrically distributed. For example, in a study  
of actual death times, the distribution of time to 
death will often be positively skewed (a histogram 
of the data will have a long tail to the right of 
where the majority of observations lie). Hence, 
those data are not readily amenable to standard 
statistical procedures that require data to have a 
normal distribution. Second, many variables that 
may influence the event or outcome of interest 
may change over time. These are called time
varying covariates. For example, a patient’s 
increase in blood pressure over time may affect his 
or her risk of cardiovascular disease. These changes 
in the blood pressure variable can be easily accom
modated in survival analysis models. Finally,  
and most important, survival analysis methods 
can deal with censored observations that are 
described next.

Censoring

One primary feature of survival data that is dif
ficult to deal with using conventional statistical 
methods is censoring. The survival time of an indi
vidual is said to be censored when the end point of 
interest has not been observed for that individual. 
If the end point of interest is death, then an indi
vidual’s survival time may be censored because 
that individual has been “lost to followup.” For 
example, a patient participating in a clinical trial 
may unexpectedly move to another city before the 
end of the study and may no longer be contacted. 
The only survival information that would be avail
able on that patient is the last date that that patient 
was known to be alive, which may be the date that 
the patient was last seen at the clinic. On the other 
hand, an individual’s survival time may be cen
sored because the patient is still alive at the end of 
the study period and his death date is not observed. 
An observed survival time (i.e., time to death) may 
also be regarded as censored if the death is known 
to be unrelated to the treatment under study. For 
example, a person’s death due to a car accident is 
most likely unrelated to the chemotherapy that the 
patient was receiving in a clinical trial. However, 
in instances where it is not clear whether the death 
is unrelated to the treatment under investigation, it 

is more appropriate to consider survival time until 
death due to all causes; or it may be of interest to 
analyze the time to death from causes other than 
the primary condition for which the patient was 
being treated.

There are three primary types of censoring: 
right censoring, left censoring, and interval censor
ing. If we let T be a variable that represents the 
time of occurrence of a particular event, then T is 
said to be right censored if the only information we 
have on T is that it is greater than some value, c. 
For example, if T represents age at death, but a 
patient was lost to followup at age 65, then for 
that patient we only know that T > 65, in which 
case the patient’s event time is right censored at 
age 65. The rightcensored survival time is less 
than the actual, but unknown, survival time (the 
censoring occurs to the right of the last known 
survival time). Left censoring occurs when the 
actual survival time is less than that observed. One 
example in which left censoring may occur is in a 
followup study of cancer recurrence in which 
patients are seen by their oncologist 6 months after 
their initial treatment for their primary cancer. At 
the 6month visit, a patient is examined for disease 
recurrence. Some patients will have evidence of 
recurrence at that visit, but the recurrence may 
have occurred at any time prior to that clinic visit. 
Hence, the recurrence time is said to be left cen
sored (the censoring occurs to the left of the known 
examination time). Interval censoring is a combi
nation of both right and left censoring. Revisiting 
the cancer recurrence example, if patients are fol
lowed by their oncologist every 6 months, and 
cancer recurrence is detected at their third  
followup visit but not at prior visits, then we 
know that the actual recurrence time is between 
their second and third clinic visit. The observed 
recurrence time is said to be interval censored. 
Right censoring is the most common type of cen
soring and is handled more readily than other 
types of censoring when using standard analytic 
software packages.

Because censored observations are a common 
occurrence in timetoevent data, all survival anal
ysis approaches provide ways to deal with these 
types of observations. The most commonly used 
survival analysis model that allows for censored 
observations is the proportional hazards model 
described next.
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Estimating the Hazard Ratio

Often, the objective of a survival analysis study is 
to compare two groups (e.g., those who are given 
a treatment for a disease vs. those who are admin
istered a placebo) on their risk or hazard of death. 
The hazard is defined as the instantaneous proba
bility of death within the next small interval of 
time, assuming that one has survived to the start of 
that interval. When comparing the hazards of two 
groups, an assumption is commonly made that the 
ratio of the hazards (the hazard of death in those 
treated divided by those given placebo) is the same 
at all possible survival times. This is called the pro-
portional hazards assumption. If the hazards in the 
two groups at time t are denoted as h0(t) and h1(t), 
then proportional hazards implies that h1(t)/h0(t) = ϕ 
at all survival times, t, and where ϕ is a constant 
that does not change over time. This constant is 
called the hazard ratio. Since hazards are always 
positive, the hazard ratio can conveniently be 
expressed as ϕ = eb, where b is a parameter that can 
be positive or negative. For two individuals who 
differ only in their group membership (e.g., treat
ment vs. placebo), their predicted loghazard will 
differ additively by the relevant parameter esti
mate, which is to say that their predicted hazard 
rate will differ by eb, that is, multiplicatively by the 
antilog of the estimate. Thus, the estimate can be 
considered a hazard ratio, that is, the ratio between 
the predicted hazard for a member of one group 
and that for a member of the other group, holding 
everything else constant.

Proportional Hazards Regression Models

The parameter b can be estimated by regression 
models that treat the log of the hazard rate as a 
function of a baseline hazard h0(t) and a linear 
combination of explanatory variables. Such regres
sion models are classified as proportional hazards 
regression models and include the Cox semipara
metric proportional hazards model and the expo
nential, Weibull and Gompertz parametric models. 
These models differ primarily in their treatment of 
h0(t). The proportional hazards model first intro
duced by Cox in 1972 is the most widely used 
regression model in survival analysis. The main 
advantage to this model is that it does not require 
a particular form for the survival times; specifically, 
the baseline hazard does not need to be specified.

Interpretation

Statistical software packages used to fit a pro
portional hazards model will generally provide 
point estimates of the hazard ratio and of the 
parameter b. A hazard ratio with a value of 1 (cor
responding to a value of 0 for b) can be interpreted 
to mean that there is no apparent difference in 
hazard of death under the treatment versus the 
placebo. A hazard ratio less than 1 indicates that 
the treatment group has a reduced hazard of death 
over the placebo group, and a hazard ratio greater 
than 1 indicates an increased hazard of death for 
those in the active treatment group. In addition to 
a point estimate, statistical packages will also pro
vide standard errors that allow one to better access 
the accuracy of the hazard ratio estimate. These 
standard errors can be used to obtain approximate 
confidence intervals for the unknown b parameter. 
In particular, a 100(1 − α)% confidence interval 
for b is the interval with limits b̂ ± zα/2SE(b̂) where 
b̂ is the estimate of b and zα/2 is the upper α/2 point 
of the standard normal distribution. If the confi
dence interval (usually a 95% confidence interval) 
for b does not include 0, then this is evidence that 
the value of b is nonzero. The corresponding con
fidence interval for the hazard ratio can be found 
simply by exponentiating the confidence limits of 
b. If the 95% confidence interval for the true haz
ard ratio does not include 1, then one can be fairly 
confident that the value of the hazard ratio is not 
1. One can also test the hypothesis that there is no 
difference in hazards between two groups by test
ing the null hypothesis that b = 0. This can be 
tested using the statistic b̂/SE(b̂), whose value can 
be compared with the percentage points of the 
standard normal distribution to obtain the corre
sponding p value. This corresponds directly to 
testing whether the hazard ratio is equal to 1.

Nandita Mitra

See also Cox Proportional Hazards Regression; Log
Rank Test; Parametric Survival Analysis; Survival 
Analysis
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HealtH insurance Portability 
and accountability act 
Privacy rule

Protections in health and medical care are not 
limited to the protection of an individual’s right to 
make decisions about his or her own body and 
mind. Protections also extend to the release of  
an individual’s privacyprotected information in 
medical care and medical research settings. An 
example of such an extension of protection is the 
Health Insurance Portability and Accountability 
Act of 1996 (HIPAA) in the United States.

HIPAA (Public Law 104191), as enacted in the 
United States on August 21, 1996, required the 
Secretary of the Department of Health and Human 
Services (HHS) to issue privacy regulations gov
erning individually identifiable health information 
if Congress did not enact privacy legislation within 
3 years of the passage of HIPAA.

Since Congress did not enact privacy legislation 
within that time frame, HHS developed a proposed 
rule and released it for public comment on 
November 3, 1999. After review of 52,000 public 
comments, the final regulation—the Privacy Rule—
was published on December 28, 2000. The 
Standards for Privacy of Individually Identifiable 
Health Information (Privacy Rule) established for 
the first time in the United States a set of national 
standards for the “protection” of all “individually 

identifiable health information” held or transmit
ted by a covered entity or its business associate in 
any form or medium (electronic, paper, or oral).

Distinctions in Data Identifications

When considering issues of identification, one 
must distinguish among the following concepts. 
First, one must distinguish between “anonymous 
data” and “nonanonymous data.” Second, in the 
area of nonanonymous data and individual identi
fication, one must distinguish between two types  
of individual identification: nonunique versus 
unique.

Anonymous Versus Nonanonymous Data

Anonymous data are data from which all 
unique identifiers have been removed. Ideally, it 
should be impossible to identify a unique individ
ual from a data set composed of anonymous data. 
However, what may appear on the surface to be an 
example of anonymous data may become prob
lematic after further examination, as is illustrated 
later in this entry.

Nonanonymous data are data where individual 
identifiers have not been removed, and therefore, 
the data can be traced back to individuals. 
Sometimes this tracing back will yield one indi
vidual; sometimes several; sometimes many.

All individual identifiers are not necessarily 
unique identifiers. Individual identifiers in HIPAA 
include the following:

Names •
All geographic subdivisions smaller than a state,  •
including street address, city, county, precinct, 
zip code, and their equivalent geocodes, except 
for the initial three digits of a zip code if, 
according to the publicly available data from the 
Bureau of the Census,

The geographic unit formed by combining all o 
 zip codes with the same three initial digits 
 contains more than 20,000 people and

The initial three digits of a zip code for all o 
 such geographic units containing 20,000 or 
 fewer people are changed to 000.

All elements of dates (except year) for dates  •
directly related to an individual, including birth 



545Health Insurance Portability and Accountability Act Privacy Rule

date, admission date, discharge data, and date 
of death; and all ages over 89 and all elements 
of dates (including year) indicative of such age, 
except that such ages and elements may be 
aggregated into a single category of age 90 or 
older
Telephone numbers •
Fax numbers •
Electronic mail addresses •
Social Security numbers •
Medical record numbers •
Health plan beneficiary numbers •
Account numbers •
Certificate/license numbers •
Vehicle identifiers and serial numbers, including  •
license plate numbers
Device identifiers and serial numbers •
Web Universal Resource Locators (URLs) •
Internet Protocol (IP) address numbers •
Biometric identifiers, including finger and voice  •
prints
Fullface photographic images and any  •
comparable images
Any other unique identifying number,  •
characteristic, or code

Unique Versus Nonunique Individual Identifiers

An individual identifier can be used to link an 
individual with a piece of health or medical infor
mation contained, for example, in a larger data set 
of health information, but this individual identi
fier may not be able to identify the individual 
uniquely. Thus, there are unique identifiers and 
nonunique identifiers and a range of identifiers in 
between.

For example, a visual illustration of an individ
ual identifier is a fullface photograph of a patient. 
While the photo may be an individual identifier, it 
may not be a unique identifier. In the case of iden
tical twins, the fullface photograph may be able to 
reduce the number of possibilities in the world to 
two candidates for the identity of the individual in 
the photo—that is, the twin or his or her identical 
sibling. However, someone examining the fullface 
photograph may not be able to distinguish between 
the two identical twins. A unique identifier would 
be able to pick out one or the other of the two 
twins on the basis of a property held by one twin 
but not by his or her identical sibling.

Why the Need to Identify  
Individuals Uniquely?

Why is there a need to identify individuals uniquely 
as associated with a data set based on a blood or 
tissue sample and/or a study test result? A data set 
can contain a result or a set of study results from a 
test or set of tests used to screen for disease in an 
asymptomatic patient or to diagnose disease in a 
symptomatic patient (in medical care) or results 
obtained after an individual has agreed to partici
pate in a research study and is studied before and 
then again after a research intervention. In both 
settings, test results (especially abnormal test 
results) need to be traced back to the donor of the 
blood or tissue sample or the individual who 
agreed to participate in the study. If a blood sam
ple yields a markedly abnormal result, the blood 
sample will (1) need to be repeated to check the 
accuracy of the first specimen and then (2) acted 
on as quickly as possible.

The following is an example. A high serum lead 
level in an infant being cared for by a provider or 
participating in a research study needs to be acted on 
immediately to prevent further damage to the infant 
from the lead. This requires being able to identify 
the individual uniquely so that the infant’s parents 
can be told about the abnormality, to remove the 
infant from continued exposure, and to get the 
infant into a medical care facility to be treated.

Why the Need to Protect Individuals  
From Unique Identification?

Why is there a need to protect individuals from 
unique identification in medical care or medical 
research? First, there are ways to inappropriately 
use data derived from blood and tissue specimens 
to stigmatize individuals as having a specific dis
ease. Individuals and families (in the case of a 
genetically linked condition) need to be protected 
in society from such stigmatization. HIPAA 
attempts to eliminate (reduce) harm to individuals 
based on misuse of individually identifiable health 
information, including attempts to exclude indi
viduals from job and employment opportunities 
and attempts to exclude individuals from present 
and future entitlements within society.

Second, there are economic uses of blood and 
tissue samples derived from humans (which include 
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the development of medical products). While indi
viduals may be willing to provide specimens for 
their own medical care, they may not be willing to 
donate a sample for research purposes. Or if they 
are willing to donate a sample for research pur
poses one time, they may not be willing to be pur
sued by a researcher or product manufacturer over 
time to provide additional specimens.

Third, by being uniquely identified as having a 
specific disease, an individual may be targeted for 
advertising related to medical products that can be 
used in managing and treating his or her disease. 
While certain individuals consider the receipt of 
such new product advertising an opportunity, other 
individuals may not want to be so targeted.

Finally, in the medical research setting, although 
an individual may be willing to allow his or her 
blood or tissue samples to be used in a study to test 
a particular scientific hypothesis or to donate 
blood or tissues to a data bank for future research 
(whose scientific hypotheses have not even been 
conceived of today), that individual may be willing 
to donate his or her specimen only if it is labeled  
in such a way that the data cannot be traced back  
to that donating individual (completely anony
mous data).

Genetically Identifiable Health Information

This entry so far has considered the types of deci
sions that decisionally capable individuals are able 
to make on their own: the decision to participate 
in medical care and the decision to volunteer to 
participate in a research study. However, in the 
case of data of genetic origin, while the individual 
may not care about protecting himself or herself 
from possible harm related to data release and 
while the individual may be willing to donate a 
specimen for a present or future research study, the 
individual does not have the right, with only his or 
her own permission, to donate materials whose 
release could damage other genetically linked fam
ily members, even if the individual possesses deci
sional capacity. Those individuals genetically linked 
to one another can have this linkage identified on 
the basis of examination of DNA, RNA, unique 
proteins, and other biologic materials with the 
same shared characteristic. In research that requires 
as its substrate genetically linked material, the 
major question in need of clarification is the 

following: How does anyone secure the relevant 
informed consents from all relevant genetically 
linked individuals to allow this genetically based 
study to start up and then continue over time  
(or to allow specimens to be banked over time to 
allow future research on the specimens)? This key 
question still remains unanswered and open for 
continued debate and research.

Difficult De-Identification

Perhaps the most difficult case in which to attempt 
to deidentify data with respect to an individual 
involves clinical care of the one patient with a rare 
medical condition who is followed in one medical 
center. Here, simply the labeling of the individual 
with the name of the rare medical condition or 
disease process he or she has is enough to label 
that individual within that medical center uniquely. 
If that individual is the only individual with that 
rare disease in the town, city, county, state, or 
nation in which he or she lives, the problem of  
deidentification (nonuniquely identifying the indi
vidual) will remain with that individual throughout 
his or her life.

Dennis J. Mazur

See also Decisions Faced by Institutional Review Boards; 
Informed Consent
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HealtH outcomes assessment

Have populationwide death rates and disability 
levels attributable to disease X declined over the 
past decade? In a randomized clinical trial com
paring drug Y with standard therapy, is there a 
clinically important difference in patient survival 
or in patientreported outcomes (PRO) such as 
symptom bother? In an economic evaluation of 
screening for disease Z annually rather than semi
annually, what are the estimated differences in 
qualityadjusted life years (QALYs) per dollar 
spent? If a patient, working closely with her physi
cian, is considering two therapies with similar 
projected survival benefits, how might she deter
mine which provides the better healthrelated 
quality of life (HRQOL)? These quite diverse que
ries share a central common feature: They involve 
health outcomes assessment.

Health outcomes assessment (HOA) is a system
atic and frequently multistep analytical process 
that may entail (1) identifying the healthrelated 
issue or problem to be investigated and the relevant 
audiences for the assessment (which may or may 
not be an identified decision maker); (2) selecting 
health outcome measures applicable to the  

problem at hand; (3) establishing an appropriate 
study design and collecting and analyzing the 
health outcomes data, often in conjunction with 
additional data deemed necessary for the particu
lar assessment being done (e.g., one may want to 
draw inferences about the potential determinants 
of health outcomes); and (4) translating findings 
from (3) into information useful to the audiences 
identified in (1). By implication, health outcomes 
measurement is an essential step in health out
comes assessment but is not synonymous with 
health outcomes assessment. The health outcomes 
of interest pertain generally to quantity of life 
(mortality, survival, diseasefree survival), quality 
of life (to encompass a range of PROs, including 
HRQOL and symptom bother), or both (as 
indexed, say, by the QALY).

As thus defined, health outcomes assessment 
may be viewed as a central task of health outcomes 
research, which, according to the U.S. Agency 
for Healthcare Research and Quality, “ seeks  
to understand the end results of particular health 
care practices and interventions.” Such end results 
are to be distinguished from “intermediate” out
comes (e.g., diseasescreening rates) and “clinical 
outcomes” (e.g., changes in the individual’s 
underlying medical condition). To be sure,  
medical interventions are very frequently aimed 
at improving such clinical or intermediate out
comes; health outcomes assessment asks the  
bottomline question of whether such improve
ments translate into a longer life or better 
health.

The sections that follow discuss the health out
comes assessment process, with particular atten
tion to linkages between the purpose of the 
assessment, the selection of specific outcome mea
sures, and the translation of findings into useful 
information for the intended audience. That said, 
it is not the intent here to provide a detailed exam
ination of each of the components of the multistep 
HOA process but rather to indicate how these 
considerations can be jointly brought to bear in the 
conduct of an assessment.

Areas of Application

Most health outcome assessments are designed 
to inform decision making in one of five 
areas of application: (1) populationlevel health 
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surveillance, (2) randomized controlled trials, 
(3) observational (nonrandomized) studies of 
intervention effectiveness, (4) costeffectiveness 
analyses, and (5) patient–clinician deliberations 
about interventions and outcomes.

Population-Level Health Surveillance

This includes international, national, or subna
tional (e.g., state, regional) studies of health out
comes, either at the individual disease level or 
across diseases. Depending on the purpose of the 
study and the data available, the focus may be on 
trends in mortality, survival, or various PRO mea
sures, including morbidity levels, symptoms, func
tional status, or HRQOL. The primary purpose of 
such surveillance studies, which are conducted 
routinely in some form by most developed nations 
and by international organizations such as the 
World Health Organization, is to inform policy 
discussions and the research agenda by revealing 
successes, shortcomings, and issues requiring more 
intensive investigation.

Considerable progress has been achieved in 
North America and Europe in the calculation of 
mortality and survival rates in a consistent fashion 
and in the application of multidimensional 
HRQOL instruments. For example, the SF12 
instrument is routinely administered as one com
ponent of the U.S. Medical Care Expenditure 
Panel Survey (MEPS), while variants of the SF36 
instrument are used in the ongoing Health 
Outcomes Survey of enrollees in Medicare man
aged care plans, conducted by the U.S. Centers for 
Medicare & Medicaid Services. The EQ5D, a 
HRQOL measure designed to incorporate popula
tion preferences for health outcomes, has been 
used in several representative surveys of the U.K. 
population by Kind and colleagues. The Health 
Utilities Index, another preferencebased HRQOL 
measure, is being applied on an ongoing basis 
across Canada and also in the Joint CanadaU.S. 
Survey of Health (JCUSH).

Regarding the HOA process delineated earlier, 
most populationlevel assessments focus on Steps 
1, 2, and 4; historically, there has typically been 
less emphasis on sorting out the determinants of 
variations in population health. However, there  
is a growing interest in identifying disparities in 
health (and access to healthcare) across population 

subgroups defined by race/ethnicity, demograph
ics, or geography.

Randomized Controlled Trials

The purpose of health outcomes assessment in 
most experimental studies of drugs, devices, bio
logics, or other interventions is clear: to generate 
evidence on safety, efficacy, and clinical benefit to 
inform regulatory decisions about product approval 
and labeling and (subsequent) decision making by 
purchasers, providers, and patients.

Recent developments in oncology offer a particu
larly rich opportunity for examining these issues in a 
concrete way. As officials of the U.S. Food and Drug 
Administration have written, approval of cancer 
drugs is based on “endpoints that demonstrate a 
longer life or a better life.” From these officials’ pub
lished reviews of cancer regulatory decisions span
ning the period 1990 to 2006 in total, clinical 
outcomes (primarily tumor response) clearly played 
an important role in the majority of approval  
decisions, although patientreported outcome  
measures—particularly symptom relief—provided crit
ical or supplementary support in a number of instances. 
These officials report, however, that in no case was a 
cancer drug approval based on a HRQOL measure.

In 2006, the FDA issued its own draft “guidance 
to industry” on the use of PRO data (including 
HRQOL) in medical product development to sup
port labeling claims generally. In 2007, the National 
Cancer Institute (NCI) fostered the publication of a 
series of papers (in the Journal of Clinical Oncology) 
assessing the state of the science of PRO application 
in cancer trials supported through the NCI. Also in 
2007, a series of papers interpreting and evaluating 
the FDA PRO draft guidance appeared in another 
scholarly journal (Value in Health).

In sum, this is an era of intense debate about 
health outcomes assessment in clinical trials, par
ticularly regarding the choice of appropriate end 
points and the closely related issues of study 
design, data collection, and analysis (correspond
ing to Steps 2 and 3 in the HOA process). While 
oncology studies have been very much in the spot
light, similar issues arise in any clinical trial where 
the patient’s own perspective is regarded as an 
essential element in the outcomes assessment. 
Moreover, these issues have received analogous 
critical attention outside the United States.
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Observational Studies of  
Intervention Effectiveness

There is a vast literature examining the impact 
of interventions—ranging from prevention activi
ties, to disease screening, to treatments that may  
be surgical, medical, or radiological, or other—on 
health outcomes in the realworld practice of 
medicine. Depending on the disease and the pur
pose of the study, the focus may be largely on 
survival outcomes (e.g., do AIDS patients receiving 
a certain drug cocktail have a longer life expec
tancy?); HRQOL outcomes (e.g., do rheumatoid 
arthritis patients receiving a new diseasemodifying 
agent report better functioning and less pain than 
before?); or both (e.g., do patients with twovessel 
heart disease have better qualityadjusted survival 
with angioplasty or with coronary artery bypass 
surgery?).

Still relatively rare are longitudinal health out
comes assessments to track over time the impact of 
interventions on HRQOL, satisfaction with care, 
and other PROs, in addition to survival. A note
worthy example is the NCIsupported Prostate 
Cancer Outcomes Study, which has followed more 
than 3,500 newly diagnosed patients for up to 60 
months, attempting to survey each at four different 
time points regarding symptom bother, functional 
status, and other aspects of HRQOL as well as 
about satisfaction with care and with the outcomes 
being experienced.

Because the validity of such observational (non
randomized) studies may be threatened by selec
tion effects (i.e., the subjects choosing Intervention 
A may not be comparable to those choosing 
Intervention B, in ways that may not be observable 
to the analyst), certain statistical correctives are 
increasingly being applied. These include both 
instrumental variable and propensity scoring tech
niques, two approaches in pursuit of a common 
aim: namely, to permit valid inferences about the 
impact of some hypothesized causal factor (e.g., a 
healthcare intervention) on a dependent variable 
of interest (e.g., a health outcomes measure) when 
it is likely that the variables are codetermined 
(mutually causal).

In general, the steps within the HOA process 
requiring the greatest attention here are the choice 
of outcomes measure(s) and study design and data 
analysis issues (i.e., Steps 2 and 3). In contrast to 

most clinical trials, the majority of such nonran
domized intervention studies inform decision  
making (if at all) in a generally more indirect or 
diffused way.

Cost-Effectiveness Analyses

In economic evaluations of whether a candidate 
intervention (e.g., individualized smoking cessa
tion therapy) offers good value for the money 
compared with some alternative (e.g., an anti
smoking ad campaign), health outcomes assess
ment plays a pivotal role. This is because the 
“value” component of the costeffectiveness analy
sis (CEA) is measured in terms of health outcomes 
improvement—for example, lifeyears gained or 
(most commonly now) QALYs gained. To carry 
out the CEA, therefore, requires sound statistical 
evidence on the health impact of each competing 
intervention, as would typically be derived from 
randomized or observational studies. Also required 
is information on the associated costs of each 
intervention and on a host of other factors (covari
ates) that allow the health and cost calculations to 
be tailored to specific population subgroups.

A prominent example of such a CEA, carried 
out in close conformance to the recommendations 
of the U.S. Panel on CostEffectiveness in Health 
and Medicine, is the study by Ramsey and col
leagues comparing lung volume reduction surgery 
with medical management for elderly emphysema 
patients. CEA ratios in terms of dollars per QALY 
gained were computed for patients at varying 
degrees of clinical severity and under a variety of 
other clinical, economic, and statistical assump
tions. This CEA and the randomized clinical trial 
on which it was based were sponsored by the U.S. 
Centers for Medicare & Medicaid Services (CMS), 
which covers virtually all Medicareeligible patients 
and had a direct interest in the findings. Following 
publication of the trial and CEA findings, CMS 
approved coverage of lung volume reduction sur
gery for Medicareeligible patients meeting specific 
clinical and behavioral criteria.

Frequently, such CEAs are conducted to inform 
public or privatesector clinical policies relating to 
practice guidelines development or coverage deci
sions. In these instances, the process of health 
outcomes assessment feeds into the larger process 
of health economic evaluation.
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Patient-Clinician Decision Making

There is growing interest, experimentation, 
and realworld application of health outcomes 
assessment to enhance the substantive content 
and overall quality of communications between 
patients and their healthcare providers. The aim 
is to strengthen shared decision making about 
intervention strategies and, ultimately, to improve 
patient outcomes. In most applications to date, 
patients complete questionnaires—focusing typi
cally on aspects of their healthrelated quality  
of life—and the information is fed back to  
clinicians to inform healthcare management  
decisions.

Compared with the other areas of application, 
this use of health outcomes assessment is still in 
its infancy. There are promising results from some 
studies, including at least one randomized, con
trolled trial, indicating that providing clinicians 
with feedback on the patient’s HRQOL status 
can favorably influence the perceived quality of  
communications and the patient’s subsequent 
HRQOL. However, for this application of health 
outcomes assessment to realize its potential, sev
eral challenges must be confronted. These include 
strengthening the theoretical basis for anticipat
ing and interpreting the impact of PRO measure
ment on decision making in routine clinical 
practice; understanding better how HRQOL mea
sures developed originally to assess the impact of 
interventions on groups of patients can be infor
mative for individual-level decision making; iden
tifying targeted, patientappropriate interventions 
based on responses to HRQOL questionnaires; 
and developing more userfriendly software to 
facilitate data collection and sharing. Progress on 
all fronts is expected to accelerate in the years 
ahead.

Informing Decision Making

Health outcomes assessment may be viewed as a 
multistep process, which progresses through iden
tifying the decision problem to be addressed, the 
selection of appropriate outcomes measures, and 
the design and execution of the assessment itself, 
to the translation of findings to the intended 
audience(s) of analysts and decision makers. An 
assessment that carefully considers these steps in 

turn has the highest likelihood of successfully 
informing decision making.

Joseph Lipscomb, Claire F. Snyder, 
 and Carolyn C. Gotay
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Years (QALYs)
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HealtH Production Function

The health needs of any population will be consid
erable, and there will never be enough resources to 
meet them all. As resources are scarce in relation to 
needs, they must be allocated by some mechanism, 
driven by the government or the private market. 
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To understand the results of the various ways that 
resources can be allocated, economists have devel
oped a concept called the production function.

A production function is a mathematical con
cept that expresses a relation between resources 
and the outputs which the resources produce. The 
venue of the production can be a department, a 
plant, or a business firm. An economic “actor”  
or “manager” is responsible for combining the 
resources so they yield the outputs. An exemplified 
expression for a production function is Q(L, K, t), 
where Q is an output (e.g., bushels of wheat), L 
represents the quantity of labor input, and K rep
resents the quantity of capital equipment. The 
term t represents the stage of technological knowl
edge, which generally changes over time.

Hypotheses

The production function was initially used to  
predict how resources were combined to produce 
physical outputs of plants or firms, such as steel 
producers, shoe manufacturers, or agricultural firms. 
There are four primary hypotheses that can be gen
erated from this concept. These are as follows:

1. As one resource increases while the others  
are held constant, the additional output from this 
increase will eventually decline. As an example, 
successive increases in receptionist time in a clinic 
(with other resources such as physician time and 
equipment held fixed) will initially lead to increased 
clinic output (visits). But this will happen only up 
to a point. Beyond that level, as more receptionist 
time is successively added, the increase in visits will 
become smaller.

2. As all resources increase together, in equal 
proportions, the additional output resulting will 
initially increase in a greater proportion (“econo
mies of scale”), level off (“constant economies”), 
and then decrease (“diseconomies of scale”). For 
example, a moderate size clinic will have a greater 
productivity (in terms of visits per resource unit) 
than will a very small one. However, there are lim
its to which the productivity will increase with 
expansions in clinic size.

3. Over time, the entire curve will increase, indi
cating that more output can be achieved with the 
same quantity of resources (“technological change” 

or “increases in productivity”). In recent years, the 
mechanization of lab services has led to a reduc
tion in the total resources that are used to produce 
lab tests. This means an upward shift in the pro
duction curve that relates outputs (lab tests) to 
inputs. It should be noted that quality of care is a 
component of output, though one that is difficult 
to measure.

4. The incorporation of one set of resources in 
two different applications within the same organi
zation (a nursing home and a hospital), rather than 
in separate organizations, can result in economies 
(or diseconomies) of scope. For example, if we 
divide the hospital into distinct diagnostic units 
(pediatric, geriatric, cancer care), then economies 
of scope will be evidenced if a multiservice unit 
that incorporates many of these is less costly than 
a series of separate specialized hospitals.

Application to Medical Care

The production function concept has been used to 
explain how changes in the use of resources can 
yield different volumes of output (i.e., services pro
duced) of medical care. Thus, John Cawley has 
examined how the use of specific types of capital
intensive services or equipment (catheters, tube 
feeding, psychotropic drugs), when used in nursing 
homes, will influence the use of labor (nurses’ 
time) per resident day. That is, the capital equip
ment can be substituted for labor, keeping the 
amount of services produced at the same level. 
Production functions can also be used to explain 
factor substitution in health maintenance organi
zations, physicians’ offices, and hospitals.

In 1965, Gary Becker published an article on 
the allocation of time within the household. The 
production function, formerly used to analyze how 
business firms combined resources, could now be 
used to analyze how households could combine 
resources, including purchased inputs and personal 
time, to produce activities that yield consumer 
benefits. Michael Grossman used this model in 
1972 to examine how persons could use resources 
such as time and medical care to produce the out
put “health.”

The first empirical studies of health production 
functions used mortality rates as a measure of 
health output (now called outcomes). A 1971 study 
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by Charles Stewart characterized resources in four 
groups: treatment, prevention, information, and 
research. In estimating the production function, 
Stewart showed that in developed countries, physi
cian inputs, when increased, had an insignificant 
impact on life expectancy. The statistical procedure 
used in this model was challenged by Edward 
Meeker and Ronald Williams; when population 
health status and more appropriate statistical mea
sures were taken into account, the statistical models 
showed a statistically significant impact of physi
cian density on mortality, though not a large one.

The most influential studies associated with 
health production come from longitudinal analy
ses of mortality by David Cutler and Frank 
Lichtenberg. Responding to the noticeable improve
ments in mortality rates of selected groups since 
the 1970s, Cutler conducted several analyses of 
health production for people with different health 
conditions, including heart attacks and lung can
cer. The findings are that trends in medical care for 
heart attacks in the past 30 years have resulted in 
improvements in health productivity. The same 
has not been true for lung cancer. Lichtenberg ana
lyzed the impact of new drugs on mortality with 
positive findings as well.

In the studies discussed, outcomes were 
expressed in physical units, such as years of life or 
ageadjusted mortality: Production functions are 
concepts that relate physical units of resources to 
physical measures of outputs. Some analysts have 
put a dollar value on the changes in mortality. 
Using results obtained from estimating the value 
that people put on changes in mortality from other 
studies, the investigators have compared the value 
of increased longevity with the costs of the 
resources. Valuations placed on changes in mortal
ity do indicate what people are willing to pay for 
the increases in life spans, but they are not neces
sarily the same valuations that will be used for 
making policies, because they place a low value on 
the health of the poor and destitute. In addition, 
analysts have attached prices to individual 
resources, which has yielded measures of the cost 
of production. Behind the money cost and benefit 
measures that are obtained from these calculations 
lie the more fundamental measures of physical 
relationships between physical inputs and health 
states. That is, cost and benefit calculations are 
derivative from the production function.

Recently, investigators have extended the health 
production function by examining outcomes that 
are reflective of changes in health status, not only in 
mortality. Among the measures of health status that 
have been used are time spent working and health
related quality of life (HRQOL). Not all the studies 
have related the changes in resources during a time 
span (e.g., a year) with changes in health status over 
the same time span; some have measured a relation 
between the health status at the beginning, or end, 
of a period with the quantities of resources used 
during the same period. While the use of personal 
and medical resources during a given year can 
indeed have an impact on health status after (or 
before) the year is over, the use of the health status 
at the end of the period as an outcome measure is 
not an appropriate indicator to use in the health 
production function. The use of health resources 
will have an impact on changes in health status dur
ing the year or afterwards. The health status at the 
start of the year, in addition to how health status 
changes during the year, will affect the health status 
at the year’s end. To get around this problem, inves
tigators who use the health status at the end of the 
period in their studies have used the starting health 
status as an independent variable in their statistical 
analyses (e.g., Hakkinen, Jarvelin, Rosenqvist, & 
Laitinen, 2006; Lu, 1999).

Influence

The health production function has been widely 
used to conceptualize the impact of resources or 
changes in health states. The results of research 
inform, and probably influence, policy decisions. 
Earlier studies in this area raised skepticism about 
the overall effectiveness of adding more medical 
resources to the healthcare system. Policy makers 
and policy analysts were influenced by these 
results, and terms such as “flat of the curve medi
cine” became popular as descriptions of the state 
of use of health (and especially physician) services. 
More recent studies have shown that medical, 
pharmaceutical, and personal resources all have 
impacts on health status. If further studies cor
roborate these results, policy decisions will be 
influenced by this information.

Philip Jacobs
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HealtH risk management

Decision making is a critical element in the field of 
medicine that can lead to lifeordeath outcomes, 

yet it is an element fraught with complex and  
conflicting variables, diagnostic and therapeutic 
uncertainties, patient preferences and values, and 
costs. Judgments and decisions made daily in 
clinical work necessitate the assessment and man
agement of risks. The physician must determine 
what may be wrong with a patient and recom
mend a prevention or treatment strategy, gener
ally under lessthanoptimal circumstances and 
time frames. A patient decides whether or not to 
follow this recommendation and, once under care, 
may or may not faithfully pursue a recommended 
strategy. Health policy makers and insurers must 
decide what to promote, what to discourage, and 
what to pay for. Together, such decisions deter
mine the quality of healthcare, quality that depends 
inherently on counterbalancing risks and benefits 
and competing objectives such as maximizing life 
expectancy versus optimizing quality of life, or 
quality of care versus economic realities.

Therefore, diagnostic reasoning and treatment 
decisions are a key competence of physicians and 
have been attracting increasing interest. Reasoning 
skills are imperfect in many clinical situations, and 
it has been found that diagnostic errors are more 
frequently a result of failure to properly integrate 
clinical data than of inaccurate data. Diagnostic 
experts use relatively few clinical data, with modes 
of reasoning sometimes oversimplified. These limi
tations are connected to several aspects of clinical 
decision making; one of these aspects is to acknowl
edge components of knowledge used in clinical 
practice.

Moreover, the literature on the reasoning pro
cess is often unfamiliar to physicians, and studies 
of diagnostic reasoning are often simpler than  
the diagnostic reasoning in reallife situations. 
Although studies provide information about the 
outcomes of decisions, they provide little or no 
information about the process of the decision.

How are sound treatment decisions determined? 
Are they based on the value of the outcome or the 
probability of the outcome? Are judgments and 
decisions based on both variables, or are the sim
plifying strategies employed by experts based on 
only one of the variables? Judgments and decisions 
are made daily in clinical work, where the assess
ment of risk is necessary. Risk is involved in the 
choice of tests to use in reaching a diagnosis. There 
is also uncertainty and risk in interpreting test 
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results. With lab tests indicating an infection, what 
level of antibiotics should be used in treatment? 
What other factors should a doctor consider in a 
diagnosis and treatment?

With this uncertainty taken into consideration, 
how should information from clinical and bio
medical knowledge be combined to reach a diag
nosis? Is there an additive relationship between 
different sources of information, or is there a mul
tiplicative relationship? That is, is the interpreta
tion of risk dependent on risk in still another 
variable? A high temperature can be interpreted in 
a certain way in one context, but given another 
picture of symptoms, it is interpreted another way. 
With a diagnosis obtained with some certainty, 
what treatment should be chosen? In all these 
cases, there is risk involved for multistage decision 
problems.

Modeling and Risk

Mathematical modeling is used widely in economic 
evaluations of pharmaceuticals and other health
care technologies. Clinical decision making may 
benefit from the same modeling approach, since 
the task of the healthcare provider is to provide 
care and to incorporate the probability of obtain
ing certain health outcomes, whether explicit or 
implicit; the latter varies with providers and in 
many cases may not be done at all. Weighting  
the value of an outcome by the probability of its 
occurrence provides both patient and provider 
with information about decision making.

A model based on values and beliefs provides a 
conceptual framework for clinical judgments and 
decisions; it also facilitates the integration of clini
cal and biomedical knowledge into a diagnostic 
decision. From this perspective, decision research 
in health has increasingly recognized evaluated 
value and probability of outcome in explaining 
judgments and decisions in various domains, see
ing them as based on the product of these two 
parameters, termed expected value. This is a pre
scription approach, however, and is often inconsis
tent with how people generally make decisions.

In clinical decision making, the values are 
healthier outcomes in various variables. The out
come assessment variables in rheumatoid arthritis 
have been pain, disability, and overall health. 
These variables are assessed by the patient. For the 

patient with a heart attack, one assessment vari
able could be decreased pain and normalized elec
trocardiography another.

The probability for a certain outcome to occur 
will also have to be estimated in these diagnostic 
and treatment decisions.

Both value and probability are usually estimated 
values in clinical decision making. Therefore, model 
assumptions and parameter estimates should be 
continually assessed against data, and models 
should be revised accordingly. Estimated values and 
probabilities are involved sequentially for every step 
in the decisionmaking process. However, a dichot
omous decision will have to be performed to reach 
a diagnosis and a treatment option. Moreover, there 
might be many differential diagnoses to exclude 
and also many treatment options. The number of 
differential diagnoses considered, and what they 
are, might have an influence on the diagnosis finally 
selected. The availability of treatment options might 
also affect what treatment is chosen.

Risk and Errors

One issue is the way clinical inferences generally 
are arrived at in making judgments and decisions. 
Theories have been provided about how doctors 
could include relevant information to improve 
decision making. Nonetheless, a reasoning error 
could be made in clinical inference, as it is charac
terized by backward reasoning, where diagnosti
cians attempt to link observed effects to prior 
causes. In contrast to this post hoc explanation, 
statistical prediction entails forward reasoning, 
because it is concerned with forecasting future out
comes given observed information.

Clinical inference uses information from prior 
periods to make a statement about today and tends 
to consider error as a nuisance variable. The statis
tical approach, on the other hand, accepts error as 
inevitable and, in so doing, probably makes fewer 
errors in prediction for periods extending over  
a relatively long time. Moreover, the statistical 
approach uses group data to arrive at a conclusion. 
The situation is different in clinical inference and 
decision making, where group data concerning 
risk constitute the basis for diagnostic and treat
ment choices regarding the individual patient.

It has also been found that doctors exhibit inter
individual as well as an intraindividual variation 
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in judgments. One example in practical work is the 
outcome of clinical examinations, which may vary 
between doctors. Another example is the interpre
tation of radiological pictures, which may exhibit 
a variation between doctors.

Many people tend to overestimate how much 
they know, even about the easiest knowledge 
tasks. Overconfidence (i.e., greater certainty than 
circumstances warrant) leads to overestimating 
the importance of occurrences that confirm one’s 
hypothesis. This impedes learning from environ
mental feedback, resulting in deleterious effects 
on future predictions. In many decision settings, 
inexperienced practitioners and even naive labo
ratory subjects perform as well (or as poorly) as 
performers with more experience. The perfor
mance of the patient could be as good or as bad 
as these subjects.

Daily work with patients implies considering 
risks at many stages of the decision process. How 
does one convey to patients this information about 
risk and error as an unavoidable condition in 
clinical work to reach a mutual agreement on 
treatment judgments and decisions? Through an 
awareness of errors that can be made, some errors 
can be counteracted. Thus, a challenge for clinical 
practice is to include different features of risk.

Shared Decision Making 
by Doctors and Patients

The application of evidencebased medicine 
requires combining scientific facts with value judg
ments and with the cost of different treatments. 
This procedure can be approached from the per
spective of doctors or of individual patients. 
Doctors may not value various aspects of health 
the same way patients do, and studies on patient 
control have found that patients generally respond 
positively to increased information.

However, research in cognitive psychology has 
shown that people are quickly overwhelmed by 
having to consider more than a few options in 
making choices. Therefore, decision analysis, based 
on the concepts of value and risk, might be 
expected to facilitate clinical judgments and shared 
decision making by providing a quantifiable way 
to choose between options. Overall, likelihood of a 
specific adverse outcome should be one para
meter affecting the estimate of future risk and its 

consequences. Risk estimates of future outcomes 
could be based on an outcome in the future having 
less importance than one in the present, where the 
adverse outcome may have different values for 
doctor and patient. Another parameter is that tem
poral distribution of risk is not homogeneous 
throughout the life span of the individual. Specific 
individual factors modify the risk for a specific 
person, and personspecific modifiers are likely to 
be distributed differently in time.

Patients dealing with chronic illness are increas
ingly knowledgeable. They must make multiple 
and repetitive decisions, with variable outcomes, 
about how they will live with their chronic condi
tion. With rheumatoid arthritis, for instance, that 
demands lifelong treatment, doctor and patient 
share not one single decision but a series of deci
sions concerning treatment. Furthermore, in cur
rent healthcare, several doctors may be involved in 
the treatment.

Risk levels are adopted in a context, and their 
impact on decisions may be arbitrary when the 
norm for decisions involving risk is being set. With 
an uncertainty in diagnosis, at what risk level will 
treatment be chosen by both the doctor and the 
patient? How do patients and doctors estimate dif
ferent variables? Psychological factors such as 
personal versus general risk, where personal risk 
relates to oneself and general risk to others and 
policy approaches, may have an impact on deci
sions. In a clinical decisionmaking situation, per
sonal risks can be assumed to relate to the patient, 
while the doctor has a general perception of risk.

Perhaps patients might give a higher estimation 
of risk, being more conservative because the out
comes of decisions are more significant for them; 
it is their bodies and their lives that are affected. 
On the other hand, it is wellknown that personal 
risks are underestimated; people judge their own 
risks from adverse health behaviors as smaller 
than the same risks for people in general. People’s 
opinions about personal risk are generally too 
optimistic, whereas the perceived risk for others is 
more adequate.

In a study by Ayanian and Cleary, most smokers 
did not view themselves as being at increased risk 
of heart disease or cancer. The low perceived per
sonal risk could tentatively be explained by risk 
denial. It has also been found that, in individual 
decision making, there is a preference for the  
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lowrisk treatment. In societal choices, however, 
treatment of the highrisk patient groups is pre
ferred. Social framing may therefore induce a pro
pensity to prefer interventions that target highrisk 
populations. These preferences were performed by 
healthy individuals.

Patient Satisfaction

There is an increased awareness of patients’ 
involvement in the clinical decision process, where 
patients and providers consider outcome probabil
ities and patient preferences. Assessing health val
ues and beliefs may help providers understand 
their patients’ treatment behavior and increase 
patients’ satisfaction with services and their moti
vation to comply with treatment regimens.

With chronic conditions, patients are increas
ingly knowledgeable about their medical condi
tion. The challenge is to balance advocacy for an 
active patient role with the preferences of individ
ual patients concerning participation. Agreement 
between physicians and patients regarding diagno
sis, diagnostic plan, and treatment plan has been 
associated with higher patient satisfaction and  
better health status outcomes in patients.

To be effective, the clinician must gain some 
understanding of the patient’s perspective on his or 
her illness. Introducing decisionanalytic modeling 
provides a more complete picture of variables that 
influence the decisions performed by doctor and 
patient and can contribute to skillful counseling 
around unhealthy or risky behaviors, an important 
aspect of the communication that should be part of 
healthcare visits.

Monica Ortendahl
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HealtH status measurement, 
assessing meaningFul cHange

Sensitivity is the ability of an instrument to mea
sure change in a state irrespective of whether it  
is relevant or meaningful to the decision maker. 
Responsiveness is the ability of an instrument  
to measure a meaningful or clinically important 
change in a clinical state. Responsiveness, like 
validity and reliability, is not necessarily a general
izable property of an instrument and should be 
assessed for each population and for each purpose 
for which it is used. Sensitivity and responsiveness 
can refer to assessments of groups or individuals. 
Responsiveness is equivalent to longitudinal con
struct validity, where the ability of an instrument 
to measure a clinically meaningful change is evalu
ated. Sensitivity to change is a necessary but insuf
ficient condition for responsiveness. Some dislike 
using sensitivity because it might be confused for 
terms often linked to sensitivity, such as specificity, 
positive predictive value, and negative predictive 
value, used in the description of diagnostic test 
performance. However, health status question
naires are analogous to diagnostic tests in that they 
can be used in medical decision making to deter
mine whether an individual has a condition or 
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disease; to screen individuals for incipient disease, 
disability, or risk of either; and to monitor the 
course of a disease or the response to treatment.

Measures of generic and diseasespecific health 
status are sensitive to changes in clinical status 
when applied to groups of patients. They are as 
sensitive as or more sensitive than many traditional 
measures, such as performance tests and labora
tory evaluation of disease activity. However, it is 
unclear whether these instruments can capture 
meaningful changes in subgroups or in individuals. 
Indeed, most instruments show that data cannot 
take on a value higher than some “ceiling” (ceiling 
effect) or lower than some “floor” (floor effect), 
which indicates that they cannot be used for the 
entire continuum of patients seen. Controlled stud
ies evaluating the utility of providing health status 
data do not show that outcomes, health resource 
use, or costs are affected. A number of explana
tions are possible: (1) Physicians are not trained to 
interpret such data or to determine what should be 
done to improve function, (2) the information was 
not provided in a timely manner, (3) diminished 
function and wellbeing are distal end points in the 
chain of causation and present fewer opportunities 
to affect their course, or (4) measures used to 
assess groups of individuals are imprecise, insensi
tive, and unresponsive to clinically important 
changes.

Studies show that patients and their healthcare 
providers may disagree about health priorities, 
quality of life, functional ability, psychological 
state, and the importance or magnitude of the 
change captured by questionnaires. Patients can 
mean different things when they say they are “bet
ter.” Responseshift or instrumentation bias, recall 
bias, and amnestic bias can also affect the mea
surement and the perception of change.

A clinically meaningful or important change can 
be defined and therefore evaluated from the per
spective of the patient, his or her proxy, society, or 
the health professional. It implies a change that is 
noticeable, appreciably different, that is of value to 
the patient (or physician). This change may allow 
the individual to perform some essential tasks or to 
do them more efficiently or with less pain or dif
ficulty. These changes also should exceed variation 
that can be attributed to chance.

Some investigators have defined a clinically sig
nificant change as a return to usual functioning, 

but this is a stringent criterion for many chronic 
conditions. Others have defined “clinically mean
ingful” as whether an individual has surpassed 
some absolute criterion, but this definition does not 
permit one to document a change that is important 
but is short of the absolute criterion. Roman 
Jaeschke and colleagues suggested that a clinically 
meaningful change could be defined as the minimal 
important difference. This could be defined as the 
smallest difference in score in the domain of inter
est that a patient perceives as a change and that 
would mandate, in the absence of side effects and 
excessive costs, modification in the patient’s man
agement. Others have advocated that the maxi
mum improvement is more important clinically.

Methods for Evaluating Sensitivity

Statistical techniques to estimate the sensitivity of 
an instrument vary, and there is no apparent con
sensus regarding the preferred technique. Many are 
variants of the effect size statistic and resemble the 
F statistic in analysis of variance (see Table 1).

It is not clear that the methods would show  
the same rank order of sensitivity when different 
instruments are compared or whether the observed 
findings might have occurred by chance.

If all measures of sensitivity rank an instrument 
high or low relative to other instruments, then one 
may be relatively confident that that instrument is 
the most sensitive. In this case, the question of 
which method is best is moot because all agree. If 
instruments change their rank order depending on 
which measure of sensitivity is used, then the 
instruments are probably roughly equivalent. 
Which method is best must be determined by other 
means.

Methods for Evaluating Responsiveness

In contrast to the methodologic work evaluating 
sensitivity, the significance of these changes and 
the techniques for evaluating responsiveness to 
clinically important or meaningful change have 
received little attention. No one technique has 
been established as being superior. In fact, different 
methods for the assessment of responsiveness may 
lead to different conclusions.

One way to study “meaningfulness” is to  
ask the subject, the person’s provider, or both  
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(a) whether a change has occurred (“transition 
question”), (b) how large the change is, (c) how 
important or relevant the change is, and (d) how 
satisfied the subject is with the change. The judg
ment of any or all of these could be done by 
patients, by an external judge, or by the use of a 
related construct. If patients are asked about a 
meaningful change, the framing and timing of the 
questions in relation to the intervention need care
ful consideration, because the extent of recall bias 
is unknown. An external judge could be a health
care professional uninvolved with the subject’s 
care, or a caretaker such as a family member or 
significant other, when the subject may be unreli
able. Related constructs, such as patient satisfac
tion with the change or a change that allows 
resumption of normal work or necessitates assis
tance, are also possibilities. A problem for all 
methods is that a change in a state (e.g., function) 
derives its significance and meaning to the subject 
or to a proxy from the starting state as much as 
anything else.

Researchers have generally chosen test items 
appropriate to the content domain (domain sam
pling method) for the construction of health status 
in an attempt to maximize overall internal reliabil
ity (Cronbach’s coefficient [alpha] of tests). This 
strategy tends to maximize reliability at or near the 
center of a scale, often by having more items with 
an average level of difficulty than items with very 
great or very slight difficulty on a test. With this, a 

test may not discriminate equally across its whole 
range. Thus, a subject who is near the middle of 
the range may change a small amount on true abil
ity and yet change more than 1 point on the scale 
score because there are many items in the region 
where the subject is making the change. However, 
a subject who is at the high or the low end of a 
scale, where there are fewer items, may actually 
make a much larger or clinically meaningful 
change and not have it captured on the scale or 
have a small change as compared with the subject 
who started at the center. For example, in the 
Health Assessment Questionnaire, a measure of 
physical function, a subject with severe rheuma
toid arthritis may rate all tasks as being maximally 
difficult; and yet this subject can still worsen to the 
point of being confined to home or completely 
dependent on others. An uncritical adoption of 
classic psychometric techniques for scale construc
tion to maximize overall internal reliability has led 
to scales that may be more responsive in group 
applications (clinically meaningful) at the ends of 
the scale but more sensitive to change (statistically) 
at the center of the scale.

Developing a scale where items are equally 
spaced in terms of difficulty across the entire range 
of the scale (equidiscriminating) is one focus of 
item response theory, of which Rasch models pro
vide a onedimensional approach. With an equidis
criminating scale, when a patient moves a particular 
number of points, one can be relatively sure that he 

Table 1  Approaches to statistical evaluation of sensitivity

Effect size

Effect size index

Guyatt’s method

F ratios, comparison of

Measurement sensitivity

Receiver operator characteristics

Relative change index

Responsiveness coefficient

Standard error of measurement

Standardized response mean (relative efficiency)
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or she has moved the same distance on some true 
scale of difficulty.

A problem for both types of scales is that the 
perception of change in a state, such as health sta
tus, derives its significance and meaning in com
parison with the starting state as much as any 
other referent. Studies suggest that perceived 
change of physical and sensory states may be a 
power function. For instance, persons who start at 
a low level of function on a scale and change a 
relatively small distance along the dimension  
may perceive the change as clinically significant. 
However, persons who start with much higher 
physical function may view the same size change as 
a trivial improvement and would need a much 
larger change to judge it as clinically significant. 
Thus, even “equidiscriminating” scales beg the 
question of whether the same amount of change in 
an underlying dimension is clinically significant at 
all levels or a function of the level at which one 
starts. An inherent limitation in scales measuring 
health status is that one cannot collapse all the 
subtleties of change into a single linear scale. For 
instance, a patient with arthritis can have a change 
in pain and a change in mobility, but each patient 
may attach a different utility to these changes. 
Collapse of these different utilities into one scale 
often compromises the individual utility functions. 
This is important because classic domain sampling 
assumes a single dimension along which persons 
are being measured, but most health status instru
ments actually measure several dimensions.

Potential assays for the evaluation of what con
stitutes a meaningful change on an instrument 
might involve the measurement of states in certain 
clinical situations: (a) in clinical trials or cohorts 
where the intervention has varying effectiveness, 
such as the surgical and conservative management 
of lumbar spinal stenosis or total joint arthro
plasty; (b) after an effective medication is stopped; 
and (c) during the washout period in crossover 
studies.

Kirshner and Gordon Guyatt suggested an exam
ination of the response of patients to a treatment of 
known efficacy and a comparison of the responses 
of patients who had and had not responded by the 
physician’s judgment. Mark Lipsey recognized the 
logistical difficulties in this. He suggested identify
ing a group whose average response would be 
approximately the same as the desired detectable 

change and administering the instrument just once 
to estimate the change in variance.

No single standard exists for the evaluation  
of responsiveness. The point of view from which 
responsiveness is being evaluated should be speci
fied. Patients’ judgments are influenced by their 
baseline health status, expectations and goals, ill
ness duration, and actual need to perform some 
functions, as well as other factors. These judg
ments vary as compared with results of standard
ized measures of function. The physician’s judgment 
usually includes knowledge of other patients with 
the same problem, knowledge of what domains are 
potentially treatable, and an appreciation for the 
significance of physiological (e.g., creatinine clear
ance) or physical findings that may not be symp
tomatic or apparent to the patient. Proxies, such as 
caretakers or significant others, may be preferred 
when the respondent or patient’s status may not be 
reliably or validly reported. For measures of func
tion and quality of life, responsiveness should be 
based on the subject’s valuation of the magnitude 
and its importance. For measures of impairment or 
disease activity, the physician is the best judge.

Allen J. Lehman and Matthew H. Liang

See also Health Outcomes Assessment; Health Status 
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HealtH status measurement, 
construct validity

Just as it is important to ascertain that a measure
ment instrument produces reliable results across 
different situations, it is crucial to assess whether 
it measures what it is intended to measure—its 
validity. In the area of health status measurement, 
construct validation of measurement instruments 
underlies sound medical decision making. Validity 
is established through a process involving a series 
of experiments designed to test various relevant 
hypotheses about the structure and nature of  
the construct and its logical manifestations. The 
results of these experiments inform the level of 
confidence with which researchers make conclu
sions about the persons under study and the inter
pretation of instrument scores.

Early measurement of health focused heavily on 
disease and mortality rates for populations and on 
clinical variables representing disease activity for 
individuals. Over time, with the mounting chal
lenges presented by chronic diseases and disorders, 
many health interventions have focused more on 
levels of physical, mental, and social functioning 
than on length of life. Under these circumstances, 
sound medical decision making about the value  
of healthcare interventions depends increasingly 

on the validity of instruments for measuring health 
status. The impact of validity on interpretation of 
clinical trials has been demonstrated empirically in 
psychiatry, with evidence that clinical trials using 
unvalidated measurement instruments were more 
likely to report treatment effectiveness than those 
employing validated measures. This entry describes 
the specific challenges involved in assessing the 
construct validity of health status measures, 
addresses the evolving conceptual framework for 
validity and associated taxonomy, explains the 
main approaches used, and provides additional 
resources for more indepth discussion of theory 
and methods.

Challenges in Validation of Health Status

As compared with the measurement of physical 
attributes such as height and weight, the measure
ment of health status comes with special challenges 
because it is not a directly observable quantity but 
a construct; a variable that must be defined to be 
measured. The definition of the construct may 
originate from theory, clinical or empirical obser
vation, or a combination of the two. Essentially a 
construct is itself a theory about what makes up 
the construct and how its component parts relate. 
Based on the definition, instrument developers 
decide what attitudes, behaviors, or characteristics 
would be the best indicators of the construct. For 
example, it is widely accepted that health status is 
a multidimensional construct that includes at least 
physical status, emotional or mental status, and 
symptoms. Potential indicators can be observable 
manifestations of the construct, such as behaviors, 
or they can be attitudes. Measurement may be 
conducted by observation of behaviors through 
performance tests or by eliciting subjects’ reports 
of their behaviors. The measurement of attitudes 
requires posing questions that represent the atti
tude in question. For many constructs, including 
health status, selfreport is the preferred approach 
to measurement; therefore, questions are used to 
tap aspects of each of the dimensions of health 
status, and responses are provided to allow numer
ical description or scaling. In the case of physical 
status, developers ask themselves, “What behav
iors would represent a lot of (or little) physical 
function?” An ideal measurement instrument 
would cover the full range of relevant functional 
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activities, with a sufficient number of increments 
in response categories to measure differences across 
the functional continuum.

Because there is no gold standard for the defini
tion or measurement of health status, there is not 
one definitive test for the construct validity of a 
health status measure. Rather, construct validation 
is a process of accumulating evidence from empiri
cal tests of hypotheses. These hypotheses rest fun
damentally on the definition of the construct, the 
structure and relationships of its components, and 
relationships to other relevant concepts. There are 
many hypotheses that can be constructed about 
the structure or behavior of a construct; therefore, 
the validation process is incremental, requiring 
evidence from various studies to provide a reason
able level of confidence about the validity of con
clusions made using the instrument. On the other 
hand, one sound negative validation study can put 
the validity of the construct in question. Using a 
hypothetical physical function scale X as an exam
ple, we might hypothesize that physical function 
would decline with increased health problems and 
test the correlation between scores on Scale X and 
those of a previously validated index of comorbid 
health problems. If a meaningful association 
between the two measures could not be demon
strated, this would be considered a negative study. 
Under these circumstances, the validity of physical 
function as a construct would be questioned, and 
the definition and theory underlying it would be 
reassessed. However, interpretation of construct 
validation studies is complicated by the fact that 
these empirical tests examine the validity of the 
construct and the validity of the measure itself in 
the application under study. In this example, per
haps physical function was a valid construct, but 
the instrument did not adequately represent it. 
Therefore, a negative study may mean that (1) the 
construct is not valid, (2) the construct is valid but 
the instrument is inadequate to measure it under 
the circumstances, or (3) both.

Validity and the Three Cs: Content,  
Criterion, and Construct Validity

The literature on validity contains references to 
many types of validity, which can cause confusion 
about the fundamental concepts involved. Histori
cally, validity was often viewed as a characteristic 

of the measurement instrument, having three sep
arate components: content, criterion, and con
struct validity. Criterion and construct validity 
have been further divided into several categories, 
with various naming conventions depending on 
study designs employed. Content validity addresses 
the degree to which the questions included in the 
instrument sample the full range of the attribute 
of interest. For example, for physical function, 
one would ask whether the instrument of interest 
provides questions at the lowest level of function 
and at the highest possible level, with adequate 
sampling in between. Criterion validity refers to 
the process of validation when there is a gold stan
dard against which the instrument of interest can 
be compared. In contrast, construct validity refers 
to when there is no gold standard, and the mea
sured variable is a construct. Finally, face validity 
is a term readers may find in validity studies, 
which refers to whether the instrument measures 
what it is meant to measure “on the face of it.” 
Face validity can be placed within the realm of 
content validity. It usually signifies that research
ers or instrument developers elicited the opinion 
of experts in the field on whether the instrument 
represents key components of the construct of 
interest.

More recently, there has been a shift toward 
viewing validity in terms of the inferences to be 
made from the data produced by an instrument. 
Ultimately, the goal of construct validation is to 
establish the level of confidence with which infer
ences can be made using the instrument. Therefore, 
the purpose of the application must be considered 
in developing hypotheses for testing validity. It is 
common for instruments to be applied for different 
purposes than those for which they were originally 
intended, and the evidence for the validity of infer
ences made for novel applications must be assessed.

Approaches to Assessing Construct Validity

Extreme Groups

One approach to assessing the construct validity 
of an instrument is to test it on two groups chosen 
for their divergent characteristics relative to the 
construct. This can be called extreme groups, 
known groups, or discriminative validity testing. 
In the case of health status measures, one group 
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would be chosen for its low level of health relative 
to a second group. The research question would be 
whether the scores for each group were different, 
indicating that the measure could discriminate 
between the two groups. A range of indicators can 
be used to define the two groups, such as the pres
ence of a particular diagnosis, number of comor
bidities, or level of healthcare utilization. It is 
worth emphasizing that a negative study may 
mean that (a) the construct is not valid, (b) the 
instrument is not valid applied under these circum
stances, or (c) both. These possibilities underline 
the need to consider the validity of inferences from 
an instrument relative to the range of evidence in 
support of its use for a particular purpose.

Convergent Validity

Hypotheses are developed to test whether  
the instrument of interest correlates with other 
measures of the same construct. For example, in 
assessing the validity of a generic health index for 
costutility analysis in spine disorders, a study was 
conducted to test correlations between several of 
the most widely used instruments for this purpose, 
finding correlations ranging from .57 to .72. In 
this case, the research hypothesis was that the 
instrument of interest would demonstrate a posi
tive correlation with other instruments designed 
for the same general purpose. Do correlations 
from .57 to .72 support the validity of inferences 
made for medical decision making using these 
instruments among persons with spinal disorders? 
It is important to consider and explicitly address 
the acceptable range of correlation necessary to 
support validity when designing construct valida
tion studies. The possible range of correlation 
coefficients is from −1, indicating perfect inverse 
relationship, through 1, indicating perfect positive 
relationship and includes 0, which indicates no 
association. Due to the existence of measurement 
error, the coefficient estimate must be less than 1. 
Furthermore, when correlating two measurement 
instruments, the maximum value for the correla
tion coefficient is given by the square root of the 
product of their reliabilities. In other words, the 
maximal correlation between two measurement 
instruments is likely to be meaningfully lower than 
1.0. For example, for two instrument reliabilities 
of .88 and .90, the maximum correlation possible 

between them would be .89. For instruments 
designed for the same general purpose, such as 
health indexes for costutility analyses, differences 
in construct definition or conceptual frameworks 
underpinning the design would contribute to dimi
nution of correlation from this maximal value. 
With this in mind, the correlations noted above 
between health indexes could be considered mod
erate to strong evidence of construct validity. In 
the case of testing a new instrument, extremely 
high correlations may be evidence of redundancy 
and require revisiting the rationale for the creation 
of a new instrument. Under these circumstances, 
the new instrument should provide important 
practical advancements or meaningful improve
ments in face or content validity.

Experiments are also conducted to assess cor
relations of the instrument of interest with mea
sures of other related constructs. For example, it 
may be hypothesized that a generic health index 
applied among persons with spine disorders would 
correlate with a diseasespecific disability index. 
Both of these approaches are called convergent 
validity, and in practice, multiple measures are 
used for comparison. Depending on the construct 
used for comparison, the degree of correlation 
expected will vary.

Discriminant Validity

To be a valid measure of health status, a new 
instrument not only should correlate with mea
sures of similar and related constructs, but should 
not correlate with unrelated variables. Investigators 
ask, “What variables or constructs should not be 
correlated with the measure in question?” and 
design experiments to assess the relationship 
between the instrument and a seemingly unrelated 
variable. An unanticipated association may guide 
instrument developers to areas of potential 
improvement in the instrument.

Assessing the Internal Structure  
of the Construct

Assessing the internal structure of an instrument 
in relation to the theoretical framework for the 
construct can make important contributions to 
evidence for construct validity. Factor analysis is 
a key analytic tool that is used to describe the 
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relationships between questions or items in an 
instrument. For example, factor analysis can be 
used to test whether a health status measure 
designed to represent five dimensions of health 
(e.g., physical function, symptoms, mental health, 
selfcare, and usual activities) actually represents 
five separate dimensions. If the questions within 
the instrument are found to aggregate in three 
major groupings, this would call into question  
the fivedimension definition of the construct. 
Alternatively, for measurement instruments 
designed to tap only one dimension, factor analy
sis can be used to confirm that only one dimen
sion is included in the construct.

Christine M. McDonough
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HealtH status measurement, 
Face and content validity

Health status measurement is a fundamental 
part of healthcare disciplines, for example, 
medicine, nursing, and clinical psychology. 
Health status refers to the perceptions of a per
son with respect to his or her health condition. 
Measuring health status is really a process in 
which a systematic and standardized attempt is 
made to observe an often complex clinical phe
nomenon. Health status measurement instru
ments are essential for this purpose. Instruments 
of health status measurement predominantly 
focus on overall wellbeing, functional status, 
symptom status, disease burden, healthrelated 
quality of life, psychological wellbeing, or satis
faction with care. Health status measurement 
has a significant impact on medical decision 
making. It provides important data and a plat
form for clinicians to monitor health conditions, 
predict clinical outcomes, assess the burden of a 
disease condition, and evaluate treatment effects. 
All health status measurements, from clinician
rated to patientreported outcomes, should 
require convincing evidence that the clinical 
judgments or inferences drawn from scores on 
measurement instruments are valid and clini
cally useful.

Face and content validity are part of instru
ment development and validation, which pro
vides theoretical support and some sorts of 
evidence about the validity of a health status 
measurement. Content validity refers to the 
degree to which the content and structural for
mat of a health status measurement instrument 
are relevant to and representative of the intended 
construct (an abstract or a general idea, e.g., 
healthrelated quality of life) for particular char
acteristics of the client and purposes of the mea
surement. Face validity is a component of content 
validity that provides an additional attribute of 
the health status measurement instrument. It per
tains to whether the content domains or items in 
a scale and their relation to the measurement 
purpose look valid to target respondents. Ensuring 
face validity is a minimum prerequisite for accep
tance of a health status measurement instrument 
for target respondents.
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Significance in Validity

The term validity refers to the degree to which a 
test or a measurement instrument measures what it 
purports to measure. Test validity encompasses 
reliability, validity, sensitivity, and responsiveness 
to change, which are interrelated and mutually 
inclusive to contribute to different aspects of evi
dence of the validity of a measurement instrument. 
Such lines of evidence include numerical analysis 
of internal structure of the instrument by correlat
ing scores among items and with external criteria 
(other established instruments).

Face and content validity comprises a category 
of validity. The concept of face and content valid
ity was first introduced into the literature of edu
cational and psychological testing in the early 
1940s. Face and content validity involves not only 
a qualitative process but also a numerical analysis 
to ensure that the measurement instrument as a 
whole has enough items and adequately covers the 
domain of content as well as having suitable struc
tural format in the earliest stage of instrument 
development and validation. David Streiner and 
Geoffrey Norman, in 2003, pointed out the impor
tance of face and content validity in measuring 
validity, in which the higher the content validity of 
an instrument, the broader are the inferences that 
can validly be drawn about the client under a vari
ety of conditions and in different situations. Face 
and content validity is a fundamental requirement 
of all health status measurement instruments and is 
a prerequisite for establishing other types of valid
ity. This initial stage of instrument development 
and validation is the most crucial, and no amount  
of psychometric analyses can transform an ill 
conceived instrument into a good one.

Aspects of Face and Content Validity

There are several aspects of face and content validity: 
content domains, structural format, and target pop
ulation. A content domain comprises the definition 
and dimension of the measurement of construct as 
well as the content items that are specific to the char
acteristics of the client and purposes of the measure
ment. The structural format includes the instructions  
to respondents, item wording, item format (question 
vs. statement) and item response form (ordinal vs. 
interval scale), temporal parameters of responses 

(timed vs. untimed), item weighting (equal vs. differ
ent weight in contributing to the total score), and 
scoring methods (summative score vs. transforming 
the raw score). Target population refers to the popu
lation for whom the instrument is to be applicable or 
to the patients who have a particular health condi
tion or illness. All these aspects can affect the degree 
to which the observed data tap into the intended 
construct and the interpretation of the observed 
scores. Most important, they can influence the clini
cal judgments or inferences drawn from scores on 
the instrument and, thus, medical decisions.

Methods

Content validation occurs throughout the develop
ment of a health status measurement instrument. 
The ultimate goal of content validation is to maxi
mize item coverage and relevancy so as to ensure 
that the health status measurement instrument com
prises items that are relevant to and representative 
of the intended construct for the particular charac
teristics of the client and purposes of the measure
ment. It should be borne in mind that the content 
domains and items generated in content validation 
may change after other types of validity testing.

Item Coverage

Content coverage refers to the degree to which 
the content is adequate and representative for the 
intended construct and the purpose of the measure
ment. The extent of item coverage is not amenable 
to exploration by numerical analysis. It depends 
largely on the process of item generation. Subject
matter expert (e.g., clinician’s) judgment, the patient
asexpert method, clinical observation, theoretical 
modeling, and literature review are the most com
monly used approaches to item generation. Expert 
judgment is formed on the basis of a clinician’s 
years of experience in the subject area. Clinicians 
who have extensive experience with the subject 
matter can explain the health status of particular 
salience to the intended construct from their per
spective. The patientasexpert method fulfills a 
basic requirement of patientreported outcome 
instruments (e.g., conditionspecific healthrelated 
qualityoflife instruments), in which the content 
should be generated from relevant patients. Patients 
can articulate what they feel and can explain the 
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areas of salience and concern associated with their 
health conditions. Clinical observation in a system
atic manner helps suggest items. Theoretical model
ing provides a conceptual foundation underlying 
the development of a measurement instrument and 
helps inform the hypothesized dimensions of the 
measurement construct so as to guide the develop
ment of the content domain. A review of published 
literature (subjectarea research and previous mea
surement instruments) provides additional items  
to avoid possible omission of items that could be 
clinically significant. These methods are not mutu
ally exclusive but depend on the nature of measure
ment instruments.

Exploratory indepth qualitative interviews and 
focus group discussions with subjectmatter experts 
and patients suffering from the illness and/or their 
families are the most efficient techniques to gener
ate items. There are no hard rules governing the 
use of expert judgments and the patientasexpert 
method, such as how many experts or patients to 
use, or how to handle differences among the 
experts or patients. The criterion often used in 
qualitative interviews is sampling to redundancy; 
that is, interviewing people until the point at which 
no new significant themes emerge. Normally, two 
or three focus groups with 6 to 12 informants and 
a facilitator in each group are needed. It should be 
borne in mind that the informants should repre
sent the full diversity of subjectmatter experts and 
patients with illness to minimize bias elicited from 
underrepresented or overrepresented samples.

Item writing and structural format planning  
are essential to content validation, which should 
include input from subjectmatter experts, linguis
tic experts, and psychometricians. The characteris
tics of the target population, including age and 
reading comprehension level, are the major consid
erations in selfreported instruments. Focus group 
discussion with members of the target population 
can be used to assess the face validity of the instru
ment. In focus groups, participants can comment 
on the clarity, understandability, and appropriate
ness of all instructions and content items and 
check on the most appropriate wording.

Item Relevancy

Content relevance refers to the congruence 
between the measurement content and the purpose 

of the measurement. All the items that are included 
should be relevant to the construct being mea
sured, and any irrelevant items should be excluded. 
Items that are not related to the construct could 
introduce errors in the measurement. A health sta
tus measurement instrument aiming to assess sore 
mouth, for example, should include items relating 
to all relevant issues associated with sore mouth, 
such as mouth pain and difficulty in eating. 
Irrelevant items, such as headache, should be 
excluded. Otherwise the instrument would dis
criminate among the patients on some dimension 
(headache) other than the one purportedly tapped 
by the instrument (sore mouth), and this has impli
cations for medical decision making.

Item relevance is commonly approached by 
using several reviewers to critically evaluate whether 
individual items and the entire instrument are rele
vant to the construct being measured. Irrelevant, 
redundant, and ambiguous items should be excluded. 
Reviewers also comment on other aspects of con
tent validity (e.g., item formats and response forms, 
item weighting, and scoring). Reviewers should be 
chosen to include subjectmatter experts, psycho
metricians, and the target population (e.g., patients). 
A minimum of five reviewers are needed to provide 
a sufficient level of control of error variance result
ing from chance agreement. The underlying mea
surement construct and the general goal for 
measurement should be provided to the reviewers. 
This information allows the reviewers to have the 
necessary theoretical background to provide a com
prehensive review of the construct and to determine 
whether the proposed format and wording yield the 
appropriate level of validity. The interrater agree
ment (IR) and content validity index (CVI) are com
monly used to check the relevancy of items by the 
degree of agreement among the reviewers in evalu
ations of the measurement content. IR and CVI 
calculations should apply to both individual items 
and the entire instrument. CVI is derived from the 
rating of the content relevance of the items on an 
instrument using a 4point ordinal rating scale: 1, 
not relevant; 2, somewhat relevant; 3, relevant; and 
4, very relevant. The actual CVI is the proportion 
of items rated 3 or 4 by the reviewers. IR is com
puted by adding the number of agreements among 
the reviewers (all items rated 1 or 2 by all reviewers, 
plus all items rated 3 or 4 by all reviewers) and 
dividing by the total number of items.
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Alternatively, the entire instrument can be 
administered to a group from the target popula
tion as a pretest. All the participants are then inter
viewed to determine whether they find the items to 
be relevant and important.

Karis K. F. Cheng
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HealtH status measurement, 
Floor and ceiling eFFects

Floor and ceiling effects refer to specific limita
tions encountered when measuring health status 
scores. Floor effects occur when data cannot take 

on a value lower than some particular number; 
ceiling effects occur when data cannot take on a 
value higher than an upper limit. Health status 
instruments or surveys that are used to assess 
domains or attributes of health status use a rating 
scale. This is commonly a Likert scale with rating 
scales between 1 and 10, for example. There are 
limitations to the use of such instruments when 
measuring health status for either evaluative or 
discriminative purposes. An awareness of these 
limitations is important because of the problems 
that can occur in the interpretation of the results 
obtained when measuring health status, regardless 
of the domain being measured or the instrument 
that is being used. In interventional clinical trials, 
the degree to which health status changes is an 
important outcome; and the results of a study can 
be affected by floor and ceiling effects. In cost 
effectiveness evaluations, the denominator of the 
ratio reported could be higher or lower than 
anticipated if there is a floor or ceiling effect. 
Therefore, recognizing ceiling and floor effects, 
and doing the best to minimize or eliminate these 
limitations, is important for studies that affect 
medical decision making. This entry further defines 
floor and ceiling effects, discusses how these effects 
are typically detected and potentially accounted 
for, provides examples of ways researchers try to 
minimize these scaling effects, and discusses the 
implications of floor and ceiling effects on ran
domized clinical trials and policy decisions. Finally, 
newer psychometric methods that are emerging to 
minimize such effects are briefly discussed.

Definitions

A ceiling effect occurs when the majority of scores 
are at or near the maximum possible score for the 
variable that the health status survey instrument is 
measuring. The survey instrument cannot measure 
scores above its ceiling. If a high percentage of 
people score at the top of a scale, it is impossible to 
detect an improvement in health for that group. 
Measures of activities of daily living (ADL) often 
have ceiling or floor effects in certain populations. 
For example, some individuals with specific chronic 
diseases such as stroke may exhibit high ceiling 
effects on more general surveys of health status, 
thus limiting the ability to distinguish certain 
aspects of health status between individuals scoring 
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at the ceiling. Ceiling effects are particularly impor
tant limitations when researchers are looking for 
the impact of treatment interventions on changes in 
health status. A floor effect occurs when the major
ity of scores are at or near the minimum possible 
score for the variable that the health status survey 
instrument is measuring. If a high percentage of 
people score at the bottom of a scale, it is impos
sible to detect a decline in health for that group. In 
clinical trials, for example, floor effects occur when 
outcomes are poor in the treatment and control 
conditions.

There are numerous health status measurement 
survey instruments that are generally divided into 
generic and diseasespecific measures. Common 
examples of generic health status questionnaires 
for individuals with chronic diseases include sev
eral iterations of the Medical Outcomes Study 
survey and the EuroQol (EQ5D). Some examples 
of diseasespecific health status questionnaires 
include the Chronic Heart Failure Questionnaire 
(CHQ) and the Peripheral Artery Questionnaire.

Effects can vary by instrument. For example, 
comparative examinations of the SF6D and 
EQ5D across seven patient/population groups 
(chronic obstructive airways disease, osteoarthri
tis, irritable bowel syndrome, lower back pain, leg 
ulcers, postmenopausal women, and the elderly) 
revealed evidence of floor effects in the SF6D and 
ceiling effects in the EQ5D. This suggested that 
the SF6D tended to discriminate better at higher 
levels of function and had heavy floor effects, 
while the EQ5D performed in the opposite  
manner—it did well at lower levels of function, but 
had high ceiling effects. The choice of an instru
ment depends on what one wishes to measure. If 
the population has considerable morbidity, the 
EQ5D may be a better choice. For a generally 
healthy population, the SF6D may be the better 
choice. Another illustrative example is that of the 
problems encountered in the Veterans Health 
Study that used the MOSVA. The VA had to 
extend the MOS SF12/36 to include some instru
mental activities of daily living (IADL)/ADL type 
times because of floor effects that occurred with 
the standard MOS. The pervasiveness of ceiling 
and floor effects has prompted the quest for a 
more appropriate approach to health status ques
tions to accurately assess the health status of indi
viduals and populations.

Detecting Ceiling and Floor Effects

Traditionally, classical test theory (CTT), a type 
of psychometric theory that analyzes measure
ment responses to questionnaires, has been used 
to evaluate the psychometric properties of health. 
Determining if a floor or ceiling effect exists 
requires an examination of the acceptability of 
the distribution of scores for the health domains 
obtained from the health status instrument. 
Measures of central tendency of the data, includ
ing mean and median, as well as the range, stan
dard deviation, and skewness are used for such 
purposes. A score would generally be considered 
acceptable if the values are distributed in a nor
mal or bellshaped curve, with the mean near the 
midpoint of the scale. Floor effects can be deter
mined by examining the proportion of subjects 
with the lowest possible scores. Similarly, ceiling 
effects are calculated by determining the propor
tion of subjects who achieved the highest possible 
score. Criteria for defining floor and ceiling 
effects are controversial. Some recommend a 
skewness statistic between −1 and +1 as accept
able for eliminating the possibility of a floor or 
ceiling effect.

Dealing with scales where the distribution is 
skewed, that is, where there is a ceiling or floor 
effect, is most problematic when comparing groups, 
as many statistical procedures rely on scores being 
evenly distributed. Making comparisons between 
groups in a clinical trial, or testing the effect of an 
intervention, may require additional advanced  
statistical techniques to adjust or account for the 
skewness of the data.

Minimizing Ceiling and Floor Effects

There are considerable conceptual and method
ological challenges that confront users of health 
status instruments. Some individuals believe that 
ceiling and floor effects can be managed with sta
tistical techniques. Others believe that these effects 
can be avoided or minimized by using disease
specific health surveys. Other options are to begin 
with a generic survey and use the diseasespecific 
survey only if a ceiling or floor effect is observed. 
Still others believe that valuable information about 
the quality of life for individuals can be obtained 
by using both types of surveys.
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Implications in Clinical Trials

Increasingly, researchers believe that measures of 
health status should be included in clinical trials. 
Historically, clinical research has focused on labo
ratory outcomes such as blood pressure, choles
terol, HgbA1C, morbidity, and/or mortality. These 
have been the outcomes measures of greatest inter
est to researchers, clinicians, and patients.

It is now necessary to employ health status mea
sures to obtain a comprehensive assessment of 
practical health outcomes for individuals enrolled 
in clinical trials. The selection of the survey depends 
on the objectives of the evaluation, the targeted 
disease and population, and psychometric charac
teristics. Many of the diseasespecific health status 
measures are sensitive to the occurrence of clinical 
symptoms or relatively small differences between 
treatment interventions—in particular, those stud
ies examining the effect of medications—thus 
reducing the possibility of ceiling effects. Detecting 
worsening health among people who are already ill 
presents a different challenge. Low baseline scores 
make it difficult to detect health status decline, 
arguing again for diseasespecific measures to avoid 
floor effects. In general, if one encounters a floor or 
ceiling effect in a study using a general health status 
measure, then a diseasespecific measure, which is 
purposefully designed to be responsive to disease 
progression and/or treatment responsiveness issues, 
should be administered as well.

Diseasespecific measures are believed to be more 
sensitive to treatment effects; however, a number of 
generic health status measurement scales have dem
onstrated the ability to discriminate between groups 
and clinical responsiveness. Thus, while many argue 
for the exclusive use of disease and domainspecific 
measures for different disease conditions, the gen
eral recommended approach in randomized clinical 
trials of new medical therapies is to incorporate 
both generic and specific instruments to comprehen
sively assess health status. It may be worthwhile to 
pilot measures in the type of population to be stud
ied, thus establishing that the measures adequately 
represent the health of the population before using 
them to establish the effectiveness of interventions. 
There is general agreement on the need for more 
comprehensive measures with multiple domains and 
multiple items to detect subtle changes in both 
healthy and severely ill populations.

Policy Implications

Because health status measures can provide com
parisons across conditions and populations, they 
are of interest to policy and decision makers. Such 
information has the potential to improve the qual
ity of care and establish reasonable reimbursement 
practices.

These measures are also of interest to clinicians 
because they help to determine the impact of 
therapeutic interventions and quality of life in their 
particular patient populations. Health status mea
sures may provide clinicians with information not 
otherwise obtained from patient histories. Surveys 
can be selfadministered, scanned, and used to 
provide rapid feedback of health status data—a 
phenomenon already occurring in many parts of 
the United States.

However, these measures must also be inter
pretable by policy and decision makers, and chal
lenges exist in ensuring that decision and policy 
makers and clinicians understand these more com
plex scaling issues with health status measures. 
Without a full understanding of the concepts and 
methods, results could impart an incorrect mes
sage to a clinician or policy maker and ultimately 
discourage continued use of the measure. Strategies 
to make scores interpretable have been described. 
For an evaluative instrument, one might classify 
patients into those who experienced an important 
improvement, such as change in mobility, and 
those who did not and examine the changes in 
scores in the two groups. Data suggest that small, 
medium, and large effects correspond to changes of 
approximately 0.5, 1.0, and greater than 1.0 per 
question for instruments that present response 
options on 7point scales.

Item Response Theory

CTT remains the dominant theory of measuring 
health status by researchers and clinicians. However, 
in the field of psychometrics, CTT is becoming out
dated and replaced by more sophisticated, complex 
models. Item response theory (IRT) potentially  
provides information that enables a researcher to 
improve the reliability of an assessment beyond that 
obtained with CTT. Although both theories have 
the same aims, IRT is considered to be stronger in 
its ability to reliably assess health status. IRT allows 
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scaling of the level of difficulty of any item in a 
domain (e.g., physical function). Thus, theoreti
cally, an item bank could have hundreds or thou
sands of survey questions covering a huge range of 
capabilities in a domain. Computerized adaptive 
testing (CAT) is a way of iteratively homing in on a 
person’s level of ability in a particular domain by 
selectively asking questions across the broad domain 
and narrowing the estimate of ability by selecting 
new items to ask the person based on his or her 
responses to previous items. For example, if a per
son has told you that he or she can run a mile, there 
is no need to ask if he or she can walk one block. 
CAT could potentially eliminate floor and ceiling 
effects by having an item bank so broad that all 
meaningful levels of ability are covered.

However, the newer models are complex and 
spreading slowly in mainstream research. It is rea
sonable to assume that IRT will gradually overtake 
CTT, but CTT will likely remain the theory of 
choice for many researchers, clinicians, and deci
sion makers until certain complexity issues associ
ated with IRT can be resolved.

Barbara A. Bartman
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HealtH status measurement, 
generic versus condition-
sPeciFic measures

Many measures of health status have been devel
oped in the past decade for describing health out
comes and quantifying the changes. The term 
health status measure is often used interchangeably 
with other terms such as health measure, health-
related quality of life, or quality-of-life measure 
even though the scope and definition of each term 
might not be the same. Health status measurement 
is defined as an instrument used to describe an 
individual’s health state as defined by the descrip
tive system developed for each instrument.

Health status measurement can be classified into 
two main categories: generic measure and condi
tionspecific measure. A generic measure is designed 
for use across a wide range of conditions, treat
ments, and populations. It is applicable to different 
subgroups in the general population or patient 
groups with various conditions or interventions. In 
contrast, a conditionspecific measure is designed 
for measuring outcomes affected by a given condi
tion only, for instance, lung cancer or arthritis. A 
conditionspecific measure is tailormade and is not 
supposed to be used for other conditions/diseases  
or the general population. A generic measure is 
de signed to be applicable to any population; thus, it 
allows for meaningful comparisons between health
care programs or interventions even if the involved 
patients or treatments may be different. In general, 
a generic measure has a descriptive system covering 
common domains of health so as to be relevant to 
everyone. Such core domain design, however, might 
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be inappropriate or insensitive for some specific 
conditions. On the other hand, a conditionspecific 
measure is more sensitive to the degree of severity 
of condition and change over time, since the mea
sure can focus on the most important domains 
affected by the condition. It can also include 
domains that are relevant to the condition but that 
are often missed by generic measures so that the 
relevant consequences of the condition can be cap
tured. However, the conditionspecific measure, 
which focuses on domains of interest or importance 
affected by the condition, does not allow compari
son between different conditions.

For any measurement, there are two principle 
elements—the description and valuation. In a 
health status measure, the description is based on 
establishing a nominal descriptive system with 
which the defined health may be expressed in terms  
of key domains of interest. In other words, the 
descriptive system comprising chosen domains 
reflects the health definition adopted by the instru
ment developers. There exist discrepancies between 
measures in terms of their health domains of inter
est, and, as a consequence, the descriptive system 
varies among measures. For instance, some mea
sures have taken a broader approach toward 
health, including the aspect of participation in 
society as one of the health domains even though 
it is arguable that social activities or role perfor
mance are not matters of health, per se. Others 
have chosen the “within skin” approach, focusing 
on impairment or inability of the individual only. 
A health status measure in which health itself is 
expressed as the domain of interest is also called a 
multi-attribute health status measure. Again, the 
definition of health varies from one measure to 
another and it should be borne in mind that there 
is no single measure with a descriptive system that 
captures all aspects of health.

Another key component for measurement is 
valuation. To perform valuation is to determine  
a set of weights associated with elements of a 
descriptive system. Thus, with this set of weights 
(commonly known as the scoring system for an 
instrument), scores can be calculated for domains 
or health states defined by the descriptive system. 
Various methods exist for eliciting weights, such as 
category scaling, visual analogue scale (VAS), time 
tradeoff (TTO), standard gamble (SG), and paired 
comparison. Different eliciting methods generate 

different values. For instance, the VAS value of a 
given health state is generally lower than the TTO 
score of the same state. In most measures of health 
status, however, all items score equally, with equal 
weight for each response level in an item and with 
all items of equal importance.

Generic Measure

Generic measures can be further divided into two 
categories: one is the preferencebased measure, 
also known as the indexbased measure, and the 
other is the profile measure, also known as the non
preferencebased measure. A preferencebased mea
sure offers a single summary numerical score for 
each health state defined by the instrument. This 
form of presenting a health outcome is particularly 
useful in economic evaluation, where a single index 
of healthrelated quality of life that summarizes 
health status utilities is needed. This is unlike a 
profilebased measure, which describes a health 
outcome by several different domains/dimensions 
in such a way that it is presented as a profile with 
several scores.

Preference-Based Measure

Due to the growth of economic evaluation, the 
popularity of the preferencebased measure that 
provides a single summary score as a healthrelated 
quality of life for qualityadjusted life year (QALY) 
calculation has boomed. Its ease of use and its off
theshelf service, providing a readymade question
naire and a set of weights, has led it to be widely 
adopted in costeffectiveness studies. There are 
many indexbased measures available, and the 
most commonly seen include the Quality of Well 
Being (QWB) scale, the Health Utility Index Mark 
2 and 3 (HUI2/3), the EQ5D, and the SF6D. The 
following sections give a brief introduction to the 
EQ5D and the HUI2/3. The interested reader can 
refer to additional sources, such as the books by 
McDowell and by Brazier and his colleagues, as 
listed in the Further Readings. It should be noted 
that each measure varies considerably in several 
aspects, such as the chosen domains in the descrip
tive system, the eliciting method, and the sample 
population for conducting the valuation. Therefore, 
the values obtained by each measure do not neces
sarily agree with one another.
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EQ-5D

The EQ5D is a generic preferencebased mea
sure of health status developed by the EuroQol 
Group. Established in 1987, this group of multi
disciplinary researchers from Europe designed the 
EQ5D as a simple and generic measure to be used 
alongside other generic or conditionspecific mea
sures. Nowadays, the EQ5D is one of the most 
widely used generic measures and has more than 
100 official translations available.

The EQ5D has two main components—the 
EQ5D descriptive system and the EQ visual ana
log scale (EQ VAS). The EQ5D descriptive system 
comprises the following five dimensions: (1) mobil
ity, (2) selfcare, (3) usual activities, (4) pain/ 
discomfort, and (5) anxiety/depression. Each 
dimension has three levels: (1) no problems, (2) some 
problems, and (3) severe problems. The respon
dent is asked to choose the most appropriate state
ment in each of the five dimensions. The EQ VAS 
is a vertical 20centimeterlong thermo meter with 
the lower and upper end points valued at 0 and 
100 and labeled as “Worst imaginable health 
state” and “Best imaginable health state,” respec
tively. The respondent rates his or her current 
health state on the EQ VAS.

A total of 243 (35) possible health states is 
defined by this fivedimensional, threelevel descrip
tive system. Each health state can be assigned a 
single summary index score on what is known as 
the EQ5D index by applying a scoring algorithm 
that essentially attaches values (also called weights) 
to each of the levels in each dimension. An algo
rithm normally is derived from the valuation of a 
set of EQ5D health states in general population 
samples. The most widely used value set (EQ5D 
index scores for each of 243 health states) is the 
TTObased set of values obtained from the 
Measurement and Valuation of Health (MVH) 
study in the United Kingdom, for which a repre
sentative sample consisting of 3,395 subjects from 
the general population was interviewed. Many 
other countryspecific value sets have been devel
oped, including ones for the United States, the 
Netherlands, Japan, and so on. There are three 
ways of reporting EQ5D results: (1) the EQ5D 
health state, a profile reporting the problem level in 
each dimension; (2) the EQ5D index score, repre
senting social preference for the health state defined 

in the descriptive system; and (3) the EQ VAS 
score, a selfrated health score based on a VAS.

The EQ5D is designed for selfcompletion by 
respondents and can also be interviewer adminis
tered in person or over the phone. More informa
tion can be obtained from the official EQ5D 
Web site.

HUI2/3

The Health Utility Index Mark 2 and 3 (HUI2/3) 
are generic preferencebased health status mea
sures. HUI instruments are designed to provide 
utility scores for health outcomes evaluations. The 
first version of a HUI instrument (HUI Mark 1) 
was created in the 1970s to evaluate the outcomes 
of neonatal intensive care. HUI measures have 
continued to develop, and there are now two ver
sions available: HUI2 and HUI3. The HUI2 was 
initially designed for measuring longterm out
comes of treatment for children with cancer and 
now can be used as a generic measure. The latest 
version, HUI3, was developed to address some 
issues of the HUI2 by extending and altering the 
attributes of its predecessor version.

Based on survey results from parent and child 
pairs and a literature review, the HUI2 consists of 
seven attributes (domains), such as (1) sensation, 
(2) mobility, (3) emotion, (4) cognition, (5) selfcare, 
(6) pain, and (7) fertility. Each attribute has three to 
five levels of function, and therefore, the HUI2 
defines up to 24,000 unique health states. Removing 
attributes of fertility, replacing selfcare with dexter
ity, and adding distinct components of sensation to 
the HUI2, the attributes addressed in the HUI3 are 
vision, hearing, speech, ambulation, dexterity, emo
tion, cognition, and pain; each attribute has five to 
six levels. As stated above, the HUI2 is a generic 
measure for adults; it can also apply to child popu
lations after removing the attribute of fertility. In 
total, the HUI3 defines 972,000 unique health 
states. The choice of attributes in the HUI has been 
based on the “within the skin” approach—focusing 
on the most fundamental and important attributes 
of physical and emotional health status, and exclud
ing aspects of participation in society, such as social 
activity or role performance.

The HUI2 scoring algorithm was developed 
from the valuation of a random sample of 293 
parents of schoolchildren in Hamilton, Ontario, 
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Canada. Both VAS and SG methods were adopted 
to elicit values from the sample. The scoring sys
tem was developed based on the multiattribute 
utility theory, where utility function for each attri
bute was estimated separately and multiplicative 
function form was adopted in the final scoring 
formula. A power transformation was developed 
to convert values of health state measured by a 
VAS into utility as elicited by the SG method. The 
scoring formula of the HUI3 uses a similar approach 
based on responses from a representative sample 
of 504 adults from Hamilton, Ontario.

Further information on the HUI instruments 
can be found at the Health Utilities Inc. Web site.

Profile Measure

Several generic health profile measures have been 
developed and are available in the literature, such as 
the Sickness Impact Profile, Nottingham Health 
Profile, Short Form 36, Short Form 12, WHOQOL
BREF, and so on. Following is a brief introduction 
to the Sickness Impact Profile and Short Form 36. 
The interested reader can refer to additional sources, 
such as the book by McDowell or the one by 
Bowling, as listed in Further Readings.

Sickness Impact Profile

The Sickness Impact Profile (SIP) is a landmark 
instrument in the development of outcomes mea
surement. Its design had great influence on later 
measures such as the Nottingham Health Profile. 
The great care and thoroughness that went into its 
development are noteworthy. It was originally 
designed as a generic measure intended for use 
across different conditions and populations. The 
SIP can be either self or intervieweradministered.

The SIP is a behaviorally based measure of dys
function focused on assessing the way in which 
sickness changes daily activities and behavior. The 
development of its descriptive system took a bot
tomup approach, collecting statements for change 
in behavior attributable to sickness both from 
patients and individuals and from the literature. A 
total of 312 unique statements were identified and 
sorted into 14 categories by the research team. The 
final version contains 136 items in 12 categories, 
including ambulation (12 items), mobility (10), 
body care and movement (23), communication (9), 
alertness behavior (10), emotional behavior (9), 

social interaction (20), sleep and rest (7), eating 
(9), work (9), home management (10), and recre
ation and pastime (8). Respondents choose/check 
the items in each category that describe and are 
related to their health.

The score can be presented by category, by 
physical and psychosocial dimensions, or by a sin
gle overall score within a range of 0 to 100. A lower 
score indicates better health. The overall score for 
the SIP is calculated as the sum of the weights of 
items checked across all categories divided by the 
sum of the weights for all items multiplied by 100. 
The same principle is used for calculating two 
dimensional scores by limiting checked items to 
relevant categories only. Ambulation, mobility, and 
body care and movement form the physical dimen
sion, while communication, alertness behavior, 
emotional behavior, and social interaction consti
tute the psychological dimension. The weights were 
developed using equalappearing interval scaling 
procedures involving more than 100 judges.

More information can be obtained from the 
Medical Outcomes Trust Web site.

Short Form 36

One of the most widely used health profile mea
sures is the Short Form 36 (SF36) questionnaire. 
The SF36 originated from the Medical Outcome 
Study (MOS), initially designed to evaluate health 
utilization of different health delivery systems in the 
United States. The 36 items comprising the SF36 
were derived from longform measures of general 
health embodied in the MOS. Since its inception, 
the SF36 has been continually developed by Ware 
and coworkers, being used for collecting data from 
several U.S. national surveys to develop social 
norms. There are several available versions of this 
36item questionnaire, and variation exists among 
their scoring systems. There are, for instance, the 
SF36 by QualityMetric, the RAND 36Item Health 
Survey 1.0 by RAND, and the RAND36 HIS by 
the Psychological Corporation. There is also the 
SF36v2, the latest version of the SF36. This ques
tionnaire, developed by QualityMetric, is demon
strated here as an example.

Like its predecessor, the SF36, the SF36v2 con
tains 36 items. Thirtyfive items of the SF36v2 
cover eight health domains, such as (1) physical 
functioning (PF), (2) rolephysical (RE), (3) bodily 
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pain (BP), (4) general health (GH), (5) vitality (VT), 
(6) social functioning (SF), (7) roleemotional (RE), 
and (8) mental health (MH) scales. These domains 
are constructed with 2 to 10 items each, and each 
item has response levels ranging from three to five 
categories. The only item that does not contribute to 
any domain is the one measuring perceived health 
change. There are two forms available with differ
ent recall periods: standard (past 4 weeks) and acute 
(past 1 week). The questionnaire can be either self
completed or intervieweradministered in person or 
over the phone. The differences between Versions 1 
and 2 of the SF36 include a layout improvement, 
the wording of the items, and an increase in the 
response categories of 7 items from either dichoto
mous or sixcategory to fivecategory.

Item responses for each domain are summed 
and transformed (using a scoring algorithm) into a 
scale of 0 to 100, with a higher score representing 
better health. Apart from the domains of body 
pain and general health, the scoring algorithm for 
the rest of the domains assumes equal weights for 
each response level in an item and between items. 
The score can be further standardized into a mean 
of 50 and a standard deviation of 10 based on  
the U.S. population norm. Thus, a score above  
or below 50 is interpreted variously as above or 
below average. The 8domain score can be further 
summarized into a physical and a mental compo
nent summary (PCS and MCS) using the algorithm 
developed from the 1990 U.S. general population 
survey with factor analysis and the orthogonal 
rotation method.

Currently, there are several different lengths and 
versions of Short Form questionnaires available, 
including the SF12 and SF8. More information 
can be obtained from the QualityMetric Web site.

Condition-Specific Measure

As described earlier, the emphasis of condition
specific measures is on aspects of health affected 
by a condition. There might be some overlapping 
between generic and conditionspecific measures, 
but the latter have domains not included in generic 
measures or domains with more detailed scopes. 
For instance, conditionspecific measures might 
include domains measuring particular treatment 
effects or symptoms or focus greatly on some 
domains such as mobility or dexterity, depending 

on what is of interest in the condition. Recently, 
there has been growing attention placed on devel
oping preferencebased, conditionspecific mea
sures. The rationale is that the generic measure 
might not be appropriate for a given condition, 
and most conditionspecific measures do not pro
vide a summary score weighted by social prefer
ence for use in economic evaluation. Here, this 
entry introduces the Functional Assessment of 
Cancer Therapy (FACT) and briefly discusses its 
development into a preferencebased measure as 
an example.

Functional Assessment of Cancer Therapy

The FACT is a cancerspecific measure designed 
for use in the evaluation of intervention in various 
types of cancers. The FACT consists of a core set of 
items applicable to all types of cancer and  
cancerspecific supplements. The instrument has 
evolved, and its applications have been expanded 
to different chronic illnesses and conditions. Since 
1997, it has been renamed the Functional Assess
ment in Chronic Illness Therapy (FACIT). The 
FACTL, for lung cancer, is explained here.

The core set of 27 items applicable to all types 
of cancer is known as the FACTGeneral and com
prises four domains: physical wellbeing (7 items), 
social/family wellbeing (7), emotional wellbeing 
(6), and functional wellbeing (7). These domains 
were identified using factor analysis. Each item in 
the FACTGeneral has a fivelevel response. The 10 
items specific to lung cancer are labeled as addi
tional concerns, assessing coughing, breathing, 
smoking, and so on.

The Trial Outcome Index (TOI) can be com
puted for any FACT measure. It is the sum of 
physical wellbeing and functional wellbeing, 
plus additional concerns subscales. In the FACTL, 
a total of 21 items is used to calculate the TOI 
score. Like most conditionspecific measures, the 
FACT assumes that there is equal weight for each 
level in an item and equal importance among 
items. Such a scoring system might be sensitive 
enough for clinical purposes. However, it does not 
have the necessary properties required by eco
nomic evaluation.

The development of the preferencebased 
FACTL is aimed at addressing the above issue. A 
study conducted by Kind and Macran developed 
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a set of social preference weights for the FACTL. 
The approach adopted consisted in first revising 
items in the FACTL through both quantitative 
and qualitative methods to be amenable for valu
ation. The health states defined by the revised 
items were then valued by a sample of the United 
Kingdom’s general population using a VAS through 
a postal survey. Econometric methods were used 
to develop weights for 10 items of the FACTL 
based on the collected data. Thus, the derived 
utility weights of the FACTL can be used in cost
utility analysis legitimately.

More information about the FACT can be 
obtained from the FACIT Web site.

Choosing a Measure

Generic and conditionspecific measures can be 
seen as complementary measures to each other. 
One provides information for comparison across 
different populations, and the other offers the 
most relevant information on a given condition. 
However, when making the choice of measures—
whether to use generic with conditionspecific 
measures or choosing between a profilebased or 
a preferencebased measure—care must be taken 
with regard to the purpose of the measurement as 
well as the burden that this would represent for 
respondents. It should be borne in mind that 
there is no single measure with a descriptive  
system that captures all aspects of health, and  
the exclusion does count—elements missing from 
the descriptive system have an arbitrary zero 
weight.

Ling-Hsiang Chuang

See also EuroQoL (EQ5D); Health Status Measurement 
Standards; Health Utilities Index Mark 2 and 3 (HUI2, 
HUI3); SF36 and SF12 Health Surveys; Sickness 
Impact Profile
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HealtH status measurement, 
minimal clinically signiFicant 
diFFerences, and ancHor 
versus distribution metHods

When measuring quality of life, patient prefer
ences, health status, or other types of patient 
reported outcomes (PROs), the term minimal clini-
cally significant difference (MCSD) indicates the 
smallest amount of meaningful change or differ
ence that can be assessed by a PRO measure. The 
term meaningful change, in this context, refers to 
the smallest difference that is perceived by patients 
(or other stakeholders) as beneficial or harmful and 
that would lead to a change in treatment.

From this perspective, the MCSD is a numerical 
value, and PRO score differences that exceed this 
value are considered indicative of important or 
meaningful change. MCSDs vary across different 
PRO measures (i.e., a difference of 10 points may 
be indicative of meaningful change for one mea
sure but not another) and different populations 
(i.e., the same measure may have different MCSDs 
depending on the patient group being assessed).  
In practice, because of the difficulties inherent in 
establishing MCSDs, exact values are rarely identi
fied. More frequently, investigators specify a range 
of values within which the MCSD is likely to fall.

Investigators frequently emphasize that the 
MCSD does not necessarily correspond to the 
smallest detectable difference. In other words, not 
all improvements or declines that are noticeable are 
necessarily noteworthy. Despite consensus on this 
point, investigators often disagree as to which meth
ods allow determination of whether a difference is 
minimally important versus minimally detectable. 
This disagreement, in turn, may be linked to the 
noticeable variation in terminology that character
izes the MCSD literature. For example, although 
the current report employs the term minimally sig-
nificant clinical difference, this concept is frequently 
referred to as the minimal important difference, the 
clinically important difference, the minimal differ-
ence, the important difference, and other similar 
combinations of words and phrases.

Despite occasional disagreement over terminol
ogy, investigators have made significant progress 
toward developing MCSD methods, primarily 

because without some means to assess meaningful 
change, PRO data cannot be used effectively. For 
example, suppose in the context of a clinical trial 
that a group receiving a new drug scores a statisti
cally significant 8 points higher on a PRO measure 
of pain relief as compared with a placebo control 
group. Because statistical significance does not 
necessarily imply clinical significance, the investi
gators will be unable to conclude that the new 
drug provided a nontrivial benefit. In other words, 
without insight into the MCSD, there is no way to 
determine whether the drug’s ability to reduce pain 
is large enough to make a meaningful difference in 
patients’ lives. Similar issues arise when PRO data 
are employed in clinical, administrative, policy
making, or regulatory settings.

Given the complexity involved in identifying 
MCSDs, the current lack of a gold standard 
method for doing so is not surprising, although 
the health sciences appear to be converging 
toward a set of best practices. Currently, two 
different approaches are usually employed when 
identifying MCSDs: anchorbased and distribu
tionbased methods. Anchorbased methods rely 
on some external criterion of known significance 
against which changes in PRO scores can be cali
brated. Distributionbased methods rely primarily 
on the statistical properties of PRO sample values 
or the reliability of the PRO measure itself. The 
anchor and distributionbased approaches are 
described individually in the following sections, 
but many authors recommend that both should be 
employed when identifying MCSDs, as each 
method approaches the task from a conceptually 
distinct perspective.

Anchor-Based Approaches

The anchorbased approach relies on identifying 
an external criterion (i.e., an anchor) that is rela
tively interpretable, and then examining how dif
ferences in PRO scores map onto that anchor. 
Anchors can take many forms, including patients’ 
selfreports of change, clinical outcomes or condi
tions, or other events.

Jaeschke and his colleagues were one of the first 
groups to demonstrate the use of selfreported 
change using transition assessment items. Transition 
assessments are typically used in longitudinal 
investigations, such as clinical trials, in which 
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patients periodically complete a PRO measure  
as well as a selfreport transition item assessing 
whether the patient has experienced no change, 
small but important change, moderate change, or 
large change on the PRO of interest since the last 
assessment. Investigators essentially derive an esti
mate of the MCSD by computing the average dif
ference between consecutive PRO scores for the 
group reporting small but important change. This 
same approach also permits the identification of 
meaningful changes that are moderate to large in 
magnitude by computing the average difference 
score of the relevant groups. When transition 
assessment items are used, MCSDs for positive and 
negative change are sometimes derived separately, 
as some prior work has demonstrated asymmetries 
in the MCSD depending on whether a patient is 
improving or declining.

Although the anchorbased method is some
times equated with the use of transition assess
ments, clinically based anchors are also frequently 
employed by MCSD researchers. For example, as 
part of a study intended to determine the MCSD  
of the Impact of Weight on Quality of Life–Lite 
(IWQLL) instrument, the investigators catego
rized patients from several longitudinal studies into 
groups according to how much weight they had 
lost. To derive the MCSD, the investigators calcu
lated the average difference score from the IWQLL 
for the group that had lost from 5% to 9.9% of 
their original weight, the smallest amount deemed 
meaningful by the Food and Drug Administration.

Clinical anchors vary across studies, depending 
on the patient population. Investigators frequently 
advocate using multiple anchors, which are usually 
chosen because they are related conceptually and 
statistically to the PRO of interest. For example, 
when establishing MCSDs for some of the 
Functional Assessment of Cancer Therapy (FACT) 
scales, investigators used hemoglobin level, perfor
mance status, and response to treatment as anchors. 
All three predict and are clinically relevant to the 
cancer outcomes assessed by the FACT.

Anchors not only can be based on different cri
teria (e.g., patients’ perceptions, clinical factors) 
but may also be derived from studies with different 
methodological designs. Although withinsubject 
anchors are frequently used (e.g., transition assess
ments), anchors derived from betweensubjects or 
crosssectional comparisons are also possible. For 

example, the difference score between two groups 
that differ in clinically important ways (e.g., 
healthy individuals vs. hypertensives) has some
times been used as an indicator of the MCSD for a 
given PRO measure.

Some authors have suggested that anchorbased 
methods are superior to distributionbased meth
ods because only the former provide direct infor
mation about the importance or meaningfulness of 
a change. However, anchorbased methods have 
also been critiqued on several grounds. Because 
anchors are often themselves arbitrary, there is 
usually no way to verify empirically that the 
groups formed by anchors truly differ in important 
ways. Some authors have suggested that transition 
assessment anchors may be particularly problem
atic. Although selfreported change is the only way 
to directly incorporate the patient’s perspective, 
transition assessments usually consist of a single 
item and are retrospective in nature, characteristics 
that could undermine their psychometric validity. 
Baseline status (e.g., poor health vs. good health) 
also appears to affect the size of MCSDs, a ten
dency that is likely to be more pronounced when 
anchorbased methods are used. For these reasons, 
and because different types of anchors tend to pro
duce different MCSDs, most investigators recom
mend using multiple anchors. Typically, various 
types of anchors are explored over several studies 
to arrive at an MCSD or, more commonly, a range 
of values in which the MCSD is likely to fall.

Distribution-Based Approaches

As stated earlier, distributionbased approaches 
rely primarily on the statistical properties of sam
ple data or the PRO measure itself. The chief value 
of distributionbased approaches is that, unlike 
anchorbased methods, they allow the identifica
tion of differences or changes that are essentially 
too large to have occurred by chance or from  
measurement error. Several of the more popular 
distributionbased methods are summarized in the 
following sections.

One of the most common distributionbased 
approaches relies on the effect size associated with 
a difference or change. Effect size can be computed 
by dividing the difference between two sample 
means (or the average difference in the case of a 
repeated measures design) by the sample standard 



577Health Status Measurement, MCSDs, and Anchor Versus Distribution Methods

deviation or the pooled standard deviation. The 
resulting proportion, which essentially redefines 
the difference in standard deviation units, can be 
interpreted according to the wellknown guidelines 
proposed for the behavioral sciences by Cohen, 
who suggested that effect sizes of .20 to .49, .50 to 
.79, and .80 and above should be considered small, 
moderate, and large, respectively. Thus, from this 
perspective, any difference or change associated 
with an effect size of .20 or greater would be con
sidered clinically meaningful.

The reliable change index provides an alterna
tive distributionbased method to identify MCSDs 
at the individual level and is computed by dividing 
the difference or change between two PRO scores 
by the standard error of the difference between the 
scores. The index, which depends on the standard 
error of measurement, contrasts an observed change 
with the change that would be expected from 
chance or measurement error. Some authors sug
gest that reliable change has occurred as long as the 
index value exceeds 1.96. This would indicate that 
the likelihood of obtaining the observed difference 
is only about 5% or less if there has been no actual 
change, suggesting that the change or difference is 
“real” and not the result of chance variation.

The standard error of measurement (SEM) can 
also be used in its own right to help derive MCSDs. 
The SEM is the standard deviation of an individu
al’s scores on a specific measure. Because all mea
sures contain some error, an individual’s score 
would vary to some extent if the same measure 
were to be repeatedly administered to that individ
ual. The SEM indicates how much variation would 
occur, with more precise or reliable measures hav
ing a lower SEM. Thus, the greater a difference or 
change relative to the SEM, the more likely that 
difference or change is likely to be “real” and not 
the result of chance or error. How much greater 
than the SEM a meaningful difference should be is 
somewhat controversial, with suggestions ranging 
from 1 SEM to 1.96 SEMs to 2.77 SEMs. The SEM 
can be calculated by multiplying the sample stan
dard deviation by the square root of one minus the 
reliability of the PRO measure. Because of the 
inverse relationship between sample variance and 
measure reliability, a measure’s SEM should remain 
fairly stable across different samples.

Distributionbased methods are relatively easy 
to implement because they do not require anchor 

data and, as previously noted, provide the addi
tional advantage of identifying MCSDs that exceed 
variation due to chance or measurement error. 
However, as several investigators have noted, this 
property by itself does not guarantee that the 
change or difference is necessarily large enough to 
be important from the perspective of the patient or 
other stakeholder. Conversely, some distribution 
methods may result in MCSD estimates that are 
too large. For example, some investigators have 
noted that the 1.96 criterion commonly used in 
conjunction with the reliable change index is fairly 
strict, resulting in conservative (i.e., large) MCSD 
estimates relative to other methods. In general, it  
is often not clear which standards to apply when 
establishing MCSDs using distributionbased 
methods. For example, the number of SEMs that a 
difference or change has to exceed to be considered 
meaningful tends to vary across disciplines.

Distributionbased approaches, especially those 
involving effect size and the SEM, have received 
increasing attention over the past decade, largely 
due to the work of Wyrwich and her colleagues. 
Using data from a variety of patient samples, 
Wyrwich and others have found that 1 SEM is 
frequently, though not always, equivalent to an 
effect size of approximately .50 when PRO mea
sures with appropriate levels of reliability are 
used. These findings suggest that differences or 
changes that exceed 1 SEM may generally be large 
enough to be meaningful.

Additionally, MCSDs identified using anchor
based approaches are often associated with an effect 
size approximating .50, although this phenomenon 
appears most robust in patients with chronic health 
conditions. Consequently, some authors have sug
gested that in the absence of other information, a 
difference or change associated with an effect size of 
.50 is likely to be clinically meaningful. However, as 
these and other authors have cautioned, some prior 
work has identified anchorbased MCSDs that are 
associated with effect sizes both smaller and larger 
than .50, thus highlighting the critical role that 
anchorbased methods can play.

Best Practices

Developing methods to identify MCSDs has proven 
a challenging and complex task. However, consensus 
is emerging over a set of best practices. Specifically, 



578 Health Status Measurement, Reliability and Internal Consistency

most investigators recommend triangulating on 
MCSDs using a combination of both distribution 
and anchorbased approaches across multiple sam
ples. Whereas distributionbased methods help 
ensure that MCSDs are large enough to exceed 
chance variation, anchorbased methods help ensure 
that MCSDs are properly sized to reflect truly mean
ingful and important change.

R. Brian Giesler

See also Health Status Measurement, Assessing 
Meaningful Change; Health Status Measurement, 
Responsiveness and Sensitivity to Change
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HealtH status measurement, 
reliability and internal 
consistency

Reliability refers to the concept of consistency of 
measurement. Medical decision making is based 
on observations and measurements taken from the 
patient. For decision making to be based on the 
best possible information, such measurements 
should be both reliable and valid. Reliability of 
measurement is a necessary condition for a mea
sure to be valid but is not sufficient to ensure 
validity. A psychometric test, attitude scale, or 
observational measurement may be reliable in that 
it can be consistently assessed over time but not 
valid in that it does not accurately reflect the con
struct it is designed to measure. In terms of statis
tical theory, reliability is defined as the ratio of the 
variation of the true score and the variation of the 
observed score.

Assessments of the reliability of a measure can 
be broadly split into two groups: (1) methods of 
determining the reliability of a test by repeated 
administration (e.g., testretest reliability and inter
rater reliability) and (2) methods that require a 
single administration of the test. The latter methods 
are often termed internal consistency measures.

Repeated Administration

The logic of repeated administration as a method 
for determining the reliability of a measure is sim
ple. If a test or observation is reliable, then if it is 
measured twice in the same individual without any 
change in the individual occurring, the value of the 
measurement should be the same. Testretest reli
ability involves the administration of the same test 
or observation to a group of individuals at two 
points separated by a period of time. There is no 
simple guide to the ideal time period for testretest 
reliability—essentially, it should be short enough 
to ensure that the sample has not changed in the 
aspect being measured but long enough to prevent 
individuals recalling their previous answers and 
using their recall as the basis for their responses on 
the second occasion. Periods of 2 to 4 weeks are 
typical. Some researchers advocate asking respon
dents to indicate whether they feel that they have 
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changed in the construct under study between the 
two testing sessions, and then excluding those with 
a perceived change.

Interrater reliability refers to the consistency of 
measurement between two raters making indepen
dent observations of the same individuals. Interrater 
reliability is most commonly used in psychology 
where observational data are collected. Two indi
viduals may observe either live behavior or a video 
recording of behavior and make ratings in terms of 
a standardized measurement. The independent rat
ings can then be observed. Simple measures of  
the percentage agreement and percentage disagree
ment can be calculated. The extent of agreement 
will depend to a large degree on how well the 
behaviors and the categories to be recorded are 
specified and the extent to which observers have 
been trained to use the scoring method. Extensive 
training and calibration in the measurement 
method prior to the research is an excellent way to 
ensure reliability of observational measurements.

In a largescale study involving the observation 
of behavior, both interobserver and testretest reli
ability measures may be taken. This is to avoid the 
potential for measurement error resulting from a 
change in the way raters make their observations 
over time. By reappraising data from earlier in the 
trial, it is possible to determine whether such mea
surement drift has occurred.

The statistical methods used to determine 
whether there is consistency across the two mea
surements for both testretest reliability and inter
rater reliability depend on the nature of the data. 
For nominal data, Cohen’s kappa statistic is calcu
lated. This is the proportion of observations that 
agree across the two testing situations, corrected 
for chance levels of agreement. Values of Cohen’s 
kappa range from 0 to 1.0, where 1.0 is perfect 
agreement. The following guide to the extent of 
agreement was produced by Douglas Altman:

0 to .6 poor agreement,

.6 to .8 satisfactory agreement,

.8 to 1.0 excellent agreement.

For ordinal data, the weighted kappa is used. 
This is an extension of Cohen’s kappa but gives 
greater weight to disagreements far removed on the 
ordinal scale and smaller weight to disagreements 

falling on adjacent points. The values of weighted 
kappa are interpreted in the same manner as 
kappa.

Where the data tested for reliability are continu
ous, there are a number of statistical methods to 
determine the extent of consistency in the measure
ment. Some researchers have suggested the use of 
simple correlation statistics, but this is now consid
ered inappropriate, since measurements could be 
perfectly correlated but differ in magnitude. To 
overcome this limitation, Bland and Altman sug
gested a simple method of plotting the data to 
explore the consistency of measurement. A Bland
Altman plot comprises a plot of the difference 
between two measurements on the same individual 
against the mean of the two measurements. 
Typically the overall mean and standard deviation 
of the two measurements are also placed on the 
graph. This allows the researcher to explore the 
range of magnitude of differences and, impor
tantly, whether differences are larger at the extreme 
points of the measurement scale. This is important, 
since regression to the mean will affect extreme 
values most markedly. An alternative approach 
that is currently popular is to calculate the intra
class correlation (ICC) of the two sets of data. The 
ICC is a correlation coefficient where the intercept 
is forced to occur at the origin (0, 0) of the bivari
ate plot. The ICC is equivalent to a correlation 
coefficient and can be interpreted as such.

Single Administration

Single administration methods have the advantage 
that the consistency of measurement can be deter
mined in a single assessment. They are therefore 
easier and more economic to undertake and espe
cially useful where either the measurement changes 
the participant in some way, or there is a risk that 
the participant will change before a second obser
vation can be arranged. These methods most com
monly are used for questionnaires or observations 
with multiple related items measuring the same 
construct. The split half method works on the 
assumption that if all the items in a questionnaire 
are consistently measuring the same construct, 
then it should be possible to split the items into 
two halves that will correlate highly with each 
other. An obvious example would be to compare 
oddnumbered and evennumbered items. It is also 
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possible to calculate all the possible splithalf com
binations of a questionnaire (given by the number 
of items – 1) and then calculate the average corre
lation between all the possible combinations. 
Generally, longer tests will show higher internal 
consistency, but using a splithalf method means 
that the two forms of the scale are effectively half 
as long as the original. It is possible to correct for 
this in the calculation of the internal consistency 
statistic by using the SpearmanBrown formula.

Cronbach’s alpha is a widely used measure of 
the internal consistency of scales. It is the average 
of the correlations of each item with the total score 
of the scale (excluding that item). The logic of 
Cronbach’s alpha is that if all the items in a scale 
are reliably measuring the same construct, then 
they should all correlate highly with each other. 
Coefficient alpha will range from 0 (no consis
tency) to 1.0 (perfect consistency). For psychomet
ric tests, an alpha above .7 is recommended, 
whereas for clinical tests, a value of alpha greater 
than .9 should be sought, according to Bland and 
Altman. Cronbach’s alpha can be used where 
items have multiple response categories or in the 
situation where items have binary responses. In the 
latter case (binary response categories), Cronbach’s 
alpha is equivalent to the KuderRichardson 
Formula20, which has been used as a measure of 
internal consistency. However, since the two for
mulae are equivalent for the case where response 
categories are binary but, in addition, Cronbach’s 
alpha deals with the wider case, alpha is generally 
the preferred statistic. Certain statistical packages 
will calculate Cronbach’s alpha for a scale along 
with statistics for individual items within the scale 
(such as how well the scale performs when indi
vidual items are deleted). These statistics are often 
used to derive scales that are internally consistent 
by selectively removing items; this procedure can 
be an effective way of developing internally consis
tent scales, but some caveats should be noted: 
First, Cronbach’s alpha is not suitable for very low 
numbers of items (three or two items); second, the 
scale derived by removing items may be internally 
consistent, but such a correction does not necessar
ily reflect the construct that the scale was originally 
devised to measure—measures of internal consis
tency give information on reliability, not validity.

The reliability of observations can generally  
be improved by adopting a range of methods. As 

mentioned previously, adding items to make a 
scale longer will improve reliability, provided that 
the items are conceptually similar. Ensuring that 
the meaning of all items is clear to participants will 
ensure that their answers are consistent. Item 
analysis—that is, exploring the psychometric prop
erties of each item in a scale—will help identify 
“rogue” items that are lowering the reliability esti
mates. Item analysis includes exploring the corre
lation of the item to all the other items; those with 
an average interitem correlation less than .3 should 
be excluded.

It should also be noted that the reliability statis
tics calculated are related to the scores of a mea
sure rather than the measure itself, and therefore 
will vary across different samples. Reliability esti
mates from one sample might differ from those of 
a second sample if the second sample is drawn 
from a different population. This is particularly 
true when samples are drawn from clinical and 
nonclinical samples. For example, a measure of 
eating disorder symptomatology may be extremely 
reliable in a sample of males without an eating 
disorder, since the entire sample will have very low 
scores on all items. However, in a clinical sample 
of women with eating disorders, there will be 
greater variation in scores that introduces greater 
possibility for measurement error and hence a 
nonreliable measure.

J. Tim Newton and Koula Asimakopoulou

See also Factor Analysis and Principal Components 
Analysis; Health Status Measurement, Construct 
Validity; Health Status Measurement, Face and 
Content Validity; Intraclass Correlation Coefficient

Further Readings

Altman, D. G. (1999). Practical statistics for medical 
research (2nd ed.). New York: Chapman & Hall.

Bland, J. M., & Altman, D. G. (1986). Statistical 
methods for assessing agreement between two 
methods of clinical measurement. Lancet, 1, 307–310.

Bland, J. M., & Altman, D. G. (1997). Statistics notes: 
Cronbach’s alpha. British Medical Journal, 314, 572.

Cronbach, L. J. (1951). Coefficient alpha and the internal 
structure of tests. Psychometrika, 16(3), 297–334.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass 
correlations: Uses in assessing rater reliability. 
Psychological Bulletin, 2, 420–428.



581Health Status Measurement, Responsiveness and Sensitivity to Change

HealtH status measurement, 
resPonsiveness and sensitivity 
to cHange

For medical decision making, the purpose of mea
surement is often to measure change in health 
over time associated with treatment. With this in 
mind, there has been considerable attention paid 
to the ability of health status instruments to mea
sure change, often called responsiveness or sensi
tivity to change. First, it should be noted that 
there is debate about whether or not to use change 
scores (the difference between scores at two points 
in time) at all, and although this discussion is 
beyond the scope of this entry, further readings 
have been provided as a starting point for those 
interested in delving more deeply into this topic. 
This entry defines responsiveness and sensitivity, 
provides context for the use of these terms, and 
explains the main approaches used in validation 
studies of health status measures.

Definitions

There is a significant body of literature about the 
appropriate methods to use when comparing mea
surement instruments over time in the absence  
of a gold standard. Unfortunately, there are several 
taxonomies in use, some with overlapping terms. 
Therefore, it is important to define key terms used 
in validation studies. Some have argued for using 
two terms, sensitivity and responsiveness, to 
describe the ability to measure change. Within this 
framework, sensitivity denotes the ability to detect 
any change at all and is assessed using calculations 
based on the variation within samples. These 
methods are often called distribution-based. 
Responsiveness refers to the ability to measure 
clinically important change and is calculated using 
external criteria, or anchors, to provide meaning 
for a specified magnitude of change in score; it is 
sometimes called an anchor-based approach. 
Another way of thinking about responsiveness is 
that it translates change on the new instrument 
into similar change on a familiar scale (the anchor), 
with the aim of enhancing the interpretability of 
results from the new measurement instrument. 
Commonly used external criteria or anchors 

include clinical tests, performance tests, and rat
ings of status by providers, patients, and caretak
ers. For example, a responsiveness study may 
calculate how much change on New Scale X would 
be associated with patientreported “mild improve
ment” or a onelevel change in selfreport of symp
tom level (e.g., from moderate to mild). In this 
way, various anchors may be used to calculate 
minimal important difference (MID), representing 
the amount of change in score that could be con
sidered clinically meaningful. Implicit in the selec
tion of the anchor is the perspective of interest for 
the external criterion.

There is continued dialogue about conceptual 
frameworks and optimal naming conventions. 
Some argue against the distinction made between 
validity and responsiveness, noting that respon
siveness is the ability to measure “what is 
intended” as it changes and is, therefore, more 
appropriately named longitudinal validity. Using 
this framework, the terms responsiveness and 
sensitivity refer to aspects of construct validity. 
However, in practice, responsiveness and sensi-
tivity are often used more generally to describe 
the ability to measure change. In this way, the 
terms are not meant to be distinguished from 
validity, or to distinguish between measuring 
meaningful change and measuring any change 
at all. In this entry, the term responsiveness is 
used to describe anchorbased aids to interpret
ability, to denote the ability to measure clini
cally meaningful change. The term sensitivity 
refers to distributionbased methods to charac
terize the ability to detect change. Both are 
framed within the realm of longitudinal con
struct validity studies.

Methods

A wide range of methods is available for appraising 
the responsiveness and sensitivity of measurement 
instruments, enabling researchers to choose the 
method that best suits their measurement purposes. 
However, this poses challenges for comparisons of 
validation studies and for facilitating the interpre
tation of changes in healthrelated quality of life 
(HRQOL) measurement instruments. A review 
conducted in 2002 reported 25 definitions of 
responsiveness and 31 different statistical mea
sures. Studies comparing approaches report a 
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range of agreement in results using different meth
ods. While many debate the merits of various esti
mates, others call for consensus to minimize 
confusion and doubt about the validity of HRQOL 
measurement overall. Still others promote the ben
efits of the scope of information that comes from 
various approaches to validation studies.

Sensitivity to Change

Distributionbased methods for assessing sensitiv
ity generally measure change relative to an estimate 
of variation expressed as the ratio of raw score 
change (Mean2 − Mean1) to measure of variance 
(standard deviation of the baseline score) and can 
vary depending on time points and patient groups 
selected. The types of variation considered can be 
generally categorized as reflecting one of three sta
tistical characteristics. These are statistical signifi
cance (e.g., paired t test), sample variation (e.g., 
effect size and standardized response mean), and 
measurement precision (e.g., standard error of the 
measurement [SEM]). The effect size and standard
ized response mean (SRM) provide estimates of 
group change in terms of standard deviation units; 
so, for example, an effect size of 1.0 can be inter
preted as change on the order of 1 standard devia
tion. The calculation for these statistics can be seen 
below. An effect size in the area of .2 is considered 
small, .5 is medium, and .8 is large. For the t test, 
effect size, and SRM, larger values indicate greater 
responsiveness. In contrast, SEM, as calculated 
below, estimates change for an individual, and 
smaller values represent better responsiveness.

Effect size= Mean2 −Mean1

Standard deviationbaseline
:

SRM= Mean2 Mean1
Standard deviationChange score

:

SEM= Standard deviationbaseline 1−ReliabilityTestRetest

q
:

Responsiveness

Various approaches have been developed to 
attach meaning to the magnitude of change in a 

measurement instrument. Characterization of 
MID requires comparison with an external crite
rion for health change. A common approach to 
MID is to calculate the mean change for the 
group within a study that fulfilled the criteria for 
important change. For example, in a validation 
study of health indexes, minimal important dif
ference was defined as one level of change 
reported using a symptom satisfaction question 
and using a 10 to 19point change in score using 
a diseasespecific disability index. Approaches 
exist to elicit individual estimates of minimal 
important difference prospectively. Because MID 
estimates do not incorporate any information 
about the variability of the sample, methods have 
been developed to provide this information. For 
example, the responsiveness statistic (RSMID) 
divides the MID by a measure of variation for 
those in the sample who were unchanged. The 
responsiveness statistic incorporates information 
about the distribution and judgment about mean
ingful change from an external criterion. It there
fore is both distribution and anchor based. The 
criteria available for comparing MID estimates 
necessarily constrain the scope of interpretation 
of the responsiveness estimate. Therefore, the 
nature of the criterion—whether selfreported, 
performance based, clinician reported, or diagno
sis based—must be considered when forming 
conclusions about the validity of the inferences 
that can be made from the instrument.

Interpretation

Differences between estimates of responsiveness 
and sensitivity using various approaches can be 
disconcerting. However, the interpretation of 
responsiveness and sensitivity estimates rests on 
the conceptual framework for the statistical proce
dures used. Below, a sample of the considerations 
related to a subset of measures is discussed.

The SRM uses a measure of variation in 
observed change of the sample in the denominator, 
while the effect size uses a measure of baseline 
variation of the sample at baseline. If the individu
als all experience similar, large change, the SRM 
would be small relative to the effect size. Similarly, 
if there is little variation in the population at base
line, effect size will be relatively large. Some argue 
that statistics such as the SRM, using the standard 
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deviation of change, characterize statistical signifi
cance rather than sample variation and should not 
be used in longitudinal validity studies. Theoreti
cally, distributionbased statistics may capture 
change beyond measurement error that is not nec
essarily clinically meaningful.

Anchorbased approaches to estimating respon
siveness provide information about the ability to 
capture change relative to a relevant, external crite
rion, or anchor, explicitly incorporating judgments 
about important change. MIDs do not incorporate 
sample variation or the variability inherent in the 
measurement system. Incorporating variability into 
MID may make interpretation of the measure more 
complex. MIDs are reported in the units of the 
system of interest and can be understood within the 
relevant context, while the dimensionless RSMID 
is less familiar to most audiences than effect size, 
SRM and SEM, and MID in most circumstances 
and may be challenging to interpret. It may be that 
advantages of accounting for variability in the mea
surement system could be outweighed by the chal
lenges of interpreting and communicating the 
meaning of this statistic.

Although it is distributionbased, the SEM is 
conceptually different from the effect size and the 
SRM. The SEM incorporates the standard devia
tion of the sample at baseline and the reliability 
of the measurement instrument and is used to 
interpret individual change. According to classi
cal test theory, the SEM is a property of the mea
surement instrument and can be applied across 
populations. There is debate about the interpreta
tion of the SEM relative to the magnitude and 
meaning of change. Various authors support the 
use of 1 to 2 SEM as an indication of change 
beyond measurement error. Furthermore, these 
thresholds are applied as thresholds for minimal 
important change. Investigations into the rela
tionship between sensitivity and responsiveness 
measures have reported that MID estimates cen
ter on one half of a standard deviation, suggest
ing that 1 SEM is a reasonable threshold for 
important change.

From a practical standpoint, when planning a 
study, effect size or SRM would be useful to inform 
sample size calculation and system selection rela
tive to distributional characteristics. If the treat
ment and study goals address a particular dimen sion, 
MIDs based on highly relevant anchors (e.g., 

symptom satisfaction) may add valuable information. 
To enhance interpretability, the SEM provides esti
mates of the threshold for significant change. The 
MID enhances the interpretability of change by 
estimating the threshold for important change on 
the group level from a specific perspective. MIDs 
from various perspectives may provide important 
information about the orientation of the measure
ment systems under consideration and therefore 
guide system choice.

Finally, responsiveness and sensitivity estimates 
make up a portion of a larger array of approaches 
available to study the validity of health status mea
surement instruments. By choosing statistical pro
cedures based on their design to address specific 
hypotheses, and interpreting their results within 
this context, investigators contribute to the larger 
process of accumulating evidence about the level 
of confidence with which decision makers can 
make inferences based on scores from health status 
measurement instruments.

Christine M. McDonough
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HealtH status measurement 
standards

Health status measurement is important in deter
mining the health of a population. The definition 
of health represents one of the contemporary chal
lenges in health services research, as defining health 
is complex and measures of health vary. Defining 
health status measurement is relative, as health is a 
multidimensional, multiconstruct concept for 
which users of any metric of health must provide 
appropriate context if they are to understand how 
the outcome applies to their research needs. Before 
further discussing health status measurement stan
dards, one must have a clear definition of health.

What Is Health?

The most widely accepted definition of health was 
adopted in 1948 by the World Health Organization 
(WHO) for an individual anywhere in the world. 
WHO defines health as “a state of complete phys
ical, mental and social wellbeing and not merely 
the absence of disease or infirmity.” The global 
community did not adopt a definition of health to 
measure either presence or absence of disease. 
Health is multidimensional, involving the physical 
health of the body, mental/emotional health, and 
social wellbeing. This definition, as discussed by 
Donald Barr in his book Health Disparities in the 
United States, while allencompassing in its appeal, 
has a limited perspective for health policy due to 

the lofty, impractical expectation of health that 
few can truly achieve. By setting an unattainable 
standard of health, individuals are automatically 
positioned for failure to meet the expectation of 
health within this definition. WHO’s widely 
accepted definition seems to provide a blackand
white view of health with few shades of gray—that 
is, one is either in good health or not. Thus, there 
is no way of tracking the degree to which health 
changes over time to determine improving or dete
riorating health. Likewise, there are few mechanisms 
for comparison between individuals. The WHO 
definition provides an opportunity to understand 
the three approaches to health. These approaches 
address physical health, mental health, and social 
wellbeing. First, it is necessary to explore each 
approach and then discuss the potential for quan
tifying health.

Physical Health as the Absence  
of Disease: The Medical Approach

A definition of health provided by sociologist 
Andrew Twaddle in 1979 was used by the U.S. 
medical profession for much of the 20th century, 
according to Barr. Discussed in Twaddle’s definition 
was the need for it to be understood that health first 
and foremost is a “biophysical state” and that ill
ness is any state that has been diagnosed by a com
petent professional. These two components as 
identified by Twaddle according to the medical 
model include the following: (a) absence of symp
toms (e.g., sensations noticed by the patient and 
interpreted as abnormal) and (b) absence of signs 
(e.g., objective criteria noted by a medical profes
sional). This medical model approach tells us what 
health is not. If a person has abnormal signs or 
symptoms, according to this approach, the medical 
model does not define or discuss what health is. 
This is termed in medicine as a rule-out definition. 
Here, the health professional looks for the presence 
of abnormal signs or symptoms. And when both 
are absent, it is possible to rule out ill health. If one 
does not have ill health, then from this medical 
model perspective, the individual is healthy.

The medical approach in isolation creates 
problems. If the doctor and the patient disagree, 
which component takes precedence? Consider the 
scenario if a patient has the symptoms of a head
ache, yet the doctor, after running all available 
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diagnostic tests, finds no signs of illness? Through 
ruling out ill health, the doctor can reassure the 
patient that he or she is healthy. However, the 
patient may still feel the headache and thus be 
unhealthy and expect to be treated as such. The 
converse is true, too. What if the patient has no 
abnormal symptoms? Consider a patient with high 
cholesterol. A person with high cholesterol devel
ops symptoms over a period of time. Should we 
consider a person with elevated cholesterol to be 
unhealthy, if we also take into account that this 
individual’s cholesterol may eventually lead to 
future health problems? Despite this person’s feel
ing “fine,” what might be the consequence of stig
matizing this person as “unhealthy”?

Within the medical approach, concerns exist 
about the reliability of objective testing measures 
creating abnormal illness signs due to variability  
of tests (e.g., EKGs, CAT scans, laboratory tests) 
both in individual interpretation (e.g., physician, 
test administrator) and due to differences in test 
specificity and sensitivity. Across the country, 
variations in the interpretations of findings by doc
tors have been documented, including variations in 
considering what comprises both a “normal” and 
an “abnormal” finding.

The Psychological Approach

The psychological state of the health of an indi
vidual, measured on a survey, is purely determined 
by the selfassessment of that individual and not  
by an independent evaluator. The question of how 
you would rate your overall feeling of wellbeing 
on a scale of 1 to 10 represents an example of such 
an assessment. Likert scales and a variety of other 
measures have been developed to measure self
perception of health. Often these measures are 
time sensitive, as timespecific individual circum
stances are likely to influence answer choices and 
apt to cause change within these selfassessments 
of health. The mental health scores of an individ
ual facing a particular stressor, such as an event or 
challenge (e.g., a test), may reflect a lower sense of 
wellbeing. However, after the stressor is resolved, 
that same individual may report substantially 
improved wellbeing. Additionally, issues with 
mental health reports by proxy have created a 
potential selection or interpretation bias. An exam
ple is if parents answer a questionnaire about their 

child’s mental state and their subjectivity does not 
reflect their child’s true mental health state.

Social Health and Functioning Approach

The level of functioning within one’s social con
text was an approach to health taken by sociologist 
Talcott Parsons in 1972. This health approach 
applies less to the actual physiology of the individ
ual and more to what the person is able to do with 
his or her body. This approach assesses the ability 
to function despite any limitations. Therefore, this 
concept removes the dichotomous view of health as 
defined by WHO and places emphasis on an indi
vidual’s own social circumstances and social roles 
to define normal functioning.

Health comparisons between two individuals 
may be problematic again if this social health and 
functioning definition is considered in isolation. 
Differing states of health may be assessed when 
two people have different social roles and tasks but 
the same physical functioning. Consider the exam
ple of a concert pianist and a person who packs 
fish, both of whom are afflicted with carpal tunnel 
syndrome. The concert pianist may be seen as 
unhealthy because the condition affects the ability 
to play the piano and may be more likely to have 
a medical intervention. On the other hand, a fish 
packer on the assembly line with carpal tunnel 
syndrome may warrant little consideration despite 
the great discomfort and numbness of his hands. 
Inequalities in social economic status, including 
educational opportunities and attainment, may 
influence and lead to clearly dissimilar health 
experiences due to defined roles and tasks. 
Therefore, supporting this model of health in isola
tion may perpetuate these inequalities.

Functioning is important for defining health in 
people with disabilities and the elderly, as discussed 
by health services researcher Lisa Iezzoni. Iezzoni 
discusses “function status” as the end result of a 
person’s health. Specifically for the evaluation of 
health for people with disabilities, function status 
measures have been typically grouped into activi
ties of daily living (ADLs; e.g., eating, walking, 
bathing, dressing, toileting) and instrumental ADLs 
(IADLs; e.g., cooking, housework, shopping, using 
public transportation, managing personal finances, 
answering the phone). As described by Iezzoni 
in the book Risk Adjustment for Measuring 
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Healthcare Outcomes, measuring function status 
includes several challenges. Function status is not 
operationalized by demographics or clinical char
acteristics alone. Numerous studies have shown 
that demographics (e.g., age, sex, gender) and 
pathology explain only part of function status 
variation. Additionally, function status measures 
do not apply similarly across all conditions and 
patient populations, as there have been floor and 
ceiling effects with respect to function status mea
surement—that is, instruments have failed to detect 
improvement in functioning because those with 
poor health tend to remain constantly low (floor 
effect), and those with higher functioning remain 
unnoticed by instruments. Also, the mode of 
administration creates differences in functional 
status measurement, as facetoface administration 
results in a more optimistic measure than self 
administration. Moreover, diseasespecific measures 
may be more appropriate than a generic universal 
measure of functioning. The use of condition 
specific measurement scales (e.g., Arthritis Impact 
Measurement Scale, Visual Analogue Pain Scale, 
Gait Evaluation) are more sensitive to function 
changes for individuals with these conditions than 
a generic universal measure. Last, there exists con
flict between single, composite, and summary mea
sures of function versus multiple scales capturing 
different dimensions of function status. Single mea
sures of health may well result in misrepresentation 
of function. In instruments like the 36Item Short
Form Health Survey (SF36), two summary mea
sures of health are created, the Physical Component 
Summary (PCS) and the Mental Component 
Summary (MCS) scales. The implications of these 
composite measures are still being explored.

Health Is Multidimensional

Each approach to health described above implies 
something about individual health states; however, 
the overall state of health is more ambiguous. 
Health represents multiple dimensions. One health 
services researcher, Frederick Wollinsky, suggests 
dichotomizing health for each of the above three 
approaches (i.e., psychological, social, and absence 
of disease) into “well” and “ill” health, measuring 
health by ratio of “well” to “ill” dimensions of 
health. The SF36 developed by John Ware and 
colleagues represents a multidimensional measure 

of health, except that, instead of the dichotomous 
measures suggested above, the SF36 measures 
each dimension of health as a continuous measure 
of health.

The SF36 uses different combinations of the  
36 items in the instrument to create eight distinct 
scales, each measuring a different dimension of 
health. As discussed earlier, four of the eight scales 
create the PCS, which is a summary measure of 
physical health, and the remaining four create the 
MCS, which is a summary measure of mental 
health. The four scales to create the PCS are  
(1) physical functioning, (2) role limitations due to 
physical problems, (3) bodily pain, and (4) general 
health perceptions. The four scales that make up 
the MCS are (1) vitality, (2) social functioning,  
(3) role limitations due to emotional problems, 
and (4) general mental health.

Using a multidimensional instrument, such as the 
SF36, allows providers and health service research
ers to assess health across medical, social, and psy
chological constructs. These three constructs of 
health are causally linked to each other, as physical 
health changes create changes in social roles, which 
ultimately affect mental health. Each aspect of these 
dimensions is unique to the characteristics of both 
the individual and the environment in which that 
individual lives. These three dimensions are not the 
final outcome, but rather the intermediate factors 
that will ultimately affect healthrelated quality of 
life. Individual and environmental characteristics 
will buffer or enhance the health of an individual. 
For example, for an individual with strong social, 
psychological, and environmental support, a spe
cific symptomatology may result in a smaller impact 
on functional status, whereas for another with 
similar symptomatology, weaker support may result 
in greater impact on function status, leading to 
poorer health. Qualityoflife measures are greatly 
affected by symptoms of illness and functional limi
tations; however, the presence of these symptoms 
alone will not result in reduced quality of life. For 
example, in a BMC Public Health 2008 article, 
“Age at Disability Onset and SelfReported Health 
Status,” Eric Jamoom and colleagues were able to 
show that the age at which one acquires symptoms 
or activity limitation is associated with health status 
differences. Health status measurement is tied inti
mately to context of health, and the jury is still out 
on a standard measure of health. Because health 



587Health Status Measurement Standards

status is so complex, there is no single gold standard  
of health status measurement. Often a gold stan
dard is considered a reference to determine whether 
a newer instrument adequately measures health as 
reflected in the older instrument. Therefore, an 
older survey is often used as a gold standard for a 
comparison to determine the criterion validity of a 
newer survey to ensure that the instrument still 
adequately represents the measures from the refer
ence instrument. However, health status measures 
are subject to limitations with validity and reliabil
ity considerations, and definitions of health mea
surement are required to continue to understand the 
context for distinction.

Definitions of Health Status Measurement

A panel of 57 experts with backgrounds in medi
cine, biostatistics, psychology, and epidemiology 
participated in the COSMIN (COnsensus Standards 
for the selection of health Measurement INstru
ments) Delphi study to develop standards for 
selecting health measurement instruments. Defi
nitions below are provided from the preliminary 
version of the COSMIN Checklist as designed in 
the protocol from Mokkink and colleagues in 
BMC Medical Research Methodology.

Reliability: The degree to which the measurement is 
free from measure error. The extent to which scores 
for patients who have not changed are the same for 
repeated measurement under several conditions: for 
example, using different sets of items from the same 
healthrelated patientreported outcomes (HRPRO) 
(internal consistency); over time (testretest); by dif
ferent persons on the same occasion (interrater); or 
by the same persons (i.e., raters or responders) on 
different occasions (intrarater).

Internal consistency: The degree of interrelatedness 
among the items.

Measurement error: The systematic and random 
error of a patient’s score that is not attributed to the 
true changes in the construct to be measured.

Validity: The degree to which an instrument truly 
measures the construct it purports to measure.

Content validity: The degree to which the content of 
a HRPRO instrument is an adequate reflection of 
the construct to be measured.

Construct validity: The degree to which the scores of 
a HRPRO instrument are consistent with hypothe
ses based on the assumption that the HRPRO 
instrument validity measures the construct to be 
measured.

Criterion validity: The degree to which scores of a 
HRPRO instrument are an adequate reflection of a 
gold standard. A gold standard for HRPRO instru
ments does not exist. When assessing criterion valid
ity of a shortened questionnaire, the original long 
version may be considered as the gold standard.

Cross-cultural validity: The degree to which the per
formance of the items on a translated or culturally 
adapted HRPRO instrument are an adequate reflec
tion of the performance of the items of the original 
version of the HRPRO instrument.

Face validity: The degree to which items of a 
HRPRO indeed look as though they are an ade
quate reflection of the construct to be measured.

Eric W. Jamoom

See also Health Outcomes Assessment; Health Status 
Measurement, Construct Validity; Health Status 
Measurement, Face and Content Validity; Health 
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Consistency; SF36 and SF12 Health Surveys
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HealtH utilities index mark 2 
and 3 (Hui2, Hui3)

The Health Utility Index Mark 2 and 3 (HUI2 and 
HUI3, collectively referred to as HUI2/3) are generic 
preferencebased health status measures designed to 
provide utility scores for health outcomes evalua
tion. The HUI2/3 measure is generic, applicable to 
a wide range of conditions, treatments, and popula
tions. Preferencebased design provides a single
summary numerical score for each health state 
defined by the instrument. This form of presenting 
health outcomes is particularly useful in economic 
evaluation, where a single index of healthrelated 
quality of life that summarizes health status utilities 
is needed. The first version of the HUI was created 
in the 1970s to evaluate the outcomes of neonatal 
intensive care for verylowbirthweight infants. 
Since then the HUI measures have continued under 
development, and there are now two versions avail
able: HUI Mark 2 and HUI Mark 3. Nowadays, the 
HUI1 is rarely applied, while the HUI2/3 is continu
ally used. Both of these measures have been employed 
in various clinical studies, in economic evaluations, 
and in population health surveys.

The HUI Mark 2/3 is a multiattribute health 
status measure. In such a measure, the defined 
health is expressed in terms of key attributes of 
interest. In other words, the descriptive system, 
which is known as a classification system, com
prises chosen attributes and reflects the health defi
nition adopted by the instrument developers. The 
term attribute used here is the same as the term 
domain or dimension defined in other measures.

Development

The first version of the HUI was developed based on 
the pioneering work on the Quality of WellBeing 

(QWB) instrument by Fanshel and Bush in 1970. 
The conceptual framework of the QWB provided a 
template for developing the HUI instrument. To 
evaluate the outcomes of neonatal intensive care 
for verylowbirthweight infants, Torrance and  
his colleagues in the 1980s expanded the QWB’s 
descriptive system into the classification system 
of the HUI Mark 1, which consisted of four 
attributes: (1) physical function, (2) role function, 
(3) socialemotional function, and (4) health prob
lems, with six, five, four, and eight levels per atti
tude, respectively, thus defining a total of 960 unique 
health states.

The HUI Mark 1 was further extended for pedi
atric application. Aiming to measure the longterm 
outcome of childhood cancer, Cadman and his col
leagues reviewed the literature and created a list of 
potentially important attributes for healthrelated 
quality of life. They invited 84 parentandchild 
pairs to select the most important attributes from 
the list and, as a result, a core set with six attributes 
was created. These six attributes are (1) sensory and 
communication ability, (2) happiness, (3) selfcare, 
(4) pain or discomfort, (5) earning and school abil
ity, and (6) physical activity ability. The six attri
butes identified by Cadman and his colleagues, plus 
an attribute of fertility, for capturing the impact of 
child cancer treatment on fertility, became the HUI 
Mark 2 classification system. Each attribute has 
three to five levels of function and, therefore, defined 
24,000 unique health states. Although the develop
ment of the HUI2 is for measuring treatment out
comes of children with cancer, the HUI2 soon was 
used as a generic measure for adults, and it was 
applied to different populations and conditions due 
to its genericlike attributes. It is suggested that the 
HUI2 can be used as a generic measure for the child 
population after removing the attribute of fertility.

The HUI3 was developed to tackle some con
cerns of the HUI2, to be structurally independent, 
and to be applicable in both clinical and general 
population studies. There are several changes in 
the HUI3’s multiattribute system as compared 
with its predecessor version. The changes included 
removing the attribute of selfcare and replacing it 
with dexterity to achieve structural independency, 
adding distinct components of sensation such as 
vision, hearing, and speech, and excluding the 
attribute of fertility. Therefore, there are eight 
attributes in the HUI3 system: (1) vision, (2) hearing, 
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(3) speech, (4) ambulation, (5) dexterity, (6) emo
tion, (7) cognition, and (8) pain. Each attribute 
has five to six response levels that are combined 
in such a way that the HUI3 defines in total 
972,000 unique health states.

As described by the instrument’s developers, the 
choice of attributes in the HUI2/3 was based on a 
“within the skin” approach, focusing on the attri
butes of physical and emotional health status that are 
fundamentally most important to health status mea
surement and excluding the aspect of participation in 
society, as in social activity or role performance. 
Furthermore, the design of the descriptive system of 
the HUI2/3 was aimed to record functional capacity 
rather than performance. The reason for this was 
that a measure of performance reflects the level of 
capacity of an individual on a chosen function. Thus, 
people with the same underlying functional capacity 
could have a different level of performance.

Utility

As a preferencebased measure, each health state 
defined by the HUI2/3 descriptive system can be 
assigned a utility score. It is calibrated by applying 
a formula (a scoring algorithm) to a health state, 
which essentially attaches values (also called 
weights) to each of the levels in each attribute. The 
HUI2 scoring algorithm was developed from the 
valuation of a random sample of 293 parents of 
schoolchildren in Hamilton, Ontario, Canada. 
Both visual analog scale (VAS) and standard gam
ble (SG) methods were adopted to elicit preferences 
from the sample. Each participant was asked to 
value 7 singleattribute states and 14 multiattribute 
states using a VAS. Participants were also asked to 
value 4 multiattribute states that overlapped with 
those 14 states in the previous task, using the SG 
method. Based on the data, a power transformation 
was developed to convert the value of the health 
state measured by the VAS into a utility value as 
elicited by the SG. The scoring algorithm was 
developed based on the multiattribute utility the
ory, where utility function for each attribute was 
estimated separately and a multiplicative function 
form was adopted in the final scoring formula.

Multiattribute utility theory (MAUT) is a method 
to estimate a mathematical function, which allows 
for calibration values for a large number of health 
states defined by a multiattribute classification 

system, based on values of a small, carefully selected 
set of those states. The basic approach is to measure 
the utility function for each single attribute and to 
identify an equation that expresses the overall utility 
as a function of these singleattribute utilities (details 
can be found in the paper by Torrance and his col
leagues published in 1996, as listed in Further 
Readings, below). MAUT can reduce the number of 
health states required for valuation to develop a scor
ing formula by assuming a function form in advance. 
The choice of functional form imposes a restriction 
in terms of how each attribute in the classification 
system is related to the others. There are three typical 
function forms available—additive, multiplicative, 
and multilinear. The evidence obtained from the 
HUI2 studies by Torrance and his colleagues sup
ported the choice of multiplicative functional form 
(multilinear form was not considered because it 
requires the measurement of a large amount of 
multiattribute health states for calculation).

One of the unique features of the MAUT 
method is the corner state. The corner state is a 
multiattribute state, where one attribute is set at 
one extreme (the worst level of functioning) and 
the rest are set at the other extreme (the best level 
of functioning), and participants are asked to value 
several corner states. However, the structural inde
pendence of the classification system is a prerequi
site for evaluating such corner states. For instance, 
participants could not imagine and consequently 
had difficulty valuing a corner state where a per
son was unable to control or use arms and legs 
(mobility attribute) but had no problem with self
care attributes such as eating, bathing, dressing, 
and using the toilet. Therefore, it is necessary to 
have no correlation between attributes—these 
must be structurally independent in such a way 
that each corner state, combining the worst level in 
one attribute with others at the best level, is pos
sible. This issue was first found in the valuation 
study of the HUI2, and it has now been taken into 
account in the redesign of the HUI3. That is to say, 
the HUI3 is structurally independent.

The scoring formula of the HUI3 used a similar 
approach based on the responses from a representa
tive sample of 504 adults from Hamilton, Ontario. 
Each participant was asked to value three anchor 
and three marker states and 22 to 24 multiattribute 
health states using a VAS, plus 5 states using the SG 
method. The study also examined the possibility of 
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applying a simplified multilinear functional form, 
but it was concluded that the multiplicative form 
performed better in such a degree that the final scor
ing algorithm was based on multiplicative form.

Both the HUI2 and HUI3 offer a single numerical 
score for health states, anchored at 0 and 1, repre
senting death and full health, respectively. A nega
tive score indicating worse than dead is also allowed. 
The range of possible utility scores is from 1 to −.03 
for the HUI2 and from 1 to −.36 for the HUI3.

There is extensive evidence supporting the reli
ability, validity, and responsiveness of the HUI2/3. 
The interested reader can refer to additional 
sources such as McDowell or Horsman and his 
colleagues, as listed in Further Readings, below. 
The minimal clinically important difference between 
HUI scores ranges from .02 to .04.

Current Versions

Currently, there are several versions of the HUI2/3 
questionnaires available, depending on administra
tion, whether they are self or proxy assessed, and 
recall period. The HUI2/3 can be either self 
completed or interviewer administered over the 
phone or in person. Both self and proxy assess
ment are available. There are four different stan
dard recall periods for each questionnaire available: 
1 week, 2 weeks, 4 weeks, and “usual.” The ques
tionnaire with recall periods in weeks is usually 
applied in clinical studies or economics evaluation, 
while the questionnaire with the recall period, 
“usual,” which does not specify the time, is mostly 
applied in population health surveys.

The HUI2 and HUI3 can be combined and applied 
together, which is known as the HUI. The HUI 
includes both classifications of the HUI2 and HUI3 
and generates utility scores for both the HUI2 and 
HUI3. Further information on the HUI instruments 
can be found at the Health Utilities Inc. Web site.

Ling-Hsiang Chuang
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HealtHy years equivalents

The healthy years equivalent (HYE) provides a 
userfriendly metric that is needed for improved 
communication within and among researchers, 
decision makers, practitioners, and consumers. 
Unlike the qualityadjusted life year (QALY), which 
means different things to different people and often 
is not consistent with the underlying principles of 
costutility analysis (CUA), the HYE means only 
one thing—it is a utilitybased concept, derived 
from the individual’s utility function by measuring 
the number of years in full health, holding other 
arguments in the utility function constant, that pro
duces the same level of utility to the individual as 
produced by the potential lifetime health profile 
following a given intervention. The measurement 
of HYE requires that individuals will be allowed to 
reveal their true preferences. This is because it 
seems reasonable, when asking the public to assist 
in the determination of healthcare priorities, to 
choose measurement techniques that allow the 
public to reveal their true preferences even if this 
requires the use of more complex techniques. If 
not, why do we bother asking them at all?
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Concept

The underlying premise of cost utility/effectiveness 
analysis (CUA/CEA) is that for a given level of 
resources available, society or the decision maker 
wishes to maximize the total aggregate health ben
efits conferred by a proposed treatment. The prin
ciples underlying CUA/CEA are concerned with 
the simultaneous satisfaction of efficiency in both 
production (i.e., making sure that each level of 
outcome is produced with the minimum amount of 
resources) and product mix (i.e., making sure that 
the allocation of available resources between dif
ferent “products” is optimal). In this way, CUA/
CEA is consistent with the principles of welfare 
economics theory and a welfarist approach to eco
nomics. But to achieve the goal of maximizing 
healthrelated wellbeing (i.e., utility associated 
with health benefits) from available resources, the 
methods used to measure healthrelated wellbeing 
must be consistent with the theories on which the 
welfarist approach and principles of CUA are 
based. Under the welfarist approach, an individu
al’s preferences are embodied in that individual’s 
utility function. Thus, for a measure of outcome to 
be consistent with the welfarist approach, and 
hence CUA/CEA principles, it must be consistent 
with a theory of utility. Health (i.e., an expected 
profile of health over lifetime) is one argument in 
an individual’s utility function.

From the perspective of the economist qua 
economist, “pure utility” is sufficient for comparing 
alternatives on the basis of individuals’ preferences. 
Hence, for a von NeumannMorgenstern (vNM)–
type individual, for example, a single standard 
gamble (SG) question can provide the utility score 
(i.e., number of utils) for any potential lifetime 
health profile. But the utils measure, and the notion 
of cost per util, may not be very meaningful to indi
viduals and organizations making choices among 
programs associated with different expected health 
profiles. Abraham Mehrez and Amiram Gafni, who 
were the first to introduce the approach, explained 
that the HYE responds to the need to improve  
communication within and among resear chers, 
mana gers, practitioners, and consumers in a way 
that is consistent with the concept of utility and hence 
represents individuals’ preferences. The HYE is not a 
direct measure of utility. It is an attempt to reflect 
individuals’ preferences concerning uncertain 

health profiles using one argument in their utility 
function (i.e., duration), holding health status con
stant (i.e., full health). The intuitive appeal of years 
in full health has been established by the QALY 
measure, which was designed to be thought of as 
an equivalent number of years in full health—a 
number of qualityadjusted life years (QALYs).  
A different name was chosen to distinguish the 
HYE, which is a utilitybased concept, from the 
QALY. Furthermore, it has been argued that 
length of life in full health—that is, healthyyears 
equivalent—represents a much simpler concept  
to explain to decision makers than the variable qual
ity of life health status annuity, which the QALY  
represents.

The need for distinguishing HYEs from QALYs 
stems from the observation that QALYs mean dif
ferent things to different people. In the health ser
vices research literature, most proponents and 
users of the QALY approach do not subscribe to 
the notion of an underlying utility model. For 
them, QALY is simply an index (i.e., the QALY 
measures years of life adjusted for their quality) 
with intuitive meaning. It is a measure of the indi
vidual’s health status as distinct from the utility 
associated with this health state. There are others 
who subscribe to the concept of QALY as a mea
sure of utility and who identify the utility model 
for which this would be the case. Those who sub
scribe to this concept face the problem of commu
nication (i.e., the QALY is intended to measure the 
number of utils generated by a health profile, not 
adjusted years of life). Finally, there are those who 
view the QALY as an index, but one in which the 
weights attached to durations in different health 
states are calculated using utility theory, typically, 
vNM utility theory. It has been argued that this 
unit of output is therefore the utilityadjusted life 
year, which may or may not be as intuitively 
appealing as the qualityadjusted life year.

In terms of the conceptual limitations of the 
HYE, it has been noted that the HYE definition 
imposes the same restrictions as the QALY in 
terms of the (implicit) underlying assumptions  
of utility independence between health and other 
commodities in the individual’s utility function. It 
has also been noted that the current definition of 
HYE is equally as restrictive as the QALY approach 
in terms of the exclusion of externalities (i.e., one 
person’s health status may affect another person’s 
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utility) from the individual’s utility function. It has 
been suggested that the concept of external effects 
is much more applicable in the case of healthcare 
consumption than for most other commodities 
because of the special nature of the commodity, 
“health,” that healthcare is expected to produce. 
Hence, such effects should be included when mea
suring outcomes. Finally, both the HYE and QALY 
use the same aggregation method to arrive at a 
social preference—an individual’s health is mea
sured in terms of QALYs or HYEs, and the com
munity’s health is measured as the sum of QALYs 
or HYEs (i.e., an additive model). This may not be 
consistent with the equity criteria adopted for the 
analysis.

Measurement

Can an algorithm be developed to measure HYEs 
that (a) does not require additional assumptions 
(i.e., in addition to the assumptions of the underly
ing utility theory) and (b) is feasible to use with the 
intended subjects (i.e., the number and complexity 
of questions asked is not too burdensome)? 
Proponents of the QALY as a direct measure of 
utility model have recognized that the additional 
assumptions of this model are restrictive but justify 
its use on the basis of measurement feasibility (i.e., 
price worth paying). While recognizing the impor
tance of measurement feasibility issues, let’s deal 
first with the question of a measurement algorithm 
and then the issue of whether the tradeoff between 
feasibility and validity is necessary or appropriate.

The concept of HYE does not require that an 
individual subscribe to expected (i.e., vNM) utility 
theory. Any type of utility theory (i.e., nonvNM) 
can be used as a basis for generating algorithms to 
measure HYEs, and the choice of utility theory will 
determine the method of measurement. The only 
requirement is that preferences for health profiles 
are measured under conditions of uncertainty to 
reflect the nature of the commodity, health. For the 
case of a utility maximizer (i.e., vNM)–type indi
vidual and for the case of a decision tree (a typical 
case in medical decision making), HYEs are mea
sured using the twostage lotterybased method as 
follows: In Stage 1, SG is used to measure the utility 
of all potential lifetime health profiles. These are 
then used in association with the ex ante probabili
ties of each potential profile to calculate the expected 

utility of each treatment option, measured in utils. 
Note that, as explained above, this is sufficient to 
determine which treatment is preferred by the sub
ject, but the outcomes measured have limited intui
tive appeal for users. In Stage 2, the expected utils 
of each treatment option are converted to HYEs 
(i.e., more intuitively appealing years in full health 
equivalents) using again the SG method.

Does the algorithm described above provide 
scores for health profiles that accurately reflect an 
expected utility maximizer preference ordering? It 
has been shown that in the case of uncertainty, ex 
ante HYEs always rank risky health profiles the 
same way as expected utility. The assumptions 
needed for the other measures are risk neutrality 
with respect to healthy time for expected HYEs; 
risk neutrality with respect to time in all health 
states and additive independence of quality in dif
ferent periods for riskneutral QALYs; and con
stant proportional risk posture with respect to 
time in all health states and additive independence 
of quality in different periods for riskaverse 
QALYs. In other words, it is possible to develop 
algorithms to measure HYEs in a way that either 
does not require additional assumptions to those 
required by the chosen utility theory or requires 
fewer and weaker assumptions as compared with 
those required by the QALY model. Thus, for 
those interested in a utilitybased measure that has 
intuitive appeal to users while preserving the indi
vidual’s preference ordering, the HYE concept 
provides a measure superior to the QALY.

In terms of the feasibility of the HYE measure, 
“the jury is still out.” Measuring HYEs is likely to 
involve greater respondent burden, mainly in terms 
of the number of questions being asked. That it 
may be more complex and timeconsuming does 
not imply that it should not or cannot be used at 
all. This has resulted in a debate between those 
who are willing to add assumptions (typically 
invalid assumptions such as additive indepen
dence) to ease the measurement burden and those 
who would like to relax as many assumptions as 
possible even at a price of a more complex tech
nique. The need to simplify the assessment task 
(i.e., reduce the number of questions asked to gen
erate HYE scores) is most evident in the case of 
large decision trees. This is because the number of 
different potential lifetime health profiles is likely 
to be large. However, there are many assumptions 
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that researchers are making to populate large deci
sion trees with numerical values. More empirical 
work is required to systematically test whether the 
use of more accurate measures of preference in the 
context of smaller and simpler decision trees pro
vides more or less accurate ranking of societal 
preference as compared with the use of less accu
rate measures of preference in the context of large 
decision trees.

Finally, it has been suggested that, in principle, 
one can try to estimate the certainty equivalent 
number of HYEs that will always rank risky health 
profiles according to individual preferences using  
a time tradeoff (TTO) question. In this case, the 
risky health profile to be assessed is framed as a 
probability distribution and is equated to the cer
tainty equivalent number of healthy years. Note 
that this technique does not require that an indi
vidual be an expected utility maximizer. However, 
whether this could be done in practice is not 
known, as it is unclear whether that type of infor
mation can be processed in a meaningful way.

Amiram Gafni
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Hedonic Prediction 
and relativism

Standard decision theory assumes that when 
choosing between options that have the same 
costs, decision makers evaluate which option will 
deliver the highest expected outcome utility and 
choose that option. This is known as a consequen
tialist utility analysis method. In reality, people 
rarely base their decisions strictly on this approach. 
In recent years, behavioral decision theorists have 
proposed that choices are often driven by decision 
makers’ affect, or predicted experience, toward 
the choice options, and that such affectdriven 
decisions often lead to choices different from those 
that the standard utility analysis would prescribe. 
For example, before making a decision, they tend 
to think about the emotions that the outcomes  
of their choices are likely to trigger (i.e., decision 
makers predict their hedonic experiences). Evidence 
from behavioral decision research suggests that 
the emotions people expect to experience in the 
future are important determinants of their behav
ior. As a result of this development, decision theo
rists now make a distinction among three types  
of utilities—decision utility (as revealed by one’s 
choice), experienced utility (feelings with the cho
sen option), and predicted utility (prediction of 
experienced utility). The last few decades have 
witnessed a large amount of research on the incon
sistency between predicted and actual experience.

Hedonic Prediction

Hedonic prediction is a term denoting people’s 
current judgments about what their emotions 
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(e.g., happiness, distress, pain, fear) or preferences 
(e.g., for different health states or treatments) will 
be in the future. A substantial body of empirical 
research from a range of medical and nonmedical 
domains demonstrates that people typically exag
gerate their emotional reactions (positive or nega
tive) to future events. The emotions that have been 
investigated include pain, fear, and subjective well
being (happiness). For example, people tend to 
overpredict different types of acute pain (e.g., 
menstruation pain, headache, postoperative pain, 
dental pain) and chronic pain (e.g., arthritis pain 
and low back pain). Overprediction has also been 
observed when people forecast emotions such as 
fear and anxiety. For example, people overpredict 
their fear of dental treatments, confined spaces, 
snakes, and spiders.

Researchers have also investigated people’s fore
casts of the impact of specific positive and negative 
events that affect their wellbeing (such as signifi
cant life events, medical results, and treatments). In 
general, people overpredict the hedonic impact of 
negative events. For example, patients about to 
undergo surgically necessary amputations delay or 
opt out of the operations because they anticipate 
that their lives will be ruined without a limb. 
Similarly, women were found to overpredict their 
distress after receiving positive test results for 
unwanted pregnancies. There is also evidence that 
dieters overpredict their distress after being unable 
to achieve their weightloss targets. One study dem
onstrated that people also overpredict the level of 
distress experienced by other people, for example, 
after positive HIV test results. People also tend to 
overpredict the impact of positive events. Existing 
evidence suggests that patients who decide to 
undergo cosmetic surgery are not necessarily hap
pier after it. People are also found to overpredict the 
relief in distress that people with negative results 
experienced. Other studies have shown that people 
exaggerate the positive effect of a lottery win on 
their life, the pleasure that they will derive from a 
future holiday trip, and the happiness that they will 
experience if their favorite sports team wins.

Other related research suggests that people often 
have poor intuitions about the hedonic impact of 
gains and losses. For example, people overestimate 
how much hedonic benefit they will derive from 
small gains. People also believe that they will return 
to their hedonic baselines more quickly after a small 

loss than after a large loss even when the opposite 
is true. People also expect that the hedonic cost of a 
loss will be greater than the hedonic benefit of an 
equalsized gain even when this is not so. People 
often think that they would be willing to pay the 
same amount to gain an item as to avoid losing it, 
while, in reality, they are willing to pay less.

In summary, the anticipation of unpleasant life 
events such as illnesses may be different from the 
actual experience of the event. In light of this dif
ference, health economists have outlined a dual 
model for the evaluation of patients’ preferences, 
which assesses patients’ anticipation of an illness 
separately from their experience of it. Psychological 
accounts for the documented errors in hedonic 
prediction include the projection bias, according to 
which people underestimate or even completely 
ignore their ability to adapt to new circumstances 
and, as a result, tend to exaggerate the impact of 
positive and negative events on their wellbeing. 
Another psychological account is based on the 
focusing illusion, which states that people focus 
too much on the event in question (e.g., illness or 
treatment) and neglect other life events that will 
occur simultaneously with the event at the center 
of the attentional focus. As a result of this neglect 
of future events that will be competing for atten
tion with the key event, people produce exagger
ated predictions of the hedonic impact of the latter 
on their subjective wellbeing.

Relativism

When people make a choice, they tend to contem
plate how they will feel if the alternative that they 
choose turns out not to be the best one. Such coun
terfactuals, between the expected outcome and 
those that would occur if a different choice was 
made, shape many decisions because they tend  
to trigger anticipated regret. According to regret
based models of decision making, the utility of a 
choice option (and, hence, the likelihood of select
ing it) should depend on both anticipated regret 
and the subjective value of the option. Empirical 
research has documented that regret has a power
ful effect on choice. For example, people feel regret 
after both action and inaction due to anticipated 
counterfactual regret (after receiving the outcomes 
arising from a choice, people experience emotions 
as a result of these outcomes and also as a result of 
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the counterfactual comparisons of what the out
comes would have been, had they chosen differ
ently). Some argue that all behavioral choices 
necessarily involve potential regret. This shows 
that the alternate option in a choice set influences 
the evaluation of each option, that is, that judg
ment and choices are relative, because the utility of 
an option is not independent of alternative options 
in a choice set. Such relativity has been demon
strated in studies showing that anticipated regret is 
exacerbated when people expect to receive feed
back on the outcome of the foregone alternatives.

This relativistic paradigm is in line with behav
ioral evidence that people generate more accurate 
affective forecasts when they see an event within 
its context of other events. The explanation for 
this finding is that, by eliciting a context (i.e., the 
full set of outcomes), people realize that the spe
cific event (or decision in question) is only one 
among many determinants of their wellbeing and 
often not the most important one. For example, 
some authors suggest that being exposed to other 
patients’ posttreatment experience would allow 
patients to put a very unpleasant treatment within 
the context of the rest of their lives. The patients 
could then realize that what appears to be the 
focus of their lives at the time of the decision (i.e., 
the treatment and its consequences) may not be the 
focus of their lives later on.

Relativistic comparisons can also create certain 
biases. For example, when people miss a good bar
gain, they are less likely to take a subsequent one 
that is not as good. This phenomenon is termed 
inaction inertia, and according to regretbased 
explanations of it, people anticipate that buying the 
item will lead to regret, because it will remind them 
that they missed a better opportunity to buy it. This 
relativistic strategy is used when the difference 
between the previous and subsequent bargains is 
large. Studies have investigated the intensity of emo
tions caused by relativistic forecasts and have found 
poor accuracy in the prediction of the intensity of 
emotions. For example, in a negotiation task, sub
jects who made high offers overrated the regret that 
they would experience after they failed at a negotia
tion in which they had expected to succeed. Similar 
findings were obtained for disappointment. In 
another study, participants overrated the rejoicing 
that they would experience when they received 
marks for their coursework that were better than 

what they had expected. Thus, this line of research 
demonstrates systematic prediction errors in both 
negative and positive decisionrelated hedonic fore
casts. This evidence corroborates and complements 
previous work, in which accuracy was assessed by 
comparing judgments of forecasted with experi
enced emotions. One such study compared fore
casted regret if a contest was lost with the experienced 
regret reported when respondents were led to believe 
that they had lost that contest. The forecasted pre
dictions were overrated relative to the experienced 
regret. Similar findings emerged from two additional 
studies, in which commuters making only forecast
ing judgments overrated the regret that experiencing 
commuters reported after missing a train.

Note that some studies show the opposite effect 
of relativistic biases—that people underweight 
their expected emotional experiences. For example, 
if people are asked to analyze reasons before mak
ing a decision, then they are less likely to choose 
the option they will like later on (as compared with 
people not asked to analyze such reasons). Some 
researchers suggest that analyzing reasons focuses 
the decision maker’s attention on more tangible 
attributes along which to compare the choice 
options (such as cost and benefits) and away from 
less perceptible feelings. Other research shows that 
if people are not explicitly asked to analyze rea
sons, they may still choose options that are ratio
nalistic but inconsistent with predicted preferences; 
it suggests that people automatically seek rational
ism in decision making (i.e., they spontaneously 
focus on rationalistic attributes such as economic 
values, quantitative specifications, and functions).

Shared Decision Making

Clinicians, healthcare experts, and policy makers 
have argued for shared decision making between 
patients and doctors regarding choice of medical 
and surgical treatments. According to this frame
work, the patient is a key medical decision maker 
in the care plan. At the center of such care plans are 
patient preferences, which are usually defined as 
positive or negative attitudes toward bundles of 
outcomes such as disease or treatment. However, 
since preferences can be predicted or experienced, a 
more precise definition should define them in terms 
of the experienced and predicted (positive or nega
tive) feelings and emotions that patients associate 
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with a disease and with the outcomes of its possible 
treatments. However, behavioral evidence suggests 
that people are poor at predicting the impact of an 
illness and its treatment on their subjective well
being, which suggests that they have little under
standing of their own future feelings and preferences. 
Future research should aim to reveal how patients’ 
selfforecasts affect their choice of treatments and 
whether such biased forecasts could be made more 
accurate.

Ivo Vlaev and Ray Dolan
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Heuristics

The term heuristic is of Greek origin and means 
serving to assist in finding out or discovering 

something. Imagine that you feel sick and decide 
to visit a doctor. He diagnoses heart disease and 
prescribes a new treatment. You might want to 
hear the opinion of a second expert before starting 
the treatment. You visit another doctor, who rec
ommends a different medication. Now you must 
make up your mind rather quickly about which 
doctor you should trust. Inferential accuracy is 
also crucial: An error in judgment might lead to 
becoming more ill or even dying. How do doctors 
and patients solve the challenging task of making 
treatment decisions under time pressure and with 
limited information? One way to do it is to rely on 
heuristics.

There are two views on heuristics in the psycho
logical literature. According to one line of thought, 
they are errorprone reasoning strategies that can 
lead to a number of cognitive illusions and biases. 
In another view, heuristics are cognitive shortcuts 
that can lead to as good or even better judgments 
than more complex decision strategies.

Error-Prone Reasoning Strategies

The first view of heuristics is the result of measur
ing human decision making against various nor
mative standards, such as probability theory and 
logic. This research program was sparked by the 
seminal work of Daniel Kahneman and Amos 
Tversky in the 1970s. By comparing human rea
soning and intuitive judgment with ideal standards 
of rationality, researchers within this program 
hoped to gain insight into the underlying psycho
logical processes. Often, though, the program is 
charged with supporting the view that people are 
inherently faulty decision makers who use cogni
tive shortcuts that can lead to systematic errors.

Two of the more wellknown heuristics studied 
in this program are representativeness and avail-
ability. Daniel Kahneman and Amos Tversky pro
posed that when using the representativeness 
heuristic, people judge the likelihood that an event 
belongs to a certain class, or is generated by a cer
tain process, on the basis of its similarity to that 
class or process, neglecting its prior probability of 
occurrence. For example, most people will judge 
that the sequence of coin tosses headtailheadtail
tailhead is more likely than headheadheadtail
tailtail, because the former is perceived to be more 
representative of a random sample of coin tosses.
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When people use the availability heuristic, they 
are estimating the likelihood of an event on the 
basis of how easily instances of the event come to 
mind. For example, people may overestimate the 
likelihood of certain causes of death, such as tor
nado or flood, because they are vivid and more 
likely to be talked about. In contrast, the likeli
hood of some more frequent but less “exciting” 
causes of death, such as heart attack or stroke, is 
underestimated.

This view of heuristics has spread to medical 
decision making. For instance, in a seminal study 
of how physicians process information about the 
results of mammography, David Eddy gave 100 
physicians information about the prior probability 
that a patient has breast cancer, the hit rate or sen
sitivity of mammography, and the falsepositive 
rate and asked them to estimate the probability 
that a patient with a positive mammogram actu
ally has breast cancer. Eddy reported that most of 
the physicians had difficulties with probabilities 
and concluded that the physicians’ judgments sys
tematically deviated from statistical rules such as 
Bayes’s rule, emphasizing cognitive illusions. 
Similar results were reported with physicians and 
students. From these studies, many researchers 
have concluded that the human mind does not 
appear to follow the calculus of chance or the sta
tistical theory of prediction. If these conclusions 
are right, there is little hope for physicians and 
their patients.

Researchers tried to solve this problem by train
ing the physicians to use decisionsupport tools, 
which weight and combine the relevant informa
tion by using regression, instead of relying on their 
intuitive judgment. For instance, physicians at the 
University of Michigan Hospital are trained to use 
the Heart Disease Predictive Instrument, which 
consists of a chart listing approximately 50 prob
abilities. The physicians have to check for the pres
ence or absence of seven symptoms (evidence of 
which is routinely obtained during the patient’s 
admission process) and can then find the probabil
ity that the patient has heart disease. The probabil
ity scores are generated from a logistic regression 
formula that combines and weights the dichoto
mous information on the seven symptoms. When 
using the Heart Disease Predictive Instrument, 
physicians achieve more accurate decisions than 
when they rely on their intuitive judgment. Many 

doctors, however, are not happy using this and 
similar systems, typically because they do not 
understand logistic regression. Even though this 
understanding is not necessary to use the predic
tion systems, the lack of transparency and the 
dependence on probability charts leaves them 
uncomfortable.

There is, however, an alternative: Another view 
of heuristics is that they are cognitive strategies that 
can provide good solutions to complex problems 
under restrictions of time and cognitive capacity.

Cognitive Shortcuts

The concept of cognitive shortcuts providing good 
solutions is the opposite of the traditional view 
that human decision making should be evaluated 
in comparison with models of unbounded ratio
nality, such as Bayesian or subjective expected util
ity models or logistic regression. These models 
must often assume—unrealistically—that people 
can predict all consequences of their choices, are 
able to assign them a joint probability distribution, 
and can order them using a single utility function. 
But in real life, people rarely have the time or cog
nitive capacity to think of all the possible scenarios 
for the future, their likelihood, and their subjective 
utilities. Real life often involves so many possible 
choices and so many possible outcomes that the 
optimal solution to a problem rarely exists, or if it 
does, the solution requires prohibitively long and 
complex computations. Instead of trying to find 
the best solution, people may satisfice—that is, 
look for solutions that are good enough for their 
current purposes. The father of this bounded ratio-
nality view, Herbert Simon, argued that people rely 
on simple strategies that can successfully deal with 
situations of sparse resources.

A recent representative of the bounded rational
ity approach is the simple heuristics research pro
gram. This approach, championed by Gerd 
Gigerenzer, Peter M. Todd, and the ABC Research 
Group, proposes that heuristics may be the only 
available approach to decision making for the 
many problems for which optimal solutions do not 
exist. Moreover, even when exact solutions do 
exist, domainspecific decision heuristics may be 
more effective than domaingeneral approaches, 
which are often computationally unfeasible. This 
research program focuses on precisely specified 
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computational models of fast and frugal heuristics 
and how they are matched to the ecological struc
ture of particular decision environments. It also 
explores the ways that evolution may have achieved 
this match in human behavior.

In line with this approach, Lee Green and David 
R. Mehr constructed a simple heuristic for the 
patient admission process in a coronary unit. This 
heuristic, a fast and frugal decision tree, relies on 
simple building blocks for searching for informa
tion, stopping the information search, and finally 
making a decision. Specifically, it first ranks the 
predictors according to a simple criterion (the pre
dictor with the highest sensitivity first, the predic
tor with the highest specificity second, and so on), 
and information search follows this order.  
Second, the search can stop after each predictor; 
the rest are ignored. Third, the strategy does not 
combineweight and addthe predictors. Only 
one predictor determines each decision. This  
decision rule is an example of onereason decision 
making.

The fast and frugal decision tree proposed by 
Green and Mehr works as follows: If a patient has 
a certain anomaly in his electrocardiogram, he is 
immediately admitted to the coronary care unit. 
No other information is searched for. If this is not 
the case, a second variable is considered: whether 
the patient’s primary complaint is chest pain. If 
this is not the case, he is immediately classified as 
low risk and assigned to a regular nursing bed. 
No further information is considered. If the 
answer is yes, then a third and final question is 
asked: whether he has had a heart attack before. 
The fast and frugal decision tree thus ignores all 
50 probabilities of the original Heart Disease 
Predictive Instrument and asks only a few yes
orno questions.

The fast and frugal tree, just like the Heart 
Disease Predictive Instrument, can be evaluated on 
multiple performance criteria. Accuracy is one cri
terion, and it turns out that the tree is more accu
rate in classifying heart attack patients than both 
physicians’ intuition and the Heart Disease 
Predictive Instrument. Specifically, it assigned cor
rectly the largest proportion of patients who sub
sequently had a myocardial infarction to the 
coronary care unit. At the same time, it had a com
paratively low false alarm rate. Being able to make 
a decision fast with only limited information is a 

second criterion, which is essential in situations 
where slow decision making can cost a life. The 
fast and frugal decision tree uses less information 
than the expert system and uses less sophisticated 
statistical calculations. A third criterion is the 
transparency of a decision system. Unlike logistic 
regression, the steps of the fast and frugal tree are 
transparent and easy to teach. Therefore, in com
plex situations such as the patient admission pro
cess in a coronary unit, less is more. Simplicity can 
pay off.

Another wellstudied cognitive strategy within 
the simple heuristics program is takethebest, 
which is a domainspecific rather than a general 
problemsolving strategy, meaning that it is useful 
in some environments and for some problems but 
not for all. When using this heuristic, people infer 
which of two objects has a higher value on some 
criterion based on just one reason, or cue. An 
example would be inferring which of the two cit
ies has a higher mortality rate based on the aver
age January temperature, the relative pollution 
potential, or the average percentage of relative 
humidity. Like the fast and frugal decision tree  
of Green and Mehr, this heuristic considers cues 
sequentially in the order of how indicative they 
are of the objects’ values and makes a decision 
based on the first cue that discriminates between 
objects. This heuristic is particularly successful 
when one cue is much more important than other 
cues, but it has been shown to be as good as com
putationally more demanding procedures in other 
environments, as well.

Empirical evidence suggests that takethebest  
is a plausible behavioral model, especially when 
searching for information in the environment is 
costly or when decisions have to be made under 
time pressure. By “betting on one good reason” 
and disregarding the surplus information, this fast 
and frugal heuristic may be particularly useful for 
patient populations whose computational resources 
are limited due to aging or illness.

Future Research

Medical situations promote the use of heuristics 
because decisions in such contexts often need to 
be made under pressure and with limited informa
tion. Fast and frugal heuristics for medical deci
sion making have the potential to be powerful 
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alternatives to the prescriptions of classical deci
sion theory for patient care. A strategy that 
ignores information and forgoes computation can 
be not only faster, more frugal, and transparent 
but also more accurate. Simple tools for making 
accurate decisions under time pressure in the 
medical arena should be a major research topic 
for future investigation.

Rocio Garcia-Retamero and Mirta Galesic
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Holistic measurement

Holistic measurement is an approach to the mea
surement of preferences for health states or treat
ments in which a rater assigns values to each 
possible health state or treatment, where a state or 
treatment represents a combination of many attri
butes. During the assessment, the rater thus con
siders all the relevant attributes simultaneously.

Valuing Health States or Treatments

Basically, there are two different approaches to 
measuring preferences for health states, services, 
or treatments: the holistic and the decomposed. 
The decomposed approach expresses the overall 
value as a decomposed function of the attributes. 
It enables the investigator to obtain values for all 
health states or treatments without requiring the 
rater to assign values to every state or treatment; 
the rater is asked to value the attributes only. 
Holistic measurement is mostly used for health 
state valuation, but in some instances, it is used for 
the valuation of treatments or services as well, for 
example, in the willingnesstopay method and the 
treatment tradeoff method.

Holistic valuations of health states encompass 
valuations of the quality of life of those states, and 
the valuations are therefore sometimes called  
preferencebased measures of quality of life, as dis
tinct from descriptive measures of quality of life. 
Descriptive measures of quality of life generally 
generate qualityoflife profiles, that is, a combina
tion of scores on different dimensions of quality of 
life, such as physical functioning, emotional func
tioning, and social functioning. A wellknown 
example of such a descriptive instrument is the 
Medical Outcomes Study SF36. These descriptive 
approaches to qualityoflife evaluation are not 
suitable for the purpose of decision making. In deci
sion making, different attributes of treatment  
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outcomes have to be weighed. On the one hand, 
different aspects of quality of life may have to be 
balanced against each other. Does, for example, the 
better pain relief from a new neuralgia medication 
outweigh the side effects, such as sedation and con
fusion? On the other hand, quality of life and length 
of life may have to be weighed against each other. 
Does the increased survival from chemotherapy 
outweigh the side effects, or, on the contrary, are 
patients willing to trade off survival for improved 
quality of life? For such decisional purposes, a valu
ation of the health outcome is needed.

Holistic Methods

Several holistic methods exist to assess preference
based measures of quality of life. The standard 
gamble and the time tradeoff measure the utility 
of a health state, a cardinal measure of the strength 
of an individual’s preference for particular out
comes when faced with uncertainty.

Standard Gamble

In the standard gamble method, a subject is 
offered the hypothetical choice between the sure 
outcome A (living his remaining life expectancy in 
the health state to be valued) and the gamble B. 
The gamble has a probability p of the best possible 
outcome (usually optimal health, defined as 1) and 
a probability (1 − p) of the worst possible outcome 
(usually immediate death, defined as 0). By varying 
p, the value at which the subject is indifferent to the 
choice between the sure outcome and the gamble is 
obtained. The utility for the sure outcome, the state 
to be valued, is equal to the value of p at the point 
of indifference (U = p × 1 + (1 − p) × 0 = p).

Time Trade-Off

In the time tradeoff method, a subject is asked 
to choose between his remaining life expectancy in 
the state to be valued and a shorter life span in 
normal health. In other words, he is asked whether 
he would be willing to trade years of his remaining 
life expectancy to avoid the state to be valued. As 
an example, a 65yearold man is asked how many 
years x in a state of optimal health he considers 
equivalent to a period of 15 years (his remaining 
life expectancy) in a disability state. By varying the 

duration of x, the point is found where he is indif
ferent to the choice between the two options. The 
simplest and most common way to transform this 
optimal health equivalent x into a utility (ranging 
from 0 to 1) is to divide x by 15.

Visual Analog Scale

A visual analog scale is a rating scale, a simple 
method that can be selfadministered and, there
fore, is often used to obtain evaluations of health 
states. Subjects are asked to rate the state by placing 
a mark on a 100mm horizontal or vertical line, 
anchored by optimal health and death (or some
times best possible health and worst possible 
health). The score is the number of millimeters from 
the “death” anchor to the mark, divided by 100.

The visual analog scale does not reflect any 
tradeoff that a subject may be willing to make in 
order to obtain better health, either in terms of risk 
or in years of life. It can therefore not be consid
ered a preferencebased method, and transforma
tions have been proposed to approximate standard 
gamble or time tradeoff utilities. The choice of the 
method is still a matter of an ongoing debate. All 
three methods have been shown to be subject to 
biases in the elicitation process, but many of these 
biases can be explained by prospect theory.

Magnitude Estimation

Magnitude estimation is a scaling method that 
was developed by psychophysicists to overcome 
the limitations of the rating scales, that is, the lack 
of ratiolevel measurement and the tendency of 
respondents to use categories equally often (verbal 
scale) or not to use the upper and lower ends of the 
scale (visual analog scale). The respondent is given 
a standard health state and asked to provide a 
number or ratio indicating how much better or 
worse each of the other states is as compared with 
the standard. For example, the research partici
pants are instructed to assign the number 10 to the 
first case, the standard. Then a case that is half as 
desirable receives the number 5, and a case that is 
regarded as twice as desirable is given the number 
20. Magnitude estimation is seldom used, since it 
is not based on any theory of measurement and 
since the scores have no obvious meaning in the 
context of decision making. They do not reflect 
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utility and as such cannot be used in decision 
analyses.

Person Trade-Off

A different variant called the person tradeoff 
has gained popularity among health economists 
and policy makers. It was formerly known as the 
equivalence method, and the task is to determine 
how many people in health state X are equivalent 
to a specified number of people in health state Y. 
From a policy perspective, the person tradeoff 
seeks information similar to that required by pol
icy makers. It has been used in the elicitation of 
disability weights for the DALYs (disability 
adjusted life years), a measure used by the World 
Health Organization as a summary measure of 
population health.

Willingness-to-Pay

The willingnesstopay is a method used primar
ily by health economists. To value health states, it 
asks the respondents what amount, or what per
centage of their household income, they would be 
willing to pay to move from a less desirable state to 
a state of optimal health. More frequently, it is used 
to assess respondents’ willingness to pay for treat
ments and services. It is most commonly used in 
costbenefit analyses, in which all outcomes are 
expressed in monetary terms, in contrast to cost
effectiveness analyses, in which health outcomes are 
expressed in (qualityadjusted) life years. As is the 
case for magnitude estimation and the person trade
off method, this method does not result in a utility.

Probability Trade-Off

The probability tradeoff or treatment tradeoff 
method assesses, in a holistic manner, respondents’ 
strength of preference for a treatment (relative to 
another treatment). In these methods, preferences 
for combined process and outcome paths are elic
ited in the following way. The patient is presented 
with two clinical options, for example, Treatments 
A and B, which are described with respect to 
(chances of) benefits and side effects, and is asked 
to state a preference for a treatment. If Treatment 
A is preferred, the interviewer systematically either 
increases the probability of benefit from Treatment 

B, or reduces the probability of benefit from 
Treatment A (and vice versa if Treatment B is pre
ferred). The particular aspects of the treatments 
that are altered in this way, and the direction in 
which they are changed, are decided on before
hand, according to the clinical characteristics of 
the problem and the nature of the research ques
tion. For example, these may include the probabil
ity of side effects of treatment, risk of recurrence, 
or chance of survival. The relative strength of pref
erence for a treatment is assessed by determining 
the patient’s willingness to accept side effects of 
that treatment or forego benefits of the alternative 
treatment. This general approach has been adapted 
specifically to a variety of treatment decisions. 
Examples are decisions about adjuvant chemo
therapy in breast cancer, benign prostatic hyper
trophy, treatment of lupus nephritis, and 
radiotherapy for breast cancer.

The resulting preference scores are idiosyncratic 
to the original decision problem, and only the 
strength of preference for Treatment A relative to 
Treatment B is obtained, not a utility. For formal 
decision analysis they are therefore not suitable. 
However, for decision support they seem appropri
ate as they are tailored to the clinical problem at 
hand and will reflect the reallife situation more 
than does utility assessment. These methods have 
indeed been used “at the bedside,” using decision 
boards as visual aids. They seem a promising way 
to help patients who wish to engage in decision 
making to clarify and communicate their values.

Anne M. Stiggelbout

See also Contingent Valuation; Decomposed 
Measurement; Person TradeOff; Prospect Theory; 
Utility Assessment Techniques; Willingness to Pay
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Human caPital aPProacH

The human capital approach to economic evalua
tion places a monetary value on loss of health  
as the lost value of economic productivity due to  
ill health, disability, or premature mortality. More 
specifically, the human capital approach uses the 
present value of expected future earnings, often 
adjusted for nonmarket productivity, to estimate 
the potential loss to society if an individual dies  
or becomes permanently disabled. It is commonly 
employed in costofillness (COI) analyses that dis
tinguish between direct costs, chiefly medical care, 
and the indirect costs of lost productivity. It is also 
employed in certain costeffectiveness and cost
benefit analyses, particularly in older publications.

The idea that a human life can be valued by 
capitalizing the value of future earnings goes back to 
Sir William Petty in England in the late 1600s. The 
application of human capital to economic evalua
tion of health interventions can be traced to Burton 
Weisbrod in the 1960s. Under this approach, pro
ductivity is calculated as the present value of the sum 
of expected labor market earnings in future years, 
adjusted for life table survival probabilities and dis
counting. It is standard practice to take the current 
pattern of average earnings stratified by age and sex 
and assume that an individual’s earnings trajectory 
will trace the same pattern, adjusted for expected 
increases in future labor productivity and inflation
adjusted earnings. For example, in the United States, 
it is conventional to assume that future labor pro
ductivity will increase at 1% per year. If one com
bines this with a 3% discount rate as is recommended 
in the United States, one gets estimates roughly 
equivalent to use of a 2% discount rate without 
assuming future productivity increases.

It is standard in health economic evaluations to 
include the imputed value of household production 
as well as paid earnings in human capital estimates, 
although costbenefit analyses in environmental 
policy typically do not do so. The inclusion of 
household productivity is particularly important 
for older people and women, who tend to have 
high values of household productivity relative to 
paid compensation. Time spent in household pro
duction can be valued using either the individual’s 
own wage or imputed wage (opportunity cost 
method) or the average wage paid to workers  

performing similar services (replacement cost 
method); the latter is more commonly employed. 
The original justification for the inclusion of house
hold services was to reduce the lower valuation 
placed on women’s lives because of lower labor 
force participation. Although in principle one could 
put a monetary value on other uses of time, such as 
volunteer service and leisure, this is rarely done.

Earnings are typically calculated as gross earn
ings, including payroll taxes and employee bene
fits, and are intended to capture the full cost of 
employee compensation. The rationale for the 
human capital approach is that the marginal pro
ductivity of labor is equal to the compensation 
paid to the average employee and that the with
drawal of that individual’s labor due to premature 
death or permanent disability would result in a 
loss to society of that individual’s future produc
tion. In most applications, average earnings are 
estimated for everyone within a given agegroup, 
stratified only by gender. This avoids the ethical 
problems that can result from using different earn
ings for individuals of different socioeconomic or 
ethnic groups, which can have the effect of causing 
diseases affecting disadvantaged groups to appear 
less costly. The same argument can be applied to 
the use of sexspecific earnings estimates, given 
that in almost all countries average earnings are 
lower for women than for men, even after taking 
household services into account.

The chief alternative to the human capital 
approach is the friction cost approach developed 
by Dutch economists in the 1990s who objected 
that the presence of unemployed labor made 
human capital estimates of productivity losses too 
high. This approach presumes that replacement 
workers are readily available and that the only loss 
in productivity due to a worker’s death or disabil
ity is the shortterm cost of recruiting and training 
a replacement worker. Human capital estimates of 
productivity losses are many times higher than 
those calculated using the friction cost method.

Older costbenefit analyses typically used the 
human capital approach to put a monetary value 
on lost life. In recent decades, it has become stan
dard to use estimates of willingnesstopay (WTP) 
to value health, particularly in environmental and 
transportation policy analyses. WTP estimates of 
the value of a statistical life based on occupational 
mortality and compensating wage differentials are 
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typically several times higher than human capital 
estimates. Unlike WTP estimates, human capital 
estimates do not place a monetary value on pain 
and suffering or the grief experienced by family 
members and friends at the loss of a loved one. 
Because of the difficulty in putting a monetary 
value on such intangible costs, costbenefit analy
ses published in medical journals often use the 
human capital approach for monetary valuations 
of health, which results in relatively conservative 
estimates of benefits as compared with costbenefit 
analyses using WTP estimates.

Older costeffectiveness analyses also often 
included productivity costs. However, the U.S. 
Panel on CostEffectiveness in Health and Medicine 
in 1996 recommended that reference case costef
fectiveness analyses conducted from the societal 
perspective only include direct costs of care and 
exclude productivity costs, a term that was sug
gested to supplant the term indirect costs. The ratio
nale offered was that qualityadjusted lifeyears, or 
QALYs, recommended as a measure of health out
comes could entail double counting with economic 
productivity. The National Institute of Health and 
Clinical Excellence (NICE) in the United Kingdom 
likewise recommends that only direct costs be 
included in costeffectiveness analyses.

The leading use of human capital estimates is in 
COI studies used to call the attention of stakehold
ers to the economic impact of diseases or injuries 
and the potential gains from allocating funds to 
research and prevention, but they can also be used 
in the economic evaluation of programs or inter
ventions. For example, the economic benefit of 
folic acid fortification policies for the prevention 
of certain types of birth defects, spina bifida and 
anencephaly, has been calculated as the present 
value of lifetime earnings for averted cases of anen
cephaly, which is uniformly fatal in the neonatal 
period, and the present value of averted medical 
and educational costs and gains in economic pro
ductivity from the prevention of lifelong disability 
and early mortality resulting from averted cases of 
spina bifida.

Scott D. Grosse

Disclaimer: The findings and conclusions in this report are 
those of the author and do not necessarily represent the 
official position of the Centers for Disease Control and 
Prevention.
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Indirect
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Human cognitive systems

Human cognitive systems are the systems in the 
human mind that involve the conscious processing 
of information of various types and that help indi
viduals deal with self, others, and the world. Human 
cognitive systems as they reside in the human mind 
are typically described as being mental processes 
that are typically accessible by only the individual. 
As the individual behaves in the world and as that 
individual communicates with others, the individual 
can share to some degree (but does not have to) 
what is going on in his or her own mind.

The processes underlying human cognitive sys
tems, such as thinking and deciding, for the most 
part, are not held in consciousness but remain as 
unconscious or subconscious processes.

Referent of the Term Cognition

The term cognition can be used to refer to the  
processes of thought, the process of thinking, the 
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applying of rules, the development of plans in 
humans, the weighing of risk and benefit, or the 
performances of operations such as mathematical 
operations, or to the results of such processes in 
humans, animals, and machines. The term can 
apply to the processes of thinking, deciding, and 
perceiving, or to the results of such cognitive activ
ity. The term cognition can apply to beliefs of 
as well as knowledge of individuals, groups, or 
populations.

The term may also apply to some views of per
ceiving (perception) but not necessarily to certain 
views of sensing (sensation). The construction of 
sensations into perceptions may be considered by 
some to be a cognitive process even though such 
construction or processing can occur unconsciously 
or subconsciously. And these perceptions often 
occur instantaneously, as when we see a tree and 
we see (perceive) this tree as having a back side, 
even though we do not see that back side in our 
perception. Yet if we walk around that tree, the 
argument continues, we would be surprised to find 
that it did not have a back side and was just, for 
example, an elaborately constructed stage prop 
and not a tree at all.

Preferences and Decision Making

Cognitive science in the late 1970s to early 2000s 
focused on the notion of mind and intelligence in 
terms of representation and computational proce
dures of human intelligence versus machine intel
ligence (artificial intelligence), with cognitive 
research on medical artificial intelligence, artificial 
intelligence in choice and explanation, artificial 
neural networks, prediction of medical conditions 
and disease processes such as communityacquired 
pneumonia, and computerbased explanations of 
decision theoretic advice, among others. Yet cogni
tive science of the late 1970s to early 2000s also 
needs to be recast in terms of its definition and 
needs and seen as taking on different dimensions 
than the cognitive science of the 1950s. Yet both 
domains still share crucial similarities.

Today, the concept of cognitive science goes 
beyond this notion. The cognitive sciences today, 
particularly as they apply to medical decision mak
ing, also explore the notions of patient preferences, 
how patients make decisions on their own (descrip
tive decision making), and how this descriptive 

decision making compares with other models of 
how decisions should be made (normative decision 
making). In terms of normative decision making, 
human preference in medical choice situations is 
compared with normative models of decision mak
ing, such as expected value theory. Today, it can be 
argued that emotion (and emotive theory) also has 
a role to play in the cognitive sciences.

However, today, the ways in which humans 
think, problem solve, and weigh decisions in terms 
of output of human mental processes (human 
intelligence) are not compared with machine intel
ligence (artificial intelligence) but rather are con
trasted to the outputs of alternative approaches of 
how decisions should be made (normative theory, 
such as expected value theory) or alternative theo
ries regarding how decisions are actually made by 
humans (psychological theory, such as prospect 
theory).

In such later comparisons a different form of 
cognitive science arises, one that—in essential 
qualities of comparison—is not that dissimilar in 
terms of methodology from the attempt of the ear
lier view of cognitive science to capture human 
mental output and problemsolving skills in terms 
of representations and computational procedures 
and then compare how human intelligence com
pares and contrasts with artificial intelligence.

Framing and Choice

Amos Tversky and Daniel Kahneman describe 
their work in choice and decision making in rela
tion to the basic model of mind given above. When 
the authors talk about decision making, they use 
the term decision frame to refer to the decision 
maker’s conception of what he or she considers—
consciously, unconsciously, or subconsciously—as 
the acts, outcomes, and contingencies associated 
with a particular choice. They further note that 
this frame adopted by the decision maker is influ
enced by the way the problem is formulated and 
partly by the decision maker’s own norms, habits, 
and personal characteristics.

Tversky and Kahneman compare their perspec
tive on alternative frames for a decision problem to 
perception, particularly, the alternative perspec
tives on a visual scene. The term veridical means 
coinciding with reality. Tversky and Kahneman 
note that veridical perception requires that the 
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“perceived relative heights” of two neighboring 
mountains should not reverse with any change of 
vantage point of an observer. In a similar vein, the 
authors argue that rational choice requires that the 
preference between options should not reverse 
with changes of frame or perspective. They then 
link the imperfections of perception in the human 
being with the imperfections of human decision 
making. For the authors, changes of perspective, in 
fact, often reverse (or at least in some way influ
ence) the relative apparent size of objects, and 
changes of perspective, in fact, often reverse (or at 
least influence in some way) the relative desirabil
ity of options.

Tversky and Kahneman thus characterize their 
own research in framing as an attempt to describe 
and thus represent the human cognitive system in 
terms of the systematic reversals of preferences. 
Their own research discovered that by varying the 
framing of acts, their contingencies, and their out
comes, human cognitive systems of study volun
teers respond to such changes (descriptive decision 
making) in ways that are not predicted by norma
tive models of decision making, such as expected 
utility theory.

Language Learning and Problem Solving

Just as Tversky and Kahneman consider their 
framing effects as almost akin to human percep
tual effects, there are many basic questions raised 
by the application of framing effects into medical 
decision making that raise issues in other areas of 
human cognitive systems: namely, the capacity for 
language and problem solving.

Tversky and Kahneman’s research, based on 
their concept of framing, focused on one type of 
study design methodology: choices between “a 
simple gamble” or “a sure thing,” each with an 
objectively specified probability and at most two 
nonzero outcomes. Typical choice situations were 
based on monetary gains and losses or survival 
(healthrelated) gains and losses.

Tversky and Kahneman were interested in “gain” 
and “loss” situations. In a gain situation, a typical 
monetary choice given by Tversky and Kahneman 
to study participants was a sure gain of $250 versus 
a 25% chance to gain $1,000 and a 75% chance of 
gaining nothing. A typical monetary choice in a loss 
situation involved consideration of a sure loss of 

$250 versus a 25% chance of losing $1,000 and a 
75% chance of losing nothing.

A typical survivalmortality choice situation 
given by Tversky and Kahneman to study partici
pants for consideration involved a disease out
break where the overall baseline situation is a 
disease outbreak with an overall expectation of 
600 people being killed, but there is a gain scenario 
and a loss scenario. The gain scenario is illustrated 
by the choice given between two programs, Vaccine 
Program A, which if adopted would allow 200 
people to be saved (+200 being saved), versus 
Vaccine Program B, which if adopted would result 
in a onethird chance of 600 people being saved 
(+200 being saved) and a twothirds chance of no 
one being saved. In terms of loss, a typical surviv
almortality choice situation that could have been 
given by Tversky and Kahneman to study partici
pants for consideration could have involved a new 
vaccine first to be used in a human population that 
has an as yet unknown defect. This flawed vac
cine—instead of saving lives—will cause more 
people to be killed until the fact that the vaccine is 
flawed is identified. The choice given is between 
two programs using the flawed vaccine, Flawed 
Vaccine Program C, which if adopted would allow 
200 additional people to be killed of an atrisk 
group that the vaccine was intended to save (200 
individuals being killed), versus Flawed Vaccine 
Program D, which if adopted would result in a 
onethird chance of 600 atrisk people being killed 
(200 individuals being killed) and a twothirds 
chance of no one being killed.

Part of the challenges faced by the study volun
teers in each of the above thought experiments is 
the extent to which the study participants could 
imagine the gains and losses to be real consider
ations in their own lives while answering the ques
tionnaires in a study setting. This challenge also 
related to Tversky and Kahneman’s methodology, 
specifically relating to the fact that it may be diffi
cult to invent choice scenarios in survivalmortality 
contexts that involve gains and losses, as in the 
flawed vaccine example, to make the scenario 
believable enough that the study participants can 
place themselves in the scenario as the individual 
targeted to make the decision.

In general, it is also important for study investi
gators to recognize that some study participants are 
unwilling to agree to participation in questionnaire 
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studies that require them to consider gambles in 
relation to human life. Such individuals hold per
sonal beliefs that will not allow them to participate 
in such studies, and thus, these individuals’ opin
ions will not be reflected in the study results of such 
research endeavors in decision making.

The internal constraints—study of one type of 
choice between “a simple gamble” or “a sure 
thing,” each with an objectively specified proba
bility and at most two nonzero outcomes—explic
itly placed by these two psychologists on their 
rigorous study methodology (with the aim of 
understanding what types of choices humans 
make in specifically defined choice situations 
involving gains and losses and considerations of 
gambles vs. sure things) allowed them to construct 
a Nobel prize–winning theory that was highly 
dependent on at least two capacities of human 
cognitive systems in addition to perception: lan
guage learning and problem solving.

Literacy and Numeracy

Here, language learning has two components: 
the ability to work with words (literacy) and the 
ability to work with numbers (numeracy). The 
problem that arises for Tversky and Kahneman 
is what happens when the citizens of a popula
tion have difficulties with literacy, numeracy, or 
both. An additional problem arises when the 
citizens of a population prefer to discuss issues 
such as are found in medical decision making in 
terms of quality expressions of chance (probabil
ity), that is, in terms of words and not in terms 
of numbers. David H. Hickam and Dennis 
Mazur have found that in discussion of risk in 
medicine, patients prefer to discuss risk with 
their physicians in terms of qualitative expres
sions of chance (probability), such as “rare,” 
“possible,” and “probable,” and not in terms of 
numerical expressions of chance (probability), 
such as “percents.”

The very understanding of medical decision 
making has been argued to require a high propen
sity for verbal and numerical abilities for those 
patients and consumers interested in participating 
in considering scientific evidence derived from 
research studies as part of their own decision  
making in relation to shared decision making 
between patients and their providers, or in terms 

of physicianbased decision making where the 
patient may not want to make a decision on care 
but does want to track those decisions.

Yet there are many reasons to believe that solu
tions to these basic issues of literacy and numeracy 
in a population are not easy to move in positive 
directions beyond the research finding that a 
majority of patients do not want to discuss risk 
with their physicians in terms of numbers (quan
titative expressions of probability) and prefer to 
discuss risk in terms of words (qualitative expres
sions of probability). This entry now considers an 
alternative to simple numbers: graphical data dis
plays, for example, pie charts.

To date, graphs have been forbidden in the 
United States by federal regulation in directto
consumer advertisements used to sell medical 
products (prescription medicine and medical 
devices) to consumers through broadcast advertis
ing over television because of the ways data can be 
unfairly manipulated in graphic data displays.

Jessica S. Ancker and colleagues note both the 
positive and negative impacts of graphs used to 
display data in medical and public health decision 
making. First, an example of a positive aspect of a 
graph is that it may allow patients and consumers 
to understand more clearly through a visual 
graphical display parttowhole relationships. In 
helping patients understand data and scientific 
evidence in medicine, graphical data displays can 
help patients visually attend to key components of 
chance (probability) that can be expressed as a 
ratio of two numbers (e.g., a fraction with a 
numerator over a denominator). This fraction can 
also be expressed by a graph visually expressing 
the relationship between a numerator (the number 
of people sustaining adverse outcomes) and the 
denominator (the entire population studied), for 
example, in a pie diagram.

Second, graphs may be used to manipulate the 
very same numbers, for example, when the devel
oper of the graph elects to display only the numer
ator in a graph used in a directtoconsumer 
advertisement. A graph that displays only the 
numerator can be intentionally used to appear to 
inflate the perceived risk and, thus, induce risk
averse behavior on the part of the consumer. The 
U.S. Code of Federal Regulations attempts to 
guard against such manipulation by product  
manufacturers and their advertisers in the federal 
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regulation of directtoconsumer advertising of 
prescription medicines.

Challenges facing directtoconsumer adver
tising of prescription medicines and medical 
devices in cases where consumers and patients 
are not attending to numbers or graphs include 
the attention paid by (and the weight given to 
information by) consumers and patients to non
numerical and nongraphical information such as 
who is endorsing the medical product. Directing 
consumers away from a full understanding of the 
numbers and scientific evidence that surrounds a 
medical product is often a key goal of a finan
cially successful directtoconsumer advertising 
program.

Dennis J. Mazur

See also Decision Psychology; Prospect Theory; 
Unreliability of Memory
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HyPotHesis testing

A scientific hypothesis is tested by evaluating the 
logical consistency of its implications and/or the 
accuracy of its predictions. Other grounds for 
assessing hypotheses include breadth of predic
tion, scientific fertility, simplicity, and aesthetic 
appeal; however, the term hypothesis testing refers 
only to accuracy. Statistical hypothesis testing, a 
form of inductive inference, is used extensively in 
medical research and described here as a form of 
proof by contradiction.

A hypothesis is rejected by a test if the hypoth
esis logically implies something false or strongly 
predicts something contradicted by data. The 
2,500yearold proof by Hippasus of Metapontum 
that √2 is not a ratio of whole numbers exemplifies 
the former. Hypothesizing the opposite, that √2 = 
a/b for whole numbers a and b, Hippasus deduced 
the impossible: that both numerator and denomi
nator must remain divisible by 2, even after all 
possible cancellations of 2 from both a and b. 
Unable to deny the logic of this contradiction, a 
rational mind instead rejects the hypothesis, con
cluding that √2 cannot be such a ratio. This is 
proof by contradiction or, from the Latin, reductio 
ad absurdum.

Data may also contradict hypotheses. In deter
ministic settings, that is, when predictions are 
made with certainty because all relevant influences 
are presumed known, one valid incompatible 
datum overturns a hypothesis. The hypothesis 
“Elixir A cures all cancer” is overturned by a single 
treatment failure, demonstrating conclusively that 
other treatment is sometimes required. This is an 
empirical analog of proof by contradiction.

In medical sciences, though, knowledge is 
incomplete and biological variability the rule. 
Hence, determinism is rare. Medical hypotheses 
describe tendencies that are exhibited variably, in 
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complex systems governed by probabilities rather 
than individually predictable fates. The hypothesis 
“Elixir A increases the fraction of cases alive two 
months postdiagnosis” does not imply that a par
ticular individual will live for 2 months. Unless 
2month survival is already extremely high, this 
hypothesis cannot be overturned by one or even 
several early deaths.

But suppose, in a trial of Elixir A, that all 10 
clinically similar but otherwise unrelated patients 
who receive it die before 2 months postdiagnosis.  
If extensive data show that only half of similar 
untreated cases die this quickly, most would recon
sider further use of Elixir A. Although 10 patients 
on any new treatment may all be unlucky, the 
chance of this happening in a specified study is 
below 2−10 = .098% if Elixir A is beneficial. 
Logically, either luck has been extraordinarily poor, 
or Elixir A doesn’t work as hypothesized. A longer 
consecutive run of deaths would be even less likely, 
for example, 2−15 = .003% for 15 deaths, and  
hence more difficult to attribute to bad luck. With 
“enough” accumulated evidence, most persons 
bow to its weight and reject the initial hypothesis, 
because the hypothesis made a strong prediction 
that failed. Specifically, the hypothesis had pre
dicted strongly, that is, with very high probability, 
that data would show a 2month case fatality more 
similar to what the hypothesis describes (< 50%) 
than to what was actually seen (100%).

Such probabilistic proof by contradiction exem
plifies statistical hypothesis testing, the focus of 
this entry. Statistical hypothesis tests influence 
most research on which medical decisions are 
based. Their general use is to select, from among 
statistical associations in data, those hardest to 
explain by play of chance in a particular data 
sample. The selected associations, unless explicable 
by study design problems, receive preferential 
evaluation for causal involvement in disease initia
tion, promotion, progression to disability, and 
therapeutic benefit.

Statistical Hypotheses, Distributions,  
and Evidentiary Standards

Statistical hypothesis testing presupposes a scien
tific hypothesis of interest, H, and a source of rel
evant data, for example, clinical or laboratory 
experiment, observational epidemiological study, 

or clinical database. The notation HC is used for 
the complement, or negation, of H. Testing consti
tutes a formal confrontation of a prediction from 
either H or HC with the data. This involves several 
steps, starting with a choice to test either H or HC 
and selection of a basic probability model for the 
datagenerating process. The probability model 
consists of a collection of probability laws assumed 
to include one which accurately portrays this pro
cess. These laws are usually constructed from com
ponent probability distribution functions, for 
example, binomial, Poisson, normal (Gaussian), or 
lognormal distributions, thought to describe the 
origins of individual observations or sets of obser
vations from a patient. This class is then parti
tioned into two subsets of probability laws, 
respectively, consistent with H and with HC. From 
this partition follows a statistical hypothesis H0, 
postulating that the data arise from a member  
of the subset associated with whichever scientific 
hypothesis, H or HC, was chosen for testing.

Predictions about data can then be based, when 
the scientific hypothesis selected for testing is cor
rect, on one or more probability laws from the 
subset associated with H0. Along the lines of “the 
enemy of my enemy is my friend,” data discrepant 
with predictions from H0 contradict the scientific 
hypothesis H or HC on which H0 is based, support
ing the other. Note that the sometimes important 
distinction between testing a scientific hypothesis 
H using predictions from H0, and testing whether 
H0 contains an accurate probability model for the 
data, is often dropped in application. For simplic
ity and brevity, we must also sometimes drop it 
below.

In the 10patient trial above, one hypothesized 
H, that a cancer patient treated rapidly with Elixir 
A stood more than a 50% chance of surviving at 
least 2 months after diagnosis, rather than HC, a 
50% chance or less. Based on the clinical similarity 
and presumably independent results of otherwise 
unrelated patients, the probability model consists 
of all binomial distributions Bin(10, π), with π the 
chance a patient survives 2 months, and Bin(n, π) 
the mathematically proven probability law describ
ing a count of accumulated events from n indepen
dent tries of the same process, each with chance π 
of producing the event. These distributions with 
π > 50% reflect H and with π ≤ 50% reflect HC. H0, 
based on H, hypothesizes that the data arise from 
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one of the former group. H0 is said to be a “com
posite” versus “simple” hypothesis because it con
tains more than one distribution. Any Bin(10, π) in 
H0 predicts some 2month survivors with probabil
ity exceeding 99.9%. Total absence of survivors 
disconfirms this strong prediction based on H and 
supports HC, that Elixir A is ineffective or even 
harmful.

Scientifically, one usually hopes to demonstrate 
presence rather than absence of a relationship. 
Thus, when H posits a relationship, H0 is usually 
based on HC, hypothesizing its absence or opposite. 
H0 is then called the statistical null hypothesis, 
motivating the conventional subscripted 0. The 
researcher wishes to assemble enough data to con
tradict H0, discredit HC, and hence confirm H.

Suppose H0 has been chosen based on some 
scientific hypothesis H. A method is then selected 
for locating the observed data on a scale of dis
crepancy from H toward HC, in relation to other 
possible study results that might have but did not 
occur. The scale is defined by the value of a sum
mary statistic, for example, a count (as above), 
proportion, mean, difference, or ratio of these or 
the maximum probability of the observed data for 
a probability law from H0. Any such scale defines 
a possible hypothesis test. The scale ordinarily 
incorporates whether testing is “one sided” or 
“two sided.” For instance, in the onesided exam
ple above, 2/10 = 20% early deaths are less dis
crepant from H0 (π > 50% for survival) than are 
6/10 = 60% early deaths, but would be more dis
crepant on a reasonable scale for twosided testing 
of H*

0: Elixir A has no effect (H0: π = 50%).
Research results sufficiently discrepant to reject 

H0 are determined, using the selected discrepancy 
scale, by designating a maximum allowable chance 
of erroneous rejections when H0 applies. This 
probability, symbolized by α, is called the signifi-
cance level or simply level of the test. The collec
tion of results discrepant enough to reject is then 
formed by successively including possible results, 
from most discrepant toward less discrepant from 
H, as ordered by the summary statistic. The pro
cess stops when rejections based on the next value 
of the summary statistic would raise the accumu
lated rejection probability above α for some distri
bution in H0.

The level α serves as a probabilistic standard for 
strength of evidence required to reject H0. For tests 

based on continuous probability distributions, α is 
the chance that a true hypothesis will be errone
ously rejected and otherwise is an upper bound. In 
practice, α is often chosen from among 10%, 5%, 
1%, and 0.1%; lower values require stronger evi
dence to reject H0. The NeymanPearson approach 
to statistical hypothesis testing, invoked explicitly 
by considerations of statistical power, also requires 
the specification of an alternative hypothesis HA 
that comprises probability laws possibly applying 
when H0 is false.

The steps above prescribe how to test H0 using 
any data that occurs. The summary statistic and its 
location on the discrepancy scale are determined. 
This location indicates whether the evidentiary stan
dard for rejection has been met and hence whether 
the test is passed or failed. If the latter, H0 is rejected, 
and the effect, trend, or “signal” in the data is 
labeled “statistically significant.” If the former, 
some say H0 is accepted, others that it is retained, 
that the test fails to reject, or that the signal is not 
statistically significant. Accepted is a technical term 
in this context; literal acceptance is rarely if ever 
justified in medical hypothesis testing.

Technical Aspects and Examples

Most generally, a statistical hypothesis test may be 
viewed as partitioning the universe U of possible 
data sets that might be observed in a study into a 
rejection region UR and its complement UC. UR is 
chosen so that, when H0 is true, the maximum 
probability of observing data within UR, called the 
size of the test, equals or is minimally below α. 
Among possible such choices of UR, a region is 
selected with high chance of containing data likely 
to occur from the type of relationship one expects, 
and hopes to detect, if H0 is false.

Implementation involves rejecting H0, or not, 
based on the location of a summary test statistic 
within a reference probability distribution. The test 
of a genuinely null hypothesis, that is, one repre
senting no difference between quantities such as 
averages or proportions over time or between 
groups, is then analogous to a clinical diagnostic 
test. In diagnosis, the detection target is disease in 
a patient; in statistical hypothesis testing, the target 
is a systematic statistical relationship in the popu
lation generating the data. The hypothesis test may 
mistakenly reject H0 when true, a Type I error, or 
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mistakenly retain H0 when false, a Type II error. 
These errors are respectively analogous to false
positive and falsenegative diagnoses. The Type I 
error probability is the size of the test, which for 
simplicity we now assume equals the stipulated 
level α. Its complement, the chance 1 − α that H0 
passes the test when true, is analogous to diagnos
tic specificity. Type II error probability is repre
sented by b. Its complement 1 − b, the chance of 
rejecting a false H0, is the test’s power, analogous 
to diagnostic sensitivity. Power and b are functions 
of the extent to which reality departs from H0. 
Tables 1 and 2 show the analogy. In diagnosis, one 
desires highest possible sensitivity for given false
positive rate. In hypothesis testing, one desires 
highest possible power for given test level α.

Suppose one conducts a parallel group random
ized trial comparing a new drug with placebo and 
wishes to demonstrate differences in mean dia
stolic blood pressures (DBP) and proportions of 
patients who experienced a myocardial infarction 
(MI) after 1 year. For DBP, blood pressures might 
be assumed normally distributed, and H0 might 
state that DBPs within each group have identical 
distributions. The ubiquitous Student’s t statistic is 
the ratio of the difference between mean DBPs 
among patients receiving the new drug and receiv
ing placebo (essentially, the signal in the data), to 
its estimated standard error, a measure of sensitiv
ity to random variation among patients, that is, 
statistical noise. UR contains data sets for which 
this ratio differs from 0 more than would occur 
100(1 − (α/2))% of the time if H0 were true, as 
calculated from a Student’s t distribution, the rel
evant reference probability law.

For MI, H0 states that probability of MI within 
a year is unaffected by drug. An equivalent version 
of the wellknown Pearson chisquare test uses the 
ratio of the difference between proportions of 

patients who experienced an MI to its estimated 
standard error when H0 is true. UR is determined as 
above, but using a different reference distribution.

Use of unsigned differences and α/2, as above, 
pertain to twosided tests. In onesided testing, UR 
contains only data sets reflecting the anticipated 
direction, up to accumulated probability 100(1 − α)%. 
In the examples, only differences of prespecified sign 
would justify rejection. Since rejection in one direc
tion is precluded, a onesided test allows easier rejec
tion of H0 in the other, anticipated direction, than 
does a twosided test if both are at level α.

Extensive theory guides selection of a hypoth
esis test to use information in data from a given 
scientific setting most efficiently, stemming from 
work of J. Neyman and E. S. Pearson on testing 
with stipulated or optimum power against a 
specified alternative hypothesis HA. Many meth
ods for constructing UR have been developed. 
Likelihood ratio testing orders data sets for place
ment into UR by the ratio, lowest to highest, of the 
highest probability of the data under a distribu
tion in H0 to their highest probability under a 
stipulated broader class of distributions (e.g., H0 
or HA, if an HA has been specified). Other meth
ods, such as score and Wald tests, also use test 
statistics calculated from assumed or approxi
mated underlying probability laws. Reference 
probability distributions are also derived from a 
priori mathematical models for data generation 
processes or from theoretical approximations to 
the random behavior of summary statistics from 
large samples.

Sometimes a reference distribution may be devel
oped based on a verifiable property of the data 
collection process or on symmetry considerations in 
a related “thought experiment.” Thus, when treat
ment assignments are randomized, a reference dis
tribution may be obtained by considering how a 
test statistic would vary across all possible random
ized assignments. Such randomization tests have 

Table 1  Diagnostic test probabilities

Disease Test Result

Negative Positive

Absent Specificity Falsepositive 
rate

Present Falsenegative rate Sensitivity

Table 2  Hypothesis test probabilities

Null Hypothesis Test Result

Retain Reject

True 1 − α Type I error: α

False Type II error: b Power: 1 − b
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high credibility due to conceptual simplicity and 
freedom from mathematical assumptions.

Information is lost when tests are reported as 
statistically significant, or not, at a fixed level. If 
statistical significance is reported at 5%, research
ers with a more stringent evidentiary standard, say 
1%, are left ignorant as to whether their standard 
has been achieved. If nonsignificance at 5% is 
reported, other researchers with a less stringent 
evidentiary standard, say 10%, are left similarly 
ignorant. Most researchers therefore report the 
p value of a test, defined as the lowest level for 
which the test is statistically significant, allowing 
each reader to assess statistical significance relative 
to an individual standard. Modern software auto
mates reporting of p values.

Some take this further, by omitting prespecifica
tion of α and UR altogether and using the p value as 
an index of compatibility of the data with H0, on 
the discrepancy scale that underlies the hypothesis 
test. Values close to 0 reflect discrepancy; values 
above 0.1 reflect compatibility, increasingly with the 
value. Such use reasonably accords with the views 
of founders of biometrics, including K. Pearson, 
W. S. Gosset, and R. A. Fisher, but is in some respects 
incompatible with the NeymanPearson theory that 
followed. Thus, somewhat different testing philoso
phies coexist in general scientific practice.

This discussion has focused on the frequentist
based hypothesis tests that dominate the current 
biomedical literature. A Bayesian inferential per
spective offers useful alternatives by treating both 
data and hypotheses as subject to probability dis
tributions and incorporating a priori probabilities 
of hypotheses. Due to their subjectivity, Bayesian 
hypothesis tests have not been widely accepted in 
scientific practice. The increasing capabilities of 
“objective Bayes” methods, emphasizing prior dis
tributions that limit effects of subjectivity, may 
overcome resistance.

Peter B. Imrey

See also Bayesian Analysis; Coincidence; Confidence 
Intervals; Effect Size; Frequentist Approach; 
Likelihood Ratio; Managing Variability and 
Uncertainty; Probability; Sample Size and Power; 
Statistical Testing: Overview
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Index TesT

A variety of methods have been proposed to exam-
ine the accuracy of diagnostic (or prognostic) tests 
when data are presented in a 2 × 2 format (see 
Table 1). Rule-in (true positive, or TP) and rule-
out (true negative, or TN) accuracy are usually 
best considered separately, but there are circum-
stances in which a summary of the overall perfor-
mance is needed. There are four common methods 
to calculate overall performance. These are the 
Youden index, the predictive summary index (PSI), 
the receiver operator curve (ROC), and the overall 
accuracy. The ROC, which can be considered a 
special case where overall performance of a test 
across a range of cut-off scores is needed, is not 
discussed in this entry. Each of these major meth-
ods has an associated reciprocal of absolute bene-
fit, that is, the number to diagnose one additional 
case using the stated method (see Table 2).

Youden Index

The Youden index (Youden’s J) is based on the 
characteristics of sensitivity and specificity. 
Sensitivity and specificity are essentially measures 
of occurrence rather than gain or clinical value. For 
example, an 80% sensitivity simply describes that 
a result occurs in 8 out of 10 of those with the 
index condition. Yet a test that was positive in 
80% of those with a condition might or might not 
be valuable depending on the prevalence of that 
condition and also the number of times the test 

was positive in those without the condition. 
Sensitivity and specificity are often considered a 
hypothetical rather than clinical measure because 
their calculation requires application of a reference 
(or criterion) standard. In clinical practice, a refer-
ence standard is not usually calculated for all 
patients, hence the need for the test itself. In 1950, 
William John Youden (1900–1971) proposed the 
Youden index. It is calculated as follows: [J = 1 − (α 
+ β) or sensitivity + specificity − 1]. If a test has no 
diagnostic value, sensitivity and specificity would 
be 0, and hence J = −1; a test with modest value 
where sensitivity and specificity = .5 would give a 
J = 0. If the test is perfect, then J = +1. The Youden 
index is probably most useful where sensitivity and 
specificity are equally important and where preva-
lence is close to .5. As these conditions often do not 
apply, other methods of assessing the value of diag-
nostic tests have been developed.

The Predictive Summary Index

In most clinical situations when a diagnostic test is 
applied, the total number of positive test results (TP 
+ FP) (true positive + false positive) and negative 
test results (TN + FN) (true negative + false nega-
tive) is known although the absolute number of TP 
and TN is not. In this situation, the accuracy of 
such a test may then be calculated from the positive 
predictive value (PPV) and negative predictive value 
(NPV). Several authors have suggested that PPV 
and NPV are preferable to sensitivity and specificity 
in clinical practice. Unlike sensitivity and specific-
ity, PPV and NPV are measures of discrimination 

I
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Table 2  Summary measures of diagnostic accuracy

 
 
 
Measure

 
 
 
Basic Formula

 
 
 
Strength

 
 
 
Weakness

 
 
Reciprocal 
Absolute Benefit

Reciprocal 
Absolute 
Benefit 
Formula

Youden 
index

Sensitivity + 
Specificity − 1

Relatively 
independent of 
prevalence

Requires 
application of 
criterion (gold 
standard)

Number needed 
to diagnose

NND =  
1 / Youden

Not clinically 
interpretable Does not assess 

ratio of false 
positives to 
negatives

Predictive 
summary 
index

PPV + NPV − 1 Measures gain Dependent of 
prevalence

Number needed 
to predict

NNP =  
1 / PSI

Clinically applicable
Places equal 
weight on rule-in 
and rule-out 
accuracy

Overall 
accuracy 
(fraction 
correct)

(TP + TN) / (TP +  
FP + TN + FN)

Measures real 
number of correct 
identifications versus 
misidentifications

Requires 
application of 
criterion (gold 
standard)

Number needed 
to screen

NNS =  
1 / Identification 
index

Can be easily 
converted into a 
percentage

Note: Positive predictive value (PPV), negative predictive value (NPV), predictive summary index (PSI), true positive (TP), true 
negative (TN), false positive (FP), false negative (FN).

Table 1  Generic 2 × 2 table

Reference Standard Reference Standard
Disorder Present No Disorder

Test
+ve A B

A / A + B
PPV

Test
−ve C D

D / C + D
NPV

Total A / A + C
Sn

D / B + D
Sp

Note: Positive predictive value (PPV), negative predictive value (NPV), sensitivity (Sn), and specificity (Sp). 
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(or gain). The gain in the certainty that a condition 
is present is the difference between the posttest 
probability (the PPV) and the prior probability (the 
prevalence) when the test is positive. The gain in 
certainty that there is no disease is the difference 
between posttest probability of no disease (the 
NPV) and the prior probability of no disease (1 − 
Prevalence). This is best illustrated in a Bayesian 
plot. In the Bayesian plot shown in Figure 1, the 
pretest probability is plotted in dark shading, and 
the posttest probability is plotted in gray shading 
where a test is positive and without shading where 
the test is negative. Thus, using the example of 
80% sensitivity and specificity, the thick black line 
illustrates the posttest probability given a pretest 
probability of .5 and thus the overall gain in prob-
ability of an accurate diagnosis compared with the 
baseline probability. In this case, it is pre-post gain 
+ve (.8 − .5) plus pre-post gain −ve (.5 − .2) = .6.

Considering the overall benefit of a test from 
positive to negative, then, the net gain in certainty 
is a summation of [PPV − Prevalence] + [NPV −  
(1 − Prevalence)] = PPV + NPV − 1. This is the PSI. 
The PSI is usually a better measure of applied test 
performance than the Youden score. However, its 
strength is also its limitation as it is dependant on 
the underlying prevalence, reflecting real-world 
probabilities. This may be an advantage where the 
performance of a test must be calculated for par-
ticular settings, but occasionally it can be a disad-
vantage where test performances need to be 
compared across varying settings.

Overall Accuracy (Fraction Correct)

A third approach to calculating accuracy is to mea-
sure the overall fraction correct (FC). The overall 
FC is given by (TP + TN)/(TP + FP + TN + FN) or 
(A + D)/(A + B + C + D) from Table 1. 1 − FC is the 
fraction incorrect (or [FP + FN]/[TP + FP + TN + 
FN]). Arguably, the FC is not as clinically applica-
ble as the PSI because the actual number of TP and 
TN must be known to calculate overall accuracy. 
However, if known, FC can be useful because it 
reveals the real number of correct versus incorrect 
identifications. It places equal weight on TP and 
TN, which may be misleading in some circum-
stances; for example, where an FP leads to retesting 
but an FN leads to no treatment. Recently, Alex 
Mitchell proposed a method to aid interpretation 

of the FC. The fraction correct minus the fraction 
incorrect might act as a useful “identification 
index,” which can be converted into a number 
needed to screen. Thus,

Identification index = FC − (Fraction incorrect)

Identification index = FC − (1 − FC)

Identification index = 2 × FC − 1.

Reciprocal Measures of Accuracy

Number Needed to Diagnose

The reciprocal of Youden’s J was suggested as a 
method to calculate the number of patients who 
need to be examined in order to correctly detect 
one person with the disease. This has been called 
the number needed to diagnose (NND) originally 
suggested by Bandolier. Thus, NND = 1/[sensitiv-
ity − (1 − specificity)]. However, the NND statistic 
is hampered by the same issues that concern the 
Youden score, namely, that it is insensitive to 
variations in prevalence and subject to confusion 
in cases where sensitivity is high but specificity low 
(or vice versa). Additionally, the NND becomes 
artificially inflated as the Youden score approaches 
0, and this is misleading because the Youden varies 
between −1 and +1, not +1 and 0. In short, the 
reciprocal of Youden’s J is not a clinically mean-
ingful number.

Number Needed to Predict

An improvement on the NND is to take the 
reciprocal of the PSI. This was proposed by Linn 
and Grunau and called the number needed to pre-
dict (NNP), which is the reciprocal of the PSI. 
Unlike the NND, this does reflect the local condi-
tions of the test, that is, the current prevalence. 
However, it assumes equal importance of the PPV 
and NPV and may be prone to error when the sum 
of the PPV and NPV equals 1.0.

Number Needed to Screen

Mitchell recently suggested a new method called 
the number needed to screen (NNS) based on the 
difference between the real number of correctly 
diagnosed and incorrectly diagnosed patients. The 
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number needed to screen = 1/FC − (Fraction incor-
rect) or 1/Identification index.

Take a hypothetical example of a new screening 
test for Alzheimer’s disease tested in 100 with the 
condition and 1,000 without which yields a sensi-
tivity of .90 and a specificity of .50. The Youden 
score is thus .4 and the NND 2.5, suggesting 2.5 
individuals are needed to diagnose one person with 
Alzheimer’s disease. In fact, out of every 100 appli-
cations of the test, there would be 9 people with 
Alzheimer’s disease (Prevalence × 100) of whom 
90% would be true positives (= 8.2) and 81 with-
out Alzheimer’s disease (1 − Prevalence × 100) of 
whom 50% would be negatives (= 45.5). In this 
example, there would be 53.6 true cases per 100 
screened (FC per 100 cases) but at the expense of 
46.4 errors (Fraction incorrect) per 100 screened, 
a net gain of 7.3 identified cases per 100 screened. 
Thus, the NNS would be 13.75 applications of the 
test to yield one true case without error.

Unlike the Youden score or the NND, the clinical 
interpretation of the NNS is meaningful. It is the 
actual number of cases that need to be screened to 
yield one additional correct identification (case or 
noncases) beyond those misidentified. Unlike the 
Youden score and NND, which equally favor sensi-
tivity and specificity regardless of baseline prevalence, 

the NNS emphasizes minimum errors taking into 
account the prevalence (or study sample). The NNS 
of a test will approach 1 as it reaches perfect accu-
racy. The unusual but not impossible situation in 
which a test that yields more errors than correct iden-
tifications will have a negative identification index, in 
which case the magnitude of the NNS can be inter-
preted as the actual number of cases that need to be 
screened to yield one additional mistaken identifica-
tion (case or noncases) beyond those correctly identi-
fied. This is akin to the concept of number needed to 
harm (NNH) and requires no additional calculation 
in this case.

Discussion

Various methods have been suggested to examine 
the accuracy of diagnostic (or prognostic) tests 
when data are presented in a 2 × 2 format. Although 
the sensitivity, specificity, PPV, and NPV are often 
used by default, their strengths and weaknesses 
should be considered. Summary methods are most 
appropriate where one test must be used for both 
making and excluding a diagnosis. In many situa-
tions, the optimal test for diagnosis (case finding) 
may be different from the optimal test for exclu-
sion. Therefore, where possible, clinicians should 
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examine rule-in and rule-out accuracy separately 
and thus not rely on Youden (NND), PSI (NNP), or 
even the NNS.

Summary measures such as the Youden score 
and its derivative, the NND, appear to be also 
limited by scores that are not clinically interpret-
able. Youden is best confined to pooled and  
meta-analytic comparison of multiple tests under 
differing conditions where prevalence varies. The 
number needed to treat is a clinically interpreta-
ble statistic although it is not without problems. 
Mitchell proposes that the optimal equivalent 
statistic for diagnosis is the NNS and not the 
NND. In clinical practice, choice of the optimal 
screening (diagnostic) or predictive method will 
also rely on issues of cost, acceptability, and 
practicality.

Alex J Mitchell

See also Diagnostic Tests; Number Needed to Treat; 
Receiver Operating Characteristic (ROC) Curve 
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Influence dIagrams

The medical profession leads physicians and, in 
general, healthcare personnel to frequently face 
delicate situations that require accurate and care-
ful decision making. The utilization of decision-
support models is necessary to improve the 
decision-making process and to identify the opti-
mal policy. The models allow unveiling of the 
decisions to be taken, their consequences, and the 
uncertain events that are involved in the problem. 
Influence diagrams are graphical tools for the 
representation and solution of decision-making 
problems. By representation, one means the iden-
ti fication of the decision-making problem ele-
ments. In particular, an influence diagram reveals 
the probabilistic dependences among the uncer-
tain quantities and the state of information at 
each decision stage. By solution, one means the 
determination of the preferred alternative (best 
strategy selection) given the state of information. 
Influence diagrams grant decision makers the pos-
sibility of representing complex decision-making 
problems in a thorough albeit compact fashion. It 
is this strength over other representation tech-
niques that has made the use of influence dia-
grams widespread in medical applications. This 
entry is organized as follows. It provides a descrip-
tion of influence diagrams by means of a sample 
medical example. The analysis of nodes and arcs 
of influence diagram follows. The discussion of 
the properties and levels of influence diagrams is 
offered next. The discussion is a prelude to a syn-
thetic description of influence diagram solution 
algorithms. The relationship between influence 
diagrams and decision trees, and a brief mention 
about other graphical representation techniques, 
concludes the entry.
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Description

An influence diagram is a directed graph composed 
of nodes and arcs (Figure 1).

The graph is acyclic. There are three types 
of nodes: decision, chance, and value. A decision 
node is represented by a rectangular box. A chance 
node is represented by a circular box. There is one 
unique value node displayed by a diamond or 
rhombus; occasionally an octagon is used. Arrows 
joining nodes are called arcs. The value node ends 
the diagram, and an influence diagram containing 
a value node is said to be oriented. In case there are 
no value nodes and decision nodes, the influence 
diagram coincides with a Bayesian network.

Figure 1 displays an influence diagram represent-
ing the following decision-making problem. A physi-
cian must select the treatment for a patient. The first 
stage of the treatment foresees a choice between 
Cures A or B. The two cures have a different efficacy 
and a different cost, with their overall effect strongly 
dependent on the patient’s response. After 1 week, 
the physician reevaluates the patient’s conditions. 
Depending on the evaluation results, the physician 
has to decide between continuing with Cure A, 
switching to B, or resorting to a third cure, C. The 
problem contains two (sequential) decisions.

Elements

Nodes

An influence diagram contains three types of 
nodes. Decision nodes display the decisions to be 
taken at different stages of the decision analysis 

problem at hand. A variable contained in a deci-
sion node is an alternative. The choice among alter-
natives is under the control of the decision maker, 
who selects the alternative that maximizes the 
decision maker’s utility. In Figure 1, decision node 
“Decision 1: A or B?” represents the first selection 
between Cures A and B; the node “Decision 2: A, 
B, or C?” represents the selection between Cures A, 
B, and C. The second selection is made after reeval-
uation of the patient’s conditions.

Chance nodes represent variables or events 
whose knowledge or realization is out of the con-
trol of the decision maker. Chance nodes are some-
times referred to as uncertainty or event nodes. 
Each chance node contains all possible realizations 
of the corresponding uncertain variable. Realiza-
tions are called outcomes. In Figure 1, the chance 
node “Patient conditions 1” represents the condi-
tions of the patient after selection of A or B. If the 
analyst/decision maker considers that three possi-
ble states, namely, “fully recovered,” “partially 
recovered,” and “worsened,” are possible, then 
the chance node will have three outcomes. The 
decision maker’s state of belief of the likelihood of 
the outcomes is characterized by a corresponding 
conditional probability distribution.

Value nodes contain the decision maker’s utility 
for each consequence. A consequence is the end 
state of the world resulting as a combination of 
selected alternatives and outcomes of uncertain 
events. Utility is a quantification of preference and 
must be assessed consistently with the axioms  
of decision theory. Value nodes are occasionally 
referred to as utility nodes.

Patient
conditions

2

Decision 1:
A or B?

Patient
conditions

1
Value node

Decision 2:
A, B, or C?

Conditional arc 

Probabilistic
dependence

Informational
arc

Sequential
decisions

Figure 1   An influence diagram with two chance nodes, two decision nodes, and the value node. The order of nodes 
is Decision 1, Chance Node 1, Decision 2, Chance Node 2, and Value Node.
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Arcs

Arrows joining nodes in an influence diagram 
are called arcs. Arcs are grouped into the catego-
ries of informational and conditional.

Arcs ending in decision nodes are informational. 
If the informational arc stems from a chance node, 
then it indicates that the decision maker is aware of 
the outcome of the chance node at the moment he 
or she has to make the decision. If an arc connects 
two decision nodes, then the decision maker is 
aware of the previously selected alternatives. Arcs 
connecting decision nodes are also called no- 
forgetting arcs. Informational arcs imply time pre-
cedence. For this reason, it is not possible to reverse 
the direction of an informational arc without alter-
ing the structure of the decision-making problem.

Arrows leading to chance nodes are conditional 
arcs. Conditional arcs indicate a probabilistic 
dependence among the distribution of the random 
variables contained in the chance nodes that the 
arcs link. Recall that probabilistic dependence 
indicates a form of relationship weaker than causal 
dependence. Let X and Y be the two random vari-
ables represented by the two chance nodes. Two 
cases are possible: X is probabilistically dependent 
on Y or it is not (Figure 2).

If there is a probabilistic dependence, this is 
displayed by the presence of an arc. The direction 
of the arrow shows the state of information of the 
decision maker, that is, whether the decision maker 
is capable of expressing the probabilities as P(X|Y) 
or as P(Y|X). A conditional arc does not necessar-
ily correspond to time precedence. In fact, it is 
always possible to reverse a conditional arc using 

Bayes’s theorem, provided that this operation is 
performed in a consistent fashion. The lack of a 
conditional arc between two nodes is a strong 
assertion about independence.

The influence diagram in Figure 1 contains six 
arcs. The arc between decision nodes “Decision 
1: A or B?” and “Decision 2: A, B, or C?” is an 
informational arc. It denotes the fact that the 
physician, at the moment of the second decision, 
is aware of whether Cure A or B has been previ-
ously selected. The arc from chance node “Patient 
Conditions 1” to decision node “Decision 2: A, B, 
or C?” is also an informational arc, denoting that 
the physician, at the moment of the second 
decision, is informed of the patient’s conditions 
after adoption of Cure A or B. The arc between 
chance nodes “Patient Conditions 1” and “Patient 
Conditions 2” is a conditional arc representing 
the fact that the decision maker considers the 
outcomes of the second chance node dependent 
on the conditions of the patient after the selection 
of the first cure.

Predecessors, Successors,  
Paths, and Barren Nodes

Let (i) and (j) denote any two nodes. A path from 
(i) to (j) is a set of arcs that starts from (i) and 
forms a directed line leading to (j). Thus, influence 
diagrams are directed graphs. The set of nodes that 
have a path leading to (j) is called the set of prede-
cessors or parents of (j). Direct predecessors are 
defined as the subset of predecessors with an arc 
leading directly to j. Similarly, a successor is any 
node in the diagram that lies in a path emanating 
from node j. A direct successor is any node con-
nected to (j) by arcs stemming from (j).

If a chance or decision node does not possess 
any successor, then it is said to be barren. If a 
chance node is barren, then it can be removed 
from the diagram without altering the evaluation. 
If a decision node is barren, it can be removed as 
well. In addition, all the alternatives in a barren 
decision node are optimal.

A diagram is acyclic if there are no paths start-
ing at a node and ending at the same node. 
Acyclicity ensures that a decision maker does not 
infer information from a decision he or she has not 
yet made. An influence diagram is regular if it is 
acyclic, if the value node ends the diagram, and if 

=P(Y |X )
P(Y |X ) × P(X )

P(Y )

X Y

X Y

X Y

(I)

(II)

(III)

P(Y |X )

P(Y |X ) = P(Y )

Figure 2   Arcs connecting chance nodes: I and II 
denote probabilistic dependence, III denotes 
independence
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there is at least one directed path connecting (and 
therefore ordering) all the decision nodes.

Influence Diagrams Levels

One distinguishes three levels of influence diagrams: 
graphical, functional, and numerical. The graphical 
level displays nodes and arcs, evidencing probabilis-
tic dependence and the flow of information, that is, 
the information available before each decision 
(Figure 1). At the functional level, one introduces 
the outcomes, the conditional distributions, and  
the alternatives of each chance and decision node, 
respectively. The numerical level is the level at 
which the values of the conditional probabilities 
and utilities are inserted. The insertion of the 
numerical values is necessary for the solution of the 
decision-making problem.

Algorithms for Solving Influence Diagrams

Solving an influence diagram means to determine 
the preferred strategy, that is, to identify the opti-
mal choice at each decision node. The mathemati-
cal function associated with a decision node is 
the max(⋅) function, as a decision maker selects the 
alternative that maximizes expected utility. The 
operation associated with a chance node is condi-
tional expectation.

In the original work of Ronald A. Howard and 
James E. Matheson, the solution of influence dia-
grams is envisioned in a two-step approach, through 
conversion of the influence diagram into the cor-
responding decision tree. A few years later, Ross D. 
Shachter proposes a complete algorithm for direct 
solution of influence diagrams. The direct solution 
algorithm proceeds through arc reversals and node 
elimination. These operations follow strict rules so 
as not to allow distortion of the calculation of the 
expected utilities and the flow of information. Such 
operations are called value preserving. The four 
main types can be listed as follows, in accordance 
with the taxonomy of Joseph A. Tatman and Ross 
D. Shachter: (1) arc reversal, (2) chance node 
removal through summation, (3) chance node 
removal by conditional expectation, and (4) deci-
sion node removal by maximization. The proce-
dure foresees first the removal of barren nodes, 
followed by the iterative application of the four 
operations, until the best strategy is identified.

Significant research on the solution of influence 
diagrams has been undertaken in the fields of com-
puter science and operations research, and numerous 
algorithms have been developed. This has resulted in 
the availability of commercial software that allows 
decision makers to implement and solve decision 
analysis problems directly on a personal computer by 
representing them in the form of influence diagrams.

Decision Trees and Other  
Graphical Techniques

Influence diagrams are often used in conjunction 
with decision trees. Some commercial and open-
source software allows users to first structure the 
model in the form of an influence diagram and 
then to obtain the corresponding decision trees. 
Decision trees have the advantage of displaying the 
combinations of choices and outcomes that lead 
to each consequence, thus providing a detailed 
description of the decision-making problem. 
However, their size increases exponentially with 
the number of nodes. Not all influence diagrams 
can be directly converted into a decision tree, and 
to one influence diagram there can correspond 
more than one decision tree. The conditions that 
ensure the possibility of transforming an influence 
diagram into a decision tree are the single decision-
maker condition and the no-forgetting condition. 
These names follow the taxonomy of Howard and 
Matheson. An influence diagram sharing these two 
requirements is called a decision network.

Besides decision trees and influence diagrams, 
related graphical techniques for the representation 
of decision-making problems are valuation networks 
and sequential decision diagrams. Concha Bielza 
and Prakash Shenoy have compared the four tech-
niques, illustrating their merits and shortcomings.

As an example of application in the medical 
discipline, Manuel Gómez, Concha Bielza, Juan A. 
Fernández del Pozo, and Sixto Ríos-Insua use 
influence diagrams for decision aid in neonatal 
jaundice problems.

Emanuele Borgonovo

See also Applied Decision Analysis; Bayesian Networks; 
Bayes’s Theorem; Decision Trees, Advanced Techniques 
in Constructing; Probability; Tree Structure, Advanced 
Techniques; Utility Assessment Techniques
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InformaTIon InTegraTIon 
Theory

Information integration theory (IIT) is an approach 
to the mathematical modeling of judgment devel-
oped by Norman Anderson. Although its original 
application was intended for the measurement of 
descriptions of personalities, it has since then been 

used to model many different kinds of judgments 
and decisions, including medical and health deci-
sions. IIT is a metatheory or framework for study-
ing judgments, along with an associated set of 
modeling methods. (See Figure 1.)

The IIT model posits four types of constructs 
associated with the judgmental response to a 
stimulus. The physical attributes of the stimulus, 
conventionally denoted by Φi, are the components 
of a stimulus that are observable by the judge. 
Each physical attribute is mapped to a psychologi-
cal scale value, conventionally denoted by si, 
through psychophysical functions. The scale val-
ues are combined to form an overall psychological 
impression of the stimulus, conventionally denoted 
by Ψ, through a combination function, such as 
addition or averaging. Finally, the overall impres-
sion is mapped to an overt response by the judge 
to the judgment task (e.g., a category rating) by 
means of a response transformation function. For 
example, if the stimuli are health states, each attri-
bute of the health state (pain, functioning, etc.) 
would be mapped onto a scale value and then 
combined to form the overall impression of the 
health state, which might then be reported by the 
judge as a utility through a 0 to 100 rating or used 
by the judge as a basis for preferences in a choice-
based utility assessment.

IIT experiments typically present judges with a 
set of stimuli in which the attributes are system-
atically manipulated and responses are collected. 
By plotting responses against levels of stimulus 
attributes, the experimenter can make inferences 
about the form of the combination function in 
terms of cognitive algebra. For example, assum-
ing that the response transformation is linear, a 
multiplicative combination function is character-
ized by a fan-shaped (convergent or divergent) set 
of curves, while an additive function is character-
ized by a set of parallel curves. Additional exper-
iments can distinguish between additive and 
averaging functions, as well as other functional 
forms. For example, judgments of overall satis-
faction with a group practice might be an addi-
tive function of the satisfaction with the individual 
physicians in the practice (where each additional 
moderately satisfactory physician increases the 
perception of the practice), an averaging function 
(where each additional moderately satisfactory 
physician pulls the practice toward “moderate 
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satisfaction”), or a configural weighted function 
(where the most or least satisfying physician is 
the sole determinant of the satisfaction with the 
practice).

Given the basic form of the combination func-
tion and response function, the experimenter can 
fit models to derive the scale values associated with 
each stimulus, the overall psychological impression 
of the stimulus, and the parameters of the three 
functions.

IIT is particularly useful when modeling task  
or context effects on judgment because it separates 
the processes of perception, integration, and 
response. For example, judgments of the same 
stimuli made using two different response tasks 
(e.g., a category-rating scale of the importance of a 
health benefit and a statement of willingness-to-
pay to achieve the health benefit) can be modeled 
with the same psychophysical and combination 
functions. The underlying overall impression of 
the health benefit would be assumed not to change 
as a result of the task, and modeling would focus 
on fitting response functions to each task that  
best capture the responses under that assumption. 
These response functions may be of interest in 
themselves or may be important in the interpreta-
tion of responses to novel health benefits. On the 
other hand, differences in stimulus context within 
a single response task (e.g., differences in the per-
ception of stimuli depending on the overall range 
of stimuli or other factors at the level of the stimu-
lus set) can be modeled in the psychophysical or 
combination functions to gain insight into how 

attributes of choices are perceived and how these 
perceptions relate to the overall judgment.

Alan Schwartz

See also Conjoint Analysis; Context Effects; Judgment; 
Lens Model
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Informed consenT

Informed consent within court decision making is 
a complex linkage of information and a patient’s 
assent to (approval of) a medical intervention that 
the patient’s physician is recommending in the 
patient’s care, based on that physician’s disclosure 
of the information. The complexity of linkage of 
consent and assent (approval) relates to the nature 
and depth of the information disclosure required 
of physicians by the courts.

The term informed consent did not enter the 
judicial lexicon until 1957 when the term appeared 
in a California appellate decision, Salgo v. Leland 

Scales

s1Φ1

Φ2

Φn

Ψ1, . . . , n R1, . . . , ns2

sn

Physical 
attributes

. .
 .

. .
 .

H: Psychophysical
function

C: Combination
function

J: Response
transformation

Overall 
impression Judgment

Figure 1  The information integration theory framework
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Stanford Junior Board of Trustees. The judge in 
the Salgo decision simply used the term informed 
consent without defining it.

Consent

Consent is a concept that can be traced back to 
1767 in the British court decision Slater v. Baker 
and Stapleton. In this court case, a patient alleged 
that a physician had not obtained his consent prior 
to intervening medically. The patient had broken 
his femur, and the physician set the femur. The 
patient was seen by the physician’s father, who was 
also a physician, and the father judged the femoral 
fracture to be healing well with callus formation. 
When the original physician saw the patient again 
in follow-up, the physician re-broke the healing 
fracture and set the fracture in a mechanical device 
with teeth.

Today, this intervention by the physician would 
be viewed as an experiment. The British court, 
however, treated the issue as an issue of consent  
in the patient-physician relationship and asked 
whether there was a custom among physicians to 
secure their patient’s consent prior to intervening 
on a patient. The physicians summoned by the 
court to testify argued that there was such a cus-
tom among physicians. And the court decided the 
case in favor of the patient.

Basis of Doctrine of Consent

In the United States, Judge Benjamin Cardoso in 
1914 grounded consent on the patient’s right of 
self-determination, and in the United States subse-
quent cases continued this view that physicians 
had an obligation to obtain their patients’ consent 
on the basis of the patient’s right to self-determina-
tion. Great Britain and Australia consider consent 
as grounded on a physician’s duty of care, not the 
patient’s right of self-determination.

Battery Versus Negligence

In the United States, the failure of a physician to 
secure a patient’s consent prior to a medical inter-
vention was viewed in terms of a “battery” or 
intentional harm to the patient. Courts in the 
United States continued to view cases of lack of 
consent as battery until 1960, at which time the 

Kansas Supreme Court in Natanson v. Kline 
argued that consent should be considered on a 
theory of negligence on the part of the physician. 
In the United States, the State Supreme Court of 
Pennsylvania continues to hear informed consent 
cases brought against physicians in terms of bat-
tery. In Great Britain, consent has been considered 
in terms of negligence on the part of physicians.

Standards

Professional Standard

From 1767 to 1972, there was only one standard 
of consent and informed consent, the professional 
standard. Under a professional standard, a physi-
cian is judged in terms of whether or not he or she 
secured a patient’s consent or informed consent in 
terms of whether physicians in the physician’s com-
munity of peers would have obtained consent or 
informed consent. And the information that a phy-
sician discloses (or does not disclose) to a patient is 
judged in terms of whether a physician in that phy-
sician’s community of peers would have disclosed 
that information to his or her patient. Thus, from 
1767 to 1972, physician testimony in the court-
room determined how a jury was to decide a case. 
The jury would be asked to decide a question such 
as the following: Did the physician obtain consent 
from the patient in terms of how physicians in his 
or her community of peers would have obtained 
consent? And in terms of the information provided, 
did the physician provide that information that 
physicians in his or her community of peers would 
provide to their patients, based on the physicians’ 
testimony as given in the courtroom.

Reasonable Person Standard

Judge Spottswood Robinson, in the U.S. land-
mark federal case Canterbury v. Spence in the 
District of Columbia in 1972, argued that there 
never was such a standard as the professional stan-
dard of consent or informed consent. He argued 
that because there was no agreement among physi-
cians as to what information should be disclosed 
to patients in informed consent, a new standard 
needed to be introduced. Robinson argued for the 
reasonable person standard where a physician was 
to be judged in terms of whether that physician 
provided to the patient that information that a 
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reasonable person in that patient’s position would 
want to know. He did not argue for a standard 
that the patient should be told what a reasonable 
person would want to know. Rather Robinson 
argued for a standard where the patient should be 
told what a reasonable person in the position of 
the patient would want to know.

Robinson used the concept of “hindsight bias” 
to argue against a subjective patient standard in 
informed consent. Here, he argued that a patient’s 
testifying about what he or she would have wanted 
prior to a procedure in which the patient had actu-
ally sustained the adverse outcome would be influ-
enced by hindsight bias. Robinson thus argued 
that a jury needed to consider not what the patient 
testifies he or she would want to have known in 
informed consent but what a reasonable person in 
the patient’s position would want to know.

Today, only Great Britain continues to hold a 
professional standard in consent. Both Canada 
and Australia have adopted a reasonable person 
standard of informed consent (Canada) and con-
sent (Australia).

Reasonable Volunteer Standard

In the area of research on humans, the United 
States holds a much more stringent standard in 
informed consent than provided by either a profes-
sional standard or a reasonable person standard. 
This standard is the reasonable volunteer standard. 
The reasonable volunteer standard was developed 
by the National Commission for the Protection of 
Human Subjects of Biomedical and Behavioral 
Research and described in the Belmont Report pub-
lished in 1978. In the Belmont Report, this National 
Commission rejected the professional standard in 
research because the professional standard assumed 
a common understanding among physicians on 
what was to be done medically and how a patient 
should be informed, whereas research on humans is 
conducted when such common knowledge does not 
exist. The National Commission rejected the rea-
sonable person standard because the research sub-
ject is a volunteer who may well want to know 
much more about the risks of research than does a 
patient who delivers himself or herself to a physi-
cian for needed care. The reasonable volunteer 
standard of the Belmont Report argues that a study 
participant must be given that information that a 

reasonable volunteer would want to know. Only 
the United States holds the reasonable volunteer 
standard in research on humans.

PARQ

In clinical care, Robinson argued that the 
patient was to have disclosed information about 
the nature of the procedure (P), the alternatives to 
the procedure (A), and the risks of the procedure 
(R). And the physician must answer truthfully and 
honestly any questions that a patient has (Q).

Robinson argued that the physician has the 
obligation to disclose information to the patient in 
informed consent. It is not the obligation of the 
patient to ask questions to start the disclosure. 
However, after the physician makes his or her dis-
closure in informed consent, the patient has the 
right to seek truthful and clear answers of his or 
her physician, and the physician must answer to 
the best of the physician’s abilities the patient’s 
questions.

A problem here is that the physician may not 
have answers to the patient’s questions. For exam-
ple, in the case of Cox-2 inhibitors used to treat the 
discomfort of arthritis, at the present time it is 
known scientifically that Cox-2 inhibitors increase 
the risk of heart attack and stroke in some patients. 
If the patient asks the question “How do Cox-2 
inhibitors increase the risk of heart attack and 
stroke?” at the time of this writing, the physician 
cannot answer this question because the issue of the 
causal mechanism of how Cox-2 inhibitors cause 
the increased risk of heart attack and stroke is not 
known. As in many questions in medicine and sur-
gery, the fact of the matter is that a full causal expla-
nation may be unavailable at the time the patient 
asks the causal questions “Why does the reaction 
occur?” or “How mechanistically does the prescrip-
tion medicine cause the effect in the patient?”

Risk Disclosure

In the case of the high court decisions noted above 
in Great Britain, the United States, Canada, and 
Australia, each case involved the alleged failure of 
the physician caring for the patient to disclose to 
the patient—in the consent or informed consent 
session surrounding the physician-recommended 
medical intervention—the severe adverse outcomes 
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that were known risks of the medical intervention 
and that severe risk materialized in the patient dur-
ing that medical intervention. Thus, consent and 
informed consent as focused in our high courts 
have risk disclosure as their primary focus.

Historically, in consent and informed consent 
cases, the type of information that was not dis-
closed to a patient was information about severe 
adverse outcomes that were estimated to have a 
low chance of occurrence. Robinson argued that 
patients were interested in severe adverse outcomes 
such as death or stroke no matter what the chance 
(probability) of their occurrence.

Judge-Made Law

Every physician and every physician-in-training 
must understand that consent or informed consent 
had its origins in judge-made law in Great Britain, 
the United States, Canada, and Australia. Today, 
state legislatures also influence informed consent 
within particular states in the United States. But 
the point is that physicians must always under-
stand the laws of consent and informed consent by 
which they will be judged should a patient bring a 
case against them as physicians.

Nature of Risk

Robinson argued that the physician must trans-
late medical terminology into language the patient 
can understand. Yet there are problems in under-
standing what certain terms mean scientifically in 
common language. For example, a physician talk-
ing about the risks of carotid endarterectomy 
translates the medical term cerebral vascular acci-
dent into stroke and informs the patient that there 
is a risk of stroke during and after carotid endar-
terectomy. Yet the patient unbeknownst to the 
physician does not realize that stroke means more 
than motor paralysis and that stroke can cause 
sensory, motor, cognitive, and other types of dam-
age. This is a problem in understanding what a 
term means medically or scientifically when the 
term is a common language word such as stroke.

Chance

High courts have considered risk disclosure pri-
marily as the disclosure of adverse outcomes and 

have not focused on the disclosure of the chance 
(probability) of that adverse outcome. When the 
Supreme Court of Canada in Reibl v. Hughes in 
1980 examined where the risk numbers come from 
in informed consent disclosures, this court argued 
that that may be reason not to disclose chance 
when there may be a great debate about what that 
chance actually is.

Nature of Medical Decision Making

After recognizing the importance of the judge-
made law of consent and informed consent, one 
must recognize that the risk disclosure that domi-
nates court decision making is only a part of 
medical decision making and only a part of the 
tasks that physicians face and must consider as 
they help patients reach a decision. The minimal 
information that influences a patient’s decision is 
risk information, benefit information, and the phy-
sician’s opinion in his or her own care. Risk and 
benefit are typically obtained through the peer- 
reviewed medical literature. This literature itself is 
geared more toward benefit information and less 
toward the exposition of risk information. Indeed, 
the publication of research studies in the peer- 
reviewed medical literature depends on the interest 
in the research, and the discovery of new benefits 
is often better reading even in the physician com-
munity than is the discovery of new risks related to 
a medical intervention or a medical product such 
as a medical device or a prescription medicine. 
Indeed, recent research on Cox-2 inhibitors has 
shown the lack of systematic scientific understand-
ing of the mechanism of action of the risks of 
increasing the chance of heart attack and stroke 
before medicines of that class of drug were 
approved and marketed, as such risks were identi-
fied only after the drug’s approval for marketing.

Yet it must also be recognized that a physician 
who is attending only to optimum risk disclosure 
to his or her patient is doing an injustice to that 
patient in terms of failing to deliberate about and 
fully consider what the medical decision the patient is 
facing is actually about. Here, the full medical deci-
sion depends on balancing the risks and benefits 
across the range of diagnostic and therapeutic inter-
ventions that are available and scientifically under-
stood by their exposition in the peer-reviewed medical 
literature and then attempting to see to what extent 
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that literature applies to the individual patient who 
must come to a decision in his or her own care. For 
example, the peer-reviewed surgical literature often 
involves studies in major medical institutions and 
surgeons who care for and operate on the sickest of 
the sick patients and who are national or interna-
tional experts in the care of these patients. In reality, 
in day-to-day practice, the range of skill of surgeons 
may fluctuate mildly or markedly from the skill of the 
expert surgeons. All these points may need to be rep-
resented in the decision that a patient and a physician 
must make in a patient–physician relationship about 
whether to intervene medically now, whether to delay 
medical intervention until a later time (watchful wait-
ing), or whether to not intervene medically at all and 
to allow Nature to take its course.

Dennis J. Mazur

See also Bias; Cognitive Psychology and Processes; 
Numeracy
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Informed decIsIon makIng

Over the past half century, rapid and demanding 
modes of change throughout healthcare have con-
verted the physician into a “provider” and the 
patient into a “consumer.” Among the results of 
this transformation is a pervasive belief that pri-
mary authority over patient healthcare decisions, 
which had long been the domain of the physician, 
began to shift to the patient and, more recently,  
to proprietary healthcare organizations. Regardless 
of who has authority over certain decisions at any 
point throughout a given case, it is important that 
all relevant parties engage in informed decision 
making if they are to achieve a successful outcome.

Informed decision making is a process through 
which a person uses available information as a 
means to settling on how to accomplish a certain 
objective. In the context of medicine and health-
care, the process has traditionally been one in 
which the physician provides the patient (or a sur-
rogate decision maker) with information about the 
benefits and risks of various treatment options 
based on medical tests and a collection of the 
patient’s personal information. Today, while pri-
vate and government sector organs of managed 
care are likely to be invested in, provide input to, 
and dictate treatment alternatives for a patient 
case, the bulk of information about care and treat-
ment options has historically been communicated 
within the doctor-patient relationship. But the 
order of this relationship has for the past several 
decades begun to undergo enormous change.

One simple reason for such an upheaval in this 
relationship is that decisions about one’s health-
care can be scientifically and emotionally com-
plex. Healthcare is an intention that fundamentally 
requires the practitioner and the patient to reach 
a consensus on processes, outcomes, and mea-
surements of care—and to do so with a focus 
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that balances the preferences of the patient and 
the dimensions of disease. As such, thoughts and 
feelings about treatment options vary on an indi-
vidual basis and are likely to depend on a num-
ber of factors, including attitudes toward and 
understanding of risk, which assumes a percep-
tion of probabilities, degrees, and time periods of 
process and outcome. Another factor is that fam-
ily, culture, and language can collectively and 
individually influence healthcare decisions. There 
are, nevertheless, basic constructs of decision 
making that cut across social, economic, and 
political lines.

Principles of Decision Making

Decision making generally involves five phases:  
(1) definition of the problem, (2) analysis of the 
problem, (3) development of possible solutions,  
(4) selection of a perceived best solution, and  
(5) translation of the decision into action. Each 
phase contains its own set of steps. Yet research on 
decision making informs us that people generally 
have a deficient understanding of the policies and 
procedures they use in arriving at decisions, even 
given that they use insight—or dissected informa-
tion—from previous experiences to guide judg-
ment in new situations.

While decisions are influenced by biological and 
learned factors, behavior and emotion are also 
highly integrated elements of decision making. It 
stands, as the Greek philosopher Epictetus believed, 
that a given situation does not cause a reaction; 
rather, it is an individual’s attitude about the situa-
tion that encourages a reaction to it. That is, 
because decision making is contingent on the gen-
erally unpredictable nature of daily life, a person’s 
opinion or perception about a given situation—
and not the situation itself—will cause that person 
to react in either a positive or negative manner. But 
when the person is able to become aware of and 
adjust the beliefs and perspectives that create the 
condition, the person can better manage the intrin-
sic and extrinsic factors that affect behavior.

This process functions on a cognitive level when 
an individual has a belief about a specific event. 
The belief, which may be a rational one that results 
in healthy emotions or an irrational one that leads 
to disturbed emotions, then contributes to an emo-
tional consequence that respectively promotes or 

inhibits satisfaction. The irrational beliefs derive 
from a basic absolute—a “must” or a “should”—
that represents a demanding and unrealistic percep-
tion of how things should be, while the individual 
directs blame at self and others by developing 
remarks that exaggerate the event. Such thinking 
often renders a person incapable of tolerating rela-
tively high levels of frustration, a pattern that can 
be broken and redirected by challenging the irratio-
nal beliefs through rigorous questioning.

Of course, not every individual is unwilling to 
recognize adversity or finds a situation threatening 
rather than challenging. But every person does 
make decisions—and considers change—within an 
individually perceived set of physical, emotional, 
and environmental conditions that take place at 
continuous intervals. Depending on the person and 
the circumstances, individuals may be in a phase in 
which they are either unaware of the need to make 
a change, contemplating how to make a change, 
preparing to make a change, taking action on mak-
ing a change, or adhering to a change that has been 
made already. Of further consequence is that a 
person can arrive at one phase only to engage in 
beliefs and behaviors that result in the individual 
reverting to a prior phase.

Beyond even these cursory tenets of individual, 
though universal, decision-making behavior lie 
more overt realities that complicate the means of 
informed decision making.

The Role and Flow of Information

Information, which can be acquired from number-
less sources, has to be organized to help people 
think through and test basic assumptions about 
whatever it is that they are trying to accomplish. Of 
the various elements that comprise informed deci-
sion making, much of the process depends on the 
possession of skills to collect, analyze, and commu-
nicate information. This is true for physicians and 
all manner of health professionals, patients and 
their advocates, and any other individuals or groups 
who claim some sort of stake in healthcare.

The best reason for this reality is that during the 
span of the past 50 years or so, broad changes in 
social values have resulted in people becoming  
more inclined to assert their individual rights and 
autonomy while technological advancements have 
increasingly provided people with better access to 
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information. Many patients have consequently taken 
a more active role in making decisions about their 
healthcare. This has meant that physicians have had 
to orient themselves toward ceding some measure of 
the principal role in decision making. They also 
have had to prepare themselves to help a patient 
think through care options that lean less on practi-
tioner knowledge and more on what the patient 
perceives to be the appropriate course of action.

At the same time, physicians have had to man-
age a patient population that in any instance may 
range from being well-informed to uninformed to 
misinformed about medical practices and standards 
of care and treatment. But there is now a growing 
body of evidence that conveys patients sometimes 
feel physicians have limitations in their awareness 
of effective courses of action. These seemingly 
opposite forces are the result of a more recent 
change in distribution channels that signal a shift 
from information being filtered and communicated 
predominantly by the physician to information 
being filtered and communicated predo minantly by 
the World Wide Web.

But much as new information channels have 
changed their pattern behaviors, few patients elect 
to decide on a treatment that entirely disregards 
the physician’s recommendation. In fact, a large 
majority of patients may actually prefer that the 
physician take responsibility for selecting a treat-
ment option—so long as the physician comfort-
ably and consistently informs them of courses of 
action. Even so, patients who are more actively 
involved in making decisions about their care will 
on occasion select a treatment alternative that 
departs from the physician’s recommendation. In 
all but the most extreme or compelling cases, and 
since the patient is the end user of a decided-upon 
treatment, physicians must acknowledge—and 
theoretically accept—that the patient has auton-
omy to think and behave in associated ways.

Yet from practical, professional, and ethical 
points of view, it can be difficult to accept a 
patient’s choice when it runs contrary to the physi-
cian’s recommended approach. Even in instances 
in which the physician and patient have healthy or 
heated exchanges of perspective, one can be left to 
wonder whether all best efforts have been trans-
mitted to influence a decision. There is, however, 
strong evidence that imparts any exchange of ideas 
about treatment alternatives that can be beneficial 

to effective decision making and that all sides more 
fully appreciate the decision, even if it remains the 
same as initially determined. But the quality of 
these interactions is heavily dependent on the pri-
mary cords of the doctor-patient relationship, cul-
tural norms, and the behavior of the healthcare 
system, including any extent to which it is priva-
tized or government run.

Ethical Issues and Conflicts of Interest

As healthcare systems throughout the world 
increasingly and intentionally wed delivery of care 
with cost of care, there must be consideration of 
the balance between autonomy and administrative 
issues, resources, work-related relationships, and 
amount of time allotted to visit with patients. One 
ethical issue that is likely to emerge is the potential 
for some treatment options and explanations to go 
unexplored due to either time or financial con-
cerns, or both.

A similar ethical concern that has gained atten-
tion of late is the relationship between medical 
professionals and the pharmaceutical and medical 
device industries. Physicians possess the profes-
sional and legal authority to prescribe pharmaceu-
tical therapies to patients, who are customarily in 
less of a position to appropriately evaluate which 
methods are the most cost- and condition-effective; 
physicians also have the facility to select which 
devices will be used for a procedure or treatment. 
But as companies throughout these industries con-
tinuously increase their marketing and advertising 
expenditures, there is a growing concern from 
many corners about whether industry and com-
pany representatives commonly influence physi-
cian prescribing behavior. What has been hotly 
debated, in particular, is the extent to which  
the objectivity of medical professionals, especially 
physicians, is compromised by industry- and  
company-funded perks.

Professional relationships with pharmaceutical 
and device-manufacturing companies raise the 
specter of potential conflicts of interest. But there 
is an argument that to completely disconnect the 
physician from either industry would be to limit 
the physician’s access to information about useful 
treatment options, despite the fact that therapeutic 
research trials and journal articles are often funded 
by the pharmaceutical or device company that 



629International Differences in Healthcare Systems

stands to gain financial reward for the respective 
innovation. Physicians, by nature of their work, 
tend to concern themselves a great deal with accru-
ing extensive knowledge about the benefits, con-
traindications, and costs of various pharmaceutical 
therapies and medical devices. To keep current and 
alert is a necessary practice if only to uphold the 
implicit directive of the Hippocratic Oath: to 
respect, and to do no harm unto, the patient.

Respect for the patient means keeping the 
patient actively involved in the decisions about 
care and treatment of his or her condition. This 
requires that the patient be well informed about 
care and treatment options, which is a task that 
has traditionally and fundamentally been the 
responsibility of the physician. Yet as changes have 
occurred in and around the doctor–patient rela-
tionship and throughout society, so too does the 
patient now share a mutual responsibility for the 
dimensions of healthcare decision making.

Importance

Above all, medicine is a practice. It essentially con-
cerns the function and performance of human 
beings—and all human beings are fallible. But the 
impressive advancements of modern medical sci-
ence and technology often render this an after-
thought in light of presumably informed decisions 
and expected outcomes of healthcare.

Today as ever, because healthcare decisions ema-
nate from individual values, feelings, and behaviors 
in the context of a rapidly changing society, econ-
omy, and polity, there is an increasing demand for 
approachable and more transparent exchanges  

of ideas and information between physicians and 
patients. This encourages practitioners and patients 
to learn from each other. Yet it requires that the 
right time and space conditions be established to 
enable cooperative decision making by individuals 
who posses diverse personality types. It also requires 
that people become clear about who will be 
involved in a healthcare decision and to what 
extent they intend to be involved during the course 
of care. And there is an additional and vital need 
for a better understanding of the processes through 
which people gather information and how they use 
that information to make healthcare decisions.

Lee H. Igel
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InTernaTIonal dIfferences 
In healThcare sysTems

Healthcare systems can be distinguished on a 
number of dimensions and in a number of ways. 
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The need for care can be analyzed in terms of the 
burden of disease; here, developing countries dif-
fer considerably from industrialized nations. 
Healthcare incorporates a wide variety of types of 
service, whose delivery may be based on different 
combinations of providers, arranged in differing 
organizational structures. Financing these services 
may incorporate various combinations of public 
payment, social insurance, private insurance, and 
out-of-pocket payments. Reimbursement to pro-
viders may use various combinations of global 
budgets, fee-for-service, pay-for-performance, and 
capitation, which in turn imply differing incentive 
structures. System outcomes may be evaluated on 
a number of dimensions, including access, cost, 
quality, patient satisfaction, provider satisfaction, 
and health outcomes. No two systems are identi-
cal, and no system excels on all dimensions; trade-
offs are inevitable.

Need for Care

The Burden of Disease

As the World Health Organization has noted, 
there are major differences in the causes of death. 
In a fact sheet, they estimate that for 2002, in 
low-income countries, nearly one third of deaths 
occur among children under 14 and less than one 
quarter of people reach the age of 70. Infectious 
diseases and the complications of pregnancy and 
childbirth are the leading causes of death. In 
high-income countries, more than two thirds live 
past age 70, and they tend to die of chronic dis-
eases. Middle-income countries fall in between. 
However, chronic diseases (cardiovascular dis-
eases in particular) are the leading causes of 
death across all categories of nations. The health-
care systems must accordingly determine what 
resources are required to meet the health needs of 
their populations.

An ongoing difficulty is that health expendi-
tures are highly skewed. In general, the sickest 
20% of the population accounts for about 80% of 
health expenditures, and this persists in all age-sex 
categories. In turn, this distribution of health 
expenditures affects the implication of various 
funding models, particularly since those identified 
as being at high risk of incurring high expenditures 
are not desirable customers for insurers.

The Role of Public Health

The foundation of all healthcare systems is pub-
lic health. Ensuring clean water, clean air, and com-
municable disease control is a vital starting point 
for preventing disease and disability. So is appro-
priate engineering (road traffic accidents are lead-
ing causes of death in low- and middle-income 
countries), availability of safe and healthy foods, 
avoidance of tobacco, and other interventions com-
ing under the rubric of “health promotion/disease 
prevention.” In that sense, death by chronic disease 
is a success story; it means that people are living 
long enough to be affected by these conditions.

Financing, Delivery, and Allocation

Healthcare systems have a number of components. 
Although different writers may use slightly differ-
ent nomenclatures and break down these functions 
in slightly different ways, they all note the impor-
tance of distinguishing between how services are 
paid for—often termed financing—and how they 
are organized, managed, and provided—often 
called delivery. Healthcare systems may also explic-
itly incorporate other key elements such as plan-
ning, monitoring, and evaluating, or leave these to 
the workings of market forces.

The missing link connecting financing and deliv-
ery, which has sometimes been termed allocation, 
refers to the incentive structures set up to manage 
how funds will flow from those who pay for care 
to those who deliver it. Saltman and von Otter 
have placed these allocation approaches on a con-
tinuum. At one end, patients follow money; funders 
allocate budgets to providers and people seeking 
that kind of care must go to those providers. At  
the other end of their continuum, money follows 
patients; providers are paid only to the extent that 
they attract clients. Unfortunately for those wish-
ing clear reform prescriptions, there is no one best 
allocation model that can simultaneously ensure 
cost control, client responsiveness, and delivery of 
high-quality appropriate care; instead, one is often 
faced with policy trade-offs. Allocation is usually 
tied to reimbursement mechanisms.

Although certain combinations are more common 
than others, in theory, these dimensions of health 
systems can be viewed separately. One can flow pub-
lic funds to private delivery, and one can support 
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public delivery through private funds (e.g., user fees 
for publicly operated services). Similarly, both public 
and private funders can embed various incentive 
structures in their reimbursement mechanisms.

Delivery

Components of Healthcare

Healthcare contains a number of components, 
including but not restricted to the following: diag-
nosis; disease and injury prevention, particularly 
of common conditions (including health assess-
ments, screening, and immunization); treatment 
and management of diseases and injuries (both 
episodic and chronic); emergency services; health 
promotion and patient education, including 
encouraging patients to take active roles in their 
own health; rehabilitation (of both episodic and 
chronic conditions); long-term/chronic care, includ-
ing personal and community support services and 
even housing; counseling and reassurance; refer-
rals to/coordination of care with other profession-
als (including with hospitals and specialist care, 
and public health); reproductive care, including 
birth and delivery; mental-health care; palliative/
end-of-life care; healthy child development, includ-
ing well-baby care; and the provision of services  
to the population as a whole (public health pro-
grams), including the report and control of conta-
gious and other diseases and ensuring occupational 
and environmental health and safety. This care 
may be provided in a number of locations, includ-
ing physicians’ offices, clinics, hospitals, nursing 
homes, homes, and workplaces. It may be pro-
vided by a variety of providers, including but not 
restricted to physicians (both specialists and gener-
alists), nurses, dentists, pharmacists, traditional 
healers, allied health workers, rehabilitation pro-
fessionals, personal support workers, and informal 
caregivers. Healthcare is often subdivided into pri-
mary care (the first point of contact), chronic care, 
public health, and secondary (hospital)/tertiary/
quaternary (specialized/highly specialized hospital) 
care. Although different countries may arrange 
these services in different ways, similarity in human 
physiology means that there is, in general, less 
variability on what is required to manage a specific 
health problem. Although there may be differences 
in the prevalence of particular health problems 
across jurisdictions, broken arms will be treated 

similarly, and professionals trained in one jurisdic-
tion can often—albeit often with difficulty—work 
in others.

The Public–Private Mix

There is considerably more variability in how 
this care is structured across systems. As analysts 
of comparative policy stress, no two healthcare 
systems are identical, although they may share 
common characteristics. Delivery models can be 
classified on the basis of ownership structure as 
public (owned and operated by the state), private 
not-for-profit (NFP), and private for-profit (FP). 
Other classifications subdivide these to incorporate 
additional characteristics such as autonomy and 
budgeting arrangements, including the extent of 
reliance on market incentives. For example, Deber 
has modified the Organisation for Economic 
Co-operation and Development (OECD) classifica-
tion to subdivide the private FP category into small 
business/entrepreneurs (FP/s) and investor-owned 
corporations (FP/c); Preker and Harding have sub-
divided the public sector into those managed by the 
health system, and those that, although still public, 
have more managerial independence. For example, 
although hospitals in the United Kingdom are pub-
licly owned and managed and part of the National 
Health Service (NHS), more recently the govern-
ment has allowed them to become self-managing 
“trusts” with more independence from central con-
trol. In contrast, Canada relied on private NFP 
hospitals, many of which were originally owned 
and operated by religious organizations and other 
charitable organizations. (Confusingly, they are 
commonly referred to as “public hospitals,” 
although they were neither publicly owned nor 
publicly managed and were usually governed by an 
independent board of directors.)

In general, such NFP organizations will not be 
bound by the same financial or administrative 
requirements that bind the public sector and can 
also draw on volunteers and receive charitable con-
tributions. They may also go bankrupt if they can-
not raise sufficient revenues, although in practice 
this rarely occurs. NFP organizations are motivated 
by multiple objectives, rather than just the financial 
bottom line, and are the most common ownership 
structure for hospitals in most industrialized coun-
tries. (An additional complexity is the extent to 
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which the governments, as major funders, try to 
control these NFP bodies. Indeed, some of these 
organizations can be considered “quasi-public” in 
that they are legally private but heavily influenced 
by government. This applies in some Canadian 
provinces, which regionalized hospital services and 
replaced the formerly independent hospital boards 
by regional health authorities.)

Most provider-run organizations would be cat-
egorized as FP/s; these include physicians’ offices, 
many physiotherapy clinics, and indeed most of 
the private hospitals in countries such as Germany. 
They differ from FP/c organizations because they 
are not under the requirement of providing a 
return on investment to their shareholders. In 
some jurisdictions, small businesses may be incor-
porated for tax purposes (e.g., physicians may be 
allowed to incorporate), but their “profits” go to 
those who provide the clinical services rather than 
to independent shareholder/investors. Finally, FP/c 
organizations have shareholders who expect a 
return on their investment, and evoke concerns as 
to potential conflict between the goal of providing 
high-quality care and the goal of running a suc-
cessful business. Accordingly, although FP/c hospi-
tals have a significant presence in the United States, 
and are found in Australia, they are uncommon in 
most industrialized countries.

In most countries, governments have a role in 
regulating healthcare providers, although this 
power is often delegated to health professionals. 
The rationale is to make sure that the public is 
protected by ensuring that providers are qualified 
and that provider organizations meet certain stan-
dards of quality. Even in systems claiming to 
encourage market forces, people are not allowed 
to declare themselves to be physicians without 
having satisfied a licensing body. Neither do most 
jurisdictions allow anyone to set up a private hos-
pital without ensuring that certain regulatory stan-
dards are met.

Financing

The World Health Organization has estimated 
that in 2002 the total global expenditure for 
health, per person per year, was approximately 
US$639. This ranged from US$2.90 in Burundi to 
US$6,103 in the United States. Although 18% of 
the world’s population lives in the OECD countries 

(which themselves include some middle-income 
nations), they accounted for 80% of healthcare 
spending. To avoid comparing apples with oranges, 
the rest of this entry concentrates on industrialized 
nations.

The OECD identifies four main types of fund-
ing for health services: public payment through 
taxation/general revenues, public/quasi-public pay-
ment through social insurance, private insurance, 
and direct out-of-pocket payments. Premiums may 
be risk rated (based on the expected costs of ser-
vices required), or based on other factors, includ-
ing age-sex, income, and/or employment status. 
Systems vary in the mix of funding approaches, 
which may vary across type of service, and/or cat-
egory of client (e.g., governments may pay for 
people with particular diseases, in particular age 
groups, and/or with particular incomes, while 
leaving others to different forms of coverage). As 
noted above, those at high risk of incurring high 
expenditures are unattractive clients for private 
insurers, and hence more likely to end up needing 
public subsidy.

Types of Healthcare Systems and Ownership

The OECD classifies health systems on the  
basis of their approach to financing and delivery. 
Beveridge-type countries, such as the United 
Kingdom, Sweden, Denmark, and Finland, couple 
public financing (through taxation) with public 
delivery. (Earlier versions of the categorization also 
used the term Semashko systems to refer to the 
systems in the former Soviet Union; these resem-
bled Beveridge systems, having public financing 
and public delivery by salaried providers, but have 
largely been succeeded by other models.)

Bismarckian systems, also referred to as social 
health insurance, use quasi-public funding; most 
(or all) of the population are required to purchase 
health insurance from designated third-party pay-
ers (often referred to as sickness funds), with 
employers often paying a share of the costs. 
However, these payments are not risk related, and 
the benefits that must be provided are often sub-
ject to government regulations. Providers in these 
systems tend to be private, albeit often not-for-
profit. Examples of Bismarckian systems are 
Germany, Austria, the Netherlands, France, and 
Belgium.
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Private insurance models have a minimal role 
for public payment or public delivery. Financing 
is largely through private insurance purchased by 
individuals or their employers. In these models, 
premiums can be risk rated, and universal cover-
age is not guaranteed. Delivery is private, usually 
a mix of NFP and FP. However, it should be 
noted that these models are by no means exhaus-
tive, and indeed are insufficient for most analysis; 
they do not fully capture new models of delivery 
(e.g., public contracting), and omit countries 
such as Canada and Australia, which employ tax-
based financing to pay for private delivery. 
Neither do they deal with relationships within 
federal systems; for example, they do not sepa-
rate tax-based financing that is centralized at the 
national level from financing decentralized to 
subnational units. Finally, they do not allow for 
variability across subsectors; for example, sys-
tems may have public payment for some services, 
while leaving others to private insurance or out-
of-pocket payments.

Differences in Values

These models have varying assumptions about 
the relative roles of government, charities, and 
individuals and their families. The literature about 
health policy is accordingly linked to theories of 
the welfare state and of rights and responsibilities. 
There are also variations in views about the role  
of market forces in determining the allocation of 
healthcare. To the extent that care is given on the 
basis of need, individuals cannot be priced out of 
the market, violating some of the key assumptions 
underlying economic theory. All systems are mixed 
ones, with certain populations and certain services 
falling within the public realm, and others being 
private. However, systems vary in their decisions 
about who (and what) should be publicly paid for 
as well as in the extent to which providers will be 
regulated.

Reimbursement

Another source of variation is the way in 
which providers are paid for their services. 
Payers may reimburse individual providers and 
provider organizations (e.g., hospitals, health 
maintenance organizations). They may use varying 
combinations of global budgets, fee-for-service, 

pay-for-performance, and capitation. In turn, 
these imply differing incentive structures. For 
example, fee-for-service encourages the provision 
of more services, whereas global budgets encour-
age providers to minimize their expenditures in 
order to remain within their budgets.

Outcomes Evaluation

System outcomes may be evaluated on a number of 
dimensions, including access, cost, quality, patient 
satisfaction, provider satisfaction, and health out-
comes. Again, no single system appears optimal.

Recently, it has been recognized that health sys-
tems have a global dimension. This is most evident 
in dealing with infectious diseases, which can eas-
ily spread across national borders. Other issues 
include migration of the health workforce.

A number of international bodies collect com-
parable data and publish useful comparisons.

Decision Making

The way in which healthcare systems are organized 
and delivered in turn affects medical decision mak-
ing in a number of ways. Systems constrain the 
available choices. Regulations may affect what 
treatments can be offered; drugs, as an obvious 
example, may need approval from regulatory agen-
cies before being made available for sale. They may 
affect which providers are allowed to practice, in 
terms of both which professions are recognized 
(e.g., traditional healers) and which individuals are 
licensed within particular jurisdictions. Financing 
approaches affect who can afford care.

In addition, systems help decide who the deci-
sion maker will be. Global budgets place decisions 
about who will get what treatment in the hands  
of the provider organization. Fee schedules place a 
considerable amount of decision making in the 
hands of those who negotiate the fee schedules 
(usually, physician organizations and payers). 
Different systems will empower different decision 
makers and in turn affect how various factors 
(including costs, demands, and clinical evidence) 
will affect medical decision making.

Raisa Deber

See also Consumer-Directed Health Plans
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InTraclass correlaTIon 
coeffIcIenT

The intraclass correlation coefficient (ICC) mea-
sures the correlation of responses within class 
when responses are grouped into classes or 
groups, and there are a number of classes or 
groups. The ICC quantifies the variation between 
the clusters and can be defined as a proportion 
of total variation that is attributed to differences 
between the clusters (groups). Variation of a 
quantity is spread around its mean measured 
mainly by variance and standard deviation. 
Many situations in decision-making science make 
use of the ICC for drawing inference and assess-
ing reliability. The ICC is used in a variety of 
situations for different purposes, including assess-
ing homogeneity of outcomes or responses within 
a class or cluster in the context of a cluster sur-
vey, group randomized trial and multilevel stud-
ies, interrater agreement, and similarity of health/
social responses within couples. Accounting for 
correlation of responses within group in a cluster 
or group randomized trial has important impli-
cations in terms of required sample size and sta-
tistical significance. Assessing agreement of raters 
on health states has been an important aspect of 
clinical decision making.

Thus, the ICC is used in studies involving cor-
relation of responses within groups, assessment of 
interrater reliability, and similarity of responses in 
the dyads where dyad members are exchangeable. 
This entry provides an overview of the use of the 
ICC in studies involving groups or clusters with an 
example, followed by the use of the ICC in assess-
ing rater agreements in reliability assessment and 
special cases of interrater reliability.
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Studies Involving Clustering

Health outcomes of individuals in the same house-
hold or community tend to be more similar than 
those of individuals in other households and com-
munities. This phenomenon may be due to similar 
levels of exposures, similar behaviors, or genetic 
predispositions. Due to this similarity, individuals in 
a group sharing some characteristics are unlikely to 
be independent with respect to their health out-
comes, since responses of the individuals in a group 
show positive intraclass correlation. For example, 
transmission of an infectious agent or exposure to 
air pollution with its related health outcomes such 
as asthma will be more common among people 
within a particular community than in other com-
munities due to different levels of exposures.

In developing countries, sampling frames are 
often not available for epidemiological surveys; the 
cluster sampling technique is recommended due to 
its logistic efficiency. Another advantage of cluster 
sampling is the comparative ease in enumerating 
groups of households or larger units such as census 
block, county, village, and so on, as clusters than 
as individuals. In studies at places where responses 
are naturally clustered, such as patients in general 
practices (patients within practitioners) or work-
sites (workers within worksites), a similar sam-
pling scheme is applied. Similarly, in community 
trials, the unit of randomization is a group of 
people rather than an individual because interven-
tion is applied to all people in a group that 
decreases the risk of contamination and increases 
the administrative efficiency. In all these situations 
involving some kind of clustering, there are two 
components of variation of responses: within-
cluster/group variation and between-cluster/group 
variation. The ICC can be used to quantify and 
account for these two components of variations.

Between-clusters variation causes inflation of 
error variance. In the presence of positive intra class 
correlation, application of standard statistical 
methods for calculating sample size (assuming no 
clustering) and statistical analysis later on will 
underestimate the error variance. This needs to be 
accounted for at the time of designing a study; oth-
erwise, it reduces the power to give desired results. 
To have adequate power, the sample size has to be 
increased by using a design effect or variance infla-
tion factor as described by Kish and Donner.

Kish described the design effect (D) as a function 
of average cluster size (n–) and ICC (ρ):

D = 1 + (n– – 1)ρ.

The ICC quantifies the variation between the 
clusters and can be defined as the proportion of 
total variation that is attributed to differences 
between the clusters or groups:

ρ = α2
b / (α2

b + α2
w),

where α2
b  is the between-cluster component of vari-

ance and α2
w  is the within-cluster component of 

variance.
For analysis of cluster studies, investigators 

should use methods that take into account cluster-
ing of responses. If researchers ignore clustering and 
analyze assuming independence of health outcomes 
in a group, they will incorrectly get large test statis-
tics and small p values because they have ignored 
one component of variation between groups. The 
methods for analysis of cluster data that have been 
recommended to be more appropriate are those that 
simultaneously adjust for cluster- and individual- 
level covariates. There are a variety of methods, 
generally called multilevel, hierarchical, or random-
effects methods. They are based on different types 
of statistical models, such as the generalized linear, 
mixed model, generalized estimating equations, and 
hierarchical Bayesian model.

Some examples of clustering include dental 
studies involving multiple teeth from an individual, 
studies where environmental exposures are mea-
sured at the area level for a group of individuals, 
community randomized trials for evaluation of 
health education intervention, studies on patients 
presenting at primary care facilities, and studies 
involving geographic clusters.

Example

Naveed Zafar Janjua conducted a study in 16 
villages of a periurban setting in Karachi, Pakistan, 
to estimate the prevalence of hepatitis C virus 
(HCV) infection and to identify risk factors. The 
cluster sampling technique was used, in which 
clusters were villages. From within villages, house-
holds were selected using systematic sampling with 
random start. Previous studies indicate that reuse 
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of injection equipment by healthcare providers is 
one of the major risk factors. Furthermore, health 
outcomes (HCV infection in this case) are expected 
to be similar among populations presenting to the 
same healthcare provider. Reuse of injection equip-
ment depends on the injection use behavior of  
the healthcare provider, which is more likely to be 
similar for patients in the same geographic area. 
Thus, clustering of HCV needs to be accounted for 
in sample size estimation and analysis.

To assess the relationship of injection use and 
HCV infection, information on injection use during 
6 months was collected. Injections were categorized 
into greater than or equal to 5 and less than 5 during 
the last 6 months based on initial assessment of their 
relationship with HCV infection status. Logistic 
regression was performed by taking HCV infection 
as a dependent variable and injection use as a 
dichotomous independent variable. The same analy-
sis was repeated, accounting for the correlated 
nature of responses in the cluster using the general-
ized estimating equation technique. Results for injec-
tion use and transfusions are presented in Table 1.

Results show that point estimates (odds ratio) in 
both instances, when accounting for clustering and 

when not accounting for clustering, were the same. 
However, the major difference was in the test sta-
tistics, p value, and confidence interval. Test statis-
tics are smaller, p values are larger, and confidence 
intervals are wider when accounting for clustering. 
This is because when there is clustering, total vari-
ance is more than when there is no clustering. 
Thus, in situations that involve clustering, corre-
lation of responses within a cluster should be 
accounted for during analysis.

Reliability Analysis

The ICC is also used to measure interrater reliabil-
ity for two or more raters or judges when data are 
on an interval or ratio scale, such as a score. The 
ICC assesses rating reliability by comparing the 
variability of different ratings of the same subject 
with the total variation across all ratings and all 
subjects. This type of assessment was initially pro-
posed by Shrout and Fleiss in 1979. They proposed 
three different types of ICCs depending on sam-
pling design and underlying intent.

In decision analysis and medical and behavioral 
sciences research, the main interest is interrater 

Table 1   Comparison of two techniques for estimation of odds ratio for association of injection use and HCV 
infection in Karachi, Pakistan

Variable 

Accounting for Clusteringa Ignoring Clusteringb

Odds 
Ratio

Confidence 
Limits

Chi-
Square

 
p

Odds 
Ratio

Confidence 
Limits

Chi-
Square

 
p

Injection received  
during past 6 months

 ≤5 1.00

 >5 1.48 (1.09– 2.03)  6.14  .0132 1.48 (1.17– 1.88) 10.36  .0013

Number of transfusions 
received

 0 1.00 1.00

 1 1.78 (1.03– 3.08)  4.22  .0399 1.78 (1.08– 2.92)  5.21  .0225

 ≥2 3.50 (1.92– 6.36) 16.85 <.0001 3.55 (2.07– 6.08) 21.13 <.0001

Source: Unpublished data from Hepatitis C Infection Investigation in a periurban community in Karachi, Pakistan.

a. Generalized estimating equation. b. Logistic regression.
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reliability or, in other words, interchangeability or 
replaceability of the rater. In simpler terms, research-
ers want to assess that all raters are in good agree-
ment with each other so that they can interchange 
or replace any rater or use any rater from the pool 
without any bias. This is the case for random sam-
ples of objects or subjects from a large pool and a 
random sample of assessors or raters from the large 
pool. This means that raters used in the research are 
not the only raters and the researchers can replace 
one rater with another rater. In statistical terms, this 
is a completely randomized two-way analysis of 
variance (ANOVA) design. This type of ICC has 
been termed an ICC (2, 1) by Shrout and Fleiss.

Interpretation

An ICC ranges from 0 to 1. It reaches 1 when 
all raters give the same ratings—perfect interrater 
reliability. In such a case, all variation is due to 
characteristics of the subject or patient. Similar to 
other reliability coefficients, an ICC of .7 is consid-
ered adequate.

Limitations

An ICC is population specific. An estimate from 
one population may not be comparable with one 
from another because underlying variability, which 
is the key component in ICC estimation, is charac-
teristic of population. It may vary from one popu-
lation to another. Thus, the same instrument 
judged reliable for one population may be unreli-
able for another.

Example

In 2006, Quintana and colleagues conducted a 
study to develop decision-making criteria for cata-
ract extraction through phacoemulsification in 
Spain. Investigators listed the indications through a 
literature review. A national panel of ophthalmolo-
gists (doers and nondoers of cataract extraction) 
recognized in the field was compiled. Investigators 
provided literature review and the list of indica-
tions to the panelists, and the panelists rated each 
indication for the appropriateness of performing 
phacoemulsification, considering the average 
patient and average physician in the year 2004. 
Appropriateness was defined as meaning that the 

“expected health benefit exceeds the expected 
negative consequences by a sufficiently wide mar-
gin to make cataract surgery worth performing.”

An ICC was computed to assess the reliability of 
the 12 panelists’ scores. Results revealed that the 
ICC among the 12 panelists was .69. Investigators 
concluded that their panel of experts showed 
acceptable agreement. The study included further 
analysis using Classification and Regression Trees 
(CART) for the creation of a decision tree.

Studies Involving Dyads

One type of ICC—the pairwise ICC—can be used to 
measure homogeneity or similarity of the responses 
among dyads, couples or pairs that cannot be classi-
fied into separate classes, such as twins, gay couples, 
and so on. For example, if a researcher is studying 
the weight of gay partners or twins, he or she may 
not know which one should go in which column. In 
such situations, members of the group are from the 
same class and are exchangeable. When members 
are from the same class, there is no natural way to 
classify them into separate columns. Pearson corre-
lation computation requires assignment to two  
separate groups or classes, which is not appropriate. 
If the assignment of one or more pairs is reversed, 
the Pearson correlation will change. In such situa-
tions, an ICC can be computed as a measure of like-
ability or homogeneity within the pairs.

An ICC for twin or couple studies can be com-
puted by using a one-way ANOVA design because 
there is only one dimension, couple/twin. This 
ICC with one-way ANOVA is available in SPSS 
and can also be computed using SAS. In SPSS,  
this statistic can be requested using “Reliability 
Analysis” and requesting the “One-way Random” 
option in statistics options.

Naveed Zafar Janjua

See also Diagnostic Process, Making a Diagnosis; Health 
Status Measurement, Reliability and Internal 
Consistency; Variance and Covariance
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InTuITIon Versus analysIs

Intuition and analysis are distinct modes of mak-
ing judgments and decisions, and the two have 
been contrasted at least as far back as ancient 
Greece. Intuition and analysis are broad concepts 
without clear definitions. Nevertheless, there is 
some consensus about their respective characteris-
tics, advantages, disadvantages, bases, and mecha-
nisms. Discussions that contrast intuition with 
analysis in medical decision making have tradi-
tionally been set in the context of expert diagnos-
tic judgment. These discussions have been both 
descriptive (i.e., about how clinicians actually 
arrive at diagnoses) and prescriptive (i.e., how 
clinicians should arrive at diagnoses). More recent 
discussions of intuition and analysis have consid-
ered their roles in patient decision making (e.g., 
treatment decisions) and healthcare management 
and policy decisions. This entry consists of three 
parts. The first part consists of an overview of the 
characteristics of and bases for intuitions and 
analysis. The second part briefly summarizes the 
intuition versus analysis debate. The third part 
summarizes and contextualizes some of the sug-
gestions about when intuition is likely to be more 
advantageous and when analysis is.

Characteristics and Bases

Intuition

Intuition, often referred to as a gut feeling or 
hunch, is characterized broadly as an immediate 
(i.e., fast) and effortless judgment or decision pro-
cess. That said, a given problem can lead one to 
have conflicting intuitions (e.g., personal vs. profes-
sional), which suggests that although the intuitions 
themselves may come quickly, the final judgment or 
decision may not. Intuitions have two components: 
the content and a feeling about the content. The 
content can range from a vague sense that some-
thing is wrong, to a diagnosis, a perception of risk, 
or a prediction about a future affective state (e.g., 
how one will feel about being blind if the treatment 
fails). The feeling about the content is a sense of 
rightness or familiarity, or of fitting and making 
sense. The strength of this feeling, in turn, has been 
found to moderate the degree of confidence one has 
in that intuition (e.g., a “strong hunch” vs. a “sneak-
ing suspicion”). Generally speaking, the greater 
one’s confidence in the intuition (whether it be right 
or wrong), the more likely one is to believe and fol-
low it, and the less one is open to evidence that 
contradicts the intuition.

Intuitions are also characterized as an opaque 
process, that is, in most cases one does not know 
precisely why one has a particular intuition. The 
result is that although the intuition itself can usu-
ally be communicated, the cues and steps that lead 
to the intuition cannot. This means that intuitions 
are closed to scrutiny (though subsequent reflec-
tion on the intuition has been shown to sometimes 
shed light on what might have led to it).

One basis of intuition is experience that has 
been internalized into tacit knowledge. Because 
the same event can be perceived, interpreted, and 
encoded differently by different people, some 
researchers have pointed out that although more 
(repeated) experience will lead to the develop-
ment of intuitions, it will not necessarily lead to 
expert intuitions. The upshot is that the strength 
of an intuition does not necessarily reflect its 
truthfulness or accuracy. The basic mechanism of 
intuition is believed to involve pattern recogni-
tion, though several researchers have pointed out 
that some forms of intuition (e.g., insights) have a 
less constrained and more creative associative 
mechanism.
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Analysis

Analysis, in contrast, is characterized broadly as 
a deliberate and conscious judgment or decision 
process. It is a multistep process, where the pro-
gression from one step to the next is systematic, 
linear, and principled insofar as it is based on the 
search for and application of appropriate rules, 
logic, or argument. The principles are transparent 
and the steps traceable, making the process inher-
ently communicable, and thus open to scrutiny. 
There appears to be some disagreement about 
whether analysis is a fast or slow process, but a 
comprehensive perspective suggests that the speed 
of analysis depends on several factors, including, 
but not limited to, who is doing the analysis (e.g., 
novice, expert, or computer), and how complex 
the analysis is (e.g., the quick application of a 
clinical prediction rule vs. a lengthy cost-benefit 
analysis of implementing electronic health records 
in a hospital system).

The basis of an analysis—what defines and con-
strains it—are the principles that govern it. These 
can be broad (e.g., maxims of statistics) or narrow 
(e.g., properly plugging in the cue values in a clinical 
prediction rule), formal (e.g., linear weighted deci-
sion analytic models) or informal (e.g., listing the 
pros and cons of a treatment option).

Intuition Versus Analysis

Outside medicine, the debate surrounding intuition 
and analysis (more often referred to as “reason” or 
“reasoning”) as distinct ways of knowing has a long 
philosophical history, some of which is character-
ized by one being pitted against the other. The 
debate within medicine, however, has largely cen-
tered on the role that intuition and analysis do and 
ought to play in expert clinical judgment, specifi-
cally diagnostic judgment. The cognitive revolution 
in psychology, with its paradigm of mind as infor-
mation processor, led to the development of linear, 
multistep, hypothetico-deductive models of diag-
nostic reasoning. These multistep descriptive mod-
els of the diagnostic process typically have as their 
first step the collection of data or cues, which leads 
to a differential diagnosis, and then on to a final 
diagnosis. Eventually, research suggested that 
although novices (e.g., medical students) labored 
through an analytic process, expert diagnosticians 

usually did not. Rather, experts were more selective 
in the cues to which they attended, were more recur-
sive in their process, and made quicker judgments.

The discovery that expert physicians and nurses 
were not analytic diagnosticians led to a reaction, 
still very much alive and especially prevalent in 
nursing, against teaching diagnosis as a linear, ana-
lytic process. The argument is, roughly, that because 
there is evidence that experts make diagnoses holis-
tically and intuitively, intuition is a legitimate mode 
of diagnosis and its development needs to be incor-
porated into medical education curricula. The 
counterargument is that clinical practice ought to 
be based on science, not on idiosyncratic clinician 
intuitions that are subject to biases and distortions. 
The flames of this debate are further fueled by alle-
giances to either side of the related controversy 
surrounding the growing prominence of evidence-
based medicine. Many supporters of intuition are 
also critics of evidence-based medicine. They argue 
that its prescriptions are based on mean results, 
from potentially irrelevant samples, which ignore a 
host of important contextual factors. Their remedy 
to what they call “cookbook medicine” is the con-
textually sensitive, holistic judgment (i.e., intuition) 
of the clinician. In contrast, some proponents of 
evidence-based medicine point out that, from its 
inception, evidence-based medicine has explicitly 
called for clinicians to exercise their judgment 
when applying guidelines. This is to ensure that 
clinicians can accommodate cases that merit the 
modification or rejection of guidelines (i.e., contex-
tual sensitivity). They point out, however, that 
intuition has its problems. Chief among them is 
that there are important breakthroughs in medi-
cine that would lead to better patient outcome if 
implemented, but they are resisted, despite sup-
porting evidence, because they are counterintuitive 
and require conceptual change (e.g., the acceptance 
of the bacterial theory of ulcers).

These proponents of evidence-based medicine 
seem to be part of a third group of researchers, one 
that argues that both intuition and analysis are key 
to diagnostic reasoning and to clinical practice 
more broadly. They contend that to advocate one 
process over the other (i.e., intuition vs. analysis) is 
both descriptively inaccurate and prescriptively 
counterproductive. The solution they propose is to 
leverage the strengths of each process by knowing 
when to rely on analysis and when to rely on 
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clinical intuition. Some proponents in this third 
group have characterized intuition and analysis as 
lying on two ends of a continuum and have held 
that the solution lies in the middle ground. Evidence 
in the dual-process theory of cognition literature, 
however, suggests that intuition and analysis (or 
analytic thinking) involve separate cognitive sys-
tems, and so the solution would be characterized 
as a better coordination of the two.

Intuition and Analysis

The question of when we tend to use intuition and 
when we tend to use analysis is a complicated one 
as many factors play into the equation, including 
personal, contextual, and task factors. Personal 
factors including personality variables, age, and 
culture, as well as one’s beliefs about intuition and 
analysis, can all play a role. Individual differences 
in the disposition to engage in intuitive or analytic 
thinking also play a role—some people tend to rely 
on their intuitions more than do others. Finally, the 
level of one’s experience and expertise in an area, 
and one’s knowledge and acceptance of analytic 
procedures make a difference as well. There are 
also several contextual factors that affect whether 
one relies on intuition or analysis, some of which 
are believed to interact with personal factors. 
Time, stress, emotion, and fatigue all play a role, 
as do the presence or absence of accountability and 
the need to communicate (e.g., in teamwork), as 
well as other factors such as whether one places a 
premium on speed or accuracy and the perceived 
novelty of the situation. The third set of factors has 
to do with the task itself, and includes things such 
as the number and complexity of cues as well as 
the mode of their presentation.

Making justified and informative prescriptions 
about how to combine or coordinate intuition and 
analysis is complicated because one must consider 
both when each tends to be used, and when each 
tends to yield better patient outcomes. This is fur-
ther complicated by the fact that not everybody 
will measure the quality of outcomes in the same 
fashion. For example, satisfaction with the judg-
ment or decision process is one typical target out-
come. Although intuitive judgments tend to be 
more procedurally satisfying than are analytically 
derived ones, this is not always true for individuals 
more disposed to analytical thinking. Furthermore, 

intuitive judgments, even though they may feel bet-
ter to make, can sometimes be worse than are 
analytically derived decisions in terms of other 
outcomes, such as health.

In the end, there is growing evidence and con-
sensus that if better patient outcomes are the over-
all goal, then the idea of “intuition versus analysis” 
needs to be reframed in terms of “intuition and 
analysis.”

Georges Potworowski
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IrraTIonal PersIsTence In BelIef

In medicine, it is rational to base beliefs and prac-
tices on evidence. Belief regarding diagnosis or 
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treatment is established through the scientific 
method—at its best, randomized controlled trials 
assessing treatment effects, epidemiological mea-
surements of risk, and objective assessments of the 
accuracy of tests and the impact of their use. The 
source of standards for evaluating medical prac-
tices is decision theory, as expressed in analyses 
that include best estimates of costs, event proba-
bilities, and the utilities of health states and out-
comes. When these sorts of evidence establish that 
a particular belief or practice is superior to others, 
one might expect the rational physician to imme-
diately adopt the better practice and use it consis-
tently. And yet it has been seen that physicians—each 
of them occasionally, perhaps, and some of them 
consistently—persist in beliefs that have been 
proven wrong or in suboptimal practice. This 
entry describes and assesses why physicians irra-
tionally persist in beliefs and practices that are 
against the evidence.

It would be unreasonable to expect beliefs or 
practices to change immediately on publication of 
new evidence. No individual physician can monitor 
developments in the entire clinical scientific litera-
ture. Rather, a minority of physicians read about 
advances in areas they know, discuss the implications 
for practice, and communicate their conclusions 
through their own examples, verbal recommenda-
tions, and published summaries and guidelines. It 
takes time to translate research into practice, to work 
out its implications for particular clinical settings and 
disseminate these conclusions through opinion lead-
ers to the rest of the community, and to spread these 
changes from multiple centers out to the periphery. 
Those whom a change has not yet reached are said 
to be out of date or ignorantly persisting. Those who 
are exposed to information that objective observers 
would say justifies a change, yet do not change, are 
irrationally persisting.

Psychological Processes

Several psychological processes can account for 
irrational persistence of incorrect beliefs and inad-
equate medical practices. They can be categorized 
as nonmotivational and motivational processes. 
First, many practices are executed automatically, 
so their original rationale is no longer accessible  
to the physician. Although the evidence may be 
stated in the physician’s presence, or pass before 

the physician’s eyes, it produces no change in 
behavior because its relevance is not recognized. 
Second, people may be motivated to persist in 
practices to avoid the work that change requires or 
to defend the sense that one is right. (Financial 
motivation is not addressed in this entry.) Some 
illustrative vignettes follow.

Automated Thinking

A physician has a detailed knowledge structure 
covering how to deal with type 2 diabetics. This ill-
ness script has variants for the patient’s initial visit, 
early follow-up, established follow-up, and response 
to each type of crisis. It is so well learned that he has 
forgotten the reasons for the timing of each test, 
prescription, and bit of advice. Despite recent dem-
onstrations that the tight control of these diabetics’ 
blood pressure has as great a protective role in pre-
venting adverse outcomes as the tight control of 
their blood sugar, the physician has maintained the 
focus on blood glucose control. Consequently, he 
was surprised when an audit revealed that while 
60% of the type 2 diabetics in his practice have 
adequately controlled blood glucose, only 40% 
have adequately controlled blood pressure.

Defensive Motivation

A gastroenterologist takes pride in her ability 
to rapidly complete colonoscopic screenings for 
co lorectal cancer, withdrawing the scope in 4 min-
utes on average despite the informal guidelines 
that suggest spending more time on the procedure. 
When a new study showed that those who take 
longer than 6 minutes are more likely to find 
advanced polyps, the physician tried to do the pro-
cedure more slowly but found it difficult. It felt 
wrong, as if she were dawdling or wasting time. 
She imagined the nurse commenting to colleagues 
that she was losing her touch. She did not notice 
that she found any more polyps when she did it 
slowly and speculated that she had superior per-
ceptual abilities. After a week, she was performing 
the procedure as rapidly as ever.

Nonmotivational Bases

When a physician has seen new evidence that shows 
a belief or practice is incorrect or suboptimal, there 
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are two nonmotivational reasons the physician 
might continue to hold the belief. These differ in 
whether the physician recognizes the applicability 
of the new evidence. In the first case, the way in 
which the current belief depended on the old evi-
dence is inaccessible to the physician; when the 
relevance of the new evidence is not recognized, 
the physician does not pay much attention to it. 
In the second case, even when the physician 
thinks about the new evidence and accepts that it 
is relevant to his or her practice, there are residual 
effects from having spent time believing the 
opposite.

Use of Knowledge Structures,  
Cultural Patterns, and Intellectual Artifacts

To elaborate the first example above, in which 
the physician did not adjust his management of 
diabetic patients, let us recognize that physicians’ 
current rational behavior is not usually produced 
by the application of their rational facilities to the 
data of today’s patient. To research the treatments 
and apply decision theory to the facts about each 
patient is beyond physicians’ practical capability. It 
would take more time than they can afford just to 
look up the pertinent evidence, let alone to analyze 
that information to determine the best option. And 
many physicians may not know how to do that 
analysis.

Rather, the physician relies on the products  
of past reasoning. The physician in our vignette 
retained his own conclusions from earlier epi-
sodes in which he had thought about managing 
type 2 diabetics, experimenting with various 
treatment approaches, and referring to the pri-
mary scientific literature, meta-analytic reviews, 
or evidence-based guidelines. The basic structure 
of physicians’ clinical knowledge is derived from 
textbooks and from their teachers’ explanations, 
demonstrations, and corrections offered during 
supervision. Memorable learning experiences are 
provided by the critical reviews of cases in mor-
bidity and mortality rounds. Textbooks, articles 
summarizing a clinical expert’s approach to a par-
ticular clinical presentation, or Internet sites also 
influence the content of physicians’ well-practiced 
scripts. The influence of others’ knowledge  
continues when physicians seek advice from  
their colleagues about their current patients or 

compare their judgments against experts’ conclu-
sions in cases they read about.

Whether the original rational analysis support-
ing the now discredited practice was the physi-
cian’s own or someone else’s, the clinically relevant 
knowledge structure comes to mind through auto-
matic pattern recognition, and the physician usu-
ally applies it with scant reflection. When the 
rationale is inaccessible in this way, one does not 
notice that it does not apply any more, and so the 
new evidence does not figure in determining how 
to manage the patient.

Seeking external knowledge about how to man-
age a patient is no guarantee one won’t irratio-
nally do something already proven to be 
inappropriate. The individuals one consults have 
likely trained in the same institutions and read the 
same literature. Non-evidence-based practices 
have inertia due to mutual social reinforcement. 
The power of this local medical culture is demon-
strated by enduring differences observed in how 
the same condition is treated in different areas, 
differences that persist in the form of community 
standards even though all have access to the same 
evidence in the literature.

Finally, even the clinical literature can manifest 
this form of irrationality, providing physician read-
ers with recommendations or statements of fact 
that have been previously disproven. Obviously, the 
published reference texts do not change when some 
of their contents have been proven wrong. Papers 
show up in a literature search, even if they have 
been superseded. Additionally, a physician could 
base a treatment on a recent publication, ignorant 
that its justification had been definitively contra-
dicted years before. The clinical advice papers pub-
lished soon after the new evidence comes out have 
been in the pipeline long enough that they may not 
cover the implications of the new facts.

Impact of Previously Held Beliefs  
Subsequent to Willing Belief Change

Having once believed something, one contin-
ues to hold that belief somewhat, even if one 
subsequently receives information that contra-
dicts the belief and one fully believes the new 
information. When we learn something, we do 
work to elaborate the idea, to explain it, to link it 
with related ideas. The residual of that work is 
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still present in our knowledge base, even when we 
have subsequently learned that the original idea 
was not true. This mechanism is the purest 
expression of the phenomenon of irrational psy-
chological persistence in belief. Because it is 
unmotivated, no amount of effort to increase the 
reward for physician rationality or the punish-
ment for impurity of physician motivation can be 
guaranteed to eliminate this type of irrational 
persistence of discredited beliefs.

Motivational Processes

Two types of motivational process may be involved 
when a physician irrationally persists in believing 
ideas that have been discredited or in doing actions 
shown to be less than optimal. The first is simply 
the avoidance of the work of changing one’s own 
habits, others’ behavior, or an organization’s func-
tioning, when the physician knows something dif-
ferent should be done. The second type occurs 
when the physician is motivated, possibly uncon-
sciously, to manipulate his or her own awareness 
to reduce the conflict felt when one’s beliefs are 
contradicted.

The Avoidance of Unpleasant Work

Physicians’ daily choices are made in the con-
text of patients’ expectations (e.g., patient expecta-
tion of an antibiotic for a cold or sinusitis), the 
standard operating procedures of the clinic, the 
third-party payer’s policies, and the nursing staff’s 
habits. The physician cannot make a change indi-
vidually, without explaining it to colleagues and 
staff, requesting changes in institutional policies, 
and educating patients. It may seem easier simply 
to ignore the new evidence and continue practicing 
in the usual way. Physicians in a complex system 
may not actually know how to change the system, 
unless they have taken a special interest in the 
management processes. Research suggests that it 
takes simultaneous efforts on multiple fronts to 
change how physicians, staff, and patients think a 
disease should be treated. While one might view 
each physician as rational when he or she does not 
choose to lead such a change process, jointly all the 
physicians in the system can be considered irratio-
nal if they know they should treat patients in a 
different manner and yet they don’t.

Defense of Cherished Beliefs

In the second vignette above, the physician, con-
fronted with evidence that spending more time 
inspecting the colon makes colonoscopy a more 
accurate screen, could not see that the conclusion 
applied to her. It takes conscious effort to change 
one’s own way of doing things. To be motivated to 
make this effort, it is necessary to believe the 
change is needed and feasible. At this juncture, 
physicians sometimes have distorted perceptions 
or illogical reasoning, with the unconscious motive 
of neutralizing the justification for change. Thus, 
the colonoscopist was convinced that she did not 
need to change because she did not notice that 
withdrawing her scope made her inspection any 
more accurate, where a statistical analysis (such as 
that in the published study) would require objec-
tive observation of many months of colonoscopies 
to detect a difference in the rate of polyp detection. 
Generally, physicians are unconsciously motivated 
to notice evidence that supports their current way 
of practice and not to notice evidence that contra-
dicts it. When the evidence is ambiguous they 
interpret it as supporting their position.

Scientific Disagreement

This entry labeled as “irrational” persistence in a 
belief or practice when there is convincing evidence 
against it. Of course, the scientific process consists 
in just such disagreements. The new treatments 
that truly do save lives emerge from the garden of 
unproven and expensive treatments of the special-
ists. Fundamental advances start with the extreme 
minority opinions, as in the conception of the role 
of Helicobacter pylori in gastric ulcers or angio-
genesis in cancer. One person’s genius may be 
another person’s irrational persistence in belief.

Final Thoughts

Disproven medical beliefs and practices persist irra-
tionally for many reasons, from the individual 
physician’s cognition to the inertia of medical sys-
tems and professional ideologies. In promoting 
rational medicine, it is useful to be aware of this 
variety, because the different causes require differ-
ent corrective measures. Few of the mechanisms 
have been researched extensively in the medical 
domain. Without knowledge of which mechanism 



644 Irrational Persistence in Belief

of persistence is predominant in a situation, efforts 
to promote rational change may be misaimed.

Robert M. Hamm
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Judgment

A judgment is an opinion as to what was, is,  
or will be some decision-significant state of the 
world, where a decision is a commitment to a 
course of action that is intended to serve the per-
sonal interests and values of particular people, for 
instance, a patient. The “decision-significant” 
part of the concept rests on two facts. The first is 
that the content of the judgment at least partly 
dictates the decision that is reached. The second is 
that the accuracy of the judgment imposes a ceil-
ing on the extent to which the selected action 
really does serve the interests and values of the 
intended beneficiaries. The following are some 
judgment examples:

Was • : A pathologist concludes that a patient died 
of natural causes and therefore chooses to not 
ask the authorities to investigate a possible 
crime; if that conclusion is erroneous, a criminal 
would remain free to cause additional harm.
Is • : A pediatrician believes that a child’s slow 
growth pattern is normal and thus declines to 
recommend hormone treatments; if that belief is 
incorrect, the window of opportunity for treating 
a hormone imbalance could be lost forever.
Will be • : A patient is convinced that a new herbal 
treatment would halt the progress of her cancer 
and hence decides to seek out that treatment; if 
that conviction is misguided, pursuing the new 
treatment could prove useless or, worse, preclude 
other, more effective treatment options.

Judgment Formats

Judgments appear in formats that are opposites in 
several dichotomies. The distinctions matter for sev-
eral reasons: Judgments in different formats drive 
decisions in different ways; their accuracy must be 
appraised differently; and they rest on somewhat 
different psychological processes, with contrasting 
implications for judgment-training efforts.

Categorical Versus Quantitative Target

The character of the judgment target (the state of 
the world at issue) can be categorical, implying sim-
ple qualitative distinctions, as when a physician must 
make a differential diagnosis among several biologi-
cally disparate disease categories. Alternatively, the 
target might be inherently quantitative, correspond-
ing to a point along some continuum, as when a 
physician tells a patient, “I would expect your recov-
ery to take about 6 weeks.”

Deterministic Versus Likelihood Assertions

In a deterministic judgment, the “judge,” the 
person rendering that opinion, makes a flat-out, 
unqualified assertion about the target; for exam-
ple, “You have early-stage breast cancer.” In con-
trast, in a likelihood judgment, the judge qualifies 
the offered claim with an indication of associated 
chances; for example, “There are good odds that 
you have the disease, I’m afraid.” Some people 
(e.g., patients) prefer that others (e.g., their  doctors) 
provide them with deterministic rather than likeli-
hood judgments, perhaps because such  definitive 

J
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pronouncements seem more competent and reas-
suring in their clarity. Others, on the other hand, 
doubt the integrity and expertise of people who 
seemingly hide or fail to even recognize the uncer-
tainty presumed to be present in most real-life 
medical situations. Also, recipients of judgments 
from other people often say that if there is doubt 
in their informants’ minds (as there usually is), 
they want to know about it. This allows them to 
make trade-offs between uncertainty and value, in 
the spirit of technologies such as decision analysis. 
They further recognize that deterministic judg-
ments force them to act as if those judgments were 
definitively true. For instance, an unqualified diag-
nosis of lung cancer implies that the patient must 
be treated as having lung cancer.

Verbal Versus Numerical  
Indications of Likelihood

The chances associated with likelihood judg-
ments sometimes are articulated verbally, with 
ordinary words such as “remote,” “likely,” or 
“good.” These words convey ordinal (sometimes 
called qualitative) differences in likelihood but not 
much more, at least not precisely. For example, one 
should be more surprised by the actual occurrence 
of a stroke given a previous indication of a “remote” 
chance rather than a “good” one. But how much 
more surprise is warranted is impossible to say.

Alternatively, chances can be expressed numeri-
cally. Probability statements are one form of 
numerical expression, as when a radiologist records 
an 80% chance that an image represents a tumor. 
Intermediate between the extremes of everyday 
words and probability statements are likelihood 
scale ratings. For instance, a protocol might require 
a diagnostician to express a degree of  certainty of 
dementia by circling a number between 1 and 7, 
where the scale anchors are 1 = definitely not 
dementia and 7 = definitely dementia. Probability 
statements offer several advantages. They make it 
easy to precisely characterize and analyze judgment 
accuracy. And, unlike mere ratings, some probabil-
ity values have standard, concrete interpretations. 
For example, when there are two alternatives, such 
as “dementia” and “not dementia,” 50% should 
mean that one alternative is just as likely to be true 
as the other. Furthermore, in principle, at least, 
relationships among probability judgments should 

conform to the rules of probability theory. Opposing 
considerations such as these, however, some people 
prefer verbal expressions of likelihood because they 
allow for the acknowledgment of actual vagueness. 
They do not promise more precision than truly 
ambiguous circumstances justify.

Point Versus Interval Quantity Judgments

When the target is a quantity, the person could 
render a point judgment, a claim for a specific 
value; for example, “You should be recovered in 10 
days, so there’s no reason to reschedule your trip.” 
Alternatively, the judgment might be expressed in 
interval form; for example, “Recovery should take 
between 1 and 2 weeks.” Interval judgments seem 
both more comfortable and more realistic, since it 
is hard to imagine many point judgments being 
exactly on the mark. One can go even further, indi-
cating explicitly how sure the judge is that the 
interval in question will capture the actual value of 
the target; for example, “I’m 90% sure that every-
thing will be back to normal in 1 to 2 weeks.” Such 
interval judgments coupled with probability state-
ments are called credible intervals.

Other Uses of the Term Judgment

Confusingly, two other meanings for the term 
judgment besides the predominant one used here 
are fairly common. In legal contexts, such as mal-
practice lawsuits, the expression is frequently 
employed to describe a legal decision, as in “The 
judgment of the court is for the plaintiff.” Within 
decision scholarship, the term is sometimes used to 
characterize a special kind of decision otherwise 
known as an evaluation decision or simply an 
evaluation. This is a person’s indication of how 
much something is valued by that individual, a 
pronouncement that is not mere idle talk but that, 
instead, potentially can have significant conse-
quences for that person. A patient’s rating of treat-
ment satisfaction is a good illustration, as is a 
supervisor’s appraisal of a resident’s performance.

Expressed Judgments Versus  
Underlying “True” Judgments

Systematic differences sometimes exist between 
what a person actually thinks and what that 
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 person reports. A physician might believe that a 
patient’s prognosis for the next 6 weeks is bleak. 
However, because she wants to avoid discouraging 
the patient, she keeps her opinion to herself or 
perhaps even deliberately misleads the patient with 
a more optimistic “white lie.” To combat various 
incentives for purposely biasing reports of one’s 
true judgments this way, researchers have devel-
oped procedures that provide offsetting incentives 
for candor. Studies suggest that providing diagnos-
ticians with accuracy bonuses paid according to 
proper scoring rules applied to probabilistic diag-
noses would be effective in achieving that goal.

Discrepancies between what a judge really 
believes and what that judge reports explicitly do 
not have to be the result of intentional deception. 
Research has revealed numerous instances of reli-
able self-insight failures, cases in which people 
appear to be honestly ignorant about their true 
thinking or feelings. That is one reason that, for 
many years, decision scholars have been reluctant 
to accept people’s explicitly articulated judgments 
at face value. Instead, they have emphasized infer-
ences of people’s true opinions from their decisions 
in specially structured situations. One inference 
approach is sometimes referred to as a Bayesian 
technique, illustrated as follows.

Suppose that we seek a physician’s true belief 
about the probability that a certain patient will be 
fully recovered from surgery in 2 months. Call that 
target event “Recovery.” Imagine that the physi-
cian is offered a gamble denoted GRecovery = [$10, 
Recovery; $0, Otherwise], which means that the 
physician receives $10 if Recovery occurs but 
nothing if it does not. Also imagine another gam-
ble represented by GQ = [$10, Blue; $0, RedQ 
Blues, 1,000 − Q Reds], where the information after 
the symbol  refers to a special kind of lottery. 
This gamble offers the same payoffs as GRecovery. 
However, those payoffs are determined by a ran-
dom drawing (to be performed 2 months hence) 
from an urn containing Q blue balls and 1,000 − 
Q red ones, where Q is some whole number 
between 0 and 1,000. The gamble pays $10 if a 
blue ball is selected, otherwise nothing. The physi-
cian is shown many versions of GQ varying accord-
ing to Q. And each time, the physician is asked 
whether he or she prefers GRecovery or GQ, or instead 
is indifferent between them. Suppose that he or she 
is indifferent between GRecovery and G650. Then we 

must infer that the physician’s “true” probability 
judgment that the patient will be recovered in 2 
months is 65%. That is because, in the physician’s 
eyes, everything about GRecovery and G650 must be 
equivalent. This includes the chances of getting 
$10, the only thing that could possibly have dif-
fered between GRecovery and G650. And every “rea-
sonable person” would agree that the chance of 
drawing a blue ball from an urn with 650 blue 
ones and 350 red ones is 65%.

Note that the physician was never explicitly 
asked the difficult question: “What do you think is 
the probability of recovery?” Instead, he or she 
only had to make a series of decisions between 
pairs of transparently simple alternatives. In effect, 
the Bayesian procedure provides a window on the 
judgments that actually drive the physician’s deci-
sions, the true judgments that really matter from a 
decision-making perspective. They are not self- 
reports of internal opinions to which the physician 
might have poor cognitive access.

Judgment Sources

The judgments that inform medical decisions 
originate in several kinds of sources, including 
three major ones that entail significant distinguish-
ing features: individuals, collectives, and devices.

Individuals

Some judgments come from individuals work-
ing alone. The means by which they arrive at those 
judgments are varied. In some instances, judges use 
formalistic procedures, which resemble (or are the 
same as) those that a statistician might employ.  
An especially simple example would be relying on 
existing records. Consider a primary care physi-
cian faced with a 50-year-old male patient with 
hypertension who has already suffered a stroke. 
Her judgment of his chances of suffering another 
stroke by age 60 informs her decisions about a 
management plan. The physician might easily 
adopt as her judgment the published rate of stroke 
recurrence for patients with the same characteris-
tics. Other known individual judgment processes 
differ considerably. They include judgment accord-
ing to similarities (e.g., between a given patient 
and a prototype for a given disease), the availabil-
ity of particular instances (e.g., recent, memorable 
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patients), and action models or “stories” whereby 
alternative possibilities might come about (e.g., 
biological disease models that explain the emer-
gence of the patient’s signs and symptoms more or 
less adequately than do other models).

Collectives

Some judgments are derived from collectives 
rather than individuals. Sometimes collective judg-
ments are the product of interactive deliberations 
among the people comprising that collective. For 
example, several physicians might use a face-to-
face meeting to reach consensus on a patient diag-
nosis in an especially difficult case. In principle, 
such deliberations have the potential to yield far 
more accurate judgments than those reached by 
any one physician alone when each of the individu-
als participating in the discussion has expert 
knowledge about a different aspect of the problem. 
Studies have shown, however, that several factors 
mitigate against the full exploitation of such dif-
ferential knowledge, including the tendency for 
deliberations to be dominated by what the partici-
pants know in common rather than their unique, 
specialized knowledge. Another way to arrive at 
collective judgments is mechanically. That is, the 
members of the collective might render their judg-
ments independently and then have those opinions 
somehow aggregated into a single assessment for 
the whole group. For instance, a group of physi-
cians’ collective prognosis for a patient’s recovery 
time could be computed as a simple average of 
their individual predictions. The accuracy of such 
averages is often surprisingly good.

Devices

Judgments are sometimes rendered by devices 
such as computer programs. The judgment rules 
built into these devices can rest on a variety of prin-
ciples. The most popular are various kinds of linear 
statistical models. In “accuracy contests” between 
devices and human judges with access to identical 
facts—for example, the very same patient signs and 
symptoms—the devices have almost always won. A 
major reason is that, although human judgment can 
be highly unreliable,  judgments from devices are 
usually perfectly consistent. However, an inherent 
advantage enjoyed by human judgments is that they 

do not have to rely on a predetermined, restricted 
array of facts. For instance, a physician typically 
can observe and request myriad facts about any 
given patient, even those not on a standardized 
checklist. Unfortu nately, this potential asset is 
known to be a liability at times, too. Humans some-
times pay attention to information that is statisti-
cally worthless, or else they respond to diagnostic 
information improperly. Either way, their accuracy 
is actually worsened rather than improved.

Assessing and Analyzing Judgment Accuracy

When judgments are inaccurate, they lead doctors 
and patients to choose courses of action that leave 
patients worse off than otherwise. This implicates 
the importance of effectively assessing judgment 
accuracy, since studies have shown that even 
trained professionals can differ substantially in the 
quality of their judgments.

Judgments are said to be accurate to the degree 
that they exhibit good external correspondence—
that is, there is a strong, reliable statistical relation-
ship between the judgments and the actual states of 
the world that they are intended to anticipate. There 
are well-established measures of external correspon-
dence for each of the judgment formats noted previ-
ously, for example, for deterministic and likelihood 
judgments for discrete categories and quantities. 
These measures can be used to inform the selection 
and compensation of judges as well as to determine 
the extent to which programs for improving judg-
ment accuracy have succeeded or failed.

A surgeon who excels overall might be outstand-
ing with respect to some aspects of surgical perfor-
mance yet only average in terms of others. Properly 
recognized, the “average” aspects can be targeted 
for focused improvement efforts that eventually 
result in even better overall performance. Like sur-
gical competence, judgment accuracy is not a  
unitary construct. That is why researchers have 
developed numerous techniques for decomposing 
measures of overall judgment accuracy into 
 constituent elements or contributors. For example, 
the lens model and statistical methods from the 
forecasting literature are useful tools for analyzing 
point judgments for quantities, such as predictions 
of survival time. They permit conclusions about 
whether assessments are deficient because a 
 diagnostician is unreliable, say, rather than because 
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she is consistently biased in one direction or 
another. Decompositions of commonly used accu-
racy scores for probability judgments (e.g., for 
“cancer” vs. “no cancer”), such as probability 
scores or Brier scores, provide similar windows on 
specific contributors to probability judgment defi-
ciencies that might then be the focus of training 
efforts. ROC (receiver operating characteristic) 
analysis, grounded in signal detection theory, offers 
similar insights into the accuracy of likelihood scale 
ratings and even deterministic judgments.

J. Frank Yates and Lydia L. Chen

See also Brier Scores; Heuristics; Judgment Modes; Lens 
Model; Probability, Verbal Expressions of; Risk 
Perception; Social Judgment Theory
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Judgment modes

A judgment is an opinion as to what was, is, or 
will be some decision-significant state of the 
world, for instance, a physician’s conclusion that 

a patient has suffered a myocardial infarction. 
Judgment modes are qualitatively distinct means 
by which people arrive at their judgments. 
Contrast, say, a myocardial infarction diagnosis 
based solely on the physician’s personal clinical 
experience with another derived from a validated 
formula applied to signs and symptoms on a 
checklist. This entry explains why judgment modes 
matter in medicine. It also describes major judg-
ment modes that are especially useful to distin-
guish in medical practice. And, as appropriate, the 
entry further indicates specific practical implica-
tions of such distinctions.

Why Judgment Modes Matter

Judgments are important in medicine because their 
accuracy imposes a ceiling on the quality of the 
decisions they inform. That ceiling in turn sets 
bounds on the patient’s well-being. A patient with 
severe chest muscle strain who is misdiagnosed as 
having had a myocardial infarction will be treated 
as a heart attack victim. This inappropriate treat-
ment would be invasive and risky as well as need-
lessly expensive. Naturally, any physician or 
medical practice would like to minimize inaccurate 
judgments, be they diagnoses, prognoses, efficacy 
opinions, or any of the other myriad assessments 
that are required throughout every day in every 
clinic. Achieving that aim requires a deep under-
standing of precisely where those judgments origi-
nate. Such understanding makes it clearer how 
mistakes can occur and therefore what is sensible 
in efforts to prevent, correct, or compensate for 
them. If one actually misunderstands how partic-
ular medical judgments are achieved, then the 
resulting attempts to improve those assessments 
could easily backfire, making things worse. 
Assuming that judgments originate in procedures—
that is, modes—that are fundamentally different 
from how they actually are generated is misunder-
standing in the extreme.

A Judgment Mode Tree

Studies have shown that, as in most practical are-
nas, the judgments that support people’s medical 
decisions can arise from sources as different from 
one another as apples and oranges, and hence the 
term judgment modes aptly describes those sources. 
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Figure 1 shows a judgment mode tree. (The num-
bers on the nodes facilitate discussion.) This hierar-
chy is a taxonomy of major judgment modes, 
organized in a particular way. Specifically, there are 
reasons to expect the various modes to be invoked 
in roughly the order of a path from “northwest” to 
“southeast.” For a given judgment problem, modes 
to the left and top of the tree are likely to be 
attempted before ones to the right and the bottom. 
It is important to bear in mind, however, that in a 
single decision episode, several different modes, 

applied one after another, easily might contribute 
to the judgment ultimately rendered.

Individual Versus Collective Modes

The first level of the tree distinguishes individual 
from collective modes. Individual modes (1) are 
those in which one person (e.g., the attending phy-
sician or, perhaps, a specialist whom the physician 
consults) provides the judgment in question. In 
contrast, in collective modes (2), the judgment is 

Judgment Mode

Individual 1 Collective 2

Precedence 1.2.1

Interactive 2.1

Adoption 1.1

Mechanical 2.2

Devices 1.1.2
Expectancy learning 1.2.1.1

Recall contents 1.2.1.2

Recall availability 1.2.1.3

Records 1.2.1.4

Validated 1.2.2.3

Event theories 1.2.2

Scenario availability 1.2.2.2

Personal 1.2.2.1

Matching 1.2.3

Similarity 1.2.3.2

Checkoff 1.2.3.1

Association models 1.2.4

Personal 1.2.4.1

Limited 1.2.4.1.2

Comprehensive (2+ cues, synthesis) 1.2.4.1.1

Simulation 1.2.4.2.2

Formal 1.2.4.2

Statistical 1.2.4.2.1

Other people 1.1.1

Self-generation 1.2

Figure 1  Judgment mode tree
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supplied by several individuals working collabora-
tively in some manner (e.g., three physicians confer-
ring to reach consensus on an especially challenging 
diagnosis). Individual modes normally have prior-
ity over collective modes if for no other reason than 
that people often work alone, sometimes by neces-
sity. In addition, collective judgment is generally 
slower and more expensive, materially and emo-
tionally; it entails higher process costs, such as the 
time and goodwill used up working through dis-
agreements (e.g., between two physicians with 
opposing opinions about the true cause of a 
patient’s complaint).

Individual Modes

The first major distinction among individual 
judgment modes concerns whether judgments 
are adopted (1.1) or are, instead, self-generated 
(1.2). Self-generated judgments are produced by 
the person who introduces them into delibera-
tions for the decision problem at hand, whereas 
adopted judgments are acquired from some 
other source. Incidentally, it is common in deci-
sion scholarship to refer to the person who cre-
ates judgments for a given situation as the 
“judge.” Consider, for instance, a physician 
deciding whether to apply standard heart attack 
treatment measures to a patient complaining of 
chest pain. If the physician makes the required 
diagnosis by herself, it is self-generated; she is 
the judge as well as the decider. But if she relies 
solely on the opinion of a colleague, the diagno-
sis is adopted.

Adoption Modes

Judgment via adoption is ubiquitous. It would 
be impossible for people to create personally all 
the judgments they need to make their decisions; 
they must depend on other sources. Sometimes 
those sources are humans, other people (1.1.1), as 
when a physician acquires the opinion of a pathol-
ogist who has examined a tissue sample. But at 
other times the sources are devices (1.1.2) of vari-
ous kinds, such as computer programs that render 
probability assessments for potential diagnoses 
given presented signs and symptoms.

A decider who contemplates relying on adopted 
judgments ideally should resolve two practical 
concerns. The first is accuracy: How accurate 

would the adopted judgment be? For instance, 
how much more accurate than his own assessments 
should the physician expect the diagnoses of spe-
cialist Dr. Smith to be? The second concern is cost: 
How much would have to be paid—materially and 
otherwise—for the adopted judgment, and does 
the promised accuracy improvement outweigh the 
greater expense? For example, does the potentially 
improved accuracy of a new computerized diag-
nostic procedure more than offset the extra time 
and money it requires? There is reason to believe 
that both accuracy and cost concerns are often 
overlooked and that, when they are considered, 
they are not thought through adequately. Consider 
evidence that people’s conclusions about others’ 
expertise are strongly affected by factors (such as 
speech patterns) that easily can have little or noth-
ing to do with objective accuracy indicators. Or 
take the fact that people often fail to ask questions 
about the functioning of judgment devices that 
have significant bearing on their appropriate use, 
such as questions about the information items the 
devices take into account and the items they 
ignore.

Self-Generation Modes

Under many conditions, although not all (e.g., 
where their inexperience is obvious), people tend to 
be overconfident about the quality of their own 
judgment. When that occurs, they should be expected 
to eschew adopted judgments for self-generated 
ones more than they should. And there are four 
main varieties of self-generation modes that might 
be pursued, each with its own special cases.

Precedence. The essence of precedence modes 
(1.2.1) is that the judge uses past occurrences in 
similar situations to inform the judgment needed 
presently. The most basic form this mode takes can 
be labeled expectancy learning (1.2.1.1). The core 
idea is the following: Consider some event of 
concern, say, a possible case of asthma. Furthermore, 
imagine that, in Clinical Setting 1, asthma occurs 
about 5% of the time, while in Setting 2, the rate 
is about 12%. The judge simply observes a large 
number of randomly presented cases (asthma vs. 
no asthma) in Setting 1 and does the same in 
Setting 2. There is no request to do anything like 
count, memorize, or even pay close attention to 
what is observed. Studies have shown that, in due 
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course, the judge will induce the fact that the 
asthma rates are different in the two contexts, as 
reflected in the judge’s behavior.

Suppose the judge is told that, in a given setting, 
he will receive $100 if the next case that comes 
along is an asthma case. The judge is then allowed 
to choose the setting in which to exercise this 
opportunity. The judge will almost certainly pick 
Setting 2, where the asthma rate is 12%, rather 
than Setting 1, where that statistic is 5%; his 
expectancy for asthma is stronger in the former 
situation. Note that the judge was not asked to 
express a judgment explicitly. However, such a 
comparative likelihood judgment is implicit: 
“Asthma is more likely in Setting 2 than in Setting 
1.” If the judge were asked to state a probability 
judgment that the next patient in one of the set-
tings will have asthma, there is no guarantee that 
that judgment would match the observed rate pre-
cisely. But the judgment would almost certainly be 
higher for Setting 2. The Setting 1 versus Setting 2 
scenario is contrived, but the underlying principle 
is not. It is generalizable to more realistic circum-
stances, such as that in which “Setting 1” is 
replaced by “Patients like Ms. Jones.”

The remaining precedence modes all entail some 
deliberate attempt to remember previous occur-
rences. In the recall contents mode (1.2.1.2), the 
judge tries to recall specific earlier instances when 
events similar to the one being considered pres-
ently actually happened. These are used to esti-
mate, for example, the relative frequency of such 
past occurrences, which is then taken as the 
required probability judgment. Thus, suppose 
that, through such recall efforts, a physician esti-
mates that, of the patients like Ms. Jones whom he 
has seen in the past, about 10% had asthma. He 
therefore concludes that there is a 10% chance 
that Ms. Jones has that condition, too.

The recall availability heuristic (1.2.1.3) is sub-
tly but significantly different from the recall con-
tents mode just described. In the latter, the judge 
uses the substance of what is remembered. Suppose 
that Ms. Jones’s physician brings to mind 10 for-
mer patients similar to Ms. Jones and that one of 
them had asthma. That 1:10 ratio would yield the 
physician’s probability judgment of asthma for 
Ms. Jones. In contrast, the inference in the recall 
availability approach is indirect. Ms. Jones’s physi-
cian might try to bring to mind perhaps only a 

single case in which a patient similar to Ms. Jones 
had asthma. The physician next makes an assess-
ment of how easy it was to recall that case, its 
“availability” for recall. The physician then invokes 
the key assumption underlying the recall availabil-
ity heuristic: The easier it is to recall a particular 
kind of event, the more often that event must have 
occurred in the past. This assumption then justifies 
inferring that events similar to easy-to-recall past 
exemplars are highly likely to occur now also.

The records mode (1.2.1.4) is the “objective” or 
“scientific” variant of the precedence mode. The 
judge does not depend on fallible memory for a 
perhaps limited number of personally observed 
past cases. Instead, the judge calls upon reliable 
records of large, representative (if not exhaustive) 
samples of such cases. Thus, Ms. Jones’s physician 
might consult an extensive database of valid 
records of patients who resemble Ms. Jones in rel-
evant ways. If 13% of them had asthma, then  
Ms. Jones’s doctor will take 13% as her probabil-
ity of having asthma, too. This “evidence-based” 
approach is sometimes called an “actuarial” 
method, since it is basically the same as that used 
by insurance companies in arriving at the probabil-
ity judgments that they use for setting premiums.

The key ideas underlying precedence modes are 
compelling. Nevertheless, those modes entail risks, 
too. One is nonstationarity, which essentially says 
that current tendencies are fundamentally different 
from those in the past. For example, shifts in envi-
ronmental conditions might mean that the true 
asthma incidence changes substantially over time. 
Various psychological phenomena can compro-
mise the adequacy of the nonobjective precedence 
modes also. For instance, recall is subject to a host 
of context influences, such as primacy and recency 
effects, whereby the earliest and the most recently 
observed cases, respectively, are especially likely to 
be remembered. The ease with which past instances 
can be brought to mind is also influenced by 
numerous other factors that have little to do with 
how often those instances actually occurred, such 
as their vividness (e.g., the breast cancer death of a 
prominent person).

Event Theories. The defining feature of event 
theory modes (1.2.2) is that, in some fashion or 
another, the judge draws on a theory of how the 
event in question literally comes about in nature. In 
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some cases, those theories are personal ones 
(1.2.2.1), sometimes described as “naive” in that 
typically they are buttressed not by rigorous 
scholarship but instead by plausible lay intuitions. 
Two examples of widely accepted theories in early 
medical history that almost certainly began as 
personal theories are illustrative. One is the 
“doctrine of signatures,” according to which, 
supposedly, one could predict the efficacy of 
medicines derived from a plant by its resemblance 
to the organ of concern, for instance, the liverwort 
for treating disorders of the liver. Another is the 
miasma or “bad air” theory for explaining (and 
therefore predicting) diseases such as cholera.

The principle underlying judgment according  
to scenario availability (1.2.2.2) is similar to that 
deployed in the recall availability heuristic: An 
event is judged likely to occur to the extent that a 
scenario giving rise to it is easy to imagine. Thus, a 
physician’s prognosis for a diabetes patient might 
be driven by how easily he can envision the patient 
adhering to a recommended treatment regimen. 
The operative principle is plausible but also per-
haps overly self-generous: “If I personally cannot 
easily imagine how something can occur, that 
means it probably can’t occur.” One reason for 
having less than complete faith in this principle is 
that people have a hard time anticipating and even 
understanding the full range of complicated inter-
actions that occur among the forces at play in many 
real-life scenarios, including ones in medicine.

Validated event theories (1.2.2.3) are the engines 
that drive modern scientific medicine. Such a the-
ory provides an account for how a particular con-
dition, such as an infectious disease (e.g., acute 
bronchitis), arises and how it progresses over time, 
affecting particular organs in specified ways and  
in a specified order. That sequence directly guides 
prognostic judgment. And backward reasoning 
from particular signs and symptoms helps narrow 
down differential diagnoses.

Judges turn to event theories relatively early for 
a given case because humans have a natural need to 
understand the world, not merely to predict events 
accurately. One hazard of event theories, though, is 
that they likely give short shrift to uncertainty. 
After all, if one firmly believes that an event is  
the end product of a specific A  B  C  . . .  
sequence of occurrences, there is little or no room 
for uncertainty.

Matching. The key feature of judgment via 
matching modes (1.2.3) is that, during the course 
of the judgment process, the judge matches one or 
more features of the event in question with some 
“reference,” such as a prototype. Some algorithm-
like diagnostic procedures provide good illustrations 
of the checkoff (1.2.3.1) variant of matching. Each 
possibility in a differential diagnosis is implicitly 
defined by a prototypical case consisting of several 
signs and symptoms, including, perhaps, test 
results. In a fashion similar to the parlor game  
“20 Questions,” the diagnostician successively 
eliminates possible diagnoses whose prototypes 
require features missing from the case at hand 
until, eventually, only one diagnosis is left. In 
similarity (1.2.3.2) versions of matching, multiple 
characteristics of the given case are compared with 
corresponding features of the prototype more 
holistically, yielding an assessment of the degree  
of overall similarity between the case and the 
prototype. The judgment rests directly on that 
similarity assessment. For example, even if a given 
patient’s profile does not exactly fit the classic 
pneumonia victim prototype, if the similarity is 
strong enough, pneumonia is the diagnosis rendered. 
Judgment according to the representativeness 
heuristic is illustrative.

Judgment via checkoffs in principle should be 
less demanding than judgment per similarity. 
However, an advantage of the latter is that it more 
readily acknowledges uncertainty. Unfortunately, 
that mode can also yield judgments that violate 
key formal principles such as Bayes’s theorem.

Association Models. Judgment according to 
association models (1.2.4) seeks to exploit presumed 
statistical associations between the events in 
question and easily observed facts. For instance, 
“risk factors” such as hypertension are often used 
to sharpen stroke predictions, since strokes are 
thought to be (and are) especially common for 
people with high blood pressure.

In personal (1.2.4.1) forms of association model 
modes, the judge relies on personal intuitions and 
reasoning to derive a judgment. In special cases that 
are comprehensive (1.2.4.1.1), the judge attempts to 
exploit the predictiveness of at least two different 
facts in reaching judgments (e.g., hypertension and 
family history for stroke judgments). The anchoring 
and adjustment heuristic is a commonly discussed, 
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simple illustration, whereby the judge uses some 
general facts (e.g., a local incidence rate) to provide 
an initial ballpark judgment and then more case-
specific facts (e.g., test results) to move that initial 
assessment in appropriate directions. Intuitive 
approximations of the logic of linear regression are 
other, perhaps more sophisticated, examples. In 
limited (1.2.4.1.2) forms of personal association 
modeling, the judge relies on just a single fact, per-
haps deliberately flouting the principle that bringing 
to bear greater amounts of information can never 
reduce the statistical predictability of any event. 
Fast-and-frugal heuristics such as the “take the best 
rule” are illustrative. In that procedure, a physician 
would make a diagnosis solely on the basis of the 
one sign or symptom thought to be most predictive, 
ignoring all the rest. Limited association model pro-
cedures can sometimes outperform comprehensive 
ones. For instance, in attempting to synthesize the 
predictive value of multiple considerations, the 
judge might fail to recognize that, if some of those 
considerations are strongly correlated with one 
another, this redundancy should greatly affect how 
those facts are used. The burdens of juggling several 
facts at the same time can also reduce the judge’s 
reliability, thereby undercutting judgment accuracy 
even further.

Formal (1.2.4.2) versions of the association 
models mode entail attempts to do the best job of 
“objectively” taking advantage of associations 
between facts and events of interest, almost always 
with the aid of computers. Statistical (1.2.4.2.1) 
variants include well-known linear regression–type 
procedures, such as discriminant function analysis, 
and also Bayesian updating routines. Simulation 
(1.2.4.2.2) variants take several forms. Some 
involve computer programs that are intended to 
mimic the routines that a recognized expert human 
judge (e.g., diagnostician) uses in actual practice. 
Artificial neural networks, another popular vari-
ety, are programs intended to imitate the means by 
which human neural networks are thought to per-
form mental tasks such as classifying stimuli into 
various categories.

It is noteworthy that, although most formal 
modes rely on objective association measures 
derived from formal records, personal modes do 
not. Instead, they depend on judges’ own opinions 
about how various facts are correlated with the 
events at issue. And research has shown that the 

processes by which people arrive at their relation-
ship beliefs are vulnerable to several forces that 
can introduce biases. For example, people’s intu-
itions about how data should be used to draw 
relationship conclusions are often significantly dif-
ferent from standard statistical rules such as likeli-
hood ratios. This clearly imposes bounds on how 
accurate judgments resting on personal association 
models can be. 

Another Perspective: Deliberative Versus Non-
deliberative Modes. All the various self-generation 
modes have been described as if they were executed 
consciously and purposefully. This is a reasonable 
assumption for “public” modes such as those 
resting on records and statistical models. But it is 
not always reasonable for modes carried out in the 
heads of individual judges. In fact, there is 
considerable evidence for another important mode 
distinction that underlies those displayed explicitly 
in the mode tree—the distinction between what 
may be called deliberative and nondeliberative 
modes.

Deliberative modes, sometimes said to involve 
System 2 thinking, are characterized by features 
such as control, effort, and awareness. In contrast, 
when a person applies nondeliberative modes, 
sometimes associated with terms such as System 1, 
automaticity, and intuition, the judgment process 
is often initiated on its own and cannot be stopped; 
once it begins, it requires virtually no mental 
capacity or effort, and it can function outside the 
person’s awareness. In fact, the judge is likely to be 
unable to accurately describe how judgments are 
reached. Some modes listed in the mode tree, such 
as expectancy learning, might be nondeliberative 
virtually always. Others, however, are likely to 
transition from deliberative to nondeliberative as a 
result of experience. Thus, after a physician has 
made hundreds of diagnoses on the basis of a per-
sonal association model for a condition such as 
pneumonia, she is likely to lose awareness of how 
she arrives at those diagnoses.

The deliberative/nondeliberative distinction 
highlights the practical significance of modes. 
There have long been attempts to improve people’s 
judgments by merely educating them about the 
existence of various biases. Such efforts have sel-
dom succeeded. There is reason to believe that this 
is partly because the awareness approach presumes 
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that people are making their judgments on the 
basis of deliberative processes when they actually 
rest on ones that are nondeliberative, and hence 
beyond people’s personal control. Markedly differ-
ent strategies are therefore required to achieve 
improvements.

Collective Modes

There are two kinds of collective modes (2), 
distinguished by how the differing opinions of 
multiple judges are synthesized into a final, col-
laborative judgment. (Note that the judges do not 
have to be humans; some or all of them might be 
devices such as computer programs.) Interactive 
(2.1) synthesis basically entails discussion in some 
form, as when several clinicians hold a meeting 
and reach consensus about the diagnosis for a dif-
ficult case. In contrast, in mechanical (2.2) synthe-
sis, the participating judges work independently 
and report their judgments individually. These 
assessments are then combined with a formula of 
some kind. For example, the recovery-time predic-
tions of three different physicians might be simply 
averaged to yield a composite prediction that is 
reported to the patient.

There are many reasons to expect collective modes 
to yield more accurate judgments than individual 
modes (“Two heads are better than one,” . . .).  
But there is also reason to suspect that that poten-
tial goes unrealized in many interactive situations. 
For instance, people often choose to discuss things 

that they know in common rather than to intro-
duce into conversation information or expertise 
that they hold uniquely. On the other hand, even 
simple averaging of multiple individual judgments 
typically yields composite judgments that are 
markedly (and surprisingly) more accurate than 
those of any one person.

J. Frank Yates and Andrea Angott
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Law and Court  
deCision Making

The law presumes that medical decision making 
will take place in the clinical setting without  
judicial participation. Medical decision making is 
ordinarily a private matter between the physician 
and the patient and, in some cases, the patient’s 
family. There is no general legal requirement that 
medical decision making be judicially supervised.

One reason is practical: If there were such a 
requirement, both the courts and medical practice 
would come to a grinding halt. Another reason is 
jurisprudential: The legal system in the United 
States is adversarial, which means that first there 
must be a controversy before the participation of 
courts can occur, and one party to that controversy 
must seek the involvement of the judicial system. 
In practice, the vast range of medical decision-
making matters do not involve disputes—or at 
least not irresolvable ones. Only in the most 
unusual cases are the offices of the judicial branch 
of government sought.

The most common situations in which recourse 
to the courts is sought in medical decision making 
are those involving the questions of whether a 
patient lacks decision-making capacity and, if so, 
who has the authority to make decisions for that 
person; whether a surrogate for a patient who 
lacks decision-making capacity is making an appro-
priate decision; and when the decisions that par-
ents make for their children are not in the child’s 
best interests. Other less common situations are 

instances in which patients or surrogates seek to 
do something very much out of the ordinary, such 
as the use of one child to benefit another (e.g., the 
transplantation of a kidney from one sibling to 
another) or the sterilization of persons lacking 
decision-making capacity.

Competent Patients

“Every human being of adult years and sound 
mind has a right to determine what shall be done 
with his own body.” In 1914, Judge Benjamin 
Cardozo of the New York Court of Appeals—and 
later a justice of the United States Supreme 
Court—wrote these words in a judicial opinion in 
a lawsuit brought by a woman against a hospital 
where she claimed to have been subjected to surgi-
cal treatment without her consent (Schloendorff v. 
Society of New York Hospital, 105 N.E.2d [N.Y. 
1914]). They have been repeated countless times 
since in virtually every medical decision-making 
case to have been decided by any court. Their ori-
gins are much older than their relatively recent 
legal vintage would suggest. The law of battery, 
which requires consent to any form of bodily 
“touching”—including surgery—dates back hun-
dreds of years in English law, from which our own 
law is derived.

The requirement of consent to medical treat-
ment underwent a slow transformation in the first 
half of the 20th century, culminating, in the 1970s, 
in a more sophisticated and complex requirement 
of informed consent to medical treatment. Today, 
informed consent is, in effect, the law’s model of 

L
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medical decision making, prescribing how deci-
sions about medical treatment must be made  
in order to be legally acceptable. Furthermore,  
the mainstream ethical analysis of medical  
decision making adheres to the same, or a very 
similar, model. The core principle of this model is 
autonomy—that individuals have the right to be 
free from unwanted interferences with their bodily 
integrity.

Autonomy is implemented in medical decision 
making through the requirement of consent to 
treatment; that is, a physician may not administer 
therapeutic or diagnostic procedures to a patient 
without the patient’s consent, and the newer 
requirement of informed consent recognizes that 
mere permission does not constitute consent. 
Ethically and legally valid consent involves giving 
permission on the basis of an understanding of 
information about what the matter to which per-
mission is given entails. In other words, for permis-
sion to treat to rise to the level of consent, the 
person giving it must understand the consequences 
of the medical treatment and suitable alternatives 
to that treatment (including no treatment) and the 
consequences of those alternative treatments.

Incompetent Patients

The foregoing analysis is applicable to autono-
mous individuals—to people who have the capac-
ity to make decisions about their medical treatment. 
The following discussion applies to those who do 
not have such decision-making capacity.

Meaning of Incompetence

The notion of incompetence is closely related to 
the concept of consent. In fact, incompetence, as it 
is understood in the contemporary law of medical 
decision making, is defined as the lack of capacity 
to give informed consent. Giving informed con -
sent entails the ability to communicate—to receive 
information and to render a decision. But it also 
entails the ability to understand this information 
and to use it in a rational manner. This definition 
of incompetence—or lack of decision-making 
capacity—is far easier to state than to apply. 
Difficult questions arise in application concerning 
the meaning of “understanding” of the informa-
tion and “rational” use of it.

Determination of Incompetence

Ordinarily, incompetence is assessed in the 
clinical setting by the patient’s physician. Sometimes 
the attending physician will be uncertain about a 
patient’s decision-making capacity and seek a con-
sultation from a psychiatrist, psychologist, or neu-
rologist, and in instances where there is an 
intractable dispute about a person’s decision- 
making capacity, a determination by a judge 
(referred to as an adjudication of incompetence) 
may be obtained.

Because, in fact, most adults possess decision-
making capacity and because the law presumes 
that adults possess decision-making capacity, an 
assessment to determine incapacity ordinarily 
should occur (and probably does occur) only when 
the patient’s behavior or condition is such as to 
raise strong suspicions of incapacity. At one extreme 
is the unconscious patient who clearly lacks  
decision-making capacity; more difficult cases 
involve patients who are demented, intoxicated, 
obtunded, mentally ill, or mentally retarded, some 
of whom may be intellectually compromised but 
not so much that they lack decision-making capac-
ity. Children below the age of 18 are presumed to 
lack decision-making capacity, but more mature 
minors may in fact have the capacity to make some 
or all decisions about their medical treatment, and 
the law recognizes their authority to do so at least 
in limited circumstances—generally those involv-
ing minors who are married, are or have been 
pregnant, or are being treated for mental illness, 
drug use, or sexually transmitted diseases.

Deciding for Others

Decision making for patients who lack the capac-
ity to make their own decisions is, like decision 
making for competent persons, based on auton-
omy. Even though an individual may have lost the 
capacity to make decisions, decisions can still be 
made for that person in a way that attempts to 
further the same values that the person would con-
sider if making the decision personally.

Advance Directives

The most direct way for this to happen is 
through an advance directive, which is a written 
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instrument by which one, while still competent, 
gives instructions about one’s medical treatment 
that may need to be administered after one has lost 
decision-making capacity. Such instruments are 
usually referred to as living wills, though some-
times they are referred to as medical directives, 
health care directives, or instruction directives.

A less direct, but more flexible, means of achiev-
ing this end is for an individual to appoint an agent 
to make medical decisions for him or her at some 
future time after having lost decision-making 
capacity. The instrument by which this is accom-
plished is referred to as a healthcare power of 
attorney, and the individual so appointed is referred 
to as a healthcare agent or healthcare proxy.

When a person has executed an advance direc-
tive and later loses decision-making capacity, the 
advance directive should be the starting point for 
decision making. If the advance directive gives 
instructions, it should be followed by the patient’s 
physician to the extent that the instructions are 
relevant to the particular decisions that actually 
need to be made. Often, however, this is not the 
case. Individuals drafting instructions may not have 
extraordinary foresight about the decisions that 
will need to be made, or their instructions may be 
so general that they require a great deal of interpre-
tation to be applied to those particular decisions. 
Even then their instructions may not be relevant.

In contrast, an advance directive that appoints 
an agent to make decisions provides a great deal 
more flexibility but considerably less guidance, 
unless the patient combines it with some directions 
about the kind of treatment he or she does or does 
not wish to have. In many instances of decision 
making for patients who lack decision-making 
capacity, however, there is no advance directive of 
either type, and decisions must be made in a differ-
ent fashion.

Procedures for Surrogate Decision Making

The consequence of being determined to lack 
decision-making capacity is that one is disenfran-
chised from making medical decisions for oneself, 
and someone else must of necessity make such 
decisions. The general term for such an individual 
is surrogate, but there are a number of different 
types of surrogates, depending on how they assume 
this position.

In some instances, an individual, in anticipation 
of a possible future loss of decision-making capac-
ity, designates someone to be his or her surrogate 
should the loss of decision-making capacity in fact 
occur. Such a patient-designated surrogate is 
referred to as a proxy or agent.

The means by which this appointment is made 
may be a formal, legal one involving the execution 
of a document known as a health care power of 
attorney, or it may be a more informal, usually 
oral, one. Indeed, it may even be more informal 
than that, as when a patient who is accompanied 
by another person to a medical appointment may, 
by including that other individual in discussions 
with a physician, tacitly authorize the other to be 
his or her proxy then, in the future, or both.

When an individual fails to designate a proxy, a 
surrogate may be named pursuant to law. Many 
states have legislation that sets forth a list of indi-
viduals who are deemed to be the surrogate for an 
individual who lacks decision-making capacity. 
These individuals—referred to as statutory surro-
gates—are usually close family members—such as 
spouse, parents, adult offspring, and siblings—and 
occasionally more distant relatives by blood or 
marriage. Further down the list may be friends, 
clergy, or healthcare professionals.

If legislation of this kind does not exist, the cus-
tomary practice in the health professions is for 
close and involved family members to act as sur-
rogates for patients. In some states, judicial opin-
ions have expressly approved of this practice. 
Where there has been no such formal judicial 
approval, a sound legal argument can still be made 
that it is legally acceptable for close family mem-
bers to act as surrogates. Such a surrogate is a 
common-law surrogate.

In cases in which a patient has no close family 
member to serve as a surrogate, a surrogate may be 
appointed by a court. This type of surrogate is usu-
ally referred to as a guardian (though the terminol-
ogy is different in a few states). When circumstances 
dictate the need for rapid action in appointing  
a guardian, this can sometimes be done quickly, 
though for a limited period of time. Ordinarily, the 
appointment of a guardian requires a judicial hear-
ing with testimony from a psychiatrist or psycholo-
gist about the patient’s decision-making capacity.

Under limited circumstances, recourse to the 
courts for surrogate decision making is appropriate 
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even if a surrogate already exists. One such instance 
arises when it is unclear who should serve as sur-
rogate. This may occur because a patient has exe-
cuted more than one healthcare power of attorney 
appointing more than one person to serve as his or 
her agent. It may occur because there is more than 
one family member in a statutory class of persons 
authorized to act as a surrogate. Or it may occur in 
a case of common-law surrogacy because a patient 
has more than one ready, willing, and able family 
member to act as surrogate. When there is irresolv-
able conflict among these individuals, or when it is 
just not clear who has the authority to serve as sur-
rogate, recourse to the courts to sort out the matter 
is warranted. Also, if a particular individual clearly 
has the legal authority to act, but that individual 
lacks the capacity to make a decision, a judicial 
proceeding might be instituted to disqualify the 
individual. The same is true if there is a serious 
conflict of interest between the surrogate and the 
patient, such that the surrogate is clearly motivated 
to act in his own best interests rather than the 
patient’s.

Emergencies

In a life-or-death emergency, there is no need for 
a surrogate decision maker. A physician is legally 
authorized to administer life-saving medical treat-
ment without the patient’s or a surrogate’s consent, 
unless there has been a refusal of the treatment in 
question by the patient or a surrogate prior to the 
occurrence of the emergency.

Standards for Surrogate Decision Making

When a surrogate makes a decision for an 
incompetent patient, the surrogate is required to 
follow a set of legal standards in so doing. These 
are referred to as surrogate decision-making stan-
dards. The standards are prescribed either by 
judicial decisions or by legislation. The predomi-
nant standard is referred to as the substituted 
judgment standard. Pursuant to this standard, the 
role of the surrogate is to determine insofar as is 
reasonably possible what the now incompetent 
patient would decide if the patient were able to 
make a decision. Put another way, the surrogate is 
to determine the patient’s probable wishes about 
medical treatment.

In so doing, the surrogate is permitted to rely on 
any discussions that the surrogate or others had 
with the patient before the patient lost decision-
making capacity; on any oral statements the 
patient made; and on any written statements the 
patient made that do not satisfy the legal requisites 
of an advance directive. In taking this information 
into account, the surrogate should consider it in 
the context in which it was articulated, for instance, 
whether it was made in a casual way or under 
more serious circumstances.

In addition to direct statements by the patient, 
other evidence is relevant to a decision made pursu-
ant to the substituted judgment standard. The sur-
rogate may also take into account such matters as 
the patient’s age and life expectancy with or with-
out the contemplated treatment; the probable side 
effects of treatment, including any suffering, pain, 
or disorientation that the treatment may cause; the 
potential benefits of treatment; the patient’s reli-
gious beliefs or value system; and the quality of the 
patient’s life with or without treatment.

Decision making under the substituted judg-
ment standard is an inferential process. If there is 
direct and relevant evidence of the patient’s wishes 
about treatment—such as that contained in a liv-
ing will—that should guide the decision making 
and a surrogate is not even necessary, at least as to 
those components of decision making to which the 
direct and relevant evidence applies. However, in 
many instances, that is not the case. Either a living 
will does not exist, or, if it does, it requires inter-
pretation to be applied, or it does not address in a 
direct way the particular question at issue.

A very small number of states require more 
exacting evidence to guide the surrogate in making 
a decision than is permitted under the substituted 
judgment standard. This standard is often referred 
to as the clear and convincing evidence standard, 
but a better term is the actual intent standard 
because it requires that decisions made by the sur-
rogate be based on the patient’s actual wishes 
about treatment rather than on the patient’s prob-
able wishes, as is required under the substituted 
judgment standard. Thus, the surrogate may not 
infer the patient’s wishes from, for example, the 
patient’s religious beliefs or value system, but must 
rely on clear and convincing statements made by 
the patient. In the strictest version of this standard, 
the surrogate is merely a conduit for the patient’s 
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wishes and plays no independent role in attempt-
ing to discern what those wishes are.

In some instances, there will be no evidence of 
the patient’s wishes, inferential or direct. In these 
situations, the surrogate is legally obligated to 
make medical decisions according to the best inter-
ests standard. When forgoing the treatment in 
question would bring about the patient’s death, 
some states require that treatment be administered 
on the ground that life is always preferable to 
death. Most states recognize, however, that some-
times the burdens to the patient of continuing life 
far outweigh any benefits to the patient and there-
fore permit the surrogate to discontinue treatment 
on the grounds that its administration would not 
be in the patient’s best interest.

Alan Meisel

See also Advance Directives and End-of-Life Decision 
Making; Bioethics; Informed Consent; Informed 
Decision Making; Patient Rights; Risk-Benefit Trade-
Off; Surrogate Decision Making; Terminating 
Treatment, Physician Perspective
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League tabLes for inCreMentaL 
Cost-effeCtiveness ratios

A cost-effectiveness league table is a listing of health 
interventions ranked by their incremental cost-ef-
fectiveness ratios (ICERs) presented in terms of cost 
per life years, or cost per quality-adjusted life years 
(QALYs) gained. A typical table (see Table 1) starts 
with the most favorable (lowest ICER) intervention 
and ends with the least favorable one (highest 
ICER). League tables are used to place findings of a 
cost-effectiveness analysis in a broader context and 
help determine whether a specific intervention pres-
ents “good value for the money.” They may be used 

for informing resource allocation decisions: Under 
a fixed budget constraint, healthcare resources are 
allocated starting with interventions with the low-
est ICER and moving to higher ICERs until the 
entire budget is consumed.

Cost-Effectiveness Analysis and Rationing

Cost-effectiveness analysis is a method of eco-
nomic evaluation in which costs and outcomes of 
a program and at least one alternative are com-
pared. The difference in cost (incremental cost) is 
divided by the difference in outcomes (incremental 
effect) to derive the incremental cost-effectiveness 
ratio. Although any natural unit of outcome can be 
used to determine a program’s effect, the common 
metrics used are life years or QALYs gained 
because they allow for comparisons across diverse 
treatments and diseases.

An analysis using cost per QALY as an outcome 
measure is sometimes referenced as a cost-utility 
analysis. This is the most widely used method for 
informing resource allocation decisions in health-
care. As opposed to benefit-cost analysis, cost- 
effectiveness studies do not present health outcomes 
in monetary terms, which would permit a straight-
forward comparison of costs and benefits to deter-
mine whether an intervention is worthwhile. As a 
result, the relative value for the money of an inter-
vention can only be interpreted by a reference to 
an external standard. This standard can be a 
benchmark or threshold value (e.g., $50,000 per 
QALY gained) below which an intervention can be 
considered to be “good value for the money” or a 
comparison of the relative cost-effectiveness of 
various interventions of which some may be 
already covered by health plans.

History of League Table Presentation

The presentation of league tables (so called after 
the tables used for British soccer league standings) 
and comparisons between healthcare interventions 
in terms of their relative cost-effectiveness became 
fashionable in the 1980s. Since a common metric 
is used (life years or QALYs), league tables can be 
useful for the comparison and ranking of diverse 
interventions to improve health, from public health 
or environmental programs to medical technology. 
One of the first league tables was presented by 
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John Graham and James Vaupel and included esti-
mates of cost per life saved and cost per life year 
saved. Allan Williams presented a league table for 

the United Kingdom in his seminal work on the 
economics of coronary artery bypass grafting 
(CABG). Other examples of comprehensive league 

Table 1  League tables for incremental cost-effectiveness ratios

 
Intervention and Comparator

Cost-Effectiveness 
Ratio (2002 Dollars)

Cochlear implant as compared with no implant in profoundly deaf children  
(average hearing loss > 90 dB for both ears)

Cost-saving 

Treatment with tinzaparin sodium as compared with unfractionated heparin in  
patients with deep vein thrombosis

Cost-saving

Long-term androgen-deprivation with radiation therapy (RT) as compared with  
short-term androgen-deprivation with RT in men with histologically confirmed 
adenocarcinoma of the prostate

$1,100/QALY

Interferon therapy as compared with no treatment in patients with chronic  
hepatitis B virus (HBV) infection, elevated aminotranferase levels, and no cirrhosis

$6,000/QALY

Warfarin therapy as compared with aspirin therapy in patients with chronic atrial 
defibrillation, varying risk of stroke, and no contraindications to anticoagulation  
therapy at age 70

$16,000/QALY

Linezolid therapy as compared with vancomycin therapy in patients with ventilator-
associated pneumonia

$30,000/QALY

Clopidogrel therapy as compared with aspirin therapy in patients with a prior  
stroke, requiring secondary prophylaxis of vascular events at age 63

$31,000/QALY

Treatment with drotrecogin alfa (activated protein C) with 96-hour intravenous 
infusion at 24 µg/kg/hr plus usual care as compared with placebo plus usual care  
in patients with severe sepsis in the intensive care unit

$51,000/QALY

Cardiac resynchronization therapy as compared with medical therapy in patients  
with reduced ventricular function and prolonged QRS

$110,000/QALY

Adolescent meningococcal vaccination (single dose) as compared with no  
vaccination in a hypothetical U.S. population cohort of children at age 11

$130,000/QALY

Left ventricular assist device, as compared with optimal medical management, in 
patients with heart failure who are not candidates for a heart transplant

$800,000/QALY

National minipool blood supply testing for West Nile virus over entire year as 
compared with national minipool blood supply testing for half of the year in 
transfusion recipients with and without underlying immunocompromise in patients 
aged 60 or older

Dominated

Surgery in 70-year-old men with a new diagnosis of prostate cancer as compared  
with watchful waiting

Dominated

Source: Tufts Medical Center Cost-Effectiveness Analysis Registry (https://research.tufts-nemc.org/cear/default.aspx).

Notes: The cost-effectiveness ratio is the incremental costs divided by the incremental benefits (QALYs gained). The cost-
effectiveness estimates listed are point estimates from the original articles. A more detailed description may be found at the Cost-
Effectiveness Registry (https://research.tufts-nemc.org/cear/default.aspx).



665League Tables for Incremental Cost-Effectiveness Ratios

tables can be found in the work of Tammy Tengs 
and colleagues, who presented in 1996 a list of 
more than 500 “life-saving” interventions and their 
relative cost-effectiveness and, more recently, in the 
data presented in the Tufts Medical Center Cost-
Effectiveness Analysis Registry, gathered through an 
extensive review of cost-effectiveness analyses pub-
lished since 1976.

Limitations of League Tables

League tables are useful for decision makers only 
if all competing interventions are listed and ranked 
in the table. This task, however, involves an enor-
mous analytical effort and is unlikely to be feasible. 
Another concern has been raised about the compa-
rability of the methodology used to determine the 
ICER in various studies.

Information presented in a league table may be 
helpful for decision makers only if they are confident 
that the methodology used in the source studies pre-
sented in the table is relatively homogeneous. The 
variability in the methods used for conducting cost-
effectiveness analyses has been well documented. 
Cost-effectiveness analyses may differ by the choice of 
the comparison interventions, the study perspective, 
the range of costs and consequences considered, the 
time horizon of the analysis, methods for estimating 
health preferences, the discount rate applied, and  
the clinical assumptions used. In addition, league tables 
usually present only a point estimate of the cost-effec-
tiveness ratio and do not include measures of uncer-
tainty and variability around that point estimate.

Standardization of Studies Presented  
in League Tables

In an effort to standardize the practice of cost- 
effectiveness analysis, the U.S. Panel on Cost-
Effectiveness in Health and Medicine recommended 
the reporting of a reference case ICER that can be 
compared with those of other interventions for the 
same or a different health condition. The reference 
case should adopt a societal perspective and com-
munity or patient preferences utility weights, and 
it should feature use of net costs, appropriate 
incremental comparisons, and discounting of costs 
and QALYs at the same rate. A league table that 
presents studies that follow the Panel recommen-
dations may enhance comparisons among studies.

Other scholars have proposed various ways to 
improve cost-effectiveness league tables and make 
them more relevant to decision makers. These sug-
gestions include, but are not limited to, presenta-
tion of an incremental analysis of the value of a 
new intervention over the best available practice 
for the disease considered, providing details on the 
comparator treatment used to calculate the ICER, 
and presentation of the confidence limits for the 
ICERs. It is critical, however, that league tables to 
be used by the relevant decision makers be kept 
simple and include only information relevant for 
the decision maker.

Dan Greenberg and Peter J. Neumann

See also Cost-Effectiveness Analysis; Cost-Utility 
Analysis; Quality-Adjusted Life Years (QALYs); 
Rationing; Reference Case
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Learning and MeMory 
in MediCaL training

The knowledge and skills an experienced physi-
cian has acquired over the years are very impres-
sive. It is often difficult to believe and even more 
difficult to understand how a student with very 
limited knowledge and skills develops into a com-
petent physician who is able to tackle most of  
her or his professional problems. To get a better 
understanding of how this is possible, one has to 
take a closer look at medical education.

Biomedical and Encapsulated Knowledge

During their first years in medical school, students 
acquire a large body of knowledge concerning the 
basic sciences. This type of knowledge, which will 
further be referred to as biomedical knowledge, 
entails subjects such as physiology, anatomy, micro-
biology, and pathology. Biomedical knowledge will 
develop into rich and elaborate causal networks 
that explain the causes and consequences of disease 
in terms of general underlying processes. Most 
medical curricula are divided into preclinical years, 
which mainly focus on biomedical knowledge, and 
a clinical program consisting of clinical courses 
and practicals. During the clinical years, students 
are often for the first time confronted with real 
patients, and they can witness the impact of a dis-
ease on a patient’s life. This clinical experience also 
provides students with the opportunity to establish 
links with their elaborate biomedical knowledge.

Encapsulated Knowledge

This integration of biomedical and clinical knowl-
edge is most clearly established by Schmidt and 
Boshuizen’s theory of knowledge encapsulation. It is 
assumed that through extensive and repeated appli-
cation of biomedical knowledge and through con-
frontation with clinical problems, the students’ 

elaborate biomedical networks of knowledge will 
eventually be subsumed under higher-level concepts 
with the same explanatory power. In other words, 
experienced physicians who are asked to explain the 
signs and symptoms of a patient will most likely use 
much more encapsulated concepts in their explana-
tions than a less-experienced medical student.

For instance, if a student is required to explain 
the shortness of breath of a patient with a heart 
condition, her or his response may look like this: “If 
the ability of the heart to pump the blood forward 
from the left side is diminished, the body does not 
receive enough oxygen. The pressure in the veins of 
the lung increases and may result in fluid accumula-
tion in the lung, leading to shortness of breath.” An 
experienced physician, on the other hand, will 
refrain from this detailed, causal explanation and 
may respond by saying that shortness of breath in 
this case results from left-sided heart failure. This 
does not imply, however, that the physician does 
not know the detailed explanation provided by the 
student—studies have shown that physicians can 
easily produce the student’s explanation if the task 
requires it—but it does imply that the concept of 
“left-sided heart failure” incorporates or encapsu-
lates the detailed, causal description.

Similar results were found in clinical case  
studies using free recall. In these studies, using the 
so-called clinical case paradigm, participants of 
different levels of expertise were required to study 
a clinical case description, provide a diagnosis, and 
write down everything they could remember from 
the case (in a free order). Each case reported some 
contextual information, the complaint, findings 
from history-taking and physical examination, 
relevant laboratory data, and some additional 
findings (e.g., X-rays, ECGs). What many of these 
studies have shown is that advanced medical stu-
dents not only remembered more from the case 
description than less-advanced students; they also 
remembered more from the case than experienced 
physicians. This phenomenon has been dubbed the 
intermediate effect. That is, the participants from 
an intermediate level of expertise remembered 
most details from the case. In line with the knowl-
edge encapsulation theory, physicians will refrain 
from a detailed recall of all the facts and findings 
in a clinical case. They will instead use higher-level 
concepts that incorporate or summarize much of 
the information provided in the case. For example, 
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consider the following fragment from a clinical 
case description:

A 45-year-old woman who has always had a fast 
heartbeat has been admitted to the hospital. 
Physical examination reveals an enlarged thyroid 
gland that is elastic on palpation. Her weight is 
50 kilos and she is 1.70 m tall.

Instead of reproducing the provided informa-
tion, which will be done by most (advanced) stu-
dents, an experienced physician will immediately 
recognize this pattern of signs and symptoms as 
belonging to a condition called hyperthyroidism. 
Generating many of these inferences during case 
processing and mainly reporting them during recall 
leads to a short but highly relevant account of a 
clinical case.

Research Findings

The idea that biomedical knowledge becomes encap-
sulated into clinical knowledge has led to several 
predictions, which have been confirmed by experi-
mental studies. These studies have shown that 
encapsulated knowledge is more readily accessed by 
physicians than biomedical knowledge; pathophysi-
ological explanations (i.e., explanations of the signs 
and symptoms in a clinical case) by experts contain 
less biomedical and more encapsulating concepts 
than those by students; and recall protocols of physi-
cians dealing with cases within their area of exper-
tise contain more encapsulations than those of 
physicians outside their expertise area. These find-
ings seem to suggest that the role of biomedical 
knowledge is rather limited as compared with 
encapsulated knowledge. Studies by Norman and 
colleagues at McMaster University, however, have 
shown that biomedical knowledge plays a crucial 
role in providing coherence between otherwise unre-
lated signs and symptoms. They have shown that 
students who were asked to study a list of features 
associated with a number of diseases performed less 
well on a recall task after a delay of 1 week than 
students who had to learn a causal relationship 
between these features. That is, causal relationships 
(i.e., biomedical knowledge) clarify coherence among 
symptoms in a way that simple association does not. 
Interestingly, these researchers also showed that  
students spontaneously developed encapsulated  

concepts, as evidenced by better performance on a 
recognition test presenting new concepts encapsulat-
ing the learned causal mechanisms. These findings 
also demonstrate that the process of knowledge 
encapsulation can start relatively early and will con-
tinue throughout the physician’s professional career.

Scripts

The development of encapsulated knowledge also 
triggers a second major shift in the student’s 
knowledge organization. As students during their 
later years of training encounter more and more 
patients, their encapsulated knowledge is restruc-
tured into a type of narrative that has been called 
a script. The development of scripts is not some-
thing that is unique to medicine; people develop 
scripts for many activities that are done on a regu-
lar basis and consist of more than one step. A clas-
sic example is the restaurant script. Most people 
are very familiar with the sequence of events that 
take place when they enter a restaurant. This 
sequence of events (waiting to be seated, getting 
the menu, ordering the food, etc.) is very similar 
for most restaurants, and our scripts help us to 
anticipate these events and to act accordingly. 
Similarly, a physician who has encountered a cer-
tain disease many times will develop a script, or 
better, an illness script, that enables him or her to 
deal with the problem more efficiently.

In medicine, illness scripts are cognitive struc-
tures that contain relatively little knowledge about 
pathophysiological causes and symptoms and com-
plaints (as a result of encapsulation), but a wealth 
of clinically relevant information about the  
so-called enabling conditions of disease (i.e., con-
textual information about the conditions that 
make the acquisition of a disease more likely, such 
as heredity factors). Advanced levels of expertise 
are characterized by elaborate knowledge about 
enabling conditions because it enables the physi-
cian to rule out many diseases and to focus on 
those diseases that are most likely. For example, if 
a woman enters the consulting room complaining 
about fever-like symptoms in the middle of a flu 
epidemic, the doctor will obviously think of flu. 
However, if the woman also tells the doctor that 
she has recently visited a malaria-infected region, 
then this “enabling condition” may lead to an 
alternative diagnostic hypothesis.
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Elaborate knowledge about enabling conditions 
helps physicians improve their diagnostic perfor-
mance. This point was elegantly demonstrated in the 
1980s by Schmidt and colleagues at Maastricht 
University in the Netherlands. They gave experienced 
and inexperienced general practitioners cases with 
enabling conditions and cases without enabling con-
ditions. Removing the enabling conditions had 
hardly any effect on the diagnostic performance of 
the inexperienced practitioners because they could 
not use this information anyway. The experienced 
practitioners, on the other hand, although their per-
formance was better than that of the inexperienced 
practitioners, showed a dramatic drop in accuracy: 
Their diagnostic performance was roughly half as 
good as when they had the enabling conditions. This 
and other studies on illness scripts indicate that 
elaborate knowledge about enabling conditions 
increases over the years and is essential for physicians 
to come up with the correct diagnostic alternative.

It is important to note that the acquisition of 
enabling conditions is to a large extent based on 
clinical experience, and formal education seems to 
play a minor role in this process. Furthermore, the 
successful application of illness scripts depends heav-
ily on the physician’s memory. That is, while solving 
a problem, physicians have to search for the most 
appropriate script in their long-term memory by 
matching it with the information about the patient. 
If this verification process is successful, a particular 
script becomes instantiated. However, an instanti-
ated script does not necessarily become decontextu-
alized after being used, but remains available in 
long-term memory and may be used if a similar 
problem occurs in the future. In other words, illness 
scripts exist at various levels of generality, ranging 
from representations of disease categories, to proto-
types, to representations of previously seen patients.

Medical Expertise Development

In an overview article on medical expertise develop-
ment, Schmidt and Rikers summarize the transitory 
states a medical student has to go through in order 
to become an experienced physician:

 1. Development of elaborate knowledge explaining 
the causes and consequences of disease using 
primarily biomedical concepts.

 2. Development of encapsulated knowledge. The 
detailed biomedical concepts become integrated 

with higher-order (clinical) concepts with the 
same explanatory powers.

 3. Development of illness scripts. The encounter 
with many different manifestations of a disease 
in patients will lead to a rich and elaborate 
illness script. In particular, the illness script 
stores the enabling conditions or contextual 
factors of disease, which play a crucial role in 
diagnostic performance.

 4. Development of interpreted instances of illness 
scripts as exemplars of the particular disease. 
These instances are available in long-term 
memory and may be used to diagnose a similar 
problem in the future.

Implications

Based on this overview on learning and memory, a 
number of implications for medical education can 
be identified. First, the development of encapsulated 
knowledge should be facilitated by modern curri-
cula through integrated teaching (i.e., the integra-
tion of biomedical and clinical science). Second, to 
promote knowledge encapsulation and the forma-
tion of illness scripts, students should work with 
patient problems early on in the curriculum. Finally, 
during clerkships and other postings, students 
should reflect on patient problems they have encoun-
tered, preferably with the help of an experienced 
coach and in small groups of peers. In this way, they 
will develop adequate knowledge structures that are 
essential to their becoming proficient physicians.

Remy Rikers, Sílvia Mamede, 
Elisabeth van Rijen, and Henk G. Schmidt

See also Automatic Thinking; Cognitive Psychology and 
Processes; Heuristics; Medical Errors and Errors in 
Healthcare Delivery
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Lens ModeL

The lens model is a general framework originated 
by Egon Brunswik (1903–1955) that describes  
the situation that people face when using multiple 
items of imperfect information, or cues, to make 
judgments about an uncertain environment. The 
cues mediate between the judgment and a distal 
variable, which is the observation or event that is 
the object of judgment. There are numerous rep-
resentations of the lens model in the literature, but 
all include seven elements: (1) a distal variable 
that is the focus of judgment; (2) a set of cues, or 
proximal variables; (3) a judgment about the dis-
tal variable, based on the cues; (4) imperfect rela-
tions, called cue validities, between the cues and 
the distal variable; (5) imperfect relations, called 
cue utilizations, between the cues and the judg-
ment; (6) interrelations among the cues; and (7) the 
relation between the cue and the judgment, called 
accuracy or achievement.

Description

Brunswik chose the analogy of the lens to describe 
how organisms perceive a distal object through the 
“lens” of the surface, or proximal, data that are 
available to the person making a judgment. Figure 
1 is a typical representation of the lens model. The 
left side of the lens is called the environmental side, 
and the right side is called the subject side. Each of 
the seven common elements of the lens model is 
described in turn.

Distal Variable

On the left side of the lens model is the distal 
variable (Ye), also called the criterion. It represents 
an event or observation that is the focus of judg-
ment, such as the presence of a disease, the severity 
of an illness, or the correct dosage of a drug. In 
medicine, this is often called the gold standard. It is 
“distal” relative to the person making a judgment 
because it is not directly available to him or her.

Cues

The cues (X) are the surface data that are avail-
able for making inferences about the distal vari-
able. The cues include, for example, the symptoms, 
features of images, or test results that are available 
to the person at the time the judgment is made. 
The cues are imperfect. They may be subject to 
measurement error, and they may lack some of the 
information needed to make an ideal judgment. 
This limitation is common in judgment situations 
that occur in medicine.

Judgment

On the right side of the lens model is the  
judgment (Ys), which is usually considered to be 
continuous. If the distal variable is continuous, 
then the judgment is measured in the same units as 
the distal variable. If the distal variable is binary or 
categorical, then the judgment is usually thought 
of as a probability. In either case, the judgment 
represents a person’s attempt, implicitly or explic-
itly, to assess or predict the value of the distal vari-
able, either in the present or at some future time. 
The judgment is assumed to be empirically verifi-
able, at least in principle. Judgment is necessary 
because the distal variable is not directly observ-
able, either because it is obscured or hidden in 
some way or because it occurs in the future. 
Judgments of preference or value, such as how 
pleasing a painting is, or the desirability of a des-
sert item, are not addressed by the lens model.

Medical judgments that have been studied using 
the lens model include severity of depression, 
severity of rheumatoid arthritis, diagnosis of pul-
monary embolism, treatment of upper respiratory 
tract infection, diagnosis of otitis media, physician 
practice patterns in hypertension, diagnosis of 
pneumonia, and mammography screening.
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Cue Validities

Lines from the cues to the distal variable repre-
sent the cue validities. These will differ among cues 
because some will be more strongly related to the 
distal variable than others. Furthermore, some 
cues may be linearly related to the distal variable, 
while others have a nonlinear relationship. 
Typically, the relationship between the cues and 
the distal variable is assumed to be additive, but 
this is not always the case. No single cue is per-
fectly valid, nor is the set of cues sufficient to make 
a perfect determination of the distal variable. The 
uncertain relation between the cues and the distal 
variable is called environmental uncertainty, and 
that uncertainty creates the need for judgment. 
Environmental uncertainty sets an upper limit on 
judgmental accuracy.

Cue Utilizations

Lines from the cues to the judgment represent 
cue utilization by the judge. Cues will differ in 
their relative importance to the judge, and judg-
ments are probabilistically related to the cues due 
to the inconsistency or unreliability of judgment. 
Furthermore, cue utilizations do not always match 
cue validities, resulting in judgments that are less 
accurate than they could be.

Cue Intercorrelations

The cues are not independent, but are generally 
correlated with one another. This is represented in 

the lens model by the lines connecting the cues. It 
results in causal ambiguity, that is, the effects of an 
individual cue cannot be determined because of 
covariance with other cues. But these correlations 
also create the opportunity for vicarious function-
ing, which Brunswik believed to be a central focus 
of psychology. Vicarious functioning means that 
when one or more cues are missing, the judge may 
be able to substitute other cues that are correlated 
with the missing ones.

Accuracy

The arc between the judgment and the distal 
variable represents accuracy or achievement. The 
goal of the person making judgments is to achieve 
the greatest level of empirical accuracy possible.

Concepts of Brunswik’s  
Probabilistic Functionalism

Brunswik emphasized that behavior is goal directed. 
Understanding a judgment requires understanding 
what the judge is trying to accomplish. In percep-
tion and judgment, accuracy is the goal. The lens 
model describes why judgments are not perfectly 
accurate.

Central to Brunswik’s theory are the ideas of 
symmetry and parallel concepts. The lens model is 
symmetric; for each concept on one side of the 
model there is a parallel concept on the other. Cue 
validities on the environmental side parallel the cue 
utilizations on the subject side. If cue utilizations 

Cue validities Cue utilization

Cues

Achievement (ra)

Judgment
(Ys)

Distal
variable

(Ye )

X

Figure 1  The lens model
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do not match cue validities, the judgment will  
be less accurate than it could be. The relations 
between the cues and the criterion on the environ-
mental side of the lens are probabilistic; that is, 
there is irreducible uncertainty in the environment 
that the judge must cope with. The parallel concept 
on the subject side of the lens model is inconsis-
tency or unreliability of judgment. In other words, 
the cues are not perfectly related to the judgment. 
Unreliability can be another source of error in 
judgment.

Brunswik also distinguished between surface 
and depth in the lens model. Surface variables 
are cues that are available to the judge. The 
judge must rely on surface variables to make 
inferences about depth variables—the observa-
tions or gold standard that are not available  
to the judge because they are inaccessible or  
will not occur until some future time. Relations 
between surface and depth variables are imper-
fect both on the left side of the lens (environmen-
tal uncertainty) and on the right side of the lens 
(judgmental consistency).

Finally, the idea of causal ambiguity is impor-
tant in Brunswik’s theory. The lines between the 
cues represent relations (correlations) among them. 
Correlations among cues make it difficult to attrib-
ute causality to individual cues. Causal ambiguity 
induces quasi-rational judgment, that is, judgment 
that involves elements of both intuitive and ana-
lytic processes.

Brunswik believed that the consequences of 
interrelations among cues (causal ambiguity and 
vicarious functioning) should be the central focus 
of psychology. This led to his emphasis on repre-
sentative design of experiments, rather than exper-
iments that manipulate only one variable or 
manipulate several variables in an orthogonal 
design. It is not possible to study causal ambiguity 
or vicarious functioning without using several 
interrelated cues.

The Lens Model Equation

The lens model suggests three factors that limit 
judgmental accuracy. One is the uncertainty in the 
environment that results because the cues are not 
perfect predictors of the distal event. Another is the 
imperfect relation between the cues and the judg-
ment; that is, judgments are not perfectly reliable. 

The third is that the judge may not use the cues in 
optimal fashion—the cue utilizations may not 
match the cue validities.

After Brunswik’s death, a mathematical expres-
sion of the lens model, called the lens model equa-
tion, was developed by Kenneth Hammond and his 
colleagues, and refined by Ledyard R Tucker. That 
equation is based on two multiple regression mod-
els. One model regresses the distal variable on the 
cues and another regresses the judgment on  
the same cues. The lens model equation shows 
that, with appropriate assumptions, achievement is 
approximated by the product of environmental 
uncertainty, judgmental consistency, and the match 
between cue validities and cue utilizations.

The lens model has been used as a framework 
for research on judgment within the tradition of 
researchers who are primarily interested in describ-
ing the empirical accuracy of judgment.

Thomas R. Stewart

See also Social Judgment Theory
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Life expeCtanCy

Life expectancy is considered to be the length of 
survival of a person or a patient. On one hand, this 
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length of survival can be calculated as life expec-
tancy at birth, which represents the number of years 
an infant is supposed to live throughout his or her 
life. This information is of importance for political, 
administrative, and insurance purposes but has less 
meaning in daily practice for a physician. On the 
other hand, life expectancy can also be calculated  
as life expectancy at any time point in the life of a 
person; this then represents the number of years a 
person is supposed to live throughout the rest of his 
or her life. A physician is especially interested in this 
latter life expectancy, as for medical decision mak-
ing it can be important to know, at a certain time 
point, how much longer a patient will have to live.

In the following, life expectancy in general, 
defined as life expectancy at birth and its changes 
over the decades, will be briefly discussed, as this 
information is relevant for present and future 
health systems as well as for prevalence and inci-
dence of certain diseases. This will be followed by 
a more specific discussion of life expectancy at a 
given time point in life and about tools that can be 
used to make predictions of life expectancy accu-
rate and reliable and therefore useful for medical 
decision making.

Life Expectancy in General

Life expectancies are assessed by considering the 
age-specific death rates of a population. These age-
specific death rates are calculated by dividing the 
number of deaths in a given age-group by the total 
population of that age-group. They are expressed 
as an average annual rate in a 100,000-person 
population. These values represent the base to 
develop life tables which then can be used to esti-
mate the probability of surviving from one age to 
the next. Based on that, the life expectancy at birth 
represents the average number of years infants are 
supposed to live if they were to experience the 
death rates present in the year of birth throughout 
their life. Moreover, life tables can be used to cal-
culate the number of remaining life years at a cer-
tain age, if one considers the age-specific death 
rates for each year a person will age in the future.

Improvements in sanitation, nutrition, and med-
ical knowledge have resulted in a constant increase 
of life expectancy during the past decades through-
out the world. The greatest improvements have 
been observed in the most developed parts, such as 

North America, Europe, and Japan. For example, 
life expectancy at birth in the United States in 1900 
was 47 years and reached 78 years in 2005. Life 
expectancy in India in the middle of the 20th cen-
tury was around 39 years and reached 64 years in 
2005. It is of note that the calculations of life tables 
do not consider any expected changes of life expec-
tancy in the future. This means that the calcula-
tions of life expectancy are rather hypothetical, as 
they effectively assume that current death rates are 
“frozen” and will not change in the future.

A major exception to the general improvement 
of life expectancy has been noted in countries with 
a high incidence of AIDS, as AIDS has become the 
leading cause of death in these regions. This is the 
case especially in sub-Saharan Africa, where a  
significant decrease in life expectancy has been 
observed. The overall life expectancy in sub-Saharan 
Africa has dropped sharply over the past 10 years, 
for females from 51.1 years to 46.3 years, and for 
males from 47.3 years to 44.8 years.

Apart from discrepancies in life expectancy 
between countries, there are also variations between 
certain groups within a country. For example, in 
most countries there is a significant difference in 
life expectancy between men and women, with 
women outliving men by several years. In 2004, 
life expectancy in the United States for females was 
80.4 years and for males 75.2 years. From 1900 to 
the late 1970s, the sex gap in life expectancy wid-
ened from 2.0 years to 7.8 years. Since its peak in 
the 1970s, the sex gap has been narrowing and 
was 5.2 years in 2004, with men’s life expectancy 
improving at a faster rate than that of women.

There are also significant differences in life 
expectancy between different racial and ethnic 
groups. For example, in 2004, the life expectancy 
in the United States for the African American 
population was 73.1 years. Life expectancy for the 
Caucasian population in the same year was 78.3 
years, which results in a difference in life expec-
tancy of 5.2 years. However, this difference has 
lessened in recent years. The widest Caucasian–
African American life-expectancy gap was observed 
in 1989 and was 7.1 years. Among the four major 
race-sex groups in 2004, Caucasian females con-
tinued to have the highest life expectancy at birth 
(80.8 years), followed by African American females 
(76.3 years), Caucasian males (75.7 years), and 
African American males (69.5 years).
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Poverty also has a substantial effect on life 
expectancy. In some countries, life expectancy is 
substantially longer in the wealthier areas com-
pared with the poorer areas. Despite improve-
ments in basic healthcare and improved access to 
medical care for the general population, the gap 
seems to be increasing as life expectancy continues 
to increase faster in wealthy communities relative 
to less prosperous communities.

Based on these facts, life expectancy figures are 
a useful statistical tool to summarize the current 
health status and development status of a popula-
tion, which makes them useful for political issues. 
The above numbers are also of relevance for insur-
ance and administrative purposes, since the aging 
population will be associated with an increase  
of incidence and prevalence of diseases observed 
especially in older patients. Such diseases could be 
malignant diseases or neurological diseases (e.g., 
Alzheimer’s disease). As a result, these diseases 
will have growing importance for physicians in 
the future and might change the “landscape” of 
medical specialties.

Life Expectancy and  
Medical Decision Making

A physician is especially interested in the life 
expectancy that can be calculated at any time point 
in the life of a patient and that represents the num-
ber of years this patient is supposed to live 
throughout the rest of his or her life. This informa-
tion is useful for several purposes.

First, when dealing with a patient in an advanced 
stage of an incurable disease, an estimation of life 
expectancy is necessary to judge if aggressive treat-
ment is still indicated or if only palliative measures 
are to be taken. Similar considerations are appli-
cable when dealing with an asymptomatic patient 
diagnosed with a slow progressing but potentially 
harmful disease, where a limited life expectancy 
would not allow for the disease to become symp-
tomatic and therefore aggressive treatment is not 
warranted. Many such treatments have significant 
side effects, which may only be considered accept-
able if a patient is likely to live long enough to 
experience any subsequent benefit.

Second, at diagnosis of a possibly incurable dis-
ease such as cancer, a patient would like to  
know if such disease might affect his or her life 

expectancy and, if yes, to what extent. This would 
allow the patient and his or her family to cope 
with impending death and make suitable plans for 
the remaining life span.

Third, predictions of life expectancy are relevant 
for the rational use of limited healthcare resources, 
since treating patients with expensive regimens 
without any benefit for the patient wastes valuable 
resources.

Most of the above considerations are of para-
mount importance in the treatment of prostate can-
cer. Prostate cancer is a very frequent disease, but the 
natural history of prostate cancer is rather favorable. 
Untreated prostate cancer patients often show clini-
cal progression-free survivals of 10 to 15 years. This 
survival strongly depends on the grade of prostate 
cancer, where low-grade cancers show favorable 
long-term outcomes and high-grade cancers lead to 
progression and death. It can be postulated that 
treatment of patients diagnosed with a slow pro-
gressing disease such as prostate cancer and with 
insufficient life expectancy to experience disease-
specific morbidity or mortality represents overtreat-
ment. This overtreatment may unnecessarily add to 
costs, complications, early and late onset morbidi-
ties, and treatment-related mortality. Thus, from 
societal as well as individual perspectives, individu-
als with suboptimal life expectancy should not be 
considered for certain aggressive therapy options but 
should be offered more conservative and less harm-
ful options or surveillance only. This consideration is 
particularly true for prostate cancer patients; how-
ever, it is also of relevance for the treatment of other 
diseases such as chronic organ failure (calling for 
transplantation), orthopedic problems, and so on.

The above considerations clearly indicate the 
importance of life expectancy–based treatment 
decision making and patient counseling. However, 
accurate prediction of life expectancy in patients 
represents a challenge. There are several possible 
bases for a physician’s predictions about the life 
expectancy of a patient: the physician’s clinical 
experience, life tables, comorbidity indices, and 
multivariable predictive tools.

Clinical Experience

To predict the life expectancy of an individual 
patient, a physician can rely on his or her per-
sonal knowledge and clinical experience. Several  



674 Life Expectancy

publications addressing the ability of physicians to  
predict life expectancy of patients suggest that phy-
sicians have only poor ability to do so. For exam-
ple, it has been shown that physicians overestimated 
the life expectancy of patients with metastatic can-
cers by nearly 100%. Another study showed that 
physicians were poor in predicting life expectancy 
in prostate cancer patients, where the survival 
beyond 10 years was under- or overestimated by 
75% and 50%, respectively. Moreover, the overall 
accuracy of life-expectancy predictions was only 
around .68, where an accuracy of 1.0 would have 
been a perfect prediction and an accuracy of .5 
would have been a prediction as good as a toss of 
a coin, which means pure chance. When estimating 
the life expectancy of an individual patient, a phy-
sician will most likely compare this patient’s case 
with similar cases the physician has dealt with in 
the past. Unfortunately, such estimates are often 
biased by many factors, for example, the fact that 
positive events are more easily remembered than 
negative events (recall bias), that physicians might 
remember a unique patient rather than their gen-
eral experience, or that they unconsciously want 
the predicted outcome to come true (control bias). 
To base medical decision making on such estimates 
is very likely associated with inappropriate deci-
sion making and may result in overtreatment as 
well as in undertreatment of individual patients.

Life Tables

Life tables represent the oldest and possibly 
most widely accessible tool for prediction of life 
expectancy. They may be used to calculate the aver-
age life expectancies of patients at selected ages. 
For example, based on the death rates observed in 
2004, a person aged 50 years could expect to live 
an average of 30.9 more years for a total of 80.9 
years. A person aged 65 years could expect to live 
an average of 18.7 more years for a total of 83.7 
years. Recent publications evaluating the accuracy 
of life tables to predict life expectancy in patients 
treated for prostate cancer showed that life tables 
had only limited ability to predict the true length of 
survival. The survival of prostate cancer patients 
was overestimated by life tables at 5, 10, and 15 
years after treatment by up to 50%, 36%, and 5%, 
respectively. The accuracy of the predictions was 
only between .60 and .65, which represents poor 

accuracy. There are several explanations for why 
these predictions are rather poor. As already men-
tioned above, the current death rates for life table 
calculations are frozen at the time of calculation, 
and no adjustment is done for life expectancy 
improvements in the future. This may result in 
departures from real survival. Moreover, life tables’ 
predictions may be undermined due to grouping of 
all kinds of patients according to age strata. 
Patients can be in good or in poor health status, 
which might be associated with survival above or 
below average, respectively. Life tables do not 
adjust for these individual characteristics, which 
limits their applicability in daily practice. Finally, 
life tables are devised to provide an average num-
ber of remaining life years in a general population, 
and they are not devised to provide these predic-
tions in one speci fic group of patients with one 
specific disease. Therefore, life tables represent an 
easily accessible tool for life-expectancy predic-
tions, but their value for medical decision making 
in an individual patient is limited.

Comorbidity Indices

Another tool to improve predictions of life 
expectancy in patients is the use of comorbidity 
indices. Comorbidities are defined as the coexis-
tence of two or more chronic conditions in a patient, 
and they are considered an important predictor of 
mortality. Comorbidity indices are devised to obtain 
a standardized categorization of comorbidities, 
which is then used to predict the risk of mortality in 
a population or in an individual patient. The 
Charlson Comorbidity Index is probably the most 
widely used comorbidity index. Further indices are 
the Chronic Disease Score, the Index of Coexisting 
Disease (ICED), the Cumulative Illness Rating 
Scale, the Kaplan-Feinstein Index, and the American 
Society of Anesthesiologists (ASA) physical status 
classification, to mention only a few. The most 
important feature of these comorbidity indices is 
their ability to predict overall survival independently 
of age. In other words, a certain comorbidity load 
may have a similar impact on survival in a young 
patient as it has in an older patient.

A limitation of comorbidity indices is the lack 
of proof that they are generalizable to all kinds of 
different populations. It is not certain that results 
achieved in a population used to develop a 
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comorbidity index and characterized by a certain 
disease can be extrapolated to another popula-
tion characterized by another disease. Caution is 
recommended when these indices are used in 
patient populations other than that of the devel-
opment population unless studies are available 
that confirm their reliability. In prostate cancer 
patients, most of the above-mentioned indices 
were evaluated and proved to be more or less 
similar in predicting the overall survival of 
patients. Their accuracy ranged from .61 to .68, 
which is equivalent to poor or moderate accuracy. 
This somewhat limited accuracy can be explained 
by the fact that comorbidities account signifi-
cantly for overall mortality, but the variable age 
cannot be omitted without losing accuracy. 
Therefore, comorbidity indices provide a stan-
dardized and objective assessment of the risk of 
mortality in a patient, but their use in isolation is 
insufficient to predict life expectancy in an indi-
vidual patient.

Multivariable Predictive Models

If the isolated use of a predictor is insufficient for 
medical decision making, the combined use of sev-
eral predictors often improves the accuracy of life-
expectancy predictions. Therefore, a further tool  
to improve predictions of life expectancy in an indi-
vidual patient is a multivariable predictive model 
combining several predictors such as age, comor-
bidities, risk factors, health-conscious behavior, 
and so on. Here again, many models are available 
in the medical literature, some predicting survival 
in healthy patients, others in patients with certain 
early-stage diseases or advanced-stage diseases.

Generally, these multivariable predictive mod-
els are developed in a large group of patients 
with sufficient follow-up and a sufficient number 
of cases relevant to the outcome of interest. They 
are the result of a thorough and objective statisti-
cal analysis and therefore the risk of biased pre-
dictions is lower. The modes of practical 
application of these tools are manifold and vary 
between look-up tables, nomograms, mathemati-
cal formulas, online versions, and so on. The 
multivariable approach of these models allows 
considering several variables in a standardized 
fashion and improves the prediction of life expec-
tancy. Again in prostate cancer patients, the 

accuracy of such models can vary from .69 to 
.84. This represents moderate to good accuracy 
in predicting the survival of patients. Compared 
with the other options for predicting life expec-
tancy, these multivariable models seem to be the 
most appropriate tool to be used in medical deci-
sion making. However, as with the comorbidity 
indices, most of them were devised in a popula-
tion with a certain disease characteristic, and 
generalizability is not assured unless studies pro-
vide this evidence.

Jochen Walz

See also Biases in Human Prediction; Decision Making in 
Advanced Disease; Disability-Adjusted Life Years 
(DALYs); Mortality
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LikeLihood ratio

Understanding the performance of diagnostic  
tests is fundamental to clinical decision making. 
The primary measures for assessing diagnostic test 
performance are sensitivity, specificity, positive 
and negative predictive value, and likelihood 
ratios. The likelihood ratio (LR) incorporates sen-
sitivity and specificity into a single parameter and 
allows one to determine how much a positive or 
negative test result changes the likelihood that a 
patient has the disease of interest. Specifically,

LR(+) = sensitivity/(1 − specificity)  
(or true positive rate/false positive rate);

LR(−) = (1 − sensitivity)/specificity  
(or false negative rate/true negative rate).

The likelihood ratio positive indicates how much 
more likely a positive test result will be seen in 
someone with disease, relative to someone without 
the disease of interest. As a rule of thumb, a likeli-
hood ratio positive above 10 provides strong evi-
dence to rule in a diagnosis in most circumstances. 
Similarly, the likelihood ratio negative indicates 
how much less likely a negative test result will be 
for someone with disease relative to someone with-
out the disease of interest. Generally speaking, a 
likelihood ratio negative below 0.1 provides strong 
evidence to rule out a diagnosis. Using the follow-
ing adaptation of Bayes’s theorem, one can calcu-
late the posttest probability of disease:

Posttest odds = Pretest odds × LR  
(pretest odds = p/(1 − p), where p = prior 

probability of disease);

Posttest probability = Posttest odds/ 
(Posttest odds + 1).

Examples

Example 1

Consider the impact of a testing for recurrent 
primary colorectal cancer with stool guaiac cards 
among asymptomatic subjects following a previ-
ous curative resection. The prior probability (p)  
of colorectal cancer in this population is approxi-
mately .04 (and pretest odds = p/(1 − p) = .04/.96 = 
.042). A set of six stool guaiac cards has a sensitiv-
ity of .25 and a specificity of .97 in detecting 
asymptomatic cancer (in subjects not on nonsteroi-
dal anti-inflammatory drugs).

For a positive test:

 LR(+) = sensitivity/(1 − specificity) 
 = .25/.03 = 8.3;

Posttest odds = Pretest odds × LR 
 = .042 × 8.3 = .35;

Posttest probability = .35/(1 + .35) = .26.

For a negative test:

LR(−) = (1 − sensitivity)/specificity 
 = .75/.97 = .77;

Posttest odds = Pretest odds × LR 
 = .042 × .77 = .032;

Posttest probability = .032/(1 + .032) = .03.

Thus, a positive guaiac series substantially increased 
the probability of recurrent cancer from 4% to 
26%, whereas a negative guaiac series only mod-
estly reduced the probability of recurrent cancer 
from 4% to 3%. The high false negative rate of the 
test (1 − sensitivity) accounts for its failure to sub-
stantially lower the probability of disease.
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In some cases, it is more useful to calculate like-
lihood ratios for multiple categories (rather than 
using a single cutpoint).

Example 2

A 9-month-old infant presents to the emergency 
department with fever and increased irritability. 
The white blood cell (WBC) count is markedly 
elevated (21,000). What is the possibility that this 
infant has bacterial meningitis or bacteremia? 
Table 1 shows the distribution of WBC results 
among 2,240 febrile infants (63 infants with  
confirmed bacterial meningitis or bacteremia and 
2,177 infants without either condition).

For each interval, the probabilities for results 
within that interval were used to calculate interval 
likelihood ratios (iLRs). Inspection of the iLRs 
reveals that infants with both high and low WBC 
counts have an increased likelihood of having bac-
terial meningitis or bacteremia; this information 
would have been lost had a single cutoff been 
selected. Based on the prior probability of bacterial 
meningitis or bacteremia in febrile infants at the 
institution where the study was conducted (3%, 
which is equal to a prior odds of .031), one can 

estimate the posttest probability of disease for the 
patient as follows:

Posttest odds = Prior odds × iLR (≥20,000) 
 = .031 × 3.4 = .105;

Posttest probability = .105/(.105 + 1) = .095.

Implications

Thus, likelihood ratios allow one to predict the 
risk of disease, given a particular test result, across 
varying prior probabilities of disease. Indeed, like-
lihood ratios tend to be more stable than sensitiv-
ity and specificity to changes in the prevalence of 
disease. Moreover, likelihood ratios allow one to 
revise disease probability for a sequence of diag-
nostic tests, that is, where the posttest odds for one 
test become the pretest odds for a second, indepen-
dent diagnostic test. There are a number of meth-
odological issues that may affect the accuracy of 
likelihood ratios for probability revision, however, 
including verification bias, ascertainment bias, 
incorporation bias, and spectrum bias. For exam-
ple, spectrum bias may increase the sensitivity of a 
diagnostic test (with generally little impact on 

Table 1  White blood cell count as a predictor of bacterial meningitis or bacteremia among febrile infants

WBC Count 
(per mm3)

Meningitis or Bacteremia

Likelihood RatioYes No

<5,000 5
8%

96
4% 2.0

5,000–9,999 18
29%

854
39% 0.7

10,000–14,999 8
12%

790
36% 0.3

15,000–19,999 17
27%

286
13% 2.1

≥20,000 15
24%

151
7% 3.4

Total 63
100%

2,177
100%

Note: Percentages add to 99% in the “No” column due to rounding.
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specificity) if the study sample is skewed toward 
patients with more serious illness; this bias would 
be expected to increase LR(+) for a given diagnos-
tic test. Much work remains to be done to compile 
likelihood ratios across diagnostic technologies in 
different populations (with differing spectra of ill-
ness) and to improve access to likelihood ratios 
and pretest probabilities of disease for clinical 
decision making.

David A. Katz

See also Diagnostic Tests; Positivity Criterion and Cutoff 
Values
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LogiC regression

Logic regression is an adaptive regression and 
classification tool to address problems arising 
when data of mostly binary covariates are ana-
lyzed and the interactions between these predic-
tors are of main interest to predict future outcomes 
or to identify variables that are associated with a 
particular outcome. Logic regression should not 

be confused with logistic regression: For logistic 
regression, the response is binary; for logic regres-
sion, the covariates are binary, but the response 
and the regression model can have any form. 
Binary covariates arise in many medical settings, 
such as the diagnosis of disease using phenotypic 
features, the identification of factors that contrib-
ute to emergency room crises, and the identifica-
tion of genotypes that are associated with a 
particular disease. Often, the interaction between 
those binary predictors is of particular interest. 
Given a set of binary covariates, logic regression 
creates new predictors by considering Boolean 
(“logic”) combinations of the binary covariates 
and has the capability to embed those into a 
regression framework. As an example, this allows 
for statements such as “the odds of suffering an 
adverse response in the emergency room are three 
times higher for subjects above 65 years of age 
who have high blood pressure or breathing prob-
lems.” The logic regression framework includes 
many forms of classification and regression (such 
as linear and logistic regression, the Cox propor-
tional hazards model, and more). In general, any 
type of model can be considered, as long as an 
objective (scoring) function can be defined. The 
model search is carried out using simulated anneal-
ing, a stochastic search algorithm commonly used 
in high-dimensional data problems. Model selec-
tion is performed via cross-validation or permuta-
tion tests, which implicitly address multiple 
comparisons problems. A Markov chain Monte 
Carlo–based extension of logic regression to create 
ensembles of plausible covariate combinations and 
measures of variance importance has also been 
implemented. The logic regression software is 
freely available as a contributed package to the 
statistical environment, R, and can be downloaded 
from the Comprehensive R Archive Network.

Description

In many medical and public health–related settings, 
a number of binary variables are collected, and the 
aim is the prediction of a particular response or the 
selection of covariates associated with the response. 
The former includes, for example, the task to pre-
dict which incoming patient should be admitted to 
critical care from a set of medical markers and 
records and the determination of what conditions 
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are responsible for emergency room crises. Genomic 
studies, in particular, single nucleotide polymor-
phism (SNP) association studies, are an instance of 
the latter. For example, researchers studied the rela-
tion between 88 SNPs and their association with 
restenosis development among 779 subjects, with 
the main question of interest being the search for a 
combination of SNPs that best explains the varia-
tion in the phenotype. In these settings, the interac-
tion of several of those binary variables often 
predicts the outcome or explains the relationship of 
relevant covariates to the outcome better than the 
individual covariates alone. Thus, from a statistical 
perspective, this represents a very challenging task, 
since in a typical setting the number of possible 
interactions between the predictors can be 
immense.

Logic regression is an adaptive regression and 
classification tool to address exactly these types of 
problems. Given a set of binary covariates, logic 
regression creates new predictors for the response 
by considering Boolean combinations of the binary 
covariates. One of its most appealing features is 
that the Boolean terms can be searched for using a 
regression framework, and valid statistical infer-
ences can be made. The resulting model incorpo-
rating these interactions typically is very easy to 
interpret. The logic regression approach and its 
usefulness can best be explained in the context of 
SNP association studies. Statistical approaches to 
evaluate higher-order interactions between SNPs, 
or between SNPs and environmental variables, are 
critical for analyzing complex diseases, as higher 
susceptibility is likely to be related to the interac-
tion of multiple SNPs and environmental factors. 
SNPs are typically recorded as a single binary vari-
able (wild-type vs. variant) or two dummy vari-
ables using dominant and recessive coding. For 
example, a very simple Boolean term for a model 
in the restenosis example is “nonwild-type SNP 
CBS and wild-type SNP TP53,” indicating that the 
combination of at least one variant allele in SNP 
CBS and no variants in SNP TP53 is associated 
with higher susceptibility to disease. The effect 
sizes seen in complex diseases are typically very 
small, and therefore the power to detect those 
small effect sizes can crucially depend on whether 
methods to simultaneously investigate SNPs and 
environmental variables are employed and on how 
the stochastic model is specified. Prediction of the 

outcome status in this context is often not of pri-
mary importance, and not bound for much suc-
cess, as the small effect sizes almost invariably 
result in poor sensitivity and specificity for any 
prediction method. That said, any method (includ-
ing prediction approaches) that generates some 
measure of variable importance can be used suc-
cessfully in this setting, when there is an emphasis 
on variable selection.

The framework of logic regression includes 
many forms of classification and regression (such as 
linear and logistic regression, the Cox proportional 
hazards model). In general, any type of model can 
be considered, as long as an objective function can 
be defined (such as likelihoods or partial likeli-
hoods, deviances, or residual sums of squares). The 
model search is carried out using a simulated 
annealing algorithm, and model selection is per-
formed via cross-validation and permutation tests, 
which implicitly address the multiple comparisons 
problems. The model search and model selection 
procedures result in a single model that specifies  
the relationship of the predictor variables with the 
response. However, there might be many plausible 
models. For example, if in the model described 
above SNP TP54 was in strong linkage disequilib-
rium (highly correlated) with SNP TP53, then the 
Boolean term “nonwild-type SNP CBS and wild-
type SNP TP54” could also be plausible. This issue 
is addressed in the Markov chain Monte Carlo–
based extension of logic regression, creating ensem-
bles of plausible covariate combinations and 
deriving measures that assess the importance of 
single covariates as well as higher-order terms.

Model Search and Model Selection

The search for good scoring models is carried out 
using a simulated annealing algorithm. This proba-
bilistic search strategy is based on a move set that 
allows for alterations of the Boolean terms in a 
model (such as adding a variable, deleting a vari-
able, or changing an and into an or). Two examples 
for the restenosis data are “nonwild-type SNP CBS 
or wild-type SNP TP53” and “nonwild-type SNP 
CBS and (wild-type SNP TP53 or variant SNP 
CBS).” The model with the new Boolean term 
replaces the current model in the search if it has a 
better score according to the objective function. 
Otherwise, it replaces the current model with a 
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probability less than 1. This probability depends on 
the difference between the scores of the competing 
models and an annealing parameter that governs 
the stage of the search procedure—the further the 
annealing has progressed, the less likely it is that the 
new model will be accepted if the score worsens. 
The obvious advantage of such a stochastic anneal-
ing approach compared with greedy search strate-
gies is the fact that local minima can be avoided (at 
the price of increased computing time).

Model selection has to be employed to avoid 
overfitting, and for this purpose a definition of 
model size is required. For a fixed number of 
Boolean terms in a logic model, the model size is 
defined as the combined total number of variables 
in all Boolean terms of the model (or equivalently, 
the total number of leaves in the tree representa-
tion of the Boolean term). Candidate models of 
various sizes are generated by prohibiting moves in 
the model search algorithm that result in models 
beyond the allowed complexity. Among the candi-
date models, either the model with the best predic-
tive performance is selected (using cross-validation, 
if prediction is of main interest) or, alternatively, 
the largest model that does not overfit the data (as 
assessed by permutation tests, if association is of 
main interest). The predictive performance can, of 
course, also be assessed using a training and test 
set approach when sufficient data are available.

Comparison With Other Approaches

There is a wealth of approaches for regression and 
classification problems in the machine learning, 
computer science, and statistics literature that can 
be used when most or all of the covariates are 
binary, and some of these approaches also involve 
modeling interactions between those predictors. 
Boolean functions of these binary covariates in par-
ticular have played a major role in the machine 
learning literature. Most of these methods, however, 
are intended for classification and prediction only 
and are not embedded in a regression framework. 
In particular, in contrast to logic regression, many of 
these approaches are only applicable for binary out-
comes. Noteworthy exceptions are, for example, 
MARS and CART (and derivations thereof, such as 
random forests and boosting), which work for con-
tinuous outcomes as well. Other approaches have 
been augmented to handle continuous outcomes by 

transforming the problem back into a classification 
setting (such as the extension SWAP1R of the origi-
nal SWAP1 algorithm, which learns regression rules 
in disjunctive normal form). Tree-based models that 
have linear equations instead of numeric values in 
the terminal nodes are known as treed models in  
the statistical literature; however, some similar 
approaches (either rule-based, such as R2, or tree-
based, such as M5) have also been proposed in the 
computer science literature.

An important aspect that differentiates logic 
regression from most other approaches is that 
higher-order interactions between binary variables 
can be detected and valid statistical inference 
about their association to a response variable can 
be made, using a regression framework. As previ-
ously described, this property is particularly useful 
in SNP association studies (the susceptibility for 
complex diseases is likely to be related to the inter-
action of multiple SNPs and environmental fac-
tors), where the sensitivity and specificity of 
prediction methods are very low but statistically 
significant associations (e.g., departures from ran-
domness) can often be detected. That said, many 
tools from the statistical learning literature, devel-
oped to deal with high-dimensional search spaces, 
have been adapted or extended and applied to 
multimarker SNP data (this includes, e.g., neural 
networks and random forests). And while these 
approaches do not generate interpretable genetic 
models and are usually only used for prediction 
purposes, they do allow for the generation of mea-
sures of variable importance, which can be very 
useful for variable selection in these association 
studies. Other methods to elucidate SNP-SNP and 
SNP-environment interactions directly have also 
been proposed, such as the multifactor dimension-
ality reduction (MDR) technique. The latter differs 
from logic regression in several ways. It aims at 
finding interactions that decrease the heterogeneity 
in the response among the subclasses it defines; 
however, it is not embedded in a regression setting. 
Moreover, another very important distinction that 
it shares with almost every other approach (for 
prediction and classification algorithms in general 
and methods for SNP association studies in par-
ticular) is the fact that it performs a greedy search. 
This has the advantage of fast computing times; 
however, it comes with the high risk of being 
trapped in local extrema.
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Software

The logic regression software is freely available as 
an R package from the Comprehensive R Archive 
Network, which also includes functions to carry 
out Monte Carlo logic regression and contains the 
logic regression manual. Further support (such as 
examples and help files) is available from the logic 
regression Web site. Note that the software requires 
complete records, and thus, other approaches 
such as imputations have to be employed first if 
data are missing and/or a complete case analysis is 
not desirable.

Ingo Ruczinski and Charles Kooperberg

See also Decision Trees, Advanced Techniques in 
Constructing; Logistic Regression; Prediction Rules 
and Modeling; Recursive Partitioning
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LogistiC regression

Often the aim of medical research projects is  
to study the relationship between an outcome 

variable on the one hand, say Y, and one or more 
other variables on the other hand, say X1, X2, . . . , 
Xp. For instance, Y = diastolic blood pressure, and 
X1 = age, X2 = gender, X3 = body weight, X4 = salt 
intake, and so on. In this context, the outcome 
variable Y is also called the dependent variable or 
the response variable. The Xs are also called inde-
pendent variables, explanatory variables, predic-
tor variables, or simply covariates. Based on a 
sample of subjects from the population of interest 
in which the dependent and independent variables 
are observed, the statistical relationship between 
the variables can be studied using a statistical 
regression model. The subjects might comprise a 
completely random sample from the population, 
or they might be selected on the Xs. For instance, 
the sample might be stratified on age and gender, 
but given the Xs the subjects are supposed to be 
randomly sampled. In general, a statistical regres-
sion model describes in mathematical terms the 
distribution of Y given the Xs. There are numer-
ous regression models available. Every regression 
model is meant for a specific type of outcome vari-
able. For instance, if Y has a normal distribution, 
the appropriate model is the linear regression 
model, which is the most well-known regression 
model. It assumes that the mean of Y is a linear 
combination of the Xs and unknown parameters, 
β0 + β1X1 + β2X2 + . . . + βpXp. This expression is 
called the linear predictor and is an ingredient of 
almost all regression models. Very often in medi-
cal research the outcome variable is dichotomous, 
say Y = 1 if some event of interest has occurred, 
and Y = 0 if the event did not occur. For instance, 
in epidemiology, the outcome event mostly is the 
occurrence of a certain disease. In clinical research, 
many clinical trials have a dichotomous endpoint, 
for instance, the patient is cured or not, the patient 
survives or not, an adverse drug reaction occurs or 
not, and so on. The logistic regression model is the 
most well-known regression model for dichoto-
mous outcome. Although there are several other 
regression models available for dichotomous out-
come, in medical research it is by far the most-
used model.

The Model

Let π = P(Y = 1) denote the probability that the 
event occurs for a subject. This probability might 
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depend on the values of the predictor variable of 
the subject; thus, π(x) = P(Y = 1|x), where x stands 
for the values of all the predictor variables of  
a subject. The most straightforward regression 
model, analogous to the linear regression model, 
would be π = β0 + β1x1 + . . . + βpxp. Using standard 
likelihood methods, the parameters could be esti-
mated, confidence intervals constructed, and null 
hypotheses tested. Though the βs have a clear 
interpretation as risk differences and the model 
might describe the data well in many instances, it 
is hardly used in practice. The disadvantage of this 
model is that the linear predictor on the right-hand 
side of the equation is not necessarily restricted to 
a number between 0 and 1 but might be any num-
ber between −∞ and +∞. Therefore, it might hap-
pen that the model predicts probabilities smaller 
than 0 or greater than 1. A way to get around this 
is to transform π through a monotone function g 
that maps the interval (0, 1) into (−∞, +∞), leading 
to models of the form g(π) = β0 + β1x1 + . . . + βpxp. 
The transformation g is called the link function. It 
links probabilities to values of the linear predictor. 
Alternatively, the model is written as π = f(β0 + β1x1 
+ . . .  +  βpxp), with f the inverse of g, called the 
inverse link function. Numerous choices for g or  
f are possible, each leading to another regression 
model for dichotomous outcome. Well-known 
choices for the link function are the g(π) = 
ln(−ln(π)), leading to a model known as the com-
plementary log-log model, and the inverse cumula-
tive standard normal distribution function leading 
to what is called the probit model. The latter 
model is very popular in economics and social sci-
ences. However, in medical research by far the 
most popular choice is the logit (or log-odds) link 
function, g(π) = ln(π/(1 − π)). This leads to the 
logistic regression model:

ln
p

1− p

 
= b0 + b1x1 + . . . +bpxp:

Alternatively the model is written as

Since the inverse link function f(z) = exp(z)/ 
(1 + exp(z)) is the cumulative distribution function 
of a logistic distribution, the model is called the 
logistic regression model.

Interpretation of the Parameters

Dichotomous Predictor Variable

Let X1 be a dichotomous predictor variable, for 
instance, X1 = 1 for women and X1 = 0 for men. 
According to the model, the predicted odds are

                                                     

p
1− p

= expðb0 + b2x2 + . . . + bpxpÞ for a man:  

Thus, if a woman and a man have the same values 
on the other predictors X2, . . . , Xp, the odds ratio 
of a woman relative to a man is

ORX
1
 = 1 VERSUS X

1 
= 0 = exp(β1).

Apparently, for a dichotomous predictor vari-
able X taking values 0 and 1, the corresponding β 
is interpreted as the log-odds ratio comparing cat-
egory X = 1 with category X = 0, keeping the val-
ues of the other predictor variables fixed. Since the 
other predictor variables are kept equal in the 
comparison of X = 1 to X = 0, the (log) odds ratio 
is said to be “adjusted” or “corrected” for the 
other predictor variables.

Polytomous Predictor Variable

Suppose X is a categorical predictor variable 
with three or more categories. For instance, X is 
the race of a subject labeled as X = 1 for white,  
X = 2 for black, and X = 3 otherwise. There are 
many possibilities to represent a categorical vari-
able in a regression model. The most popular way 
is through what are called dummy variables. For 
example, two dummy variables are defined as

X1 = 1 if race is black, and X1 = 0 otherwise;

X2 = 1 if race is other, and X2 = 0 otherwise

and put into the model. There may be other  
predictor variables X3, . . . , Xp in the model as  
well. The two dummy variables here correspond to 
the categories black and other, but this choice is 
arbitrary. The predicted odds for the different 
races are

p=
expðb0 + b1x1 + . . . +bpxpÞ

1+ expðb0 + b1x1 + . . . + bpxpÞ
:

p
1− p

= expðb0 + b1 + b2x2 + . . . +bpxpÞ for a woman;
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p
1− p

= expðb0 +b3x3 + . . . + bpxpÞ for white race;

 
p

1− p
= exp b0 + b1 + b3x3 + . . . + bpxp

 
for black race;

 

p
1−p

= exp b0 +b2 + b3x3 + . . . + bpxp

 
for other race:  

Thus, comparing black with white subjects 
who have the same values on all other predictor 
variables gives an odds ratio exp(β1) or a log-
odds ratio β1. Comparing a subject with other 
race to white subjects keeping the other predic-
tor variables fixed leads to an odds ratio exp(β2) 
or a log-odds ratio β2. Note that the category for 
which no dummy variable is made automatically 
serves as the reference category. The choice of 
the reference category is arbitrary. In general, if 
a categorical predictor variable has k categories, 
first one of them is chosen to be the reference. 
For the other categories a dummy variable is 
made. The β of a dummy variable is then inter-
preted as the log-odds ratio comparing the cor-
responding category with the reference category, 
adjusted for the other independent variables in 
the model. The above way of defining the 
dummy variables is only one way of representing 
a categorical predictor in a regression model, 
albeit the most popular one. Other definitions 
lead to other interpretations of the correspond-
ing βs. Many logistic regression computer pro-
grams automatically set up dummy variables for 
categorical predictors. It is then essential that 
the user know exactly how these are defined, 
since otherwise the corresponding βs cannot be 
interpreted.

Continuous Predictor Variable

Consider a continuous predictor variable, say 
X1 = age. Then, following the same reasoning as 
for a dichotomous predictor, it can be seen that 
the corresponding β can be interpreted as the 
odds ratio of a subject with arbitrary age as com-
pared with a subject who is one year younger, 
adjusted for all other predictors in the model. In 
general, for a continuous predictor X, exp(β) is 
interpreted as the factor by which the odds are 

multiplied if X increases with one unit, or β is 
interpreted as the increase in log odds of the 
event per unit increase of the continuous predic-
tor variable.

Fitting the Model

The parameters and corresponding standard errors 
are estimated following the standard maximum 
likelihood method. Only in very simple cases is it 
feasible to do the calculations without using a 
computer. Confidence intervals can be calculated 
and hypothesis tests can be carried out by one of 
the three methods that are available within the 
likelihood theory: Wald’s method, the likelihood 
ratio method, or the score method. Statistical soft-
ware packages always provide the results from the 
method of Wald. Some packages give in addition 
the results of the score and/or likelihood ratio test 
as well.

Example

In a study on complications of bone marrow trans-
plantation, interest was in predicting factors for 
the occurrence of acute graft-versus-host disease 
(AGVHD). A study group of 166 bone marrow 
transplantation patients was available in which the 
occurrence of AGVHD was observed together 
with a large number of potential prognostic vari-
ables. One of the models that were fitted predicted 
AGVHD on the basis of the following three predic-
tor variables:

AGEDON (age of the donor [years])

MATCH (= 1 if sexes of donor and recipient 
match, = 0 if they do not match)

DIAG (underlying diagnosis: A = severe aplastic 
anemia, B = acute nonlymphoblastic leukemia,  
C = acute lymphoblastic leukemia)

The diagnosis is a categorical predictor that was 
represented in the model by two dummy variables 
indicating diagnosis A (DIAG_A) and B (DIAG_B), 
while C was serving as reference category. The 
results are given in the following table.
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The second column, with heading b, gives the 
estimates of the regression coefficients β. The 
CONSTANT is the estimate of β0. For instance, 
the regression coefficient b = –0.723 corre-
sponding to MATCH is the log-odds ratio of sex 
being matched relative to sex not being matched. 
The corresponding odds ratio is exp(–0.723) = 
0.485 and is given in the fifth column. It means 
that if sex of donor and patient are matched, the 
odds of AGVHD are about half of the odds of a 
patient with unmatched sex, adjusted for the 
age of the donor and for the underlying diagno-
sis. Or, in other words, if the sexes are not 
matched, the odds of AGVHD are 1/0.485 ≈ 2 
times higher than if they are matched. The 
approximate 95% confidence interval according 
to the method of Wald is given in the last two 
columns. The true odds ratio of sexes being 
matched versus unmatched is with 95% confi-
dence between 0.239 and 0.984. The (Wald)  
p value for the null hypothesis H0: βMATCH = 0 is 
given in Column 4. Thus, the odds ratio of 
MATCH is just statistically significantly smaller 
than 1 at the .05 significance level. The dummy 
variable DIAG_A compares diagnosis A with C. 
The odds ratio 8.794 means that the odds of 
AGVHD of patients with diagnosis A are almost 
9 times higher than for patients with diagnosis 
C. The coefficient of AGEDON means that 
the log-odds of AGVHD increases by 0.036 for 
each year that the donor is older, when the val-
ues of the other predictors are kept fixed. In 
other words, the odds of AGVHD increase by a 
factor exp(0.036) = 1.007 (Column 5) per year 
increase of age of the donor. The results of 
the model also can be used to predict the prob-
ability of a future patient getting AGVHD, 

depending on his or her values on the predictor 
variables. For instance, for a patient with diag-
nosis A who is going to have a 37-year-old 
donor of the same sex, the predicted probability 
of AGVHD is

expð−2:153+ 2:174× 1+ 0:816
×0+ 0:036×37− 0:723× 1Þ

1+ expð−2:153+ 2:174× 1+ 0:816
×0+ 0:036×37− 0:723× 1Þ

= :652:

Remarks

Case-Control Studies

A remarkable property of the logistic model is 
that it can be used to model the probability of 
being a case, while the βs have the same interpre-
tation as for cohort study data (except for β0, 
which has a different interpretation). Often, in 
particular in case-control study settings, events or 
cases are rare. Then it is allowed to interpret odds 
ratios as risk ratios or relative risks.

Exact Logistic Regression

The usual way of fitting logistic models is by 
likelihood methods, which are approximate 
methods. This puts restrictions on the number of 
β parameters that are allowed. An often-used 
rule of thumb is that the number of βs should not 
be larger than the square root of the number of 
observed events or number of events divided by 
10. Otherwise, exact logistic regression should be 
used. Exact logistic regression is computationally 
extensive and software for it is scarce.

 
Predictor Variable

 
b

 
SE

 
p Value

 
exp(b)

95% CI for exp(b)

Lower Upper

DIAG_A  2.174 .662 .001   8.794 2.401  32.194

DIAG_B  0.816 .556 .142 2.261 0.761   6.723

AGEDON  0.036 .015 .016 1.037 1.007   1.068

MATCH –0.723 .361 .045 0.485 0.239   0.984

CONSTANT –2.153 .582 .000 0.116
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Conditional Logistic Regression

This is a modification of ordinary logistic 
regression, useful for stratified data with many 
strata, such as in matched case-control studies.

Theo Stijnen

See also Cox Proportional Hazards Regression; Logic 
Regression; Ordinary Least Squares Regression

Further Readings

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic 
regression (2nd ed.). New York: Wiley.

Log-rank test

The log-rank test is a statistical test used to com-
pare two or more groups of subjects with respect 
to the corresponding durations of time to the 
occurrence of a specific event. The log-rank test is 
frequently used in medical research to compare 
the survival times between patients with the same 
condition or disease who can be grouped by treat-
ment, age, sex, or some other factors such as  
specific disease characteristics. Similar to other 
statistical tests, the log-rank test result is reported 
as a p value between 0 and 1. A smaller p value 
indicates stronger evidence for the differences 
between the tested groups. A commonly used con-
vention is to interpret a p value of .05 or less as 
evidence of statistically significant differences.

Background

Statistical tests do comparisons between different 
populations by determining how likely the observed 
differences in the data collected from those popu-
lations are due to chance only, under the assump-
tion that those populations are the same with 
respect to the quantity under comparison (the null 
hypothesis). A p value of .05 means that, under the 
null hypothesis, the chance of observing such a dif-
ference in the collected data is 5%. The power of 
a statistical test is the chance of it correctly reject-
ing the null hypothesis under a specified difference 
between the populations under testing. For any 

well-designed statistical test, a larger sample size 
results in greater power.

Some statistical tests assume that the distribution 
of the quantity of interest has a certain mathemati-
cal format. For survival times, this can be Weibull, 
log-normal, gamma, or others. Such tests are called 
parametric tests. Other statistical tests do not make 
such distribution assumptions. These tests are called 
nonparametric tests. A common way to conduct a 
nonparametric test is to combine and then rank the 
data from the populations under study. The test 
statistic then depends only on the ranks of the data, 
not on the exact value of the data. Such tests are 
called rank tests. The log-rank test is a rank test. It 
does not require specification of the underlying sur-
vival time distribution. Nonparametric tests are 
thought to be more robust because they are not 
subject to bias arising from misspecification of the 
parametric distributions. Parametric tests, on the 
other hand, can be more powerful.

A survival function specifies the probability that 
the survival time is greater than a given number. 
The most common way of estimating a survival 
function is the Kaplan-Meier method. And the 
most common way to compare different estimated 
survival functions is the log-rank test.

History

The log-rank test was first derived by Nethan 
Mantel in 1966. The name log-rank was first used 
by Richard Peto and Julian Peto in 1972. They 
showed the optimality of the test under certain con-
ditions. The “log” in the test name comes from the 
fact that, at a given time point, the factor used in the 
test, “the number of failures divided by the number 
of subjects at risk,” is an estimate for the change of 
the logarithm of the survival function at that time 
point. Stringent justification of the properties of the 
log-rank test needs modern mathematical theory.

Failure and Censoring

The branch of statistical methods dealing with 
time-to-event data is called survival analysis. The 
event of interest can be death, disease onset, dis-
ease recurrence, or some other well-defined end 
point. It is usually called “failure.” However, the 
“failure” can be a positive event in some applica-
tions, such as the end of unemployment in eco-
nomics studies.
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A unique feature of time-to-event data is that 
they are subject to censoring. When the event of 
interest does not happen to a subject during the 
study period, the time-to-event for that subject is 
censored. This does not mean that the subject’s 
participation in the study does not provide any use-
ful information. It still provides the information 
that the time-to-event of this subject is longer than 
the censoring time. The presence of censored time-
to-event data precludes the use of other commonly 
used statistical tests, such as the t test. Simply ignor-
ing censored data can result in biased test results. 
For example, when the follow-up times are the 
same for all subjects, the data from subjects with a 
longer time-to-event are more likely to be censored. 
The log-rank test is used to solve this problem.

Underlying Assumptions

An important implicit assumption for the log-rank 
test is independent censoring. This requires that, at 
any given time point, subjects cannot be censored 
because they appear to have a higher or lower fail-
ure risk.

While a small p value indicates differences 
between the groups being tested, a large p value 
does not necessarily mean that no differences exist. 
In some scenarios, the groups being tested have 
differences in their failure risks, but the log-rank 
test cannot detect those differences. For example, 
suppose that, as compared with Group B, subjects 
in Group A have a higher failure risk early on but 
a lower risk at later stages. In such a case, the log-
rank test may fail to give evidence for the differ-
ences between these two groups. When the failure 
risks over time for one group are proportional to 
those for the other, the log-rank test is the most 
powerful test to detect such a difference. The log-
rank test places a uniform weight on the between-
group differences in the early and late stages and 
sums them up. The Wilcoxon test places higher 
weights on early differences. Thomas Fleming and 
David Harrington and others proposed alternative 
tests that place more weight on the differences 
occurring in the middle or late stages.

When to Use a Log-Rank Test

Different statistical tests should be used for differ-
ent types of data. When the data are continuous 

and roughly normally distributed, the t test can be 
used. For count data in contingency tables, when 
the counts are not too small, the chi-square test can 
be used. If some of the counts in a contingency table 
are too small (< 5), then the Fisher’s exact test can 
be used. When the data are about time durations to 
the occurrence of an event, the log-rank test can be 
used. To simultaneously estimate the effects of mul-
tiple factors on the time-to-event, the Cox propor-
tional hazards model can be used. The testing 
results from a Cox model with only group indica-
tors as independent variables (or predictors) are the 
same as those resulting from a log-rank test.

Procedures

To prepare data for a log-rank test, first, a mean-
ingful and well-defined time origin (or baseline 
time) is chosen. For example, in medical research, 
the time origin is usually the date of diagnosis or 
the date treatment begins. Then two variables are 
used to record the data. One is a time variable that 
measures for each subject in the study the duration 
from the time origin to the failure event or the end 
of follow-up, whichever happens first. The other is 
an indicator variable, which shows whether the 
time variable for each subject represents failure or 
censoring.

The procedures of the log-rank test are as fol-
lows. First, the data set is sorted according to the 
time variables in ascending order. All the subse-
quent time orders will refer to this sorted order (as 
opposed to chronological order by calendar time). 
At any time point, all the subjects who still remain 
in the study (have not failed or been censored yet) 
are called at risk (of failure). Consider a simple 
case of comparison between two groups. Suppose 
the two groups have the same distribution of time 
to failure (the null hypothesis). Then at any time 
point, all the subjects who are still at risk have  
the same chance to fail. Thus, conditional on the 
observed total number of failures from both 
groups at a given time point, the expected number 
of failures in any group should be proportional to 
the number of at-risk subjects in that group, while 
the sum of the expected numbers of failures in the 
two groups should be the observed total number of 
failures at that time point. Choosing one of the 
two groups, the difference between its observed 
and expected numbers of failures at a time point is 
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calculated. The variance of this difference is esti-
mated. The log-rank statistic is the quotient of the 
square of the sum of the above differences at all 
failure time points (from the two groups com-
bined), divided by the sum of the estimated vari-
ance at all failure time points. Mathematically, 
choosing the other group in the above calculation 
will give the same result. Under the null hypothe-
sis, the differences between the observed and 
expected number of failures should be small. A 
large sum of such differences indicates deviation 
from the null hypothesis. Consequently, a large 
log-rank statistic is evidence for differences between 
the two groups. Then the question is how large is 
“large.” A distribution table answers this question 
by matching each value of a statistic to a p value 
that describes its ranking position among all pos-
sible values of the statistic. Note that here the tail 
probability of a distribution is used. This means 
that a large statistic corresponds to a small p value. 
When the sample size is large, the log-rank statistic 
has a chi-square distribution. This distribution is 
independent of the sample size, as long as it is suf-
ficiently large. A conservative rule is that, if the 
number of observed failure times in each group is 
greater than or equal to 30, then the sample size  
is sufficiently large. If this sample size condition is 
met, then the corresponding p value can be 
obtained from the chi-square distribution table.

When there are more than two groups under 
testing, the procedure is similar, except that a 
variance-covariance matrix is needed to account 
for the correlation between groups. The log-rank 
statistic has a chi-square distribution with its 
degrees of freedom equaling the number of groups 
minus 1. The chi-square distributions of different 
degrees of freedom are also tabulated. When mak-
ing comparisons between multiple groups, a large 
p value indicates no differences between any two 
of the groups, and a small p value indicates that at 
least two groups under testing are different. Note 
that a small p value does not mean that all the 
groups are different from each other.

Statisticians use the term random variable to 
describe an unknown quantity that has a chance to 
be each of many values. For example, the survival 
time of each of the patients in a study is a random 
variable since it is unknown at the beginning of the 
study. The underlying theory for the log-rank test 
is the central limit theorem. The basic version of 

this theorem states that the mean of many indepen-
dent and identically distributed random variables 
has a normal distribution, regardless of the distri-
bution of those random variables. In the log-rank 
statistic, those terms of the differences between 
observed and expected numbers of failures are also 
random variables. The log-rank statistic is in the 
form of a weighted average over these random 
variables, which are from the same distribution 
family, but not independent and identically distrib-
uted. The central limit theorem can be applied to 
the log-rank statistic after some manipulations via 
mathematical techniques and theories. The square 
of a random variable with a standard normal dis-
tribution has a chi-square distribution (with 1 
degree of freedom). The sum of the squares of k 
independent random variables with a standard 
normal distribution is a chi-square distribution 
with k degrees of freedom, where k is a positive 
integer. That is how the distributions of log-rank 
tests are derived.

Software Programs

Most statistical software programs can be used  
to conduct log-rank tests. Examples include SAS, 
S-PLUS, R, BMDP, SPSS, and Stata.

Xuelin Huang

See also Cox Proportional Hazards Regression; Sample 
Size and Power; Statistical Testing: Overview; Survival 
Analysis
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Loss aversion

See Risk Aversion

Lottery

In today’s general parlance, the term lottery is used 
to refer to a type of gambling where there is a small 
(even infinitesimally small) chance for a gain and a 
large (even exponentially large) chance for an indi-
vidual losing. In economic parlance, a lottery is  
a situation that involves an uncertain payoff. 
Consideration of lotteries by economists has gener-
ated many questions related to decision-making 
behavior in humans. This entry discusses the rela-
tionship of lotteries and auctions to human decision 
making, particularly medical decision making.

Decision-Making Behavior

The purchase of lottery tickets has been used in 
decision theory to illustrate the example of indi-
viduals with risk-seeking tendencies or attitudes  
in economic models of decision making. This is 
because a risk-seeking individual may be willing to 
purchase a lottery ticket even though the cost of 
that ticket is much more than the expected value of 
winning the lottery on the basis of that ticket.

In 1948, Milton Friedman and L. J. Savage 
asked a key question about lotteries: Why do peo-
ple buy both lottery tickets and insurance against 
losses? That would seem to make them both risk 
seeking (lottery) and risk-averse (insurance against 
losses) at the same time. The proffered answer for 
Friedman and Savage was that part of the individ-
ual’s utility function is concave and part is convex. 
Over one part of the function’s range, some 
humans wish to play it safe, but over another part 
of the range of the function, these same humans 
are willing to take gambles. A simple model of 
decision making can be constructed using simple 
lotteries and giving the decision maker the flexibil-
ity to choose among two actions: play or not.

Yet, the term lottery is also used in a much more 
general sense in the history of economic thought  
in expected utility. In this more general sense in 
expected utility theory, risky alternatives are mod-
eled in terms of “prospects.” Here, the term prospect 

has been used interchangeably with lottery. And 
here, one could have the phrase the attempt to model 
risky alternatives as “prospects” or “lotteries.”

John Nash, the Nobel Prize–winning game theo-
rist, developed the notion of the Nash equilibrium 
for strategic noncooperative games in a setting that 
is often described in the economic decision-making 
literature as “choices over lotteries.”

Auctions

An auction is a sale of an item based on bids. 
Auctions may be low-bid auctions (where an indi-
vidual—the auctioneer—asks for a first bid, which 
may be the predetermined minimum price accept-
able to the individual owner of the item put up for 
sale). Bidding in a low-bid auction starts low, and as 
the auctioneer raises the size of the bid and the auc-
tioneer’s suggested higher price is matched by bid-
ders, the process continues until a highest bid is 
achieved and a winner identified. A high-bid auction 
starts off with the auctioneer starting the auction 
with a high asking price, which is then lowered until 
some bidder is willing to accept the auctioneer’s price 
(or a predetermined minimum price is reached).

Auctions are not lotteries. Auctions and lotteries 
differ in their consequences and the relationships 
between the individual or group that places the 
item as the prize for the auction or the lottery and 
the bidders for that prize. In many circumstances, 
the individual or group putting up the prize for an 
auction will tend to receive more money for their 
prize in an auction than in a lottery. In addition, 
auctions can be “less fair” than lotteries because 
individuals or groups with the deepest pockets (the 
most wealth) can take over the bidding in any auc-
tion until other restrictions of the auctions are put 
into place that may increase the fairness of the  
auction. In addition, in any auction, it must be 
recognized that—unless restrictions are put into 
place—the more-moneyed bidders can also engage 
in behaviors with other bidders at the auction to 
shape the outcome of the auction (collusion).

Open Auctions

Most people are familiar with open auctions 
where all bidders are present in the audience and 
when a bid is placed an individual can look over 
and identify the bidder who has just made the 
previous bid before the placement of his or her 
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next bid. This type of auction allows collusion of 
sorts by allowing individuals to meet before the 
auction and plan how to bid on certain items for 
their own advantage over other bidders present in 
the same open room. An individual may bid for 
himself or herself, or the individual may represent 
another individual (or group) who is not in the 
room at the time of the bidding but may be in 
communication with the representative telephoni-
cally or electronically. Although attempts to mini-
mize or restrict collusion may be in place, collusion 
is not ruled out in an open auction. One way to 
minimize collusion once an auction has started is 
to do away with the open auction entirely and to 
hold a closed auction.

Closed Auctions

A closed auction is an auction where no bidder 
is able to see another bidder’s bid on a prize at any 
point in time from the start of the auction to the 
end of the auction. Given the fact that no bidder 
sees another bidder’s bid, the bidding must take 
place “sequentially,” where all bids are made and 
turned in so that no bidder sees what another  
bidder has bid. What is disclosed to all bidders 
through an announcement before the start of the 
next round of bidding is the highest bid that has 
been made up to that point in time. This is called 
closed auction sequential bidding, and the sequence 
continues through round after round of bidding, 
opening of bids, announcement of the highest bid 
after each round of bidding, and then continuing 
on through another round of bidding until the 
highest bid is reached. To carry out closed auction 
sequential bidding, all bidders need to be enclosed 
in their own bidding rooms with no opportunity 
for collaboration, discussion, or collusion once the 
auction starts until the auction ends. The only 
information each bidder receives is the highest bid 
at the end of each round of bidding before going 
into the next round of bidding. While auctions 
today are seen in governmental selling of licenses, 
for example, cell phone licenses, auctions are also 
found in health and medical care arenas.

Patient Care Auctions and Patient Debt Auctions

Hospital medicine auctions are seen today in 
two areas: patient care and patient debt. In a 
patient care auction, patient care provision is auc-
tioned off to the highest bidder, for example, in 

auctions for the pricing of maternity care in the 
contracting market between insurance companies 
as buyers and hospitals as sellers. In a patient debt 
auction, a hospital turns to online auctions to sell 
their growing patient debt, hoping to receive bids 
by debt buyers and collection agencies.

Both auctions can affect market performance 
(e.g., pricing of maternity care in a locality, region, 
or country), market structure (e.g., by influencing 
more hospitals to become involved in the bid-
ding processes), and market behavior (e.g., bidding 
behaviors, user preferences, and future impacts of 
successful bidders on those hospitals offering up the 
items—patient care or patient debt—for auction 
sale). For example, with the use of patient care 
auctions, if optimally satisfactory delivery and 
maternity care is not provided by the highest bidder, 
the insurance companies may have a backlash 
from disgruntled mothers, families, and employers. 
With the use of patient debt auctions, the hospi-
tals in a specific geographic area—after the sale of 
their patient debt—may be affected by the debt-
collection strategies of the debt buyers and collec-
tion agencies who are the most successful bidders 
for hospital-patient debt and who are now doing 
the collecting.

Medical Decision Making

Shifting from economics to medicine and medical 
decision making, one might suggest that a “lot-
tery,” defined as a gambling event with a small to 
infinitesimally small chance of winning a large 
prize, would have to be considered a “nonstandard 
decision” in medical decision making. Indeed, in 
terms of bounds of reasonableness in medical deci-
sion making, Jerome P. Kassirer and Stephen G. 
Pauker discuss the toss-up, where there is about a 
50:50 chance of a gain or a loss in medical decision 
making. Kassirer and Pauker describe the toss-up 
decision as one where the physician can give over 
all decision making to the patient. Kassirer and 
Pauker do allow for patients who strongly con-
sider what their own preferences are in terms of 
such toss-up medical decisions that they face in 
their own lives.

Consider the following example. Idiopathic  
pulmonary fibrosis (IPF) of the lung is a disorder of 
unknown cause associated with a high mortality 
rate. Up to the present, two questions remain 
unclear. First, it is unclear medically what treatment 
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modality should be applied in the attempt to ame-
liorate the disease process associated with this con-
dition. Second, it is unclear when in the course of 
the disease the best chance of reversal (if any) exists 
and hence when treatment should be attempted. 
This is a disease entity where there has been little 
breakthrough in research and development, and 
many key research questions remain to be under-
stood related to all aspects of IPF.

Now consider a case of end-stage pulmonary 
fibrosis of any type. The reality is that if a treatment 
was researched and developed that offered even a 
less-than-50% chance of a benefit accruing to indi-
viduals, this treatment would be heralded as a tre-
mendous gain in the management of this end-stage 
condition, which otherwise will uniformly end in 
death in the short term or medium term rather than 
the long term. For example, a newly developed 
drug therapy for end-stage pulmonary fibrosis that 
gives a 40% chance of better survival over the next 
1 to 5 years would be heralded as a significant 
advancement in treatment of this condition.

The above examples provide an opportunity  
to better understand the basis of toss-up decision 
making and the basis of medical decision making in 
general in the case of a severe disease with quality-
of-life and survival consequences. First, there must 
be a severe disease, where a severe disease is char-
acterized in terms of its consequences (related to 
the individual’s quality of life and/or survival) in 
the short, medium, and long term. Second, the indi-
vidual whose life is affected by the severe disease 
must have the capacity to make decisions on his or 
her own behalf and must be willing to accept the 
consequences of risky decisions in medicine. Third, 
the treatment itself must be available or accessible. 
Fourth, there must be a competent physician (and 
medical care team) in place skilled with the use of 
the treatment, able and willing to treat the patient, 
and able to help manage the consequences of the 
treatment in the patient and support the patient 
whether or not the treatment is successful.

Risky decisions in medicine include risky deci-
sion events which can have as consequences 
expected results that are as poor as those found in 
high-risk lotteries—with small chances of securing 
a medical gain (benefit) and grave chances of 
occurrence of adverse outcomes (risks)—that are 
entered into by humans. Here, such risky decision 
events should only be entered into by competent 

adult patients who are supported by highly quali-
fied medical care teams in medical care settings 
where clear communication among all parties is 
embarked on and achieved. But the decision events 
should be entered into by these individuals only 
after careful prospective pre-event deliberations and 
careful retrospective postevent evaluations.

Dennis J. Mazur

See also Expected Utility Theory; Prospect Theory

Further Readings

Ashton, J. (1893). A history of English lotteries. London: 
Field & Tuer/Leadenhall Press.

Bakir, N. O. (2004, August). Evaluation of information 
bundles in engineering decisions. Unpublished PhD 
dissertation, Texas A&M University.

Bradley, R. E. (2001). Euler and the Genoese lottery. 
Retrieved June 5, 2008, from http://oldhome.adelphi 
.edu/~bradley/Euler/neworleans.pdf

Bu, Tian-Ming, Deng, Xiaotie, & Qi, Qi. (2008). 
Forward-looking Nash equilibrium for keyword 
auction. Information Processing Letters, 105, 41–46.

Friedman, M., & Savage, L. J. (1948). The utility analysis 
of choices involving risk. Journal of Political 
Economy, 56, 279–304.

Howard, R. A. (1967). Value of information lotteries. 
IEEE Transactions on Systems Science and 
Cybernetics, 3, 54–60.

Kassirer, J. P., & Pauker, S. G. (1981). The toss-up. New 
England Journal of Medicine, 305, 1467–1469.

Klarreich, E., Arrow, K., Aumann, R., McMillan, J., 
Milgrom, P., Myerson, R., et al. (n.d.). The bidding 
game. Written for Beyond Discovery®: The Path from 
Research to Human Benefit, a project of the National 
Academy of Sciences. Retrieved June 5, 2008, from 
http://www.beyonddiscovery.org/content/view.txt 
.asp?a=3681

Lotteries. Their origin and history. Noted lotteries of 
England, France, and America. Calculation of chances 
and choice of numbers. The ethics of lotteries and the 
economy of their use. (1875, November 7). The New 
York Times, p. 2.

Raven, J. (1991). The abolition of the English state 
lotteries. The Historical Journal, 34, 371–389.

Richards, R. D. (1953). The lottery in the history of 
English government finance. Economic History, 3, 
57–76.

Seville, A. (1999). The Italian roots of the lottery. History 
Today, 49, 17–23.



691

Managing Variability 
and Uncertainty

Clinical decision making involves the use of 
diverse strategies to generate and test potential 
solutions for problems that are presented by 
patients. It involves using, acquiring, and inter-
preting the indicators and then generating and 
evaluating hypotheses. Most health decisions 
occur in contexts of scientific uncertainty. Thus, 
the notion of uncertainty should be at the heart of 
exchanges between professionals and their patients. 
Accordingly, the failure to integrate the concept of 
uncertainty in routine medical practice remains a 
major obstacle to informed decisions by patients.

The first section of this entry reviews the defini-
tion of the concepts of variability and uncertainty 
and makes the distinction with other similar con-
cepts. The second section briefly summarizes how 
physicians understand and react to uncertainty. It 
also proposes potential strategies to alleviate the 
burden of managing uncertainty in routine clinical 
decision making. The last section highlights the 
gaps in knowledge and areas for further research.

Definitions

If ignorance is defined as an absence of knowledge 
of the available issues or options as well as of their 
probability, uncertainty is defined as knowledge of 
the issues or options available but with an absence 
of the knowledge of their probability. Risk is 

defined as knowledge of the available issues or 
options and their probabilities. In some literature, 
the concept of variability is distinguished from that 
of uncertainty and refers to the heterogeneity of 
subjects included in analyses. Although the distinc-
tion between variability and uncertainty has clear 
implications from a decision analysis perspective, 
for clinicians and their patients, variability is only 
one of the many sources of uncertainty.

Types of Uncertainty

Diagnosis and management of health problems 
are full of uncertainty. Sometimes, the probabilistic 
nature of the diagnosis made by physicians makes it 
difficult to choose the “best” course of action. 
Scientific evidence that imparts conflicting results 
regarding treatment options (i.e., balance between 
risks and benefits) or the absence or insufficiency of 
scientific evidence makes this choice even more dif-
ficult. Moreover, the probabilistic aspect of the evi-
dence that is drawn from populations implies 
uncertain outcomes for the individual. Conse quently, 
patients and physicians need help in addressing their 
decisional needs and in resolving uncertainty when 
making decisions.

Physicians’ Reaction to Uncertainty

Both patients and their physicians have difficulty 
grasping the concept of uncertainty, specifically 
when dealing with numbers and probabilities. 
Physicians express concerns with communicating 
risk to patients and may not have the necessary 

M
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skills to do it. In brief, the medical problem and the 
characteristics of the patient create the uncertainty 
inherent in the clinical encounter. The characteris-
tics of physicians influence their reaction to uncer-
tainty. In turn, the decision-making process occurring 
during the clinical encounter between a patient and 
a physician is under the influence of the uncertainty 
inherent in the clinical encounter and of the physi-
cian’s reactions to uncertainty. Patients and physi-
cians interact to produce a set of decisions that  
in some cases will be translated into physicians’ 
behavior. The decision outcome and, on some occa-
sions, the physician’s behavior may be modified by 
external sources such as source of payment, setting 
of the practice, and so on. The reaction of physi-
cians to uncertainty is composed of four main con-
structs: anxiety due to uncertainty, concern about 
bad outcomes, reluctance to disclose uncertainty to 
patients, and reluctance to disclose mistakes to 
other physicians. The reaction of physicians toward 
uncertainty was shown to be significantly associ-
ated with disclosure of uncertainty by physicians  
to patients during clinical encounters, resource use 
and costs, and the intention of physicians to engage 
in shared decision making. Therefore, strategies to 
alleviate the burden of managing uncertainty in 
clinical decision making are of utmost importance 
in ensuring quality of care, patient safety, and con-
trol of costs for the healthcare system.

Strategies

For both health providers and patients to accept 
and manage uncertainty, there is a need for, first, 
recognizing and accessing the level of uncertainty 
that is present in the decision-making process. It is 
in this context that there is considerable interest 
today in the idea of shared decision making.

Shared Decision Making

Shared decision making is defined as a joint pro-
cess shared by the physician and the patient. It rests 
on the best evidence as to the risks and benefits  
of all available options, including doing nothing. It 
includes the following components: establishing a 
context in which patients’ views about treatment 
options are valued and seen as necessary; transfer-
ring technical information; making sure patients 
understand this information; helping patients base 

their preference on the best evidence; eliciting 
patients’ preferences; sharing treatment recommen-
dations; and making explicit the component of 
uncertainty in the clinical decision-making process. 
Consequently, fostering shared decision making  
in clinical settings has the potential to help both 
health providers and patients recognize the uncer-
tainty that is present in the decision-making pro-
cess, a first step for managing uncertainty in routine 
clinical decisions.

Screening for Decisional Conflict in Patients

Decisional conflict is defined as a state of uncer-
tainty as perceived by an individual about which 
course of action to take when the choice among 
competing actions involves risk, loss, regret, or a 
challenge to personal life values. Decisional conflict 
is multidimensional and influenced by the percep-
tion of being informed, the perception of being clear 
about personal values, opinions of significant  
others, and effectiveness of the decision outcomes. 
It can be used to assess decisional needs, to tailor 
interventions to these needs, and to evaluate their 
effects. It can be measured from a patient’s perspec-
tive and from a health provider’s perspective. 
Decisional conflict should not be confused with a 
direct measure of how much scientific uncertainty is 
involved in the decision to be made itself (e.g., con-
flicting results, absence of evidence). In routine 
clinical contexts, uncertainty refers to decisional 
uncertainty (one’s own perception of not knowing 
which course of action to take when choosing 
among actions that involve risk, loss, regret, or chal-
lenge to personal life values) and outcome uncer-
tainty (one’s own perception of not knowing who is 
going to benefit or be harmed by the treatment that 
could be chosen). In lay terms, it is understood as 
the level of comfort that an individual faces when 
making a decision, that is, decisional comfort.

Decisional Conflict Scale

The Decisional Conflict Scale (DCS) consists of 
16 items, grouped into five subscales (certainty, 
information, values clarification, support or pres-
sure from others, and perception of the quality of 
the decision process). DCS scores correlate with 
knowledge assessment scores, intentions to accept 
influenza vaccine or breast cancer screening, delay 
with the decision to be immunized, decisional 
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regret, and intention to sue a physician. It is one of 
the very few existing measurements of the decision-
making process applicable with both health provid-
ers and patients. The combination of the DCS score 
of the health provider with the DCS score of the 
patient can be used for assessing the agreement 
reached between both members of the dyad on 
decisions made during clinical encounters. This 
combination thus allows for the development  
of interventions designed to improve the clinical 
decision-making process between patients and their 
physicians in contexts of uncertainty. Consequently, 
screening of patients with the DCS to identify the 
existence and nature of their perceived uncertainty 
about the course of action to take is one of the key 
competencies of informed shared decision making. 
This helps to (a) acknowledge explicitly the pres-
ence of uncertainty in the decision-making process; 
(b) identify the areas that need to be addressed to 
provide decision support; and (c) engage in informed 
and shared decision making.

Clinical Algorithms and Practice Guidelines

Given their systematic approach to evidence, 
clinical practice guidelines are defined as system-
atically developed statements to assist practitioners 
and patients with decisions about appropriate 
healthcare for specific circumstances. Clinical prac-
tice guidelines have been the subject of many 
research initiatives. More specifically, a large num-
ber of studies have aimed at improving adherence 
of clinicians as well as patients to the recommen-
dations of clinical practice guidelines but with very 
little success.

A large percentage of medical decisions largely 
occur in contexts of scientific uncertainty. These 
“grey-zone” (or preference-sensitive) decisions are 
characterized either by scientific evidence that 
points to a balance between harms and benefits 
within or between options, or by the absence or 
insufficiency of scientific evidence. Moreover, prob-
abilities of risks and benefits in a population can-
not be directly attributed at the individual level. 
Current clinical practice guidelines, however, are 
not adapted to grey-zone decisions and thus cannot 
help providers and their patients make informed 
and shared decisions. Clinical practice guidelines 
are still largely conceived as tools that should foster 
adherence to a best decision defined by the “expert 

health professional,” rather than instruments that 
should support the best decision for a specific 
patient in a specific context. Thus it is no surprise 
that health professionals have criticized clinical 
practice guidelines for lacking relevant information 
to assist shared decision making with patients.

Patient Decision Aids

Patient decision aids are tools designed to help 
patients participate in clinical decision making. 
They provide information on the options and help 
patients clarify and communicate the personal val-
ues they associate with features of the different 
options. When compared with usual care or simple 
information leaflets, patient decision aids improve 
decision quality and the measures in the decision 
process of feeling informed and clear about values 
that are included in the overall measure of the 
DCS. Patient decision aids foster shared decision-
making processes between health providers and 
their patients because they make explicit the uncer-
tainty component of the decision to be made. Last, 
patient decision aids are known for reducing over-
use of controversial medical procedures such as 
prostate-cancer-screening tests and improving 
underuse of beneficial public health measures such 
as childhood vaccination. Therefore, the use of 
patient decision aids in clinical practice is an effec-
tive way of managing uncertainty in routine clini-
cal decision making.

Knowledge Gaps

Although many current initiatives focus on training 
health providers in improving their understanding 
of probability and thus of the uncertainty that is 
inherent in clinical decision making, it is not clear 
that this will be sufficient to affect favorably the 
decision quality of their patients. Therefore, patients 
will need to be able to access high-quality patient 
decision aids and be guided by competent individu-
als in risk communication and shared decision  
making. However, based on a systematic review of 
barriers to and facilitators of implementing shared 
decision making in clinical practice, time constraints 
remain the most often cited barrier across many dif-
ferent cultural and organizational contexts. Indeed, 
there is a general consensus that the growing 
demands and expectations of informed health  
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consumers and societies are putting a lot of pressure 
on limited resources, including human resources. 
Therefore, it remains essential that future studies 
investigate whether using patient decision aids in 
routine medical practice, engaging in shared deci-
sion making, and discussing the uncertainty that is 
inherent in clinical decision making actually take 
more time or not than usual care. This will require 
health service researchers and policy makers to be 
innovative and creative in elaborating the needed 
decision support intervention tools and thus “deci-
sion support care pathways” that can streamline 
the process of informed and shared decision making 
in overburdened healthcare clinical settings.

France Légaré

See also Clinical Algorithms and Practice Guidelines; 
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Making
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Marginal or increMental 
analysis, cost-effectiVeness 
ratio

A marginal or incremental analysis focuses on the 
additional costs and additional outcomes associated 
with a change of some kind. For a marginal analy-
sis, this change concerns a slight (marginal) increase 
or decrease in service. For an incremental analysis, 
this change generally concerns the introduction of a 
new intervention. The aim of both types of analysis 
is to establish the impact of the change on costs and 
outcomes relative to the situation prior to the 
change. This entry introduces the concepts of mar-
ginal or incremental analysis and reviews the impor-
tance of adopting such an approach to measuring 
the impact of changes for economic evaluation.

Marginal or Incremental Analysis

A marginal analysis is concerned with the additional 
costs and additional outcomes achieved from a mar-
ginal (unitary) change in service. For example, a 
marginal analysis of a mammography screening 
facility would consider the additional costs and out-
comes associated with a one-unit increase in the 
number of mammographies undertaken within the 
department. It is important to note that the addi-
tional costs and outcomes associated with a one-unit 
change are not necessarily equal to the average cost 
and outcomes associated with the group. This is due 
to the existence of fixed costs and outcomes that are 
not affected by the number of units. As a result, mar-
ginal values are used in economics to determine the 
actual impact associated with changes in service.

In contrast, an incremental analysis is concerned 
with the additional costs and additional outcomes 
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associated with the introduction of a new service. 
For example, an incremental analysis would con-
sider the additional costs and additional outcomes 
of a new approach to mammography screening 
(e.g., 2 view vs. 1 view).

Economic evaluation, irrespective of whether it is 
cost-effectiveness, cost-utility, or cost-benefit analy-
sis, is interested in the impact of a change compared 
with the position before the change. As such, eco-
nomic evaluation is concerned with marginal or 
incremental analyses, and, where the outcomes mea-
sured involve a single nonmonetary unit (e.g., qual-
ity-adjusted life years or life years), the results are 
presented as an incremental cost-effectiveness ratio.

Incremental Cost-Effectiveness Ratio

The incremental cost-effectiveness ratio (ICER) 
gives a measure of the additional cost per unit of 
health gain. It is estimated by comparing the addi-
tional costs and outcomes associated with the new 
service (or intervention) with those of the original 
service(s):

ICER= Costnew intervention −Costcurrent treatment

Outcomenew intervention −Outcomecurrent treatment
:

When determining ICERs for a set of interven-
tions, the interventions should be ranked in ascend-
ing order of outcome (or cost) and a ratio calculated 
for each intervention relative to the next best (more 
costly) viable intervention by dividing the addi-
tional cost by the additional outcome produced.

Incremental Analysis Versus  
Average Analysis

As with the mammography example above, a 
new intervention or service (2 view) is rarely the 

only option available (1 view). Even when the 
alternative is to “do nothing,” this is rarely asso-
ciated with zero costs and zero outcomes. For 
example, no active screening would involve the 
costs and outcomes of breast cancers found clini-
cally. As such, an assessment of the impact of the 
addition of 2 view mammography should involve 
the additional costs and outcomes associated 
with 2 view compared with the costs and out-
comes without 2 view (e.g., 1 view and no active 
screening).

Example

Consider a (hypothetical) situation where there 
are four methods available for mammography 
screening (A to D). These are characterized by the 
costs and outcomes given in the table below.

The average cost-effectiveness ratio suggests that 
all the screening methods provide outcomes at a price 
that is likely to be considered reasonable; even for 
Method D (which costs in excess of $250,000), the 
average cost-effectiveness is only $23,041 per unit of 
effect. However, as noted above, this average mea-
sure is misleading as it ignores the existence of the 
other methods of screening and the outcomes that 
can be generated from them for a lower cost. The 
appropriate way to measure the cost-effectiveness of 
Method D is to compare the additional (incremental) 
costs associated with the method and the additional 
outcomes generated by the method compared with 
the next most effective method. This analysis reveals 
that choosing Method D rather than Method C 
increases the costs by $146,495 but only increases 
the outcomes by 0.8—giving D a large incremental 
cost-effectiveness ratio of $183,119. In comparison 
with the relevant alternative, D no longer looks like 
good value for the money.

Elisabeth Fenwick

Outcomes Costs ($)
Average Cost-

Effectiveness ($) Inc. Effect Inc. Cost ($) ICER ($)

A  6.2  76,410 12,324 — — —

B  8.5  87,659 10,313 2.30  11,249   4,891

C 10.4 111,562 10,727 1.90  23,903  12,581

D 11.2 258,057 23,041  0.8 146,495 183,119
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MarkoV Models

A decision analysis problem is attacked using a 
formal process that begins with constructing a 
mathematical model. For more than 40 years, the 
decision tree has been the most common formal-
ism, comprising choices, chances, and outcomes. 
The modeler arranges near-term events in a tree 
structure, and attempts to balance realism and 
attendant complexity with simplicity. In prob-
lems that lead to long-term differences in out-
come, the decision model must have a definite 
time horizon, up to which the events are charac-
terized explicitly. At the horizon, the future 
health of the patient or cohort must be summed 
and averaged into “subsequent prognosis.” For 
problems involving quantity and quality of life, 
where the future natural history is well character-
ized, techniques such as the declining exponential 
approximation of life expectancy or calculus 
model may be used to generate outcome mea-
sures. Life tables may be used directly, or the 
results from clinical trials may be adopted to gen-
erate relevant values.

Some decision problems are less amenable to 
these summarizing techniques. In particular, clini-
cal scenarios that involve a risk that is ongoing, 
or competing risks that occur at different rates, 

lead to either rapidly branching decision trees or 
unrealistic pruning of possible outcomes for the 
sake of simplicity. In these cases, a probabilistic 
model of natural history can substitute for the 
outcome node of the decision tree. Beck and 
Pauker introduced the Markov process as a solu-
tion for the natural history modeling problem in 
1983, building on their work and others’ work 
with stochastic models over the previous 6 years. 
During the ensuing 25 years, more than 1,000 
articles have directly cited either this paper or a 
tutorial published a decade later, and more than 
1,700 records in PubMed can be retrieved using 
“(Markov decision model) OR (Markov cost- 
effectiveness)” as a search criterion. This entry 
defines the Markov process model by its proper-
ties and discusses two aspects of Markov model-
ing: transition probabilities and regular versus 
absorbing models.

The Markov Process and 
Transition Probabilities

A Markov process is a special type of stochastic 
model. A stochastic process is a mathematical 
system that evolves over time with some element 
of uncertainty. This contrasts with a deterministic 
system, in which the model and its parameters 
specify the outcomes completely. The simplest 
example of a stochastic process is coin flipping. If 
a fair coin is flipped a number of times, a sequence 
of results such as TTHHTHTHHHHTTHTHHTT 
might arise. At each flip (or trial), either tails (T) 
or heads (H) would result with an equal probabil-
ity of 1/2. Dice rolling is another example of this 
type of stochastic system, known as an indepen-
dent trial experiment. Each flip or roll is indepen-
dent of all that have come before because dice and 
coins have no memory of prior results.

The Markov process relaxes this assumption a 
bit. In a Markov model, the probability of a trial 
outcome varies depending on the current result 
(generally known as a “state”). It is easy to see 
how this model works via a simple example. 
Consider a medical scheduling clerk who assigns 
new patients to three doctors: Adams, Baker, and 
Chou. The clerk randomly assigns patients to 
these practitioners but has a few idiosyncrasies. 
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Never is Adams assigned two patients in a row, but 
after assigning a patient to Adams, the clerk ran-
domly gives the next person to either Baker or 
Chou by flipping a coin. After assigning to Baker, 
the clerk randomly gives the next patient to any 
of the three doctors with probability 1/3. After 
assigning to Chou, the clerk assigns the next 
patient to Adams with probability 1/2 and to Baker 
or Chou with probability 1/4. Thus, the last assign-
ment (Adams, Baker, or Chou) must be known to 
determine the probability of the next assignment.

Table 1 shows this behavior as a matrix of tran-
sition probabilities. Each cell of Table 1 shows the 
probability of a patient being assigned to the doc-
tor named at the head of the column if the last 
patient was assigned to the doctor named at the 
head of the row. An n × n matrix is a probability 
matrix if each row element is nonnegative and 
each row sums to 1. Since the row headings and 
column headings refer to states of the process, 
Table 1 is a special form of probability matrix: a 
transition probability matrix.

This stochastic model differs from independent 
trials because of the Markov property: The distri-
bution of the probability of future states of a sto-
chastic process depends on the current state (and 
only on the current state, not the prior natural his-
tory). That is, one does not need to know what 
has happened with scheduling in the past, only 
who was most recently assigned a patient. For 
example, if Baker got the last patient, the next one 
will be assigned to any of the three physicians 
with equal probability.

The Markov property leads to some interesting 
results. What is the likelihood, if Adams is assigned 
a patient, that Adams will get the patient after 
next? This can be calculated as follows:

After Adams, the probability of  
Baker is 1/2 and Chou 1/2.

After Baker, the probability of Adams is 1/3,  
and after Chou it is 1/2.

So the probability of Adams-(anyone)-Adams is 
(1/2) × (1/3) + (1/2) × (1/2) or .417. A complete 
table of probabilities at two assignments after a 
known one is shown in Table 2. This table is 

obtained using matrix multiplication, treating 
Table 1 as a 3 × 3 matrix and multiplying it by 
itself. Note that the probability of Adams going to 
Adams in two steps is found in the corresponding 
cell of Table 2.

This process can be continued because Table 2 
is also a probability matrix, in that the rows all 
sum to 1. In fact, after two more multiplications by 
Table 1, the table is as shown in Table 3.

The probabilities in each row are converging, 
and by the 10th cycle after a known assignment, 
the probability matrix is as shown in Table 4.

This is also a probability matrix, and it has a 
straightforward interpretation. Ten or more cycles 
after a known assignment, the probability that the 
next assignment will be to Adams is .294, and to 
Baker or Chou .353. Or, if someone has no 
knowledge of what has been happening recently, 
the likelihood of the next patient going to Adams 
is .294, and so on. This is the limiting Markov 
matrix or the steady state of the process. This 
particular scheduler, despite the idiosyncratic 
behavior, gives around 30% of the patients to 
Adams over time and an equal number of the 
remainder to each of the other two doctors.

Table 1  Doctor assignment probability table

Next

Prior Adams Baker Chou

Adams .000 .500 .500

Baker .333 .333 .333

Chou .500 .250 .250

Table 2  Two-step Markov probabilities

Two Later

Prior Adams Baker Chou

Adams .417 .292 .292

Baker .278 .361 .361

Chou .208 .396 .396
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Absorbing Markov Models

The patient scheduling example is known as a 
regular Markov chain. The probabilities are con-
stant and depend only on the state of the process. 
Any state can be reached from any other state, 
although not necessarily in one step. Regular 
chains converge to a limiting set of probabilities. 
Another category of Markov models is absorb-
ing. In these systems, the process has a state that 
is possible to enter, in a finite set of moves, from 
any other state but from which no movement is 
possible. Once the process enters the absorbing 
state, it terminates (or stays in that state forever). 
The analogy with clinical decision models is 
obvious: An absorbing Markov model has a 
“dead” state.

This is shown in Figure 1, a simplified three-
state absorbing clinical Markov model. In a 
clinical model, the notion of time appears natu-
rally. Assume that a clinical process is modeled 
that has clinic visits month to month. At any 
given month, the patient may be in a Well state, 
shown in the upper left of Figure 1, the Sick state 
in the upper right, or Dead in the lower center. If 
in the Well state, the most likely result for the 

patient is that he or she will remain well for the 
ensuing month and next be found still in the 
Well state. Alternatively, the patient could 
become Sick or die and move to the Dead state. 
If sick, the patient will most likely stay sick, but 
a small chance of returning to the clinically Well 
state is possible. The patient could also die from 
the Sick state, at a higher probability than from 
the Well state.

A possible transition probability matrix for this 
model is shown in Table 5.

Thus, a Well patient remains so with probabil-
ity .9, has a 9% chance of becoming Sick in 1 month, 
and a 1% chance of dying in the cycle. A Sick 
patient has a 2% chance of returning to the Well 
state, a 7% chance of dying in 1 month, and the 
remainder (91%) of remaining in the Sick state. 
Of course, the Dead state is absorbing, reflected 
by a 100% chance of staying Dead.

Table 5 is a probability matrix, and so it can  
be multiplied as in the prior example. After two 
cycles, the matrix is as shown in Table 6.

After 2 months, someone who started in the 
Well state has slightly more than 81% chance of 
staying well and a 16% chance of being Sick. By 
the 12th cycle, or 1 year, the top row of the transi-
tion matrix is as follows:

.326  .375  .299

So someone starting well has a 37.5% chance of 
being in the Sick state after 12 months and a nearly 
30% chance of being dead. This matrix converges 

Table 3  Assignment model after four cycles

Four Later

Prior Adams Baker Chou

Adams .315 .342 .342

Baker .291 .354 .354

Chou .279 .360 .360

Table 4  Steady-state or limiting Markov matrix

Cycle 10 and Later

Prior Adams Baker Chou

Adams .294 .353 .353

Baker .294 .353 .353

Chou .294 .353 .353

Well Sick

Dead

Figure 1  Three-state absorbing clinical Markov model
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slowly because of the small probability of death in 
any one cycle, but eventually this matrix will end 
up as a set of rows: 

0  0  1

Everyone eventually dies. Death is the ultimate 
absorbing state.

Clinical Markov models offer interesting 
insights into the natural history of a process. If 
the top row of the transition matrix is taken at 
each cycle and graphed, Figure 2 results. This 
graph can be interpreted as the fate of a cohort 
of patients beginning together at Well. The mem-
bership of the Well state decreases rapidly as the 
forward transitions to Sick and Dead overwhelm 
the back transition from Sick to Well. The Sick 
state grows at first, as it collects patients transi-
tioning from Well, but soon the transitions to 
Dead, which of course are permanent, cause the 
Sick state to lose members. The Sick state peaks 
at Month 12, with 37.5% of the cohort. The 
Dead state is actually a sigmoid (S-shaped) curve, 
rising moderately for a few cycles because most 
people are Well, but as soon as the 7% mortality 

from the Sick state kicks in, the curve gets 
steeper. Finally it flattens as few people remain 
alive. This graph is typical of absorbing Markov 
process models.

Use of Absorbing Markov Models 
in Clinical Decision Analysis

Other entries in this encyclopedia focus on the 
applications of this model; here, the principal 
uses of absorbing Markov processes are noted. 
Theoretically, the Markov formalism can substi-
tute for an outcome in a typical decision tree. 
Whereas a traditional outcome node is assigned 
a value, or utility, a Markov model is used to 
calculate the value. For this to work, each 
Markov state is assigned an incremental utility 
for being in that state for one model cycle. In the 
example above, the Well state might be given a 
value of 1, the Sick state a value of .8. That is, 
the utility for being in the Sick state is 80% of 
the value of the Well state, for each cycle in it. In 
most models, Dead is worth 0. Incremental costs 
can also be applied for Markov cost-effectiveness 
analysis.

Table 5   Transition probability matrix for clinical 
example

Next

Prior Well Sick Dead

Well  .9  .09  .01

Sick  .02  .91  .07

Dead  0  0  1

Table 6  Two-month state matrix

.812 .163  .025

.036 .830  .134

.000 .000  1.000

.000

.100

.200

.300

.400

.500

.600

.700

.800

.900

1.000

1 13 25 37 49 61 73 85 97 109

Well Sick Dead

Figure 2   Likelihood of being in each state at specific 
cycles
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Two enhancements to the Markov model render 
the formalism more realistic for clinical studies; 
both involve adding a time element. First, although 
the Markov property requires no memory of prior 
states, it is possible to superimpose a time function 
on a transition probability. The most obvious 
example of this is the risk of death, which rises 
over time regardless of other clinical conditions. 
This can be handled in a Markov model by modify-
ing the transition probability to death using a func-
tion: p(Well → Dead - 0.01 + G(AGE),  where G 
represents the Gompertz mortality function or 
another well-characterized actuarial model.

Second, standard practice in decision modeling 
discounts future costs and benefits to incorporate 
risk aversion and the decreasing value of assets and 
events in the future. Discounting may be incor-
porated in Markov models as simply another  
function that can modify the state-dependent 
incremental utilities.

A number of refinements to the basic Markov 
model have been developed over the past 25 years, 
and more modern techniques of operations research 
can handle realistic and complex clinical problems 
that violate the Markov property to some extent. 
Nevertheless, this stochastic formalism remains 
valuable for clinical studies and teaching medical 
decision making.

J. Robert Beck

See also Applied Decision Analysis; Decision Tree: 
Introduction; Markov Models, Applications to 
Medical Decision Making; Markov Models, Cycles; 
Markov Processes; Stochastic Medical Informatics

Further Readings

Beck, J. R., & Pauker, S. G. (1983). The Markov process 
in medical prognosis. Medical Decision Making, 3, 
419–458.

Sonnenberg, F. A., & Beck, J. R. (1993). Markov models 
in medical decision making: A practical guide. Medical 
Decision Making, 13, 322–339.

MarkoV Models, applications 
to Medical decision Making

The basic purpose of a decision model is to esti-
mate the prognosis of a patient or a population of 

patients subsequent to each alternative choice of 
management strategy being compared. For practi-
cal reasons, the analysis must be restricted to a 
time frame, often referred to as the time horizon of 
the analysis. The time horizon may be finite (e.g., 
5 years from the time of decision) or may be indef-
inite or defined in operational terms such as “for 
the remainder of the patient’s life” or “until all 
patients in the population are dead.” The choice of 
time horizon is determined by many factors, 
including the time frame of events of interest, the 
availability of data, and the perspective of the 
analysis. When the time horizon is the remaining 
lifetime, then the model must represent the prog-
nosis following each management strategy that 
incorporates all future events in the patients’ lives.

There are various ways in which a decision ana-
lyst can assign values to these terminal nodes of the 
decision tree. In some cases, the outcome measure is 
a simple life expectancy. One method for estimating 
life expectancy is the declining exponential approx-
imation of life expectancy (DEALE), which calcu-
lates a patient-specific mortality rate for a given 
combination of patient characteristics and comor-
bid diseases. Life expectancies may also be obtained 
from Gompertz models. In the reference case rec-
ommended by the Panel on Cost-Effectiveness 
Analysis, prognosis is modeled as quality-adjusted 
life expectancy, in which the prognosis incorporates 
both quantity and quality of life. For health eco-
nomic analyses, economic costs must also be 
assigned to each strategy being compared.

Various modeling techniques can be used to esti-
mate prognosis. This entry introduces the Markov 
model as an alternative to simple decision tree mod-
els and discusses the assumptions inherent in Markov 
models, how they are evaluated, and how they are 
used in decision models to determine prognosis.

Limitations of Simple Trees

A simple tree is one consisting only of decision, 
chance, and terminal nodes (Figure 1). In this 
example, the tree models an unspecified disease 
that can have the outcomes of Disabled or Well 
and Death for either Well or Disabled patients. 
The terminal nodes represent outcomes that must 
be assigned a utility, typically a quality-adjusted 
life-expectancy. Each pathway from the root of 
the tree to the terminal node represents a unique 
combination of events that can be factored into 
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the utility. This structure is acceptable if the events 
modeled in the tree occur within a short time 
span, such as over the treatment of a short-term 
disease (e.g., pneumonia) or surgery. Simple trees 
have the following limitations:

They cannot easily specify when events occur or  •
differentiate between earlier and later events.
They cannot easily model continuous risk when  •
the timing of events is uncertain.
They cannot model situations for which events  •
may occur more than once.

Most realistic clinical decision problems involve 
all these factors. Even when the clinical situation 
fits within these limitations, the analyst still has 
to assign utilities for terminal outcomes. In the 
case of Disabled or Well, these utilities must rep-
resent all subsequent prognosis, whether for a 
finite time frame or for the remainder of the 
patient’s life.

Markov models avoid all the above limitations by 
modeling clinical conditions as discrete health states 
and modeling all events as transitions among states.

History of the Markov Model 
in Medical Decision Making

The Markov process is named after the Russian 
mathematician Andrey Markov (1856–1922). The 
Markov model was introduced into medical decision 
making by Beck and Pauker in their seminal 1983 
paper in Medical Decision Making to overcome the 
limitations of simple decision models to represent 
risks over time. At the time of Beck and Pauker’s 

original paper, the Markov model could be solved 
only by matrix algebra or by simulations using a 
spreadsheet or by writing a dedicated computer 
program. With any of these methods, models were 
difficult to construct and modify, and sensitivity 
analyses were laborious and time-consuming. In 
1984, Hollenberg developed the Markov cycle tree, 
a formalism that represents the health states and 
events in a Markov model. The tree-based formalism 
made it far easier to construct and modify models 
and provided a convenient mechanism for auto-
mated evaluation and sensitivity analysis. With the 
more convenient representation, analysts were quick 
to adopt Markov models, and within a few years of 
its introduction to medical decision making, the 
Markov model became the method of choice for 
most medical decision problems.

Definitions

Markov Process

A Markov model is a decision model represent-
ing a Markov process. The Markov process is a 
stochastic process (subject to random variation in 
outcome) with the following characteristics:

A finite set of health states (the  • state space) 
referred to as the Markov states
Transitions between pairs of states with a  •
defined probability for each transition
The Markov (“no memory”) property •

Markov processes inherently represent the 
passage of time. Most medical decision problems 

Treatment 1
Disabled

Die
Dead

Disabled

Dead

Disabled

Well

Survive

Die

Survive

DisabledWell
Treatment 2

Figure 1  Simple tree
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are represented as discrete-time Markov pro-
cesses, which means that time is modeled in dis-
crete, uniform steps. The remainder of this 
discussion applies only to discrete-time Markov 
processes

Markov Cyc les

Time is represented in discrete-time Markov 
processes as discrete, uniform intervals referred to 
as cycles. The cycle length is selected to be appro-
priate to the model. For models representing an 
entire life span, a cycle length of 1 year may be 
appropriate. When events occurring over shorter 
periods of time are important, a cycle length of 
1 month or even 1 week may be more appropri-
ate. The choice of a cycle length is a compromise 
between clinical realism and evaluation time. 
Short cycles result in a finer granularity of time in 
the model and greater precision but may result in 
simulations that take a long time to run.

Conceptually, Markov models represent all 
events as transitions from one state to another  
during Markov cycles.

States and Transitions

Markov models represent the universe of 
health outcomes as a finite set of mutually exclu-
sive, collectively exhaustive health states (the 
state space of the Markov process). All events 
are represented as transitions from one state to 
another. A simple representation of the Markov 
model is a directed graph called a state transition 
diagram as shown in Figure 2. States are repre-
sented by circles, each labeled with the name of 
the state. Arrows indicate allowed transitions. If 
there is no arrow pointing from one state to 
another, a transition from the first state to the 
second is not allowed. For example, in Figure 2, 
a transition is allowed from WELL to DISABLED, 
or from WELL to DEAD, but not from DISABLED 
to WELL, from DEAD to WELL, or from DEAD 
to DISABLED. States can have transitions to 
themselves, as indicated by circular arrows in 
Figure 2, meaning that a patient can remain in 
the same state for consecutive cycles. Temporary 
states are states that can make transitions only to 
other states but not to themselves. Absorbing 

states are states that cannot make transitions to 
any other states. In Figures 2 and 3, DEAD is an 
absorbing state. Each transition is characterized 
by a probability, associated with the arrows 
(edges) of the state transition diagram. Sometimes 
state transition diagrams represent two consecu-
tive cycles, as in Figure 3.

The state of a Markov process is defined by the 
following:

The distribution of a cohort among the Markov  •
states in the case of a cohort simulation or the 
state in which a single subject resides in the case 
of a Monte Carlo simulation
The set of transition probabilities for all state  •
transitions

The distribution can be represented as a proba-
bility vector (1 × n matrix, where n is the number 
of states) with an entry for the probability of mem-
bership of each state. The set of transition proba-
bilities is conveniently represented as an n × n 
matrix referred to as the transition probability 
matrix (see Table 1). The entries in the rows of the 
probability matrix must sum to 1.

Markov Property: “No Memory” Assumption

Markov models are defined by the Markov 
property, which is that the future state of the 
model in any cycle is determined only by the cur-
rent state and is not affected by the prior history of 
the Markov process. In other words, it matters 

DISABLEDWELL

DEAD

Figure 2   Markov state transition diagram
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only what the current state is, not how it got there. 
The Markov property is referred to as the “no 
memory” property of Markov processes.

What the Markov property means in practical 
terms is that the transition probability matrix 
during any cycle of the Markov process does not 
depend on the history of the Markov process. 
Therefore, two Markov processes with identical 
states will have identical transition probability 
matrices even if the previous histories of the 
processes are different. It is possible to construct 
stochastic models that do depend on prior his-
tory, but they are no longer Markov processes.

Markov Chains

Markov chains are Markov processes for which 
the transition probabilities are constant over time. 
This results in a very simple evaluation method 
using matrix algebra. While the evaluation is sim-
pler and faster and results in greater precision, the 
assumption of constant transition probabilities is 
unrealistic for most clinical decision problems 

except for models representing very short time 
horizons. Many probabilities in clinical decision 
problems do change over time, most notably the 
background probability of death.

Evaluation Methods

Incremental Utility

In an ordinary decision model, utilities are 
the values assigned to terminal nodes of a tree 
and represent both quality of life and duration 
of the health state. In a Markov model, utilities 
are associated with Markov states, so only the 
quality of life component is represented. The 
incremental utility is a number between 0 and 1 
that represents the amount of utility accrued by 
spending one cycle in a given state. As with ordi-
nary decision models, incremental utilities may 
also include a cost component, and the incre-
mental cost of a health state is the cost accrued 
by a patient being in that state for one cycle.

Matrix Algebra

When the transition probability matrix is con-
stant over time, the model is a Markov chain. 
Markov chains may be solved with matrix algebra. 
The matrix algebra solution provides an exact 
solution to the Markov process, whereas the simu-
lations are approximations whose accuracy 
depends on cycle length. Although the matrix alge-
bra solution is simple and elegant, it is rarely used 
in clinical applications of decision analysis because 
the assumption of constant probabilities over time 

WELL DISABLED DEAD

WELL

Cycle n

Cycle n + 1 DISABLED DEAD

p (Disabled, Dead)

p (Well, Dead)
p (Well, Disabled)

Figure 3  Markov state transition diagram with consecutive cycles

Table 1  Transition probability matrix

TO

WELL DISABLED DEAD

FR
O

M

WELL .6 .2 .2

DISABLED 0 .6 .4

DEAD 0 0 1
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is not appropriate for most clinical problems. The 
details of the matrix algebra solution are beyond 
the scope of this entry but may be found in the 
1983 work of Beck and Pauker.

Cohort Simulation

When the transition probabilities are not 
constant (the more general case), there is no 
closed form solution, and a Markov process 
must be evaluated by simulation. There are two 
simulation methods, cohort simulation and 
Monte Carlo simulation. In cohort simulation, a 

hypothetical cohort of identical patients is simu-
lated passing through the process. During each 
cycle, the membership of each state is deter-
mined from the membership of the previous 
state and the transition probabilities from each 
state to every other state.

The cohort simulation is represented graphi-
cally in Figure 4. The starting state (Figure 4a) 
shows all members of the cohort in the starting 
(WELL) state. At an intermediate time, the cohort 
is distributed among the three states (Figure 4b), 
and eventually (Figure 4c), all members are in the 
absorbing DEAD state.

Initial

WELL DISABLED DEAD

(a)

WELL DISABLED

Intermediate

DEAD

(b)

WELL

(c)

DISABLED

Final

DEAD

Figure 4  Cohort simulation: (a) initial state, (b) intermediate state, and (c) final state
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The cycle sum for cycle i, representing the con-
tribution of each cycle to the expected utility of the 
simulation, is

Cycle sum=
Xs

j= 1

uINCRij × pij;

where uINCRij is the incremental utility of state j 
during cycle i and pij is the probability of being in 
state j during cycle i.

The net expected utility for the Markov process is 
the sum of cycle sums over all cycles of the process:

Cumulative sum=
Xc

i= 1

Xs

j= 1

uINCRij × pij;

where c is the number of cycles in the Markov 
process.

Stopping Criteria

A simulation must involve a finite number of 
cycles to be tractable. Therefore, a stopping crite-
rion for the simulation must be specified. Often, 
the simulation is run until the entire cohort is 
“absorbed” (all patients are in an absorbing state). 
In practical terms, this means running the simula-
tion until all patients are dead. The expected utility 
is then the quality-adjusted life expectancy (and/or 

expected cost) of the cohort. Usually, the stopping 
criterion is defined as the point at which the cycle 
sum falls below some predetermined threshold 
(e.g., .0001 quality-adjusted cycles) or when the 
proportion of the cohort in the DEAD state exceeds 
a threshold (e.g., .9999). Simulations may also be 
run for a predetermined number of cycles (e.g., 6 
months or 5 years) to represent short-term events.

Spreadsheet Simulation

A simple method of carrying out a cohort simu-
lation uses standard spreadsheet software, as illus-
trated in Table 2.

The simulation starts with 10,000 subjects  
in the starting state. This number is arbitrary for 
illustration purposes. The method would be no 
different if 100,000 or 1,000 subjects were used. 
There is a column for each Markov state. The 
first row shows the starting distribution of the 
Markov process. In this case, all 10,000 subjects 
begin in the WELL state. Each cell calculates the 
membership of the corresponding state based on 
the membership of the states in the previous cycle 
and the transition probabilities. For example, the 
membership of the DISABLED state at the end of 
Cycle 1 is

Membership(WELLstart) × p(WELL,DISABLED) 
+ Membership(DISABLEDstart) × (1 – p(DISABLED,DEAD)).

Table 2  Markov cohort simulation

Cycle WELL DISABLED DEAD Cycle Sum Cumulative Sum 

Start 10,000       0         0     0            0

 1  6,000 2,000  2,000  7,400.0   7,400 

 2  3,600 2,400  4,000  5,280.0  12,680 

 3  2,160 2,160  5,680  3,672.0  16,352 

 4  1,296 1,728  6,976  2,505.6  18,858 

 .
 .
 .
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.

23        0        1  9,999        0.7  23,751

24        0        1  9,999        0.7  23,751.7

25        0        0 10,000     0  23,751.7
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The first term represents members entering the 
DISABLED state from the WELL state. The second 
term represents members remaining in the DISABLED 
state, which is the probability of DISABLED mem-
bers not dying during the cycle. By filling in each cell 
of the spreadsheet appropriately, the membership of 
each cycle is determined.

The cycle sum is calculated by multiplying the 
membership of each state in each cycle by the incre-
mental utility of the state and summing the products. 
The cumulative sum for each cycle is calculated by 
adding the cycle sum to the cumulative sum from the 
previous cycle. When the membership of the WELL 
and DISABLED states falls below 1 in 10,000, the 
simulation is terminated. In this case, the expected 
utility is the cumulative sum of 23,752 quality- 
adjusted cycles divided by the number of subjects in 
the cohort, or 2.38 quality-adjusted cycles per subject.

Markov Cycle Trees

Although the spreadsheet method is conceptually 
simple, it would become unwieldy with a larger 
number of states. Moreover, it relies on knowing the 
transition probability matrix during each cycle. The 
matrix is straightforward when transitions are sim-
ple between states. However, in most realistic deci-
sion problems, the transitions between states may 
result from complex sequences of events, and there 
may be more than one path between pairs of states. 
For example, the transition from WELL to DEAD 
may occur by developing an illness and dying, 
undergoing a treatment and dying from the treat-
ment (e.g., surgery), or dying from a complication 
of treatment (e.g., a pulmonary embolism) or from 
unrelated causes. This can make determination of 
the net transition probabilities complicated and very 
difficult to recalculate if the model is modified.

To address this issue, Hollenberg devised the 
Markov cycle tree. The Markov cycle tree represents 
all the possible events occurring during each Markov 
cycle as a tree, as illustrated in Figure 5. The root is 
a special node called a Markov node. There are sev-
eral differences from an ordinary decision tree:

The branches of the Markov node represent the  •
Markov states.
Each branch of the Markov node is associated  •
with an incremental utility.
The terminal nodes represent the state in which a  •
subject reaching that terminal node will begin 
the next cycle.

When evaluated with specialized software, the 
cycle tree mechanism makes it unnecessary to  
calculate the overall transition probabilities from 
one state to another. The analyst needs only to 
assign the correct probabilities at each branch, and 
the software will determine the membership of 
each state at the end of each cycle.

Monte Carlo Simulation

Another way of evaluating Markov processes 
(those with time-variant transition probabilities) 
is Monte Carlo simulation. Instead of simulating a 
cohort simultaneously passing through the Markov 
process, Monte Carlo simulation considers a tra-
verse of a single subject at a time through the 
simulation. This is illustrated in Figure 6. A single 
subject is pictured entering the simulation in the 
WELL state. In each cycle, there is a probability 
that the subject will make a transition from the 
WELL state to the DISABLED or DEAD state. 
During the third cycle, the subject makes a transi-
tion to the DISABLED state, and during the sixth 
cycle, the subject makes a transition to the DEAD 
state and the trial is ended. Each trial is continued 
either until the subject is absorbed (dies) or until a 
prespecified number of cycles is reached. As with 
the cohort simulation, each cycle spent in a state is 
credited with the incremental utility for that state.

Dead

Dead
Dead

Die

M

Survive

Die

Survive

Disabled

Disabled

Well

Dead

Well

Disabled
Disabled

Figure 5  Markov cycle tree
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Monte Carlo simulations are carried out with a 
large number of trials, typically 10,000 to 100,000. 
The exact sequence of states visited varies ran-
domly from one trial to the next but is determined 
by the transition probabilities. The cumulative 
sums for all the trials form a distribution with a 
mean and variance.

The characteristics of the individual subjects 
entering the distribution may also be drawn 
from distributions. For example, the age of sub-
jects may be drawn from a distribution that rep-
resents the age distribution in a population, and 
other parameters, such as background mortality 

rate, can then be calculated from that age for 
each trial.

Frank A. Sonnenberg

See also Decision Trees, Evaluation With Monte Carlo; 
Markov Models, Cycles; Markov Processes; Quality-
Adjusted Life Years (QALYs)
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MarkoV Models, cycles

The Markov model provides a means of representing 
clinical situations in which risk is continuous, prob-
abilities may change over time, or events may occur 
more than once. Markov models represent clinical 
events as transitions between health states, known as 
Markov states. Several advanced techniques extend 
the versatility of this modeling method.

Appropriate Use of Rates and Probabilities

Rates Versus Probabilities

Because Markov models inherently represent 
the passage of time, the transition probabilities 
must reflect a specific time frame. The Markov 
model shown as a state transition diagram in 
Figure 1 and as a Markov cycle tree in Figure 2 
represents a person in the WELL state becoming 
either DISABLED or DEAD or a person in the 
DISABLED state becoming DEAD. Since the 
events represented in the cycle tree may happen 
during every cycle, the transition probabilities 
must reflect the length of time of one cycle. For a 
given degree of risk, the probability that any event 
will occur is greater for a longer period of time 
than for a short period.

The management of probabilities and appro-
priate matching to time in Markov models is 
accomplished by expressing risks as rates and 

converting rates to probabilities for the appropri-
ate time frame. A probability is the likelihood (on 
a scale of 0 to 1) that an event will happen. The 
key distinction between a rate and a probability is 
that a probability is a dimensionless quantity that 
may apply to a particular time frame. On the 
other hand, a rate is a ratio that intrinsically 
includes time. Rates are analogous to instanta-
neous velocity.

Rate= pTransition
Unit time

:

DISABLEDWELL

DEAD

Figure 1  State transition diagram
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The declining exponential approximation of life 
expectancy (DEALE) described by J. Robert Beck 
and Stephen G. Pauker provides a framework in 
which constant mortality rates can be manipulated. 
Consider Figure 3, which depicts a cumulative 
mortality curve for a constant mortality rate. The 
cumulative probability of death having occurred at 
time t is described by the equation

Cumulative Mortality = 1 - e-rate × t,

where t is the time and rate is the mortality rate 
expressed in the same units as t.

The probability of death (or the fraction of a 
cohort that dies) in a given length of time is always 
slightly less than the rate expressed in the same 
length of time. This is because for each increment of 
time, a certain fraction of the cohort dies and con-
sequently the size of the surviving cohort is smaller 
than the original cohort. In the next increment of 
time, the deaths represent a smaller fraction of the 
original cohort than the deaths in the first incre-
ment. In the above example, if the mortality rate is 
.05/year (.05 death per person per year) and time is 
1 year, then the fraction of the original cohort that 
will be dead in 1 year is

Cumulative Death = 1 - e-0.05 = .0488,

which is slightly (2.4%) less than the rate of .05. 
The larger the rate, the more the cumulative prob-
ability differs from the rate. For example, if the 
rate is .2, then the cumulative death probability is 
.181, with a difference of 9.5%.

Standardized mortality figures published by the 
United States National Center for Health Statistics 
(NCHS) are published as “life tables.” Each table 
gives the probability that a person of a given age 
will die between age x and age x + 1. The mortality 
rates are not provided in these tables but can easily 
be calculated by inverting the above formula:

Mortality Rate = ln(1 - P).

Scaling Rates and Converting to Probabilities

The denominator (length of time) for published 
rates and probabilities (such as the NCHS life 
tables) is most commonly 1 year. In a Markov 
model, the probability needed is the probability that 
an event occurs during one Markov cycle. If the 
cycle length is not equal to the length of time in the 
published probability, then the probability must be 
scaled appropriately. Probabilities cannot be simply 
divided and multiplied. For example, if there were 
a 10% chance of an event occurring in 1 month, it 
would be incorrect to say that the probability of an 
event occurring in 2 months would be 10 × 2% or 
20%. The reason is the same as that for the differ-
ence between rates and probabilities. After 1 month, 
only 90% of the original cohort is left, so the frac-
tion of cohort experiencing the event in the second 
month is 10 × .9 or 9%. Thus after 2 months, the 
cumulative mortality probability is .1 + .09 or .19, 
rather than .20. The formula for cumulative death 
given in the foregoing produces the same result.

To model situations with various cycle times and 
with various time horizons, it is most convenient to 
convert the original probability to a rate, multiply 
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the rate by the time interval needed, and then calcu-
late the probability based on the new rate. Thus to 
determine the monthly rate represented by an annual 
mortality probability of .05, the rate corresponding 
to the annual mortality probability of .05 is

Annual Rate = ln(1 - .05) = .0513.

The monthly rate then is .0513 / 12 = .004274.
The probability of death in 1 month (the param-

eter actually used in the Markov model) is therefore

Mortality Probability = 1 - e-0.004274 = .04265.

These calculations assume that the event rate is 
constant over each 1-year interval. However, it does 
not require assuming that the event rate is constant 
over the time horizon of the Markov model, because 
the monthly probability can be calculated sepa-
rately for each year of the simulation.

Baseline muASR Versus Excess Mortality Rates

The mortality rate calculated from life tables, as 
described above, is referred to as the age, sex, and 
race-adjusted (ASR) mortality rate because the 
NCHS reports age-specific mortality separately for 
males and females and for white and nonwhite 
races. (NCHS also reports mortality as a compos-
ite for all races.) The corresponding population 
mortality rate (“baseline mortality”), representing 
death from all causes, is known as “muASR” 
because the Greek letter “mu” (μ) is common 
shorthand for “mortality rate.”

In addition to baseline mortality, decision mod-
els consider mortality from specific causes. The 
mortality rates contributed by these causes are 
referred to as excess mortality rates. Excess mor-
tality rates can be added to muASR to get a total 
or net mortality rate for persons with specific com-
binations of comorbidities. Thus,

muTOTAL = muASR + muExcess,

where muExcess may consist of more than one com-
ponent. For example, if someone has both coronary 
artery disease (CAD) and diabetes, we would have

muTOTAL = muASR + muCAD + muDiabetes.

Then, muTOTAL can be used to calculate the nec-
essary probability of death in each cycle.

Avoiding Double Counting: Subtracting  
Mortality From Comorbidities

When constructing a model that includes comor-
bidities that constitute major causes of mortality  
in the population (e.g., CAD), adding the excess 
mortality for CAD to muASR would result in 
double counting because muASR already includes a 
component from CAD. To avoid this double count-
ing, the tables of muASR must be adjusted by sub-
tracting the population mortality rate for CAD. 
Note that this population mortality rate from CAD 
is not the same as the CAD mortality rate in a 
patient with CAD because the population includes 
many people who do not have CAD. Similarly, any 
major comorbid conditions considered in the model 
should have their corresponding population mor-
tality rates subtracted from muASR before it is used 
to calculate background mortality in a model.

Incremental Utility

In a Markov model, the utility (quality of life) of 
each state is multiplied by the membership  
of each state during each cycle. The sum of these 
products is the cycle sum, and the sum of all cycle 
sums is the cumulative sum, which represents the 
quality-adjusted life-expectancy for the Markov 
simulation. Thus, a cohort that is 50% in the WELL 
state (utility = 1.0), 25% in the SICK state (utility = 
.8), and 25% in the DEAD state (utility = 0) will have 
a cycle sum of .5 + .25 × .8 + 0 = .7. The utility 
quantity for each state in a given cycle is known as 
the incremental utility because it is the increment of 
utility applied for spending one cycle in that state. It 
is analogous to the quality of life for a state.

The Half-Cycle Correction

The evaluation method for Markov cohort sim-
ulations or Monte Carlo simulations is a discrete 
process, meaning it is carried out as a series of  
discrete steps with a fixed cycle time. Therefore, 
accounting of state membership must be done 
either at the beginning of each cycle or at the end.

The necessity of the half-cycle correction derives 
from the fact that transitions occur throughout a 
cycle, so the membership of the state is overesti-
mated when counted at the beginning of a cycle 
and underestimated when counted at the end of 
the cycle. Transitions occur, on average, in the 
middle of each cycle.
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Figure 4 illustrates the membership in a Markov 
state over several cycles. The curve represents the 
actual membership of the state over time. Each 
rectangle represents the calculated contribution of 
the state to the cycle sum. If counting is done at the 
beginning of each cycle, as in Figure 4, then the 
area of the rectangle overestimates the contribution 
of the state to each cycle by the area of the rectangle 
above the curve. On the other hand, if the counting 
is done at the end of each cycle as in Figure 5 (the 
convention in Markov simulations), the area of 
each rectangle underestimates the contribution of 
the state to each cycle by the area of each rectangle 
falling below the curve but above the rectangle.

By adding a half cycle at the beginning of the 
simulation (represented by a rectangle half as wide 
as the others, with height equal to the starting 
membership of the state) but above the rectangle, 
and counting membership at the end of each cycle, 
the net effect is to count membership in the middle 
of each cycle, thus closely counterbalancing the 
over- and undercounting as illustrated in Figure 6. 
The additional half cycle is added by specifying a 
parameter referred to as the initial utility for each 

state, which is equal to half the starting member-
ship of the state multiplied by the incremental util-
ity of that state. It is apparent from Figure 6 that 
any mismatch between over- and undercounting 
will be less if a shorter cycle time is used.

Tail Utility. The simple counting method 
illustrated in Figures 4 to 6 works when the 
model is run until the entire cohort is absorbed 
(dead). However, when the simulation is stopped 
after a finite number of cycles (e.g., after 5 years), 
the remainder of the life expectancy must be 
accounted for. Suppose that the simulation is 
stopped after 12 cycles. As shown in Figure 7, the 
simple counting method would result in 
overcounting one half cycle beyond the end of the 
12th cycle. To correct this, the last cycle sum 
must be reduced by half as illustrated by the 
hatched rectangle in Figure 8. This adjustment is 
not necessary when the simulation is run to 
absorption because the cycle sum (area of the 
rectangle) for the last cycle is close to zero.

In some cases, the Markov model may be run for 
a finite number of cycles to model detailed events 
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over a short time horizon, but the subsequent prog-
nosis may still be of interest. For example, the 12 
cycles may represent the events occurring during 
the first 12 months after an intervention, after 
which detailed data about event rates are no longer 
available. In that case, the remaining prognosis can 
be modeled by adding a component to the tail util-
ity of each cycle at the end of the simulation.

Dual (Cost and Health) Increments

As in simple trees, Markov models may be 
adapted for cost-utility models by creating a dual-
utility structure with one component for the cost 
and one for the health outcome. The state-specific 
utility components correspond to the incremental 
utility of each state; there is an incremental cost util-
ity and an incremental health utility. The cost com-
ponent must also be added to the initial utility for 
each state (to implement the half-cycle correction) 
and to the tail utility if it is used in the analysis.

Determining Cycle Length

Cycle length is usually determined so that it 
best matches the events in the model and the 
available data. For example, a model that consid-
ers the long-term outcome of a chronic illness, 
such as hypertension, may have a cycle length of 
a year. A model that considers detailed events 
occurring over a short period of time (e.g., post-
operative complications or the phases of a preg-
nancy) may require a monthly, or even a weekly, 
cycle length.

For Markov cohort simulations and Monte 
Carlo simulations, cycle length also determines the 
precision of the model. Long cycle lengths are sub-
ject to a greater discrepancy between the simulated 
expected utility and the actual expected utility. The 
ultimate in precision is the fundamental matrix 
solution for Markov chains, which represents an 
exact solution. There is a trade-off between preci-
sion and efficiency; the shorter the cycle length, the 
more cycles must be simulated for a given time 
horizon and, therefore, the longer the simulation 
will take.

Tolls

In the simple examples shown here, the utilities 
of the model are values or expressions attached to 

terminal nodes of the trees. Under certain circum-
stances, it is convenient to apply utility adjustments 
to events represented as branches in a tree rather 
than terminal nodes. For example, a model may 
contain a variable “Cost” that keeps track of the cost 
of a path through the tree. When the path includes a 
branch representing an event that has an associated 
cost (e.g., surgery), the cost can be added using a toll. 
This adds the cost of the event to the cumulative cost 
of the path through the tree. By attaching the cost 
only to the paths, including that branch, the contri-
bution of the cost to the overall cost of a decision 
strategy is weighted appropriately according to the 
likelihood of following that path. Tolls may be used 
for financial costs and may also be used to represent 
a short-term-utility adjustment representing the mor-
bidity of an associated clinical event.

Tunnel States

Temporary Markov states are states that have 
allowed transitions only to other states. Thus, it  
is impossible to remain in a temporary state for 
more than one cycle. In certain circumstances, it 
is important to model temporary situations that a 
subject can remain in for more than one cycle. 
This can be accomplished by the use of tunnel 
states. Tunnel states are a set of temporary states 
that must be visited sequentially as illustrated in 
Figure 9. This state transition diagram represents 
a pregnancy. The starting state is “Not Pregnant.” 
Subjects can remain in the Not Pregnant state or 
can become pregnant moving to the Month 1 
state. States “Month 1” through “Month 9” are 
tunnel states. They can be visited only sequen-
tially. State “Month 9” can make a transition 
only to the “Not Pregnant” state. This structure 
allows modeling events that occur for a short 
length of time and also permits modifying the 
occurrence and probabilities of events differently 
for each tunnel state. For example, the risk of 
miscarriage could be defined for each month of 
the pregnancy by specifying it separately for each 
tunnel state.

Frank A. Sonnenberg

See also Decision Trees, Evaluation With Monte Carlo; 
Markov Models, Applications to Medical Decision 
Making; Markov Processes; Quality-Adjusted Life 
Years (QALYs)
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MarkoV processes

Markov processes are mathematical processes in 
which, given the present state of the process, the 
future is independent of the past. They are 
named after the Russian mathematician Andrei 

Markov (1856–1922), who provided the first 
theoretical results for this type of process. They 
offer a flexible and tractable framework for 
medical modeling and are typically used to ana-
lyze processes that evolve over time. They can be 
used to aggregate information from different 
sources and to extrapolate short-term study 
results into the future.

A Simple Two-State Example

Markov processes can be used to model lifetime 
duration, for humans as well as devices. For 
example, of a group of hearing aids, some may 
fail early on, whereas others will last a long time 
before they eventually break down. If the proba-
bility to fail increases with time, then a graph of 
the failure times might look like a bell-shaped 
curve. However, for hearing aids, breakdowns 
will often be due to an accident, so a constant 
breakdown rate may be more realistic. In that 
case, in each period of time a certain proportion 
of the hearing aids will break down, and the dis-
tribution of the life duration follows an exponen-
tial distribution (Figure 1).

If a hearing aid has a constant breakdown rate 
that is equal to µ, then the mean life duration is 1/µ 
and the lifetime, T, of this hearing aid follows an 
exponential probability distribution:

PR{T ≥ t} = exp(- µt).
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For example, if the average life duration is half 
a year, then the annual breakdown rate is µ = 1/.5 
= 2, and the probability that the hearing aid sur-
vives the first year is equal to exp(-2 × 1) = 14%. 
Because of the constant breakdown rate, the life-
time duration is memory-less: If the aid hasn’t 
broken down yet after a year, then the aid’s break-
down rate is still the same constant rate, µ, so the 
probability that the aid survives one more year is 
again 14%. In other words, the remaining lifetime 
is independent of the time already spent; the future 
is independent of the past. Markov processes are 
basically the extension of this memory-less prop-
erty to more complicated processes, by introduc-
ing a state space.

The life of the hearing aid can be modeled as a 
Markov process with two states, indicating 
whether the aid has broken down or not, and a 

rate of transition, µ, from one state to the other 
(Figure 2).

In this description of the process, the hearing  
aid can break down at any point in time. Instead 
of constantly looking at the hearing aid, one 
could observe its state only at the beginning of 
every week. This changes the continuous-time 
Markov process to a discrete-time Markov pro-
cess (Figure 3).

From one week to the next, the hearing aid 
breaks down with probability p. The continuous-
time and discrete-time models describe the same 
process, so their parameters µ and p are related. If 
the mean life duration of the hearing aid is half a 
year (µ = 1/.5 = 2), then the probability that the 
hearing aid breaks down during any particular 
week is equal to

p= Pr T ≤ 1
52

 
= 1− Pr T >

1
52

 

= 1− exp − m
52

 
≈ :038:

Compared with continuous-time Markov  
processes, discrete-time processes are considerably 
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Figure 3  Discrete-time Markov process
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easier to analyze. The probability that the hearing 
aid is intact (or broken) in the next week, n + 1, 
can be calculated from the probabilities in the cur-
rent week, n:

Pr Intact in week n+ 1f g 1 pð Þ× Pr Intact in week nf g;
Pr Broken in week n+ 1f g p× Pr Intact in week nf g

+ 1× Pr Broken in week nf g:

The first of these recursive formulae states that 
the hearing aid can only be intact if it was also 
intact in the previous week and remained intact 
(with probability 1 - p). The second formula states 
that the hearing aid can be broken either if it was 
intact and broke down (with probability p) or if  
it was already broken. Suppose that initially the 
hearing aid was intact:

Pr Intact in week 0f g= 1;

Pr Broken in week 0f g= 0:

Starting from these initial probabilities, the 
recursive formulae can be used to calculate the 
transient distribution, that is, the probability dis-
tribution through time (n ≥ 0). The main advan-
tage of the discrete-time process is that the re currence 
formulae remain valid when the constant break-
down probability, p, is replaced by a nonhomoge-
neous, that is, time-dependent, probability pn. For 
example, for humans, a nonhomogeneous break-
down rate is more realistic because the mortality 
rate increases with age.

The broken state is an absorbing state: Once 
broken, the hearing aid remains broken. As a 
result, in the long run, the aid will certainly be 
broken. The nature of the process changes con-
siderably when the hearing aid can be repaired. 
Suppose that it takes some time to repair the aid, 
so each week a broken hearing aid may or may 
not be repaired. And suppose that, each week, it 
is repaired with probability q = .8. The introduc-
tion of repair makes this Markov process recur-
rent: Regardless of the initial state, the process 
will continue to alternate between the intact and 
the broken states. The new process has a unique 
long-run probability distribution. The long-run 

probability that the hearing aid is broken is 
equal to

Lim
n→∞

Pr Broken in week nf g= p
p+ q

≈ :045:

In the long run, the hearing aid will be intact for 
about 95% of the time. If the hearing aid is initially 
intact, then after the first week the probability of a 
broken aid is equal to p ≈ .038, which is already 
quite close to the long-run probability (Figure 4).

Markov Chain Models

In general, mathematical models can be used 
to aggregate information from different sources 
and to extrapolate study results to other settings. 
For example, short-term results can be extrapo-
lated into the future and intermediary outcome 
measures can be translated to measures of disease 
burden. Markov processes provide a flexible and 
tractable framework for medical modeling and are 
typically used to analyze processes that evolve 
over time. Most medical applications of Markov 
models use so-called Markov chains, that is, discrete-
time Markov models that describe the state of the 
process at regular time intervals. Compared with 
continuous-time Markov models, discrete-time 
models are more easily analyzed and closely 
resemble medical research in cohorts of patients. 
They allow for transition probabilities that change 
with time, which is important, for example, to 
model age-dependent mortality.

A Markov chain model is defined by three types 
of parameters: the state space, the initial probabil-
ity distribution, and transition probabilities. It can 
be graphically represented as shown in Figure 5.
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The state space describes the states that the pro-
cess can be in

 {1, . . . , S}, with S < ∞. (1)

For example, the states can describe the current 
severity of disease or the kind of treatments a 
patient has received in the past or whether the 
patient is or has been a smoker. The state space 
must be a finite countable set of exhaustive and 
mutually exclusive states. In addition, it must be 
such that it contains all information that is relevant 
for how the process will further evolve, because 
the transition probability matrix is only allowed to 
depend on the current state and on time. The ini-
tial probability distribution over the state space,

 p0
s for s∈ 1, . . . , Sf g;  (2)

describes the starting point of the process: The 
process starts in state s with probability p0

s. 
Often, the process starts in one particular state 
with probability 1, for example, by starting with 
a patient who is initially healthy or has just 
received a particular diagnosis or treatment. In 
other cases, the initial probability distribution 
may reflect the fact that the actual initial state is 
unknown. For example, in genetic and diagnostic 
models, the initial probabilities can be distributed 
over two states that represent whether or not the 
patient has a particular mutation or disease. The 
third type of parameter of a Markov model is the 
matrix of transition probabilities,

Time n = 0

Time n = 1
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State 1
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State S

State SState s

State r State s

State r State s

π1
0 π0

r π0 π0

Pr 1
0 P0

r 2
r s r S

r Sr sr 2r 1

P0
P0

P1 P1 P1
P1

s S

Figure 5  Markov chain model

pn+ 1
s = Pr Process in state s at time n+1f g

=
XS

r= 1

Pr Process in state r at time nf g

× PrfProcess in states at time

× n+ 1jProcess in state r at time ng

=
XS

r= 1

pn
r Pn

rs;

 Pn
rs for n≥0 and r, s∈ 1, . . . , Sf g:  (3)

The probabilities determine how the process 
evolves from one period to the next: Probability 
P

n

rs  is the probability that at time n + 1 the pro-
cess will be in state s, if at time n the process is in 
state r. Either nothing changes (s = r) or a transi-
tion is made to a new state (s ≠ r). Transitions to 
other states can, for example, represent the fact 
that a patient receives a particular treatment, that 
quality of life is improved, or that the patient 
dies. The transition probabilities are allowed to 
be nonhomogeneous, that is, time dependent.

With time, the Markov chain continues to 
jump from state to state. Apart from the actual 
process, its probability distribution over the 
state space evolves with time also. Conditional 
on the present, the future probability distribu-
tion of a Markov chain is independent of the 
past. As a result, the probability distribution 
at time n + 1 can be calculated recursively, by 
conditioning on the state of the process at the 
preceding time n:

(4)
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for n ≥ 0 and s ∈ {1, . . . , S}. This formula states 
that the probability to be in state s at time n + 1 
(probability pn

s
+1) is equal to the probability to 

be in any state r at time n (with probability pn
r) 

and then jump from state r to state s (with prob-
ability P

n

rs). Starting from the initial probability 
distribution, the transient distribution, that is, 
the distribution through time, can be calculated 
this way.

Rewards

Apart from the transient distribution, the purpose 
of modeling is often to estimate particular perfor-
mance measures, such as how often a particular 
event occurs, discounted costs, or quality-adjusted 
survival. Rewards, or tolls, can be used to model 
such performance measures. This adds two types 
of parameters to the Markov model:

 state rewards C
n

s , for n ≥ 0 and  
 s ∈ {1, . . . , S}, (5)

and

 transition rewards C
n

rs , for n ≥ 0 and  
 r, s ∈ {1, . . . , S}. (6)

State rewards are associated with being in a 
state, whereas transition rewards are associated 
with going from one state to another. For exam-
ple, disease-free survival can be calculated by 
assigning state reward 1 to all healthy states and 
0 to the other states. Transition rewards can be 
used to estimate the frequency and costs associ-
ated with particular events. For example, if a state 
denotes that a patient is receiving treatment, then 
a transition reward can be used to model costs 
associated with acute reactions to that therapy. 
The probability that, in period n, the process 
starts in state r and then jumps to state s is equal 
to pn

r P
n

rs.  Therefore, summing over all possible 
states r and s, and assuming that transitions are 
made on average in the middle of each time inter-
val, the expected total reward accrued in period n 
can be calculated as

 
Cn =

XS

r= 1

XS

s= 1

pn
r Pn

rs
1
2

Cn
r +Cn

rs +
1
2

Cn
s

 
:   (7)

Calculating the probability distribution 
(Equation 4) and the reward (Equation 7) only 
requires simple arithmetic operations. They can be 
implemented in general-purpose spreadsheet soft-
ware, but special-purpose software is commercially 
available as well.

Limitations of Markov Chain Models

Discrete-time Markov models provide a flexible 
and tractable framework for many medical models. 
Still, Markov models do have a number of limita-
tions that may or may not be resolved.

In general, the applicability of mathematical •	
models is limited by the availability and quality of 
data. Unreliable estimates of model structure and 
parameters inevitably lead to unreliable conclu-
sions. Sensitivity analysis can be used to analyze 
the impact of such uncertainty.

In Markov chains, the next state only •	
depends on the present state of the process. This 
may not always be sufficient for a valid model. 
For example, excess mortality from smoking 
depends on whether someone has smoked in the 
past, and the probability of cancer recurrence 
tends to decrease with time. In these examples, 
the observable present is insufficient to model 
mortality. This can often be resolved by including 
the past in the state space (by distinguishing past 
smokers from never smokers) or by including 
unobservable characteristics (whether a patient is 
cured or not). For the real world, it is difficult to 
imagine how the future could be influenced by 
past events that are not somehow reflected in the 
present. Still, the information required to make 
the past irrelevant may be too large to fit in a 
finite state space.

Calculating the summation in Equation 4 •	
requires that the state space {1, . . . , S} be discrete and 
finite, which may sometimes be too restrictive. First, 
the natural state space may be continuous instead of 
discrete, such as blood pressure. This can usually be 
resolved by dividing the possible continuous values 
into a number of ranges of values. Second, a finite 
state space may be insufficient when, in theory, the 
number of states should be infinite. For example, 
the number of patients waiting to be treated is 
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potentially infinite. Also, difficulties may arise in 
models with more than one timescale. For example, 
excess mortality due to a particular disease is mostly 
reported in the literature as a function of the time 
since diagnosis, but different patients are diagnosed 
at different ages. The Markov time parameter, n, 
cannot be used to model both age and time since 
diagnosis, but adding either of the timescales to the 
state space would make the state space theoretically 
infinite. However, a finite state space can usually  
be obtained by setting reasonable bounds to the 
process.

From one period to the next, Markov chains •	
can only model a single transition. A continuous-
time model might have shown more than one tran-
sition in that same period. For example, a model in 
which the time parameter, n, denotes the number 
of years may be appropriate for cancer models but 
will overlook many cases of flu. These problems 
can usually be resolved by choosing a shorter time 
interval. Still, shorter cycle times will lead to lon-
ger computation times, which may limit the use of 
large-scale models.

In cases where these limitations provide insolu-
ble problems, simulation is likely to be the alterna-
tive method of choice. Simulation models provide 
an even more flexible framework than Markov 
models, but their statistical nature complicates the 
calculations and analysis.

Steady-State Analysis

Whereas most medical models use transient Markov 
chain analysis, most theoretical results for Markov 
processes concern their long-run behavior. Although 
the process itself will continue to jump from state to 
state, its long-run probability distribution will 
under certain conditions stabilize and converge 
toward a stationary or steady-state distribution. A 
homogeneous Markov chain on a finite countable 
state space has a unique steady-state probability 
distribution if the state space is irreducible (all states 
are accessible from each other) and aperiodic (for 
any state, a return to that state need not only occur 
in multiples of k (≥ 2 periods). This steady-state 
distribution is independent of the initial distribution 
of the process. It can be calculated by repeatedly 
applying Equation 4 until the probabilities stabilize. 

An alternative method follows from the observa-
tion that, after stabilization, the time parameter, n, 
in Equation 4 can be omitted:

lim
n→∞

pn
s
= ps =

Xs

r= 1

prPrs; for s∈ f1; . . . ; Sg:  (8)

This formula is a balance equation: in the long 
run, the number of jumps from state s on the left-
hand side (i.e., the probability to be in state s) must 
be balanced with the number of jumps into state s 
on the right-hand side. Together with the condition 
that the probabilities add up to 1, Equation 8  
provides a set of equations with a unique solution 
that is equal to the steady-state distribution. The 
steady-state probability, ps, can be interpreted as 
the probability that an outside observer, entering 
the system after the process has been in operation 
for a long time, will find the process in state s. Also, 
ps is the long-run fraction of time the process spends 
in state s. Long-run average rewards can easily be 
calculated from the steady-state distribution.

For medical applications with a lifetime hori-
zon, the steady-state distribution is irrelevant 
because in a steady state all patients are dead. 
Steady-state analysis is only relevant for stable 
processes, with homogeneous transition probabili-
ties, for example, if patients with a chronic condi-
tion can recover from the more severe states and 
mortality can be ignored. Also, queuing processes 
such as a waiting room or a transplantation wait-
ing list may be stable enough to have a steady-state 
distribution.

Semi-Markov Models

In Markov chain models, given the present state 
of the process, the future is independent of the 
past. In nonhomogeneous Markov chains, transi-
tion probabilities can depend on the time since the 
process started, but they cannot depend on the 
time spent in a particular state. This may be unre-
alistic. For example, for most types of cancer, 
recurrence after treatment becomes less and less 
likely with time. Several modeling tricks are avail-
able to incorporate time dependency into transi-
tion probabilities, by extending the state space. 
For example, a cure model can be used to model 
right after treatment whether a patient can have a 
recurrence in the future: Since only part of the 
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patients have a risk of recurrence, the overall risk 
of recurrence decreases with time. Alternatively, 
so-called tunnel states can be used that basically 
add the time spent in a state to the state space 
description.

For example, consider a patient who suffers 
from episodes of depression. The patient can be 
either depressed (D) or nondepressed (ND), 
which could be modeled by a two-state Markov 
chain. However, early after an episode, the risk 
of a new episode may be larger than later on. 
This cannot be modeled using nonhomogeneous 
transition probabilities because the pattern 
depends on the time since the previous episode, 
not on calendar time. A solution is to add the 
time since the previous episode to the state space: 
Denote by NDi the state that the patient is in the 
ith week since the previous episode and by pi the 
probability that a period in state NDi is followed 
by an episode of depression. If p1 > p2 > ... > pm, 
then the risk of a new episode decreases with the 
time since the previous episode. The nonde-
pressed states are called tunnel states because 
from one period to the next, the patient cannot 
remain in the same state: Either a new episode of 
depression starts or the patient continues in the 
tunnel.

Time dependency can also be incorporated using 
semi-Markov models. Standard Markov chains 
have fixed cycle times between jumps. In semi-
Markov models (see Figure 6), the state of the pro-
cess changes in accordance with a Markov chain, 
but the time between jumps can have any distribu-
tion that can depend on both the state that is 
jumped from and the state that is jumped to. Semi-
Markov models can be implemented using multidi-
mensional transition matrices; the implementation 
is relatively close to Markov chain methodology. 
More complex methodology is required if general 

continuous-time distributions are assumed between 
jumps, but results remain tractable because the 
analysis of the imbedded Markov chain at transi-
tion moments can be separated from the analysis of 
the sojourn times between jumps. For example, a 
patient with depression episodes can be modeled as 
a two-state semi-Markov process that switches 
between depressed and nondepressed, with decreas-
ing-failure-rate Weibull distributions to model that 
a transition from either state becomes less and less 
likely with time.

Wilbert van den Hout

See also Decision Trees: Sensitivity Analysis, Basic and 
Probabilistic; Markov Models; Markov Models, 
Applications to Medical Decision Making; Markov 
Models, Cycles
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MaxiMUM likelihood 
estiMation Methods

In medical decision making, statistical modeling 
plays a prominent role. The likelihood theory pro-
vides a generally applicable method to estimate and 
test parameters in a statistical model. The method 
goes back to one of the most famous statisticians 
from history, Sir Ronald A. Fisher, who worked on 
the method between 1912 and 1922. Most statistical 
methods make use of likelihood methods. This entry 
begins by explaining the likelihood function and then 
maximum likelihood estimation. Next, it discusses 
the properties of maximum likelihood estimation. 
This entry closes with a discussion of the application 
of likelihood methods for testing a null hypothesis.

The Likelihood Function

Consider a random sample of size n from a popu-
lation where on each individual in the sample  
the value of an outcome variable Y is observed. 
Suppose a statistical model is available that speci-
fies the distribution of Y up to an unknown 
parameter θ, which can be a single parameter or a 
vector of more parameters. If the outcome vari-
able, Y, is discrete, its distribution is specified by 
the probability function, which gives the probabil-
ity of each possible outcome value, y, given the 
parameter(s) θ. If Y is continuous, its distribution 
is described by the probability density function, 
which is a function such that the probability of Y 
taking a value between a and b corresponds with 
the area under its graph between a and b. The 
probability function or probability density func-
tion of Y is denoted by f(y|θ). It might depend on 
other observed variables X (“covariates”) such as 
sex, age, and so on, but this dependence is sup-
pressed in the notation. The observations are 
denoted by y1, y2, . . . , yn. The probability (density) 
function of one observation, say from individual i, 
is f(yi|θ). The simultaneous probability of all obser-
vations in the sample is the product of f(yi|θ) over 
all individuals in the sample. Given the observa-
tions, this is a function of the unknown parameter(s) 
and is called the likelihood function, L(θ):

LðyÞ=
Yn

i= 1

f ðyijyÞ:

Example

Suppose one is interested in the unknown prev-
alence, θ, of type II diabetes in a certain population 
with age above 65 years. To estimate this preva-
lence, n individuals are randomly drawn (with 
replacement) from the population, and outcome 
Y is observed, Y = 1 if the individual in the sample 
has type II diabetes and Y = 0 if not. The probabil-
ity of a random individual having the disease is θ, 
so his contribution to the likelihood function is θ. 
The probability of a random individual not having 
the disease is 1 - θ, so the contribution of a healthy 
individual to the likelihood function is 1 - θ. 
Suppose m individuals with the disease are observed 
in the sample. Then the likelihood function is

Thus, if the sample size is n = 300, and 21 indi-
viduals with type II diabetes are observed, the 
likelihood function is

LðyÞ= y21ð1− yÞ279:

Maximum Likelihood Estimation

According to the likelihood theory, the best esti-
mate, θ̂ is that value of θ for which the likelihood 
function takes its largest value. θ̂ is called the 
maximum likelihood estimate (MLE). Thus the 
MLE is the parameter value under which the 
observed data have maximal probability. To cal-
culate it in practice, mostly the natural logarithm 
of the likelihood,

lðyÞ= log LðyÞ=
Xn

i= 1

log f ðyijyÞ;

is maximized. The reason is that sums are easier to 
handle mathematically than products. To deter-
mine θ̂,  the derivative of the log likelihood, l′(θ), 
which is called the score statistic, is calculated and 
equated to zero:

l0ðyÞ= dlðyÞ
dy

= 0:

The solution gives the MLE. In the case of a p- 
dimensional parameter, the score statistic is a vector, 
and equating it to zero leads to a system of p  

LðyÞ= ymð1− yÞn m:
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equations with p unknowns. Mostly, in practice this 
system of equations does not have an analytic solution, 
and iterative numerical methods have to be used.

Example

The log likelihood function in the above  
example is

l(θ) = mlog θ + (n - m)log(1 - θ)  
= 21log θ + 279log(1 - θ).

The score statistic is

l0ðyÞ= dlðyÞ
dy

= m
y

− n−m
1− y

= 21
y

− 279
1− y

:

Equating the score statistic to zero gives the 
MLE θ̂ = 21/300 = .07, not surprisingly just equal 
to the sample prevalence.

Properties

Invariance

Suppose one is interested in estimating some 
function of the parameter(s), say g(θ). Then the 
MLE of the new parameter ω = g(θ) is calculated 
by maximizing its likelihood function L(ω). An 
alternative way of getting an estimate for ω 
would be to calculate ω̂ = g(θ̂) The invariance 
property of the MLE says that both estimates are 
identical.

Example

Suppose in the above example, one is interested in 
estimating the prevalence odds, ω, which is the ratio 
between the number of diseased and healthy indi-
viduals in the population. Thus ω = θ/(1 - θ), and  
θ = ω/(1 + ω). The log likelihood function of ω is

lðoÞ=21 log
o

1+o

 
+279 log

1
1+o

 
:

Maximizing this yields the MLE ô= 21=279; which 
is, in accordance with the invariance property, identi-
cal to  ω̂ = θ̂/(1 - θ̂) = (21/300)/(1 - 21/300) = 21/279.

Consistency

Under some weak assumptions that are in practice 
almost always fulfilled, the MLE is mathematically 

proved to be consistent, which means that if the 
sample size n tends to infinity, the difference between 
the MLE and the true value of θ tends to zero.

Bias

Often a MLE is unbiased, which means that the 
expected value of θ̂ is equal to θ, but not necessar-
ily. However, under some weak regularity condi-
tions, it can be proved mathematically that the 
MLE is asymptotically unbiased, that is, its bias 
tends to zero if the sample size tends to infinity. In 
the above example, θ̂ is unbiased, but ω̂ is not 
unbiased. However, the theory ensures that the 
bias in ω̂ tends to zero if the sample size tends to 
infinity.

Efficiency

The MLE is proved mathematically to be 
asymptotically efficient, which means that for 
large samples, no other estimator has a lower 
mean squared error. This is the main rationale for 
using the MLE.

Asymptotically Normal

The MLE of a single parameter θ̂ has asymp-
totically a normal distribution with mean θ and 
variance equal to the inverse of the Fisher informa-
tion. This means that for large sample sizes, θ̂ 

 is 
approximately normally distributed, the approxi-
mation becoming better if the sample size increases. 
Fisher’s information, I(θ), is defined as the expected 
value of the squared score statistic:

IðyÞ=Eyl0ðyÞ2:

Since the score statistic has expectation zero, 
I(θ) is the variance of the score statistic. It can be 
shown that under some weak regularity conditions, 
I(θ) is equal to the negative of the expected value of 
the second derivative of the log likelihood:

IðyÞ= −Ey
d2 lðyÞ

dy2 :

Fisher’s information can be estimated by substi-
tuting the MLE in the negative of the second 
derivative of the log likelihood:

Î= − d2 lðŷÞ
dy2 :
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If θ is multidimensional, I(θ) is the negative of 
the matrix of the expected values of all second 
partial derivatives. Its estimate, I^, is obtained by 
substituting the MLE in the matrix of all second 
partial derivatives of the log likelihood. I^ is called 
the observed Fisher information.

Example

In the above example, the second derivative of 
the log likelihood is

d2 lðyÞ
dy2 = d

dy
m
y

− n−m
1− y

 
= − m

y2 + n−m

ð1− yÞ2

 !
:

 

Since the expected number of disease cases in a 
sample of size n is nθ, the Fisher information is

IðyÞ= ny

y2 + nð1− yÞ
ð1− yÞ2 = n

yð1− yÞ :

According to the likelihood theory, the distribu-
tion of the MLE θ̂ = m/n is approximately normal 
with mean θ and variance θ(1 - θ)/n. In this special 
case, the exact distribution is binomial with the same 
mean and variance. It is well known that a binomial 
distribution is well approximated by a normal distri-
bution if nθ and n(1 - θ) are at least 5.

Standard Errors

A measure of precision of a single parameter 
estimate is provided through its standard error, 
which is defined as an estimate of its standard 
deviation. Thus the standard error of the MLE, θ̂, 
of a single parameter θ is

SEðŷÞ= 1

− Î
p = 1

− d2lðŷÞ
dy2

q :

Example

In the above example, the standard error of  
θ̂ = m/n is equal to

SEðŷÞ= 1

m

ŷ
2 + n m

ð1 ŷÞ2

 r = ŷð1− ŷÞ
n

s

:

This is the well-known expression for the standard 
error of a proportion.

In general, the covariance matrix of a p-dimen-
sional parameter is estimated by substituting the 
MLEs in the inverse of the negative of the matrix 
of second derivatives of the log likelihood:

VarðŷÞ= −

d2lðŷÞ
dy2

1
   d2lðŷÞ

dy1dyp

..

. . .
. ..

.

d2lðŷÞ
dy1dyp

   d2lðŷÞ
dy2

p

2
66664

3
77775

1

:

Likelihood-Based Methods for Hypothesis 
Testing and Confidence Intervals

The likelihood theory provides three different gen-
erally applicable approximate methods for testing 
null hypotheses. The hypotheses may be quite gen-
eral, single, or composite and may concern one or 
more parameters. All three methods lead to 
approximate confidence intervals constructed by 
inverting the test, that is, a confidence interval for 
a parameter consists of all values of the parameter 
that are not rejected when tested. In practice, the 
three methods mostly yield similar results, and the 
choice of the method is often just a matter of  
convenience.

The most well known is the method of Wald. It 
is based on the fact that the MLE follows approx-
imately a normal distribution. For null hypotheses 
concerning a single parameter, this method leads  
to approximately standard normal test statistics of 
the form Z = estimate/standard error, and to 
approximately 95% confidence intervals of the 
form estimate ±1.96 × standard error.

The second method is the likelihood ratio 
method. It is based on the fact that two times the 
difference between the maximized log likelihood 
under the alternative and under the null hypothesis 
follows approximately a chi-square distribution 
under the null hypothesis. In the one-parameter 
case, the likelihood ratio confidence interval is the 
interval of θ0 values for which |c2| < 3.84. 

The third method is the score method. It is 
based on the fact that the score statistic is asymp-
totically zero mean normally distributed with vari-
ance equal to the Fisher information. Again, in the 
one-parameter case, the 95% confidence interval 
consists of all θ0 values for which |Z| < 1.96.
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Example

Suppose that in the above example one wishes to 
test the null hypothesis that the type II diabetes 
prevalence is equal to some specific value θ0 that for 
some reason is of interest. Wald’s test statistic is

 Z= ŷ− y0

ŷð1 ŷÞ
n

q ;

which has under the null hypothesis an approx-
imate standard normal distribution. If θ0 = .04, 
Z = 2.037 and the corresponding p value  
is .042.

The approximate 95% confidence interval 
according to Wald’s method consists of all values 
θ0 that are not rejected at level α = .05, that is, all 
values θ0 for which |Z| < 1.96, leading to

ŷ± 1:96 · ŷð1− ŷÞ
n

s

:

In our example, Wald’s approximate 95% confi-
dence interval is (.041, .099).

The likelihood ratio test statistic is given by

w2 =2 lðŷÞ− lðy0Þ
h i

=2 ðm log ŷ+ ðn−mÞ logð1− ŷÞÞ−
h

ðm log y0 + ðn−mÞ logð1− y0ÞÞ
i
;

which under the null hypothesis has an approxi-
mate chi-square distribution with one degree of 
freedom. If θ0 = .04, c2 = 5.79 and the correspond-
ing p value is .016.

The likelihood ratio 95% confidence interval is 
given by all θ0 values for which c2 < 3.84. In the 
example, this is (.045, .103).

The score test is given by

Z= ŷ− y0

y0ð1 y0Þ
n

q ;

which has under the null hypothesis an approxi-
mate standard normal distribution. In the example, 
Z = 2.65 with p value .008. The corresponding 
95% confidence interval is obtained by calculating 
the interval of θ0 values for which |Z| < 1.96.  
This confidence interval is known as the Wilson 

score confidence interval. In the example, it is 
(.046, .105).

Theo Stijnen

See also Distributions: Overview; Statistical Notations; 
Statistical Testing: Overview
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MeasUres of central tendency

When physicians or clinical researchers encounter 
a sample of data, they often try to get an overall 
picture about the data before proceeding with any 
analysis. For example, suppose a physician has a 
group of senior patients who would like their 
weights under control so that health problems 
developed by obesity could be minimized. Before 
the doctor prescribes any medications or gives 
dietary administration solutions to the patients, 
she or he might want to know the typical values 
of these patients’ body mass index (BMI), which 
presents a reliable indicator of body fatness and is 
commonly used to monitor weight. These single 
summarized values are called measures of central 
tendency. A measure of central tendency attempts 
to describe the distribution of the data by identify-
ing the most typical or representative individual 
score. This typical value can then be used to 
describe the entire data sample. Measures of cen-
tral tendency are useful for making comparisons 
among different groups of individuals since they 
reduce a large number of measurements into a 
single typical value that makes comparisons eas-
ier. For instance, after the physician gets the typi-
cal BMI score of the patients, it is easy for her or 
him to know if most of the patients have healthy 
weight status or make a comparison to see 
whether this group of senior patients has better or 
worse weight status than the nationwide senior 
population. Measures of central tendency are 
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simple and useful. However, there is not a single 
standard procedure for determining a measure of 
central tendency in every situation. Mainly there 
are three most commonly used measures of central 
tendency: mean, median, and mode.

Mean

The most common measure of central tendency 
is the arithmetic mean, which is defined as the 
sum of all scores divided by the number of 
observations in the data sample. It can be 
denoted by the formula ð1=nÞ

Xn

i=1
xi; where n is 

the number of observations and Xi is the ith indi-
vidual observation . The mean is easy to inter-
pret and compute. It is an averaged value, not 
depending on the order of the data. It should lie 
in the range of the data, neither less than the 
smallest value nor greater than the largest one. 
In the above BMI example, if the physician 
wants to know the distribution of her or his 
patients’ BMIs, the arithmetic mean of the BMIs 
might be considered by the physician as a proper 
representation. To ease the calculation, suppose 
there are 10 patients in total with their individ-
ual BMI values described as 25, 19, 23, 31, 21, 
25, 20, 23, 26, and 35. The calculation of the 
mean is shown as follows:

Based on the mean value of BMIs, 24.8, the phy-
sician would think those patients have normal 
weight status since generally BMI values of 18.5 to 
24.9 for adults 20 years old or older are considered 
healthy and no medications are needed for weight 
control. Note that as previously stated, the mean, 
24.8, is less than the maximum value of BMIs (35) 
and greater than the minimum value (19). The mean 
has two important algebraic properties that make it 
the most widely used measure of central tendency. 
First, the deviations of each value from the mean 
sum up to zero. Second, the sum of the squared 
deviations will be less than the sum of squared 
deviations from any other constants. That is, the 
mean minimizes the squared deviations, a character-
istic taken advantage of in many inferential statistics 

such as in the construction of confidence intervals. 
To illustrate this, let’s go back to the BMI example. 
The BMI deviations from the arithmetic mean for 
each patient are calculated as 0.2, -5.8, -1.8, 6.2, 
-3.8, 0.2, -4.8, -1.8, 1.2, and 10.2, respectively. 
Apparently, the deviations will be summed up to 0 
as shown in the equation 0.2 - 5.8 - 1.8 + 6.2 - 3.8 + 
0.2 - 4.8 - 1.8 + 1.2 + 10.2 = 0.  Moreover, the sum of 
the squared deviations from the mean is equal to

0.22 + 5.82 + (-1.8)2  + 6.22 + (-3.8)2 + 0.22 
+ (-4.8)2  + (-1.8)2 + 1.22 + 10.22 = 221.6,

which is the smallest if any other constants are used 
to calculate deviations rather than the mean. For 
example, the deviations from another constant (say 
25) will be 0, -6, -2, 6, -4, 0, -5, -2, 1, and 10, 
respectively. It is easy to verify that the sum of the 
deviations from 25 is –2 rather than 0, and the sum 
of the squared deviations is 226, which is greater 
than the sum of deviations from the mean, 221.6.

Median

The median is a value that separates the set of 
data into two groups, the highest half and the 
lowest half. Since 50% of the observations are 
less than the median, it is also called the 50th 
percentile or the second quartile. The median can 
be obtained by sorting the data into either 
ascending or descending order by their magni-
tudes, then repeatedly removing pairs of the cur-
rently largest and smallest values until one or 
two values are left. The left solo value is the 
median, but if there are two values left, the 
median is taken as the arithmetic mean of the 
two. In the BMI example, the original data sorted 
by ascending order are 19, 20, 21, 23, 23, 25, 25, 
26, 31, and 35. Since the number of observations 
is 10, an even number, there will be two scores 
left after removing four pairs of the currently 
largest and smallest scores. The median is the 
arithmetic mean of the fifth and sixth smallest 
values (23 + 25)/2 = 24. This approach is typi-
cally applicable to small sets of data. A more 
general approach to calculate the median is 
described as follows. Let n be the number of 
observations in a sorted data series in ascending 
order. The median will be the (n+1

2 )th largest value 

Mean=

25+ 19+ 23+31+ 21+25
+ 20+ 23+26+ 35

10
= 24:8:
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in the sorted data series if n is an odd number, 
and the arithmetic mean of the(n

2)th and (n
–
2

 + 1)th 
largest values if n is an even number. In our BMIs 
example, n is 10, an even number, so the median 
is the arithmetic mean of the fifth and sixth larg-
est values, 23 and 25, respectively.

Mode

The most frequently occurring value in the data set 
is called the mode. Graphically, it is the highest 
point in a bar plot or histogram. The mode is fairly 
easy to calculate. However, it is not necessarily 
well defined, so it is possible to have more than 
one mode (bimodal or multimodal) or no mode in 
a data set. In the previous BMI example, frequency 
for each unique value of BMIs was calculated  
as below:

 Values of BMI 19 20 21 23 25 26 31 35

 Frequency 1 1 1 2 2 1 1 1

Since two values, 23 and 25, occur the most 
frequently, it is a bimodal data set with mode 23 
and 25.

Choosing a Measure of Central Tendency

Which measure of central tendency should be 
used depends on the type and symmetry of the 
data. In terms of interval (e.g., BMI) or ratio 
data (e.g., donor to recipient weight ratio in kid-
ney transplant), all three measures could be 
used, but the mode is least often used in this 
case. For ordinal data (e.g., pain scales), median 
and mode may be used, but the median takes the 
ranking of categories into account, providing 
more information about the data series than 
does the mode. Usually, the mean of an ordinal 
data series makes no sense, but if an assumption 
of equal metric distances between categories was 
made, the mean might also be appropriate for 
ordinal data. The mode is the only meaningful 
measure of central tendency for nominal data 
such as gender or ethnicity.

The symmetrical property is another impor-
tant issue that needs to be considered when 
choosing a measure of central tendency. Generally, 
if the distribution of a data series is perfectly 

symmetric, as is the Gaussian (normal) distribu-
tion, the mean, median, and mode are the same. 
However, if the distribution is right (positively) 
skewed, as is a chi-square distribution with 
degrees of freedom of 3, they are in different 
locations, and the relative magnitudes would be 
mode < median < mean, whereas for a left (nega-
tively) skewed distribution, the order would be 
mode > median > mean. Figure 1 illustrates the 
relationships.

The mean is the most appropriate representa-
tive for a symmetric distribution as it can be easily 
used in further statistical inference. However, the 
arithmetic mean can be easily influenced by 
extreme values as all given data are involved in the 
calculation of the mean. Let’s revisit the BMI 
example. Suppose the last patient happened to be 
very obese, with a BMI value of 100 instead of the 
original 35; then, the arithmetic mean of BMI 
would soar to

25+ 19+23+ 31+21+ 25+20+ 23+ 26+ 100
10

= 31:3;

which is greater than any other BMI values except 
the obese patient. In this case, the mean departs 
from the majority of the data and loses its role as 
the typical value of the data series. Based on the 
mean of BMI, 31.3, the physician might get a 
biased impression that the majority of the patients 
are obese. Consequently, the physician might make 
a wrong decision to prescribe weight control 
medication to those patients and add unnecessary 
risk to the patients. In contrast with the arithmetic 
mean, the median is resistant to outliers as the 
computation of the medians does not get all the 
given data involved, whereby changing a small 
number of values to extreme magnitudes will not 
result in a large change of the median. In the BMI 
example, the median did not change when an out-
lier was arbitrarily introduced, and is still a good 
representative for the data series. Hence, the 
median is a commonly used measure of central 
tendency for a largely skewed data set. In practice, 
when a researcher reports a characteristic of the 
data, he or she needs to check the symmetry first 
to select a proper measure of central tendency. A 
histogram or bar plot is an effective visual tool for 
this purpose.

Changhong Yu
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See also Frequency Estimation; Measures of Variability; 
Statistical Testing: Overview; Variance and Covariance
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MeasUres of freqUency 
and sUMMary

Improving health for individuals and populations 
requires an understanding of patterns of disease 
occurrence. This is in large part a matter of count-
ing—researchers count the number of times a 
disease occurs, how many deaths occur, and so 
on. Although simple at first glance, a proper 
understanding of the terminology and attention to 
potential errors in this work are important if the 
numbers are to accurately reflect the underlying 
truth. This entry describes the essentials of mea-
suring the incidence and prevalence of disease.

Two key concepts form the foundation for this 
material: disease risk and disease burden. Risk is 
the probability of developing the disease of inter-
est and can be assessed with measures of incidence. 
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When measuring incidence, researchers are assess-
ing frequency, meaning they are counting events, 
that is, disease occurrences. At times their atten-
tion is at the population level, such as when they 
are assessing the number of new cases of HIV in a 
country over a particular calendar year. At other 
times they are interested in an individual who is 
free of disease and would like to make decisions 
based on the probability that this individual will 
develop the disease, such as when estimating risk 
of heart attack for a patient in a doctor’s office. In 
both instances, researchers are interested in new 
events, that is, the development of disease. An 
individual with disease is called a case.

Disease burden, on the other hand, is a public 
health concept that is a function of the number of 
existing cases at a particular time and is assessed 
with measures of prevalence. With this perspec-
tive, researchers are not confining their attention 
to new cases but rather the number of individuals 
with a particular disease status. Prevalence mea-
sures are not used to estimate risk.

Before getting to healthcare examples, con-
sider the following analogy. You are standing at 
the entrance of a local café, watching as custom-
ers enter, hang out for a while, and then leave. 
Each customer who enters is analogous to a new 
case. Each customer leaving is analogous to either 
a death or a cure. Therefore, counting up the 
number of individuals entering during a specific 
time period (e.g., 1 day) is analogous to inci-
dence. Looking through the café window and 
counting the number of customers inside at a 
particular time (e.g., 12:00 noon) is analogous to 
prevalence. The number inside is a function both 
of how many are entering and of how long each 
customer stays. As we shall see, deaths and cures 
among cases affect disease duration and therefore 
prevalence.

Assessing Risk With Incidence Measures

This entry now discusses two variations on the 
concept of incidence: cumulative incidence (also 
known as incidence proportion) and incidence rate 
(also known as incidence density). Cumulative 
incidence is the proportion of healthy (disease-
free) individuals who develop disease among a 
population at risk for the disease over a specified 
time period:

Cumulative incidence

Number of new cases of
disease in a population

at risk over
a specific period

Number of individuals
in the population
during that period

:

Cumulative incidence is therefore expressed as a 
proportion, that is, a number between 0 and 1, 
although it may be multiplied by 100% if one 
wishes to express it as a percentage. Alternatively, 
one can express this per 1,000 persons or some 
other arbitrary number that fits the situation. So, 
for example, the cumulative incidence of diabetes 
over 10 years among a population of overweight 
individuals might be

18000  = .18 or 18%

or

.18 × 1000 = 180 cases per 1,000 persons.

Figure 1 is a graphic representation of cumula-
tive incidence, in which four subjects are observed, 
each for an entire 3-year period. The cumulative 
incidence is .25.

The denominator must include only disease-free 
individuals at the beginning of the time period 
because existing cases are not at risk for becoming 
new cases.

The specification of a time period is essential to 
understanding risk. For example, the great major-
ity of individuals who live to age 80 develop hyper-
tension (cumulative incidence approaches 1). 
However, if one’s interest is in the short-term risk 
of development of hypertension among a popula-
tion of teenagers, this number is not useful. In such 
a case, the 10-year cumulative incidence might be 
of more interest.

With cumulative incidence, all individuals in the 
denominator must be observed for occurrence of 
the disease for the entire time period. Often, how-
ever, a study will involve patients in which the 
periods of observation vary between subjects. This 
may be because some entered the study later than 
others or left the study earlier than others due to 
death or being lost to follow-up.

When each individual in a study has not  
been observed for the entire time period, the 

100000
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appropriate measure is the incidence rate, also 
known as incidence density. Like cumulative inci-
dence, this is a measure of new cases and therefore 
a measure of risk. Incidence rate is reported as the 
number of cases per person-time. Person-time is 
the sum of the time intervals of observation for 
each individual. For example, if four subjects have 
been observed for 3, 3, 2, and 2 years, respec-
tively, then the researchers have 10 person-years 
of observation. One of these individuals may have 
developed the disease, so the researchers have

Incidence rate=

Number of new cases of disease
in a population at risk

Sum of person= time of observation
;

1/10 = .1 cases per person-year

or

.1 × 100 = 10 per 100 person-years.

Here the value is a rate, it has the units of cases per 
person-time, and, unlike a proportion, the value 
can exceed 1. Incidence rate is sometimes referred 
to as the force of morbidity.

Figure 2 demonstrates the idea of incident rate 
graphically. Subject 4 left the study, due either to 
death or being lost to follow-up, so the research-
ers do not count time after this point in the 
denominator. Subject 2 developed the disease 
after 2.5 years of observation and then remained 
under observation until the study concluded, so 
that the total observation time for this subject is 
3 years.

The risk of developing disease in a disease-free 
individual can be estimated by the cumulative 
incidence or incidence rate in a population made 
up of subjects who are similar to the individual in 
question. The more precisely the individual 
matches up with the characteristics of the popula-
tion, the more accurate the estimate of risk is. For 
example, the researchers may estimate that a 
74-year-old man has a 10-year risk of stroke of 
8%, based on an observational study of people in 
their 70s. However, if the man is known to have 
important risk factors for stroke, such as high 
blood pressure, diabetes, and smoking, then a 
more precise estimate will be higher if it is based 
on the incidence of a more narrowly defined 
population made up of individuals who share 
these same risk factors.
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Observed time Disease state

Figure 1  Cumulative incidence

Note: All four subjects have been observed for the entire time period. Subject 2 developed the disease.
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Assessing Disease Burden  
With Prevalence Measures

As discussed in the foregoing, cumulative incidence 
and incidence rate are measures of risk and deal with 
new cases. Measures of prevalence, on the other 
hand, reflect disease burden in a population and deal 
with existing cases. Rather than counting events, 
prevalence measures involve counting the number of 
individuals with a particular disease state.

Usually a prevalence measure reflects point 
prevalence, meaning the proportion of individuals 
within a population that has the disease state of 
interest at a particular time:

1200
10000

= :12 or 12%;

or

.12 × 1000 = 120 per 1,000 persons.

Figure 3 demonstrates point prevalence 
graphically.

The researchers can also calculate a period 
prevalence, in which the numerator is the total 
number of subjects who had the disease during a 
specified time span. In Figure 3, the 3-year period 
prevalence is 2/4 = .5.

The essential difference between incidence and 
prevalence is that in the latter researchers do not 
determine when a disease begins. Since they are not 
measuring new cases, they cannot use prevalence to 
indicate risk of developing the disease. An increas-
ing prevalence in a population may be attributed to 
a longer duration of disease (due to, for example, 
improved survival or decreased cure rates).

Patterns of Occurrence

There are three important terms that are often 
used to describe the degree to which disease is 
present in a population. Endemic indicates that a 
disease is chronically present or a usual occur-
rence within a geographic area. For example, 
malaria is endemic in sub-Saharan Africa. An epi-
demic is said to exist when the existence of dis-
ease in a particular region is clearly above and 
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Figure 2  Incident rate

Note: Subjects 3 and 4 have been observed for only part of the time period. One new case per 10 total person-years; .1 case per 
person-year.
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beyond what is expected from historical informa-
tion. The large increase in the prevalence of obe-
sity in the United States over the past 20 years is 
an example of an epidemic. Finally, pandemic is 
used to signify a worldwide epidemic. Influenza is 
a disease, for example, with the potential to 
become pandemic.

Competing Risks

Consideration of the concept of competing risks 
helps one understand changes in patterns of dis-
ease over time. A competing risk is present if 
there is an event other than the event of interest 
that may occur and change the probability of 
the event of interest. For example, consider a 
patient with diabetes. Such an individual is at 
risk for several important health events, but 
here two are considered: (1) development of 
end-stage renal disease (ESRD) and (2) cardio-
vascular death. Individuals with diabetes gener-
ally experience a slow decline in kidney function 
over a period of years. An important minority 
of such individuals eventually reach a severely 
low level of function whereby either dialysis or 

kidney transplantation is necessary to sustain 
life. Such individuals have ESRD. An individual 
cannot develop ESRD, however, if he dies from 
cardiovascular disease before reaching this 
severely low level of kidney function, which is in 
fact a common circumstance.

In recent decades, there has been a steady 
climb in both the incidence and prevalence of 
ESRD. Important in the understanding of this 
phenomenon is the fact that during this time 
period, there have been great advances in the 
treatments for cardiovascular disease. These 
advances have allowed many individuals who 
would otherwise have died to live on to experi-
ence ESRD. The incidence of cardiovascular 
death, an event that is competing with ESRD 
development, has decreased, allowing more cases 
of ESRD to develop.

Taking this example one step further gives 
some appreciation for the growing importance of 
competing risks. Individuals who do live on to 
develop ESRD and who are successfully treated 
will live, thereby having the opportunity to expe-
rience other significant events such as heart 
attack and stroke. Where a 60-year-old diabetic 
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Figure 3  Point prevalence

Note: In January 2007, 2 of 4 subjects had the disease. Point prevalence is 5.
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individual in 1960 might have had one fatal heart 
attack, a similar 60-year-old individual in 2008 
may survive the heart attack, live on to begin 
dialysis treatment for ESRD, and in the ensuing 
years experience a stroke and two more heart 
attacks before dying at age 80. As a general rule, 
as treatments improve, particularly for chronic 
diseases, the concept of competing risks will be 
increasingly important to our understanding of 
disease occurrence.

Potential Errors in Measuring  
Incidence and Prevalence

There are several potential sources of error that 
are important when trying to measure incidence 
and prevalence. In each of the following exam-
ples, the true incidence and prevalence may be 
overestimated.

Increase in the Frequency or  
Effectiveness of Screening

Screening is testing for disease in the absence 
of signs or symptoms of the disease and is 
central to preventive medicine. A positive screen-
ing test that is later confirmed will indicate dis-
ease and therefore identify a case. An increase in 
the number of known cases may be a function 
of better screening even if the true, unknow-
able prevalence is actually stable over time. 
For example, an increase in the apparent preva-
lence in depression in a population over time 
may be due to the fact that more physicians are 
looking for it through screening questions and 
questionnaires.

Enhanced Diagnosis

As technology advances, medical professionals 
are able to uncover disease states that in the past 
would remain occult. For example, an individual 
with chest pain and a negative treadmill stress 
EKG might in years past have been told that heart 
disease was not evident. Today, the physician has 
several methods, both invasive and noninvasive, to 
detect coronary disease accurately when it is in fact 
present.

Changes in Diagnostic Criteria

For example, in 2003 the American Diabetes 
Association lowered the cutoff value of impaired 
fasting glucose from 110 mg/dl to 100 mg/dl. The 
calculated prevalence of this disorder increased 
dramatically.

Enhanced Documentation

For studies based on data from medical records, 
for example, one must consider changes in documen-
tation, perhaps attributable to conversion from paper 
to electronic records or in response to regulatory or 
financial demands. Such changes might account for 
apparent increases in disease occurrence.

The foundation of understanding disease in 
populations is simply counting new or existing 
cases. But one must use terms such as incidence and 
prevalence properly and understand the nuances 
that may introduce error.

Christopher Hebert

See also Frequency Estimation
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MeasUres of Variability

Variability is the extent to which measurements dif-
fer from one another. Understanding the variability 
in a sample or population is important to evaluat-
ing whether an observed outcome is meaningful in 
a statistical analysis. Using the variability, research-
ers can identify whether a change in a measure is 
larger than what would be expected by chance. In 
addition, when reviewing data about a treatment 
or intervention, the average patient outcome may 
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be less important than the range of likely outcomes. 
Frequently reported measures of variability include 
variance, standard deviation, standard error, coef-
ficient of variation, and interquartile range. Graphs 
and plots of data may be useful for illustrating vari-
ability and guiding statistical analyses.

Variance and Standard Deviation

Among the most common measures of variability 
is the variance, σ2, which is a function of the dif-
ferences between each data point and the average 
(mean) of the data. Larger variances indicate more 
variability (see Figure 1, which shows the differ-
ence in variability for two groups with identical 
means when σ2 = 1 and σ2 = 9). The variance is 
always greater than or equal to 0: If all the values 
are identical, σ2 = 0. While the variance is affected 
if each measurement in the data is multiplied by 
the same number (change in the scale), it is not 
changed if the same number is added to each mea-
surement (shift in location). Another useful prop-
erty of the variance is that the variance of a sum of 

uncorrelated measures is equal to the sum of their 
variances.

The variance of a population may be estimated 
from a sample of size n using the unbiased estima-
tor s2 = 1/(n - 1) ∑

n

i=1 (Xi – X
–
)2, where X1, . . . ,  

Xn is a random sample and X
–
 is the sample mean. 

The biased version, σ2 which replaces the denomi-
nator, n - 1, with n, is less commonly used. As an 
example, Table 1 gives the birth weights of 12 
male and 12 female infants in kilograms. The 
mean birth weight for males in this sample is 
X
– = 3.48, and the sample variance is s2 = .26. For 

females, the sample mean is X
–
 = 3.30, and the 

sample variance is s2 = .15.
The standard deviation, σ or SD, is the square 

root of the variance and is often used with the 
average to describe the distribution of a measure. 
It is greater than or equal to 0 and is measured in 
the same units as the measure of interest, which is 
useful for interpretation. The sample standard 
deviation, s, the square root of the sample vari-
ance, s2, is used in many formulas for confidence 
intervals and hypothesis testing. In Table 1, s = .51 
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Note: Scatterplot of random samples from normal distributions with mean 0 with variance equal to 1, and mean 0 with variance 
equal to 9.
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for males and .39 for females. When estimating the 
combined (pooled) standard deviation from more 
than one group or sample, the following formula is 
often used:

spooled =  √[((n1 - 1)s2
1 + (n2 - 1) s2

2  + ... + 
    (nk - 1)s2

k )/(n1 + n2 + ... + nk - k)],

when k is the number of samples. The pooled 
sample standard deviation for males and females in 
Table 1, where k = 2, is spooled = .46.

Chebyshev’s inequality illustrates the relation-
ship between the standard deviation and the distri-
bution of the data by indicating the proportion of 
the values that fall beyond a given number of stan-
dard deviations from the mean: For any distribu-
tion, the fraction of values at least d standard 
deviations away from the mean is less than or equal 
to 1/d2. In the case of the normal distribution, 
approximately 68.3%, 95.4%, and 99.7% of val-
ues are within one, two, and three standard devia-
tions from the mean, respectively (see Figure 2).

Measures Based on the Sample  
Mean and Standard Deviation

The term standard error (SE) is sometimes used in 
place of the standard deviation, although, in gen-
eral, the two terms are not interchangeable. The 
standard error is usually viewed as the standard 
deviation of an estimated quantity, for example the 
standard error of the sample mean (SEM). The 
SEM reflects the variability of the mean calculated 
from a sample of observations. The standard error 

for the mean is calculated by dividing the standard 
deviation for the sample by the square root of the 
sample size, n. The standard deviation is typically 
used to describe the variability of the data, while the 
standard error is used to describe how precisely the 
mean of the data was estimated and is used in 
the construction of confidence intervals. In Table 1, 
the SEM is .15 for boys and .11 for girls.

The coefficient of variation (CV) is another vari-
ability measure, commonly used in situations where 
variability is dependent on the size of the mean. 
The coefficient of variation is defined as the ratio of 
the standard deviation to the mean. This value is 
multiplied by 100 to reflect the measure as a per-
centage. In Table 1, the CV for males is 14.7%, and 
the CV for females is 11.8%, reflecting the larger 
variability among the males in the sample. A related 
measure is the effect size, or treatment effect, which 
provides a standardized measure of the difference 
between groups. The effect size is the difference in 
two group means divided by the standard deviation 
from either group, usually the control group, or by 
the pooled standard deviation.

Nonparametric Measures of Variability

The above variability measures, which are based 
on differences from the mean and are called para-
metric, are most meaningful when the data have a 
symmetric distribution such as the normal distri-
bution’s bell-shaped curve. However, when the 
distribution is not symmetric (skewed), differences 
from the mean hold less value because it is not the 
center of the distribution (see Figure 3 for exam-
ples of symmetric and nonsymmetric distribu-
tions). In these cases, the variability can be described 
using the percentiles of the observed sample, which 
are considered to be nonparametric and are valid 
for any distribution of data.

Two common nonparametric measures of vari-
ability include the range, defined as the minimum 
and maximum observed values, and the inter-
quartile range, which is the first quartile (25th 
percentile or Q1) and third quartile (75th percentile 
or Q3). While the range provides the extremes of 
the distribution, the minimum and maximum are 
greatly affected by outlying observations. The inter-
quartile range provides a more stable (robust) mea-
sure of variability because it is less influenced by 
outlying measurements. In Table 1, the interquartile 

Table 1   Birth weight (kg) of full-term male and female 
infants

Males Females

4.1 3.4 3.8 3.1

3.5 3.2 2.8 3.6

3.3 3.0 3.8 3.8

4.0 3.2 3.4 3.0

3.7 2.7 3.4 2.7

4.5 3.2 3.0 3.2
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Figure 2  Chebyshev’s Inequality

Note: The percentages of data that fall within a given number of standard deviations from the mean are shown. The histogram 
is a sample from a normal distribution with mean 0 and standard deviation 1.
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Figure 3  Symmetric and nonsymmetric distributions

Note: The symmetric plot shows data drawn from a normal distribution with mean 0 and standard deviation 1. The nonsymmetric 
distribution is a sample from a chi-square distribution with 5 degrees of freedom.
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ranges for males and females are very similar 
(3.20–3.78 for males and 3.00–3.65 for females), 
while the ranges reflect the greater variability and 
greater maximum measurement in the males (2.70–
4.50 for males and 2.70–3.80 for females).

Graphical Assessment of Variability

To assess the variability observed in a given sam-
ple, graphical methods are often very useful. 
Scatterplots (Figure 1) and histograms (Figures 2 
and 3) can provide a general shape of the observed 
data distribution as well as identify the mean or 
median. Boxplots that display the quartiles of the 
data are also beneficial because they can reveal 
information about the data, including whether the 
data are not symmetric or if outlying observations 
exist. Boxplots stratified by treatment group or 
other factors can be used to assess empirically 
whether assumptions of statistical models hold. In 
the boxplots in Figure 4, male subjects have more 
variability in birth weight than do females.

Statistical analyses often begin with these 
graphs to uncover patterns that may be present in 

the data. Using these pictures along with the 
numerical summaries described above, researchers 
can understand the variability of their data and 
therefore understand their measurements better.

James F. Bena and Sarah E. Worley

See also Analysis of Variance (ANOVA); Confidence 
Intervals; Hypothesis Testing; Variance and 
Covariance
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Medicaid

Medicaid is a U.S. governmental program that is 
funded by federal and state (and, in some cases, 
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local) governments, is administered by the states 
under federal guidance, and is intended to cover 
the costs of medical and other healthcare-related 
services for the poorest of America’s citizens. It 
was enacted in 1965, exemplifying the govern-
ment’s concern about access to medical care for 
two large segments of the U.S. population—the 
elderly and the poor. Buried within legislation 
enacting Medicare (as Title XVIII of the Social 
Security Act), through which federally supported 
health insurance was extended to the country’s 
elderly, Medicaid (as Title XIX of the Social 
Security Act) was enacted as part of the continuing 
efforts of the federal and state governments’ lim-
ited efforts to fund medical care for various cate-
gories of needy people. Originally enacted as an 
optional program (i.e., there was no mandate by 
the federal government requiring that individual 
states implement Medicaid), it was not until 
Arizona implemented its Medicaid program in 
1982 that all states (and the District of Columbia 
and other U.S. territories) provided Medicaid cov-
erage to eligible individuals. As of 2006, 43 mil-
lion low-income individuals were recipients of 
Medicaid coverage.

Medicaid, like other public and private health 
insurance programs in the United States, plays an 
important role in U.S. health policy. The policy 
decisions inherent in the successful administration 
of the program can be informed by appropriate 
application of decision-making tools such as cost-
effectiveness analysis and other statistical tech-
niques, especially in the face of limiting resources. 
This entry provides the reader with an overview 
of the Medicaid program, including the federal 
and state governments’ role in its administration; 
the eligibility requirements for receiving benefits 
and what benefits recipients are eligible to receive; 
the costs of Medicaid as part of the nation’s 
health expenditures; and the expansion of the 
Medicaid program through the State Child Health 
Insurance Program (SCHIP). Last, this entry con-
siders the effect of Medicaid on states’ budgets 
and states’ attempts to control the program’s 
expenditures, including the health reforms intro-
duced by the state of Oregon, the centerpiece of 
which was a prioritized list of services that ranked 
medical conditions and treatment on the basis of 
cost-utility analysis and that sparked a national 
debate on rationing.

Program Administration and Financing

Each state administers its own Medicaid program, 
following broad requirements and guidance from 
the federal Department of Health and Human 
Services’ Centers for Medicare and Medicaid 
Services (CMS) and within which states have con-
siderable discretion concerning which groups of 
low-income people are eligible for coverage, which 
benefits will be covered, and what mechanisms 
will be used to reimburse service providers. As a 
result, Medicaid programs vary considerably from 
state to state, with some programs providing very 
comprehensive coverage for large numbers of eli-
gible individuals, while others cover more limited 
and basic sets of services.

Medicaid is supported by federal and state 
funds; some states require local government sup-
port as well, offsetting some portion of the state 
government’s share of the funding. States partici-
pating in Medicaid receive federal matching funds 
on a percentage basis that can range from 50% to 
as high as 85% of their medical service expendi-
tures, depending on the state’s per capita income. 
(Most state administrative costs are matched at 
50% for all states.) In this way, high-income states 
such as Connecticut, Maryland, Massachusetts, 
and New York, all of which have federal medical 
assistance percentages (FMAPs) of 50%, are 
required to spend more of their own funds to cover 
Medicaid recipients than is required of low-income 
states such as Arkansas, the District of Columbia, 
Mississippi, and West Virginia, all of which have 
FMAPs exceeding 70%. The average federal match 
is about 57% of the cost of the programs; the fed-
eral government spends $1.14 for every $2 spent 
by the states. However, despite the higher match-
ing percentages for states with low per capita 
incomes, average per capita federal spending is 
higher in high-income states such as New York 
than in low-income states such as Alabama due to 
state-level differences in Medicaid policy choices, 
healthcare costs, and population demographics.

Eligibility

Generally speaking, Medicaid is a means-tested 
program, and individuals need to meet certain 
eligibility requirements to qualify for coverage. 
While some eligibility requirements vary from 
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state to state, states are required to cover certain 
populations to receive federal matching funds. 
These populations can be grouped into five  
broad eligibility requirements—categorical, income, 
resource, immigration status, and residency—all 
of which must be met by an individual to qualify 
for Medicaid coverage.

Categorical

Federal statute has outlined more than two dozen 
eligibility categories, which can be broadly grouped 
as children, pregnant women, adults in families 
with dependent children, individuals with disabili-
ties, and the elderly. Individuals falling within these 
categories are considered “categorically needy.”

Income

Income standards are tied to a dollar amount 
that is a specified percentage of the federal poverty 
level. This, as well as the methodology by which a 
person’s income is calculated to determine his or 
her eligibility, can vary both from state to state and 
also by eligibility category—what counts as income, 
what income can be disregarded from the calcula-
tion, and the amount in healthcare costs a person 
needs to incur to reduce or “spend down” his or 
her income to meet the income-based eligibility 
requirement. (The categorically needy, however, do 
not need to spend down to qualify for Medicaid.)

Resource

In most states, individuals in most eligibility 
categories must have resources (e.g., savings 
accounts, personal property such as an automobile 
[above a specified value], and real estate other than 
one’s home) that have a total value less than some 
specified amount to qualify for Medicaid.

Immigration Status

Citizens who meet their state Medicaid pro-
gram’s financial and other nonfinancial eligibility 
requirements are entitled to Medicaid coverage. 
Immigrants who have entered the United States ille-
gally but meet other eligibility requirements to 
qualify for Medicaid are allowed to receive only 
emergency medical care. Immigrants legally residing 

in the United States may be eligible for the full range 
of Medicaid services, depending on the date on 
which they entered the country.

Residency

In addition to being a citizen of the United 
States or a legal immigrant who entered the coun-
try prior to August 22, 1996, an individual must 
be a resident of the state offering the Medicaid 
coverage for which the individual is applying.

There are other pathways to becoming eligible for 
Medicaid. For example, an optional Medicaid eligi-
bility group is the “medically needy”—individuals 
who have incurred high medical expenses and who 
meet Medicaid’s categorical requirements (as noted 
above) but whose income is too high to qualify for 
coverage. These individuals can qualify for eligibil-
ity by spending down their income by paying for 
medical expenses. However, for these and all other 
Medicaid recipients, eligibility for Medicaid cover-
age is not indefinite. A recipient’s eligibility must 
be reviewed and redetermined at least once every 
12 months. A person who no longer meets the eligi-
bility requirements of his or her state loses his or her 
entitlement to Medicaid coverage.

Services Covered

To receive federal matching funds, each state’s 
program is required to provide certain specific 
health services in its Medicaid benefit package. 
These mandatory services include the following:

Inpatient and outpatient hospital care •
Physician, midwife, and certified nurse  •
practitioner services
Laboratory and X-ray services •
Nursing home and home healthcare for  •
individuals of age 21 and older
Early and periodic screening, diagnosis, and  •
treatment services for children below age 21
Family planning services and supplies •
Ambulatory care provided by entities designated  •
as federally qualified health centers (outpatient 
care facilities that receive federal grants as 
community health centers) or as Medicare-
certified rural health clinics
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In addition, states may offer optional services, 
and for these too they will receive federal matching 
funds. Such services include prescription drugs, 
physical therapy, hospice care, vision care, including 
glasses, and dental care. In addition, states may 
apply to the federal government for waivers to con-
tinue receiving matching funds for services for which 
matching is not otherwise available. For example, 
states have received waivers to offer special home- 
and community-based services such as case manage-
ment, personal care, and home health aid services to 
recipients at risk of being institutionalized in nursing 
facilities. Section 1115 waivers permit the continua-
tion of matching funds for state-level demonstra-
tion projects implementing different approaches to 
administering Medicaid, under the condition that 
expenditures should not exceed the amount that 
would be spent in the absence of the waiver. One 
such waiver program, the Oregon Health Plan, will 
be described in more detail below.

State Children’s Health Insurance Program

During the late 1990s, 40 million Americans, or 
14% of the U.S. population, lacked health insur-
ance. In 1997, SCHIP was enacted (as Title XX of 
the Social Security Act) as a way to expand health 
insurance coverage for uninsured low-income chil-
dren who were not eligible for Medicaid. (These 
were children living in families with incomes at or 
below twice the federal poverty level or 50% higher 
than the state’s Medicaid eligibility level, whichever 
was higher.) Between October 1997 and September 
1998, the first year of SCHIP’s implementation, 
more than 660,000 children had been enrolled at 
some point during that 12-month period; through 
2007, more than 7.1 million children had been 
enrolled in all. However, about 20% of the 13 mil-
lion children in poverty remain uninsured.

As with Medicaid, SCHIP is administered at  
the state level but with guidance from the federal 
CMS, within which each state determines the 
design of its program, eligibility groups, benefit 
packages, payment levels for coverage (including 
cost-sharing arrangements), and administrative 
and operating procedures. However, unlike 
Medicaid, which is a federal legal entitlement to 
states and for which no specific level of funding is 
appropriated in advance, the federal government 
appropriated $24 billion in matching funds to the 

SCHIP program as grants-in-aid for the program’s 
initial 10-year period (1998–2007). States partici-
pating in SCHIP under its Section 1115 waiver 
meet that authority’s budget-neutrality standard 
by not exceeding the annual SCHIP allocation.

Like the Medicaid program, SCHIP is jointly 
financed by the federal and state governments, 
with the federal government providing funds to 
states on a matching basis. An individual state’s 
share of the federal funding appropriation was 
calculated on the basis of a formula that blended 
estimates of the number of low-income children 
and the number of uninsured low-income children 
in the state, adjusted by a health cost factor to 
account for differences in healthcare costs between 
the states. The SCHIP matching rate ranges from 
65% to 85%, somewhat higher than the Medicaid 
matching rate of 50% to 85%, and as such was 
intended to provide an incentive for states with  
the greatest need to invest state resources in new 
SCHIP programs. However, poorer states received 
lower SCHIP enhancements (ranging from 6% to 
8%) than did richer states with their lower Medicaid 
match rates; states with the lowest Medicaid match 
rate received SCHIP match rates of 65%, 15% 
higher than their 50% Medicaid match rate.

In addition, states had the option of implement-
ing SCHIP as a discrete program, an expansion to 
their existing Medicaid program, or a combination 
program. As of 2008, 18 states have implemented a 
separate SCHIP program, while 9 states (including 
the District of Columbia) and 24 states have imple-
mented SCHIP as Medicaid expansions and as 
combined SCHIP-Medicaid programs, respectively.

SCHIP was authorized for an initial 10-year 
period, which was to expire in 2007. Efforts to 
reauthorize the program during 2007 failed, but 
the program was given an 18-month extension 
through March 2009, although there is concern 
that despite the extension and the funding it pro-
vides, additional growth in the availability of gov-
ernment health insurance coverage will be necessary 
to meet the growth in the numbers of uninsured 
children, whose numbers have increased by 1 mil-
lion between 2006 and 2008.

Medicaid Spending and Enrollment

In 2006, U.S. expenditures for health services 
and supplies (exclusive of certain research and 
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infrastructure investment) were almost $1.97 
trillion or $6,561 per person. Medicaid expendi-
tures, including those for the SCHIP expansion, 
amounted to about $320.2 billion (16% of the 
nation’s expenditures for health services and sup-
plies), or $5,164 per recipient. Almost 95% of 
Medicaid expenditures fund medical services for 
Medicaid program recipients, with the remaining 
5% supporting program administration. Of med-
ical expenditures for recipients, about 59% funds 
acute care services (inpatient hospital, physician, 
laboratory, outpatient, and drugs), and almost 
36% funds long-term care services (home health, 
nursing home and other residential facilities, and 
mental health).

A breakdown of Medicaid expenditures by type 
of recipient shows that while children represent the 
largest group of Medicaid recipients, the elderly 
and disabled account for a larger proportion of 
expenditures. In 2005, children constituted 50% 
of Medicaid recipients and accounted for only 
17% of Medicaid expenditures, costing on average 
about $1,700 per child. Ten percent of recipients 
are elderly and 14% of recipients are disabled, but 
these groups account for 26% and 41% of 
Medicaid expenditures, respectively. Medicaid 
expenditures are about $12,000 per elderly recipi-
ent and about $14,000 per recipient who is dis-
abled. About 17% of Medicare beneficiaries also 
qualify for enrollment in Medicaid (“dual eligi-
bles”), and these individuals, making up only 14% 
of Medicaid enrollees, account for 40% of Medicaid 
expenditures.

Medicaid experienced spending growth each 
year since its inception, until 2006, when the pro-
gram experienced its first drop in spending (a 
decrease of 0.9%) even as national health expendi-
tures rose 6.7% from 2005. However, this decrease 
was primarily due to the implementation of the 
Medicare Part D benefit, which provides prescrip-
tion drug coverage to Medicare beneficiaries and 
which relieved the Medicaid program of the costs 
for drugs for Medicare beneficiaries who were also 
eligible for Medicaid coverage. Aside from this 
decline in drug spending, however, other personal 
healthcare Medicaid expenditures increased by 
5.6%, a smaller increase than in previous years and 
reflecting the combined effect of weaker growth in 
enrollment and states’ implementation of cost con-
tainment initiatives. Medicaid’s expenditure growth 

has created pressures on state and local govern-
ment budgets for several years, with Medicaid 
accounting for an increasing proportion of state 
and local spending. In 2006, Medicaid expendi-
tures accounted for 21.5% of state spending. States 
implemented initiatives to control costs, such as 
managed care programs, alternative programs  
for long-term care, and more restrictive eligibility 
criteria.

An innovative initiative was implemented by  
the state of Oregon. The legislature of that state, in 
an effort to both control the cost of the state’s 
Medicaid program and expand access to health 
insurance in the state, passed legislation in 1989 
and 1991 to extend eligibility to the state’s 
Medicaid program to all legal residents of the state 
with incomes up to the federal poverty level; 
expanded the use of prepaid managed care for the 
Medicaid population; and created a high-risk pool, 
with state-subsidized premiums, for residents who 
had been denied coverage due to preexisting condi-
tions. In 1991, the state also applied to the federal 
government for approval to implement the plan, 
eventually receiving approval in 1993 as a Section 
1115 demonstration project.

The centerpiece of the plan was a prioritized  
list of health and medical services that the state’s 
Medicaid-eligible population would be entitled to 
receive. In addition, the extent to which these ser-
vices would be covered by the state’s Medicaid 
program depended on the amount of funding 
available within the state’s budget to cover the cost 
of services. This list was intended to be a basic 
healthcare package that was more limited than 
what was covered under the state’s traditional 
Medicaid program. Clinical information on thou-
sands of conditions and their associated treat-
ments, including the effectiveness of treatments; 
claims data to provide information on the cost of 
services; and the results of public forums, focus 
groups, and a telephone survey, all of which were 
intended to gauge the public’s preferences and val-
ues concerning healthcare, were all applied to 
deriving the cost-utility of pairs of conditions and 
their associated treatments. Once this prioritized 
list of “condition/treatment pairs” was derived, a 
line would be drawn at the point on the list that the 
state’s Medicaid budget could support; condition/ 
treatment pairs falling above the line would be 
covered, while condition/treatment pairs falling 
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below the line would not. This initial list, however, 
was widely criticized because the resulting rank 
ordering put some procedures (such as treatment 
for thumb sucking and acute headaches) higher on 
the list than others (such as treatment for AIDS or 
cystic fibrosis). Not only was this initial list with-
drawn from the demonstration waiver application 
to the federal government, but the state also aban-
doned the use of cost-utility analysis to derive the 
prioritized list and applied other algorithms to 
construct the list.

Oregon’s list is revised every 2 years as part of 
the state’s biennial budget process. Considerations 
for revision include improved outcomes informa-
tion, medical advancements, and even the inclu-
sion of services related to physician-assisted 
suicide, which became legal in Oregon in 1997. In 
2006, the list underwent a complete reprioritiza-
tion to incorporate a revised methodology, one 
that placed greater emphasis on preventive ser-
vices, chronic disease management, and the effect 
of treatment on the health of the individual and 
the population. However, recent years’ benefit 
reductions, the introduction of a reduced benefit 
package for persons with somewhat higher 
incomes that also included some cost-sharing pro-
visions for certain populations, and an economic 
downturn in the state that resulted in increased 
unemployment and decreased tax revenues and 
eroding political support for the plan have all 
combined to challenge the sustainability of the 
program.

Franklin N. Laufer

See also Cost-Effectiveness Analysis; Cost-Utility 
Analysis; Decisions Faced by Nongovernmental Payers 
of Healthcare: Managed Care; Economics, Health 
Economics; Government Perspective, General 
Healthcare; Government Perspective, Informed Policy 
Choice; Medicare
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Medical decisions and ethics 
in the Military context

In either a military or civilian context, medical 
decisions can be divided into three general catego-
ries: (1) the decision whether to treat, (2) the deci-
sion when to treat, and (3) the decision how to 
treat. This entry looks at how the difference in the 
character and practice of military medicine influ-
ences these decisions. For medical decision mak-
ing in a military context, patients are generally 
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divided into two broad categories: (1) military 
personnel (of one’s own nation) and (2) everyone 
else. This second category includes allied military 
personnel, prisoners of war, and civilians. This 
distinction becomes important because there are 
different considerations governing the decision-
making process regarding the treatment of these 
two groups. For example, international law 
requires that prisoners of war receive medical care 
and that decisions regarding their care be based 
solely on their medical condition. Because of the 
sheer breadth of issues that relate to the decision-
making process in military medicine, this entry is 
restricted to the first category—members of one’s 
own military establishment.

Among the various militaries, there may be 
some minor differences in the way in which each 
service practices medicine. For the sake of brevity 
and consistency, this entry focuses on the practices 
of the U.S. Army Medical Department (AMEDD). 
Even after restricting this to practices of the 
AMEDD, the sheer breadth of issues relating  
to medical decisions in a military context precludes 
discussing more than a few key points. These include 
the goals of military medicine, the deci sion whe ther 
to treat military personnel, the decision when to 
treat military personnel, and the decision how to 
treat military personnel.

Goals of Military Medicine

Medical decisions are best understood in terms of 
the goals that the decisions are intended to achieve. 
In a civilian setting, the goals of healthcare primar-
ily revolve around the interests of an individual 
patient or, in cases involving scarce resources, such 
as transplantable organs, around a relatively small 
set of patients. In civilian medicine, respecting the 
patients’ autonomy—their right to make their  
own medical decisions—governs most decisions. 
In such an environment, the goals of healthcare 
include the medical interest of the patient, respect-
ing the wishes and values of the patient, and in 
rare cases a just allocation of scarce medical 
resources.

To understand military medical decisions, one 
must understand the goals of military medicine. 
Because of the integrated role military medicine 
plays in the planning and execution of military 
operations, its goals are inexorably tied to those of 

the military in general. This is evident in the 
AMEDD’s mission statement: “Preserve the 
Fighting Force.” The goals of the military can be 
understood at a variety of levels, but for the pur-
poses of this discussion, there are two goals that are 
particularly relevant. The first is the successful 
completion of military operations assigned to it by 
the civilian authority, and the second is to protect 
the lives and health of the military personnel. The 
military has a contractual and moral obligation to 
protect to the extent possible the lives of its sol-
diers. Every military operation needs to balance the 
risks to personnel against the value of achieving the 
military objective. “Needs of the military” will be 
understood to include both the successful achieve-
ment of military objectives and protecting to the 
extent possible the lives of military personnel.

The Decision Whether to Treat

There are two major concerns when looking at the 
medical treatment of military personnel. The first 
is that soldiers may be treated without their con-
sent. Such treatment may take the form of failing 
to obtain consent prior to treatment or treating 
soldiers in opposition to their stated wishes. 
Second, because the medical treatment of soldiers 
can be viewed by some as being subservient to the 
needs of the military, some soldiers may be per-
ceived as being denied or receiving substandard 
treatment. While both concerns can manifest 
themselves in all three categories of decision mak-
ing (whether to treat, when to treat, and how to 
treat), this section focuses on the first of these con-
cerns: that a solider may be treated without his or 
her consent. The second concern will be addressed 
later in this entry.

Military medicine has an obligation to treat its 
own soldiers. This is true regardless of whether the 
soldier can or cannot be returned to active service. 
Military healthcare professionals have an obliga-
tion to the patient before them, but because of the 
nature of the service, they must balance this obli-
gation with their obligation to the needs of the 
military. The interests of any individual patient 
must be weighed against what is needed for suc-
cessfully completing military operations and pro-
tecting the lives and health of other soldiers. As a 
consequence, military members’ autonomy may be 
overridden, and they may be treated against their 
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wishes. United States Code, Title 10, Subtitle B, 
Part II, Chapter 355, Section 3723 allows the 
Secretary of the Army to “order the hospitaliza-
tion, medical and surgical treatment, and domicili-
ary care, for as long as necessary, of any member 
of the Army on active duty.” An example of this 
occurred during the first Gulf War when U.S. mili-
tary members were required to be inoculated with 
pyridostigmine bromide as a protective measure 
against nerve agent exposure.

In the case of battlefield medicine, soldiers are 
seldom given the opportunity to provide informed 
consent or refusal for treatment. This is due in part 
to the traumatic nature of battlefield injuries. Life 
preserving treatment must be administered imme-
diately, and patients, because of their traumatic 
injuries, often lack the ability to make such deci-
sions. In this, military medicine mirrors the prac-
tices of civilian emergency room procedures. The 
second factor that makes respecting a soldier’s 
right to refuse treatment in a combat zone difficult 
is the fact that the needs of the military require that 
those soldiers who can be returned to duty do so 
as soon as possible. Military concerns prohibit 
allowing soldiers to avoid continued service by 
refusing treatment that is necessary to perform 
their assigned duties. It should be noted that avoid-
ing service is not the only reason why a soldier 
might refuse treatment. Many combat soldiers feel 
that being evacuated out of the theater of opera-
tions because of their medical condition constitutes 
“abandoning” their buddies and, given the choice, 
would prefer to remain with their units despite 
their injuries. Military medicine has an obligation 
to ensure that military personnel are medically fit 
to perform their assigned duties. This is for their 
protection as well as the protection of those with 
whom they serve. Such decisions to refuse treat-
ment cannot be respected.

The fact that members of the military may have 
their autonomy overridden by itself does not mean 
that doing so must be the norm in a military set-
ting. The needs of the military as they relate to the 
healthcare of soldiers should be understood in 
terms of a spectrum. In combat situations, medical 
choices are often limited and the needs of military 
operations immediate. Most military medical 
treatment does not occur within the context  
of combat operations, however. In a noncombat 
setting, military medicine attempts to mirror its 

respect for a patient’s autonomy, to the extent 
possible, with that of its civilian counterpart. The 
need of a standing army to have its soldiers medi-
cally fit at all times requires that soldiers receive 
periodic medical examinations and that any medi-
cal condition that would impair their ability to 
perform their assigned duties be treated. It also 
requires that at times potential medical problems 
be prophylactically treated. This was the justifica-
tion for requiring soldiers to take pyridostigmine 
bromide and, currently, anthrax vaccination. 
There are many medical conditions that do not 
affect a soldier’s ability to perform his or her 
assigned duty. While military medical personnel 
have an obligation to offer treatment for any 
medical condition as healthcare professionals, 
they are not required, as agents of the military, to 
require compliance with any treatment that does 
not impair a soldier’s ability to perform his or her 
duties. In such cases, the patient should be allowed 
to make decisions regarding treatment based on 
his or her own values and wishes.

In a noncombat setting, the military is often 
willing to allow soldiers to refuse treatment that is 
necessary for their continued service. In such situ-
ations, the soldier is informed that a refusal to 
accept treatment will result in separation from the 
military. While this allows greater autonomy in 
military medicine, it also proves to be a source of 
coercion that can interfere with genuine informed 
consent. The threat of separation for a soldier 
who is heavily invested in his or her military 
career may cause him or her to feel forced to 
accept the treatment. It should be noted that the 
need for military personnel to be ready to fight is 
critical to the military being able to accomplish its 
goals. As a result, refusal to accept necessary 
medical treatment cannot be allowed to be used as 
a mechanism to avoid service. The decision of a 
soldier to refuse necessary treatment should only 
be accepted if there is reason to believe that the 
soldier’s motive is to refuse unwanted medical 
interventions and not to avoid participating in 
some military operation.

The Decision When to Treat

In nonbattlefield medicine/nonemergency cases, 
there is some flexibility when a soldier is treated. 
Soldiers as a rule should have some input into 
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when they receive treatment, keeping in mind the 
fact that soldiers may need to be mobilized at any 
time with little or no notice. There are going to be 
exceptions to this rule, though. There are certain 
critical career fields in the military that must be 
protected. These career fields reach critical status 
because they are essential to the military’s ability 
to achieve its mission and/or there are a limited 
number of soldiers qualified to perform those 
duties. In such cases, it is particularly important 
that these solders be medically fit at all times.

There is a concern that some soldiers may be 
denied care or receive substandard care because of 
the needs of the military. If this is an issue, it pre-
sents itself most prominently in the context of 
battlefield medicine. In a nonbattlefield setting, 
soldiers are rarely denied treatment. The treatment 
of certain minor medical conditions that do not 
impair a soldier’s ability to perform his or her task 
and present no long-term risk to the soldier may be 
delayed until a soldier has completed his or her 
current duty assignment if treatment is not avail-
able at the soldier’s current location but will be 
provided at some point. Even if a soldier is deemed 
unfit for continued military service, any medical 
condition that is service related or discovered 
while the soldier is on active duty will be treated 
when the soldier is transitioned into the care of the 
Veterans Affairs medical system.

Ideally, the decision of when to treat a patient 
should be based solely on the medical needs of that 
patient. This is true for both civilian and military 
medicine. When medical resources are not limited 
and when there are no overriding military inter-
ests, every soldier should be treated according to 
his or her need. Unfortunately, even in a civilian 
setting, this is not always the case. There are times 
when the patient load overwhelms available medi-
cal resources and patients have to be triaged not 
only in terms of their individual medical condi-
tions but also with the goal of saving as many lives 
as possible as a governing principle. In battlefield 
medicine, when there are no overriding military 
interests, this principle of saving as many lives as 
possible should also govern decisions regarding 
when to treat patients. As discussed, though, mili-
tary medicine is obligated to take into account the 
needs of the military. To aid in this decision- 
making process, the U.S. Army has established six 
Medical Battlefield Rules in Field Manual 8-55: 

Planning for Health Service Support: (1) maintain 
medical presence with the soldier, (2) maintain the 
health of the command, (3) save lives, (4) clear the 
battlefield, (5) provide state-of-the-art care, and 
(6) return soldiers to duty as early as possible. 
These are listed in order of priority and indicate 
which should govern the decision-making process 
if all six cannot be accomplished. Note that saving 
lives is third on the list of priorities. So there are 
two considerations that have to be taken into 
account that can supersede this principle of saving 
as many lives as possible. The first is the need to 
maintain medical readiness in the combat zone. 
The military has an obligation not only to those 
soldiers who are currently injured but also to those 
soldiers who will become injured. This means that 
medical units cannot exhaust their medical 
resources on their current patients at the expense 
of providing care to future patients. The second 
overriding interest is in protecting the medical 
readiness of the command. Unlike most soldiers on 
the battlefield, those in key command positions are 
not easily replaceable. Their continued role in 
combat operations is seen as being critical to the 
military’s ability to achieve its overall objectives. 
The number of individuals who constitute this 
group is relatively small, and their treatment does 
not often affect military medicine practices. It is 
worth noting that returning soldiers to duty to 
sustain the fighting force is sixth on the list and 
does not override the governing principle of saving 
as many lives as possible.

The Decision How to Treat

Similarly, as with civilian medicine, in a nonbattle-
field medicine/nonemergency setting there are 
often multiple forms of treatment that can accom-
plish the same medical objective. In such circum-
stances, the patient should be provided the 
opportunity to select his or her treatment. In bat-
tlefield medicine, when the medical injuries are 
more severe and medical resources, including the 
availability of medical personnel, are limited, such 
options are often impractical.

Once the decisions of whether and when to treat 
have been made, the decision of how to treat should 
be based on the standards of medical practice, 
the medical condition of the patient, and the avail-
ability of medical resources. The only potentially 
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relevant military interest that could affect the deci-
sion of how to treat a patient is the need to return 
soldiers to duty as soon as possible. But as previ-
ously indicated, this is considered the lowest prior-
ity in making battlefield medical decisions.

Jason Gatliff

See also Bioethics; Decisions Faced by Hospital Ethics 
Committees
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Medical errors and errors 
in healthcare deliVery

Medical error can be defined as any mistake in the 
delivery of care, by any healthcare professional, 
regardless of outcome. The specific reference to 
outcome is important because errors can result  
in actual adverse outcomes for patients or near 
misses. Adverse events are injuries that are caused 
by medical management rather than the underlying 
disease. They prolong hospitalization, produce a 
disability at discharge, or both. While the media 
tend to highlight the catastrophic injuries that 
result from medical error, there is often little under-
standing of the context of the clinical decision 
making in practice. Healthcare is an inherently 
uncertain and dynamic environment. Individual 

patients vary in their responses to treatment, and 
their health status can change rapidly with little 
warning. Clinical knowledge is frequently distrib-
uted among clinical team members, requiring both 
proactive and reactive decisions to be made, often 
under difficult circumstances such as limited 
resources and staff shortages. Medical error is 
omnipresent in healthcare, and the costs to the 
community are considerable. In this entry, the types 
of error that can occur in healthcare are defined, 
followed by an outline of the incidence of medical 
error and the common errors that may result from 
faulty decision making. The etiology of errors and 
the changes being implemented globally to address 
the problem are the focus of the final discussion.

Defining Medical Error

There is much debate in the medical literature sur-
rounding the definitions of error, adverse events, 
mistakes, and near misses. However, the most com-
monly used definition of error is from the seminal 
report by the Institute of Medicine (IOM), To Err 
Is Human: Building a Safer Health System. As an 
exploration of medical error, error was defined in 
this publication as occurring when persons fail to 
complete an action as planned or intended (an act 
of omission), or they use an incorrect plan to 
achieve an aim (an act of commission). In doing 
something wrong or not doing something right, an 
undesirable outcome may or may not result.

If the resultant injury is caused by the medical 
care received by the patient rather than the patient’s 
underlying illness, it is considered a preventable 
adverse event. It can result from a single error or 
an accumulation of errors. If the error results in 
serious harm or death to the patient, it is referred 
to as a sentinel event. Sentinel events usually 
require further investigation and may often reveal 
significant deficits in policies or current practice.

Some adverse events may be defined in legal 
terms as negligent adverse events. In these cases, a 
legal ruling is made as to whether an injury resulted 
because the care did not meet a standard of care 
reasonably expected to be delivered by an average 
clinician.

Sometimes an error does not result in a patient 
injury; it is then considered a near miss or close 
call. Near misses are potentially harmful incidents 
or errors that do not cause harm to patients either 
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because effective recovery action was taken or 
because no harm resulted from the error. For 
example, a nurse identifies an incorrect drug pre-
scription prior to drug administration.

James Reason referred to errors as either active 
or latent. In healthcare, active errors are usually 
more apparent and result from a contact between a 
frontline clinician and some aspect of the system, 
such as the interface with machinery, for example, 
when a nurse programs a mechanical ventilator 
incorrectly. Active errors are mostly noticed by the 
person involved in committing the error—thus they 
are also referred to as errors at the sharp end.

In contrast, latent errors are more indistinct and 
result from system failures in the general opera-
tions of an organization that cause harm to 
patients. These blunt end errors, as described by 
Reason, often affect the person at the sharp end 
and are often referred to in retrospect as accidents 
waiting to happen. For example, an active error or 
failure would be the incorrect programming of an 
infusion pump, whereas a latent error or failure 
would be caused by an organization that has mul-
tiple types of infusion pumps, making a program-
ming error by a clinician more likely because he or 
she may be confused.

Incidence of Medical and Healthcare Error

The incidence of adverse events is a significant 
avoidable cause of human suffering, with a high 
toll in financial loss and opportunity cost to health 
services. Since the early 1990s, research studies 
conducted in the United States of America, the 
United Kingdom, and Australia have found that 
between 4% and 17.7% of patients suffer from 
some kind of harm (including permanent disability 
and death) as a result of adverse events while in 
hospital. Andrews and colleagues found that more 
than one in six hospitalized patients suffered medi-
cal injuries that prolonged their hospital stays. 
Studies that have used a review of medical histories 
to identify medical injuries, such as the Harvard 
Medical Study in New York, determined that a 
significant proportion (up to 69%) of the medical 
injuries identified were due to error and, therefore, 
could have been prevented. The incidence of near 
misses is difficult to quantify because they are not 
always reported or recognized; however, they are 
thought to occur up to 100 times more frequently 

than do adverse events. Both adverse events and 
near misses are likely to share the same causal cir-
cumstances and hence be reflective of weaknesses 
in care delivery systems that cause risk for patients. 
Although estimates of the frequency of medical 
errors and injuries vary considerably, even the 
most conservative estimates indicate that the prob-
lem is widespread and requires serious attention. 
The magnitude of the problem has generally been 
taken to underscore the need for robust safety pro-
cesses to be implemented to ensure optimal patient 
safety outcomes.

Governments, healthcare services, and health 
professional groups around the world are attend-
ing to the development and implementation of 
processes aimed at reducing the incidence and 
impact of preventable adverse events in health-
care and to generally improving the safety and 
quality of their healthcare services. Quality and 
safety initiatives take place within a complex 
health environment that includes hospital care, 
outpatient and ambulatory services, residential 
aged care services, and primary care. The provi-
sion of healthcare is affected by an increasing 
emphasis on accountability and public involve-
ment in health. It is further challenged by an 
aging population, many of whom experience 
chronic disease and disability, as well as other 
burdens of disease that affect the broader popula-
tion, such as obesity and associated cardiovascu-
lar disease and diabetes.

Types of Medical and Healthcare Error

There are many types of medical error that can 
occur within the multiple contexts in which health-
care is delivered and the increasing complexity  
of care. The most common types of error include 
medication errors, preventable nosocomial (hospi-
tal-acquired) infections, diagnostic and treatment 
errors, equipment errors, prevention errors, and 
unnecessary treatment. Interestingly, an Australian 
study by Weingart and colleagues showed that 
preventable cognitive errors, such as making incor-
rect diagnoses or choosing the wrong medication, 
were more likely to result in permanent disability 
than were technical errors such as choice of the 
wrong surgical technique.

Medication error is defined by the IOM as  
any preventable event that may cause or lead to 
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inappropriate medication use or patient harm 
while the medication is in the control of the health-
care professional, patient, or consumer. It may be 
related to professional practice, healthcare prod-
ucts, procedures, and systems, including prescrib-
ing; communication of orders; product labeling, 
packaging, and dispensing; distribution; adminis-
tration; education; monitoring; and use. The IOM 
report cited one study finding that about 2% of 
hospital admissions experienced a preventable 
adverse drug event, although the majority were not 
fatal. The most common error involving medica-
tions is related to administration of an improper 
dose of medicine. This is followed by giving the 
wrong drug and using the wrong route of admin-
istration. Almost half of fatal medication errors 
occur in people over the age of 60. Older people 
may be at greatest risk for medication errors 
because they often take multiple prescription 
medications.

Infections acquired during a hospital stay are 
called nosocomial infections. They are defined as 
infections arising after 48 hours of hospital admis-
sion and can present as urinary tract infections, 
surgical site infections, respiratory infections (espe-
cially nosocomial pneumonia), blood infections/
bacteremia, gastrointestinal tract infections, and 
central nervous system infections. Although these 
are not necessarily due to an identifiable error by 
healthcare professionals, greater emphasis on pre-
ventive measures such as hand washing and steril-
ization will prevent many nosocomial infections.

Diagnostic errors include wrong and missed 
diagnoses and failure to diagnose complications, 
underlying disease, or associated diseases and extend 
to failure to diagnose others in cases where family 
members or others exposed to disease are not inves-
tigated. Diagnostic errors can be due to pathology 
laboratory errors such as wrong biopsy results, mix-
ing samples, or known test errors and risks associ-
ated with false positives and false negatives.

There are numerous ways that errors can occur 
in medical treatment. These errors can occur when 
patients use the wrong treatment, the wrong con-
dition is treated or the wrong choice of treatment 
plan is made, or the wrong treatment is applied, 
such as can occur with medication errors or wrong 
blood transfusion. Treatment errors involving sur-
gical mistakes include the following: wrong patient, 
wrong site, wrong organ, and equipment left 

inside. Anesthesia errors can include too much  
or too little anesthesia. Treatment errors include 
delays in applying appropriate treatment interven-
tions and unnecessary medical treatment.

Prevention errors refer to failure to prevent con-
ditions and include failure to prevent known com-
plications of a diagnosed disease, failure to treat 
family members or others in cases of genetic dis-
eases or infectious diseases, and failure to address 
risk factors for various conditions.

Adverse events can occur as a consequence of 
equipment failure or errors in the application  
of equipment such as occur with dislodgment of 
intravenous infusion devices or not renewing bat-
teries in equipment.

Etiology of Medical and Healthcare Error

Traditionally, when an error occurred in medicine, 
the clinician delivering the care to the patient was 
blamed for the error. This view is called the person 
approach. However, a more recent approach has 
shifted toward systems thinking. Systems thinking 
acknowledges that human error in healthcare is a 
considerable threat to patient safety that can be 
traumatic to those involved and a challenge to 
learn from. To protect patients, organizations con-
centrate on the conditions that individuals work 
under and position internal safeguards to prevent 
errors occurring. Although this approach has been 
highly successful in numerous high-risk organiza-
tions, including the aviation, oil, and nuclear 
power industries, only recently has it been consid-
ered applicable in healthcare. The analysis of 
medical error has generally been underdeveloped 
and oversimplified.

In a systems approach, error is the result of a 
chain of events and many contributory factors. 
Psychologist James Reason’s “Swiss cheese model” 
was drawn from a major review of organizational 
accidents. Reason found that single errors occur-
ring at the sharp end of care were rarely enough to 
cause major harm to patients. In contrast, errors 
that resulted from multiple layers of structural 
weakness in organizations or through the align-
ment of holes in the Swiss cheese model were more 
likely to result in a disastrous effect. Thus, the aim 
of systems thinking is to strengthen the structure 
within an organization by developing layers of 
protection or safeguards to reduce latent errors.
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As a means of reducing latent errors in medi-
cine, healthcare organizations typically review the 
antecedent events of the error, using a root cause 
analysis approach. All errors are comprehensively 
dissected, usually by an interdisciplinary commit-
tee, who search for the triggers or root causes. Key 
facts and timelines are established after ascertain-
ing the context of the situation the error occurred 
within from those involved. The analysis is used to 
identify system gaps and inadequacies. The facts 
are then presented to the root cause analysis (RCA) 
committee, who focus on what can be learned from 
the error to safeguard the system.

In adapting Reason’s model for healthcare, 
Charles Vincent developed a framework of con-
tributory factors that occur in clinical practice and 
produce conditions that result in error or latent 
failures. The framework categorizes the major 
influences on clinicians’ decision making and asso-
ciated underlying causes of error (see Table 1). It 
has been suggested that healthcare agencies use the 
framework to systematically analyze adverse out-
comes and the antecedent events to prevent further 
adverse events.

The person approach to error focuses on the 
sharp end, where the interface between the front-
line clinician and system occurs. This view regards 
the errors and violations as atypical cognitive pro-
cesses, such as inattention, carelessness, and negli-
gence, whereby people have the capacity to choose 
between safe and unsafe modes of behavior. 
Essentially humans have two behavioral control 
modes—conscious and automatic. The conscious 
mode is slow, prone to error, and sequential. It also 
has limited capacity and, if focused on one thing, 
cannot focus on another. Conversely, the auto-
matic mode is mostly unconscious, fast, and able 
to multitask simultaneously. It is the mode that we 
use for the routine tasks that do not require high-
level cognition.

Clinical tasks may range from routine everyday 
tasks that require little thought to novel problems 
that require deep thought and problem solving. 
Reason categorized human error as being either 
slips (skill-based errors) or mistakes (knowledge- 
or rule-based errors). Slips are defined as errors 
that occur as the result of inadvertent and uncon-
scious behavior, which may occur when perform-
ing some automatic task. Slips tend to occur when 
individuals are on autopilot, with multiple sensory 

inputs occurring simultaneously. In contrast, mis-
takes are conscious errors that result from incor-
rect choices being made. Mistakes may be a 
consequence of inadequate knowledge or informa-
tion, lack of experience or training, or the applica-
tion of the wrong rule in the given situation.

It is believed that conscious behaviors are more 
likely to result in a mistake than automatic behav-
iors, which are likely to result in a slip. However, 
because a significant proportion of the activities 
that clinicians do are automatic in nature, it is 
thought that slips present a far greater risk to 
patient safety.

The person approach is focused on reducing 
variability in human behavior, creating a sense of 
fear, blame, and litigation. It is criticized for 
decontextualizing the incident, which ignores 
recurrent patterns of error in similar circumstances 
with different individuals. In contrast, the systems 
approach focuses on changing the work conditions 
to build organizational defenses. If an error occurs, 
the critical question is why it happened, not who 
did it. Hence, worldwide initiatives to prevent 
errors are focused toward changing the way 
healthcare is delivered to improve safety.

Future Directions

Internationally, within multiple governance and 
regulatory environments, there are a considerable 
number of approaches to improving the quality 
and safety of healthcare. The major themes in the 
various approaches include a strong focus on the 
issues related to governance and leadership frame-
works and educational strategies, attention to 
organizational climate or culture, and workforce 
issues such as work hours and conditions. An 
important development is the emerging body of 
opinion that, in addition to healthcare providers, 
patients and their families have an important role 
to play in monitoring and improving patient 
safety. Underpinning this view is a growing appre-
ciation of the unique relationship that patients 
and families have with each other and of the ben-
efit of their continuous vigilance over both the 
patient’s health condition and the care that is 
given. It is also being increasingly recognized that 
patients often become well-versed in their own  
illnesses and care during the trajectory of their 
healthcare experience and can play a significant 
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role in recognizing and rescuing errors and adverse 
events not otherwise detected by healthcare sys-
tems. This has led to changes in systems of care 
delivery that explicitly recognize the potential con-
tribution that many patients and families can 
make to safety processes and how patients and 
families could inform clinical care and guide  
further improvement initiatives.

Tracey Bucknall and Mari Botti
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Table 1  Framework of factors influencing clinical practice and contributing to adverse events

 
Framework

 
Contributory Factors

Examples of Problems That Contribute  
to Errors

Institutional Regulatory context
Medicolegal environment

Insufficient priority given by regulators to safety 
issues; legal pressures against open discussion, 
preventing the opportunity to learn from 
adverse events

Organization 
and 
management

Financial resources and constraints
Policy standards and goals
Safety culture and priorities

Lack of awareness of safety issues on the part 
of senior management; policies leading to 
inadequate staffing levels

Work 
environment

Staffing levels and mix of skills
Patterns in workload and shift
Design, availability, and maintenance of 
equipment
Administrative and managerial support

Heavy workloads, leading to fatigue; limited 
access to essential equipment; inadequate 
administrative support, leading to reduced time 
with patients

Team Verbal communication
Written communication
Supervision and willingness to seek help
Team leadership

Poor supervision of junior staff; poor 
communication among different professions; 
unwillingness of junior staff to seek assistance

Individual staff 
member

Knowledge and skills
Motivation and attitude
Physical and mental health

Lack of knowledge or experience; long-term 
fatigue and stress

Task Availability and use of protocols
Availability and accuracy of test results

Unavailability of test results or delay in 
obtaining them; lack of clear protocols and 
guidelines

Patient Complexity and seriousness of condition
Language and communication
Personality and social factors

Distress; language barriers between patients and 
caregivers

Source: Reproduced with permission from Vincent, C., Taylor-Adams, S., Stanhope, N. (1998). Framework for analysing risk 
and safety in clinical medicine. British Medical Journal, 316, 1154–1157. Reproduced with permission from BMJ Publishing 
Group. License Number: 1953450752344 License Date: May 21, 2008; and Vincent, C. (2003). Understanding and responding 
to adverse events. New England Journal of Medicine, 348, 1051–1056. Copyright © 2003 Massachusetts Medical Society. All 
rights reserved. Reference Number: PS-2009-0025 Date June 3, 2008.
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Medicare

Medicare is the health insurance program  
provided by the U.S. federal government for older 
Americans once they reach the age of 65. 
Individuals with certain conditions, such as those 
who are permanently disabled or have end-stage 
renal disease, may also be eligible for Medicare, 
regardless of their age. The Medicare program is 
administered by the Centers for Medicare and 
Medicaid Services (CMS), a federal agency head-
quartered in Baltimore, Maryland.

Medicare is a complex program with multiple 
options for receiving insurance coverage and varying 
features and rules that accompany each option. The 
program is continually evolving as new legislation is 
introduced and plan types, features, or payment 
policies are changed. While older adults often 
require more healthcare services due to chronic 
medical conditions or declining health, they may 
also have limitations in available income and health 

insurance options due to retirement from work, 
resulting in a greater need to understand the insur-
ance benefits provided to them through Medicare. 
This entry provides a brief history of the Medicare 
program, including the introduction of prescription 
drug coverage, a description of the types of decisions 
Medicare beneficiaries must make, and an overview 
of special considerations when conducting research 
on Medicare decision making.

History of Medicare Program

The Medicare program was established in 1965 
through Title XVIII of the Social Security Act. 
The program was designed to provide health 
insurance coverage for adults aged 65 and older. 
The eligibility criteria for the program were mod-
ified in 1972 to waive the age requirements for 
individuals with long-term disabilities or end-
stage renal disease so that they could begin receiv-
ing Medicare coverage. In 1977, a government 
agency, the Health Care Financing Administration 
(HCFA; now the Centers for Medicare and 
Medicaid Services [CMS]) was created to oversee 
the Medicare program. The Medicare Catastrophic 
Coverage Act of 1988 expanded benefits and 
added coverage for outpatient prescription drugs; 
however, this act was repealed in 1989 due to 
complaints regarding high premiums charged for 
those with higher incomes.

The Balanced Budget Act of 1997 (BBA) was 
designed to control spending on Medicare and 
resulted in substantial changes to the Medicare pro-
gram. The act introduced additional health plan 
choices for people with Medicare, including Medicare-
managed care plans and private fee-for-service plans, 
referred to as Medicare + Choice plans. The act also 
mandated that HCFA/CMS educate and inform  
beneficiaries, including providing comparative plan 
information, with the goal of helping beneficiaries 
make more informed health plan decisions.

The most recent changes to the program resulted 
from the passing of the Medicare Drug Improvement 
and Medicare Modernization Act (MMA) in 2003. 
The act continued the evolution of Medicare with 
the Medicare Advantage (MA) program (replacing 
the Medicare + Choice program of the BBA), a 
prescription drug discount card program to assist 
beneficiaries with the cost of prescription drugs, 
until the prescription drug insurance program was 
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implemented in 2006, and additional coverage for 
preventive care services.

Decision Making in Medicare

Beneficiaries must go through several steps when 
selecting their Medicare coverage, including decid-
ing whether to purchase certain components (parts) 
of Medicare, understanding the various plan types 
and the rules and cost implications for each, select-
ing a specific plan within the type they have chosen 
after evaluating the individual plan’s premiums 
and co-payments, and considering other possible 
types of coverage available to them.

Parts of Medicare

Medicare insurance coverage currently consists 
of four parts, Parts A to D. Medicare Part A is the 
basic Medicare coverage, which is generally pro-
vided free of charge to beneficiaries, provided they 
or their spouses have paid Medicare taxes. Part A 
primarily covers inpatient care (i.e., hospital stays, 
hospice care, skilled nursing facilities) and home 
healthcare. Beneficiaries may pay a monthly pre-
mium (generally deducted from their social secu-
rity checks) to receive Medicare Part B, which 
covers outpatient care (e.g., doctor’s visits), pre-
ventive services (e.g., mammograms, colorectal 
cancer screening), certain medical supplies (e.g., 
diabetes supplies), and some home healthcare  
services not covered by Part A.

Rather than enrolling in Medicare Parts A  
and B, beneficiaries may choose to receive their 
Medicare coverage for these services through a 
MA plan by enrolling in Part C. MA plans are 
administered by private insurance companies 
rather than the Medicare program. The final 
Medicare part, Part D, provides coverage for pre-
scription medicines and was added as result of the 
MMA of 2003. Those who are in a MA plan via 
Part C may receive prescription drug coverage as a 
part of their plan or may have to enroll in Part D 
separately to receive that coverage. As with Part C, 
the Medicare Prescription Drug Plans for Part D 
are run by private insurance companies.

Types of Medicare Plans

There are two primary avenues for receiving 
Medicare coverage. The first, Original Medicare, 

encompasses Parts A and B, described above. The 
majority of beneficiaries are enrolled in Original 
Medicare, which is a fee-for-service plan operated 
by the Medicare program. After meeting a deduct-
ible, participants pay a coinsurance amount for 
covered services. A benefit of the Original Medicare 
plan is the flexibility to go to any provider or hos-
pital that accepts Medicare. However, beneficia-
ries may need to locate a provider that specifically 
agrees to accept assignment from Medicare to 
ensure that they pay only the amount Medicare 
has determined for a particular service without any 
additional costs.

The other primary avenue for getting insurance 
coverage through Medicare is enrolling in a MA 
plan operated by a private insurance company. 
There are several variations of plans that fall under 
the MA umbrella. Probably the most familiar are 
health maintenance organizations (HMOs) and 
preferred provider organizations (PPOs). HMOs 
require participants to use healthcare providers 
within the plan’s specified provider network to 
receive coverage. PPOs are similar to HMOs but 
provide some coverage for services that are received 
outside the network, although at a greater cost to 
participants than if they used providers within the 
network. Private fee-for-service (PFFS) plans are 
similar to Original Medicare but are operated by 
private insurance companies rather than Medicare; 
they allow beneficiaries to go to any provider that 
accepts the plan. In contrast to HMOs and PPOs, 
PFFS plans have fewer reporting requirements con-
cerning the quality of care provided to their par-
ticipants. Additional MA plan types include the 
following, which are not described here and gener-
ally serve a very small proportion of Medicare 
beneficiaries: Medicare Medical Savings Account 
plans, Medicare Special Needs Plans, Medicare 
Cost Plans, Demonstration/Pilot Programs, and 
Programs of All-Inclusive Care for the Elderly.

Potential benefits of an MA plan may include 
coverage of some items not covered by Original 
Medicare, such as prescription drugs, and possibly 
lower out-of-pocket costs. However, potential 
drawbacks are that beneficiaries often must use 
providers within the plan’s network and may need 
referrals from the primary care physician to see 
a specialist. Being restricted to in-network provid-
ers can be problematic for beneficiaries who have 
a long-standing, established relationship with a 
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provider who is not in the plan’s network or leaves 
the network. Plan restrictions may be particularly 
difficult for beneficiaries who live in rural areas 
and may be unable to find a local provider within 
the network. When selecting a plan type, beneficia-
ries must balance possible cost savings with plan 
rules and limitations.

Incorporating Other Types of Coverage

Original Medicare alone generally covers only 
about half of beneficiaries’ healthcare costs. Along 
with evaluating and selecting among the Medicare 
coverage options, beneficiaries may also need to 
choose among other types of insurance to pay for 
costs not covered by Medicare, such as Medigap 
insurance, employer-sponsored coverage, and 
Medicaid.

Beneficiaries who sign up for Original Medicare 
(Parts A and B) commonly also purchase a supple-
mental insurance plan (also referred to as Medigap 
coverage) through a private insurance company. 
Although sold by private insurance companies, the 
options for Medigap coverage are standardized 
(currently labeled with the letters A to L), so that 
all Medigap plans of the same type offer the same 
benefits, thereby allowing beneficiaries to more 
easily compare plans across insurance companies. 
By purchasing Medigap insurance, beneficiaries 
can lower some of the deductibles or co-payments 
they would have to pay with Medicare alone. 
Some of the plan types also offer additional bene-
fits, such as coverage for prescription drugs. 
Certain requirements and regulations may affect 
whether or when an individual can purchase 
Medigap coverage. For example, beneficiaries who 
are enrolled in a Medicare Advantage plan (Part C) 
may not also purchase a Medigap plan.

Older adults who continue to work after age 65 
may rely on employer-sponsored insurance as their 
primary source of coverage and may need to 
understand how to integrate this coverage with 
Medicare. Employers generally pay a portion of 
the insurance premiums, making this coverage less 
costly for their employees. As a part of their retire-
ment plans, some individuals who are no longer 
working may also be able to obtain insurance cov-
erage through their former employers. However, 
given rising costs of insurance, fewer employers 
are now offering this benefit.

Depending on their incomes, Medicare benefi-
ciaries may also qualify for the Medicaid program, 
which is administered together by CMS and state 
Medicaid programs. These individuals are often 
referred to as “dually eligible” beneficiaries. 
Medicaid provides health insurance for those with 
low incomes; the specific income requirements and 
the benefits of the program vary from state to state. 
Individuals with some disabilities may also be eli-
gible for Medicaid. While dually eligible beneficia-
ries have a greater proportion of their healthcare 
costs paid through their combined coverage, navi-
gating two insurance programs may be challenging, 
particularly for a population that has traditionally 
experienced lower education and health literacy 
levels. In addition, special Medicare rules or options 
may apply to those who are dually eligible.

Prescription Drug Coverage in Medicare

The feature of the Medicare program that has 
probably garnered the most public attention and 
debate is the introduction of prescription drug 
coverage through the Medicare Modernization Act 
of 2003. Many older adults use one or more pre-
scription medications on a regular basis, which can 
become quite costly, particularly for those with 
limited incomes. However, prior to the MMA, 
Medicare did not routinely cover outpatient pre-
scription medications, leaving a significant gap in 
its coverage of healthcare expenses. After the pass-
ing of the MMA, Medicare beneficiaries were able 
to purchase prescription drug discount cards, 
which assisted them with the cost of prescription 
drugs in 2004 and 2005 until the Medicare pre-
scription drug coverage went into effect in 2006.

Currently, beneficiaries may receive Medicare 
drug coverage either as a part of a Medicare 
Advantage plan or by purchasing a separate pre-
scription drug plan. Both types of plans are run by 
private insurance companies and may have differ-
ent premiums, co-payments, or formularies. When 
selecting a prescription drug plan, beneficiaries 
may need to carefully compare plan formularies 
(i.e., list of medications, generic and brand-name, 
that are covered by the plan) to ensure that their 
medications are included, especially if they are tak-
ing multiple medications. They may also need to 
stay up-to-date on possible changes to the plan’s 
formularies. Individuals should also be aware of 
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certain rules or conditions regarding plan enroll-
ment. For example, beneficiaries who do not enroll 
in a Medicare prescription drug plan when they 
first become eligible may have to pay a penalty if 
they decide to enroll at a later time. Furthermore, 
Medicare beneficiaries with low incomes may also 
need to explore whether they qualify for a subsidy 
to pay for prescription drugs available through the 
Social Security Administration.

A common source of confusion among benefi-
ciaries and a primary point of contention among 
supporters and opponents of the current drug cov-
erage is the gap in Medicare prescription drug 
coverage when expenditures reach a certain 
amount, often called the “donut hole” in coverage. 
Once beneficiaries’ drug expenditures reach this 
threshold (approximately $2,400 in 2007), they no 
longer receive coverage until their expenditures 
exceed another threshold (approximately $3,800 
in 2007), at which time their coverage will resume. 
In other words, those who fall into the donut hole 
will pay the full price for their medications, as if 
they did not have coverage.

Educating Beneficiaries About Medicare

Given the complexities of the Medicare program, 
it is not surprising that past research has generally 
found beneficiary knowledge about the Medicare 
program and the available coverage options to be 
quite low, although beneficiaries tend to be most 
knowledgeable about the particular type of cover-
age they currently have. Those who are in the 
process of choosing an insurance plan may require 
educational information and materials to help 
them compare the cost, benefits, and performance 
of the various plans to make an informed decision. 
However, beneficiary education must be an ongo-
ing effort that goes beyond just plan comparison 
information. Even after selecting a plan, beneficia-
ries need to stay informed about the changes in the 
Medicare program (e.g., available plan options) 
and their individual plans (e.g., changes in drug 
formularies). They must also understand the rules 
(e.g., when they may change plans) and their rights 
(e.g., right to appeal a coverage decision).

A provision of the BBA was to educate and 
inform Medicare beneficiaries. In 1998, CMS 
implemented the National Medicare Education 
Program to provide beneficiaries with information 

they need to make informed decisions about their 
Medicare coverage. As a part of this program, ben-
eficiaries have access to Medicare information via 
print copies of the Medicare & You handbook, 
which is updated yearly, the Medicare help line 
(800-MEDICARE), and the Medicare Web site 
(www.medicare.gov). Many states also have State 
Health Insurance Counseling and Assistance 
Programs (SHIPs) that can assist beneficiaries with 
Medicare coverage questions.

Conducting Research on  
Medicare Decision Making

Complementary to efforts to educate beneficiaries 
are research studies to understand how beneficia-
ries make decisions regarding their Medicare 
coverage, including how much they know about 
the Medicare program, what information they 
use in selecting their insurance plans, and which 
ap pro aches are most effective for assisting benefi-
ciaries in making informed decisions. There are 
several considerations when conducting decision-
making research with the Medicare population.

Study Sample

As a part of the study design process, research-
ers must determine whether to include a sample 
that is representative of the entire Medicare popu-
lation or to use specific inclusion and exclusion 
criteria to restrict the sample. One segment of the 
Medicare population includes elderly beneficiaries 
in nursing homes who may be physically or cogni-
tively unable to fully participate in a research 
study. In addition to older adults, individuals with 
certain disabilities or conditions, such as end-stage 
renal disease, are eligible for Medicare. These ben-
eficiaries could have different experiences with the 
Medicare program than those who became eligible 
simply due to their age.

Mode of Data Collection

Decisions concerning the study sample should 
also inform the selection of an appropriate mode 
of data collection, while balancing practical con-
siderations, such as budget and time. Studies that 
include ill or institutionalized respondents may be 
most effective using in-person interviews; however, 
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this approach may be expensive. Telephone sur-
veys may need modifications for those who are 
hard of hearing, while mail surveys may need to 
use larger print for those with eyesight problems. 
Web surveys may not be effective, given the unfa-
miliarity with and sometimes reluctance among 
some older adults to use the Internet.

Survey Questions

Care should be taken when designing survey 
questions to ensure the validity of the data col-
lected. It is particularly important to ensure that 
beneficiaries understand any terminology used in 
the survey questions (unless the goal of the ques-
tions is to test beneficiary understanding). There 
may sometimes be a disconnect between the termi-
nology used by insurers and providers and the way 
that beneficiaries themselves refer to certain aspects 
of their Medicare coverage. Cognitive interviewing 
is one useful approach for tapping into respon-
dents’ perceptions and identifying potential prob-
lems with the survey questions.

Another consideration when selecting the num-
ber and type of survey questions is respondent 
burden. Some beneficiaries, particularly those in 
institutions, may be quite ill and unable to answer 
a lengthy questionnaire. In addition, some older 
adults experience declines in cognitive abilities 
over time. For example, declines in working mem-
ory, which are common with increasing age, would 
make it difficult for respondents to retain lengthy 
response options in their memory to effectively 
answer questions administered verbally. Questions 
that will be administered verbally should use short 
response options.

Study Materials

As with survey questions, study materials should 
be designed to be easy to comprehend and use. The 
health literacy of the target population should be 
considered when designing materials and deliver-
ing messages. Possible demographic differences  
in Medicare knowledge and decision-making 
approaches may be used to target messages and 
materials. It may also be helpful to consider prefer-
ences among segments of the population. For 
example, some older beneficiaries may be less 
likely to use the Internet as a source of insurance 

information. Other beneficiaries may tend to 
assume a less active role in medical decision mak-
ing, possibly relying on doctors, pharmacists, or 
other professionals to provide them the informa-
tion they need.

Including Nonbeneficiaries as Respondents

While research studies generally include a sam-
ple of participants from the population of interest, 
studies on Medicare decision making may need to 
include individuals who are not Medicare benefi-
ciaries themselves. One such situation is when 
respondents are too ill or cognitively impaired to 
answer the study question by themselves. In these 
cases, it may be possible to include a proxy respon-
dent who can provide assistance or answer the 
questions for the respondent. However, the valid-
ity of proxy responses may be a concern, depend-
ing on the familiarity of the proxy with the sample 
member and his or her Medicare coverage and the 
types of questions asked (i.e., those asking for 
objective information vs. subjective perceptions or 
preferences).

Finally, given the complexity of the Medicare 
program and the available options, even those ben-
eficiaries who are able to respond to a survey 
themselves may receive assistance from others, 
such as a spouse, children, or friends, when mak-
ing health insurance decisions. Some of these  
individuals may not be enrolled in the Medicare 
program themselves and may be unaware of the 
informational resources available to beneficiaries. 
Researchers may need to investigate the role of 
these informal caregivers in the Medicare decision-
making process.

Carla Bann

See also Decision-Making Competence, Aging and 
Mental Status; Government Perspective, Informed 
Policy Choice; Informed Decision Making; Medicaid
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MeMory reconstrUction

All aspects of episodic (information about events) 
and semantic (knowledge about the world) mem-
ory can be influenced by reconstructions based on 
inferences due to general knowledge or current 
beliefs, including stereotypical ones. This aspect of 
memory may serve the once adaptive purpose to 
keep a consistent and updated model of the world, 
but it may also lead to memory illusions under 
certain conditions. Erroneous beliefs about past 
events may be held with strong confidence, and 
currently, there is no reliable method that allows 
one to distinguish true from false memories. In 
medical decision making, the hindsight bias or 
“knew it all along” effect may be most relevant. 
Whenever possible, one should strive for external 
documentations of current beliefs and decisions to 
have an external validation of memories later. 
Cuing techniques borrowed from the cognitive 
interview technique may enhance the chances for 
retrieving true memories if an external validation 
source does not exist.

Background

Since the beginnings of empirical research on 
memory, theorizing has been dominated by the 
“storehouse metaphor.” Theories of memory tend 
to describe structures and substructures in which 
information about events (episodic memory) or 
knowledge about the world (semantic memory) is 
stored and can later possibly be retrieved. Forgetting 
has been attributed either to the decay of informa-
tion or to the lack of effective retrieval cues for 

finding and reactivating the trace in the store with 
more empirical support for the latter conception. 
Hence, according to this view, information is first 
encoded into a representation which in turn is 
stored somewhere in a memory trace which resides 
there until it is retrieved (or not). It can be refreshed 
by rehearsal or repeated retrieval, but otherwise it 
remains essentially unchanged.

In his classic book Remembering, published in 
1932, Frederic C. Bartlett challenged this static view 
and demonstrated the shortcomings of the meta-
phor. He presented an old Indian myth to his British 
university students and had them reproduce the con-
tents repeatedly after various time intervals. His 
observation was that the reproductions of the exotic 
story were increasingly and systematically distorted 
toward common knowledge about typical stories  
in the Western culture. Hence, remembering is an 
active process which uses generic world knowledge 
(schemata) to reconstruct information encountered 
in the past. Although controlled replications of 
Bartlett’s original study have been somewhat elusive, 
there is now a wealth of empirical evidence with 
other materials demonstrating the influence of 
knowledge-based reconstruction and judgment pro-
cesses in episodic memory. One early experimental 
example by Carmichael and colleagues is presented 
in Figure 1, which shows the systematic influence on 
the reproductions of simple line drawings that had 
been labeled with “memory cues” for reproduction.

Reconstruction and Distortion Phenomena

Memory reconstructions have been demonstrated 
experimentally in a variety of domains: Research 
on the so-called hindsight bias, eyewitness suggest-
ibility, and source memory has shown that recon-
structions of past events can be manipulated in 
predictable ways. Furthermore, research on sche-
mata, false memories and so-called implanted 
childhood memories has demonstrated that mem-
ory illusions can even be created for events that 
never happened or for items that were not pre-
sented. The phenomena are sketched below. The 
most prominent memory and judgment distortion 
is the hindsight bias or “knew it all along” effect. 
According to this phenomenon, events seem less 
surprising after the fact. For example, participants 
in a typical experimental study may be asked to 
judge the likelihoods of future events (e.g., soccer 
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results). If they are instructed to recall their initial 
estimates after the outcomes are known, the mean 
judgments tend to move toward the actual out-
comes. This procedure also works with numerical 
estimates that are not probabilities, for example, 
almanac questions (“How high is the Eiffel tower?”). 
The phenomenon is extremely robust, and neither 
financial incentives for accuracy nor the reduction 
of self-presentation motivations reduces it by a sub-
stantial amount. Hence, it is seen as a genuinely 
cognitive phenomenon by most researchers. It is 
obvious that the tendency to overestimate the pre-
dictability of events after the fact may lead to sub-
stantial misjudgments that can also affect medical 
decisions and their post hoc evaluation.

Closely related phenomena are the misinforma-
tion effects or suggestibilty effects in memory that 
have been studied extensively by Elizabeth K. 
Loftus and colleagues. In the basic paradigm, par-
ticipants are presented with slide shows or videos 
of events (e.g., car accidents or staged crimes), fol-
lowed by questions about the events that either 
contain misleading information (e.g., “Did another 

car pass the red car while it stopped at the intersec-
tion with the stop sign?” when there was actually 
a yield sign) or some suggestive wordings of the 
questions (e.g., “How fast were the cars going 
when they smashed into each other?”). Later 
memory tests regularly show an increased ten-
dency to report suggested details (e.g., the stop 
sign) or details in accordance with the suggestion 
(e.g., higher velocity estimates and the illusion of 
having seen broken glass when the word smashed 
rather than hit was used in the leading question). 
Similar results have been reported repeatedly, and 
they are extremely relevant for eyewitness testi-
mony and possible influences of suggestive inter-
rogations on eyewitness accuracy.

Recent research on source monitoring (remem-
bering the context of information acquisition) has 
shown that the reconstruction of the episodic con-
text is particularly susceptible to judgment pro-
cesses that rely on generic knowledge about 
schemata, stereotypes, or correlations between 
aspects of the information and information source. 
Reconstructing the source of information therefore 
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resembles a problem-solving task more than a 
simple retrieval of contextual details.

More dramatic instances of illusory memory 
have shown that people may “remember” items 
that never appeared or events that never happened. 
Research on schemata in the 70s of the past century 
revealed that after the presentation of information 
that fits a certain schema (e.g., a visit to the restau-
rant), participants tend to accept schema-typical 
events as having been presented (e.g., the waiter 
presents the bill) although these were not stated 
explicitly. Later research with simple semantically 
associated word lists revealed that the belief that 
certain nonpresented items were presented can be 
held with high confidence, and participants some-
times claim that they vividly “remember” the pre-
sentation of the item. For example, the presentation 
of items such as a table, stool, wood, back, sofa, or 
rocker will enhance the probability that participants 
later recognize or recall the word chair as presented 
before although it was not. The false memory rate 
may even exceed that for some actually presented 
items, and their “forgetting” rate seems to be 
slower. This illusion is also quite robust and can 
easily be provoked with appropriate lists in class-
room demonstrations. It is, however, not restricted 
to artificial word lists; even autobiographical pseu-
do-memories can be “implanted” by plausible sug-
gestions, and the confidence with which participants 
report details of these memories increases with 
repeated testing.

Theoretical Accounts and Debates

Although there is no single theory of the phenom-
ena listed above, their common denominator is 
that the apparent retrieval of memory traces is 
rather a process of reconstruction that is influenced 
by general world knowledge, associations with the 
context and between items, and response biases. 
Memory distortions are probably the price we pay 
for an effective memory system that tries to main-
tain a consistent representation of the world and 
fills gaps in the memory representations by betting 
on the most likely information, given the continu-
ously updated knowledge in the system. The dem-
onstration of malleable memories is commonly 
interpreted as a genuine maladaptive bias. However, 
the experimental settings are created deliberately in 
a biased way to make the reconstruction processes 

visible to the researcher in the way optical illusions 
operate at the boundaries of our perceptual system 
and reveal the principles according to which it 
works. In all the examples cited above, including 
the false memory paradigm with word lists (except 
perhaps implanted childhood memories), the recon-
structions produced by the memory system are 
“intelligent” ones that fill in information that is 
likely, given the state of the world and knowledge 
about it. One can speculate that these guesses are 
in most cases accurate and hence contribute to an 
effective knowledge system that has evolved.

Whereas early accounts of the hindsight bias 
and the misinformation effect claimed that the 
memory trace is damaged by the outcome knowl-
edge and the misleading information, respectively, 
later studies suggested that the original memory 
trace (if encoded in the first place) is still available 
but that its accessibility may be reduced. Given a 
lack of successful retrieval, knowledge-based recon-
struction fills in the gap. Theoretical appro aches 
emphasize associative, similarity-based, or judg-
mental mechanisms, but probably all mechanisms 
contribute to the reconstructions.

Research on false memories has focused on indi-
vidual and situational factors that determine the 
amount of suggestibility or allow distinguishing true 
from false memories. For example, there are indi-
vidual differences in the susceptibility for memory 
distortions, but they affect only the amount of the 
illusion, not its occurrence or nonoccurrence. The 
same is true for cognitive processes such as visual 
imagination that can enhance the effect sizes.

Concerning the possibility to distinguish between 
true and false memories, the results are mixed: 
Some studies found differences in experienced viv-
idness and emotional intensity between true and 
implanted memories; others did not. Anyway, 
there is no clear dividing line, and the expert com-
mission of the American Psychological Association 
investigating the relation between potential sugges-
tion effects and the increasing reports about recov-
ered memories of childhood sexual abuse concluded 
that currently there is no reliable method for dis-
tinguishing true memories from false memories.

Countermeasures

Given the pessimistic conclusion on the distin-
guishability of true and false (or reconstructed) 
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memories, the most obvious countermeasure to 
avoid potentially fallacious reconstructions after 
the fact is a documentation in external representa-
tions (written, recorded, or videotaped). Especially 
to avoid hindsight biases in medical decisions,  
evidence and conclusions drawn from them should  
be documented. If new facts appear later (e.g., a 
tumor is detected), it will otherwise sometimes be 
hard to achieve a fair evaluation of previous judg-
ments. In the same manner, it is recommended to 
write down memory protocols immediately after 
an important event has been witnessed for poten-
tial cases of later questioning.

If, however, external records do not exist, a 
method has been developed for eyewitness inter-
rogations called the cognitive interview. This 
method draws on the fact that the chances of 
retrieving memories are improved by reinstating 
(at least in imagination) as many aspects of the 
episodic context as possible. These may serve as 
effective cues that aid retrieval of original informa-
tion in memory. Of course, this method tries to 
avoid all kinds of leading questions or suggestions 
of information. Similar principles can be used for 
retrieving one’s own previous judgments.

Arndt Bröder

See also Bias; Cognitive Psychology and Processes; Fuzzy-
Trace Theory
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Mental accoUnting

The terms mental account and mental accounting 
were coined in the 1980s by Richard Thaler to 

refer to certain mental representations (accounts) 
and cognitive processes (accounting) related to 
decision outcomes and events, particularly trans-
actions involving money. It is useful to distinguish 
core mental accounts, which are relatively stable 
structures, from specific mental accounts con-
structed to represent a new economic decision.

Core Mental Accounts

Behavioral life cycle theory aims to explain how 
people deal with the economic transactions they 
encounter in everyday life across the lifespan. It is 
a formal economic model incorporating assump-
tions of bounded rationality theory, notably that 
people construct simplified mental representations 
of their economic world. One assumed simplifica-
tion is that people mentally partition their income 
and expenditure transactions over time into dis-
crete budget periods, often weekly or monthly, to 
coincide with significant recurring events such as 
payday, or utility or housing payments. Another is 
that economic resources are allocated to one of 
three core mental accounts: current income, cur-
rent assets, or future income. The way that these 
accounts relate to expenditure decisions varies. 
Each has a different budget constraint, with the 
current income account having the lowest resis-
tance to spending and the future income account 
the highest. In addition, different categories of 
expenditure may relate to these broad accounts 
differently: For example, low-cost, frequently 
occurring purchases such as a newspaper are more 
likely to be allocated to the current income 
account. Finally, subaccounts for specific purposes 
may also be constructed, such as “holiday money.” 
All this implies that money is mentally categorized 
or labeled.

Behavioral life cycle theory predicts that people 
will violate a principle of rational economic behav-
ior known as fungibility—in essence, the principle 
that money from all sources should be interchange-
able. It can explain certain anomalies of economic 
behavior (violations of fungibility) such as holding 
savings attracting a lower rate of interest while 
borrowing money at a higher rate (more common 
than some readers might think). The notion of core 
mental accounts as simplified representations of 
long-term resources has mainly been applied to 
consumer behavior and to basic financial decisions 
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such as saving versus spending unexpected (wind-
fall) income. However, it is also clearly relevant  
to personal healthcare decisions, including health 
insurance, which involves uncertain future benefits 
but ongoing costs, that is, monthly premium pay-
ments that would normally be allocated to a cur-
rent income account.

Specific Mental Accounts

A second use of the term mental account derives 
from prospect theory and is related to the framing 
effect. In contrast to the ongoing representation 
discussed above, Amos Tversky and Daniel 
Kahneman defined a mental account as an out-
come frame set up for a specific consumer choice 
or transaction (initially these authors used the term 
psychological account). They distinguished three 
levels of account, differing in the extent to which 
contextual information might be included, that 
were investigated in the Jacket and Calculator deci-
sion problem. In one version of the problem, par-
ticipants were asked to imagine they were about to 
purchase a jacket for $125 and a calculator for $15 
and had been informed that the calculator was on 
sale for $10 at another branch, a 20 minutes’ drive 
away. Only 29% of participants responded that 
they would drive to the other store, but when the 
problem was rephrased so that the prices of jacket 
and calculator were reversed, with the calculator 
being $125 in one store and $120 in the other, 
68% were prepared to do so. Although the differ-
ence in the price of the calculator and the cost of 
the whole shopping trip are the same in both forms 
of the problem, respondents tended to represent it 
differently, which can be understood in terms of 
the specific mental account primed for the transac-
tion. For example, the calculator price difference 
could be framed in terms of a minimal, topical, or 
more comprehensive mental account. For a mini-
mal account, it would be evaluated relative to the 
status quo (a saving of $5). For a topical account, 
a reference point from which to evaluate the price 
difference would be derived from the “topic” of 
the decision: in this case the actual price of one of 
the calculators (e.g., $5 less than $15). For a more 
comprehensive account, the reference point would 
be based on a wider context, for example, the 
whole shopping bill ($5 less than $140). The 
change in majority preference across versions of 

the problem is explained by a tendency to con-
struct topical accounts that incorporate the most 
relevant, but not all, aspects of the transaction.

Mental Accounting Processes

Mental accounting theory assumes that three basic 
cognitive processes are used to allocate financial 
outcomes to core or specific mental accounts: cod-
ing, integration, and segregation. Coding is one of 
the basic processes of original prospect theory by 
which decision outcomes are coded as gains or 
losses relative to a reference point and evaluated 
according to a value function that is concave for 
gains and convex for losses. The above analysis in 
terms of topical accounts implies that relative, 
rather than absolute, differences are coded and 
evaluated as gains or losses.

Turning to integration and segregation pro-
cesses, these refer to the construction of represen-
tations of two or more decision outcomes: 
specifically, whether outcomes are allocated to the 
same or different mental accounts, respectively. 
These processes have been used to explain a range 
of decision-related phenomena, including condi-
tions under which prior outcomes may influence 
current decisions. Suppose a player has just gam-
bled on a roulette wheel and won $10 from the 
house. This newly won money could be integrated 
into a core, current income account, or alterna-
tively, it could be segregated from other resources 
and allocated to a new subaccount, the “house 
money.” The player may subsequently integrate 
the possible outcomes of the next spin of the rou-
lette wheel with this house money account and be 
more prepared to gamble this than he or she would 
money from the general current income account. 
In fact, consistent with a process of integrating 
winnings in this way, some studies have found that 
players were more likely to make riskier gambling 
choices after a prior win.

The important consequence of integrating ver-
sus segregating sequences of decision outcomes is 
that the overall evaluation of the events is differ-
ent, assuming that gains and losses are evaluated 
according to the value function of prospect theory. 
For example, in the case of two successive roulette 
wins of $10, the overall evaluation if they remained 
segregated would be greater than the evaluation of 
the corresponding integrated gain of $20. There is 
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some evidence that preferences for clearly segre-
gated gains and losses compared with the equiva-
lent integrated ones are consistent with this 
prediction. However, contrary to it, one study 
found that two segregated losses were evaluated 
less negatively than was the integrated larger loss. 
Other effects of prior outcomes on current deci-
sions that can be explained in terms of these men-
tal accounting processes include sunk costs and 
escalation of commitment, where current decisions 
are integrated with prior outcomes, and de-escala-
tion of commitment, where they are segregated.

Another issue that has received attention is 
whether the gains and losses within a transaction 
are integrated or segregated: for example, whether 
the pleasure of acquiring a new car is segregated 
from, or integrated with, the pain of paying for it, or 
whether the experience of work and being paid are 
integrated or segregated. Drazen Prelec and George 
Loewenstein’s double-entry mental accounting the-
ory argues that gains (the black—income, consump-
tion) and losses (the red—paying, working) are 
mentally represented in separate accounts that inter-
act in different ways, particularly depending on how 
such outcomes are distributed over time. Support 
was found for the prediction that paying for some-
thing before acquiring or consuming it is generally 
less painful than the other way round because of the 
mechanism of prospective accounting (the pain of 
paying for a holiday in advance is buffered by the 
prospect of the positive experience to come). As well 
as time, contextual factors such as the form of pay-
ment have been found to moderate the integrating, 
or coupling, as opposed to the segregation, or 
decoupling, of outcomes on the red and the black 
sides of the account.

Psychological Functions of Mental Accounts

Several adaptive functions of mental accounts and 
accounting processes have been proposed. First, an 
important function of core mental accounts is self-
control. Resources in current asset and future 
income accounts are resistant to the temptations of 
immediate consumption, thereby supporting lon-
ger-term economic well-being. Second, an impor-
tant cognitive function of both specific and core 
accounts is to mentally represent the important 
features of the personal economic world effectively 
and efficiently. Since the personal economy is too 

complex for the limited information processing 
capacities of the human mind to represent com-
pletely, simplifications are necessary. Despite these 
simplifications, however, core mental accounts are 
sufficient to facilitate effective budgeting. Finally, a 
function of mental accounting processes that has 
been proposed is hedonic editing. This is the notion 
that people actively choose to segregate or integrate 
decision outcomes to maximize their subjective 
value. Alternatively, some evidence suggests that 
integration of prior outcomes may be motivated by 
a desire to avoid losses. However, as discussed ear-
lier, preferences for segregated or integrated out-
comes may reflect the consequences of these 
processes rather than prior motivation to derive 
greater satisfaction from decision outcomes.

Extensions and Issues

The range of decision phenomena that have been 
elucidated by mental accounting theory since the 
1980s is rather extensive, particularly in consumer 
psychology. For example, as well as those already 
discussed, important insights have been gained on 
consumers’ responses to discounts and surcharges, 
their reactions to unexpected price changes, con-
sumer credit decisions, and evaluations of the bun-
dling or separation of product features. Also, our 
understanding of important aspects of personal 
finance, such as saving and tax-related behavior, 
has been advanced. On the other hand, boundary 
conditions and other limitations have been identi-
fied, and several domains, including health deci-
sions, have been underresearched.

One criticism has been that some of the decision 
anomalies explained by mental accounting theory 
are rather context-specific. In addition, the validity 
of core mental accounts has been questioned: 
Consistent effects on economic behavior and 
expectations have not always been found, and 
alternative core account structures have been pro-
posed. Furthermore, it has been argued that core 
mental accounts are in practice rather malleable, 
with money mentally transferred from one to the 
other rather easily. Finally, the overextensive use 
of the term mental accounting to refer to basic 
coding and editing processes has also been criti-
cized as adding little to what is understood via 
prospect theory and cognitive process models of 
decision making. Nevertheless, the fundamental 
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insight of mental accounting theory, that financial 
resources are not fungible, has been consistently 
validated and shown to be important across many 
domains of decision making. In conclusion, to mis-
quote George Orwell’s Animal Farm: All money is 
equal, but some monies are more equal than others.

Rob Ranyard

See also Bounded Rationality and Emotions; Editing, 
Segregation of Prospects; Prospect Theory; Sunk Costs
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Meta-analysis and 
literatUre reView

Literature reviews designed to summarize large 
volumes of information are frequently published. 

When a review is done systematically, following 
certain criteria, and the results are pooled and 
analyzed quantitatively, it is called a meta-analy-
sis. A well-designed and -interpreted meta-analysis 
can provide valuable information for decision 
making. However, there are several critical cave-
ats in performing and interpreting them.

The information generated in medical research 
has tremendously increased in recent years. New 
studies are constantly being published, and clini-
cians, researchers, and policy makers may find it 
nearly impossible to stay current. More and more 
review articles that pool the results of multiple 
studies are seen.

Combining available information seems reason-
able and can save considerable time, effort, and 
money. Nowadays, meta-analyses are used to 
design future research, to provide evidence in the 
regulatory process, and especially to modify clini-
cal decision making. A meta-analysis is powerful 
but also controversial because several conditions 
are critical, and small violations of those condi-
tions can lead to misleading results. Under scru-
tiny, some meta-analyses have been inappropriate 
and their conclusions not fully warranted. This 
entry covers basic concepts of meta-analysis and 
discusses its caveats.

Main Aims of a Meta-Analysis

The main aims of a meta-analysis are as follows:

 1. To summarize results from several individual 
studies

 2. To evaluate differences in the results among 
studies

 3. To overcome small sample sizes of individual 
studies

 4. To increase precision in estimating effects

 5. To evaluate effects in subsets of patients

 6. To determine if new studies are needed to 
further investigate a topic

Critical Issues in Performing a Meta-Analysis

Identification and Selection of Studies

Two phases need to be followed when selecting 
studies for a meta-analysis: (1) the literature 
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search, in which potential studies are identified; 
and (2) the clear definition of inclusion criteria. 
Three problems affect these phases: publication 
bias and search bias in the former, and selection 
bias in the latter.

Publication Bias

Searches of databases can yield many studies. 
However, these databases include only published 
studies. Such searches are unlikely to yield a repre-
sentative sample because studies that show a posi-
tive result (usually in favor of a new or standard 
treatment) are more likely to be published. This 
selective publication is called publication bias. 
Consider the case of the publication status of stud-
ies on antidepressants. Based on studies registered 
with the FDA, 97% of the positive studies are pub-
lished versus only 12% of the negative ones. 
Furthermore, when the nonpublished studies are 
not included, the positive effects of individual 
drugs increase between 11% and 69%.

One reason for publication bias is that drug 
manufacturers are not generally interested in pub-
lishing negative studies. Also, journal editors favor 
positive studies because these are the ones that 
make the headlines. To ameliorate the effect of 
publication bias, a serious effort should be made to 
identify unpublished studies. This is much easier 
now due to improved communication between 
researchers and by registries in which all the stud-
ies of a certain disease or treatment are reported. 
In some medical areas, the exclusion of studies 
conducted in non-English-speaking countries can 
increase publication bias.

The National Institutes of Health maintains a 
registry of all the studies it supports, and the U.S. 
Food and Drug Administration keeps a registry and 
database in which drug companies must register  
all trials they sponsor. Registries of published and 
unpublished trials supported by pharmaceutical 
companies are also available (e.g., GlaxoSmithKline’s 
Clinical Study Register). The Cochrane collabora-
tion keeps records of systematic reviews and meta-
analyses of many diseases and interventions.

Search Bias

Even in the ideal case of no publication bias,  
a faulty search can miss some publications. In 
searching databases, care should be given to using 

a set of key words that is as complete as possible. 
This step is so critical that most recent meta-anal-
yses include the list of key words used. The search 
engine (e.g., PubMed, Embase, Web of Science, or 
Octopus) is also critical, affecting the type and 
number of studies that are found. Small differences 
in search strategies can produce large differences in 
the set of studies found.

Selection Bias

The identification phase usually yields a long 
list of potential studies, many of which are not 
directly relevant to the topic of the meta-analysis. 
This list is then subject to predefined inclusion 
criteria. This critical step is also designed to reduce 
differences among studies, to eliminate duplication 
of data or studies, and to improve data quality.

To reduce selection bias, it is crucial that inclu-
sion criteria for the studies be clearly defined and 
that these studies be evaluated by at least two 
researchers, with the final list chosen by consensus. 
The objective is to select studies that are as similar 
as possible with respect to these criteria. Even with 
careful selection, differences among studies will 
remain, and it becomes hard to justify pooling the 
results to obtain an overall conclusion.

In some cases, it is particularly difficult to find 
similar studies, and sometimes the discrepancies 
and low quality of the studies can prevent a rea-
sonable integration of results. Authors may decide 
not to pool the results, due to a systematic qualita-
tive inadequacy of almost all trials and a lack of 
consistency in the studies and their methods.

Stratification is an effective way to deal with 
inherent differences among studies and to improve 
the quality and usefulness of the conclusions. An 
added advantage to stratification is that insight 
can be gained by investigating discrepancies among 
strata. There are many ways to create coherent 
subgroups of studies. For example, clinical trials 
can be stratified according to their quality scores. 
Commonly used scores are based on the use of 
allocation concealment, the use of blinding, the 
drop-out rate, the outcome measurement, and the 
use of intention-to-treat analysis.

Funnel Plot

The funnel plot is a technique used to investi-
gate the possibility of biases in the identification 
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and selection phases. In a funnel plot, the size of 
the effect (defined as a measure of the difference 
between treatment and control) in each study is 
plotted on the horizontal axis against precision or 
sample size on the vertical axis. If there are no 
biases, the graph will tend to have a symmetrical 
funnel shape centered on the average effect of the 
studies. When negative studies are missing, the 
graph shows asymmetry. Funnel plots are simple, 
but their objective is to detect a complex effect, 
and they may be misleading. For example, lack of 
symmetry in a funnel plot can also be caused by 
heterogeneity in the studies. Another problem with 
funnel plots is that they are difficult to evaluate 
when the number of studies is small.

For example, consider a meta-analysis that 
evaluates the effect of anticoagulant treatment 
to prevent venous thromboembolism (PE) in 

hospitalized patients. The treatment was useful 
to prevent PE, with no significant increase in 
major bleeding. Figure 1 shows the funnel plots 
for these two outcomes. The asymmetry in the 
top plot suggests bias due to a lack of inclusion 
of small studies showing an increase in the risk 
of PE. The bottom plot shows the symmetry of 
the funnel plot for major bleeding, suggesting 
absence of bias.

Evaluation of Heterogeneity of Results

Heterogeneity refers to the degree of dissimilar-
ity in the results of individual studies. The dissimi-
larities can be related to their inclusion criteria but 
sometimes might not be easy to elucidate. As the 
level of heterogeneity increases, the justification for 
an integrated result becomes more difficult. A tool 
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Figure 1  The funnel plot

Notes: Top—An asymmetrical funnel plot of studies that measured the presence of pulmonary embolism in patients with 
anticoagulant prophylaxis, suggesting that small studies where the association was positive are missing. Bottom—A symmetrical 
funnel plot of studies that measured major bleeding, suggesting absence of selection bias. The standard error of the log relative 
risk (SE log([RR]) is used as a measure of precision.
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that is very effective to display the level of hetero-
geneity is the forest plot. Here, the estimated effect 
of each study, along with a line representing a con-
fidence interval, is drawn. When the confidence 
intervals overlap, the heterogeneity is low. The for-
est plot includes a reference line at the point of no 
effect (e.g., 1 for relative risks, odds ratios, and 
hazard ratios; 0 for risk difference). When some 
effects lie on opposite sides of the reference line, it 
means that heterogeneity is high, and the conclu-
sions of a meta-analysis are compromised.

Consider a meta-analysis that evaluated the 
effect of high-dose versus standard-dose statin 
therapy on the risk of coronary death or myocar-
dial infarction (MI) in patients with stable coronary 
disease or acute coronary syndromes. The forest 
plot showed a homogeneous benefit of high-dose 
statin therapy across trials (Figure 2). In contrast, 
consider another meta-analysis that studied the 
association between statin use and the risk of breast 
cancer. The forest plot shows a heterogeneous asso-
ciation across case-control studies (Figure 3). 
Cochran’s Q test and the I2 test are frequently used 
to determine the significance of heterogeneity.

A meta-analysis of clinical trials compared the 
survival of patients with esophageal carcinoma 
who received neo-adjuvant chemotherapy versus 
those who underwent surgery alone. Only one of 
the eight studies showed that neo-adjuvant chemo-
therapy was significantly beneficial. Three of the 
studies suggested that it was harmful although not 

statistically significant. The pooled result was mar-
ginally significant in favor of the treatment (p = 
.05). This positive result was largely due to the fact 
that the only study with a significantly positive 
result was also the largest (with 400 patients in 
each arm vs. an average of 68 per arm for the other 
studies). Even though the test for heterogeneity 
was not significant, the marginal p value and the 
differences in study size make the results of this 
meta-analysis suspect.

Availability of Information

Most reports of individual studies include only 
summary results, such as means, standard devia-
tions, proportions, odds ratios, relative risks, and/
or hazard ratios. Other than the possibility of 
errors in reporting, the lack of information can 
severely limit the types of analyses and conclusions. 
The lack of information from individual studies can 
preclude the comparison of effects in predetermined 
subgroups of patients. The best scenario is when 
data at the patient level are available. In such cases, 
the researcher has great flexibility in the analysis. 
Consider a meta-analysis of the value of microves-
sel density in predicting survival in non-small-cell 
lung cancer. Information on individual patients was 
obtained by contacting research centers directly. 
The data allowed varying the cutoff point to clas-
sify the microvessel density as high or low and to 
use statistical methods to ameliorate heterogeneity.
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Figure 2  Low level of heterogeneity

Note: All trials show better outcome with high-dose statin therapy, indicating a low level of heterogeneity.
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Appropriate Analysis of Data

There are specific statistical techniques used in 
meta-analysis to analyze and integrate the infor-
mation. The data from individual studies can be 
analyzed using either of two models: (1) The fixed-
effects model assumes that the treatment effect is 
the same across studies. This common effect is 
unknown, and the purpose of the analysis is to 
estimate it with more precision than in the indi-
vidual studies. (2) The random-effects model, on 
the other hand, assumes that the treatment effect is 
not the same across studies. The goal is to estimate 
the average effect in the studies.

In the fixed-effects model, the results of indi-
vidual studies are pooled using weights that depend 
on the sample size of the study, whereas in the 
random-effects model each study is weighted 
equally. Due to the heterogeneity among studies, 
the random-effects model yields wider confidence 
intervals. Both models have pros and cons. In 
many cases, the assumption that the treatment 
effect is the same in all the studies is not tenable, 
and the random-effects model is preferable. When 
the effect of interest is large, the results of both 
models tend to agree, particularly when the studies 
are balanced (i.e., they have similar numbers of 
patients in the treatment arm and in the control 
arm) and the study sizes are similar. But when the 
effect is small or when the level of heterogeneity of 

the studies is high, the result of the meta-analysis 
is likely to depend on the model used. In such 
cases, the analysis should be done and presented 
using both models.

It is highly desirable for a meta-analysis to 
include a sensitivity analysis to determine the 
robustness of the results. The most common way to 
do this is by analyzing the data using various meth-
ods and to present the results when some studies 
are added (or removed) from the analysis. If these 
actions cause serious changes in the overall results, 
the credibility of the results is compromised.

Testing of effects suggested by the data and not 
planned a priori increases considerably the risk of 
false-positive results. One common problem is the 
practice of performing multiple subgroup analyses 
according to baseline characteristics. The best way 
to prevent the possibility of false-positive results is 
to determine the effects to be tested before the data 
are collected and analyzed. Another method is to 
adjust the p value according to the number of 
analyses. In general, post hoc analyses should be 
deemed exploratory, and the reader should be 
aware to judge the validity of the conclusions.

Meta-Analysis of Rare Events

Lately, meta-analysis has been used to analyze out-
comes that are rare and that individual studies 
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Figure 3  High level of heterogeneity

Note: Some studies show increased cancer odds with the use of statins, and others show decreased cancer odds, representing a 
high level of heterogeneity. The overall effect is shown as a diamond at the bottom of the figure.



767Minerva-DM

were not designed to test. The sample size of indi-
vidual studies provides inadequate power to test 
rare outcomes. Scarcity of events causes serious 
problems in any statistical analysis. The reason is 
that, with rare events, small changes in the data 
can cause big changes in the results. This problem 
can persist even after pooling data from many 
studies. Instability of results is also exacerbated by 
the use of relative measures (e.g., relative risk and 
odds ratio) instead of absolute measures of risk 
(e.g., risk difference). Adverse or harmful events 
are prime examples of important rare outcomes 
that are not always formally analyzed statistically.

Consider a recent meta-analysis that combined 
42 studies to examine the effect of rosiglitazone on 
the risk of MI and death from cardiovascular 
causes. The overall estimated incidence of MI in 
the treatment groups was low: 0.006 (86/14,376), 
or 6 in 1,000. Furthermore, four studies did not 
have any events in either group, and 2 of the 42 
studies accounted for 28% of the patients in the 
study. Using a fixed-effects model, the odds ratio 
was 1.42, that is, the odds of MI were 42% higher 
in patients using rosiglitazone, and the difference 
was statistically significant (95% confidence inter-
val 1.03–1.98). Given the low frequency of MI, 
this translates into an increase of only 1.78 MIs 
per 1,000 patients (from 4.22 to 6 per 1,000). 
Furthermore, when the data were analyzed using 
other methods or if the two large studies were 
removed, the effect became nonsignificant.

Future Directions

Like many other statistical techniques, meta- 
analysis is a powerful tool when used judiciously; 
however, there are many caveats in its application. 
Clearly, meta-analysis has an important role in 
medical research, public policy, and medical deci-
sion making. Its use and value will likely increase, 
given the amount and the speed at which new 
knowledge is being created and the availability of 
specialized software for performing it.

A meta-analysis needs to fulfill several key 
requirements to ensure the validity of its results: 
well-defined objectives, including precise defini-
tions of clinical variables and outcomes; appropri-
ate and well-documented study search and selection 
strategy; evaluation of bias in the identification 
and selection of studies; description and evaluation 

of heterogeneity and quality of studies; justifica-
tion of data analytic techniques; and use and 
description of sensitivity analysis. It is imperative 
that clinicians and researchers be able to assess 
critically the value and reliability of the conclu-
sions of meta-analyses to apply them to the  
decision-making process.

Adrian V. Hernandez
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MinerVa-dM

Minerva-DM (DM = decision making) is a mem-
ory-based model of choice, probability judgment, 
and frequency judgment. Minerva-DM and its 
predecessor, Minerva 2, are similar to neural net-
work models and can be used to simulate human 
behavior. Minerva-DM has been used to account 
for many of the common heuristics and biases 
discovered in the judgment and decision-making 
literature, including the availability and represen-
tativeness heuristics, base-rate neglect, mere- 
exposure effect, overconfidence effect, Bayesian 
conservatism, and frequency judgment.

Minerva-DM was developed on the premise 
that memory processes serve as input into the 
higher-order processes of probability and frequency 
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judgment. Thus, errors and biases that arise as part 
of the memory encoding or retrieval process are 
assumed to cascade into errors and biases in judg-
ment. A number of studies support this contention. 
For example, overconfidence has been shown to 
covary with two main factors: the structure of the 
environment (the ecology) and how well informa-
tion has been encoded in long-term memory. The 
idea that overconfidence is affected by how well 
information has been encoded suggests that the 
overconfidence effect is, in large part, a memory 
phenomenon rather than a judgment phenomenon. 
Moreover, it suggests that remediation of the over-
confidence effect should focus on memory vari-
ables, not judgment variables.

Model Description

Minerva-DM and Minerva 2 are akin to a single-
layer neural network model, where the input cor-
responds to a pattern of features extracted from 
the environment and the output is a function of  
the contents of memory that are activated by the 
input. Both Minerva 2 and Minerva-DM assume 
an exemplar-based memory representation where 
each individual experience (i.e., episode) is repre-
sented by a distinct memory trace. Multiple experi-
ences of similar events are therefore assumed to 
result in multiple, albeit similar, memory traces 
stored in memory. Because Minerva-DM preserved 
the representational and computational details 
inherent in Minerva 2, it can be used to simulate a 
variety of effects in the recognition memory litera-
ture, as well as the aforementioned phenomena in 
the frequency judgment and probability judgment 
literatures. Through the use of simulation method-
ology, Minerva-DM is able to make a priori pre-
dictions regarding the relationship between memory 
and judgment without the need to evoke special-
ized heuristic mechanisms.

Assumptions

Minerva-DM is based on the recognition memory 
model called Minerva 2. Minerva 2 makes two 
fundamental assumptions: (1) Memory consists of 
a database of instances that represent an individu-
al’s past experiences, and (2) recognition memory 
judgments are based on a global familiarity signal 
derived by matching a memory cue against all 

traces in memory simultaneously. Minerva 2 has 
been used successfully to model the influence of 
different types of experience on people’s recogni-
tion and frequency judgments.

Minerva-DM extended Minerva 2’s capability 
by adding two additional assumptions. First, 
Minerva-DM assumes that memory traces can  
be partitioned into components that represent 
“hypotheses,” “data,” and “context.” Hypotheses 
correspond to events about which the participant is 
making a judgment, such as a disease hypothesis or 
a treatment hypothesis. The data component cor-
responds to the information on which the partici-
pant is making his or her assessment, such as the 
symptoms associated with diseases in past patients. 
The context component corresponds to environ-
mental or task information available to the deci-
sion maker. The second additional assumption is 
that Minerva-DM assumes a conditional memory 
search process rather than a global memory search. 
The conditional memory search process involves 
first activating those memory traces in long-term 
memory that are consistent with the observable 
data (the presenting symptoms of the patient being 
diagnosed). The participant is then assumed to 
estimate the relative frequency of various disease 
hypotheses within the set of traces activated by the 
initial observable data. The relative frequencies are 
then normalized through a comparison process to 
derive a conditional probability judgment corre-
sponding to the probability of the hypothesis in 
light of the data, that is, p(H|D).

Both Minerva 2 and Minerva-DM assume that 
memory is accessed by probing memory with infor-
mation provided to the decision maker. In 
Minerva-DM, decision makers are assumed to 
access memory by probing with observable “data,” 
such as a patient’s presenting symptoms. This initial 
probing of memory allows the decision maker to 
partition episodic memory into those past patients 
who had similar presenting symptoms (the relevant 
set) and those who had different presenting symp-
toms. Once partitioned, the decision maker is then 
assumed to access the relevant set to determine how 
many past cases correspond to a particular hypoth-
esis (e.g., pneumonia). For example, if asked for a 
judgment of p(pneumonia|outcome of test X), the 
decision maker would be assumed to first activate 
all traces in episodic memory of patients who had 
a similar score on test X and then probe this 
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activated subset with the pneumonia hypothesis to 
determine how many within the activated set cor-
respond to pneumonia.

Connection to Bayesian Probabilities

The conditional probability judgment rendered by 
Minerva-DM is analogous to Bayesian conditional 
probability, and Minerva-DM mimics Bayesian 
probabilities under appropriate parameterization. 
However, Minerva-DM also anticipates the psy-
chological and task variables that lead to system-
atic deviation from Bayes’s theorem.

Extension of Minerva-DM 
to Hypothesis Generation

More recent research has extended Minerva-DM to 
deal with hypothesis generation and information 
search processes. The extended model, HyGene, 
accounts for a variety of new judgment phenomena, 
including the subadditivity effect and the relation-
ship between judgment, hypothesis generation, and 
individual differences in working memory capacity. 
Like Minerva-DM, HyGene places a premium on 
understanding the relationship between memory 
and judgment by explicitly modeling the interrela-
tionship between long-term memory and judgment. 
However, unlike Minerva-DM, HyGene is able to 
model how people generate the to-be-evaluated 
hypotheses from long-term memory and posits a 
limited-capacity working memory system that con-
strains the number of hypotheses one can include in 
the comparison process. Thus, HyGene describes 
how people generate hypotheses from long-term 
memory, and the psychological processes that gov-
ern how these hypotheses are fed into the processes 
of probability judgment, information search, and 
hypothesis testing.

Michael R. Dougherty and Rick P. Thomas
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Mixed and indirect 
coMparisons

Mixed and indirect comparisons are specialized 
methods of performing meta-analysis. These meth-
ods can be useful in replacing or augmenting a 
meta-analysis, but one must be aware of potential 
pitfalls when using them. This entry presents defi-
nitions, methods, assumptions, and examples of 
each of the terms.

Indirect Comparisons

Definition

A direct comparison of two interventions occurs 
when they are compared within the same random-
ized controlled trial (RCT). An indirect comparison 
is any method of comparing two interventions with-
out the use of direct comparisons between the two. It 
can be used in meta-analysis of RCTs when a 
reviewer wishes to compare two interventions and no 
direct comparisons exist. It can also be used in con-
junction with direct evidence to strengthen results.

Methods

There are two possible methods of performing 
indirect comparisons. One method is to take all 
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evidence regarding the effects of two interventions 
from various sources and compare the two inter-
ventions as if they came from the same trial. This 
method has been referred to as unadjusted indirect 
comparison or the naive method. This method 
should be avoided since it violates the inherent 
randomization that occurs within the trials and is 
known to produce misleading results.

All further references to indirect comparisons in 
this entry refer to adjusted indirect comparisons. 
In this method, two interventions are compared 
indirectly by using their direct comparisons with a 
third common intervention.

This method is most easily demonstrated with 
an example. Suppose a reviewer wishes to assess 
the difference in efficacy between two drugs, A and 
B. While there are no RCTs directly comparing the 
two interventions, there are trials comparing each 
drug with a placebo (i.e., A vs. P and B vs. P). If 
efficacy is measured in terms of a mean difference, 
then two separate meta-analyses can be performed: 
one comparing Drug A with the placebo, resulting 
in a mean difference of dAP, and one comparing 
Drug B with the placebo, resulting in a mean dif-
ference of dBP. The mean difference between A and 
B (dAB) can be expressed as a “difference of 
differences”—that is,

dAB = dAP - dBP.

Using the standard formula for the variance of 
a difference of independent variables, one can 
compute the variance of this difference as

Var(dAB) = Var(dAP) + Var(dBP).

The variance of an estimated quantity can be 
defined generally as the uncertainty one has as to 
the estimate. The uncertainty increases with an 
indirect estimate as the variance will be higher 
than either of the direct estimates.

With this information, one can compute a stan-
dard estimate with a confidence interval for the 
mean difference between the two drugs. If the effi-
cacy is measured by a risk ratio or an odds ratio, 
the procedure is the same, but the ratios must be 
converted to the log scale first and then exponenti-
ated to obtain the final results. This will result in a 
“ratio of ratios.”

This estimate will be unbiased as long as there 
is no interaction between the magnitude of the 
treatment effect and the covariates that define the 
subgroups in the corresponding studies—that is to 
say that the effects are transitive and the popula-
tions exchangeable. While this assumption is diffi-
cult to verify, it should be noted that it is the same 
assumption that is made in a standard meta-analysis 
of direct comparisons.

Combining Direct and Indirect Evidence

If both direct and indirect evidence for a com-
parison exist, one may wish to combine the evi-
dence to strengthen the result. This can be done 
using standard meta-analytic techniques. If one 
has a point estimate with corresponding standard 
error (defined as the square root of the variance) 
for both direct and indirect evidence, then, pro-
vided there are no studies included in both esti-
mates (i.e., three-arm trials—A vs. B vs. P—should 
be included only in direct estimation), one can 
combine the evidence using the inverse variance 
meta-analytic method. Either fixed or random 
effects can be employed. A fixed effects meta-
analysis assumes that each study is measuring the 
same underlying effect, while a random effects 
meta-analysis allows for the possibility that each 
study is estimating a different effect and the 
researcher is attempting to find the “average 
study effect.”

Example

In a study on drug treatments for chronic 
insomnia, the main drugs were classified into two 
groups: benzodiazepines and nonbenzodiazepines. 
Two separate meta-analyses for the primary out-
come, sleep onset latency (SOL), were conducted 
comparing each drug class with a placebo using 
direct evidence. Both drug classes were found to be 
superior to the placebo, reducing SOL by an aver-
age of 10.0 minutes (95% CI: 3.4, 16.6) for ben-
zodiazepines and by an average of 12.8 minutes 
(95% CI: 8.8, 16.9) for nonbenzodiazepines. The 
two drug interventions can be compared indirectly 
from these estimates. The point estimate of the dif-
ference between the two drug classes can now be 
estimated indirectly as 2.8 minutes (12.8 minus 
10.0) with 95% confidence interval (-4.9, 10.5). 
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This confidence interval can be computed using 
the aforementioned formula by converting the 
confidence intervals to variances and then convert-
ing the corresponding computation of variance 
back to a confidence interval. From this estimate, 
one would say that while nonbenzodiazepines 
appeared superior to benzodiazepines, the differ-
ence was not statistically significant because the 
confidence interval includes zero.

If in addition to this indirect estimate, there was 
direct evidence comparing the two interventions, 
they could be combined. For example, if direct 
evidence showed a difference of 1.6 minutes (95% 
CI: -3.4, 6.5), then the two estimates (direct and 
indirect) can be combined in a standard inverse 
variance meta-analysis (Figure 1). Thus a com-
bined estimate of 1.9 minutes (95% CI: -2.2, 6.1) 
is obtained that is a combination of all available 
evidence, both direct and indirect.

Mixed Comparisons

Definition

Mixed comparison is a meta-analytic technique 
that combines direct and indirect evidence to  
formulate comparisons among interventions. This 
could be as simple as the method described in the 
previous example but is more generally used to 
describe network meta-analyses and mixed treat-
ment comparisons. This latter method combines 
all available evidence to compare all interventions 
simultaneously. The method is flexible in that it 
can properly use multiarm trials and yield esti-
mates among interventions for any number of dif-
ferent interventions that have been examined, as 

long as there is a connected network of studies 
comparing all interventions.

Network Meta-Analysis

Network meta-analysis is the process of estimating 
the difference between two treatments indirectly 
through a connected network of studies where the 
two interventions are compared through other inter-
ventions directly. Say the researchers wish to compare 
treatments A and B, and they have studies involving 
other treatments C, D, E, and F. This can be done 
indirectly if a connected network can be established 
through these other treatments. For example, if there 
are studies comparing AC, CD, BC, and BD, one 
could compare A and B both through their direct 
comparisons with C and through A’s indirect com-
parison with D and B’s direct comparison with D. On 
the other hand, if the only existing studies compared 
AC, AD, CD, BE, BF, and EF, there would be no way 
to compare A and B even indirectly since there is one 
network of ACD and another of BEF and there is no 
connection between them.

This idea of a connected network of compari-
sons is inherent to conducting mixed treatment 
comparisons.

Mixed Treatment Comparisons

With mixed treatment comparisons, the focus 
shifts from comparing two interventions to attempt-
ing to simultaneously compare three or more inter-
ventions. By using the networks discussed in the 
previous section, this can be achieved as long as all 
interventions can be connected with a network of 
available studies.

Mean difference (fixed)
95% Cl

Mean difference (fixed)
95% Cl

Direct evidence 1.58  (−3.38, 6.54)

2.81 (−4.90, 10.52)

1.94  (−2.23, 6.11)

−5 0 5 10−10

Indirect evidence

Figure 1  Combining direct and indirect evidence
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Mixed-treatment comparisons are best used 
when multiple treatments (three or more) have 
been compared across numerous studies in various 
combinations and the objective is to determine 
which of the treatments is either best overall or 
best in a specific situation or population.

For example, consider a situation where six dif-
ferent interventions have been examined in several 
two- and three-arm trials in various combinations. 
Fifteen separate pairwise comparisons can be made, 
and thus a standard meta-analysis will be of little 
help in determining the best intervention. However, 
by simultaneously comparing all interventions 
through a mixed treatment comparison, it becomes 
more straightforward to determine the best one or 
to rank them in order of decreasing benefit.

Methods

To conduct a mixed treatment comparison, one 
must first select one treatment as a reference treat-
ment. This is usually the placebo or standard treat-
ment if one exists. All other treatments are 
compared with this reference to define the basic 
parameters, and all other comparisons can be 
defined as functional parameters of these basic 
parameters. These estimates can be calculated with 
the fixed or random effects assumptions.

For example, if there are four treatments A, B, 
C, and D, and A is chosen as the reference, direct 
and indirect evidence could be used to establish 
dAB, dAC, and dAD—the differences between each of 
the other treatments and the reference treatment. 
All other contrasts can be defined as functions of 
these basic contrasts:

dBC = dAC - dAB,

dBD = dAD - dAB, and

dCD = dAD - dAC.

Using Bayesian statistical methods via Gibbs 
sampling, it is straightforward to attach probabili-
ties to each of the interventions as to their likelihood 
of being the best intervention. In Gibbs sampling, 
thousands (or even tens or hundreds of thousands) 
of results are simulated. The interventions can be 
ranked at each of the sampled iterations, and the 

number of times each intervention was ranked the 
best can be counted.

Example

In a review on short-acting agents for emer-
gency room procedural sedation, there were a total 
of six RCTs that examined four different interven-
tions: midazolam (M), etomidate (E), propofol (P), 
and ketofol (K). The trials had the following 
forms: M versus E (two trials), M versus E versus 
P, M versus P, E versus P, and P versus K. Since 
there is a connected network (i.e., M, E, and P are 
all compared directly with each other and K can be 
connected indirectly to M and E through its com-
parison with P), a mixed treatment comparison 
can be performed. Midazolam, being the standard 
analgesic used in practice, is chosen as the refer-
ence drug. Using a Bayesian formulation and using 
Gibbs sampling to combine the data for the pri-
mary outcome (procedure time), the results were 
computed as shown in Figure 2.

All three “active interventions” significantly 
reduced procedure time compared with midazo-
lam, with ketofol having the greatest effect. While 
there was no direct evidence linking ketofol to 
midazolam, a comparison using the indirect evi-
dence could still be made. The wider confidence 
interval of the ketofol comparison (compared with 
those of propofol and etomidate) is partially a 
result of the lack of direct comparisons between 
the two treatments. Although not shown here, the 
pairwise estimates and confidence (or credible) 
intervals for all the active interventions can also be 
computed.

The Gibbs sampling also provides estimates of 
the probability of each intervention being the best 
intervention based on the evidence. In this exam-
ple, in 73% of the iterations, ketofol had the great-
est difference in procedure time from midazolam; 
thus this represents an approximation of its prob-
ability of being the best intervention of the four 
drugs being compared. In a similar way, probabil-
ities for any rank or the mean rank of each inter-
vention can be estimated.

Assumptions

As with simple indirect comparisons, mixed 
treatment comparisons require similar assumptions 
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to those of a standard meta-analysis. In a fixed-
effects analysis, the assumption is made that all 
true differences between interventions are the 
same across trials, even if a particular trial did 
not examine one or more of the interventions. 
For example, the true difference between A and B 
would be identical in trials that compared A ver-
sus B, A versus D, B versus C, or even C versus D 
if A or B or both had been examined in those tri-
als that omit them. In a random effects analysis, 
this assumption is relaxed and one allows effects 
to vary between studies and assumes only that 
the variance between studies is constant. One 
must also be cautious of incoherence, which 
occurs when an indirect effect can have opposite 
conclusions, depending on which indirect com-
parator is used. As with any meta-analysis, these 
assumptions are difficult to verify, but it is 
important to note that as long as unadjusted 
comparisons are avoided (as they are in the 
mixed treatment comparisons described above), 
the within-trial randomization is still being pre-
served, and if standard meta-analytic assump-
tions hold, there will be no bias.

Ben Vandermeer
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Intervals; Evidence Synthesis; Fixed Versus Random 

Effects; Meta-Analysis and Literature Review; 
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Covariance
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Models of physician–patient 
relationship

Clinical decision making is the use of diverse strat-
egies to generate and test potential solutions to 
problems that are presented by patients. It involves 
using, acquiring, and interpreting the indicators 
and then generating and evaluating hypotheses. 
Clinical decision making takes place within the 
context of the physician–patient relationship and 
thus is embedded within the consultation process. 
Indeed, even if the duration is brief, individuals 
involved in dyadic interactions can, and often do, 
influence each other’s cognitions, emotions, and 
behaviors. Theories about decision making sug-
gest that people do not have stable and preexisting 
beliefs about self-interest but construct them in the 
process of eliciting information. Therefore, the 
way information is provided by the health pro-
vider is crucial in assisting patients to construct 

preferences and then deciding on a course of 
action. Thus, ignoring the nature of the physician–
patient relationship that occurs during clinical 
encounters could undermine our understanding of 
how current clinical decision-making processes 
can be improved.

The first section of the entry presents the main 
characteristics of the two basic models of physician–
patient relationships: the doctor-centered model 
and the patient-centered model. In response to the 
growing expectations of patients as well as the 
burden of managing uncertainty in routine clinical 
decision making, the second section briefly sum-
marizes how a third model, the shared decision-
making model, has evolved in the past decade. The 
last section highlights the gaps in knowledge and 
areas needing further research.

Basic Models

Patient-Centered Model

The patient-centered model of care is grounded 
in the client-centered psychotherapy model. It 
refers to a philosophy of care that aims at the best 
integration possible of the patient’s perspective. 
This philosophy of care was proposed as an answer 
to a medical model that was focused mainly on the 
disease and that was felt to be unsatisfying. In line 

with this philosophy, the patient-centered model 
has been further developed to fit routine clinical 
practice. The main characteristics of the patient-
centered model are (a) exploring the disease and 
the experience of the disease (the illness experi-
ence), (b) understanding the person and his or her 
situation, (c) finding common ground, (d) integrat-
ing health prevention and promotion, (e) promoting 
the physician–patient relationship, and (f) fostering 
realistic expectations. Finding common ground is 
defined as an agreement between the physician and 
the patient on three elements: the nature of the 
problem, the goals of treatment, and the roles each 
wants to play in decision making. Congruence 
between patients and their physician on the 
nature of the problem, the options, and their 
roles in decision making is expected to foster 
favorable patient outcomes, especially in the area 
of mental health (e.g., depression outcomes, well-
being). The ultimate goal of the patient-centered 
model is the appropriate level of involvement of 
individuals in decisions affecting their health.

In recent years, in response to the difficulties 
associated with its definition and evaluation in its 
current form, the patient-centered model has been 
reconceptualized with a focus on five main charac-
teristics: (1) the biopsychosocial perspective (the 
understanding of the person and his or her situa-
tion), (2) the patient as a person (exploration of the 
disease and the experience of the disease), (3) the 
sharing of power and responsibilities (finding com-
mon ground), (4) the therapeutic relationship (the 
promotion of the physician–patient relationship), 
and (5) the physician as a person (recognition of 
the influence of the personal qualities and subjec-
tivity of the physician in the practice of medicine). 
This reconceptualization puts the focus on the 
sharing of responsibilities in decision making and 
the necessity of considering both perspectives, those 
of the patient and those of the physician.

Informed Decision-Making Model

In the decision-making community, the patient-
centered model is closely related to the informed 
decision-making model, also known as the con-
sumerist model or the informative model. The 
informed decision-making model refers to a 
model in which the information transfer is one-
way (the physician transfers to the patient all the 
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medical information that is needed for making a 
decision, the decision deliberation is made by the 
patient or sometimes by the patient with family 
members or some other individuals, and the deci-
sion about implementing the treatment is solely 
under the responsibility of the patient. In other 
words, the physician provides information, the 
patient applies values, and then the patient 
decides. This model is in contrast to the paternal-
istic decision-making model.

Doctor-Centered Model

The term doctor-centered model refers to a 
model of care in which the physician interprets the 
problems that are presented by the patient in terms 
of his or her own explanatory framework. It is 
understood as a more conventional model with a 
low sensibility to the unique context of the patient. 
In this model of relationship, the physician attempts 
to assign the patient’s problems to one of the pre-
established disease categories. The physician- 
centered model has its origins in the 19th century 
and is still better known as the structured approach 
to patients’ consultation, namely, the subjective/
objective/assessment/plan model (S.O.A.P. model):

 1. Subjective complaints of the patients are sought.

 2. Objective signs are found during the 
examination.

 3. An assessment is made.

 4. A plan is proposed.

Paternalistic Decision-Making Model

In the decision-making community, the  
physician-centered model is closely related to the 
paternalistic decision-making model. The term 
paternalistic decision-making model refers to a 
model in which the information transfer is one-
way (the physician transfers to the patient a mini-
mum of medical information that is needed for 
informed consent), the decision deliberation is 
made by the physician alone (or the medical team) 
and sometimes with other physicians, and the deci-
sion about implementing the treatment is solely 
under the responsibility of the physician. In other 
words, the physician makes decisions for the 
patient’s benefit independent of the patient’s  

values or desires. This model is in contrast to the 
informed decision-making model.

Shared Decision-Making Model

Shared decision making is defined as a process by 
which a healthcare choice is made by practitioners 
together with the patient and is said to be the crux 
of patient-centered care. It locates itself in the 
middle of a continuum between the paternalistic 
decision-making model and the informed decision-
making model. Shared decision making rests on the 
best evidence as to the risks and benefits of all avail-
able options, including doing nothing. It includes 
the following components: establishing a context in 
which patients’ views about treatment options are 
valued and seen as necessary; transferring technical 
information; making sure patients understand this 
information; helping patients base their preference 
on the best evidence; eliciting patients’ preferences; 
sharing treatment recommendations; and making 
explicit the component of uncertainty in the clinical 
decision-making process. It relies on the best evi-
dence about risks and benefits associated with all 
available options (including doing nothing) and on 
the values and preferences of patients, without 
excluding those of health professionals.

Shared decision making stresses the negotiation 
process between two divergent explanatory mod-
els of illness: the medical model and the patient 
model. In other words, it is a transactional model 
that makes explicit the tensions and ineffectiveness 
in clinical encounters on the basis of communica-
tion problems between models that contain the 
patient’s and doctor’s understanding of the cause 
of the patient’s illness. Therefore, the clinical 
encounter is the local setting in which patient–
doctor interactions are transactions between their 
respective explanatory models. This implies that 
the clinical encounter should foster the following: 
(1) the development of a therapeutic or working 
alliance through the establishment of an empathic 
milieu; (2) the eliciting of the patient’s explanatory 
model and illness problems; (3) the presentation, 
by the doctor, of his explanatory model in lay-
man’s terms; (4) the shifting by the patient toward 
the doctor’s model to make a working alliance  
possible; and (5) the open acknowledgment by  
the doctor of discrepancies between exposed mod-
els. The final result of this negotiation process is 
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(6) the change in position by one or both of the 
doctor and patient to set up a mutually agreed posi-
tion. Overall, this transactional model is congruent 
with the revised version of the patient-centered 
model and the current shared decision-making 
model. Collaborative decision making is deemed 
even more crucial in situations of clinical uncer-
tainty where a “good” decision might lead to an 
undesirable outcome. Consequently, fostering 
shared decision making in clinical settings has the 
potential to help both health providers and patients 
recognize the uncertainty that is present in the 
decision-making process, a first step for managing 
uncertainty in routine clinical decisions.

Interpretive Decision-Making Model

In this model of decision making, the patient is 
uncertain about his or her own values. The physi-
cian role consists in assisting the patient in eluci-
dating his or her own values. The physician is a 
counselor to the patient but remains neutral 
regarding which values should be favored.

Deliberative Decision-Making Model

In this model of decision making, the patient is 
uncertain about his or her values and is open to 
considering suggestions. The physician role con-
sists in teaching the desirable values. In contrast 
with the physician in the interpretative model, the 
physician is a coach who identifies which values 
should be favored.

Further Research

Exemplary medical practice is based on a greater 
consideration being given to factors related to the 
patient as well as to factors related to the doctor, 
with the goal of developing the greatest possible 
mutual understanding between these two individu-
als. Poor practice in medicine can result from 
insufficient clinical knowledge, the absence of a 
relationship with patients, a lack of understanding 
of the behavior, perceptions, and problems of 
patients, and insensitivity to the context. Thus, 
exemplary practice of medicine takes into consid-
eration the doctor, the patient, and the context. An 
understanding of the conduct of patient-doctor 
interactions thus becomes a prerequisite to a better 

understanding of the medical discipline. Although 
many models of the physician–patient relationship 
are available, it is not clear which model best fits 
the diverse types of patients or clinical situations. 
Therefore, it remains essential that future studies 
investigate the fit between the models and the 
types of patients or clinical situations. This has the 
potential to streamline the process of clinical  
decision making in overburdened healthcare clini-
cal settings and ensure quality of care.

France Légaré

See also Decisions Faced by Patients: Primary Care; 
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Decision Aids; Risk Communication; Shared Decision 
Making
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Monetary ValUe

By avoiding the difficult and uncomfortable issue 
of assigning monetary values to intangible health 
benefits, cost-effectiveness analysis (CEA) sacri-
fices the easy decision rule of cost-benefit analysis 
(CBA): An intervention or program represents an 
economically appropriate use of scarce resources 
if and only if the value of its health benefits 
exceeds its costs. Unfortunately, for the analyst 
preparing a CEA and the decision-maker faced 
with the findings from a CEA, the monetization of 
intangible health benefits by CEA can only be 
avoided in appearance. The decision maker must 
still wrestle with the value versus cost trade-off to 
interpret the results of the analysis. Therefore, the 
analyst also faces the dilemma of whether or not 
to provide the decision maker with guidance as to 
whether or not the intervention or program is 
worth its costs. That guidance often takes the 
form of a comparison of the incremental cost per 
health outcome achieved with a threshold value. 
This entry provides an overview of the key issues 
that analysts and decision makers should consider 
when using a threshold value (measured as cost 
per quality-adjusted life year [QALY]) to deter-
mine whether or not an intervention or program 
is cost-effective.

Theoretically Appropriate Threshold

The decision problem can be conceptualized as an 
attempt to maximize health benefits for a given 
cost. The implicit $/QALY is the shadow price on 
a QALY from this maximization, which represents 
the opportunity cost of the resources devoted to 

producing an additional QALY (technically speak-
ing, the shadow price is the value of the Lagrange 
multiplier on the budget constraint). Hence, the 
threshold depends on any parameter of the deci-
sion context that affects the objective function or 
the constraints. Examples of factors that would 
affect the optimal threshold include the nature of 
the decision maker’s utility function (e.g., extent  
of risk aversion), the position on utility function 
(how many other programs already funded), the 
available budget, and the discount rate. In addition 
to these factors, some research implies that the 
willingness to pay may be higher when the condi-
tion being treated is life threatening versus a condi-
tion that impairs only quality of life or that social 
willingness to pay for health benefits may differ by 
characteristics of the beneficiary such as age. This 
suggests that the basic premise that “a QALY is a 
QALY” may not be valid in some contexts, which 
would further require different thresholds based 
on the type of condition being treated.

The many determinants of the optimal threshold 
value should give the analyst and decision maker 
pause in adopting a “generic” threshold that is not 
attuned to their specific context. However, without 
appealing to a generic threshold, the decision 
maker would be left with little of a framework on 
which to make necessary adjustments. Similarly, 
the analyst is often writing for an unknown client 
with an unknown context (e.g., when publishing a 
CEA in the peer-reviewed literature). Therefore, 
the analyst’s desire to conclude with a generic rec-
ommendation is also understandable.

Common Generic Thresholds

Rules of Thumb

Given the psychological predilection for round 
numbers, it should come as no surprise that rules 
of thumb (ROTs) such as $50,000 or $100,000 
per QALY are among the most common thresh-
olds proposed in CEA studies. The most often used 
threshold appears to be $50,000 per QALY. The 
origin of the $50,000 threshold is, in part, that it 
approximated U.S. spending per renal dialysis 
patient year more than 20 years ago. Given the 
legislative decision to cover care for kidney failure 
patients by providing them with an entitlement to 
Medicare, it has been argued that other care with 
comparable or better cost-effectiveness should also 
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be covered. However, note that this “dialysis stan-
dard” is based on an approximation of $50,000 
per life year; the implied $/QALY threshold would 
actually be considerably higher, given that dialysis 
patients’ quality-of-life scores are well below 1.0. 
Furthermore, under the reasoning that care for 
dialysis patients is worth its cost, that would imply 
the $50,000 threshold is a floor for a reasonable 
threshold, not a ceiling.

In the United Kingdom, the role of CEA is insti-
tutionalized via the National Institute for Clinical 
Excellence (NICE). NICE has adopted a round 
number “range of acceptable cost-effectiveness” 
(£20,000 to £30,000). Notably, the midpoint of 
that range is very close to $50,000 at exchange 
rates prevailing in early 2008, though it has gener-
ally been less than $50,000 at historical exchange 
rates. However, a recent analysis concluded that 
while the probability of rejection of an interven-
tion by NICE did rise with cost/QALY, other fac-
tors also influenced decisions, and the threshold 
appears to be closer to £45,000 in practice.

One particular difficulty with round number 
ROTs is that they do not change with inflation, 
income growth, healthcare spending, or other fac-
tors unless they take a discrete (and large) jump to 
another round number. The issue of adjusting 
threshold values over time is taken up in more 
detail below.

Another set of ROT thresholds was developed  
as part of the World Health Organization’s Choosing 
Interventions That Are Cost Effective (WHO-
CHOICE) project. That project deemed interven-
tions to be highly cost-effective within a country if 
the cost per QALY was less than that country’s gross 
domestic product (GDP) per capita, cost-effective if 
it was between 1 and 3 times GDP per capita, and 
not cost-effective if it was greater than 3 times GDP 
per capita. WHO reported thresholds in year 2000 
dollars for 14 regions of the world. These thresholds 
ranged from $1,381 (highly cost-effective care in the 
WHO’s lowest income region) to $94,431 (cost- 
effective care in WHO’s highest income region).

League Tables

The league table approach examines the cost-
effectiveness of various interventions relative to 
each other. A given intervention’s cost-effective-
ness is then judged based on whether or not other 

interventions with similar or higher cost/QALY 
values are deemed to be generally accepted medi-
cal practices. A significant concern with the league 
table approach is that it can be self-referential and 
self-fulfilling. To the extent that current practice 
is influenced by factors such as the existence of 
third-party payment, the decision maker should 
not be comfortable with the implicit presumption 
that current practice reflects an optimal resource 
allocation. In addition, comparisons via league 
tables require a strong presumption that the stud-
ies are directly comparable. Differences such as 
quality of life assessments by the general popula-
tion versus those who have experienced  
and adapted to the target health state, or differ-
ences based on assessment methodology (e.g., 
standard gamble vs. time trade-off) would lead to 
questions regarding the validity of some cross-
study comparisons.

Using Empirical Data to  
Infer a $/QALY Threshold

A large body of literature has estimated the 
value of a statistical life by studying actual behav-
ior (e.g., wage variation for jobs according to 
occupational mortality, willingness to pay for 
safety improvements) or contingent valuation 
methods (surveys on hypothetical money vs. risk 
trade-offs). Conversion of the findings from this 
literature into an implied value of a QALY in 1997 
U.S. dollars implied values that varied widely 
across studies. However, the median study implied 
a value per QALY of $265,000, and 80% of the 
reviewed studies implied values over $100,000. 
This provides empirical evidence suggesting that 
common round number ROTs of $50,000 and 
even $100,000 may be too low. All the reviewed 
studies were from developed countries (the United 
States, Canada, the United Kingdom, Denmark, 
and France), but non-U.S. studies implied values 
similar to those of U.S. studies.

Additional empirical evidence is consistent 
with threshold values far above conventional 
ROTs. Data regarding the costs and benefits of 
medical advances and willingness to purchase 
unsubsidized health insurance coverage have been 
used to infer thresholds. Maintaining the assump-
tion that society has, on average, been willing to 
pay for advances in medical technology since 
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1950 leads to an inference that the lower bound 
for the value of a QALY is $183,000 in year 2003 
dollars. Similarly, maintaining the assumption 
that those without access to subsidized health 
insurance are similar to the entire population 
leads to an upper bound for the value of a QALY 
of $264,000.

Valuations of Health Benefits Based on  
Calibration of Microeconomic Models

Several threshold estimates are based on the 
specification of plausible utility function parame-
ters for values and risk aversion. Basically, these 
estimates ask how much a utility maximizing per-
son with “reasonable” preferences should be will-
ing to spend for an expected health benefit. 
Research using this approach suggested a thresh-
old of about double a person’s annual income or 
approximately $72,500 on average in the United 
States in 2006.

However, recent research based on utility max-
imization models, though not aimed specifically at 
estimating a $/QALY threshold, is consistent with 
very high values of health benefits. These esti-
mates and their implications for health spending 
are likely to generate substantial controversy. One 
study argued that the monetary value of 20th-
century health improvements in the United States 
averaged $1.2 million per person, with improve-
ments in longevity between 1970 and 2000 adding 
about $3.2 trillion annually to the national wealth. 
These findings arise from a strong complementar-
ity between consumption and health. Essentially, 
spending more on healthcare lowers current  
consumers’ current utility because some nonhealth 
consumption must be forgone, but it raises future 
utility even more by extending the number of time 
periods in which consumption can take place. An 
extension of this argument contended that even 
small health gains from end-of-life care can have 
value far in excess of the typically assumed value 
of a life-year. Provided the bequest motive is 
weak, a utility-maximizing individual near the end 
of life has no better use for his or her assets than 
to spend them on healthcare even if healthcare 
offers only a modest chance of a modest extension 
of life. The key dynamic driving these conclusions 
is the relatively low opportunity cost of extra 
health spending.

The $/QALY Threshold and  
Healthcare Cost Growth

To this point, thresholds have been discussed primar-
ily as a decision rule for CEA. In addition, the chosen 
threshold (if enforced) has substantial implications 
for healthcare cost growth. The higher the chosen 
threshold, the higher the healthcare cost growth rate 
will be as a greater variety of current and future 
interventions will be deemed cost-effective.

Politically, cost control may even be viewed as 
the primary objective of the application of CEA to 
healthcare. However, the objective of CEA, as 
rooted in welfare economics, is not to contain cost 
growth. CEA’s basis in welfare economics implies 
that its purpose is solely to help assure that what-
ever is purchased is indeed worth its cost; total 
costs may even rise rapidly due to the development 
and adoption of cost-effective interventions. 
Nonetheless, the higher the chosen threshold, the 
higher the healthcare cost growth rate will be as  
a greater variety of current and future interven-
tions will be deemed cost-effective. For example, 
suppose that a $200,000 per QALY threshold is 
chosen instead of a $100,000 per QALY thresh-
old. Any existing interventions whose cost-effec-
tiveness lies between $100,000 and $200,000 will 
be deemed acceptable under the higher threshold, 
and manufacturers will find it attractive to invest 
in interventions likely to yield relatively high cost- 
effectiveness ratios. Therefore, if the threshold is 
reset optimally, it may actually decline over time in 
response to the higher spending encouraged by a 
higher threshold. As more cost-effective but cost-
increasing interventions are developed and adopted 
under a high current threshold, the opportunity 
cost of further spending will rise. Therefore, the 
marginal QALY that seems affordable today may 
no longer seem affordable in the future, and it 
should not be assumed that the QALY threshold 
should necessarily rise in lockstep with inflation 
and incomes.

Given the possibility of monopoly pricing power 
for some healthcare services, a high threshold can 
also contribute to cost growth in a more subtle 
way. For example, if a new drug will be approved 
for payment if it meets the cost-effectiveness 
threshold, the patent-holder for that drug will have 
little reason not to price it in a manner that will 
place it very near the threshold. Therefore, setting 
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and enforcing a lower threshold can serve as a 
mechanism to force pricing restraint.

Future Directions

Most empirical evidence indicates that the arbitrary 
ROT thresholds in use today are too low. Continuing 
to use low thresholds may have beneficial cost con-
trol features but may also threaten the credibility of 
recommendations based on CEA. Given the desire 
for a decision rule for CEA, the appeal of a thresh-
old is unlikely to diminish. Therefore, a consensus 
process such as that employed by the U.S. Public 
Health Services to standardize CEA methods could 
be used to develop and periodically update a 
threshold value and could also provide guidance to 
decision makers about how such a threshold could 
be adjusted to their particular contexts. Similarly, it 
has recently been suggested that the U.K. National 
Health Service establish an independent committee 
to develop a threshold. By making the basis for a 
threshold more transparent, such efforts should be 
encouraged.

Richard A. Hirth
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Mood effects

Among emotional influences in decision making, 
the concept of “mood” has always been of specific 
interest. Nevertheless, one of the most critical 
aspects in dealing with mood is its definition. 
Although contents are overlapping, mood only 
refers to the valence dimension of emotion and 
appears usually to be less intense. In contrast to 
affects, states of mood do not change rapidly and 
tend to last for longer periods of time—some 
authors even refer to depression as a state of nega-
tive mood. Taken together, studies examining this 
concept tend to lack a clear disambiguation to 
what states exactly they refer when talking about 
mood; a commonly accepted usage of the term is 
still to be achieved.

Applied to a medical environment, moods might 
play a distinctive role in several ways. Health spe-
cialists often have to make fast decisions under 
uncertainty—especially when the time frame is 
tight or previous knowledge is scarce. In these situ-
ations, contextual information is taken into 
account, including emotional states like mood. 
Findings show that there is an influence of specific 
moods enhancing or impairing cognitive processes 
involved in decision making. The following pro-
vides several examples of this.

Even highly experienced medical staff have  
to examine carefully the symptoms to give a  
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diagnosis—during this examination process, moods 
might play an important role. A direct impact of 
mood in decision making can be derived from find-
ings focusing on the abstraction level of informa-
tion processing. There exists strong evidence that 
individuals in a happy mood perceive incoming 
information in a more generalized way (focusing 
on more general aspects or characteristics) than 
those experiencing a sad mood who are normally 
concentrating on more specific aspects. Imagining 
a routine checkup with a health professional, 
mood might be an influential factor regarding the 
diagnosis. For example, it could be responsible for 
an underestimation of the patient’s symptoms. On 
the one hand, patients in a good mood may not 
report specifically enough about their physical or 
psychological state—which could lead to difficul-
ties for the physician to find the right diagnosis. 
On the other hand, a physician in a bad mood may 
focus on the specificity of the visitor’s health 
aspects too hard and therefore lack the ability to 
grasp the bigger picture.

Another risky aspect comes from the fact that 
happy moods, in contrast to sad moods, are found 
to be related to a more heuristic strategy of pro-
cessing incoming information. Despite the elabo-
rated previous knowledge of a physician, a patient 
might be better off when having an appointment 
with a sad doctor. Sad moods are not only found 
to support the systematic or analytic elaboration of 
the actualities but also to avoid the (sometimes) 
inappropriate use of stereotypical thinking. 
Stereotypes are derived from the application of 
broader categories based on a general knowledge 
basis—and are therefore a result of heuristic pro-
cessing. Moreover, applied to the context of medi-
cal decision making, the influence of a happy mood 
could be problematic for the examination of stig-
matized patients: They might be judged by stereo-
typical expectations rather than objective criteria. 
In contrast, a sad mood leads to a more systematic 
analysis as the provided information undergoes an 
individualized elaboration. In line with these find-
ings, research shows that prior general knowledge 
is more influential when individuals are experienc-
ing a happy rather than sad mood. Hence, due to 
their prior beliefs, happy professionals run the risk 
of deciding in favor of a confirmation bias (i.e., 
accepting only findings confirming their assump-
tions) and disregarding any deviant information.

An explanation for the results about reliance on 
heuristics and stereotypes during happy moods is 
assumed by a lack of motivation. Based on the 
assumption that individuals in general try to main-
tain positive states and avoid negative ones, a 
negative mood might fulfill the need of changing 
the current situation. In contrast, a positive mood 
may not invite investment of any additional  
efforthowever, motivation may enhance the 
effort, with the prospect of a positive outcome and 
enjoyment of the task.

The influence of mood in decision making has 
various aspects that are widely confirmed; natu-
rally, it contains advantages and disadvantages 
regarding the outcome. Especially in the medical 
context, where decisions are affecting people’s 
lives, any performance has to take the mood of the 
participating agents into account. To what extent 
medical decision making is influenced by mood 
has to be further examined. A matter of particular 
interest could lie in the impact mood has on previ-
ous knowledge when decisions and judgments of 
health professionals are required.

Stephanie Müller and Rocio Garcia-Retamero
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Moral choice and 
pUblic policy

This entry on moral choice and public policy in 
medical decision making focuses on the irreducible 
components of the physician–patient relationship 
as it is the foundational nature of that relationship 
that determines the moral character of decisions in 
healthcare. The focus on the physician–patient 
relationship is historically and fundamentally 
appropriate, but it is also dated. Medical decision 
making for the individual, as well as in public 
policy, is currently determined by additional pro-
fessionals and entities. Professionals, such as 
nurses, have a larger role than ever before in the 
management of patients, both individually and 
collectively. Entities such as the government, 
insurance companies, hospitals, and health main-
tenance organizations also bear responsibility for 
decisions made for the individual and for the pub-
lic. However, a discussion that is focused on the 
moral aspects of the physician–patient relation-
ship can be a guide for judging the moral correct-
ness of decisions made in healthcare for the entire 
spectrum of decision makers.

Moral Choice

The physician–patient relationship is at the heart 
of what it means to generate ethical medical  
decision making. The physician has many roles, 
including those of a technician, wage earner or 
entrepreneur, agent of public well-being, and 
advocate for public policy. These roles, however, 
do not constitute what it means to be a profes-
sional and a physician. What a physician professes, 
and that which is at the root of this relationship, is 
that the physician is obligated to place the welfare 
of the patient above all other considerations. This 
role as a healer remains as the irreducible character 
trait of the physician and is the moral foundation 
for ethical medical decision making. Note that the 
role of healer goes beyond that of technician to the 
body human because it encompasses consideration 
of the person’s spiritual well-being also.

A second aspect of moral choice in medical 
decision making has been guided by the paradigm 
of patient autonomy. This view holds that the 
final authority for determining the treatment and 
direction of a patient’s medical care lies with the 
patient or the patient’s surrogate. The exercise of 
that right creates a responsibility for the physician 
to provide that the patient, or the patient’s sur-
rogate, is sufficiently informed and the resulting 
decisions are not coerced and are free of undue 
stress and self-interest. Furthermore, decision-
making capacity is a developmentally regulated 
process, and among the determinants of that 
capacity are the age and developmental status of 
the individual, his or her relative health, the 
nature of the choice to be made, and the stress 
under which that person finds himself or herself. 
As this applies to ethical decision making in pub-
lic policy, this would entail that decision making 
in the public arena requires an informed populace 
that is able to have an input into decisions made 
on their behalf. This input should be solicited in a 
noncoerced way that is free of undue stressors. 
Finally, not all decisions in healthcare carry a 
moral imperative. Certain questions, such as the 
appropriate antibiotics, are a technical matter, 
and other moral questions, such as priority listing 
for patients requiring solid organ transplantation 
in a country without the resources to perform 
such procedures, are not at issue on solely circum-
stantial grounds.
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Public Policy

The physician has a responsibility to the public 
that can exceed his or her responsibility to the 
individual patient. When the patient is a risk to 
others, the physician’s obligation supersedes the 
patient’s wishes for privacy. Reporting of certain 
infectious diseases is one example. Hence, the right 
to confidentiality is not universal, and patients 
when they seek a physician’s assistance are gener-
ally aware that certain conditions must be reported, 
even within the bounds of the physician–patient 
relationship. This is a part of the social contract we 
share. By accepting this social contract, individuals 
place their trust in the policy initiatives that society 
mandates to guard their best interests. The cre-
ation of healthcare policy is a result of this social 
contract. The morality of the decisions of that con-
tract can be adjudicated by reference to the pre-
cepts of the physician–patient relationship.

Moral choice in medical decision making is 
determined by the character of the physician–pa-
tient relationship. The primary requirement for a 
decision to be considered ethical is that it places the 
well-being of the patient (or public) foremost and 
the welfare of the government or other entity after. 
Such decisions recognize the stake that the public 
has in health policy decisions and most adequately 
inform the patient or public, solicit input, and rec-
ognize and aim to reduce any undue stresses or 
coercion that might influence such input. Conflicts 
of interest will occur, and physicians occupy mul-
tiple roles at any given time. This is readily appar-
ent in a society where a physician’s action may be 
constrained by hospitals, managed care organiza-
tions, and the government. When such a conflict 
arises, it is the duty of the physician, or other deci-
sion maker, to recognize his or her primary role as 
a healer, with all other interests being secondary. A 
decision that is not in line with this fundamental 
role cannot be considered moral.

Criteria and Course of Action
Moral choice in public policy must recognize the 
selfsame criteria as moral choice at the bedside. In 
a question with a moral dimension, the criteria to 
recognize are as follows:

 1. Moral choice in medical decision making is 
bound by having, as its primary objective, the 
well-being of the patient (or public).

 2. The patient (or public) is an autonomous agent 
and should be

a. informed,
b. uncoerced, and
c.  free of undue stressors.

 3. Conflict exists, and where it cannot be eliminated, 
it needs to be recognized and accounted for.

Public policy shifts and societal mores evolve 
with time, and therefore grounding moral choice 
for both public and private medical decision mak-
ing is necessary to avoid discussions of morality 
that are subject to accusations of caprice. Medical 
decision making therefore has to foremost consider 
the needs and wishes of the patient or community 
in helping to define an appropriate course of 
action. This course of action must not violate cer-
tain foundational aspects of ethical medical deci-
sion making such as doing no harm and acting in a 
way that serves the interest of the patient, not the 
caregiver.

Robert K. Pretzlaff
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Moral factors

Moral factors are elements in decision making that 
relate to our relationships, as individuals and com-
munities, with other people and the values used to 
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structure ways of living well. Moral factors per-
vade every medical decision but often go unnoticed 
because in standard practice there is consensus on 
how to balance competing moral factors best. 
These factors become most apparent in particu-
larly troubling circumstances, such as a diminished 
mental capacity, limited resources, or vulnerability 
of subjects in research. Western medicine has a 
long tradition of attempting to enumerate and 
codify these factors to provide a practical guide for 
both ethical conduct and decision making. Attempts 
to do so include the Hippocratic oath, the American 
Medical Asso ciation’s Code of Ethics, the 
Nuremberg Code, the Declaration of Helsinki, and 
the Belmont Report. Code-based approaches to 
understanding moral factors essentially rely on a 
snapshot of circumstances. Focusing on one set of 
values or a standard set of circumstances to the 
exclusion of others can create a blindness to other 
relevant factors. The consequences of losing sight 
of the diversity of moral factors can lead to a fail-
ure to identify a lack of consensus and the need for 
an evaluative moral calculus. Moral philosophers 
such as Aristotle, Kant, Mill, and Dewey each 
proffer theories on moral factors based on differ-
ent understandings of the good life. In the end, 
moving from theory to practice requires that train-
ing, experience, and careful analysis be used for 
identification of relevant moral factors.

The sheer scope of moral factors necessitates 
that only a broad outline of kinds can be delin-
eated in the current entry. The variety of relevant 
moral factors in any set of situations in a clinical 
environment can be analyzed at policy, care pro-
vider, and patient levels. These factors become 
more complex when treatment occurs in a research 
context. The sections below address three of the 
most interesting and important moral factors that 
manifest during considerations of complex medi-
cal choices. These include issues of autonomy and 
bodily integrity, clinical research, and nonmedical 
elements. Within each topic, the moral factors for 
various stakeholders are explored.

Autonomy and Bodily Integrity

A fundamental moral factor in any clinical medical 
decision is respect for a patient’s choices. In 
modern medicine, there is a long-standing tradition 
of respecting a patient’s autonomy—his or  

her right to self-determination. A competent adult 
patient has the right to accept or refuse available 
medical options based on his or her own valuing of 
relevant moral factors. Generally, performing med-
ical interventions on a competent adult without his 
or her consent violates the patient’s right to bodily 
integrity. Legally and morally, there is no substan-
tive difference between performing an unwanted 
medical procedure on a competent patient and any 
other kind of assault. This right to self-determina-
tion entails certain moral and legal obligations on 
the part of healthcare professionals. Because a 
patient must have a sufficient understanding of the 
medical situation to exercise his or her autonomy, 
healthcare professionals have an obligation to  
disclose all relevant information necessary for the 
patient to provide informed consent (see Canterbury 
v. Spence, 1972), and they are generally obligated 
not to subject patients to medical treatments or 
procedures against their wishes. In other words, 
patients have the right to refuse treatment, even 
life-preserving treatment. The classic example of 
this is the Jehovah’s Witness refusing blood prod-
ucts (see Stamford Hospital v. Vega, 1996). 
Competent adults have an equal right to withdraw 
an unwanted treatment as they do to refuse its ini-
tiation (see In re Quinlan, 1976; Cruzan v. 
Director, Missouri Department of Health, 1990).

A patient’s right to self-determination does not 
necessarily entail a right to demand all and any 
intervention. While the right of a competent well-
informed adult patient to refuse treatment is virtu-
ally limitless, there are significant limits on the 
positive demands a patient can make for medical 
interventions. A patient cannot demand a health-
care professional to engage in any activities that 
violate standards of medical practice. Respecting 
patients’ autonomy does not include healthcare 
professionals abdicating their obligation to act in 
accordance with their professional judgment. 
Healthcare professionals have the right to refuse to 
participate in any procedure that violates their 
moral conscience. However, healthcare profession-
als may not abandon their patients. If they are 
unwilling to perform a particular procedure, then 
generally they must assist the patient in finding 
adequate care. In this way, a physician’s profes-
sional and moral stance may be a significant moral 
factor. Finally, patients do not have a right to 
demand scarce resources, such as solid organs, to 
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which they are not otherwise entitled. The moral 
factor related to needs of others and the commu-
nity must be considered.

Not every patient, though, is a competent adult. 
In the case of adult patients who lack the ability to 
make their own decisions, an attempt is still made 
to respect their wishes. In such instances, a surro-
gate decision maker, chosen by the patient, the 
courts, or state statute, makes decisions based on 
what the patient would have done if the patient 
had not lacked the capacity. In the case of children 
or adults who have never been in a position to 
express their own set of values, medical decisions 
are made based on the best medical interests of the 
patient. It is important to understand that the right 
to determine the course of one’s medical treatment 
and to refuse or withdraw unwanted treatments is 
not restricted to competent adults. Since moral fac-
tors of control of bodily integrity and autonomy 
are valued highly, every person regardless of his or 
her cognitive and developmental abilities should 
be allotted control commensurate with his or her 
goals, values, and articulation of wishes.

Clinical Research

The research endeavor interjects a variety of new 
moral factors into the decision-making process. In 
clinical research, the physician–patient dyad expands 
to include at least the researcher, the funding 
source, and the population that the research aims to 
help. Physicians may find themselves playing a dual 
role. As physicians, they are primarily concerned 
with the patient immediately before them. As 
researchers, they value elements such as uniformity, 
repeatability, quality of data, and statistical signifi-
cance directed toward understanding something 
about an aggregate of patients. This duality creates 
a morally relevant fact for both the patient and the 
physician in attempting best decision making. A 
natural conflict of interest may arise in interjecting 
various research-related moral factors since best 
clinical practice may not be best for scientific 
advancement. The relationship adds the researcher-
subject dimension to the existing physician–patient 
interaction. This conflict is exacerbated when the 
relationship puts undue influence on the patient to 
participate in research.

Beyond the inherent difference of values in 
research, moral factors include the types of subjects 

being recruited. Elements such as a subject’s medi-
cal condition, cognitive ability, age, and member-
ship in an identifiable vulnerable population all 
become important moral factors because they 
affect the subject’s ability to consent voluntarily to 
be a subject, or they affect the burdens, risks of 
harm, and likelihood of benefits for that subject. 
The burdens, harms, and benefits faced by the sub-
ject must be balanced against the clinical options 
available to the subject and the overall value of the 
research for the patient population.

A plethora of further important moral factors 
should be considered in clinical research, including 
things such as appropriate levels of oversight, peer 
review, limiting patient liberty, dissemination of 
information, degree to which research may be use-
ful, and ownership of findings. These are among 
many additional factors that must enter into good 
decision making when patient care includes some 
aspect of clinical research. With every new activity 
added onto the patient–physician relationship, 
there are new moral factors to be considered.

Nonmedical Considerations

The above discussion of moral factors focuses on 
medical considerations as they affect particular 
patients. While in theory the only relevant interests 
should be those of the particular patient, in prac-
tice the interests of a multitude of persons con-
nected to the patient may be affected. These include 
family members, friends, healthcare providers, and 
in some cases the community at large. One of the 
most prevalent effects on persons other than the 
patient is the emotional affects that treatment or 
withdrawal of treatment can have on those close to 
a patient. In difficult end-of-life choices, family 
concerns are often included more fully as relevant 
moral factors. For instance, the decision to with-
draw life-sustaining treatment may be delayed to 
allow family members time to “adjust” to a situa-
tion. Furthermore, healthcare professionals are not 
immune to the emotional costs of caring for 
patients. In particular, nurses who are responsible 
for the daily care of patients can suffer from moral 
distress and become overwhelmed by the suffering 
of their patients when little meaning is attached to 
that suffering. These providers are moral agents, 
and their concerns should be weighed in some 
degree as appropriate moral factors.
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Treatment decisions can affect third parties in 
many ways beyond the emotional. For instance, 
there are financial considerations, fiduciary obliga-
tions (children, work, other patients), and commu-
nity resources. The decision to treat or refrain 
from treating can affect future burdens of care. 
The collateral cost to others is exemplified by the 
controversial case reported in 2006 in the Archives 
of Pediatrics & Adolescent Medicine regarding a 
severely disabled girl, known as Ashley X, who 
underwent surgery to attenuate her growth and 
sexual maturation. Part of the discussion regarding 
the parents’ treatment decisions revolved around 
their desire to avoid burdens.

Finally, as a community, explicit and implicit 
rationing occur in healthcare. Since there are 
finite resources, instances arise where the proper 
allocation becomes a morally relevant factor. This 
might be the use of blood in transfusion, an ICU 
bed, a specialist’s time, or entry into a research 
protocol.

Final Thoughts

Moral factors become particularly prevalent and 
critical in medical decisions because their conse-
quences often have far-reaching effects on quality 
of life. Medical decisions force individuals and 
communities to confront core values in unaccus-
tomed ways. The inherent uncertainty in medical 
practice exacerbates the decision making in such a 
way that accounting and weighing of moral factors 
is always probabilistic as well as subjective. Even 
when a particular moral factor is given priority in 
decision making, the patient, physicians, or com-
munity may still not preserve what was intended 
because the medical condition may follow an unex-
pected path.

Jason Gatliff and Paul J. Ford
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Morbidity

Morbidity refers to the absence of health, includ-
ing physical and psychological well-being. In 
medical decision making, one cares about morbid-
ity in the following three constructs: (1) the base-
line incidence or prevalence of morbidity in the 
absence of an intervention; (2) the decrease in 
morbidity in the presence of an efficacious, effec-
tive, and cost-effective prevention or treatment 
intervention; and, in some cases, (3) the increase 
in morbidity because of an intervention, in terms 
of adverse events.
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Morbidity is commonly measured by the inci-
dence or prevalence of disease or injury. Incidence 
is the number of new cases of disease or injury in 
a population over a period of time. Incidence is a 
rate and describes the probability that healthy or 
disease-free people will develop the disease or 
injury over a specific time period, oftentimes a 
year. Thus, incidence is frequently used to measure 
diseases with a rapid onset, such as infectious dis-
eases. If a city with a population of 100,000 per-
sons has 500 new cases of influenza over a period 
of 3 months, then the incidence rate for this city 
would be 500 cases per 100,000 per 3 months. By 
comparing incidence rates of disease or injury 
among population groups varying in one or more 
identified factors (such as race/ethnicity or gender), 
health practitioners can make better informed 
decisions regarding the use of scarce health 
resources. For example, if a school finds that chil-
dren living in a particular zip code are five times 
more likely to have dental caries than do other 
students, then public health officials can strategi-
cally intervene to prevent further morbidity.

Prevalence is the number of persons in a popu-
lation who have a disease or injury at a given time, 
regardless of when the disease first occurred. 
Prevalence is a proportion and measures the prob-
ability of having the disease at a point in time. In 
decision making, prevalence is important in deter-
mining human resource needs, workload con-
straints, and the utilization of healthcare resources 
associated with particular diseases and injuries. It 
is also useful for expressing the burden of some 
attribute, disease, or condition in a population. An 
awareness that 25% of Hispanic adults aged 50 
years or older have diabetes in a geographic area 
next to a particular hospital, for example, indi-
cates how pervasive this disease is and can guide 
decision makers at that hospital to effectively allo-
cate resources. Unlike incidence, prevalence is not 
a rate and therefore should not be used to measure 
diseases with rapid onsets or infectious diseases.

The relationship between prevalence and inci-
dence is another important aspect of how these 
measures describe morbidity in a population: 
Prevalence = Incidence × Duration. Thus, treat-
ments that prolong life and increase duration of 
disease, such as insulin for diabetics, have a pro-
found effect on disease prevalence. Furthermore, 
an increased incidence of diabetes contributes to a 

rapidly increasing prevalence of diabetes in the 
United States.

In medical decision making, prevalence can also 
be used to describe the baseline population in the 
absence of an intervention and to serve as an out-
come variable. Treatment and prevention strate-
gies can affect the prevalence of disease by reducing 
the length of time an individual might suffer from 
disease or by affecting the development of new 
cases or both. The use of Pap smears to identify 
preinvasive and invasive cervical cancer is an 
example of an intervention that can reduce cervical 
cancer prevalence by reducing the length of time a 
woman would suffer from cervical cancer as well 
as by preventing the development of new cases.

In addition to incidence and prevalence, mor-
bidity in a population can also be measured by 
impacts on disability or functional capacity, qual-
ity of life, life expectancy, or costs. Disability 
describes the temporary or long-term reduction in 
an individual’s functional capacity that is associ-
ated with morbidity. For example, impairments to 
activities of daily living (or ADLs) may be associ-
ated with a morbidity such as a broken hip or 
Alzheimer’s disease.

Quality of life (QOL) is another measure used 
in medical decision making to address morbidity. 
QOL is a multidimensional measure of the physi-
cal, emotional, cognitive, and social impacts of 
disease, treatment, or sequelae of an injury or dis-
ability. QOL is often measured using standardized, 
validated instruments completed by patients or the 
general public to determine preferences for specific 
morbidity or health states under consideration. 
QOL instruments can either be generic ones that 
can be used by all individuals, such as the EuroQol 
5-Dimension (EQ-5D) or Short Form-36 (SF-36), 
or disease-specific ones that provide additional 
details on the disease of interest.

The impact that morbidity may have on life 
expectancy is also important in medical decision 
making. For example, in the early years of the HIV 
epidemic, the average life expectancy for HIV-
positive persons was less than 10 years. With the 
development of effective HIV treatment, however, 
life expectancy is now less affected by HIV mor-
bidity. When combined with QOL, morbidity’s 
impact on life expectancy can be determined by 
quality-adjusted life expectancy (QALE), which is 
another key outcome measure for use in medical 
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decision making. In particular, the quality-adjusted 
life year, or QALY, is the main effectiveness mea-
sure for use in cost-effectiveness analyses of health 
interventions.

In some cases, treatments aimed at decreasing 
morbidity in the long run may have adverse conse-
quences and cause morbidity in the short term.  
For example, chemotherapy treatment for cancer 
patients can result in a temporary decrease in QOL 
and an impairment in ADLs in the short term. In 
this instance, medical decision makers must bal-
ance the trade-off between increased short-term 
morbidity with the expected decrease in long-term 
morbidity.

Other measures of morbidity used in medical 
decision making include the impact of morbidity on 
costs, such as increased healthcare utilization, 
including emergency department visits, hospitaliza-
tions, and prescription drugs, and losses in produc-
tivity. These measures are typically summarized in 
cost of illness (COI) analyses. For example, a COI 
analysis associated with child maltreatment would 
include the marginal increased utilization of health 
and mental health services, increased special educa-
tion costs, costs to the criminal justice and child 
welfare systems, and reductions in educational and 
employment outcomes associated with the morbid-
ity resulting from maltreatment. COI analyses may 
incorporate the economic impact of either incidence-
based morbidity or prevalence-based morbidity, 
depending on whether the decision maker is inter-
ested in knowing the lifetime costs associated with 
the morbidity (incidence-based) or the annual costs 
associated with the morbidity (prevalence-based).

Regardless of the approach, the perspective of 
the decision maker affects how morbidity is 
addressed in medical decision making. For exam-
ple, in a COI analysis where the decision maker 
has a societal perspective, productivity losses and 
other economic losses, or opportunity costs, to 
society would be included. That is, all morbidity 
costs, regardless of to whom they accrue, would be 
included in the analysis. From a healthcare system 
perspective, however, costs of morbidity would 
likely include only the value of healthcare resources 
required to treat or prevent the disease or injury 
and not the societal losses associated with decreased 
productivity. In this case, economic costs, or costs 
of activities that were forgone due to morbidity, 
would not factor into the decision model.

Finally, comorbidity describes the effect of all 
other diseases or injuries a patient has other than 
the primary disease or injury of interest. Thus, 
comorbidity refers to the coexistence of two or 
more disease processes, which may have a substan-
tial impact on medical decision making. For 
example, a diabetic who also has heart disease is 
considered to have a comorbid condition (heart 
disease) that must be accounted for in the treat-
ment and prevention of the primary condition 
(diabetes). This comorbidity may affect the effec-
tiveness and costs of treatments and the overall 
morbidity of this diabetic and is therefore a critical 
component of medical decisions. For example, the 
presence of substantive comorbidities can make it 
difficult for clinicians to diagnose diseases and can 
contribute to complications in treating disease, 
both of which potentially result in increased costs 
and decreased effectiveness of treatment.

Phaedra Corso and Heather Edelblute
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Mortality

Mortality data are generally collected by vital sta-
tistics agencies. There is a long tradition of using 
mortality data to evaluate the burden of diseases 
on a population basis. From these data, it is pos-
sible to build key mortality indicators that may 
help to detect important public health problems 
and inequalities in health among regions, coun-
tries, or subgroups of populations.

It is also possible to represent mortality data 
using maps showing the geographical patterns of 
mortality that might be useful for epidemiolo-
gists and public health researchers to formulate 
etiologic hypotheses or for public health policy 
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makers to make decisions concerning allocation 
of health funds.

Simple Mortality Indicators

The simplest mortality indicator is the crude or 
total mortality rate (CMR), which is defined as the 
number of deaths per 100,000 population.

Suppose one wants to calculate the CMR 
among females in Spain in the period from 1994 to 
1998, where one has observed a total of Y deaths 
and N is the number of person-years in the period 
(calculated by multiplying the number of females 
in the Spanish population by the observation 
period of 5 years). The CMR per 100,000 popula-
tion per year is Y/N × 100,000.

To calculate the CMR in Spain in 1 year per 
100,000 population one need only divide the 
number of deaths in that year by the midyear 
population and then multiply the result by 100,000, 
that is,

CMR = (Number of deaths in one year/ 
Midyear population) × 100,000.

When the cause of death is unspecified, it is 
referred to as global mortality or mortality by all 
possible causes. However, although global mortal-
ity has an interest per se as an overall indicator  
of mortality, epidemiologists and public health 
researchers are also interested in classifying  
mortality data by specific cause of death. The 
International Classification of Diseases, 10th revi-
sion (ICD-10), is used to code and classify mortal-
ity data from death certificates. The use of a 
standard and well-designed coding system facili-
tates the comparison of results from different 
sources. The ICD-10 is copyrighted by the World 
Health Organization (WHO), which owns and 
publishes the classification. The ICD-10 was 
adopted in 1990 and came into effect in 1993. 
Unfortunately, many countries have been using the 
previous ICD-9 classification until very recently.

Mortality rates are often age standardized. The 
underlying reason is that two populations that have 
the same age-specific mortality rates for a specific 
cause of death will have different crude mortality 
rates if the age distributions of the two populations 
are different. To standardize rates, one may use a 

direct or an indirect standardization method. 
However, direct standardization is becoming very 
popular due to the increasing availability of age-
specific mortality rates (AMRs). The AMRs are 
calculated as is the CMR but by restricting the 
numerator and denominator of the CMR to a par-
ticular age-group. For example, the AMR for age-
group 35 to 54 years is the number of deaths that 
occur in that age-group per 100,000 persons of age 
35 to 54. Suppose that in a certain country in the 
year 2000 there are 2,000,000 people in that age-
group and 3,200 people die. Then, the AMR for 
that age-group is (3200/2000000) × 100000 = 160 
per 100,000.

It is of course possible to standardize (adjust) 
the rates for the effects of more than one variable. 
For example, one may want to adjust by gender 
and age.

Direct Standardization

The age-standardized mortality rate is the rate 
that would have been observed in a population 
with the same age structure of some reference 
population, called the standard population. This 
direct standardization method provides an age-
adjusted mortality rate that is a weighted average 
of the age-specific rates. The weights are taken 
from the standard population. The direct stan-
dardized mortality rate can be calculated with the 
formula

P
j

pjsdj

P
j

pjs
; j= 1; . . . ; J;

where J is the number of age-groups, pjs is the stan-
dard population in the jth age-group (percentages or 
counts), and dj is the AMR in the jth age-group.

Example

One could calculate from Table 1 the direct 
standardized mortality rate for Country A:

26:2× 190+ 32:2× 180+25:2×
630+ 13:4×3260+ 3× 20390
26:2+ 32:2+25:2+ 13:4+ 3

= 1315:4 per 100; 000 population:
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Age-standardized mortality rates are compara-
ble only if they are calculated using the same stan-
dard population. WHO has proposed a standard 
population based on the mean world population 
age structure projected for the period 2000 to 
2025. The use of this standard world population 
by different countries will permit comparison of 
mortality rates among them. Sometimes vital sta-
tistics agencies are interested in comparing age-
specific rates within a country, and then the 
national population is used as the standard.

Indirect Standardization

The standardized mortality ratio (SMR) is calcu-
lated as the total number of mortality cases in the 
study population divided by the expected number 
of cases. The expected number of cases is obtained 
by applying the age rates of the standard popula-
tion to the age structure of the study population. 
In other words, one is computing the expected 
cases considering that the study population has the 
same rates as the standard population.

The main advantage of the SMR is that it 
involves only the total number of mortality cases, 
so one does not need to know in which age catego-
ries the mortality cases occur in the study popula-
tion. Another practical advantage is that the SMR 
does not tend to be sensitive to numerical insta-
bilities in one or two of the age-specific rates.

An important note of caution for practitioners 
is that generally it is not possible to compare 
SMRs in different populations. A single SMR 
compares the observed number of mortality cases 
in the study population with the expected number 
of cases computed using a standard population. 

What is interesting is to test if the SMR is signifi-
cantly different from 1 or, equivalently, to calcu-
late confidence intervals for the SMR. A value of 
the SMR greater than 1 means that an excess of 
mortality in the study population is observed 
when compared with the standard population. 
Often, SMRs are presented as percentages by mul-
tiplying them by 100.

However, there is one case where different 
SMRs are comparable. Suppose there are several 
exposure categories. If the stratum-specific mortal-
ity rates for each exposure class are proportional 
to the external standard rates, then it is possible to 
compare the SMRs of the different categories.

Example

Suppose one has observed 1,000 mortality cases 
in metal workers in a certain region (for data, see 

Table 1   Population (in percentages) and age mortality rates in Country A, and standard population (artificial)

Age-Group (Years) Population (%) AMR per 100,000 Population (%) AMR per 100,000

 0–14 21.0    190 26.2   220

15–34 27.9    180 32.2   310

35–54 29.5    630 25.2   600

55–74 15.5  3,260 13.4  3,000

 75+  6.1 20,390 3 19,900

Table 2   Data needed to calculate the standardized 
mortality ratio (SMR) in metal workers 
(invented)

 
Age-
Groups
(Years)

 
Number of 

Metal 
Workers 

 
 

Expected 
Cases

AMR in the 
National 

Population per 
100,000

25–34  40,000  80   200

35–44  30,000 120   400

45–54  20,000 140   700

55–64  10,000 300 3,000

100,000 640
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Table 2). Since the national mortality rate for the 
age-group 25 to 34 is 200 per 100,000 population, 
the number of expected cases for that particular 
age-group is 40000 × (200/100000) = 80. One can 
calculate the rest of the expected cases in a similar 
way. The total number of expected cases is 640. 
Then, the SMR = 1000/640 = 1.5625. This means 
that the mortality level of metal workers in that 
region is 56% higher than the mortality experi-
enced by the national population.

Possible Drawbacks of Standardized Rates

It is not appropriate to calculate the age-standard-
ized mortality rate as the single measure of mortal-
ity for a given region in a certain period. We would 
then be concentrating on a single measure all the 
information concerning mortality, and, as a conse-
quence, a lot of information could be lost. For 
example, with certain diseases, one may expect 
that pollution effects in a region will have different 
consequences for different age-groups. Then, the 
age-specific rates should always be the starting 
point of any thorough analysis of mortality data.

Mapping Mortality Data

Maps displaying the geographic distribution of 
mortality or disease incidence have several impor-
tant functions: For example, they are used by epi-
demiologists to identify factors that may be linked 
to various causes of mortality, or they may be used 
by policy makers for the purposes of allocation of 
health funding. In the latter case, it is usually  
of interest not only to obtain a smoothed picture 
of mortality risks across the region being studied 
but also to pinpoint areas that appear extreme.

Prior to the publication of the first atlases of 
mortality rates, many epidemiologists questioned 
the utility of mapping rates. However, it is now 
clear that geographical patterns of mortality could 
not be discovered from lists of mortality rates. The 
first U.S. cancer atlas identified a strong clustering 
of high oral cancer rates in the southern part of the 
United States that a posterior epidemiological study 
found to be due to snuff dipping. This first atlas 
showed that mapping small-area mortality rates is 
a valuable public health tool for generating etio-
logic hypotheses and identifying high-rate regions 
where intervention efforts might be warranted.

Some atlases have displayed measures of relative 
risk, usually SMRs, while others have represented 
the statistical significance of local deviations of 
risks from the overall rates. However, mapping 
raw or direct measures, such as SMRs, is not very 
reliable and has been criticized as they are usually 
highly variable in thinly populated areas or when 
the number of observed counts is very small. So, 
imprecise estimates of the SMRs might be domi-
nating the geographical pattern. This is particularly 
evident when the focus of the investigation is on 
mortality caused by a rare disease. To address this 
problem, statistical models discussed in the recent 
literature have explored ideas surrounding smooth-
ing methods, which consist in pooling information 
across the regions under study to provide mortality 
ratio estimators that are more stable.

M. Dolores Ugarte

See also Confidence Intervals; Hypothesis Testing; Life 
Expectancy; Morbidity; Odds and Odds Ratio, Risk 
Ratio
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MotiVation

The health service industry is undergoing massive 
transformations due, in part, to advances in tech-
nology and the metamorphosis occurring in the 
demographics and diversity of the workforce. 
Changes in healthcare will likely continue at an 
accelerated pace, and with these changes the need 
for training will become even more important. 
The use of technology in training has led to 
heightened access, faster distribution, innovation, 
and increased collaboration. However, this 
increase of technology implies challenges in keep-
ing up with the latest developments in technology, 
an increased pace of training, depersonalization,  
and fear of the unknown. With these challenges, 
understanding what motivates health workers, as 
well as how leaders motivate the entire organiza-
tion, becomes essential to promote a proper work 
environment. This entry examines the conceptual 
issues and empirical research concerning motiva-
tion at the workplace in health organizations. 
First, motivation as a concept is explained. Second, 
a brief overview of one of the main theories of 
motivation is provided and applied to the chal-
lenge of increasing motivation in health workers. 
Finally, several relevant results are described 
reviewing the literature on the topic of effective 
leadership styles to increase motivation.

Maslow’s Theory

There is a general consensus that motivation is an 
internal state or conditionsometimes described 
as a need or desirethat serves to activate or ener-
gize behavior and give it direction. One of the most 
influential authors in the area of motivation is 
Abraham Maslow, who attempted to synthesize a 
large body of research related to the topic. Prior to 
Maslow, researchers generally focused separately 
on factors such as biology, achievement, or power 
to explain what energizes, directs, and sustains 
human behavior. Maslow posited a hierarchy or 
pyramid of human needs divided into five levels. 
At the bottom of the pyramid is the physiological 
level, which includes food, water, and shelterthe 
most basic needs for human survival. The premise 
is that unless an individual’s basic needs have been 
met, higher levels in the pyramid are of no rele-
vance as survival is the most basic human compo-
nent. When the basic survival needs have been met, 
the individual aspires to the next level seeking 
safety, including freedom from anxiety and stress. 
Stress, unfortunately, appears to be a constant in 
our culture. Although anxiety and stress may be a 
constant, one needs to look at these elements on an 
individual basis and on a continuum from moder-
ate to extreme. Once the stress level has been mod-
erated, or is acceptable, for the individual and 
basic safety conditions have been met, the indi-
vidual would then look to the third stage, which is 
identified as the social level. This level includes the 
need for belongingness, friendship, and love. 
Having obtained relationship/belongingness secu-
rity, it is possible to look to the fourth level, self-
esteem. In this arena, the individual seeks to feel 
competent, confident, and self-assured. Finally, 
having accomplished the needs on all four levels, 
the individual is able to pursue self-actualization 
or to “be all that one can be.”

Maslow’s hierarchy of needs model provides  
a means for motivating employees in a rapidly 
changing healthcare industry. In a work setting, the 
first basic level that must be satisfied for an employee 
to be motivated is that of wages. Maslow posited 
that basic survival needs can be fulfilled with wages 
because money is an equivalent to shelter, food, 
water, heat, clothing, and so forth. Once the sur-
vival needs are covered in the form of adequate 
wages, the individual seeks safety on the job. This 
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includes not only physical, but also mental, safety, 
implying a decrease in anxiety. Training plays an 
important role at this level because the worker con-
sciously and subconsciously relates training to 
safety. When the terms for safety on the job have 
been met, individuals aspire to satisfy the third level: 
social belongingness in the workplace. We seek 
pleasant working relationships with coworkers, 
peers, and others; it is important to us to find our 
place in formal and informal work groups. The 
social needs wax and wane on the strength of our 
personal relationships and our participation with 
others in the organization. Training provides the 
individual with additional opportunities to meet 
people in the work environment, to discover others 
with the same interests or job responsibilities, and 
to establish new lines of communication. The fourth 
level, self-esteem in the organization, is generally 
based on the individual’s successful performance 
appraisals, incentives, rewards received, and recog-
nitions obtainedwhich all are related to self- 
confidence. To enhance self-esteem, training 
provides a possible source to feel and actually be 
more productive and confident in the work environ-
ment. In turn, as the individual’s confidence level 
grows, there is greater opportunity to obtain 
rewards, recognition, and positive performance 
appraisals. Finally, training allows the individual to 
move toward self-actualization; to develop one’s 
potential, to learn new things, to take risks, and to 
feel even more confident in what one does.

Health employees could be motivated in the 
face of increased demands by making them feel 
secure, needed, and appreciated. This is not easy at 
all, but leaders would be able to enhance employ-
ees’ motivation and commitment through training 
that covers two main aspects: (1) the needs of the 
individuals and (2) the demands of new technolo-
gies that provide challenges and opportunities for 
meeting those needs. The question that remains 
open is which leadership styles will have a stronger 
impact on employees’ motivation.

Effective Leadership Styles

In today’s world, the role of a leader is changing 
from being that of one who controls workers to 
achieve results to the role of one who visualizes the 
future and empowers workers with the necessary 
skills and behaviors to be successful. To control 

others, a leader must be perceived as having 
authority, power, and influence. In contrast, 
today’s effective leadership focuses more on influ-
ence and less on power and authority. Researchers 
have compared the effectiveness of several leader-
ship styles in health organizations. Transformational 
and transaction leadership styles are two represen-
tative examples.

Transactional leadership involves creating and 
clearly communicating employee expectations 
along with identifying rewards and punishments. 
Transactional leadership thus implies trading 
rewards for achieving specific goals. The transac-
tional leader knows about the needs and wants of 
the employees and offers these needs and wants as 
rewards for performance. While some researchers 
indicate favorable organizational outcomes with 
the use of contingent rewards, employees are 
extrinsically motivated to perform only at the 
minimum levels that are required for achievement. 
There is no encouragement for employees to go 
above and beyond expectations or to try innova-
tive solutions (e.g., creative thinking), which would 
be crucial in the healthcare system. There are other 
difficulties that stem from a reward system based 
on achievements of goals. One difficulty arises 
from the tendency of employees to focus on the 
actual reward rather than on the quality of the 
work and eventually become immune to rewards 
(i.e., much larger rewards are needed to fulfill the 
same expectations). This leadership style can pro-
duce positive short-term outcomes; however, it 
rarely produces long-term results because it can 
force competition between coworkers, decrease 
teamwork, and even destroy any intrinsic motiva-
tion, which leads to a decrease of the quality of 
work performed by employees. In healthcare orga-
nizations, transactional leaders would motivate 
their employees by offering rewards or incentives 
for successful completion of tasks and would 
clearly communicate errors incurred by the staff.

In contrast to transactional leadership, transfor-
mational leadership theory is founded on the ability 
of the leader to raise awareness of the organiza-
tion’s vision and mission in terms such that employ-
ees believe in the organization’s needs and put them 
ahead of their own needs. A transformational 
leader achieves this alignment through the skillful 
art of articulating visions. That way, employees  
do not only accept but also take ownership of the 
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visions. Because employees are empowered to take 
ownership of the visions, they perceive the organi-
zation’s success as their own. Transformational 
leadership theory focuses on transforming employ-
ees’ own values and beliefs so that they can expand 
and elevate their goals to perform at a higher level. 
The transformational leader works at instilling 
trust, admiration, loyalty, and respect with each 
employee. It is important that employees believe 
that the leader has also taken ownership of the 
organizational visions and is putting all efforts into 
attaining these goals. Leaders who are intrinsically 
motivated exhibit a much deeper sense of enjoy-
ment and purpose while they are performing their 
jobs. Enjoyment, along with other positive emo-
tions and arousing attitudes displayed by the leader, 
positively influences the motivation of employees. 
In healthcare organizations, transformational lead-
ers would motivate their staff by clearly articulating 
the department’s mission and vision and explain 
how those factors give meaning and satisfaction to 
what the staff does. The importance of ownership 
and delivery of quality patient care by each employee 
would be highly stressed.

Empirical studies contrasting these leadership 
styles suggest that transformational leadership is 
very effective. For instance, in a study conducted 
by Dong Jung, two groups, one with a transac-
tional leader and the other with a transformational 
leader, were compared according to their creativity 
levels. The group with the transactional leader 
formed significantly fewer creative and unique 
ideas compared with the group with the transfor-
mational leader. Jung also indicated that transfor-
mational leadership behaviors cultivate a greater 
level of creativity and flexibility in followers’ 
thought processes. As a conclusion, Jung stated 
that this is achieved from the followers’ focus on 
the intrinsic rewards and feeling of satisfaction and 
increased self-esteem brought about by the achieve-
ment of their goals.

In a similar vein, Megan Joffe and Sean Glynn 
described transformational structural changes in  
a global pharmaceutical company. Changes were 
needed to increase employee morale and job satis-
faction as well as decrease the high staff turnover 
rate. The leadership in the organization wished to 
empower the employees and allow them to par-
ticipate in the changes, giving them ownership of 
the organization’s direction and values. In their 

study, a new mission and vision were developed, 
and the role of the scientists was incorporated 
clearly into the new vision and goals of the organi-
zation. Some key components of the changes 
focused on leadership, clear communication, iden-
tification with the organization, and feelings of 
value and recognition. Employees were encour-
aged to take risks and to be creative in their ideas, 
activities, and actions. After a year of introducing 
those changes, 90% of employees had taken the 
initiative in identifying areas of improvement, 
offering new insights on how to improve these 
areas, and aiding in the implementation of the 
solutions. Employees were given ownership, were 
regarded as important, and were supported in their 
roles. All these things helped to intrinsically moti-
vate them to achieve extraordinary things in a time 
of struggle and upheaval.

Research has revealed that motivation in today’s 
workplace is an important factor in determining an 
organization’s success. Therefore, the ability of lead-
ers to influence and motivate employees is crucial 
to the health of the organization. Transformational 
leaders, who motivate employees by transforming 
their beliefs and values to be more in alignment with 
the organization’s values and goals, help create 
higher levels of intrinsic motivation and are very 
effective in contemporary healthcare organizations.

Rocio Garcia-Retamero and Stephanie Müller
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MUlti-attribUte  
Utility theory

Health-related quality of life (HRQL) is a critical 
element in the eventual outcomes of medical care 
and public health. Measuring HRQL successfully 
involves adequate description of health states, dis-
tinguishing differences among groups, and detect-
ing change in individuals over time. There are two 
major approaches to HRQL measurement: psycho-
metric and utility. Psychometric instruments like 
the SF-36 measure HRQL from a descriptive point 
of view to capture the various dimensions and gen-
erate a health profile. Alternatively, with the utility 
approach, one measures people’s values for health 
states, also called preferences or utilities. Utilities 
are measured on a scale where 0 = death and 1.0 = 
perfect or optimal health. Utilities have a basis in 
economic theory and decision science and so are 
useful for calculating the quality-adjusted life years 
(QALYs) used in cost-utility analysis. Because 
HRQL is inherently multidimensional (vision, 
hearing, cognition, mobility, etc.), an extension of 
utility theory called multi-attribute utility theory 
(MAUT) has been applied to HRQL in the explicit 
multidimensional or multi-attribute sense. This 
entry focuses on methods derived from MAUT. 
The health utilities index (HUI) is the best known 
example of a MAUT-based HRQL measure.

Basic health utility measurement is implicitly 
multidimensional. As is detailed elsewhere, direct 
methods like the visual analog scale (VAS), Standard 
Gamble (SG), and Time Trade-off (TTO) use direct 

queries about HRQL. With these techniques, peo-
ple do all the mental processes of weighing multidi-
mensional issues internally and respond with a 
summary number or point of indifference between 
choices. For the remainder of this essay, all direct 
methods are referred to as utilities or utility, though 
some are more accurately called preferences or val-
ues (TTO and VAS). Utilities are technically defined 
as measuring risk under uncertainty (SG).

MAUT allows the use of SG, TTO, or VAS 
utilities as a basis for modeling an individual’s or a 
population’s overall multi-attribute utility struc-
ture. Such models are called indirect since the end 
user may complete a simple survey from which 
utility is later calculated. A MAUT-based model 
can be used to calculate all possible health states in 
a comprehensive health status classification sys-
tem, as defined below.

Components of MAUT-Based Models

In MAUT-based measurement, the following four 
steps are followed:

 1. Develop a health status classification system, 
defined as incorporating all relevant attributes 
of health and gradations of function or status 
within each attribute. 

 2. Obtain utilities for gradations (levels) of 
function or status within each attribute.

 3. Assign relative weights to the attributes.

 4. Aggregate the weights of attributes and single-
attribute levels of function to obtain an overall 
utility measure.

The perspective of the population whose utili-
ties are being assessed for the model should be 
clear. The two most common perspectives are a 
representative sample of society and a representa-
tive sample of clinical patients experienced with 
certain health states. Health economists generally 
prefer the perspective of society.

Developing the Health Status  
Classification System

An example of a health status classification system 
(HSCS), the Health Utilities Index Mark 3 (HUI3), 
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is shown in Figure 1. An HSCS is developed 
through the work of expert panels and focus 
groups of patients or members of society, depend-
ing on the model. The HSCS provides a basis for 
judging the model in terms of face validity (a sim-
ple assessment of whether the model seems sensible 
and appropriate), content validity (the extent to 
which the model represents the health attributes 
being measured—evaluated with statistical analy-
sis), and construct validity (how the model statisti-
cally correlates with other measures of similar 
concepts or varies between known groups). Most 
MAUT HRQL models address overall or “generic” 
health. A minority focus on specific diseases or 
conditions.

For a MAUT-based model, it is desirable for the 
attributes to be independent of each other in  
content. Thus, the single-attribute utilities should 

be conceptually (preferentially) independent of 
changes in the other attributes. This aspect is 
important for successfully assigning weights to the 
individual attributes and obtaining utilities for 
each level.

Obtaining Utilities for the Levels of Function

Using any of the direct methods mentioned above, 
one can obtain utilities for all levels of function or 
morbidity in each attribute, on a utility scale from 
0 to 1.0. Some investigators prefer that attribute 
levels be elicited with a choice-based method such 
as SG or TTO. However, a VAS, given its simplic-
ity and low cognitive burden, is often favored for 
such tasks since in most systems there are a sig-
nificant number of attribute levels to be valued. A 
compromise can be made, if needed, by also 

Cognition

Hearing

Vision

Pain

Speech

Ambulation

Dexterity

Emotion

1  Free of pain and discomfort
2  Mild to moderate pain that prevents no activities
3  Moderate pain that prevents a few activities
4  Moderate to severe pain that prevents some activities
5  Severe pain that prevents most activities

Health Utilities
Index Mark 3
Health Status
Classification 

Figure 1  The Health Utilities Index Mark 3 Health Status Classification System

Source: Feeny, D., Furlong, W., Torrance, G. W., Goldsmith, C. H., Zhu, Z., DePauw, S., et al. (2002). Multiattribute and single-
attribute utility functions for the Health Utilities Index Mark 3 system. Medical Care, 40(2), 113–128.

Note: The details of the 5 levels of the pain attribute in this system are shown. All other attributes have 5 to 6 levels.
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selecting a small subset of health states that span 
the degree of morbidity of the HSCS and obtain-
ing choice-based as well as VAS data. These data 
can be used for statistical modeling of the relation-
ship of VAS to SG or TTO, followed by transfor-
mation of the remaining grouped VAS data to the 
choice-based method selected. In general, this rela-
tionship seems to be nonlinear, with the following 
forms (Equations 1 and 2) often resulting from 
experiment:

 u = vx (1)
or

 u = 1 - (1 - v)x, (2)

where u is the SG or TTO utility result from exper-
iment and v is the VAS result from experiment.

Assigning Relative Weights to the Attributes

There are four methods of weighting attributes 
that are most commonly used, which involve rat-
ing or ranking. An intuitive approach is to simply 
have the population rank order the importance 
of the attributes. Subsequently, 100 importance 
points are distributed, so that more important 
attributes have more points. Alternatively, one 
can use ratios of importance, so that one attri-
bute (often the least important one) is defined as 
a standard and given a weight (e.g., 10), and all 
others are given weights (e.g., any multiple of 10) 
relative to that standard. Swing weighting does 
not directly assess importance but instead requires 
the subject to imagine the health state where all 
attributes are at their worst. The individual is 
asked which attribute he or she would switch 
from worst to best before all others, then the 
next attribute, and so on, until all are ranked. 
The individual is then asked to assess how much 
each of those swings was worth, with the most 
important equal to 100. Weights are normalized 
by dividing each weight by the sum of all weights. 
In the fourth method, one can assess utility for 
the corner state of each attribute (used in the 
HUI3). Corner states can be defined in two dif-
ferent ways, but the most commonly used 
approach in health is that state where the attri-
bute of interest is at its worst and all other attri-
butes are at their best, somewhat like swing 

weighting. Combinations of the above approaches 
are also used.

Aggregating the Weights of Attributes and 
Single-Attribute Levels of Function

The assignment of weights to the attributes will 
determine how or if the attributes of the model inter-
act with one another and, thus, if attributes are to be 
combined in an additive or multiplicative fashion. 
The operations to calculate multi-attribute utility 
models from individual attribute weights and levels 
can be formalized as the addition or multiplication 
of simple polynomials. The additive model is the 
most restrictive and assumes no interactions between 
attributes and so is based only on the weighted sum 
of each attribute’s contribution to the utility score.

As shown below, when there are no interactions, 
the interaction term, K (the global scaling constant), 
is equal to 0 since it is not needed. This also means 
that that sum of the weights (ki) for all the attributes 
is equal to 1. On the other hand, the model is mul-
tiplicative if the weights add up to a sum greater 
than or less than 1. The K term is then needed to 
adjust the function to a scale between 0 and 1.0. As 
shown below, the expanded multiplicative version 
(Equation 4) uses K to express one kind of interac-
tion with all possible combinations of attributes. 
Note that when K = 0, Equation 4 simplifies to the 
additive model. See Further Readings for a discus-
sion of the interactions allowed in multiplicative 
models, as well as rarely used multilinear models 
where more complex interactions are allowed.

Additive Utility Model

The additive utility model is given in the 
equation

 
u xð Þ=

Xn

i= 1

kiui xið Þ;  (3)

where

Xn

i= 1

ki = 1;

thus K = 0 (K global scaling constant), and an addi-
tive model holds. Note u(x) is the utility for health 
state x, represented by an n-element vector; ∑ is 
summation; ki is equal to the weight for attribute i;  
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1+Ku xð Þð Þ=
Yn

i= 1

1+Kkiui xið Þð Þ;

and ui(xi) is the single-attribute utility function for 
an attribute i.

See the SMARTS and SMARTER techniques 
elsewhere for examples of weighted additive 
models.

Multiplicative Utility Model

Introducing the interaction term, K,

u xð Þ=
Xn

i=1

kiui xið Þ+
X

i< j

Kkikjui xið Þuj xj
 

+
X

i< j<m

K2kikjkmui xið Þuj xj
 

um xmð Þ

+    +Kn 1
Yn

i= 1

kiui xið Þ:

 
  

 (4)

A more compact form of the multiplicative 
model is shown below, obtained by multiplying 
each side of the equation by K, adding 1, and 
factoring:

   (5)

where 
Yn

i= 1 is the product of all (1 + Kki) from  
ki to kn.

Final Scaling Issues

When the model is complete, it should be based on 
a “Death” to “Perfect Health” utility scale if it is 
to be used for economic modeling. Some multi- 
attribute utility models may not be in this form 
initially, such as those that account for health 
states worse than death. In that case, the value of 
death is calculated above some worst possible 
health state, and the scale is linearly transformed 
to a Death to Perfect Health scale.

An Alternative: Statistical Modeling

The major alternative to MAUT for measuring 
multi-attribute utility is statistical modeling. 
Directly assessed utilities for a subset of levels of 
function (using only SG or TTO) in a set of health 
attributes are obtained, and an ad hoc modified 
linear additive model is generally constructed to 
predict the remaining levels. This approach has 

been used for the SF-6D recently and the EURO-
QOL and Quality of Well Being Scale (QWB)  
previously.

Evidence of Reliability, Validity,  
and Responsiveness

MAUT-based HRQL measures such as the HUI3, 
as well as non-MAUT measures such as the EURO-
QOL, SF-6D, and QWB instruments have been 
shown to have reasonable test-retest reliability 
(correlation of scores of the same subjects esti-
mated at two different time points). Because there 
is no gold standard for HRQL measurement, the 
degree of construct validity is mainly evaluated. 
All the existing measures have shown evidence of 
construct validity in various diseases and at vary-
ing levels of responsiveness (the ability to detect 
meaningful change).

Advantages and Disadvantages  
of MAUT-Based Measurement

Given the above, the following points summarize 
advantages of MAUT-based HRQL:

MAUT is grounded in utility theory.  •
The •  MAUT approach does not make 
assumptions beforehand of how or if the 
attributes will interact. The relationships of the 
weights that are gained by experiment indicate 
readily whether the model is additive or 
multiplicative in nature. This aspect could be an 
advantage relative to non-MAUT statistical 
methods that assume a certain model structure, 
usually a linear additive one.
The MAUT approach informs the utility  •
function like a health profile instrument (SF-36) 
due to the process that breaks HRQL down into 
attributes and levels. This is the “decomposed” 
approach of MAUT, as opposed to direct SG, 
TTO, or VAS utilities.
The end user sees a short survey that can be self- •
administered. Thus, using the final instrument is 
less labor-intensive than typical utility assessment 
interviews.
Differing assessment approaches, interviewers,  •
visual aids, and so on can bias results of SG, 
TTO, and VAS. MAUT methods avoid these 
issues since the utility assessments are only done 
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during the development of the model. 
Subsequent users have their utilities calculated 
based on the utilities of those who were 
interviewed during the model’s development, 
which helps to standardize HRQL utility 
assessment.

The following are some disadvantages of MAUT-
based approaches:

Development of a MAUT model is resource  •
intensive.
The valuation process, where subjects are asked  •
to simultaneously assess multiple attributes, can 
carry a significant cognitive burden.
Corner state valuations and development of  •
independent attributes may be conceptually 
difficult in certain situations.
The number of level assessments required in a  •
MAUT model may be more feasible with the use 
of a VAS followed by a transformation to SG or 
TTO, if desired. There is some controversy 
about the generalizability of such 
transformations.

Because MAUT is the multi-attribute extension 
of traditional utility theory, some favor it over sta-
tistical modeling for economic analysis of health-
care programs. However, recent work suggests 
better construct validation of statistical multi-attri-
bute models (by comparing the model with direct 
SG utilities) as opposed to a similar comparison 
with a MAUT model. Comparison of these two 
approaches is an area of ongoing research interest.

J. Shannon Swan

See also Cost-Utility Analysis; Decomposed 
Measurement; EuroQoL (EQ-5D); Expected Utility 
Theory; Health Utilities Index Mark 2 and 3 (HUI2, 
HUI3); SF-6D; SF-36 and SF-12 Health Surveys; 
SMARTS and SMARTER; Utility Assessment 
Techniques
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MUltiVariate analysis of 
Variance (ManoVa)

Multivariate analysis of variance (MANOVA) is a 
statistical model that generalizes and extends the 
univariate analysis of variance model. This model 
is necessary when answers to research questions 
require the evaluation of multiple outcome mea-
sures. While in some cases it may be useful to 
examine individual outcomes separately, using the 
univariate model, in many studies the outcomes 
observed are interrelated. Because of the interrela-
tionship among outcome measures, it is generally 
more appropriate and meaningful to analyze  
the outcomes as a composite(s) or weighted 
combination(s) of the measures using the multi-
variate model.

While the multivariate model can be applied to  
a variety of research designs (e.g., between group, 
repeated measures, mixed model), the focus here is 
given to posttests-only between-group designs. 
Furthermore, only a single-factor between-group 
design is considered. That is, groups are identified 
based on a single dimension (e.g., drug dosage). 
Groups may represent existing populations in a 
nonexperimental study or may be formed through 
the random assignment of units to the levels of the 
grouping variable. The same analysis procedures 
discussed here can be applied to both experimental 
and nonexperimental studies, with the only differ-
ence in application being the inferences that may be 
drawn from the results. In experimental studies, 
inferences may be causal, while in nonexperimental 
studies, only functional relationships may be inferred. 
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The procedures discussed here can be generalized 
easily to more complex multifactor designs.

Purpose

When populations are compared, they are gener-
ally compared with respect to multiple outcomes 
or response measures. For example, varying the 
levels of a vitamin dosage (e.g., 500, 1,000, 1,500, 
or 2,000 IU) may be the grouping variable under 
investigation, and the consequences of dosage 
variation with respect to several outcome measures 
(e.g., Y1 = diastolic blood pressure, Y2 = systolic 
blood pressure, Y3 = heart rate, Y4 = anxiety, Y5 = 
mood) may be of interest. Multiple outcomes are 
often observed because no single outcome measure 
can adequately capture the intended construct(s) 
of interest. For example, measures Y1, Y2, and Y3 
may be indicators of physical health while Y4 and 
Y5 may be indicators of psychological health. Both 
physical and psychological health are latent con-
structs that cannot be adequately assessed by any 
single indicator. However, by combining several 
indicators, an estimate of a construct can be pro-
vided. The purpose of MANOVA is to determine 
the best combination of indicators to estimate one 
or more constructs that maximize group differ-
ences. Measures are combined by multiplying (i.e., 
weighting) individual indicators by constants (e.g., 
Z = b1Y1 + b2Y2 + . . . + b5Y5 ) to create a composite 
(i.e., Z) of the outcome measures. The analysis and 
interpretation of the composites that define the 
group differences is one of the primary advantages 
of the multivariate model compared with the uni-
variate model. Other important advantages of the 
multivariate model include a reduction in the risk 
of Type I errors and more sensitive (powerful) 
group comparisons.

Hypothesis Tested

The set of means on the outcome measures within 
each group is called a mean centroid. MANOVA 
tests the hypothesis that the populations, repre-
sented by the groups, have identical centroids:  
H0:  µ1 = µ2 = . . . = µj (j = 1, 2, . . . , j),  where µj = [µj1, 
µj2, . . . , µjp  [.]

T = transpose of vector, µjm  = mean 
of population j (j = 1, . . . , J) for outcome measure 
m (m = 1, . . . , p). Using the vitamin dosage exam-
ple introduced in the previous section, suppose the 

mean scores for the five outcome measures 
observed for the group receiving 500 IU of the 
vitamin equaled Y1 =1 5; Y2 = 75; Y3 = 82; Y4 = 60; and Y5 
and Y5 ¼ 120; then the sample mean centroid, Y500 
= [115, 75, 82, 60, 120]T. To test the hypothesis 
that population centroids are identical, two matri-
ces are computed, E and H. The E matrix repre-
sents a p × p error matrix of deviations of unit 
scores around their respective group means on the 
p outcomes. The H matrix represents a p × p 
hypothesis matrix of deviations of group means 
on the p outcomes around the p grand means. The 
elements on the main diagonal of E and H are the 
sum-of-squares within-groups and the sum-of-
squares between-groups on the p outcome mea-
sures, respectively, used in the univariate model. 
The off-diagonal elements estimate the interrela-
tionships among the outcome measures. These 
matrices are used to obtain a very useful statistic 
called an eigenvalue, λ. The number of eigenvalues 
computed depends on the number of groups and 
outcome measures studied. The determination of 
the eigenvalue(s) is a tedious task unless only two 
outcome measures are examined. These computa-
tions are best left to a computer. The General 
Linear Model (GLM) program in SAS and the 
MANOVA program is SPSS can provide the nec-
essary calculations. Using the eigenvalues, λ, four 
different test criteria have been proposed—Wilks, 
Bartlett-Pillai, Hotelling-Lawley, and Roy—to 
compute and evaluate a multivariate F statistic. 
The four criteria provide identical results when 
only two populations (J = 2) are compared. When 
more than two populations are compared, the 
four criteria will differ a little but generally lead to 
the same conclusion regarding the hypothesis 
tested. All four criteria are reported on SAS and 
SPSS computer output. The Wilks criterion is the 
best-known and most frequently cited criterion, 
but the Bartlett-Pillai criterion is often recom-
mended because of its robustness to assumption 
violations. The rejection of H0 means that the 
population centroids are not identical, and there is 
some relationship between the grouping variable 
and the centroids.

Effect Size

Because a trivial association or difference between 
centroids may be statistically significant, an index 
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to quantify the degree to which H0 is false (effect 
size) is useful. When two population centroids are 
compared, a popular measure of effect is the dis-
tance (difference) between the two centroids, which 
is provided by the square root of the Mahalanobis 
D2 statistic, D. This statistic is a multivariate gen-
eralization of Cohen’s standardized mean differ-
ence, d, which is popular in univariate studies. D is 
interpreted as the difference between centroids rel-
ative to the standard deviation in the total outcome 
space. What might be considered large or small 
should be based on the distance between centroids 
reported in similar previous studies. 

When more than two populations are com-
pared, an overall index of the relationship between 
the grouping variable and the outcome variables is 
of interest. For the vitamin dosage study, the inter-
est might be in providing an estimate of the overall 
relationship between vitamin dosage and the out-
comes studied. A measure of association has been 
proposed for each of the four multivariate test cri-
teria. These indices differ as a function of the num-
ber of constructs estimated in the MANOVA 
model. The number of constructs, r, estimated 
equals the number of eigenvalues computed, which 
is the lesser of p or J - 1 (r = min[p, J - 1]). In the 
vitamin dosage example, r = 3 (min[5, 4 - 1]). Not 
all estimated constructs may be meaningful, how-
ever. In the current example, it is anticipated that 
two meaningful constructs (e.g., physical health 
and psychological health) will be identified. In the 
next section, procedures for determining the num-
ber of meaningful constructs represented in the 
data are discussed. If only one construct is esti-
mated (e.g., r = 1) because only two populations 
are compared, all four criteria provide the same 
measure of association, called the squared canoni-
cal correlation and indicating the proportion of 
variation in the variable system that is explained 
by or shared with the grouping variable. The 
squared canonical correlation is obtained by com-
puting λ/(1 + λ). If all estimated constructs are 
meaningful, the measure of association associated 
with the Bartlett-Pillai criterion provides the aver-
age proportion of variation per construct that is 
explained by the grouping variable.

These multivariate measures of association 
overestimate the strength of association between 
the grouping variable and the constructs. The 
observed measures of effect can be adjusted to 

reduce the bias. The adjustment suggested by 
Ronald Serlin is

ESadj = 1− N − 1
N −b− 1

1−ESð Þ;

where

ES = any of the four effect size indices associated 
with the multivariate test criterion,

N = total sample size, and

b = max(p, J - 1).

For example, if the measure of association pro-
vided by the Bartlett-Pillai criterion for the vitamin 
dosage study (p = 5, J = 4, N = 80) equaled .136, 
the adjusted effect size would equal .078ESadj

−
N −b− E Þ;

= 1− 80− 1
80−5− 1

1− :136ð Þ
 

:

That is, on average, vitamin dosage (the group-
ing variable) explains 7.8% of the variation in 
each construct estimated. While this correction 
is not provided in current software packages, it 
can be computed easily with the available com-
puter output.

Dimensionality

As noted earlier, to test the hypothesis that popula-
tion mean centroids are identical, at least one 
eigenvalue is computed. Each eigenvalue is associ-
ated with an independent latent construct, but 
every identified construct may not be meaningful. 
For the comparison of four vitamin dosages with 
five outcome variables, three eigenvalues are com-
puted (r = min[p, J - 1]). It is anticipated that two 
meaningful constructs (e.g., physical health and 
psychological health) are represented by the five 
outcome variables. One approach, to determine  
the number of meaningful constructs present in the 
variable space defined by the p observed outcome 
measures, is to order the computed eigenvalues 
from largest to smallest and then compute the pro-
portion of the total variation in the variable space 
that is associated with each construct estimated. 
This is achieved by computing the ratio of each 
eigenvalue to the sum of the eigenvalues  
pctv =lv

.Xr

v= 1
lv


. The number of meaningful 
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nstructs present in the outcome space can then be 
judged based on the number of eigenvalues needed 
to “substantially” explain the total variation in  
the outcome space. This is a subjective  
judgment that may be based on the researcher’s 
experience, a theoretical model, or previous research 
findings. Often, the number of constructs assessed 
can be anticipated accurately by the researcher.

Suppose the three eigenvalues in the vitamin 
dosage study equaled λ1 = .261, λ2 = .165, and 
λ3 = .063. Then, the three estimated constructs 
explain 56.6%, 35.7%, and 7.8% of the total vari-
ance in the variable space, respectively. It might 
then be argued that the first two constructs explain 
most of the variance in the data set, and so the five 
outcomes are indicators of two latent variables.

A second strategy for determining the number 
of meaningful constructs assessed in the variable 
outcome space is to conduct a series of statistical 
tests sequentially from the largest to the smallest 
eigenvalue, using the Wilks test criterion. The first 
test determines whether at least one construct 
separates the groups. The second test, based on the 
second largest eigenvalue, determines whether at 
least two constructs separate the groups. The test-
ing stops when the kth ranked eigenvalue is not 
statistically significant. The number of constructs 
to be interpreted then equals k - 1. These tests can 
be carried out using either the SAS (e.g., Proc Disc) 
or SPSS (e.g., MANOVA) software packages. With 
the vitamin dosage study, it is likely that the first 
two constructs would be statistically significant, 
leading to the same conclusion derived in the pre-
vious paragraph.

Defining Latent Constructs

Once the number of latent variables has been deter-
mined, a final step is needed to complete the analy-
sis of the data set: The constructs need to be defined. 
Each construct is defined based on the linear com-
posite or weighted sum of the observed outcome 
measures (i.e., Zv = bv1Y1 + bv2Y2 + . . . + bvpYp).

Both SAS and SPSS can provide these weights. 
The bs are referred to as linear discriminant func-
tion weights (LDFs), and a unique solution for  
b is not possible. However, the possible solutions 
are proportional to one another. The weights them-
selves are not useful for defining the latent con-
structs because their magnitude is influenced by the 

scaling of the outcome measures. But these weights 
may be used in two different ways to provide con-
struct definition.

One way to define the latent constructs is to 
standardize the discriminant function weights. The 
relative magnitude of the absolute value of the 
standardized weights can then be used to judge 
which outcome measures contribute the greatest to 
the composite. The variables making the greatest 
contribution define the construct. Two limitations 
with this approach are that (1) the collinearity 
among the outcome measures can reduce the 
weights for important measures and (2) the addi-
tion or reduction of outcome measures can greatly 
affect the weights.

A second approach for defining a latent con-
struct is to compute the correlation between the 
composite score, Zv, with each outcome measure. 
These correlations are called structure rs. Outcome 
measures with relatively high absolute values for 
the structure rs define the latent construct. A prob-
lem with using structure rs to define the construct 
is that the correlations are proportional to the uni-
variate F statistics comparing group means on the 
outcome measures. Consequently, the structure rs 
do not reflect the multivariate criterion. Both stan-
dardized discriminant function weights and struc-
ture r coefficients can be obtained through SAS 
(e.g., GLM) and SPSS (e.g., MANOVA).

As an example, hypothetical standardized dis-
criminant function weights and structure rs are 
presented in Table 1. Both the standardized weights 
and structure rs indicate that measures Y4 and Y5 
assess one construct and measures Y1, Y2, and Y3 
assess a second construct. LDF3 would not be 
interpreted based on the previous dimensionality 
analysis. Based on what the researcher believes 
that Y1 though Y5 measure, the constructs are 
defined. For example, because Y4 and Y5 are psy-
chological measures, the first construct might be 
labeled psychological health. Measures Y1, Y2, and 
Y3 are physical measurements, and so the second 
construct might be labeled physical health. Stand-
ardized discriminant function weights and struc-
ture rs do not always agree, however.

Contrasts

The procedures outlined above have been presented 
with respect to the simultaneous comparison of 
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all levels of the grouping variable, or the omnibus 
hypothesis test. In many contexts, the omnibus 
hypothesis test does not directly address the 
researcher’s interests. Rather, specific compari-
sons or contrasts can be specified. For example, a 
comparison of 500 IU with 1,000 IU of the vita-
min might be of interest. Alternatively, the 
researcher might believe that the vitamin may 
have diminishing benefits with increasing dosage 
levels. That is a quadratic relationship between 
dosage, and mean centroids may be anticipated. 
To address these interests, the same procedures as 
those described above may be followed: Test the 
hypothesis, estimate the effect size, and define the 
construct. The results, however, are interpreted 
only in terms of the populations being compared. 
A test for dimensionality is not needed because all 
contrasts provide one eigenvalue, r = 1, and a 
single construct is identified for each contrast. It 
is important to note that the constructs that 
define the separation among groups in the omni-
bus test may not be the same constructs that 
define specific group differences, and different 
constructs can be obtained for different contrasts. 

Both GLM in SAS and MANOVA in SPSS allow 
the specific analysis of group differences through 
contrast analyses.

Assumptions

To make inferences from the sample data to the 
populations they are believed to represent, the 
MANOVA model relies on data assumptions 
similar to those assumed in the univariate model. 
That is, the units of analysis are assumed to be 
independent of each other, the outcome mea-
sures have a multivariate normal distribution 
within each population, and the population 
covariance matrices, Sj, for the J populations are 
identical, where

σ2

m
 = variance of measure m (m = 1, . . . , p), and

σmp = covariance of measures (m, p).

The robustness of the MANOVA model to these 
assumptions is similar to the univariate model. 
Independence among units is essential for statistical 
validity. Violating the multivariate normality assump-
tion generally does not seriously invalidate statistical 
inference. The effect of violating the homogeneity of 
covariance matrices does not invalidate the hypoth-
esis test if sample sizes are similar. But if sample sizes 
are substantially unequal (differ by at least a factor 
of 2), the Type I error rate may be over- or underes-
timated, depending on the relationship between the 
sample sizes and the determinants of the population 
covariance matrices. A positive relationship can 
result in a conservative hypothesis test, while a nega-
tive relationship can result in a liberal hypothesis 
test. The Box test reported in both SAS and SPSS is 
often used to determine whether the assumption is 
violated, but this procedure is sensitive to multivari-
ate nonnormality and can be extremely sensitive to a 
minor assumption violation. Alternatively, the log 
determinants of the group sample covariance and 
the pooled covariance matrices may be compared 
visually, and if judged to be similar, robustness  
may be assumed. If the assumption is judged to be 

Table 1    Standardized discriminant function weights 
and structure rs for five outcomes comparing 
four vitamin dosages

Measure LDF1 LDF2 LDF3

Standardized weights

Y1  .023 .362  .057

Y2  .136 .451  -.102

Y3  -.201 .582  .206

Y4  .583 .263  .168

Y5  -.682 .097  -.321

Structure rs

Y1  .323 .621  .175

Y2  .265 .553  .226

Y3  .320 .498  .126

Y4  .733 .363  .382

Y5  -.826 .179  .231

Sj =
s

2

m . . . smp

..

. . .
. ..

.

smp    s2
p

0
BB@

1
CCA;
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seriously violated, analysis procedures developed by 
Ying Yao and Søren Johansen may be useful. When 
the assumption of equal covariance matrices is vio-
lated, methods for defining the latent constructs 
have not been developed.

Advantages

MANOVA is a very useful and powerful statistical 
tool for addressing research questions comprehen-
sively and efficiently. Because important constructs 
can rarely be assessed with a single measure, multiple 
outcomes must be assessed. In addition, population 
differences and the consequences of interventions 
typically have consequences on more than a single 
construct. MANOVA provides an approach to 
examining data to determine the number of con-
structs assessed, test for construct differences between 
populations, and provide a mechanism for defining 
the constructs assessed by the multiple indicators. 
These are all important advantages of the multivari-
ate model compared with a univariate model. 
Because the multivariate model assesses population 
differences on constructs, careful selection of the 
outcome measures to assess is essential for a mean-
ingful and interpretable analysis.

Stephen Olejnik

See also A nalysis of Covariance (ANCOVA)
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Net BeNefit RegRessioN

Net benefit regression describes the activity of 
doing regression analysis on net benefit data. This 
entry first describes what net benefit data are  
and then explains how these data can be analyzed 
using regression. Finally, this entry concludes  
with an example illustrating some of the many 
reasons to use regression analysis to analyze net 
benefit data.

Overview

Scientific journals and popular media teem with 
the results of clinical trials proclaiming evidence  
of more effective new treatments or interventions. 
Without the resources to be able to provide all 
new treatments that are more effective, how 
should decision makers choose? Often, clinical 
enthusiasm is tempered with economic discipline, 
in the form of an economic evaluation. In many 
decision-making contexts, this involves estimating 
the extra cost of an extra unit of a health outcome. 
For example, Coyle and colleagues derived the 
efficacy of erythropoietin (EPO) by conducting a 
meta-analysis of published randomized trials. In 
their study, EPO alone led to modest benefits com-
pared with no intervention for orthopedic surgery 
(.000024 life-year gained per patient) or as an 
augmentation to preoperative autologous dona-
tion (.000006 life-year gained per patient). Based 
solely on the effectiveness data, decision makers 
may be ambivalent about covering a drug that 

leads to modest gains. However, results from the 
cost-effectiveness analysis (CEA) showed that the 
extra cost of one more year of life was around $66 
million (Canadian) for EPO compared with no 
intervention and $329 million (Canadian) for EPO 
to augment preoperative autologous donation. 
There may be other valid reasons to use EPO in 
this situation; however, economic efficiency does 
not appear to be one of them.

Theory

In a clinical trial, CEA estimates the economic effi-
ciency (or the extra cost of an extra unit of patient 
outcome) of a new treatment by computing the 
sample means of the cost and effectiveness data for 
both the new treatment and the usual care groups. 
The difference in the average costs is called the 
incremental cost (∆C). The difference in the aver-
age effects is called the incremental effect (∆E). 
The ratio of the incremental cost to the incremen-
tal effect is called the incremental cost-effectiveness 
ratio (ICER = ∆C/∆E). In the example above, the 
incremental cost of using EPO compared with no 
intervention was $1,588, and the incremental cost 
for EPO to augment preoperative autologous 
donation was $1,936. Therefore, the ICERs were 
$66 million per additional year of life (∆C/∆E = 
$1,588/.000024 life-year gained) and $329 million 
per additional year of life (∆C/∆E = $1,936/.000006 
life-year gained), respectively.

In theory, the ICER is a useful statistic because  
it estimates the rate at which a unit of patient  
outcome can be purchased with a new treatment 

N
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(e.g., $329 million per additional year of life). The 
ICER can be compared with a decision maker’s 
willingness to pay (WTP). For example, if a new 
treatment produces better outcomes at a rate of 
$50,000 per extra year of life, and if the decision 
maker’s WTP is $20,000 per extra year of life, then 
the new treatment is not a good value. Why would 
a decision maker spend at a rate of $50,000 per 
extra year of life (the ICER), when a rate of $20,000 
per extra year of life (the WTP) is deemed appropri-
ate? In contrast, if the WTP were $80,000, then the 
new treatment could be considered cost-effective 
because the decision maker values what she or he is 
getting more than what she or he must give up.

In the example presented later in this entry, ∆C 
= $5,000 and ∆E = .10 life-year. The ICER is 
$5,000/.10 = $50,000. If WTP = $80,000, then the 
value of what is gained is .10 life-year × $80,000 
or $8,000 (note the assumption that if 1 year of 
life is worth $80,000, then one tenth of a year of 
life is worth one tenth of $80,000). It costs an 
extra $5,000 to realize this gain. The value of the 
extra benefit outweighs the value of the extra cost 
by $3,000.

Net benefit (NB) calculation is formulated in 
the cost-effectiveness literature in two separate 
ways. Adhering to the method illustrated in the 
previous paragraph, the incremental net benefit 
(INB) can be represented as

INB = Extra effect × WTP − Extra cost.

When the assumption is made that WTP = $0, 
then INB = −Extra cost. When the assumption is 
made that WTP = ICER, then INB = 0. The value for 
WTP is a major assumption when using the INB 
since often only the decision maker knows the deci-
sion maker’s WTP. As with other values that are 
unknown to the analyst, the lack of knowledge 
about WTP need not hamper the analysis. Sensitivity 
analysis can be used to explore how sensitive find-
ings are to assumptions about WTP. Net benefits can 
be calculated for both treatment options (i.e., new 
treatment and usual care); their difference represents 
the INB (the example that follows illustrates this).

Regression

In 2002, Hoch and colleagues introduced net ben-
efit regression as a way to estimate INB using 

regression methods. The main idea is that when 
running a regression such as

Y = β0 + β1tx,

where tx = 0 if the patient received usual care and 
1 if the patient received new treatment, the estimate 
of β1 = Average Ynew treatment − Average Yusual treatment. 
Therefore, if the dependent variable (Y) is cost, 
then the estimate of β1 = Average costnew treatment − 
Average costusual treatment = Extra cost, and if the 
dependent variable (Y) is effect, then the estimate of 
β1 = Average effectnew treatment − Average effectusual treatment 
= Extra effect.

The authors show that if the dependent varia-
ble is Effect × WTP − Cost, then the estimate of β1 = 
Average NBnew treatment − Average NBusual treatment = 
INB.

The reason this is important is that if one cre-
ates a net benefit variable for each patient (i.e., 
computes Effect × WTP − Cost for each person) 
and then runs the regression

NB = β0 + β1tx,

where tx is defined as before, the coefficient esti-
mate for β1 equals INB (the INB of the new treat-
ment). If the estimate of β1 is greater than 0, the 
new treatment is cost-effective.

The estimate of β1 and its 95� confidence inter-and its 95� confidence inter-
val changes as one’s choice of WTP changes. This 
is because both the estimate β1 and its 95� confi-
dence interval are functions of WTP. Therefore, it 
is a good idea to run a few net benefit regressions 
with different WTP values to see how sensitive the 
results are to one’s choices of WTP. The next sec-
tion illustrates how the process works and how to 
interpret the results.

Example

Data

To illustrate net benefit regression, hypotheti-
cal data are plotted in Figure 1 and summarized in 
Table 1 comparing a new treatment (tx = 1) with 
usual care (tx = 0) for patients with a deadly dis-
ease. To facilitate the duplication of methods and 
reasoning, the hypothetical data have nine people 
in each treatment group. The patient outcome 
chosen to represent success was survival (mea-
sured in years). In this example, since no one lives 
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longer than a year, patient outcome is reported as 
a decimal.

Results

Based on the hypothetical data plotted in 
Figure 1 and summarized in Table 1, the extra 
cost is $5,000 and the extra effect is .10 life-year 
(or about 1.2 months). The ICER estimate is 
$50,000 per extra life-year (i.e., ∆C/∆E = $5,000/.10 

life-year). The lower part of Table 1 provides an 
example of a sensitivity analysis varying WTP 
from $0 to $100,000. When the WTP is less than 
$50,000, the INB is less than 0 (i.e., the net bene-
fits from new treatment are less than those from 
usual care). Alternatively, when the WTP is greater 
than $50,000, new treatment is cost-effective since 
the value of the extra benefits outweighs the extra 
costs (i.e., INB > 0). The upper graph in Figure 2 
illustrates the net benefits for both the usual care 
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Treatment Allocation
uc = usual care  tx = new treatment

Data stratified by treatment allocation status (tx = 0 is usual care; tx = 1 is new treatment)

+ +
| obs   effect    cost   tx |
| |
|   1      .15   13000    0 |
|   2      .16   12000    0 |
|   3      .16   14000    0 |
|   4      .17   11000    0 |
|   5      .17   13000    0 |
| |
|   6      .17   15000    0 |
|   7      .18   12000    0 |
|   8      .18   14000    0 |
|   9      .19   13000    0 |
+ +

+ +
| obs   effect    cost   tx |
| |
|  10      .25   18000    1 |
|  11      .26   17000    1 |
|  12      .26   19000    1 |
|  13      .27   16000    1 |
|  14      .27   18000    1 |
| |
|  15      .27   20000    1 |
|  16      .28   17000    1 |
|  17      .28   19000    1 |
|  18      .29   18000    1 |
+ +

Figure 1   Cost data (plotted on the vertical axis) and effect data (plotted near the symbol marker) by treatment 
status allocation
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group (denoted with “◊”s) and the new treatment 
group (denoted with “+”s). Lines are drawn to 
connect the average net benefit value for each 
WTP value. The difference between the two aver-
age lines is the INB. When WTP = $50,000, the 
lines intersect, and the net benefit for usual care 
equals the net benefit for new treatment. The lower 
graph in Figure 2 also illustrates the average net 
benefits for both treatment groups. It is clear that 
when WTP = $60,000, the average net benefits for 
usual care and new treatment are both negative. 

However, the average net benefit for new treat-
ment is less negative. Consequently, the INB is 
greater than 0. The upper graph in Figure 2 con-
firms this as the line for the “+”s (new treatment’s 
net benefit line) is above the line for the “◊”s 
(usual care’s net benefit line).

Net benefit regression provides an exact estimate 
of the difference between the two net benefit lines 
(i.e., the INB). The results of the net benefit regres-
sions, estimating INB, are reported in Table 2. 
Simple linear regressions of the form

Table 1  Sample statistics from the hypothetical economic evaluation data

Variable Mean

Usual care (n = 9)

Cost US$13,000

Effect .17 life-year

New treatment (n = 9)

Cost US$18,000

Effect .27 life-year

Increments

Cost difference US$5,000

Effect difference .10 life-year

Incremental cost-effectiveness ratio

$5,000/.10 = $50,000 per life-year

 
Incremental Net Benefits

Net Benefits (NB)

New Treatment Usual Care Incremental 

WTP = $0 −$18,000 −$13,000 −$5,000

WTP = $20,000 −$12,600   −$9,600 −$3,000

WTP = $40,000   −$7,200   −$6,200 −$1,000

WTP = $60,000   −$1,800   −$2,800   $1,000

WTP = $80,000      $3,600         $600   $3,000

WTP = $100,000      $9,000     $4,000   $5,000

Notes: Net benefits (NB) are calculated as WTP × Average Effect – Average Cost. Incremental Net Benefits (INB) are calculated 
as NBnew treatment – NBusual care, so INB = WTP × ∆E − ∆C. For example, if WTP = $100,000, NBnew treatment = $100,000 × .27 − $18,000 = 
$9,000, NBusual care = $100,000 × .17 − $13,000 = $4,000, and INB = $100,000 × .10 − $5,000 = $5,000.
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nb = β0 + β1tx

were estimated using ordinary least squares (OLS). 
The dependent variable nb was calculated as 
Effect × WTP − Cost. Net benefit regressions were 
run for small (WTP = $0 and $20,000), medium 
(WTP = $40,000 and $60,000), and large (WTP = 
$80,000 and $100,000) WTP values. The results 
are discussed next.

Discussion

The results suggest that for small WTP values 
(WTP = $0 and $20,000), the new treatment is 
not cost-effective. The INB estimate (the coeffi-
cient estimate for the new treatment indicator) is 
negative, and its 95� confidence interval 
includes negative values only. For moderate 
WTP values (WTP = $40,000 and $60,000), 
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Figure 2  Illustration of net benefits and average net benefits for the hypothetical data
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there is high uncertainty about the new treat-
ment’s cost-effectiveness; the INB estimate 
switches signs (it is < 0 at $40,000 and > 0 at 
$60,000), and the 95� confidence intervals 
include 0. With high WTP values (WTP = 
$80,000 and $100,000), the new treatment 
appears cost-effective. The INB estimate is sta-
tistically significantly greater than 0 (the INB 
estimate is positive, and the 95� confidence 
interval includes only positive numbers). While 
a decision maker’s WTP may be unknown, the 
implications are clear for small and large WTP 
values. For moderate WTP values, the results are 
sensitive to the assumed WTP value.

In this example, a simple linear regression 
was run, estimating coefficients using OLS meth-
ods. More complex analytical strategies are 
available for the analysis of cost-effectiveness 
data, but a recent review of economic evalua-
tions found that many analyses are struggling to 
present simple, correct conclusions. After the 
first principles have been mastered, analysts can 
begin to make use of the substantial method-
ological work aimed at improving the quality of 

CEAs done with person-level data. Researchers 
have studied how best to handle missing data, 
skewed cost data, between-center differences, 
multilevel models, and seemingly unrelated 
regression models. Yet there is still more work to 
be done. For example, propensity scores have 
been proposed for CEAs using observational 
data; however, it is possible that other methods 
(e.g., instrumental variables) might better ame-
liorate selection bias. An important advantage of 
net benefit regression is that it allows all the 
methods that have been developed for regression 
analysis (e.g., model-fit diagnostics, advanced 
estimation and inference techniques) to be 
directly applied to economic evaluation. Another 
advantage of net benefit regression in its sim-
plest form is that most researchers are familiar 
with OLS regression. If key methods can be 
explained in a familiar regression framework, it 
seems likely that their widespread adoption 
might be facilitated. Efforts to explain how to 
do cost-effectiveness analysis with simple linear 
regression using OLS represent an attempt at 
more universal knowledge transfer.

Table 2   Simple linear regression results with hypothetical data (N = 18) with figures rounded to the nearest whole 
number

 
 
 
Variables

Net Benefit Regression Results by Willingness to Pay (WTP)

Small WTP
INB Estimate (95% CI)

Medium WTP
INB Estimate (95% CI)

Large WTP
INB Estimate (95% CI)

WTP = $0 WTP = $20,000 WTP = $40,000 WTP = $60,000 WTP = $80,000 WTP = $100,000

Constant Term –13,000*
(–13,865, 
–12,135)

–9,600*
(–10,483, –8,717)

–6,200*
(–7,132, –5,268)

–2,800*
(–3,809, 
–1,791)

600
(–508, 1,708)

4,000*
(2,776, 5,224)

New Treatment 
Indicator
(tx = 1 ⇒  Yes, 
tx = 0 ⇒  No)

–5,000*
(–6,224, 
–3,776)

–3,000*
(–4,248, –1,752)

–1,000
(–2,318, 318)

1,000
(–427, 2,427)

3,000*
(1,433, 4,567)

5,000*
(3,269, 6,731)

R2 (adjusted) .8132 .5949 .0853 .0662 .4763 .6822

F Statistic,  
F(1, 16)

75.00 25.96 2.59 2.21 16.46 37.50

Prob > F <.0001 .0001 .1273 .1569 .0009 <.0001

*Statistically significant at the 5� level.
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Implications

Economic “duality theorems” show how cost con-
tainment can be reframed as efficiency. Some of the 
earliest mathematical representations of CEA por-
tray healthcare decision makers facing a con-
strained optimization problem: How does one 
maximize health given a fixed budget? At least in 
theory, cost-effectiveness analysis has the potential 
to improve efficiency and value in healthcare by 
estimating the extra cost to get one more unit of 
effect; according to proponents, this is a good way 
to set priorities. One of the most practical advan-
tages of the net benefit regression approach is being 
able to use established statistical techniques to ana-
lyze cost-effectiveness data (e.g., to adjust for 
imperfect randomization or to identify important 
patient subgroups).

Jeffrey S. Hoch

See also Acceptability Curves and Confidence Ellipses; 
Confidence Intervals; Cost-Effectiveness Analysis; 
Cost-Utility Analysis; Net Monetary Benefit; Ordinary 
Least Squares Regression; Pharmacoeconomics; 
Propensity Scores; Quality-Adjusted Life Years 
(QALYs); Randomized Clinical Trials; Willingness  
to Pay
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Net MoNetaRy BeNefit

Generally, cost-effectiveness analysis expresses 
the outcome in the cost-effectiveness ratio. This 
ratio relates the difference in costs of two alter-
native healthcare interventions to their difference 
in health effects. Two alternatives may, for 
example, be two types of pharmacotherapies—
that is, a new drug being compared with the old 
standard treatment. The difference in health 
effects may be expressed in life years gained, 
quality-adjusted life years (QALYs) gained, dis-
ability-adjusted life years (DALYs) averted, and 
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so on. In a formula, the cost-effectiveness ratio 
(R) may be written down as

R = ∆C/∆E,

with ∆C the difference in costs and ∆E the differ-
ence in health effects.

Obviously, R represents a ratio, limiting its 
usefulness for understanding the relative sizes 
of the differences in costs and effects. For 
example, the ratio does not provide any infor-
mation on the budget impact. Furthermore, the 
ratio does not differentiate between the SE and 
NW quadrants of the cost-effectiveness plane. 
For example, both the combinations of (∆C = 
−100; ∆E = 10) and (∆C = 100; ∆E = −10) 
result in the same cost-effectiveness ratio of 
−10, with the former combination being very 
acceptable and the latter very unpleasant. 
Finally, it is well established that statistical 
analysis on ratios involves some specific prob-
lems. Ergo, some drawbacks exist while work-
ing with cost-effectiveness ratios.

As one of several options to overcome these 
drawbacks, the concept of net monetary benefit 
(NMB) has been developed. To arrive at the NMB, 
the above equation on the cost-effectiveness ratio 
is simply rewritten, after having inserted an explicit 
threshold for cost-effectiveness (often denoted as 
λ). This threshold explicitly gives the maximum 
amount of money that society/decision makers 
want to pay for gaining one unit of health effect, 
for example, a QALY. So we are interested in the 
situation that

R = ∆C/∆E < λ.

If we rewrite this as

∆C − λ∆E < 0,

or

λ∆E − ∆C > 0,

we have formally derived the requirement that the 
NMB (= λ∆E − ∆C) should be positive. So, for 
example, for a new drug, we would require that 

the monetarized difference in health effects (λ∆E) 
exceeds the difference in costs (∆C). It is immedi-
ately clear from inserting just the simple example 
of (∆C = −100; ∆E = 10) and (∆C = 100; ∆E = 
−10) that the NMB does differentiate between SE 
and NW quadrants.

Furthermore, if calculated on the exact patient 
populations within specific countries, the NMB 
provides exact information on the costs (sav-
ings) to be net paid (achieved). As such, it 
gives policy makers information on the socio-
economic impact at the national macrolevel. 
Finally, calculus of the NMB enhances possibili-
ties for formal statistical tests and analysis 
of uncertainty around point estimates of cost-
effectiveness.

NMB is a versatile tool to evaluate uncer-
tainty in health-economic analyses. For exam-
ple, derivation of uncertainty intervals around 
cost-effectiveness ratios is often based on analy-
sis of NMB. Also, NMB can be used for sample 
size estimation for cost-effectiveness in clinical 
trials. Furthermore, subgroup analysis using 
regression techniques on NMB is very straight-
forward.

NMB allows also for uncertainty evaluation 
of cost-effectiveness point estimates from health-
economic models using cost-effectiveness accept-
ability curves. In this case, the probabilistic 
sensitivity analysis is used to generate cost and 
effect pairs (e.g., 10,000 simulations) for all 
alternatives included in the model (see Table 1 
for a numerical example). In the next step, the 
threshold for cost-effectiveness (λ) is varied, and 
the NMB for each cost and effect pair is calcu-
lated (Table 2). The number of simulations with 
the highest NMB represents the probability of 
cost-effectiveness for each alternative at the spe-
cific threshold (bold in Table 2). Finally, the 
probability is plotted versus the threshold (λ) 
and the cost-effectiveness acceptability curve 
(CEAC) is created (Figure 1). Also, value of  
the information theory is building on the NMB 
concept.

Maarten J. Postma and René (M) van Hulst

See also Cost-Effectiveness Analysis; Uncertainty in 
Medical Decisions 
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Table 1  Cost and effect pairs per 5,000 patients

Simulation Alternative A Alternative B Alternative C Alternative D

E (QALY) Cost ($) E (QALY) Cost ($) E (QALY) Cost ($) E (QALY) Cost ($)

1 7,125 –253,733 7,179 –210,720 7,196 –196,688 7,220 –233,653

2 7,676 –264,780 7,781 –229,377 7,748 –203,012 7,739 –240,245

3 7,428 –255,535 7,478 –214,558 7,499 –196,075 7,490 –233,646

  .  . .   .  . .   .  . . 

10,000 7,866 –265,846 7,928 –219,885 7,922 –203,103  7,921.52 –242,473

Table 2  Net monetary benefit ($) at cost-effectiveness threshold (λ) of $1,000

 
Simulation

Alternative A  
(in Dollars)

Alternative B  
(in Dollars)

Alternative C  
(in Dollars)

Alternative D  
(in Dollars)

1 7,378,465 7,389,293 7,392,873 7,453,521

2 7,940,399 8,010,714 7,950,835 7,979,670

3 7,683,631 7,692,794 7,694,736 7,723,881

10,000 8,131,486 8,148,165 8,125,535 8,163,995

Highest � NMB 0 6.6 5.6 87.8

Note: The alternative with the highest NMB is in bold.
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Figure 1  Cost-effectiveness acceptability curve

Note: Probabilities estimated in Table 2 are on the dotted line crossing $1,000. Alternatives A (     ), C (          ), B (          ),  
D (        ).



814 Nomograms

Further Readings

Briggs, A. H., O’Brien, B. J., & Blackhouse, G. (2002). 
Thinking outside the box: Recent advances in the 
analysis and presentation of uncertainty in cost-
effectiveness studies. Annual Review of Public Health, 
23, 377–401.

Hoch, J. S., Briggs, A. H., & Willan, A. R. (2002). 
Something old, something new, something borrowed, 
something blue: A framework for the marriage of 
health econometrics and cost-effectiveness analysis. 
Health Economics, 11(5), 415–430.

NoMogRaMs

Nomograms are graphical representations of 
equations that predict medical outcomes. Nomo-
grams use a points-based system, whereby a patient 
accumulates points based on the levels of his or 
her risk factors. The cumulative points total is 
associated with a prediction, such as the pre-
dicted probability of treatment failure in the 
future. Nomograms are attractive as medical pre-
diction tools, because they can consider multiple 
variables simultaneously to find the best predic-
tion for an individual patient. Nomograms have 
demonstrated better accuracy than both risk-
grouping systems and physician judgment. This 
improved accuracy should translate into more 
appropriate patient counseling and medical deci-
sion making.

Overview

Making informed medical decisions relies on 
accurate predictions of the possible outcomes. 
Paper-based nomograms provide an excellent 
medium for easily displaying risk probabilities 
and do not require a computer or calculator. 
The coefficients used to create the nomogram 
can be used to create a computer-based predic-
tion tool. The use of nomograms should theo-
retically help physicians and patients make 
better treatment decisions. Providing predicted 
probabilities to patients should reduce the likeli-
hood of regret of treatment choice, particularly 
when complications arise. However, nomograms 
are only as good as the data that were used in 

their creation, and no nomogram can provide a 
perfect prediction. Ultimately, the best evalua-
tion of a nomogram is made by validating the 
prediction accuracy of a nomogram on an exter-
nal data set and comparing the concordance 
index with another prediction method that was 
validated using the same data.

Deriving Outcome Probabilities

All medical decisions are based on the predicted 
probability of different outcomes. Imagine a 
35-year-old patient, who presents to a physician 
with a 6-month history of cough. A doctor in 
Chicago may recommend a test for asthma, which 
is a common cause of chronic cough. If the same 
patient presented to a clinic in rural Africa, the 
physician may likely test for tuberculosis. Both 
physicians may be making sound recommenda-
tions based on the predicted probability of disease 
in their locale. These physicians are making clini-
cal decisions based on the overall probability of 
disease in the population. These types of decisions 
are better than arbitrary treatment, but they treat 
all patients the same.

A more sophisticated method for medical deci-
sion making is risk stratification. Physicians will 
frequently assign patients to different risk groups 
when making treatment decisions. Risk group 
assignment will generally provide better predicted 
probabilities than estimating risk according to the 
overall population. In the previous cough exam-
ple, there are a variety of other factors that may 
affect the predicted risk of tuberculosis (e.g., 
fever, exposure to tuberculosis, history of tuber-
culosis vaccine) that physicians are trained to 
explore. Most of the risk stratification performed 
in clinical practice is based on rough estimates 
that simply order patients into different levels of 
risk, such as “high risk,” “medium risk,” or “low 
risk.” Nomograms provide precise probability 
estimates that generally make more accurate 
assessments of risk.

Another problem with risk stratification arises 
when continuous variables are turned into categor-
ical variables. Physicians frequently commit dicho-
tomized cutoffs of continuous laboratory values to 
memory to guide clinical decision making. Imagine 
a new blood test for tuberculosis called “serum 
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marker A.” Research shows that patients with 
serum marker A levels greater than 50 are at an 
increased risk for tuberculosis. In reality, patients 
with a value of 51 might have very similar risks 
compared with patients with a value of 49. In con-
trast, a patient with a value of 49 would be consid-
ered to have the same low risk as a patient whose 
serum level of marker A is 1. Nomograms allow 
for predictor variables to be maintained as contin-
uous values while allowing numerous risk factors 
to be considered simultaneously. In addition, more 
complex models can be constructed that account 
for interactions.

Figure 1 illustrates a hypothetical nomogram 
designed to predict the probability that a patient 
does not have tuberculosis. Directions for using 
the nomogram are contained in the figure. One 
glance at the nomogram allows the user to quickly 
determine which predictors have the greatest 
potential impact on the probability of tuberculo-
sis. Fever has a relatively short axis and can con-
tribute less than 25 possible points. In contrast, 
the exposure to tuberculosis (Tb) variable has a 
much greater possible impact on the predicted 
probability.

Nomograms such as the one pictured in 
Figure 1 are created from the coefficients 
obtained by the statistical model (e.g., logistic 
regression or Cox proportional hazards regres-
sion) and are only as precise as the paper graph-
ics. However, the coefficients used to create the 
paper-based nomogram can be used to calculate 
the exact probability. Similarly, the coefficients 
can be plugged into a Microsoft Excel spread-
sheet or other computer interface that will auto-
matically calculate the probability based on the 
user inputs.

Validation

The estimated probability obtained from nomo-
grams, such as the one in Figure 1, are generally 
much more accurate than rough probabilities 
obtained by risk stratification and should help 
both patients and physicians make better treat-
ment decisions. Predicted probabilities can be 
graded (validated) on their ability to discriminate 
between pairs of patients who have different  
outcomes (discordant pairs). The grading can be 

performed using either a validation data set that 
was created with the same database used to create 
the prediction model (internal validation) or with 
external data (external validation). Ideally, a 
nomogram should be validated in an external 
database before it is widely used in heterogeneous 
patient populations.

A validation data set using the original data can 
be created either with the use of bootstrapping or 
by dividing the data set into random partitions. In 
the bootstrap method, a random patient is selected, 
and a copy of the patient’s data is added to the 
validation data set. The patient’s record is main-
tained in the original data set and is available for 
subsequent random selection. The random selec-
tion of patients is continued until a data set that is 
the same size as the original data set has been 
formed. The model is applied (i.e., fit) to the boot-
strap data, and the model is graded on its ability 
to accurately predict the outcome of patients in 
either the original data (apparent accuracy) or the 
bootstrap sample (unbiased accuracy). Alternatively, 
the original data can be randomly partitioned. The 
model is fit to only a portion of the original data, 
and the outcome is predicted in the remaining sub-
set. The bootstrap method has the added benefit 
that the sample size used for the model fitting is 
not reduced.

Evaluating Model Accuracy

As previously mentioned, the models’ predictions 
are evaluated on their ability to discriminate 
between pairs of discordant patients (patients 
who had different outcomes). The resultant eval-
uation is called a concordance index, or c statis-
tic. The concordance index is simply the proportion 
of the time that the model accurately assigns a 
higher risk to the patient with the outcome. The 
c statistic can vary from .50 (equivalent to the flip 
of a coin) to 1.0 (perfect discrimination). The  
c statistic provides an objective method for evalu-
ating model accuracy, but the minimum c statistic 
needed to claim that a model has good accuracy 
depends on the specific condition and is some-
what subjective. However, models are generally 
not evaluated in isolation. Models can be com-
pared head-to-head either with one another or 
with physician judgment. In this case, the most 
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accurate model can generally be identified as the 
one with the highest concordance index.

However, to fully grade a model, it is also nec-
essary to determine a model’s calibration. 
Calibration is a measure of how close a model’s 
prediction compares with the actual outcome and 
is frequently displayed by plotting the predicted 
probability (or value) versus the actual proportion 
with the outcome (or actual value). The concor-
dance index is simply a “rank” test that orders 
patients according to risk. A model can theoreti-
cally have a great concordance index but poor 
calibration. For instance, a model may rank 
patients appropriate while significantly overesti-
mating or underestimating the probability (or 
value) in all the patients.

Brian J. Wells

See also Artificial Neural Networks; Calibration; 
Computer-Assisted Decision Making; Decision Rules; 
Discrimination; Patient Decision Aids; Prediction Rules 
and Modeling; Risk-Benefit Trade-Off; Shared 
Decision Making
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NoNexpected Utility theoRies

Medical treatments offer health prospects. A health 
prospect represents a course of action with respect 
to one’s health for which the outcome is generally 
uncertain. A surgery, initiation of a pharmaceutical 
treatment, and an exercise program are examples of 

Fever
No

Yes

Marker A
0 10 20 40 60 70 80 90 100

History of Tb Vaccine
No

Yes

Exposure to Tb
Yes

No

Probability of No
Tuberculosis Infection .975 .95 .9 .8 .7 .6 .5 .4 .3 .2 .1 .01

Total Points
4002000

Cough
No Hemoptysis

Yes

Age
80 6070 50 40 30 20 10

Points
0 50 100

Figure 1  Hypothetical nomogram for predicting risk of tuberculosis (Tb) (not for clinical use)

Instructions: Locate the tic mark associated with the value of each predictor variable. Use a straight edge to find the corresponding points on 
the top axis for each variable. Calculate the total points by summing the individual points for all of the variables. Draw a vertical line from the 
value on the total points axis to the bottom axis in order to determine the probability that the patient does not have a tuberculosis infection.
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health prospects. For simplicity of exposition, this 
entry considers only binary prospects, prospects 
involving two outcomes. Such binary prospects are 
all that is needed to measure health utility. Figure 1 
shows a health prospect [.45: 24; 2] that offers dif-
ferent survival durations, 24 years and 2 years with 
associated probabilities .45 and .55 = −.45.

When utilities are known, it is a widely held 
view that expected utility is normative and is thus 
the appropriate approach for assigning value to a 
prospect such as that in Figure 1. This approach 
can then inform decisions about optimal treat-
ments and cost-effectiveness.

Utilities, however, are generally not available 
without some sort of elicitation from a respondent. 
Elicitation of utility requires that numbers be associ-
ated with prospects such that preference for those 
prospects is faithfully described by the numbers. 
Behavioral research on choice strongly suggests that 
people typically do not make choices that conform 
to expected utility. Thus, when expected utility is 
used as a measurement tool, it is often the case that 
the numbers assigned to the prospects do not 
describe preference well. In addition, research has 
shown that the effects of expected utility violations 
are not limited to health utility measurements but 
also can influence willingness to pay for reductions 
in health risks and other contingent valuation 
responses. To address the problems associated with 
expected utility theory, nonexpected utility theories 
have been introduced. This entry focuses on the 
most important of these nonexpected utility theories 
and prospect theory, first proposed by Daniel 
Kahneman and Amos Tversky in 1979 and later 
refined by them in 1992.

Prospect Theory

Prospect theory relaxes those expected utility assump-
tions that are frequently violated by decision makers. 
An important advantage of prospect theory is that it 
offers improvements over expected utility in estimat-
ing the value of treatments for application in medical 

decision models. Once the prospect theory utilities 
are known, they can then be applied within norma-
tive medical decision models to identify treatments 
that maximize utility. A brief review of expected util-
ity and its relation to prospect theory concepts 
facilitates an understanding of how prospect theory 
generalizes and improves expected utility.

Expected Utility

Expected utility evaluates prospects by multiplying 
the utility of each outcome by its associated prob-
ability and then summing over this product. For a 
binary health prospect [p: x; y], the expected utility 
is pU(x) + (1 − p)U(y), where U is a utility function 
and an interval scale. This shows that in expected 
utility, the decision weight assigned to an outcome 
is equal to its probability.

Nonexpected Utility and  
Transformation of Probability

Expected utility assumes that preferences are linear 
in probability. A change in probability from, say, .53 
to .54 is given the same weight as a change from 0 
to .01 or from .99 to 1. Empirical evidence suggests, 
however, that people are much more sensitive to the 
latter two changes than to the former. To model this, 
prospect theory allows for probability weighting. 
The probability weighting function w yields a non-
linear transformation of probabilities. The function 
w is a map from [0, 1] to [0, 1] that is increasing in 
its argument and for which w(0) = 0 and w(1) = 1. 
Empirical work suggests that the function w is often 
an inverse S shape such that small probabilities of 
the better outcome are overweighted and large 
probabilities of the better outcome are under-
weighted, as in Figure 2. Incorporating probability 
weighting into expected utility implies that the pros-
pect [p: x; y], x ≥ y should be evaluated as

w(p)U(x) + (1 − w(p))U(y).

This formula corresponds to Quiggin’s rank- 
dependent utility theory, which as shown below is 
a special case of prospect theory.

Reference Level and Utility

In addition to the utilization of decision weights, 
empirical studies have also shown that people’s 

x1 = 24 years

x2 = 2 years

p1 = .45

p2 = .55

Figure 1  A typical binary health prospect
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preferences depend on a reference level. A refer-
ence level is a point in the outcome space from 
which final outcomes are judged. For example, if 
“fair health” is your reference level, then other 
outcomes such as “poor health” and “good health” 
are judged from the “fair health” reference point. 
Expected utility and rank-dependent utility do not 
consider reference levels, but prospect theory 
accommodates reference levels. In prospect theory, 
those final outcomes preferred to the reference 
level are coded as gains, and those outcomes not 
preferred to the reference level are coded as losses. 
Losses and gains are treated differently. A well- 
established empirical finding of Kahneman and 
Tversky is that “losses loom larger than gains,” 
and thus a constant change in outcome represents 
a larger absolute value difference if it is coded as a 
loss than if it is coded as a gain. Figure 3 illustrates 
this point.

Difference in the shape of the value function for 
gains and losses in risky choices has been observed 
in health by Lia Verhoef, Anton De Haan, and 
Willem Van Daal. Furthermore, in prospect theory, 
probability weighting can be different for gains 
and for losses.

Because prospect theory distinguishes gains 
from losses, the evaluation of a prospect depends 
on the sign of its outcomes. If a prospect [p:x;y],  
x ≥ y involves only gains, then its evaluation is 
identical to rank-dependent utility with probability 
weighting function w+, where the + stands for 
gains. If a prospect [p: x; y], −x ≥ −y involves only 

losses, then its evaluation is the dual of rank- 
dependent utility:

w−(p)U(x) + (1 − w−(p)) U(y),

where w− is the probability weighting function for 
losses. The most interesting case occurs when the 
prospect [p: x; y] is mixed: x is a gain and y a loss. 
Then, the evaluation is

w+(p)U(x) + λw−(1 − p)U(y),

where λ is a parameter that reflects loss aversion.
The above equations show that if λ = 1 and 

w+(p) = 1 − w−(1 − p), then prospect theory is equiv-
alent to rank-dependent utility. If λ = 1 and w+(p) = 
w−(p) = p, then prospect theory reduces to expected 
utility. Hence, rank-dependent utility and expected 
utility are both special cases of prospect theory.

Functional Forms of the Probability  
Weighting Function

The numeric value of decision weights may be 
determined by assuming a parametric form to the 
probability weighting function. Commonly used 
probability weighting functions and their parame-
ters are given in Table 1.

.0 .2 .4 .6 .8 1.0
P

.0

.2

.4

.6

.8

1.0

w
(p

)

Figure 2   An inverse S-shaped probability weighting 
function

Value

Outcome

Losses (−) Gains (+)

Figure 3   The value function under prospect theory 
for losses and gains

Source: Adapted from Kahneman, D., & Tversky, A. (1979). 
Prospect theory: An analysis of decision under risk. 
Econometrica, 47, 263–291.
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Framing

Framing refers to how prospects are described. The 
same prospect can be described in different ways. A 
framing effect means that two different descriptions 
of the same prospect occasion different preferences 
from the respondent. For example, persons are 
more likely to prefer a medical treatment if they are 
told that of those who accept the treatment “90� 
survive” than if they are told “10� die.” Prospect 
theory applies to framed prospects and, thus, is a 
theory of the valuation process. Rank-dependent 
utility does not accommodate a framing process. 
Evidence suggests that in addition to probability 
weighting, framing may explains differences in util-
ity elicitation methods. Framing has been employed 
to occasion a greater rate of healthy behaviors, such 
as smoking cessation, mammography, and sun-
screen use among health consumers. However, such 
applications have been construed as controversial 
because they may threaten consumer sovereignty.

Prospect Theory and the Standard Gamble

In applied studies, most utility elicitations under risk 
involve the standard gamble: A method whereby 
respondents choose between a prospect that will 
return them to “full health” with probability p, oth-
erwise resulting in immediate “death”; and another 

prospect that will leave them in some suboptimal 
health state, Q, with certainty. When a respondent 
finds the two options equivalent in preference, p is 
called the standard gamble equivalent. Expected 
utility dictates that U(Q) = p, when p is the standard 
gamble equivalent. Rank-dependent utility dictates 
that U(Q) = w(p) in this case. With rank-dependent 
utility, one may choose any of the weighting func-
tion and associated parameter estimates in Table 1 
to transform p, for the purposes of identifying the 
utility of Q. Empirical research suggests that under 
prospect theory, persons frame the certain option, 
health state Q, as their reference level, and the risky 
option as a “mixed” prospect, where “full health” 
is coded as a gain and “death” is coded as a loss. By 
this analysis, prospect theory requires that when p is 
the standard gamble equivalent,

UðQÞ= w+ðpÞ
w+ðpÞ+ lw ð1− pÞ

:

Because the above equation is somewhat com-
plicated to implement in practice, Han Bleichrodt, 
Jose Luis Pinto, and Peter Wakker have provided a 
table, such as the one given in Table 2, which con-
verts standard gamble equivalents directly into 
prospect-theory-based utilities. The utility function 
U for each of these utility theories is an interval 
scale and appropriate for cost-utility analysis.

Table 1  Empirical studies on the probability weighting function

Functional Form Parameter Estimates

Tversky and Kahneman (1992): γ = .61 (gains), γ = .69 (losses)
Camerer and Ho (1994): γ = .56 (gains)
Wu and Gonzalez (1996): γ = .71 (gains)
Abdellaoui (2000): γ = .60 (gains), γ = .70 (losses)

wðpÞ= δpg

δpg + ð1− pÞg
Wu and Gonzalez (1996): δ = .84, γ = .68 (gains)
Gonzalez and Wu (1999): δ = .77, γ = .44 (gains)
Tversky and Fox (1995): δ = .77, γ = .69 (gains)
Abdellaoui (2000): δ = .65, γ = .60 (gains)
Abdellaoui (2000): δ = .84, γ = .65 (losses)

w(p) = exp(−(−ln p)α) Wu and Gonzalez (1996): α = .74 (gains)

Source: Adapted from Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free measurement of the probability weighting function 
in medical decision analysis. Management Science, 46(11), 1485–1496.

wðpÞ= pg

½pg þ ð1− pÞg1=g
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Prospect Theory and  
Quality-Adjusted Life Years

The quality-adjusted life-years (QALYs) model is 
the most widely used outcome measure in eco-
nomic evaluations of healthcare. QALYs are com-
puted by adjusting each year of life by the quality 
of life in which it is spent. An important empirical 
question is whether QALYs are a valid reflection of 
people’s preferences over health. Previous studies 
analyzed this question under expected utility. 
Empirical tests of the QALY assumptions are then 
confounded with violations of expected utility, 
however. Prospect theory can also be used as a 
foundation for QALYs. Tests of the validity of 
QALYs under prospect theory have tended to be 
more favorable toward QALYs.

Jason N. Doctor and Han Bleichrodt

See also Allais Paradox; Bias; Choice Theories; Decision 
Psychology; Decision Weights; Expected Utility 
Theory; Gain/Loss Framing Effects; Lottery; Prospect 
Theory; Rank-Dependent Utility Theory; Risk 
Aversion; Utility Assessment Techniques; Value 
Functions in Domains of Gains and Losses
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Table 2   Corrected standard gamble utilities as proposed by Bleichrodt et al. (2001) for standard gamble elicitations 
between 0.00 and 0.99

 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07  0.08 0.09
0.0 0.000 0.025 0.038 0.048 0.057 0.064 0.072 0.078 0.085 0.091
0.1 0.097 0.102 0.108 0.113 0.118 0.123 0.128 0.133 0.138 0.143
0.2 0.148 0.152 0.157 0.162 0.166 0.171 0.176 0.180 0.185 0.189
0.3 0.194 0.199 0.203 0.208 0.213 0.217 0.222 0.227 0.231 0.236
0.4 0.241 0.246 0.251 0.256 0.261 0.266 0.271 0.276 0.281 0.286
0.5 0.292 0.297 0.303 0.308 0.314 0.320 0.325 0.331 0.337 0.343
0.6 0.350 0.356 0.363 0.369 0.376 0.383 0.390 0.397 0.405 0.412
0.7 0.420 0.428 0.436 0.445 0.454 0.463 0.472 0.481 0.491 0.502
0.8 0.512 0.523 0.535 0.547 0.560 0.573 0.587 0.601 0.617 0.633
0.9 0.650 0.669 0.689 0.710 0.734 0.760 0.789 0.822 0.861 0.911

Source: Adapted from Bleichrodt, H., Pinto, J. L., & Wakker, P. P. (2001). Making descriptive use of prospect theory to improve 
the prescriptive use of expected utility. Management Science, 47, 1498–1514.

Note: Row headings represent tenths, column headings hundredths of the uncorrected standard gamble score, and table entries 
are corrected scores, e.g., the corrected utility for a standard gamble of .15 is .123 (underlined).
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NoNiNfeRioRity testiNg

See Equivalence Testing

NUMBeR Needed to tReat

The number needed to treat (NNT) is defined as 
the number of patients that would need to be 
treated to prevent an adverse outcome in one 
additional patient compared with control treat-
ment over a specified time period. The term was 
first introduced in 1988 by Andreas Laupacis, 
David Sackett, and Robin Roberts as the number 
needed to be treated but has been shortened to 
number needed to treat or its abbreviation NNT.

In medicine and other clinical practices, the well-
performed randomized clinical trial is often consid-
ered the gold standard for judging the effectiveness 
of therapeutic interventions. The outcome measures 
from such studies are reported in many ways that 
involve both group and individual patient out-
comes. An example of the former might be the 
mean reduction in blood pressure in the group of 
patients receiving one antihypertensive medication 
compared with the mean reduction in the group 
receiving another drug or a placebo. Such grouped 
data outcomes have often been the evidence for 
making clinical decisions. It makes sense, at first 
glance, that if all other factors (e.g., cost, access, 
side effects) are equal between the two antihyper-
tensive medications, patients in the group with the 
average lower blood pressure would benefit from 
the medication compared with patients given the 
other drug. Missing from such analysis, however, is 
whether, in fact, individual patients benefited in 
clinically meaningful ways and how many individu-
als benefited. The researchers could have alterna-
tively reported the results as the number or 

percentage of individuals in each medication group 
with outcome blood pressures in the normal range.

Largely through the development of the field of 
evidence-based medicine, there has been and con-
tinues to be an understanding of the unfavorable 
impact on the practice of medicine that can result 
not only from methodologically flawed clinical tri-
als but also from the failure to report treatment 
effects in clinically relevant outcomes and in terms 
of individual patient responses.

In the current literature, when clinically relevant 
outcomes are reported for individual patients, ran-
domized controlled trials and systematic reviews 
frequently report the treatment effect as relative risk 
(RR), relative risk reduction (RRR), absolute risk 
reduction (ARR), or the number needed to treat 
(NNT). This entry focuses on NNT and its clinical 
utility relative to the other measures, as well as the 
strengths and weakness of the NNT as a measure of 
clinical effect. Additionally, useful resources for cal-
culating the NNT and its precision are provided.

Calculations

The NNT is the reciprocal of the ARR, where the 
ARR is the simple mathematical difference between 
the control event rate and the experimental event 
rate. The ARR has been termed the benefit of the 
treatment. Some researchers use the term rate dif-
ference or risk difference for the same calculation. 
Table 1 summarizes the calculation of event rates, 
the ARR, and the NNT.

The NNT when calculated in a clinical study or 
review provides a point estimate or average of the 
number of patients that, if given the new treat-
ment, would result in a reduction of one adverse 
event over and above the control event rate. The 
precision (or variability) of this point estimate can 
be calculated as confidence intervals (CI) around 
this point estimate and provides additional infor-
mation for the clinician as to whether to recom-
mend (and for the patient as to whether to accept) 
the treatment.

The confidence interval for the ARR is calcu-
lated from the standard error for the two propor-
tions (control event rate and experimental event 
rate). The formula is

95� CI = ARR + 1.96 sq root  
[p1(1 − p1)/n1 + p2(1 − p2)/n2)],
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where p1 is the CER; p2 is the EER; n1 is the num-
ber of subjects in the control group; and n2 is the 
number of subjects in the experimental group.

The confidence interval for the NNT is calcu-
lated as the reciprocal of the upper and lower 
limits of the confidence interval for the ARR. 
These numbers provide the clinician with a range 
from the fewest to the largest number of patients 
needed to be treated to see treatment effect in one. 
In practice, 95� confidence intervals are routinely 
calculated, and the upper limit of the 95� confi-
dence interval of the NNT is the clinically more 
conservative value; that is, the clinician can intui-
tively be 95� sure that if he or she treats this 
many patients, one patient will have benefit over 
and above the controls. The values for the confi-
dence interval around the ARR also indicate if the 
result is statistically significant; that is, the values 
do not include zero.

Table 2 gives a numerical example from a study 
of oral ondansetron given to children in an emer-
gency room setting to reduce vomiting during oral 
rehydration in uncomplicated gastroenteritis. In 
this example, the NNT is 5 (usually rounded up to 
the closest whole number) with a 95� confidence 
interval from 3 to 11 patients.

In an effort to extend the concept of NNT from 
randomized controlled trials to systematic reviews 
and cohort analysis, there have been formulas 
developed for calculating the NNT from RR and 
odds ratios (ORs). Sackett and colleagues intro-
duced the term patient-expected event rate (PEER) 
to facilitate these calculations for an individual 
patient. The PEER is an estimate of an individual’s 
risk of the adverse event if that patient is in the 

control therapy group. The formulas for calculating 
the NNT for results expressed as RR or ORs are 
shown below.

For RR < 1: NNT = 1/(1 − RR) × PEER.

For RR > 1: NNT = 1/(RR − 1) × PEER.

For OR < 1: NNT = 1 − [PEER × (1 − OR)]/ 
(1 − PEER) × (1 − OR).

For OR > 1: NNT = 1 + [PEER × (OR − 1)]/ 
(1 − PEER) × (PEER) × (OR − 1).

In the literature, there are a number of terms 
that have been used and are identical to ARR  
and NNT in calculation but not in terminology. If 
improvement (benefit) is measured, rather than an 
adverse event, the term absolute benefit increase is 
often used, and its reciprocal the NNT is then 
descriptively the number of patients needed to 
treat to see improvement in one, over and above 
the control event rate. Similarly, the NNT to pre-
vent one adverse outcome has been extended to 
looking at the harmful effects from comparative 
treatments. When the adverse event rates of two 
treatments are measured, the number needed to 
harm can be calculated from the reciprocal of the 
difference in the harmful event rates between 
experimental and control groups.

Why Number Needed to Treat?

Although not universally accepted as the gold stan-
dard for clinical effect, the NNT has become the 

Table 1  Calculation of event rates, absolute risk reduction (ARR), and the number needed to treat (NNT)

Poor Outcome Event

Present Absent

Treatment Group
Experimental A B

Control C D

Experimental event rate (EER) = A/(A + B)
Control event rate (CER) = C/(C + D)

Absolute risk reduction (ARR) = CER – EER
Number needed to treat (NNT) = 1/ARR
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standard for those who subscribe to classical evi-
dence-based medicine, for both appraisal of pri-
mary randomized clinical trials and for reporting 
results of systematic reviews. For clinicians (and 
patients), the appeal of the NNT is that it calcu-
lates a result that is intuitively understandable, 
since it is reported in a number of patients, unlike 
other measures of treatment effect such as RR, 
RRR, and OR. Formulas for calculating the RR, 
RRR, and OR are given in Table 3. The RR and 
the RRR are both calculated percentages of the 
control event rate, and as such they are anchored 
and dependent on that value.

Relative values (RR and RRR) are dependent 
on the control event rate and may be misleading, 
even if numerically large, regarding the absolute or 
attributable benefit. Table 4 gives an illustration 
showing how the NNT varies, while RRR and RR 
are constant. As illustrated in Table 4, without an 
explicit understanding of the control event rate, 
the RR and RRR do not provide the clinician an 
understanding of the impact of alternative treat-
ments for his or her patients.

A clinician when proposing a treatment (and the 
patient when deciding on treatment options) seeks 
clarity on how much more effective one treatment 
is compared with other alternatives, and relative 
efficacy does not fully address this issue, particu-
larly when cost, access to care, risk of harm, and 
other factors from alternative treatment options 
are not equivalent. The NNT provides a more 
intuitive, contextual understanding of the impact 
of comparative treatments in these situations.

The same understanding has been used by pub-
lic health practitioners for calculating both efficacy 
and harm and by third-party payers to assess cost 
as a factor for expanding or restricting treatment 
options.

Limitations

The value of the NNT in clinical practice is limited 
both by the specific characteristics of the calcu-
lated value and also by penetration of this concept 
into the clinical practice literature. Three specific 
criteria define each NNT value: (1) the particular 
outcome measured, (2) the baseline risk (control 
event rate), and (3) the time period for measuring 
the outcome. If any one of these criteria changes, 
then the NNT will also vary. The NNT therefore 
cannot be compared, one study with another, 
unless these three criteria are similar.

The specificity of the outcome measure, in terms 
of an individual’s response, forces researchers to 
make choices regarding the presentation of their 
data. The clinician then is faced with a decision 
regarding the applicability of that outcome for his 
or her patient. For example, a number of drug 
efficacy studies for treating migraine headaches 
use an outcome defined as 50� reduction in the 
number of migraine headache events in a specified 
period of time. If, as in one study, the NNT is 4, 
the clinician reading the research article may won-
der whether that number reflects both the partici-
pants in the study with baseline (control event 
rate) headache frequency of 2 per month and also 

Table 2  Calculation of the number needed to treat: A clinical example

Vomiting During Oral Rehydration

Present Absent

Treatment Group
Ondansetron 15 92

Placebo 37 70

Experimental event rate (EER) = A/(A + B) = 15/107 = 14�
Control event rate (CER) = C/(C + D) = 37/107 = 35�

Absolute risk reduction (ARR) = CER – EER = 35� – 14� = 21� [9.4�, 31.7�]
Number needed to treat (NNT) = 1/ARR = 1/.21 = 4.9 [3.2, 10.6]

Source: Freedman, S. B., Adler, M., Seshadri, R., & Powell, E. C. (2006). Oral ondansetron for gastroenteritis in a pediatric 
emergency department. New England Journal of Medicine, 354, 1698–1705.
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those who experience headaches with greater fre-
quency, such as 10 headaches per month, as well 
as what the NNT would be for a lesser reduction, 
such as 25�, or greater reduction, such as 75�, 
from a host of other measures.

Understanding the time period for the specific 
outcome is particularly important for outcomes of a 
chronic disease or events that occur late in the natu-
ral course of a disease, for example, the development 
of a stroke in patients with mild hypertension.

There is no absolute, definitive clinically useful 
NNT. It always depends on the adverse outcome, 
the treatment (and its attendant risks), and time of 
disease progression to adverse outcome.

An important practical limitation of the NNT 
has to do with the current editorial practice of jour-
nals regarding clinical articles. Although the 
CONSORT (Consolidated Standards on Reporting 
Trials) group has made a recommendation to report 
results as NNT or ARR, few journals have adopted 
such reporting. In one review by Jim Nuovo and 

colleagues, only 18 of 359 randomized clinical tri-
als reported NNT or ARR. As a result, few practi-
tioners have the opportunity to consider clinical 
decisions in terms of NNTs.

It is often possible to extract the information 
needed to calculate the NNT from journals if it is 
not explicitly provided. Although the calculations 
are relatively simple, busy practitioners probably 
are not going to make these calculations them-
selves, particularly with the confidence intervals. 
To aid clinicians, there are a number of resources 
both Web-based and for PDA (Personal Digital 
Assistant) that are available to perform and inter-
pret results from randomized clinical trials, sys-
tematic reviews, and cohort studies.

Jerry Niederman and Jordan Hupert

See also Complications or Adverse Effects of Treatment; 
Effect Size; Evidence-Based Medicine; Informed 
Decision Making; Odds and Odds Ratio, Risk Ratio; 
Randomized Clinical Trials; Treatment Choices

Table 3  Calculation of relative risk, relative risk reduction, and odds ratio

Poor Outcome Event

Present Absent

Treatment Group
Experimental A B

Control C D

Relative Risk (RR) = (A/A + B)/(C/C + D) = EER/CER
Relative Risk Reduction (RRR) = (CER – EER)/CER = ARR/CER

Odds Ratio (OR) = (A/B)/(C/D)

Source: Adapted from Straus, S. E., Richardson, W. S., Glasziou, P., & Haynes, R. B. (2005). Evidence-based medicine: How to 
practice and teach EBM (3rd ed.). New York: Elsevier.

Table 4  A comparison of absolute and relative measures of treatment effect

EER CER RR RRR ARR NNT

10� 30� 33� 67� 20�   5

 1�  3� 33� 67�  2�  50

   .1�      .3� 33� 67�     .2� 500

Source: Adapted from Table 2 in Laupacis, A., Sackett, D. L., & Robert, R. S. (1988). An assessment of clinically useful measures 
of the consequences of treatment. New England Journal of Medicine, 318, 1728–1733.
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NUMeRacy

Numeracy, also known as numerical or quantitative 
literacy, refers to an ability to reason with numbers 
and other mathematical concepts. The word was 
first introduced in 1959 by the UK Committee on 
Education, presided over by Sir Geoffrey Crowther. 
Innumeracy is a lack of numeracy.

Definitions and Prevalence

In 2000, the Department of Health and Human 
Services defined health literacy as the skills needed 
to “obtain, process, and understand basic health 
information and services for approximate health 
decisions.” The National Center for Education 
Statistics (NCES), as part of the U.S. Department 
of Education’s Institute of Education Sciences 
(IES), collects, analyzes, and publishes statistics on 
education and public school district finance infor-
mation in the United States. The NCES in its Adult 
Health Literacy Survey in 1993 defines numeracy 

or quantitative literacy as “the knowledge and 
skills required to apply arithmetic operations, 
either alone or sequentially, using numbers embed-
ded in printed material (e.g., balancing a check-
book, completing an order form).” In 2003, more 
than 19,000 adults participated in the national- 
and state-level assessments, representing the entire 
population of U.S. adults who are aged 16 and 
older, most in their homes and some in prisons 
from the 50 states and the District of Columbia. 
Approximately 1,200 inmates of federal and state 
prisons were assessed to provide separate estimates 
of literacy for the incarcerated population. The 
National Adult Literacy Survey (NALS), a nation-
ally representative household survey administered 
by the NCES, showed that 22� of all American 
adults surveyed exhibited the lowest level of 
numeracy. The prevalence of below basic numeracy 
skills is associated with race/ethnicity: 13� of 
whites, 47� of blacks, and 50� of Hispanics 
exhibit below basic numeracy skills.

Health Numeracy and  
Measures of Numeracy

Health numeracy is emerging as an important  
concept and a component of health literacy. Use  
of health numeracy is increasing in health commu-
nication, for much of the health information has 
been provided to patients and written in num-
bers—such as diagnostic test results and treatment, 
prognosis, and medication regimens. For the major-
ity of the medical decision making, when discuss-
ing risks and benefits, providers use simple ratios, 
probabilities, and estimates to communicate with 
patients. Numeracy is assessed by different mea-
sures and has been associated with poor outcomes 
(e.g., diabetes, nutrition, obesity, and asthma). 
Lower numeracy has been associated with increased 
medicine errors and increased hospitalizations. 
The original Test of Functional Health Literacy in 
Adults (TOFHLA) in 1995 included 17 questions 
that measured numeracy. Lisa Schwartz and col-
leagues and Isaac Lipkus and colleagues intro-
duced and modified comprehensive numeracy 
scales, which measured simple numeracy skills of 
percentages, proportions, and frequencies.

Individual quantitative competencies can be 
categorized into three basic levels: (1) basic com-
putation, (2) estimation, and (3) statistical literacy. 
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Basic computation includes number recognition 
and comparison, arithmetic, and use of simple for-
mulas. The TOFHLA screening test and the NALS 
include quantitative problems ranging from 
abstract problem solving to proportions and fre-
quencies using medical scenarios, such as pill 
count, understanding sliding scale prescriptions, 
and nutrition labels. Estimations are used for 
quick calculations to estimate medication dosage, 
such as insulin units in diabetes. Statistical literacy 
is an understanding of concepts such as chance and 
uncertainty, sampling variability, and margins  
of errors. A large variety of medical scientific 
information is in forms of graphics with scales, 
bars, ratios, and so on, which might help patients 
understand epidemiological distribution of any 
disease, chances and uncertainty associated with a 
disease occurrence, and outcome or use in medical 
decision making for choice of treatment.

Use in Medical Decision Making

Evaluating Patients

Providers in healthcare use quantitative values 
when interviewing patients to understand the 
symptoms. For example, to understand a simple 
chief complaint of pain, providers use phrases such 
as How much pain? How frequent is the pain? and 
How intense is this pain? To answer these ques-
tions, patients are supposed to use simple or 
abstract values to rate the severity/frequency or 
intensity of pain using a number X/10.

Discussion of Disease Process

In a healthcare setting, providers often use num-
bers in the form of probabilities and frequencies to 
explain the likelihood of a disease or its progres-
sion and prognosis when a patient presents with a 
sign or a symptom. For example, women with low 
numeracy may be unable to comprehend the con-
cept of breast cancer occurrence, risk perception, 
and breast cancer screening.

Risk and Benefit

Data on assessing the accuracy of a laboratory 
test, certainty of a diagnostic imaging, potential risks 
and benefits of a drug, or comparing treatments are 

frequently presented using odds ratios, risk ratios, 
relative ratios, or confidence intervals. Patients with 
low numeracy may get overwhelmed with all 
the numbers and statistical data and may have 
greater difficulty understanding recommendations. 
For exam ple, patients with diabetes and obesity hav-
ing low educational attainment can struggle to inter-
pret food labels and can underestimate or overestimate 
the nutrient facts. With advancement in technology 
and increased use of insulin pumps, it is of the 
utmost importance for patients to be able to com-
prehend food labels and compute calorie intake 
based on nutrient facts.

People with variable numeracy may need differ-
ent decision tools. Hence, it is necessary to assess 
the numerical capacity or quantitative literacy of 
patients to be able to deliver appropriate health-
care information and to help them make a genuine 
informed decision.

Arpita Aggarwal

See also Models of Physician–Patient Relationship; 
Patient Decision Aids; Patient Rights
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Odds and Odds RatiO, 
Risk RatiO

The main goal of many medical studies is to 
evaluate the effect of a treatment or the risk of 
disease under given conditions. This entry intro-
duces and discusses measures of effect and/or risk 
when the factors or variables of interest are cate-
gorical (i.e., nominal) in nature. The discussion 
focuses on the case of dichotomous variables (fac-
tors), that is, those that take only two values that 
often indicate the presence or absence of a charac-
teristic (disease, treatment, exposure, etc.). The 
data consist of information on n individuals who 
have been categorized according to the presence 
or absence of two factors. The information is pre-
sented in a 2 × 2 contingency table like the one in 
Table 1.

The numbers in the table denote the frequency 
of each cell. For example, a is the number of individu-
als for whom both factors were present, and b those 
for whom A was present and B was absent. Thus, the 
total number of patients is n = a  + b + c + d. Common 
types of factors are exposure, treatment, and dis-
ease. The statistical significance of the association 
between the two factors is tested using the chi-
square test (or the likelihood test). The result of the 
test is a p value, which measures the chance of the 
observed relationship under the assumption that 
there is none. Accordingly, a small p value (e.g.,  
< .05) leads to a “significant” result and the rejec-
tion of the assumption of no association. The size 
of the p value is determined, in a critical way, by 

the sample size and can’t be used to assess the 
strength of the association. When the association 
(or effect, when one factor is the “cause” of the 
other) is significant, the measure of its strength is 
critical. Below are the most common measures of 
association.

Definition 1. The relative risk (RR) is defined as

RR= Pr½B present if A is present
Pr½B present if A is absent

= RiskðA presentÞ
RiskðA absentÞ

= a=ða+bÞ
c=ðc+dÞ

= aðc+ dÞ
cða+ bÞ

;

 

where Pr[  ] indicates probability.

Definition 2. The risk difference (RD), also called 
attributable risk, is defined as

RD=RiskðA presentÞ−RiskðA absentÞ= a
a+ b

− c
c+d

:

Definition 3. The odds ratio (OR) is defined as

OR= OddsðPresentÞ
OddsðAbsentÞ

= a=b
c=d

= ad
bc

:

O

Table 1  The 2 × 2 contingency table

Factor B

Present Absent Total

Factor A
Present a b a + b

Absent c d c + d
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Comparing Measures

As mentioned, the significance of the association is 
tested using the chi-square test (or the likelihood 
test). However, when it comes to measuring the 
strength of the association, there is not only a lack 
of consensus but also considerable confusion. The 
three measures defined above assess the strength of 
the relationship but do so in different ways. The 
confusion in the interpretation of these measures is 
caused by the fact that each one is based on ratios 
(relative frequencies or odds). So, in the case of RR 
and OR, the reader is faced with the daunting task 
of interpreting ratios of ratios. It is therefore crucial 
to understand the differences and, consequently, 
the correct way to interpret these measures.

The RR is a relative measure interpreted as a 
percentage. It is important to note that both RR 
and 1/RR are relative risks and assess the strength 
of an association from a different point of view. 
The choice of denominator, which is not always 
obvious, determines the value and the interpreta-
tion. For example, RR = 1.30 describes a risk 
increase of 30%, whereas 1/RR = .77 is interpreted 
as a 23% decrease in risk. The key is to realize that 
RR describes a 30% risk increase of exposure (i.e., 
A present) relative to nonexposure (i.e., A absent), 
whereas 1/RR represents a 23% risk decrease in 
nonexposure relative to exposure. Without careful 
description, the interpretation of the value will 
depend on whether RR or 1/RR is used, when, in 
fact, they are measuring the same association. In 
general, relative measures such as RR and OR are 
not easy to interpret and can be misleading. The 
first two columns of Table 2 contain combinations 
of risks that yield the same value of RR, but repre-
sent very different situations.

The RD is easier to understand because it 
removes a layer of complexity by simply comput-
ing the difference between the risks. The RD is the 
amount the risk of disease increases (or decreases) 
by the exposure. The advantage of the RD is that 
it is measured in the risk scale, which makes it 
more intuitive. The RD can only vary between  −1 
and 1, and is not distorted when the risks are very 
high or very low. Another property of the RD that 
makes it attractive in medical decision making is 
that its reciprocal is the number needed to treat 
(NNT). The NNT is defined as the number  
of patients that need to be treated to achieve one 

success. Care must be taken to interpret the recip-
rocal of RD as the NNT, since doing so assumes 
that the factor investigated is the sole cause of the 
increase in risk (i.e., that it really is the attributable 
risk). The RD and the NNT are given in Table 2 
for the combinations of risks considered before. 
Table 2 shows that an exposure that doubles the 
risk (RR = 2) can be associated with a very small 
increase in the probability of disease (RD = 
.00005). This represents a rate of 1 in 10,000 in 
the exposed group versus 1 in 20,000 in the unex-
posed group.

The comparison is further complicated by the 
fact that the points of reference of the two mea-
sures are different. That is, an increase in risk is 
associated with both, RR > 1 and RD > 0. The 
value of RD is not directly related to that of RR. 
Actually, the value of one can’t be calculated from 
the other unless the value of at least one risk is 
known. Sometimes, particularly in the media, only 
the value of RR (or RD) is published, frequently 
resulting in faulty interpretation of the results. 
Whenever possible, both risks (e.g., exposure and 
nonexposure) should be reported to avoid confu-
sion. Confidence intervals for RR are simple to 
compute using properties of the logarithm of the 
ratio of two proportions.

The OR is another common measure of associa-
tion. The OR is defined as the ratio of odds of 
exposed over nonexposed. The odds is itself the 
ratio of the risk of disease over the risk of no dis-
ease. The interpretation of odds is not intuitive. 
For instance, a risk of .3 (3 in 10) is equivalent to 
odds of .43 (= .3/.7). One advantage of the OR is 
that it has the same point of reference as the RR. 
In other words, the OR and the RR are always on 
the same side of 1, either both greater than 1 or 
both less than 1, but the OR always overestimates 
the strength of the association relative to the RR. 
When the prevalence of the disease is low, the risk 
of no disease is close to 1, causing the odds to be 
similar to the risk and thus, the OR to be similar to 
the RR. The last column of Table 2 illustrates this 
fact. In practice, the assumption of low prevalence 
is made, but not always justified, to interpret the 
OR as the RR. The last three rows of Table 2 show 
combinations of risks that show that even for low 
risks (e.g., .2 and .133), the OR can substantially 
overestimate the RR (in this case from 50% to 
63%). Confidence intervals for the OR are easy to 
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compute and are based on the fact that the loga-
rithm of a ratio is the difference of the logarithms.

Why Use Odds?

After the previous discussion, the obvious question 
is, “Why use odds and the OR at all?” This is a 
valid question since these measures are difficult to 
interpret and do not give any extra insight. One of 
the reasons for their use is that, in certain situa-
tions, the risks cannot be estimated. The case-
control design is used frequently to study low 
prevalence diseases or situations in which random 
allocation of patients is not possible. This design 
consists of selecting a sample of patients with the 
disease (cases) and another sample of patients 
without the disease (controls). The number of 
cases and controls are determined by the researcher 
and thus provide no information about frequencies 
in the population, including prevalence and risks, 
and thus, it is not possible to calculate meaningful 
values for the RR and RD. The OR does not 
depend on the number of cases and controls and 
can be computed. Furthermore, as previously dis-
cussed, when the prevalence is low, the OR can be 
used to estimate the RR.

The other reason for the frequent use of odds 
and the OR is their superior mathematical proper-
ties. Among these properties (that risks and RR 
lack) are the following:

The range of possible values is from 0 to infinity  •
regardless of the prevalence.
Reversing the outcomes (good by bad or vice  •
versa) simply changes the OR to its reciprocal.

As a result of these properties, logistic regression—
the ubiquitous statistical technique used to analyze 
categorical responses—works with odds and reports 
ORs. Logistic regression is powerful because it 
allows the estimation of adjusted effects, that is, effects 
of factors when other—possibly confounding— 
factors are taken into account. The results of a logis-
tic regression analysis are usually reported in terms 
of adjusted odds and ORs. Clearly, odds and ORs 
are measures that will continue to be used in the 
analysis of categorical responses.

Examples

Peberdy and colleagues compared outcomes from 
in-hospital cardiac arrest during nights/weekends 

Table 2  Combinations of risks and associated measures

Risk(A Present) Risk(A Absent) RR RD NNT OR

 .98  .49  2  .49  2.04  51

 .9  .45  2  .45  2.22  11

 .7  .35  2  .35  2.9  4.3

 .5  .25  2  .25  4  3

 .3  .15  2  .15  6.7  2.4

 .1  .05  2  .05  20  2.1

 .01  .005  2  .005  200  2.01

  .001  .0005  2  .0005  2000  2.001

  .0001  .00005  2  .00005  20000  2.0001

 .3  .2  1.5  .1  10  1.71

 .2  .133  1.5  .0867  11.5  1.63

 .1  .067  1.5  .033  30.3  1.54
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with those during weekdays/evenings. A total  
of 86,748 events from the National Registry of 
Cardiopulmonary Resuscitation from January 
2000 to February 2007 were retrieved. Table 3 
shows the data on survival to discharge.

The results are reported in terms of the risks, 
thus avoiding the problem of interpreting relative 
measures. Also provided is an estimate and confi-
dence interval of the OR (OR = 1.43 [95% CI: 1.38, 
1.49]). The results indicate that the discharge sur-
vival rate was significantly higher during days/ 
evenings relative to nights/weekends. The best form 
in which to report the findings is either the RD  
(= 5.1%) or the RR (= 1.35). The RR represents a 
35% increase in the probability of surviving to dis-
charge in days/evenings relative to nights/weekends. 
Using logistic regression, the article reports an  
OR = 1.18 (95% CI: 1.12, 1.23) adjusted by multiple 
factors, including sex, age, race, and illness category.

In another study, D’Souza and colleagues used a 
case-control design to investigate the relationship 

between the presence of human papillomavirus 
(HPV) and oropharyngeal cancer. The hospital-
based study included 100 patients with newly 
diagnosed oropharyngeal cancer and 200 patients 
without cancer. The results of the presence of any 
oral HPV infection and oropharyngeal cancer 
appear in Table 4.

The article reports a significant association 
between oropharyngeal cancer and oral HPV 
infection with OR = 12.3 (95% CI: 5.4, 26.4). 
This OR was adjusted by age, sex, tobacco use, 
alcohol use, dentition and toothbrushing, and a 
family history of head and neck cancer. It is clear 
that the proportion of cases in either the positive 
or negative classification depends directly on the 
ratio of cases to controls, which is determined by 
the researcher. In this case, the assumption of low 
prevalence is reasonable, so the OR can be inter-
preted by saying, “The presence of oral HPV infec-
tion increases the risk of oropharyngeal cancer by 
a factor of 12.”

Table 3  In-hospital cardiac arrest outcomes by time of day

Survival to Discharge

Yes No Total

Time n (%)
Day/evening 11604 (19.8) 46989 (80.2) 58593

Night/weekend 4139 (14.7) 24016 (85.3) 28155

Source: Peberdy et al. (2008).

Table 4  Association between the presence of any HPV oral infection and oropharyngeal cancer

Oropharyngeal Cancer

Cases Controls

Any oral HPV infection n 
(%)

Negative 63 (63) 189 (94)

Positive 37 (37) 11 (6)

Totals  100      200

Source: D’Souza et al. (2007).
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Interpretations

Absolute and relative risks are effective measures 
of effect or association when the variables involved 
are dichotomous. However, their interpretation is 
not always straightforward and can be misleading. 
The recommended way to report the results is by 
presenting estimates of the actual risks to avoid 
confusion. The odds and odds ratio are more dif-
ficult to interpret and should be used only when 
the data are generated by a case-control study or 
are obtained using logistic regression.

Esteban Walker

See also Case Control; Logistic Regression; Number 
Needed to Treat

Further Readings

Davies, H. T. O., Crombie, I. K., & Tavakoli, M. (1998). 
When can odds ratios mislead? British Medical 
Journal, 316, 989–991.

Deeks, J. (1998). When can odds ratios mislead? British 
Medical Journal, 317, 1155–1156.

D’Souza, G., Kreimer, A. R., Viscidi, R., Pawlita, M., 
Fakhry, C., Koch, W. M., et al. (2007). Case-control 
study of human papillomavirus and oropharyngeal 
cancer. New England Journal of Medicine, 356,  
1944–1956.

Peberdy, M. A., Ornato, J. P., Larkin, G. L., Braithwaite, 
R. S., Kashner, T. M., Carey, S. M., et al. (2008). 
Survival from in-hospital cardiac arrest during nights 
and weekends. Journal of the American Medical 
Association, 299, 785–792.

OncOlOgy HealtH-Related 
Quality Of life assessment

Oncology was one of the first disease areas where 
trade-offs between quality of life and quantity  
of life were recognized. Over time, a variety of 
health-related quality of life (HRQOL) measures 
have been used to quantify the impacts of cancer 
and its treatments on the quality of life, and  
several measures have been developed to assess 
HRQOL in cancer specifically.

Studies of HRQOL in cancer populations have 
been used to inform decision making at several 

levels, including policy making and population 
monitoring, clinical trials and observational stud-
ies, and individual patient–clinician interactions. 
Various HRQOL measures have been used within 
and across studies at the different levels of decision 
making. Thus, researchers and clinicians who are 
faced with the task of selecting which HRQOL 
measure to use in a given study or application may 
be unsure how to proceed.

There has been consideration of identifying a 
core set of measures that would be appropriate  
for use across a range of oncology studies. Most 
recently, the National Cancer Institute’s Cancer 
Outcomes Measurement Working Group 
(COMWG) investigated the possibility of identify-
ing core measures for oncology HRQOL assess-
ment. However, it was evident early on that the 
experts in the COMWG did not think that defin-
ing such a core set of measures was advisable for 
several reasons. First, the COMWG felt strongly 
that the measure selected for a given study or 
application should be tailored to the specific objec-
tives of that particular study or application. For 
example, the appropriate measure for population 
monitoring and policy making may be quite differ-
ent from the appropriate measure to compare 
treatment options in a randomized controlled trial. 
In addition, the COMWG felt that nominating a 
core set of measures may be premature, given the 
relative youth of the field of HRQOL assessment. 
Furthermore, several measures have been used 
often and successfully in oncology applications, 
making it difficult to select one particular “win-
ner.” Finally, as interest in item response theory 
and other modern measurement techniques 
increases, alternative approaches for assessing 
HRQOL outcomes may be on the horizon.

This entry first reviews the range of HRQOL 
measures available for use in oncology studies and 
describes several commonly used and emerging 
HRQOL measures. Then, considerations for select-
ing a measure for a given study or application are 
discussed.

Types of Measures

As mentioned above, a wide range of HRQOL mea-
sures are available for use in cancer studies and 
applications. While, in general, HRQOL measures 
are categorized as either generic (appropriate for use 
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across a range of disease and healthy populations) 
or disease-specific (appropriate for use in patient 
populations with a specific disease), in cancer, the 
categories are a bit more complex. Specifically, can-
cer is not one disease but many. Thus, in cancer, a 
disease-specific measure could refer to a measure 
appropriate for use across cancers or a measure 
developed for a specific cancer (e.g., breast cancer). 
To differentiate these latter two categories, the term 
general cancer measure is used to refer to a measure 
appropriate for use across cancer types, and cancer 
site-specific measure is used to refer to a measure 
designed for use in a specific cancer type. At least 
two measurement systems have been designed so 
that general cancer core measures can be supple-
mented with cancer site-specific measures, the so-
called modular approach.

Another dimension for categorizing HRQOL 
measures is whether they are profile or preference-
based measures. Profile measures are scored using 
psychometric scaling processes (e.g., computing mean 
scores based on patient ratings on numerical scales), 
whereas preference-based measures are scored 
through incorporating either direct or indirect valua-
tions of different health states (e.g., using weightings 
that reflect the relative values raters ascribe to the 
different health states). While profile measures are 
more commonly used in cancer studies than prefer-
ence-based measures, preference-based measures may 
be the best approach for certain situations.

HRQOL is generally considered to be a multidi-
mensional concept that includes measures of phys-
ical, psychological, and social functioning; however, 
some measures that are patient-reported focus on 
a particular outcome (e.g., pain) and are thus uni-
dimensional. For the purposes of this entry, the 
discussion is limited to multidimensional HRQOL 
measures, but it is important to keep in mind that 
unidimensional patient-reported outcome mea-
sures may be used instead of, or in addition to, 
multidimensional HRQOL measures.

When selecting the HRQOL measure for a given 
study or application, it is not necessary to use only 
one type of measure. For example, one might 
choose to use both a profile measure and a prefer-
ence-based measure, and it is common to combine 
a generic measure or a general cancer measure with 
a cancer site-specific measure, potentially using 
one of the modular systems. Furthermore, as noted 
above, unidimensional measures may be used to 

supplement multidimensional measures in cases 
where certain outcomes are not covered by a mul-
tidimensional measure or are of particular impor-
tance and warrant more comprehensive or precise 
measurement. In some cases, researchers may 
choose to use a battery of unidimensional measures 
rather than a multidimensional measure.

Commonly Used and Emerging Measures

Some of the more commonly used generic mea-
sures in oncology studies include the Medical 
Outcomes Study Short Form-36 (SF-36) and the 
Sickness Impact Profile (SIP). Although not yet 
widely applied in oncology studies, the most com-
monly used preference-based measures include the 
EuroQol EQ-5D, the Health Utilities Index, and 
the Quality of Well-Being Scale.

As mentioned above, there are two modular sys-
tems that are commonly used to assess HRQOL in 
oncology populations. The European Organization 
for Research and Treatment of Cancer (EORTC) 
system includes the Quality of Life Questionnaire-
Core 30 (QLQ-C30), which can be supplemented 
with modules for several cancer types. The QLQ-
C30 is a 30-item questionnaire that assesses five 
function domains (physical, role, emotional, social, 
cognitive), eight symptoms (fatigue, pain, nausea 
and vomiting, dyspnea, insomnia, appetite loss, 
constipation, diarrhea), plus financial impact and a 
global health/quality of life rating. The core mea-
sure can be supplemented with modules, which are 
currently available for the following cancers: breast, 
lung, head and neck, esophageal, ovarian, gastric, 
cervical, and multiple myeloma. Modules for other 
cancer types are currently under development. In 
addition, the EORTC has developed questionnaires 
to assess patient satisfaction and palliative care.

The second modular system is the Functional 
Assessment of Cancer Therapy (FACT) program 
(which later expanded beyond cancer to be the 
Functional Assessment of Chronic Illness Therapy—
FACIT). The core measure of the FACT system is 
the FACT-General (FACT-G). It has 27 questions 
that assess four domains: physical well-being, social/
family well-being, emotional well-being, and func-
tional well-being. The FACT-G can be supplemented 
with modules for the following cancer types: breast, 
bladder, brain, colorectal, central nervous system, 
cervix, esophageal, endometrial, gastric, head and 
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neck, hepatobiliary, lung, leukemia, lymphoma, 
melanoma, ovarian, prostate, vulva, and brain can-
cer survivors. The FACT system also has symptom 
indices for prostate, bladder, brain, breast, colorec-
tal, head and neck, hepatobiliary, kidney, lung, and 
ovarian cancers. In addition, modules are available 
to assess the impact of certain treatments (e.g., bone 
marrow transplantation, biologic response modifi-
ers, and taxanes) and to assess specific symptoms 
(e.g., anorexia/cachexia, diarrhea, fatigue, lymph-
edema). A variety of non-cancer-specific measures 
are also included in the FACIT system, for example, 
palliative care, spiritual well-being, and treatment 
satisfaction. The FACT/FACIT system has several 
additional measures currently under development.

An emerging option for researchers and practi-
tiossners interested in assessing HRQOL in oncol-
ogy and other disease areas are the measures 
under development by the National Institutes of 
Health Patient-Reported Outcomes Measurement 
Information System (PROMIS). PROMIS is cur-
rently creating item banks for various patient- 
reported outcomes, including emotional distress, 
physical function, social role participation, pain, 
and fatigue. Item banks are a collection of items 
(i.e., questions) from various different measures 
that assess a particular domain. Items within a 
bank are calibrated in terms of their properties 
(e.g., how likely patients are to select a response 
option based on their level of functioning on the 
domain). This calibration allows comparison of 
scores between populations even if they responded 
to different items from the item bank. Item banks 
may be used to develop fixed-item measures (ques-
tionnaires where all respondents answer the same 
set of questions) or to develop computer-adaptive 
assessments (dynamic assessments in which the 
questions asked and sequence in which the ques-
tions are asked are determined by respondents’ 
previous answers). Because of this calibration, 
fixed-item measures can be tailored to the level of 
functioning expected to be applicable to the popu-
lation being studied. With computer adaptive 
assessments, the calibration facilitates targeting of 
questions based on a given respondent’s level of 
functioning using his or her previous responses. 
Thus, these PROMIS item banks, and the fixed-
item and adaptive assessments that can be gener-
ated from them, represent a powerful new option 
for assessing HRQOL. However, the PROMIS 

item banks are just being released now so testing is 
required to determine how well the PROMIS mea-
sures work in practice.

Measure Selection

With this vast array of measure options for assess-
ing HRQOL in oncology, it can be daunting for the 
researcher or clinician to determine which measure 
to use in a given study or application. Table 1 pro-
vides general suggestions for selecting a measure 
based on the study or application’s objectives and 
also lists an example. These considerations and 
how they have been applied in the example studies 
are discussed in more detail below.

Population Comparisons

When the goal of a study or application is to 
compare the HRQOL of different population 
groups for monitoring or policy-making purposes, 
use of a generic measure is generally advised. For 
example, the Medicare Health Outcomes Survey  
is conducted by the Centers for Medicare and 
Medicaid Services with the National Committee 
for Quality Assurance to monitor the care and out-
comes of Medicare managed care enrollees. This 
survey uses the SF-36 as an HRQOL measure.

Recently data from the Medicare Health 
Outcomes Survey have been linked with cancer 
registry data from the Surveillance, Epidemiology 
and End Results (SEER) program. This linkage has 
allowed comparisons of HRQOL across a variety 
of cancer types and population groups. In some 
cancers (e.g., colorectal, lung, urinary, kidney, and 
non-Hodgkin’s lymphoma), decrements were found 
in both physical and mental component summary 
scores, whereas breast, uterine, and prostate cancer 
only exhibited decrements on the physical compo-
nent summary score. In this case, while the SF-36 is 
not specifically targeted to cancer or the impacts of 
specific types of cancers, the generic measure pro-
vides useful data for comparing different cancer 
types and potentially for comparisons of cancer 
patients to the general population.

Intervention Comparisons

In cases where the objective of the study is to 
compare the impact on HRQOL of different 
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interventions through either randomized con-
trolled trials or observational studies, the recom-
mended approach is to use HRQOL measures 
that are targeted to the outcomes of interest and 
sensitive to differences between groups. For exam-
ple, a recent randomized controlled trial of Stage 
III ovarian cancer patients compared intraperito-
neal with intravenous chemotherapy and included 
an assessment of patient HRQOL. The intraperi-
toneal arm had significantly longer survival com-
pared with the intravenous arm but was associated 

with worse HRQOL. Specifically, this study used 
the FACT-G, supplemented with the 12-item 
FACT-Ovarian (FACT-O) subscale, the 11-item 
FACT/Gynecologic Oncology Group Neuro-
toxicity subscale, and two items to assess abdom-
inal discomfort that were developed for this study 
and combined with two items from the FACT-O 
that assessed concerns relevant to intraperitoneal 
treatment.

This study found that patients who received 
intraperitoneal therapy had worse physical and 

Table 1  Considerations and examples of matching the measure to the study objectives

Objective Suggestions Example Study

Comparing HRQOL 
across different 
population groups for 
population monitoring or 
policy making

Consider commonly used 
generic measures because 
of the availability of 
normative data and the 
ability to map an array 
of health conditions 
within and across 
populations onto a 
common continuum

Reeve, B. B., Arora, N. K., Clauser, S. B., Haffer, S. C., 
Han, P. K., Hays, R. D., et al. (2007). Prospective 
evaluation of cancer diagnosis and initial treatment on 
health-related quality of life in cancer patients. 2007 
International Society for Quality of Life Research meeting 
abstracts [www.isoqol.org/2007mtgabstracts.pdf]. Quality 
of Life Research supplement, A-7, Abstract #1278.

Comparing interventions 
in clinical trials and 
observational studies

Consider HRQOL 
measures that are 
specifically targeted to 
the outcomes of interest 
and sensitive to 
differences between 
groups

Clinical Trial: Wenzel, L. B., Huang, H. Q., Armstrong,  
D. K., Walker, J. L., & Cella, D. (2007). Health-related 
quality of life during and after chemotherapy for optimally 
debulked ovarian cancer: A gynecologic oncology group 
study. Journal of Clinical Oncology, 25, 437–443.

Observational Study: Hu, J. C., Elkin, E. P., Krupski,  
T. L., Gore, J., & Litwin, M. S. (2006). The effect of 
postprostatectomy external beam radiotherapy on quality 
of life. Cancer, 107, 281–288.

Informing comparisons 
through decision-analytic 
models and cost-utility 
studies

Consider preference-
based measures because 
they incorporate the 
valuation of various 
outcomes and can be 
used to calculate quality-
adjusted life years

van den Hout, W. B., Kramer, G. W. P. M., Noordijk,  
E. M., & Leer, J. W. H. (2006). Cost-utility analysis of 
short- versus long-course palliative radiotherapy in 
patients with non-small-cell lung cancer. Journal of the 
National Cancer Institute, 98, 1786–1794.

Informing and guiding 
individual patient-
clinician interactions

Consider HRQOL 
measures that provide 
clear and interpretable 
data

Velikova, G., Booth, L., Smith, A. B., Brown, P. M., Lynch, 
P., Brown, J. M., et al. (2004). Measuring quality of life in 
routine oncology practice improves communication and 
patient well-being: A randomized controlled trial. Journal 
of Clinical Oncology, 22, 714–724.
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functional well-being, ovarian cancer symptoms, 
and abdominal distress during treatment. At 3 to 6 
weeks following treatment, intraperitoneal arm 
patients continued to experience deficits in physi-
cal and functional well-being and ovarian symp-
toms, which were accompanied by worse 
neurotoxicity. While the neurotoxicity persisted to 
12 months posttreatment, most other HRQOL dif-
ferences between groups had resolved by then. 
Thus, intraperitoneal chemotherapy is associated 
with improved overall survival but worse short-
term HRQOL. The authors concluded that patients 
and clinicians should discuss these trade-offs 
between survival and HRQOL when deciding on a 
treatment strategy.

The measurement strategy employed in this 
study was specifically targeted to the outcomes 
relevant to a comparison of intraperitoneal and 
intravenous chemotherapy administration in ovar-
ian cancer patients, but also assessed general cancer 
HRQOL. The results of the study indicated signifi-
cant and clinically important differences between 
groups on these HRQOL measures, thus providing 
important data for patients and clinicians to con-
sider when discussing the treatment options.

HRQOL is also commonly assessed in observa-
tional studies comparing treatment options, and 
again, use of measures targeted to the outcomes of 
interest and sensitive to differences between groups 
is recommended. For example, the Cancer of the 
Prostate Strategic Urologic Research Endeavor 
(CaPSURE) provides a national, longitudinal data-
base of prostate cancer patients, including mea-
sures of their HRQOL. The measures of HRQOL 
included in CaPSURE are a generic measure (the 
SF-36) and a prostate-cancer-specific measure (the 
University of California at Los Angeles Prostate 
Cancer Index). These HRQOL measures are col-
lected at baseline and every 6 months thereafter. 
Thus, the CaPSURE database provides measures 
that allow comparison with the general population 
as well as a prostate-specific measure that assesses 
urinary function and bother, bowel function and 
bother, and sexual function and bother.

Using the CaPSURE data, a 2006 study com-
pared the impact of salvage radiotherapy with 
radical prostatectomy and primary radiotherapy on 
HRQOL. In this study, men who underwent sal-
vage radiotherapy had significantly worse changes 
in their sexual and bowel function compared with 

men who underwent radical prostatectomy alone; 
however, compared with primary radiotherapy, 
men who underwent salvage radiotherapy had sig-
nificantly less worsening in their sexual function 
and bother. There were no differences between 
groups on the SF-36 physical or mental component 
summary score changes. As with the randomized 
controlled trial example above, this study demon-
strates how using measures specifically targeted to 
the outcomes of interest in a given study can pro-
vide important information on trade-offs between 
different treatment options.

Decision-Analytic Models  
and Cost-Utility Studies

The above examples have demonstrated how 
profile HRQOL measures can be used in popula-
tion comparisons through large-scale surveys and in 
treatment comparisons through randomized and 
observational studies. When the objective of a study 
is to inform decision making using decision-analytic 
modeling and cost-utility studies, preference-based 
measures are the recommended approach. An 
example is a cost-utility analysis of short- versus 
long-course radiotherapy for palliative purposes in 
non-small-cell lung carcinoma patients. To assess 
patients’ preferences for the various health states, 
the authors used the EuroQol EQ-5D classification 
system, which assesses mobility, self-care, usual 
activities, pain/discomfort, and anxiety/depression. 
They did not find statistically significant differ-
ences between the short- and long-course groups 
on the average valuations of the modeled health 
states, but the long-course patients tended to sur-
vive longer. This resulted in a relative advantage 
for the long-course radiotherapy. This study used a 
preference-based HRQOL measure to obtain 
health-state valuations that could then be used  
in the calculation of quality-adjusted life years for 
a cost-utility analysis. While, in this case, the val-
ues of the expected health states did not differ 
between groups, this approach allows for explicit 
evaluation of trade-offs between quality and quan-
tity of life.

Individual Patient–Clinician Interactions

Recently, there has been increasing interest in 
using HRQOL measures in routine clinical practice 
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for individual patient management. For these types 
of applications, clear and interpretable HRQOL 
measures are needed. In a 2004 randomized study 
evaluating the impact of using HRQOL assessment 
in clinical practice, intervention patients completed 
the EORTC QLQ-C30 and the Hospital Anxiety 
and Depression Scale with feedback of the data to 
their physician; attention-control patients com-
pleted the same questionnaires but the data were 
not provided to their physicians, and control 
patients did not complete any questionnaire. Some 
key findings from the study were that both the inter-
vention and attention-control groups had better 
HRQOL compared with the control group (but not 
significantly different from each other) and that the 
intervention group was more likely to have had 
discussions with their clinicians about chronic non-
specific symptoms. However, this trial did not detect 
any differences in how patients were managed.

This study identified more positive effects of 
HRQOL assessment in clinical practice than many 
of the other similar early studies, in that it showed 
differences in HRQOL outcomes based on incor-
poration of standardized HRQOL assessment in 
individual patient management. In general, investi-
gations of using HRQOL for individual patient 
management have shown improvements in com-
munication but not changes in management or 
outcomes. It is likely that the field has yet to iden-
tify the best measures for use in individual patient 
management. Additional research will build on 
these early studies and inform the selection of mea-
sures that meet the criteria of being clear, inter-
pretable, and actionable.

Future Outlook

It is tempting to think that selecting a small number 
of HRQOL measures and requiring their use across 
studies and applications would provide sure benefits 
to the quality and interpretability of cancer HRQOL, 
and certainly improved comparability and inter-
pretability are worthy goals. However, it is impor-
tant that the measure selected for a given study or 
application match its particular objectives.

Indeed, as shown in the examples above, there 
are a variety of ways in which an HRQOL mea-
sure can be used, and the best measure for a study 
or application depends heavily on what that study 
or application aims to accomplish. The examples 

above include the following measurement strate-
gies: (a) a generic measure; (b) a modular approach 
with a general cancer core measure supplemented 
with a disease-specific module, an additional sub-
scale, and two items developed for the study; (c) a 
generic measure used in combination with a cancer 
site-specific measure; (d) a generic preference-
based measure; and (e) a general cancer measure 
from a modular approach that was not used with 
a disease-specific module but was used with a mea-
sure of anxiety and depression. In each of these 
cases, the measurement strategy selected was well 
matched to the matter being investigated. In the 
future, advances in measurement science (e.g., item 
response theory, item banking, and computer-
adaptive assessment) may be able to bridge the 
sometimes competing goals of having a measure 
tailored to the study or application’s objectives, 
while promoting comparability across studies and 
applications.

Claire F. Snyder, Carolyn C. Gotay,  
and Joseph Lipscomb

See also Cost-Utility Analysis; EuroQoL (EQ-5D); Health 
Outcomes Assessment; Health Status Measurement, 
Generic Versus Condition-Specific Measures; Health 
Utilities Index Mark 2 and 3 (HUI2, HUI3); Quality 
of Well-Being Scale; SF-36 and SF-12 Health Surveys; 
Sickness Impact Profile
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ORdinaRy least sQuaRes 
RegRessiOn

The treatment of errors has a long tradition with 
attempts to combine repeated measurements in 
astronomy and geodesy in the early 18th century. 
In 1805, Adrien-Marie Legendre introduced the 
method of least squares as a tool for using models 
with specification errors to fit data collected to 
determine the shape and circumference of the 
earth. Specifying the earth’s shape to be a sphere, 
he had to estimate three parameters using five 
observations from the 1795 survey of the French 
meridian arc. With three unknowns and five equa-
tions, any estimate of the unknown parameters led 
to errors, when fitted to the five observations. He 
then proposed to choose those estimates that 
make “the sum of squares of the errors a mini-
mum” (Legendre, 1805, pp. 72–73).

A formal statistical theory of errors was devel-
oped by Gauss in 1809 and Laplace in 1810. The 

method of least squares was shown to possess many 
desirable statistical properties. For more than 200 
years, a method invented to deal with experimental 
errors in the physical sciences has become universal 
and is used, with practically little or no modifica-
tion, in the biological and social sciences.

A scientific method in the biological sciences 
often involves statement of a causal relationship 
between observable variables and a statistical model 
to estimate the relation and test some hypotheses.

Three common medical decision problems 
involving statistical methods are screening, diagno-
sis, and treatment. Data used in statistical analysis 
include medical history, clinical symptoms, and 
laboratory tests. For many medical conditions, 
there are no perfect tests such as an X-ray to detect 
the fracture of a bone. Decisions have to be made 
using one or more associated, observable factors.

Two problems arise with this approach: (1) How 
does one formulate a decision rule using the associ-
ated factors? and (2) Since no decision rule will be 
perfect, how is one to compare the decision rules, 
that is, the errors associated with these rules?

The ordinary least squares regression (OLS) 
method provides a solution. Suppose the medical 
condition is type 2 diabetes, and the gold standard 
is the oral glucose tolerance test. For a screening 
rule, we want to use readily available data for risk 
factors such as age, gender, body mass index, race, 
and so on, to predict the blood glucose and iden-
tify individuals with high risk for follow-up tests. 
Any function of the risk factors will provide an 
estimate of the blood sugar and hence be useful in 
diagnosing diabetes. Errors associated with the 
estimates are calculated using the observed blood 
sugar. The OLS method can be used to select a set 
of weights to combine the risk factors and estimate 
the blood sugar as follows: For every set of weights, 
there will be corresponding predicted values of 
blood sugar. Prediction errors can be calculated 
using the observed blood sugars. One can then 
calculate the sum of squares of the errors and 
choose the set of weights with the least sum.

Why square the errors and sum? Why not sim-
ply sum the errors? A simple sum of errors will be 
0 if the positive errors add up exactly to the sum 
of the negative errors and hence will be misleading. 
On the other hand, the sum of squares of errors 
will be 0 if and only if all the errors are 0, that is, 
only if there are no errors.
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This is true for other simple functions of errors 
also. For example, sum the magnitudes of the 
errors ignoring the signs, that is, the absolute val-
ues. This is the least absolute deviation (LAD) 
introduced by Galileo Galilei in 1632. The essen-
tial difference between OLS and LAD is in the 
treatment of large errors: OLS gives greater weights 
to large errors than LAD when the errors are 
greater than 1 and conversely.

What is the method of estimating the unknown 
parameters of the model? There is a precise math-
ematical formula to calculate the estimates. An 
intuitive explanation of the method is the follow-
ing. Pick an arbitrary set of values for the param-
eters and use those values to compute the fasting 
plasma glucose (FPG) for each person. The devia-
tions from the observed values of FPG are the 
estimated errors. Take another set of parameter 
values and do the same. Using a computer, you can 
do this for a million different sets easily. Find the 
set with the least error sum of squares. That will be 
quite close to the OLS estimate of the parameters 
obtained by using a mathematical formula.

Example

The following example illustrates the method. 
According to the American Diabetes Association, a 
patient is diagnosed to have type 2 diabetes if the 
patient’s FPG is 126 mg/dl or greater on two occa-
sions. This criterion requires fasting for at least 8 
hours. An alternative biomarker of the disease is 
glycated hemoglobin known as HbA1c, or simply 
A1c. This is an average of the blood sugar levels 
over 90 to 120 days. Since this does not require fast-
ing, this value could be obtained during any office 
visit. This will be a good screening tool if there is a 
good correlation between A1c and FPG. This cor-
relation may vary biological characteristics such as 
age, gender, body mass index, and race. Let the sta-
tistical relation between FPG, A1c, and other vari-
ables be given by

FPG = β0 + β1 A1c + β2 DM + β3 UDM 
 + β4 gender + β5 age.cat + β6 race 
 + β7 bmi.cat + ε,

where

DM = 1 if the patient has physician-diagnosed  
diabetes and 0 otherwise (referent),

UDM = 1 if the patient has undiagnosed diabetes 
and 0 otherwise (referent),

gender = 1 for male and 0 for female (referent),

age.cat = 20+ (referent), 30, 40, 50, 60, 70, 85,

race = white (referent), black, Mexican American, 
Hispanic, others,

bmi.cat = underweight, normal weight (referent), 
overweight, and obese,

ε = error (normal, mean = 0, common variance = σ2),

and the βs and σ2 are parameters to be estimated 
by OLS.

The parameters are estimated using the 
National Health and Nutrition Examination 
Survey data, a nationally representative probabil-
ity sample of the noninstitutionalized U.S. civilian 
population. We use 8,350 observations for the 
years 1999 to 2005. The results of OLS are given 
in Table 1.

Some natural questions concerning the esti-
mated model are as follows:

 1. Is there a good relation between FPG, A1c, and 
other covariates?

 2. Does the model explain the variations of FPG 
adequately?

 3. Is there evidence from the estimated residuals 
that assumptions such as constant variance 
(homoscedasticity) and normality are satisfied?

 4. Are there outliers?

Note that the R2 for the unweighted model is 
.77. This means that the model explains 77% of 
the variance of FPG, which is very good, given that 
we have a large sample representing different  
ethnic and age-groups. This is one general way  
to assess the performance of a linear regression 
model. We will suggest another performance mea-
sure relating to the purpose of the model, namely, 
screening for diabetes using A1c after examining 
the estimated residuals.

A plot of the residuals (estimated errors) is 
shown in Figure 1. Most residuals are concentrated 
around the estimated FPG of 100 since there are 
many nondiabetic persons. Due to clustering of 
these residuals, they appear as closed circles.
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It is clear from Figure 1 that the dispersion of 
the residuals is greater for observations with large 
FPG, suggesting that the variance of FPG of the 
diabetic group is larger than that of the nondia-
betic group. The standard deviations of FPG calcu-
lated from the data for the nondiabetic and diabetic 
groups are 10 and 70. Hence, the assumption of 
homoscedasticity (common variance) is violated. 
In other words, there is heteroscedasticity.

One way to take this into account is to scale 
(weight) the observations from the diabetic and 
nondiabetic groups using the reciprocal of the 
standard deviations and estimate a weighted least 
squares regression. The results of such a regression 
are given in Table 2.

The estimated variance of the errors is 14.95. 
There are some small changes in the estimated 
coefficients.

We will now compare the screening perfor-
mance of the two models. From Table 3, we see 
that among 8,350 persons, there are 240 with 
undiagnosed diabetes, that is, persons with an FPG 

of 126 or more who are not aware that they have 
diabetes. We use our regression model and predict 
their FPG using A1c, gender, race, and so on and 
giving a value 0 for the diabetes indicator variable, 
DM, and an estimated prevalence of UDM = .02. 
We then classify a subject to have diabetes if the 
estimated FPG is greater than or equal to 126 mg/
dl. This can lead to two types of errors: false posi-
tives and false negatives. The performance can be 
judged by the true positives (TP) and true negatives 
(TN). From Tables 3 and 4, we see that they are 
228 and 7,448 for the unweighted model and 
7,494 and 240 for the weighted model. The TP for 
the weighted model is perfect and TN is greater. 
Thus, the weighted model performs better.

It should be noted that our model uses DM and 
UDM to explain variations in FPG. If this is to be 
used in practice for screening, estimates of these 
two variables must be obtained, for example, by 
estimating another two logistic regression models 
using DM and UDM as dependent variables and 
other variables as covariates.

Table 1  Results of ordinary least squares regression

Coefficients:
                        Value Std. Error t value Pr(>|t|) 
            (Intercept)  -18.3719 1.3921 -13.1973 0.0000
                    A1c  21.2307 0.2616 81.1622 0.0000
                     DM  41.2534 0.9875 41.7774 0.0000
                    UDM  -9.8355 1.3214 -7.4432 0.0000
                   male  2.9534 0.3734 7.9096 0.0000
    age.cat30+ thru  40   0.1164 0.6121 0.1902 0.8492
    age.cat40+ thru  50   1.2396 0.6282 1.9732 0.0485
    age.cat50+ thru  60   0.9280 0.6711 1.3827 0.1668
    age.cat60+ thru  70   0.2979 0.6568 0.4535 0.6502
    age.cat70+ thru  85  -0.5233 0.6456 -0.8106 0.4176
                  Black  -5.4793 0.5052 -10.8457 0.0000
              Mex.Amer.  -0.7945 0.4829 -1.6454 0.0999
             Other Hisp  -1.1862 0.9671 -1.2266 0.2200
                  Other  -3.6443 1.0112 -3.6040 0.0003
               under.Wt  -0.5819 1.4840 -0.3921 0.6950
               over.Wt.  1.3081 0.4640 2.8191 0.0048
                  Obese  -0.0591 0.4820 -0.1227 0.9023

Residual standard error: 16.88 on 8333 degrees of freedom
Multiple R-Squared: 0.7735 
F-statistic: 1778 on 16 and 8333 degrees of freedom, the p-value is 0 
18086 observations deleted due to missing values 
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Figure 1  Plot of the residuals (estimated errors)

Table 2  Results of weighted least squares regression

Coefficients:

                           Value Std. Error t value Pr(>|t|) 

            (Intercept)  -16.8759 1.3989 -12.0637 0.0000

                    A1c  20.8917 0.2651 78.8000 0.0000

                     DM  52.0719 1.0626 49.0021 0.0000

                    UDM  -7.2858 1.4614 -4.9854 0.0000

                   male  1.7278 0.3909 4.4206 0.0000

    age.cat30+ thru  40  -0.3726 0.5870 -0.6347 0.5256

    age.cat40+ thru  50  -0.1875 0.6271 -0.2990 0.7649

    age.cat50+ thru  60  -1.4407 0.6925 -2.0803 0.0375

    age.cat60+ thru  70  -2.0585 0.6821 -3.0181 0.0026

    age.cat70+ thru  85  -3.3402 0.6751 -4.9478 0.0000

                  Black  -5.2163 0.5132 -10.1641 0.0000

              Mex.Amer.  -1.2379 0.5055 -2.4490 0.0143

             Other.Hisp  -0.0805 1.0011 -0.0804 0.9359

                  Other  -4.1099 1.0676 -3.8497 0.0001

               under.Wt  -1.0916 1.4225 -0.7674 0.4429

               over.Wt.  0.8238 0.4713 1.7481 0.0805

                  Obese  -1.4669 0.4970 -2.9517 0.0032

Residual standard error: 14.95 on 8333 degrees of freedom
Multiple R-Squared: 0.8174 

F-statistic: 2331 on 16 and 8333 degrees of freedom, the p-value is 0
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Advantages and Limitations

Some of the advantages of OLS are as follows:

 1. It is easy to compute using exact mathematical 
formulae.

 2. When used to predict future observations, it 
minimizes the mean squared errors.

 3. It has the maximum correlation between the 
predicted and observed values of the outcome 
variable.

4. When the errors are distributed normally, OLS 
provides the most efficient estimators of the 
unknown parameters (shortest confidence 
intervals) in a linear regression model.

Some of the limitations of OLS are as follows:

 1. All observations are given equal weight.

 2. The expected value of the dependent variable is 
assumed to be a linear function of the 
covariates.

 3. Statistical properties of the estimated 
coefficients are very sensitive to departures from 
the basic normality of the distribution of errors 
and also to the presence of outliers.

The heteroscedasticity in the data in our 
example illustrates the first limitation and the 
use of weights to solve the problem. All statis-
tical software such as SAS, Stata, SPSS,  
and S-PLUS have functions to incorporate 
weights.

Regarding the other limitations, the assump-
tions of the Gaussian law of errors and the lin-
ear relation between the mean of the dependent 
variable and the independent variables, meth-
ods are now available to include more general 
distributions for the errors and various func-
tional forms for the relation between the mean 
of the dependent variables and covariates.

The generalized linear models allow the 
distribution of errors to include the following 
five: Gaussian, binomial, Poisson, gamma, and 
inverse Gaussian. A generalized linear model is 
not restricted to linear relations. It is enough if 
some known function of the outcome vari-
able is line arly related to the risk factors 

Table 3   Screening performance: Sensitivity and 
specificity—unweighted model

+-----------+
|N |
|N/RowTotal|
|N/ColTotal|
|N/Total |
+-----------+

no.dx.dm|fpg.hat.dm
 |0 |1 |RowTotl|
-------+----------+---------+---------+
0 |7448 | 662 |8110 |
 ||0.92 |0.082 |0.97 |
 |1 |0.74 | |
 |0.89 |0.079 | |
-------+----------+---------+---------+
1 |  12 | 228 |240 |
 |0.05 |0.95 |0.029 |
 |0.0016 |0.26 | |
 |0.0014 |0.027 | |
-------+----------+---------+---------+
ColTotl|7460 |890 |8350 |
 |0.89 |0.11 | |
-------+----------+---------+---------+

Table 4   Screening performance: Sensitivity and 
specificity—weighted model

no.dx.dm|fpg.wtd.hat.dm
 |0 |1 |RowTotl|
-------+----------+---------+---------+
0 |7494 | 616 |8110 |
 |0.92 |0.076 |0.97 |
 |1 |0.72 | |
 |0.9 |0.074 | |
-------+----------+---------+---------+
1 |   0 | 240 |240 |
 |0 |1 |0.029 |
 |0 |0.28 | |
 |0 |0.029 | |
-------+----------+---------+---------+
ColTotl|7494 |856 |8350 |
 |0.9 |0.1 | |
-------+----------+---------+---------+
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(independent variables). In another class of mod-
els, the generalized additive models, a linear rela-
tion between the transformations of both the 
dependent (outcome) variable and the indepen-
dent variables is estimated. The least squares 
method is then applied locally to the observations. 
These are referred to as locally weighted error sum 
of squares (LOWESS). A linear or a polynomial 
function is fitted to the data points in the vicinity 
of each observation and then a smoothed value is 
used as a predictor of that observation. The 
advantage is that the nearby data points get 
greater weights.

With modern software and fast computers, it 
is now easy to visualize the data and the errors 
associated with various statistical models and 
estimation and prediction methods. Many diag-
nostic methods to detect departures from the 

assumptions of the least squares method are 
now available. It is useful to visualize the data 
and the estimated errors as the following fig-
ures from Anscombe show. Four quite different 
data sets are used to estimate a linear relation 
using the ordinary least squares method. The 
printed outputs of the regression coefficients, 
standard errors, R2, and so on are exactly the 
same for all the four data sets. In other words, 
the error sum of squares is the same when the 
same line is fitted to all the data sets. Any other 
line will increase the error sum of squares. Yet 
a look at the figures shows that it is a good fit 
for the data in Figure 2a but a poor fit for the 
remaining three data sets shown in Figure 2b, c, 
and d.

V. K. Chetty
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Figure 2  Graphical analysis of errors

Source: Anscombe (1973), pp. 17–21.
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See also Analysis of Covariance (ANCOVA); Analysis of 
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OutcOmes ReseaRcH

In the past 20 years, outcomes research has prolif-
erated throughout the medical, academic, and 
health technology communities. But the defini-
tions of outcomes research vary widely depending 
on who is conducting the research, or using the 
findings. The origins of outcomes research reach 
well into the 1960s and are rooted in the evalua-
tion of the quality of medical care. The knowledge 
gained from outcomes research is critically needed 
to provide evidence about benefits, risks, and 
results of treatments to inform decision making by 
patients, providers, payers, and policy makers.

What Is Outcomes Research?

The term outcomes research is a vague, nontechni-
cal term that is used to describe a wide-ranging 
spectrum of medical care research today. Broadly 
stated, outcomes research seeks to understand the 
end results of particular healthcare practices and 
interventions. Outcomes research has taken on so 
many different meanings to so many different con-
stituencies or stakeholders in the business model of 
medicine that a clear definition is thought to be 
lacking. Depending on who is asked, a different 
answer will arise. A managed care organization 
CEO may respond with an economic example 
related to costs of new technologies that consume 
limited resources. A physician may be concerned 
with how well a certain procedure is performed for 

a certain patient with a given medical problem. A 
patient, now the consumer of healthcare services, 
may be equally concerned with how well a proce-
dure or test is performed, but may also want to 
know if the right thing was done to begin with, or 
if the best thing was done that takes into account 
his or her own preferences.

Origins

Arguably, it was Avedis Donabedian who coined 
the term outcome as a component in his paradigm 
for quality assessment. His view of outcomes as a 
means to examine the quality of medical care is a 
foundation of outcomes research.

Traditionally, outcomes have been classified into 
three types: economic, clinical, and humanistic, 
dating to a classification by Kozma and others in 
the early 1990s. This economic, clinical, or human-
istic outcomes (ECHO) model is a useful way to 
organize a framework around the concept of 
medical outcome. The model is built on the tradi-
tional medical model of an individual that develops 
disease or symptoms and seeks acute or preventive 
care. Healthcare professionals assess the needs of 
the patient, and clinical parameters that are modi-
fiable by treatments can be monitored. Clinical 
outcomes can be medical events, such as heart 
attack, stroke, complications, or death, that occur 
as a result of disease or medical treatment. 
Recognizing that these concerns alone do not take 
into account quality-of-life measures such as func-
tional status or patient preferences or the ever- 
increasing emphasis on costs of care, the model 
includes humanistic and economic outcomes, 
respectively. Therefore, depending on whose per-
spective is engaged, the term outcome can refer to 
various types of outcomes, but they are all aspects 
of the same construct: the result of disease or 
medical care treating the disease. As healthcare 
systems worldwide become more complex, reflect-
ing the perspectives common to today’s environ-
ment of the payer, provider, patient, policy maker, 
or regulating organization, research on these out-
comes must necessarily involve a multidisciplinary 
approach. For example, determination of the value 
of a new pharmaceutical intervention will require 
data on all three types of outcomes to conduct 
cost-effectiveness, -benefit, -utility, or decision 
analysis.



844 Outcomes Research

In the early 1980s, John Wennberg and col-
leagues at Dartmouth began to discover differences 
in the rates of medical procedures and events that 
were not explainable by differences in disease sta-
tus alone when examining populations in different 
locations. The phrase geography is destiny was 
coined to describe the odd finding that a variety of 
procedures such as hysterectomy or hernia repair 
were performed much more frequently in some 
areas than in others, even when there were no dif-
ferences in the underlying rates of disease. And 
there was limited information about the end results 
of these procedures, the outcomes. The genesis of 
outcomes research began when stakeholders of all 
types pounced on these small area variations to try 
to explain them.

There are many advantages to studying outcomes 
directly. Many outcomes are relatively concrete and 
easily measured, such as mortality, and few would 
question the validity or importance of restoration of 
function, survival, and economics. The key reason 
to measure outcomes, to begin with, is to gain some 
tractable status for the outcomes of interest to 
establish a baseline. Once a baseline measure is 
made, quality assessment can occur to determine if 
the outcome of interest is occurring at a level that is 
desired. Questions such as “Is this rate high or low” 
are seen in literature from the 1990s onward. After 
assessments are made, monitoring the outcomes 
over time can then inform quality improvement 
efforts. Remembering that these outcomes of inter-
est are the result of medical care for the treatments 
of disease, a necessary prerequisite to studying the 
outcomes is to define and examine the process or 
cause of these outcomes, the medical care.

Methods and Developments

The overriding paradigm that currently is the most 
accessible for the study of outcomes is the one pro-
posed by Donabedian in the 1960s: structure, pro-
cess, outcome. In this conceptual model, outcomes 
are the direct result of processes of care. The pro-
cesses of care can be thought of as any activity that 
takes place between a care provider and a patient. 
For example, a nurse takes blood pressure, or tem-
perature; a physician orders a diagnostic test or 
prescribes a medication. There are technical and 
qualitative aspects to process of care. Was the blood 
pressure cuff correctly placed and the systolic and 

diastolic readings carefully recorded? Was the 
patient comfortable and treated in a respectful man-
ner while this procedure was performed? Processes 
of care are ubiquitous, and each and every one has 
the opportunity to affect outcomes. One cannot 
begin to even think about studying outcomes with-
out first understanding and at least acknowledging 
the precedent of process that leads to them.

Outcomes research is not defined by a particular 
methodology. An array of study designs, including 
clinical trial approaches to test interventions, experi-
mental or quasi-experimental studies, and nonran-
domized or nonexperimental observational studies, 
are all available and used by the outcomes researcher. 
Such researchers draw from a wide-ranging multidis-
ciplinary perspective from fields of clinical epidemi-
ology, biostatistics, health services research, behavioral 
sciences, economics, and management sciences.

Outcomes research generates knowledge about 
safety and effectiveness of medical care. Disciplines 
such as pharmacoepidemiology and pharmaco-
economics employ outcomes research approaches 
to study effects of drugs in everyday use in health-
care systems. Beneficial effects, both expected and 
unexpected, as well as adverse events from drug-
drug or drug-disease interactions are examples of 
clinical outcomes. Economic analyses, including 
cost-identification, cost-effectiveness, and cost-
benefit can all be thought of within the framework 
of costs as outcomes. Cost-effectiveness studies of 
pharmaceuticals examine the incremental cost of 
one treatment over another with the incremental 
benefit in terms of effectiveness of a particular 
clinical outcome.

With the advent and explosion of the computer 
technology age, a wide variety of information 
sources now exist to support outcomes research. 
Health information sources such as administrative 
databases, clinical databases, disease registries, 
and trial databases are often linkable to other 
information such as census or survey studies for 
healthcare systems worldwide. In the United States, 
the federal government oversees the Centers for 
Medicare and Medicaid Services, which produce 
very extensive health information sources in the 
form of medical claims for both Medicare and 
state-administrated Medicaid. The U.S. federal 
government also administers a relatively complete 
electronic medical record for all beneficiary users 
of the Department of Veterans Affairs Health 
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Administration (VHA), which employs a national 
cadre of health services researchers engaged in a 
variety of outcomes research.

Uses

Decision analysis draws deeply on outcomes 
research. The modeling of a clinical problem to 
guide decision making requires inputs of preva-
lence of disease, effectiveness of interventions, inci-
dence of adverse events, costs of care, a plethora of 
other outcomes measures, and patient preferences 
or utilities. Sensitivity analyses for decision models 
may examine risks for a range of outcomes or a 
range of effectiveness measures in subpopulations 
of interest at different risks for different outcomes.

Healthcare managers and purchasers can use 
findings from outcomes research studies to identify 
the best practices of potentially effective and cost-
effective strategies that may be appropriate for 
their healthcare systems to take up and implement 
in order to improve the quality of care for their 
members or beneficiaries. The U.S. Agency for 
Healthcare Research and Quality (AHRQ) has 
long been a leader in conducting and funding out-
comes research studies, as well as in the translation 
of findings from these studies into practice. AHRQ 
Patient Outcomes Research Teams (PORT) studies 
of the 1980s and 1990s helped identify variation in 
quality in a variety of acute and chronic medical 
conditions and led to Centers for Education  
and Research on Therapeutics (CERTs), Evidence-
Based Practice Centers, and much more. Ideally, 
collaborations of academic researchers, third-party 
payers, and private-industry developers and inno-
vators such as pharmaceutical and device manu-
facturers could make research, development, and 
implementation of new interventions more effi-
cient to improve quality and reduce costs.

Future Directions

A variety of challenges and opportunities can be 
foreseen for outcomes research in the near future. 
An increasing emphasis on comparative effective-
ness of interventions will result in the United States 
from the enactment of the Medicare Modernization 
Act of 2006, which mandated research into not only 
effectiveness of drugs in everyday use but also com-
parative effectiveness. Such information is crucially 

needed to inform patients and providers to best 
choose pharmaceutical treatments for the rapidly 
aging U.S. population. Findings from these studies 
can be expected to have worldwide influence. 
Dissemination of research findings for rapid adop-
tion and implementation into practice will remain a 
developing and much needed science. Standards for 
outcomes research methodologies and training of 
new investigators is a growing need as evidence from 
clinical studies must be valid, reliable, and trustwor-
thy if stakeholders in all arenas are to value and 
depend on these studies. Outcomes research theories 
and methodologies that originated in the 1960s will 
certainly continue to generate knowledge to improve 
quality of care in the 21st century.

Michael L. Johnson
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Conducting; Economics, Health Economics; Health 
Outcomes Assessment; Mortality; 
Pharmacoeconomics; Risk Adjustment of Outcomes
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OveRinclusive tHinking

Defining the term overinclusive thinking depends 
on consideration of a thinking episode.
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Thinking Episode

Questions of thinking may start out with the con-
sideration of an episode of thinking (or an episode 
of thought), and one can ask the question regard-
ing what is considered within that thinking epi-
sode, what is excluded from that thinking episode, 
what cannot be included in a thinking episode, and 
what cannot be excluded from a thinking episode.

When an individual is presented a choice between 
two options A and B and asked to choose between 
the options, it is key to recognize that some think-
ers may well ask themselves the basic question of 
why one of the alternatives was selected as label A 
and presented first and the other was selected as B 
and presented second. While this may be termed by 
some as overthinking the problem, there may well 
be reasons why the principal investigator 
(researcher) called one A and presented that option 
first and called the other B and presented that 
option second. Even if one tells the study volunteer 
that the labels A and B were randomly selected as 
the labels of the alternatives, the study volunteer 
may still have a lingering question in his or her 
mind about the ordering and may assume that the 
researcher is telling him or her about the ordering 
being randomly selected to distract the study vol-
unteer from the “real reason” the labeling and 
ordering were selected as they were.

The above considerations bring up the notion 
of thinking and what is to be included within an 
episode of thinking and what is to be excluded 
from such an episode. Here, the capacity to include 
elements within thought or to exclude elements 
from thought may be difficult to do purely men-
tally and may need to rely on tools such as deci-
sion trees to structure decisions and keep track  
of information that goes into a decision and the 
information that is excluded, or pruned away, 
from a decision. Even decision scientists can be 
legitimately criticized for what information is 
included in a decision and what information is 
excluded from that same decision.

Positive Choice Versus Rejection

When the thoughts under consideration are thoughts 
about choices among a set of items or options, the 
very notion of choice comes into question. What is 
a positive choice (choosing Option A over Option 

B) versus what is a negative choice (rejecting Option 
B and thus choosing Option A by default)?

Positive choice of one alternative over another 
or rejection of one alternative in preference of 
another can both be influenced by underinclusive 
and overinclusive representation of information in 
decision making affecting consumer choice in eco-
nomics and patient choice and preference in 
medical decision making even when the structure 
of that decision is being overseen by a decision 
scientist.

Underinclusive Versus  
Overinclusive Thinking

If someone were a betting man or woman, he or 
she might bet that most individuals in most eco-
nomic and medical decision-making situations are 
more underinclusive in their thinking (not includ-
ing enough or including fewer pieces of informa-
tion in their thought processes than other reasonable 
people would include) rather than being overinclu-
sive (including too much information in their 
thought processes or including more information 
than other reasonable people would include). This 
is why physicians have particular roles in helping 
patients understand what is going on in their care, 
and why professional decision scientists have a role 
in and are recompensed for their work in econom-
ics and medical decision making. But physicians 
and decision scientists can misrepresent choice to a 
patient in decision making by underinclusive and 
overinclusive representation of information in 
decision trees causing underinclusive and overin-
clusive thinking on the parts of patients.

Underinclusive Thinking

While one may think of decision scientists as 
expert decision makers, one can also call to mind 
the types of decisions made by physicians and deci-
sion scientists that exhibit underinclusive thinking 
(removing information from a decision that other 
reasonable persons would keep in the decision).

Decision analysts or other experts in decision 
making could be chided by other experts, for exam-
ple, ethicists, for underinclusive thinking regarding 
the risk information that a reasonable patient needs 
and should be given by his or her surgeon regarding 
a decision to accept or reject a surgical operation. 
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Underrepresenting key information is one dynamic 
cause of underinclusive thinking.

Underinclusive Thinking About 
a Surgical Intervention

Let us consider an example of underinclusive think-
ing in the care of a patient. Here we will contrast 
the thinking of a decision scientist with that of an 
ethicist on what information a patient needs to 
know to make a decision about whether to accept 
a physician-recommended surgical intervention, 
that is, a surgical operation in the patient’s care.

The ethicist would recognize that there is an 
inherent conflict of interest in any decision recom-
mended by a surgeon that a surgery should or 
should not be recommended in the patient’s care. 
Here, the ethicist alerts us to the recognition that 
the physician is a surgeon who is recommending a 
surgical intervention; and what the patient may 
need to have is a physician, perhaps the patient’s 
internist, to also consider the surgical recommen-
dation as an option in the patient’s care at this time 
to get a fuller range of points of view of the recom-
mended intervention.

After the ethicist has completed his or her initial 
analysis of conflict of interest, a decision scientist 
examines the outcomes (benefits and risks) and the 
chance (probabilities) of their occurrence in the 
decision that the patient faces. The decision scien-
tist bases his or her structuring of the decision the 
patient faces on review of the peer-reviewed medi-
cal literature and discussion with experts going 
beyond the surgeon and physician caring for  
the patient. The decision scientist then develops a 
framework such as a decision tree to structure the 
decision.

But as the tree gets larger with more decision 
branches, the decision scientist’s whiteboard can 
no longer hold the informational content of the 
decision, and the decision scientist foreshortens the 
outcomes that need to be considered by the patient 
(prunes the decision tree) by excluding all rare 
adverse events where rare is defined in terms of 
events that occur at or below a rate of 1 in 10,000 
surgical operations of the same or similar type as 
the operation under consideration. Here, the deci-
sion analyst argues that his or her exclusion of rare 
events at a level of chance of occurrence that is less 
than 1 in 10,000 is being done to simplify the 

construction of the decision tree, and the decision 
scientist argues that this exclusion is reasonable 
from his or her decision scientific perspective.

The ethicist comes by to visit the decision scien-
tist and sees the decision tree on the analyst’s 
whiteboard and asks the following question: 
“Where are the severe adverse outcomes at low 
probability that are associated with the surgery 
under consideration?” The ethicist continues,

Shouldn’t all the severe adverse outcomes such as 
death and cognitive, motor, memory, and sensory 
disability be explicitly included in the tree because 
these events may in fact occur if the patient 
undergoes the surgical operation; and if these 
events are systematically excluded from the deci-
sion tree, the patient may not even understand 
that the medical intervention in question is seri-
ous enough that he or she may die from the 
intervention or that he or she may sustain an 
irreversible severe adverse event—like a stroke 
resulting in major motor paralysis or a severing 
of a nerve supplying an organ causing a loss of 
organ function—that the patient will have to live 
with the rest of his or her life?

Here, the decision analyst is in effect being chided 
by the ethicist for underrepresenting information 
to the patient, information that a reasonable 
patient needs to have to make a decision about 
whether he or she wants to undergo the surgical 
intervention in question. In particular, the patient 
needs to know the chances of dying during the 
intervention or within 30 to 60 days after it and 
the chances of sustaining an irreversible injury that 
will remain with the patient for the rest of his or 
her life.

The above example of underinclusive repre-
sentation by the decision scientist yielding under-
inclusive thinking by the patient on the fact of 
severe adverse outcome occurrence at low chance 
of occurrence can be exemplified in the real 
world by consideration of consent and informed 
consent cases in courts throughout the globe: If 
the patient had been given the information that 
death and severe disability were part of the risks 
of the surgical intervention and that information 
was given to the patient prior to the intervention, 
then the patient would have better understood 
the seriousness of the physician-recommended 
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surgical intervention and could not claim after 
the fact of injury occurrence (where the nondis-
closed severe adverse outcome actually material-
ized in the patient’s case) that he or she did not 
understand that the surgical operation to which 
he or she consented was as dangerous as it turned 
out to be.

Underinclusive and Overinclusive Thinking  
in Prescription Medicine Discussions

Patient-physician discussions about prescription 
medicines provide an opportunity to examine both 
underinclusive thinking (and its companion concept, 
underrepresenting risk information to patients in 
structuring the choice the patient has to consider) 
and overinclusive thinking (and its companion con-
cept, overrepresenting risk information to patients in 
structuring the choice the patient has to consider).

Here, we take the case that the prescription 
medicine has been on the market for 20 years, and 
hence its risks are well understood across a broad 
range of patients with different medical conditions. 
In attempting to secure information about the risks 
of a prescription medicine that has been on the 
market for 20 years, one can readily assess the risk 
information from drugs or drug compendia—like 
the Physicians’ Desk Reference (PDR) or text-
books—or from searching and review of the peer-
reviewed medical literature on the topic. Often, 

what one finds in a review of the risks of a drug 
therapy is risk information that has been pared 
down considerably to a listing that shows only 
“significant adverse reactions” under a set of 
ranges of chance of the adverse outcome occurring 
in a population of patients. The following is a 
review of the nature of tables whose authors and 
developers have used underinclusive principles 
(Table 1) and overinclusive principles (Table 2) to 
represent risk of a drug, Prescription Medicine A.

Table 1 is underinclusive in that it intentionally 
leaves out consideration of severe adverse out-
comes (adverse reactions) at both the 1% to 10% 
level and the less than 1% level. In comparison, 
Table 2 provides more information but is also at 
risk (as judged by the patient, the physician, and 
the decision scientists) as it in a way still under-
represents certain types of information and, in 
other ways, overrepresents other types.

Table 1   Underinclusive representation of risks of 
Prescription Medicine A

Significant adverse outcomes (adverse reactions) 
occurring
   >10%

• Neuromuscular discomfort
• Skeletal discomfort

Table 2  Overinclusive representation of risks of Prescription Medicine A

Significant adverse outcomes (adverse reactions) occurring
    >10%

• Neuromuscular discomfort
• Skeletal discomfort

   1% to 10%
•  Headache, dizziness, rash, abdominal discomfort, constipation, diarrhea, dyspepsia, flatulence, nausea, 

myalgia, weakness, muscle cramps, blurred vision

    <1%
•  Abdominal discomfort; depression; dermatomyositis; dizziness; fatigue; headache; hypotension (low blood 

pressure); insomnia; lichen planus; muscle pain, soreness, tenderness, weakness, myopathy; 
photosensitivity; pruritus; thrombocytopenia; vertigo; weakness



849Overinclusive Thinking

Both tables also lack the following elements of 
definition and conceptual development of terms:

Lack of information of relationship of elements  •
of the list to

Whether there is an impact on patient o 
 survival over time

Whether an injury is reversible or irreversibleo 
What impact the element will have on the o 

 patient’s quality of life

Lack of specification of the origin of the  •
information
Lack of definition and meaning of symptoms  •
(such as myalgia), laboratory test abnormality 
(such as thrombocytopenia), disease process 
(such as dermatomyositis), and physical sign and 
disease (such as lichen planus)
Lack of clarity as to whether all risks are included  •
in the greater than 10% category (for example, in 
the category of “nerve and muscle discomfort” 
and “bone discomfort,” are there also issues 
related to cartilage, ligaments, and tendons?)
Lack of development of criteria to be used to  •
distinguish “significant” risk from 
“insignificant” risk

Are there risks that are still reported that are o 
 not included in the “significant” and 
 “insignificant”risk categories?

Lack of development of what the numbers  •
represent

Greater than 10% of what? 1% to 10% of o 
 what? Less than 1% of what?

What is the numerator and what is the o 
 denominator of the fractional range of 
 greater than 10%? Of 1% to 10%? Of less 
 than 1%?

What does the appearance of one term in both  •
the 1% to 10% category and the less than 1% 
category mean; for example, why does 
“myopathy” appear as both a 1% to 10% event 
and a less than 1% event?

In addition, even experts would have difficulty 
answering a patient’s questions of the following 
types:

 1. Why do “abdominal discomfort,” “depression,” 
“dermatomyositis,” and “insomnia,” among 

others, occur with the drug (even if a physician 
would attempt such a discussion of how these 
events could be associated with the drug 
therapy in question)?

 2. What does “dermatomyositis” feel like, and 
how will it affect the life of a patient should  
it occur?

 3. What will be the level of severity of the adverse 
reaction if it should occur?

 4. What is the mechanism of action by which the 
adverse reaction is causally associated with the 
drug? How does the drug “cause” the particular 
adverse outcome in a patient?

Determining the best ways to effectively des cribe 
the risks and the benefits and their chance of accru-
ing in a particular patient’s care and the best ways to 
represent these outcomes and their chance of occur-
rence while attempting to minimize underinclusive 
thinking and to minimize overinclusive thinking is 
an active area of research in all areas of the world at 
the present time.

Dennis J. Mazur

See also Cognitive Psychology and Processes; Decision 
Psychology; Deliberation and Choice Processes; 
Evaluating Consequences; Informed Decision Making; 
Unreliability of Memory
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Pain

Pain is a universal experience. How pain is expe
rienced and the clinical management that may be 
employed in its diagnosis and treatment are com
plex and multidimensional. When a patient pre
sents with pain, the decision making of the 
clinician may be simple or complex, intuitive or 
analytical and is susceptible to multiple errors in 
assessment, investigation, and treatment. In this, 
pain is no different from any other area of medi
cine. Never theless, there are unique aspects of 
pain and its management that raise challenges to 
the quality of clinical decision making. Multiple 
medical, sociocultural, and religious values exist 
in all aspects of pain and its management. The 
heuristics of pain management are complex, and 
the possible cognitive dispositions to respond are 
ever present. Good clinical management requires a 
solid foundation in the science and practice of 
pain medicine, careful attention to detail, meticu
lous communication, and a vigilant awareness of 
potential biases.

The Multidimensional Nature of Pain

The International Association for the Study of Pain 
defines pain as “an unpleasant sensory and emo
tional experience associated with actual or poten
tial tissue damage, or described in terms of such 
damage.” Pain is inherently subjective. Pain is expe
rienced as a result of a highly complex interaction 
of physical, biochemical, physiological, cognitive, 

emotional, behavioral, and sociocultural factors. 
The brain integrates information from multiple 
sources to form the experience that is pain. That 
multiplicity of sources, both aggravating and ame
liorating the final experience, makes clinical deci
sion making in relation to pain challenging. The 
recognition of this complexity has led to the devel
opment of multidisciplinary pain teams and the 
broadening of pain management to include a range 
of nonpharmacological interventions.

The major aspects of pain are physical, psycho
logical, and environmental. Thus, the experience 
of pain is a combination of local biochemical 
changes, sensory information from somatic and 
visual receptors, visual and other sensory informa
tion, intrinsic neural inhibitory inputs, phasic cog
nitive and emotional inputs (e.g., anxiety) and 
tonic cognitive and emotional inputs (memory and 
cultural experiences), and inputs from the body’s 
stress regulation system.

The sociocultural dimension of pain includes 
demographic characteristics; ethnic background; 
and cultural, religious, and social factors that 
influence an individual patient’s perceptions of and 
response to pain. The search for meaning in pain is 
universal.

The adequacy of the treatment of pain varies 
enormously around the world. The reasons for 
inadequacy of treatment include lack of or subop
timal training of clinicians in pain assessment and 
management, inadequate attention to pain as a 
symptom, the presence of very restrictive domes
tic opioid laws, infrastructure weaknesses pre
venting patients’ access to analgesia, opiophobia 

P
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of clinicians, and medical neglect. In response to 
this universal challenge, there has been a grow
ing recognition that pain management is a basic 
human right that places clear obligations, through 
the international right to healthcare, on national 
governments. Other legal sources of this right 
emerge from statutory law, elder abuse law, and 
the law of medical negligence.

Heuristics and Pain

The spectrum of decision making in pain medicine 
lies along a continuum from simple to complex 
and is largely related to the level of uncertainty. 
That uncertainty may arise in all aspects of man
agement, from the presenting history through to its 
treatment. In response to that uncertainty, clini
cians employ a variety of conscious and uncon
scious tools from careful reasoning to intuition. 
One response to the irreducible element of uncer
tainty in clinical decision making is the use of 
heuristics. Heuristics are simple rules of thumb or 
judgments borne out of years of individual and 
collective experience. Generally, such heuristics are 
effective, but occasionally, they fail. Good decision 
making in pain management may be impeded by 
various cognitive biases or cognitive dispositions 
to respond.

Heuristics and History Taking in Pain

When a patient presents with pain, it is extremely 
important that a careful and meticulous history be 
taken. A critical threshold is the recognition that 
pain is a subjective symptom. This foundation in 
subjectivity means that two aspects of history tak
ing by the clinician are vital: (1) a clarification of 
all aspects of the pain experienced by the patient 
and (2) meticulous listening to that description by 
the clinician. If either is missing or inadequate, 
pain management will be flawed. The time of onset 
of pain, its severity, its character, and the aggravat
ing and ameliorating factors are all significant 
aspects of the history. For example, the site, char
acter, and severity of acute pain usually allow a 
clinician to employ heuristics to rapidly reach a 
differential diagnosis of the cause of that pain. 
Aspects of the history of chest pain are, for 
instance, more suggestive of ischemic heart disease, 
pulmonary emboli, pericarditis, or a dissecting 

aortic aneurysm. Clearly, investigations will also 
contribute to decision making. Equally in the pre
sentation of chronic pain syndromes, there are 
important aspects of the history of, for instance, 
carpal tunnel syndrome or fibromyalgia. Similarly, 
in malignant pain, a sudden onset of very severe 
bone pain suggests a pathological fracture, or a 
pain radiating directly from upper abdomen to 
upper lumbar spine may represent infiltration of a 
known pancreatic malignancy to the celiac plexus. 
Instruments containing elements of a pain history 
have been developed to increase the precision of 
diagnosis of pain associated with nerve damage 
(e.g., PainDetect and SLANSS).

Heuristics, however, are not infallible. In the 
context of pain and history taking, multiple issues 
may apply: a patient speaking without an inter
preter, a stoical patient, a patient fearful of hospi
talization who minimizes the extent of his or her 
pain, a patient who feels that his or her pain is an 
inevitable part of age or illness, a patient fearful  
of opioids, an infant or child in pain, or a patient 
with an intellectual disability or cognitive impair
ment. Equally, there may be issues for the clinician: 
A doctor who is rushed, exhausted, impatient  
with the pace of reply, or overly suspicious of the 
patient’s veracity may experience an impact on this 
critical initial step in pain management.

Examples of failed heuristics in the taking of a 
pain history include the following:

 1. Representativeness—the heuristic that underlies 
pattern recognition: This is the assumption that 
something that seems similar to other things in 
a certain category is itself a member of that 
category. Representativeness restraint is an error 
that occurs when a clinician makes an incorrect 
judgment on the basis that the patient does not 
fit a representative class. Atypical presentations 
of pain are examples.

 2. Anchoring—the tendency to fixate on specific 
features of a presentation too early in the 
therapeutic encounter, leading to a premature 
closure of thinking: Examples would include 
prematurely diagnosing nonmalignant 
osteoarthritic lumbar back pain in an elderly 
patient who is ultimately found to have 
metastatic bone disease or prematurely 
dismissing the pain history of a patient as 
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opioidseeking behavior, where there is a 
genuine organic reason for rapidly increasing 
the opioid dose, in response to the pain. A 
premature character judgment may irreparably 
compromise both pain management and the 
trust between clinician and patient.

 3. Duration neglect—the tendency to neglect a 
symptom or sign: Patients with pain may 
attempt to ignore it for some time. A patient’s 
single report of pain onset, especially in the 
context of chronic pain, will often lead to an 
underestimation of chronicity.

 4. Posterior probability error—the tendency to 
assume that history repeats itself: Even though a 
patient may present multiple times with pain 
due to a specific cause, it does not exclude the 
possibility that the patient’s pain in the current 
presentation has another cause.

Heuristics and the Treatment of Pain

The heuristics of pain management are both 
advanced and primitive. They are advanced in the 
sense that the understanding of the actions, effi
cacy, and use of analgesia in all contexts from acute 
to chronic pain, from simple to strong analgesia, 
and in all routes of delivery from topical to intraspi
nal have improved significantly in the modern era. 
While the levels of evidence for all analgesia in all 
contexts vary considerably, overall the modern cli
nician has a strong armamentarium to respond to 
the pain of patients. Evidencebased guidelines for 
pain management of adults and children exist. The 
key theme of those guidelines is the importance  
of a calibrated response to the severity of the pain, 
that pain should never be neglected or inadequately 
treated, that analgesia is best given regularly rather 
than intermittently, and that the cause of the pain 
should be carefully considered throughout.

What remains primitive is the decisionmaking 
capacity of many doctors to manage moderate  
to severe pain. This lack of capacity arises partly 
from a lack of knowledge of the broad range of 
options that are now available. However, even 
partial knowledge may not result in the clinician 
responding, because of lack of familiarity with the 
treatment options and fear of making mistakes or 
even embarrassment in making a referral to an 
expert (“loss of face”) who is capable of providing 

the help that is needed. An example is the critical 
bias that lies in attitudes to and knowledge about 
opioids. That bias represents a significant barrier 
to effective analgesia. Fears about the medical use 
of opioids (opiophobia), while lessening, remain 
ubiquitous and are founded on myths that retain 
currency to the present. These fears, in part, are 
based on opioignorance—inadequate education  
on the safety of opioid medication. These myths 
include the belief that all opioids in all contexts are 
addictive, that opioids are inevitably and perpetu
ally sedating, that the commencement of opioids 
should be based on the extent of the disease and 
not the extent of the pain, and that opioids propor
tionately given will hasten death. Doctors are part 
of a wider society, and similar attitudes to opioids 
reside among the general population of patients.

Multiple biases may flow from these preconcep
tions and myths. Opiophobia and opioignorance 
may lead to a cascade of flawed decision making 
in treatment. Despite clear evidencebased guide
lines on pain management, clinicians may be  
susceptible to aggregate bias, where clinicians 
rationalize treating an individual patient differ
ently from guidelines on the basis of a mistaken 
belief that variables representing group averages 
reflect what is true for a particular patient rather 
than a group of patients. This bias may lead to 
pain management that is idiosyncratic and simply 
ignores guidelines. Other sources of flawed deci
sion making in pain management include omission 
bias (temporizing or reluctance to treat), the avail-
ability heuristic (the tendency of clinicians to over
estimate the risk of addiction when prescribing 
opioid analgesics for pain relief and to conse
quently undertreat pain), and overconfidence (cli
nicians rating their ability to manage pain highly 
even though they have serious shortcomings in 
attitudes and knowledge).

Another common bias in the use of opioids is 
the illusory correlation, the tendency to incorrectly 
perceive two events as causally related: opioid use 
and sedation or confusion. The clinician needs to 
be careful not to reflexly ascribe these symptoms 
to opioid analgesia when other pathological pro
cesses such as sepsis, electrolyte abnormalities, or 
cerebral metastases are in fact the true cause.

Heuristics may be both practically useful and 
especially problematic when the patient cannot 
give an adequate pain history. In a study of nursing 
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decision making in pediatric pain management 
after surgery by Shannon ScottFindlay and Carole 
Estabrooks, three heuristics were commonly used—
representativeness, availability, and anchoring. 
Representativeness was employed to justify an 
assumption that certain surgical procedures for 
children were associated with certain levels of 
pain. The error lay in allowing that assumption to 
dictate a clinical response over careful pain assess
ment. As the authors stated, the management of 
the children’s pain was “more generalized and less 
individualized” (p. 217).

In adults, such representativeness has been used 
to characterize some patients as “having a low 
pain threshold” or “exhibiting excessive pain 
behavior.” Such labels inevitably lead to a negative 
attitude, which may result in inadequate pain con
trol. Scientific data contrast starkly with the fore
going myths. As Geoffrey Gourlay and colleagues 
showed, the minimum effective blood concentra
tion of opioid analgesics varies by a factor of 6  
to 10 among patients receiving the same operation 
by the same surgeon. In addition, there is a strong 
genetic basis for the difference in pain response 
among patients to a similar noxious stimulus.

The experience of pain may have a profound 
influence on the interaction between patient and 
clinician. It may influence all aspects of medical 
decision making—pain assessment; choice of inves
tigations; pain management; and, from the per
spective of the patient, compliance with treatment. 
How patients experience pain, how sensitive clini
cians are to that experience, and how both clini
cian and patient respond to that pain are each 
critical components of medical decision making. 
Good clinical decision making in pain manage
ment requires good heuristics. However, biases 
may undermine objective reasoning. Those biases 
may impede all aspects of pain management, from 
assessment to treatment. Pain is complex and is 
susceptible to multiple interpretations in medicine, 
culture, and religion. Opiophobia and opioigno
rance are critical and explain, at least in part, the 
myriad biases that may influence pain manage
ment. Pain is ubiquitous. Excellence in decision 
making in relation to pain is not necessarily so.

Frank Brennan and Michael Cousins 

See also Heuristics; Patient Rights

Further Readings

Baruch, J. M. (2008). Why must pain patients be found 
deserving of treatment? Virtual Mentor, 10(1), 5–12. 
Retrieved February 21, 2009, from http://www 
.virtualmentor.amaassa.org/2008/01/pdf/ccas10801 
.pdf

Brennan, F. P., Carr, D. B., & Cousins, M. C. (2007). 
Pain management: A fundamental human right. 
Anesthesia and Analgesia, 105, 205–221.

Croskerry, P. (2005). The theory and practice of clinical 
decisionmaking. Canadian Journal of Anesthesia, 
52(6), R1–R8.

Gourlay, G. K., Kowalski, S. R., Plummer, J. L., Cousins, 
M. J., & Armstrong, P. J. (1988). Fentanyl blood 
concentration: Analgesic response relationship in the 
treatment of postoperative pain. Pain, 67, 329–337.

International Association for the Study of Pain. (2009). 
IASP pain terminology. Retrieved January 7, 2009, 
from http://www.iasppain.org/AM/Template 
.cfm?Section=Home&template=/CM/HTMLDisplay 
.cfm&ContentID=6648#Pain

Larue, F., Colleau, S. M., Fontaine, A., & Brasseur, L. 
(1995). Oncologists and primary care physicians’ 
attitudes toward pain control and morphine 
prescribing in France. Cancer, 76, 2375–2382.

Potter, M., Schafer, S., GonzalezMendez, E., Gjeltema, 
K., Lopez, A., Wu, J., et al. (2001). Opioids for 
chronic nonmalignant pain: Attitudes and practices of 
primary care physicians in the UCSF/Stanford 
Collaboration Research Network. University of 
California, San Francisco. Journal of Family Practice, 
50, 145–151.

ScottFindlay, S., & Estabrooks, C. A. (2006). Knowledge 
translation and pain management. In A. G. Finley,  
P. McGrath, & C. T. Chambers (Eds.), Bringing  
pain relief to children: Treatment approaches  
(pp. 199–228). Totowa, NJ: Humana Press.

Parametric Survival analySiS

Parametric survival analysis is a subset of mathe
matical and statistical methods for characterizing 
the time relatedness of the occurrence of events 
such as death. It is distinguished from nonpara
metric and semiparametric methods by using a 
mathematical formula, termed a model, to sum
marize times to an event. At a minimum, the 
model contains the variable time and at least one 
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constant, called a parameter, whose value is esti
mated statistically from eventtime data.

Alternative Philosophies in Formulating 
Parametric Survival Models

Biomathematically, parametric models character
ize the rate at which timerelated events occur, 
called the force of mortality or hazard function. 
Survival is derived by applying this rate to liv
ing subjects such that their number diminishes as 
deaths increase. Biostatistically, parametric models 
are empirical, convenient characterizations of the 
distribution of event times.

Although their utility is the same, parametric 
survival models emanating from these two per
spectives are quite different. Biomathematical 
models tend to be formulated along mathematical 
lines of physical and chemical processes, whereas 
biostatistical distribution models arise from point
process, stochastic underpinnings. For example, 
survival after cancer diagnosis often decreases in 
exponential fashion. This suggests a biomathemat
ical analogy to a unidirectional chemical reaction 
with a constant rate of transformation of substrate 
to product, which results in an exponential depic
tion of substrate. Such biochemical reaction rates 
are known to depend on variables such as tem
perature, so it is not difficult to imagine that a 
similar rate of death could be influenced by factors 
such as cancer stage. A biostatistician may appreci
ate this same exponential decrease in survival but 
would not think in terms of a mortality rate. 
Instead, he or she may logarithmically transform 
the survival function, find it to be a linear decline, 
and think about what factors may be associated 
with changes in the slope of log survival.

Alternatives to Parametric Methods

Parametric survival methods are distinguished 
from nonparametric ones, by which distribution of 
event times is estimated directly without an under
lying model. A cumulative distribution curve turned 
upside down (called the complement) is a nonpara
metric representation of the distribution of event 
times. However, because data are often incomplete 
(think of the distribution of ages of people, some of 
whom refuse to reveal their age except that it is 
greater than 29 years), a method is needed that can 

estimate at least part of the cumulative distribution 
of event times. The product limit method of Kaplan 
and Meier is an example of a nonparametric 
method for generating a cumulative distribution, in 
part or as a whole, from incomplete data (called 
censored data). Parametric survival methods are 
also distinguished from semiparametric ones that 
do not explicitly model the underlying risk function 
(called the hazard function) but only the factors 
modulating it. The most commonly encountered 
semiparametric method is the one proposed by 
Cox, a timerelated multivariable regression model. 
The parametric portion of semiparametric methods 
often relates the logarithm of the hazard function 
to a linear (additive) combination of risk factors 
(variables) whose values are weighted (multiplied) 
by statistically estimated constants (parameters). 
Such a logarithmic function of risk factors gives 
rise to what is known as proportional hazards.

Nature of Survival Analysis

Common Threads

All survival methods assume that timerelated 
events occur at an instant in time. This assumption 
holds only approximately for many events. Often, 
what is called an event is a protracted process that 
may better be analyzed by what is called longitudi-
nal data analysis.

A second common thread is that the event time 
is not yet known for some subjects. All that is 
known is that at followup time, the event has not 
yet occurred. For death, this means that some sub
jects remain alive at followup. This incomplete 
information about event time is called censoring (a 
term borrowed from census nomenclature).

Importance

The importance of survival analysis in evidence
based medicine is that it addresses appropriateness 
of therapeutic decisions by assessing longterm 
benefits and risks. For example, an interventional 
procedure (e.g., an appendectomy) that increases 
shortterm risk may be appropriate because this 
early risk is far outweighed by longterm benefit.

Essential Data

Survival analyses require three pieces of data: 
(1) a clear definition of the timerelated event,  
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(2) a “time zero” at which all individuals become 
exposed uniformly to the possibility of experienc
ing the event, and (3) a time thereafter when the 
individual either has or has not experienced the 
event or has ceased to be at risk. Parametric sur
vival models are particularly vulnerable to lapses 
in these three essential data elements. For example, 
if one is interested in bioprosthetic heart valve 
deterioration, which follows an accelerating failure 
pattern, one can observe an apparently complex 
acceleratingthendecelerating pattern if some sub
jects are not at risk because they received nondete
riorating mechanical heart valves.

These essential data elements must be gathered 
by a formal, nonopportunistic followup mecha
nism. Again, parametric survival analysis is par
ticularly sensitive to improper followup. Lapses 
tend to generate temporal patterns of risk that 
appear artificially to require complex (high order) 
mathematical models to characterize. For example, 
a clinical trial may require systematic yearly  
followup of all subjects but notification within 48 
hours of any death. If in a survival analysis, one 
includes deaths beyond the point of last systematic 
followup, these deaths have no denominator. 
Therefore, the survival curve will appear anoma
lously to fall precipitously.

Some Parametric Survival Models

Compartmental Models

The simplest parametric survival model is the 
oneparameter constanthazard model. A constant 
hazard implies that events occur randomly across 
time. This results in exponentially decreasing sur
vival, much like radioactive decay, which has a 
constant decay rate.

It is useful to think of many parametric survival 
models in the same framework as radioactive 
decay or biochemical reactions, something that 
healthcare workers will find familiar. Indeed, the 
genesis of the constanthazard model was the 
analysis of Bills of Mortality during the Black 
Plague by the merchant John Graunt in 1662. He 
assumed a constant birth rate, analogous to goods 
being delivered to a store, and a constant death 
rate, analogous to goods being bought. He thought 
of survival as being analogous to inventory on the 
shelves, whose quantity reflected the balance of 

these two rates. Graunt called the death rate the 
hazard rate, which was a technical term for a form 
of dicing that had crept into common usage and 
meant “calamity.”

Especially during the 19th century, numerous 
mathematical models were developed for physical 
and biological phenomena. In the early 20th cen
tury, others were developed for industrial events 
(e.g., the Weibull model, a generalization of con
stant hazard). In more modern times, complex 
machines and devices, such as semiconductors, 
were found to follow a bathtubshaped hazard, 
giving rise to the familiar terms burn-in, random 
failure, and wearout. This bathtubshaped hazard 
holds for human survival: high infant death rate, 
low childhood and middleage death rate, and 
accelerating oldage death rate.

Whether it be a population of semiconductors 
or people, the pattern of failure is usually simple 
and can be characterized by simple mathematical 
formulae with a small number of parameters (a 
loworder model). Therefore, identifying an appro
priate mathematical model for a timerelated event 
is not an onerous task, although the relative rarity 
of biomedical (as opposed to industrial) investiga
tors using such models may lead one to think  
otherwise. These days, simple parametric survival 
models are available in standard statistical soft
ware packages, but these may not fit the data well. 
Thus, some investigators have compiled systems of 
simple models from which it is relatively easy to 
select statistically an appropriate model (e.g., see 
Blackstone, Naftel, & Turner, 1986).

Distribution Models

The survival curve is a complete or partial 
cumulative distribution function (CDF) of event 
times. A typical function used to characterize such 
data is the Gaussian distribution of the logarithm 
of event times (because their values are strictly 
positive). It has two parameters, commonly called 
the mean and the standard deviation.

Those familiar with distributions, however, may 
think only of the CDF and its first derivative, the 
probability density function (PDF). The idea of a 
force of mortality (hazard function) is foreign to 
this framework. It is helpful to recognize that the 
hazard function is the ratio of PDF to CDF, so it is 
a conditional PDF.
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Modulating Survival by Risk Factors

A natural extension of parametric survival models 
is incorporating into one or more parameters a 
model (e.g., a loglinear model) of risk factors. 
These act to change the value of model parameters 
and thereby the contour of timerelated survival. 
Some model parameters modulate survival consid
erably more per unit change in value than others 
(sensitivity), and these are often the parameters 
targeted to carry risk factor information.

Advantages of Parametric Survival Analysis

Why go to the trouble of characterizing either the 
hazard or the survival function in mathematical  
or distributional terms? The following are several 
reasons for doing so.

Portability

The most compelling reason for using paramet
ric survival analysis relates to portability and ease 
of manipulating a mathematical equation to under
stand the underlying phenomenon, assess the impact 
of risk factors, and facilitate strategic medical deci
sion making.

Understanding Phenomena

Particularly in examining the hazard function, 
one can discover easily what is difficult nonpara
metrically. For example, one can find that the 
overall hazard function for prosthetic valve infec
tion peaks early after valve replacement, then falls 
to a low constant level; actually, however, the peak 
occurs earlier for some organisms, and the hazard 
function does not peak at all for others. Another 
example: Crossing the lines of survival for medical 
and surgical therapy for left main trunk disease 
reflects an initially elevated risk at the time of sur
gery that falls to a substantially lower risk than 
with medical therapy.

Assessing Risk Factors

One can assess the impact of a continuous risk 
factor such as age at intervention simply by vary
ing age and solving for survival at a fixed time 
point, such as 10 years, keeping the value of all 
other risk factors constant. Similarly, one can solve 
the mathematical formula for presence or absence 

of some risk factor, again holding all other factors 
constant to isolate one risk factor at a time. These 
graphic displays are termed nomograms.

Decision Making

Mathematical formulae for alternative treat
ments can be solved for an individual patient’s 
characteristics and the resulting survival curves 
compared. Where do the lines cross, if they do? 
What is the magnitude of short versus longterm 
risk? How much lifetime can be saved by one ver
sus another therapy (obtained by mathematical 
integration of the area between survival curves)? 
Use of parametric survival models for such decision 
making was particularly encouraged in the 1991 
American College of Cardiology/American Heart 
Association guidelines for coronary artery surgery.

Prediction in Future Groups

Parametric survival models can readily predict 
survival in future groups of similar patients. Each 
patient can be given a personalized survival curve 
as a solution of the mathematical equation for the 
patient’s characteristics. To determine if these pre
dictions are valid, individual survival curves can be 
averaged and compared with observed survival 
after the new patients have been followed. In addi
tion, cumulative hazard (negative logarithm of 
survival) at the time of each new patient’s death or 
end of followup can be summed, and this number 
should correspond with the total number of 
observed deaths (a measure of prediction error).

Extrapolations

As long as sufficient data are available, para
metric survival models can be extrapolated to end 
of life. Although these extrapolations are useful in 
estimating length of life, such estimates, as with 
any extrapolation, must be viewed with caution.

Adaptability to Nonproportional Hazards

Parametric survival models can be readily 
adapted to nonproportional hazards. For example, 
early risk after intervention for a serious disease is 
usually modulated by the patient’s immediate pre
procedure condition. After patients recover, subse
quent survival usually depends on coexisting 
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chronic factors, such as age, weight, and comorbid 
conditions. Loworder mathematical models, prop
erly formulated, can accommodate risk factors for 
these different time frames of risk.

Generation of Smooth Hazard Function

Parametric survival models generate an inher
ently smooth hazard function. Nonparametric 
estimation of hazard functions, which may be of 
more interest than survival, is inherently noisy, 
although smoothing techniques can filter out some 
of this noise.

Immunity to Completion Effect

Wellformulated parametric survival models are 
relatively immune to the “completion effect” inher
ent in nonparametric survival estimates, which 
results in underestimating survival. This occurs at 
the tail end of the survival curve, when few subjects 
remain.

Accurate Reflection of Shape

Parametric estimates of survival, particularly 
when the number of subjects is small, may reflect 
the shape of survival more accurately than less 
“smooth” nonparametric models, providing better 
prediction.

Limitations of Parametric Survival Analysis

The limitations of parametric survival analysis are 
typical of any mathematical model used to sum
marize data: 

 1. The data may not fit model assumptions.

 2. Time must be spent in fitting the underlying 
hazard function or survival distribution, usually 
requiring nonlinear (iterative) estimation 
procedures.

 3. In theory, an infinite number of mathematical 
models can fit a set of data. However, systems 
of flexible parametric models will yield 
generally similar hazard and survival functions 
and incorporate risk factors (often without 
assuming proportional hazards).

 4. Although the underlying structure of hazard or 
survival is usually simple, its modulation by risk 

factors may be complex. Yet risk factors are 
usually incorporated into parametric (and 
semiparametric) models as an additive function. 
This limitation is common to all statistical 
regression models.

Eugene H. Blackstone

See also Cox Proportional Hazards Regression; Hazard 
Ratio; Nomograms; Survival Analysis
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Patient DeciSion aiDS

The goal of evidencebased healthcare is to inte
grate clinical expertise with patients’ values using 
the best available evidence. However, many deci
sions fall in the “gray zone,” because the benefit
harm ratios either are unknown or depend on 
how patients value them. For example, should 
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patients take a more aggressive treatment when 
simpler therapies fail to control moderate or 
severe symptoms of menopause, osteoarthritis, 
benign prostatic hyperplasia, back pain, benign 
uterine bleeding, or stable angina? Other complex 
decisions include genetic testing, reproductive 
choices, treatment of early breast and prostate 
cancer, and the intensity and location of care at 
the beginning and end of life.

To prepare patients for discussion of these 
options, patient decision aids (PtDAs) have been 
developed as adjuncts to counseling. This entry 
defines PtDAs, describes their efficacy, and high
lights the challenges in implementing them in 
clinical care.

What Are Patient Decision Aids?

According to the International Patient Decision 
Aids Standards Collaboration, PtDAs are tools to 
help patients participate in their healthcare deci
sions in the ways they prefer. They supplement 
rather than replace a practitioner’s counseling. 
PtDAs provide facts about options and outcomes, 
communicate probabilities of benefits and harms, 
clarify which benefits and harms matter the most, 
and guide patients in the steps of deliberation and 
communication.

PtDA development has been guided by several 
different decision theory and transactional frame
works from economics, psychology, and sociology. 
The mode of delivering PtDAs varies (print, audio
booklet, videotape, DVD, and, more recently, 
interactive multimedia Webbased tools). PtDAs 
are selfadministered or practitioner administered; 
they are used in onetoone or group situations; 
and they are used before, during, or after the clini
cal encounter.

Regardless of the framework, medium, or imple
mentation strategy, there are three key elements 
common to their design:

1. Information provision: For a given clinical 
condition, PtDAs include highquality, uptodate 
information about the condition or disease stimu
lating the need for a decision, the available health
care options, the likely outcomes for each option, 
the probabilities associated with those outcomes, 
and the level of scientific uncertainty. The infor
mation is clearly presented as a “choice situation,” 

in a balanced manner so as not to persuade the 
viewer toward any particular option and in suffi
cient detail to permit choosing among the 
options.

2. Values clarification: A range of methods may 
be used to help patients consider the personal 
value or desirability/undesirability of options. 
First, patients are better able to judge the value of 
options when they are familiar and easy to imag
ine. Therefore, PtDAs describe what it is like to 
experience the physical, emotional, and social con
sequences of the procedures involved and the 
potential benefits and harms. Second, patients are 
asked to consider (either implicitly or explicitly) 
the positive and negative features that matter most 
to them. Although there is no clinical trial evidence 
that explicit methods are always needed, some 
developers directly engage patients in rating the 
personal value or importance of each attribute of 
the options. They argue that these exercises foster 
engagement, insight, and communication with the 
others involved. Other developers argue that 
implicit methods work just as well and are simpler. 
Moreover, decision scientists have demonstrated in 
nonmedical contexts that people are not good at 
predicting the intensity and duration of their feel
ings regarding future losses or gains. As has been 
demonstrated in the case of choosing household 
goods (jam, posters), people may also be more dis
satisfied with their choices if they explicitly con
sider each individual attribute of options rather 
than make an overall holistic judgment. This 
debate should be resolved in clinical trials involv
ing practitioners and patients facing real medical 
decisions.

3. Guidance in deliberation and communica-
tion: PtDAs are designed to improve patients’ con
fidence and skills by guiding them in the steps 
involved in decision making regarding the specific 
choices and showing them how to communicate 
values and personal issues to their families and 
practitioners. The PtDAs’ structure may provide 
this guidance implicitly in a stepbystep process, 
or there may be additional question lists or work
sheets for patients to use while discussing the 
options with their practitioners.

An international group of researchers, known 
as the Cochrane Review Team of Patient Decision 
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Aids, has registered more than 500 PtDAs in vari
ous stages of development. From this registry, 
publicly available PtDAs have been described in 
more detail and evaluated.

Do Patient Decision Aids Improve  
Decision Quality?

Over the past decade, there has been considerable 
debate about the definition of a “good decision,” 
when there is no single “best” treatment and 
choices depend on how patients value benefits ver
sus harms. Recently, the International Patient 
Standards Collaboration has reached agreement 
that PtDAs should improve the match between the 
chosen option and the features that matter most to 
the informed patient.

The PtDA helps patients recognize that a deci
sion needs to be made, know options and their 
features, understand that values affect the deci
sion, be clear about the option features that matter 
the most, discuss their values with their practi
tioner, and become involved according to their 
preferred style of interaction.

Angela Coulter has summarized 10 reviews of 
PtDAs. She concluded that they improve patients’ 
participation, increase knowledge of their treat
ment options and probable outcomes, and 
improve agreement between patients’ values and 
subsequent treatment decisions. The use of dis
cretionary surgery decreases without apparent 
adverse effects on health outcomes. A more 
recent update of the ongoing Cochrane 
Collaboration review supports Coulter’s conclu
sions. PtDAs were also shown to reduce the  
proportion of people who remained undecided 
postintervention and to improve feelings of being 
informed and clear about personal values. 
Exposure to PtDAs reduced not only the rates of 
discretionary surgery but also the rates of pros
tate cancer screening (using the prostatespecific 
antigen [PSA] blood test) and hormone therapy 
at menopause. PtDAs appeared to do no better 
than comparison interventions in affecting 
patients’ anxiety, satisfaction, and health out
comes. The degree of detail PtDAs require for 
positive effects on decision quality should be 
explored. The effects on persistence with chosen 
therapies and costeffectiveness need further 
evaluation.

How Does One Judge the Quality  
of Patient Decision Aids?

The International Patient Decision Aid Standards 
(IPDAS) is a collaboration of more than 100 
researchers, practitioners, stakeholders, and policy 
makers from 14 countries. These collaborators 
have arrived at a consensus on an internationally 
approved set of criteria to assess the quality of 
PtDAs. The criteria focus on the following: (a) essen
tial content (providing information, presenting 
probabilities, clarifying values, guiding delibera
tion and communication); (b) development (sys
tematic development process, balance, evidence 
base, plain language, disclosure); and (c) evaluation 
(decision quality). The endorsed criteria are sum
marized in a PtDA users’ checklist, which can be 
used as a guide to payers, practitioners, develop
ers, and researchers. 

The collaboration also identified areas for fur
ther research. For example, patients’ stories (first
person narratives) are commonly used in PtDAs, 
but there was no consensus on whether they 
should be considered an essential element. Although 
some patients may find stories more meaningful 
than factual information, they may bias patients’ 
decisions, divert them from the facts, or underrep
resent different patients’ points of view.

Another issue is the use of coaching, which is 
provided inperson, oneonone, by a trained per
son who is supportive but neutral in the decision. 
It may be given before or after using a PtDA or as 
part of its delivery. Although one trial demon
strated that coaching added value and costeffec
tiveness when women faced options for benign 
uterine bleeding, there was limited evidence of its 
incremental benefit.

A final issue involves the application of the 
IPDAS criteria in evaluating PtDAs. This includes 
the feasibility, efficiency, and standardized assess
ment of these criteria. As a placeholder until these 
issues are resolved, the toprated criteria from the 
checklist are being used in rating available PtDAs.

How Are Patient Decision Aids  
Used in Clinical Practice?

In North America, the use of PtDAs in call centers 
and public or health plan portals has expanded 
rapidly. For example, highvolume PtDA producers 
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estimate that PtDAs were accessed about 9 million 
times in 2006, mostly via the Internet.

The use of PtDAs as part of clinical care has had 
a much slower rollout. A recent systematic review 
identified health professionals’ most commonly 
perceived barriers to implementing shared decision 
making (SDM): (a) lack of applicability due to 
patient characteristics, (b) time constraints, (c) lack 
of applicability due to the clinical situation (e.g., 
emergency situations), and (d) perceived patient 
preferences for a model of decision making that 
does not fit an SDM model. Identified factors that 
facilitated implementation of SDM were as fol
lows: (a) the perception that SDM will lead to a 
positive impact on patient outcomes, (b) the per
ception that SDM will lead to a positive impact on 
the clinical process, (c) patients’ preferences for a 
model of decision making that fit an SDM model, 
(d) the motivation of health professionals, (e) the 
perception that SDM is useful/practical, and (f) the 
characteristics of the patient.

There are a few notable examples of implemen
tation in clinical care, including the following: 
(a) primarycare centers at Massachusetts General 
Hospital, the Dartmouth Hitchcock Medical 
Center (DHMC), the White River Junction Veterans 
Administration, 10 communitybased primary
care practices at the University of California at Los 
Angeles (UCLA), and the University of North 
Carolina; (b) numerous cancer care centers in 
Massachusetts and at the University of California 
at San Francisco, Allegheny General Hospital, and 
DHMC; and (c) orthopedic centers at DHMC and 
the Ottawa Hospital (Canada).

Delivery of decision support may be some com
bination of clinical consultation, counseling, provi
sion of PtDAs, and coaching. The sequence, 
combination, and professionals involved depend 
on the type of decision, the population, and the 
service context in which care is provided; these 
should be spelled out in clinical and care path
ways. For example, in the United Kingdom, several 
urology centers in the National Health Service 
have care pathways for benign prostatic hyperpla
sia and earlystage prostate cancer treatments that 
involve (a) a medical consultation with the urolo
gist to confirm the diagnosis and to clarify the 
options and roles in decision making; (b) referral 
to the urology nurse specialist who provides a 
PtDA about relevant treatments and a personal 

decision form that elicits decision quality (knowl
edge, values, and preferred treatment) and unre
solved decisional conflict (feeling uncertain, 
uninformed, unclear about values, unsupported); 
and (c) a followup coaching visit with the nurse 
specialist to discuss the patient’s decisional needs 
and next steps.

In the United States, the DHMC in Lebanon, 
New Hampshire, provides decision support through 
several pathways. First, the Center for Shared 
Decision Making at DHMC provides consultation 
and relevant PtDAs for patients dealing with a wide 
range of preferencesensitive medical decisions. 
Second, the Breast Cancer Program at DHMC has 
a specialized care pathway for women diagnosed 
with breast cancer. As part of the Shared Decision 
Making process, patients view a videobased PtDA, 
complete an online tool eliciting their postPtDA 
decision quality and unresolved decisional conflict, 
and then see the surgeon, who discusses the options. 
Quality of care is audited following the surgeon’s 
consultation at the time of actual treatment choice, 
using a decision quality audit tool that measures 
knowledge, values, and choice. Third, DHMC has 
adapted this specialized pathway to the decision 
support needs in orthopedic services (back, hip, 
and knee pain). In some cases, the care pathway is 
slightly altered. Patients see the surgeon first to 
determine clinical eligibility for options, then review 
a videobased PtDA and make a decision. As in the 
other models, quality of care is audited at the time 
of actual treatment choice.

In Canada, the Ottawa Hospital is beginning to 
embed decision support into its care pathways. For 
example, patients on the waiting list to see a sur
geon are screened for surgical eligibility by trained 
GPs or physiotherapists at an orthopedic intake 
clinic. Surgically eligible candidates use PtDAs and 
complete a personal decision form. Summarized 
data on clinical and decisional needs are forwarded 
to the surgeon if patients prefer surgery and to the 
referring physician if patients decline surgery.

Benefits and Barriers

PtDAs are adjuncts to counseling that inform, 
clarify values, and guide in deliberation and com
munication. They are superior to standard coun
seling in improving decision quality (making for 
informed, valuesbased decisions), eliminating 
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indecision, and increasing participation in decision 
making. They play a role in reducing overuse of 
discretionary options (surgery, PSA testing, meno
pausal hormones) that informed patients do not 
value. There are many barriers to widespread 
implementation that need to be overcome. Large
scale implementation programs are being devel
oped and evaluated.

Annette O’Connor

See also Decision Making in Advanced Disease; Shared 
Decision Making
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Patient rightS

Patient rights are strict claims made by persons 
seeking and using healthcare resources. Because 
an actual right obligates someone or some entity 
to protect or provide something, healthcare pro
fessionals and organizations are responsible for 
acknowledging, honoring, protecting, and sup
porting patient rights. At the core of the medical 
decisionmaking process are significant patient 
rights—for example, the rights to be treated 
respectfully, to participate in decisions affecting 
one’s health and future, and to have one’s personal 
medical information kept confidential. During the 
past 50 years, especially in North America and 
Western Europe, there has been significant devel
opment in identifying what should be included 
among patient rights.

Historical Development and Context

Multiple cultural and historical events and devel
opments have shaped the patient rights movement 
during the second half of the 20th century. One 
development was the Civil Rights Movement in the 
United States immediately after World War II. This 
movement aimed to abolish racial discrimination 
and segregation and to reassert the dignity and 
equality of all persons regardless of racial, cultural, 
or socioeconomic background. Based on the U.S. 
Declaration of Independence’s rights of “life, lib
erty and the pursuit of happiness,” the Civil Rights 
Movement and its core values emphasized dignity 
and respect owed to all persons and equal oppor
tunities and freedom for each person to live, work, 
be educated, and participate in society. 
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In the 1960s and 1970s, a second set of events 
leading to the patient rights movement were reve
lations that many persons had been abused as 
research subjects. Through the Nazi war crimes 
trials at Nuremberg (1945–1949), the world 
learned about the atrocities that occurred in 
Germany in the name of science before and during 
World War II. However, two decades after the war, 
as the medical research enterprise continued to 
expand, there was publication of instances of 
exploitation of vulnerable persons (e.g., those with 
mental disabilities, children, orphans, prisoners, 
African Americans) in the name of scientific 
advancement. The core principles of the Nuremberg 
Code for human research, focusing on voluntary 
consent and on research subjects’ sufficient knowl
edge and comprehension of proposed research 
projects, were being ignored. The outcry against 
this exploitation resulted in regulatory protections 
for research participants and a reemphasis on the 
rights of research subjects to be engaged in a vol
untary, informed consent process prior to research 
participation. In 1979, the Belmont Report listed 
and explained three fundamental ethical principles 
for governing research: respect for persons, benefi
cence, and justice.

A third development is captured by a set of 
court cases focusing on the rights of patients to 
make their own healthcare decisions, including 
the right to consent to or refuse medical treat
ment. For example, in 1972, the Circuit Court for 
the District of Columbia established an objective 
standard for disclosure in the informed consent 
process. In Canterbury v. Spence, this court recog
nized “the prudentpatient test” for disclosure of 
healthcare information. In essence, this patient
centered “test” is what a prudent person in the 
patient’s position would have wanted to know 
about the significant risks, harms, and potential 
benefits associated with the proposed procedure 
or treatment in order to make an informed deci
sion. In Roe v. Wade, the U.S. Supreme Court 
established a woman’s personal right to an abor
tion; the court justified this assertion by appealing 
to a right to privacy found in the U.S. Constitution. 
As a final example, the New Jersey Supreme 
Court, In re Quinlan, found that the constitu
tional right to privacy encompasses a patient’s 
right and decision to refuse medical treatment, 
especially when the degree of the treatment’s 

bodily invasiveness increases and the patient’s 
prognosis diminishes.

Negative and Positive Rights

Rights can be categorized as either negative or 
positive. Simplified, a negative right is the right of 
persons to be left alone or not to have something 
imposed on them. Consequently, reciprocal obliga
tions corresponding to negative rights are also 
negative. For example, a negative right guaranteed 
by the U.S. Constitution and Bill of Rights is the 
right to exercise one’s religion freely. The reciprocal 
obligation for governmental or other public agen
cies is not to interfere with this right through pro
cedures or systems that might impose a particular 
religion. Furthermore, because freedom of religion 
is a negative right, governmental agencies are not 
obligated to provide (and persons are not entitled 
to receive) resources by which they can practice 
their religion. An example of a positive right is the 
right to a speedy and public trial in criminal cases. 
Such a positive right requires the government to 
provide (and persons are entitled to have made 
available to them) mechanisms to receive what is 
promised—that is, a speedy and public trial.

In healthcare settings, patient rights can also be 
either negative or positive. Significant negative 
patient rights (i.e., of noninterference) include the 
right of privacy and the right to refuse treatment. 
The right to privacy is foundational to the ethical 
principle of autonomy and autonomous decision 
making. The right to refuse treatment is connected 
to the legal concept of battery, by which persons 
have the negative right not to have their persons 
intentionally touched without their permission or 
consent. However, the informed element of the 
informed consent process compels the positive 
patient right or entitlement to receive adequate 
and understandable information before making 
medical decisions. The next section examines spe
cific rights frequently seen when patient rights are 
listed and illustrates the dominant influence of 
negative rights.

Specific Patient Rights

Identifying and listing patient rights is now com
monplace. Some states (e.g., California, New York) 
have legislatively established statements or a Patient 
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Bill of Rights aimed at safeguarding individuals 
receiving healthcare services. The Medicare pro
gram, the World Health Organization, national 
healthcare associations and advisory commissions, 
diseasespecific advocacy groups, individual hospi
tals, longterm care facilities, and healthcare orga
nizations and systems have developed, published, 
and posted listings of patient rights. Based on many 
such listings, this section identifies and explains a 
core set of patient rights. As seen in the explana
tions below, many of these rights contain elements 
that are interinfluencing and overlapping.

Dignity, Respect, and Nondiscrimination

The right to be treated with dignity and respect 
is founded on the recognition that patients are 
vulnerable, have diminished power and authority 
in healthcare settings, and need to be protected 
from exploitation and discrimination. Treating 
patients with dignity and respect includes honor
ing personal privacy, appreciating and trying to 
meet spiritual or religious needs, accommodating 
cultural beliefs and practices, and ameliorating 
pain. The right not to be discriminated against 
derives from the ethical principle of distributive 
justice or fairness, requiring that patients with 
similar needs be treated similarly. Race, ethnicity, 
religious beliefs, sexual orientation, and socioeco
nomic background are rarely, if ever, relevant  
for the provision of quality treatment and care. 
However, these patient characteristics are relevant 
to patients’ experiences of care as respectful and 
dignified. A patient’s gender and age can frequently 
be relevant for determining some diagnoses and 
treatment plans; nevertheless, these patient charac
teristics should never be the basis for subquality 
care or undertreatment.

Information

Patients’ right to information facilitates and 
supports other rights. For example, patients who 
do not receive relevant, adequate, and current 
information about their care are not given due 
respect and subsequently are unable to participate 
in informed decision making. Information to which 
patients have a right includes knowing who their 
healthcare providers are; the nature, purpose, risks, 
benefits, and alternatives of proposed treatments 

or diagnostic procedures; and whether the pro
posed interventions are research or standard of 
care. Language barriers can significantly hamper 
patients’ abilities to exercise this right; conse
quently, some listings of patient rights include the 
right to language interpreters. The right to infor
mation also includes disclosure of medical mis
takes, especially if mistakes result in significant 
patient harms. The right to information is not lim
ited to medical information but includes informa
tion about the financial aspects of care and how 
anticipated outcomes of interventions will affect a 
patient’s quality of life.

Decision Making

The right to make one’s own healthcare deci
sions is fundamental to and well established in U.S. 
healthcare delivery. The ethical principle of patient 
autonomy or selfdetermination supports this right. 
Implied by this right is the belief that a patient has 
adequate cognitive skills (i.e., competence or  
decisionmaking capacity) to participate in the 
decisionmaking process. This right also implies 
not only that patients can and should authorize 
treatments but also that they can refuse treatments. 
This right does not allow patients to demand treat
ments or procedures that are medically unneces
sary. Therefore, the expertise of physicians and 
other healthcare professionals is essential for edu
cating patients about the proposed procedures and 
making medical recommendations. However, the 
right recognizes that patients also have expertise 
relevant to the decisionmaking process; that is, 
they are experts as to their own values, prefer
ences, wishes, and life goals. In pediatric care, this 
right to participate in decision making is extended 
to children able to understand ageappropriate 
healthcare information (usually at about age 6 or 
7); although these children lack the cognitive skills 
to consent to treatment, many can provide assent 
or agreement to treatment.

Privacy and Confidentiality

The right to personal privacy and to have health 
information held in confidence is supported by the 
ethical principle of respect for patient autonomy. 
Privacy not only implies noninterference in per
sonal healthcare decisions but also extends to 
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aspects of the healthcare environment, such as 
having one’s body appropriately shielded from 
others’ view whenever possible and having discus
sions about medical conditions conducted in pri
vate areas (not, e.g., in public areas such as 
elevators, corridors, and cafeterias) and only with 
those professionals who need to know. Some ele
ments of this right were codified in U.S. federal  
law in the Health Insurance Portability and 
Accountability Act (HIPAA). Under HIPAA, 
patients must authorize disclosure of their pro
tected health information; and they have the right 
to obtain copies of their medical records and sub
mit amendments if the medical records contain 
information with which patients disagree. HIPAA 
also requires healthcare institutions to maintain 
strict confidentiality through multiple procedural 
safeguards. The American Hospital Association’s 
(AHA’s) Patient’s Bill of Rights, published in 1972, 
included similar language regarding patient pri
vacy and confidentiality.

Quality Healthcare

The provision of healthcare is intended to ben
efit patients by promoting and maintaining health, 
curing diseases and disorders, and ameliorating 
pain and suffering. In essence, patients should be 
able to expect that healthcare professionals, with 
appropriate expertise in accord with their roles  
in the healthcare delivery process, will promote 
patients’ best interests and wellbeing. The ethical 
principles of beneficence and nonmaleficence sup
port this right and the expectation that healthcare 
professionals will consistently try to maximize the 
benefits of medical interventions and minimize 
harms and risks. To help promote and honor this 
right, healthcare organizations and professionals 
have the responsibility of engaging in continuous 
quality improvement processes so that systems are 
improved, efficiencies are maximized, patient safety 
is enhanced, and errors and near misses are 
reduced.

Access to Emergency Care

In the United States, there is no recognized  
general right to healthcare, although a few states 
(e.g., Oregon, Hawaii, Massachusetts) have  
made efforts to provide access to basic healthcare 

interventions for all their citizens. However, under 
the Emergency Medical Treatment and Active 
Labor Act (EMTALA), persons in the United 
States have a right of access to at least emergency 
treatment and care. EMTALA is a federal law 
requiring hospitals with an emergency department 
to assess and stabilize all patients who present to 
their facilities regardless of the patient’s ability 
to pay for services. Patients can be transferred to 
other facilities if the facilities where the patients 
initially presented do not have appropriate medi
cal or surgical expertise to meet their needs. Many 
patient bills of rights include a right of access to 
emergency care in accord with this federal man
date. Many patients in the United States, primar
ily because of their indigence or lack of health 
insurance, have access to healthcare resources 
only through emergency departments and there
fore present themselves to emergency departments 
even for nonemergency medical conditions.

Published Standards

In the second half of the 20th century, the patient 
rights movement experienced significant develop
ment and crystallization. In the process, the bal
ance of power and authority in medical decision 
making shifted in the direction of patients and 
away from the almost exclusive control of health
care professionals and organizations. A water
shed event reflecting this crystallization occurred 
in 1992, when the Joint Commission for Accre d
iting Healthcare Organizations (JCAHO) pub
lished its first set of standards on patient rights. 
However, more recently, some healthcare organi
zations have introduced language that also asserts 
patient responsibilities. For example, in recent 
years, JCAHO’s Patient Rights chapter and stan
dards have been revised and are now titled 
“Ethics, Rights, and Responsibilities”; and  
AHA’s Patient’s Bill of Rights has been replaced 
by a publication titled “The Patient Care 
Partnership: Understanding Expectations, Rights 
and Responsibilities.”

Martin L. Smith and Margot M. Eves

See also Bioethics; Discrimination; Informed Consent; 
Informed Decision Making; Models of Physician–
Patient Relationship
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Patient SatiSfaction

Patient satisfaction refers to the extent to which a 
patient is satisfied with the healthcare he or she 
receives. Because patient satisfaction is assessed by 
selfreports from the patient, it is often considered 
a patientreported outcome measure. Satisfaction 
can be assessed with care received in a variety of 
settings, such as ambulatory care, nursing home, 
hospital, and home health. The focus can be on 
care provided by health plans, provider groups, or 
individual physicians. Patient satisfaction is impor
tant because it provides the patient’s perspective 
on the care delivered and is associated with adher
ence to medical recommendations, allegiance to 
healthcare providers, and utilization of care.

Measurement

A direct assessment of patient satisfaction with care 
can be obtained by asking for an overall evalua
tion, such as “How satisfied are you with the care 
you have received during the past 6 months?” 
(response options: Very satisfied, Somewhat satis-
fied, Somewhat dissatisfied, Very dissatisfied). This 
direct approach is an efficient way to find out the 

bottomline perception of a healthcare consumer, 
but it provides no specific information about the 
basis for the perception. Similarly, one could use 
the approach used in the Consumer Assessment of 
Healthcare Providers and Systems (CAHPS®) sur
veys of asking patients to rate the care received on 
a 0to10 response scale, where 0 is the worst pos
sible care and 10 represents the best possible care. 
The CAHPS option elicits evaluations of care 
rather than satisfaction per se. But satisfaction and 
global ratings of care are very highly correlated and 
provide similar information.

Patient satisfaction is driven by the collective 
experience with aspects of care (e.g., my doctor 
listens carefully) weighted by the value or per
ceived importance of those aspects of care (e.g., it 
is very important that my doctor listen carefully to 
me). Most work elicits patient reports about care 
but does not assess value or importance of the 
domains of care because of response burden and 
the relative homogeneity in the importance ratings 
(i.e., domains assessed on standardized surveys 
tend to all be rated as important by consumers of 
healthcare). Reports about care are best elicited by 
asking how often positive and negative aspects of 
care occurred—for example, “How often did this 
doctor spend enough time with you?” or “How 
often did the clerks and receptionists at this doc
tor’s office treat you with courtesy and respect?”

Eliciting reports about whether and how often 
patients have specific experiences with care requires 
more items, but reports are less subjective and are 
easier to interpret and more useful for healthcare 
providers than satisfaction ratings or evaluations.

Core Reports of Care Domains

Healthcare is multidimensional, and evaluations  
of care need to capture the relevant dimensions. 
Patient assessment of technical quality of care 
should be avoided because patients are typically 
not a good source of this information. It is more 
appropriate to assess technical quality of care using 
expert consensus, such as the RANDUCLA appro
priateness method. Although the important domains 
of care for which patients are a good source of 
information can vary depending on the setting, the 
core elements across settings include access to care, 
how well providers communicate with patients, 
and courtesy and respect from office staff.
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The core domains of care account for a substan
tial portion of the variance in satisfaction and 
global ratings of care, with the access domain 
explaining a greater proportion of variance in 
global ratings of a health plan and the communica
tion domain accounting for a relatively larger pro
portion of variance in ratings of the doctor or 
other healthcare provider.

Uses of Data

Patient evaluations of care data are used to com
pare health plans, physician groups, individual 
physicians, hospitals, nursing homes, and other 
providers of care with one another. These data 
have been collected for reporting to patients who 
are making choices between different options and 
to providers who are trying to improve the care 
they deliver. They are also used by sponsors (e.g., 
health plans, Center for Medicare and Medicaid 
Services) to monitor the care delivered to the over
all target population and subgroups of the popula
tion. In addition, these data are used as a part of 
accreditation (e.g., National Committee for Quality 
Assurance) or as a part of payforperformance 
initiatives. In addition, these data are increasingly 
used by providers as a part of quality improve
ment efforts.

Reliability and Validity of Patient  
Evaluations of Care

Reliability refers to the extent to which consistent 
scores are obtained for the target (e.g., individual 
doctors) being evaluated. Reliability is estimated 
by partitioning the observed variance into between
target and withintarget variance. For example, the 
variance between physicians is compared with the 
variance within physicians (i.e., the extent to 
which different patients rate the same physician in 
a similar way) to estimate the reliability of patient 
evaluations of individual physicians. Extensive 
work has been conducted to ensure that patient 
evaluations of care meet accepted standards of  
reliability and validity.

Mode Effects

Patient satisfaction data are collected using self 
administered mail surveys, telephone or facetoface 

interviewers, and other modes of data collection 
(e.g., the Internet). Reports and ratings of care 
tend to be more positive when an interviewer is 
involved in the data collection. The likely explana
tion for this result is that the presence of an inter
viewer creates a socially desirable response bias. 
Because of potential mode effects, the same mode 
should be used consistently whenever possible, but 
in hardtoreach subgroups such as Medicaid ben
eficiaries, it is necessary to use a mixed mode (e.g., 
mail followed by phone) assessment to maximize 
the participation rate.

Response Tendencies

A recent study by Robert WeechMaldonado and 
colleagues found that Hispanics exhibited a greater 
tendency toward extreme responding to a 0to10 
rating scale than nonHispanic whites; in particu
lar, they were more likely than whites in commer
cial plans to endorse a “10,” and often scores of 4 
or less, relative to an omitted category of “5” to 
“8.” These findings suggest caution in the use of 
central tendency measures and the proportions of 
ratings on a 10point scale when examining racial/
ethnic differences in ratings of care. It is advisable 
to consider pooling responses at the top end (e.g., 
9 and 10) and lower end (e.g., 0–6) of the response 
scale when making racial/ethnic comparisons.

Case-Mix Adjustment

When comparing different providers of care, it is 
important to adjust for differences in the kinds of 
patients they treat that produce differences in 
reports and ratings of care that are unrelated to the 
quality of care delivered. Variables that are fre
quently adjusted for include age, education, and 
selfrated health because older, less educated, and 
more healthy respondents tend to rate their care 
more positively than younger, more educated, and 
less healthy respondents.

Proxy Reports

Proxy respondents tend to provide less positive 
evaluations of beneficiary healthcare experiences, 
especially for global ratings of care. When a proxy 
assists the target respondent in completing a sur
vey, the differences are similar but about half as 
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large. M. Elliott and colleagues found that reports 
from spouse proxy respondents are more positive 
than those from other proxies and are similar to 
what would have been reported by the beneficia
ries themselves.

Ron D. Hays

See also Models of Physician–Patient Relationship; 
Regret; Trust in Healthcare
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Pattern recognition

Pattern recognition is the identification and proper 
labeling of particular configurations of data (i.e., 
data patterns). The concept includes human and 
machinebased pattern recognition, but the latter 
has been receiving increasing attention in medi
cine due to advances in computer science and 
information technology.

Extracting Patterns From Data

The process of diagnosing or making prognostic 
assessments of disease processes has traditionally 

been performed by clinicians, who abstract com
mon features in patient data and label these pat
terns appropriately. These data abstractions are 
based on findings from anamnesis, physical exam, 
laboratory tests, and other adjunct diagnostic 
modalities such as imaging and electrophysiology. 
Each of these findings can be viewed at different 
abstraction levels, ranging from their instantiation 
in a single patient (e.g., “creatinine = 2.5 mg/dl”) 
to an abstract concept that can describe features 
found in certain types of patients (e.g., “high crea
tinine,” “renal failure”). Diseases or pathologic 
conditions are often defined based on higherlevel 
abstractions. Abstractions allow easier recognition 
of patterns in the data, as they help the diagnosti
cian ignore small, irrelevant differences that may 
originate from noise or from the collection of data 
unrelated to the recognition of patterns of interest. 
Some findings are themselves highlevel abstrac
tions (e.g., “dark urine”), which are often difficult 
to quantify.

Discovering regularities or configurations in 
data is often done at a high level of abstraction 
(e.g., a pattern of pneumonia given the type of 
opacity seen in a radiograph). While integration of 
lowlevel data is easily achieved by humans, com
puteraided pattern recognition algorithms may 
either directly use the most granular, lowlevel data 
(e.g., pixel graylevel intensity) or use these data to 
first obtain higherlevel abstractions and subse
quently integrate this information into diagnostic 
or prognostic categories. For a computer algo
rithm, categorizing lowlevel data into intermediate 
or highlevel abstractions may be more difficult 
than integrating highlevel abstractions to make a 
classification. For example, determining that a col
lection of white pixels constitutes a “condensation 
in the left lower lobe” of the lung requires the algo
rithm to perform segmentation of the image and 
determine the anatomic location of the abnormal 
finding. Humans can provide this type of informa
tion easily, but a model that uses raw data to clas
sify pixel patterns into this type of highlevel 
abstraction may not be very successful. However, a 
computer algorithm can easily integrate different 
types of highlevel abstractions, such as “condensa
tion in the left lower lobe” and “high tempera
ture,” into a model that helps diagnose pneumonia, 
provided that enough examples are available. For 
this reason, it is common to find computerbased 
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applications that integrate highlevel abstractions. 
Computerbased algorithms for pattern recognition 
can be didactically divided into two types: unsuper
visedlearning and supervisedlearning algorithms.

Unsupervised Learning

There are situations in which patterns in data 
are either not known or not labeled in advance. 
Strategies and methods that are used to organize 
and extract patterns from these data are called 
unsupervised because there is no way to guide the 
pattern recognition process so that it classifies the 
data into known categories. Cluster algorithms are 
a good example of unsupervisedlearning models. 
They use measures of similarity or dissimilarity in 
the data to group cases into unlabeled categories 
or clusters. By inspecting these clusters, it may or 
may not be possible to label the clusters using 
known categories. Unsupervised learning is usually 
associated with stages of research in which there is 
less knowledge about the process being studied but 
there is an indication that certain regularities exist. 
It is a critical process for medical decision making, 
often performed by human experts. For example, 
in the initial phases of the AIDS epidemic, there 
was only recognition of an unusual pattern of 
immunodeficiency, which was later determined to 
result from infection by HIV and properly labeled. 
The initial recognition of the regularity or abnor
mal pattern was akin to the utilization of an 
unsupervisedlearning method but performed by a 
human expert. Once the pattern was known and 
well described, cases could be properly labeled, 
and supervised models were constructed to catego
rize patients into diagnostic and prognostic catego
ries. Those models were commonly developed with 
computerbased supervisedlearning algorithms.

Supervised Learning

Supervised learning refers to a class of modeling 
strategies and methods that characterize known 
patterns by “learning” or fitting the parameters of 
a given model to example data. A logistic regres
sion model is a good example of supervised learn
ing. Logistic regression defines a function that best 
describes or predicts known data patterns given 
patientspecific information (e.g., patients who are 
likely to survive when given a certain treatment). 

Supervisedlearning models of this type are called 
classifiers, as the outputs (or dependent variables) 
consist of welldefined categories. These models 
recognize patterns in the data by combining input 
(or independent variable) data in different ways.

The most common supervisedlearning algo
rithms in clinical medicine are those based on statis
tical regression or classification trees. They are used 
in a variety of domains and are the basis for popu
lar predictive models for assessing risks for cardio
vascular disease, breast cancer, mortality in intensive 
care unit settings, and so on. While logistic regres
sion models use a simple function, artificial neural 
networks, classification trees, support vector 
machines, and several other types of supervised
learning models use more complex functions. Their 
potential advantage over simple regression algo
rithms is that the model developer does not need to 
manually enter interaction terms to model complex 
problems in which the data are not linearly sepa
rable. Classification trees, artificial neural networks 
(ANNs) with a hidden layer, support vector machines 
(SVMs) that use nonlinear kernels, and a variety of 
other machinelearning models can model complex 
functions and do not have this limitation. However, 
their main disadvantage is that they have no inter
pretable coefficients as in logistic regression models, 
and hence, they are sometimes considered to be 
“black boxes.” Furthermore, the relative paucity of 
cases compared with the abundance of measure
ments per case, coupled with the use of models that 
have too many possible parameters, makes them 
very prone to the phenomenon of overfitting. In this 
situation, models can almost perfectly fit the “train
ing” or example data but often do not generalize 
well to previously unseen cases. However, as medi
cal data sets grow larger in the number of samples 
relative to the number of variables per case, the 
potential advantages of more complex models are 
expected to be realized.

There is no good way to predetermine which 
pattern recognition method will perform best for a 
certain problem, so a good practice is to always 
establish a simple baseline model against which 
more complex models can be compared. For 
supervisedlearning classification tasks, this base
line model has been the logistic regression model 
without interaction terms.

Lucila Ohno-Machado
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PerSonality, choiceS

Personality specifies a stable set of individual 
psychological characteristics that influence think
ing, motivation, and behavior in various situa
tions. Personality has to be distinguished from 
individual differences due to, for example, cul
tural heritage or socioeconomic class. Rather 
than being solely determined by the psychosocial 
environment, personality is thought to be the 
result of an interaction between genetic and envi
ronmental factors that lead to an underlying 
behavioral disposition and thus constitutes the 
psychological uniqueness of a human being. A 
current personality concept is the Big Five, a set 
of five independent traits describing a person’s 
character: (1) openness to experience, (2) consci
entiousness, (3) extraversion, (4) agreeableness, 
and (5) neuroticism. Personality has been pro
posed as a factor affecting the behavior of 
patients seeking medical treatment, especially 
with regard to treatment adherence, participation 
in healthcare decision making, and treatment 
choice. The following sections describe the extent 
to which personality plays a role in these areas of 
treatment delivery.

Selected Personality Traits

Comprehensive personality concepts such as the 
Big Five that claim to be able to describe all relevant 

personality differences have to be distinguished 
from single, usually theorybased personality traits 
that describe a specific attribute such as general
ized selfefficacy, locus of control, or optimism. Of 
the Big Five traits, openness to experience describes 
imaginative, intellectually curious people versus 
straightforward, conservative people less interested 
in change. Conscientious people are disciplined, 
hardworking, orderly, and thorough. Extraversion 
describes people seeking stimulation and the com
pany of others as well as showing initiative and 
being action oriented. An agreeable person is 
someone who is compassionate, cooperative, and 
interested in the wellbeing of others but may shy 
away from conflict. Neuroticism describes a per
son who often experiences negative feelings and 
views situations as potentially threatening and dif
ficult, which impedes his or her capacity to deal 
with emotional difficulties. With regard to single 
personality traits, generalized selfefficacy describes 
the ability to generally handle difficult situations 
well. Internal locus of control describes the belief 
that one personally can influence situations, 
whereas external locus of control stands for the 
conviction that others have a greater control over 
a given situation than oneself. Optimism describes 
the tendency of an individual to have a positive 
outlook on events and the belief that things will 
take a positive turn.

Personality and Behavior

Personality is only one factor affecting a person’s 
behavior in a given situation. In addition, a per
son’s behavior is also determined by factors such 
as beliefs, expectations, prior experiences, roles, 
and situational constraints or incentives. Thus, the 
importance of personality in determining an indi
vidual’s behavior in a given situation will be lim
ited. On the other hand, personality does predict 
general behavioral tendencies such as stresscoping 
behavior. An active, problemfocused coping style, 
for instance, is far more likely in individuals high 
in extraversion and low in neuroticism. Health 
behaviors such as exercise typically are determined 
by beliefs regarding the benefits of this particular 
behavior, the opinion of peers with regard to it, 
and the extent to which the individual experiences 
control over the behavior. With the exception of 
generalized selfefficacy and conscientiousness, 
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personality generally plays less of a role in predict
ing health behaviors.

Personality and Treatment Adherence

Treatment adherence describes the extent to which 
a person follows the prescribed or advised medical 
treatment. A related term is treatment compliance, 
though this term may have a more paternalistic 
connotation. Treatment adherence is considered an 
important factor in medical treatments as failure  
to adhere to treatment may render it ineffective. 
Several factors influence the extent to which a 
patient adheres to his or her treatment, such as 
understanding of prescriptions or medical advice, 
memory, the occurrence and extent of side effects, 
social support, the patientphysician relationship, 
and the personality variables conscientiousness and 
selfefficacy. Studies show that conscientiousness, 
but no other Big Five personality trait, predicts 
adherence to medical treatment in renal dialysis 
patients, HIVpositive patients, and patients with 
high cholesterol. Selfefficacy beliefs, on the other 
hand, tend to predict adherence to behavioral treat
ments and exercise as the individual potentially has 
to actively overcome obstacles to initiate and main
tain the required behaviors. Generally, however, 
personality variables only play a limited role in the 
extent of treatment adherence.

Personality and Treatment Choice

Treatment preference is the extent to which a cer
tain treatment is preferred over another therapy; 
treatment choice describes the patient’s selection of 
a treatment when similarly efficacious treatments 
are available. Personality differences have been 
detected between patients opting for complemen
tary and alternative medicine (CAM) and those 
patients relying on conventional medicine. Patients 
choosing CAM for the treatment of chronic pain 
or cancer have been described as less agreeable, 
more conscientious, and having a greater fighting 
spirit and a higher level of locus of control. In 
other areas, personality tends to have only a small 
influence on the patient’s treatment choice. For 
example, no differences were found between 
patients choosing radical prostatectomy (i.e., the 
surgical removal of the prostate gland) and radia
tion therapy, nor were differences found between 

women choosing hormone treatment or psycho
logical treatment for hot flashes. Also, the prefer
ence of passive therapies such as massages over 
active therapies such as exercise for the treatment 
of chronic pain is independent of personality. 
Obviously, other factors such as disease concerns, 
the physician’s recommendations, or personal 
experience with a certain treatment are more rele
vant than personality for the patient’s decision
making process.

Personality and Participation in  
Healthcare Decision Making

Healthcare decision making refers to the choice 
and planning of treatment. Involvement of the 
patient in this decisionmaking process generally 
will improve treatment adherence and outcome 
and is therefore held to be advantageous. However, 
a patient’s interest in participating in medical  
decision making varies. Next to factors such as 
patientphysician communication, the personality 
of the patient plays a role in the extent to which 
he or she will wish to participate. Patients inter
ested in active decision making are more conscien
tious, more open to experience, less agreeable, and 
less neurotic and have a higher internal locus  
of control. On the other hand, shy patients and 
patients with low selfefficacy and a tendency to 
believe that others know better will be more com
fortable if the medical decisions are made by their 
physician. Thus, doctors should acknowledge 
these differences in their communication style and 
treatment efforts.

Gerhard Blasche

See also Advance Directives and EndofLife Decision 
Making; Decision Making and Affect; Decision
Making Competence, Aging and Mental Status; 
Decision Making in Advanced Disease; Decisions 
Faced by Patients: Primary Care; Informed Decision 
Making; Patient Decision Aids
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PerSon traDe-off

The person tradeoff (PTO) is a method to elicit 
social preferences that has been advocated for use 
in costutility analyses instead of elicitations that 
yield individual utilities for different health states. 
The PTO is thought to incorporate societal con
siderations about how treatment benefits are dis
tributed across a population rather than simply 
maximizing the health benefit of treatments. 
Allocation decision makers are increasingly 
acknowledging the need to incorporate social 
value judgments of distributive effects in alloca
tion decisions and are increasingly turning to the 
public for input. Thus, the PTO elicitation method 
is intended to derive social preference values in 
order to incorporate consideration of the distribu
tive effects of treatment benefits in an allocation 
setting. It is unique in embracing considerations of 
distributive justice. The following sections describe 
the PTO elicitation method, the rationale for the 
method, its application, and its challenges.

Elicitation Method

A typical PTO elicitation asks respondents to imag
ine that they are a decision maker faced with  
having to choose between two equally expensive 
healthcare treatment programs that improve qual
ity of life or save lives for varying groups of patients. 
There is only enough money to fund one of the two 
mutually exclusive programs. Respondents must 

decide which program they would fund. Fixing the 
number of patients in one of the programs, respon
dents are asked how many patients would need  
to be treated to make them indifferent between the 
two programs. For example, Program A might 
extend the life of 100 healthy individuals for 1 year. 
Program B might cure 100 individuals of a chronic 
health condition. Many people may choose to fund 
Program A because of the imperative to save lives. 
If this is the case, respondents are then asked how 
many patients must be cured in Program B for it  
to be equally good as Program A. For example, 
respondents may give a median value of 1,000. 
Thus, 1,000 individuals would need to be cured of 
the chronic health condition to make the program 
equally good as another program that saves the 
lives of 100 healthy people.

Computing Preference Weights

Similar to individual utilities, preference weights 
can be computed from PTO responses on a 0to1 
scale, where 0 is equal to death and 1 is perfect 
health. If Ai is the baseline number of individuals 
treated in Program A and Bi is the number of indi
viduals who must be treated in Program B for it to 
be equally good as Program A, then a preference 
weight for Program B (WB) can be computed as

Thus, in the example above, the preference weight 
for curing the chronic health condition is 0.9 (1 – 
100/1000). The particular equation used to derive 
a preference weight depends on the elicitation and 
the baseline used for comparison. For example, 
some elicitations compare curing one chronic (or 
acute) health condition versus another. To com
pute weights directly on a 0to1 scale, a compari
son must be made with saving a life or preventing 
the onset of a condition. Weights can also be com
puted indirectly by “chaining” a series of elicita
tions. However, this approach has not been tested 
empirically and may introduce new sources of 
biases into the estimates.

Mode of Elicitation

PTO elicitations are difficult for people to 
comprehend; it is difficult to know how many 

WB = 1− Ai

Bi
:



873Person Trade-Off

individuals would have to be treated for a pro
gram to be equally good as another program 
treating another group of individuals under any 
circumstance. When asked, most respondents 
agree that the elicitation is hard. Some researchers 
advocate eliciting values through facetoface 
interviews because responses to paper surveys 
have yielded highly inconsistent responses. The 
interviewer is able to explain the task more fully, 
answer questions, and help ensure that the respon
dent understands the task; the respondent may 
make more effort to give a thoughtful response; 
and the interviewer can check the responses and 
resolve inconsistencies if needed. One study found 
no difference, however, between inperson inter
views and a computerized elicitation program 
administered over the Internet. The computerized 
program mimicked an inperson interview with 
comprehensive instructions, help, and tips and 
incorporated simple consistency checks.

Little empirical support exists for identifying 
an optimal search routine to elicit the point of 
indifference. Techniques include using an open
ended question (“Enter the number of individuals 
who would need to be treated”), a pingpong 
search procedure (numbers of individuals are 
traded back and forth between high and low val
ues in an iterative search to close in on an indiffer
ence point), or titration (values are incrementally 
increased or decreased until the point of indiffer
ence is reached).

Rationale

Allocation decisions based on the results of cost
effectiveness analyses that use qualityadjusted life 
years (QALYs) derived from individual utilities for 
treating various health states assume that all QALY 
distributions are equally valued. A small number 
of people gaining a large number of QALYs is val
ued equally as a large number of people gaining a 
small number of QALYs. However, many people, 
including bioethicists, are concerned that this 
approach does not support a just distribution of 
healthcare treatment benefits because it fails to put 
more weight on people who are worse off, places 
more value on saving the lives of healthy individu
als than individuals with a debilitating health con
dition, and does not put a sufficiently high priority 
on treating individuals in need.

Erik Nord was an early proponent of the PTO 
elicitation method, proposing that societal prefer
ence weights could be used to compute QALYs 
gained under treatment programs instead of indi
vidual utilities. Although the PTO method has 
intuitive appeal, there is no formal underlying 
theory to support it. Its choicebased property 
appeals to economists as a way to reveal prefer
ences for a good not available in the market; how
ever, choices are made in a social context, and 
thus, economic theory related to consumer choice 
cannot apply. It does have a hypothetical advan
tage in that it asks respondents to make tradeoffs 
between groups of people, which mimics actual 
allocation decisions.

Elicitations From Individual Utilities

Numerous studies have shown striking differ
ences in preferences elicited using the PTO method 
versus methods eliciting individual utilities. 
Differences are most striking when lives are at 
stake. In general, respondents do not want to dis
criminate between groups of individuals when 
lives are at stake; they more frequently take a soci
etal (rather than personalized) perspective when 
responding and often place more value on curing 
people who are worse off than would be indicated 
by the gain from treatment.

Challenges

A number of challenges continue to plague the 
complex task of eliciting values from respondents.

Refusals

Respondents can give one of two types of refus
als: (1) equivalence refusals, where the two treat
ment programs under consideration are equal in 
value, or (2) offscale refusals, which occur when 
respondents give an inordinately large point of 
indifference. For example, a respondent may give 
an equivalence refusal by saying that a program  
to cure foot numbness may be equally good as 
another that cures paraplegia. Alternatively, the 
respondent may give an offscale refusal by saying 
that 6 billion individuals would need to be cured 
of foot numbness for the program to be equally 
good as the one curing paraplegia. The PTO, as 
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with individual utility elicitation methods, is 
plagued by refusal responses. Across many studies, 
12% to 91% of responses have been identified as 
equivalence refusals, the most common type of 
refusal. Offscale refusals have accounted for 4% 
to 19% of responses.

In some circumstances, refusals are appropri
ate. The most common example of this situation 
is when respondents place equal value on saving 
the lives of healthy individuals and individuals 
with a debilitating health condition. On the other 
end of the scale, offscale refusals can occur 
when a program curing a very minor condition is 
compared with a program for a seriously debili
tating condition. In fact, the number of equiva
lence refusals monotonically increases as severity 
of the health conditions in the two groups of 
individuals decreases, and vice versa for offscale 
refusals. However, many refusals arise because of 
other effects that are described in the following 
sections.

Elicitation Method Effects

Ideally, PTO responses would not be influenced 
by the method of elicitation. However, ample evi
dence exists that the way the questions are posed 
influences responses. Particular attention has been 
paid to the influence of framing on the proportion 
of refusals. Equivalence refusals are minimized 
when the elicitation emphasizes the constraint of 
money and that choosing one program over 
another will result in a group of individuals not 
getting treatment.

Careful consideration must be given to what 
comparisons respondents are expected to make. 
For example, if Program A extended the life of 100 
healthy individuals by 1 year and Program B 
extended the life of 100 individuals with a debili
tating health condition for 1 year, many respon
dents would call them equivalent because the 
decision to save lives should not be based on prior 
health condition. If the comparison were varied so 
that Program B would cure 100 individuals with a 
debilitating health condition who will live another 
year either way, respondents might place higher 
value on Program A because lives will be saved. If 
Program B were varied yet again, where 100 indi
viduals would avoid contracting the debilitating 
health condition, responses are likely to change yet 

again. Mathematically, responses in all three elici
tation scenarios should be the same. However, 
different framing evokes different ethical consider
ations and other unknown psychological phenom
ena, affecting how people respond to elicitations.

Influence of Individual Attributes

Paradoxically, respondents who say the elicita
tion is hard are less likely to give equivalence refus
als. These respondents are more likely to give 
offscale refusals, however. Respondents who are 
outraged at the idea of having to choose one treat
ment program over another, have belowmedian 
education, or have belowmedian numeracy are all 
more likely to give an equivalence refusal.

Internal Consistency

A number of problems have been found with 
numeric responses to PTO elicitations. The good 
news is that respondents are generally ordinally 
consistent—indifferent points are consistent with 
rankings of health conditions and across varying 
baseline group sizes. In addition, PTO responses 
do appear to yield a consistent set of core values 
for a range of health states that incorporates dis
tributive concerns when compared with measures 
of individual utility.

However, numeric indifferent points vary based 
on the size of the baseline group of individuals 
being considered. In the earlier examples, 100 indi
viduals were in the baseline group. If this number 
is varied downward or upward, indifference points 
change. More work is needed to understand why. 
Perhaps responses are rational and vary because 
the marginal value of personyears between the 
two programs changes based on quantity. Questions 
also remain about other implicit underlying 
assumptions of PTO preferences. For example, is 
there diminishing marginal value for years of life 
gained? Does the marginal rate of substitution 
of healthy individual personyears for disabled 
personyears vary? Answers to these questions 
remain elusive.

Laura J. Damschroder

See also Bias; CostUtility Analysis; DisabilityAdjusted 
Life Years (DALYs); Equity; QualityAdjusted Life 
Years (QALYs); Utility Assessment Techniques



875Pharmacoeconomics

Further Readings

Damschroder, L. J., Baron, J., Hershey, J. C., Asch, D. A., 
Jepson, C., & Ubel, P. A. (2004). The validity of 
person tradeoff measurements: Randomized trial of 
computer elicitation versus facetoface interview. 
Medical Decision Making, 24(2), 170–180.

Damschroder, L. J., Roberts, T. R., Goldstein, C. C., 
Miklosovic, M. E., & Ubel, P. A. (2005). Trading 
people versus trading time: What is the difference? 
Population Health Metrics, 3(1), 10.

Damschroder, L. J., Roberts, T. R., ZikmundFisher, B. J., 
& Ubel, P. A. (2007). Why people refuse to make 
tradeoffs in person tradeoff elicitations: A matter of 
perspective? Journal of Medical Decision Making, 
27(3), 266–280.

Damschroder, L. J., ZikmundFisher, B. J., & Ubel, P. A. 
(2005). The impact of considering adaptation in 
health state valuation. Social Science & Medicine, 
61(2), 267–277.

Green, C. (2001). On the societal value of health care: 
What do we know about the person tradeoff 
technique? Health Economics, 10(3), 233–243.

Mansley, E. C., & Elbasha, E. H. (2003). Preferences and 
person tradeoffs: Forcing consistency or inconsistency 
in healthrelated quality of life measures? Health 
Economics, 12(3), 187–198.

Nord, E. (1995). The persontradeoff approach to 
valuing health care programs. Medical Decision 
Making, 15(3), 201–208.

Nord, E. (1999). Cost-value analysis in health care: 
Making sense out of QALYs. Cambridge, UK: Press 
Syndicate of the University of Cambridge.

PintoPrades, J. L., & AbellanPerpinan, J. M. (2005). 
Measuring the health of populations: The veil of 
ignorance approach. Health Economics, 14(1), 69–82.

Salomon, J. A., & Murray, C. J. (2004). A multimethod 
approach to measuring healthstate valuations. Health 
Economics, 13(3), 281–290.

PharmacoeconomicS

Pharmacoeconomics is a field of study that simul
taneously considers the clinical consequences and 
costs attributed to the use of pharmaceutical prod
ucts and services. Today’s healthcare professionals 
encounter challenges determining optimal clinical 
and humanistic outcomes that minimize economic 
impacts on both individuals and society. By using 

pharmacoeconomic principles, analytical meth
ods, and data, decision makers, including health
care providers, payers, policy makers, and patients, 
can make informed medical decisions regarding 
optimal pharmaceutical care as well as allocations 
of scarce medical and financial resources.

History

Pharmacoeconomics consists of two root words: 
pharmaco and economic. The word pharmaco 
comes from the Greek word pharmakon, which 
means poisons or drugs. The word economic 
comes from two Greek words: (1) oikos, meaning 
the household or family estates, and (2) nomos, 
meaning rules, natural laws, or laws. As these root 
words imply, pharmacoeconomics derives its theo
retical framework from principles of economics 
and social sciences and integrates them with phar
maceutical sciences.

Pharmacoeconomics is sometimes viewed as a 
subdiscipline of health economics. The basic con
cepts of economic analyses in pharmacy were 
introduced in the 1970s, and the foundation of 
pharmacoeconomics was set in the 1980s. William 
McGhan, C. R. Rowland, and J. Lyle Bootman at 
the University of Minnesota introduced costbenefit 
analysis and costeffectiveness analysis to phar
macy students as early as 1976, published the con
cepts of economic analysis in pharmacy in the 
American Journal of Hospital Pharmacy in 1978, 
and reported the first costbenefit analysis related 
to pharmaceutical care in 1979. The term pharma-
coeconomics was first introduced in 1987 in an 
article titled “Postmarketing Drug Research and 
Development,” by Raymond Townsend, who advo
cated the need for pharmacoeconomic research. 
Later, Bootman, Townsend, and McGhan edited a 
book titled Principles of Pharmacoeconomics, 
which is the first textbook in this discipline.

In the 1970s, pharmacoeconomic education and 
research in the United States were developed for 
graduate students and researchers. Since the 1990s, 
more and more pharmacy schools include this dis
cipline as an elective course in the professional 
pharmacy curriculum. Recent surveys indicate that 
80% of pharmacy schools in the United States offer 
pharmacoeconomics at the professional level and 
52% of pharmacy schools outside the United States 
offer this course at either the graduate or the  
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professional level or both. Outside the academic 
field, there has been an increase in clinical applica
tions of pharmacoeconomic analysis to facilitate 
medical decision making. This indicates that clini
cians are getting more involved in pharmacoeco
nomic research. Overall, pharmacoeconomics  
has received more attention clinically and globally 
among researchers and healthcare professionals 
and is becoming an important part of the pharmacy 
curriculum.

Pharmacoeconomic Research

Identification and Measurement of Outcomes

Pharmacoeconomic research identifies, mea
sures, and evaluates clinical, humanistic, and eco
nomic outcomes simultaneously among competing 
therapeutic alternatives of interest. Outcomes  
represent the overall consequences from multiple 
causes. Therefore, the portions of outcomes attrib
uted by the interested alternatives must be prop
erly and articulately identified. This requires a 
deep understanding of the topic of interest and suf
ficient scientific training to identify relevant sources 
of causes. Often, outcomes cannot be directly mea
sured, so a surrogate will be used or a modeling 
technique can be performed to reasonably estimate 
or predict outcomes.

Outcomes are frequently classified as economic, 
clinical, or humanistic in the discipline of pharmaco
economics. Economic outcomes are measured as 
resources utilized, which are then assigned monetary 
values. Costs are considered differently in terms of 
perspective (e.g., patients, healthcare providers, 
thirdparty payers, or society), type (e.g., direct 
medical, direct nonmedical, indirect, intangible), 
services received (e.g., medications, professional ser
vices, personnel, facility), sources of measurement 
(e.g., actual, estimated), and other (e.g., time differ
ence, foreign exchange). Because of the different 
considerations of costs, the comparability and gen
eralizability of pharmacoeconomic data are often 
arguable. Therefore, economic outcomes must be 
compared and interpreted with caution.

Clinical outcomes normally refer to clinical end 
points of interest. The selection of clinical end 
points and time period considerations depends on 
the nature of the conditions being studied, the tar
get population to which study results apply, and 

clinical judgments where sufficient effects can be 
captured. For example, it may take decades for 
development of osteoporosis in the general popu
lation but only months for druginduced osteopo
rosis to develop; women have higher prevalence 
and incidence rates of osteoporosis than men; and 
fracture rates due to osteoporosis may be more 
appropriate than values of bone mineral density 
(BMD) as clinical outcomes in pharmacoeconomic 
analysis. Appropriate measurement of clinical out
comes must be able to translate to medical decision 
making in clinical practice.

Humanistic outcomes, including healthrelated 
quality of life and patient preference and satisfac
tion, receive much attention nowadays yet are 
more difficult to be quantified and measured than 
economic and clinical outcomes. This type of out
come, recognized as a patientreported outcome, is 
relatively subjective. The development of instru
ments involves a very complex process of psycho
metrics and validation, so that instruments measure 
a wide spectrum of domains (i.e., physical health/
functioning, mental health/functioning, and general 
health/wellbeing) and are “responsive” (i.e., capa
ble, sensitive, and specific) to capture clinical changes 
over time or subtle differences in humanistic out
comes. Instruments that have been designed for 
measuring general health profiles include the Medi
cal Outcomes Study Short Form (MOSSF36), 
EuroQOL (EQ5D), Health Assessment Ques
tionnaire (HAQ), Health Utilities Index (HUI), 
Nottingham Health Profiles, and Sickness Impact 
Profile (SIP). The general instruments may not be 
responsive enough to subtle changes in respondents 
with specific conditions, so diseasespecific or pop
ulationspecific instruments have been developed. 
Examples of specific instruments are the Minnesota 
Living With Heart Failure Questionnaire, Quality 
of Life in Epilepsy (QOLIE), American Urological 
Association Symptom Index (AUASI), European 
Organization for Research and Treatment of Cancer 
(EORTC QLQC30), Crohn’s Disease Activity 
Index (CDAI), Arthritis Impact Measurement Scales 
(AIMS), and West HavenYale Multidimensional 
Pain Inventory (WHYMPI or MPI).

Evaluation and Methodology

It is a unique feature that pharmacoeconomics 
integrates clinical outcomes measures along with 
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financial and economic theories and techniques. 
Historically, the typical techniques used in phar
macoeconomics include costminimization analy
sis (CMA), costeffectiveness analysis (CEA), 
costbenefit analysis (CBA), and costutility analy
sis (CUA). The main difference among these tech
niques is the unit of outcomes measurement for 
analysis. For example, CMA evaluates cost differ
ences, CEA evaluates costs per natural unit of 
outcomes, CBA evaluates net benefits where all 
outcomes have been assigned monetary values, 
and CUA evaluates costs per quality of life 
changed. Additional analyses include costof 
illness analysis, qualityoflife assessment, and 
disease state management. These analyses are fre
quently embedded within decision analysis for 
medical decision support.

These types of outcomes measures often encoun
ter a degree of uncertainty, and therefore, more 
information is needed for medical decisions. There 
are four sources of uncertainty:

 1. Methodological uncertainty comes from the 
disagreement among analysts who use different 
analytical methods in terms of definition, 
inclusion, measurements, and valuation of 
outcomes in the analysis, so the study results 
may not be directly comparable.

 2. Parameter uncertainty refers to uncertainty of 
model inputs (parameters). Sampling variation 
from different inclusion/exclusion criteria and 
sample characteristics is also classified as 
parameter uncertainty.

 3. Modeling uncertainty includes uncertainty due 
to model structure and the whole modeling 
process. Basically, model analysts must explicitly 
describe study methods in detail so that the 
sources of uncertainty can be identified 
accordingly.

 4. Generalizability implies the uncertainty of 
extrapolating study results to the general target 
population. Assumptions and limitations should 
also be assessed when results are interpreted. 
The use of a “reference case” of core methods is 
advocated for handling methodological 
uncertainty and makes possible comparisons of 
results among studies using different analytical 
methods.

Uncertainty in pharmacoeconomics research is 
usually handled by sensitivity analysis. Oneway 
sensitivity analysis varies values of one key vari
able at a time to evaluate the impact of this par
ticular variable on outcomes of interests and is the 
most frequently used technique. Twoway sensitiv
ity analysis varies values of two key variables at 
the same time, and multivariate sensitivity analysis 
simultaneously varies values of multiple key vari
ables. The larger the number of variables exam
ined, the more complex the calculations involved 
in the sensitivity analysis. Empirically, multivariate 
sensitivity analysis is performed by using tech
niques of modeling and simulations, such as sec
ondorder Monte Carlo simulations. Interested 
readers may review corresponding topics in this 
encyclopedia for more details on analytical tech
niques. In any case, pharmacoeconomists must 
continuously adopt existing techniques and 
approaches from other disciplines and develop 
methodology for better research practice.

Interpretations and Presentation

The results of pharmacoeconomic analysis must 
be comprehensible to readers and decision makers 
with different levels of backgrounds. The informa
tion must be conveyed with transparent mani p
ulations, sufficient details, and a summary in the 
simplest form so that informed medical decisions 
can be made accordingly. Transparency in method
ology is especially important in modeling studies 
where assumptions, simplifications, and parameter 
settings may alter the interpretation and generaliz
ability of study results. Some peerreviewed jour
nals, such as PharmacoEconomics and British 
Medical Journal, have published checklists or 
goodpractice guidelines for published articles in 
economic studies.

Pharmacoeconomic results can be presented in 
many ways. The most common presentation in 
costeffectiveness analysis is the incremental cost 
effectiveness ratio (ICER), which is the additional 
cost needed or incurred to have a unit change of 
effectiveness in an alternative compared with the 
reference or control group, which is usually the 
standard care for the condition of interest. Another 
example of presentation in costbenefit analysis for 
decision makers is willingness to pay (WTP), 
which is the ceiling cost or maximal allowance for 
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the difference between two alternatives. Along with 
the WTP approach, acceptability curves are figure 
presentations of estimated possibilities of outcomes 
given various values of WTP. Additional informa
tion on probabilities of outcomes is especially use
ful to a variety of readers and decision makers 
evaluating different scenarios.

Assessment of Pharmacoeconomic Research

Several points are recommended for readers to 
assess the quality of pharmacoeconomic research. 
The checklist includes (a) the appropriateness of 
the title indicating key components of the study; 
(b) significant study questions, clear objectives, 
and hypotheses; (c) the perspective addressed;  
(d) specifications of study alternatives matching 
clinical practice; (e) proper identification of the 
healthcare resources consumed; (f) justification of 
the outcomes measured; (g) right type of analysis 
and appropriate use of techniques; (h) uncertainty 
and assumptions addressed; (i) reasonable interpre
tations and comprehensible presentations; (j) con
clusion and suggestions based on study findings; 
(k) limitations addressed; and (l) unbiased, impar
tial attitude portrayed.

Guidelines

Because of the variety of perspectives, study 
designs, outcomes measures, and methods, phar
macoeconomic evaluation encounters problems  
of lack of comparability across studies as well as 
questionable generalizability to populations in 
clinical practice. This leads to the need for con
sensus, guidelines, a standard template of study 
designs, and reporting of results. An article titled 
“Pharmacoeconomic Guidelines Around the 
World,” which was published in the International 
Society for Pharmacoeconomics and Outcomes 
Research (ISPOR) Connections (ISPOR member 
newsletters) and the ISPOR Web sites in August 
2004, compares 28 guidelines from 23 countries 
with 32 key features. In the United States, guide
lines for good research practice regarding cost
effectiveness studies were provided in 1996 by 
the Panel on CostEffectiveness in Health and 
Medicine, U.S. Public Health Service. The 1996 
recommendations introduced the concept of refer
ence case analysis, which enhances comparability 

across studies. Later, the Academy of Managed 
Care Pharmacy (AMCP) published formulary sub
mission dossiers in October 2002 and a revision in 
April 2005, which were based on comments from 
managedhealthcare systems, pharmacy benefit 
management companies, and the pharmaceutical 
industry, in an effort to standardize formulary 
submissions of clinical and economic data by 
healthcare systems in the United States.

Applications

Pharmacoeconomic studies are particularly impor
tant to the pharmaceutical industry. Pharmaco
economic evaluations can be implemented in any 
phase of clinical trials, and the results can be used in 
strategic decisions of study designs, marketing, pric
ing, and reimbursements. For example, outcomes 
measures in Phase II of clinical trials may not be 
perfect and can be further modified for Phase III of 
the trials. Additionally, investigators can use phar
macoeconomic results from Phase II to predict pos
sible outcomes in Phase III. As a result, clinical trials 
in Phase III can be designed to measure the most 
appropriate outcomes in a costeffective manner. 
Furthermore, analysis of return on investment (ROI) 
helps pricing strategies. Pharmacoeconomic results 
in postmarket surveillance provide information, 
facilitating decisions on marketing and reimburse
ment. Currently, submission of pharma coeconomic 
data to the U.S. Food and Drug Administration 
(FDA) for newdrug approval is not mandated, but 
it is encouraged.

Pharmacoeconomic analysis is also very useful 
to clinicians for their daily practice. For example, 
the pharmacy and therapeutics (P&T) Committee 
in hospitals, health systems, or managedcare orga
nizations may use pharmacoeconomic results for 
formulary decisions and management, such as  
projected impacts of new drugs on formulary, 
evaluation and comparison of drugs in the same 
phar   macologic or therapeutic class, and making 
guidelines for therapeutic interchange. Medication 
prescribers may compare drug costs and utilization 
across inpatient units to evaluate the prescrib
ing patterns associated with patient outcomes. 
Medication safety teams use pharmacoeconomic 
analysis to evaluate the benefits and effectiveness of 
medical safety initiatives for patients and hospitals. 
Pharmacy directors may use pharmacoeconomic 
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analysis to evaluate the economic impacts of phar
macist interventions on patient outcomes, so that 
pharmacist services can be evaluated and quanti
fied. From the operational point of view, pharma
coeconomic analysis evaluates outcomes from 
different pharmacist practice models (e.g., central
ized or satellite pharmacies), the time differences 
between medication order and delivery, and the 
association between pharmacist satisfaction and 
workload and improvement of orderprocessing 
flows. Clinicians may also share pharmacoeco
nomic outcomes with patients to decide together 
on the best therapeutic plan so that patient compli
ance is increased, which in turn results in better 
outcomes.

From the perspective of community pharmacy 
practice, costbenefit analysis evaluates the benefits 
of screenings, vaccinations, preventive interven
tions, weight loss programs, and smoking cessa
tion programs. Budget impact analysis helps in 
pharmacy inventory management and allocation 
of healthcare resources. Pharmacoeconomic analy
sis facilitates decisions regarding pricing and mar
keting strategies for community pharmacies. From 
the perspective of other pharmacy practices, phar
macoeconomic analysis evaluates the success of 
disease management programs in managed care. 
Pharmacoeconomic analysis can be used in public 
health by policy makers to make informed deci
sions. For example, national budgets can be prop
erly allocated by conducting a budget impact 
analysis for Medicare Part D. Overall, pharmaco
economics facilitates medical decision making 
regarding optimal pharmaceutical care with mini
mal financial impacts.

Future Directions and Challenges

With the increase in the recognition and application 
of pharmacoeconomic studies in clinical practice, it 
is expected that more schools and teaching institu
tions will include pharmacoeconomics in their  
professional pharmacy curriculum and residency 
programs. Despite the many guidelines that have 
been established, some still challenge pharmacoeco
nomic studies. Countryspecific guidelines were 
developed to fit regional needs, yet international 
guidelines would be beneficial to the global society. 
A consensus of transparent methodology, especially 
for modeling studies, has been reached globally; 

however, the components of the methodology 
remain debatable. Other issues include bias and 
ethical dilemmas; transferability of economic data, 
including retrospective data; connections between 
evidencebased medicine and outcomes research; 
standardization of drug costs; standardization of 
fellowship and education programs; and instru
ment development for patientreported outcomes.

Example of Pharmacoeconomic Research

When a patient takes glucocorticoid medications 
for more than 3 months, an important side effect 
is loss of bone mass, which increases the risk of 
osteoporosis and fractures and also affects the 
overall quality of life. Several medications have 
shown promising results for the prevention of 
osteoporosisrelated fractures. However, a rela
tively low percentage of longterm glucocorticoid 
users have received these medications from their 
physicians to prevent glucocorticoidinduced 
osteoporosis (GIOP) and fractures. Given that 
development of osteoporosis is slow and consider
ing the economic burden of this illness, physicians 
and patients are not sure whether it is better to use 
these medications to prevent GIOP and fractures 
in patients who take glucocorticoids for a long 
period of time or to just treat fractures when they 
occur. A costeffective analysis was conducted to 
determine which therapeutic approach is prefera
ble by considering both the costs and the outcomes 
of therapy. Additionally, the analysis projected 
longterm estimates from nationally representative 
survey data by using a technique called Markov 
modeling, so that the results reflect reallife situa
tions as closely as possible over the long term. A 
secondorder Monte Carlo simulation served as a 
tool of sensitivity analysis to address uncertainties 
at the level of all variables simultaneously.

The study results were presented with cost 
effectiveness ratios, ICERs, and acceptability curves 
with WTP against percentages of chances that a 
specific alternative is costeffective. Of 1,692 qual
ified female longterm glucocorticoid users (repre
senting 2.65% of the female noninstitutionalized 
U.S. population, average age = 49.8 years, average 
prednisoneequivalent dose = 10.7 mg/day, average 
duration of therapy = 215 days, percentage of 
whites = 85.6), 29.9% reported use of any antire
sorptive agent; of those, 76.5% used hormone 
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replacement therapy (HRT) only, 12.1% used bis
phosphonates only, 2.0% used calcitonin only, 
1.6% used raloxifene only, and 7.8% used more 
than one antiresorptive agent. Reference case 
analysis showed that compared with the controls, 
the estimated 10year/lifetime ICERs (cost per frac
ture avoided) were $2,250 to $7,776 for HRT, 
$10,149 to $28,078 for bisphosphonates, $27,891 
to $46,102 for raloxifene, and $60,862 to $61,660 
for calcitonin in hypothetical 50yearold female 
glucocorticoid users. By using the costeffectiveness 
acceptability curve, different decision makers may 
find the corresponding range of probabilities that 
remain costeffective based on personalized WTP.

Some assumptions and limitations include small 
sample sizes for the calcitonin and raloxifene 
groups and a likely selection bias in that bisphos
phonate users are more likely to report a longer 
duration of glucocorticoid therapy. Because few 
guidelines included costeffectiveness information, 
consideration of these results may facilitate better 
management of GIOP. Accordingly, this informa
tion helps decision makers determine whether it is 
better to use medications to prevent GIOP and 
fractures and if the use of these preventive medica
tions is warranted, to choose the best option for 
longterm glucocorticoid users.

Jun-Yen Yeh and Morton P. Goldman

See also Acceptability Curves and Confidence Ellipses; 
CostBenefit Analysis; CostEffectiveness Analysis; 
CostMinimization Analysis; CostUtility Analysis; 
Decision Analyses, Common Errors Made in 
Conducting; Willingness to Pay
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PhySician eStimateS 
of PrognoSiS

Physicians are routinely asked to make estimates 
of patient survival. In providing such estimates, 
physicians undertake two separate tasks: (1) they 
formulate a prognosis, or make a mental calcula
tion of the patient’s expected survival, and (2) they 
communicate the prognosis to the inquiring indi
vidual, often a patient or the patient’s family. The 
survival estimates, or prognoses, that physicians 
formulate and then communicate are important to 
both physicians and patients in all phases of a 
patient’s life because they guide both medical and 
nonmedical decisions. At the end of life, these 
prognoses can become critically important, as 
they may signal a change from primarily curative 
or lifeprolonging care to primarily supportive or 
palliative care, a change that clearly influences 
clinical and personal decisions. Ironically, physi
cian prognostication is often inaccurate, both in 
terms of the prognoses physicians formulate and 
in terms of the prognoses physicians communicate 
to patients or their families.

Importance of Prospective  
Identification of the End of Life

There is wide agreement among patients, their 
families, and doctors that the “end of life” is an 
important period to recognize prospectively 
because, among other things, the type of medical 
care that patients receive during this period should 
be different than that which they receive at other 
points in their life. Specifically, there is agreement 
that the medical care should be supportive in 
nature, focused on the control of symptoms such 
as pain, rather than invasive in nature, and aimed 
at extending life. Consistent with this approach, 
most agree that the favored place of death is the 
home rather than the hospital. Most physicians 
report that such homebased, symptomguided 
care should be initiated at least 3 months prior to 
patient death for optimal palliative care.

Despite fairly broad agreement that home
based, symptomguided care is the preferred form 
of medical care at the end of life, epidemiologic 
and health services research reveals that the current 

patterns of medical care for those dying in America 
are far from this ideal. For example, a study of 
Medicare claims data (an excellent population
level source of medical treatment and survival data 
for elderly Americans) shows that about half of all 
Medicare beneficiaries die in acutecare hospitals 
rather than in their homes. Furthermore, fewer 
than 20% receive hospice care, the most common 
route to homebased, symptomguided therapy, 
prior to death. Finally, of the few who receive this 
idealized form of medical care at the end of life, 
most receive it for a period far shorter than the 
idealized 3 months, generally less than 1 month 
prior to death. The same work reports that fewer 
than 15% of Medicare beneficiaries enrolled in 
hospice programs survive longer than the allotted 
6 months.

Inaccuracy of the Formulated Prognosis

While physician prognostication is largely an under
studied aspect of clinical medicine, there are studies 
in the palliative care literature and in the clinical 
oncology literature that suggest physicians are gen
erally inaccurate in estimating patient survival (i.e., 
prognosis). Specifically, in the palliative care litera
ture, there are several studies specifically designed 
to determine the quality of physicians’ formulated 
prognoses in patients with advanced illness. These 
studies report quality in the form of physicians’ 
prognostic accuracy in predicting survival of 
patients following admission to hospice programs. 
Investigators in these studies have measured physi
cians’ prognostic accuracy by comparing patients’ 
observed survival with their predicted survival 
(these predictions are not necessarily those commu
nicated to patients; rather, they are the ones physi
cians formulate for themselves). Results of these 
studies show that, in aggregate, physicians’ overall 
survival estimates tend to be incorrect by a factor of 
approximately 3, always in the optimistic direction. 
A representative study documents that physicians 
overestimate patient survival by a factor of 5 and 
patients, on average, live only 24 days in hospice.

In the clinical oncology literature, there are 
studies of physicians’ prognostic accuracy in ambu
latory cancer patients undergoing chemotherapy. 
In one such study, investigators asked oncologists 
to first predict patients’ likelihood of cure and then 
to estimate the duration of survival for those 
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whose likelihood of cure was 0. At the 5year 
point, patients who were alive and diseasefree 
were termed “cured”; the dates of death of the 
incurable patients also were determined. The 
researchers reported that oncologists were highly 
accurate in predicting cure. That is, for subgroups 
of patients (i.e., not individual patients), the ratio 
of the observed cure rate at 5 years to the predicted 
cure rate was quite high: .92. However, the same 
oncologists had difficulty predicting the length of 
survival of individual incurable patients. They pre
dicted survival “correctly” for only one third of 
patients, with the errors divided almost equally 
between optimistic and pessimistic.

Improving the Accuracy of  
Formulated Prognoses

As noted, prognostication is an understudied 
aspect of clinical medicine; this fact may explain 
part of the difficulty physicians have in predicting 
their patients’ survival. The predictive algorithms 
that are so common and useful in the narrower 
organsystembased aspects of clinical medicine 
(e.g., Goldman criteria, TNM cancer staging sys
tem, Glasgow coma score) have few parallels in 
the broader clinical area of “endoflife care.” In 
fact, the current Medicare and National Hospice 
Organization guidelines for hospice eligibility for 
patients with certain highly prevalent noncancer 
diagnoses (i.e., dementia or advanced lung, heart, 
or liver disease) have been shown to be inadequate 
for discerning which patients with these condi
tions have less than 6 months to live. At present, 
no such formal guidelines exist for the terminal 
illness of cancer.

However, within palliative oncology research, 
there is a growing literature focused on identifying 
predictors of survival of advancedcancer patients 
that might aid physicians in their prognostic esti
mates for similar patients. Multiple prospective 
and retrospective cohort studies have consistently 
identified three broad classes of survival predic
tors: (1) patients’ performance status, (2) patients’ 
clinical signs and symptoms, and (3) physicians’ 
clinical predictions. Research that integrates these, 
and other, prognostically relevant domains through 
survival models to yield easy metrics for clinicians 
may help attenuate the problem of prognostic 
inaccuracy in cancer.

Performance Status

Performance status is a global measure of a 
patient’s functional capacity and has consistently 
been found to predict survival in cancer patients. 
Given the importance of survival, performance 
status is frequently used as a selection criterion for 
patients entering clinical trials and also as an 
adjustment factor in the subsequent analyses of 
treatment effect. Several different measures have 
been developed to quantify performance status; 
among them, the Karnofsky Performance Status 
(KPS) is the most often used. The KPS ranges from 
values of 100, signifying fully normal functional 
status with no complaints or evidence of disease, 
to 0, signifying death. Table 1 contains a represen
tation of the complete spectrum of values for the 
KPS scale.

Multiple studies have reported associations 
between cancer patients’ survival and their perfor
mance status. The direction of the association is 
positive; that is, as a patient’s performance status 
declines, so too does his or her survival. The mag
nitude of the association is described differently in 
different studies depending on the statistical meth
ods employed, but several studies report that 
among patients enrolled in palliativecare pro
grams, a KPS of less than 50% suggests a life 
expectancy of less than 8 weeks.

Signs and Symptoms

Clinical signs and symptoms have also been 
shown to be associated with survival in the setting of 
advanced cancer. Several investigative groups have 
examined the prognostic importance of patients’ 
symptoms; Antonio Vigano and colleagues have 
described this importance in their systematic review 
of prognostic factors in advanced cancer. In exam
ining 136 different variables from 22 studies, they 
found that, after performance status, specific signs 
and symptoms were the next best predictors of 
patient survival. The presence of dyspnea, dyphagia, 
weight loss, xerostomia, anorexia, and cognitive 
impairment provided the most compelling evidence 
for independent association with patient survival 
in these studies.

Several groups of investigators have evaluated 
associations between biological markers (i.e., labo
ratory values) and survival in advanced cancer 
patients. For example, in their retrospective analysis 
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of 339 Phase I chemotherapy patients with advanced 
cancer at the University of Chicago, Linda Janisch 
and colleagues found that among routine pretreat
ment laboratories, only platelet count elevation  
and serum albumin depression were associated with 
shorter survivals in a multivariate model that 
included KPS. Among a sample of 207 consecutive 
advanced nonsmallcell lung patients, M. F. Muers 
and colleagues found that in addition to perfor
mance status and symptoms, lymphocyte count, 
albumin, sodium, and alkaline phosphatase were all 
predictive of survival. From these studies, one can 
conclude that there appear to be negative associa
tions between survival and bone marrow parame
ters (e.g., platelets, white blood cells) as well as 
positive associations between survival and synthetic 
parameters (e.g., serum proteins) in this patient 
population.

Clinical Predictions

Physicians’ clinical predictions about patient 
survival are the third broad class of predictors of 
survival in terminal cancer. As noted previously, 

numerous studies suggest that physicians’ predic
tions regarding patients’ survival in palliativecare 
programs are frequently inaccurate and systemati
cally optimistic. However, the overly optimistic 
estimates are well correlated with actual survival. 
While physicians are not well calibrated with 
respect to survival (i.e., they are systematically 
optimistic), they nevertheless have discriminatory 
abilities. That is, they are able to order patients in 
terms of how sick they are or how long they have 
to live. This fact suggests that physicians’ clinical 
predictions may be a useful, but not exclusive, 
source of information regarding patient survival. 
Thus, integration of clinical predictions with other 
known prognostic factors may be beneficial in  
predicting patient survival. For example, William 
Knaus and colleagues, in their study of SUPPORT 
patients, found that multivariate regression models 
that included physicians’ prognostic estimates 
were more accurate than the models without the 
physician input. Therefore, while it is true that 
statistical models can be more accurate than 
human intuition alone, it is also true that physi
cians provide valuable prognostic information 

Table 1  Karnofsky performance status scale

Value Level of Functional Capacity

100 Normal, no complaints, no evidence of disease

 90 Able to carry on normal activity, minor signs or symptoms of disease

 80 Normal activity with effort, some signs or symptoms of disease

 70 Cares for self, unable to carry on normal activity or do active work

 60 Requires occasional assistance but is able to care for most needs

 50 Requires considerable assistance and frequent medical care

 40 Disabled, requires special care and assistance

 30 Severely disabled, hospitalization is indicated although death is not imminent

 20 Hospitalization is necessary, very sick, active supportive treatment necessary

 10 Moribund, fatal processes progressing rapidly

  0 Dead

Source: Zubrod, G. C., Schneiderman, M., Frei, E., Brindley, C., Gold, G. L., Shnider, B., et al. (1960). Appraisal of methods for 
the study of chemotherapy in man: Comparative therapeutic trial of nitrogen and mustard and triethylene thiophosphoramide. 
Journal of Chronic Diseases, 11, 7–33.
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that, thus far, has not been captured in the objec
tive models. Currently, integrated models hold the 
greatest promise for improving physicians’ predic
tive accuracy in advancedcancer patients.

Integrated Tools

Through integrated models of survival, investi
gators seek to explicitly combine these previously 
identified clinical predictors to yield easytouse 
clinical tools. The most recent generation of studies 
describe integrated models that combine these and 
other prognostic variables into a single prognostic 
score. For example, Tatsuya Morita and colleagues 
developed a regression model predicting survival 
from performance status and certain clinical signs 
and symptoms. Coefficients from the regression 
were then transformed into partial scores, and 
summing the values of each partial score led to the 
final score, termed the Palliative Prognostic Index 
(PPI). After developing the PPI in a sample of 150 
patients, the investigators then tested the approach 
on a second sample of 95 patients, finding that the 
PPI predicted 3week survival with sensitivity of 
83% and a specificity of 85% and 6week survival 
with sensitivity of 79% and a specificity of 77%. 
Table 2 contains a description of the PPI scoring 
system and Table 3 a summary of the predictive 
relevance of PPI scores. Several other groups have 
developed similar scoring systems that rely on inte
gration of all or some of the previously described 
classes of prognostic indicators for patients with 
advanced cancer and under palliative care. Such 
scoring systems need to be sensitive to a variety of 
methodological concerns. The most recent genera
tion of studies in this area seek to determine if these 
scoring systems are useful in the clinical care of 
cancer patients and if they are applicable to 
patients who are not yet enrolled in palliativecare 
programs or who are dissimilar from such patients. 
With respect to the clinical utility of the scoring 
systems, treating physicians will need to determine 
if the tools’ test characteristics (e.g., sensitivity and 
specificity) fall above certain minimum thresholds 
for use in clinical decisions.

Other Sources of Prognostic Information

Among other sources of information regarding 
survival in advanced cancer are studies that include 

cancer patients who do not undergo anticancer 
therapy. Natural history studies and randomized 
therapy trials that include a “bestssupportivecare” 
arm describe patients who do not undergo antican
cer therapy. Typically, natural history studies are 
singleinstitution case series of untreated patients 
with mortality followup. Such reports have been 
published for a variety of advanced solid tumors. 
Survival information can also be found by examin
ing the survival of patients on the control or best
supportivecare arms of randomized clinical trials.

Implications

Physicians are usually inaccurate in formulating 
patient prognoses, and the direction of their prog
nostic error is largely optimistic, with patients 
dying much sooner than their physicians anticipate. 

Table 2   Components of the Palliative Prognostic 
Index: A scoring system for survival 
prediction of terminally ill cancer patients

Prognostic Domains Partial Score Value

Performance status

10–20 4.0

30–50 2.5

≥60 0

Clinical symptoms

Oral intake

Moderately reduced 1.0

Severely reduced 2.5

Normal 0

Edema 1.0

Dyspnea at rest 3.5

Delirium 4.0

Source: Morita, T., Tsunoda, J., Inoue, S., & Chihara, S. 
(1999). The Palliative Prognostic Index: A scoring system for 
survival prediction of terminally ill cancer patients. Supportive 
Care in Cancer, 7, 128–133.

Note: Scores from each prognostic domain are summed, and 
the total is mapped to survival probability.
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As such, initiation of supportive care at the end of 
patients’ lives may be unwittingly delayed in favor 
of continued “aggressive” medical care. Physicians’ 
prognoses may become more accurate as better 
clinical prediction tools are developed and dissemi
nated. Ultimately, such improvement would expect 
to manifest through increasing rates of referral to 
palliativecare programs and increased survival 
times after referral to the same programs. More 
broadly, however, such improvement may provide 
patients with a better understanding of their 
expected survival and thereby allow them to make 
informed medical and social choices regarding their 
treatment path at the end of life, whether it is cura
tive or palliative.

Elizabeth B. Lamont

See also Advance Directives and EndofLife Decision 
Making; Bias; Decision Making in Advanced Disease; 
Judgment; Life Expectancy; Probability Errors
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PoiSSon anD negative 
Binomial regreSSion

The response variable in medical data is often in 
the form of counts. Examples include visits to the 
doctor, cases of stroke or heart attacks, and num
ber of deaths due to various causes. Two common 
distributions used to model counts that arise in 
situations such as these are the Poisson and  
negative binomial distributions. In this entry, the 
important aspects of Poisson and negative bino
mial regression are covered along with an example 
to illustrate basic inference for these models.

Perhaps the most common realization of Poisson 
data is that of “rareevent” data, which are events 
that occur relatively few times in a large popula
tion. In this case, the Poisson distribution is seen as 
a limiting form of the binomial distribution when 
the sample size, n, grows large and the probability 
of an event occurring, π, grows small. Generally, 
this assumption holds reasonably well for n > 20 
and π < .1. In medical and epidemiological litera
ture, an example of this would be the number of 
cancer deaths in an atrisk group.

A second and obviously related realization of 
Poisson data is that of discrete count events in time 
or space. Events are typically considered as “arriv
als” or discretized points over a continuous domain; 

Table 3   Median survival of patients according to 
Palliative Prognostic Index score

Palliative Prognostic 
Index score Median survival (d)

0.0–2.0 90

2.1–4.0 61

>4.0 12

Source: Morita, T., Tsunoda, J., Inoue, S., & Chihara, S. 
(1999). The Palliative Prognostic Index: A scoring system for 
survival prediction of terminally ill cancer patients. Supportive 
Care in Cancer, 7, 128–133.

Note: Median survival value was estimated from survival 
curve on paper.
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for example, it may be of interest to count the 
number of doctor visits for an individual or family 
over a period of time. Furthermore, one may count 
the number of white blood cells per unit volume of 
a blood culture.

The probability that a Poisson random variable 
Y takes the observed value y is expressed in the 
probability mass function

In this parameterization, λ is described as an 
intensity or rate parameter and is often interpreted as 
the expected number of events in the rareevents 
paradigm or as the rate of events per unit time/ 
space in the spatiotemporal paradigm. The value e is 
Euler’s constant, and the denominator y! is the facto
rial function performed on the integer y, where 
y! = (y)(y – 1) . . . (2)(1). Thus, for gammadistributed 
Poisson with λ = 3, PrðY = 2Þ= e 3322!= :22
Typically, it is of interest to make some inference 
about the value of the unknown parameter λ. When 
subjects are followed over varying periods of time, 
the distribution is often parameterized as m = dλ, 
where d is the amount of followup time, and is often 
referred to as the offset.

Poisson Regression Model

Poisson regression is one example of a broader 
class of models known as the generalized linear 
model. The generalized linear model includes 
ordinary least squares regression with normal 
errors, logistic regression, beta regression, and 
others. For Poisson regression, it is assumed 
that the value of the mean depends on a func
tion of an observed vector of covariates, xi′ = 
(x1, x2, . . .  , xp), and model parameters, b′ = (b0, 
b1, . . . , bp). Since the Poisson rate, λi, is strictly 
nonnegative, the expected number of events is 
usually modeled as

E[yixi] = λi = exp(b0 + b1xi1 + b2xi2 +  . . .  + bpxip).

If there is an offset, the mean is modeled as

E[yixi] = mi = di λi = exp(In(di)  
+ b0 + b1xi1 + b2xi2 +  . . .   + bpxip).

In the generalized linear model terminology, the 
exponential function connecting the expected value 
and the covariates is referred to the log link because 
if the log of the mean function is taken, a linear 
combination of the regression parameters results.

Poisson regression coefficients have a signifi
cantly different interpretation from the coefficients 
in linear regression. The derivative of the mean 
function with respect to the jth covariate, xj, is

∂E½yjx
∂xj

= bjE½yjx:

Thus, the impact of a oneunit change in xj, hold
ing all other independent variables constant, results 
in a multiplicative change in the expectation as 
opposed to a linear change.

In the case of a single binary predictor, it is 
interesting to note that

E½yjx= 1
E½yjx= 0 =

expðb0 + b1 × 1Þ
expðb0 + b1 × 0Þ = expðb1Þ:

Thus, in the important twogroup case, the coeffi
cient has the interpretation that the group with x = 
1 has an expected value that is exp(b1) times larger 
than the group with x = 0.

Estimation in Poisson Regression

The primary method for estimation of Poisson 
regression parameters is maximum likelihood esti
mation (MLE). For a random sample of n observa
tions, the likelihood function for λ is

LðljyÞ=
Yn

i=1

e llyi

yi!

= e nll
Pn

i 1
yi

Qn

i= 1
yi!

:

On substituting λi = exp(xi′b) into the above, the 
likelihood of b given the observed data is

Lðbjy; xÞ=
exp − expðx0

ibÞ+
Pn

i=1
yix0

ib
 

Qn

i= 1
yi!

:

PrðY = yÞ= e lly

y!
; l > 0; y=0; 1; 2; . . . :
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The method of maximum likelihood is the 
default approach to estimating the Poisson regres
sion parameters in many software packages such 
as SAS and SPlus. The maximum likelihood esti
mator is found by maximizing the log likelihood:

ln Lðbjy; xÞ=
Xn

i=1

ðyix0
ib− expðx0

ibÞ− lnðyi!Þ:  (1)

The problem of determining how the popula
tion mean λi covaries with each element of x can 
be simplified into solving for each element of vec
tor b. The resulting estimate vector, b̂;  does not 
have a closedform solution and is typically com
puted via an iterative algorithm, such as the 
NewtonRaphson method, in most statistical com
puting packages. Other approaches for estimating 
the parameters include Bayesian methods and the 
generalized method of moments, also known as 
generalized estimating equations.

The maximum likelihood estimator, b̂;  that 
results from maximizing Equation 1 has many nice 
properties. As the sample size increases, b̂; is unbi
ased, consistent, efficient, and normally distributed 
with variance approximated by

−E
∂2 ln Lðbjy; xÞ

∂b∂b0

   1

:

Using the properties of maximum likelihood 
estimators, hypothesis tests can be constructed 
along with confidence intervals for parameters and 
prediction intervals for future observations. These 
computations can be performed with a wide vari
ety of commonly used statistical software, such as 
SAS, SPlus, and SPSS. Also, goodness of fit can be 
assessed through various statistics based on the 
residuals yi – m̂i where m̂i is the mean function of yi 

evaluated at the MLE.

Negative Binomial Regression

A unique property of the Poisson distribution is 
that the mean and the variance both equal λ. This 
property is often referred to as equidispersion of the 
Poisson random variable. What this implies is that

Var[yixi] = λi = exp(b0 + b1xi1 + b2xi2 +  . . .  + bpxip).

Generally, when this assumption fails, the data 
exhibit overdispersion; that is, the variance exceeds 

the mean. In this case, interestingly, the Poisson 
regression estimators are still consistent, but stan
dard errors will be underestimated, which has a 
negative impact on the coverage probabilities of 
confidence intervals and Type I error of hypothesis 
tests.

When overdispersion is evident in the data, the 
negative binomial distribution is a convenient way 
to model the data. The negative binomial results as 
a gammadistributed mixture of Poisson distribu
tions and has the form

PrðY = yÞ= ð1=α+ yÞ
y!ð1=αÞ

1=α
1=α+λ

 1=α
λ

1=α+ λ

 y

;

λ;α> 0; y= 0; 1; 2; . . . :

The expected value for this particular parame
terization of the negative binomial is λ, but unlike 
the Poisson, the variance is λ + aλ2. This form of the 
negative binomial is sometimes referred to as the 
NB2 model because of the squared λ term in 
the variance. In general, the negative binomial can 
be parameterized such that the variance is of the 
form λ + aλk. Choosing k = 1 yields what is known 
as the NB1 model, which is also frequently used. 
Thus, the parameter a works as a dispersion 
parameter. As a decreases, the negative binomial 
approaches the Poisson. Overdispersion in the 
data will yield larger values of a. To incorporate 
covariates, the same loglinear model as for the 
Poisson is used; specifically,

E[yixi] = λi = exp(b0 + b1xi1 + b2xi2 +  . . .  + bpxip).

The coefficients for the negative binomial regres
sion have similar interpretations to the coefficients 
discussed for the Poisson regression above.

Estimation in Negative Binomial Regression

As in Poisson regression, the most commonly 
used method to estimate the parameters is 
maximum likelihood estimation. The log likeli
hood function is

ln Lðb; ajy; xÞ=
Xn

i= 1

ðyix0
ib+ yi lnðaÞ

− lnð1+ a expðx0
ibÞÞ+ ln Gðyi +1=aÞ

− ln Gð1=aÞ− lnðyi!ÞÞ:
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Again, an iterative algorithm such as the 
NewtonRaphson method is used to find the solu
tion of the MLE on differentiating the log likeli
hood with respect to the parameters and setting 
the resulting system of equations equal to 0.

The MLEs for the parameters of the negative 
binomial regression have the same nice properties 
as those of Poisson regression, which provide 
ways to form confidence intervals and construct 
hypothesis tests.

Testing Poisson Versus Negative Binomial

An important first step in a count data regression is 
to determine if the Poisson model adequately fits 
the data or if overdispersion is present and the 
negative binomial is preferred. Since the Poisson 
model is “nested” within the negative binomial, the 
likelihood ratio test is a reasonable approach to 
determine which model fits better. The Poisson is 
nested within the negative binomial since, as dis
cussed above, if a = 0, the negative binomial 
reduces to the Poisson. To construct the likelihood 
ratio, both models are fitted from the data, and the 
log likelihoods are computed. SAS, SPlus, and 
other software packages give these values as part of 
the output. The likelihood ratio test statistic is com
puted by taking the negative of two times the dif
ference in the log likelihoods, which under the null 
hypothesis of model equivalence has an approxi
mate chisquare distribution with 1 degree of free
dom (df). Additionally, most software packages 
estimate at least one “deviance” statistic that gives 
a rough measure of dispersion within a Poisson 
model. When the deviance statistic divided by the 
number of degrees of freedom for the model is 
approximately 1.0, the equidispersion assumption 
holds reasonably well. However, when the deviance 
divided by the degrees of freedom exceeds 1.0, the 
data are likely overdispersed, whereas if the statistic 
is less than 1.0, the data are likely underdispersed.

Example

An example is now presented, originally published 
by LaVange et al., using a subset of the original 
variables analyzed. The data are from a study that 
seeks to determine the relationship between the 
number of annual lowerrespiratory infections 
among infants and the covariates of exposure to 
secondhand smoking (Smoke) and socioeconomic 
status (SES; 0 = High, 1 = Middle, 2 = Low). 
Furthermore, the participants are followed for 

varying lengths of time, and thus the time at risk 
for each individual, di, must be considered as the 
offset. It is of interest to determine which covari
ates predict significant changes in disease inci
dence. To compute the estimates for this example, 
SAS Version 9.1.3 was used. For more information 
on this data set, see Categorical Data Analysis 
Using the SAS System by Maura Stokes et al.

First, the Poisson regression model is fit. 
Although the Poisson case is a simplified version  
of the negative binomial distribution, the Poisson 
model is first fit since it is the most parsimonious 
model, and then it is determined whether overdis
persion exists. On fitting the model, the parameter 
estimates displayed in Table 1 obtain.

These estimates remain in a logtransformed 
scale, and thus the parameter estimates are expo
nentiated to obtain the estimated impact of the 
covariates. For example, the coefficient of .4357 
for the variable “Smoke” indicates that holding 
other variables the same, infants who have been 
exposed to secondhand smoke have exp(.4357) = 
1.55 times the incidence of annual lowerrespiratory 
infections as do infants who have not been exposed. 
Likewise, negative coefficient estimates indicate a 
protective effect with regard to the number of 
respiratory infections. Infants from families 
with high socioeconomic status (SES = 0) have 
exp(−.6137) = .54 times, or approximately half, 
the annual incidence of lowerrespiratory infection 
when compared with the lowSES group. If inter
est lies in the expected number of events for certain 
values of the covariates, simply plug in the covari
ates to the regression equation. For example, the 
predicted mean number of lowerrespiratory infec
tions for an infant with SES = 1 who has not been 
exposed to passive smoking (Smoke = 0) is

m̂i = exp b̂0 + xsmoke;ib̂smoke + xSES;ib̂SES

 

= exp :127+0− :105ð Þ= 1:02

infections per year.
The computer output includes statistics measur

ing the properties of the Poisson model, including 
deviance and log likelihood. These are presented in 
Table 1.

The value of the log likelihood is included for 
later use. The value of the deviance divided by the 
degrees of freedom exceeds 1.0 by a reasonably 
large value. Although this is not a formal test, 
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overdispersion likely exists within the data, and 
this situation possibly warrants adopting a more 
flexible model, such as assuming negative binomi
ally distributed responses.

The data are next fit using a negative binomial 
model that includes an estimate of the dispersion 
parameter a from the NB2 parameterization, labeled 
as “Dispersion” in Table 1. The parameter estimates 
for the negative binomial model are quite similar to 
those of the Poisson model. However, the standard 
errors of the parameter estimates are uniformly 
larger than those of the Poisson model. This sug
gests that the Poisson model may be a poor fit, as it 
appears that the Poisson model underestimates 
standard errors when compared with the more gen
eral case of the negative binomial distribution.

A dispersion parameter estimate near 0 indicates 
that using a negative binomial model is unneces
sary given the current data. However, the observed 
estimate is 1.09 with a small standard error esti
mate, which indicates a significant contribution by 
the dispersion parameter. More formally, one may 
test the Poisson model versus the negative binomial 
model via the likelihood ratio test statistic  
x2

1 = –2((−267.51) – (246.55)) = 41.90. Note that 
the value of the rejection region for a chisquare 
statistic with a single degree of freedom is x2

1 > 3.84 
for a typical Type I error rate of .05, and thus it is 
necessary to reject the simpler Poisson model in 
favor of the negative binomial model in order to 
account for the overdispersion of the data.

James D. Stamey and Daniel Beavers

See also Distributions: Overview; Logistic Regression; 
Maximum Likelihood Estimation Methods; Ordinary 
Least Squares Regression
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PoSitivity criterion 
anD cutoff valueS

Although medical professionals use the terms 
positive and negative to describe the results of 
diagnostic tests, many tests produce results along 
a continuum (e.g., millimeters of STsegment 
depression in an exercise stress test, brain natri
uretic peptide level for making the diagnosis of 
decompensated congestive heart failure). For 
such tests, a criterion must be established for 
defining a result as being either positive or nega
tive. This cutpoint, or cutoff value, is called a 
positivity criterion.

Table 1  Model parameter estimates

Parameter

Poisson Model Negative Binomial Model

Estimate Standard Error Estimate Standard Error

Intercept .1265 .2058 .1876 .2846

Smoke .4357 .1644 .4588 .2178

SESa 0 −.6137 .2036 −.6388 .2837

SES 1 −.1053 .1954 −.1599 .2847

SES 2 .0000 .0000 .0000 .0000

Dispersion — — 1.0933 .2758

a. SES, socioeconomic status.
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Selection

Although for many tests, positivity criteria have 
been selected based on the variation observed in a 
population of apparently normal individuals (e.g., 
mean ±2 standard deviations) encompassing 95% 
of the population, such a definition may not be 
optimal for clinical purposes. Ideally, the choice of 
a positivity criterion should consider the follow
ing: (a) the medical consequences of falsepositive 
and falsenegative test results, (b) the prevalence of 
disease in the population being tested, and (c) the 
distribution of test results in patients with and 
without disease.

A Clinical Example

A clinical example that illustrates the above 
principles is the tuberculin skin test, used to deter
mine whether individuals have been exposed to 
tuberculosis (TB) and developed socalled latent 
disease, which would necessitate medical treat
ment. Tuberculin skin testing is performed by 
injecting a small amount of purified tuberculin 
extract under the skin. The test is read 48 hours 
later by seeing if redness and swelling (also called 
induration) develops and, if so, how large an  
area of induration. Figure 1 shows a hypothetical 

distribution of results in which the horizontal axis 
represents the amount of induration in millimeters 
(mm). The top distribution describes test results in 
a population without latent TB, while the bottom 
distribution describes results for patients with 
latent TB. Each vertical line represents a different 
potential positivity criterion. For any criterion, all 
the patients to the left of the line are deemed to 
have a negative test result, and those to the right of 
the line are deemed to have a positive result. The 
line representing each cutoff divides the distribu
tions into four quadrants. In the top distribution 
describing patients without disease, those to the 
left of the cutoff who have a negative test result are 
the true negatives (TN), while those to the right 
who have a positive result are false positives (FP). 
In the bottom distribution describing those with 
disease, those to the right who have a positive 
result are true positives (TP), while those to the left 
are false negatives (FN). As the criterion moves to 
the right (from A to B to C), the proportion of 
patients with truenegative test results increases, 
while the proportion with truepositive results 
decreases. Since the area under each distribution is 
unity, the truenegative area corresponds to the 
specificity, while the truepositive area corresponds 
to the sensitivity. Thus, moving to the right in  

5 mm 10 mm 15 mm

Degree of induration (mm)

9095 70

9075 98 % without disease below cutoff (specificity).

% with disease above cutoff (sensitivity).

Patients with disease

Patients without
disease

B

TN

TP

A

Lax Strict

C

Figure 1  Distribution of test results in those with and without disease
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the figure, specificity increases while sensitivity 
decreases. The American Thoracic Society has 
updated the guidelines for the interpretation of TB 
skin tests to account for the principles described 
above. The old guidelines simply used 10 mm of 
induration as the cutoff for all patients. The new 
guidelines are as follows:

 1. In highrisk, highprevalence populations (e.g., 
HIV infection, immunosuppressed, recent close 
contact with active TB), a cutoff of 5 mm  
(Line A) is recommended. 

 2. In lowprevalence, lowrisk populations, a 
cutoff of 15 mm (Line C) is recommended.

 3. In populations at intermediate risk and prevalence 
(e.g., patient born in a foreign country with 
increased prevalence, nursing home resident), a 
cutoff of 10 mm (Line B) is recommended.

Receiver Operating Characteristic (ROC) Curves

This relationship between sensitivity and specific
ity is described by the receiver operating characteristic 

or ROC curve (see Figure 2), which plots the true
positive rate, or sensitivity, on the vertical axis against 
the falsepositive rate, or (1 − specificity), on the 
horizontal axis. Because the distributions of test 
results in those with and without disease overlap to 
some degree, any change in the positivity criterion 
that improves sensitivity must invariably make 
specificity worse (i.e., increase the false positive 
rate). Also, note that each positivity criterion in 
Figure 1 at Points A, B, and C corresponds to a point 
on the ROC curve in Figure 2 called the operating 
point. The operating point on the ROC curve there
fore denotes a set of operating characteristics for the 
test (i.e., a unique combination of sensitivity and 
specificity). As we move the cutoff to the right and 
select a stricter interpretation of the test result 
(Figure 1), we correspondingly move along the ROC 
curve (Figure 2) toward the lower left. In a similar 
manner, as we move the cutoff to the left and select 
a more lax interpretation of the test result, we move 
along the ROC curve toward the upper right. In this 
hypothetical example, the optimal operating point, 
shown at Point A, is based on the results of the deci
sion model described as follows.

False-Positive Rate (1–specificity)
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C

Figure 2  Corresponding receiver operating characteristic (ROC) curve
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UTP

UFN

Test +

Test −

Disease

1 Positivity Criterion

pDisease

TPR

6 Positivity Criterion

2 Positivity Criterion

3 Positivity Criterion

4 Positivity Criterion

5 Positivity Criterion

FNR

No disease

UTP = UdisRX*(1–RiskTX)
UFN = UdisNoRX*(1–RiskTX)
UFP = UNodis*(1–RiskTX) (1–RiskRX)
UTN = UNodis*(1–RiskTX)

Specificity = a1
Sensitivity = b1

Specificity = a2
Sensitivity = b2

Specificity = a4
Sensitivity = b4

Specificity = a5
Sensitivity = b5

Specificity = a6
Sensitivity = b6

UTP = utility of true positive
UFN = utility of false negative
UFP = utility of false positive
UTN = utility of true negative
UdisRX = utility of disease treated
UdisNoRX = utility of disease untreated
UNodis = utility of no disease
RiskTX = risk of test
RiskRX = risk of treatment

Specificity = a3
Sensitivity = b3

(a1, b1) . . . (an, bn) = sensitivity and specificity at
operating points 1 – n on ROC curve.

1 – pDisease

UFP

UTN

Test +

Test −

FPR

TNR

Figure 3   Decision fan to determine the optimal operating point on the ROC curve

Decision Analysis

The following section assumes a basic familiar
ity with decision analysis and decision trees. The 
selection of an appropriate positivity criterion 
along the continuum of results for a test has as its 
corollary in ROC space the selection of the opti-
mal operating point on the ROC curve. Therefore, 
the optimal operating point depends on the costs 
or consequences of incorrect diagnoses as well as 
the prevalence of disease and can be considered 
formally through the process of decision analysis. 
Figure 3 shows a decision fan that has as each 
branch at the decision node a different positivity 
criterion and operating point. In other words, the 
only difference between each of these decisions is 
the combination of sensitivity and specificity from 
points along the ROC curve. Each of the four 

outcomes of a dichotomous test has an assigned 
value or utility (e.g., utility of a true negative, or 
UTN). The optimal operating point would corre
spond to the branch with the greatest expected 
utility. This also can be represented algebraically 
such that the optimal criterion corresponds to the 
point where the instantaneous slope of the ROC 
curve equals

Probability of disease
being absent

Probability of disease
being absent

× Cost of false positives
Cost of false negatives

;

where (Probability of disease being absent/
Probability of disease being present) is the odds of 
disease being absent and where the cost of a false 
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positive (in Figure 3) is UTN – UFP (utility of a 
false positive) and the cost of a false negative (in 
Figure 3) is UTP – UFN.

In summary, tests are used to discriminate 
between patients with and without disease. If 
results are interpreted in a dichotomous manner, 
then a cutoff must be selected to differentiate 
between a positive and a negative test result. The 
selection of this cutoff should depend on the bal
ance of the consequences between falsepositive 
and falsenegative results, along with the preva
lence of disease, and is also represented by the 
optimal operating point on the ROC curve.

Mark H. Eckman

See also Decision Trees, Construction; Decision Trees, 
Evaluation; Diagnostic Tests; Receiver Operating 
Characteristic (ROC) Curve
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PreDiction ruleS 
anD moDeling

In this entry, the role of prediction models for 
medical decision making is discussed. Decision 
rules can be based on prediction models and are 
important for more individualized decision mak
ing. Prediction models have potential applica
tions in both medical practice and research. 
Prediction models are ideally derived from large
volume, highquality empirical data to quantify 
the relationship between a set of predictors and 
a diagnostic or prognostic outcome. Model 
development needs to be followed by model 
validation and an analysis of the model’s impact 
on decision making and outcomes of individual 
subjects.

Prediction Models

Clinical prediction models may provide the evi
dencebased input for shared decision making, by 
providing estimates of the individual probabilities 
of risks and benefits. Clinical prediction models 
are sometimes also referred to as prognostic mod
els or nomograms. Clinical prediction models 
combine a number of characteristics (e.g., related 
to the patient, the disease, or treatment) to predict 
a diagnostic or prognostic outcome. Typically, 
between 2 and 20 predictors are considered. The 
number of publications with clinical prediction 
models has increased steeply in recent years in 
various medical fields.

Applications of Prediction Models

Prediction models are valuable for medical prac
tice and for research purposes. In public health, 
models may help target preventive interventions to 
subjects at relatively high risk of having or devel
oping a disease. In clinical practice, prediction 
models may inform patients and their treating phy
sicians on the probability of a diagnosis or a prog
nostic outcome. Prognostic estimates may, for 
example, be useful to assist in planning of the 
remaining lifetime in terminal disease or give hope 
for recovery if a good prognosis is expected after 
an acute event such as a stroke. Classification of a 
patient according to his or her risk may also be 
useful for communication among physicians, for 
research purposes, and for benchmarking.

Prediction models may also assist medical deci
sion making, for example, as part of a decision 
support system. In the diagnostic workup, predic
tions can be useful to estimate the probability that 
a disease is present. When the probability is rela
tively high, treatment is indicated; if the probabil
ity is very low, no treatment is indicated. For 
intermediate probabilities of disease, further diag
nostic testing is necessary. In therapeutic decision 
making, treatment should only be given to those 
most likely to benefit from the treatment. Prognostic 
predictions may support the weighing of harms 
versus individual benefits. If risks of a poor out
come are relatively low, the maximum benefit will 
also be relatively low. Any harm, such as a side 
effect of treatment, may then readily outweigh any 
benefits. The claim of prediction models is that 
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better decisions can be made with a model than 
without and that their predictions are sometimes 
better than those made by physicians.

In research, prediction models may assist in  
the design and analysis of randomized trials. 
Adjustment for baseline risk in the analysis of a 
trial results in higher statistical power for the 
detection of a treatment effect. Models are also 
useful to control for confounding variables in 
observational research, either in traditional regres
sion analysis or with modern approaches such as 
propensity scores.

From Prediction Models to Decision Rules

Prediction models provide diagnostic or prognos
tic probabilities. They may assist medical decision 
making without telling clinicians what to do pre
cisely. One motivation for providing probabilities 
only is that decision thresholds may differ from 
patient to patient. Some argue, however, that pre
diction models will more likely have an impact on 
clinical practice when clear actions are defined in 
relation to the predictions—that is, in the form of 
a decision rule (or prediction rule). Prediction 
models may hereto require simplification to pro
vide clear advice on actions with high and low 
predictions. A decision threshold has to be defined, 
chosen either informally or by formal decision 
analysis. When applying some diagnostic rules, 
clinicians may not want to miss any patient with 
the outcome of interest (e.g., Ottawa ankle rules). 
This implies that clinicians aim for a sensitivity of 
100% and hope for reasonable specificity. They 
accept falsepositive classifications, since 100% 
sensitivity implies an infinite cost of falsenegative 
classifications. Decision rules can often be pre
sented in a simpler format than detailed prediction 
models that provide individualized predictions.

Modeling

Statistical models for prediction try to relate a set 
of predictor variables (X) to an outcome (Y). The 
most common method in medical research is 
regression analysis. The resulting predictive regres
sion models can be entered relatively easily in deci
sion analytic models, including decision trees and 
Markov models.

Regression models make a number of assump
tions on the relationships between predictors and 

the outcome, such as additivity of effects (which 
can be tested by adding interaction terms) and lin
earity of effects for continuous predictors (which 
can be tested by adding nonlinear terms). The spe
cific type of regression model to use is guided by the 
type of outcome. The linear regression model is the 
default for continuous outcomes. In the context of 
medical decision making, the outcome is commonly 
dichotomous (e.g., presence vs. absence of a target 
diagnosis or occurrence of a prognostic outcome, 
such as mortality). Logistic regression analysis is the 
most commonly used statistical technique to predict 
such dichotomous outcomes. Alternative methods 
include recursive partitioning, or Classification and 
Regression Tree (CART) methods, as well as neural 
networks. These alternative prediction methods 
usually make less stringent assumptions than regres
sion models but require larger sample sizes. CART 
methods assume interactions between predictors, 
and neural networks usually allow for nonadditive 
and nonlinear effects of predictors. Details are 
found in many excellent statistical textbooks.

If outcomes are not observed for all subjects in 
a study (“censoring”), statistical survival models 
should be used. The Cox regression model is com
monly used to predict the probability of occur
rence of an outcome by a certain time point. For 
decision modeling, parametric survival models, 
such as the Weibull model, may, however, have 
some advantages, including more stable predic
tions at the end of followup and possibilities of 
extrapolation beyond observed followup time.

Study Design

Prognostic studies are inherently longitudinal in 
nature, most often performed in cohorts of patients, 
who are followed over time for an outcome to 
occur. The cohort is defined by the presence of one 
or more particular characteristics—for example, 
having a certain disease, living in a certain place, 
having a certain age or simply being born alive. 
For example, researchers may follow a cohort of 
patients with an acute myocardial infarction for 
longterm mortality.

Diagnostic studies are most often designed as a 
crosssectional study, where predictive patient 
characteristics are related to an underlying diagno
sis. The study group is defined by the presence of 
a particular symptom or sign suggesting that the 
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subject may have a particular (target) disease. 
Typically, subjects undergo the test of interest and, 
subsequently, a reference test to establish the 
“true” presence or absence of the target disease 
over a short time span. For example, clinicians 
may aim to diagnose those with an acute myocar
dial infarction among patients presenting at an 
emergency department.

Predictors and Outcome

Strength of Predictors

For a wellperforming prediction model, strong 
predictors have to be present. Strength is a func
tion of the association of the predictor with the 
outcome, and the distribution of the predictor. For 
example, a dichotomous predictor with an odds 
ratio of 2.0 and 50% prevalence is more relevant 
for a prediction model than a dichotomous predic
tor with an odds ratio of 2.5 with 1% prevalence. 
Also, continuous predictors with a wider range are 
more relevant for prediction.

When some characteristics are considered as 
key predictors, these have to be registered care
fully, with clear definitions and preferably no  
missing values. This is usually best possible in a 
prospective study, with a protocol and prespecified 
data collection forms.

Reliability of Predictors

Ideally, predictors are well defined and reliably 
measurable by any observer. In practice, observer 
variability is a problem for many measurements. In 
addition, some measurements are prone to bio
logical variability. A wellknown example is blood 
pressure, where a single measurement is quite 
unreliable. Usually, at least two measurements are 
obtained, and preferably more, with some spread 
in time. Most prediction models include predictors 
that are quite readily available, are not too costly 
to obtain, and can be measured with reasonable 
precision.

Choice of Outcome

The outcome of a prediction model should be 
relevant, either from an applied medical perspective 
or from a research perspective. From a medical per
spective, “hard” end points are generally preferred. 

Especially, mortality is often used as an end point in 
prognostic research. Mortality risks are relevant for 
many acute and chronic conditions and for many 
treatments, such as surgery. In other diseases, other 
outcomes may be preferred, including nonfatal 
events (e.g., disease recurrence), patientcentered 
outcomes (e.g., scores on qualityoflife question
naires), or wider indicators of burden of disease 
(e.g., absence from work). Statistical power may 
also direct the choice of outcome. The infrequency 
of an outcome may make an outcome less appropri
ate for statistical analysis. Ideally, a dichotomous 
outcome has a 50:50 distribution. Continuous out
comes generally provide more statistical power than 
categorized or dichotomized outcomes.

The prognostic outcome should be measured as 
reliably as possible. Prediction models may be 
developed with pragmatic definitions of predic
tors, since this may resemble the future use of a 
model. But the outcome should be determined 
with similar rigor as in an etiologic study or ran
domized clinical trial. In the future, decisions are 
to be based on the predictions from the model. 
Hence, predictions need to be based on robust 
statistical associations with an accurately deter
mined outcome.

Steps in Model Development

There are seven logically distinct steps in the devel
opment of valid prediction models with regression 
analysis that researchers may consider. These steps 
are briefly addressed below, with more detail pro
vided elsewhere.

1. Problem definition and data inspection: A pre
liminary step is to carefully consider the prediction 
problem: What are the research questions? What is 
already known about the predictors? The next step 
is to consider the data under study: How are the 
predictors defined? What is the outcome of interest? 
An important issue is that missing values will occur 
in at least some of the predictors under study. 
Various statistical approaches are available for deal
ing with missing values, with multiple imputation 
being used in the more recent prediction models.

2. Coding of predictors: When researchers start 
on building a prediction model, the first issue is the 
coding of predictors for a model; several choices 
need to be considered on categorical variables and 
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continuous variables. Dichotomization of a con
tinuous predictor has many disadvantages and 
should be discouraged.

3. Model specification: The most thorny issue in 
prediction modeling is how to specify the model. 
What predictors should be included, considering 
what is known about the predictors already, and 
what is observed in the data under study? Stepwise 
selection methods are widely used but have many 
disadvantages, such as instability of the selection, 
bias in estimated regression coefficients, and under
estimation of uncertainty in the selected model. 
Using subject knowledge for model specification is 
a better approach—for example, considering pre
vious studies on predictors and prediction models 
or having discussions with clinical experts. Another 
issue is how researchers should deal with assump
tions in regression models, such as additivity and 
linearity of predictor effects. Iterative cycles of test
ing of assumptions and adaptation may lead to a 
model that provides predictions that do not gener
alize to new subjects outside the data set under 
study (“overfitting”). A simple, robust model that 
may not fit the data perfectly should be preferred 
to an overly finetuned model for the specific data 
under study.

4. Model estimation: Once a model is specified, 
model parameters need to be estimated. For regres
sion models with dichotomous outcomes, research
ers estimate coefficients for each predictor with 
maximum likelihood methods. Some modern tech
niques have been developed that aim to limit over
fitting of a model to the available data, such as 
statistical shrinkage techniques, penalized maxi
mum likelihood estimation, and the least absolute 
shrinkage and selection operator (LASSO).

5. Model performance: For a proposed model, 
researchers need to determine the quality. Several 
statistical performance measures are commonly 
used, including measures for model calibration 
and discrimination. Calibration refers to the reli
ability of predictions: If a researcher predicts 10%, 
on average 10% of the subjects with this predic
tion need to experience the outcome. Discrimination 
refers to the ability of a prediction model to sepa
rate subjects with and without the outcome and 
can, for example, be quantified by the area under 
the receiver operating characteristic (ROC) curve. 

Most relevant to clinical practice is whether the 
model is useful—that is, whether better decisions 
are made with the model than without. Usefulness 
is difficult to quantify, but novel performance mea
sures such as decision curves may provide relevant 
insights.

6. Model validity: Since overfitting is a central 
problem in prediction modeling, researchers need 
to consider the validity of their model for new 
subjects rather than for those in the data set used 
for model development. Several statistical tech
niques are available to evaluate the internal valid
ity of a model—that is, for the underlying 
population that the data set was sampled from. 
Internal validation may address statistical prob
lems in the specification and estimation of a model 
(“reproducibility”). Common methods are cross
validation and bootstrap resampling procedures.

7. Model presentation: The final step to con
sider is the presentation of a prediction model. 
Regression formulas can be used, but many alter
natives are possible for easier applicability of a 
model, including score charts, nomograms, and 
Webbased calculators.

From Model Development to Impact Analysis

A prediction model rises to the level of a decision 
rule if clinicians use its predictions to help make 
decisions for patients. The first phase is the valid 
development of a prediction model. Overfitting 
and measures to prevent overoptimistic expecta
tions of model performance are especially impor
tant to consider at each of the seven steps of model 
development.

Phase 2 is related to external validation of the 
model, which is essential before application of a 
model can be recommended. Validation in multiple 
settings is required to gain confidence in the applica
bility of a model for yet another setting. Re searchers 
may also use forthcoming data from validation 
studies to dynamically make changes to a model 
(“updating”).

Finally, researchers need to consider an impact 
analysis, where a prediction model is used as a deci
sion rule and any improvement in physicians’ deci
sions is determined (quality or costeffectiveness  
of patient care). Decision rules generally improve 
physicians’ specificity more than sensitivity;  
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physicians ascribe greater value to truepositive 
decisions (provide care to patients who need it) 
than to truenegative decisions (withhold care 
from patients who do not need it). Sensitivity and 
specificity of a decision rule in clinical practice is 
influenced not only by the quality of the predic
tion model but also by the adherence of clinicians 
to the rule. Validation of a prediction model may 
indicate the efficacy of a rule (the maximum that 
can be attained with 100% adherence), but 
impact analysis will indicate its effectiveness in 
practice. Clinicians may choose to overrule the 
decision rule, which may improve sensitivity or 
specificity, but overruling may also dilute the 
effects of the rule.

There may be various barriers and facilitators 
to the clinical use of decision rules. Barriers 
include issues of attitude such as skepticism 
about guidelines (in general and with respect to 
the specific rule), questions on the clinical sensi
bility of the rule, too high confidence in clinical 
judgment, fear of medicolegal risks, concern that 
important factors are not addressed by the deci
sion rule, and concern about patient safety. 
Furthermore, practical issues are important, such 
as availability of the rule at the time of decision 
making and ease of use.

Current and Future Successes

Prediction models and decision rules are impor
tant for more individualized medical decision 
making. The impact of a model may vary from 
setting to setting. A successful example is given 
by the Ottawa ankle rules, which started with 
model development, followed by validation and 
impact assessment. Many more successes are 
to be foreseen, for example, by the incorporation 
of stronger predictors such as biomarkers in pre
diction models, the development and validation 
of decision rules in close collaboration with cli
nicians, and the ongoing automatization in 
healthcare.

Ewout W. Steyerberg
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Preference reverSalS

A preference reversal occurs when the same risky 
or uncertain choices are offered in different forms 
and the preferred choice changes. As such, prefer
ence reversals belong to a collection of phenomena, 
known as choice anomalies, that suggest that deci
sion making is not always rational. The basic labo
ratory form of the preference reversal as a choice 
between gambles is described along with examples 
of preference reversals in medical decision making 
and other domains. Theories of preference reversal 
and their implications are discussed.

Choice Between Gambles

Expected utility theories of decision making assume 
that if individuals have sufficient information and 
are given sufficient time to process that informa
tion, they will make choices that maximize their 
interests. Since the choices people make reflect 
their best interests, those choices should be stable 
irrespective of how the preferences are elicited. For 
example, if given a choice between Options A and 
B, the agent prefers A, the agent should, when 
asked how much he or she would be willing to pay 
for the two options, pay more for Option A than 
for Option B. However, a great many studies have 
shown that the method of eliciting a preference can 
affect the choices people make. In the classic form, 
experimental participants are asked to choose 
between pairs of gambles. One choice has a high 
probability (P Bet) of winning a modest sum of 
money; the other has a low probability of winning 
a large sum of money. In the example below, the 
expected value (the probability of the outcome 
multiplied by the value of the outcome) of each 
choice is the same:

P Bet: 80% chance of winning $20.50,

$ Bet: 20% chance of winning $82.00.

When asked to choose between the two gambles 
most people prefer the P Bet. However, when asked 
to state the lowest amount of money they would 
sell the gambles for, or how much the gambles are 
worth to them, people tend to assign the $ Bet a 
higher monetary value. Thus, preferences elicited 

as a choice are reversed when those preferences are 
elicited in another form and violate expected utility 
theory’s axiom of invariance.

Examples

The effect is not restricted to monetary decisions 
and occurs when the same individuals make the 
same choice twice and when the choices made by 
different individuals are elicited in different ways. 
For example, in a study of personnel selection, 
participants were asked to imagine that they were 
company executives choosing between two candi
dates, who had been scored by a selection commit
tee along two dimensions (technical knowledge 
and human relations), for a position as a produc
tion engineer. One group of participants made 
their choices by choosing directly between the two 
candidates or by a matching technique. A second 
group received the same information, except that 
one of the four personnel scores was missing and 
had to be filled in to make the two candidates 
equivalent. The choices made directly tended to be 
reversed in the group whose choices were inferred 
by their evaluation of the missing attribute.

Preference reversals are not limited to situations 
in which preferences are elicited using direct 
choices and evaluations. They occur also when 
evaluations are made along different dimensions. 
For example, college students were asked to evalu
ate various hypothetical consumer and health 
related scenarios in terms of monetary value and 
life expectancy. The participants were asked to 
state how much they would be willing to sacrifice 
financially and in terms of life expectancy in order 
to gain an AIDS vaccine, immunity to tooth decay, 
a treatment that gives 20/20 vision, and one that 
provides immunity to cancer. Consumer items 
included airline tickets, theater tickets, vacations, 
and a date with a favorite celebrity. Although it 
might seem odd to compare different kinds of deci
sions along these two dimensions, the preferences 
elicited by them should be rank ordered in the 
same way on both scales, since any valuation scale 
reflects subjective utility. That is, the rank order of 
preferences on the monetary scale should be the 
same as the rank order of items along the life 
expectancy scale. The results, however, showed 
that health items were ranked higher than con
sumer items in terms of life expectancy value but 
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the consumer items were ranked higher on the 
monetary scale than the health items. This result 
indicates that the features of a decision (e.g., health 
benefits) are given more weight when they are 
meaningfully related to the scale on which they are 
evaluated (e.g., life expectancy).

A more commonly used valuation scale in 
medicaldecisionmaking research is the time trade
off (TTO) method, in which participants estimate 
how many years in good health they consider 
equivalent to a particular outcome. Dutch college 
students would prefer to live 10 years in a state of 
constant migraine to living 20 years in the same 
state. The same students, when asked to state the 
number of years in perfect health that is equivalent 
to 10 years with a constant migraine and the num
ber of years in perfect health equivalent to 20 years 
with a migraine, tended to assign a higher value for 
the 20 years of migraine than for the 10 years, thus 
reversing their preferences.

Such examples of irrationality are not restricted to 
the hypothetical patients but may be common too in 
medical practitioners. Family practitioners were pre
sented with the case of an elderly patient with 
chronic hip pain and a diagnosis of osteoarthritis, for 
whom various nonsteroidal antiinflammatory medi
cations have proved ineffective. The patient agrees 
to be referred to an orthopedic surgeon in order to 
be assessed for possible hip replacement surgery. 
The case history was then subtly modified for two 
separate groups of family practitioners. One group 
was told that on inspection of the case notes, there 
was one nonsteroidal antiinflammatory medica
tion (ibuprofen) that had not yet been tried and 
were asked to choose between the following two 
alternatives:

A: Refer to an orthopedic surgeon and also start 
ibuprofen.

B: Refer to an orthopedic surgeon, but do not start 
any new medication.

The second group was told that two medica
tions had not yet been tried (ibuprofen and piroxi
cam) and were asked to choose between three 
alternatives:

C: Refer to an orthopedic surgeon and also start 
ibuprofen.

D: Refer to an orthopedic surgeon and also start 
piroxicam.

E: Refer to an orthopedic surgeon, but do not start 
any new medication.

Just over half (53%) of the practitioners pre
ferred not to start any new medication when given 
the option of either ibuprofen or no new medication 
(A and B). However, 72% of the group for whom 
two medications were available as alternatives pre
ferred not to start either medication. Thus, 19%  
of the practitioners who would have attempted fur
ther medication when there was only one available 
would not do so when there were two available.

In a similar study, internal medical residents 
reviewed three hypothetical case histories: depres
sion, sinusitis, and vaginitus. One group of medi
cal residents were asked to choose between a 
relatively ineffective medicine with infrequent side 
effects and a relatively more effective medicine 
with frequent side effects for each of the three 
patients. A second were asked to make decisions 
about the same patients and the same medications, 
and a third, about moderately effective medication 
with occasional side effects. The results demon
strate that when three options are available, pref
erence for the medication without side effects 
increases relative to when there are just two alter
natives, despite the fact that the third option is 
inferior to the other options.

Theories

A number of different hypotheses have been pro
posed to explain preference reversals.

Compatibility Hypothesis

Different methods of eliciting a preference 
emphasize different pieces of information. When 
making a direct choice between two alternatives, 
people are primarily concerned with the attribute 
that is most important to the success of the out
come—namely, the probability. But when people 
are asked to evaluate the options with regard to a 
selling price, greater emphasis is placed on the 
monetary value of the options. Moreover, a related 
phenomenon may influence such evaluations: 
When stating a selling or purchase price, people 
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tend to anchor and adjust their price on the dollar 
amount stated in the gamble and consequently 
assign a higher value than it is worth objectively.

Evaluability Hypothesis

Some dimensions along which preferences are 
elicited may be more difficult to judge in isolation 
than others. Specifically, when choices involve a 
tradeoff between an easytoevaluate dimension 
(e.g., immediate efficacy) and a hardtoevaluate 
dimension (e.g., possible side effects), the harder 
dimension will receive less attention when the two 
dimensions are considered together.

Attraction or Dominance Effect

The most likely explanation for the increase in 
preference for one of the options when there are 
three rather than two alternatives is that the third, 
least preferred option dominates the second choice 
by highlighting its relative ineffectiveness. This 
kind of preference reversal is particularly relevant 
in medical decision making with regard to treat
ment decisions because there are often numerous 
medications available for a particular condition 
and the options available increase as new medica
tions and treatments are developed.

Reasoning About Probability

People’s perception and ability to reason about 
objective stated probabilities are often imperfect. 
Low probabilities tend to be overweighted, and 
high probabilities tend to be underweighted. The 
incidence of preference reversals is reduced, but not 
eliminated entirely, when the options are presented 
in the form of frequencies (e.g., 10 out of 100) 
rather than probabilities (e.g., 10% or p = .10).

Implications

While the existence of preference reversals and 
other choice anomalies are a challenge to norma
tive theories of decision making, they perhaps 
pose a more serious challenge to the individual 
faced with making difficult and often risky deci
sions and to those who must give people these 
options and interpret their choices, because they 
demonstrate that the choices that people make 

may not always indicate their true preference. 
This raises the question, “How is it possible to 
infer what an individual’s true preference is if 
that preference changes as a result of how the 
choice is made?” The true preferences of indi
viduals making single decisions, such as a patient 
deciding among treatment options, can best be 
elicited using the same principles used to improve 
the communication of risk (i.e., probability)  
in any domain. With regard to people making 
numerous decisions over time, the outlook is 
somewhat better in the sense that the incidence 
of preference reversals tends to decline with 
experience.

Richard J. Tunney
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ProBaBility

The concept of probability was introduced as a 
way of representing our uncertainty about the 
world. Mathematically, a probability distribution 
is a mapping from the values of a variable to non
negative real numbers. Semantically, a probability 
is the chance or likelihood that an event occurs, 
currently or in the future.

Variables and Their Values

A variable is a mathematical object that takes  
on values from a certain set, called its domain. For 
instance, the domain of the variable Sex can be 
{male, female}. Each variable represents a property 
of the real world.

Values of a Variable

By definition, the values that a variable can take 
must be both exclusive and exhaustive. Exclusive 
means that two values cannot be true simultane
ously. Exhaustive means that the values must cover 
all possible cases. For example, the values male and 
female are mutually exclusive because a person 
cannot be a man and a woman; they are exhaustive 
because there exists no other possibility.

Types of Variables

A variable is said to be discrete if its domain has 
a finite number of values. In the above example, Sex 
takes on only two values. A variable is said to be 
continuous if its domain is a numerical interval, such 
as [0,1] or [–∞,∞]. For instance, age, weight, height, 
temperature, red cell count, enddiastolic area of a 
valve, and so on are all continuous variables.

A continuous variable can be discretized by par
titioning its domain into a finite number of subin
tervals. For instance, when modeling a medical 
problem, we could define three intervals for the 
variable Age: young = from 0 to 25, adult = from 
26 to 70, and elderly = over 70. In another situa
tion, it might be more appropriate to define the 
intervals differently, for example, young = from 0 
to 15, adult = from 16 to 65, and elderly = over 65, 
or even to define more intervals: from 0 to 5, from 
6 to 10, from 11 to 15, from 16 to 20, and so on.

Individual Probability

Probability of a Discrete Variable

As a first approach, we can define the probabil
ity of a discrete variable X as a function that assigns 
to each value x a number between 0 and 1 (both 
inclusive) such that the sum of them must be 1:

0 ≤ P(x) ≤ 1,

X

x

PðxÞ= 1:

For example, for the variable Age mentioned 
above, we could have the following assignment  
of probability: P(young) = .35, P(adult) = .46, and 
P(elderly) = .19. Each of these probabilities is 
between 0 and 1, and the sum of all is 1: P(young) + 
P(adult) + P(elderly) = 1.

Probability of a Continuous Variable

The definition of the probability of a continu
ous variable is much more complex than in the 
discrete case. Let us assume that X is a continuous 
variable taking on real values. The basis for the 
definition of a continuous probability distribution 
is a function F(x), called a cumulative distribution 
function, which, by definition, must satisfy the fol
lowing properties.

 1. F(x) is monotonically nondecreasing; that is,  
if b > a, then F(b) ≥ F(a).

 2. lim
x→ ∞

FðxÞ=0:

 3. lim
x→ +∞

FðxÞ= 1:

Roughly speaking, the first expression means 
that F(x) increases—or at least does not decrease—
when x increases, and the latter two mean, respec
tively, that the smaller the value of x, the closer is 
F(x) to 0 and the greater the value of x, the closer 
is F(x) to 1 (see Figure 1).

Then, the probability that X lies in the interval 
[a,b] is given by

P(a ≤ X ≤ b) = F(b) − F(a).

There exists in general a function f(x), called  
the probability density function, defined as f(x) = 
dF(x)/dx, which leads to
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Pða≤X≤bÞ=
Zb

a

f ðxÞdx:

However, in practice, the probability P is never 
defined from the cumulative function, F, but from 
the density function, f.

For example, the weight of individuals in a cer
tain population might be modeled by assuming 
that its probability density function is given by a 
Gaussian distribution of mean m = 72 kg and stan
dard deviation σ = 4 kg (see Figure 1):

f ðxÞ= 1

s 2p
p e ðx mÞ2=2s2 = 1

4 2p
p e ðx 72Þ2=ð2× 42Þ:

The probability that the weight of an individual 
randomly taken from that population lies between 
71 and 75 kg is 37.2%:

Pð71≤X≤75Þ= 1

4 2p
p

Z75

71

e ðx 72Þ2=ð2× 42Þ = :372:

Families of Probability Distributions

The set of all Gaussian distributions, also 
called normal distributions, form a family, given 
by an expression that depends on two parame
ters, m and σ. Each assignment of parameters 
(e.g., {m = 72 kg, σ = 4 kg}) leads to a particular 
probability distribution function. Other families 
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Figure 1   Weight of a population modeled by a Gaussian distribution of mean m = 72 kg and standard deviation  
σ = 4 kg. Top: Cumulative distribution function, F(x). Bottom: Probability density function, f(x).
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of continuous distributions often used in statis
tics are χ2 (chisquare), Γ (gamma), b (beta), 
Student’s S, Fisher’s F, and so on. The mathemat
ical expressions for these functions can be found 
in any textbook on statistics or on the Internet.

Joint and Marginal Probabilities

Joint Probability of Several Discrete Variables

The definition of individual probability (of  
a variable) can be generalized to that of joint 
probability (of several variables). When having 
two discrete variables X and Y, the joint proba
bility P(x, y) is any function that fulfills these 
properties:

0 ≤ P(x,y) ≤ 1,
X

x

X

y

Pðx; yÞ= 1:

The joint probability of three or more variables 
is defined similarly. For example, let X be the vari
able Sex, which takes on the values male and 
female, and Y the variable Age, which takes the 
values young, adult, and elderly. In a certain popu
lation, the joint probability for these two variables 
is as follows:

P(male, young) = .183 P(female, young) = .167

P(male, adult) = .210 P(female, adult) = .222

P(male, elderly) = .093 P(female, elderly) = .125

Clearly, all the probabilities are between 0 and 1, 
and their sum is 1.

Marginal Probability of Discrete Variables

From the joint probability of several variables, 
we can obtain the marginal probability for a subset 
of them by summing over the rest of the variables. 
For example, given P(x, y), the marginal probabil
ity P(x) is obtained summing over the variable we 
want to “eliminate,” namely, Y:

PðxÞ=
X

y

Pðx; yÞ:

In the same way, the marginal probability P(y) is 
obtained summing over X:

PðyÞ=
X

x

Pðx; yÞ:

We can represent the joint and marginal probabili
ties of this example as given in Table 1.

These results can be generalized for more than two 
variables. For instance, from the joint probability 
P(x, y, z), we can derive six marginal probabilities:

Pðx; yÞ=
P
z

Pðx; y; zÞ
 

Pðx; yÞ=
P
z

Pðx; y; zÞ  
Pðx; yÞ=

P
z

Pðx; y; zÞ

PðxÞ=
X

y

X

z

Pðx; y; zÞ
 

PðyÞ=
X

x

X

z

Pðx; y; zÞ  

PðzÞ=
X

x

X

y

Pðx; y; zÞ

Joint and Marginal Probability Distributions  
of Continuous Variables

Axiomatically, the definition of the joint prob
ability of several continuous variables is based on 
a cumulative distribution function, F(x, y, z, . . .), 
whose properties are analogous to the case of a single 
variable, and the probability density function derives 
from it. However, in practice, the probability P is 
never defined from a cumulative function, F, but 
from a density function, f, assuming that f belongs to 
one of the families of multivariate continuous prob
ability distributions, such as the multivariate Gaussian, 
also called multivariate normal. Other families of 
continuous probability density distributions can be 
found in statistical textbooks and on the Internet.

The derivation of the marginal density function 
from a joint probability density is analogous to the 
case of discrete variables, just replacing the sum 
with an integral. For example, in the case of a joint 

Table 1   Joint and marginal probabilities for a 
hypothetical population

P(x, y) male female P(y)

young .183 .167 .350

adult .210 .222 .432

elderly .093 .125 .218

P(x) .486 .514 1.000
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density f(x, y) defined over two variables X and Y, 
the marginal density distributions are

f ðxÞ=
Z+∞

∞

f ðx; yÞdy;

f ðyÞ=
Z+∞

∞

f ðx; yÞdx:

The generalization of these equations for a higher 
number of variables is obvious.

Francisco J. Díez

See also Bayes’s Theorem; Conditional Independence; 
Conditional Probability; Diagnostic Tests; Odds and 
Odds Ratio, Risk Ratio; Probability, Verbal 
Expressions of; Subjective Probability; Violations  
of Probability Theory
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ProBaBility, verBal 
exPreSSionS of

Verbal expressions of probability are those used  
for communicating degrees of uncertainty, such as 
likely, very likely, possible, and uncertain, in contrast 
with numerical expressions, such as “The probabil
ity of X is 70%” or “The odds are 3 to 1.”

Correspondence Between Verbal  
and Numerical Expressions

Since the 1960s, several authors have studied the 
equivalence between verbal and numerical expres
sions of probability. The typical experiment con
sists in selecting a set of linguistic expressions, 
asking a group of subjects to translate each one into 
a percentage or a number between 0 and 1, and 
building a table or a graph that summarizes the 

results. Most of such studies include expressions 
that do not represent probabilities in a strict sense. 

Variability of Numerical Assignments

Several experiments have indicated low within
subject variability, that is, estimates given by the 
same subject on different occasions are very simi
lar, while all the studies have shown a high degree 
of betweensubject variability. A related empirical 
finding is that in general, people underestimate 
how much individuals vary in their interpretation 
of probability terms.

The studies have also shown a reasonable 
degree of betweenexperiment consistency. In some 
cases, the numerical values obtained in a study dif
fered from those obtained in others, but the rank
ing of expressions was essentially the same.

Several experiments that compared the numerical 
values assigned by different groups of subjects have 
shown that betweensubject variability is smaller 
among people with similar backgrounds. For instance, 
a study by Nakao and Axelrod showed that consen
sus was significantly higher among physicians than 
among laymen for around half of the expressions of 
frequency examined and also among nativeEnglish
speaking physicians than among those with other 
native languages, but it was not higher among board
certified physicians than among the others.

The Role of Modifiers

The meaning of a verbal expression of probabil
ity can be modified by the use of adverbs (very 
likely), affixes (im-probable, un-likely), or lexical 
negations (not likely). Empirical studies have led to 
the following ranking of adverbs: very > quite > no 
modifier > rather > fairly > somewhat, which 
means that very is the adverb that shifts most  
the meaning of a probability expression toward 
extreme values. Very likely denotes a higher prob
ability than quite likely, which in turn denotes a 
higher probability than likely (no modifier). On 
the contrary, rather, fairly, and somewhat shift the 
meaning of the expression toward .5.

The Influence of Context

While most of the experiments asked the subjects 
to translate isolated linguistic expressions, other 
researchers have studied those expressions in context. 
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A surprising finding is that in most of the cases, 
betweensubject variability is higher when probabilis
tic expressions are given in context. Another finding, 
not surprisingly, is the base-rate effect, which means 
that, in general, the higher the prior probability of an 
event, the higher the numerical values assigned. For 
instance, the term likely in “It is likely that it will 
snow in December” is assigned higher values than in 
“It is likely that it will snow in October.”

Qualitative expressions associated with more 
severe outcomes (e.g., “likely death” vs. “likely 
injury”) tend to be assigned lower numbers. This 
might also be explained by the baserate effect, 
because in general more severe outcomes have 
lower base rates. There is also empirical evidence 
that expressions associated with positive outcomes 
tend to be assigned higher numbers than those 
associated with negative outcomes.

More interestingly, Mazur and Merz proved  
that personal characteristics, such as age, healthcare 
experience, and perceived health status, influence 
patients’ interpretations of verbal probability terms.

Preferences for Numerical  
or Verbal Probabilities

Reasons for Preferring Verbal Probabilities

One of the reasons for using verbal probabili
ties is that they are more natural than numbers: 
Spontaneously, people express probabilities with 
linguistic terms, whereas it requires an additional 
cognitive effort to give numeric estimates.

Additionally, verbal probabilities can reflect the 
speaker’s lack of knowledge: Very often expressions 
of probability do not stem from systematic data, 
but they are estimates made by human beings based 
on the cases stored in their memory, on what they 
have read or heard, and so on. In this case, people 
do not dare convey a numerical probability, for two 
reasons. The first is that an empirical study might 
later prove the assertion to be wrong. For instance, 
if an expert says in a book that the prevalence of a 
disease is 1%—or even “around 1%,” which is an 
imprecise probability—and a posterior study shows 
that it is .4% or 3%, the expert’s reputation will be 
compromised. On the contrary, if he said that “the 
prevalence is relatively high,” he does not commit 
to a particular figure, and so his assertion cannot be 
refuted. The second reason is that subjective esti
mates expressed as numerical probabilities may 

mislead the listener to believe that the speaker 
knows the true probability with precision.

In addition to cases in which the probability has 
an objective value but is unknown, there are other 
cases in which it does not make sense to assume 
that there exists a measurable probability. For 
instance, a doctor may feel unable to answer with 
a precise value a question about the probability of 
a patient’s survival, because a question such as this, 
referring to a single-event probability, does not 
have an objective meaning. In this case, it is much 
easier to respond with a linguistic probability.

Another reason for using verbal expressions is 
that in addition to conveying a probability estimate, 
they can also express directionality. A phrase having 
positive direction, such as “X is possible,” implicitly 
points at the reasons for the occurrence of X, while 
a phrase of negative direction, such as “X is uncer
tain” or “X is doubtful,” implicitly underlines the 
causes that may prevent X. Therefore, verbal expres
sions may be preferred when the speaker, in addition 
to conveying a vague probability, wishes to make 
the listener pay more attention to the reasons in 
favor of or against the occurrence of an event.

Empirical Evidence

Many experiments have been carried out to 
study human preferences about probability expres
sions. The most consistent finding is that while 
more people prefer to receive information about 
probabilities numerically, they prefer to express 
such information verbally. This is called the prefer-
ence paradox.

In addition to the direction of communication 
(giving vs. receiving information), other factors 
have been shown to influence human preferences. 
One of them is the nature of the event: When 
expressing the probability of repeated events with 
aleatory uncertainty, most individuals prefer to use 
numerical estimates, which allow them to distin
guish between levels of uncertainty with higher 
precision, but the same individuals tend to use 
more imprecise methods when communicating 
singleevent probabilities. Another factor is the 
strength of the available evidence: People tend to 
use more precise expressions of probability when 
the information is firmer and more reliable.

In some of the studies, the people giving infor
mation were doctors and those receiving it were 



906 Probability, Verbal Expressions of

patients. Other studies have set a scenario in which 
subjects were randomly assigned to the group of 
advisers or to the group of decision makers, whose 
choice is based on the information received from 
the advisers.

A different problem, related to the construction 
of decision support systems, is the elicitation of  
the parameters of a probabilistic model, such as a 
Bayesian network or an influence diagram. An 
empirical study carried out by Witteman and  
colleagues, in which general practitioners had to 
assess several conditional probabilities, concluded 
that the less experienced doctors preferred a purely 
verbal scale, the most experienced preferred a 
purely numerical scale, while the groups in between 
preferred a combined verbalnumerical scale.

Impact on Medical Decision Making

The use of verbal expressions of probability poses 
a serious problem as a potential source of errors, 
particularly in the case of informed consent. The 
first problem is the risk of misunderstanding. Let 
us imagine a patient suffering from a disease that 
will cause his death. His doctor offers him a treat
ment that may save his life but may have side 
effects. The decision of accepting the treatment 
depends on the probability of survival and on the 
probability and severity of side effects. In this con
text, verbal expressions of probability entail an 
obvious danger of misunderstanding: The doctor’s 
estimate that there is a 60% probability of sur
vival, conveyed as “It is likely that you will get 
cured,” might be interpreted by the patient as a 
90% probability, and the assertion that “some
times the treatment causes severe adverse effects” 
may be interpreted as having a probability lower 
than 2% or higher than 15%. The danger is even 
higher in the case of extreme probabilities, because 
an expression such as very unlikely may mean .1 as 
well as .00001 probability. However, there is 
ample evidence that people, including investiga
tors, underestimate the variability of subjective 
estimations.

The second issue is how patients process the 
information that they receive from their doctors. On 
this point, the empirical evidence is contradictory. 
Some studies seem to demonstrate that subjects are 
more effective at reasoning with verbal expressions 
than with numerical expressions, even if the tasks 

performed rely on frequency information. However, 
other studies arrived at the opposite conclusion, and 
others have found no significant difference.

Disadvantages and Advantages

Verbal expressions of probability are often used  
in medical communications—in fact, much more 
often than numerical expressions. Experts in the 
field defend contradictory opinions about their 
usefulness and their peril.

The main drawback of verbal probabilities  
is the risk of misunderstanding, because the value 
interpreted by the listener can be very different 
from that intended by the speaker. Some research
ers have proposed using a very limited number of 
linguistic probabilities, whose meaning should be 
explicitly determined beforehand. However, this 
proposal does not solve two of the main problems: 
that the interpretation of such expressions varies 
with the context (the aforementioned baserate 
effect) and that verbal probabilities are not able to 
discriminate extreme values, such as .1 and .0001. 
On the contrary, this lack of precision of linguistic 
expressions turns into an advantage in the usual 
case of imprecise knowledge: In that case it may be 
very difficult for the speaker to utter a numerical 
probability, and, even worse, that precise probabil
ity may mislead the recipient of the information.

On the other hand, a disadvantage of verbal 
expressions of uncertainty is the lack of a norma
tive calculus, in contrast with the welldefined 
principles and techniques of probability theory, 
which play an essential role in medical diagnosis 
and decision making. Additionally, some experi
ments have shown that numerical probabilities 
lead to better judgments and to better decisions. 
However, other studies have arrived at the oppo
site conclusion, or at least a tie.

The directionality of verbal expressions, which 
carries additional information, has been put for
ward as one of their advantages. In contrast, 
numerical expressions, because of their neutrality, 
should be chosen when the speaker does not wish 
to bias the listener.

As an attempt to combine the advantages of 
both, some experts advocate using them together, 
by appending to each linguistic expression its 
intended meaning—for instance, “It is very likely 
(80%–90%) that. . . .”
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The movement of evidencebased medicine and 
the use of computerized decision support systems 
will give an increasingly prominent role to numer
ical probabilities, to the detriment of verbal expres
sions, but because of the above arguments and the 
strong human preferences, it is clear that the use of 
linguistic probabilities will never disappear from 
medical communications, either oral or written.

Francisco J. Díez and Marek J. Druzdzel

See also Human Cognitive Systems; Probability; Risk 
Communication; Subjective Probability
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ProBaBility errorS

Physicians and patients deciding on treatment 
options often need to estimate the probability of 
various outcomes (e.g., death, partial recovery, full 
recovery) in order to make effective decisions. 
However, human probability estimation is often 
fraught with errors that may interfere with making 
correct decisions. There are a number of probabil
ity errors that physicians ought to be aware of.

Human probability judgments often exhibit a 
rather basic bias: We overestimate low probabilities 
and underestimate high probabilities. For instance, 
people overestimate the likelihood of dying from 
rare diseases such as smallpox or botulism while 
underestimating the likelihood of dying from more 
common afflictions such as strokes or heart disease. 
One explanation for these biases might be that our 
probability estimates tend to regress toward the 
mean. That is, estimates of low probabilities have 
nowhere to go but higher while estimates of high 
probabilities can more easily go lower.

Another reason for these biases has to do with the 
availability heuristic, which states that we base our 
estimates of an event’s likelihood on how easy it is 
to imagine that event occurring. In other words, we 
overweight information that comes easily to mind. 
Because rare events get a large amount of graphic 
news coverage (e.g., plane crashes, the contracting of 
rare diseases), these events are easier to imagine than 
mundane and less publicized events (e.g., car acci
dents, asthma attacks). Given this, it is perhaps not 
surprising that surgeons from highmortality special
ties give higher estimates of dying in the hospital 
than do surgeons from lowmortality specialties.

Relatedly, the way in which we think about 
information can also affect the ease with which we 
envision certain events and our subsequent estimates 
of these events’ probabilities. If composite events are 
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“unpacked” into their components, then these com
ponents become easier to envision, and people esti
mate their probabilities to be higher. For instance, 
the risk of dying from “natural causes” can be 
unpacked into heart attacks, cancers, and other 
natural causes. People who were asked about the 
risk of dying from natural causes responded that it 
was 58%. However, people who were asked about 
the probability of the unpacked events responded 
that the risk of dying from heart attacks was 22%; 
from cancer, 18%; and from other natural causes, 
33%. This sums to 73%, considerably higher than 
the 58% estimate. Probability estimates increase 
when individual components are considered. When 
this occurs, such estimates are considered to be sub-
additive, as the judgment for the composite event is 
less than the sum of the judgments for its parts.

Decision makers also overweight surface simi
larities between events when judging probabilities, 
a strategy known as the representativeness heuris-
tic. For instance, given a description of a woman 
who is bright, outspoken, and concerned with 
social justice, Amos Tversky and Daniel Kahneman 
found that people are more likely to state that this 
woman is a feminist bank teller than just a bank 
teller. However, as all feminist bank tellers are also 
bank tellers, one cannot be more likely to be a 
feminist bank teller than a bank teller. This bias 
occurs because the description of the woman 
resembles the category of feminist bank tellers more 
than the more general category of bank tellers.

Another prominent probability error is base-rate 
neglect, whereby decision makers ignore the statisti
cal properties of an outcome, such as its frequency, 
and attend more to the specifics of a given circum
stance. Consider the following probabilities that 
were given to participants in a study: 80% of 
women with cancer will receive a positive mammo
gram, 9.6% of women who do not have cancer will 
receive a positive mammogram, and 1% of all 
women who get a mammogram will have cancer. 
Participants who were asked to judge the likelihood 
that a woman with a positive mammogram has 
cancer often gave high probability estimates (above 
70%). However, statistics dictate that the probabil
ity is much lower, 7.8%. Without exploring the 
statistical calculations, the actual probability is 
lower largely because only 1% of women have can
cer. Thus, participants appear to ignore the low base 
rate, focusing instead on the mammogram results.

Probability errors can also arise through mis
communication. For example, the probability of 
experiencing side effects from medications is often 
described in semantic terms (e.g., “Some people 
may experience X”). After hearing semantic 
descriptors, patients often interpret the probabili
ties of side effects as being as high as 25%, even 
though these phrases typically are meant to imply 
probabilities of less than 5%. In a similar vein, 
patients told that they were at “low risk” for dis
eases such as aspergillosis believed that they were 
over 10,000 times more likely to get the disease 
than they actually were. The ambiguity inherent in 
the verbal description leads people to overestimate 
the actual probabilities of the event.

Although these probability biases pose significant 
problems for medical decision making, some steps 
can be taken to mitigate their effects. For instance, 
describing the frequencies of outcomes (e.g., 10 out 
of 100) instead of their probabilities (e.g., 10%) 
might mitigate baserate neglect. Other means of 
effectively communicating probabilities include risk 
ladders, community risk scales, magnifier scales, 
and diagrams/graphics. Additionally, considering 
the causal relationships between different events can 
lead to more accurate probability assessments. For 
instance, when people are given a cause for false
positive mammograms (rather than simply being 
told that there is a certain percentage of false posi
tives), their diagnoses in the mammogram scenario 
from above become much more accurate.

Anuj K. Shah and Daniel M. Oppenheimer
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ProBlem Solving

Clinically active physicians possess large amounts 
of declarative and procedural knowledge. By one 
estimate, experienced physicians have more than 2 
million discrete pieces of information at their 
immediate disposal. But this knowledge offers little 
benefit to patients except in how its use relates to 
problem solving. People seek out physicians not for 
the large number of facts that the physicians can 
recall but for help with medical problems. Although 
there is a correlation between knowledge and 
problemsolving success, successful problem solv
ing requires more than a large amount of knowl
edge. Success also requires appropriate organization 
of the knowledge, application of the knowledge, 
and monitoring of the results of the application of 
knowledge so that adjustments can be made.

Problem solving is the process of answering or 
solving the question being considered. Problem 
solving requires a person to ascertain the current 

state of a situation, identify a specific goal state, 
possess knowledge about how to move from a 
starting state to a goal state, and monitor the prog
ress of moving toward the goal state.

Historical Roots

Problem solving and decision making are the prod
ucts of different research efforts. Problem solving 
has been studied by psychologists, who have concen
trated on identifying the problemsolving strategies 
of experts in a field, with the aim of facili t ating the 
acquisition of these strategies by learners. Problem
solving research has thus focused on the wisdom of 
practice. Decision research has typically contrasted 
human performance with a normative statistical 
model of reasoning under uncertainty. Maximizing 
subjective utility is often the theoretical model used 
for the normative model. Decision research has 
emphasized errors in reasoning about uncertainty, 
typically demonstrating that even experts in a 
domain are not immune from these errors and thus 
raising the case for some type of external support.

Herbert Simon, a Nobel laureate in economics, 
argued that problem solving involves choosing the 
issues that require attention, setting goals, and 
designing the courses of action, while decision mak
ing involves evaluating and choosing among alter
native possible courses of action. David Jonassen 
has suggested that decision making involves the 
process of identifying the benefits and limitations of 
different alternatives, selecting the best one, and 
being able to justify the choice. But according to 
Jonassen, a problem might be solved using only 
decision making (e.g., a problem involving selecting 
the goal state), or decision making might be only 
one of several interventions needed to solve a prob
lem. Thus, the terms decision making and problem 
solving may be used interchangeably in the knowl
edge that they have simply arisen out of different 
research traditions. The two terms can be used to 
focus on different aspects of the cognitive process 
of finding the best solution to a problem, or the two 
terms might be used with problem solving being 
more global in description than decision making.

Problem Structure and Complexity

Problems can be grouped into typologies that are 
related to their structuredness. A wellstructured 
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problem is one where all the elements of the problem 
are present; one needs only a limited number of 
rules, concepts, and principles to solve the problem; 
the problem has a correct, convergent answer; there 
is a preferred, prescribed solution process; and the 
relationship between decision choices and all prob
lem states is known. A puzzle is an example of a 
wellstructured problem, because the initial and goal 
states are clearly defined as are the rules about the 
operations that are allowed to be undertaken for 
closing the gap between the initial and goal states. In 
contrast to a wellstructured problem is an illdefined 
problem. Illdefined problems are challenging because 
there are no single optimal solutions. In addition, 
one or more of the problem elements are unknown 
or not known with any degree of confidence, there is 
no explicit means for determining appropriate action, 
and people can be required to express personal 
beliefs about the problem and to make judgments 
about the problem and defend them.

An example of an illdefined problem is the 
design problem routinely faced by architects when 
asked by a client to produce a design for a new 
house. The client may have notions of how he or 
she wants to use the space but not the expertise to 
know what form will result in the desired function. 
The client will also have many constraints that the 
architect will need to deal with, including financial 
resources, limitations of the building site, and inex
act notions of what the client wants. Due to the 
complexity of these types of problems, the architect 
is not able to offer a pregenerated solution that will 
automatically meet the client’s goals while con
forming to the constraints. Many medical problems 
are also design problems—the challenge faced by 
the physician is in designing a reasonable solution 
to a complex problem that results in a desired goal 
state and involves acceptable tradeoffs.

Another characteristic of illdefined problems is 
that it is often not clear when the problem is satisfac
torily solved. Allen Newell and Simon posited that 
most problem/decision tasks are successfully solved 
through satisficing rather than optimizing. A better 
solution, given more time or resources, is almost 
always possible. Effective problem solvers find “good 
enough” solutions instead of pursuing perfect ones.

Between these polar extremes of problem struc
ture, there are many different types of problems.  
A typology of problems proposed by Jonassen 
includes puzzles, algorithms, story problems, rule
using problems, decision making, troubleshooting, 

diagnosissolution problems, strategic performance, 
systems analysis, design problems, and dilemmas. 
He has argued that each type of problem requires 
different problemspecific skills. For example, puz
zle problems require that the problem solver clearly 
understand the allowable rules of the puzzle and 
demonstrate a logical approach in moving to the 
goal state and the ability to monitor different 
attempts at solving the puzzle so that ineffective 
attempts are not repeated. To help learners be suc
cessful with troubleshooting problems, novices 
need to acquire specific conceptual, procedural, 
and strategic knowledge related to the machine 
they are trying to troubleshoot. In general, theo
retical knowledge is not very important for trouble
shooting success. Of course, novice troubleshooters 
need to be guided in their efforts to troubleshoot by 
an expert so that they integrate their knowledge 
and gain experience. For novices to master the 
solution of a defined design problem, they need to 
learn how to formulate a welldefined expression 
of the typically illdefined task and to develop a 
coherent argument for their solution choices.

In addition to structuredness, problems also vary 
in terms of their complexity—the number of vari
ables involved in the problem and the interrelation
ship between these variables. Illstructured problems 
tend to be more complex than wellstructured prob
lems, but even a wellstructured problem can be 
very complex. A Rubik’s Cube is an example of a 
wellstructured puzzle problem that is very complex. 
While the initial and goal states are very clear and 
the permitted operations for the problem solver are 
clearly defined, there are 43,252,003,274,489,000 
different possible configurations. One, and only 
one, of these possible configurations is the “solved” 
Rubik’s Cube—squares of a single color on each of 
its six sides. Complexity increases the difficulty of a 
problem because the problem solver needs to take 
into account a greater number of parts, factors, and 
possible solutions. Novices need to learn how to use 
memory aids to help them keep track of their differ
ent approaches to solving a problem so that they do 
not repeat ineffective approaches.

Problem-Solving Strategies

There are clearly differences among individuals in 
their ability to solve problems. Familiarity with a 
problem is a strong predictor of a problem solver’s 
ability to solve a specific problem. The problem 
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solver who is familiar with a problem might quickly 
provide the solution because he or she is recalling it 
from memory. Another strong predictor of prob
lemsolving success is the solver’s level of domain 
knowledge. An individual’s skill in monitoring his 
or her own performance is also related to problem
solving success, as is an individual’s epistemological 
beliefs. Despite these welldocumented differences 
in ability among problem solvers, it has been only 
recently that researchers have systematically 
searched for better ways to teach learners how to 
solve problems.

It is now clear that guided instruction in problem 
solving is superior to simply asking learners to 
tackle the problem on their own. A widely known 
general problemsolving strategy is the one pro
posed by the mathematician George Polya in the 
1950s. Although he primarily focused on solving 
mathematical problems, his approach may be appli
cable to other types of problems. Polya encouraged 
the problem solver to adopt a systematic set of steps. 
The first step is to understand the problem: Problem 
solvers need to clarify the goal and make an inven
tory of the information they have at their disposal. 
Polya felt that it was helpful for the problem solver 
to diagram the problem so that the problem is visu
alized and better understood. Once the problem is 
understood, Polya suggested, the problem solver is 
ready to devise a plan for solving the problem. He 
suggested that there are many reasonable ways to 
solve problems and that skill in choosing an appro
priate strategy is best learned by solving many prob
lems. This step involves metacognition: The problem 
solver needs to search his or her memory and assess 
whether he or she already knows the solution to the 
problem, or something close to it. If not, the next 
task is to determine whether the problem solver is 
able to restate the problem in a way that makes it 
possible to use a previously learned solution. Another 
approach is to break the problem down into sub
problems, each of which is easier to solve. Once the 
plan is devised, the problem solver needs to carry 
out the plan and check back on whether the solution 
makes sense. Researchers have reported moderate to 
strong associations between use of Polya’s steps by 
mathematical problem solvers and their success at 
problem solving.

Polya’s second step, devising a plan for solving a 
problem, is the crux of the challenge of problem 
solving, and Polya only provided a general descrip
tion about how the plan could be generated. One 

approach frequently observed by researchers is 
meansend analysis, in which the problem solver 
iteratively attempts to close the gap between the 
initial conditions and the goal state through a series 
of steps. A specific example is the process a person 
would use after turning on a television set to watch 
a program but finding only snow on the display. 
The starting state is a television displaying only 
snow. The goal state is a television displaying the 
desired program. The problem solver might first set 
a subgoal—that of confirming that a signal is being 
delivered to the television. The problem solver 
might first check to make sure that the cable con
verter box is attached. If this does not correct the 
picture, then the problem solver may check if the 
cable converter is turned on. If it is turned on, the 
problem solver might check if the cable box is 
delivering a signal by attaching the unit to a differ
ent television set. If the second television also dis
plays snow, the problem solver may check if the 
cable converter is set on the correct channel. While 
this meansend strategy is used by the novice, a 
more problemspecific approach is likely to be 
more successful, and the experienced problem 
solver tends to take a forward problemsolving 
approach. The expert might check the channel set
ting as a first step since he or she has learned that 
this is the most common problem.

Although the meansend analysis is not the 
approach of the expert with routine problems, this 
approach is observed when the expert encounters 
a problem outside his or her realm of expertise. 
Because meansend analysis is used by people fac
ing a novel problem, it might be argued that the 
meansend analysis is an effective learning approach 
for novices. Unfortunately, when the novice uses 
this approach, it frequently does not result in 
knowledge that allows the problem to be solved in 
a more forwardoriented manner the next time the 
problem is encountered. When the unguided nov
ice uses meansend analysis, the problem solver 
can be so focused on reducing the gap between the 
initial conditions and the goal state that only these 
small iterative steps are reflected on instead of the 
entire problem as a whole. Thus, the problem 
solver may not acquire the domainspecific strate
gies used by a more proficient problem solver. This 
problem highlights the importance of teaching 
novices specific approaches to solving problems; 
leaving the novice to discover the solutions is not a 
very efficient approach.
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Domain Specificity

Problems are located within domains; for example, 
a problem may be within the domain of medicine, 
engineering, mathematics, or physics. Problem
solving expertise is usually domain specific; most 
people who are expert in physics problems are not 
going to be expert with medical problems. Even 
within one of these domains, problems can be fur
ther categorized. Thus, physics problems can be 
identified as problems involving momentum, accel
eration, energy, inertia, or another subdomain. 
Medical problems can be identified by the disci
pline the problem focuses on, such as cardiology, 
neurology, gynecology, or some other discipline. 
The finding that problem solvers may be highly 
successful in solving problems in one domain or 
subdomain but not outside this area is called case 
or context specificity.

E. L. Thorndike and R. S. Woodworth reported 
case specificity in 1901, when they found that suc
cessfully teaching subjects how to estimate the area 
of rectangles did not cause the subjects to perform 
better at estimating the areas of triangles or circles. 
This finding has been replicated in many other 
problem domains, including medicine. Thus, teach
ing a learner how to solve one problem does not 
automatically help the learner solve a second prob
lem, even if the two problems are conceptually 
similar. Although transfer between problems is 
limited, it can be enhanced by helping the learner 
gain an understanding of how to solve a specific 
problem instead of having the learner simply 
mimic a series of steps by rote. Having learners 
represent problems and their solutions at appro
priate levels of abstraction also helps with transfer. 
Last, through emphasizing metacognition during 
the learning process, students are more likely to 
demonstrate transfer between problems.

Although case specificity is evidenced by the lim
ited transfer of problemsolving skills from one 
problem to another, this limited transfer does not 
mean that helping a learner master a problem does 
not help the learner when faced with a new 
and different problem. While Thorndike and 
Woodworth demonstrated that mastering a prob
lem in one area does not result in better problem 
solving in another area, they vigorously argued that 
once a person has learned to solve one problem, the 
person might demonstrate quicker mastery of a new 
and different problem. More recently, researchers 

have confirmed this effect, and it has been called 
“transferring in” or “preparation for future learn
ing” because the knowledge gained from learning 
to solve one problem can make the learner more 
efficient in learning to solve other problems.

George Bergus and Alan Schwartz

See also Cognitive Psychology and Processes; Decision 
Psychology; Diagnostic Process, Making a Diagnosis; 
Errors in Clinical Reasoning; Hypothesis Testing; 
Judgment; Learning and Memory in Medical Training; 
Pattern Recognition; Teaching Diagnostic Clinical 
Reasoning
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ProceDural invariance 
anD itS violationS

Procedural invariance states that preferences over 
prospects (i.e., gambles, or any other risky states that 
can be described as a probability p of getting out
come/payoff x) are independent of the method used 
to elicit them. In other words, procedural invariance, 
an important pillar of rational choice, demands that 
strategically equivalent methods of elicitation will 
give rise to the same preference order. Satisfaction of 
procedural invariance is implied by the orderability 
axiom of von NeumannMorgenstern utility theory. 
In medical decision making, procedural invariance is 
the condition that a person’s preference ranking of 
two health states should not depend on the elicitation 
procedure. For example, suppose one uses both the 
visual analog scale and the standard gamble to assign 
quality weights to two health states. Procedural 
invariance requires that the visual analog scale pref
erence ranking of these two health states be the same 
as the standard gamble ranking. If the rankings are 
different, then it would be impossible to infer a single 
unique ranking, and, therefore, to assign a unique 
quality weight to each health state. Note that proce
dural invariance is different from description invari
ance, which states that preferences over prospects are 
purely a function of the probability distributions of 
consequences implied by the prospects and do not 
depend on how those given distributions are described. 
While procedural invariance is an assumption implicit 
in any conventional theory of choice, which seems 
natural to most economists and decision theorists 
and is rarely even discussed when stating formal 
theories of choice, in practice, this assumption fails.

Economic Violations of Procedural Invariance

One wellknown phenomenon, often interpreted as 
a failure of procedure invariance, is the preference 
reversal. Reversals of preferences are observed 
when a socalled $bet (offering a high money prize 
with low probability) is assigned a higher selling 

price than a Pbet (offering a lower money prize 
but with a higher probability) but is subsequently 
not chosen in a direct choice between the two. A 
violation of procedure invariance is currently the 
prevailing explanation of this pattern of behavior. 
For instance, when assessing the monetary values 
of gambles (or delayed payments), people base 
their actions on a particular value system. When 
choosing between gambles, however, they base 
their actions on another value system. Therefore, 
preferences from choosing are different from those 
yielded by monetary valuation; this fact constitutes 
a violation of procedure invariance. The explana
tions invoking a violation of procedure invariance 
are mostly based on weighted additive models. 
These models assume that, both for choosing and 
for valuation, a person evaluates a gambledelayed 
payment ($x, p), where x is the expected monetary 
reward and p is the probability of obtaining this 
payoff, by using av(x) + bw(p), where v and w are 
values for the separate attributes and a > 0 and b > 
0 sum to 1 and are importance weights. It is gener
ally assumed that the value functions v and w are 
the same for choosing and valuation and that only 
the weights a and b vary. That is, for choosing, 
particular weights, such as ac and bc, are adopted, 
and for valuation, other weights, such as av and bv, 
are adopted. Note that because importance weights 
are positive, choosing and matching yield the same 
orderings over single attributes.

Preference reversal is also often attributed to 
response mode effects, one feature of which is scale 
compatibility. The compatibility hypothesis states 
that money is the salient attribute (or dimension of 
judgment) of lotteries in money valuation tasks (the 
two are compatible), and this renders the high prize 
in the $bet particularly influential in driving the 
valuation. This engenders a higher money valua
tion for the $bet than for the Pbet. In other words, 
in the valuation task, the participant’s attention is 
primarily directed toward the attribute for which a 
matching value is to be provided—that is, the mon
etary dimension in our example. The participant 
pays less attention to the other dimension (proba
bility), which therefore receives a lower importance 
weight. Therefore, the preference reversal suggests 
that choice and valuation tasks may depend on 
which attribute is made salient by the context, 
which invokes a different dimension of judgment to 
be used. Thus, the preference reversal phenomenon 
is a violation of procedure invariance.
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Medical Violations of Procedural Invariance

In studies of health preferences, utilities for hypo
thetical health states cannot always be successfully 
measured, because of violation of procedural invari
ance (i.e., when the ranking of two health states 
varies across assessment procedures). Thus, previ
ous research has shown that measurements of pref
erences can be highly sensitive to the procedures 
used for elicitation, including the search method 
for indifference points, standard gamble, visual 
analog scales, and numerous other factors. This is 
problematic for medical decision making, because 
using preference values based on such unsuccessful 
measurements may result in misinterpretation of 
patients’ attitudes about health.

One study presented preference reversals of a 
more extreme nature than traditional preference 
reversals, because procedure invariance was sys
tematically violated even when the preference 
ordering was over a single attribute (unidimen
sional) in both the choice and the valuation proce
dures. In this case, this attribute was time (life 
years). In an empirical study of preference assess
ment methods for health states, for poor health 
states such as metastasized breast cancer or con
tinuous migraines, most people preferred a shorter 
to a longer life duration. Nevertheless, when asked 
to state the equivalent number of healthy years, 
participants as a rule demanded more healthy life 
years for the longer life duration than for the 
shorter one. Therefore, the subjects assigned the 
longest number of healthy years to the nonpreferred 
outcome. This phenomenon has serious implica
tions for medical decision making in the context of 
qualityadjusted life years (QALYs), which are very 
important in contemporary evaluation of health 
policies. QALYs are based on subjective values of 
health states and life durations, and one of the most 
widespread methods of such preference assessment 
is the time tradeoff (TTO) method. This method 
asks people to trade off shorter life duration in per
fect health (X) against longer life years (Y) in a 
particular state of worse health (Q). The researcher 
attempts to find the indifference point between X 
and (Y, Q) (i.e., when the two states are equiva
lent). Then, according to this method, the quotient 
X/Y is taken as a measure, W(Q), of the utility of 
health state Q, and (Y, Q) is estimated by a multi
plicative form, Y × W(Q). The multiplication by 
W(Q) constitutes the quality adjustment of the 

worsehealth life duration, Y. This measurement 
method is based on classical rational models for 
respondents’ answers to TTO questions. The viola
tions of unidimensional procedure invariance pro
vide evidence against these classical models.

While the procedural violations discussed here 
imply that there is no universal standard for prefer
ence measurement, one possible indicator of valid
ity is whether an individual maintains the same 
rank order of his or her preferences for states 
across different assessment procedures. One study 
that compared two scaling methods, mean stan
dard gamble and visual analog scale scores, dem
onstrated that individuals who satisfy procedural 
invariance have preferences systematically different 
from people who violate procedural invariance. 
The violators in this study appeared to have diffi
culty discriminating between the states and pro
vided more random responses (note that violation 
of procedural invariance was not associated with 
age, education level, race, or gender). This result 
questions the validity of elicitations obtained from 
violators. Therefore, in addition to reporting the 
overall results of studies of preferences for health 
states, investigators should examine the results for 
violations of procedural invariance and report 
separately the results for violators and satisfiers.

Reasons for Violations

Violations of procedural invariance in medical 
decision making can occur for a variety of reasons. 
One such reason is that the experimental methods 
may be specifically designed to induce violations; for 
example, making one attribute, then another, more 
prominent in descriptions can trigger apparent rever
sals of preference. The second reason could be ran
dom error (i.e., noise in the perceptual/cognitive/
motor system): Some authors suggest that elicita
tions that fail procedural invariance result from 
combinations of effects of the elicitation procedures, 
which result in mean values and random error. The 
third reason for violation of procedural invariance 
might be insufficiently strong preferences (i.e., when 
violators have weak or illformed preferences for 
hypothetical states), which would result in smaller 
differences in values for health states and poor cor
relation among ratings for health states. For exam
ple, the person may not develop strong preferences if 
a state is unfamiliar or poorly described. Thus, viola
tions might be rooted in problems with health state 
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descriptions or with assessment procedures that 
interfere with the process of forming preferences. 
The fourth reason for violations of procedural 
invariance is that the individual provides, more or 
less, biased ratings to satisfy (conform to) the 
researcher’s expectations (or to satisfy what he or she 
presumes the researcher expects to find out). Medical 
contexts provide the fifth reason for violations of 
procedural invariance because patients’ cognitive 
abilities may be impaired: Disorders such as depres
sion, schizophrenia, and Alzheimer’s disease may 
impair cognition or insight such that a patient can
not perform (meaningful) health valuation tasks.

Implications

Procedure invariance and its violations appear, on 
the face of it, to challenge the idea that choices can, 
in general, be represented by any single preference 
function. Thus, a violation of procedural invariance 
does raise serious doubts about the meaningfulness 
of the measured utilities in terms of the individual. 
In this context, does a preference measurement 
reflect the individual’s true utility, or is it merely an 
artifact of the assessment process? The answer to 
this question is still not clear, and more research is 
needed to address it. What is clear is that the cur
rent evidence suggests that seeing descriptions is not 
enough to express one’s genuine preferences, and 
interaction with the choice options is also an essen
tial part of the preference expression process. For 
example, when people are asked to decide about 
immediate actions (e.g., how much they need to 
exercise now or what tasty but unhealthy foods 
they need to give up) and they are presented with 
the longterm benefits of this costly (unpleasant) 
action (e.g., in terms of a longer/healthier life), then 
they may prefer less exercise/dieting because their 
focus/weight would be on their current state and 
the future will be discounted. Conversely, when 
they are asked to decide in terms of their future 
benefits (e.g., how much longer than normally 
expected they wish to live) and they only observe 
the necessary (implied) immediate choice of action 
(e.g., exercise), then a longer/healthier life, and 
hence more exercise/dieting, may be preferred as 
the attentional focus will be on the future benefits 
and away from the current costs. Thus, violation of 
procedure invariance implies that simply informing 
people of the future outcomes of their immediate 
choices is not enough to alter their behavior. The 

evidence presented here implies that directly manip
ulating a decision dimension (attribute) significantly 
alters decision making—most likely because the 
direct manipulation of a decision dimension 
increases the attention, or weight, given to it during 
judgment, and hence attention is moved away from 
other dimensions that are not directly manipulated 
(e.g., the only observed/described attributes as in 
the exercise/dieting vs. longevity example here). 
Many such violations of procedure invariance in 
the literature are a demonstration of the preference 
reversal phenomenon in realworld domains with 
practical importance.

Some scholars argue that adherence to the axi
oms of expected utility theory is not necessary for 
the results of utility assessment to be useful (e.g., 
decision models may be useful to generate insights 
for patients whose values and attitudes are not 
normative and may still help generate a better 
understanding of tradeoffs). Nowadays it is also 
possible to create computer software that recog
nizes errors in preference measurements and helps 
participants resolve those errors.

Ivo Vlaev
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ProPenSity ScoreS

Propensity score analysis is a statistical method 
used in nonrandomized studies to compare treat
ments after removing selection bias due to observed 
baseline covariables. To the extent that all true 
confounders are observed and selection bias 
removed, unbiased estimation of the average 
treatment effect can be made.

Propensity score analysis is a twostage process. 
First, a logistic regression model predicting treat
ment assignment from available baseline potential 
confounders is used to assign each patient a pro
pensity score representing the probability that  
he or she would receive treatment (vs. control, no 
treatment), regardless of whether treatment is 
actually received. Second, treated and nontreated 
patients are compared on the outcome of interest 
after conditioning on the propensity scores— 
typically through stratification or matching.

Propensity score analysis is often preferred over 
traditional multivariable modeling to adjust for 
confounding because it makes less model assump
tions, allows visualization of covariable balance 
after matching on the propensity score, and has 
stronger theoretical properties for estimation of 
causal effects. A key limitation is that all true con
founding variables are usually not available or 
known. Therefore, caution must be used in making 
a causal inference.

Methods

Motivation for Propensity Score Analysis

In a randomized study, a simple comparison 
of the randomized groups on the outcome gives 
an unbiased estimate of the average causal effect 
of treatment versus control because there is no 

selection bias—patients are randomly assigned 
to receive either treatment or control. Ran
domized groups are wellbalanced on both 
observed and unobserved potential confound
ers, so that the observed difference in means or 
proportions between groups estimates the aver
age causal effect, or average treatment effect, 
for individuals.

In a nonrandomized study, treatments are not 
randomly assigned, and so confounding through 
selection bias is a major impediment to assessing 
the true treatment effect. Groups to be compared 
will differ systematically on confounding variables, 
which by definition distort the relationship of 
interest because they are related to both the treat
ment and the outcome. Unadjusted comparisons of 
nonrandomized groups will give biased estimates 
of average treatment effect.

Traditionally, adjustment for confounding in 
nonrandomized studies was done through multi
variable regression of an outcome on an exposure 
while adjusting for potential confounders in the 
model and in a casecontrol study by comparing 
cases and controls matched on important con
founders. Major limitations of multivariable 
regression are the difficulttoassess assumptions 
of the model, inability to adjust for enough vari
ables and interactions, and inability to visualize 
how well selection bias has been removed. Case
control matching on numerous variables becomes 
logistically impossible, limiting the amount of con
founding that can be removed.

Propensity score analysis is a more efficient way 
to remove selection bias, and thus confounding. It 
is preferred when the number of outcomes is rela
tively small, when there are a host of potential 
confounders to adjust for, or when there is insuf
ficient overlap between the treated and nontreated 
on some confounders. Causal inference is theoreti
cally possible with either propensity score or mul
tivariable analysis, but it is easier with propensity 
score analysis.

The propensity score is a balancing score, such 
that treatment assignment is independent of the 
included potential confounders at any score value. 
For any particular propensity score, the treated 
and nontreated should on average have very simi
lar distributions of each covariable used to create 
the score. The goal of propensity score analysis is 
thus to estimate the average treatment effect by 
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comparing the treated and nontreated on outcome 
at similar propensity score values.

Creating Propensity Scores

Propensity score analysis is a twostage proce
dure: First, the propensity scores are estimated, 
ignoring the outcome (this section). Second, the 
scores are used to create balanced groups and com
pare groups on outcome (next section).

Creating the Propensity Score Model

A propensity score is the predicted probability 
of receiving treatment (vs. no treatment) given a 
set of covariables X, regardless of whether or not 
treatment was actually received. Propensity scores 
are calculated by first fitting a logistic regression 
model predicting treatment versus nontreatment 
from available baseline covariables. Patient “logit” 
scores are calculated by plugging each patient’s 
covariable values into the regression equation. 
Logit scores are transformed into propensity scores 
with range 0 to 1 as follows: Propensity score for 
the ith patient = explogitðxiÞ=ð1+ explogitðxiÞÞ:

Form of Propensity Score Model

Since the goal of creating the propensity score 
model is to create individual scores that are used 
to balance the treated and nontreated on con
founders, the propensity model is evaluated by 
assessing how well this balance is achieved. The 
goal is not to create a parsimonious model (say, p 
< .05 only) but rather to achieve the best possible 
balance between the treated and nontreated on 
all confounders. The model should have liberal 
entry criteria and consider interactions among 
the co variables, with little regard to traditional 
model checking.

Overlap

Sidebyside histograms of the estimated pro
pensity scores for the treated and nontreated can 
help decide if all patients should be included in 
assessment of the treatment effect. For example, if 
there is no overlap between groups at extremes of 
the propensity score distribution, the correspond
ing patients should be excluded. This limits gener
alizability but also indicates an advantage over 
multivariable regression. Overlap can be increased 

by focusing on confounders strongly related to 
outcome rather than to treatment.

Using the Propensity Score in  
Assessing Treatment Effect

After creating the propensity score model, the 
scores are used to create a balance between the 
treated and nontreated on the potentially con
founding variables, and then the groups are com
pared on outcome. Balance is attained through 
stratification on the propensity score, matching, or 
direct adjustment.

Assessing the Propensity Score Model

A prerequisite to making an inference on aver
age treatment effect using the methods described 
below is good balance between treated and non
treated on the available confounders, overall and 
within propensity score levels (say, quintiles). A 
good metric to assess balance is the absolute stan
dardized difference, the absolute value of the dif
ference of means between treated and nontreated 
divided by the pooled standardized deviation. 
Absolute standardized difference is preferred to 
the p value because it is not affected by differential 
sample size between the unmatched and matched. 
If clinically important imbalance on covariables is 
detected, the propensity score model should be 
refit, adding more covariables, interactions, or 
polynomial terms until uniform balance is achieved. 
This is done before assessing the treatment effect.

Stratification, Matching, and Direct Adjustment

In stratification (or subclassification), patients are 
first placed in strata defined by, typically, quintiles of 
the propensity score. Average treatment effect is 
assessed by comparing the treated and nontreated on 
outcome within quintile and aggregating the results 
in a stratified analysis. Theoretical results indicate 
that comparison of the treated and nontreated via 
stratification on propensity score quintiles removes 
90% of the confounding due to each variable.

In matching, the treated and nontreated are 
matched on the propensity score or logit score to 
within a prespecified distance criterion (e.g., .05 
propensity score units). Matching on the propen
sity score should result in treated and nontreated 
groups with very similar means or proportions for 
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each covariable used in creating the scores, even 
though individual matched patients may differ on 
many covariables.

Greedy matching sequentially matches each 
treated patient to the closest matching control(s). 
Pairs are set aside as they are matched, so the 
method does not consider all possible matches. 
Greedy matching usually results in a substantially 
reduced data set because all treated and nontreated 
may not have matches; or perhaps there are many 
more nontreated than treated, but only 11 or 12 
matching is desired. Matched patients are then 
compared on outcome using an appropriate test.

Optimal matching is theoretically superior to 
greedy matching because it minimizes the sum of 
all distances between treated and nontreated; it is 
optimal because it finds the best possible matches 
among the treated and nontreated. However, if all 

available treated and nontreated patients are used, 
as opposed to an equal number of each, the result
ing matching may not be much superior to greedy 
matching. Average treatment effect is assessed by 
comparing groups on outcome using conditional 
or stratified analysis on the matched clusters.

In direct adjustment, the propensity score is 
simply included as a covariable in the traditional 
multivariable model of all patients assessing the 
relationship between treatment and outcome. It  
is less reliable in removing selection bias than is 
stratification or matching.

Residual Confounding

Residual confounding is expected in all the 
above methods because the observed propensity 
score is only an estimate of a patient’s true pro
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Figure 1   Propensity score distribution before and after matching: (a) Propensity scores before matching; 
overlapping propensity score distributions before matching and (b) Propensity scores after matching; 
nearly identical propensity score distribution after matching

Source: Maheshwari et al. (2008). Used with permission.
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pensity score. Therefore, the observed propensity 
score only balances observed covariables between 
groups in expectation—that is, across repeated 
sampling. Also, exact matches will not likely be 
found. For these reasons, any covariables that are 

still unbalanced between the matched groups or 
are significantly related to outcome in the pres
ence of the treatment group should be added to 
any model assessing the average treatment 
effect.

Table 1  Covariable balance before and after matching: Selected factors

All Patients
N = 13,065

Matched Patients
N = 4,460

Drinks/Week Drinks/Week

# Factor 
0–2

(N = 10,830)
3+

(N = 2,235)
P Value+ 0–2

(N = 2,230)
3+

(N = 2,230)
P Value+

Categorical factors: Data are N (%)

1 Female gendera 3,435 (32) 201 ( 9) <0.001 199 (9) 200 (9) 0.96

2 Smokera 6,219 (57) 1,842 (82) <0.001 1,809 (81) 1,837 (82) 0.28

3 Caucasian racea 9,163 (85) 1,954 (87) <0.001 1,962 (88) 1,949 (87) 0.55

7 COPD/Asthmab 1,074 (10) 210 ( 9) 0.45 206 (9) 210 (9) 0.84

16 Ventricular   
tachycardiaa 250 (2) 80 ( 4) <0.001 70 (3) 79 (4) 0.45

32 Preop Diabetes 
Agenta 1,781 (17) 251 (11) <0.001 246 (11) 251 (11) 0.81

33 Preop Statinsa 3,563 (33) 563 (25) <0.001 536 (24) 562 (25) 0.37

Continuous factors: Data are mean (SD) or median [quartiles]

34 Age (yr)a 67 (11) 65 (11) <0.001 65 (11) 65 (11) 0.27

36 Weight (lb)a 183 (40) 192 (36) <0.001 191 (36) 192 (36) 0.89

37 BMI (kg/m2)a 29 (6) 29 (5) 0.04 29 (5) 29 (5) 0.90

38 Hematocrit (%)c 40 (5) 41 (5) <0.001 41 (5) 41 (5) 0.29

39 Creatininec 1.1 (0.5) 1.1 (0.4) 0.02 1.1 (0.4) 1.1 (0.4) 0.56

40 CPB Time (m)b 91 (50) 91 (48) 0.99 91 (49) 91 (48) 0.95

42 BUN (mg/dL)a,b 18 [15, 24] 17 [14, 21] <0.001 17 [14, 22] 17 [14, 21] 0.73

46 Operative RBC 
unitsb

0 [0, 1] 0 [0, 0] <0.001 0 [0, 0] 0 [0, 0] 0.84

Source: Maheshwari et al. (2008). Used with permission.

# Design variable number.

+P values from Pearson’s chisquared test for categorical factors and t test or Wilcoxon’s Rank Sum Test for continuous.

a. Used in propensity score matching.

b. Included in outcome model.

c. Included in neither propensity score model nor outcome model.
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Strongly Ignorable Treatment  
Assignment and Sensitivity Analysis

Propensity score analysis can only adjust for 
available covariables. However, to validly make 
causal inference using propensity score analysis, 
one must assume strongly ignorable treatment 
assignment (SITA). SITA means that the propensity 
score analysis has removed all selection bias due to 
both observed and unobserved variables, making 
treatment assignment z at any covariate vector 
value x independent of the underlying potential 
outcomes r1 and r0, as in a randomized study:  
(r1, r0) ^̂  z|x. The SITA assumption should be 
assessed by a sensitivity analysis of how strongly a 
hypothesized unobserved covariable would have 
to be related to both treatment and outcome to 
substantially alter the estimated average treatment 
effect or change the study conclusions.

Data Application

In a database review of 13,065 Cleveland Clinic 
patients undergoing elective coronary artery bypass 

graft (CABG) surgery, 2,235 were selfdescribed 
alcohol drinkers (ETOH [ethyl alcohol], ≥ 3 
drinks/week), and 10,830 were mild drinkers/non
drinkers (nonETOH, < 3 drinks/week). Researchers 
were interested in the effect of ETOH versus non
ETOH on a binary (yes/no) postoperative compli
cation outcome. Propensity score was used to 
assess the association since confounding was a 
large concern. First, logistic regression was used to 
create propensity scores for each patient with 
ETOH (1 = ETOH, 0 = non-ETOH) as outcome 
and independent variables chosen from 46 preop
erative and operative variables plus their interac
tions and polynomial terms (inclusion criterion p 
< .35). The propensity score model thus included 
14 covariables and 5 pairwise interactions.

Greedy matching on the propensity score 
resulted in 2,230 ETOH matched to 2,230 non
ETOH using a propensity score distance criterion 
of .05. Figure 1a shows the substantial overlap 
between the ETOH and nonETOH patients on 
propensity score distribution before matching, 
while Figure 1b shows the nearly identical propen
sity score distributions after matching.
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Table 1 shows balance before and after greedy 
matching on 15 representative covariables from 
the 46 considered for the propensity score model. 
Variables are marked as being included in 
the propensity score model, the outcomes model 
(see below), or neither. Note that a particular 
variable not being included in the propensity 
score model does not mean that imbalance will  
occur for that factor; balance may result if that 
variable is correlated with another that was 
included.

Figure 2 shows the reduction in absolute stan
dardized difference from before to after matching 
in nearly all variables.

Logistic regression was used to compare the 
matched ETOH and nonETOH patients on com
plications (1 = Any, 0 = None) as the outcome. 
Baseline confounders that were strong indepen
dent predictors of outcome (six variables, p < .05) 
or insufficiently matched (two variables: diabetes 
mellitus, BUN [blood urea nitrogen]) were included 
in the model. The estimated odds ratio (95% CI 
[confidence interval]) of complications for ETOH 
versus nonETOH was 1.13 (.95, 1.35). In a 
stratified analysis on propensity score quintiles 
using all 13,065 patients, results were very similar 
to the greedymatching approach, with a Mantel
Haenszel odds ratio of 1.11 (.90, 1.37). Both 
approaches differed markedly from a crude analy
sis of the data ignoring confounders, with odds 
ratio of .80 (.66, .97).

Ed Mascha

See also Causal Inference and Diagrams; Causal Inference 
in Medical Decision Making; Confounding and Effect 
Modulation; Randomized Clinical Trials
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ProSPect theory

Prospect theory is a descriptive theory of risky 
choice proposed by the psychologists Daniel 
Kahneman and Amos Tversky in 1979 and revised 
in 1992. Like subjective expected utility theory 
(SEU), prospect theory is a probabilityweighted 
additive utility model: Risky options are evaluated 
by adding up the utilities of the possible outcomes 
after weighting each by a factor that reflects the 
decision maker’s belief about how likely each out
come is to occur. Like SEU, prospect theory can be 
mathematically derived from a simpler set of axi
oms about preference judgments and can provide 
predictions about choice behavior. Prospect the
ory, however, has several key differences from 
SEU that enable it to better account for observed 
systematic violations of axioms and predictions of 
SEU that were widely documented by researchers 
in the 1960s and 1970s (e.g., people’s willingness 
to simultaneously pay too much to insure against 
small probabilities of large losses—a riskaverse 
choice—and pay too much to purchase lottery 
tickets that offer small probabilities of large priz
es—a riskseeking choice).

Key Features

First, prospect theory posits that decision makers 
initially edit the decision stimulus in some fashion 
and then evaluate the edited stimulus rather than 
the original stimulus. For example, decision  
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makers may combine or separate decision out
comes, reframe outcomes in psychologically differ
ent terms or contexts, or cancel out common 
outcomes in a choice set.

Second, prospect theory assumes that decision 
makers evaluate the values of outcomes relative to 
a reference point. That is, rather than evaluating 
outcomes in absolute terms (e.g., a final health 
state that will result from this decision), outcomes 
are evaluated in relative terms, as gains or losses 
(e.g., how much better or worse the final health 
state will be than the current health state). 
Prospect theory is thus a weighted average over 
the potential gains and losses from the decision, 
relative to a reference point, often the status quo 
or current state. An implication, therefore, is that 
decision makers evaluating the same prospects 
(with the same absolute outcomes) with regard to 
different reference points may have quite different 
evaluations.

Third, prospect theory specifies a mathematical 
form for the value function that maps gains and 
losses to values, as illustrated in the right panel of 
Figure 1. The prospect theory value function is 
concave for gains and convex for losses and pre
dicts diminishing marginal value for additional 
gains and losses: The gain (loss) of $100 is less 
valuable (painful) to a person who simultaneously 
gains (loses) $1,000 than to a person who simulta
neously gains (loses) $1. The value function is also 
steeper for losses than for gains, reflecting the psy
chological phenomenon of loss aversion: It is more 
painful to lose $100 than pleasurable to gain $100. 
Kahneman and Tversky proposed that the value 
functions for gains and losses are power functions 
of the form xa for gains and −λxb for losses and 
found median values of a = .88 and b = .88 (imply
ing moderate curvature in both gain and loss value 
functions) and λ = 2.25 (implying that losses have 
more than twice the impact of gains).

Fourth, prospect theory introduces a transfor
mation of the outcome probabilities into decision 
weights. The decisionweighting function, shown 
in the left panel of Figure 1, displays several nota
ble features. In general, small probabilities are 
psychologically overweighted, and large probabili
ties are psychologically underweighted. Because 
the decision weights associated with impossibility 
and certainty are fixed (at 0 and 1, respectively), 
the function is discontinuous near these extremes. 

This probability distortion predicts phenomena 
such as certainty effects (larger subjective differ
ences between 99% and 100% than between 98% 
and 99%).

Cumulative Prospect Theory

The 1992 cumulative prospect theory formulation 
differs from the original 1979 prospect theory by 
specifically positing separate rankdependent prob
ability weighting functions for gains and losses. 
This insight also forms the basis for R. Duncan 
Luce and Peter C. Fishburn’s rank and sign 
dependent utility theory.

As an illustration, consider a gamble with four 
outcomes: (1) a 10% chance of losing $50, (2) a 
70% chance of gaining $5, (3) a 10% chance of 
gaining $10, and (4) a 10% chance of gaining $20. 
Under original prospect theory, each of the prob
abilities would be transformed to a decision weight 
using a function like that depicted in the left panel 
of Figure 1; the decision weights for the $50 loss 
and the $10 gain would be the same. Under cumu
lative prospect theory, however, the decision 
weights are computed separately for gains and 
losses, and within each domain, the weight for 
each outcome depends on the rank of the outcome 
within the set. For example, the weight for the $10 
gain and the $20 gain will differ because the $20 
gain is the highestranked gain and the $10 gain is 
a less highly ranked gain.

For each gain outcome, the decision weight is 
the difference between a transformation of the 
cumulative gain probabilities of the outcome and 
all smaller gain outcomes and a transformation  
of the cumulative gain probabilities of only the 
smaller gain outcomes. A similar process is applied 
to loss outcomes. Mathematically, the decision 
weight π+

i for an outcome Gi with probability p   i  in 
the domain of gains is

where p0, . . . , pi, . . . , pn are the probabilities of out
comes G0, . . . , Gi, . . . , Gn and 0 ≤ G0 ≤  . . .  ≤Gi ≤  . . .  
Gn. For example, in a prospect with gain outcomes 
$5, $10, and $20, with probabilities .7, .1, and .1, 
respectively, the decision weight associated with the 
$5 outcome is w+(.7 + .1 + .1) − w+(.1 + .1), and the 
decision weight associated with the $10 outcome is 

π+
i = w+(pi + pi+1 + . . . + pn) − w+(pi+1 + . . . + pn),
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w+(.1 + .1) − w+(.1). The decision weight associated 
with the largest gain, Gn, is simply w+(pn); in the 
example, the decision weight for the $20 outcome 
is w+(.1).

Similarly, for losses, the decision weight π–
i for a 

loss outcome Li with probability p   i is

π–
i = w–(p0 + p1 +  . . .  + pi) – w–(p0 + p1 +  . . .  + pi – 1),

where p0, p1, . . . , pi are the probabilities of out
comes L0, L1, . . . , Li and L0 ≤ L1 ≤  . . .  ≤ Li ≤ 0.  
Again, the decision weight associated with the 
greatest loss, L0, is simply w–(p0).

Empirical observations suggest that the form of 
each of the gain and loss decisionweighting func
tions (w+, w–) is well characterized by the follow
ing transformations:

w+(p) = pγ/[pγ + (1 − p)γ]1/γ,

w−(p) = pδ/[pδ + (1 − p)δ]1/δ.

Kahneman and Tversky reported median values 
of γ = .61 and δ = .69.

Criticisms

Although prospect theory has proven a robust 
descriptive theory of risky choice, some criticisms 
have been identified in laboratory settings. Little 

research has established the conditions under 
which particular editing operations are applicable; 
as a result, it can be difficult to form unique  
predictions for particular choice sets. Configural 
weight utility models may account for patterns of 
violation and satisfaction of independence axioms 
better than weighted additive utility models such 
as prospect theory. Tests of generic utility theory, 
of which prospect theory and cumulative prospect 
theory are special cases, have demonstrated viola
tions of predicted invariance across contexts, 
which limits the applicability of such theories.

Impact

The impact of prospect theory has been substantial 
and broad. In addition to its position as the leading 
psychological descriptive utility theory, it has been 
a key impetus to the development of behavior eco
nomics. Indeed, Kahneman was recognized with 
the Nobel Prize in Economics in 2002, in part spe
cifically for the contribution of prospect theory to 
the field of economics. (Tversky predeceased the 
awarding of the prize but was also mentioned by 
the Nobel Foundation in this context.)

In medical decision making, prospect theory has 
been studied as a descriptive utility theory and 
proposed as a correction to utility assessment pro
cedures. Jonathan Treadwell and Leslie Lenert 
reviewed the empirical evidence for prospect the
ory in health decisions, which was largely but not 

1

.8

.6

.4

.2

0
0

Probability

D
ec

is
io

n
 W

ei
g

h
t

1.8.6.4.2

Changes in Outcome

P
T

 V
al

u
e

Figure 1  Prospect theory (PT) value function and decision-weighting function



924 Protected Values

entirely supportive. They also discussed its impli
cations for medical costeffectiveness analyses, 
pointing out that when prescriptive analyses use 
behavioral measures of utility based on risky 
choice (e.g., standard gamble utility assessments), 
the choices made by respondents are subject to the 
value and probability weightings described by 
prospect theory. Accordingly, it may be desirable 
to correct assessed utilities to account for these 
cognitive processes before applying them to pre
scriptive analyses.

Alan Schwartz

See also Decision Weights; Editing, Segregation of 
Prospects; Expected Utility Theory; RankDependent 
Utility Theory; Subjective Expected Utility Theory; 
Value Functions in Domains of Gains and Losses
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ProtecteD valueS

Protected values or other very similar notions, 
such as sacred values, taboo values, and moral 
mandates, are values people preclude from trade
offs with other values, particularly secular values. 
Protected values refer to any concrete or abstract 
entity (e.g., human beings, animals, dignity, health, 
love, honor, honesty, human rights) an individual 
or a community considers as infinitely significant, 
not substitutable and inviolable, and therefore as 
nontradable and noncompensatory. For instance, 
many people think that it is morally wrong to 
sacrifice human or animal lives in return for mon
etary benefits or to have a free market of trans
plant organs. Trading them off would offend 
deeply held beliefs and undercut people’s selfim
age as moral beings or threaten a way of life.

An important foundation for research on this 
issue has been laid by Philip Tetlock and col
leagues. They have examined how people respond 
to and cope with violations of protected values or 
sacred values. Other research efforts, mainly influ
enced by Ilana Ritov and Jonathan Baron, have 
focused more on how such values affect decision
making processes.

Relevance for Medical Decision Making

The phenomenon of protected values is interesting 
for theoretical and practical reasons. From a theo
retical perspective, protected values create a prob
lem for utilitarian theories. Such models presuppose 
that any value can be traded off for any other 
value. When protected values are involved, how
ever, trading off such values is precluded. 
Researchers have recognized tradeoff reluctance 
as a common problem when using contingent valu
ation methods to quantify values or public goods. 
For example, people often reject decisions and 
refuse “putting a price on life” by trading off life 
with monetary expenses. It seems that if goods or 
services tap ethical issues or reflect a protected 
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value, placing a monetary value on this specific 
value is difficult yet unacceptable.

From a practical perspective, protected values 
are highly relevant for medical decision making. 
Ethical reservations or strong protected values are 
very likely involved in fields such as euthanasia, 
prolongation of life, abortion, prenatal diagnosis, 
vaccination, organ transplantation, genetic ther
apy, and cloning. Given that such decisions tap 
into strong beliefs and moral commitments, they 
are highly emotion laden. Research suggests that 
people can respond with strong outrage to threats 
to protected values and socially distance themprotected values and socially distance them and socially distance them
selves from potential violators of taboo tradeoffs. 
Furthermore, interactions between physicians and 
patients can become exceedingly difficult and conbecome exceedingly difficult and con
flicting when protected values are involved on one 
or both sides.

Research and Current Findings

Omission and Action Tendencies

Previous research suggests that protected values 
are often linked with deontological principles. 
Deontology refers to duty and is usually contrasted 
with consequentialism. The distinctive idea of 
deontological reasoning is that the focus is on the 
inherent rightness or wrongness of an act per se 
rather than on the magnitude of the consequences 
(the consequentialist perspective). Deontological 
principles reflect morally mandated actions or 
omissions, such as the duty to keep promises or the 
duty not to lie. Such duties can be religious in 
nature (e.g., the Ten Commandments), socially 
contracted (e.g., the Hippocratic Oath, human 
rights), or intuitive (e.g., to do no harm).

Indeed, some researchers have shown that pro
tected values sometimes reflect prohibition rules 
(donoharm rules), which elicit an omission bias—
that is, the tendency to favor omissions over other
wise equivalent, or even better, actions. One typical 
paradigm used to explore such issues has provided 
people with a choice between a harmful act and a 
harmful omission. Usually, studies also ask partici
pants for a threshold at which the act becomes 
more desirable than the omission. For example, in 
a scenario often used, participants were faced with 
a flu epidemic that is expected to kill 10 out of 
10,000 children and a vaccine that can cause death 

due to side effects. When asked about the highest 
amount of harm from the vaccine at which they 
would prefer to take action (i.e., to vaccinate), 
most subjects demanded that the vaccine risk be 
smaller than the disease risk. There were also 
people who would not accept any death from vac
cination. In general, tradeoff reluctance and omis
sion bias were greater for people endorsing 
protected values than for people without protected 
values (as assessed independently). Apparently, 
actively killing someone with an act (i.e., vaccinat
ing) was worse than allowing someone to die (i.e., 
not vaccinating). Such patterns suggest a violation 
of consequentialist thinking.

Other studies have emphasized that protected 
values are likely to shape a tendency to prefer 
action to inaction. They suggest that protected 
values may be an essential source of action motiva
tion that is mobilizing people. The phenomenon of 
activism may be seen as providing strong examples 
of action tendencies, reflecting strong commit
ments to values such as human rights, nature, or 
human life and a duty to act. Decisions involving 
such issues are driven not by anticipated conse
quences but rather by a sense that the act is “the 
right thing to do.” Moreover, the moral intuition 
that doing nothing appears to be morally condem
nable is common in everyday life. The medical 
domain provides further examples. For example, a 
physician facing a patient suffering cannot just 
stand by and do nothing, though the physician 
may be aware that any further treatment would be 
unsuccessful or even harmful.

Resistance to Situational Influences

Application of deontological rules suggests that 
decision making is not based on the consequences 
of the alternatives involved but on applying rules 
about what is in principle right or wrong. Consistent 
with this, previous research found some support 
that people holding protected values are less sensi
tive to the magnitude of consequences than people 
without protected values (killing 1 child is as bad 
as killing 100 children; 1 abortion is as bad as 10 
abortions).

In addition, and also in line with the deonto
logical focus, research has found that protected 
values result in stronger resistance to situational 
influences, such as framing or monetary incentives. 
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Over the past decades, framing effects have been 
reported that refer to the finding that different but 
otherwise equivalent descriptions of choice prob
lems give rise to preference reversals. The classic 
example of framing effects by Amos Tversky and 
Daniel Kahneman (1981) involves the Asian dis
ease problem, in which participants are told that 
an outbreak of disease threatens to kill 600 people. 
People are asked to choose between a certain 
option and a risky option having the same expected 
value. In the positive frame, the outcomes are 
described in terms of the number of lives saved and 
in the negative frame in terms of lives lost. The 
common finding is that participants tend to choose 
the certain option when the problem is framed in 
terms of gains but choose the risky option when 
the problem is framed in terms of losses. Such a 
finding is consistent with a consequentialist per
spective, which suggests that framing causes people 
to view the outcomes as gains or losses. A deonto
logical perspective, however, implies that conse
quences matter less. We, therefore, would expect 
that people with a deontological focus should be 
more insensitive to framing. That is, they should 
show no difference in preferences for risky or cer
tain options under different framing conditions.

Given that protected values seem to derive from 
deontological thinking, recent research using simi
lar lifeanddeath scenarios tested the idea that 
protected values increase attention to acts versus 
omissions and decrease attention to outcomes. The 
results have suggested that people who indicated 
protected values for the issue described in the deci
sion task were more likely to prefer acts over omis
sions. Importantly, they were also immune to the 
framing of the outcomes. Notably, it was not rel
evant for people with protected values whether the 
alternatives were associated with gains or losses, 
and risky or certain outcomes. This conclusion is 
also consistent with previous literature arguing 
that protected values are associated with deonto
logical rules. Overall, the studies suggest that  
for people holding protected values, adherence to 
principle is important, whereas the magnitude of 
consequences matters less.

Reactions to Taboo Versus Tragic Trade-Offs

Another research direction has focused on reac
tions to tradeoffs. This research has shown that 

people struggle to protect such values from trade
offs and respond with strong moral outrage when 
faced with actual violations of taboo trade-offs 
(i.e., situations that pit protected values against 
secular values, such as lives vs. money). Studies by 
Tetlock and colleagues compared people’s reac
tions to routine tradeoffs (e.g., paying someone to 
clean) with their reactions to taboo tradeoffs (e.g., 
selling human body parts). The results have shown 
that people express intense cognitive reactions 
(such as harsh attributions to norm violators), 
emotional reactions (such as expressing anger, dis
gust, and contempt), behavioral reactions (such as 
intentions to punish violators), and moral cleansing 
(such as attempts to reaffirm one’s own moral wor
thiness) when confronted with taboo tradeoffs.

Despite decisions involving protected values 
being often negatively emotion laden and capable 
of triggering harsh reactions, recent research also 
suggests that protected values may work as an 
important decision tool. Protected values can help 
facilitate decisions because people can then rely on 
values that are precluded from tradeoffs. People 
faced with a decision task with which they associ
ate protected values (i.e., a taboo tradeoff) need 
less time to make the decision and perceive the task 
as easier to solve than people faced with decisions 
that are not linked to any protected values. In con
trast, people need much more time to make a deci
sion and perceive the problem as most difficult to 
solve when the task reflects a tragic trade-off (i.e., 
situations that pit two protected values against 
each other, such as one life vs. another). For 
instance, imagine a situation where a hospital has 
to decide which of two desperately ill people 
should get the one liver that is currently available 
due to a shortage of organ donors. Such situations 
are not only perceived as more difficult but also as 
emotionally stressful.

Additional Issues

It may be important to emphasize that people 
should not be portrayed as absolute defenders of 
protected values. On the contrary, there are hints 
that people who claim to have protected values 
nevertheless would consider tradeoffs and com
promises under certain circumstances. It seems to 
be a dynamic process when people treat a tradeoff 
as taboo or when they do not. In addition, there is 
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very probably vast variation in what individuals, 
groups, and cultures hold protected and sacred. 
This applies also to the context of medical decision 
making, where experts (physicians) and lay people 
(patients) are likely to have different or differently 
strong protected values. Overall, it seems essential 
to acknowledge the existence and reality of pro
tected values, because they are an important source 
of conflict in decision making and interpersonal 
interactions.

Carmen Tanner and Daniel Hausmann

See also Decisional Conflict; Irrational Persistence in 
Belief; Monetary Value; Moral Choice and Public 
Policy; Mortality; Person TradeOff
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Qualitative Methods

Qualitative methods are a form of scientific inquiry 
involving in-depth examination of phenomena 
through the collection and analysis of textual data 
or observation and recording of events. Qualitative 
methods are relevant to the field of medical deci-
sion making for a variety of reasons. First, qualita-
tive methods are useful when studying emerging 
topics. This is well suited for medical decision 
making where new questions are constantly raised 
as a consequence of the rapid evolution and inter-
play of science, medicine, and healthcare. Second, 
qualitative methods can help explore how people 
attach meaning to decisions, how decisions unfold, 
and the context in which decisions are made. Also, 
medical decision making often is concerned with 
subjective concepts such as values, perceptions, 
feelings, and attitudes. Qualitative methods are 
well equipped to examine and understand these 
areas by allowing respondents to express in their 
own words their unique experiences.

Qualitative methods encompass various 
modes of data collection (i.e., semistructured 
interviews, focus groups, narratives, and obser-
vation), analytic techniques (i.e., grounded 
theory, deconstruction, narrative, content, and 
discourse analysis), and presentation formats. 
Other considerations when using qualitative 
methods include sample size determinations, 
interrater reliability, and the availability of 
software to help manage the process. Qualitative 
methods are increasingly used in combination 

with quantitative methods in approaches called 
mixed methods. Despite the many benefits  
of using qualitative methods, there are draw-
backs, including increased time and the lack of 
generalizability.

Purpose and Goals of Qualitative Methods

Qualitative methods have unique goals and objec-
tives when compared with quantitative methods 
that should be considered when deciding between 
methodologies. A common goal of qualitative 
research is to explore and understand the meaning 
attributed to some set of issue(s) through the 
untangling of complex processes. Qualitative meth-
ods can help researchers, clinicians, and policy-
makers understand the context in which topics 
such as medical decision making take place. For 
these reasons, qualitative methods are chosen when 
engaging in exploratory research where not enough 
knowledge is present to form specific hypotheses. 
Qualitative methods are well suited for these topics 
because people speak with their own voice rather 
than being forced to situate a response into a set of 
a priori assumptions. This helps facilitate discovery 
of new findings and can lead to the formation of 
theoretically grounded hypotheses to be tested later 
using quantitative methods.

Qualitative inquiry is often characterized as an 
iterative process as opposed to a linear order of 
events. This process involves ongoing analysis and 
reflection that adapts to discoveries made through-
out the process. These methods traditionally  
have been used by social scientists, but the unique 

Q
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contributions have been noticed by researchers 
from other disciplines, leading to a greater accep-
tance of qualitative methods as a science.

Specific Qualitative Methods

Qualitative Data Collection Techniques

Qualitative methods use various modes of data 
collection guided by the objectives of the research. 
Two of the most common types used in medical 
decision making research are semistructured inter-
views and focus groups.

Semistructured interviews involve interviewers 
asking respondents targeted questions and respon-
dents replying in their own words. Interviewers are 
trained to ask probing questions based on initial 
responses to uncover more detail. This is a prime 
example of the iterative nature and adaptability of 
qualitative methods. Interviews are often tape- 
recorded and subsequently transcribed for analysis.

Focus groups are similar to interviews in terms 
of questions asked, the use of follow-up questions, 
and the practice of tape-recording. However, focus 
groups comprise more than one participant and 
can yield different findings compared with an 
interview due to the group dynamic. This dynamic 
can dampen or enhance response contingent on 
whether participants know each other, sensitivity 
of the topic, and other factors. These factors 
should be considered when deciding which data 
collection technique best suits the research topic.

Narratives, another form of qualitative data, 
can be collected through semistructured inter-
views, life history interviews, or found on the 
Internet. Narratives are stories that can range from 
broad to very specific if the content is guided by a 
researcher. For example, a researcher interested in 
dietary decisions of people with diabetes may ask 
a group of diabetics to write about their food 
choices and the surrounding circumstances for a 
week. Narratives may also preexist and can be 
compiled because they have something in com-
mon, such as being written by patients who have 
decided to forgo cancer treatment to try alternative 
approaches. These narratives can be found in 
newspaper and magazine editorials or in publicly 
available Internet blogs and discussion forums.

Two other forms of data collection techniques 
involve watching events take place. One less  

frequently used in medical decision making is  
participant observation or ethnography, where an 
investigator gains access to a group or community 
through an informant or gatekeeper. The investiga-
tor then immerses herself or himself in the group, 
observing, interacting, and engaging in activity. 
The second form, nonparticipant observation, 
involves a researcher watching and documenting 
the specifics of an event. The use of video-recording 
equipment no longer requires the researcher to be 
present during these events. Nonparticipant obser-
vation is more common in the study of medical 
decision making and specifically has been used  
in the study of patient–physician interactions. 
Observation is particularly useful when exploring 
subtle events people do not realize happen or 
behavior people do not realize they engage in.

Qualitative Data Analysis

Textual data can be analyzed using a variety of 
methods, one of the most common of which is 
grounded theory founded by Glaser and Strauss. 
This approach involves reading transcribed inter-
views or focus group reports multiple times to 
identify themes in the data. These themes are 
assembled in a list and discussed among a group of 
researchers who compare and refine the lists until 
an agreement is reached. The data are then revis-
ited to connect specific pieces of text to the listed 
themes.

Other common forms of analysis include nar-
rative analysis, where emphasis is placed on 
examining how a story is told, in particular, how 
people structure their stories, what are key com-
ponents, what is the context, and so on. Content 
analysis can be used to code data from observa-
tion studies whereby qualitative data are quanti-
fied in some fashion, such as the number of times 
a physician makes eye contact with a patient. 
Other types of qualitative analysis include dis-
course analysis, used by ethnographers to uncover 
rules of conversation and deconstruction, which 
sets out to break down and untangle existing 
assumptions.

Presenting Qualitative Results

Results from qualitative methods can be pre-
sented in a number of different ways. Researchers 
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using grounded theory as an analytic tool usually 
provide illustrative quotations that best capture the 
general content of a theme. Some investigators will 
provide counts or the number of times a theme 
appears. Counts can be viewed as the quantification 
of qualitative findings, and researchers and readers 
must be cautious not to place too much emphasis 
on these numbers because qualitative samples are 
typically small and not generalizable. Pictures and 
diagrams are also used to present themes found in 
the data and are especially helpful when the code 
structure is complex and has many levels.

Other Considerations

Samples

Qualitative samples are often small and not 
generalizable to larger populations. In contrast to 
quantitative methods and the use of power calcula-
tions, qualitative methods do not facilitate prior 
determinations of sample size. To apply for grants, 
qualitative researchers can estimate the sample size 
needed based on rules of thumb and previous stud-
ies. The process of determining that enough data 
have been collected is guided by the concept of 
theoretical saturation, which is a point when the 
researcher concludes that no new themes are 
resulting from analyzing more data.

Interrater Reliability

The analysis of text can be open to interpreta-
tion, which is why a lot of qualitative research is 
conducted in teams. Also, due to concerns about 
consistency of analysis, researchers using the 
grounded theory approach have sought for ways 
to ensure that if others were coding the data they 
would arrive at similar conclusions. This has led to 
widespread use of interrater reliability calculations 
in qualitative methods that are increasingly required 
for publication. This technique helps assure read-
ers that two or more individuals agreed a reason-
able amount of times on the presence of themes in 
a sample of text drawn from the study.

Computer Software

The use of grounded theory in qualitative 
inquiry has given rise to the development of soft-
ware programs that aid in the research process. 
These programs help organize qualitative data 

under user-specified code structures, which still 
require the researcher to analyze the data.

Mixed Methods

As different as qualitative and quantitative methods 
are in purpose, planning, data collection, analysis, 
and presentation of findings, the two approaches 
are very complementary and increasingly used in 
combination. A common example is the sequential 
exploratory design that begins with a research topic 
for which there is little previous work. Qualitative 
methods are then used to collect data and analyze 
the topic to generate themes. The themes are viewed 
as concepts to be operationalized with multiple 
quantitative items to be tested in larger, more rep-
resentative samples. Once collected, quantitative 
analytic techniques can be applied to the data to 
examine how well the created items capture the 
content of the themes derived from the qualitative 
work. The blending of qualitative and quantitative 
methods does not have to be sequential but can be 
simultaneous where both types of data are collected 
at the same time and analyzed separately. Qualitative 
methods may also be used as a follow-up to a quan-
titative study to help answer questions raised by 
quantitative findings. Many types of mixed meth-
ods designs exist and new forms are being devel-
oped as more people appreciate the unique 
contributions of each method.

Downsides to Qualitative Methods

Although qualitative methods have many advan-
tages over quantitative when engaging in certain 
types of inquiry, there are downsides. Qualitative 
methods generally are more time-consuming in 
terms of data collection and analysis because of the 
in-depth nature. Connected to this issue is increased 
expense, which can be greater because of longer 
time commitments from participants, interviewers, 
and researchers who analyze the data. Another 
limitation of qualitative methods is that they are 
typically not generalizable because they often use 
small convenience samples. Therefore, researchers 
who at the outset are looking to generalize their 
findings to a larger population may not want to 
solely use these methods. Similarly, qualitative 
methods are not going to establish definitive laws 
of behavior or determine causality but can help in 
moving this process forward.
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Qualitative Methods in Clinical Practice

Qualitative methods can be used beyond research 
settings and applied in everyday situations such as 
clinical practice and used in the process of medical 
decision making. For example, these methods can 
be used by physicians to enhance the process of 
screening through the provision of a more in-depth 
picture of the patient’s situation and the context 
surrounding their medical encounter. This can lead 
to the development of more individualized treat-
ment plans that are better informed. Qualitative 
methods have also been useful in the development 
of decision aids, a popular tool in the field of 
medical decision making.

Noah J. Webster

See also Ethnographic Methods
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Quality-adjusted life years 
(Qalys)

The quality-adjusted life year (QALY) is a mea-
sure of the value of health outcomes. A QALY 

takes into account both the quantity (survival) 
and the quality of life generated by healthcare 
interventions and allows decision makers to com-
pare diverse health interventions using a common 
measure.

What Is a Quality-Adjusted Life Year?

One of the problems faced by decision makers is 
how to compare health interventions across dis-
eases and with different health outcomes for prior-
ity setting in healthcare. A QALY-like concept was 
first proposed by Herbert Klarman in 1968 in a 
study of chronic kidney disease that estimated that 
quality of life was 25% better with transplant com-
pared with dialysis. The method and premise was 
further developed in the 1970s, with the term 
quality-adjusted life year and QALY first being 
popularized by M. C. Weinstein and W. B. Stason 
in 1977. The underlying premise of this metric  
was to refer diverse health outcomes, such as lives 
saved, improved life expectancy, improvements in 
quality of life, functionality, or symptom control, 
back to the same value scale such that it would be 
possible to compare these diverse health outcomes 
with each other. When combined with information 
about the costs of alternative healthcare interven-
tions, QALYs form the basis of cost-utility analysis; 
an incremental cost-utility ratio (or a cost per 
QALY gained) indicates the additional cost of one 
intervention compared with another that is required 
to generate 1 extra year of perfect health. QALYs 
are also referred to by different names; for example, 
the U.S. National Center for Health Statistics calls 
them years of healthy life (YHL), and Statistics 
Canada uses a variety of terms, including health-
adjusted life years (HALYs) and health-adjusted life 
expectancy (HALE).

By capturing changes in both mortality (life 
expectancy) and morbidity (quality of life) related 
to a healthcare intervention, and combining them 
into a single outcome, the QALY offers advantages 
over health outcomes measured in natural units, 
for example, survival, because it is (a) likely to bet-
ter capture the true scope of health-related effects 
of an intervention and (b) also provides a common 
metric by which diverse programs and interven-
tions can theoretically be compared in terms of 
costs and consequences. For priority setting, the 
QALY metric therefore allows consideration of the 
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relative efficiency of wide-ranging interventions 
across different disease states.

Calculation

A QALY is calculated by weighting the time spent 
in different health states by how desirable that 
health state is. These weights are variously referred 
to as QALY weights, QOL weights, utility weights, 
and HRQOL (health-related quality of life) weights. 
These terms are often used interchangeably in the 
literature, although they are not strictly equivalent. 
The term QALY weight is used here. To opera-
tionalize the QALY metric, weights are needed to 
represent the health-related quality of life of differ-
ent health states. QALY weights have a number of 
properties:

 1. They are based on preferences; more preferred 
health states have a higher weight than less 
preferred; the weights should be based on a 
sample of individual preferences, obtained in a 
way that involves a trade-off between quality 
and quantity of life.

 2. They are bounded on perfect health and death.

 3. They measure strength of preference on a 
cardinal (interval) scale, with equal intervals 
measured in such a way that they have  
equal value.

The convention is to weight perfect health with 
a value of 1, while weighting death as 0. These 
conventions are useful for calculation and interpre-
tation practicalities. If death received a weight of 
anything other than 0, then it would mean that in 
all analyses death would be accruing some weight 
into the future for as long as the death would state 
lasted (infinite). Giving perfect health a value of 1 
means that the QALY is then interpreted in terms 
of years of perfect health, such that 1 year in per-
fect health is equivalent to 1 QALY; a year of less 
than perfect health therefore generates less than 1 
QALY. In addition, some health states may be 
worse than death and therefore can have negative 
QALY weights. A QALY is thus calculated:

QALY = Duration of health state (years)  
× QALY weight for health state.

A gain in QALYs from a healthcare intervention 
can therefore be derived from an improvement in 
survival, an improvement in quality of life, or an 
improvement in both survival and quality of life. 
This is shown in Figure 1. Without the interven-
tion, a person survives for 3 years, with a QALY 
weight of .6 for Year 1, .4 for Year 2, and .3 for 
Year 3, with a total number of QALYs of .6 + .4 + 
.3 = 1.3 QALYs. In contrast, with the intervention 
a person will survive for 4 years, with a QALY 
weight of .8 for Year 1, .6 for Year 2, .75 for Year 
3, and .4 for Year 4, giving a total number of 
QALYs of .8 + .6 + .75 + .4 = 2.55 QALYs. With 
the intervention the person gains 1.25 QALYs, 
resulting from improved quality of life over the 
time that the person would have been alive anyway 
(3 years) and an additional year of survival, albeit 
at less-than-perfect quality of life.

A number of different methods can be used to 
elicit QALY weights; the three main methods to 
directly measure QOL values and utilities are the 
visual analog scale or rating scale, the time trade-
off, and the standard gamble. These methods can 
be used to directly measure an individual’s utilities 
and values, or they can be used to value hypo-
thetical, scenario-based descriptions of specific 
health states or a pathway of health states. Multi-
attribute measures of health status can also be 
used, and these are used in a similar manner as 
generic QOL instruments to measure and value an 
individual’s QOL.

Assumptions

For QALYs to accurately reflect preferences, a 
number of assumptions must be made about the 
nature of the QALY weight. QALYs assume that 
the value of the QOL weight is constant and is 
unrelated to (a) the duration of the health state,  
(b) when the health state occurs in time (e.g., now 
or at age 70), and (c) where the health state occurs 
in relation to other health states. These are impor-
tant assumptions, and it has been argued that they 
do not necessarily hold. It is likely that the value of 
a health state is altered by the length of time a 
person spends in the state; it therefore might be 
necessary to estimate separate QALY weights for 
health states over different durations. It has also 
been suggested that prognosis may influence the 
value that is attached to a health state; a poor but 



934 Quality-Adjusted Life Years (QALYs)

temporary health state may be valued more highly 
than would be expected because it is perceived  
as a short-term inconvenience; whereas the value 
attached to a good health state might be dimin-
ished by the knowledge that it will eventually lead 
to poor quality of life and death. Most QALY 
applications assume that an individual’s attitude 
toward risk is neutral.

Additionally, the QALY approach to priority 
setting assumes

that the total value to society of a health  •
intervention is the sum of all the health benefits 
(QALYs) that it produces in people who receive 
the intervention and
that the health benefit in each person receiving  •
the health intervention is the sum of all the gains 
in utility (QOL) over all the life years in which 
the person gets the benefits of the service.

That is, QALYs are additive, both within and 
across individuals. These assumptions are demon-
strated in the following example: Individual A gets 
an increase in utility from .6 to .9 for 2 years, then 
from .6 to .7 for the following 3 years, giving  
a total of .9 QALYs gained (2 × .3 + 3 × .1). 
Individuals B and C get a health benefit of 2.5 and 
1.6 QALYs gained, respectively. The total gain in 

health outcome for this population (A, B, and C)  
is therefore the sum of .9 + 2.5 + 1.6 = 5 QALYs 
gained. An additional implication is that this ser-
vice for these three patients is valued as highly as 
a health service benefiting one person who gains 5 
years in full health or a service that provides five 
patients with 1 additional year in full health each. 
That is, QALYs make no distinction regarding 
the distribution of health benefit in society. This 
is referred to as the assumption of distributive 
neutrality.

Shortcomings

The QALY concept is not without criticism. Criticism 
ranges from those who believe that the QALY 
approach is too complex, and decision making 
would be better served by the use of disaggregated 
health outcomes counted in natural units, to those 
who believe that the QALY approach is too simplis-
tic and more complex methods should instead be 
used. Alternative measures have been suggested, 
including healthy years equivalents (HYEs), saved 
young life equivalents (SAVEs), and disability- 
adjusted life years (DALYs), although these mea-
sures are not without their own criticisms.

Criticisms also relate to more technical aspects of 
the calculation of QALYs, including the underlying 
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assumptions discussed above, such as duration and 
prognosis, and the measurement of QALY weights. 
Alternative methods of measuring QALY weights, 
such as the time trade-off, standard gamble, and 
multi-attribute utility instruments, will almost always 
lead to different values for a particular health state, 
and this variability between measures has led oppo-
nents of QALYs to criticize the QALY metric and the 
methods used to generate the weights. Concerns also 
relate to the notion that QALYs may inadequately 
capture true quality-of-life implications in a number 
of circumstances, for example, (a) the quality of life 
associated with emotional or mental health states; 
(b) the health effects of preventive programs, where 
the benefits in terms of health outcomes may not 
occur for many years in the future and may be dif-
ficult to value because the value attached to different 
aspects of health is likely to vary with age and life 
context; and (c) temporary or short-term changes in 
quality of life, which may also be very difficult to 
value using a QALY metric because the measures 
may not be sensitive to small changes. When using 
descriptions of health states, concerns have been 
raised over whether the responses given to hypo-
thetical situations reflect people’s real decisions.

Additional criticisms leveled at QALYs are 
related to broader issues, such as whether “perfect 
health” is interpreted consistently among respon-
dents, whether QALYs undervalue healthcare 
because they do not capture the wider benefits of 
healthcare (externalities), and whose preferences 
should be used to inform decision making, as 
different respondent populations are likely to give 
different values to the same health state, for 
example, the community, compared with patients, 
compared with health practitioners.

Use in Decision Making and  
Resource Allocation

Despite the shortcomings of QALYs, a number  
of decision-making bodies, such as the National 
Institute for Health and Clinical Excellence 
(NICE) in the United Kingdom, the Pharmaceutical 
Benefits Advisory Committee (PBAC) in Australia, 
and the Canadian Agency for Drugs and 
Technologies in Health (CADTH), use QALYs to 
inform decision making about funding of phar-
maceutical and nonpharmaceutical health tech-
nologies. Although research continues on the 

measurement and application of QALYs, they 
are, to date, probably the most widely accepted, 
and used, measure of health outcome that com-
bines both morbidity and mortality into a single 
usable metric.

Kirsten Howard

See also Cost-Utility Analysis; Disability-Adjusted Life 
Years (DALYs); League Tables for Incremental Cost-
Effectiveness Ratios; Quality-Adjusted Time Without 
Symptoms or Toxicity (Q-TWiST); Risk Aversion; 
Utility Assessment Techniques
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Quality-adjusted tiMe 
Without syMptoMs or 
toxicity (Q-tWist)

Quality-adjusted time without symptoms or toxic-
ity (Q-TWiST) is an outcome measure for cancer 
clinical trials, which was developed in the mid-
1980s by Richard Gelber and Aron Goldhirsch  
to evaluate adjuvant chemotherapy. It is an adap-
tation of the QALY, the quality-adjusted life year. 
It is calculated as follows:

Q-TWiST = ut × TOX + TWiST + ur × REL,

where TOX is the months spent with any burden 
of subjective treatment side effects, REL is the 
months following disease relapse, TWiST is defined 
as time without symptoms of disease and toxicity 
of treatment, and u is a utility coefficient, taking 
values between 0 and 1, to represent the value, 
relative to TWiST, of TOX and REL, respectively, 
and the subscript “t” is toxicity and “r” is relapse. 
The developers proposed to use arbitrary values 
for u and to show the effect of different values by 
performing threshold analyses, also called sensitiv-
ity analyses. Such analyses result in combinations 
of utilities for TOX and REL (relative to TWiST) 
whereby one treatment strategy is superior to the 
other. Clinicians should then assess these utilities 
with their patients to decide which treatment is 
superior. An example is Q-TWiST for radiation 
therapy in the treatment of patients with poor-
prognosis resectable rectal cancer:

Q-TWiST = ut × TOX + TWiST + ur × REL 
= .5 × .9 + 33.2 + .5 × 8.7 = 38 months.

Outcome Measurement in Oncology

TWiST

Overall survival time is the most definitive end-
point used to evaluate treatment effectiveness for 
cancer patients. Other measures such as tumor-free 
interval, duration of response, or time to progres-
sion of disease are also considered for making thera-
peutic decisions. A value judgment is often made by 
weighing benefits in terms of these measures against 

the risks of undesirable side effects of treatment. In 
the second half of the 1980s, Gelber and Goldhirsch 
developed a quality-of-life-oriented endpoint for 
assessing adjuvant therapies in oncology. This end-
point was obtained by subtracting the amount of 
time of poor quality of life from each unit time inter-
val to adjust the measure of benefits. It reflected the 
amount of good quality time enjoyed by the patients. 
Specifically, the time without symptomatic relapse 
of cancer was adjusted by subtracting units of time 
during which toxic effects of treatment were experi-
enced. The measure defined time without symptoms 
of disease and toxicity of treatment (TWiST). It was 
calculated for each patient by subtracting from 
overall survival periods of time during which treat-
ment or disease reduced quality of life. These peri-
ods included months with any burden of subjective 
treatment side effects (TOX) and all months follow-
ing disease relapse (REL). Average TWiST could be 
calculated for several treatments and compared over 
time to see when (if ever) after start of treatment the 
risk-benefit ratio began for a treatment with more 
early toxicity.

Quality-Adjusted Survival: Q-TWiST

The all-or-none analysis of TWiST was deemed 
somewhat unrealistic by the developers, as it 
assigned no value to both the period of life with 
toxicity and the period following relapse. A refine-
ment was created to TWiST to include in the 
analysis times spent with toxicity or relapse but 
with intermediate weightings based on their value 
relative to TWiST.

Q-TWiST and QALY are equivalent concepts, 
and depending on the elicitation of the utility coef-
ficient u and on the way the data are analyzed they 
will return similar or different results. A utility is 
defined as the level of desirability that people asso-
ciate with a particular outcome. It is a cardinal 
number that represents the strength of an individ-
ual’s preference for a particular outcome when 
faced with uncertainty. Utilities are assigned to 
each outcome, on a scale that is established by 
assigning a value of 1 to the state of optimal health 
and a value of 0 to death. In QALYs, each year of 
survival is multiplied by its utility, and the thus 
adjusted life years are summed. In Q-TWiST, life 
years are assigned to specific health state categories 
(TOX, REL, TWiST) and multiplied with a fixed 
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utility for that category. The categorization may 
make the analysis more appealing to clinicians.

Anne M. Stiggelbout

See also Holistic Measurement; Quality-Adjusted Life 
Years (QALYs); Survival Analysis; Utility Assessment 
Techniques
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Quality of Well-Being scale

Medical decision making at the organizational 
and societal levels usually requires that health 
benefits be quantified in a common unit. This 
enables administrators or decision makers to com-
pare and evaluate programs that address different 
diseases or populations. To compare very different 
alternatives, measures of program benefits must 
be comprehensive, including all possible direct 
effects, whether intended or not. Therefore, the 
current consensus is that preference- or utility-
based measures of generic health-related quality 
of life (HRQOL) best meet these criteria. The 
most frequently used measures in this class include 
the EuroQOL 5D (EQ-5D), the Health Utilities 
Index measures (HUI), and the Quality of Well-
Being Scale measures (QWB and QWB-SA).

The Quality of Well-Being (QWB) scale is a 
generic, preference-based measure of HRQOL with 
well-established psychometric properties in a wide 
variety of diseases and subgroups. In response to 

limitations of the QWB, a self-administered version 
of the QWB (QWB-SA) has been developed and 
validated. The QWB-SA is quicker and easier to 
administer in most research and clinical assessment 
protocols. Both questionnaires assess the presence 
or absence of symptoms and functioning on specific 
days prior to administration. The measures produce 
a single score that ranges from 0 (death) to 1.0 
(optimal HRQOL). The final score from the 
QWB-SA or the QWB can be integrated with time 
and mortality to calculate quality-adjusted life years 
(QALYs) and conduct cost-effectiveness analysis.

Health-Related Quality of Life

Health-related quality of life (HRQOL) provides a 
comprehensive description of health and overall 
well-being. HRQOL measures can be classified in 
a number of different ways. For example, HRQOL 
measures are either generic or disease-specific and 
can be described as psychometrically based or 
preference/utility based. The QWB (and QWB-SA) 
is a generic HRQOL measure that was designed to 
be used with any adult population and any health 
condition, including healthy individuals. The QWB 
and QWB-SA are preference-based measures and 
were not developed to assess statistically indepen-
dent domains of HRQOL. They provide a single 
score that summarizes total HRQOL based on the 
mean preference ratings that health consumers 
gave to the health states described within it. These 
preferences or utilities are ratings of observable 
health states using a scale anchored by death and 
optimum health, and assuming equal intervals.

Theoretical Basis

The QWB was developed in the 1970s based on a 
General Health Policy model. This theoretical 
model focuses on mortality (death) and morbidity 
(health-related quality of life) and proposes that 
symptoms and disabilities are important for two 
reasons: First, illness may cause life expectancy to 
be shortened and, second, illness may make life 
less desirable at times prior to death. In assessing 
the impact of medical interventions or programs, 
the model requires data on changes in mortality  
as well as on changes in HRQOL. The General 
Health Policy model incorporates preference for 
observed health states (utility) and duration of stay 
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in health states. Preferences or utility for health 
states are typically measured using economic prin-
ciples that ask individuals to place preferences or 
values on a wide variety of health states involving 
both symptoms and functioning. The health pref-
erences or utilities are placed on a preference con-
tinuum for the desirability of various health states, 
giving a “quality” rating on an interval scale rang-
ing from 0 for death to 1.0 for completely well.

Quality-Adjusted Life Years 
and Cost-Effectiveness

Once a mean QWB score is obtained that describes 
the level of morbidity or wellness in a sample, the 
score can be multiplied by the amount of time at that 
level of wellness to calculate QALYs. A QALY is 
defined as the equivalent of 1 completely well year 
of life or a year of life with optimal functioning and 
no health problems or symptoms. For example, imag-
ine a person who has a set of symptoms and is in a 
state of functioning that is rated by community peers 
as 0.5 on a 0.0 to 1.0 scale. If the person remains in 
that state for 1 year, living that full year with its qual-
ity reduced to half of what is optimal, then it is con-
sidered equivalent to living 6 months with optimal 
quality of life (.5 year × 1.0 QOL score). Thus, a per-
son requiring a cane or walker to get around might be 
hypothetically rated at .50. If he or she remained in 
that state for an entire year, the individual would lose 
the equivalent of one half of a QALY. However, a 
person who has the flu may also be rated as .50. In 
this case, the illness might only last 3 days and the 
total loss in QALYs might be 3/365 × .50, which is 
equal to .004 QALYs. The .004 QALYs may seem 
insignificant when compared with the person who has 
difficulty walking but suppose that 5,000 people in a 
community get the flu. The well years lost would then 
be 5,000 × .004 QALYs, which is equal to 20 years of 
perfect health for one person. An important feature of 
the QALY system is that it is completely generic. It can 
be used to compare small health consequences that 
affect a large number of people or large health conse-
quences that affect a small number of people or any 
variation of those factors. The quality-adjusted life 
expectancy is the current life expectancy adjusted for 
diminished quality of life associated with dysfunc-
tional states and the duration of stay in each state.

The calculation of QALYs is required for con-
ducting cost-utility analysis, which is simply a type 

of cost-effectiveness analysis that uses QALYs as 
its unit measure of health benefit. The QWB was 
the first assessment instrument developed for the 
primary purpose of calculating QALYs in cost- 
effectiveness analysis. Prior to the existence of 
generic, preference-based measures, many different 
outcomes were used to represent the effectiveness 
side of cost-effectiveness analyses. Generic, prefer-
ence-based measures and QALYs have become the 
recommended standard for cost-effectiveness anal-
yses because they provide a common metric for 
comparing results across studies and populations.

Assessment

In the original QWB, respondents report whether or 
not each of 27 groups of symptoms were experi-
enced on each of the 6 days prior to the assessment. 
Functioning is assessed by questions about the pres-
ence of functional limitations over the previous 6 
days, within three separate domains (mobility, 
physical activity, and social activity). Unlike mea-
sures that ask about general time frames such as 
“the past 4 weeks” or “the previous month,” the 
QWB asks whether specific symptoms or functional 
limitations did or did not occur on specific days. 
Each group of symptoms and functional limitation 
is weighted using preferences obtained from the rat-
ings of 856 people randomly sampled from the 
general population. The domain scores (3 function-
ing, 1 symptom) are subtracted from 1.0 to create a 
total score that provides an expression of well-being 
that ranges from 0 (death) to 1.0 (asymptomatic 
optimal functioning). References on the validation 
of the instrument are available from the University 
of California, San Diego (UCSD) Health Services 
Research Center. The original QWB must be admin-
istered by a trained interviewer because it employs 
a complex system of branching questions and 
probes. The original questionnaire takes an average 
of about 15 minutes to complete. The authors 
believe that the administration time and complexity 
of the original measure requiring a trained inter-
viewer has resulted in its underutilization.

Self-Administered Version

In 1996, a self-administered version of the ques-
tionnaire was developed to address some of the 
limitations of the original version. The Quality of 
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Well-Being Scale-Self-Administered (QWB-SA) 
improves on the original version in a number of 
ways. First, the administration of the question-
naire no longer requires a trained interviewer and 
can be completed in about 10 minutes. Second, the 
assessment of symptoms follows a clinically useful 
“Review of Systems” model, rather than clustering 
symptoms based on preference weights. Third,  
a wider variety of symptoms are included in the 
QWB-SA, making it more comprehensive and 
improving the assessment of mental health.

Preference weights for the QWB-SA were 
obtained from a new sample and studies have been 
published comparing the new and old versions. 
The QWB-SA and QWB were highly correlated 
and the test-retest reliability is high. The measure is 
not designed to be internally consistent because the 
factors it measures (symptoms and functioning) are 
interdependent. QWB-SA scores tend to be slightly 
lower than QWB scores, primarily because mental 
health symptoms are assessed in greater detail and 
are more likely to contribute to decreased scores.

The format for the QWB-SA includes five sec-
tions. Part 1 assesses the presence or absence of 19 
chronic symptoms or problems (e.g., blindness, 
speech problems). Because these symptoms are 
chronic, they are not expected to vary over the 
3-day assessment period and therefore are assessed 
using a yes/no response format. The chronic symp-
toms are followed by 25 acute (or more transient) 
physical symptoms (e.g., headache, coughing, pain) 
and 14 mental health symptoms (e.g., sadness, 
anxiety, irritation). The remaining sections of the 
QWB-SA are similar to the QWB and include 
assessment of mobility (including use of transpor-
tation), physical activity (e.g., walking and bend-
ing over), and social activity, including completion 
of role expectations (e.g., work, school, or home).

The recall period assessed by the QWB-SA is 
shorter than in the QWB. The QWB asked patients 
about symptoms and function during each of the 6 
days prior to the day of administration, while the 
QWB-SA questions refer to each of the 3 days 
prior to the day of administration. This change 
was designed to reduce respondents’ burden and 
recall bias without sacrificing valuable informa-
tion. The impact of this change was examined by 
dropping information from days 4, 5, 6 and recal-
culating QWB scores based only on the past 3 
days. No significant differences in scores were 

found between the overall quality of life score 
when using only the most recent 3 days, and the 
change resulted in a shorter administration time.

A total of 12 different symptom questions in the 
QWB-SA are related to mental health, including 
questions about symptoms indicative of mood, 
anxiety, psychotic features, appetite, energy, anhe-
donia, and sleep. Researchers are exploring the 
possibility of deriving a mental health subscale 
based on these questions; however, it is hard to 
separate out the impact that these symptoms have 
on functioning as opposed to that attributable to 
nonmental health or “physical” symptoms.

When compared with other generic, preference-
based measures of HRQOL, the QWB-SA is slightly 
longer and is more time-consuming because it 
involves a more comprehensive assessment of 
symptoms and functioning. However, this more 
detailed assessment of symptoms and functioning 
may result in greater sensitivity to change in some 
populations. The QWB-SA asks about the pres-
ence or absence of specific complaints on specific 
days to reduce the influence of memory, or severity 
ratings such as pain intensity, that require personal 
interpretation. In addition, the distribution of 
QWB-SA scores in most studies is close to normal, 
suggesting that ceiling or floor effects are less com-
mon than with other HRQOL measures.

Uses

The QWB-SA has been used in the evaluation of 
many chronic disease populations, and the mea-
sure has been selected for several multisite National 
Institutes of Health randomized controlled trials, 
including Lifestyle Interventions and Independence 
for Elders (LIFE-P), the National Emphysema 
Treatment Trial (NETT), the Diabetes Prevention 
Program (DPP), and portions of the Prostate, 
Lung, Colorectal, and Ovarian Cancer (PLCO) 
and the Modification of Diet in Renal Disease 
(MRDR) trials. In addition, the QWB has been 
used in a variety of clinical studies for a range  
of medical and surgical conditions that include 
chronic obstructive pulmonary disease, AIDS, cys-
tic fibrosis, diabetes mellitus, atrial fibrillation, 
lung transplantation, arthritis, cancer, schizophre-
nia, and many other conditions.

Both the QWB and QWB-SA are available free 
of charge to users from nonprofit organizations. A 
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small fee is charged to for-profit users. Information 
on copyright agreements and user manuals are 
available at http://outcomes.ucsd.edu/portalVBVS/
DesktopDefault.aspx.

Erik J. Groessl and Robert M. Kaplan

See also Cost-Effectiveness Analysis; Cost-Utility 
Analysis; EuroQoL (EQ-5D); Health Utilities Index 
Mark 2 and 3 (HUI2, HUI3); Quality-Adjusted Life 
Years (QALYs)
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Randomized CliniCal TRials

A clinical trial is defined as a controlled, prospec-
tive assessment of an intervention for a disease or 
condition in human beings. In general, the pur-
poses of randomized clinical trials, or Phase III 
trials, are to evaluate the efficacy of a novel treat-
ment relative to an observation/placebo arm, or  
a standard therapy, or to determine whether an 
experimental treatment is more effective than a 
standard therapy having lesser morbidity. 
According to ClinicalTrials.gov, Phase III trials

are expanded controlled and uncontrolled trials 
after preliminary evidence suggesting effective-
ness of the drug has been obtained, and are 
intended to gather additional information to 
evaluate the overall benefit-risk relationship of 
the drug and provide and [sic] adequate basis for 
physician labeling.

In essence, the ultimate goal of a Phase III clinical 
trial is to improve medical practice.

The purpose of this entry is to present an over-
view of the basic principles involved in the design 
and conduct of Phase III trials. Meticulously 
designed Phase III trials can answer important sci-
entific questions so that valid inferences about the 
therapy being tested can be made. In the following 
sections, the discussion focuses on determining the 
sample size within the context of testing a hypoth-
esis. Investigators who are interested in conduct-
ing a Phase III trial should start by specifying a 

hypothesis of interest. Once this is stated, then the 
required sample size should be calculated to reflect 
a realistic clinical-effect size, and an accurate esti-
mate of the projected accrual rate should be used. 
In addition, these trials should include sequential 
guidelines for stopping a trial early so that partici-
pants can benefit from a promising therapy or are 
spared from a harmful treatment.

Hypothesis Testing

Every Phase III trial starts by asking an important 
question about the effectiveness of a new experi-
mental treatment on outcome. For the parameter 
of interest, two states must be defined before test-
ing a hypothesis: (1) the null hypothesis, which is 
usually a hypothesis of no difference in the param-
eter of interest between the groups, and (2) the 
alternative hypothesis, which can be either a two-
tailed (all possible values of the parameter of inter-
est are considered except the null) or a one-sided 
alternative (the parameter of interest will vary 
from the null in only one direction). Researchers 
must first decide the two-sided versus one-sided 
question as part of the hypothesis to be tested. 
Most Phase III trials are based on a two-sided 
question, and consequently, the number of patients 
required in such a trial is larger than when a one-
sided question is tested.

The null and alternative hypotheses discussed in 
the section above are based on superiority studies. 
In some instances, however, the interest may lie in 
testing whether two regimens are as effective or 
equivalent. Equivalence and noninferiority trials 

R
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differ from superiority studies in that the objective 
is to test whether an experimental therapy is as 
effective (or not worse) than a current standard.

Types of Error

Investigators always make two types of errors in 
the process of statistical inference: (1) Type I and 
(2) Type II error rates. Type I, or the false-positive 
rate, is the probability of rejecting the null hypoth-
esis when the null hypothesis is true—that is,  
concluding an ineffective treatment as active. The 
probability of committing a Type I error rate is 
traditionally chosen as 5%. A Type II, or false-
negative rate, is the probability of not rejecting the 
null hypothesis when the null hypothesis is not 
true—that is, declaring an effective treatment as 
inactive. Power is defined as the complement of 
Type II error rate and is the probability of rejecting 
the null hypothesis when the alternative hypothesis 
is true.

Design Considerations

Endpoints

An endpoint is a criterion by which patient  
benefit is measured. Reliable and meaningful end-
points are inherent to well-designed Phase III 
studies, and it is crucial to explicitly define the 
primary endpoint at the design stage. Due to space 
limitations, two types of outcomes are discussed in 
this section: (1) time-to-event and (2) binary end-
points. Time-to-event endpoints are outcomes 
where time is measured from the date of random-
ization until the date of occurrence of an event of 
interest. The time variable is the failure time and is 
measured in years (months, weeks, or days), and 
the event is an incident of interest and may be 
death, death due to a certain cause, disease pro-
gression, or the development of metastases. Time-
to-event endpoints must take into account a 
fundamental analytical element known as censor-
ing. Censoring arises either because patients do not 
experience an event of interest before the trial ends 
or are lost during the follow-up period. As a result, 
information about an individual failure time will 
be unknown. Using time-to-event endpoints has 
the advantage of using all available information, 

including participants who fail to complete the 
trial.

In general, overall survival is the most common 
time-to-event endpoint used in Phase III trials in 
cancer. It is considered to be the “hardest” end-
point as it is the most objective endpoint. Overall 
survival is defined as the interval between date of 
randomization and date of death due to any cause. 
Other endpoints such as progression-free survival 
and disease-free survival are frequently employed 
in oncology trials.

Binary endpoints are common outcomes that 
are dichotomous in nature and are often based on 
success rates (yes or no). For example, in one trial, 
the primary endpoint was the presence of prostate 
cancer based on a biopsy performed at the end of 
the study.

Randomization

Randomization is the fundamental basis of all 
Phase III clinical trials and inherent to their valid-
ity. In addition, randomization minimizes bias and 
is a keystone in establishing the validity of the sta-
tistical tests of significance. Randomization helps 
in making the treatment groups balanced and com-
parable at baseline. Randomized block design is 
one of the most common and simplest methods of 
randomization. A block of size b is a series of treat-
ment assignments that are generated randomly 
where patients are allocated sequentially to treat-
ments as they enter the trial. The advantage of this 
method is that the imbalance between treatments 
is never greater than b/2. However, the main draw-
back is that if the block size is known in advance, 
clinicians may be able to guess the next treatment 
assignment and bias the results by putting “worse” 
patients on the control arm.

Patient response may depend on prognostic 
factors, and randomization helps balance such 
factors by treatments. Some imbalances, however, 
may occur by chance. One strategy is to use 
blocked randomization within predefined combi-
nations of the prognostic factors (strata). Using 
stratified block randomization, patients are ran-
domized to treatments using block sizes equal to b 
within each stratum. In recently designed trials, 
randomization was stratified by the predicted sur-
vival probabilities based on prognostic models. 
For example, in CALGB 90401, a trial that 
enrolled 1,050 men with castrate-resistant pros-
tate cancer, randomization was stratified by the 
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predicted survival probability at 24 months: 
<10%, 10%–29.9%, or ≥30%.

Sample Size Determination

Perhaps the most crucial step in the design of a 
Phase III trial is the determination of how many 
participants are required to test the alternative 
hypothesis. It is unethical to recruit too few patients 
on a trial as there may be inadequate evidence to 
make a decision on whether the new treatment is 
effective. On the other hand, recruiting too many 
participants is both costly and time-consuming.

Comparison of Two Survival Curves

Suppose that an investigator is interested in com-
paring the survival curves of subjects who are 
treated with a standard of care or control (denoted 
as 1) with those who are treated with an experi-
mental therapy (denoted as 2). A survival curve can 
be viewed as a graph of the probability of surviving 
up to a given point. Even though methods used for 
analyzing survival data are nonparametric— 
that is, assumption about the survival distribution 
(denoted as S(t)) does not need to follow any par-
ticular model (such as the Kaplan-Meier approach), 
assumptions are often made for sample size deter-
mination. One of the most common survival distri-
butions used is the exponential model, where S(t) = 
e−λt. The hazard rate, λ, is constant over time and is 
defined as the instantaneous potential per unit time 
for the event to occur, given that the individual 
survived up to time t. The null hypothesis is  
λ1 = λ2 versus the alternative hypothesis λ1 ≠ λ2. At 
the design stage, λ1 may be unknown, but it is 
assumed that the median survival time (M1) in the 
control group is known. Therefore, using the well-
known relationship λ1 = (log 2)/M1 for the expo-
nential distribution, λ1 can be determined. The 
hazard ratio (denoted as ∆ = λ1/λ2) is the ratio of the 
hazard rate in subjects assigned to the control and 
experimental arms. Alternatively, the hazard ratio 
may be defined as the ratio of the median survival 
time in the experimental arm to the control arm  
(∆ = M2/M1). The number of deaths (d) required to 
be observed to test the alternative hypothesis with 
power (1 − β) is

 d = [z1−α/2 + z1−β]
2/Wi (log ∆)2, (1)

where

z1−α/2 +z1−β are the quantiles obtained from the 
standard normal distribution for the Type I  
and Type II error rates and

Wi is the proportion of participants allocated to the 
experimental and control arms (i = 1, 2).

If an investigator is interested in testing a one-
sided alternative hypothesis, then z1−α/2 is replaced 
by z1−α in Equation 1. The basic assumption in 
Equation 1 is that all patients have been followed 
until death. The sample size needed in a clinical 
trial with a time-to-an-event endpoint is not only a 
function of Type I and Type II error rates as well 
as ∆ but also takes into account the probability of 
death over the duration of the trial. It is assumed 
that there is an accrual period (T), where patients 
enter the clinical trial according to a Poisson pro-
cess and are subsequently followed up for a prede-
termined period of time (τ).

Table 1 provides the accrual period (T) assum-
ing various accrual rates, hazard ratios, and  
follow-up periods in years. Since the accrual rate is 
considered fixed, T is solved by using a Newton-
Raphson procedure so that the power of 1 – β is 
obtained at the end of the trial (T + τ). The required 
sample size is obtained by multiplying the accrual 
rate by the accrual period (T). To illustrate this 
point, let us suppose that an investigator wishes  
to test the alternative hypothesis that ∆ = 1.35, 
assuming a two-sided Type I error of .05 and a 
power of 90%. The investigator estimates based 
on historical data that the accrual rate per year is 
120 patients. Assuming that the follow-up period 
is 1 year, from Table 1 the accrual period is 4.81 
years, the number of participants required to test 
this hypothesis is 578 (4.81 years × 120 patients/
year), and the total trial duration will be 5.81 years 
(4.81 years accrual period + 1 year of follow-up).

It is worth noting that Equation 1 assumes that 
the proportional hazards assumption is not vio-
lated in that the hazard ratio is constant over time. 
Although the log-rank statistic can still be used for 
analyzing survival data when the proportional 
hazards assumption is not satisfied, it is not opti-
mal. Another method is proposed that does not 
require that this assumption to be met, and one 
report has shown that this approach is accurate in 
nonproportional hazards settings.
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Although most Phase III trials are designed with 
at least 80% power, a trial can fail to reject the 
null hypothesis if the effect size or difference 
between the two arms is too large. Some cancer 
trials exhibited an overly optimistic estimate of 
effect size. For example, in a trial of men with 
castrate-resistant prostate cancer, the log-rank sta-
tistic has 80% power, assuming a hazard ratio of 
1.5. A 50% increase in survival is considered a 
large effect size, and trials in oncology would ben-
efit from a more realistic estimate of the clinically 
meaningful effect size.

Binary Endpoints

The null hypothesis to be tested is that the pro-
portion of success (such as complete response pro-
portion) is equal in the two groups (P1 = P2) against 
the alternative hypothesis that proportions are not 
equal (P1 ≠ P2). Table 2 presents the number of 
patients required per arm with a Type I error rate of 
.05, assuming one-sided and two-sided alternatives 
with 80% or 90% power using an approximation. 
An investigator is interested in determining the num-
ber of breast cancer patients needed in a Phase III 

Table 1  Accrual period in years assuming different accrual rates and hazard ratios

τ  ∆

Accrual Rate (per Year)

60 80 120 160 180 240

11.20 16.62 (13.27) 12.68 (10.17)   8.73 (7.05)   6.75 (5.48)   6.09 (4.96) 4.75 (3.88) 

21.95 (18.05) 16.68 (13.75) 11.40 (9.45)   8.76 (7.29)   7.88 (6.57) 6.11 (5.12) 

 1.25 11.42 (9.18)   8.79 (7.10)   6.14 (5.00)   4.79 (3.92)   4.34 (3.55) 3.41 (2.80) 

14.98 (12.38) 11.46 (9.50)   7.93 (6.62)   6.15 (5.16)   5.56 (4.67) 4.35 (3.67) 

 1.30    8.55  (6.92)   6.63 (5.39)   4.68 (3.83)   3.68 (3.02)   3.34 (2.75) 2.64 (2.17) 

 11.13 (9.24)   8.57 (7.15)   6.00 (5.04)   4.70 (3.96)   4.26 (3.59) 3.35 (2.83) 

 1.35   6.78 (5.52)   5.29 (4.33)   3.77 (3.10)   2.98 (2.45)   2.71 (2.23) 2.14 (1.76) 

  8.76 (7.31)   6.80 (5.70)   4.81 (4.05)   3.78 (3.20)   3.43 (2.90) 2.71 (2.30) 

21.20 16.22 (12.88) 12.28 (9.77)   8.34 (6.66)   6.36 (5.10)   5.70 (4.57) 4.37 (3.51) 

21.55 (17.65) 16.28 (13.35) 11.01 (9.05)   8.37 (6.90)   7.49 (6.18) 5.72 (4.73) 

 1.25 11.02 (8.78)   8.38 (6.70)   5.74 (4.60)   4.40 (3.54)   3.95 (3.18) 3.04 (2.45) 

14.58 (11.97) 11.05 (9.10)   7.53 (6.22)   5.76 (4.77)   5.16 (4.28) 3.97 (3.29) 

 1.30   8.13 (6.51)   6.22 (4.99)   4.29 (3.45)   3.30 (2.66)   2.97 (2.39) 2.29 (1.84) 

10.71 (8.83)   8.16 (6.74)   5.60 (4.64)   4.30 (3.57)   3.86 (3.21) 2.98 (2.47) 

 1.35   6.36 (5.11)   4.89 (3.93)   3.38 (2.73)   2.61 (2.10)   2.35 (1.89) 1.81 (1.46) 

  8.34 (6.90)   6.38 (5.29)   4.40 (3.66)   3.39 (2.82)   3.05 (2.54) 2.35 (1.96) 

Notes: τ = Follow-up period (years), ∆ = λ1/λ2, median = 1 year in Group 1 (hazard rate  λ1 = log 2). Upper numbers are based 
on Type I error rate = .05, Type II error rate = .20 (power = 80%). Lower numbers are based on Type I error rate = .05, Type II 
error rate = .10 (power = 90%). Numbers within parentheses are based on one-sided tests, whereas numbers outside the 
parentheses are based on two-sided tests.
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Table 2   Number of patients required per arm for testing two proportions

P1

P2 − P1

   .05 .08 .10 .13 .15 .18 .20

.10 725 (579) 319 (256) 219 (176) 142 (115) 112 (91) 84 (68) 71 (58) 

957 (787) 418 (345) 286 (236) 184 (153) 146 (121) 109 (90) 92 (77) 

.15 945 (753) 401 (321) 270 (216) 171 (137) 133 (108) 98 (79) 82 (67) 

1251 (1,027) 528 (435) 354 (292) 223 (184) 174 (144) 127 (105) 106 (88) 

.20 1,133 (901) 471 (376) 313 (250) 195 (156) 151 (121) 109 (88) 91 (74)

1,503 (1,232) 622 (511) 412 (339) 255 (211) 197 (163) 142 (118) 118 (98) 

.25 1,290 (1,025) 529 (421) 348 (278) 214 (172) 165 (133) 118 (95) 98 (79) 

1,714 (1,404) 699 (574) 459 (378) 281 (232) 216 (178) 154 (128) 127 (105) 

.30 1,416 (1,124) 574 (457) 376 (300) 229 (184) 175 (141) 125 (101) 103 (83) 

1,882 (1,541) 760 (623) 496 (408) 301 (248) 230 (190) 163 (135) 134 (111) 

.35 1,510 (1,198) 607 (483) 395 (315) 239 (192) 182 (146) 129 (104) 106 (85) 

2,008 (1,644) 804 (660) 522 (429) 315 (259) 239 (197) 169 (139) 138 (114) 

.40 1,573 (1,247) 628 (500) 407 (325) 245 (196) 186 (149) 131 (105) 107 (86) 

2,092 (1,712) 832 (682) 538 (442) 322 (265) 244 (201) 171 (141) 139 (115) 

.45 1,604 (1,272) 637 (506) 411 (328) 246 (197) 186 (149) 130 (105) 106 (85) 

2,134 (1,746) 843 (692) 543 (446) 324 (266) 244 (201) 170 (140) 138 (114) 

.50 1,604 (1,272) 633 (504) 407 (325) 242 (194) 182 (146) 127 (102) 103 (83) 

2,134 (1,746) 838 (688) 538 (442) 319 (262) 239 (197) 166 (137) 134 (111) 

Notes: Upper numbers are based on Type I error rate = .05, Type II error rate = .20 (power = 80%). Lower numbers are based 
on Type I error rate = .05, Type II error rate = .10 (power = 90%). Numbers within parentheses are based on a one-sided test, 
whereas numbers outside the parentheses are based on a two-sided test.
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trial where patients will be randomly allocated with 
equal probability to control and experimental arms 
where the primary endpoint is pathologic complete 
response (pCR). It is assumed that the incidence of 
pCR on the control regimen is 35%. The investiga-
tor postulates that a 15% increase in the pCR on the 
experimental arm would be considered clinically 
meaningful. The number of patients needed is 460 
patients or 230 per arm assuming a two-sided sig-
nificance level of .05 and power = 90%.

Multiarm Trials

There are different approaches for designing tri-
als that compare a time-to-event endpoint across 
treatment groups. One of the most common 
approaches is the 2 × 2 factorial design, where two 
different treatments are tested simultaneously in 
the same study without increasing the sample size. 
The drawback to this approach is that most facto-
rial trials are limited by an interaction between the 
two treatment groups, and as a result such trials 
are usually underpowered.

Sequential Monitoring

Clinical trials are both costly and time-consum-
ing, and the main motivation for monitoring clini-
cal trials is for ethical and economical reasons. It is 
known that the Type I error rate increases with 
repeated testing of a hypothesis performed on the 
same data. For example, in a trial that tests the 
hypothesis that a new treatment prolongs survival 
compared with a control, the probability of com-
mitting a Type I error rate increases from 5% to 
11% if the data are analyzed at three time points.

Therefore, most randomized clinical trials should 
include plans for stopping the trial early, if a treat-
ment or combinations of therapies is found to be 
either harmful or useful to the study participants. 
Indeed, there are widely acceptable monitoring 
guidelines that are now considered part of standard 
statistical practice. These measures allow researchers 
to perform sequential analyses while the trial is still 
ongoing and data are maturing. The statistical tests 
are performed using boundaries so that the overall 
Type I error rate is preserved at the .05 level.

Although a Phase III trial is the definitive study 
providing evidence of efficacy for a novel drug, 
poor methodology can produce numerous biases 
that may invalidate the results of these studies. Such 

biases may arise at the design stage (such as choice 
of primary endpoint, number of patients required, 
low power, large clinical effect size, and inappropri-
ate design), conduct of the trial (such as type of 
randomization used, imbalances in prognostic fac-
tors, selection of patients, and early stopping of the 
trial), analysis stage (such as excluding some 
patients who were not treated from the analysis, 
and violation of the proportional hazards model), 
and at the stage of the reporting and interpretation 
of results (such as test statistic for the primary end-
point that was not prespecified in the protocol, 
reporting p values on secondary endpoints, and on 
a subset of patients who were randomized).

Susan Halabi

See also Effect Size; Hazard Ratio; Sample Size and 
Power; Survival Analysis
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Range-FRequenCy TheoRy

Range-frequency theory is a model of the psycho-
logical evaluation of stimuli in context developed 
by psychologist Alan Parducci. It posits that when 
a stimulus is rated alongside other stimuli, its rat-
ing will depend in part on where it ranks among 
the stimulus set. For example, a patient comparing 
doctors may provide a different rating to the same 
doctor when presented in a group of doctors per-
ceived to be superior by the patient than when 
presented in a group of doctors perceived to be 
inferior by the patient.

Formally, the rating of a stimulus is described 
by a weighted average of the utility of the stimulus 
(relative to the range of utilities present in the con-
text) and the rank of the stimulus (relative to the 
range of ranks present in the context). The theory 
is formulated mathematically as

Ri = J w
xi − xmin

xmax − xmin

 
+ ð1−wÞ rankðxiÞ− 1

N −1

  
:

In this formula, Ri is the rating response given 
to the ith stimulus in a set of N stimuli. The first 
component of the formula gives some relative 
weight (w) to the difference between the utility of 
the stimulus, xi, and the utility of the worst stimu-
lus in the set, xmin, relative to the range of utilities 
between the best and worst stimuli (xmax – xmin). 
The second component of the formula assigns the 
remaining relative weight (1 – w) to a similar com-
parison between the rank of the stimulus, rank(xi), 
and the rank of the worst stimulus, relative to the 
range of ranks between the best and worst stimuli. 
The highest ranked stimulus receives a rank of N 
and the lowest ranked receives a rank of 1. The 
function J is a linear transformation. The weight-
ing parameter, w, establishes the relative weight of 

the utility component and rank component of the 
model and is often fixed at .5 in modeling.

Range-frequency theory predicts that the same 
stimulus will receive different ratings depending 
on its relative position (rank) among the set of 
stimuli to be rated. For example, the rating of a 
health state B in a set of rank-ordered (high to 
low) health states A, B, C, D, E is predicted to be 
higher than the rating of the same health state in 
a set of rank-ordered (high to low) health states A, 
F, B, G, E, because the relative position of B is 
higher in the first set, where it is the second-best 
state, than in the second set, where it is the third-
best state.

Figure 1 illustrates this key prediction of range-
frequency theory. The curves plot the range- 
frequency theory predictions of ratings of stimuli 
against their underlying psychological utilities. In 
the solid upper curve, four stimuli are rated, with 
underlying utilities of .5, .6, .7, and .9; and in the 
lower dashed curve, four stimuli are rated, with 
underlying utilities of .5, .7, .8, and .9. Range-
frequency theory predicts that the same stimulus 
with utility .7 will receive a higher rating in the 
first context (when it is second-ranked in the 
stimulus set) than in the second context (when it is 
third-ranked in the stimulus set). These predictions 
have been supported in numerous experimental 
studies in which stimulus context is varied.

Conversely, another important use of range-
frequency theory is the recovery of “context-free” 
utilities from a set of ratings of stimuli made in a 
particular context. Because ratings are inherently 
contextual, they are difficult to compare across 
contexts. Range-frequency theory provides a “the-
ory of the context.” It can be fit to rating data in 
which the rankings of the stimuli are known and 
used to provide estimates of the underlying utilities 
(xi) that are free of the impact of context and thus 
comparable. For example, in the health state rat-
ings given above, the same underlying utility 
should be estimated for health state C despite con-
textual differences in ratings. Because the model is 
relatively parsimonious, such a modeling proce-
dure is very often straightforward.

Alan Schwartz

See also Context Effects; Judgment; Utility Assessment 
Techniques
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Rank-dependenT  
uTiliTy TheoRy

Originally called anticipated utility theory, rank-
dependent utility theory is a generalized expected 

utility model. It was first developed by John 
Quiggin in 1982 as a solution for violations  
of stochastic dominance (where one outcome is 
always ranked above another), which expected 
utility theories were not able to resolve. It involves 
making decisions under risk and uncertainty. 
Expected utility theory uses the probabilities as 
the criteria to make decisions, while rank-depen-
dent theory incorporates the role of weights, 
which is decided by the decision maker. In the 
condition that the decision maker only uses the 
probabilities for his or her weighting, the result of 
rank-dependent model and expected utility model 
would be the same. Thus, expected utility model 
is a special case of rank-dependent model, based 
on the concept of probability weighting. The the-
ory separates probabilities from utilities, based on 
the assumption that decision makers rank order 
all outcomes to make decisions. This theory is also 
able to consider the characteristics of both pessi-
mistic and optimistic decision makers.
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Figure 1  Range-frequency theory predictions



949Rank-Dependent Utility Theory 

Overview of Theory

Rank-dependent utility theory does not rely on 
the assumption of independence found in the 
expected utility theory. Rather, the theory assumes 
comonotonic independence. Independence in 
expected utility theory requires that if different 
common outcomes that have equal value are used, 
the decision maker’s preference between these two 
choices would not be changed. That is, the deci-
sion maker would choose the same kind of options 
again. However, in rank-dependent utility, inde-
pendence requirements are not useful. This is 
because each decision maker ranks the choices in 
a different way, based on his or her preferences. 
The comonotonic independence assumption indi-
cates that using different common outcomes or 
treatments should not change the rank ordering of 
the outcomes. As a result, the decision maker’s 
weighting of the choice is also considered. Rank-
dependent utility theory relies on decision makers 
deriving probability weights from the entire prob-
ability distribution, not a single probability. 
Decisions are made after considering the entire 
outcome set, not one outcome at a time. Rank-
dependent utility theory is able to operate under 
the assumption of comonotonic independence 
because it assumes that people rank the possible 
outcomes and transform the probabilities accord-
ingly. After the ranking is complete, the order of 
outcomes is used to make a decision, not the indi-
vidual probabilities.

Examples

Let’s first consider an example of expected utility 
theory. Suppose a patient has an infection in her 
liver and needs to choose between two treatments to 
protect her from further infection. Treatment A has 
a 30% chance of protecting her for 5 years and a 
70% chance of protecting her for 3 years. Treatment 
B has a 40% chance of protecting her for 4 years 
and a 60% chance of protecting her for 2 years. If 
this patient uses the expected utility approach, she 
would choose the treatment option that provides 
the maximum protection in the future for her, which 
in this example is Treatment A. Imagine that further 
research regarding these treatment options indicate 
that the actual protection levels are as follows: 
Treatment A has a 30% chance of 5 years’ protection, 

a 60% chance of 3 years’ protection, and a 10% 
chance of no protection; and Treatment B has a 
40% chance of 4 years’ protection, a 50% chance 
of 2 years’ protection, and a 10% chance of 6 years’ 
protection. Even with these modifications, Treatment 
A would still provide more overall protection to the 
patient. The independence criteria in expected util-
ity theory indicate that since the overall value of 
Treatment A is still higher than Treatment B, the 
patient would choose Treatment A. However, using 
only independence neglects the fact that Treatment 
A has a 10% chance of not curing the patient at all. 
It also neglects the fact that Treatment B has actu-
ally the highest year of protection (10% chance of 
6-year protection), which may be preferred by some 
patients.

To further clarify rank-dependent utility theory, 
consider the following example. A patient who 
suffers from asthma is offered two treatments, A 
and B. Treatment A has three outcomes associated 
with it, along with corresponding probabilities. 
The outcomes are no improvement (25% chance), 
3 to 4 attacks per month (60% chance), and 1 
attack per month (15% chance). Treatment B has 
three outcomes as well: no improvement (25% 
chance), 10 to 20 attacks per month (60% chance), 
and 0 attacks per month (15% chance). The 
patient’s preference is to become completely cured. 
Since the patient’s priority is in not having any 
attacks at all, the patient would choose Treatment 
B based on rank-dependent utility theory—even 
though Treatment B has a 60% chance of 10 to 20 
attacks per month, which is relatively high com-
pared with Treatment A, with a 60% chance of 3 
to 4 attacks per month. As long as the patient’s 
preference remains the same (not having any 
attacks at all), the treatment with the highest 
chance of completely curing the patient would be 
ranked first. With a different preference, another 
treatment may be chosen.

Consider a third example. A patient is told that 
she has a fatal disease. If she does not choose any 
of the following treatments, she would die imme-
diately. She is presented with two treatment options. 
Treatment A has the following outcomes: a 30% 
chance of living 4 years, a 55% chance of living  
6 years, and a 15% chance of living 8 years. 
Treatment B also has three outcomes: a 30% 
chance of living 2 years, a 55% chance of living  
10 years, and a 15% chance of living 15 years. 



950 Rationing

Suppose the patient wants to be alive for at least 4 
more years to finish writing her book. Based on 
rank-dependent utility theory, the patient would 
choose Treatment A. Even though Treatment B 
provides her with a longer life expectancy, she 
would choose Treatment A, as for her, living for at 
least 4 more years is the first priority.

Rationale for Ranking Outcomes

There are a number of reasons why rank-depen-
dent utility theory is thought to accurately depict 
how people make decisions. The first explana-
tion is that people operate under a number of 
perceptual biases. They put a large emphasis on 
extreme values, giving less attention to any that 
fall in the middle. This, in essence, is a way of 
ranking the outcomes rather than calculating an 
outcome’s utility.

The second rationalization for ranking out-
comes lies with the decision makers themselves. 
The individual difference between decision makers 
leads some to put higher weights on probable out-
comes, whereas others prefer to look for a higher 
payout. They are often termed as risk-seeking and 
risk-averse decision makers. Thus, decision makers 
will rank all outcomes according to these scales.

The final explanation for why people rank 
order outcomes is situational. If a utility function 
for a certain problem is asymmetric or otherwise 
difficult to determine, the decision maker eases the 
process by simply rank ordering the outcomes. 
This adaptation allows for more efficient and 
effective decision making.

Lesley Strawderman and Arash Salehi

See also Expected Utility Theory; Probability
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RaTioning

Healthcare rationing is making deliberate deci-
sions about what beneficial healthcare will be 
made available and what will be withheld, how 
much of healthcare made available will be pro-
vided, and to whom such care will be given. 
Broadly construed, rationing decisions may be 
implicit or explicit. Such decisions involve limiting 
or withholding beneficial treatment from particu-
lar patients or from patient groups in a general 
population. It is usually because the demand for 
healthcare is greater than what is available that 
rationing becomes necessary. Discussions about 
rationing may include conceptual and theoretical 
issues, including choice among competing moral 
values that justify decisions. It may also include 
deliberations regarding frameworks, criteria, stan-
dards, and procedures for setting institutional and 
societal policies to guide rationing decisions in 
general. Rationing is often related or even synony-
mous to resource allocation and priority setting 
since these terms are similarly used in health pol-
icy and medical ethics to mean controlling access 
to healthcare.

The meaning of rationing in healthcare is differ-
ent from its use during times of war when scarce 
goods are distributed to everyone in equal but  
limited portions. In contrast, healthcare rationing 
means setting limits or withholding access that 
varies between particular patients and patient 
groups. In both contexts, the aim is to prevent 
some of the undesirable societal effects of scarcity 
through deliberately controlling access to goods in 
high demand. Although some factors—not due  
to deliberate human decisions—limit or prevent 
access to effective beneficial care, these are not 
considered healthcare rationing decisions as defined 
in this entry. Rationing is a medical decision- 
making problem because limiting and withholding 
beneficial care is usually not acceptable, unless it is 
justified as necessary to make at least some other 



951Rationing

beneficial care or life-saving treatment available  
to those in need. Rationing decisions try to make 
scarce resources accessible to as many as possible. 
The aim is to avoid depriving everyone by depriv-
ing some.

Rationing and Allocation

The term allocation, as suggested by Roger Evans, 
may be used to refer to decisions about making 
certain health resources available, for example,  
the quantity of hospital beds or diagnostic equip-
ments, while the term rationing may be used to 
refer to decisions about what patients should 
receive from among previously allocated health 
resources. Decisions about the quantity of health 
resources to make available affect decisions about 
which patient will receive treatment. The collective 
decisions of physicians about which patient needs a 
specific health resource could also affect decisions 
about how many of such resources should be made 
available. Limiting the number of life-saving 
machines to be made available, as Peter Ubel and 
Susan Goold point out, is as tragic as deciding 
which needy patient should be treated. All decisions 
to withhold life-saving treatment from a patient are 
equally tragic. The term allocation may be used to 
refer to both levels of decision making as done 
when the terms microallocation and macroalloca-
tion are used. In this entry, both are considered 
rationing. Thus, microallocation refers to rationing 
decisions in the context of delivering specific care to 
patients, for example, when physicians decide 
which patient will be given access to scarce renal 
dialysis beds in a particular clinical setting. On the 
other hand, macroallocation refers to rationing 
decisions done at the level of institutions when 
managers, policy makers, or insurance companies 
make recommendations about the number of dialy-
sis machines to avail, what criteria should be used 
for prioritizing potential patients, whether dialysis 
treatment costs should be considered reimbursable, 
and how much reimbursement should be given.

Patient-Level Rationing

A patient may ration his or her own access to ben-
eficial healthcare by deciding to skip going to a 
physician and by purchasing nonprescription drugs 
to avoid spending more for consultation services. 

This is done so that the money saved can be used 
to buy other things the patient values more or per-
haps to save for the patient’s future needs that 
include medical care.

Physicians also make rationing decisions with 
respect to their patients. This is known as bed-
side rationing. Ubel and Goold define that physi-
cians ration when they (a) withhold, withdraw, 
or fail to prescribe care they consider best for 
their patients; (b) make such decisions with the 
intention of promoting the financial interests of 
all others except their patient; and (c) control 
the use of beneficial care. Consider when a phy-
sician decides to administer Treatment A rather 
than Treatment B even though the latter is 
slightly better for the patient. If Treatment B 
costs much more than Treatment A, and the 
physician thinks that the benefits of Treatment B 
are not worth the additional cost, then this is a 
case of bedside rationing. Although the above 
definition seems to highlight the undesirable 
aspect of rationing as withholding the best treat-
ment, the possibility that such decisions could be 
justified on moral grounds is not necessarily 
excluded. In the given case, some beneficial 
treatment (although not the best) was provided 
to the patient to save money in order to benefit 
society as a whole. Moral justification of ration-
ing decisions require other reasons (other than 
saving money) that explain why a physician 
must withhold the best care to a patient for the 
sake of benefiting society.

Physicians are normally obligated to provide or 
prescribe the appropriate beneficial care to all their 
patients, but they could also limit or withhold care 
from some patients if the resources available are 
not enough for all of them. Rationing the use of  
a temporary artificial heart (as bridge device) to 
patients in an organ transplant waiting list is pre-
sented by Paul Menzel to illustrate three ways of 
reconciling a physician’s obligation to his or her 
patients and making the most of scarce resources: 
(1) following predetermined guidelines in making 
rationing decisions, (2) allowing a patient to give 
prior consent to forgo the use of a bridge device, 
and (3) basing the rationing decisions on consider-
ations of fairness and justice. However, it is noted 
that it is difficult to come up with guidelines that 
will always be relevant to particular patients, to 
accurately discern what trade-offs patients would 
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be willing to take, and to find agreement about 
what constitutes justice.

Institution-Level Rationing

The public resources available to fund social ser-
vices are usually less than the demand. Deciding to 
allocate a certain amount of government money  
to fund healthcare services will affect how other 
social services are funded. How education or social 
welfare services are funded affects public health, 
which influences the demand for healthcare ser-
vices. Thus, how the government sets the right 
budget for healthcare versus other public needs 
constitutes rationing. The more direct rationing 
decision at the institutional level occurs when 
health authorities further divide the health budget 
to finance different health services. It is difficult to 
limit and withhold funding for certain health mea-
sures versus others that will affect satisfaction of 
health needs of different patient groups. For exam-
ple, giving more funds to set up new health facili-
ties could increase the number of people who can 
be served, but funding salary increases for person-
nel of existing health facilities can improve quality 
of care. Health authorities are also faced with the 
decision to allocate more funds to preventive mea-
sures, such as inclusion of new effective vaccines to 
the national program, versus scaling up curative 
services. Such rationing decisions on the level of 
government health institutions would definitely 
affect how much healthcare services different 
patient groups could access.

In countries where patients share costs with 
institutions (such as government health service, 
insurance companies, and employers), rationing 
involves decisions regarding what and how much 
healthcare services to cover. How insurance com-
panies decide the amount of insurance premium 
people should pay also constitutes rationing. Some 
insurance schemes allow individuals to select pre-
mium rates that correspond to the types and 
amount of health services they wish to have. 
However, the final decision on what services will 
actually be paid for by insurance usually depends 
on the judgment of the decision makers of insur-
ance companies, who may or may not refer to 
predetermined guidelines. The decision on what 
services and medicines to cover are usually based 
on proven effectiveness versus cost. Even though 

some treatments are proven to be effective, how 
much they cost is an important consideration for 
maintaining the viability of the insurance scheme. 
Failure to set limits on costs to meet every need  
for beneficial care could decrease the capacity of 
insurance companies to fulfill their obligations to 
their clients.

The decision of hospital managers regarding 
how many physicians with specific expertise they 
will hire, how many and what types of medical 
equipments they will acquire, and whether they 
will charge patients advance payments prior to 
admission constitute rationing. Such decisions 
affect access of different patient groups to the type 
and amount of beneficial treatment they would 
need. For example, poor patients will not be able 
to avail services of hospitals that charge fees prior 
to admission, but not doing so may burden hospi-
tals with having to shoulder the expenses of 
patients who cannot pay.

Rationing Approaches and Mechanisms

There are several approaches to making rationing 
decisions in the peer-reviewed medical literature. 
Some of the more dominant approaches include 
the following: (a) aiming to efficiently use available 
resources, (b) aiming to distribute resources fairly, 
and (c) aiming to achieve equity in distribution of 
resources.

Efficiency requires determining which among 
the healthcare options brings the most benefit per 
health resource unit used. To do this would be to 
engage in cost-effectiveness analysis (CEA). CEA 
determines whether Treatment A could lengthen 
lives or make patients healthier compared with 
Treatment B at the same cost. To compare health 
benefits with other benefits that available resources 
could produce is to engage in cost-benefit analysis 
(CBA). CBA determines whether the health bene-
fits produced by a treatment are of greater value 
than other benefits that the same amount of money 
could produce if spent elsewhere. Choosing only to 
provide care that brings maximum benefit implies 
withholding other healthcare options or limiting 
access to achieve the best overall benefit with the 
resources available. The Oregon Health Plan pri-
ority list is a well-known attempt to achieve effi-
cient rationing. In trying to expand coverage to 
more poor Oregonians, the plan ranked various 
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services in the Medicaid program from the most 
cost-effective to the least cost-effective.

An approach that emphasizes the importance of 
fairness in the process of making rationing deci-
sions has been developed by Norman Daniels and 
James Sabin. Decision-making procedures are fair 
if the reasons used in the deliberation process are 
considered relevant and justifiable, especially by 
those affected. It is thus a matter of fairness to 
involve patients, or their representatives, in mak-
ing decisions about limiting treatments that benefit 
them. It is also important to present relevant evi-
dence about the comparative benefits of the 
healthcare options in consideration.

Limiting and withholding healthcare must be 
equitable. This means that equal care should be 
given to those with equal need. Patients in the 
same condition should get the same limits to care 
or the same denial for the sake of those in greater 
need. There may be other ways to define equity in 
rationing.

Peer-reviewed medical literature enumerates the 
number of ways in which rationing is implemented: 
(1) by deterring or obstructing demand for health-
care, (2) by delaying delivery of care, (3) by 
deflecting demand, (4) by diluting healthcare 
demand, and (5) by denying care. For example, 
charging fees for services could lessen demand. 
Waiting lists, mandatory referral from a general 
practitioner to gain access to a specialist, and com-
plicated paperwork make access inconvenient. 
Informing patients about outcome may change 
their mind about demanding treatment. Prescribing 
cheaper generic drugs is an example of rationing 
by dilution. Denial of care may be done as a result 
of a treatment being given lesser priority.

Allen Andrew Alvarez
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ReCeiveR opeRaTing 
ChaRaCTeRisTiC (RoC) CuRve

In practice, the outcomes of diagnostic tests  
are mostly interpreted and operationalized as 
binary—that is, as positive or negative—for the 
presence of a target condition. However, the actual 
outcome of a test is rarely a binary one. For exam-
ple, the results of laboratory tests are typically 
measured on continuous scales, and the same 
applies to measures summarizing scans with mod-
ern imaging modalities, such as the standardized 
uptake value in positron emission tomography. 
When test results are measured on an explicitly 
defined and observed scale as in these examples, a 
binary outcome is defined on the basis of an 
explicit threshold for test positivity. When tests 
involve interpretation by a human observer, a 
similar model with a threshold for test positivity 
has been used widely. However, in this case the 
test result and the threshold are conceptualized  
as occurring on a latent scale, measuring the  
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interpreter’s degree of suspicion about the pres-
ence of the target condition.

Because binary test outcomes are obtained 
through thresholds on an observed or a latent 
scale, these thresholds affect all the usual measures 
of diagnostic and predictive performance, includ-
ing sensitivity, specificity, positive predictive value, 
negative predictive value, and likelihood ratios. 
The dependence of measures of test performance 
on the threshold for test positivity is a fundamental 
tenet of diagnostic test evaluation. In particular, 
this dependence induces the well-known trade-off 
between test sensitivity and specificity as the 
threshold for positivity is moved across its possible 
values.

Figure 1 shows hypothetical distributions of test 
results for individuals with and without the target 
condition and a threshold for test positivity. If the 
likelihood of having the target condition increases 
with the test score, the sensitivity of the test is mea-
sured by the area under the “condition-present” 
curve, to the right of the threshold. Similarly, 
the specificity is measured by the area under the 
“condition-absent” curve, to the left of the thresh-
old. In the formulation of Figure 1, the sensitivity 
of the test is a decreasing function of the threshold 
value, and the specificity of the test is an increasing 
function of the threshold value.

The receiver operating characteristic (ROC) curve 
of a test is the graph of all possible pairs of (1 − 
specificity, sensitivity) obtained by varying the posi-
tivity threshold across its entire range of possible 
values. As can be seen from Figure 1, when the 
threshold moves to the left end of its range, sensitivity 

becomes 1 and specificity becomes 0. The converse 
occurs when the threshold moves to the right end of 
its range. Figure 2 shows a typical ROC curve.

Interpretation of ROC Curve

A test is said to have a good performance if high 
sensitivity is achieved while maintaining high 
specificity. In the limiting case, if the separation  
of the two distributions in Figure 1 became nearly 
complete, a perfect test would result with both 
sensitivity and specificity tending to 1. In that case, 
the ROC curve would be degenerate and would 
pass through the ideal point (0, 1). Conversely, an 
uninformative test would result if the distributions 
in Figure 1 coincided. In that case, the sensitivity 
and specificity would add to 1 for all thresholds 
and the ROC curve would be the main diagonal of 
the square.

Summaries of the ROC Curve

The ROC curve incorporates information on the 
diagnostic performance of a test across the range 
of possible thresholds. To facilitate the evaluation 
and comparison of tests, several summaries of the 
ROC curve have been proposed in the literature. 
Most commonly used among them is the area 
under the curve (AUC), which can be interpreted 
as an average of test sensitivity taken over all 
specificity values. If only a subset of specificity or 
sensitivity values is of interest in a given setting, 
partial AUCs can be considered. For example, high 
values of specificity are typically of interest in 

Target condition
absent

Target condition
present

Test positivity
threshold

Figure 1  Fundamental conceptualization of test outcomes
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screening, and the corresponding partial AUC may 
be used as long as the range of values can be deter-
mined as part of the design of the ROC study. In 
signal detection theory, the AUC is the probability 
that, if a pair of subjects with and without the tar-
get condition is selected at random, the subject 
with the target condition will be ranked correctly 
by the test. Other summaries of the ROC curve 
include values of sensitivity corresponding to 
selected values of specificity (and vice versa) and 
optimal operating points, selected to minimize cost 
function criteria. If the curve is smooth and the 
average overall cost is a linear combination of the 
cost of each of the four categories of diagnostic 
decisions—true positive (TP), false positive (FP), 
true negative (TN), false negative (FN)—the opti-
mal point is the point where the slope of the tan-
gent to the curve is equal to (1 − p)/p × R, where p 
is the prevalence and R is the ratio of cost differ-
ences = (CTN − CFP)/(CFN − CTP).

Statistical Inference for ROC Curves

ROC curves can be estimated from studies in 
which tests with ordinal categorical or continuous 

results are evaluated against a binary reference 
standard indicating the presence or absence of the 
target condition. For example, ROC curves for 
diagnostic imaging modalities, which rely on 
human interpretation, are estimated on the basis of 
data on the degree of suspicion about the presence 
of the target condition elicited from the interpreter 
(reader). Such data are often collected on an ordi-
nal categorical scale with five or seven categories, 
although continuous or quasi-continuous scales 
(e.g., percent probability of malignancy) have also 
been proposed. For laboratory tests, ROC curves 
are estimated on the basis of the typically continu-
ous data provided by the test.

Basic Formulations and Regression Analysis

For ordinal categorical test results, ROC curves 
are commonly estimated using parametric models, 
which assume that the observed ordinal categorical 
responses are discretized values of an underlying 
latent variable. A parametric distribution, such as 
Gaussian or logistic, is assumed on the latent vari-
able for cases with and without the target condi-
tion and estimation proceeds via maximum 
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Figure 2  Typical receiver operating characteristic (ROC) curve
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likelihood. The “binormal” ROC model effectively 
assumes Gaussian distributions on the latent vari-
able (or a monotone transformation of it) and 
leads to ROC curves governed by two parameters: 
(1) a = the difference in the means of the two dis-
tributions divided by the standard deviation of the 
“condition present” group and (2) b = the ratio of 
the standard deviations of the two distributions. 
The estimated curves are then used to derive sum-
mary measures and to perform comparisons. In 
particular, the AUC of a binormal curve is equal to

A flexible and efficient approach to parametric 
ROC analysis relies on ordinal regression models 
in which the binary truth status is the covariate 
and the degree of suspicion is the response vari-
able. Furthermore, covariates can also be incorpo-
rated in the regression model. The general form of 
the ordinal regression models specifies that the 
cumulative probability of observing a response  
up to suspicion level j (j = 0, 1, 2, 3, 4, when a  
five-category scale is used) has the following 
expression:

P Y ≤ j Xjð Þ½ = h½ yj − a0X
 

exp − b0Xð Þ;

where θj is a cutoff point on an underlying 
latent scale, X is a vector of covariates, h is a 
nondecreasing link function, α is a vector of 
location parameters, and β is a vector of scale 
parameters.

One of the covariates in the model represents 
the binary reference standard. The link function, 
h, can be chosen to correspond to the distribu-
tional assumptions on the underlying scales of the 
ROC model. Thus, a probit link corresponds to 
the binormal ROC curve, and a logit link corre-
sponds to the logistic ROC curve. The parameters 
(a, b) of the ROC curve are algebraic functions of 
the parameters of the ordinal regression model. 
Estimates and confidence intervals for the ROC 
quantities can be obtained on the basis of the cor-
responding quantities from the ordinal regression 
model by application of the delta method or boot-
strapping techniques. Using the ordinal regression 
approach, we can examine models with covari-
ates indicating characteristics of patients and 
readers, as well as interaction terms. For example, 
to account for possible differences in accuracy 

among readers, we can construct sets of indicator 
variables for readers and include them in the loca-
tion and scale of the ordinal regression model. 
Similarly, appropriately constructed covariates 
can be included to examine the effects of patient 
clinical characteristics. Models are compared on 
the basis of deviance statistics and model fit can 
be assessed using analysis of appropriately con-
structed residuals.

For ordinal categorical data, the AUC can also 
be estimated nonparametrically, using the Wilcoxon 
statistic. Comparisons of areas can then be made 
using nonparametric methods.

An alternative approach to ROC analysis is 
based on the notion that an ROC curve can be 
understood as a graph of sensitivity as a function 
of specificity (or conversely). If YD and YD

– repre-
sent the test results in the “condition-present” and 
“condition-absent” groups, respectively, and YD  
and FD

–
 represent the corresponding survivor func-

tions (e.g., FD(x) = P(YD > x)), then the sensitivity 
at threshold c is equal to FD(c), and the specificity is 
equal to 1 – FD

–(c). The ROC curve of the test is the 
graph ROC(t) = FD(F

–1

D
– (t)), as t ranges in the inter-

val [0, 1]. It can be shown that ROC(t) is just the 
conditional probability that YD is greater than  
YD

–, when YD
– is the (1 − t)th quantile of the “condi-

tion-absent” distribution. Using this formulation 
of the ROC curve, inference can be based on  
the indicator variables I{YD ≥ YD

–}  
using binary  

regression analysis. Covariates can also be  
considered, for example, by assuming a para-
metric form for the ROC curve such as 

ROCðtÞ= g
XK

k= 1

gkhkðtÞ+Xb

( )
, for a link function 

g, basis function h1, . . ., hK, unknown parameter 
vector γ, covariate vector X, and parameter vector 
β. In particular, if the link function g is equal to Φ, 
the cumulative normal distribution function, and 
the basis functions are chosen as h1(t) = 1, h2(t) = 
Φ−1(t), and Xβ = 0, the ROC curve takes the binor-
mal form.

ROC Analysis With Correlated Data

Correlated ROC data arise in many studies of 
diagnostic accuracy because participants are typi-
cally examined with more than one test and, in the 
case of imaging, scans are typically interpreted  
by multiple readers. Clustered test results occur in 

a= 1+ b2
p i

:
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many other settings. For example, clustering occurs 
when separate test results are obtained in multiple 
parts of a study participant’s body, such as blood 
vessels or liver segments, or when studies are con-
ducted in multiple institutions. Methods for the 
analysis of correlated and clustered ROC results 
account for the correlation in the data and may 
also address variations among clusters. Several 
approaches have been developed for this type of 
analysis, including generalized estimating equa-
tions for ordinal regression and semiparametric 
ROC models, hierarchical ordinal regression mod-
els, mixed models, jackknife and bootstrap meth-
ods, and fully nonparametric methods. Several of 
these methods have also been extended to handle 
missing data, particularly in the settings giving rise 
to verification bias.

ROC Analysis in the Evaluation  
of Predictive Accuracy

Methods from ROC analysis are also used in 
the evaluation of the predictive ability of tests and 
predictive models. Although the use of ROC meth-
ods in this area is a matter of considerable current 
attention and debate, important advances have 
already been made. For example, the c statistic, 
commonly used to assess the predictive ability of a 
logistic regression model, is a nonparametric esti-
mate of the area under the ROC curve. This curve 
would be obtained by treating the model-based 
estimated probability of a response as the test 
result and the actual binary response as the refer-
ence standard.

Time-dependent ROC analysis has extended  
the traditional ROC model to settings in which  
the reference standard is not contemporaneous 
to the test result but will be observed at some 
future point in time. Thus, the new methodology 
permits an assessment of how the predictive 
ability of a marker may vary over time. For 
example, a biomarker assessed before the begin-
ning of therapy may be used to predict patient 
survival. The predictive ability of the marker 
can be assessed by estimating an ROC curve for 
each future time point t. For the curve corre-
sponding to time t, the test result will be the 
baseline value of the biomarker, and the binary 
reference standard will be an indicator of 
whether death occurred by t. The statistical 

analysis of time-dependent ROC curves accounts 
for patient dropout and censoring.

Software for ROC Analysis

Basic ROC analysis, including curve estimation 
and curve comparison, can be performed using 
utilities available in the commercially available 
packages Stata and SAS. Parametric ROC analysis 
for ordinal categorical and continuous data can 
also be performed via the widely used and freely 
available ROCKIT suite of programs. Hierarchical-
model ROC analysis can be performed using 
BUGS programs, and mixed-model analysis can be 
performed in SAS or Stata. A variety of specialized 
programs are also available, including suites of 
subroutines in R and S-plus for performing ROC 
analysis under the alternative formulation des-
cribed above.

Design of ROC Studies

Commonly used methods for determining sample 
size required for inference about a single ROC 
curve and its summaries make parametric assump-
tions about the test result, observed or latent, to 
develop approximations of the distribution of 
the ROC summary measure of interest. The 
approximations are then used to derive the sam-
ple size necessary to achieve the desired expected 
length of the confidence interval or the desire 
power for a hypothesis test about the true value 
of the ROC summary. A similar approach has 
been taken in the construction of methods for 
determining the required sample size for infer-
ence about two curves. An important consider-
ation in this setting is whether the test results for 
the two curves are correlated.

The computation of sample sizes of cases and 
readers in multireader studies is generally consid-
erably more complex. A commonly used method is 
based on a mixed model in which the response 
variable is an estimate of a summary of the ROC 
curve such as the AUC. The approach requires 
specifications of average values for the various 
pairs of correlations that are present in the data. 
Bayesian and simulation-based methods are also 
available in the literature.

Sample size calculations for ROC analysis  
can be carried out in the commercially available 
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software PASS, the freely available software 
ROCKIT, and a variety of specialized software 
available from individual researchers.

Constantine Gatsonis

See also Diagnostic Tests
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ReCuRRenT evenTs

In many biomedical studies, subjects may experi-
ence the outcome of interest more than once over 
a period of observation; outcomes of this sort have 
been termed recurrent events. For example, patients 
with cerebrovascular disease may experience 
repeated transient ischemic attacks, and HIV 
patients may experience recurrent opportunistic 
infections. Other examples of recurrent events 
include infections, myocardial infarctions, tumor 
metastases, and disease relapses/remissions. The 
structure of recurrent events is that of naturally 
ordered failure time data, and the different events 
“within” an individual are correlated. These types 
of processes arise frequently in medical studies, 
where information is available on many individu-
als, each of whom may experience transient clini-
cal events repeatedly over a period of time. For 
instance, asthma is occurring more and more fre-
quently in very young children. Some new preven-
tion trials have been set up with such children 
randomized to placebo or drug, and the asthma 
events are recorded. Typically, a patient has more 
than one asthma event. The different events are 
thus clustered within a patient and are ordered in 
time. This ordering can be taken into account in 
the model. Such data can be presented using dif-
ferent timescales.

Time-to-Event Data

More generally, a problem frequently faced by 
applied statisticians is the analysis of time-to-event 
data. Examples of such data arise in diverse fields 
such as medicine, biology, public health, epidemi-
ology, engineering, economics, and demography. 
Here interest is, for example, on analyzing data on 
the time to death from a certain cause, duration of 
response to treatment, time to recurrence of a dis-
ease, time to development of a disease, or simply 
time to death. Recurrent event data correspond to 
successive observations of time-to-event data.

Recurrent Events Data

Frequent objectives in analyzing recurrent event 
data include (a) understanding and describing 
individual event processes, (b) identifying and 
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characterizing variation across a population of 
processes, (c) comparing groups of processes, and 
(d) determining the relationship of fixed covari-
ates, treatments, and time-varying factors to event 
occurrence.

Two fundamental ways of describing and mod-
eling event occurrences are (1) through event 
counts and (2) through gaps between successive 
events or through calendar times. Models based on 
counts are often useful when individuals frequently 
experience the events of interest and their occur-
rence does not alter the process itself, as, for 
instance, the asthmatic attacks. This is different 
from processes where the events may substantially 
alter the condition of the individual, thus affecting 
the event process in the future, such as the develop-
ment of new sites of metastatic disease in cancer 
trials. The framework for the analysis of event 
counts is the Poisson process. To analyze recurrent 
event data, the focus can be placed on time-between-
events (i.e., gap times) or time-to-events models (i.e., 
calendar times).

In the gap time representation, the time at risk 
starts at 0 and the time at risk for a particular 
event is the time from the end of the previous 
event (e.g., asthma attack in respirology trials) or 
since the entry of the subject in the study from 
the first event to the start of the new event (start 
of the next asthma attack). The waiting (gap) 
time between successive events is statistically 

independent—that is, an individual is “renewed” 
after each event occurrence. In the calendar time 
representation, the start of the at-risk period is 
not reset to 0 but to the actual time since entry to 
the study, but the length of the at-risk period is 
the same. The gap timescale is more appropriate 
when studying the recurrent event rate as a func-
tion of time since the last event, whereas the cal-
endar timescale keeps track of actual time. This is 
illustrated in Figure 1.

In describing recurrent event data, a complex 
data structure is sometimes needed to keep track 
of the sequence of events within a patient. A par-
ticular patient has different periods at risk during 
the total observation period, which are separated 
either by an asthmatic event that lasts one or 
more days or by a period in which the patient was 
not under observation. The start and end of each 
such risk period is required, together with the 
status indicator, to denote whether or not the end 
of the risk period corresponds to an asthma attack 
(see Figure 1).

Frequently, it is difficult to observe the precise 
time of events, and all that is known is how many 
events occurred between successive examination 
times. If, for instance, examination times (or the 
visits) vary between patients, then the times 
between assessments must be taken into account; 
this is referred to as interval-censored data. Such 
data often arise in medical contexts such as studies 

Gap times 

Event history for a patient

Calendar times 

Figure 1  Event history for a patient with recurrent events together with the calendar times and the gap times

Note: · represents an event, ¡ a censoring time, and         the not at risk periods.
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of metastatic cancer, where new metastases are 
detectable on magnetic resonance imaging.

Survival Analysis

Analysis of Time to Event

The specific feature that makes survival anal-
ysis different from classical statistical analysis is 
data censoring. Typically, the survival time is 
unknown for some of the subjects, the only 
information available being that the subject has 
survived up to a certain time. Thereafter, the 
subject is no longer followed up. This type of 
censoring is called right censoring. The analysis 
of survival experiments is complicated by issues 
of censoring, where an individual’s life length is 
known to occur only in a certain period of time, 
and by truncation, where individuals enter the 
study only if they survive a sufficient length of 
time or individuals are included in the study 
only if the event has occurred by a given date. 
The classical model used to analyze survival 
times is the Cox proportional hazards regres-
sion model.

Analysis of Recurrent Events

Cox proportional hazards models are used for 
analyzing survival data; however, these methods 
are based on the assumption that the survival 
times of distinct individuals are independent of 
each other. This assumption may be suspect in 
many cohorts; for instance, if we study the times 
to occurrence of different nonlethal diseases 
within the same individual, it is quite probable 
that there is some association within the subject 
of survival times in the sample. A model that is 
becoming increasingly popular for modeling 
association between recurrent survival times is 
the use of a frailty model. A frailty is an unobserv-
able random effect shared by recurrent events 
within each subject. In this model, subjects with 
a large value of the frailty will experience the 
event at earlier times than subjects with small 
values of the random effect. The most common 
model for a frailty is the so-called shared-frailty 
model extension of the proportional hazards 
regression model. In recent years, a number of 
papers appeared extending the survival models 

to models that are suitable to handle more com-
plex survival data. In this context, a lot of atten-
tion has been paid to frailty models, providing a 
powerful tool to analyze clustered or recurrent 
survival data. In the frailty models, the hazard 
function partly depends on an unobservable ran-
dom variable thought to act multiplicatively on 
the hazard so that a large value of the variable 
increases the hazard. For the jth (j = 1, . . . , ni) 
observation of the ith individual (i = 1, . . . , G), 
let Tij denote the survival times under study, and 
let Cij be the corresponding right-censoring 
times, and the observations are Yij = min(Tij, Cij). 
Our frailty model specifies that the hazard func-
tion conditional on the frailty is λij(tZi) = Ziλ0(t)
exp(β′Xij), where λ0(t) is the baseline hazard 
function, Xij = (X1ij, . . .  ,Xpij) denotes the covari-
ate vector for the jth observation of patient i, 
and β′ is the corresponding vector of regression 
parameters. Conditionally, on the frailty Zi, the 
failure times Ti1, . . . ,  Tini

 are assumed to be inde-
pendent. It is often assumed that the Zis are 
independently and identically distributed from a 
gamma distribution with mean 1 and unknown 
variance θ. Large values of θ signify a closer 
positive relationship between the observations of 
the same subject and greater heterogeneity among 
individuals. For instance, one may be interested 
in data from carcinogenicity experiment on the 
times (Tij) to development of mammary tumors 
for female rats. Rats are exposed to a carcinogen 
and further conditioned for several days prior to 
randomization to receive either a treatment or 
control (Xij). A follow-up period of several days 
began after randomization during which they 
are examined every few days for the develop-
ment of new tumors. The baseline hazard func-
tion λ0(t) corresponds to the risk of developing 
a new tumor at Time t for a rat having a null 
value of its covariate (i.e., for the control group, 
Xij = 0). In this case, the random effect, Zi, spe-
cific to each rat corresponds to a means to take 
into account the dependence between different 
times of observation for each rat. This random 
effect, Zi, represents the unobservable factors 
that create heterogeneity in the times across rats. 
In this case, the times to tumors within rats 
are more similar than the times to tumors from 
different rats.
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The main interest could be, for instance, to 
assess the effect of a new treatment (which is mea-
sured by the estimation of parameter β) and to 
know if this treatment has a significant effect on 
the development of a new tumor. There are several 
statistical approaches available (called inferences) 
to estimate these quantities and obtain conclu-
sions. More specifically, in a frequentist approach, 
estimates of the parameters of interest are obtained 
by maximizing the marginal log likelihood. The 
EM algorithm approach is used for the inference  
in the semiparametric gamma frailty models. An 
alternative approach to fit semiparametric gamma 
frailty models is based on penalized partial likeli-
hood maximization. It is shown, however, that this 
technique leads to the same estimates as the EM 
algorithm in the case of the semiparametric gamma 
frailty model. The penalized partial likelihood 
approach, however, can also be extended to fit a 
semiparametric model with normal distributed 
random effects. These approaches have some gen-
eral drawbacks. In particular, the convergence can 
be slow and a direct estimate of the variance of the 
frailty term is not provided. Furthermore, these 
methods cannot be used to estimate the hazard 
function, which has often a meaningful interpreta-
tion in epidemiology. An alternative method is the 
penalized full likelihood based on the nonparamet-
ric estimation of the baseline hazard as opposed  
to the penalized partial likelihood. Bayesian tech-
niques based on Gibbs sampling can also be used 
to fit gamma frailty models with nonparametric 
baseline hazard (i.e., semiparametric frailty mod-
els). In the classical Bayesian approach, the frailties 
are considered as parameters.

Ordering is present in recurrent event data sets. 
If there exists an ordering in time, we can still use 
techniques that do not take the ordering into 
account, although more specific models might be 
more relevant. Dependence between recurrent events 
is mostly modeled using time-varying covariates.

Counting Process Formulation

Modeling of recurrent events can be approached 
in a number of ways. For purposes of both model-
ing and statistical analysis, the concept of counting 
processes is especially useful. For a single recurrent 
event process starting for simplicity at t = 0, let 0 

≤ T1 < T2 < . . . < Tk denote the event times, where 
Tk is the time of the kth event. The associated 
counting process {N(t), 0 ≤ t} records the cumula-
tive number of events generated by the process; 
specially, N(t) = Σ∞

k=11(Tk ≤ t) is the number of 
events occurring over the time interval [0, t]. More 
generally, N(s, t) = N(t) − N(s) represents the num-
ber of events occurring over the interval (s, t]. In 
this notation, square or round brackets are used to 
indicate whether the endpoint of an interval is in 
or not in the interval, respectively. Counting pro-
cesses, as defined here, are right continuous—that 
is, N(t) = N(t+), with t+ a time infinitesimally 
larger than t. Figure 2 illustrates a realization of an 
event process in terms of its counting process N(t), 
with jumps of height 1 and whose value at time t 
are known infinitesimally after t.

Extensions

Recurrent Events With Termination

The time frame for an individual’s repeated 
event process may depend on other “terminating” 
events, such as death. Often the recurrence of seri-
ous events, such as tumors and opportunistic infec-
tions, is associated with an elevated risk of death. 
In this context, the usual assumption of noninfor-
mative censoring of the recurrent event process by 
death, required by most statistical analyses, can be 
violated. That means, for instance, that death (the 
censoring event) precludes any further occurrence 
of the recurrent event. Examples are ubiquitous 
and include many settings involving patients with 
a serious disease that is associated with both recur-
rent complications and high mortality. In neuro-
vascular trials, for example, one may be interested 
in reducing the occurrence of transient ischemic 
attacks and mild strokes, but death from major 
strokes or any other cause may also occur. In 
oncology, one may be interested in characterizing 
the use of health services following diagnosis of 
cancer, but use of such services terminates in death. 
This dependence should be accounted for in the 
joint modeling of recurrent events and deaths. For 
instance, consider the study of patients with folli-
cular lymphoma (FL), undergoing episodic relapses 
of FL. The course of this disease is usually charac-
terized by a response to initial treatment, followed 
by relapses, sometimes associated with high-grade 
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non-Hodgkin’s lymphomas. After the initial treat-
ment, each patient can be monitored regularly for 
routine visits, and the presence of FL relapses is 
notified at each visit. Estimation of the risk of 
recurrence allows for better planning of follow-up 
schedules after diagnosis or first treatment and 
permits clinicians to determine therapeutic 
approaches based on the patient’s risk of relapse. 
Furthermore, FL relapses may increase the risk of 
death. As a result, there is an association between 
the FL relapses process and the survival process, 
which precludes the use of standard analyses of 
recurrent events. Specifically, those subjects experi-
encing FL relapses at the highest rate are typically 
observed for shorter periods of observation due to 
mortality. We can thus consider the FL relapses 
and the terminal event process jointly, in a joint 
frailty model setting.

Time-Varying Frailties for Recurrent Events

In the models discussed previously, it is 
assumed that frailty is constant over time for a 
particular subject, but in some situations it might 
be desirable to allow time-varying random effects. 
In hazard terms, for instance, the risk of infec-
tion may increase once a first failure event 
occurs. We might, therefore, prefer to consider 
models where the de pendence between survival 
times for a subject is taken into account using 
time-dependent covariates. Time-varying frailties 

have been proposed for recurrent events using 
dynamic models.

Software for Recurrent Events

A number of packages or functions for the analysis 
of survival data also have the capability of dealing 
with recurrent events, among them the functions 
SURVREG and COXPH in S-plus (Insightful 
Corp.) and the corresponding R versions (R Project 
for Statistical Computations). FRAILTYPACK 
under R can also be used to estimate the parame-
ters in gamma frailty models with possibly right-
censored, left-truncated, and stratified survival 
data; the procedures LIFEREG and PHREG in 
SAS (SAS Institute). Other major statistical pack-
ages such as Stata (Stata Corp.) also provide some 
procedures that will deal with recurrent events.

Virginie Rondeau

See also Cox Proportional Hazards Regression; Survival 
Analysis
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ReCuRsive paRTiTioning

Recursive partitioning (RP), or Classification and 
Regression Tree (CART) analysis, represents an 
exploratory statistical method for the multivariable 
data-derived and computer-mediated analysis of 
uncovering a structure in a data set. It produces a 
graphical output in the form of a decision tree, 
which facilitates data interpretation. This graphical 
output may be used in medical decision making to 
stratify patients into risk categories. Unlike other 
individual modeling techniques such as nomo-
grams or artificial neural networks, CART predicts 
a risk group or stratum on an individual basis.

Tree-structured methodologies were first put 
forward by Morgan and Sonquist in 1963 and 
Morgan and Messenger in 1973. The CART pro-
gram for classification and regression trees imple-
ments an expanded and strengthened tree-structured 
approach due to Breiman and colleagues in 1984. 
Basic tree-structured classification is discussed first. 
Special issues in estimating the performance of tree 
classifiers and the implementation of data resam-
pling procedures (such as test-set, cross-validation) 
are reviewed. CART detects an algorithm in the 
available data set. It implements a recursive parti-
tioning procedure based on an iterative search for 
the best binary splits of data. Consequently, classi-
fiers consist of binary trees whose leaves determine 
class labeling. The goal is to establish a statistically 
reliable separation of classes. The first split defines 
two subgroups that maximize overall class separa-
tion. Subsequently, each subgroup serves as the 
basis for further partitioning, independently of the 
others, and so on. At each step, class separation is 
maximized. The sequence of partitions is summa-
rized by a binary tree (see Figure 1).

The root node of the tree corresponds to the 
entire data set. Partitions of the data set are associ-
ated with descendants of the root node. The leaves 
of the tree correspond to subgroups that are not 
further partitioned. Their related class label is that 
of the majority class in that specific node. The basis 
for each partition is represented by a split of a node 
into a left and a right branch. Splits consist of 
evaluating the algorithmic condition, for each case 
in that particular node. If the condition is true, the 
case “goes” to the left, or else it “goes” to the right 
branch. The particular algorithmic condition cho-
sen maximally separates classes in each node. Each 
terminal node contains members of one class only. 
To classify a new case, “drop” it through the tree. 
Starting from the root node, the case follows a 
“path” determined by the splitting rules and ends  
at a terminal node. The label of that node is assigned 
to that case. CART implements such a tree- 
structured classification procedure by quantifying 
maximal class separation and selection of splits.

Tree Construction

Maximal class separation requires formation of 
descendant nodes that are more “pure” in class 
representation than their immediate ancestors. 



964 Recursive Partitioning

Node purity is defined on the basis of a node 
impurity function, from which several definitions 
follow. If a node has an equal number of cases 
from each class, the node impurity function prob-
ability is maximal, and thus, the node is maximally 
impure. If the node contains cases of one class 
only, the node is maximally pure. When a node is 
split, a proportion of cases is sent to the right and 
to the left. The resulting change in impurity is the 
difference between the initial node impurity prob-
ability and a weighted sum of the impurities of  
the left and right branch. Terminal nodes have the 
greatest purity. Therefore, summing node impurity 
over the set of terminal nodes, weighing by the 
proportion of total cases in each, gives the overall 
tree impurity. In other words, maximal class sepa-
ration at a node implies the maximization of node 
purity probability and minimization of node impu-
rity probability. Maximal class separation is equiv-
alent to reducing misclassification of cases. The 
Gini Diversity Index impurity function can be used 
to estimate the probability of misclassification and 
the conditional probabilities for a CART model 
and is readily calculated by a counting algorithm. 
Furthermore, the Gini Index has an advantage in 
that it favors the production of pure over impure 

descendant nodes. When all possible candidate 
splits have been generated for one variable, the 
procedure is repeated for another variable, and so 
forth. From this maximum set of possible single-
variable splits, the split with the largest purity is 
applied to generate a new partition. CART repeats 
the above process recursively for each descendant 
node. The extension of this procedure to multiple 
dimensions is straightforward.

In summary, tree-structured classification rests 
on the computer implementation of a recursive 
partitioning of multivariate data spaces. Coupled 
with the quantification of node purity, the iterative 
search for best splits generates a tree whose overall 
purity is maximized.

Accuracy, Validation, and Tree Selection

Accuracy indicates the overall ability of the model 
to predict the outcome of interest. Current statis-
tical methods offer the possibility of assessing a 
model’s predictive accuracy. Usually, it is derived 
from the receiver operating characteristic (ROC) 
area under the curve (AUC). However, as opposed 
to the ROC, which is discriminatory, predictive 
accuracy combines both: discrimination and  

All prostate lobes

≤ 1 biopsy with Gleason 4/5 PCa

> 1 biopsy with Gleason 4/5 PCa

PSA < 10 ng/ml PSA ≥ 10 ng/ml

Predicted OC-PCa
probability: 86%

Predicted OC-PCa
probability: 45%

Predicted OC-PCa
probability: 72%

Predicted OC-PCa
probability: 22%

≤ 1 positive biopsy > 1 positive biopsy

Figure 1   Example of a CART model to predict organ-confined prostate cancer based on detailed side-specific 
biopsy and prostate-specific antigen (PSA) information

Notes: PCa, prostate cancer; PSA, prostate-specific antigen (ng/ml); OC, organ confined.
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calibration. In models that rely on time-to-event 
analyses and are subject to data censoring, the 
AUC method can be replaced with Harrell’s con-
cordance index. For both methods, predictive 
accuracy ranges from 50% to 100%, where 50% 
is equivalent to a flip of a coin and 100% repre-
sents perfect prediction. No model is perfect; the 
most commonly reported predictive accuracy val-
ues range from 70% to 85%.

Accuracy represents one of the most important 
criteria for a statistical tool that may be used in 
medical decision making. Predictive accuracy—
that is, discrimination and calibration—should be 
ideally confirmed in an external cohort, which rep-
resents the gold standard method for quantifying a 
model’s accuracy. In the absence of an external 
cohort, statistical methods such as data resampling 
techniques (e.g., bootstrapping, split sample, cross-
validation, or leave-one-out) may be used to 
improve the estimation of accuracy. These methods 
rely on the same sample that was used for the 
model development and are termed internal valida-
tion. The use of the same sample to develop and 
validate a model may potentially be associated with 
an inflated accuracy. Therefore, external validation 
is preferred except for excessively rare pathologies 
where sample sizes are critically small.

Split sample and cross-validation represent robust 
internal validation methods. In brief, the data set is 
divided into learning and test sample. Trees are con-
structed using the learning sample, and the error 
rates and accuracy of classification of the test sam-
ple data are assigned to that tree. These kinds of 
measures form the basis for unbiased tree selection 
rules. Potentially, split sample estimates can be unbi-
ased, and cross-validation accuracy estimates may 
tend to overestimate. Together, these accuracy mea-
sures are used to define an expected correct percent-
age classification score for a set of data.

Taken together, CART offers the possibility to 
validate its accuracy either internally by resam-
pling or by external validation. However, external 
validation represents the gold standard.

Examples

In the field of prostate cancer outcome prediction, 
the CART methodology has been used in several 
scenarios covering early detection, staging, and prog-
nosis. For example, a well-established preoperative 

CART model for prediction of extracapsular exten-
sion at radical prostatectomy uses detailed side-
specific preoperative biopsy and serological 
prostate-specific antigen (PSA) information to label 
four different risk groups (Figure 1). On the dorso-
lateral side of the prostate travel autonomic nerve 
bundles that convey erectile function. In the case of 
a cancer extending over the capsule and penetrating 
the nerve bundle, excision is mandatory to achieve 
best oncological results postoperatively. However, 
in those individuals in whom the disease is confined 
to the prostate, a nerve-sparing surgical technique 
may maintain erectile function. The root node is 
split by the extent of aggressive cancer at biopsy to 
define the high-risk group with a probability of 
only 22% for organ-confined disease, followed by 
a PSA split of 10 ng/ml. Those with a PSA value 
<10 ng/ml represent those men with a high proba-
bility of organ-confined prostate cancer or low risk 
of extracapsular disease. Finally, the tumor extent 
within all biopsy cores serves to separate those indi-
viduals with a 45% versus 72% risk of organ-
confined disease. This CART model serves as a 
decision tool to select men for a nonnerve sparing, 
unilateral, or bilateral nerve-sparing surgical tech-
nique. This example clearly demonstrates the useful 
adoption of a statistical methodology into clinical 
practice.

Felix K.-H. Chun, Markus Graefen, 
Alexander Haese, and Pierre I. Karakiewicz

See also Decision Tree: Introduction; Decision Trees, 
Advanced Techniques in Constructing

Further Readings

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, 
C. J. (1984). Classification and regression trees. 
Belmont, CA: Wadsworth.

Chun, F. K., Karakiewicz, P. I., Briganti, A., Walz, J., 
Kattan, M. W., Huland, H., et al. (2007). Critical 
appraisal of logistic regression-based nomograms, 
artificial neural networks, classification and 
regression-tree models, look-up tables and risk-group 
stratification models for prostate cancer. BJU 
International, 99(4), 794–800.

Efron, B., & Tibshirani, R. (1997). Improvements on 
cross-validation: The .632 + bootstrap method. 
Journal of the American Statistical Association, 92, 
548–560.



966 Reference Case

Graefen, M., Haese, A., Pichlmeier, U., Hammerer, P. G., 
Noldus, J., Butz, K., et al. (2001). A validated strategy 
for side specific prediction of organ confined prostate 
cancer: A tool to select for nerve sparing radical 
prostatectomy. Journal of Urology, 165(3), 857–863.

Morgan, J. N., & Messenger, R. C. (1973). THAID: A 
sequential search program for the analysis of nominal 
scale dependent variables. Ann Arbor: Institute for 
Social Research, University of Michigan.

Morgan, J. N., & Sonquist, J. A. (1963). Problems in the 
analysis of survey data, and a proposal. Journal of the 
American Statistical Association, 58, 415–434.

Steuber, T., Graefen, M., Haese, A., Erbersdobler, A., 
Chun, F. K., Schlomm, T., et al. (2006). Validation of 
a nomogram for prediction of side specific 
extracapsular extension at radical prostatectomy. 
Journal of Urology, 175(3), 939–944.

ReFeRenCe Case

A reference case is a set of methodological prac-
tices intended to enable, by means of standardization, 
meaningful comparisons of economic evaluation 
results both within and across different diseases 
and interventions. Such comparisons are unavoid-
able if economic analyses are expected to inform 
healthcare resource allocation decisions.

A reference case may be interpreted as a spe-
cific, highly prescriptive variant of a methodologi-
cal guideline for health economic evaluations. 
Methodological guidelines have been developed as 
tools to support the conduct of scientifically con-
sistent economic studies. Informal guidelines devel-
oped by academic groups often are differentiated 
from formalized guidelines issued by official bod-
ies charged with technology appraisals to inform 
reimbursement and pricing decisions.

Background

In the absence of a standard, analysts were free to 
make choices, including (but not limited to) the 
form of evaluation method (e.g., cost benefit vs. 
cost effectiveness analysis), the appropriate measure 
of benefit (e.g., willingness to pay vs. health out-
comes), the perspectives for valuation (i.e., the 
source of preference data, e.g., patients vs. a repre-
sentative sample of the general public, individual vs. 

social, ex ante vs. ex post, or the choice of scaling 
instrument for utility measurement, such as stan-
dard-gamble, time-trade-off, person-trade-off, etc.) 
and costing (e.g., from a payer’s or from a societal 
viewpoint), the discounting of future benefits and 
costs, and the reporting of their findings. The result-
ing variation of analytic approaches would greatly 
decrease the policy value of economic analyses. In 
response, the concept of reference case analysis was 
proposed to serve as a point of comparison by a 
common core of methodological choices across 
studies. It is widely acknowledged that reference 
case analysis, although prescriptive and generic 
(i.e., not disease specific) by definition, should not 
prevent analysts from pursuing—in addition— 
alternative evaluation approaches if and when they 
have reason to believe that the alternatives would 
yield more valid results or might better reflect the 
needs of the target audience of an analysis.

Washington Panel

A group of experts known as the Washington 
Panel was convened by the U.S. Public Health 
Service with the main task of developing standards 
for cost-effectiveness analysis (CEA), to ensure 
that differences in reported health outcomes, costs, 
and cost-effectiveness ratios, across studies and 
interventions, reflect true differences in the conse-
quences, as opposed to artifacts due to unneces-
sary differences in method. Within the field of 
health economics, the Washington Panel intro-
duced the notion of a reference case in 1996. The 
panel endorsed the use of CEA as an aid to, not a 
complete procedure for, decision making, on the 
grounds of its broader acceptance among health-
care policy makers compared with cost-benefit 
analysis (CBA), in light of sensibilities that a will-
ingness to pay measure may inherently favor the 
wealthy over the poor. The panel recommended 
adopting a broad societal perspective, considering 
all changes in resource use and health effects due 
to an intervention, using a time horizon long 
enough to capture all the relevant future effects, 
applying a discount rate of 3% for both costs and 
effects and expressing health-related outcomes as 
quality-adjusted life years (QALYs). The panel 
proposed reporting incremental cost-effectiveness 
ratios (ICERs) but did not suggest an ICER thresh-
old separating cost-effective technology from  
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others. The convention to exclude “indirect” pro-
ductivity loss from cost calculation for reference 
case analysis, introduced by the Washington Panel 
for concerns about double counting (assuming that 
the full impact of morbidity was captured in the 
QALY measure and hence part of the denominator 
of the ICER), became a subject of controversial 
debate among health economists.

National Institute for Health  
and Clinical Excellence

The National Institute for Health and Clinical 
Excellence (NICE) was established as a special health 
authority within the U.K. National Health Service 
(NHS) in 1999 and quickly attained high interna-
tional visibility. NICE evaluates 20 to 30 (mainly 
new and mainly pharmaceutical) technologies each 
year and provides mandatory guidance on their use 
to the NHS in England and Wales on grounds of 
their clinical and cost-effectiveness. To improve con-
sistency within and between technology appraisals, 
NICE adopted a generic reference case with its 
revised methods guide in 2004. NICE justified the 
focus on CEA using the QALY, assumed to represent 
a universal and comprehensive measure of health 
outcomes, by its widespread use. Costing should be 
done from the perspective of the NHS and should 
include personal social services (PSS); future costs 
and benefits should be discounted using an annual 
rate of 3.5%. Since the 2004 methods guidance, 
parameter uncertainty should be evaluated using 
probabilistic sensitivity analysis. NICE indicated a 
most plausible range of ICERs, between £20,000 
and £30,000 per QALY gained, as a benchmark for 
judgments about the cost-effectiveness of an inter-
vention while recognizing that other factors such as 
the degree of clinical need of patients may influence 
its appraisals. According to NICE, estimates of the 
NHS (and PSS, where appropriate) budgetary impact 
(“affordability”) of adopting a technology are not 
used for decision making but for implementation 
planning only. NICE allows additional (nonreference 
case) analyses if and when these can be justified.

Table 1 gives an overview of the reference case 
definitions.

Context and Critique

The concept of a reference case has not been univer-
sally adopted among international decision-making 

bodies and health technology assessment (HTA) 
agencies, using economic evaluations. For instance, 
the revised Australian guidelines, issued by the 
Pharmaceutical Benefits Advisory Committee 
(PBAC) in November 2006, expressed a general 
preference for cost-utility analysis (i.e., CEA using 
health-adjusted life years—most often QALYs—as 
a measure of health-related outcomes) but explicitly 
supported the use of CEA (with health outcomes 
measured in natural units, such as mmHg blood 
pressure reduction, episode-free days, clinical events 
avoided, or [unadjusted] life years gained; however, 
the choice of outcome measure should be justified) 
and cost-consequence analysis, when disaggrega-
tion of outcomes would be helpful. PBAC is also 
prepared to accept supplementary CBA, where out-
comes are measured in monetary terms. The PBAC 
guidelines thus provide for an important example, 
where greater flexibility of analytic approaches is 
endorsed.

This notwithstanding, current international 
methodological guidelines for health economic 
evaluations broadly agree on many salient aspects 
such as the type of analysis (CEA), a strong reli-
ance on clinical-effectiveness data and the princi-
ples of evidence-based medicine (Cochrane-style 
systematic reviews), choice of comparators, incre-
mental comparisons reporting ICERs, the need to 
address decision uncertainty by way of sensitivity 
analysis, the need for and acceptance of decision 
analytic modeling, and adequacy of time horizon. 
There is less agreement among guidelines on the 
appropriate perspective of analysis (with a payers’ 
perspective more often recommended in formal-
ized official guidelines, as opposed to a societal 
perspective in informal academic guidelines), the 
relevance of Phase III efficacy trials, and the role of 
modeling. Ongoing academic debate concerns the 
valuation of health outcomes (e.g., natural units 
vs. QALYs vs. willingness to pay), the best way to 
account for uncertainty (e.g., regarding the use of 
probabilistic sensitivity analyses), and the role of 
budget impact analysis.

A major impetus behind the advocacy of a refer-
ence case approach, by the Washington Panel and by 
NICE, has been the basic ability to rank technologies 
across different disorders by their incremental cost 
per QALY and therefore the assumption that such 
rankings (“league tables”) are conceptually valid. 
The implicit normative premises, in particular the 
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Table 1  Overview of reference case definitions

 
Issue

Washington Panel  
Reference Case

 
NICE  Reference Case

 
Methodological Guidelines

Problem 
definition

The panel’s framing 
recommendations are kept 
separate from its reference 
case definition

Scope from NICE Usually expected to define 
indication, patient (sub)
groups, comparator, and 
perspective 

Comparator(s) Existing practice; if not cost-
effective, consider a (a) best 
available, (b) viable low-cost, 
or (c) “do-nothing” 
alternative

Alternative therapies routinely 
used within the NHS will be 
defined in the scope developed 
by NICE and will require 
definition and justification 

Usually common practice 
(“f”), however, somewhat 
vague (“existing practice,” 
“common practice”) 

Evidence on 
outcomes

Data should be selected from 
the best designed (and least 
biased) sources that are 
relevant to the question and 
population under study

Systematic review, with a 
preference for quantitative 
meta-analysis of randomized 
clinical trials data

Usually (long-term) 
effectiveness, not efficacy; 
with a broadly prevailing 
preference for data from 
randomized clinical trials

Economic 
evaluation

CEA CEA Usually CEA; sometimes more 
flexible (including cost-
minimization and CBA)

Perspective on 
outcomes

All health effects, 
encompassing the range of 
groups of people affected, 
over a time horizon long 
enough to capture all relevant 
future effects

All direct health effects on 
individuals, whether patients 
or others (principally 
caregivers); time horizon 
should be sufficiently long to 
reflect any differences between 
the technologies being 
compared

Usually all relevant health 
outcomes

Perspective on 
costs

Societal perspective, long-term 
using opportunity cost; 
excluding indirect 
(productivity) costs; 
perspective should be 
explicitly identified

NHS and PSS Heterogeneous; direct health 
care costs only or direct and 
indirect (productivity) costs 
(“f”); societal perspective is 
requested more often in 
informal guidelines (“i”)

Discount rate A real, riskless discount rate 
of 3.0% should be used, 
complemented by a sensitivity 
analysis (drawn from 0% to 
7%, including 5%)

An annual rate of 3.5% p.a. 
on both costs and health 
effects

Often 5% discount rate (“f”); 
heterogeneous 
recommendations from 2.5% 
to 10% in informal guidelines 
(“i”)

Addressing 
uncertainty

Univariate sensitivity analysis 
as a minimum; multivariate 
sensitivity analyses 
recommended

Probabilistic sensitivity analysis 
mandatory (or, where 
appropriate, stochastic analysis 
of patient-level data)

Sensitivity analysis
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value judgment of a primary health service objective 
to maximize the distribution-independent sum of 
QALYs produced (given a budget constraint), are not 
universally shared and have been described as empir-
ically flawed—that is, not reflecting prevailing public 
preferences. Accordingly, both the Washington Panel 
and NICE have acknowledged the need to consider 
other factors beyond those specified for reference 
case analysis. Some observers have noted that, in 
practice, adherence to a generic standard may  

contribute to a neglect of disease-specific information 
and thus contradict the aim to use the best available 
clinical evidence in the context of HTAs. Also con-
cerns have been raised that high levels of standardiza-
tion might foster analyses “by the cookbook” and 
thwart further methods development. However, the 
usefulness of the reference case approach is perhaps 
best demonstrated by the fact that the absence of a 
methodological standard, and therefore inconsis-
tency of methods applied, has been cited as a reason 

 
Issue

Washington Panel  
Reference Case

 
NICE  Reference Case

 
Methodological Guidelines

Measure of 
health benefits

QALYs QALYs Usually including QALYs, 
with more flexibility as to 
other measures (“f,” “i”), 
especially physical units; 
sometimes willingness to pay 

Source of 
preference data 
for calculation 
of utility 
weights

Community preferences; if 
unavailable, patient 
preferences may be used as an 
approximation 

Representative sample of the 
public (UK)

If QALYs are used, usually 
community preferences

Health state 
valuation 
method

Quality weights must be 
preference based and interval 
scaled

Choice-based method (e.g., 
time trade-off or standard 
gamble, not rating scale)

If QALYs are used, usually 
choice-based methods; often 
standard gamble and time 
trade-off; sometimes rating 
scales

Description of 
health states 
for calculating 
QALYs

A generic classification 
scheme, or one that is capable 
of being compared to a 
generic system

Using a standardized and 
validated generic instrument

Heterogeneous; sometimes 
disease-specific instruments 
allowed (“f”)

Equity position Discussion of roles and 
limitations of CEA in the 
introductory Chapter (separate 
from reference case definition)

Each additional QALY has 
equal value

NA

Budget impact 
analysis

NA Impact on NHS not part of the 
decision-making process; 
however, it is required to allow 
effective national and local 
financial planning

Usually NA; Ontario: 
products with high budget 
impact will need more 
rigorous documentation of 
cost-effectiveness 

Notes: For comparison, methodological guidelines may be informal (“i”; usually academic) or formalized (“f”; issued by official 
bodies such as HTA or pricing and reimbursement agencies). 

p.a. = per annum, NICE = National Institute for Health and Clinical Excellence, CEA = cost-effectiveness analysis, CBA = cost-
benefit analysis, NHS = National Health Service, PSS = personal social services, QALYs = quality-adjusted life years.
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why CBA (using contingent valuation to establish 
the willingness to pay for healthcare interventions) 
has not yet had much policy impact—despite its 
theoretical advantages and a growing number of 
published CBAs.

Michael Schlander

See also Contingent Valuation; Cost-Benefit Analysis; 
Cost-Effectiveness Analysis; Cost Measurement 
Methods; Cost-Utility Analysis; Discounting; 
Pharmacoeconomics; Quality-Adjusted Life Years 
(QALYs); Technology Assessments; Willingness to Pay
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RegRession To The mean

Regression to the mean can be defined as  
the changes that take place over time among 

exceptional individuals and groups, and across 
generations they tend to be toward the average 
for the larger population from which they are 
drawn. Many of the changes observed emerge 
from the fact that the measurements involved are 
composed of two parts: (1) a valid part and (2) a 
random error part. In much of the medical and 
healthcare research, extreme values on the first 
test or measurement are likely due in part to the 
random error component. By chance alone, that 
random error component is likely to contribute 
less on the next measurement.

Historical Background

Sir Francis Galton was the first to document 
regression to the mean. His grandfather Erasmus 
Darwin, one of the leading intellectuals of that 
time, and cousin Charles Darwin were both 
geniuses. Galton wondered if geniality was heredi-
tary and studied famous families of geniuses such 
as the Darwins and the Mozarts. He noted that the 
children of geniuses were almost all less brilliant 
than their parents and that the grandchildren were 
even less brilliant. Children and grandchildren  
of geniuses, on the average, are clearly gifted but 
invariably closer to the general population average 
than their (grand)parents. More numerical evi-
dence of this effect was provided in his studies on 
comparing the heights of adult children and their 
parents. He noted that whenever parents are well 
above or below average in height, their children are 
also likely to be similarly above or below average 
in height, but not by as much. He observed that the 
same phenomenon was true for mother sweet peas 
and daughter sweet peas and published a paper 
with the title “Regression Toward Mediocrity in 
Hereditary Stature.” Karl Pearson, Galton’s biog-
rapher and a brilliant statistician, was the first to 
note that Galton had created “a revolution in the 
scientific ideas,” not the least because this phenom-
enon creates the false impression that all phenom-
ena after a sufficient number of regressions will be 
reduced to a boring, mediocre average, with no 
room for individual brilliance.

Description of the Phenomenon

Regression to the mean predicts that more extreme 
(deviant) measures tend to be closer to the 
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population’s average when a follow-up measure-
ment is taken. The less reliable the measurement 
is, the stronger the regression. For perfectly reli-
able measures, there is no regression to the mean. 
For instance, if you measure the length of a very 
large stone, that stone will, in all likelihood, not 
have “shrunk” the next morning. For totally unre-
liable measures, the regression is complete; the 
best prediction of the next measurement is the 
average. If you measure blood pressure by asking, 
“Did you enjoy last night’s television show?” an 
extremely high blood pressure measurement after 
watching the worst show of the year will almost 
certainly be followed by a much lower blood pres-
sure measurement the next day. The more extreme 
the measurement result, the more likely noise or 
error terms have played a role in the measure-
ment. So the more extreme a measurement, the 
more likely and stronger the regression effect will 
be. The chance of regression toward the mean 
also increases when the two measurement instru-
ments are less than perfectly correlated and when 
the groups are selected on a nonrandom basis 
(i.e., extreme groups). It is important to note that 
regression is not an artifact or an observable pro-
cess. It is the direct consequence of the unreliabil-
ity of two (pre- and post-) measurements. It is a 
measurement problem.

Examples of everyday expressions that refer to 
regression toward the mean are “Things will even 
out,” “It can’t possibly get worse (or better) than 
this,” and “What goes up, must go down.” Most 
people realize that the sequel to a blockbuster will 
not be as successful as the blockbuster, that it is 
easier to win once (with luck on your side) than to 
repeat that twice, that an extremely high score on 
a test will be followed by a high but lower score on 
a similar test, and so on. Also remarkable besides 
the ubiquitousness of regression toward the mean 
is how commonly it is misunderstood, usually 
entailing undesirable consequences.

The tendency to overlook regression can lead to 
critical errors in judgment. Under specific condi-
tions, medical decision makers conclude that sig-
nificant differences are due to treatment, when in 
fact they are due to regression to the mean.

For example, subjects with extreme values in 
blood pressure may be selected and treated to 
bring their values closer to the mean. If their values 
are measured again, it is found that the mean of 

the extreme group has moved closer to the mean of 
the whole population. This observation is consid-
ered proof as a treatment effect. However, it is very 
probable that even for subjects without treatment 
blood pressure will drop, just because of the 
regression to the mean effect.

A nonmedical example where the effect of 
blindness for regression to the mean plays a criti-
cal role is a case in which instructors judged the 
effects of praising or punishing army pilots on 
future flight performances. In a famous study by 
Nobel Prize winner Daniel Kahneman, one 
observed that praising pilots for well-executed 
maneuvers causes a decline in subsequent perfor-
mance and that punishing them for poorly exe-
cuted maneuvers caused a gain in performance. 
The wrong conclusion by the drill sergeants was 
that praise makes pilots lazy and that punishment 
keeps them motivated. Every time a researcher 
works with extreme groups, regression to the 
mean can appear. The same new pedagogical tool 
will cause the “best” students to drop and the 
“worst” students to improve. It is often known as 
the ritual rain dance effect. There is strong evi-
dence that the drought period is much longer 
before the rain dance than after. So many tribes 
come to the straightforward conclusion that rain 
dances are really effective. This phenomenon is of 
course well known in healthcare. Some so-called 
alternative treatments can report positive results 
because patients only visit those “doctors” when 
they are desperate. In line with the regression phe-
nomenon, those treatments seldom work when the 
measurements are very reliable and the disease is 
well understood but seem to be very “successful” 
when the complaints are vague, chronic, and the 
measurements are notoriously unreliable.

Examples in Medical and Healthcare 
Management Decisions

Regression to the mean is one of the most common 
fallacies that occur whenever extreme high or 
extreme low groups are selected from a population 
based on the measurement and postmeasurement of 
a particular variable. Regression toward the mean 
occurs whenever subjects are selected on the basis of 
an extreme cutoff value for a certain characteristic 
and then undergo a postmeasurement on that same 
characteristic. Medical science literature is replete 
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with studies that report treatment effects but in fact 
are instances of this regression effect. For example, 
a study into the therapeutic effects of borage oil on 
people with eczema noted that people with a high 
atopic dermatitis score (i.e., symptoms score) showed 
a significant drop in the average symptoms score 2, 
4, 8, and 12 weeks after the initial measurement. 
Moreover, the most fascinating observation in 
this randomized, double-blind, placebo-controlled 
experiment is that the average score decreased in the 
postmeasurements for participants from the treat-
ment and the control group.

A common practice in large pharmaceutical and 
clinical labs is to try out a new treatment or drugs 
on clinical outliers, often yielding very positive 
treatment results, whereas in many cases it is 
regression to the mean that is the major reason for 
this change. A recent inquiry demonstrated how 
regression is embedded in research on substance 
use disorder treatment. In that particular study, it 
was noted that a group of drug addicts who were 
assigned to a special treatment reported a decrease 
in the level of substance use disorder (SUD) similar 
to the SUD decrease for the comparison group that 
received a placebo treatment. Another example 
where regression operates is a study on artificial 
insemination. It was found that subjects selected 
with low sperm concentration and low motility 
index in the first test had significantly higher 
means for both characteristics on the second test. 
In other words, even semen quality improved with-
out any therapeutic intervention.

Regression to the mean should also be under-
stood by policy makers. This regression fallacy 
continues to be missed in decisions by public health 
policy makers. For example, part of the 90% 
decrease of meningitis C in the United Kingdom 
was attributed to the introduction of the immuni-
zation program, where it could be explained by a 
very bad year being likely followed by better years. 
What frequently happens is that a sudden increase 
in a particular disease leads to changes in policies 
such as large-scale immunization programs, with a 
large decrease in disease incidence attributed to the 
intervention. However, policy makers should also 
be vigilant toward the fact that the unexpected 
increase in the incidence of a particular disease 
could be simply the result of chance. In conse-
quence, doing nothing could have resulted in simi-
lar effects.

Dealing With Regression to the Mean

A first step for dealing with the effects of regression 
to the mean starts with recognizing and under-
standing this statistical phenomenon. In uncon-
trolled studies with repeated measurement designs, 
regression to the mean can be a tenacious problem. 
Changes in measurement results are often inter-
preted as real treatment effects. Several statistical 
approaches have been suggested to detect regres-
sion to the mean in uncontrolled studies. One  
recommended statistical approach is analysis of 
covariance (ANCOVA). In using ANCOVA, one 
can adjust each subject’s follow-up measurement 
according to his or her baseline measurement. In 
doing so, a treatment effect can be predicted after 
controlling for the regression to the mean effect.

Although statistical control is one way to deal 
with the regression to the mean, a good study 
design can mitigate its effects. One way is the use 
of randomized control group designs. By random 
allocation of subjects to treatment and placebo 
conditions, the responses from all groups should 
be equally affected by regression to the mean, 
which makes it possible to estimate regression and 
treatment effects. An alternative approach to alle-
viate the effect is by improving the measurement 
reliability of the baseline measurement, for exam-
ple, by using multiple measurements. Using only 
one measurement value for selecting subjects is 
likely to be subject to high variability. Therefore, 
selection of subjects on the basis of the mean of 
multiple baseline measurements is considered a 
better option.

Dave Bouckenooghe and Marc Buelens

See also Distributions: Overview; Frequency Estimation
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RegReT

Regret is the negative emotion that we experience 
when realizing or imagining that our present situ-
ation would have been better had we decided or 
acted differently. Regret originates in a compari-
son between outcomes of a chosen course of 
action and the nonchosen alternatives in which 
the latter outperform the former. It is clearly a 
painful emotion that reflects on one’s own causal 
role in the current, suboptimal situation. The 
emotion regret is accompanied by feelings that 
one should have known better and having a sink-
ing feeling, by thoughts about the mistake one has 
made and the opportunities lost, by tendencies  
to kick oneself and to correct one’s mistake, by 
desires to undo the event and get a second chance, 
and by actually doing this if given the opportunity. 
Put differently, regret is experienced as an aversive 
state that focuses attention on one’s own causal 
role in the occurrence of a negative outcome. It is 
thus a cognitively based emotion that motivates 
one to think about how the negative event came 
about and how one could change it or how one 
could prevent its future occurrence.

As such, regret is unique in its relation to deci-
sion making and hence to feelings of responsibility 
for the negative outcome. This makes regret an 
emotion that is highly relevant for medical decision 

making. One only experiences regret over a bad 
outcome when, at some point in time, one could 
have prevented the outcome from happening. Of 
course, other emotions can also be the result of 
decisions; for example, one may be disappointed 
with a decision outcome or happy about the pro-
cess by which one made a choice. But, all these 
other emotions can also be experienced in situa-
tions where no decisions are made, whereas regret 
is exclusively tied to decisions. For example, one 
can be disappointed in being the carrier of a genetic 
disease and happy with the fact that the medication 
works, but one cannot regret these instances. Thus, 
in regret, personal agency and responsibility are 
central, whereas in other aversive emotions, such 
as anger, fear, and disappointment, agency for the 
negative outcomes is either undetermined or in the 
environment or in another agent. Hence, regret is 
the prototypical decision-related emotion in the 
sense that it is felt in response to a decision and 
that it can influence decision making.

Tymstra may have been the first to introduce 
the concept of anticipated regret into the domain 
of medical decision making. He described the 
imperative character of medical technology and 
argued that the mere existence of medical-technical 
possibilities makes it hard for doctors and patients 
to reject them. The success of, among others, pre-
natal testing and IVF (in vitro fertilization) is 
argued to be testimony to the effects of anticipated 
regret. The reasoning is that as soon as these new 
technologies come into play, patients (and doctors) 
imagine not trying them and thereby forgo a 
potential improvement or remedy. The accompa-
nying sense of regret urges both doctors and 
patients to use this new technology. The other side 
of the imperative character of regret is that even 
the ones who opted for using the new technologies 
but did not obtain the hoped-for outcomes gener-
ally do not regret this, because they felt that “at 
least they tried.” This is consistent with recent 
empirical findings in the science of regret by Sorum 
and colleagues.

The impact of regret on decision making is, of 
course, the prime reason for decision researchers to 
become interested in regret. Regret may affect deci-
sion making in two ways. First, the experience of 
retrospective regret may produce a behavioral incli-
nation to reverse one’s decision or undo the conse-
quences. Second, decision makers may anticipate 
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possible future regret when making decisions and 
choose in such a way that this future regret will be 
minimal.

The idea that people, when making decisions, 
might take into account future emotional reactions 
to possible decision outcomes has some history in 
research on decision making, starting with econo-
mists studying rational choice in the early 1980s. It 
is now known that the influence of anticipated 
future regret on current decision making can take 
several forms. First, people may refrain from 
deciding in order to avoid making the wrong deci-
sion. This may cause both doctors and patients to 
be willing to defer responsibility. However, this 
inactive attitude may result in regret as well since 
it is known that in the long run, inactions produce 
the most regret. For example, patients might end 
up regretting having followed the advice of their 
doctor if the procedure does not have the expected 
effect. People may also avoid or delay their deci-
sions, because they want to gather more informa-
tion in order to make a better decision. This could 
result in extensive usage of medical tests and risky 
new technologies, as pointed out above.

Despite the fact that decision makers often antic-
ipate regrets that may follow their decisions, espe-
cially when the decision is important, it does not 
prevent them from experiencing regret on a regular 
basis. Connolly and Reb discuss how both antici-
pated regret and retrospective regret influence can-
cer-related decisions. They also review research 
showing that postdecision regret is not unusual in 
cancer patients. Since the experience of regret not 
only reflects on the decision that produced the 
regretted outcome but also negatively affects the 
well-being that stems from the current state of 
affairs, understanding the psychology of regret is 
vital for helping patients to cope with it. Also, 
knowledge of how regret affects well-being and 
behavioral decisions may help develop interventions 
that prompt people to behave healthier. Extensive 
research has documented the success of fear appeals 
on health behavior. Similar studies focusing on the 
effects of regret appeals are wanting.

Taken together, regret is an aversive emotional 
state that is related to counterfactual thoughts 
about how the present situation would have been 
better had one chosen or acted differently. 
Therefore, decision makers are motivated to avoid 
or minimize postdecisional regret. This has several 

implications for medical decisions, because people 
may employ different strategies to prevent regret 
from happening or to cope with regret when it is 
experienced. In principle, the effects of regret can 
be considered rational, because they protect the 
decision maker from the aversive consequences of 
the experience of regret. There might be cases, 
however, in which an aversion to regret leads one 
to avoid counterfactual feedback and hence results 
in reduced learning from experience. This might  
be considered irrational. But, irrespective of this 
rationality question, regret has shown to be a basic 
emotion in the behavioral decisions of both patients 
and doctors. As such, it is of vital importance to 
take the experience of regret seriously and be 
aware of how it may impact these decisions.

Marcel Zeelenberg

See also Bounded Rationality and Emotions; Emotion 
and Choice
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Religious FaCToRs

Religious factors can be important in the decision 
making of patients, healthcare professionals, and 
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healthcare organizations. Paradigmatic examples of 
decisions involving religious factors are conscien-
tious objection to abortion and patient resistance to 
postmortems, but religious elements may influence 
a much wider range of decisions in healthcare.

Religion, Culture, and Values

Defining what counts as a religious factor in deci-
sion making is not simple. There is no generally 
agreed-on definition of religion; for instance, not 
all religions have deities. Furthermore, in specific 
cases there is frequently no simple way of separat-
ing religious factors from cultural factors, because 
the same religion has developed different tradi-
tions in different geographical regions and in dif-
ferent societies.

In the case of the major scriptural religions, 
three or sometimes four elements come together to 
determine the beliefs and practices of adherents:

 1. The original revelation in the form of the 
scriptures, that is, the writings held to be 
authoritative

 2. The tradition

 3. Reason

 4. In some instances, ongoing revelation

The balance between the three sources of reli-
gious guidance differ between religions and often 
also within religions in relation to different areas 
of belief. The scriptural revelation is furthermore 
being continuously (re)interpreted through reason, 
but this always takes place through the lens of a 
particular tradition, and that tradition may also 
decide who is seen as competent to perform the 
interpretation. This means that it will often be 
important to know which particular branch of a 
given religion a patient identifies with because 
(a) the religious beliefs and values may differ 
between different branches and (b) the patient may 
be more responsive to advice from his or her 
“own” religious leader than from someone repre-
senting another branch of what to the outsider 
looks like the same faith community.

The fact that a particular view is religious is not 
in itself a reason to respect it or accord it more 
weight. Religious views are not by the mere fact 

that they are religious intrinsically worthy of 
respect. But religious identification is often part of 
a person’s core identity, and there are good reasons 
to treat core beliefs differently than beliefs that the 
person in question sees as peripheral.

Religion and Patients

Religious factors often play a significant role in the 
decision making of patients, especially in cases 
where being a member of a particular faith com-
munity is part of the patient’s core identity. This 
may lead a person to aim at particular treatment 
goals and choose or refuse particular treatment 
modalities. A Muslim couple seeking in vitro fertil-
ization may, for instance, have religious objections 
to any use of donor gametes but no objection to 
the creation of embryos and selection among 
embryos created with their own gametes.

It is generally accepted in the law of most juris-
dictions that an adult person can refuse any kind 
of treatment even if that treatment is likely to be 
lifesaving. Healthcare professionals have been 
slightly slower to accept this, but it is now widely 
accepted that, for instance, an adult member of 
Jehovah’s Witnesses should be allowed to refuse 
even a potentially lifesaving blood transfusion.

There is, however, in most jurisdictions no gen-
eral or specific obligation to provide patients with 
particular treatments that they desire if these treat-
ments are not clinically indicated.

With regard to children, the legal position is that 
parents cannot deny clinically indicated treatment 
that is lifesaving or likely of great benefit to the child 
even if they have strong religious objections, and 
even if these objections are shared by the child.

In cases where parents request minor surgical or 
other procedures that are religiously required, for 
instance, male circumcision, there is no obligation 
to provide such procedures, but on the other hand 
no reason not to perform them if they are not 
harming the child.

It is generally accepted that religiously required 
procedures that cause significant harm should 
never be performed.

Religion and Healthcare Professionals

Religious factors enter the decision making  
of healthcare professionals in two different ways: 



976 Religious Factors

(1) specifically, in the case of the religious health-
care professional, and (2) more generally, for all 
healthcare professionals in relation to patients 
who hold religious views.

In the case of healthcare professionals who are 
religious, this may influence the kind of procedures 
they are willing to provide or participate in and the 
advice they give to their patients.

Legally recognized conscientious objection is 
the clearest example of this influence. In many 
jurisdictions, healthcare professionals can legally 
refuse to participate in induced abortions if they 
have a conscientious objection to this procedure. 
Such objections can be based on nonreligious  
values but will often be religion based.

It has recently been questioned whether there 
should be a right to conscientious objection to 
any kind of legal healthcare procedure, especially 
in cases where widespread objection leads to 
problems for patients in accessing the services 
they want and/or need. This issue is not yet 
resolved.

In the more general situation of interaction with 
a religious patient, the healthcare professional will 
often need to understand something about the 
patient’s religion and culture in order to (a) pro-
vide appropriate care and advice and (b) not 
behave inappropriately toward the patient. Without 
such knowledge, the interaction with the patient 
may become unsuccessful; for example, one should 
not touch the head of a Maori patient without 
permission so as to not interfere with the patient’s 
mana (power or strength), and a Maori patient 
may lose confidence in a healthcare professional 
who does not know or understand this.

Healthcare professionals cannot have an obliga-
tion to know everything of relevance about all 
religions, because that would be impossible, but 
they can be reasonably expected to know some-
thing about those religious groups that are preva-
lent in the locality where they work and reasonably 
expected to be sensitive toward religious views. As 
mentioned above, this information will often have 
to be fairly specific, for example, not just knowl-
edge about healthcare-relevant beliefs in Judaism 
in general but knowledge about the beliefs of the 
Lubavitcher branch of Hasidic Judaism.

Understanding the patient’s religious views 
becomes especially important in relation to deci-
sions about incompetent patients. It is generally 

accepted that such decisions should be made  
in the best interest of the patient and that the 
scope of best interest is broader than just “medi-
cal best interest.” In the leading U.K. case, Re S 
(Adult Patient: Sterilisation), this wider concep-
tion of best interest was expressed in the follow-
ing way:

That, once satisfied that the proposed treatment 
options were within the range of acceptable 
opinion among competent and responsible prac-
titioners, the court should move on to the wider 
and paramount consideration of which of them 
was in the patient’s best interests.

This entails that a patient’s deeply held religious 
views may influence or determine what is in that 
patient’s best interest.

In cases where there is conflict between what 
the healthcare professional believes to be the clini-
cally indicated course of action and the patient’s 
religiously influenced decision, the conflict may 
sometimes be resolved by involving a religious 
leader whom the patient trusts. The patient may 
have misunderstood what the religion actually 
requires, or the degree to which the requirements 
can be suspended in cases of illness. Most branches 
of Islam will, for instance, suspend the Ramadan 
fasting requirements for people who are ill and 
allow the use of products containing materials 
from pigs as part of necessary medical treatment, 
but not all Muslims know this.

Religion and Healthcare Organizations

Religious factors are important for the decision 
making of healthcare organizations because 
(a) the organization has to act appropriately in 
relation to the religious views of its patients and 
staff and (b) the organization may itself be com-
mitted to a particular religious view and have a 
religious identity.

Any healthcare organization needs to make con-
scious decisions about how it is going to accom-
modate the religious views of patients and staff. 
This becomes more urgent and also more compli-
cated for healthcare organizations that are situated 
in multicultural and multireligious environments. 
Making room for religious views and practices 
becomes especially important when there is a link 
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between care and treatment outcomes for patients 
and the degree to which specific aspects of their 
religion is catered to. Hospitals should, for instance, 
as a general policy be able to meet the dietary 
requirements of the population that they serve 
because of the link between nutrition and treat-
ment outcome.

The degree to which an organization’s religious 
identity can determine its delivery of healthcare 
may differ in different healthcare systems. In a 
hypothetical, completely free market where 
patients could choose freely between a large num-
ber of healthcare providers, there would probably 
be few restrictions to the degree to which an orga-
nization could legitimately let its religious identity 
influence its healthcare delivery. Patients who do 
not want to go to, for instance, a Catholic hospital 
could just choose the Muslim or the Atheist alter-
native. But most healthcare systems restrict patient 
choice to a considerable extent, and this also lim-
its the extent to which a healthcare organization 
can let its religious identity influence its actions. If 
the patient has no choice, then that patient will in 
general have a strong, legitimate presumption of 
being able to access a complete package of treat-
ment options, whatever institution he or she is 
admitted to.

Søren Holm
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Making
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RepoRT CaRds, hospiTals 
and physiCians

The term report cards in the context of healthcare 
has come to be used to describe comparative data 
on quality and cost of care, particularly when 
such data are made available to the public. A 
common view is that greater transparency will 
drive improvement and guide patients to the best 
care. Although not the only stakeholder group 
that is subject to scrutiny, this entry focuses on 
report cards on providers, specifically hospitals 
and physicians.

Few would argue with the importance of pro-
vider efforts to measure performance internally for 
the purposes of improvement. For example, a 
practice may perform a peer review of physicians 
based on adherence to recognized care standards 
and make such information available to all provid-
ers within a practice. The controversy grows, how-
ever, with increasing levels of transparency. Sharing 
that same information with patients, health plans, 
purchasers, and other stakeholders brings both 
opportunity and risk. While several years ago the 
controversy centered on whether report cards 
should be issued at all, in more recent years the 
debate has centered more on what measures are 
best and what are the most productive ways to use 
the information.

Measuring and sharing data on provider perfor-
mance on a large scale is a relatively new develop-
ment. There were a few pioneers in the field of 
healthcare quality improvement who saw the 
importance of measuring results long ago. For 
example, Florence Nightingale kept meticulous 
records of mortality rates in military hospitals dur-
ing the 19th-century Crimean War, and in so 
doing, she blazed trails both in quality measure-
ment and the field of nursing. In a later example, 
Ernest Codman famously established the End 
Result Hospital, in early 20th-century Boston, in 
which he maintained and shared detailed records 
of outcomes for his surgical patients. But despite 
the courageous efforts of a few, who at times were 
subjected to scorn and ridicule, the real effects of 
the work of healthcare providers have often been 
shrouded in secrecy. Not until the soaring costs of 
healthcare in the 1980s and beyond has serious, 
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widespread attention been given to measuring 
quality.

One of the primary reasons for the emergence of 
report cards is the growing demand for value  
in healthcare. Although defined in various ways, 
the basic concept of value has two components:  
(1) quality and (2) cost. High-quality care increases 
the likelihood of a desirable outcome and is in line 
with patient preferences, according to a widely 
cited Institute of Medicine definition. The broad 
concept of cost needs no definition, but actual mea-
surement of cost poses many challenges. Value can 
be thought of as the ratio of quality to cost. While 
the feasibility of actually decreasing healthcare 
costs over the long term can be debated, many 
would agree that purchasers of healthcare should at 
least expect value for the healthcare dollar spent.

There is a great deal of evidence, however, 
that healthcare purchasers in the United States 
do not consistently get value for the healthcare 
dollar. Errors that bring harm to patients and 
drive costs up, missed opportunities to provide 
preventive care, and failure to bring the benefits 
of evidence-based treatments to patients, partic-
ularly for chronic disease, are clear indicators of 
problems.

Content of Report Cards

Report card measures typically fall into the follow-
ing categories: 

 1. Process measures are most common and reflect 
what action was taken during patient care. They 
address the question “What did you do?” 
Documentation of aspirin given to patients with 
heart attack, a perioperative antibiotic given to 
a surgical patient, or a test such as an 
echocardiogram performed for a heart failure 
patient are examples of process measures. 

 2. Outcome measures address the question “What 
was the result?” Examples include survival after 
a surgical procedure, rates of hospital-acquired 
infection, or measures of patient experience. 

 3. Structural measures address “What do you have 
in place?” such as personnel, information 
technology, or equipment. Examples include 
computerized physician order entry and staffing 
of intensive care units with intensivists. 

 4. Efficiency measures reflect cost of care. 
Common examples are measures of hospital 
length of stay or cost for specific procedures, 
diagnoses, or, increasingly, episodes of care (e.g., 
a bout of pneumonia).

Who Is Interested in Provider Report Cards?

We can consider four broad groups of stakehold-
ers: (1) consumers (patients and potential patients), 
(2) providers, (3) health plans, and (4) purchasers 
(government and employers). At the time of this 
writing, it is likely that only a small minority of 
consumers make important healthcare decisions 
based on provider report cards. One reason may 
be availability of information. Although there is a 
great deal of information online, it often takes a 
fair amount of time and effort, as well as a certain 
level of sophistication, to find it. Such an effort 
may require not only skills in navigating the 
Internet but also a certain amount of medical 
knowledge. In addition, other factors such as 
where one lives, limitations on choice by the payer, 
and recommendations from physicians, friends, 
and family may be more important to consumers 
than information from report cards. Some experts 
feel that as more consumers take on the responsi-
bility of making decisions on how to spend health-
care dollars, the amount of consumer attention to 
report cards will greatly increase.

Provider attention to report cards varies, likely 
dependent on the local environment. Some regions 
of the United States have seen broad coalitions of 
health plans and other stakeholders for purposes 
of provider pay for performance. Such coalitions 
allow some standardization so that the provider 
ideally only has one report card rather than a 
report card for each individual health plan. In 
other regions, where a single report card link to a 
provider’s pay is not present, provider attention to 
various report cards may be less.

Health plans and purchasers are driving a great 
deal of provider report card activity. Commercial 
health plans and coalitions of health plans have 
created report cards, as have employer groups such 
as those behind Leapfrog and Bridges to Excellence. 
And the federal and state governments are clearly 
engaged, an example being the Center for Medicare 
and Medicaid Services (CMS) and its Hospital 
Compare Web site. On this Web site, the user can 
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make comparisons of hospitals based on process of 
care, outcomes such as mortality, and patient expe-
rience. CMS is formulating plans for value-based 
purchasing in which reimbursement will be tied to 
hospital performance in these areas.

Data Sources

Administrative data, specifically claims for health-
care services, are important as a data source for 
report cards. Reports based on administrative data 
are often criticized on the grounds that the data 
were collected for billing purposes rather than for 
quality measurement. Such data can be incomplete 
or inaccurate. However, using claims data for 
report cards has the advantage of being highly fea-
sible, and for this reason, the practice is growing 
despite the data limitations. The feasibility of using 
such data is derived from the fact that the data are 
widely available in a fairly timely manner, and 
such reports are relatively inexpensive to produce.

Some efforts have been made to augment claim-
based quality measures. Clinical data abstracted 
from the medical record can be combined with 
claims data, for example, to achieve more robust 
risk adjustment for certain conditions. In addition, 
specific data can be added to the claim itself 
expressly for the purpose of quality measurement, 
such as in the Physician Quality Reporting 
Initiative, which is CMS “pay for reporting.” It 
appears unlikely that the use of claims data for 
report cards will fade in the near future, simply 
because of the feasibility issue.

In addition to claims and medical records, there 
are other sources of data for report cards. State 
and federal government data sources may provide 
information such as mortality or hospital infection 
rates. Providers may be surveyed for information, 
most notably by the Leapfrog Group, which is 
mainly a purchaser coalition whose voluntary hos-
pital survey is an effort to improve hospital quality 
and safety. Publicly available information on 
accreditation of hospitals and board certification 
of physicians are other elements that may be found 
in report cards.

Challenges to the Validity of Report Cards

There are several important ways in which the 
numbers included in reports cards might distort 

the truth regarding the underlying value of health-
care. The first is data availability. Many of the 
intricacies of a case that can help one understand 
the quality of care provided are buried in free text 
within health records. Such information may be 
illegible or go undocumented altogether. In addi-
tion, information on quality from various perspec-
tives is not generally available. For example, a 
physician may be most interested in the clinical 
outcome, such as survival after a procedure; a 
patient may be most interested in functional out-
come or the degree to which he was treated with 
respect and compassion; another stakeholder, such 
as a purchaser, may be interested in these issues as 
well but also in any costly complications that may 
have occurred or the degree to which the care was 
in line with accepted guidelines. Current report 
cards will have some of these aspects but cannot 
capture quality entirely from all perspectives.

The second challenge to validity is low sample 
size. Health conditions and treatments are placed 
into many categories, and a typical physician or 
hospital may only treat a few cases within a cate-
gory over a particular time period. Report cards 
often deal with this common problem either by 
using a disclaimer (“interpret with caution”), stat-
ing that the provider with a small sample cannot be 
evaluated, or simply placing small-volume provid-
ers in with low-quality providers, with the thinking 
that high volume is a feature common to high-
quality providers. For some conditions, it may take 
a few years for providers to have treated a suffi-
cient number of cases to be evaluated. Minimum 
sample sizes or the use of confidence intervals or 
other statistical approaches are at times used, but 
there is no standard or foolproof solution.

Gaming is another threat to report card validity. 
Gaming can be thought of as an action taken to 
improve a quality measure that does not actually 
improve quality but yet is within the rules. For 
example, on learning that risk-adjusted survival 
for heart failure is below average, hospital leaders 
may want to investigate in order to gain an under-
standing for this apparently poor level of perfor-
mance. Such an investigation might uncover that 
important comorbidities are not being documented 
in the medical record. Knowing that such a docu-
mentation oversight leads to a falsely low number 
of expected deaths, the leaders take corrective 
action. This work results in a more favorable value 
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for the quality measure, has a neutral affect on 
patient outcomes, and is allowable. Some experts 
feel that the best approach to this situation is not 
only to use measures that are not easily gamed but 
to use many measures so that providers find gam-
ing too time-consuming and difficult and concen-
trate on improving quality.

Gaming is distinct from fraud. Most likely a 
much less frequent occurrence, fraud is deliber-
ately and knowingly providing false information. 
For example, a provider may document that a step 
in a process was completed when in fact it was not. 
While we cannot know the exact frequency of 
fraud, it is worth considering that report cards are 
often derived from information provided by the 
party whose performance is being evaluated, and 
therefore the risk exists.

Old data are another potential challenge to 
validity. If a consumer, health plan, or purchaser is 
to base a decision on comparative quality data, 
one makes the assumption that the quality of care 
provided in the coming year will be similar to that 
provided during the year(s) addressed in the report 
card. For example, the Hospital Compare Web site 
allows one to evaluate 30-day mortality for patients 
admitted to U.S. hospitals with certain conditions 
such as acute myocardial infarction. By March 
2008, one could compare risk-adjusted mortality 
rates for hospitals caring for patients between July 
2006 and June 2007. While this represents an 
important advancement in quality measurement in 
the United States, one must consider that some 
studies have found only a weak correlation between 
risk-adjusted outcomes between time periods.

Risks

Publicly reported provider report cards bring cer-
tain risks. One is that providers will avoid patients 
that may make them look bad. For example, a 
heart surgeon who is judged based on patient sur-
vival may avoid operating on a patient whose risk 
of postoperative death is high. Although survival 
after coronary artery bypass surgery is typically 
adjusted for differences in case mix, this adjust-
ment is imperfect and often greatly affected by 
small numbers such that any death, even in a high-
risk patient, may mar the record of a surgeon. 
Even more important than the math is the percep-
tion of the surgeon. If the provider sees a high-risk 

patient as someone who might tarnish his or her 
reputation, then this may affect the decision to 
operate. Reports vary within the medical literature 
and lay media as to the frequency of avoidance of 
high-risk patients. Regardless, the theoretical risk 
is an important consideration.

Another risk of report cards is “treating the 
measure.” In such a case, a provider may focus on 
a particular measure and in good faith try to 
improve the care provided but meanwhile disre-
gard other patient needs that may be even more 
important. For example, consider a primary care 
physician being judged on the percentage of 
patients whose “bad” cholesterol is less than 130 
mg/dl. The physician may be seeing a patient who 
would like help with her anxiety, for which there is 
no quality measure. Within the usual 10- or 
20-minute visit, will the doctor address the high 
cholesterol, perhaps at the expense of addressing 
the patient’s main reason for coming to the office? 
This is analogous to the concern that student test 
scores used in evaluation of school teacher perfor-
mance may lead to “teaching to the test.” The 
existence of a healthcare measure used to evaluate 
physicians and hospitals has the potential to inter-
fere with the doctor–patient relationship.

Interpreting report card measures may involve 
some subjectivity and reflects on one’s values and 
preferences. For example, consider hospitals that 
are being compared on measures of value—that is, 
the combination of quality and efficiency (cost). A 
common approach to categorize a provider as 
“good” is to require that the provider surpass two 
separate thresholds of quality and efficiency, 
respectively, as depicted in Figure 1.

Under such a methodology, hospitals that end 
up in the upper-right quadrant, therefore getting 
past both the quality and the efficiency hurdles, are 
labeled as best or most desirable. Clearly, any 
stakeholder would agree that Hospital A is not 
performing well (assuming valid data and well-
defined measures). Also, it is clear that Hospital C 
is better than Hospital E, due to better efficiency 
and equal quality. But what about Hospital D? It 
does not meet the efficiency threshold, but it is 
highest in terms of quality. A consumer (patient) 
may see this hospital as most desirable. At the 
same time, a purchaser of healthcare may see 
Hospital B as highly desirable: acceptable quality 
at a low cost.



981Report Cards, Hospitals and Physicians

If these were shoes rather than hospitals, there 
would be no problem. Each buyer would choose 
the combination of quality and cost that suits his 
or her preferences. But particularly in the com-
plex U.S. healthcare system of third-party pay-
ers, agreeing on the definition of “best” is 
difficult.

There is no single solution to improving the 
value of healthcare, but it is important to consider 
report cards in the context of other movements of 
significance. A popular line of thinking is that 
report cards may be a partial solution that may 
also require some of the following: (a) pay for per-
formance, in which provider pay is in some way 
dependent on quality and/or cost; (b) advances in 
information technology, particularly electronic 
health records; (c) expansion of healthcare insur-
ance coverage; and (d) increasing consumer price 
sensitivity. Regarding the latter, consumer-driven 
insurance plans and tiered networks are examples 
of factors that influence consumers to choose high-
value care.

These are not the only interventions that can 
lead to improved value for the healthcare dollar, 
but the relevant point is that report cards likely 
have their place within a multidimensional 

approach to improve a healthcare system rather 
than being an answer that works in isolation.

Christopher Hebert

See also Evidence-Based Medicine
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Figure 1  Comparing provider value

Note: In this hypothetical example, hospitals are compared based on varying levels of quality and efficiency (low cost is high 
efficiency). Arbitrary thresholds for each define the four quadrants.
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ReTuRn on invesTmenT

Return on investment (ROI) is the ratio of the net 
change in an investment’s value (positive and 
negative) to the value of the original investment. 
The basic return on investment formula is ROI = 
(Cn / V0), where C is the net change in value for 
the investment, n is the elapsed time since the ini-
tial investment, and V0 is the initial value of that 
investment (at Time 0). This evaluation can be 
made for past, present, and future investments 
and their actual or projected changes in value.

Applications

While ROI can be expressed as a simple ratio,  
difficulties arise when a decision maker must  
compare investments that differ in their initial 
investment amounts and in the amounts and tim-
ing of their subsequent changes in investment 
value. Furthermore, difficulties are caused when 
tax rates, inflation, and expectations for what con-
stitutes an adequate return on investment are con-
sidered in the analysis.

Medical Decision Making

ROI is an important factor in medical decision 
making because it provides a metric for use in 
comparing the relative economic attractiveness of 
alternative medical investments. All other factors 
being equal, one would assume that investments 
with higher ROIs would be preferred to invest-
ments with lower ROIs.

Expanding the Formula

The ROI formula can be elaborated as ROI =  
(Vn  – V0 /V0), where Vn is the value of the invest-
ment at Time n and V0 is the investment’s initial 
value. This expansion makes it clear that the 
numerator includes all changes in the initial invest-
ment’s value (gains and losses, realized and unreal-
ized) as well as any cash flows (positive and 
negative) resulting from that investment. Using the 
example of an investment in a new clinic building, 
changes in the initial investment’s value would 
include changes in the value of the building as well 
as cash flows from revenues and expenses involved 

in the ownership and operation of the building 
(e.g., interest payments for loans, property tax, 
and building maintenance costs).

Cash Flow Timing and  
Valuation Adjustments

When the investment period (time between Vn and 
V0) is relatively short, differences in the timing of 
cash flows (between the initial investment and sub-
sequent returns) is not an issue, and ROI is calcu-
lated without further adjustment. However, when 
cash flows occur over a longer period of time, they 
can have a significant impact on one’s assessment 
of the value of alternative investment options, and 
special techniques are required to adjust for these 
differences. These adjustments take two forms:

 1. Compounding: adjustments to the ROI estimate 
to account for previous cash flows and to 
account for the investment’s changing value 
over time

 2. Discounting: adjustments to individual cash 
flow values to account for the time lag between 
the initial investment and subsequent cash flow

Two additional types of adjustment may be used 
in ROI calculations. These are for taxes and infla-
tion. Since both of these rates may be different for 
different years in the ROI analysis, it is customary to 
incorporate their effects in the annual calculations 
of net change in value (annual net cash flows).

Compounding

Assume an investment with an initial value of 
$100 that reaches a final value of $130 at the end 
of 3 years. One way of expressing the annual ROI 
is to take the arithmetic average of the change in 
value ($10 = $30/3). This yields an estimate of 
10% ROI per annum 10% = $10/$100). However, 
this method does not account for the fact that if 
the annual ROI is actually 10%, the investment’s 
initial value at the beginning of the second year 
will be the $100 initial investment plus a 10% 
annual return on that investment during the first 
year. Therefore, using an arithmetic average over-
estimates the annual ROI. To calculate the annual 
ROI after adjusting for changes in the value of the 
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initial investment, one must solve the following 
equation for r: Vn – V0 = V0 (1 + r)n – V0 , where 
r is the annualized rate of return on investment 
and n is the number of years in the investment 
period. Subtracting the initial investment value, 
this formula shows that the final value of an 
investment can be expressed as the investment’s 
initial value compounded at an annual rate over 
a period of years (Vn = V0 (1 + r)n) In this exam-
ple, the value for r that yields a final investment 
value of $130 for a $100 initial investment over a 
3-year period is 9.1%. This is considerably 
smaller than the original estimate of a 10% 
annual ROI.

Discounting

To account for the financial opportunity that 
arises when investment returns are paid at the time 
of the initial investment, the value assigned to the 
different cash flow streams must be adjusted to 
recognize that the first option includes the poten-
tial for additional returns through the reinvestment 
of the earlier returns on the initial investment. This 
is accomplished by the use of discounting, which 
adjusts all cash flows to their values at Time 0 (the 
time of the initial investment). The formula for 
discounting is the reciprocal of the compounding 
formula. Such that the value of a cash flow at Time 
0 is CF0 = CFn/(1 + df)n, where 0 is the initial 
investment time, CF is the cash flow value, n is the 
elapsed time since the initial investment, and df is 
the discount factor. Using the above example, the 
discounted value of a $100 initial investment with 
$30 return received at the time of the initial invest-
ment is $130; whereas, if the return is received at 
the end of 3 years and the expected return from 
alternative investments (discount factor) is 10%, it 
is only worth $98.

Taxes

Frequently, different investments have different 
tax implications. In these situations, further adjust-
ments should be made to account for these differ-
ences. The adjustment is as follows: CFAT = CFBT 

(1 – t), where CFAT is cash flow after tax, n is the 
elapsed time in years since the initial investment, 
CFBT is cash flow before tax, and t is the annual 
tax rate.

Inflation

Inflation rates change over time and also may 
have implications for an investment’s valuation. 
Here also, further adjustments can be made to 
account for these differences. The adjustment is as 
follows: CFAI = CFBI(1 – i), where CFAI is cash flow 
after adjustment for inflation, CFBI is cash flow 
before adjustment for inflation, and i is the annual 
inflation rate.

Putting It All Together

Four types of adjustment in ROI analyses have 
been reviewed: (1) compounding, (2) discounting, 
(3) taxes, and (4) inflation. Including these calcu-
lations, the fully adjusted annual cash flow in 
period n is ACFn = CFn(1/1 + r)n)(1 – tn)(1 – in). In 
this formula, adjusted cash flow in period n is a 
function of the unadjusted cash flow in that 
period; the rate of return, which is assumed to be 
constant for all periods; the annual tax rate for 
that period; and the inflation rate for that period. 
Return on investment throughout the investment 
period is

ROI = (ACF1 + ACF2 + ACF3 + . . . + ACFn)/V0

or

ROI=

Pt

n= j
ACFn

V0

where j is an individual and n is the final cash flow 
period.

As an example, let us consider a cash flow of 
$10 that occurs 3 years after the initial investment 
for which there is a 10% discount rate, a 30% mar-
ginal tax rate, and a 2% inflation during that year. 
The adjusted cash flow value is $10(1/1.331).70 × 
.98. With these adjustments, the $10 annual cash 
flow has an adjusted value of only $5.15.

Comparing Alternative Investments

Individuals and organizations need methods for 
comparing the value of alternative investment 
options. For example, a hospital may want to 
assess differences in value between three options 
for their heart failure clinic: (1) constructing a new 
stand-alone building, (2) remodeling an existing 
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office building, or (3) leasing office space from the 
developer. Each of these options will require differ-
ent initial investment amounts and will have differ-
ent long-term cash flow requirements. The five 
primary methods for making such assessments are 
as follows:

 1. Average rate of return

 2. Payback period

 3. Internal rate of return (IRR)

 4. Net present value (NPV)

 5. Profitability index

Each of these methods provides somewhat dif-
ferent insights into the values of competing invest-
ments; however, none of the methods alone is 
sufficient to give a complete assessment of the 
relative economic attractiveness of alternative 
investments.

Average Rate of Return

The average rate is an accounting method that 
merely averages the net change in investment 
value by the years of investment and divides by the 
initial investment amount. This is what is termed 
the unadjusted ROI. The formula is ROI = (C / 
V0), where C is the arithmetic average annual 
cash flow.

Payback Period

A simple way of assessing an investment’s 
return is to calculate how long it will take before 
the original value of the investment is recovered. 
This calculation is essentially the reciprocal of 
unadjusted ROI: Payback Period = (V0 / C) As 
with the unadjusted ROI, this calculation 
assumes a constant change in investment value 
over each time interval, and it ignores any 
changes in value occurring after the end of the 
payback period.

Internal Rate of Return

Because of the shortcomings of the previous 
methods, it is generally agreed that methods are 
required that account for both the magnitude and 

the timing of cash flows. The internal rate of 
return (IRR) is the discount rate at which the 
cumulative change in investment value is equal to 
the value of the initial investment. Essentially, this 
is a break-even discount rate, where the initial 
investment and subsequent changes in that invest-
ment’s value are equal. The formula is

V0
CF1

ð1+ df Þ1 + CF2

ð1+ df Þ2 + CF3

ð1+ df Þ3 +    + CFn
ð1+df Þn :

This can also be written as 
Xn

t= 0
ðCFt=ð1+ rÞtÞ= 0; 

where the cash flow in Time 0 includes the initial 
investment. The advantage in the IRR decision 
method is that it incorporates discounting in  
the analysis. The primary disadvantage is that  
it does not account for the size of the original 
investment.

Net Present Value

The NPV decision method accounts for the size 
of the original investment by calculating the invest-
ment’s estimated final value assuming a required 
rate of return. The formula is

NPV=V0 +
CF1

ð1+ df Þ1 + CF2

ð1+ df Þ2

+ CF3

ð1+df Þ3 +    + CFn
ð1+ df Þn :

Alternatively, this can be written as

NPV=
Xn

t= 0

CFt

ð1+ rÞt

 
;

with Time 0 including the initial investment as a 
negative cash flow. This method yields the expected 
gain or loss from an investment assuming that the 
required rate of return is met.

Profitability Index (Benefit-Cost Ratio)

The profitability index is the adjusted ROI. In 
this method, the adjusted cash flows are divided by 
the value of the original investment. The formula is

PI=

Pn

t= 1

CFt
ð1+ rÞt

V0
:
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Using this decision rule, an organization would 
accept investments with a profitability index 
greater than 1 and reject those with indices less 
than 1.

Let us assume that the cost of constructing a 
stand-alone building for a heart failure clinic is 
$1,000,000 and that the annual net cash flow 
(revenues less expenses) will be $300,000. In 
contrast, let us assume that $200,000 will be 
required to remodel an existing building for the 
clinic and that this alternative’s annual net cash 
flow will be $150,000. The expected net cash 
flow (total annual cash flow less investment) over 
a 10-year investment period is $2,000,000 for 
the build option and $1,300,000 for the remodel 
option. The average rates of return are 30% and 
75%, and the payback periods are 3.3 years and 
1.3 years for the build and remodel options, 
respectively. However, these metrics do not 
account for differences in cash flow timing, 
taxes, and inflation. Assuming a 30% marginal 
tax rate and a 2% inflation rate, the internal rate 
of return for the build option is 14.1%, whereas 
it is 48.7% for the remodel option. If we assume 
a 10% discount factor, total cash flows are 
$176,895 ($1,176,895 less the $1,000,000 invest-
ment cost) for the build option and $388,448 
($588,448 less the $200,000 investment cost) for 
the remodel option. Thus, the profitability index 
is .176 for the build option and 1.942 for the 
remodel option.

Method Selection

Selecting between methods for evaluating invest-
ments may not be straightforward. Situations will 
arise in which there are conflicts between the 
investment decision recommendations from differ-
ent assessment methods. Thus, the adjusted ROI 
(the profitability index) supplemented with the  
net present value, and perhaps an internal rate of 
return calculation, will give a better overall assess-
ment of the investment’s potential value than can 
be derived from using one measurement alone.

Eric L. Eisenstein

See also Cost-Comparison Analysis; Costs, Opportunity; 
Discounting
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Risk adjusTmenT oF ouTComes

Risk adjustment facilitates meaningful compari-
sons of outcomes of different groups of individu-
als by accounting for differences across the groups 
in baseline characteristics that could affect their 
outcomes. Groups can be defined in countless 
ways depending on comparisons of interest, such 
as patients admitted to one hospital versus another, 
individuals receiving Treatment X versus Treatment 
Y, and persons in one socioeconomic stratum ver-
sus other strata. In observation studies, individuals 
are not randomly assigned to the groups, and, for 
reasons that are sometimes poorly understood, 
those in one group may differ in significant ways 
from those in other groups. These differences 
might affect the likelihood that the individuals will 
experience the outcomes of interest. For example, 
if patients at the neighborhood hospital are older 
on average than those admitted to the downtown 
teaching facility, it is unclear whether the higher 
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mortality rate at the community hospital is caused 
by worse care or older patients. In these types of 
observation studies, the goal of risk adjustment is 
to take into account—or adjust for—the effect of 
important risk factors, so that analysts can more 
confidently attribute differences in outcomes to 
the variable of interest (e.g., hospital quality) than 
to underlying characteristics of the individuals in 
the groups (e.g., older vs. younger age).

The gold standard for determining the effects 
of an intervention is the randomized controlled 
trial (RCT). Randomization ensures that, on aver-
age, individuals assigned to receive an inter vention 
have similar baseline characteristics (unmeasured 
as well as measured attributes) to those random-
ized to the control group that does not receive the 
intervention. Thus, an RCT that uses an intention-
to-treat analysis—that is, compares outcomes of all 
persons assigned to the intervention versus control 
group regardless of the treatments patients actually 
receive—provides a theoretically sound basis for 
concluding that differences in outcomes are caused 
by the intention to use a different treatment.

However, RCTs are neither ethical nor practical 
in many situations. The key ethical concern is an 
unwillingness to substitute an untried treatment 
for one that is widely used, even if its utility is largely 
untested, or a treatment with well-documented 
but modest benefits. The numerous practical 
impediments include high costs and lengthy time 
horizons required to conduct RCTs, challenges of 
human subjects protections and obtaining truly 
informed consent, and refusals of physicians and 
patients to participate in randomized studies even 
when widely used standard therapies have little 
rigorous scientific evidence supporting their bene-
fits. Another difficulty in planning RCTs is the 
tension between answering a narrowly defined 
question well (e.g., by excluding patients with 
extensive comorbidities) versus the ability to gen-
eralize findings more broadly (e.g., by including 
the full range of patients who might be candidates 
for the treatment should the RCT find it effective). 
Finally, RCTs are not well suited for answering 
many important questions where it is infeasible to 
randomly assign individuals to different groups, 
such as comparing the quality of care at Hospital 
X versus Hospital Y by contrasting patients’ out-
comes at these respective institutions. Randomly 
assigning patients to different hospitals is not 

possible in today’s environment. When data from 
RCTs are not available, inferences about the value 
of interventions must come from observational 
studies. Risk-adjusted comparisons have become a 
standard method for using observational data to 
study treatment effectiveness, as well as to facilitate 
quality monitoring and support other health policy 
initiatives, such as pay-for-performance programs 
being implemented by government and private pay-
ers. These value-based purchasing programs aim to 
pay higher quality and more efficient providers 
more than providers offering lower value: Credible 
judgments about provider quality or efficiency 
require adjusting for differences in the types of 
patients seen by each provider.

Risk adjustment plays a behind-the-scenes role 
when comparing outcomes across providers. 
Another role of risk adjustment is more out-
front—that is, serving as the explicit means to 
predict outcomes for individuals within popula-
tions. An example is risk-adjusting payment levels 
for healthcare services. Medicare prospective pay-
ment systems for hospitals, nursing homes, inpa-
tient rehabilitation facilities, and home healthcare 
all use some form of risk adjustment, setting pay-
ment levels for services or groups of services based 
on specified health conditions and other character-
istics of the individual Medicare beneficiary. 
Another example is setting payment rates for 
capitated healthcare plans. In these various pay-
ment examples, the goal is to create appropriate 
incentives to provide high-quality care to all peo-
ple, regardless of the complexity or extent of a 
patient’s health condition. By accounting for dif-
ferences in illness complexity, risk-adjusted pay-
ment reduces incentives to avoid sick patients 
(who might have high relative costs) in favor of 
healthier patients (who might have much lower 
costs and thus produce higher profits). Without 
risk adjustment, providers face strong incentive to 
“skim” or “cherry pick” patients who require less 
costly care, leaving the sicker patients with fewer 
options.

Although the concept of risk adjustment is 
straightforward, designing and implementing risk 
adjustment confronts multiple challenges, from 
defining an appropriate conceptual framework to 
identifying data sources containing essential risk 
factors to using appropriate statistical methodolo-
gies. This entry briefly discusses selected issues 



987Risk Adjustment of Outcomes

central to risk adjustment. One very important 
practical issue is not addressed: data sources. Data 
sources vary widely, including detailed primary 
data collection designed and conducted by research-
ers (e.g., in an observational study of treatment 
effectiveness) to huge data files generated by admin-
istering reimbursement systems (e.g., Medicare 
claims files). Though issues relating to these widely 
ranging data sources are not discussed, all topics 
presented below must eventually link back to the 
content, size, and nature of the intended data 
source. Selected conceptual issues, such as potential 
outcomes and candidate risk factors, and issues 
related to the statistical models used to do risk 
adjustment, are considered in what follows.

Risk of What?

As described above, risk adjustment facilitates 
comparisons of outcomes across populations whose 
baseline characteristics—especially those character-
istics directly related to the outcome of interest—
differ. However, the relationship between persons’ 
characteristics, such as age and health status, and 
outcomes depends on the outcome. For example, 
widely metastatic cancer (an indicator of extent or 
severity of disease) could have different relation-
ships to two policy-relevant outcomes: costs and 
death. Certainly, metastatic cancer increases the 
risk of imminent death, but it might decrease 
healthcare costs if persons choose relatively less 
expensive palliative care compared with the aggres-
sive, potentially curative treatment sought by 
someone with early-stage cancer. Thus, a single risk 
adjustment model will not work equally well across 
all outcomes. Before conceptualizing a risk adjust-
ment framework, analysts must clearly specify the 
outcome of interest. The next step is to specify 
those characteristics of individuals that increase or 
lower risks of experiencing that outcome.

Dimensions of Risk

Including all potential risk factors in a risk adjust-
ment model is virtually impossible—complete infor-
mation on all relevant risk factors is rarely available. 
Nonetheless, when designing a risk adjustment 
method, analysts should first go through a concep-
tual exercise of identifying all the various risk fac-
tors that, in an ideal situation, they would want to 

include. This exercise will help guide selection of 
data sources. And, by explicitly identifying key risk 
factors not included in the model, analysts have a 
better understanding of factors that could poten-
tially explain differences in risk-adjusted outcomes 
across groups of interest. In what follows, various 
attributes that might be relevant to different out-
comes are briefly discussed.

Age and Gender

Age has an independent effect on many out-
comes even after accounting for other risk factors. 
However, age by itself and in addition to other risk 
factors often has little effect on the ability of risk 
adjustment models to predict outcomes. Some 
studies have shown that women have poorer out-
comes than men following certain treatments, such 
as for coronary artery disease. However, like age, 
gender usually contributes little to risk adjustment 
model performance. Nevertheless, because of their 
face validity and easy availability, risk adjustment 
models usually include age and gender. Sometimes, 
models with only age and gender as independent 
variables serve as baselines for measuring improve-
ments in model performance when other risk fac-
tors are added.

Race and Ethnicity

Disease prevalence and other health outcomes 
frequently differ by race and ethnicity. Measuring 
race and ethnicity is much more problematic than 
age or gender, and reliable data on these factors are 
often not available. Variables reflecting race and 
ethnicity are significant predictors of health out-
comes, although the extent to which statistical 
significance reflects differences in socioeconomic 
status, patient preferences, discrimination, or biol-
ogy is not clear. Due to inadequate measurement 
and small sample sizes, risk adjustment models 
may include race and ethnicity only by distinguish-
ing black from white. Medicare data classify ben-
eficiaries into white, black, nonblack Hispanic, 
and other. Until recently, most private insurers 
have not collected information on race and ethnic-
ity. However, in response to continuing reports of 
disparities in diagnosis, treatment, and patient out-
comes by race and ethnicity, and to new federal 
guidelines about coding multiracial identity, more 
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databases will contain detailed information on 
race and ethnicity.

Socioeconomic Status

Socioeconomic disparities in health status are 
well documented. For example, patients living in 
economically disadvantaged areas in the United 
States have poorer survival rates following surgery, 
and those without health insurance have poorer 
health. Often, individual-level socioeconomic data 
are not available and census tract or zip code level 
data based on the patient’s residence are used 
instead. In some research studies, using zip code 
level socioeconomic data for risk adjustment  
has the same effect as using individual-level data. 
However, even when individual income measures 
are available, area-based income measures provide 
additional information about the context within 
which individuals receive their care since low- and 
high-income neighborhoods are likely to have very 
different environmental exposures and healthcare 
delivery infrastructures. Social status, such as liv-
ing alone or being unmarried without close friends, 
is also associated with outcomes.

Functional Status

Standard functional status measures include 
basic activities of daily living (ADLs: eating, bath-
ing, dressing, toileting, walking) and instrumental 
ADLs (IADLs: shopping, cooking, doing house-
work, using public transportation, balancing a 
checkbook). More comprehensive measures con-
sider cognitive abilities, affective health (e.g., hap-
piness, anxiety), and social activities. Numerous 
instruments exist for assessing function status; 
some are disease specific and others generic (inde-
pendent of diagnosis). Functional status is a strong 
predictor of important outcomes, including in-hospital 
and 30-day posthospital mortality and patient  
satisfaction.

Health Behaviors

Health behaviors, including tobacco use, nutri-
tional practices, level of physical activity, alcohol 
consumption, illicit drug use, sexual practices, 
societal and domestic violence, and seat belt use, 
are often related to outcomes. Differences in health 

behavior clearly contribute to some of the observed 
health differences by socioeconomic status.

Acute Clinical Stability

Acute clinical stability reflects patients’ current 
physiologic functioning and is an important risk 
factor when examining clinical outcomes of acutely 
ill patients over short time frames, such as deaths 
in intensive care units or following urgent or semi-
urgent surgery. Measuring acute clinical stability 
requires basic physiologic values, such as heart and 
respiratory rates, serum chemistry and hematology 
findings, arterial oxygenation, and level of con-
sciousness.

Severity of the Principal Diagnosis

Medicare defines the principal diagnosis as the 
leading disease that caused a hospitalization. 
Clinicians have developed disease-specific severity 
algorithms for certain diseases. For example, 
oncologists stage cancers generally based on the 
size and characteristics of the tumor and extent of 
its spread throughout the body; the New York 
Heart Association has developed a widely used 
classification system for heart failure. But many 
conditions do not have well-established severity 
rating schemes.

Comorbidities

Comorbidities are diseases unrelated in etiology 
to the principal diagnosis. Comorbidities differ 
from complications, which are sequelae of the prin-
cipal diagnosis. Prototypical comorbidities are 
chronic conditions such as diabetes mellitus, chronic 
obstructive pulmonary disease, or ischemic heart 
disease. Many studies have shown that comorbidi-
ties increase the likelihood of poor outcomes.

Decisions About Risk Factors

Many outcomes are easy to specify and their rela-
tionship to potential risk factors generates little 
debate. Other outcomes, however, raise important 
questions, often related to how the risk-adjusted 
outcome information will be used (e.g., setting 
payment rates, publicly reporting quality 
indicators)—questions that hold implications 
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about whether or not to adjust for certain risk 
factors. For example, experts disagree about 
whether to risk-adjust process of care measures, 
which are frequently included in public reports of 
provider performance. The case of screening mam-
mography, which is recommended for women 
between the ages of 50 and 69, exemplifies this 
concern. Since all women between 50 and 69 
should receive mammography, should analysts 
risk-adjust comparisons of mammography screen-
ing rates? Research suggests that education level is 
closely related to the willingness of women to 
undergo mammography: Less educated women are 
less likely to adhere to mammography recommen-
dations from their physicians than highly educated 
women. Some physicians have more highly edu-
cated patient panels than do other physicians. In 
this situation, failure to adjust for education when 
comparing mammography rates across physicians 
could have a perverse effect. A facility with a high 
proportion of poorly educated patients could 
receive a worse rating than a second facility with 
mostly college-educated patients even if the first 
practice achieves higher screening rates with both 
its less educated and highly educated patients.

A broader question arises for risk factors that 
might reflect not only intrinsic patient characteris-
tics but also provider attitudes. As noted earlier, 
many studies have documented racial disparities  
in healthcare service use, as well as outcomes. 
Researchers are still investigating the multiple fac-
tors that have produced such disparities. Should a 
variable such as race, that is not only often strongly 
associated with an outcome of interest but also 
perhaps with discriminatory attitudes, be included 
as a risk adjuster? To the extent that the different 
distribution of race by intervention status reflects 
discrimination, adjustment for race can “excuse” 
this discrimination. To the extent it reflects real 
differences in the difficulty of achieving certain 
outcomes by race, failure to adjust for race results 
in biased estimates of effectiveness. If there are suf-
ficiently many cases in each racial group, a reason-
able strategy is to run the risk adjustment models 
separately by racial category.

A similar type of issue arises concerning a risk 
factor that is not only a characteristic of the patient 
but may also be a reflection of provider behavior. 
To illustrate, consider pressure ulcer as an outcome 
of nursing home care. The risk of developing a 

pressure ulcer depends both on patients’ risk factors 
and the quality of nursing home care. These dual 
factors pose challenges to using risk-adjusted pres-
sure ulcer rates as an indicator of nursing home 
quality. ADL limitations are a risk factor for 
patients developing pressure ulcers. However, the 
quality of nursing home care can also affect ADL 
performance. Including ADL limitations in the risk 
adjustment model excuses the nursing home for 
poor care that results in ADL limitations. However, 
even the highest-quality nursing home care cannot 
prevent ADL declines for certain patients with pro-
gressive debilitating conditions. Failure to include 
ADL limitations as risk factors in the model pre-
dicting pressure ulcers will produce biased estimates 
of nursing home quality.

Recently, initiatives to measure quality of care 
are turning to composites—combinations of mul-
tiple quality indicators into a single score. Ongoing 
research is exploring how to best create composite 
measures. Whatever approach is used to combine 
the individual quality metrics, it is important that, 
where appropriate, the individual measures first  
be risk adjusted. In that way, variables that both 
conceptually and empirically are related to each 
dimension of quality can be included in the risk 
adjustment model. Composite measures can pose 
data challenges if different indicators within the 
composite require adjustment for very different 
risk factors. Nevertheless, failure to consider risk 
adjustment when specifying composites could 
complicate interpretations of composite scores.

Risk Adjustment Systems

A large number of risk adjustment systems have 
been developed, many for specific, targeted pur-
poses. In what follows, several widely used systems 
that are either free or available for research pur-
poses for a modest fee are briefly discussed.

Probably the most widely used system to mea-
sure the impact of comorbidities on outcomes is the 
Charlson index, a score that is the sum of whole 
number weights assigned to each of 19 serious 
medical conditions. This index can be implemented 
in administrative (claims) data from diagnoses 
coded in the ICD-9-CM classification system. 
Clinical Classification Software (CCS) from the 
Agency for Healthcare Research and Quality pro-
vides another popular way to use ICD-9-CM data 
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for risk adjustment. CCS maps all ICD-9-CM 
codes into 259 categories that also roll up into 30 
broad diagnostic categories. The CCS software, 
which can be downloaded for free, does not pro-
vide a summary morbidity score. To account for 
comorbidities in a risk adjustment model, each dis-
ease category is entered as a dummy or indicator 
variable in a model that may also include age, sex, 
and other predictors. Fitting the 259-category ver-
sion of CCS to a very large data set results in excel-
lent risk prediction, but models with so many 
indicators (some of which flag rare diseases) should 
not be attempted with fewer than 100,000 obser-
vations. Smaller data sets require either fitting 
coarser comorbidity models to the data (e.g., using 
the 30 broad CCS categories) or summarizing total 
morbidity through a summary risk score developed 
on a large, benchmark data set.

Two sophisticated risk classification systems 
that use ICD-9-CM codes to produce summary 
risk scores precalibrated to large populations are 
used extensively in the research literature: Adjusted 
Clincal Groups (ACGs) and Diagnostic Cost Group 
or Hierarchical Condition Category models (DCG/
HCC). Each of these software products offers 
various modeling structures for different purposes 
and provides guidance for best use. They are pro-
prietary products but are available for use in 
research projects for a modest licensing fee.

While Charlson, ACGs, and DCGs provide all-
purpose risk scores, which summarize a patient’s 
illness burden in different settings, such as during a 
year of care, other methods are designed specifi-
cally for risk-adjusting hospital admissions. The 
most widely used of these is Diagnosis Related 
Groups (DRGs). Broadly, DRGs classify admis-
sions in the same category when they have the 
same “principal diagnosis” and “major procedure” 
(if any), in some cases with distinctions based on 
the presence or absence of complications or comor-
bidities. Payers (such as Medicare) typically view 
hospitalizations within the same DRG as having 
the same expected resource consumption. However, 
among admissions in the same DRG, the nature and 
extent of secondary diagnoses present may be impor-
tant. The All Patient Refined Diagnosis Related 
Groups (APR-DRGs) software licensed by 3M, for 
example, assigns “severity” categories within DRGs. 
One version reflects expected differences in cost; 
another, differences in risk of mortality. APACHE II 

is a widely used system that summarizes the 
expected effect of physiologic variables, age, and 
comorbid conditions on short-term mortality for 
patients in intensive care units.

Models for Risk Adjustment

Risk factors are often confounders—that is, vari-
ables that are both related to outcomes and that 
differ across groups of interest. Failure to adjust 
for confounders can produce biased estimates of 
the effect of group membership. Multivariable 
models are the principal method used to both 
address confounding and to make predictions 
based on the risk profiles of groups of patients.

Continuous Outcomes

Multiple regression models can be used to 
estimate the effect of an intervention (or group 
membership) on a continuous outcome, while 
accoun ting for possible confounders. The basic 
form of a multiple regression model is

E(Yi) = a + ∑j bjXij + cI,

where Yi is the value of the outcome for the ith 
patient, Xij is the value of that patient’s jth risk fac-
tor, and the intervention I is coded as a “dummy 
variable” equaling “1” if the patient receives the 
intervention and “0” otherwise. E(Yi) is the 
expected (or predicted) value of Yi. In such a 
model, the effect of the intervention on Y after 
adjusting for the risk factors (the Xijs) is estimated 
by the coefficient c. If the expected value of Y is Y0 
for someone without the intervention, their 
expected value if they received the intervention  
is Y0 + c. The Xijs may be continuous valued or 
dummy variables, and they may include polyno-
mial terms or interaction terms.

Model parameters are usually estimated using 
ordinary least squares. Ordinary least squares esti-
mates parameters so that predictions are as close 
to actual values as possible, specifically, to mini-
mize ∑i(Yi − PREDi )

2, where PREDi is the predicted 
outcome for the ith person.

Statisticians and clinicians should work closely 
together to model clinically based risk factors. 
Clinicians provide insights regarding the reliability 
and validity of measured variables, relevant time 
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frames for measuring variables, the plausibility of 
nonlinear relationships, and the meaning of extreme 
or missing values. For example, clinicians might 
indicate that certain physiologic parameters may 
not be measured because they are presumed to be 
normal. In this instance, analysts might reasonably 
impute normal values for missing values. In other 
instances, clinicians may feel less comfortable 
assigning normal ranges to missing values.

When interest is in the quality or efficiency of a 
number of different providers, cI may be replaced 
by ∑kckIk, where the Iks are dummy variables for 
all but one of the providers. Here, the providers 
are treated as so-called fixed effects, with each ck 
being the estimated increment to the expected 
value of Y associated with the patient being in the 
kth provider’s panel rather than the omitted pro-
vider’s panel. Random effects model (also called 
empirical Bayes, hierarchical, or mixed models) 
may also be used to examine multiple providers. A 
simple example of a random effects model is

E(Yi) = ak + ∑j bjXij,

where the aks (one for each provider) are treated as 
independent, identically distributed random vari-
ables that estimate the effect of provider k on the 
outcome after adjusting for patient-level risk fac-
tors (the Xijs). Random effects models are particu-
larly appropriate for estimating the effects of 
provider-level characteristics, such as being a high- 
versus low-volume surgeon or hospital.

Some continuous outcomes, particularly those 
related to resource consumption, are highly skewed; 
in particular, their values have a long right tail. The 
traditional approach to address this skewness is to 
fit an ordinary least squares model with the loga-
rithm of cost, ln(cost), as the dependent variable, 
thus assuming that the outcome follows a lognor-
mal distribution. This approach produces predic-
tions in log dollars. Thus, for example, an error of 
$2,000 when $5,000 is expected is treated as 
equally serious as an error of $20,000 when 
$50,000 is expected. Also, the model’s predictions 
do not readily convert to unbiased estimates in the 
original dollar scale. An alternative approach is to 
use a generalized linear model. Generalized linear 
models are characterized by two features, a flexible 
family of distribution functions (F) for the out-
come variable and a choice of a link function (g), 

which describes the scale on which covariates in 
the model relate to the outcome. A typical model 
when the outcome is resource consumption uses a 
natural logarithm (ln) link function,

g(E(Yi)) = ln(E(Yi)) = a + ∑j bjXij + cI,

with Yi hypothesized to follow a gamma distribu-
tion. Parameters are selected to produce a best fit 
between the actual and predicted values in the 
original scale, not between actual and predicted 
values in a log scale (as ordinary least squares on 
log-transformed data does).

If ln(E(Yi)) = a + ∑j bjXij + cI, then E(Yi) = exp(a 
+ ∑j bjXij + cI) = exp(a + ∑jbj Xij) ∗ exp(cI). In a 
logarithmic model, the covariates act multiplica-
tively on the mean. For example, if exp(c) is .9, the 
expected cost of patients receiving the intervention 
is 10% lower than those who do not receive it.

A growing body of literature, suggests that—
especially with large data sets or with only mildly 
skewed outcome variables (e.g., costs of hospital 
admissions for people admitted with similar  
medical problems)—simply modeling the outcome 
directly using ordinary least squares provides as 
good or better predictions than most of the more 
sophisticated models that have been proposed for 
handling skewed outcome variables. When data 
are very skewed, such as total costs of healthcare 
during a calendar year of all enrollees in a com-
mercially insured population, which will include 
many people with no costs and a small number 
with very high costs, two part models are often 
used. One model predicts the likelihood of any 
healthcare costs (a dichotomous outcome), and a 
second model predicts costs of those who have 
some healthcare costs.

Regardless of the model used, it is important to 
examine the distribution of all variables and to 
address problems arising from the presence of 
extreme outliers. For example, in a general popula-
tion of working adults and their families, one 
“million-dollar baby” can have a large effect on a 
regression model, even in a large data set. It is  
useful to top-code to reduce the influence of  
such outliers. For example, when top-coding at 
$250,000, all values larger than 250,000 are reset 
to 250,000.

As noted, a number of risk adjustment systems 
provide risk scores. These scores are particularly 
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useful for researchers with modest-sized study 
populations, where it is not feasible to include a 
large number of dummy variables for different 
conditions. To illustrate the use of such a score, 
imagine a risk score (RS) that expresses next year’s 
expected healthcare costs for a person as a multiple 
of the average cost in a benchmark population 
(e.g., 6 million persons with employer-based insur-
ance). An RS of 1.4, for example, indicates that the 
person’s expected resource consumption is 40% 
greater than average. Including RS as a predictor 
in a regression model is an easy way to risk-adjust 
outcomes for differences in overall morbidity bur-
den in a specific population of interest. However, 
the simplest way to convert such scores into pre-
dictions in a specific population is to multiply 
them by a proportionality constant k, calculated as 
[AVE (outcome)/AVE (RS)], where the average 
AVEs are computed on the cases in the specific 
population of interest. If each person’s predicted 
value is k ∗ RS, then the average expected out-
come in the specific population will equal its aver-
age actual value.

An analyst might want to use the risk score to 
predict an outcome that is different from the out-
come used in the original model to calculate risk 
scores. For example, the resource consumption-
based RS above might be used to predict hospital-
izations or mortality. Generally, risks for different 
outcomes are related, though usually not linearly. 
An easy way to deal with this is by risk score buck-
eting. Cases are ranked by RS and cutpoints identi-
fied that divide the population into a modest 
number of categories, perhaps deciles of increasing 
risk. Alternatively, when predicting a highly skewed 
variable such as cost, more refined estimates for 
the higher-cost cases might be more useful, which 
suggests using uneven-sized buckets, for example, 
making cuts at percentiles 20, 50, 80, 90, 95, 99, 
and 99.5. The expected outcome for each case is 
the average outcome for everyone classified in the 
same bucket. When using this method, each bucket 
should have enough cases to achieve a fairly stable 
average. When analyzing costs, buckets of 500 or 
more cases are desirable.

Dichotomous Outcomes

Logistic regression models are typically used  
to model dichotomous outcomes. Let pi be the 

probability that person i experiences an event such 
as death. Then, pi/(1 − pi) equals “the odds” that 
the person experiences the outcome. In a logistic 
regression model,

ln[pi/(1 − pi)] = a + ∑jbjXij + cI.

Here, the effect of the intervention is modeled as 
multiplying the odds. For example, suppose that 
patients without the intervention have a 25% 
chance of the event occurring and exp(c) = 2. Their 
odds are 1/3 (=.25/.75) without the intervention 
and 2/3 ((1/3) ∗ 2 = .40/.60) with it. That is, 
receiving the intervention raises their chances of 
the event occurring from 25% to 40%.

Time to an Event

Another fairly typical outcome is duration of 
survival (time-to-death). The Cox proportional 
hazards model is widely used when modeling this 
type of outcome. Let h(t) = the probability that a 
person who has survived to time t dies prior to 
time t + ∆, where ∆ is a small interval of time. This 
“instantaneous hazard” of dying at time t is  
modeled as

 h(t) = h0(t) exp(a + ∑j bjXij + cI) 
 = [h0(t) exp(a + ∑j bjXij] ∗ exp(cI).

Here, exp(c) multiplies the hazard for people who 
receive the intervention. If c is negative, exp(c) is 
less than 1, meaning that the intervention reduces 
the hazard, or chance, of death. Each hazard func-
tion is uniquely associated with a survival function 
S(t), which equals the predicted probability that  
a person survives from time 0 until time t. If c is 
negative, S(t) for persons with the intervention  
is greater than S(t) for persons with the same char-
acteristics who do not receive the intervention; 
also, the gap between the two functions widens 
over time.

Summary Measures of Performance  
of Risk Adjustment Models

One frequently asked question is how well a spe-
cific risk adjustment model accounts for actual 
differences in patient outcomes (i.e., the model’s 
predictive validity). No single summary measure 
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can fully reveal how valid a risk adjustment 
method is for a particular purpose. However, sev-
eral widely used summary measures exist for pre-
dicting different types of outcomes.

Predicting a Continuous Outcome

Let PREDi be the predicted value of the out-
come variable for patient i. The standard summary 
measure of model performance when multiple 
regression is used to make the prediction is R2, 
which equals

1 − [∑i (Yi − PREDi)
2/∑i (Yi − AVE(Y)2],

where AVE(Y) is the average of the Yis. R
2 is often 

described as the fraction of total variability in the 
outcome explained by differences in risk among 
cases in the sample. Because ordinary least squares 
regression produces models that maximize R2  

(since it minimizes ∑i (Yi − PREDi)
2), ordinary least 

squares software calculates the model R2. However, 
R2 is a useful summary measure of how well a set 
of predictions “fits” the actual outcomes regard-
less of the modeling algorithm used. The easiest 
way to calculate R2 for a set of {Yi, PREDi} pairs is 
to calculate the Pearson correlation coefficient (ρ) 
for the two variables and square it.

Though useful for comparing the predictive 
accuracy of different models on the same data set, 
R2 does not provide an intuitive indication of how 
well a model performs. For this purpose, it is use-
ful to examine actual and predicted values of the 
outcome within deciles of the predicted outcome. 
The best models are both well calibrated (as evi-
denced by having similar average values of pre-
dicted and actual outcomes within each decile of 
predicted risk) and discriminate well (as evidenced 
by the actual mean outcomes in the highest deciles 
being much larger than those in the lowest 
deciles).

The c statistic is the most widely used perfor-
mance measure for models predicting a dichoto-
mous outcome. Using death as an example, one of 
several equivalent definitions of the c statistic is the 
following: Consider all possible pairs formed by 
selecting one patient who died and one who lived; 
the c statistic is the proportion of these pairs in 
which the predicted probability of death is higher 
for the patient who died than for the one who lived. 

The c statistic is close to 1.0 when the model 
assigns nearly all the highest scores to the patients 
who died and near .5 when its predictions are  
no better than random. The c statistic only mea-
sures discrimination, not calibration. A Hosmer-
Lemeshow chi-square test is often used to evaluate 
calibration, with the aim that the test will fail to 
reject the null hypothesis that the numbers of 
deaths predicted by the model are a good fit for the 
actual numbers of deaths across the 10 deciles of 
predicted risk. Like other chi-square tests, it has 
the weakness that the null hypothesis is almost 
certain to be rejected, even with a good model, 
when there is a large number of cases.

When evaluating model performance, it is 
important to distinguish how well the model fits 
the data set used to estimate model parameters 
from how well it predicts outcomes in other set-
tings. There are two main approaches for model 
validation. In cross-validation, analysts use part of 
a data set to develop the model and the remaining 
data to validate its performance. In independent 
validation, analysts apply the model to entirely 
new data. In cross-validation, part of the data 
(typically one half or two thirds of the data set) is 
used to develop a model; this model is then used to 
make predictions in the validation data, with 
“validated” measures of performance being calcu-
lated from the (Yi, PREDi) pairs. Validating a 
model by testing the accuracy of its predictions in 
an “entirely” new data set is the strongest form of 
validation. If the model does not validate well, the 
model itself may not be the problem. For example, 
imagine developing a model to predict mortality  
in one year and applying it to next year’s data. 
Predicted mortality next year could be greater 
than actual because treatment approaches have 
improved, or because diagnosis coding is more 
complete, making patients appear sicker than they 
would have been in the earlier data. In general, one 
tends to have more confidence in a model’s ability 
to capture stable relationships within a data set 
(this kind of patient is more likely to die than that 
kind) than to correctly predict actual levels of an 
outcome in new data. Thus, it is more common to 
test prediction in the new data but not model cali-
bration. Y is regressed on PRED in the new data, 
which automatically recalibrates predictions:

NewPRED = a + b ∗ PRED.
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This forces the average of newPRED to equal the 
average of Y in the new data. One can then exam-
ine the closeness of fit in the new (Yi, newPREDi) 
pairs, as described above.

Extensions of Standard  
Multivariable Modeling

Propensity Scores

If the relationship between risk factors and  
an outcome is correctly modeled, c, the coefficient 
associated with the intervention is an unbiased esti-
mate of its effect. However, all models are imper-
fect. Model predictions will typically underestimate 
“true” risk for some kinds of patients and overesti-
mate it for others. Suppose that the model overesti-
mates the risk of death for patients with attributes 
that make them more likely to receive an interven-
tion. Then, even in the absence of an intervention, 
their actual outcomes will be better than predicted 
by the model. This better-than-expected outcome 
will be attributed to the intervention and will be 
reflected in a biased estimate of c. Propensity scores 
are a post hoc way to redesign studies using obser-
vational data by subsetting or reweighting the origi-
nal observations in a way that substantially reduces 
differences in the distribution of measurable base-
line risk factors between cases and controls. Because 
in the subset of cases used in the propensity score 
analysis (or in the reweighted sample of cases) simi-
lar proportions of cases and controls have each type 
of risk factor, similar proportions of each group will 
be over- or underestimated by similar amounts. As 
a result, propensity score analysis protects against 
biased estimates of treatment effects due to an 
imperfectly modeled relationship between the mea-
sured risk factors and the outcome.

A typical propensity score approach proceeds as 
follows:

 1. Develop a logistic regression model to predict 
the probability of receiving an intervention from 
the risk factors. This predicted probability is the 
propensity score.

 2. Divide the population into quantiles (e.g., 
quintiles or deciles) of the propensity score.

 3. Within each quantile, sample equal numbers of 
cases and controls.

More sophisticated matching or weighting 
approaches have been proposed to produce the 
desired goal of focusing on a set of cases and a set 
of controls with similar distributions of the pro-
pensity score. These groups will be much more 
balanced on all baseline risk factors that were used 
in the propensity score model, a fact that can be 
easily verified by examining the distributions of 
risk factors in the subsampled (or reweighted) 
cases and controls. The subsample of cases and 
controls is then analyzed using standard tech-
niques, although, because the groups are well bal-
anced, multivariable modeling is more useful at 
this point for improving the accuracy of the esti-
mated effect of the intervention than for removing 
bias due to confounding.

A propensity score approach eliminates the need 
for very complex modeling (e.g., including interac-
tions and nonlinear terms) in an attempt to try to 
compare groups that are extremely different, and it 
highlights the extent to which cases and controls 
exist with similar baseline risk factors. Also, if there 
are enough cases, it allows examination of the 
effect of the intervention separately for the kinds of 
patients who rarely receive it (those in the lowest 
quantile of the propensity score) to others (in the 
higher quantiles) who more commonly receive it.

Instrumental Variables

Everything discussed so far addresses protecting 
against confounding from risk factors that have 
been observed or measured. Instrumental variable 
(IV) methods can be used to adjust for unmeasured 
as well as measured risk factors. The IV approach 
relies on assumptions about plausible scenarios that 
might capture factors that cannot be measured. The 
key to this approach is identifying an observed vari-
able that (a) is associated with the likelihood of 
receiving the intervention but (b) does not directly 
affect the outcome. Such a variable is called an 
instrument (for studying this outcome). To illustrate 
the approach, imagine two equally skillful provid-
ers, A and B, with patient panels that are similar 
with respect to both measured and unmeasured 
variables. As a matter of personal preference, A 
uses intervention I on more of his patients than 
Provider B. In this case, the provider is a good 
instrument. Suppose that 80% of A’s patients and 
60% of B’s patients receive I and that 35% of A’s 
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patients and 29% of B’s patients have a good out-
come. For simplicity, assume that these percentages 
are estimated without error. If in fact both providers 
treat similar patients and provide similar quality of 
care, the only factor that can account for A’s better 
success rate is his or her greater use of the interven-
tion. The IV estimate of intervention effect is

(Change in percent with a good outcome)/
(Change in percent receiving I) = (.35 − .29)/ 

(.80 − .60) = .30.

To clarify the interpretation of the effect esti-
mate, imagine 100 patients who switch from 
Provider B to Provider A. Twenty of these will get 
the intervention who would not have if they did 
not switch, and overall 6 more patients among 
these 100 will have a good outcome; that is, for 
every 10 extra people who get the intervention, 3 
extra people will have a good outcome. In real 
applications, randomness is formally addressed 
and two-stage modeling is often used to estimate 
treatment effectiveness.

There are several things to note about IVs: 
(a) The estimate of treatment effectiveness applies 
only to those patients who are marginal with 
respect to the treatment: Based on their attributes, 
these patients might or might not get the interven-
tion, compared with patients with characteristics 
about which there is widespread consensus about 
the intervention’s value (or lack of value). In par-
ticular, the 30% success rate does not apply to 
patients like the 60% who would always get the 
treatment or to the 20% who will never get the 
treatment. (b) The approach relies on the assump-
tion that patients seen by the two providers are 
similar in both measured and unmeasured risk fac-
tors and that Providers A and B give the same qual-
ity of care. It is not possible to directly test this 
assumption. However, to the extent that the patients 
seen by each provider have similar measured risk 
factors and quality on measurable dimensions, one 
has more confidence in the IV estimate.

Future Directions

Several studies have shown that well-done obser-
vational trials result in similar estimates of treat-
ment effectiveness as RCTs. However, the recent 

experience with hormone replacement therapy 
(HRT) in postmenopausal women suggests the 
need for caution. Several observational studies had 
indicated that HRT decreased the risk of coronary 
heart disease, findings which contributed to its 
widespread adoption by older women. However, 
the results of a large, long-term randomized trial 
subsequently found no benefit from HRT and a 
second study, the Women’s Health Initiative, found 
that HRT actually increased coronary risk. This 
caused a rapid decline in HRT use. There is a fas-
cinating literature on how and why the early 
analyses erred. In retrospect, inadequate risk 
adjustment for the healthier behaviors of the 
women who used HRT was an important factor.

The HRT experience has led some to dismiss the 
findings of observational studies. However, many 
important questions cannot be answered with ran-
domized controlled trials. One must learn what can 
be learned from observational data, keeping in 
mind that obtaining more comprehensive measures 
of baseline risk factors will provide more confidence 
in risk-adjusted findings. Electronic medical records 
will facilitate the collection of important variables. 
As the data improve, the need for thoughtful and 
comprehensive risk adjustment will increase.

Michael Shwartz, Arlene S. Ash,  
and Lisa I. Iezzoni
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Risk aTTiTude

Risk taking is generally considered to be the expres-
sion of a personality trait called risk attitude. People 
are assumed to take a certain amount of risk across 
a range of situations. Some people are more risk-
averse because the uncertainty and potential down-
side of risky options makes them anxious, while 
others are more risk seeking because the uncertainty 
and potential upside of risky options excites them.

Depending on how risk attitude is assessed, the 
assumption that it is consistent across situations is 
either true or false. Risk attitude as defined within 
the expected utility (EU) theory framework can 
vary greatly across decisions in different content 
domains and when outcomes are described as 
gains or losses. Risk taking also depends on how 
people know about possible decision outcomes 
(from personal trial-and-error learning vs. being 
given a statistical description). Risk attitude is 
more stable across situations when conceptualized 
within a risk-benefit framework that models risk 
taking as a trade-off between decision makers’ 
perception of the riskiness and benefit of choice 
options and assumes that this trade-off is governed 
by their attitude toward risk, that is, willingness to 
trade off (perceived) risk for (perceived) benefits: 
(Preference for option X) = (Perceived benefit of X) 
− b(Perceived risk of X). Larger values of trade-off 
parameter b mean that the decision maker is more 
risk-averse. Take the (hypothetical) example of 
two cancer treatments, surgery and radiation, 
which offer different prospects of extending life. 
Surgery entails a 10% chance of death during the 
procedure but a 90% chance of extending life by 
10 years. It thus has the benefit of extending life  
on average by 9 years (Expected value (Surgery) = 
.10(0) + .90(10) = 9) but also carries some risk of 
immediate death. This unpredictability of out-
comes is modeled in finance by the statistical vari-
ance of outcomes (which also happens to be 9), 
but other, less analytic factors also play a role. 
Radiation has no danger of immediate death but 
offers shorter possible life extensions, with a 50% 
chance of living for 2 additional years and a 50% 
chance of living for 5 additional years. The benefit 
of extending life is thus lower for radiation, 
namely, only 3.5 years on average (Expected  
value (Radiation) = .50 (2) + .50 (5) = 3.5), but its 

variance of outcomes is also lower, namely 2.25, 
which factors into perceptions of risk. If expected 
life extension and the variance in life extensions 
fully described perceived benefits and risks, respec-
tively, then a person who had a trade-off coeffi-
cient b of .5 would have a preference of 4.5 (i.e., 9 
− .5(9)) for surgery and one of 2.375 (i.e., 3.5 − 
.5(2.25)) for radiation, and thus would prefer 
surgery.

When modeled within a risk-benefit trade-off 
framework, situational differences in risk taking turn 
out to result from different perception of risks and 
benefits across situations (e.g., risks are perceived to 
be larger or benefits smaller in some situations com-
pared with others) rather than from differences in 
the trade-off coefficient b, that is, the willingness to 
take on (perceived) risk to obtain (perceived) benefit, 
which is fairly stable for a given individual.

Understanding and appropriately assessing risk 
attitudes is important in medical decision making. 
As already common practice in the financial services 
industry, a client’s (patient’s) risk attitude should  
be taken into consideration when providing advice 
about treatment options that differ in risks and ben-
efits. It is also crucial to understand the source(s) of 
an undesirable level of risk taking, when designing 
educational interventions to change a target group’s 
risk taking. Sources of risk taking are not limited to 
risk attitude, and different reasons for the behavior 
call for different interventions.

Recent psychological models of risky choice 
identify multiple determinants of risk taking, 
including nonlinear marginal utility (the EU defini-
tion of risk attitude) and also loss aversion, nonlin-
ear transformations of objective probabilities into 
subjective decision weights (probability weight-
ing), perceptions of returns and risk, and finally 
perceived risk attitude.

Situational Differences in Risk Taking

In EU theory, the dominant economic model of 
risk taking, the term risk attitude characterizes the 
shape of the utility function that is estimated from 
a person’s choices. Choice of a sure outcome over 
a lottery with equal expected value, for example, is 
modeled by a concave utility function and described 
as risk-averse. As shown in Figure 1a, increasing 
amounts of money add less and less utility. Getting 
$500 for sure has much more utility than having a 
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50% chance of getting $1,000, otherwise $0. With 
a convex utility function, shown in Figure 1b, 
where increasing amounts of money add more and 
more utility, the opposite is true. The decision 
maker will be risk seeking and take the lottery over 
a sure $500, which have much lower utility than a 
50% chance at $1,000, otherwise $0. Risk attitude 
in the EU framework is a parameter that measures 
the type and degree of curvature of the utility func-
tion. Even though risk attitude thus ostensibly only 
redescribes a set of choices, it is usually given a 
much more psychological interpretation.

Popular psychology and managerial folklore 
think of risk attitude as a personality trait, that is, 
as a preference for risk (either liking or not liking it) 
that is stable across situations. Unfortunately, there 
is little evidence for that, if risk attitude is defined in 
the EU way. A recently developed domain-specific 
risk-taking (DOSPERT) scale finds people’s risk 
taking to be very different in gambling, financial 
investing, health decisions, recreational choices, 
social choices, and ethical decisions.

Psychologists Daniel Kahneman and Amos 
Tversky replaced the utility function of EU theory 
defined over total wealth with a value function 
defined over outcomes that are perceived as gains 
or losses relative to a reference point. In their 
model, prospect theory (PT), choices are risk-
averse when outcomes are framed as gains but risk 
seeking when framed as losses (relative to a higher 
reference point). Not all apparent risk aversion is 
due to decreasing sensitivity on the loss and gain 
side. The loss function is also assumed to be steeper 
than the gain function, a property called loss aver-
sion, which gives losses more impact (losses loom 
larger). Finally, PT assumes that people overweight 

small-probability events, which either encourages 
or discourages risk taking, depending on whether 
the rare event is desirable (winning the lottery) or 
not (life-threatening side effects).

Behavior in the laboratory and the real world 
broadly supports PT’s predictions about risk aver-
sion for perceived gains, risk seeking for perceived 
losses, and loss aversion. However, PT’s prediction 
that rare events are overweighted only holds when 
decision makers receive a numeric or graphic descrip-
tion of the probability distribution of possible out-
comes of all choice alternatives. Such situations have 
recently been called decisions from description and 
stand in contrast to decisions from experience, 
where decision makers gradually learn about avail-
able choice alternatives by personal trial and error, 
that is, from the feedback provided by repeated 
choices. All animals other than humans are restricted 
to this second way of learning about risks in their 
environment. In decisions from experience, recent 
outcomes carry a lot of weight, a sensible adaptation 
in nonstationary environments. Since rare events 
have a low probability of having occurred recently, 
they tend to get underweighted in decisions from 
experience, except for those rare occasions where 
they did recently occur, in which case they are 
strongly overweighted. When parents have to decide 
whether to inoculate their child against diseases such 
as the German measles, they may consult an infor-
mational brochure or Web site that provides statisti-
cal summaries of possible side effects and their (very 
small) probabilities, that is, they make this decision 
“from description” and often shy away from inocu-
lation because they give too much weight to the 
possible side effects. When pediatricians contem-
plate the same decision, they can call to mind the 
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hundreds of children they have seen inoculated, with 
typically not a single case of negative consequences, 
that is, they make the decision “from experience” 
and may as a consequence perhaps underweight the 
possibility of negative side effects.

Assessment

If the purpose of the assessment is to predict risk 
taking in a specific future situation, risk attitude can 
be inferred from choices in the EU fashion, as long 
as the choices used in the assessment have the same 
characteristics as the target situation, for example, 
same content domain, outcome framing, and learn-
ing environment. If the purpose of the assessment is 
to advise or modify risk taking in a specific situa-
tion, all determinants of risk taking described above 
should be assessed to determine whether it is loss 
aversion, probability weighting, risk or benefit per-
ception, or risk attitude that is causing the behavior 
one wishes to influence or change.

Elke U. Weber

See also Loss Aversion; Personality, Choices; Risk 
Aversion; Risk-Benefit Trade-Off, Risk Perception
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Risk aveRsion

There are three risk attitudes (risk aversion, risk 
seeking, and risk neutrality). The risk attitude of 

“risk aversion” is distinguishable from the concept 
of “loss aversion.” This entry discusses risk atti-
tudes and then examines the early concepts of risk 
aversion in the work of mathematician Daniel 
Bernoulli in 1738 and the psychological research  
of Amos Tversky and Daniel Kahneman extending 
the theories in the last quarter of the 20th century.

Risk Attitudes

Risk-Averse Attitude

A risk-averse attitude is the attitude of an indi-
vidual that he or she will be unwilling to accept a 
risk in the following situation: When presented a 
choice as a trade-off between a gamble and a sure 
thing of equal expected value, the risk-averse indi-
vidual will be more likely to take the sure thing 
and not take the gamble. For example, when pre-
sented a choice between a gamble and a sure thing 
with the same value, for example, the choice 
between a 50:50 trade-off (50% chance of living 
an additional 1,000 days of life at the end of one’s 
life and a 50% chance of living no more additional 
days of life at the end of one’s life = Expected value 
[EV] = 500 days of life) and a sure thing (EV = 500 
days of life), the risk-averse individual will choose 
the sure thing over the gamble.

A stronger version of risk aversion can take the 
following form: When presented a choice between 
a gamble with a higher expected value (than a 
sure thing) and the sure thing, the risk-averse indi-
vidual will have a preference for the sure thing 
and reject a gamble even when that gamble has a 
higher expected value compared with the sure 
thing.

For example, when presented the choice between 
a 60:40 trade-off (60% chance of living an addi-
tional 1,000 days of life at the end of one’s life and 
a 40% chance of living no more additional days  
of life at the end of one’s life = EV = +600 days of 
life) and a sure thing (EV = +500 days of life), the 
risk-averse individual will still choose the sure 
thing over the gamble.

Risk-Seeking Attitude

A risk-seeking attitude on the part of an indi-
vidual is the attitude that he or she will be willing 
to accept a risk in the following situation: When 
presented a choice as a trade-off between a gamble 
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and a sure thing of equal expected value, the risk-
seeking individual will be more likely to take the 
gamble. For example, when presented a choice 
between a gamble and a sure thing with the same 
value, for example, the choice between a 50:50 
trade-off (50% chance of living and losing 1,000 
days of life from the end of one’s life and a 50% 
chance of living and losing no additional days of 
life at the end of one’s life = EV = −500 days of life) 
and a sure thing (EV = −500 days of life), the risk-
seeking individual will choose the gamble over the 
sure thing.

A stronger version of risk seeking can take the 
following form: When presented a choice between 
a gamble with a lower expected value (than a sure 
thing) and the sure thing of a higher expected 
value, the risk-seeking individual will reject the 
sure thing and have a preference for the gamble 
even when the gamble has a lower expected value 
compared with the sure thing. For example, when 
presented the choice between a 60:40 trade-off 
(60% chance of losing 1,000 days of life at the end 
of one’s life and a 40% chance of losing no days of 
life at the end of one’s life = EV = −600 days of life) 
and a sure thing (EV = −500 days of life), the risk-
seeking individual will still choose the gamble over 
the sure thing.

Risk-Neutral Attitude

A risk-neutral individual would be neutral 
regarding the choice, that is, he or she would be 
neither risk seeking nor risk-averse: When pre-
sented a choice as a trade-off between a gamble 
and a sure thing of equal expected value, the risk-
neutral individual is more likely to be unable to 
choose between the two and will call the choice a 
toss-up.

In summary, the term risk aversion refers to a 
preference for a sure thing (certain outcome) over 
a gamble (risky prospect) of equal expected value. 
The term risk seeking refers to a preference for a 
gamble (risky prospect) over a sure thing (certain 
outcome) of equal expected value. According  
to prospect theory, people tend to be risk-averse 
when choosing between prospects with gains 
(positive outcomes) of equal expected value; peo-
ple tend to be risk seeking when choosing between 
losses (negative outcomes) of equal expected 
value.

The Work of Daniel Bernoulli

Risk aversion was first worked on by Bernoulli in 
1738 on a gambling dilemma (the St. Petersburg 
Paradox) posed to him by his cousin, Nathaniel. 
As part of a theoretical explanation of why gam-
blers are unwilling to continue betting in a sure-
win game as the stakes rise in a problem, Bernoulli 
first formulated the concept of “risk aversion” 
relative to an individual’s state of wealth.

In partial answer to his cousin’s question, 
Bernoulli wrote a paper titled “Exposition of a 
New Theory of the Measurement of Risk.” 
Bernoulli considered that the value of an item must 
not be based on its price but rather on the utility it 
yields to an individual. Bernoulli noted that the 
price of the item depends only on the thing itself 
and is equal for everyone; yet the utility of that 
same item depends on the particular circumstances 
of the person making the estimate of the worth of 
the same item to himself or herself. For Bernoulli, 
no valid measurement of the value of a risk can be 
obtained without consideration being given to its 
utility, defined as whatever gain accrues to the 
individual or, conversely, how much profit is 
required to yield a given utility. Bernoulli also sug-
gested in his theoretical framework that people 
tend to evaluate outcomes in terms of their impact 
on the individual’s resulting state of wealth.

Bernoulli’s Concave Curve

Bernoulli believed that the utility resulting from 
a fixed small increase in wealth will be inversely 
proportional to the quantity of goods previously 
possessed. Bernoulli proposed that people have a 
concave utility function that captures their subjec-
tive value for money, and the preferences should be 
described using utility. Sarah A. Hill and William 
Neilson note that diminishing sensitivity is the 
property that changes in a variable have less impact 
the farther the variable is from a reference point.

Kahneman on Bernoulli’s Perspective

Kahneman suggests that a more causal observa-
tion of the real world suggests that Bernoulli’s 
assumption about states of wealth must be modi-
fied with consideration instead given to gains  
and losses. In addition, Kahneman and Tversky in 
their elucidation of prospect theory argued that, in 
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general, people tend to evaluate outcomes not in 
terms of their impact on an individual’s resulting 
state of wealth but in terms of changes from a ref-
erence state with states of wealth mentioned typi-
cally only in reference to death or financial ruin.

Kahneman argues that an act of choosing may 
be represented as an acceptance of a gamble or the 
acceptance of a sure thing in a setting where a 
choice is made across a set of outcomes with dif-
ferent probabilities. For Kahneman, it is “natural” 
to undertake the study of decision making under 
risk as choices between “simple” gambles and sure 
things (involving, e.g., monetary outcomes) in 
hopes that the study of these simple problems will 
reveal basic attitudes of humans toward risk and 
value.

The Tversky-Kahneman Methodology

Tversky and Kahneman used a particular paper-
pencil questionnaire methodology to extend 
Bernoulli’s theoretical work on states of wealth. 
The risk attitudes—risk aversion, risk seeking, and 
risk neutrality—are based on a specific methodol-
ogy used by Tversky and Kahneman in their 
examination of individual responses on paper-
pencil questionnaires: (1) a decision theoretic 
framework in which choice between a gamble and 
a sure thing is the model for all decisions, where  
(2) choices are made (a) between simple monetary 
consideration involving a choice between a gamble 
and a sure thing with (b) objectively specified prob-
abilities and (c) at most two nonzero outcomes.

It is important in this discussion to recognize 
that not all people will provide answers to ques-
tionnaires and surveys containing gambles. Some 
individuals may refuse to participate because they 
do not enter into gambles in general or they do not 
enter into gambles particularly related to one con-
text, medical health issues. One may try to phrase 
the term gamble in other ways, for example, trade-
offs, but still this group of patients may not want 
to participate in a survey considering gambles or 
trade-offs. So when considering research perspec-
tives in the Tversky and Kahneman framework, 
one is examining an arena where not all humans 
will want to participate. And while economists 
may argue that these individuals in fact do enter 
into gambles in their life situations, they will still 
not complete the questionnaires or surveys and 

thus their responses will not be represented in 
the data that are typically reported in Tversky-
Kahneman questionnaire or survey tasks.

One of the problems that researchers face when 
asking research questions in the attempt to better 
understand the risk attitudes is that of the expres-
sion of choice. Researchers want to attempt to 
provide a numerical basis for risk communication 
to study participants (examples of which are 
examined below), where the study participants 
may not be accustomed to communicating using 
such phraseology in their own lives (and may not 
be comfortable using the numerical framework 
presented in the survey questions that are asked to 
consider and answer). The bottom line here is that 
study participants asked to consider a choice 
between a gamble and a sure thing may not be 
happy with such a strong focus on numbers in the 
choice they are asked to consider and on which the 
Tversky-Kahneman framework lies.

Tversky and Kahneman’s S-Shaped Curve

Tversky and Kahneman used an S-shaped 
curve to capture their research findings and con-
trasted their curve to that of Bernoulli’s concave 
curve. Figure 1 shows an overall S-shaped func-
tion (a) somewhat concave for gains (as was 
Bernoulli’s curve), (b) somewhat convex for losses, 
and (c) steeper for losses than gains.

The fact that the S-shaped curve is steeper for 
losses than gains (a loss of fixed amount is consid-
ered more averse as a choice option than a gain of 
that same fixed amount is considered appealing as 
a choice option) leads us into a discussion of loss 
aversion.

Loss Aversion

The fact that the S-shared curve is steeper for 
losses than gains is usually captured in the phrase 
loss aversion: Losses of a fixed amount loom larger 
than gains of that same fixed amount; losing a 
fixed amount hurts more than the pleasure derived 
from gaining that same fixed amount.

Loss aversion continues to be discussed and 
developed in the domain of marketers and con-
sumers. Nathan Novemsky and Kahneman in 
2005 described the boundaries of loss aversion in 
a marketing setting. Colin Camerer notes that 
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Novemsky and Kahneman’s tour de force explor-
ing the boundaries of loss aversion in this market 
setting is a reminder of both the power and deli-
cacy of prospect theory: Prospect theory’s power in 
explaining how people value risks and the delicacy 
required of its advocates to sharpen and apply the 
model.

Risk Attitudes and Medical Decision Making

As described earlier, the concept of a “toss-up” is 
where a risk-neutral individual cannot make a 
choice between a sure thing and a gamble with 
equal expected outcomes. Stephen G. Pauker and 
Jerome P. Kassirer argue that the toss-up is more of 
an atypical decision in medicine when considering 
a patient who is symptomatic from a medical con-
dition or a disease process. How do the other risk 
attitudes (risk aversion and risk seeking) come out 
when they are studied in the arena of medical care 
when patients are asked to consider gains and 
losses in the domain of medical decision making?

Prospect theory—in certain of its aspects—has 
been tested in the domain of medicine in the setting 
of individuals considering hypothetical scenarios 
about medical conditions and disease processes.

A. B. Rosen and colleagues studied 62 study 
participants (mean age = 47.6 years; 47% were 
female, and 33% were African American). They 
found 37% of respondents to be decidedly risk-
averse, 37% moderately risk-averse, 15% moder-
ately risk seeking, and 11% decidedly risk seeking 
with increased risk aversion found in respondents 
of white race (p < .01) and lower education  
(p < .05). Women also tended to be more risk-
averse (p = .07).

L. A. Prosser and E. Wittenberg studied differ-
ences in risk attitude across the domains of health 
and money for patients with multiple sclerosis (n = 
56) and general community members (n = 57). 
Risk attitude was measured using two standard 
gamble questions on money and one standard 
gamble question on health outcomes. The authors 
found that risk attitude varied across domains but 
not by respondent type: Patients and community 
members were predominantly risk neutral with 
respect to health outcomes and risk-averse  
with respect to money. The authors concluded that 
(a) money outcomes may not be an appropriate proxy 
for risk preferences regarding health outcomes and 
(b) risk preferences may depend more on charac-
teristics of the choice than on respondent type.

Framing and Risk Attitudes

The fact that risk attitudes are relative to whether 
an individual is considering a choice that is pre-
sented as a gain or as a loss brings in a new aspect 
of research into decision making: How does the 
presentation of data as gains or losses influence 
decision making? The influence that the presenta-
tion of data has on decision making is called fram-
ing effects, presentation effects, or formulation 
effects.

Barbara J. McNeil and colleagues investigated 
how variations in the way information is presented 
to patients influence their choices between thera-
peutic alternatives. The authors studied 238 ambu-
latory patients with different chronic medical 
conditions, 491 graduate students, and 424 physi-
cians. The data presented to study participants 
were summaries of the results of surgery and 
radiation therapy for lung cancer. In this study, 
respondents were asked to imagine that they had 
lung cancer and to choose between the two thera-
pies on the basis of both cumulative probabilities 
and life-expectancy data. Different groups of 
respondents received input data that differed only 
in terms of whether or not the treatments were 
identified and whether the outcomes were framed 
in terms of the probability of living or the proba-
bility of dying. The authors found that in all three 
populations, the attractiveness of surgery, relative 
to radiation therapy, was substantially greater 
(a) when the treatments were identified rather than 
unidentified, (b) when the information consisted of 
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life expectancy rather than cumulative probability, 
and (c) when the problem was framed in terms of 
the probability of living rather than in terms of the 
probability of dying. The authors suggested that 
an awareness of these effects among physicians 
and patients could help reduce bias and improve 
the quality of medical decision making.

Effects of Numeracy in  
Medical Decision Making

Two issues not explored in the above studies on 
risk attitudes and framing in medical contexts are 
the issues of literacy (the ability of individuals  
as study participants to work with words) and 
numeracy (the ability of individuals as study par-
ticipants to work with numbers). Although both 
issues are key to risk attitudes, this section focuses 
on the notion of numeracy among highly educated 
study participants. The issue is whether (and to 
what extent) study participants, even highly edu-
cated study participants, have difficulty with rela-
tively simple numeracy questions.

Isaac M. Lipkus and colleagues studied 463 men 
and women aged 40 and older with a three-item 
general and an expanded seven-item numeracy 
scale, assessing four numeracy skills: (1) simple 
mathematical operations on risk magnitudes using 
percentages and proportions, (2) converting per-
centages to proportions, (3) converting proportions 
to percentages, and (4) converting probabilities to 
proportions. The researchers found that on average, 
18% and 32% of participants correctly answered 
all the general and expanded numeracy scale items, 
respectively. Approximately 16% to 20% incor-
rectly answered the most straightforward questions 
pertaining to risk magnitudes (e.g., Which repre-
sents the larger risk: 1%, 5%, or 10%?). Lipkus 
and colleagues conclude that if highly educated 
study volunteers have difficulty answering even 
simple numeracy questions correctly, the current 
methods of communicating risk numerically may be 
problematic and need further investigation.

Many researchers in medical decision making 
also have wanted to move beyond using study 
methods that rely on questions phrased in ways that 
are not replicating the actual data that is available 
in medical decision making. Thus, new areas of risk 
attitudes are being assessed within alternative study 
methodologies beyond the provision of summary 

data in terms of numbers to patients. For example, 
studies have been conducted using tabular and 
graphic data displays.

Future Research

The above considerations leads to the following 
question: In describing human behavior in choos-
ing between a treatment with different benefits 
and risks in the short term versus the long term, 
how does one separate out the external effects that 
influence choice behavior in decision makers in 
research studies (such as framing effects) from the 
internal effects that influence choice behavior in 
decision makers in research studies (such as risk 
attitudes) from the issues of literacy and numer-
acy? This multipart question is one of the key 
questions facing future researchers in understand-
ing how patients and physicians participate in 
medical decision making relevant to patients’ cur-
rent states of quality of life and survival.

Dennis J. Mazur
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Risk-BeneFiT TRade-oFF

Risk-benefit trade-off refers to the balance of neg-
ative and positive effects on achieving a goal, such 
as health. For medical decisions, a risk-benefit 
trade-off usually refers to the perception of the 
anticipated balance of improvements and deterio-
rations in health from a given choice. For patients, 
caregivers, and policy makers, this can range from 
the balance of health in an individual to the overall 
balance of health experienced by a society. How 
trade-offs are considered is highly subjective. A 
risk-benefit trade-off can also consider goals out-
side of health.

Estimating Future Risk

Medical decisions allow for choices that can affect 
health. Risk can be defined as the extent to which 
deteriorations in health are perceived by a patient. 
Some medical scientists have suggested that risk be 
more appropriately labeled harm, since this is the 
direct opposite of benefit. Similarly, risk is some-
times inappropriately described as safety, which is 
a term used to describe the extent to which harm 
is absent. Risk is a term that can also refer to the 
chance of experiencing clinical measures of disease 
(e.g., disease prognosis such as risk of heart 
attack). In the context of a risk-benefit trade-off, 
risk usually refers to the harms experienced by a 
patient that are directly associated with the deci-
sion. They are synonymous with the adverse 
effects, or side effects, from a medical decision.

Absolute Harm

The chance of experiencing a side effect gener-
ally does not change according to an individual’s 
risk of future disease. As such, medical decisions 
are said to be associated with an absolute risk of 
harm. The extent to which outcomes attributed to 
harm are experienced by patients may be affected 
by other factors, such as age, gender, presence of 
other diseases, or genetics. Because these adverse 
effects can occur rarely and are sometimes unex-
pected, the ability for a decision maker to factor 
them into a decision may be limited.

Patient Value

It is important to note that harm is subjective 
and is based on the perceived value of the adverse 
effects from a medical decision. If a patient believes 
that an increased chance of experiencing stomach 
upset is detrimental to health, then he or she would 
attribute a risk from the medical decision. The 
extent to which an outcome is perceived to deterio-
rate health would then equate with the perceived 
risk from a medical decision. It cannot be assumed 
that different patients would assign the same 
amount of risk to the same occurrence of these 
outcomes. Hence, risk from health effects will be 
perceived differently by different patients.

Multiple Consequences

Since interventions can increase the chance of 
more than one type of side effect and these occur-
rences would normally be perceived as negative, 
the overall perceived risk from a medical decision 
may need to consider the range of outcomes rele-
vant to the patient. For example, a medical deci-
sion may involve an option that leads to a high 
chance of stroke and a low chance of stomach 
upset versus a different option that leads to a high 
chance of paralysis and a low chance of joint pain. 
These two side-effect profiles may be perceived as 
having similar risk to patients.

Estimating Future Benefit

Benefit can be defined as the extent to which 
improvements in health are perceived by a patient. 
Reduced risk of disease, represented by specific 
outcome measures such as chance of dying, chance 
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of heart attack, or average degree of pain relief 
can be used by patients and their caregivers as a 
means of estimating future benefit. For example, if 
a certain form of cancer leads to an outcome of 
sudden death in 3 of 100 individuals and surgery 
is thought to reduce the death rate by one third, 
then the expected consequence for any 100 indi-
viduals with this cancer who decide to receive 
surgery would be to avoid certain death 1 time out 
of 100. That is, one third of the three people who 
would expect to experience the outcome of sud-
den death would no longer experience this out-
come, leading to two sudden deaths and one death 
averted.

Relative Benefit

The previous example illustrates that patient 
health outcomes are from a medical decision and 
are directly related to the chance of experiencing a 
future disease outcome (e.g., risk of sudden death) 
and the effect of a decision on that outcome. It is 
generally assumed that health interventions affect 
the risk of these outcomes occurring relative to the 
natural risk of experiencing the outcomes. This 
relative effect on outcomes is referred to as the 
relative risk reduction.

For example, if 100 individuals were believed  
to have a 30 in 100 chance rather than a 3 in 100 
chance of dying of the same cancer, the interven-
tion would still be believed to reduce sudden 
death by one third, leading to 10 in 100 deaths 
averted. Hence, 100 individuals receiving treat-
ment would have a 1 in 10 chance of averting 
death, rather than a 1 in 100 chance. It should be 
noted that it is not always the case that a health 
intervention will affect undesirable outcomes in a 
relative fashion in different individuals with vary-
ing prognoses.

Similarity to Risk

It is important to note that, like risk, benefit is 
subjective and is based on the perceived value of 
the extent to which health is improved, which can 
be estimated by the occurrence of the clinical mea-
sures that characterize disease by patients and 
caregivers. In the previous example, if a patient 
perceives a reduction in the chance of dying as 
more valuable than an increase in the chance of 

dying, then he or she would be said to attribute a 
benefit to the intervention. Similarly, health effects 
will be perceived differently by different patients, 
and multiple outcomes that contribute to a percep-
tion of benefit may be considered.

Trade-Offs

For medical decisions, a risk-benefit trade-off usu-
ally refers to the perception of the anticipated bal-
ance of improvements and deteriorations in health 
from a given choice.

The trade-off has also been referred to as a risk-
benefit ratio. Some medical scientists have sug-
gested that because medical measures of benefit 
and harm are so different, that the term risk-benefit 
ratio has no literal meaning, since it cannot be 
calculated. In contrast, other medical scientists 
have used questionnaires of hypothetical scenarios, 
a technique called a stated preference approach, to 
understand the mathematical relationship between 
factors considered and their relative importance 
when making a medical decision. These methods 
are often synonymous with risk-benefit analysis, 
also called benefit-risk analysis, that attempts to 
characterize individual preferences for improve-
ments and deteriorations in health. Risk-benefit 
analysis can be used by patients, caregivers, and 
policy makers, including market regulators, to 
clearly understand patient preferences and as an 
aid in decision making.

Single measures of disease burden that encapsu-
late preferences for different health states based in 
von Neumann and Morgenstern (NM) utility the-
ory have also been developed. Examples of these 
preference-based measures include quality-adjusted 
life years and healthy-year equivalents. While 
some have suggested that these measures fail to 
adequately embrace preferences and preference 
theory, others have suggested that stated prefer-
ence approaches, particularly those that examine 
monetary preferences such as willingness to pay, 
have several methodological and ethical issues that 
need to be resolved. More recently, hybrid 
approaches that are more grounded in NM utility 
theory have been developed.

Although risk-benefit trade-off implies that ben-
efit is directly weighed against risk, medical deci-
sions can involve multiple trade-offs between 
health outcomes attributed to benefit and risk. 
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This includes comparisons between benefits, 
between risks, between benefits and risks, or 
between risk-benefit trade-offs. The types of trade-
offs considered and how they are compared will 
vary with who is making the decision. They are 
also highly susceptible to many known cognitive 
biases. A risk-benefit trade-off can also consider 
goals outside of health.

Perspective

When considering health trade-offs, decision 
makers may consider either the health of an indi-
vidual or the health of a population. For example, 
an individual decision regarding which antibacte-
rial to use for an infection may consider outcome 
measures such as the chance of relieving the infec-
tion, average time to relief of symptoms, and  
frequency of serious side effects. These outcome 
measures could contribute to a patient or caregiv-
er’s understanding of the trade-off of risk and 
benefit and choices that optimize the health of the 
infected individual. Frequently, outcome measures 
such as the chance of contributing to antibiotic 
resistance are considered when making a decision 
regarding antibiotics. Although these outcomes 
may have no direct impact on an individual’s 
health, they can be detrimental to the future health 
of society, as they will lead to a situation where the 
antibiotic is less effective. Hence, the current risk-
benefit trade-off is weighed against a future risk-
benefit trade-off. Considering the value of future 
information on outcome measures can also be 
applied to any decision, and it allows decision 
makers to consider the effect future information 
will have on future risk-benefit trade-offs versus a 
current risk-benefit assessment.

Net Health Benefit

Healthcare third-party payers with limited 
resources are confronted with these similar dilem-
mas. That is, at any given time, the resources 
required to produce a given risk-benefit trade-off 
in one population could be used to produce a more 
(or less) desirable risk-benefit trade-off in a differ-
ent population. Or more simply, producing health 
in one population may forego an opportunity to 
produce more health in another population. 
Comparing risk-benefit trade-offs with current or 

future risk-benefit trade-offs is a utilitarian approach, 
as it considers the extent to which decisions lead to 
the greatest amount of health for the greatest num-
ber of people.

Cognitive Bias

Human beings are susceptible to a large number 
of cognitive biases that make the valid identifica-
tion and comparison of factors related to risk and 
benefit difficult. Examples of these include failure 
to understand probability, ignoring small differ-
ences, underestimating harm, overestimating ben-
efit, focusing on too few attributes, or judging 
harmful actions worse than harmful inactions. 
How risk and benefit are communicated can also 
influence decisions. Because emotion and poor 
mental accounting can lead to suboptimal or irra-
tional decisions, the field of decision analysis and 
its accompanying methods and tools have been 
developed to characterize decision problems and 
provide insight to decision makers for improving 
decisions.

Goals Outside of Health

Although risk-benefit trade-offs generally refer 
to a balance of factors, which can be attributed to 
health, other factors may enter a decision, which 
may be interpreted as risks or benefits. Factors 
such as non-health-related quality of life, equity, 
ethical issues such as justice, psychosocial issues 
such as convenience of use, and legal issues such as 
risk of litigation are some examples that a decision 
maker may attribute to benefits or risks from a 
decision. Although effects on resources available 
for healthcare are often seen as a factor outside of 
health, they should not be considered so, as they 
are directly traded for health.

Don Husereau

See also Biases in Human Prediction; Complications or 
Adverse Effects of Treatment; Conjoint Analysis; 
Contingent Valuation; Decisions Faced by Patients: 
Primary Care; Discrete Choice; Emotion and Choice; 
Evaluating Consequences; Gain/Loss Framing Effects; 
Heuristics; Judgment; Mental Accounting; Net Benefit 
Regression; Risk Aversion; Risk Perception; Utility 
Assessment Techniques; Value Functions in Domains 
of Gains and Losses



1006 Risk Communication

Further Readings

Baron, J. (2000). Thinking and deciding. New York: 
Cambridge University Press.

Bridges, J. F. (2003). Stated preference methods in health 
care evaluation: An emerging methodological 
paradigm in health economics. Applied Health 
Economics and Health Policy, 2, 213–224.

Drummond, M. (2005). Methods for the economic 
evaluation of health programmes (3rd ed.). Oxford, 
UK: Oxford University Press.

Glasziou, P. P. (1995). An evidence-based approach to 
individualising treatment. British Medical Journal, 
311, 1356–1359.

Ioannidis, J. P. A. (2004). Better reporting of harms in 
randomized trials: An extension of the CONSORT 
statement. Annals of Internal Medicine, 141, 781–
788.

Laupacis, A. (1988). An assessment of clinically useful 
measures of the consequences of treatment. New 
England Journal of Medicine, 318(26), 1728–1733.

Risk CommuniCaTion

In a world that is fundamentally uncertain, society 
needs to be prepared to deal with risks and uncer-
tainty in a proper way. However, often this is not 
the case, and the psychological consequences of 
misperceiving risks can have severe, physical con-
sequences. First, this entry illustrates why this 
issue is important. Then, typical misunderstand-
ings that happen in risk communication are 
explained, as well as how these misunderstandings 
can be avoided and insight reached.

Example

In October 1995, the U.K. Committee on the Safety 
of Medicines issued a warning that third-generation 
oral contraceptive pills containing desogestrel or 
gestodene increased the risk of venous throm-
boembolism by 100%. That is, the risk was two-
fold. This information was passed on in 190,000 
letters to general practitioners, pharmacists, and 
directors of public health and also forwarded to 
the media. In response, many women decided not 
to take the pill anymore.

In the following year, the number of abortions in 
the United Kingdom increased by almost 9%, which 

makes a total of 13,600 additional abortions, 
against the decreasing trend in abortions in the pre-
vious years. This number is particularly interesting 
in comparison with the increase in conceptions, 
which was only 3.3%, a total of 26,000 additional 
conceptions. That is, the number of additional 
abortions amounts to more than half of the number 
of additional conceptions, which at least suggests 
that out of the additional conceptions particularly 
many were unwanted. Moreover, the increase both 
in conceptions and in abortions was particularly 
pronounced in teenagers. The resulting additional 
costs for abortion provision to the National Health 
Service have been estimated to be about £4 to £6 
million.

A closer look at the twofold risk of thromboem-
bolism reveals that it approximately means that 
the risk of thromboembolism increases from 3 in 
20,000 women who take second-generation oral 
contraceptive pills (i.e., those containing levonorg-
estrel or norethisterone) to 6 in 20,000 women 
who take third-generation oral contraceptive pills, 
while the baseline risk of women who do not take 
oral contraceptive pills is about 2 in 20,000. That 
is, the relative risk increase is indeed 100%, but in 
absolute numbers, this means a risk increase of 
only 3 in 20,000. Additionally, it needs to be noted 
that pregnancy increases the risk to 12 in 20,000, 
which is again twice as high compared with taking 
third-generation oral contraceptive pills. Had 
women known these numbers, many unwanted 
pregnancies and subsequent abortions may have 
been avoided.

Risk Illiteracy

This example illustrates a larger societal problem. 
Many citizens are not prepared to deal rationally 
with risks and uncertainties. This problem is par-
ticular in that it is one of those that are not recog-
nized as such in the public, although it may cost 
lives, cause abortions, or just psychological pain. 
Such a pill scare will likely happen again, as others 
did before, and people may not be prepared to 
react with reason, since many are statistically illit-
erate in the sense that they do not know about the 
distinction between a relative risk (100%) and an 
absolute risk (3 in 20,000).

It has been debated whether risk illiteracy is 
mainly a consequence of cognitive limitations, as 
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suggested by the extensive literature on risk per-
ception. However, such an internal attribution of 
the causes has not led to successful treatment. If 
“probability blindness” were caused by our cog-
nitive limitations, then we just would have to 
live with it, or, as some have suggested, to keep 
citizens away from important decisions. In con-
trast to this view, there are numerous examples 
showing that risk innumeracy is largely a func-
tion of the external representations used in risk 
communication.

In particular, there are three common repre-
sentations, relative risks, single-event probabili-
ties, and conditional probabilities, which may be 
confusing.

Relative Risks

The increased risk of venous thromboembolism by 
third-generation oral contraceptive pills put for-
ward as a twofold risk, or an increase of 100%, is 
a relative risk. As explained before, the 100% 
means, an absolute risk increase from 3 to 6 in 
20,000.

The problem with relative risks is that they are 
silent about the base rate risk. That is, the risk 
increase would be 100% independent of whether 
the increase is from 3 to 6 in 20,000 or from 3,000 
to 6,000 in 20,000. However, most would agree 
that the societal importance of the latter risk 
increase would be much larger than that of the 
former (which matches that of third-generation 
pills). Relative risks thus can be used to make risks 
loom larger than they actually are. This similarly 
holds for risk reductions. In the pill example, one 
could argue that women who switch from third-
generation pills back to second-generation pills 
reduce their risk of venous thromboembolism by 
50%, namely, from 6 to 3 in 20,000.

However, instead of using the number of dis-
eases as a reference class, one could also use the 
number of healthy women (i.e., without throm-
boembolism) as a reference class, and thereby 
make the relative risk reduction look small. 
Namely, instead of 19,994 in 20,000 women tak-
ing third-generation pills who are healthy, there 
would be 19,997 in 20,000 women with second-
generation pills. The absolute increase in healthy 
women is again 3 in 20,000, but in relative num-
bers, the increase in healthy women is only .015%. 

Thus, a risk reduction by 50% can mean the same 
thing as an increase in healthy women by .015%. 
In absolute terms, it becomes transparent that the 
difference is 3 in 20,000 in both cases.

Not only are laypeople often confused about 
relative risks, but experts are as well. For example, 
decisions by health authorities on which treatment 
to fund have been shown to be largely affected  
by the representation format: Rehabilitation and 
screening programs were evaluated much more 
positively if their benefits were described in terms 
of relative risk reductions.

Single-Event Probabilities

An everyday life example of single-event probabil-
ities can often be heard in the daily news when the 
speaker indicates the chance of rain for the next 
day. A statement such as that the chance of rain 
tomorrow is 30% remains unclear to many. In the 
end, it can only rain or not. The problem is that it 
is unclear to what the 30% refers to, that is, the 
reference class is missing. Some people believe that 
there will be rain in 30% of the area, others think 
that it is 30% of the time. The right interpretation, 
however, is that out of 100 days that are exactly 
like tomorrow, it will rain in 30 of them.

In medical contexts, single-event probabilities 
are often used to communicate the risks of a treat-
ment, such as side effects. A psychiatrist often 
prescribed fluotexine (Prozac) to patients with 
mild depression and told them that the risk of hav-
ing sexual problems (e.g., impotence or loss of 
sexual interest) as a side effect was 30% to 50%. 
Many of his or her patients were anxious hearing 
those numbers, because they interpreted them as 
meaning that every patient would have problems 
in about 30% to 50% of their sexual encounters. 
However, the numbers actually mean that out of 
100 patients 30 to 50 will experience a sexual 
problem. Hearing this interpretation, patients were 
much less afraid of taking Prozac. This example 
illustrates again a reference class problem: While 
the patients had their own sexual encounters in 
mind as a reference class, the doctor was referring 
to patients as a reference class.

Therefore, the solution to such misunderstand-
ings is obvious: clearly indicating a reference class 
(e.g., sexual problems will occur in 30% to 50% 
of patients) or using a frequentist formulation 
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(e.g., out of 100 patients, 30 to 50 will experience 
a sexual problem).

Conditional Probabilities

The chance of detecting a disease with a medical 
test is usually communicated as a conditional 
probability, namely, the sensitivity of the test: “If a 
woman actually has breast cancer, the chance of 
getting a positive result in a mammography is 
90%.” That is, it is the probability of testing posi-
tive given breast cancer. However, this is often 
confused with the positive predictive value of the 
test, the probability of having breast cancer given 
a positive test result, which is not the same. This 
can be illustrated with a more intuitive example. 
Up to 2008, every American president was male. 
That is, the probability of being male given that 
one is president of the United States was 100%. 
The reverse, obviously, does not hold: Given that 
one is male, chances of being or becoming presi-
dent of the United States are still rather low.

The question is how to get from the sensitivity 
of the test to the positive predictive value, which  
is the information one really needs. Two further 
pieces of information are necessary. First, one 
needs to know the base rate of the disease; here, 
this is about 0.8%. Second, one needs to know the 
false-positive rate of the test, that is, the probabil-
ity of getting a positive test result given that one is 
actually healthy, which is about 7% in this case. 
Formally, the sensitivity, the base rate, and the 
false-positive rate can be combined to calculate the 
positive predictive value by applying Bayes’s theo-
rem. However, both experts and laypeople often 
have trouble with Bayes’s theorem, and it is much 
simpler to think about such problems in terms of 
natural frequencies.

That is, instead of combining conditional prob-
abilities, imagine 1,000 women. Out of these, 8 (= 
.8% base rate) are expected to have breast cancer; 
the remaining 992 are expected not to have breast 
cancer. Out of the 8 women with breast cancer, 
about 7 (= 90% sensitivity) will test positive. Out 
of the remaining 992 women without breast can-
cer, about 69 (= 7% false positives) will also test 
positive. That is, there are 76 women who test 
positive, out of which only 7 actually do have the 
disease. Therefore, the probability of a woman to 
have breast cancer given a positive test, the positive 

predictive value is 7 out of 76, which is approxi-
mately 9%.

Again, being confused by conditional probabili-
ties is not only a problem of laypeople but also of 
experts. Only a very small proportion of physi-
cians who were given numbers as conditional 
probabilities actually combined them correctly to 
figure out the positive predictive value. The error 
that was most often observed was that the positive 
predictive value was confused with the sensitivity, 
which often resulted in overestimating the predic-
tive power of the test (here, 90% instead of 9%). 
Sometimes, the false-positive rate was subtracted 
from the sensitivity, which still led to an overesti-
mated predictive power (here, 83% vs. 9%). When 
doctors were given the same test properties in 
natural frequencies, they were much more likely to 
give the correct answer. Also, training in how to 
translate conditional probabilities into natural fre-
quencies has long-lasting positive effects on the 
accuracy of such calculations, while training with 
Bayes’s theorem does not seem to be very helpful.

Implications

People have to deal with risks and uncertainties every 
day, in particular in the medical domain. Yet the ide-
als of informed consent and shared decision making 
will not be entirely realized until medical evidence is 
properly understood. Appropriate risk communica-
tion is thus a necessary step toward this goal.

Wolfgang Gaissmaier and Gerd Gigerenzer 

See also Bayes’s Theorem; Informed Consent; Numeracy; 
Risk Perception; Shared Decision Making
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Risk neuTRaliTy

See Risk Aversion

Risk peRCepTion

Risk perception refers to people’s subjective 
impression of riskiness. Objective ways of defin-
ing risk involve the uncertainty of outcomes, their 
negativity, or both (“the risk of dying during sur-
gery”). Subjective perception of risk (related to 
health, safety, or financial outcomes) is deter-
mined not only by these readily quantifiable out-
come dimensions but also by more qualitative 
characteristics such as decision makers’ familiarity 
with choice options, perceived control, and insti-
tutional trust.

Understanding risk perception matters in the 
context of medical decision making for multiple 
reasons. Informed consent requires an accurate 
understanding of risks and benefits. The design of 
risk communication messages needs to consider 
people’s processing of risk information to ensure 
that risks are understood in their correct magni-
tude. Since policy makers and physicians often dif-
fer from the general public in familiarity with 
choice options, perceived control, and institutional 
trust, they may perceive risks in different ways even 
when all sides agree on associated mortality and 
morbidity. Understanding the source of individual 
or group differences in risk perception can thus 
explain and perhaps align disagreements about 
risk. Risk perceptions are also important because 
they influence people’s choices and actions, which 
are often made by informal risk-benefit trade-offs.

Two pathways of risk perception are described 
below: risk as a statistic versus risk as a feeling. 
Behavioral economics and psychology have identi-
fied which type of statistical summaries and which 
feelings best predict people’s subjective assessment 
of risk.

Two Pathways

Expert quantifications of morbidity or mortality 
risks posed by medical conditions or procedures 

are based on objective data and/or theoretical 
models. The general public can evaluate the same 
options very differently, sometimes with serious 
consequences. Public perception of an autoim-
mune disease risk of silicone breast implants, for 
example, resulted in bankruptcy for the manufac-
turer, despite no scientific evidence of implant- 
related illnesses. Neuroscience and behavioral 
research show that risk perception is determined 
by both analytic and emotional processes. The 
relative balance of these two pathways is affected 
by professional training and cognitive capacity. 
While emotional processes are hardwired and 
automatic, analytic evaluations are effortful and 
need to be learned.

Risk as a Statistic

Actions that result in a guaranteed, known out-
come are typically described as riskless. The more 
disparate the range of possible outcomes, the more 
risky the action. This greater sense of unpredict-
ability of outcomes is captured by the variance as 
a statistical index of degree of risk:

Variance(X) = ∑x(x − EV(x))2p(x),

where x denotes the possible outcomes, p(x) the 
probability that each outcome will occur, and 
EV(x) the expected value of these outcomes.

Take the hypothetical example of two cancer 
treatments, surgery and radiation, which offer dif-
ferent prospects of extending life. Surgery entails a 
10% chance of death during the procedure but a 
90% chance of extending life by 10 years. The 
average or expected life extension of surgery there-
fore is EV(Surgery) = .10(0) + .90(10) = 0 + 9 = 9, 
and its variance is Variance(Surgery) = (0 − 9)2(.1) 
+ (10 − 9)2(.9) = 81(.1) + 1(.9) = 8.1 + .9 = 9. 
Radiation has no chance of immediate death but 
offers shorter life extensions. Half of the patients 
live for 2 additional years, and the other half for 5 
additional years, so the expected life extension is 
EV(Radiation) = .50(2) + .50(5) = 1 + 2.5 = 3.5, 
and its variance is Variance(Radiation) = (2 
−3.5)2(.5) + (5 − 3.5)2(.5) = 2.25(.5) + 2.25(.5) = 
2.25. While radiation offers a shorter average life 
extension than surgery (3.5 years as opposed to 9 
years), it also has a smaller variance (2.25 vs. 9), 
that is, less uncertainty or risk about the outcome.
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The variance (or its square root, the standard 
deviation [SD], i.e., the average deviation of pos-
sible outcomes from their mean) is the most com-
mon index of risk in financial contexts, partly for 
its mathematical properties. However, studies of 
people’s judgments of the riskiness of financial 
gambles show the variance to be a poor index of 
perceived risk. While downside variability affects 
perceived risk of an option much more than 
upside variability, this asymmetry is not captured 
by the variance. Other indices, such as conjoint 
expected risk (CER), allow for downside vari-
ability to have greater impact and capture both 
similarities in risk judgments (with a common 
way in which outcome probabilities and values 
are combined) and individual or group differ-
ences (with model parameters that capture differ-
ences in the relative weight of model components). 
Behavioral research also shows that the riskiness 
implied by variability is perceived relative to 
average returns. A standard deviation of ±$100 is 
seen as huge when the mean return is $50 but 
amounts to rounding error for a risky option 
with a mean return of $1 million. The coefficient 
of variation (CV),

CV(X) = SD(X)/EV(X),

provides a relative measure of risk, by dividing the 
standard deviation (SD) by average return (EV). A 
risky financial investment with an average devia-
tion of SD = $100 and an average return of EV = 
$50 has a CV of 100/50 = 2, whereas a risky finan-
cial investment with the same average deviation of 
SD = $100 but an average return of EV = $1 mil-
lion has a CV of 100/1,000,000 = .0001, a much 
smaller value. The CV describes perceived risk far 
better and is widely used as a statistical index of 
risk in many applied areas.

Risk as a Feeling

Psychological research has shown that the risk 
perceptions by the lay public have often little to  
do with morbidity or mortality statistics. People  
overweight risk associated with infrequent, cata-
strophic, and involuntary events, and underweight 
risk associated with frequent, familiar, and volun-
tary events. These deviations between objective 
statistics and subjective impression are mediated 

by two factors that elicit anxiety, which is inter-
preted as risk. The first factor, dread, relates to 
perceived lack of control and catastrophic poten-
tial. Flying is seen as a riskier mode of transporta-
tion than driving, because plane crashes are outside 
one’s control and cause a large number of fatali-
ties. The second factor, risk of the unknown, is 
determined by the extent to which a hazard is 
unobservable or unknown. Radiation is seen as 
risky because it can kill without the victim being 
aware of any exposure. Risk perception has been 
described as a collective process. Cultural theory 
distinguishes groups by their patterns of interper-
sonal relationships, which are seen as affecting 
perceptions of risk. More hierarchical groups per-
ceive industrial and technological innovations as 
opportunities, whereas more egalitarian groups 
perceive them as threats to their social structure. 
Culture is seen as teaching its members where their 
interests lie and what events pose risks to their way 
of life. Cultural differences in institutional trust 
affect perceived risk. Minority group members 
have less trust in social institutions, see themselves 
as having less control over their life, and perceive 
greater risks. The relationship between trust and 
risk perception is also mediated by an emotional 
pathway, with reduced trust resulting in stronger 
negative affective responses to potential hazards 
and increased perceptions of risk.

Elke U. Weber

See also Dual-Process Theory; Emotion and Choice; 
Intuition Versus Analysis; Risk Attitude
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Risk seeking

See Risk Aversion
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Sample Size and power

Often the main aim of a medical study is to esti-
mate or test an unknown parameter of interest, 
such as the incidence of a certain disease, the 
effect of a certain treatment, or the relative risk 
associated with a certain exposure. An important 
issue in the design of a study is the choice of the 
number of subjects to include. The larger the 
study sample, the more precise a parameter esti-
mate will be, and the choice of the sample size will 
depend on how much precision is required. If the 
aim of the study is to demonstrate that a certain 
treatment is effective, the power of the study is 
very important. The power is the chance that the 
study, through a statistically significant treatment 
effect, will prove that the treatment is effective, if 
the treatment really is effective. The sample size 
should be chosen large enough to have sufficient 
power in case the real treatment effect is clinically 
relevant. Small studies can be inadequate because 
of too small power or too low precision. On the 
other hand, very large studies can have more pre-
cision than really needed or have high power even 
against treatment effects that are too small to be 
clinically relevant, leading to a waste of money. 
Therefore, the choice of the sample size should be 
well balanced. Sample size and power are strongly 
related; the larger the sample size, the higher the 
power. This relationship is quantified by what are 
called sample size formulae. Below, we give the 
ones that are most important in practice. These 
formulae can be very helpful in determining the 

sample size of a study. A number of different cases 
are discussed below.

In sample size formulae, there are always one or 
two z scores involved. One of them regards the 
significance level of the statistical test or the confi-
dence level of the confidence interval, and the 
other one regards the power of the test. These z 
scores are associated with the standard normal 
distribution, which is probably the most important 
distribution in statistics. It has mean 0 and stan-
dard deviation 1 and is graphically represented by 
the well-known bell-shaped curve. The total area 
under the curve is equal to 1. A z score zβ is defined 
as the point in the distribution such that on the 
right of zβ, the area under the curve is equal to β, 
and therefore the area on the left-hand side of zβ is 
1 − β. Consequently, zα/2 is the value such that the 
area on the right-hand side is equal to α/2. A table 
giving the value of zβ for different values of β or 
vice versa can be found in any introductory statis-
tics book.

Estimation of a Proportion

Suppose the aim of a study is to estimate a certain 
unknown proportion π, for instance, the preva-
lence of a certain disease in a certain population. 
Once a sample is drawn, π can be estimated by the 
sample proportion p, being the number of subjects 
with the disease in the sample divided by the 
sample size n. An approximate 95% confidence 
interval for π is given by

p− 1:96
pð1− pÞ

n

r
< p< p+ 1:96

pð1− pÞ
n

r
:

S
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This means that with 95% probability, the differ-
ence |p − π| between the estimate and the true 
parameter value is smaller than 1:96 pð1−pÞ=n

p
. 

Suppose one wishes to have the sample size n suf-
ficiently large to get an estimate p that has an error 
|p − π| not larger than some chosen margin of  
precision δ, with high probability, say 95%. 
Then n should be chosen so large that 
1:96 pð1−pÞ=n

p
< d; which implies that n should be 

larger than 1:96 pð1− pÞ
p

=d
 2

:  However, before 
the study, p is not yet known, thus an estimate p* 
of π is needed—based on external data sources or 
just an informed guess based on expert opinion. In 
general, to estimate a proportion π such that the 
estimation error is smaller than δ with probability  
1 − α, the sample size should fulfill

n > za=2
pð1− pÞ

p

d

 !2

;

where zα/2 is as defined above.

Example

Suppose one wishes to estimate the incidence  
π of personality change after a coronary bypass 
operation. The investigator anticipates that the 
incidence will be in the order of magnitude of 
.30, and wants to have an estimation error not 
larger than .02 with probability 90%. Thus, δ = 
.02, p* = .30, 1 − α = .90, and z0.05 = 1.645. Then the 
sample size should be at least n = 1.6452 × .30((1 –  .30)/ 
.022 = 1421. 

Estimation of a Mean

If the aim of a study is to estimate the population 
mean µ of a variable, the sample size formula is

n > za=2
s
d

 2
:

Here, σ is an a priori estimate of the population 
standard deviation. Notice that in essence this is 
the same formula as in the case of estimating a 
proportion, since the standard deviation of a 
dichotomous variable is pð1− pÞ

p
:

Example

Suppose a medical investigator wants to estimate 
the mean diastolic blood pressure in a population 

of 20-year-old men with an error that is with prob-
ability 95% less than 2 mmHg. Suppose it is known 
that the standard deviation of diastolic blood pres-
sure in young male populations is in the order of 
magnitude of 8 mmHg. Then the number of 
20-year-old men to be included in the sample 
should be at least

n= 1:96× 8
2

 2

= 62:

Testing Equality of Two Means

Suppose the aim of a study is to compare the 
mean of a continuous outcome variable between 
two populations. More specifically, the aim is to 
test the null hypothesis H0, µ1 = µ2, where µ1 and 
µ2 stand for the two population means. For 
instance, µ1 is the mean decrease in body weight 
after following the Atkins diet for 3 months, and 
µ2 is the mean decrease in weight after a 3-month 
standard control diet. Suppose the investigators 
think that a minimal clinically worthwhile differ-
ence in decrease in body weight should be at least 
.75 kg in favor of the Atkins diet. In general, the 
minimal clinically relevant difference is denoted 
by δ. If the true difference is δ or more, the power, 
which is the probability that H0 is rejected, is 
desired to be large. The power is often denoted by 
1 − β, where β is the probability of not rejecting 
H0 when the real difference is δ. Typical choices 
for β in practice are .20 or .10, corresponding 
with 80% or 90% power. The sample size needed 
to have power 1 − β against a true difference δ is 
given by the following formula

nper group =
ðza=2 + zbÞ22s2

d2 :

Here, α is the significance level of the test, in prac-
tice almost always set at .05; thus, zα/2 = 1.96; σ is 
an a priori guess of the standard deviation of the 
outcome variable, assumed to be equal in the two 
populations.

Typical choices for β and the corresponding 
values for zβ are as follows:

β  .01  .05  .10  .15 .20 .25 .30

zβ 2.33 1.65 1.28 1.04 .84 .67 .53
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Example

Suppose the test is done at the usual 5% level; 
thus, zα/2 = 1.96. Based on the literature, the inves-
tigators anticipate that the standard deviation of 
the decrease in weight is about 1.5 kg. If a power 
of 90% is required against a difference δ = .75, the 
number of subjects per group to be included into 
the study is n = (1.96 + 1.28)2 × 1.72 / .752 = 60. 
Thus, in total, 120 subjects are needed.

Testing Equality of Two Proportions

Suppose the aim of a study is to test the equality of 
two proportions. For instance, πE is the incidence 
of some outcome event under an experimental 
treatment, and πC is the incidence under a standard 
control treatment. Then, the null hypothesis to test 
is H0: πE = πC. The sample size needed to have 
power 1 − β against a treatment effect δ is

nper group = ðza=2 + zbÞ2 pCð1− pCÞ+pEð1− pEÞ
d2 :

Here, πC is an a priori guess of the incidence of the 
event in the control group, and πE = πC + δ.

Example

Suppose a randomized clinical trial is designed 
to test the effect of a certain cholesterol-lowering 
drug against placebo. The outcome is the occur-
rence of a myocardial infarction within a follow-up 
period of 5 years. From the literature, it is known 
that πC ≈ .04. A 25% decrease of this incidence 
under the experimental treatment is deemed clini-
cally relevant and realistic; thus, δ is chosen to be 
.01. The significance level of the test is set at the 
usual α = .05, thus zα = 1.96; and the investigators 
want to have a power of 85%, thus zβ = 1.04. The 
number of subjects needed per treatment group is

1:96+ 1:04ð Þ2:04ð1− :04Þ+ :03ð1− :03Þ
:012 = 6075:

Thus, in total 12,150 subjects have to be included 
in the study.

Comparing Time-to-Event Outcome  
Between Two Groups

Suppose a study is designed to compare two differ-
ently treated groups of patients who are followed 

for the outcome of some event of interest. The 
duration of follow-up may vary between patients. 
Mostly the treatments are compared through the 
hazard ratio θ, a parameter that is defined such 
that at each short time interval the probability of 
the event in the treatment group is θ times the 
probability of the event in the control group. 
Thus, θ = 1 means that the chances of the event 
are identical in the two groups. The null hypoth-
esis of no treatment effect, H0: θ = 1, is tested 
with the log-rank test. In such a situation the 
power of the study depends on the number of 
observed events rather than on the number of 
patients. To have power 1 − β against a hazard 
ratio θ, the number of events (d) needed to be 
observed is

1:96+ 1:04ð Þ2:04ð1− :04Þ+ :03ð1− :03Þ
:012 = 6075:

Next, based on an a priori guess of the inci-
dence in one of the groups, the number of subjects 
to be included and the length of the follow-up can 
be determined.

Example

Suppose a clinical trial is designed to compare 
the incidence of myocardial infarction of subjects 
receiving a certain cholesterol-lowering drug with 
subjects using placebo. A reduction of 25% in inci-
dence of the outcome event is deemed clinically 
relevant by the investigators, and a power of 80% 
is wished. According to the above formula, the 
number of events required to have 80% power 
against a hazard ratio of .75 is

d= ðza=2 + zbÞ2 y+ 1
y− 1

 2

:

Thus, the number of subjects to be included in the 
trial should be large enough to observe 385 
events. Suppose it is planned to have a 3-year 
intake period and to follow subjects until 4 years 
after the last subject has entered the trial. It is 
expected that in the placebo group the incidence 
is about 1% per year. A rough reasoning along the 
following lines leads to the required sample size. 
If subjects are entering the trial at a constant rate, 
the intended follow-up per subject is on average 
5.5 years. Per subject in the control we expect, 
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therefore, .055 events, and in the experimental 
group .75 × .055 = .041 events. Thus, per pair of 
subjects, one from the placebo and one from the 
experimental group, .0951 events are expected. 
Therefore, to get an expected number of events of 
385 events, 385/.0951 = 4,048 subjects are required 
per group.

Remarks Regarding Formulae

In this entry, only formulae are provided for •	
the most occurring situations in practice. Sample 
size formulae are available for many other, less 
frequently occurring situations as well.

The above formulae assume a two-sided •	
test. That is, the null hypothesis states that the 
effects of the experimental and control treatment 
are identical. In practice, the testing is mostly two 
sided. Then the test result can be threefold: 
(1) There is no statistically significant difference, 
(2) the experimental treatment is statistically sig-
nificantly better than the control, or (3) the 
experimental treatment is statistically signifi-
cantly worse than the control. In one-sided testing, 
the null hypothesis states that the experimental 
treatment is equal or worse than the control treat-
ment, against the alternative that the experimen-
tal treatment is better. Then the test result is 
twofold: (1) The experimental treatment is sig-
nificantly better than the control, or (2) the exper-
imental treatment is not significantly better than 
the control. For one-sided testing, zα/2 has to be 
replaced in the formulae by zα. For instance, 1.96 
is replaced by 1.645.

The above formulae assume equal group sizes •	
and can be modified to unequal group sizes.  
If n2 = kn1 for some choice of k, the numbers of 
subjects needed are

n1 =
1
2

nð1+ kÞ and n2 =
1
2

n 1+ 1
k

 
;

where n is the result of the original formulae.
For instance, in the above example comparing 

the Atkins diet with a control diet, 60 subjects per 
group were needed. In case one wishes to random-
ize two times as many subjects in the Atkins group 
as in the control group, 1/2 × 60(1 + 2) = 90 sub-
jects in the Atkins group and 1/2 × 60(1 + 1/2) = 45 
subjects in the control group are required.

The sample size depends very strongly on the •	
choice of δ. It is always inversely proportional to 
the square of δ. For instance, if the size of δ is 
halved, four times as many subjects are needed. 
The choice of δ is mostly rather subjective, but it is 
crucial and therefore has to be well motivated.

The sample size depends very strongly on the •	
choice of the power 1 − β. For instance, 90% 
instead of 80% requires 34% more subjects. The 
choice of the power is mostly subjective, but it is 
crucial and therefore has to be well argued.

Sample size formulae can be rewritten such •	
that they yield the power for a given specified 
sample size.

Theo Stijnen

See also Experimental Design; Statistical Notations

Further Readings
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FL: CRC Press.

Scaling

Scaling is the process of numerically measuring a 
health state utility. Utility is a global, composite, 
preference-based measure of health-related quality 
of life. Utility-based measures ask respondents to 
indicate their preference or desire for a health state, 
either their own or a hypothetical description. 
Utilities are scaled from 0 (death) to 1 (full or per-
fect health), although negative values can be assigned 
to health states considered to be worse than death. 
Utility is particularly valuable as a quality weight 
for length of life. In many decision analyses, cost-
effectiveness analyses, and clinical studies, the main 
outcome is quality-adjusted life years, or QALYs, 
which are calculated by multiplying length of life by 
utility. Thus, 10 years in perfect health equal 10 
QALYs, while 10 years in a health state with a util-
ity of .75 equal 7.5 QALYs.

There are several standard scaling methods to 
obtain health state utilities. The most frequently 
used are the standard gamble, time trade-off 
(TTO), and rating scale. They differ in theoretical 
background, methodology, and outcome.
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Theoretical Perspective

In the 19th century, utilitarian philosophers defined 
utility as the pleasure, good, or happiness, or pre-
vention of pain, evil, or unhappiness produced by 
an object. Economists subsequently adapted utility 
to mean the satisfaction or pleasure that a con-
sumer derived from a commodity or service. In 
both usages, utility was considered to be subjec-
tive, summable across individuals, and a motive 
for behavior.

In 1944, a mathematician and an economist, 
John von Neumann and Oskar Morgenstern, 
respectively, proposed that to the extent that utili-
ties were preferences (i.e., an individual can say 
which object he or she prefers over another), utility 
could be numerically measured. Their method  
of measuring utilities involved making choices 
between alternative outcomes, where one included 
a risk. The value of any outcome could be inferred 
from how much risk an individual would take  
to avoid it. The axioms of von Neumann and 
Morgenstern defined how a rational individual 
ought to make decisions under conditions of 
uncertainty, that is, when decisions involved risk 
or chance, and provided proof of the existence of 
numerical utilities. These axioms became the foun-
dation of expected utility theory, according to 
which an individual will behave or make choices to 
maximize his utility.

Scale Properties of Utilities

To be used as QALY weights, utilities must be 
measured on an interval scale. An interval scale is 
one in which changes of the same size have the 
same meaning anywhere on the scale, but 0 is  
an arbitrary value (such as temperature). Thus, a 
change in utility from .2 to .4 must be the same as 
a change from .7 to .9. The usual end points are 
death (0) and full health (1), but sometimes worst 
health is anchored at 0. An interval scale is a type 
of cardinal scale and allows all parametric statisti-
cal calculations.

Direct Scaling Methods  
for Measuring Utilities

Standard Gamble

The standard gamble (SG) offers respondents a 
series of choices between the certainty of spending 

a specified time period in the health state of inter-
est and taking a hypothetical treatment that has 
an X% chance of immediate death and a (100 − 
X)% chance of full health. The health state of 
interest can be a patient’s own health or a descrip-
tion of a hypothetical but plausible health state, 
often prototypical of a disease or condition. The 
chances of full health and death are varied, either 
by direct titration or by “ping-pong.” In the titra-
tion procedure, the first choice offered is between 
the health state of interest and a treatment that 
gives a 100% chance of full health and 0% chance 
of death. Once this is accepted, the chance of full 
health is decreased, usually by 5% at a time (95, 
90, 85, etc.), and the chance of death increased (5, 
10, 15, etc.), until the respondent indicates that 
he will not accept the gamble or cannot decide 
between the two choices. The point of indiffer-
ence is either at this indecision or midway between 
the chance of full health that is accepted and the 
chance that is not accepted. In the ping-pong 
approach, the chance of full health is varied from 
high to low: 100%, 5%, 95%, 10%, 90%, and so 
on. The chance of death is always 100 minus the 
chance of full health. The ping-pong approach 
gradually closes in on the respondent’s point of 
indifference between the choice of the gamble and 
the health state of interest. Utility for the health 
state is defined as 1 minus the probability of 
death at the point of indifference between the 
certainty and the risk. Thus, indifference between 
staying in current health and a potentially cura-
tive treatment with a 20% chance of death yields 
a utility of .80 for current health. If a health 
state is very undesirable the respondent should be 
willing to take a high risk of death to avoid it, and 
the respondent’s utility for that health state will 
be low. Utilities for health states worse than death 
can be elicited by asking respondents to make a 
choice between certain death and a gamble in 
which full health occurs with a probability X and 
staying in the health state occurs with a probabil-
ity of 1 − X. If the health state is very undesirable, 
the person would not take the gamble unless X is 
very high. Utility is calculated as −X/(1 − X) and 
therefore has a much larger range than the 0 to 
1.0 limit for utilities for health states preferred to 
death. This can be corrected by assigning −1 to 
the least preferred health state and scaling the 
others between it and 0. Another method is to 
divide the negative utility by 1 minus itself; for 
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example, if X = .95, utility = −19, and −19/(1 − 
(−19)) = −.95. The resulting values should be 
interpreted with caution.

Rating Scale

Also known as a visual analog scale or feeling 
thermometer, the rating scale (RS) originated in 
psychophysics to measure response to sensory 
stimuli such as light. It is used to measure feelings 
and attitudes in psychometrics, and it has been 
widely used to measure health status. For the RS, 
respondents position a health state on a linear 
scale with 0, representing death, at one end and 
100, representing full health, at the other. The util-
ity for the health state is determined by dividing 
the distance on the scale from death to the health 
state by 100. Thus, a health state rated three quar-
ters up the scale yields a utility of .75.

For health states considered to be worse than 
death, the low anchor (0) is changed to the least 
preferred health state, and the other health states, 
including death, are placed between it and full 
health. Some transformation is required to convert 
the resulting utilities to the standard scale on 
which 0 equals death.

Time Trade-Off

The TTO asks the respondent to make a series 
of choices between spending some period of time 
(often the rest of his life) in the health state of 
interest or spending fewer years in full health. The 
number of years in full health is varied until the 
respondent is indifferent to the two choices. The 
less desirable a health state is perceived to be, the 
more time will be traded off to achieve perfect 
health. Utility is calculated by dividing the number 
of years to be spent in full health by the number of 
years that would otherwise be spent in the less 
than perfect health state, yielding a number between 
0 and 1.

For health states worse than death, the choice is 
between immediate death and spending a variable 
number of remaining life years in full health (y 
years) followed by the remainder of life (T − y) in 
the health state of interest. For example, if remain-
ing life years (T) were 10, the first choice would be 
immediate death or 9 (y) years in full health and 1 
(10 − y) year in the health state worse than death. 

If life was accepted, fewer years of full health and 
more years in the worst health state would be 
offered, using either titration or ping-pong, until 
the point of indifference between the two alterna-
tives could be determined. Utility is calculated as y/
(y − T) at this point. The transformations to a scale 
of 0 to −1, described above for the SG, can be used 
but should be interpreted with caution.

Utility Versus Value

The SG is the original utility scaling method, as it 
is based directly on the axioms of von Neumann 
and Morgenstern. It asks respondents to make a 
choice involving an uncertain outcome. The TTO 
was developed as a choice-based alternative that 
would be easier for people who do not understand 
probabilities, but technically it does not yield true 
utilities because it does not involve uncertainty or 
risk. The RS is probably the simplest method of 
health state valuation, but it does not involve risk, 
has no roots in expected utility theory, and is not 
choice based.

Purists distinguish between “utilities” derived 
from the SG and following the axioms of expected 
utility theory, and the “values” derived from the 
other scaling methods. However, much of the lit-
erature fails to make this distinction and refers to 
all these measures of health status as utilities.

Factors Affecting Utility Values

Scaling Method

Different scaling methods do not produce the 
same ratings for a given health state. In general, 
utilities derived from the SG tend to be higher than 
those from the TTO which are, in turn, higher 
than those from the RS.

While there is no universally accepted gold stan-
dard utility measure, the SG is the only one that is 
based on expected utility theory. However, some 
researchers have proposed that people do not always 
behave according to expected utility theory; that is, 
they may not always choose to act in a way that 
maximizes their utility. All scaling methods have 
been reported to have some kind of measurement 
bias. Either “end-of-scale” or “spacing out” bias 
may affect how respondents use the RS; as a result, 
the intervals between health states do not represent 
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the true differences as perceived by the respondent. 
The higher utilities obtained with the SG are said to 
be due to risk aversion; that is, the certainty of a 
very undesirable health state is preferred over even 
a small risk of death. The TTO, like the SG, presents 
a choice and may be subject to loss aversion (not 
wanting to give up years of life). Other issues with 
the TTO include the effects of time duration (years 
of life being considered) and time preference (years 
in the near future are valued more highly than years 
in the distant future) on utilities.

Although different scaling methods usually pro-
duce different utilities, the utilities are generally 
correlated. If several health states are rated, the 
order of preference will be the same regardless of 
scaling method. RS values are sometimes converted 
to SG or TTO utilities, but there is no agreement 
on the best method.

Respondents

The general consensus is that patients rate their 
own health states higher than individuals who 
have not experienced the disease rate a scenario 
describing it, presumably because patients adapt to 
their limitations. In cost-utility analysis, the conse-
quence is that the maximum potential utility gain 
from a treatment is smaller if patients’ utilities are 
used. The Panel on Cost Effectiveness in Health 
and Medicine, appointed by the U.S. Public Health 
service, recommends that societal (nonpatient) 
utilities be used for “reference case” analyses car-
ried out from a societal perspective, while patients’ 
utilities may be appropriate when interventions for 
the same condition are being compared. For indi-
vidual decision making, the utilities of each patient 
should be used.

Presentation of Health States

When utilities are being elicited for health states 
other than patients’ own, the method used to pres-
ent the health states (e.g., point form, narrative 
text, or multimedia) can influence the utility values 
obtained. Regardless of respondents, framing (pre-
senting an outcome as a loss vs. a gain), anchoring 
(starting points for SG or TTO), and selection of 
upper bound (“normal” or “perfect” health, or 
absence of symptoms) and lower bound (“worst 
health” or “death”) may also affect utilities.

Measurement Properties

All three scaling measures demonstrate good reli-
ability, validity, and responsiveness. The SG and 
TTO are more time-consuming than the RS, but 
subjects are generally willing to complete them. 
Computer programs are available to ease adminis-
tration, scoring, and data entry. If subjects are 
extremely risk-averse, the SG may be less respon-
sive to changes in health status than the other 
methods.

Choosing the Method

Which scaling method should be used? The RS is 
easy to understand and administer and has been 
widely used to measure health status. It elicits a 
value rather than a utility, and the true relationship 
between the RS and the SG or TTO has not been 
determined, so use of the RS as a surrogate is not 
recommended. The SG and TTO require different 
and more complex thought processes. Props 
(Chance Board for the SG and TTO Board) facili-
tate explanation, administration, and comprehen-
sion of these tasks. The SG is the classic method 
for decision making under uncertainty. Most 
healthcare interventions involve uncertainty and 
risk, an argument in favor of the SG.

Given the differences in theoretical background 
and the effects of scaling method, respondent, and 
presentation on utilities, decision makers should 
try to use similarly derived utilities for each deci-
sion analysis or other study where possible. 
Sensitivity analysis should be used to explore the 
effects of variation in utility values on the results.

Karen E. Bremner

See also Cost-Utility Analysis; Expected Utility Theory; 
Gain/Loss Framing Effects; Quality-Adjusted Life 
Years; Utility Assessment Techniques
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Screening programS

Screening programs are used for the early detec-
tion of disease to decrease mortality and to increase 
quality of life. This subject is important in both 
clinical practice and public health, since screening 
involves a substantial part of the population. As 
people are already ill when a disease is detected, it 
is used for secondary prevention. Early detection 
means detecting a disease at an earlier (presymp-
tomatic) stage than would usually occur in stan-
dard care, as patients have no clinical complaints 
and therefore no reason to seek medical care. A 
necessary condition for screening tests is the avail-
ability of intervention for the detected illness and 
a better effectiveness of the intervention when pro-
vided early. This entry describes important criteria 
to assess the pros and cons of screening programs 

as the basis for informed medical decision making 
for patients, care providers, and public health 
experts and policy makers. This entry illustrates 
these criteria using the practical context of cancer 
screening, which is similar to screening in the case 
of other diseases.

Criteria to Evaluate Screening Programs

The question whether patients benefit from  
early detection of disease includes the following 
components:

 1. Can the disease be detected early? Are there 
feasible and practical measurements available?

 2. What are the sensitivity, specificity, and 
predictive values of the test? How serious is the 
problem of false-positive test results?

 3. What are the costs and harms?

 4. Do the individuals in whom disease is detected 
early benefit from early detection, and is there 
an overall benefit to those who are screened?

To evaluate screening programs, several out-
come and process measures are used: The reduc-
tion of incidence (if possible, e.g. cervical cancer or 
colon cancer) and of disease-specific and overall 
mortality in the population screened; the increase 
of cases detected at an earlier stage, leading to less 
case fatality in screened individuals; the reduction 
in complications; the prevention or reduction in 
recurrences or metastases; and finally, the improve-
ment of quality of life in screened individuals.

Process variables contain the number of people 
screened, the proportion of target population 
screened and number of times screened, the detected 
prevalence of preclinical disease, the total costs of 
the program, the costs per case and previously 
unknown cases found, the proportion of positive 
screenees brought to final diagnosis and treatment, 
and the predictive value of a positive test in popu-
lations screened.

It is important to note that screening has benefits 
and harms. An important benefit is a reduction of 
mortality or an increased quality of life. Important 
harms include costs, false alarms, and overdiagno-
sis. Costs include not only financial costs but also 
nonfinancial costs to patients, including anxiety, 
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emotional distress, inconvenience, and overtreat-
ment due to overdiagnosis. Thus, the “cost” of a 
test is not just the cost of the test procedure.

Natural History, Progression, 
and Regression of Disease

When evaluating the benefits of screening pro-
grams, it is essential to place screening in the 
appropriate timeline of the natural history of the 
disease. At some point, biologic onset of disease 
occurs without symptoms as, for instance, a sub-
cellular change or alteration of DNA. The time 
between onset and the symptoms’ start is called 
the preclinical phase. Later, the disease becomes 
symptomatic, when it moves into the clinical 
phase and the patient seeks care, gets a diagnosis, 
and is treated, which in turn will end up in cure, 
disease control, disability, or death. Screening is 
assigned to the asymptomatic, preclinical phase 
for early detection of the disease in the hope of 
more effective treatment than would be possible 
in a later stage. That means that the diagnosis is 
advanced to an earlier stage (called lead time, an 
inherent concept in screening). Early detection 
does not mean final diagnosis but suspicion of 
the disease, which needs further investigation to 
verify it.

Another inherent concept in screening is the 
critical point in the natural history of the disease 

before which care is more effective and easier to 
administer. This point might be, for breast cancer, 
the time when it has not spread to the axillary 
lymph nodes, so that prognosis is better before 
than after spread has taken place.

Test Accuracy of Screening Programs  
and Their Understanding

Each test can make two errors: false positives and 
misses. The false-positive rate is the proportion of 
positive tests among patients without the condi-
tion (Table 1). The miss rate (false-negative rate) is 
the proportion of negative tests among patients 
who actually have the condition. The specificity is 
the proportion of negative tests among patients 
without the condition. The false-positive rate and 
the specificity add up to 1 (100%). The sensitivity 
is the proportion of positive tests among clients 
with the condition. False-negative rate and sensi-
tivity, again, add up to 1 (100%; Table 1).

Sensitivities and specificities continue to confuse 
physicians and patients alike. Figure 1 illustrates 
how these can be translated into natural frequen-
cies to facilitate deriving the positive predictive 
value (PPV) of the test, which means the propor-
tion of ill people among all clients with positive 
tests. For interpretation, it is relevant to notice that 
the PPV varies depending on disease prevalence in 
different populations.

Table 1  Four possible test outcomes (percentages refer to Figure 1)

Disease

Test result Yes No

Positive a (90%)
Sensitivity

b (9%)
False-positive rate

Negative c (10%)
False-negative rate

d (91%)
Specificity

Sensitivity = a/(a + c)  Positive predictive value = a/(a + b)
Specificity = d/(b + d)  Negative predictive value = d/(c + d)

Notes: Testing for a disease can have four possible results: a positive result given disease, a positive result given no disease, a 
negative result given disease, and a negative result given no disease. The rates with which these four results occur are called 
sensitivity (true-positive rate), false-positive rate, false-negative rate, and specificity (true-negative rate). The two shaded areas 
indicate the two possible errors, false positives and false negatives.
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To assess sensitivity and specificity reliably for 
all cells of Table 1, complete data would be needed. 
However, often only those with positive results 
(a + b) are sent for further testing with a well-
proven gold standard. Data for negative tests are 
frequently missing in routine testing because these 
patients do not receive further testing. In particu-
lar, when the gold standard means invasive proce-
dures for further testing (e.g., transrectal ultrasound 
and biopsy of prostate in prostate-specific antigen 
[PSA] test), those data are hard to obtain, resulting 
in unreliable measures of test characteristics.

Sources of Bias When Measuring 
the Effectiveness of Screening

Prognostic Selection Bias

Screening programs tend to detect disease in 
people with long preclinical phase, since the chance 
of detection is higher than for those with very 
short preclinical phase. Thus, slowly progressive, 
less malignant tumors are more likely to be 
detected, in contrast to fast-growing, aggressive 
tumors, which are less likely to be detected. 
Therefore, better prognoses are more likely to be 

Conditional Probabilities Natural Frequencies

1,000
women

990
no breast cancer

10
breast cancer

9
positive

1
negative

p (breast cancer test positive)p (breast cancer test positive)

=

89
positive

901
negative

1,000
women

99%
no breast cancer

1%
breast cancer

90%
positive

10%
negative

9%
positive

91%
negative

9
9 + 89

=
.01 x .9

.01x.9 + .99 x.09

Figure 1   What is the probability that a woman who tests positive in mammography screening actually has breast 
cancer (positive predictive value)?

Source: Gigerenzer, G., Gaissmaier, W., Kurz-Milcke, E., Schwartz, L. M., & Woloshin, S. (2007). Helping doctors and patients 
make sense of health statistics. Psychological Science in the Public Interest, 2, 53–95. Reprinted with permission.

Note: The left side illustrates the calculation with conditional probabilities and the right side with natural frequencies. The four 
probabilities at the bottom of the left tree are conditional probabilities. Each one is normalized on base 100. The four frequencies 
at the bottom of the right tree are natural frequencies. The calculation is simpler (smiling face) because natural frequencies are 
not normalized relative to base rates of breast cancer, whereas conditional probabilities (or relative frequencies) are, and they 
need to be multiplied by the base rates. The formula is known as Bayes’s rule.
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detected, so that it is not clear whether a possible 
benefit stems from screening or just prognostic 
selection as length-biased sampling. In conse-
quence, the ability to detect a disease does not 
necessarily mean that the screening has benefits.

The assumption of benefit from screening only 
holds when

 1. the disease has a detectable preclinical phase 
and

 2. without intervention, all or most cases in the 
preclinical phase progress to the clinical stage.

According to Zahl, Mæhlen, and Welch, this is 
questionable, since the preclinical stage may be too 
short for early detection in extremely rapid pro-
gression. Also, spontaneous regression may occur, 
so that not every preclinical precancerous lesion 
progresses to the full cancer. Consider screening 
initiatives provided once a year from age 50 on. 
Rapid progressive tumors are harder to detect 
early at the screening time points than slowly pro-
gressive ones, because the rapid ones can progress 
into the clinical stage in less than a year, rendering 
early detection very difficult. Moreover, those who 
earlier in life had rapidly progressive tumors would 
not benefit at all.

Lead Time Bias

Another problem occurs when benefits are eval-
uated by comparisons of 5-year survival rates in 
screened and unscreened people. Such rates are 
defined as the proportion of survivors out of dis-
eased patients 5 years from diagnosis. Increased 
survival rates may not be a result of screened people 
living longer but rather a result of diagnosis being 
made at an earlier point in the natural history of the 
disease. This is called lead time bias. In such cir-
cumstances, patients do not derive any benefit from 
earlier detection. Indeed, they may lose out regard-
ing quality of life, as they do not live longer, but live 
longer with the diagnosis and are at a higher risk of 
being overtreated. To find out whether early detec-
tion is beneficial, one should rather compare mor-
tality from the disease in the entire screened group 
with that in the unscreened group. Unlike survival 
rates, mortality includes all people in the denomi-
nator, not only those with the disease. Thus,  

survival and mortality rates are not simply oppo-
sites. Welch, Schwartz, and Woloshin found that 
across the 20 most common solid tumors in the 
United States, changes in 5-year survival over the 
last 50 years were completely uncorrelated with 
changes in mortality. Thus, one should not draw 
any conclusions about the effectiveness of screening 
from improved 5-year survival rates, although very 
often benefits are misleadingly claimed to be proven 
based on this statistic. For instance, many smokers, 
current and past, wonder whether to get a CT scan 
to screen for lung cancer. While advertisements 
(misleadingly) promote screening because of higher 
survival rates, there is no evidence for reduced mor-
tality rates; yet it is known that CT screening will 
harm (and even kill) some people through unneces-
sary biopsies, overdiagnosis, and overtreatment. 
That is why no professional group currently recom-
mends the test (in fact, the American College of 
Chest Physicians’ recommendations argue against 
routine CT screening).

Overdiagnosis Bias

Another source of bias is true-positive detection 
of pseudodiseases. These are low virulent cancers, 
which never progress to clinical disease or even 
spontaneously regress, but which are still detected 
by screening and often unnecessarily treated. Thus, 
overdiagnosis can lead to overtreatment with 
harmful interventions that are not necessary. For 
instance, Schwartz and Woloshin found that about 
25% of breast cancers detected by mammography 
are overdiagnoses.

Moreover, false-positive testing of healthy indi-
viduals screened and diagnosed as having cancer 
when in reality they do not can also lead to over-
diagnosis and overtreatment.

Overdiagnosis could convey the false impres-
sion of increased rates of detection and diagnosis 
of early stage cancer as a result of screening. 
Beyond this, many people diagnosed with cancer 
in the screened group would actually not have can-
cer, and would therefore have good survival; the 
results would inflate survival, resulting in a mis-
taken conclusion that screening would have been 
shown to improve survival from cancer in the 
population. To avoid overdiagnosis bias, it is 
essential to standardize diagnostic processes as 
rigorously as possible.
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Referral or Volunteer Bias

In deriving conclusions about the benefits of 
screening, one needs to ensure that both people 
who are screened and people who are not screened 
otherwise have the same characteristics. Often, 
volunteers who participate are healthier than the 
general population and are more likely to comply 
with medical recommendations. Thus, a lower 
mortality would be observed even if early detec-
tion played no role in improving the prognosis. 
Vice versa, it is possible that people with high risk 
have higher participation rates due to family his-
tory or risky lifestyles. Both phenomena are called 
referral or volunteer bias, of which the direction is 
often difficult to determine. This bias can strongly 
affect correct interpretation of benefits.

The best solution is, therefore, randomized 
controlled trials (RCTs), in which the randomiza-
tion procedure ensures that the two groups have 
comparable initial prognostic profiles. A recent 
Cochrane review on mammography screening 
including six trials involving half a million women 
illustrates that the lack of proper randomization 
could result in an overestimation of the benefits. 
While two trials with adequate randomization did 
not show a significant reduction in breast cancer 
mortality, four trials with suboptimal randomiza-
tion did.

Conclusion

Screening programs should entail quality-proven, 
practical, and feasible tests for early detection of 
diseases, systematically addressed to all people of a 
predefined target population, and accompanied by 
standardized documentation and continuous, inde-
pendent quality assessment from the first invita-
tion up to the evaluation of the predefined end 
points. Moreover, there is a need for information 
on pros and cons for informed decision making of 
the participants. The target population contains 
asymptomatic people who feel healthy, and among 
whom indeed most are definitively healthy, but 
does not include individuals with symptoms seek-
ing care. Therefore, side effects are less tolerable 
and benefits have to be rigorously proven to out-
weigh possible harms. The most important benefits 
are the reduction of incidence and mortality of 
cancer and the improvement of quality of life. The 

most important harms are false alarms, overdiag-
nosis, and overtreatment. Programs proven to 
decrease disease-specific and overall mortality are 
extraordinarily effective. Evidence should be based 
on RCT, and all the quality criteria should be 
evaluated systematically before the programs are 
invented.

Angela Neumeyer-Gromen  
and Wolfgang Gaissmaier

See also Bias in Scientific Studies; Cost-Benefit Analysis; 
Costs, Direct Versus Indirect; Diagnostic Tests; 
Informed Decision Making; Quality of Well-Being 
Scale; Randomized Clinical Trials; Risk 
Communication
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SF-6d

The SF-6D provides a method for estimating 
health state utility values from data obtained from 
patients using the SF-36 (or SF-12) health status 
questionnaires. The SF-6D has two parts. First, 
patients who have completed the SF-36 are 
assigned to a health state classification (i.e., 
SF-6D). This classification describes health on six 
multilevel dimensions: physical functioning, role 
limitations, social functioning, pain, mental health, 
and vitality. Second, there are algorithms for scor-
ing each state based on values obtained from gen-
eral population surveys using the standard gamble 
(SG). These health state utility values can be used 
to calculate quality-adjusted life years (QALYs) 
for cost-effectiveness analysis. There are two ver-
sions of the SF-6D, one for use with the SF-36 and 
the other for the SF-12.

Derivation of the SF-6D From SF-36

The SF-36 is the most widely used generic mea-
sure of health status in the world. It yields scores 
across eight dimensions and two summary 
scores. The SF-36 is useful for assessing changes 
in self-perceived health status or health-related 
quality of life across these eight dimensions. 
However, these dimension scores are derived by 
either simply summing responses to the SF-36 
items or by the use of weights from factor anal-
ysis; as neither of these is likely to reflect peo-
ple’s preferences for the health states, they 
cannot be used in economic evaluation. 
Furthermore, there is no means of combining 
across the dimensions or combining with sur-
vival for cost-effectiveness analysis. The SF-6D 
was developed to estimate health state utility 
values from the large number of data sets col-
lected using the SF-36.

The development of the SF-6D involved three 
stages. The first was the development of the 
SF-6D health state classification from the SF-36. 
The second was a valuation survey to value a 
sample of states defined by the SF-6D. The third 
stage was the econometric analysis of the health 
state valuation data to estimate an algorithm for 
scoring all states defined by the SF-6D. The first 
version of the SF-6D was reported in 1998, but 

this was substantially revised in the publication of 
2002 and again in 2004. This entry only reports 
the latter.

SF-6D Health State Classification

The SF-6D was constructed from a selection of 
11 items drawn from the SF-36. These items were 
selected from the SF-36 to minimize the informa-
tion loss within the constraint that the resultant 
health state classification must be amenable to 
valuation. The item selection process was under-
taken using evidence of the psychometric proper-
ties of the items and the factor analyses undertaken 
by John Ware and his colleagues in developing 
the SF-12.

The SF-6D has six multilevel dimensions: 
physical functioning, role limitation, social func-
tioning, pain, mental health, and vitality  
(Table 1). The number of levels per dimension is 
between four and six levels of functioning or 
well-being, depending on the response choice 
categories of the original items from the SF-36. 
The SF-36 version of the SF-6D defines 18,000 
states. The version of the SF-6D derived from the 
SF-12 has the same six dimensions and only dif-
fers in having just three levels for physical func-
tioning and five for pain, which in all define 
7,500 states. The SF-12 version of the SF-6D 
(i.e., SF-6D (12)) uses 7 items of the SF-12 (a 
subset of the 11 used in SF-6D (36)). Both ver-
sions of the SF-6D can be used with Versions 1 
and 2 of the SF-36 and SF-12.

Valuation Survey

The UK value set for both versions of the 
SF-6D comes from a representative sample of 
836 members of the UK general population 
(response rate 65%) who were interviewed and 
asked to value a total of 249 states defined by 
the SF-6D using the standard gamble (each 
respondent valued 6 states). Five health states 
were valued against full health and the worst 
state was defined by the SF-6D. The worst state 
was then valued against full health and death to 
transform the valuations of the intermediate 
states onto the full health/death scale required to 
calculate QALYs. There were 225 respondents 
excluded for either failing to value the pits state, 
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Table 1  SF-6D (SF-36 version)

Physical Functioning Pain

1 Your health does not limit you in vigorous 
activities

1 You have no pain

2 Your health limits you a little in vigorous activities 2 You have pain but it does not interfere with your 
normal work (both outside the home and 
housework)

3 Your health limits you a little in moderate activities 3 You have pain that interferes with your normal work 
(both outside the home and housework) a little bit

4 Your health limits you a lot in moderate activities 4 You have pain that interferes with your normal work 
(both outside the home and housework) 
moderately

5 Your health limits you a little in bathing and 
dressing 

5 You have pain that interferes with your normal work 
(both outside the home and housework) quite a 
bit

6 Your health limits you a lot in bathing and 
dressing

6 You have pain that interferes with your normal work 
(both outside the home and housework) extremely

Role Limitations Mental Health

1 You have no problems with your work or other 
regular daily activities as a result of your 
physical health or any emotional problems

1 You feel tense or downhearted and low none of the 
time

2 You are limited in the kind of work or other 
activities as a result of your physical health

2 You feel tense or downhearted and low a little of the 
time

3 You accomplish less than you would like as a 
result of emotional problems

3 You feel tense or downhearted and low some of the 
time

4 You are limited in the kind of work or other 
activities as a result of your physical health and 
accomplish less than you would like as a result 
of emotional problems

4 You feel tense or downhearted and low most of the 
time

5 You feel tense or downhearted and low all of the time

Social Functioning Vitality

1 Your health limits your social activities none of the 
time

1 You have a lot of energy all of the time

2 Your health limits your social activities a little of 
the time

2 You have a lot of energy most of the time
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producing fewer than two values, or producing 
values without any variation. This left 611 
respondents in the data set providing 3,518 
observed SG valuations across the 249 health 
states. Mean health state values ranged from .21 
to .99 and the standard deviations ranged from 
.2 to .45.

Estimation of Scoring Algorithm

A valuation algorithm has been estimated from 
the SG valuation data to value all health states 
defined by the SF-6D. This was a complex data set 
that was skewed, bimodal, truncated, and clus-
tered (by respondent). A range of alternative mod-
eling specifications were examined and the best 
performing one selected on the basis of predictive 
ability. The best model in terms of prediction was 
an ordinary least squares model of the mean 
health state values, where each dimension level 
was entered as a dummy variable along with a 
crude interaction term (that equaled 1 when any 
dimension was at a severe level). The original 
scoring algorithm for the SF-6D (36) was based 
on this model, and a similar model was used to 
estimate an algorithm for the SF-6D (12). These 
algorithms are presented in Table 2. The main dif-
ference between the algorithms and the models is 
that inconsistent coefficients from the model were 
merged.

The SF-36 and SF-12 are copyrighted and can 
be obtained from the Medical Outcomes Trust and 

QualityMetric. Programs for applying the SF-6D 
to SF-36 or SF-12 data sets are available from the 
University of Sheffield free of charge for noncom-
mercial applications. Programs are available in 
Excel, SPSS, and SAS.

Comparison With Other  
Preference-Based Measures

Differences in mean scores have often been found 
to be little more than .05 between SF-6D and two 
widely used measures, the EQ-5D and HUI3. 
This mean statistic masks considerable differ-
ences in the distribution of scores. There is a 
substantial disagreement between the scores at 
the individual level (see Figure 1). The ranges dif-
fer markedly, with the range for the EQ-5D, for 
example, covering –.4 to 1.0, as compared with 
.3 to 1.0 for the SF-6D. Negative values on the 
EQ-5D are associated with values on the SF-6D 
as high as .75. There is a larger cluster of data 
points to the right of the line of agreement that 
are all associated with patients being at the most 
severe level in one or more of the EQ-5D dimen-
sions. In the UK EQ-5D scoring algorithm, these 
patients have an additional decrement known as 
the “N3” term.

There is evidence that the SF-6D suffers from 
floor effects in its descriptive systems. Patients 
with more severe problems in physical functioning, 
role limitations, and social functioning tend to be 
on or near the bottom level. This means that  

3 Your health limits your social activities some of the 
time

3 You have a lot of energy some of the time

4 Your health limits your social activities most of the 
time

4 You have a lot of energy a little of the time

5 Your health limits your social activities all of the 
time

5 You have a lot of energy none of the time

Source: Reprinted from Journal of Health Economics 21(2), Brazier J, Roberts J, Deverill M. The estimation a preference-based 
single index measure for health from the SF-36, pp. 271–292, copyright © 2002, with permission from Elsevier.

Note: The SF-36 items used to construct the SF-6D are as follows: physical functioning Items 1, 2, and 10; role limitation due 
to physical problems Item 3; role limitation due to emotional problems Item 2; social functioning Item 2; both bodily pain items; 
mental health Items 1 (alternate version) and 4; and vitality Item 2.
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the SF-6D is less able to detect changes in such 
patients. In contrast, the EQ-5D suffers from ceil-
ing effects, since a large number of patients are in 
the best health state (i.e., Level 1 for each dimen-
sion), and so is less able to detect changes in 
patients with milder problems.

A review comparing the sensitivity of the 
SF-6D with other generic preference-based mea-
sures found a mixed picture. The SF-6D was 
found to be more sensitive in the general popu-
lation, medical rehabilitation, hearing aid pro-
vision, and leg reconstruction but less sensitive 
in liver disease and hip replacement. No one 
preference-based measure is better across all 
conditions.

New Developments

More Advanced Algorithm Based  
on a Bayesian Approach

There has been further work on the modeling of 
the valuation data. The first has been the estima-
tion of an algorithm using a nonparametric 
Bayesian approach that has been shown to per-
form better in terms of predictive ability (mean 
absolute error of .089 as compared with .104 out 
of sample predictions) and overcomes the bias of 
the original regression models of underpredicting 
the worst health states (e.g., it predicts a value of 
.203 for the worst SF-6D state as compared with 
.301 using the original algorithm). The overall 
impact on mean health state values was between 
.01 and .04 across four data sets. It is recom-
mended that researchers use this algorithm in 
future work but use the original algorithm for 
comparability.

Values Based on Rank Data

There are concerns that SG health state values 
may be contaminated by nonhealth considerations 
such as loss aversion, and so researchers have been 
exploring alternative methods that use ordinal 
data. A model has been estimated from the rank 
data collected in the original valuation survey 
using a rank-ordered logit model. The weights 
generated from rank data were found to be similar 
to those from SG data. Researchers who do not 
like SG may want to consider using this algorithm 
as an alternative.

Table 2   Scoring for the SF-36 and SF-12 versions of 
the SF-6D

SF -6D 
(SF-36)

SF-6D 
(SF-12)

C 1.000 c 1.000

PF23 −0.035

PF4 −0.044

PF5 −0.056 PF3 −0.045

PF6 −0.117

RL234 −0.053

RL234 −0.063

SF2 −0.057 SF2 −0.063

SF3 −0.059 SF3 −0.066

SF4 −0.072 SF4 −0.081

SF5 −0.087 SF5 −0.093

PAIN23 −0.042

PAIN4 −0.065 PAIN3 −0.042

PAIN5 −0.102 PAIN4 −0.077

PAIN6 −0.171 PAIN5 −0.137

MH23 −0.042 MH23 −0.059

MH4 −0.100 MH4 −0.113

MH5 −0.118 MH5 −0.134

VIT234 −0.071 VIT234 −0.078

VIT5 −0.092 VIT5 −0.106

MOST −0.061 MOST −0.077

Source: Brazier J, Roberts J. The estimation of a preference-
based measure of health from the SF-12. Medical Care 2004, 
42:851–59. Reprinted with permission. 



1029SF-6D

Predicting SF-6D Index Using  
Mean SF-36 Dimension Scores

A problem until recently has been that the esti-
mation of the SF-6D requires access to individual 
level data. However, reviews of published evidence 
for populating economic models often uncovers 
studies where it is not possible to obtain individual 
level data and only mean SF-36 health dimension 
scores are available. To make the most of such 
evidence, an algorithm has been estimated for  
predicting mean SF-6D scores from mean SF-36 
dimension scores. The models are reasonably accu-
rate in predicting mean SF-6D values across sub-
groups or differences in change over time, with 
more than 90% to within ±.05. All algorithms 
mentioned above can be obtained from the 
University of Sheffield’s Health Economics and 
Decision Science Web site.

Valuation Surveys in Other Countries

There is emerging evidence that SG health state 
values differ between countries. There have been 
valuation surveys completed in Japan and Hong 
Kong each with 600 or more respondents. Surveys 

are currently also being undertaken  
in Australia, Brazil, Portugal, and Singapore.  
Re  searchers interested in using the SF-6D in these 
countries should consult the University of Sheffield’s 
Health Economics and Decision Science Web site 
for information on the relevant country-specific 
research group.

The Future

The SF-6D preference-based measure of health has 
been widely used to assist in undertaking economic 
evaluation in healthcare (with over 200 citations in 
2008). It meets the requirements of many reim-
bursement authorities interested in cost-effectiveness 
evidence. However, there is scope for improving 
methods and improving our understanding of 
methods, including the following: Undertake com-
parisons with other generic preference-based mea-
sures in more data sets; explore ways to lower the 
floor of the SF-6D by introducing additional levels 
to some dimensions; revalue SF-6D in more coun-
tries and formally undertake comparisons across 
countries; examine methods for reducing the  
burden from revaluation studies by drawing on 
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existing data sets using Bayesian methods; and 
revalue SF-6D using TTO and other methods to 
enhance comparability across instruments.

John E. Brazier

See also Cost-Effectiveness Analysis; Health Status 
Measurement, Floor and Ceiling Effects; Health Status 
Measurement Standards; Quality-Adjusted Life Years 
(QALYs)
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SF-36 and SF-12 
HealtH SurveyS

The SF-36® Health Survey is a questionnaire 
with 36 standardized questions (items) used to 
assess generic health outcomes, which are often 
referred to as patient-reported outcomes (PRO) 
or health-related quality of life (HRQOL). The 
SF-36 measures eight domains of health out-
comes: physical functioning, role-physical, 
bodily pain, general health, vitality, social func-
tioning, role-emotional, and mental health. 
Version 2 of the SF-36 (SF-36v2® Health Survey) 
measures the same domains but contains 
improvements in wording and response choices 
to cover a wider range of health. The SF-12® 

Health Survey consists of a subset of 12 items 
from the SF-36 covering the same eight domains. 
The SF-36 and SF-12 are part of the “SF family” 
of patient-reported outcomes measures for 
adults, which also includes the SF-8™ Health 
Survey and DYNHA® Generic Health Assessment 
(a dynamic or “computerized adaptive” instru-
ment). These generic tools are cross-calibrated 
and scored on the same norm-based metric to 
maximize their comparability.

The SF-36 and SF-36v2 Health Surveys yield an 
SF-profile of scores including eight domain scale 
scores (each summarizing the information from 
the items within a single domain of health), as well 
as two component summary scores formed from 
the eight domain scale scores: a physical compo-
nent summary (PCS) and a mental component 
summary (MCS). A self-reported health transition 
(HT) rating and a preference-based health utility 
index (SF-6D) can also be scored from the SF-36 
and SF-36v2. Version 1 of the SF-12 Health Survey 
provides PCS and MCS scores and a preference-
based health utility index (SF-6D). In addition, 
Version 2 of the SF-12 (SF-12v2® Health Survey) 
provides the eight domain scale scores.

The SF-36 and SF-12 Health Surveys are  
useful for medical decision making by providing 
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systematic assessment of health outcomes from 
the patient’s point of view. Potential uses include 
comparing general and specific populations, com-
paring the relative burden of diseases, differentiat-
ing the health benefits produced by a wide range 
of different treatments, screening individual 
patients, and predicting healthcare costs, mortal-
ity, and other important outcomes. The instru-
ments are frequently used in outcomes studies: 
The SF-36 has been cited in more than 9,800  
publications, including approximately 1,600 pub-
lished randomized clinical trials, while the SF-12 
has been cited in more than 1,000 publications. 
Among the advantages of the SF-36 and SF-12 are 
the availability of guidelines for administration, 
check of data quality, data analysis and interpre-
tation, standardized software for scale scoring 
and data quality monitoring, and translations into 
109 country/language versions. The SF-36 and 
SF-12 have been successfully administered to per-
sons 14 years and older using self-administration 
by paper and pencil, the Internet, telephone, inter-
active voice response (IVR), and personal digital 
assistant (PDA), as well as interviewer-administered 
forms. The surveys are available in standard 
(4-week recall) or acute (1-week recall) forms.

Background

The conceptual and methodological framework for 
the SF-36 and SF-12 was developed in two large-
scale studies of health services: the Health Insurance 
Experiment (HIE) and Medical Outcomes Study 
(MOS). These studies measured a broad array of 
functional status and well-being concepts and 
demonstrated that scales constructed from self-
administered surveys can be reliable and valid 
tools, yielding high-quality data for assessing 
changes in health status in the general population 
and in people with chronic conditions, including 
the elderly. The HIE and the MOS succeeded in 
achieving comprehensive assessments of patient-
reported health outcomes but still incurred a 
considerable response burden. The SF-36 was con-
structed to retain the benefits of a comprehensive, 
valid, and reliable health assessment but with 
greater practicality in terms of reduced response 
burden and ease of use.

The 8 health domains represented in the 
SF-profile were selected from 40 domains that were 

included in the MOS. Chosen health domains  
represented those most frequently measured in 
widely used health surveys and believed to be most 
affected by disease and health conditions. The 
SF-36 was first made available in “developmental” 
form in 1988 and released in final original form in 
1990 by its principal developer, John E. Ware Jr.

In 1991, the International Quality of Life 
Assessment (IQOLA) Project began with the goal 
of developing validated translations of a single 
health status questionnaire that could be used in 
multinational clinical studies and other interna-
tional studies of health. The SF-36 was chosen as 
the health status measure to be translated, adapted, 
and tested internationally in the IQOLA project. 
By 1993, 14 countries were represented in the 
IQOLA Project. Interest in developing transla-
tions of the SF-36 continued; as of 2008, there are 
109 country/language translations.

SF-36v2 Health Survey

Although the original SF-36 proved to be useful 
for many purposes, 10 years of experience revealed 
the potential for improvements. A need to improve 
item wording and response choices identified 
through the IQOLA Project, as well as a need to 
update normative data, led to the development of 
SF-36v2, which was made available in 1998.

Version 2 includes the following improve-
ments: (a) improved instructions and item word-
ing; (b) improved layout of questions and answers; 
(c) increased comparability in relation to transla-
tions and cultural adaptations, and minimized ambi-
guity and bias in wording; (d) five-level response 
options in place of dichotomous choices for items 
in the role-physical and role-emotional scales; and 
(e) simplified response options for the mental 
health and vitality scales. Without increasing the 
number of questions, improvements make the sur-
vey easier to understand and complete, and sub-
stantially increase the reliability and validity of 
scores over a wider range, thereby reducing the 
extent of floor and ceiling effects in the role perfor-
mance scales.

SF-12 and SF-12v2 Health Surveys

The SF-12 Health Survey was developed to offer a 
shorter alternate version of the SF-36, measuring 
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the same eight domains of health. Version 1 of the 
SF-12 succeeded in achieving PCS and MCS scores 
that are comparable to the PCS and MCS scores of 
the SF-36, but reporting of the scale score profile 
is not recommended for Version 1 of the SF-12. 
Improvements to the SF-12v2 allow for scoring the 
eight-scale score profile, in addition to the  
two component summary scores and the health  
utilities index.

Scales and Component Summaries

Physical Functioning

The Physical Functioning (PF) scale reflects the 
importance of distinct aspects of physical function-
ing and the necessity of sampling a range of severe 
and minor physical limitations. The SF-36 includes 
10 PF items representing levels and kinds of limita-
tions between the extremes of physical activities, 
including lifting and carrying groceries; climbing 
stairs; bending, kneeling, or stooping; and walking 
moderate distances. One self-care item is included. 
The SF-12 includes two PF items, focusing on mod-
erate activities and climbing stairs. The PF items 
capture both the presence and extent of physical 
limitations using a three-level response continuum.

Role-Physical

The Role-Physical (RP) scale covers an array of 
physical health-related role limitations in the kind 
and amount of time spent on work, the difficulties 
performing work, and the level of accomplishment 
associated with work or other usual activities. The 
SF-36 includes four and the SF-12 includes two  
RP items.

Bodily Pain

The SF-36 Bodily Pain (BP) scale includes two 
items: one pertaining to the intensity of bodily pain 
and one measuring the extent of interference with 
normal work activities due to pain. The SF-12 
includes the latter BP item.

General Health

The General Health (GH) scale in the SF-36 
consists of five items, including a general rating of 
health (“excellent” to “poor”) and four items 

addressing the respondent’s views and expecta-
tions of his or her health. The SF-12 includes the 
single general health rating item.

Vitality

The Vitality (VT) scale was developed to cap-
ture ratings of energy level and fatigue. The scale 
consists of four items in the SF-36 and one item in 
the SF-12.

Social Functioning

The Social Functioning (SF) scale measures  
the effects of health on the quantity and quality of 
social activities and, specifically, the impact of 
either physical or emotional problems on social 
activities. The SF-36 has two SF items, and the 
SF-12 has one SF item.

Role-Emotional

The Role-Emotional (RE) scale covers mental 
health-related role limitations assessing time spent 
on, level of accomplishment associated with, and 
level of care in performing work or other usual 
activities. The SF-36 has three RE items, and the 
SF-12 has two RE items.

Mental Health

In the SF-36, the Mental Health (MH) scale 
contains five items—including one or more items 
from each of four major mental health dimensions 
(anxiety, depression, loss of behavioral/emotional 
control, and psychological well-being). The SF-12 
contains two MH items assessing depression and 
psychological well-being.

Physical and Mental Component Summary

The aggregate of the scales are referred to  
as “component” summaries because they were 
derived and scored using principal components 
analysis. The component summary scores capture 
approximately 85% of the information contained 
in the scale score profile. Although they reflect  
the two broad components or aspects of health—
physical and mental—all items are used to score 
both component summary measures.
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SF-36 and SF-12 items, scales, and summary 
measures are scored so that a higher score indi-
cates a better health state.

Health Transition

The SF-36 includes reported health transition 
(HT), a general health item that asks respondents 
to rate the amount of change they experienced in 
their health in general over a 1-year period. This 
item is not used to score any of the eight multi-item 
scales or component summary measures, but  
provides information about perceived changes in 
health status that occurred during the year prior to 
the survey administration. The SF-12 does not 
include the health transition item.

Health Utility

The SF-6D Health Utilities Index can be calculated 
from both Version 1 and 2 of the SF-36 and  
the SF-12. This index (scored on a 0 to 1 range) 
weights together both physical and mental dimen-
sions of health based on utilities assigned to differ-
ent health states.

Norm-Based Scoring

The SF-36 originally produced eight scales with 
scores ranging from 0 to 100 and norm-based PCS 
and MCS scores. The SF-36v2 and SF-12v2 yield 
norm-based scores for all eight scales and the two 
component summaries, easing interpretation and 
score comparability. Norm-based scoring linearly 
transforms the scales and summary measures to 
have a mean of 50 and standard deviation of 10 in 
the 1998 U.S. general population. Thus, scores 
above and below 50 are above and below the aver-
age, respectively, in the 1998 U.S. general popula-
tion. Also, because the standard deviation is 10, 
each 1-point difference or change in scores has a 
direct interpretation; that is, it is one tenth of a 
standard deviation or an effect size of 0.10.

Scoring Software

Scoring instructions for the eight scales, PCS and 
MCS, HT, and an optional Response Consistency 
Index (RCI) for assessment of data quality are 
published in the user’s manual. Standardized 

scoring of all SF instruments is available through 
the QualityMetric Health Outcomes Scoring 
Software. For respondents with missing data, 
scale scores can be computed when at least one 
item in a scale is answered and component scores 
can be computed in most situations when items 
from at least seven scales are answered. In addi-
tion, the scoring software conducts data quality 
evaluations (i.e., data completeness, responses 
outside range, response consistency index [RCI], 
percentage of estimable scale scores, item inter-
nal consistency, item discriminant validity, and 
scale reliability) and allows users of the SF-36 

and SF-12 (Versions 1 and 2) to make direct com-
parisons of scores across data sets that use differ-
ent versions of the SF surveys.

Reliability and Validity

Reliability, validity, responsiveness, and interpreta-
tion of the SF-36 and SF-12 have been evaluated in 
numerous studies, which are summarized in sev-
eral user’s manuals and thousands of articles. 
Much of this research focused on the original sur-
vey versions, but because item content was retained 
across forms, most results from evaluations of the 
Version 1 surveys generalize to Version 2.

Evaluation of reliability includes internal, alter-
nate forms, and test-retest (Version 1) reliability. 
For SF-36v2, internal consistency (Cronbach’s 
alpha) estimates using data from the 1998 U.S. 
general population ranged from .83 to .95 across 
the eight scales and summary component measures 
(internal consistency reliability estimates for the 
summary components take into account the reli-
ability of and covariances among the scales); all 
exceeding the recommended minimum standard 
(.70) for group-level comparison of scores. 
Reliability estimates for general population sub-
groups and different chronic disease populations 
are also favorable, and higher for component sum-
mary estimates than the eight scales. Studies of 
alternate forms reliability using the DYNHA item 
banks found reliabilities ranging from .76 to .93.

Evidence of the tool’s construct validity has been 
documented in studies involving factor analysis, 
item-scale correlations (the correlation between 
each item and the domain scale scores), interscale 
correlations, and known-groups comparisons. 
Criterion validity has been demonstrated through 
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the correlations of each scale with the score for its 
associated DYNHA item bank. Data on the likeli-
hood of future events (e.g., job loss, psychiatric 
treatment) based on scale score ranges also provide 
evidence of criterion validity. Content validity has 
been shown through a comparison of the SF-36v2’s 
coverage of health domains to the health domain 
coverage of other general health surveys. Validity of 
the tools is fully documented in the user manuals for 
the SF-36v2 and SF-12v2 and further documented 
in peer-reviewed articles by the developer and in 
numerous studies from the research literature.

Interpretation

Interpretation of research results should preferably 
be based on prespecified hypotheses. For explor-
atory purposes or in the case of clinical data, inter-
pretation of the SF-36v2 or SF-12v2 begins by 
determining if the norm-based scores (NBS) for the 
PCS and MCS measures deviate from what is con-
sidered the “average” range for the U.S. general 

population or a relevant clinical comparison group. 
This is followed by an examination of the scale 
scores to make a similar determination. Each of 
these decisions is based on separate, empirically 
based individual patient- and group-level guide-
lines available in the user manuals. A graphical 
presentation of the profile (see example in Figure 1) 
should begin with a presentation of the results of 
the PCS and MCS measures, emphasizing the 
importance of first considering findings from these 
more general measures of health status. For reasons 
of standardization and ease of interpretation, the 
eight-scale profile should be presented in the fol-
lowing order: PF, RP, BP, GH, VT, SF, RE, MH.

Empirically derived minimally important differ-
ences for group comparisons and evaluation of 
individual scores are provided in the user manuals, 
along with score cutoffs for determining the likeli-
hood of the presence of a physical or mental disor-
der and U.S. general population norms for age, 
gender, age-by-gender, and combined groups for 
both the standard and acute forms.
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Applications

Applications of the SF-36 (Versions 1 and 2) 
include

population monitoring; •
estimating the burden of disease (by  •
standardizing questions, answers, and scoring, 
reliable and valid comparisons can be made to 
determine the relative burden of different 
conditions in several domains of health);
evaluating treatment effects in clinical trials; •
assessing the cost-effectiveness of products and  •
procedures;
providing direct-to-consumer information (i.e.,  •
educating the public about medical conditions, 
their symptoms and effects, and potential 
treatment options; prompting recognition or 
detection of personal health problems that may 
benefit from clinical consultation, thereby 
encouraging more appropriate care seeking, case 
finding, and physician–patient dialogue; and 
promoting self-care and compliance with 
treatment regimens);
disease management and risk prediction (i.e., the  •
ability to predict health outcomes, 
hospitalization, future medical expenditures, 
resource utilization, job loss and work 
productivity, risk of depression, use of mental 
healthcare, future health, and mortality);
enhancing patient–provider relations; and •
clinic-based evaluation and monitoring of  •
individual patients.

The SF-12 (Versions 1 and 2) can be used in 
population studies for the same purposes, and PCS 
and MCS scores can be used for risk prediction 
purposes. However, use of the eight-scale profile 
for individual patient monitoring is not recom-
mended for the SF-12 or SF-12v2 forms.

A decision to use an SF tool (or any other  
outcomes tool) should always be preceded by an 
analysis of whether the tool adequately covers the 
domains of interest. If not, the SF tool should be 
supplemented or replaced with an instrument 
covering these domains. For application in spe-
cific clinical groups, the combination of generic 
surveys (such as the SF-36 and SF-12) and appro-
priate disease-specific measures is often advanta-
geous. Carrying out a small pilot study using the 
intended combination of instruments to evaluate 

readability, acceptability, and response burden is 
also recommended. In some populations, for 
example, the elderly, interview administration 
may be preferable to a paper-and-pencil form. In 
populations with severe illness or disabilities, 
some SF domain scales may show minor to mod-
erate floor effects. Again, combination with dis-
ease-specific tools can be beneficial.

Resources and Additional Information

Joint copyright for the SF-36® Health Survey, 
SF-36® Health Survey (Version 2), SF-12® Health 
Survey, SF-12® Health Survey (Version 2), and 
SF-8™ Health Survey is held by QualityMetric 
Incorporated (QM), Medical Outcomes Trust 
(MOT), and Health Assessment Lab (HAL). 
Further information about tools from the SF  
family of instruments is available from the 
QualityMetric Web site or the sf36.org Web site. 
The sf36.org Web site is a community forum for 
users of the SF tools that offers news, events, 
online discussion, and a searchable database of SF 
publications. Licensing information for SF tools is 
also available from QualityMetric (www.quality-
metric.com/products/license). Those conducting 
unfunded academic research or grant-funded  
projects may qualify for a discounted license 
agreement through QM’s academic research pro-
gram, the Office of Grants and Scholarly Research 
(OGSR).

SF-36®, SF-36v2®, SF-12®, and SF-12v2® are 
registered trademarks of Medical Outcomes Trust 
(MOT). DYNHA® is a registered trademark, and 
SF-8™ and QualityMetric Health Outcomes™ are 
trademarks of QualityMetric Incorporated.

Jakob B. Bjorner and Diane M. Turner-Bowker

See also Health Outcomes Assessment; Health Status 
Measurement, Construct Validity; Health Status 
Measurement, Face and Content Validity; Health 
Status Measurement, Floor and Ceiling Effects; Health 
Status Measurement, Generic Versus Condition-
Specific Measures; Health Status Measurement, 
Minimal Clinically Significant Differences, and Anchor 
Versus Distribution Methods; Health Status 
Measurement, Reliability and Internal Consistency; 
Health Status Measurement, Responsiveness and 
Sensitivity to Change; Health Status Measurement 
Standards; Scaling; SF-6D
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SHared deciSion making

The term shared decision making traditionally 
refers to the communication between a patient and 
a clinician as they consider a medical decision  
that involves a choice between two or more clini-
 cally reasonable options. These discussions involve 
exchanging information about medical evidence, 
about personal values, and about which course of 
action would be most consistent with patients’ 
preferences once they are informed about the trade-
offs among the risks and benefits of each therapy.

This entry outlines the process of shared deci-
sion making, the context in which it was originally 
developed, the roles involved, and the motivations 
that lead to implementation and research in clini-
cal care. Next, this entry outlines some newly 
emerging contexts in which the principles of shared 
decision making have recently been suggested. 

Based on this background, a historical overview of 
the range of assumptions and theories underlying 
the multiple perspectives for considering shared 
decision making is provided. Finally, the entry 
highlights various international efforts in the field 
of shared decision making.

Process

Shared decision making has been defined as an 
iterative process that educates patients about their 
healthcare options while facilitating the incorpora-
tion of their personal values into medical treat-
ment planning. It may occur in a single conversation 
between a patient and physician or over multiple 
visits with a team of healthcare professionals. 
Patients may choose to include their spouse, family 
members, friends, clergy, or a legally appointed 
guardian in their decision-making discussions.

During the process, clinicians may use decision 
support tools such as patient decision aids. Different 
from patient education materials, which are used 
to help patients understand what’s involved in 
undergoing a recommended therapeutic interven-
tion, decision aids are specifically designed to help 
patients understand and choose between two or 
more equally relevant options. They do this by 
providing patients with information about each 
option’s possible benefits, the potential risk of side 
effects, and the trade-offs between the uncertain-
ties inherent in each option. They also help patients 
understand that the selection of a particular option 
is dependent on their informed preferences toward 
these benefits, risks, and trade-offs. Decision sup-
port tools may be as simple as a brochure, as visu-
ally engaging as a video, or as complex as an 
interactive Web site that individually tailors medi-
cal information based on a patient’s health charac-
teristics. While decision aids by themselves do not 
constitute full shared decision making, they pro-
vide accurate medical information, assistance with 
the decision-making process, and one type of stan-
dardized strategy for introducing the steps of 
shared decision making into clinical care routines.

Original Context

Shared decision making was developed for medical 
decisions that were considered “preference sensi-
tive.” Therapeutic actions may be categorized 
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according to the following: (a) the extent to which 
the scientific evidence about an intervention’s 
clinical effectiveness is clear or not; (b) the ratio 
between an intervention’s potential benefits and 
harms; and (c) the degree of congruence among 
patients and clinicians about the desirability or 
undesirability of those trade-offs. Effective care 
denotes the category of interventions for which 
there is clear evidence, a high ratio of benefits over 
harms, and high agreement among clinicians and 
patients about which is the best therapy. Examples 
include insulin for diabetes, aspirin and beta block-
ers for heart attacks, and emergency care for a 
gunshot wound.

Conversely, the category of preference-sensitive 
care refers to interventions for which the effective-
ness evidence is unclear, the risk of harm is consid-
erable, and there is a wide range of opinion among 
patients about whether the particular intervention 
is congruent with their beliefs, values, and lifestyle. 
Examples include some forms of screening (e.g., 
prenatal genetic tests, the test for prostate cancer), 
surgical/nonsurgical approaches to symptom man-
agement (e.g., surgery vs. physical therapy for 
osteoarthritis of the knee), aspects of cancer care 
(e.g., breast-removal vs. breast-conserving surgery 
for early-stage breast cancer), aspects of end-of-life 
care, and entry into clinical experiments. In these 
kinds of preference-sensitive situations, the well-
informed patient’s attitudes toward the pros and 
cons of the options under consideration become 
the deciding factor toward arriving at a choice. 
Accordingly, the process of shared decision making 
has been traditionally most strongly advocated in 
the context of preference-sensitive care.

Roles

It is important to note that the process of honoring 
a patient’s preferences includes revealing and act-
ing on their preferences about participating or not 
participating in shared decision making in the first 
place. Patients may comprehend the general con-
cept of choosing between preference-sensitive 
options for care and state that they prefer to be 
involved in this kind of decision making. However, 
as their clinician begins to provide a clear, bal-
anced overview of the stakes involved in choosing 
between the optional therapies, they may, for vari-
ous reasons, switch to an informed preference to 

delegate the responsibility for this particular deci-
sion to their clinician. Conversely, well-informed 
patients may initially prefer to delegate the deci-
sion making to others and then switch to taking a 
more active role in this particular decision as they 
learn more about the options’ pros and cons. 
Hence, the shared-decision-making model empha-
sizes clear communication of the nature, content, 
and scope of the decision while supporting patients’ 
autonomous preferences for participation and 
choice throughout the decision-making process.

Motivations

There is a range of assumptions and motivations for 
implementing shared decision making in healthcare.

A Clinical Motivation: Helping  
Patients With Decisional Conflict

As noted above, the initial motivation for shared 
decision making stems from the ethical obligation 
to support patients’ autonomous decision making 
in situations in which no single “best” treatment 
could be clearly recommended and in which the 
patient indicates a desire to be involved in arriving 
at an informed, preference-based choice. However, 
as a patient begins to engage with the choice, he or 
she may experience decisional conflict.

Decisional conflict is a psychological state expe-
rienced when an individual simultaneously wants 
to accept and reject an uncertain course of action. 
A functional degree of decisional conflict may 
encourage effective information search and pro-
cessing strategies, generate greater insight into one’s 
preferences, and motivate one to resolve a decision 
dilemma. However, a high level of decisional con-
flict may be dysfunctional, in that it can interfere 
with effective decision making and cause consider-
able distress, ranging from worry to panic.

Decisional conflict can be exacerbated by a 
range of factors that contribute to the overall 
uncertainty in the decision situation. Some of these 
factors are modifiable, including incomplete or 
misunderstood information; lack of clarity about 
one’s preferences; inadequate social support or 
inappropriate social pressure; and inadequate 
material resources to put one’s informed, prefer-
ence-based decision into effect. Therefore, clini-
cians may be motivated to help patients 
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experiencing this kind of distress by partnering 
with the patient in a process of shared decision 
making that systematically addresses these modifi-
able factors.

Thus, shared decision making and related deci-
sion support can serve as a form of “knowledge 
therapy” to ameliorate factors that block decision 
making and engagement in medical care. Successful 
decision support can parse a seemingly large deci-
sion into manageable steps, help clarify the relative 
value of competing options, and improve realistic 
expectations of treatment outcomes. In addition, 
surrogate or proxy decision makers—those who 
are asked to make a decision on behalf of their 
parent, spouse, or child—may benefit from guid-
ance during difficult familial discussions. For those 
facing multiple decisions in chronic care manage-
ment, shared decision making may foster long-
term decision-making skills. Hence, from a clinical 
perspective, shared decision making may simulta-
neously be motivated by and used to address psy-
chological and educational blocks to successful 
healthcare.

A Quality Assurance Motivation:  
Fostering Patient-Centered Care

A second motivation centers on fostering 
patient-centered care, defined as healthcare that is 
organized around the patient’s individual prefer-
ences and needs. Evidence suggests that increased 
patient-centered care leads to both increased 
patient satisfaction and better health outcomes; 
accordingly, the U.S. Institute of Medicine desig-
nated the degree of patient-centered care as one 
indicator of a hospital’s overall quality of health-
care. Consequently, various patient-centered qual-
ity measures have been developed. Quality “report 
cards” (such as the Healthcare Effectiveness Data 
and Information Set, or HEDIS) are used to com-
pare hospitals’ performance on important dimen-
sions of patient-centered care and service. The 
active implementation of preference-based care 
planning (i.e., the degree to which treatment plans 
are centered on the expressed preferences of the 
patient) is one aspect of patient-centered care 
gauged by these measures. Therefore, some endorse 
the effort to deliberately incorporate shared  
decision making into the pathways of preference- 
sensitive care as one way to ensure that individualized, 

preference-based care plans are developed and 
honored.

There exists considerable debate about the 
desired outcomes of shared decision making. Since 
preference-sensitive decisions involve choosing 
among two or more options, there is no single 
“right” choice. Therefore, the quality of a choice 
cannot be assessed in terms of the outcomes of that 
choice; given the uncertain probabilities inherent 
in these decisions, a patient could make a well- 
informed choice but experience a poor clinical 
outcome, or could experience good clinical out-
comes even if he or she made a poorly informed 
choice. Some argue that an effective shared- 
decision-making process is one that leads to a high-
quality choice that is well-informed, congruent 
with the patient’s preferences, and able to be acted 
on. Decision quality indexes designed to assess the 
level to which patients’ preference-sensitive choices 
are well-informed, congruent with values, and 
acted on are under development. Hospital quality 
assurance programs may be very interested in using 
such indices to monitor the process and outcomes 
of any shared-decision-making program that they 
introduce into their roster of services.

A Health Services Research Motivation:  
Modifying Unwarranted Variations in  
Preference-Sensitive Care

In the United States, the rates at which some 
healthcare services (i.e., numbers of surgeries, 
screening tests, or medications prescribed for a 
particular condition) are offered vary from loca-
tion to location. In areas where more disease 
exists, increased services are expected; however, 
some of these variations cannot be explained by 
differences in the underlying health of the popula-
tions, their access to healthcare, or their age, gen-
der, race, ethnicity, level of education, or income. 
When the healthcare service under consideration is 
known to be safe and effective, these variations 
represent disparities in appropriate healthcare that 
must be addressed.

However, for preference-sensitive healthcare 
decisions, these variations may be either warranted 
or unwarranted. If an observed variation accurately 
reflects the population’s informed preferences, the 
observed variations could be considered warranted. 
If, however, observed variations actually occur 
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because the patient population is unaware of the 
preference-sensitive nature of the decision, has an 
inaccurate understanding of what’s at stake in the 
decision, is experiencing undue social pressures, has 
not been offered the opportunity to provide their 
informed preferences, or has had its expressed pref-
erences disregarded, then the observed variations 
could be considered unwarranted.

These unwarranted variations, in turn, raise 
several social, philosophical, and economic issues. 
Since shared decision making systematically focuses 
on providing patients with understandable, bal-
anced, up-to-date information and on clarifying 
patients’ preferences, health services researchers 
suggest that this process may be one strategic inter-
vention for identifying and reducing unwarranted 
variations in preference-sensitive healthcare.

A Fundamental Science Motivation: Studying 
Patients’ Decision-Making Processes

Decision scientists in healthcare maintain inter-
est in a wide range of fundamental and applied 
questions about patients’ healthcare decision mak-
ing. The process of shared decision making could 
serve as a platform for comprehensive research 
programs addressing these questions. For example, 
fundamental investigators study the determinants 
and distributions of patients’ preferences for 
whether to participate in shared decision making; 
the anxiety or decisional conflict they experience; 
their information-processing pathways; their com-
prehension of probabilities; their formulation and 
reporting of current and anticipated preferential 
attitudes; or the ways by which they arrive at and 
act on a particular choice. On the other hand, 
applied researchers may study the effects of differ-
ent practice models for implementing shared deci-
sion making in clinical practice; the role of different 
decision aid media (e.g., video vs. Web site); the 
decision support skills needed by various health-
care practitioners; and the clinician-patient com-
munication patterns that emerge during shared 
decision making. From either perspective, there are 
overarching issues about different sociodemo-
graphic subgroups of patients (who vary by gender, 
education, and cultural background) and the differ-
ent kinds of preference-sensitive decision situations 
(e.g., decisions about screening, treatment, pallia-
tive care, and clinical trial entry) that they face.

Newly Emerging Contexts

As noted above, many interventions in healthcare 
rest on strong evidence about effectiveness, a high 
ratio of benefits over harms, and high levels of 
agreement among clinicians and patients about 
which treatment is the best therapy. These thera-
pies are considered standards of care, and the cli-
nician seeks the patient’s consent to accept these 
clearly recommended interventions. Recently, 
some have advocated a role for shared decision 
making in this arena of effective care, for two 
reasons. First, some propose that the philosophy 
and principles underlying shared decision making 
are also relevant when a patient is asked to con-
sider a recommended, effective therapy. From this 
perspective, shared decision making could be the 
process used to help the patient make an informed 
choice to accept or reject a recommended treat-
ment, with the traditional concept of informed 
consent being replaced by the concept of informed 
choice.

Second, for patients with multiple chronic con-
ditions, some aspects of care are clearly indicated 
by high-quality clinical evidence, and other aspects 
rest squarely in the preference-sensitive arena. One 
could argue that shared decision making is an 
important strategy in this kind of context, because 
it’s important (a) to integrate patient education 
materials (designed to help patients understand 
their practitioners’ clearly indicated recommenda-
tions for care) with decision support (designed to 
help patients make values-based informed choices 
among relevant preference-sensitive care options); 
(b) to clarify, communicate, and establish patients’ 
priorities for recommended/optional care; and 
(c) subsequently, to help with the coordinated imple-
mentation of these individualized healthcare man-
agement plans.

Historical Overview:  
Assumptions and Theories

Descriptions of shared-decision-making ideas date 
back to legal debates in the 1950s about physi-
cians’ responsibility to obtain informed consent 
from patients before administering treatment. 
Through the 1960s and 1970s, theories from soci-
ology, ethics, and quality improvement began to 
influence these discussions. In 1981, the physician 
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accommodation model was proposed to provide a 
framework for analyzing sources of conflict and 
opportunities for improvement in medicine with-
out the apparent biases of either the traditional 
paternalistic (physician directed) and the then 
emerging consumerist (patient directed) medical 
models. The concept of accommodation empha-
sized seeking moral certainty in medicine through 
increased respect for patient autonomy, mutually 
understood roles, and values communication. It 
later formed the foundation on which the United 
States’ Preventive Services Task Force and the 
President’s Commission for the Study of Ethical 
Problems in Medicine published reports advocat-
ing a new model of patient empowerment in 
medical decision making.

Over the following decades, the term evolved to 
incorporate the perspectives of a variety of disci-
plines, ranging from social psychology (patient 
empowerment), communication theory (knowl-
edge therapy), the decision sciences (decision sup-
port/patients’ decision aids), clinical practice policy 
(evidence-based medicine), quality improvement 
(patient-oriented communication), economics (util-
ity assessment), and bioethics/law (informed patient 
choice). Thus, shared decision making could, in its 
largest sense, be referring to three ideas: (a) the 
concept of an ethical obligation to involve patients 
in making decisions about their healthcare, (b) a 
model for analyzing physician-patient communica-
tion, and (c) the process of physicians and patients 
engaging in an interaction that involves the mutual 
sharing of both medical expertise and personal 
values.

International Applications

Currently, investigative and clinical work in shared 
decision making is under way in about 10 coun-
tries in North America, Europe, Australia, and 
Asia. This work has been differentially driven by 
the different philosophical, disciplinary, theoreti-
cal, and motivational forces outlined above.

Canada, the United States, and the United 
Kingdom have developed research and educational 
programs in shared decision making and have 
launched demonstration projects to test different 
practice models for local or broad-based imple-
mentation. In North America., private companies 
and research institutes initially developed decision 

support tools; government-funded projects are 
now evaluating cost-effective strategies for deliver-
ing these tools in a diverse, multipayer system. 
Scientific curiosity and information disclosure laws 
have led to the establishment of shared-decision-
making centers, educational training programs, 
and an inventory of available patients’ decision 
aids. Institutes in the United Kingdom have devel-
oped a series of patient decision support tools and 
are maximizing the use of information technology 
and financial incentives to widen the scope of 
implementation.

In Europe, German Ministry of Health initia-
tives have specifically linked increased patient 
participation with hospital quality and now sup-
port a national research effort to develop physi-
cian training programs and patient education 
programs and the assessment of specific decision 
aid tools. Patients’ legal right to health information 
provides the stimulus for increasing shared-decision- 
making policies in France. The Netherlands 
supports patient empowerment in decision mak-
ing, along with movements toward increased regu-
lated competition in healthcare. Italian and 
Australian efforts toward implementing shared-
decision-making practice models are in the early 
stages; the focus is on developing educational pro-
grams, condition-specific tools, and public aware-
ness campaigns. As these countries move forward 
in developing, establishing, and sustaining shared-
decision-making programs, the International 
Patient Decision Aids Standards collaboration 
continues to compile guidelines for theory- and 
evidence-based, feasible decision support tools 
and strategies.

With increasing public interest, an evolving 
theoretical base, validated decision support tools, 
and cumulative effectiveness evidence, the idea of 
shared decision making is gaining greater atten-
tion. In addition, debates are unfolding about 
shared decision making and professional educa-
tion, legal requirements, financial incentives, reim-
bursement plans, quality improvement initiatives, 
and the larger field of the decision sciences.

Aubri S. Rose and Hilary A. Llewellyn-Thomas

See also Decisional Conflict; Decision Quality; Evidence-
Based Medicine; Informed Consent; Patient Decision 
Aids; Utility Assessment Techniques



1041Sickness Impact Profile

Further Readings

Charles, C., Gafni, A., & Whelan, T. (1999). Decision-
making in the physician-patient encounter: Revisiting 
the shared treatment decision-making model. Social 
Science & Medicine, 49, 651–661.

Janis, I. L., & Mann, L. (1977). Decision making.  
New York: The Free Press.

Kasper, J. F., Mulley, A. G., & Wennberg, J. E. (1992). 
Developing shared decision making programs to 
improve the quality of health care. Quality Review 
Bulletin, 1, 183–190.

O’Connor, A. M., Stacey, D., Rovner, D., Holmes-Rovner, 
M., Tetroe, J., Llewellyn-Thomas, H., et al. (2001). 
Decision aids for people facing health treatment or 
screening decisions. Cochrane Database of Systematic 
Reviews, 3, CD001431.

O’Connor, A. M., Wennberg, J. E., Légaré, F., Llewellyn-
Thomas, H. A., Moulton, B., Sepucha, K., et al. 
(2007). Towards the tipping point: Accelerating the 
diffusion of decision aids and informed patient choice 
as a standard of practice. Health Affairs, 26, 716–725.

President’s Commission for the Study of Ethical Problems 
in Medicine and Biomedical and Behavioral Research. 
(1982). Making health care decisions: The ethical and 
legal implications of informed consent in the patient-
practitioner relationship. Washington, DC: Author.

Rothert, M., & Talarcyzk, G. J. (1987). Patient compliance 
and the decision making process of clinicians and 
patients. Journal of Compliance in Health Care, 2, 55–71.

Siegler, M. (1981). Searching for moral certainty in 
medicine: A proposal for a new model of the doctor-
patient encounter. Bulletin of the New York Academy 
of Medicine, 57, 56–69.

Szasz, T. S., & Hollender, M. H. (1956). A contribution 
to the philosophy of medicine: The basic models of 
the doctor-patient relationship. Archives of Internal 
Medicine, 97, 585–592.

Tversky, A., & Kahneman, D. (1981). The framing of 
decisions and the psychology of choice. Science, 211, 
453–458.

Whitney, S. N., McGuire, J. D., & McCullough, L. B. 
(2003). A typology of shared decision making, 
informed consent and simple consent. Annals of 
Internal Medicine 140, 54–59.

SickneSS impact proFile

The Sickness Impact Profile (SIP) is one of the first 
generic health status measures made available for 

use in clinical and research settings. It contains 
136 items that describe functional limitations  
in 12 categories: ambulation, mobility, body care 
and movement, communication, alertness behav-
ior, emotional behavior, social interaction, sleep 
and rest, eating, work, home management, and 
recreation and pastimes. Each item is written in 
the first person, in the present tense, and describes 
everyday activities of daily living. Respondents 
endorse only those items that describe their cur-
rent level of functioning. Users can calculate a 
total score, two domain scores (physical and psy-
chosocial), or individual scores for each of the 12 
categories. Higher scores are reflective of a greater 
degree of dysfunction. A 68-item short form 
(SIP68) has been developed; evidence suggests that 
its psychometric properties are comparable to 
those of the 136-item SIP.

In the context of medical decision making, the 
SIP can be used to quantify and compare the 
physical and psychosocial burden of various  
medical conditions and treatment modalities. 
Conclusions based on this type of information can 
be used by healthcare consumers, providers, and 
advocates to make informed decisions about med-
ical interventions, funding priorities, and service 
allocation. The items of the SIP focus on observ-
able behavior; therefore, changes in responses may 
be evident even if there is no corresponding change 
in the underlying disease process. The SIP has  
been used with a variety of medical populations to 
assess sickness-related dysfunction. This entry 
reviews the development and validation of the SIP 
and the SIP68 and the psychometric properties of 
each and provides an overview of the manner in 
which the SIP has been used in research in the field 
of medical decision making.

Development

The authors of the SIP sought to create a behavior-
ally based measure of sickness-related dysfunction 
that could be used for evaluation, program plan-
ning, policy formation, and cost-effectiveness anal-
ysis. Development of the SIP began in 1972 with 
an effort to collect statements describing impair-
ment in various aspects of functioning from 
patients, caregivers, healthy individuals, and 
healthcare professionals. Additional statements 
were gathered by literature review. A series of field 
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experiments were conducted to reduce the number 
of statements, group the items by category, and 
assign weighted values to each item for scoring 
purposes. All items were subjected to rigorous 
methodological evaluation to ensure adequate reli-
ability and validity and sensitivity to change and to 
assess the comparability of alternative administra-
tion procedures. Efforts were made to ensure that 
individuals representing various levels of illness 
and all sociodemographic groups were included. 
The SIP can be self-administered or interviewer 
administered. It takes approximately 20 to 30 min-
utes to administer and 5 to 10 minutes to complete 
the scoring procedures. Scores range from 0 to 100 
and are calculated by tallying the weighted values 
associated with each endorsed item, dividing by 
the total possible score, and multiplying by 100. 
The SIP is available for use in several languages/
cultures, including British, Chicano-Spanish, 
Danish, Dutch, French, German, Italian, 
Norwegian, and Swedish.

The SIP68 was published in 1994 in an effort to 
overcome one of the major criticisms of the SIP, its 
length. Other short forms have been developed but 
are typically specific to a condition of interest (e.g., 
arthritis, back pain, stroke). Using principal com-
ponents analysis, researchers determined which 
SIP items contributed most to respondents’ scores. 
The 68 items that emerged from this analysis com-
prise six categories: somatic autonomy, mobility 
control, psychological autonomy and communica-
tion, social behavior, emotional stability, and 
mobility range. These categories can be collapsed 
into three dimensions: physical, psychological, and 
social. Scoring of the SIP68 differs from that of the 
SIP in that the items are not differentially weighted. 
Total, subscale, and dimension scores are calcu-
lated by summing the endorsed items. Total scores 
range from 0 to 68; ranges for subscale and dimen-
sion scores depend on the number of items per 
scale. Because of divergent scoring procedures, the 
two questionnaires cannot be directly compared.

Psychometric Properties

The psychometric properties of the SIP and the 
SIP68 have been thoroughly investigated. Test-retest 
reliability, or temporal stability, for the overall SIP, 
its dimensions, and its categories is con  sidered to be 
good to very good (r = .45 to .60). Estimates of 

internal consistency, the degree to which items are 
related to one another, for each of the scores listed 
above are also strong (α = .60 to .95). Estimates of 
test-retest reliability and internal consistency for 
the SIP68 are in the same range as those reported 
for the SIP. Overall, reliability estimates for the 
individual categories are somewhat weaker than 
those found for the total score and dimension 
scores.

The validity of the SIP has been examined in a 
number of ways. Criterion validity, the degree to 
which an instrument correlates with an accepted 
gold standard, has been demonstrated by expected 
associations with other well-known and often 
used functional status measures. Construct valid-
ity can be demonstrated by evaluating the pattern 
of relationships between a newly developed mea-
sure and existing measures that it should or should 
not be related to according to prior theory. 
Correlations between the SIP total score and other 
existing measures are generally fairly low; how-
ever, expected patterns of relationships emerge 
when examining the relationship between the two 
dimensions of the SIP and related measures of 
physical and psychosocial functioning. Only a few 
studies could be identified that have attempted to 
replicate the proposed internal factor structure of 
the SIP. This preliminary evidence suggests that 
only portions of the proposed factor could be 
reproduced; therefore, additional research should 
be conducted to provide further validation for the 
underlying constructs.

Construct validity of the SIP68 was evaluated 
by examining the pattern of relationships among 
the six subscales. Results demonstrated good con-
struct validity in that subscales conceptually simi-
lar to one another were more highly correlated 
than subscales containing dissimilar item content. 
As evidence of criterion validity, scores on the 
SIP68 were compared with measures of self-care 
ability, life satisfaction, and level of spinal cord 
injury. Expected patterns of relationships were 
reproduced to a satisfactory degree. The SIP68 was 
not validated in a U.S. sample until 2003. Although 
it was shown to be a reliable and valid abbreviated 
version, the proposed factor structure and item 
loadings were not confirmed by the factor analysis 
conducted in this sample.

Because the SIP is often used to evaluate func-
tional outcomes in longitudinal research, it is 
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critical for the instrument to be able to detect 
clinically significant change over time. The respon-
siveness of the SIP and SIP68 has been evaluated; 
however, further research is needed in this area. It 
has been noted that the broad nature of the SIP 
makes it difficult to score at the maximum level, 
which may make it more likely to show deteriora-
tion than to detect functional improvement. 
Overall, results have indicated that the SIP and 
SIP68 are equally responsive to identifying signifi-
cant change in health-related functional status. 
The populations typically assessed with the SIP 
are generally diagnosed with some form of chronic 
medical condition; therefore, small changes are 
often observed.

Limitations

Although there are clearly strengths of the SIP, 
such as strong psychometric qualities and a large 
body of supporting literature, it is not without 
weaknesses. Very little research has been con-
ducted to verify the proposed factor structure of 
either version of the SIP; additional research in 
this area would strengthen the existing evidence 
for construct validity of this measure. Additionally, 
researchers have noted that scoring procedures 
can lead to inconsistent, and in some cases, illogi-
cal results. It is theoretically possible for an indi-
vidual with a minor impairment to earn a score 
reflective of greater dysfunction than someone 
with a more profound impairment. Item content 
and order are another concern. Some items, par-
ticularly those in the mobility category, are mutu-
ally exclusive, making it impossible to attain the 
maximum category score. For example, a respon-
dent cannot logically endorse both “I do not walk 
at all” and “I walk more slowly.” These two 
items also speak to the ordering of the items, 
which can become redundant and potentially frus-
trating for patients who are asked to respond to 
logically discrepant questions about mobility. The 
work category has been criticized for not accu-
rately representing those who do not work for 
non-health-related reasons (e.g., unemployed, 
retired). To rectify these problems, researchers 
have evaluated alternative administration and 
scoring procedures designed to enhance clarity of 
items and interpretability of scores and to reduce 
respondent burden.

Use in Medical Decision Making

When faced with a medical decision, one of the 
factors likely to be considered by patients, physi-
cians, and policy makers alike is the impact of the 
intervention on functional status. The SIP has been 
used to evaluate this type of health outcome in 
countless studies over the past 30 years. It has 
proven to be a useful evaluation tool among 
patients with a wide range of acute and chronic 
health conditions such as cardiovascular disorders, 
cancer, neurologic conditions (spinal cord injury, 
dementia), pain conditions (arthritis, back pain), 
end-stage renal disease, and diabetes. This instru-
ment can be used to quantify the psychosocial and 
physical burden of various healthcare conditions 
as well as the impact of medical intervention on 
these conditions. Although limitations have been 
noted regarding the content and scoring of the SIP, 
recent efforts have been made to develop modified 
methods of scoring and administration. Taking 
these factors into consideration, the SIP and its 
short form should be considered as one of the pri-
mary options for assessing functional health status 
in any population.

Erin Winters Ulloa

See also Health Outcomes Assessment; Health Status 
Measurement, Generic Versus Condition-Specific 
Measures; SF-36 and SF-12 Health Surveys

Further Readings

Bergner, M., Bobbitt, R. A., Carter, W. B., & Gilson, B. 
S. (1981). The Sickness Impact Profile: Development 
and final revision of a health status measure. Medical 
Care, 19, 787–805.

deBruin, A. F., deWitte, L. P., Stevens, F., & Diederiks, 
J. P. M. (1992). Sickness Impact Profile: The state of 
the art of a generic functional status measure. Social 
Science & Medicine, 35, 1003–1014.

deBruin, A. F., Diederiks, J. P. M., deWitte, L. P., Stevens, 
F. C. J., & Philipsen, H. (1994). The development of a 
short generic version of the Sickness Impact Profile. 
Journal of Clinical Epidemiology, 47, 407–418.

deBruin, A. F., Diederiks, J. P. M., deWitte, L. P., 
Stevens, F. C. J., & Philipsen, H. (1997). Assessing the 
responsiveness of a functional status measure: The 
Sickness Impact Profile versus the SIP68. Journal of 
Clinical Epidemiology, 50, 529–540.



1044 SMARTS and SMARTER

Nanda, U., McLendon, P. M., Andresen, E. M., & 
Armbrecht, E. (2003). The SIP68: An abbreviated 
sickness impact profile for disability outcomes 
research. Quality of Life Research, 12, 583–595.

Pollard, B., & Johnston, M. (2001). Problems with the 
Sickness Impact Profile: A theoretically based analysis 
and a proposal for a new method of implementation 
and scoring. Social Science and Medicine, 52,  
921–934.

SmartS and Smarter

SMARTS (Simple Multi-Attribute Rating Technique 
Using Swings) and SMARTER (Simple Multi-
Attribute Rating Technique Exploiting Ranks) are 
two prescriptive techniques for making choices 
under certainty between options evaluated on 
multiple attributes proposed by Edwards and 
Barron in 1994 to replace the original SMART 
proposed by Edwards in 1977. Each assumes a 
weighted, additive, multi-attribute utility model, 
and each seeks to simplify the operations neces-
sary to estimate the multi-attribute utility of each 
option under consideration. The techniques differ 
primarily in the procedure for weighting the 
importance of attributes.

Consider a headache sufferer making a choice 
between three pain relievers, each of which has a 
different level of provided relief, duration of relief, 
and potential for side effects. For example, Pain 
reliever A provides excellent relief for 2 hours with 
rare side effects, Pain reliever B provides good 
relief for 4 hours with rare side effects, and Pain 
reliever C provides limited relief for 12 hours with 

no side effects. How should the patient choose 
between these options?

SMART

In the SMART technique, the decision maker 
directly assesses the values of the choice options on 
each attribute rather than performing a (large) 
series of choices between hypothetical alternatives 
from which attribute values are inferred, which 
was characteristic of earlier approaches. Edwards 
and Barron refer to this simplification as “the 
strategy of heroic approximation.” It results in a 
substantially shorter assessment procedure. After 
identifying the decision purpose, decision makers, 
value structure for the decision, and choice options, 
the analyst constructs an option-by-attribute 
matrix and directly assigns single-attribute utility 
values to options in this matrix. An example of 
such a matrix appears in Table 1. Subjective values 
are assigned to each attribute by the decision 
maker on a scale from 0 (worst) to 100 (best).

Dominated options, which outperform another 
option on all attributes, are then removed. 
Mathematical tests of the value structure may be 
performed to confirm that it meets assumptions 
required of additive models (e.g., tests for condi-
tional monotonicity). If an additive model is to be 
assumed, attributes are then weighted to reflect 
their relative importance. In SMART, these weights 
are derived by asking the decision maker to judge 
the ratio of the importance of each attribute to all 
others. Finally, the multi-attribute utility is com-
puted by summing the product of attribute weight 
and attribute value for each attribute for each 
option and selecting the option that maximizes the 

Table 1  An option-by-attribute matrix for pain relievers

Option Attribute

Level of  
Relief

Level of  
Relief (Value)

Duration of 
Relief (hr)

Duration of 
Relief (Value)

Side  
Effects

Side Effects 
(Value)

A Excellent 100  2   0 Rare   0

B Good  50  4  30 Rare   0

C Limited   0 12 100 None 100
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sum. For example, if the attributes of level of relief, 
duration of relief, and side effects had relative 
weights of .5, .3, and .2, respectively, the multi-
attribute utility of pain reliever A would be .5 × 
100 + .3 × 0 + .2 × 0 = 50. Similarly, the multi- 
attribute utilities of B and C would be 34 and 50, 
respectively. The decision maker should be indif-
ferent between A and C and prefer either to B.

SMARTS

The SMARTS technique corrects an error in the 
process of assigning attribute weights that was 
present in SMART. This is easily illustrated in our 
example by considering the side effects attribute. 
While side effects might seem to warrant a large 
relative weight in the abstract, in this particular 
decision, the range of side effect values is from 
“none” to “rare.” That is, the meaning of a 100 
point change in the side effect attribute is not very 
large in this context.

In the SMARTS approach, importance weights 
of attributes are determined by a two-step swing 
weighting process. In the first step, the rank orders 
of the attributes are determined by asking the deci-
sion maker to consider a hypothetical alternative 
with the lowest value on all attributes. The decision 
maker then indicates which single attribute she or 
he would prefer to change from the lowest value 
(normalized to 0) to the highest value (normalized 
to 100). For example, would the decision maker 
faced with a pain reliever that has limited relief for 
2 hours with rare side effects prefer to improve the 
level of relief to “excellent,” the duration to “12 
hours,” or the side effects to “none”? The selected 
attribute is noted as the most important attribute. 
The procedure is repeated with the remaining attri-
butes to establish a rank order. Then, using the 
rank-ordered attributes, weights are determined by 
asking the decision maker to make a series of mag-
nitude estimations comparing the impact of a 100 
point (lowest to highest) swing in the most impor-
tant attribute to the impact of a 100 point swing in 
less important attributes (or by making a series of 
indifference judgments). In this example, the weight 
of a swing in side effects from “rare” to “none” 
might be relatively low. With weights of .70, .25, 
and .05 for level of relief, duration of relief, and 
side effects, respectively, Pain reliever A would be 
preferred to B and B to C.

SMARTER

The SMARTER technique proceeds like SMARTS 
up through and including the first step of the attri-
bute weighting procedure, which results in a rank 
order of attributes by importance. At this point, 
the weights of the attributes are simply computed 
directly from the ranks using a procedure called 
rank order centroid (ROC) weights (not to be con-
fused with receiver operating characteristic curves). 
ROC weights are those weights that minimize the 
error of estimation of the weights with only rank 
information. For example, given two ordered attri-
butes, the space of possible weights in which the 
first attribute is more highly weighted than the 
second has centroids at weights of .75 and .25. 
That is, if all possible combinations of weights are 
considered equally possible, the average (and 
hence least squares error minimizing) weights 
would be .75 and .25. The formula for the weight 
of the kth attribute in a set of K attributes is given 
by Edwards and Barron as

wk =
1
K

XK

i=k

1
i
:

They also provide a table of ROC weights for 
different numbers of attributes, which is repro-
duced in part as Table 2. Columns show different 
numbers of attributes of evaluation; the weights 
listed in the table cells under each column are 
assigned to the highest ranked, next highest 
ranked, and so on, attribute. In our example, with 
three attributes, the ROC weights for level of 
relief, duration of relief, and side effects (assuming 
a descending order of importance) would be .61, 
.28, and .11; Pain reliever A would be preferred 
over either B or C, which would be nearly identical 
in utility. Recent simulations by Ahn and Park 
suggest that ROC weights regularly outperform 
other methods of estimating decision weights from 
ordinal information alone.

Because SMARTER uses only approximates  
of the weights that would be assigned through a 
decision-specific procedure (like SMARTS), it may 
result in less optimal decisions. Studies reported by 
Edwards and Barron, however, suggest that value 
loss is both rare and, when it occurs, tends to  
be small. Because SMARTER is considerably less 
time-consuming for decision makers, however, and 
is a substantial improvement over making decisions 
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with no systematic multi-attribute approach, it 
may have wide utility in cases where time or other 
factors do not permit a full multi-attribute utility 
assessment.

Alan Schwartz

See also Multi-Attribute Utility Theory
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Social FactorS

Sociologists bring a perspective and unique meth-
ods that broaden our understanding of clinical 
decision making and complement the valuable 
work of other disciplines. This entry briefly dis-
cusses four propositions that are designed to 
improve our understanding of clinical decision 
making and increase the relevance of decision 
making studies for social policies intended to 
improve public health.

Macro Determinants of Clinical  
Decision Making

Sociologist Talcott Parsons provided a theoretical 
perspective on the doctor-patient relationship (D-P 
relationship), reflecting the situation in the United 
States around the middle of the 20th century; his 
view dominated thinking in health services research 
for the remainder of the century. The Parsonian 
view of the D-P relationship is depicted in Figure 
1, and several features should be highlighted:

The spotlight of analysis was generally on the  •
doctor, who enjoyed high social status and had a 

Table 2  SMARTER attribute weights

Rank Number of Attributes

2 3 4 5 6 7 8 9

1 .750 .611 .521 .457 .408 .370 .340 .314

2 .250 .278 .271 .257 .242 .228 .215 .203

3 .111 .146 .157 .158 .156 .152 .148

4 .063 .090 .103 .109 .111 .111

5 .040 .061 .073 .079 .083

6 .028 .044 .054 .061

7 .020 .034 .042

8 .016 .026

9 .012

Source: Edwards, W., & Barron, F. H. (1994). SMARTS and SMARTER: Improved simple methods for multiattribute utility 
measurement. Organizational Behavior and Human Decision Processes 60, 306–325.
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dominant role as the repository of valuable 
medical knowledge and expertise.
Only two actors were involved in the interaction,  •
with the doctor acting professionally and being 
altruistically motivated to serve only the patient’s 
interests.
The patient occupied a subordinate and  •
reciprocal role and was expected to trust the 
doctor’s judgment and follow (his) clinical 
recommendations (credat emptor was the 
prevailing ethos).

Many health services researchers and decision 
theorists still employ this idealistic perspective, even 
though the D-P relationship today (within which 
clinical decisions occur) bears little resemblance to 
earlier formulations. The world of healthcare has 
shifted beneath decision theorists’ feet, producing 
results of little policy relevance and suggesting edu-
cational efforts that are unlikely to produce desired 
changes in clinical practice. Some indication of the 
magnitude of the transformation of U.S. healthcare 
is evident in the words used to describe the once 
special D-P relationship—the doctor has become “a 
provider,” the patient is now a “client,” and the 
relationship is now considered “an encounter.”

Some of the major new influences affecting 
clinical decision making within the new client-
provider encounter (C-P Encounter) are illustrated 
in Figure 2 and include the following:

Physicians are increasingly forced into  •
specialization (generalists are in short supply) 
and most are full-time salaried employees in 
large and increasingly concentrated 
organizations.
Corporatized physician employees are required  •
to go along (with clinical guidelines and pay-for-
performance schemes) if they are to get along 
(receive promotions and salary improvements).
The spotlight is now on a knowledge-empowered  •
patient/client who occupies center stage and is the 
ultimate object of all revenue in a profit-driven 
healthcare system.
Insurance companies dictate what exactly any  •
clinician can actually decide for any given case 
(test ordering, referrals, prescriptions, and 
follow-up).
Pharmaceutical companies advertise directly to  •
consumers and suggest that they should ask their 

providers for specific medications. “Doctor 
knows best” is no longer the prevailing 
viewpoint.
Widely publicized reports of financial kickbacks  •
and clinical malpractice, as well as recognition 
that doctors may now serve several masters, 
appear to have eroded trust in the profession of 
medicine (as with car repairs, caveat emptor is 
the emerging ethos). The popular media no 
longer portray doctors as cultural heroes—
compare Marcus Welby, MD with today’s House 
or Green Wing.

Unlike the one-on-one, closed-system relation-
ship of the past, clinical decision making is now 
required to occur on an ever more crowded stage 
(Figure 2). The spotlight is now on the patient as an 
object of revenue (client-centered care for an objec-
tified condition); the patient is digitally empowered 
and activated by private (mainly pharmaceutical) 
interests; while supposedly making decisions solely 
in the interest of the patient, doctors are now 
required to also serve their corporate employers 
(there is no guaranteed coincidence of interest); the 
possible range of clinical actions and costs is dic-
tated by a patient’s health insurance (assuming that 
they have such); the state (government) is now 
essentially an onlooker, unwilling to protect the 
prerogatives of doctors and concerned to reduce the 
burden of ever-increasing healthcare costs. Surveys 
reveal high levels of physician dissatisfaction with 
their workplace and complaints about administra-
tive encroachments on clinical autonomy.

Much research and thinking on clinical decision 
making appears to overlook the macrosociological 
influences that now shape everyday clinical deci-
sion making. Clinical decision making increasingly 
occurs on a stage where doctors are no longer the 
leading actors. A more sociological approach to 
clinical decision making recognizes that funda-
mental changes have occurred in U.S. healthcare 
over the past several decades and that large orga-
nizations and institutions have now assumed lead-
ing roles and shape any decisions a provider is 
required to make.

Circularity of Bayesian Reasoning

Sociologists developed the concept of a “self- 
fulfilling prophecy” to describe the process by 
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Figure 1 Doctor-patient relationships . . . they once had the stage to themselves

Source: New England Research Institutes, Inc. Reprinted with permission.
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Figure 2  Patient-centered 21st-century medicine . . . the stage is now so crowded

Source: New England Research Institutes, Inc. Reprinted with permission.
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which phenomena that are perceived to be real 
eventually become real in their consequences. With 
respect to clinical decision making, if a physician 
believes that particular patients are more likely to 
have X, then such patients are more likely to be 
diagnosed with and treated for X, irrespective of 
the actual signs and symptoms presented. This self-
fulfilling process can be demonstrated using the 
prevailing Bayesian approach to clinical decision 
making. Bayes’s rule can be stated as follows:

 p(θ|y) =  p(θ, y)/p(y) = p(θ)p(y|θ)/p(y) 
 ∝ p(θ)p(y|θ), (1)

where

θ is some disease, 

y is the clinical presentation of a patient, and

p(⋅) is a probability density function.

In other words, the posterior probability of the 
disease θ, given the clinical presentation of the 
patient, p(θ|y), is proportional (∝) to the prior 
probability of the disease p(θ) times the probability 
of the clinical presentation given the disease, p(y|θ). 
Some might wish to take into consideration patient 
characteristics z. Equation 1 can then be written as

p(θ|y, z) = p(θ, y|z)/p(y|z)
= p(θ|z) p(y|θ, z)/p(y|z)

 ∝ p(θ|z)p(y|θ, z). (2)

Suppose we make an important assumption 
concerning p(y|θ, z) and p(y|z): that they only vary 
by clinical signs and symptoms; that is, p(y|θ, z) = 
p(y|θ) and p(y|z) = p(y) for all z. In other words, 
the clinical presentation (y) given the disease θ 
(y|θ), or by itself (y), does not vary by nonclinical 
patient characteristics such as age, gender, and 
socioeconomic status (possible components of z).

p(θ|y, z) = p(θ|z)p(y|θ, z)/p(y|z) 
 = p(θ|z)p(y|θ)/p(y). (3)

Let us now consider the theoretical consequences 
if the clinical presentation (y) is invariant or con-
sistent. Suppose we have two patients, each with 
values of the vector z, z1, and z2. Any variability in 

the posterior diagnosis in each patient resulting 
from the same clinical presentation (y) given the 
disease θ is

p(θ|y, z1)/p(θ|y, z2) = (p(θ|z1)p(y|θ, z1)/p(y|z1))/
 (p(θ|z2)p(y|θ, z2)/p(y|z2))

 = (p(θ|z1)p(y|θ)/p(y))/ 
  (p(θ|z2) p(y|θ)/p(y))

 = p(θ|z1)/p(θ|z2). (4)

In other words, if the clinical presentation is 
invariant, it should, theoretically, add no useful 
information to the diagnostic process, and any 
diagnostic variability observed should only reflect 
the prior p(θ|z). This is consistent with Bayesian 
logic and demonstrates the circularity of Bayesian 
reasoning: Namely, the variability in the posterior 
distribution, p(θ|y, z), is the same as in the prior 
distribution, p(θ|z).

Now, if we, experimentally, standardize the 
clinical presentation so that it does not vary 
between patient encounters, we would, according 
to the Bayesian approach, expect to observe only 
the prior distribution, p(θ|z), of the disease.

McKinlay and colleagues ran three factorial 
experiments, using vignettes of patients presenting 
symptoms suggestive of coronary heart disease 
(CHD) or diabetes, in which it is possible to esti-
mate the unconfounded effects of patient gender, 
age, race/ethnicity, and socioeconomic status. For 
these experiments, the clinical presentation (y|θ) is 
identical regardless of the nonclinical patient char-
acteristics. The authors observed the posterior 
probability of the disease given the clinical pres-
entation (which is theoretically, according to  
the above Bayesian argument, proportional to the 
unobserved prior probability of the disease). The 
experiment was run twice for the CHD vignette; 
and although 95% of physicians gave a CHD diag-
nosis, the certainty of the CHD diagnosis did vary 
by patient characteristics (Table 1), reflecting the 
physician’s unobserved prior probabilities. For a 
separate experiment focusing on diabetes, the 
probability of a diabetes diagnosis also varied by 
patient characteristics (Table 1).

It would appear from these results that the phy-
sicians in the experiments are (if they are being 
good Bayesians) using priors based on currently 
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available epidemiologic data—where heart disease 
is less common in women than men and diabetes is 
less common in whites than minorities. However, 
the same epidemiological data show that heart 
disease is more common in blacks than in whites, 
which is not consistent with these experiments. 
And the question remains, is it race/ethnicity or is 
it socioeconomic status (since in the United States 
these constructs are confounded, as compared 

with the experimental situation, in which they are 
not confounded). However, these epidemiologic 
rates are themselves the result of the circular rea-
soning presented here. If physicians do not test for 
condition X, they cannot tell a patient that they 
have been diagnosed with X. The question then 
becomes, “Is Bayesian reasoning a suitable model 
for clinical decision making?” When presenting 
symptoms to a physician, patients should expect to 

Table 1   Results from three factorial experiments—patients presenting with symptoms suggestive of coronary heart 
disease (CHD) or diabetes

 
CHD—Average Certainty (0–100)

Diabetes—Correct  
Diagnosis (%)

p p p

Location MA NC/SC NJ/NY/PA

Sample size 128 256 192

Patient gender .0476 .0117 .1528

 Male 62.3 61.7 65.6

 Female 53.5 53.0 56.2

Patient agea .7887 <.0001 .6320

 Younger 57.3 51.9 62.5

 Older 58.5 62.8 59.4

Patient race/
ethnicity

.0028 .4963 .0092

 Black 51.2 58.3 73.4

 Hispanic — — 60.9

 White 60.3 56.4 48.4

Patient SESb .2717 .2842 .2651

 Lower 55.5 55.9 64.6

 Upper 60.3 58.8 57.3

Sources: New England Research Institutes. (2007). CHD clinical decisions in older patients (AG16747). Watertown, MA: 
Author. New England Research Institutes. (2007). Cognitive basis of CHD disparities (HL079174). Watertown, MA: Author. 
New England Research Institutes. (2007). Diabetes: Race and ethnic disparities in diabetes (DK066425). Watertown, MA: 
Author.

a. For the CHD vignette, the patient ages were 55 or 75. For the Diabetes vignette, the patient ages were 35 or 65.

b. The patient socioeconomic status (SES) is depicted by current/former occupation. For the CHD vignette, the occupations were 
janitor or schoolteacher. For the Diabetes vignette, the occupations were janitor or lawyer.
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be diagnosed by their signs and symptoms, not by 
who they are (gender, age, race/ethnicity, or socio-
economic status).

Contribution of Clinical Decision Making to 
the Generation and Amplification of Disparities

Beyond the circularity inherent in Bayesian reason-
ing, physicians’ clinical decision making also con-
tributes to the generation and amplification of 
health disparities. Official epidemiologic base rates 
are assumed to reflect the “real” underlying preva-
lence of biologic phenomena; and indeed, the accu-
racy of the Bayesian processing described above 
relies on this assumption. As part of a long research 
tradition, however, sociologists have shown how 
such rates are socially constructed so that the pro-
cess of applying labels to cases is contingent on 
socially negotiated activities. For example, the 
sociologist Emile Durkheim explained the low offi-
cial suicide rates in Ireland when he discovered 
that coroners were less likely to designate suicide 
as a cause of death in a Catholic country, resulting 
in aggregate rates that were lower than neighbor-
ing countries. Similarly, epidemiologic base rates 
are the sum of “cases” as they are labeled during 
individual doctor-patient encounters.

This process is depicted in Figure 3. At the cen-
ter of the picture is a physician-policeman who is 
directing traffic consisting of presenting patients 
who need to be sorted according to their disease 
category. The physician directs approaching 
patients to follow one of three routes: heart dis-
ease, diabetes, or emotional disorders. As the cats 
in the picture comment, this sorting process is not 
based just on “what they have” but on “who they 
are,” with heavy white men being sorted into the 
heart disease category, the black men sorted into 
the diabetes group, and the heavy white woman 
receiving an emotional disorders diagnosis. Once 
patients are sorted into these categories, they 
become “cases” and are counted toward the offi-
cial epidemiologic rates for each type of disease. 
Based on the Bayesian model outlined above, these 
rates are reified as they are used as a basis for fur-
ther sorting of new patients. Therefore, to the 
extent that this process of sorting patients into 
diagnostic categories is biased, physician decision 
making contributes to and amplifies existing health 
disparities.

This point is readily illustrated with data from 
McKinlay and colleagues’ factorial experiment 
studies of clinical decision making (Table 1). The 
results show that physicians’ decisions are often 
inconsistent with observed prevalence rates. These 
biases are critical for the process of sorting patients 
into disease categories. For example, if physicians 
are cognitively predisposed toward assuming that 
younger women are at low risk for coronary heart 
disease, then they are less likely to entertain that 
diagnosis and test for the condition. If there is no 
diagnostic label or test confirmation, then it does 
not exist as a “case” to be counted in prevalence 
rates. As a result, rates reify preexisting cognitive 
assumptions rather than reflecting the true preva-
lence of the condition. Similarly for diabetes: If 
physicians are mistakenly inclined to assume that 
white patients are at lower risk than blacks, they 
are less likely to test for and identify the condition 
in those patients, independent of the presenting 
symptoms.

Factorial experiments conducted for over a 
decade have systematically manipulated the char-
acteristics of the patients (including gender, age, 
race/ethnicity, and socioeconomic status); physi-
cians (gender and level of experience); the health-
care system (the United States, the United Kingdom, 
and Germany); and cognitive processing (priming 
physicians to consider a specific diagnosis) to 
assess how diagnostic and treatment decisions vary 
even when the presentation of symptoms was iden-
tical. These studies have replicated the existence of 
such biases in clinical decision making not only 
across study generations but also across conditions 
depicted in the vignettes (CHD, depression, diabe-
tes, breast cancer). Considered in combination 
with Bayesian reliance on epidemiologic base rates 
for establishing prior probabilities of disease, the 
biases observed in clinical decision making have 
far-reaching implications and point to targets for 
policy interventions to minimize the amplification 
of disparities.

The Importance of Diverse Methodologies

A corollary to the blind men studying different 
parts of the elephant from their respective disciplin-
ary perspectives is the tendency for each blind man 
to also use a favored research method. In the same 
way that different disciplines tend to ask different 
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Figure 3  A doctor’s decisions contribute to disease disparities

Source: New England Research Institutes, Inc. Reprinted with permission.

types of research questions, they also tend to 
employ methods especially well suited to their  
interests. As a result, methodological differ-
ences tend to reinforce disciplinary separations. 
Overwhelmingly in clinical decision making res-
earch, these are quantitative approaches and focus 
on aggregate associations.

These studies tend to describe which decisions 
doctors make using survey methods and conve-
nience samples obtained in large medical centers 
with adequate numbers of physicians. These studies 
obviously have limited generalizability. Furthermore, 
even the most sophisticated multivariate analyses of 
this type of data (often collected for administrative 
purposes) cannot disentangle the influence of asso-
ciated characteristics (e.g., patient race and socio-
economic status). This problem is compounded by 
uncontrolled variation in patients’ presentations, a 
complication associated with the common use of 
medical records data. This lack of internal validity 
compromises the process of concretely identifying 

sources of variation in clinical decision making. The 
factorial experimentation studies discussed in this 
entry illustrate an alternative approach that allows 
for unconfounded estimates of the influence of par-
ticular factors, standardized presentation of patient 
symptoms, and generalizability beyond convenience 
samples. To improve our knowledge in this field, 
there need to be increased methodological diversity 
and incisive quantitative approaches that overcome 
these challenges.

Still missing from much of the work to date, 
however, is knowledge about the cognitive pro-
cessing behind observed aggregate associations: 
Why do physicians make certain decisions, and 
how do they process available information? To 
answer these types of questions, clinical decision-
making research must move beyond quantitative 
approaches to also incorporate qualitative meth-
ods. While qualitative approaches are sometimes 
cavalierly dismissed as “soft” compared with sta-
tistical approaches, they are often more concerned 
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with validity and reliability than their quantitative 
counterparts and therefore make a unique and 
needed contribution. Examination of actual behav-
ior, or directly eliciting physicians’ explanations of 
how they process information, fills gaps in our 
knowledge that are otherwise left to speculation. 
In-depth interviewing, ethnography, think-aloud 
protocols, and conversation analysis have rich tra-
ditions not only in sociology but also in anthropol-
ogy, linguistics, and social psychology. These 
approaches allow for the collection and analysis  
of detailed information grounded directly in the  
perspectives of physicians themselves (“emic” per-
spective) rather than those of the researchers who 
study them (“etic” perspective). Such approaches 
can be used alone or in combination with quantita-
tive work. The factorial experiments integrate an 
open-ended think-aloud segment into a more struc-
tured interview questionnaire, allowing physicians 
to explain in depth, and in their own words, how 
they arrived at their clinical assessments of the 
patients in the vignettes. This type of methodologi-
cal diversity can be critical for expanding the set of 
research questions under consideration to include 
the “whys” of clinical decision making.

Karen E. Lutfey, Carol L. Link,  
Lisa D. Marceau, and John B. McKinlay

See also Social Judgment Theory
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Social Judgment tHeory

Social judgment theory, developed by the psychol-
ogist Kenneth R. Hammond, addresses the impli-
cations of our reliance on interrelated multiple 
fallible cues for making diagnostic and predictive 
judgments. It addresses the processes of learning to 
make judgments under uncertainty, learning about 
the judgments of others, conflict arising from judg-
mental differences, and how task properties affect 
judgment processes. It also proposes methods for 
improving judgment and for addressing problems 
caused by the fallibility of judgment and our 
inability to access and describe our own judgment 
processes or those of others. Those methods are 
based on a technique called judgment analysis. In 
medical decision making, social judgment theory 
and its associated methods address problems  
arising from difficult diagnostic and prognostic  
judgments and describe the implications of the 
judgmental processes of physicians, nurses, other 
healthcare providers, and patients who must make 
difficult judgments. Diagnosing otitis media is an 
example of such a difficult judgment. An applica-
tion of social judgment theory would address the 
diagnostic process by identifying the cues to this 
judgment (e.g., bulging or redness of the tympanic 
membrane), examining the use of those cues in 
making diagnoses, and determining whether the 
most valid cues are the ones that the physician 
relies on most heavily. Uncertainty about the diag-
nosis, given the cues, and the unreliability of judg-
ments are also addressed.

Overview

Social judgment theory is an extension of Egon 
Brunswik’s probabilistic functionalism. Hammond 
extended Brunswik’s theory, which is primarily 
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concerned with the perceptual processes of  
individuals, into the area of diagnostic and predic-
tive judgments of individuals as well as groups. 
Social judgment theory describes the implications 
of fallible judgment for people working together as 
well as for social policy.

Following Brunswik, social judgment theory 
emphasizes the importance of the task in shaping 
judgment. The task is both the context for judgment 
and the context for learning to make judgments. 
Careful study of the task and understanding how 
task properties affected judgment is critical for 
explaining and improving judgmental performance.

People must make judgments under conditions 
of uncertainty and ambiguity about causes. This 
results in quasi-rational judgment processes, that 
is, processes that involve both intuition and analy-
sis. Intuitive processes are not accessible to us. We 
cannot accurately describe our own judgment pro-
cesses, and because of causal ambiguity, it is diffi-
cult to discern the reasons for others’ judgments. 
As a result, (a) it is difficult to learn to make accu-
rate judgments, (b) it is difficult to learn to under-
stand the reasons for the judgments of others, and 
(c) this can create misunderstandings that can lead 
to conflict. The remedies proposed by social judg-
ment theory for these problems involve the use of 
judgment aids that make the judgment process 
explicit.

Judgment Analysis

Judgment analysis is a method for making a per-
son’s judgment strategy explicit. It is used both as 
a method for studying judgment and to implement 
the judgment aids recommended by social judg-
ment theory. Judgment analysis begins with judg-
ments about each case in a set of cases. Each case 
is described by the values of several variables, or 
cues. Cases can be real (e.g., patients judged in a 
clinical setting) or hypothetical. If the cases are 
hypothetical, they and the judgment made must be 
representative. Representative design means that 
the conditions that the researcher wants to gener-
alize to must be specified, and those conditions 
must be adequately represented in the experimen-
tal task so that the desired generalizations can be 
supported.

The judgments are regressed on the cues, result-
ing in a statistical model describing the relation 

between the cues and the judgment. It has been 
found that linear multiple regression provides a 
reasonably good fit for the judgments of an indi-
vidual in a variety of contexts. Judgments of an 
individual are described by identifying the relative 
weights for the cues, the shape of the function 
relating each cue and the judgment (e.g., linear or 
nonlinear), and the principle by which multiple 
cues are organized into a judgment. Typically, the 
organizing principle is linear, but other organizing 
principles are possible. In social judgment theory, 
the quality of a model describing judgment is 
evaluated by its usefulness, not by whether it accu-
rately reproduces actual mental operations.

Learning and Cognitive Feedback

Multiple-cue probability learning has been studied 
extensively. In the typical paradigm, subjects are 
shown a series of cases, each consisting of the val-
ues of several cues. They are asked to make a judg-
ment on a numerical scale and are then shown the 
correct answer, which is only probabilistically 
related to the cues. Learning takes place if, over a 
number of trials, the correlation between their 
judgments and the correct answer increases. This 
is called the outcome feedback paradigm. Research 
has shown that learning from outcome feedback is 
slow and that it is not difficult to create a task that 
cannot be learned, even with hundreds or thou-
sands of trials. For example, if there are more than 
a few cues, one or more cues are nonlinearly 
related to the correct answer, or if there is high 
task uncertainty (a weak relation between the cues 
and the correct answer), learning from outcome 
feedback is difficult or impossible. Social judg-
ment theory argues that such conditions are not 
uncommon.

Cognitive feedback has been proposed as an aid 
to learning and has been studied in medical con-
texts. Cognitive feedback requires computer soft-
ware to analyze judgments after a block of trials 
that includes sufficient cases to calculate a multiple 
regression model. Typically, relative weights and 
function forms from judgment analysis are shown 
to the learner and compared with the optimal 
weights and function forms for the task. Research 
has shown that cognitive feedback facilitates learn-
ing for tasks that are very difficult to learn with 
outcome feedback.
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There are few if any settings where cognitive 
feedback is routinely used in practice. Although its 
value has been demonstrated in the laboratory, 
there appear to be limitations to its value in applied 
settings.

Interpersonal Learning

There are situations where one person needs to 
learn about the judgments of another. These might 
be training situations, where a student is attempt-
ing to learn from a teacher. Or they might be coop-
erative work situations, where two or more people 
must reach a common judgment but sometimes 
disagree.

Learning to understand the judgments of another 
person is difficult for the same reasons that learn-
ing a judgment task is difficult. However, we might 
expect that learning about another person would 
be easier if that person could tell us about his or 
her judgment strategy. Unfortunately, to the extent 
that there is an intuitive element in judgment, 
people can neither understand their own judg-
ments nor explain them adequately to others. The 
remedy proposed by social judgment theory is to 
analyze the judgments of both parties, thus making 
them explicit and accessible. This has been demon-
strated in laboratory studies, and this process for 
helping people learn about the judgments of others 
is the basis for the technique for conflict manage-
ment described next.

Cognitive Conflict

It is obvious that two or more people sharing 
common goals and working together in a coop-
erative setting can make different judgments. 
Because of causal ambiguity and uncertainty and 
the inaccessibility of intuitive judgment processes, 
the reason for those differing judgments can be 
difficult to determine. Nevertheless, two parties 
who disagree are likely to seek reasons for that 
disagreement. The reasons that come to mind are 
likely to involve competing interests or venality. 
In other words, the common explanations for 
disagreement are that people have different inter-
ests or that they are deceptive or have nefarious 
motives. A third explanation, one that may never 
occur to people who don’t understand the nature 
of judgment, is that both people are honest and 

goodwilled but have just learned different judg-
ment strategies. But since their judgments involve 
intuition, they cannot understand or explain their 
differences. The proposed remedy for this involves 
use of judgment analysis to make the judgment 
strategies of both parties explicit so that they can 
constructively discuss their differences about the 
use of cues. This shifts attention from personali-
ties and self-interest to the problem at hand, and 
the expected result is cooperation and conflict 
reduction.

This result has been demonstrated in laboratory 
studies, and the method has been found useful in 
facilitated decision conferences.

Cognitive Continuum Theory

As indicated above, a central problem for social 
judgment theory is understanding how task prop-
erties influence judgment processes. Cognitive 
continuum theory addresses this problem. In short, 
cognitive continuum theory argues that both judg-
ment processes and task properties lie at points on 
a continuum from intuitive to analytic. The idea 
that intuition and analysis define the ends of a 
continuum, rather than the opposites of a dichot-
omy, is a key difference between social judgment 
theory and other theories that posit a dual system. 
Cognitive continuum theory specifies those task 
properties that tend to induce analysis and those 
that tend to induce intuition. The theory argues 
that the locations of cognitive activity and task 
properties on the intuitive-analytic continuum will 
tend to match and that that match is necessary for 
best performance.

There have been only a few empirical tests of 
cognitive continuum theory, and the results have 
been mixed. It remains one of the few attempts to 
systematically address the relation between task 
properties and cognition.

Thomas R. Stewart

Note: There is no relation between social judgment 
theory as described in this entry and the social judg-
ment theory developed by Muzafer Sherif and Carl 
Hovland.

See also Lens Model
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Split cHoice

A split choice arises if different members of an 
(apparently) homogeneous population select  
different options when confronted with the same 
decision scenario. The splitting of a treatment 
choice for clinically indistinguishable patients has 
implications for the economic evaluation of an 
intervention if the determinants of individual 
uptake are correlated with the valuation of the 
health benefit of the intervention. Split-choice bias 
is a term coined to describe the consequences of 
ignoring these implications.

Split Choice in Clinical Practice

In a typical clinical setting, it may happen that one 
treatment has clear advantages over another, with 

side effects that are negligible in comparison with 
the potential gains. Most patients will accept such 
an intervention regardless of the strength of their 
preference for the likely health outcomes. On the 
other hand, there are many scenarios where some 
patients will decline an intervention that others will 
accept, simply because they place a lower relative 
value on its consequences. For some, the overwhelm-
ing concern may be a wish to avoid certain side 
effects, while others may simply attach less impor-
tance to the potential benefits of the treatment.

Examples include radical treatment for  
potentially fatal conditions (e.g., Stage I prostate 
cancer), prophylactic interventions in healthy indi-
viduals (e.g., mastectomy for women at high 
genetic risk of breast cancer), and prenatal testing 
for genetic abnormality. Many screening tests also 
fall into this category. In such cases, patients may 
make different treatment choices even though they 
have identical clinical prospects, with identical 
probabilities attached to the outcomes of their 
treatment. In other words, the clinical population 
splits into preference subgroups when confronted 
with the treatment choice. This can also apply 
when the effective treatment choice is deferred 
until after any side effects have come into play. 
Thus, a therapy with reversible side effects may be 
discontinued by some patients even though their 
objective clinical experience has been no worse 
than that of some who choose to continue.

Economic Evaluation and Split-Choice Bias

Economic evaluations for healthcare providers 
often quantify health benefits using preference-
based comparisons of different health states. For 
example, the calculation of quality-adjusted life 
years (QALYs) is made by taking an average, over 
all health states, of the time spent in a state multi-
plied by a preference weight attached to that state. 
The preference weights are elicited as utility values 
between 0 (death) and 1 (the best conceivable state 
of health) from an appropriate population. In prac-
tice, a health state will generate different utility 
assessments from different individuals. Therefore 
an operational preference weight is obtained as a 
population-average utility.

This approach is unproblematic if all patients 
make the same decision when confronted with a 
treatment choice. The QALY value of a treatment 
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obtained from the average population utility will 
equate exactly to the QALY value that would be 
obtained if individual utilities were used instead: 
Subjects with higher and lower values will cancel 
each other out, since all receive the same treatment.

In a split-choice scenario, the health benefit of a 
treatment can be experienced only by those who 
choose to accept it. It follows that the QALY valu-
ation of a treatment ought to use a set of preference 
weights for the health state outcomes derived solely 
from the subpopulation of acceptors. This is  
an important stipulation, since it is plausible that 
treatment acceptors will attach higher utility values 
to the outcomes of a treatment than would those 
who choose to decline it. Indeed, a fully rational 
model for patient decision making would predict 
that those accepting treatment would do so just 
because of the higher expected utility that they 
associate with its consequences. Thus, a potential 
for bias arises in any economic evaluation in which 
preference weights for treatment outcomes are 
obtained from a population that includes individu-
als who would actually decline the treatment. Such 
split-choice bias can operate in one direction only, 
namely, to dilute the apparent effectiveness and 
hence the cost-effectiveness of the treatment in the 
group of patients who would choose to accept it. 
Moreover, the extent of the bias can be consider-
able and is sensitive to the degree to which indi-
vidual decision making follows rational precepts. 
For example, it has been demonstrated that the 
QALY value could be underestimated by a factor of 
up to one half for treatments accepted by 70% of 
patients, with even larger biases possible at lower 
acceptance rates. Biases as large as this would lead 
to grossly distorted cost-effectiveness ratios.

Avoiding Split-Choice Bias

In practice, published cost-utility analyses often 
disregard the potential for split-choice bias. For 
example, several recent analyses have tackled the 
subject of prostate cancer screening using population-
based QALY calculations. Similarly, a number of 
models of screening for bowel cancer have failed to 
distinguish between those who accept and decline 
treatment.

Whether split-choice bias is an issue for an eco-
nomic evaluation will depend on the aims of that 
evaluation. If the evaluation is done simply to 

decide which of two active treatments to fund 
(typically a choice between a standard and a novel 
treatment), conventional QALY calculations based 
on population-average preference weights may 
often be used with impunity. The issue of split-
choice bias does not arise if all future patients will 
experience the same treatment. The more problem-
atic cases arise where the aim of the evaluation is 
to assess treatments that will never be more than 
an option in a particular clinical scenario, such as 
those mentioned above. Then the requirement to 
avoid bias in a cost-utility analysis suggests that 
relevant health state preference weights should  
be elicited alongside respondents’ attitudes to the 
treatment choice at issue. The incremental QALY 
calculations must then be carried out within the 
subgroup of patients who have indicated that they 
would accept the optional treatment. A major dif-
ficulty with this proposal is that it cannot be  
carried out using published tables of preference 
weights, such as those associated with the EQ-5D 
instrument. Instead, a purposive sample of prefer-
ence weights must be constructed for each decision 
scenario that is evaluated. This is inconvenient and 
also unreliable, in the sense that the precision of 
each new evaluation will be limited by the size of 
the purposive sample of responses that can be mus-
tered. An alternative, though untried, suggestion is 
to model the relationship between treatment accep-
tance and individual utility scores across a range of 
clinical scenarios and use this relationship to gen-
erate an average QALY valuation among treat-
ment acceptors.

Alan Girling and Richard Lilford

See also Cost-Utility Analysis; EuroQoL (EQ-5D); 
Expected Utility Theory; Quality-Adjusted Life Years 
(QALYs); Utility Assessment Techniques
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StatiStical notationS

Statistics are pervasive in scientific journals as well 
as imbedded in business reports, academic text-
books, and even the popular media. An under-
standing of basic statistical terminology can be 
critical toward both disseminating and compre-
hending methodology and facilitating the appro-
priate interpretation of data. Ideally, there would 
exist a clear consensus for the utilization of a spe-
cific notation for statistical terms; however, even 
between various scientific communities (e.g.,  
statistics, epidemiology, medical decision making, 
econometrics), there exist some variations in the 
notation for certain statistics. For instance, the 
acronym SEM may refer to highly diverse terms, 
such as the standard error of the mean, structural 
equation modeling, or scanning electron micros-
copy, within particular scientific disciplines. As 
such, a basic understanding of the context of any 
research is always helpful toward properly inter-
preting statistical terminology. Despite some vari-
ability in the usage of terms, there remain certain 
statistics that can generally be identified and char-
acterized across disciplines. The objective of this 
entry is to outline some of the commonly used 
notations, symbols, and acronyms to serve as a 
reference for consumers of statistical data.

Beyond specific notations, there are general 
rules of thumb regarding the interpretation of sta-
tistical terminology, based on the manner in which 

they are presented. For instance, the use of the 
Greek alphabet is typically indicative of popula-
tion parameters, which in practice are unobserv-
able theoretical values (e.g., σ2 is the variance from 
a population). In contrast, Latin terms are more 
commonly indicative of sample statistics (e.g., s2 as 
the sample variance). The hat symbol (e.g., Ŷ) is 
used to denote estimated or predicted values (in 
this case for a random variable Y), which are com-
monly expressed in regression notation. By con-
vention, boldface terminology represents vectors 
or matrices (e.g., the matrix X may contain values 
xij, where i indicates the row and j indicates the 
column location of the matrix element). In general, 
uppercase values denote random variables, and 
lowercase values represent specific values. For 
example, Pr(X = x) represents the probability that 
a random variable X is equal to a given value x. 
The bar symbol over a lowercase Latin value gen-
erally indicates a mean value (x–, spoken “x-bar”), 
and a period (.) or plus (+) subscript after a vari-
able both generally refer to the summation across 
level(s) (x1. or x1+ indicates the sum of all observa-
tions across all x1j values). The following are an 
alphabetized listing of often used notations and 
acronyms (arranged alphabetically by the primary 
descriptor) along with a brief (nontechnical) 
descriptor that may serve as a guide to those inter-
ested in the science of medical decision making.

Statistical Notations

ADL—Activities of daily living: A measure of 
patient level of function—typically used as an 
outcome measure or risk adjustment in research.

α—Alpha: Most commonly denotes the significance 
level of a hypothesis test; in addition, it is used in 
regression notation as an intercept parameter (e.g., 
y = α + βx).

H1 or Ha—Alternative hypothesis: The hypothesis 
that the null hypothesis is tested against—also 
referred to as the research hypothesis.

ANOVA—Analysis of variance: An analysis 
designed to detect variation in a set of responses as 
a function of independent variable(s). The simple 
one-way generalization tests for differences in 
means between two or more groups.
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ANCOVA—Analysis of covariance: Generally 
refers to an extension of an ANOVA model with 
inclusion of continuous covariates.

AUC—Area under the curve: Typically used as a 
measure of the predictive value of a given diagnostic 
for a categorical response variable (also applicable 
for pharmacokinetic studies); technically represents 
the integral of a function in a given domain.

ARMA—Autoregressive moving-average model: A 
form of time series model that incorporates both a 
moving average component and the correlation of 
observations that are more proximate.

BLUE—Best linear unbiased estimator: A linear 
estimator of a given parameter; the “best” descriptor 
indicates that it has the lowest variability as 
compared with any other estimator.

BLUP—Best linear unbiased predictor: Predicted 
value of a response variable from a BLUE.

β—Beta: Typically denotes the probability of a 
Type II error (1 − power); also used in the context 
of regression models as an effect parameter (e.g.,  
y = α + βx).

χ2
v —Chi-square: Commonly used distribution to 

test hypotheses (e.g., association of two variables 
in a contingency table); may be denoted with the 
applicable degrees of freedom (ν).

R2—Coefficient of determination: The square of the 
correlation statistic (r); ranges from 0 to 1 and indicates 
the amount of variability of a response variable 
explained by one or more explanatory variables.

CV—Coefficient of variation: A measure of 
dispersion for a data set, equal to 100 × standard 
deviation/mean.

C(n, r) or nCr—Combination: Commonly associated 
with probability for unordered groups or for 
sampling with replacement of elements; C(n, r) is 
equal to n!/(n − r)! × r! for a given n and r with  
0 ≤ r ≤ n.

Cmax—Concentration maximum: Used primarily in 
pharmacokinetic studies.

|—Conditional statement: Spoken as “given”; for 
example, E[Y|X] is an expression indicating the 
expected value of a random variable Y given 
(conditioned on) X.

CI—Confidence interval: A range of values esti-
mated by observations to contain a given parame-
ter; the uncertainty level (5% for a 95% CI) is 
indicative of the process to create the interval 
rather than the probability that a parameter is con-
tained in a particular interval.

r—Correlation coefficient (Pearson): Sample mea-
sure of strength and direction of the linear relation-
ship between two continuous variables.

rs—Correlation coefficient (Spearman): Nonpara-
metric sample measure of strength of association 
between variables using only the respective ranks 
of observations.

ρ—Correlation coefficient: Population parameter 
estimated by the sample statistic r.

Cdf—Cumulative distribution function: Charac-
terizes a random variable; technically equivalent to 
the Pr(X ≤ x) for a given random variable X and 
typically denoted as F(x).

df—Degrees of freedom (v): Most generally 
interpreted as the amount of information available 
to test a given hypothesis, but it has multiple uses, 
including defining the forms of standard statistical 
distributions (e.g., χ2

v, tν, Fν1,ν2).

Δ—Delta: Expresses the change in a given value or 
parameter.

~—Distributed as: Typically refers to how a 
random variable is distributed; for example,  
X ~ N(0, 1) indicates that the random variable X 
is distributed as a normal distribution with µ = 0 
and σ = 1.

ε—Error: Theoretical error parameter, commonly 
noted for the form of a regression model (e.g.,  
Yi = α + βXi + εi).

E[Y]—Expected value: The mean of a random 
variable—here denoted for a random variable Y.
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!—Factorial: n! is equal to n × (n − 1) × (n − 2) ×  . . .  × 1.

F or Fυ1,υ2—F distribution: The F test is commonly 
used for an ANOVA model and may be represented 
with numerator and denominator degrees of 
freedom.

GEE—Generalized estimating equation: Most 
commonly used as a model for longitudinal data 
with nonnormal error distributions.

GLM—Generalized linear model: A general class 
of statistical models; the term linear refers to the 
response variable expressed as a linear combination 
of explanatory variables.

GIS—Geographic index system: Software indicating 
the geographic location or proximity of units of 
analysis and also commonly used to track the 
spread of disease outbreak.

HR (AHR)—Hazard ratio (adjusted hazard ratio): 
The effect of an explanatory variable on the hazard 
(or risk level) for a particular event—commonly 
associated with survival analysis.

∫—Integral: Expression used to express the “area” 
of a function over a given range; ∫b

af(x)dx indicates 
the integral of a function f(x) over the range a to b.

ITT—Intention to treat: Most commonly refers to 
the type of analysis in a clinical trial in which 
subjects are evaluated based on original group 
assignment, as compared with analyses that use 
information about subject treatment group changes 
over the course of a trial.

∩—Intercept: Probability notation indicating the 
inclusion of common elements in two or more 
groups; for example, A ∩ B indicates that all 
elements that are common to both sample spaces A 
and B are considered.

IQR—Interquartile range: Defined as the difference 
between the 75th and 25th percentiles of a data 
set; indicative of the dispersion of the “common” 
values in a data set.

ICC—Intraclass correlation: Most commonly 
refers to the proportion of variation that can be 

attributed to “between-subjects” relative to the 
total variation in a model.

κ—Kappa coefficient: Typically used to assess the 
level of agreement between raters; ranges between 
0 and 1, with higher levels associated with more 
agreement.

LSD—Least significant difference: Measure used 
to estimate significant differences of group mean 
levels accounting for multiple comparisons and 
“experiment-wise” error.

MCMC—Markov chain Monte Carlo: Sampling 
meth odology often using the simulation of obser-
vations to produce predictions of observations and 
evaluate distributional assumptions; commonly 
used in Bayesian statistics.

mle—Maximum likelihood estimation: Method-
ology used to estimate parameters that result in 
estimators with certain useful statistical properties.

MSE—Mean squared error: Measure of the 
sampling variability within treatments; commonly 
reported with ANOVA models.

MOM—Method of moments: Methodology used  
to derive point estimators; these estimators do not 
always have the most desirable properties (e.g., less 
efficient, biased) and as such are less commonly used 
currently with modern computational methods.

MAR—Missing at random: Refers to an assumption 
used for missing values in a data set. Depending  
on the nature of missing values, whether missing 
values are informative (nonrandom) can affect the 
method of analysis; another level is missing 
completely at random (MCAR), which is a broader 
assumption.

MANOVA—Multivariate analysis of variance:  
An extension of an ANOVA model with multiple 
response variables; commonly used for repeated 
measures data.

ns—Not significant: Used as shorthand to denote 
that a particular estimate is not statistically 
significant based on a given Type I error probability 
(e.g., RR = 1.05, 95% CI: 0.98–1.03, p = ns).
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H0—Null hypothesis: The hypothesis of a study that 
typically indicates “no effect” or the status quo; 
what an alternative hypothesis is tested against.

OR (AOR)—Odds ratio (Adjusted odds ratio): 
Measure of the odds of a “success” relative to a 
“failure” in one group versus another; commonly 
reported from contingency tables or logistic regression 
models and may be adjusted for other factors.

OLS—Ordinary least squares: Linear regression 
model assuming a particular distributional form, 
including normally distributed independent random 
variables with common variance.

P(n, r) or nPr—Permutation: Commonly associated 
with probability or sampling without replacement 
of elements; P(n, r) is equal to n!/(n − r)! for a given 
n and r with 0 ≤ r ≤ n.

ϕ—Phi coefficient: Measure of association of two 
independent variables from a 2 × 2 contingency 
table; ranges between −1 and 1.

µ—Population mean: Theoretical arithmetic mean 
for a variable from a population.

π—Population proportion: Parameter indicating 
the proportion of individuals in a population with 
a certain trait.

N—Population size: Number of observations in a 
population.

σ—Population standard deviation: Indication of 
the variability or dispersion of a variable from a 
population; σ2 is the population variance.

P(A) or Pr(A)—Probability: Notation indicating 
the probability of an event (A) occurring.

pdf—Probability density function: Characterizes a 
random variable; technically satisfies the expression 
F(x) = ∫

x

–∞ f(t)dt for all x.

p or p value—Probability of a Type I error: The 
probability of a given result assuming the null 
hypothesis; often a p value <.05 is considered 
statistically significant; p may also be used to 
indicate a sample proportion.

QUALY/QOL—Quality of life: Used in studies  
to provide a mathematical index for patients in 
various health states; ranges from 0 to 1 (from 
dead to alive with an ideal quality of life).

Q-Q plot—Quantile-quantile plot: Used to provide 
a representation of the goodness of fit for a data  
set for a theoretical distribution; cases in which 
ordered observed values closely align with quantiles 
of a distribution suggest an adequate fit.

RBD—Randomized block design: An experimental 
design in which units receive a randomly assigned 
treatment within each block. For example, plants 
located in three different rows (blocks) randomly 
receive one of three types of fertilizer.

RCT—Randomized controlled trial: A clinical  
trial using a control group and a randomization 
procedure to allocate subjects to study arms.

ROC—Receiver operating characteristic curve: 
Plot of the sensitivity against 1 − specificity, typi-
cally used to represent the overall predictive value 
of a diagnostic and particular values at which a 
diagnostic is most predictive.

RR—Relative risk: The incidence rate of an event 
in one condition divided by the incidence rate of an 
event for observations in another condition.

REML—Residual (or restricted) maximum 
likelihood estimation: Method to estimate para-
meters based on a restricted likelihood (rather than 
the actual likelihood); common in mixed models 
and has the advantage of producing un  biased 
estimates of variance components.

x–—Sample mean: Arithmetic mean for a sample of 
observations; a measure of central tendency for a 
continuous variable.

n—Sample size: The number of observations in a 
sample.

SD or s—Sample standard deviation: Measure  
of the variability or dispersion of a variable from a 
sample data set; is in the same units as the original 
observation; s2 is the sample variance.
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SE or SEM—Standard error (of the mean): The 
standard deviation of the sampling distribution of 
a statistic; the standard error of the sample mean is 
estimated by s


− n
p

:

SMR—Standardized mortality ratio: Ratio of the 
number of deaths for a given population and  
the number of deaths expected based on certain 
characteristics (e.g., age and gender); also can be 
generalized for events other than death.

∑—Summation: Notation used to represent the 
addition of an indicated variable (e.g., Σx is used  
to represent the sum of all x values); technically 
should include an indication of the range of 
observations that are to be summed; Σ4

i = 1 xi indicates 
that x is to be summed from x1 to x4.

t or t —t distribution: Also known as the student’s 
t distribution; most commonly used as a test for a 
sample mean or a comparison of sample means; as 
ν increases, the distribution approaches the normal 
distribution.

Tmax—Time of maximum concentration: Time  
at which maximum concentration occurs in 
pharmacokinetic studies.

′ or T—Transpose: Notation used to indicate the 
rotated alignment of a matrix; for example, for a  
2 × 3 matrix C, C′ × C indicates the product of  
C′ (which is 3 × 2 when transposed) and C.

∪—Union: Probability notation indicating the 
inclusion of all elements in two groups; for 
example, A ∪ B indicates that all elements in the 
sample space of either A or B are considered.

VIF—Variance inflation factor: Measure of the 
impact of other explanatory variables on the 
variance of another variable in the context of a 
regression model.

z—z distribution: Refers to standard normal distri-
bution with mean equal to 0 and variance equal to 1.

Jesse D. Schold

See also Basic Common Statistical Tests: Chi-Square Test, 
t Test, Nonparametric Test; Statistical Testing: 
Overview
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StatiStical teSting: overview

Statistical testing is common in clinical settings as 
a method for drawing inferences for an unknown 
population value based on a sample of subjects.  
A clinician may wish, for instance, to test the 
hypothesis that a new surgical technique reduces 
the probability of adverse postoperative outcome 
or that, on average, a new drug reduces blood 
glucose in diabetics. Many types of statistical tests 
exist, and selection of an appropriate test is guided 
by the type of data collected, the statistics for 
which inferences are desired, the number of 
groups under study, and the sample size.

General Testing Procedure

Implementation of a statistical test begins with the 
specification of distinct hypotheses; a null hypoth-
esis (denoted by H0) is assumed to be true, and the 
test is performed to evaluate the evidence against  
H0 in favor of an alternative hypothesis (denoted 
by HA). Typically, the hypothesis that the researcher 
may wish to show is specified as HA. For example, 
H0 for the study on the new surgical technique 
could be stated as “The probabilities of adverse 
outcome for patients assigned to the new treat-
ment and patients assigned to the standard of care 
are equal.” HA would correspondingly be stated as 
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“Adverse outcome probabilities are unequal for 
the two treatment techniques.”

The investigator collects a sample of data from 
the population of interest, and a test statistic is 
derived using the sample responses. The test statis-
tic is defined as a quantity that summarizes the 
sample in such a way that a decision to accept H0 
(in preference to HA) or to reject H0 (in favor of 
HA) can be made based on all possible values of the 
quantity. The set of values corresponding to the 
decision to accept H0 is called the acceptance 
region, while the set of values corresponding to the 
decision to reject H0 is called the rejection region.

The test statistic has a certain probability  
distribution—the sampling distribution—under the 
assumption that H0 is true (i.e., the probability dis-
tribution of test statistics arising from many repeated 
samples). The shape of the sampling distribution 
depends on the type of test being implemented.

As the relevant population quantity is unknown 
(thereby necessitating testing), the potential exists 
for the test to produce an incorrect conclusion. 
The conclusion to reject H0 when indeed H0 is 
true is known as a Type I error or false positive. 
On the other hand, accepting H0 when HA is true 
is called a Type II error or false negative. The 
probability of committing a Type I error (often 
referred to as the significance level) is commonly 
denoted by α, while the probability of committing 
a Type II error is commonly denoted by β. The 
significance level corresponds to the range of the 
rejection region and is specified by the experi-
menter prior to testing. Many journals require α = 
.05 for testing.

Statistical tests can also be implemented in 
terms of p values, defined as the probability of 
observing a test statistic as extreme or more 
extreme than that which would be observed if the 
experiment were to be repeated many times—or, in 
other words, the observed significance level of the 
test. The decision to reject H0 is made if the p value 
is less than α, and the proximity of the p value  
to 0 is a measure of the strength of the evidence 
against H0.

Alternative hypotheses can be specified as two 
sided or one sided. Suppose an investigator was 
interested in comparing the average blood pressure 
between patients randomized to an experimental 
medication (µt) and patients randomized to control 
(µc). A two-sided set of hypotheses in this instance 

would be H0: µ1 = µc; HA: µt ≠ µc. A one-sided set 
of hypotheses, in this case, could be stated as  
H0: µ1 ≥ µc; HA: µt < µc. While one-sided tests may 
require fewer patients for the same statistical 
power, they should only be implemented under the 
rare circumstance that the investigator was certain 
that the treatment would not result, for instance, 
in a worse/higher blood pressure (as compared 
with the placebo).

Choice of an Appropriate Test

Choice of an appropriate test requires an under-
standing of the type of outcome measured,  
the experimental design, and the assumptions 
required for implementation of each test. 
Adequate coverage of all assumptions for each 
test requires much detail and is beyond the scope 
of this entry; however, as a general rule, para-
metric tests are recommended for normally dis-
tributed, continuous outcomes or when the 
sample size is large (say n > 30), while nonpara-
metric tests are recommended for nonnormal 
continuous outcomes or when the sample size is 
small. Also, most tests (excluding paired tests for 
continuous outcomes and tests for independence 
of categorical/binary measures) require the 
assumption that observations are collected inde-
pendent of one another.

Common Types of Statistical Tests

The overviews in this section assume the p value 
approach to hypothesis testing; only formulas for 
p values are presented (rejection regions are not). 
Also, all stated hypotheses are two sided.

Tests for Categorical Outcomes

Many clinical trials involve categorical out-
comes, as treatments often focus on preventing the 
diagnosis (yes/no or binary outcome) of a certain 
disease. Other studies may seek to compare the 
incidence of disease for a specific population to 
that known for a different population.

One-Sample Proportion Test

The null hypothesis for this test is that the 
proportion of patients with a certain outcome is 
equal to a prespecified null value (H0: p = p0), 
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while the alternative is HA: p ≠ p0. After the 
data are collected (and sample proportion p̂ 
has been found), the test statistic can be com-
puted as

z= p̂− p0

p0ð1 p0Þ
n

q ;

with a corresponding p value of 2Pr{Z ≥ |z|}, where 
Z is a standard normal random variable (with 
mean of 0 and variance of 1).

Example. Suppose the investigator wishes to 
test the null hypothesis that the incidence of 
surgical complications in her population is equal 
to the incidence—say 25%—among a similar 
patient population that had been previously 
published. She collects data on 80 patients and 
finds that 12 experienced a complication 
(amounting to 15%). The z statistic for this test 
is calculated as

z= :15− :25
:25ð1 :25Þ

80

q = − 2:07:

The p value associated with this test statistic is 
.039, and (using α = .05) she concludes that the 
incidence among her patients is significantly lower 
than that which was previously published.

Pearson’s Chi-Square Test

This test is most often used in randomized 
clinical trials involving a binary treatment indica-
tor (usually treatment vs. control) and a binary 
outcome (usually diagnosis or absence of disease 
after treatment). The null hypothesis in this case is 
that the probability of outcome for patients ran-
domized to the treatment (pt) equals the probabil-
ity of outcome for patients randomized to the 
control (pt)—symbolically, (H0: pt = pc), and the 
alternative hypothesis is HA: pt ≠ p0. Assuming 
that nt and nc patients are given the treatment and 
control (respectively), a two-way table can be con-
structed after the experiment is performed (see 
Table 1).

Notationally, n*1 total patients experienced the 
outcome n11 in the control arm and n21 in the treat-
ment arm, while n*2 total patients experienced the 
outcome n12 in the control arm and n22 in the treat-
ment arm (total sample size of n**).

The chi-squared test statistic is then a measure 
of the deviation between the observed frequencies 
nij and the expected frequencies eij = ni*(n*j)/n**: 

X2 =
X2

i= 1

X2

j=1

ðnij − eijÞ2

eij
:

This formula can be extended to include I treat-
ments and J possible outcomes. The test statistic 
X

2
 follows a χ2

 distribution with (I – 1)(J – 1) 
degrees of freedom, and the p value is 

Pr χ2
I 1ð Þ J 1ð Þ ≥X2

 
:

Example. An investigator wishes to determine 
whether or not administration of a new anti-
inflammatory drug is effective in reducing the 
incidence of postsurgical infection in a population 
of cardiac surgery patients. He randomizes 1,500 
patients to receive the new drug and another 1,500 
to receive a placebo, of which 130 and 194 
patients, respectively, developed an infection. The 
observed counts nij and expected counts eij are 
shown in Table 2.

The X2 statistic is thus

X2 = ð1306− 1338Þ2

1338
+ ð1370− 1338Þ2

1338

+ ð194− 162Þ2

162
+ ð130− 162Þ2

162
= 14:2:

The probability of finding an X2 statistic (with 
(2 – 1)(2 – 1) = 1 degree of freedom) greater than 
or equal to his observed X2 of 14.2 is less than 
.001; therefore, he concludes that the anti-inflam-
matory drug is effective in reducing the incidence 
of postoperative infection.

Table 1   Two-by-two contingency table used in the 
implementation of the chi-square test

No Outcome 
(j = 1)

Outcome  
(j = 2)

 
Totals

Control  
(i = 1)

n11 n12 n*1 = nc

Treatment  
(i = 2)

n21 n22 n*2 = nt

Totals n*1 n*2 n**
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Parametric Tests for Continuous Outcomes

Normally distributed outcomes occur frequently 
in clinical practice. Some examples of normal mea-
sures include weight, height, and blood pressure. 
Inference for normal outcomes focuses on the 
population mean µ. Though the parametric tests in 
this section are best interpreted for normal out-
comes, inference for means of nonnormal out-
comes is valid as long as the sample is of adequate 
size. Additionally, these tests may be considered 
for nonnormal outcomes after an appropriate nor-
malizing transformation is applied (such as the log 
or square-root transformations).

One-Sample t Test

The one-sample t test is ideal for situations 
where the investigator is interested in comparing 
the mean of an outcome (collected on a single 
group of patients) to a prespecified null value µ0. 
The null hypothesis is that the population mean 
(µ) is equal to a certain value (H0: µ = µ0). The 
alternative hypothesis is that the mean is not equal 
to the null value (HA: µ ≠ µ0). The test statistic is

t= x− m0

s= n
p ;

where x– is the sample mean and s is the sample 
standard deviation. This statistic follows a t distri-
bution with n − 1 degrees of freedom (df). The p 
value for this test is 2Pr{tn–1≥|t|}.

Two-Sample t Test (Paired Samples)

Two typical clinical designs where paired obser-
vations arise are (1) measuring an outcome before 

and after a treatment regimen for each patient and 
(2) measuring one posttreatment outcome on 
patients who were matched on baseline character-
istics (e.g., half-randomized to treatment, half-
randomized to control). Statistical test of mean 
difference for paired samples amounts to a one-
sample t test performed on the differences (e.g., 
posttreatment—baseline, treatment—placebo), 
usually with µ0 = 0 and n equal to the number of 
observed differences. Hypotheses are stated in 
terms of the mean difference (µd), as in H0: µd = 0  
and HA: µd ≠ 0.

Example. Dr. Huang has developed a new diet 
program for clinically obese patients and has 
reason to believe that it may be effective in 
weight loss. She has 20 patients begin and 
complete her new diet program, weighing each 
of them before beginning and after completion. 
The statistical hypothesis she tests is that the 
mean difference in weight is 0. The mean (SD) 
difference (after enrollment minus before 
enrollment) in weight was −5(12) pounds, giving 
a test statistic of

t= x−m0

s= n
p = ð− 5Þ− 0

12


20
p = − 1:86:

The p value for this test is 2Pr{tn–1≥|t|} = 2Pr{t20–1≥ 
– 1.86|} = .78, and she therefore cannot reject her 
null hypothesis.

Two-Sample t Test (Independent Samples)

This test is the most common analysis approach 
for the typical two-arm randomized clinical trial 
investigating the difference in means of an outcome 
between a treatment group (µt) and a control group 
(µc). The null hypothesis is that the difference in 
means between the two groups is equal to a null 
difference δ, which is typically 0 (H0: x

–
t – x–c = δ.  

The alternative hypothesis is HA: x–t – x–c ≠ δ.   
Assuming unknown and potentially unequal popu-
lation variances, the test statistic is approximated 
using a t statistic:

t≈ t0 = ðxt − xcÞ− d
s2
t

nt
+ s2

c
nc

q ;

where ðxt; xcÞ  are sample means, (st, sc)  are sample 
standard deviations, and nt, nc are sample sizes 
from the (treatment, control) groups. This test  

Table 2   Contingency table for anti-inflammatory 
study

No 
Infection

 
Infection

 
Totals

Placebo
n11 = 1,306
e11 = 1,338

n12 = 194
e12 = 162

n*1 = 1,500

Anti-
Inflammatory

n21 = 1,370
e21 = 1,338

n22 = 130
e22 = 162 n*2 = 1,500

Totals n*1 = 2,676 n*2 = 324 n** = 3,000
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statistic follows a t distribution with df approxi-
mated using the Welch-Satterthwaite method:

df ≈df  =
s2
t

nt
+ s2

c
nc

 2

s4
t

n2
t ðnt 1Þ +

s4
c

n2
c ðnc 1Þ

:

The p value for this test is then 2Pr{tdf* ≥ |t|}.

Example. Mean (SD) case duration of 75 cardiac 
patients randomized to preoperative treatment with 
beta blockers was 213 (65) minutes, while mean 
(SD) case duration for 75 patients randomized to a 
preoperative placebo was 204 (61) minutes. The 
t statistic for the null hypothesis of no difference in 
mean case duration is

t0 = ð213−204Þ− 0

652

75 + 612

75

q = :87;

and the p value is 2Pr{tdf*≈147 ≥ |.87|} = .39 using the 
Welch-Satterthwaite method to approximate df. 
This study does not give evidence that beta block-
ers cause a change in average case duration.

Nonparametric Tests for Continuous Outcomes

The area of nonparametric testing has provided 
an array of statistical tests that address a diverse 
collection of hypotheses. Adequate coverage of 
these tests requires a full-length text (e.g., Siegel & 
Castellan, 1988); this section focuses on tests that 
are common in the clinical setting. For example, a 
popular clinical implementation is when the inves-
tigator is interested in comparing the shape of the 
distribution of a nonnormal outcome (e.g., body 
mass index, survival time after treatment, certain 
serum measurements) between the treatment and 
control arms of a clinical trial.

Many nonparametric tests are based on the 
ranks of the responses rather than the actual val-
ues. Let R(x) denote the rank function for variable 
x, where the smallest x is assigned a score of 1 and 
the largest x is assigned a score of n (any tied x 
values are typically assigned the average score of 
the affected ranks). Also, let I(c) denote the indica-
tor function for the Boolean clause c (equal to 0 if 
c is false and 1 if c is true).

Wilcoxon Signed-Rank Test

The signed-rank test is generally implemented 
as an alternative to the paired-samples t test, as it 

requires only the assumption that the calculated 
differences follow a symmetric (as opposed to nor-
mal) distribution. Define the differences (either 
baseline and posttreatment measurements prei and 
posti or matched treatment and control measure-
ments treati and controli, respectively) as di = posti 
– prei or di = treati – controli. Then the null hypoth-
esis is that the median of the differences equals a 
certain null value, which is usually 0 ðH0: ~d= ~d0Þ;  
and the alternative is HA: ~d 6¼ ~d0:

Implementation of this test begins by removing 
all w observations where di = ~d0 . Then, define the 
ranks as ri = R(|di|), i = 1, 2, . . . , n´, where n´= n – w. 
The test statistic T is min(T+, T–), where

T + =
Xn0

i=1

riIðdi >
~d0Þ;

and

T =
Xn0

i= 1

riIðdi <
~d0Þ=

n0ðn0 + 1Þ
2

−T + :

With adequate sample size (say n´ > 15), the  
p value can be approximated:

p= 2 Pr z >
jT − n0ðn0 + 1Þ=4j

n0ðn0 + 1Þð2n0 + 1Þ=24
p

 !
;

where z follows a standard normal distribution.

Example. Dr. Martinez is interested in studying the 
effects of a new medication on resting systolic 
blood pressure (SBP). He recruits 17 cardiac 
patients, measures resting SBP before and after 
treatment, and tests the null hypothesis that the 
median difference in (after minus before) is equal 
to 0 mmHg. The observed differences (in ascending 
order) and ranks ri are shown in Table 3.

Based on these observations, the median differ-
ence in SBP is −7 mmHg. Since there is one obser-
vation where di = ~d0;  n´ = 16; T+ is calculated as 
the sum of the ranks of the positive d i, which is 36, 
and T – = (16(17)/2) – T+ = 100. Therefore, T is 36. 
The p value is

p= 2 Pr z >
j36− 16ð17Þ=4j

16ð17Þð37Þ=24
p

 !
= 2 Pr z > 1:563ð Þ= :12:

.

Dr. Martinez cannot conclude that median dif-
ference in SBP is different from 0 mmHg.
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Wilcoxon/Mann-Whitney  
Rank Sum Test (U Test)

Since it doesn’t require any distributional assump-
tions, the U test is a powerful alternative to the 
independent-samples t test. H0 is that the outcome 
of interest (xi) follows a common statistical distribu-
tion between the treatment and control arms of a 
clinical trial, while HA is that (xi) for a randomly 
selected patient in the treatment arm is different 
from (xi) for a randomly selected patient in the con-
trol arm. Let ri = R(xi) and Ti = I(patient i in treat-
ment arm), i = 1, 2 . . . , n. Then the number of 
patients in the treatment and control arms, respec-
tively, are nt =

Xn

i= 1
Ti and nc =

Xn

i=1
ð1−TiÞ The 

test statistic is

U = min
Xn

i= 1

riTi −
ntðnt + 1Þ

2

 !
;

"

Xn

i= 1

rið1−TÞ− ncðnc + 1Þ
2

 !#
:

The p value for this test can also be approximated 
using the standard normal distribution if (nc > 15):

p= 2 Pr z >
jU− ntnc=2j

ntncðnt + nc + 1Þ=12
p

 !
:

Example. Thirty patients were randomized to 
receive either an experimental drug (nt = 15) or a 
placebo (nc = 15) for the treatment of epileptic 
seizures. The number of seizures in a 2-week period 
(xi) for each patient, as well their corresponding 
ranks ri, are summarized in Table 4.

The test statistic U is

min 4+ 4+ 6:5+    + 28+ 28½ − 15 16ð Þ
2

 
;



1+ 2+4+    + 28+ 30½ − 15 16ð Þ
2

 
= 102:5;

Table 3   Differences (after treatment minus before treatment) in systolic blood pressure, as well as ranks, for 17 
cardiac patients

di −42 −40 −27 −15 −12 −12 −9 −8 −7 −7 −5 −1 0 6 10 18 22

ri  16  15  14  11 9.5 9.5 7 6 4.5 4.5 2  1 — 3  8 12 13

Table 4   Data, ranks, and treatment indicator variable for an epileptic seizure study

Experimental Drug

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi 5 5 6 7 7 7 8 9 10 10 11 11 11 13 13

ri 4 4 6.5 10 10 10 14 17 20 20 24 24 24 28 28

Ti 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Placebo

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

xi 3 4 5 6 7 7 8 9 9 9 10 11 11 13 14

ri 1 2 4 6.5 10 10 14 17 17 17 20 24 24 28 30

Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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and the associated p value is

p= 2 Pr z >
j102:5− 15 15ð Þ=2j

15 15ð Þ 31ð Þ=12
p

 !
= 2 Pr z > :41ð Þ= :68:

The investigator cannot claim that the distribu-
tions of the number of seizures in a 2-week period 
for patients given the new medication and patients 
given a placebo are different.

Jarrod E. Dalton

See also Analysis of Variance (ANOVA); Confidence 
Intervals; Sample Size and Power

Further Readings

Miller, I., & Miller, M. (1999). John E. Freund’s 
mathematical statistics (6th ed.). Upper Saddle River, 
NJ: Prentice Hall.

SAS Institute. (2003). SAS OnlineDoc® 9.1. Cary, NC: 
Author.

Siegel, S., & Castellan, N. J. (1988). Nonparametric 
statistics for the behavioral sciences. New York: 
McGraw-Hill.

Steady-State modelS

Dynamic modeling is important to many areas of 
medical decision making. Cancer screening, infec-
tious disease transmission, demographic modeling 
of healthcare and pension costs, economic growth, 
and budget forecasting provide a few arenas in 
which dynamic modeling plays a critical role. 
Differential or difference equations provide a 
framework for many of these problems.

In many cases, analysts can define differential 
equations that cannot be solved analytically at 
each moment in time. Fortunately, the long-term 
behavior of these systems can be explored or char-
acterized through steady-state analysis.

This piece presents the basic character and limi-
tations of steady-state analysis. It begins with some 
general background. It then discusses a specific 
steady-state analysis: the random-mixing model of 
infectious disease transmission in a population of 
injection drug users (IDUs).

Background

Suppose one derives some differential equation 
governed by Equation 1 below:

 
dX
dt

= f ðXÞ (1)

The time rate of change in X is given by some 
function f(X). Given our interest in steady-state 
behavior, we have assumed that the differential 
Equation 1 does not explicitly depend on time. 
However, Equation 1 has greater generality than is 
first apparent.

For example, when X is the vector [x(t), dx/dt, 
d2x/dt2, K], one can model higher-order equations. 
In this framework, the equation

 

d2x
dt2 = − 4x  

(2)

can be represented as

d
dt

xðtÞ; dxðtÞ
dt

 
d
dt

x1ðtÞ; x2ðtÞ½  f ðXÞ x2; 4x1½ :
 

       (3)

Here, we use the expressions x1(t) and x2(t) to indicate 
two different functions that depend on time t and that 
evolve over time in accordance with Equation 3.

Steady-state values satisfy the relationship f(X) 
= 0. When some X satisfies this relationship in a 
deterministic model, once the system reaches this 
value, it will stay there. In the case of Equation 3, 
x(t) = dx/dt = 0 is the unique steady-state solution. 
A system that starts at this value will stay at this 
value indefinitely.

Many physical systems converge on a steady-
state solution if one waits a sufficiently long period 
of time. Yet as the above example indicates, there is 
no reason any physical or economic system neces-
sarily tends to the steady state. Readers may recog-
nize Equation 2 as embodying Hooke’s law. A mass 
attached to a spring experiences a force propor-
tional to its displacement from its rest position. It is 
readily demonstrated that any function of the form

 X(t) = Asin(2t) + Bcos(2t)   (4)

will satisfy Equation 2, with A and B chosen to 
match the mass’s initial position and velocity. 
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Unless A = B = 0, this system will oscillate indefi-
nitely, without converging to any steady-state posi-
tion. Equation 5 below is even worse:

 

d2x
dt2 = + 4x: (5)

Unless x = dx/dt = 0, Equation 5 describes a 
system that diverges to ±∞. Undergraduate texts in 
differential equations provide further information 
about the existence, uniqueness, and stability of 
steady-state solutions.

Strengths and Weaknesses: Infectious Disease 
Transmission Among Injection Drug Users

The remainder of this entry illustrates the value  
of steady-state analysis by exploring the “random 
mixing” model of infectious disease spread. It then 
applies this framework to a particular application: 
HIV and hepatitis C transmission among IDUs. 
This critical public health challenge provides a 
simple framework to exhibit both the strengths 
and the limitations of steady-state analysis.

More elaborate discussion is provided elsewhere 
(e.g., Pollack, 2001, 2002). This model seeks to 
capture two interrelated processes: entry and exit 
from the population of active IDUs and the process 
of mixing and infection spread among active injec-
tors. It also seeks to explore how the introduction 
of substance abuse treatment can alter both the 
overall population of drug users and infectious 
disease prevalence.

This framework illustrates that real systems can 
have multiple steady states. Consider the differen-
tial Equation 6 below. This is the simplest random 
mixing model used in the study of infectious dis-
ease spread.

 

dx
dt

= klxð1− xÞ− dx:  (6)

Here, x(t) corresponds to the proportion of a given 
population that is infected with the disease. 
Equation 6 defines the simplest random-mixing 
model of infectious disease spread. The motivating 
idea is that each drug user shares needles with 
some randomly selected member of the drug-using 
population. Individuals do this at rate λ per unit 
time. If an uninfected person shares a needle with 
an infected person, there is some probability κ that 

the infection will be spread. Each person, infected 
or uninfected, leaves the population at the same 
exit rate δ per unit time.

The term κλx(1 − x) captures infectious disease 
incidence: the rate per unit time that infected and 
uninfected people encounter each other and an 
infection occurs. When prevalence is very low (x ≈ 
0), few new infections occur. Susceptible people 
are unlikely to encounter others who could spread 
the infections. When prevalence is very high  
(x ≈ 1), few new infections occur, because infected 
people encounter few susceptible people likely to 
be infected. The term −δx captures the removal of 
infected individuals from the population, for exam-
ple, due to disease mortality.

Equation 6 and simple variants can be solved 
exactly, yielding a classic logistic curve. However, 
the mathematical details quickly become intricate. 
Steady-state analysis often yields the critical policy 
insights within a much simpler framework.

Setting dx/dt = 0, we find the steady state by 
factoring out x(t) and solving

 x[κλ(1 – x) θ = 0. (7)

There are two steady-state solutions to Equation 7. 
The value x1 = 0 always provides one steady-state 
solution. When κλ > δ, a second steady-state solu-
tion is also pertinent: the case x2 = 1 − δ/(κλ). 
When x(0) takes on any positive value, x(t) will 
converge over time to the value x2.

Notice that when κλ < δ, steady-state preva-
lence goes to 0. This corresponds to the case where 
the disease will die out, and the population main-
tains herd immunity. When herd immunity is 
maintained, the epidemiological environment 
removes infected individuals from the population 
faster than new infections occur. So steady-state 
prevalence is 0.

This quantity, κλ/δ, plays a fundamental role in 
epidemiological modeling. It is frequently labeled 
the reproduction number R0. The reproduction 
number has a rather simple intuitive meaning. 
Imagine that a single infected drug user is placed 
within a completely susceptible population. That 
individual will share needles some λ occasions per 
unit time, infecting some fraction κ of her partners. 
She will be in the active drug-using population for 
some period (1/δ).
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Thus, the expected number of people she infects 
is the quantity R0 = (κλ/δ). For an outbreak to 
occur, she must at least replace herself with one 
other infected person. So if R0 < 1, no outbreak 
will occur. More complex models yield more com-
plex reproduction numbers. The result remains the 
same. When R0 < 1, steady-state prevalence I* falls 
to 0 in steady state. When local outbreaks occur, 
some individuals may become infected. Yet these 
local outbreaks will not cause a population-wide 
epidemic.

Random-mixing models have been applied and 
extended to a large class of biological and public 
health concerns, such as immunization. Interested 
readers are referred to the classic text by Anderson 
and May.

Evolution of the Drug-Using Population

Before considering any infectious disease epidemi-
ology, we start by considering the overall popula-
tion of N(t) active IDUs. Every day, θ uninfected 
individuals enter the drug-using population. Active 
IDUs also leave the population and at different 
rates depending on their receipt of treatment ser-
vices. We assume an exit rate of some ω per person 
per day among individuals receiving substance 
abuse treatment and some δ per person per day 
within the remaining population of IDUs. If there 
is excess demand for treatment services, and there 
are M(t) clients receiving services at time t, we have 
Equation 8:

 

dN
dt

= y− ½NðtÞ−MðtÞd−MðtÞω:  (8)

Here, M(t) is a policy variable. Given a specific 
time path M(t), one could solve for N(t) explicitly. 
If M(t) is simply some constant M, this equation is 
readily solved analytically for all time t.

It is even easier to solve Equation 8 over the 
long run, when N(t) asymptotes to some steady-
state N*. Note that this equation is only valid 
when there is excess demand for treatment. That 
is, N(t) > M(t).

When steady state is reached, the time rate of 
change in N approaches 0. This implies that

 0 = θ – [N* – M]δ – Mω. (9)

Doing the algebra,

 
N =M+ y−Mω

d
; when y≥Mω:

 
(10)

Equation 10 is readily interpreted. There are θ 
users entering the population every day. There are 
Mω users exiting the population from substance 
abuse treatment and (N* − M)δ users exiting  
the population from the out-of-treatment group. 
Because we are in steady state, the inflow and the 
outflow must offset each other. So θ = Mω +  
(N* − M)δ, which leads to Equation 10.

Equation 10 also informs us when it is valid. 
We assumed above that N* ≥ M. So this analysis 
is only operative when (θ − Mω) > 0. Per unit time, 
the number of treatment recipients who exit the 
drug-using population can be no greater than the 
number of new arrivals.

Now, what happens when θ < Mω? In this case, 
regardless of the initial condition, if we wait long 
enough, N(t) < M for all t > t*. After this point, 
Equation 8 becomes

 

dN
dt

= y−Mω:  (8′)

Since the right-hand side is a negative constant, 
N(t) simply declines linearly to N* = 0.

 N* = 0, when θ < Mω. (10′)

Again, the reasoning is straightforward. The 
population of active drug users drops to 0 because 
more people are being cured, per unit time, by 
treatment than are arriving into the population.

Infectious Disease Transmission  
in the Absence of Treatment

We now add infectious disease transmission to the 
model. We first do so in the absence of treatment 
(M = 0). We then examine how treatment trans-
forms the problem.

We now turn to the dynamics of infectious dis-
ease spread. At any time t, some number I(t) of 
active drug users are infected with some disease. 
I(t) is comparable with x(t) above, multiplied by 
N, the population size of injection drug users. 
Thus, the remaining N(t) − I(t) drug users remain 
uninfected and at risk.
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Let us consider the evolution of I(t). Assuming 
that there is no drug treatment, there are N(t) 
− I(t) susceptible individuals. Each susceptible 
individual shares needles λ times per week. In 
each of these encounters, random mixing implies 
that the sharing “partner” has a probability 
I(t)/N(t) of being infected (i.e., the proportion 
of infected people within the drug-using popu-
lation). When a susceptible person shares with 
an infected person, there is some probability κ 
that the infection will spread. Moreover, every 
week, some δI(t) infected drug users leave the 
population.

Pulling these together, this implies that

 
dI
dt

= − dI+klðNðtÞ− IðtÞÞ IðtÞ
NðtÞ

 
: (11)

What happens in steady state? I(t) approaches 
some asymptote I*, and N(t) approaches some 
other asymptote N*. So we have

 

0= − dI +klðN − IÞ I

N

 

or

I = klðN − IÞ I

N

 
1
d

 
: (12)

The left-hand side of Equation 12 is I*, steady-
state prevalence of the disease. On the right-hand 
side, 1/δ can be interpreted as the average duration 
an individual persists in the population postinfec-
tion. The remainder of the right-hand side represents 
steady-state incidence, the number of new infections 
per unit time. In steady state, Equation 12 includes 
a classic result of infectious disease epidemiology: 
Prevalence equals incidence multiplied by duration.

As in the previous section, we solve for steady 
state:

I kl
N − I

N

 
− d

 
= 0:

 
(13)

If steady-state prevalence is positive, we can 
divide both sides by I*. Since we assume no 
treatment, N* = θ/δ. We can then find that

I = 1− d
kl

 
N = 1− d

kl

 
y
d
: (14)

The bracketed term represents the proportion of 
the active drug-using population that carries the 
infection. Since prevalence equals incidence times 
duration, the steady-state number of new infec-
tions per unit time is

 
ι= dI = y 1− d

kl

 
:  (15)

A Combined Model

Now we combine the above models. For sim-
plicity, we assume that M(t) is some constant 
M and that the proportion of infected people 
in treatment matches the overall population. 
We’ll also assume that treatment is perfectly 
effective in that no treated people spread the 
disease or become infected with it. This implies 
that

dI
dt

= − dI
N −M

N

 
−ωI

M
N

 

+ kl
N −M

N

 
ðN − IÞ I

N

 
;

dN
dt

= dðN −MÞ−ωM:

For simplicity, assume that N* > 0. There are a 
positive number of drug users in steady state. 
Solving these out, we have

N =M+ y−Mω

d
;

I

N = 1− d
kl

 
dðN −MÞ+ωM

dðN −MÞ

 

= 1− d
kl

 
y

y−Mω

 
:

(16)

(17)

(18)

(19)
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These equations allow us to answer useful ques-
tions. For example: How many treatment slots are 
required to achieve herd immunity? We explore 
this question by setting the right-hand side of 
Equation 19 equal to 0. In epidemiological termi-
nology, the reproduction number in this model 
declines from R0 to

 
R1 =

kl
d

 
y−Mω

y

 
=R0

y−Mω

y

 
:  (20)

We require R1 < 1 for herd immunity. Some 
algebra yields that M must be large enough for

 
Mω > y 1− d

kl

 
:  (21)

To achieve herd immunity, we must provide a 
sufficient number of slots to ensure that the exit 
rate from substance abuse treatment at least 
matches the rate of new infections in the absence 
of intervention.

Similar results hold for immunization. Under 
the same general assumptions, one can create herd 
immunity by vaccinating the same proportion of 
the population that would acquire the infection, 
absent the intervention.

Additional Analyses

When steady-state analysis captures the key fea-
tures of a dynamic system, it provides a simple and 
useful approach to policy analysis. For example, 
suppose that society values the prevention of each 
new infection at some $D, and suppose that the 
cost of each substance abuse treatment “slot” is 
$C. The social planner then picks the number of 
treatment slots M to minimize

 min(M) L = CM + DδI*. (22)

The optimal provision of treatment may or may 
not be sufficient for herd immunity.

Limitations

Despite their utility, steady-state models face sev-
eral important limitations. One central issue con-
cerns the time a system takes to approach steady 
state from a given initial state. This is sometimes 
operationalized as the time required for I(t) to 
move from 10% to 90% of its steady-state value. 

When this process takes many years or decades, 
steady-state models are clearly limited in their abil-
ity to inform current policies.

Within the random-mixing model, the time 
required to reach steady state is short when the 
reproduction number R0 is high. Convergence 
times can be much longer when the reproduction 
number is low. Policy analysis suggests that some 
agents, such as hepatitis C, spread quite rapidly in 
drug-using populations. Steady-state analysis based 
on the random-mixing model works quite well 
within these populations. In the case of HIV, the 
epidemic process works more slowly. One should 
therefore base policy analysis on the full time his-
tory of the epidemic system. 

As noted before, systems can have no pertinent 
steady state. Alternatively, multiple steady states 
may exist. Each system must be analyzed in light 
of these possibilities. Recent work by Caulkins and 
collaborators provides some of the most sophisti-
cated pertinent applications.

Harold A. Pollack

See also Markov Processes
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Stigma SuSceptibility

In the daily medical context, stigma is ubiquitous. 
On the one hand, health professionals are suscep-
tible to having inappropriate attitudes or expecta-
tions concerning patients and their families. On 
the other hand, stigmatized individuals are suscep-
tible to receiving inadequate treatment or experi-
ence disadvantages by the behavior of health 
institutions. The question arises whether the con-
cept of “being ill” itself is already stigmatized. 
This entry begins by providing a short definition of 
stigma followed by a description of the stigmatiza-
tion process. Thereafter, various examples are 
given, applying the concept of stigma to decisions 
made in the medical context. Finally, some sugges-
tions are made to give the reader an idea of how to 
avoid decisions driven by a stigmatized approach.

The Concept of Stigma

Since the concept of stigma is multidisciplinary, it 
has been applied to a vast amount of events. 
Within the contributions of many disciplines, dif-
ferent theoretical approaches were used putting 
different emphasis on its conceptualization. Bearing 
this ambiguity in mind, the following attempt to 
describe stigma is done particularly with regard to 
its application in the medical context.

Stigma is differentiated in several perspectives. 
One important distinction is made between public 
stigma and self-stigma. The first implies stereo-
typical perceptions by the public. For instance, the 
health insurance system and other health providers 
or professionals all inherit specific attributes when 
dealing with a stigmatized person. Self-stigma, 
however, subsumes the behavior of the stigmatized 
individual himself or herself. Therefore, it may 
affect the well-being, healthcare choices, and even 
life goals of the person involved. Self-stigmatization 
generally results from a previously experienced 
public stigma.

An additional perspective can be derived by an 
early attempt of Erving Goffman to differentiate 
observable marks of stigma, the discrimination 
between discredited and discreditable stigma. 
Discredited stigma refers to perceivable marks of 
the individual in question. Hence, the stigmatized 
individual is labeled by physiognomy or behavior, 

not having the opportunity to hide these marks 
from the public (e.g., a blind person is easily iden-
tified by his or her white cane). In contrast, a dis-
creditable stigma is characteristic for individuals 
who have the possibility to hide their condition in 
front of others. For instance, this could be the case 
for patients who suffer from mental illnesses, can-
cer in an early stage, or HIV.

The Process of Stigmatization

Several sociocognitive processes contribute to stig-
matization. At first, social and physical cues are 
subsumed into a category or a label. Every dimen-
sion on which people vary can be selected during 
this process of categorization (e.g., gender, age, 
race, social class, physical health). For the purpose 
of information reduction, individuals are mostly 
categorized by only a single or a few dimensions—
although they belong to many. Once a person is 
categorized, it appears that all social interactions 
are pervaded by this category (e.g., the blind law-
yer). Labeling is a similar process, but based on 
categories which involve rather vague membership 
criteria (e.g., mental illness). Labels can only be 
obtained from three sources: (1) the information 
given by others (e.g., doctors, nurses), (2) the 
information given by the stigmatized person, and 
(3) observed associations (a person coming out of 
a psychiatrist’s office).

Second, to determine whether or not a person 
belongs to a certain category based on concealable 
criteria is the stereotype of this category. Stereotypes 
are knowledge structures that provide particularly 
useful categorization information about marked 
social groups (e.g., people with schizophrenia). 
They enable the general public to learn about col-
lectively agreed characters subsumed under spe-
cific groups of persons. On the other hand, 
simplification has its price: Stereotypes may lead to 
unjustified overgeneralization and misjudgment.

The third process describes the endorsement of 
negative stereotypes: prejudice. In addition to the 
stereotypic beliefs, prejudice involves an evaluative 
component which is mostly negative. Finally, the 
rather affective response of prejudice leads to dis-
crimination, the fourth process. During the dis-
criminatory process, the stigmatized person is 
marked as a member of an out-group—through 
this, a clear separation takes place. Therefore, 
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stigma can lead to negative action against the out-
group (e.g., the dismissal of employees with HIV) 
or exclusively positive action for the in-group (e.g., 
the refusal of applicants with HIV to protect the 
staff). Most likely, this treatment implies a severe 
loss of status for members of a stigmatized group.

This whole process, however, socializes the stig-
matized person into the attributed role and can lead 
to a self-fulfilling prophecy: Once stamped by a 
stigma, one may act according to the expected behav-
ior and continue to fit the ascribed label. For instance, 
in a study about the stigma of psychotherapy, clients 
tended to behave in a socially unfavorable manner 
when interacting with persons who knew about their 
need for psychotherapeutic support.

Stigma in the Medical Context

A vast number of diseases are occupied with stigma. 
It would go beyond the scope of this entry to give a 
complete overview of all possible occasions applying 
stigma in the medical context. Therefore, only some 
examples will give an idea about the interaction of 
illness, stigma, patients, and health professionals. In 
general, there exists an inverse relationship between 
public stigma and healthcare seeking. Those people 
who tend to blame others for a stigmatized illness 
often avoid healthcare utilization when suddenly 
struck by the same illness.

In the case of mental illness, the diagnosis itself 
pervades all subsequent behavior of the person. 
Patients suffering from mental illness experience 
many variations of stigmatization, from problems 
regarding the workplace to a systematic exclusion 
of the society. As a consequence, feelings of guilt 
and lowered status reflect a self-ascribed stigma 
and may support its perpetuation. In addition, 
evidence indicates that people with mental illness 
generally receive fewer medical services than those 
who do not have mental illness. On the other side, 
family members are sometimes stigmatized by 
health professionals of having caused their rela-
tive’s illness. But mental health stigma does not 
only affect patients, it also overlaps with the 
demoralization of professionals. Practitioners in 
mental health services often experience stigma and 
feel underappreciated by their clients and society 
in general (think of the term headshrinker). Hence, 
medical graduate students often avoid training in 
mental health disciplines.

However, there are also many other diseases 
bearing a stigma. Just imagine what comes to mind 
when thinking about AIDS. Stereotypes about gay 
people, drug addicts, or unsafe sex may lead to an 
attribution of the blame to the sick person. Indeed, 
the stigma of AIDS remains a significant barrier to 
HIV prevention and treatment, from the barriers 
to getting tested to obtaining optimal HIV care or 
even safe-sex practices. Moreover, HIV stigma was 
found to be related to depression, poor adherence, 
and the degrading disclosure of serostatus. In a 
similar vein, patients suffering from lung cancer 
report problems coping with the stigma of their 
disease. Those who had never smoked before or 
even stopped smoking years ago conveyed the 
impression that other people blamed them for their 
illness. Thus, they feared access to healthcare ser-
vices and asking for support from other people. 
Essential behavior to seek help was affected by the 
stigma of the disease.

Stigma in the medical context is not only related 
to illnesses. Medical treatment and access can vary 
among different groups of people according to their 
experienced prejudices and stereotypes. For exam-
ple, gender as a discredited category also leads to 
differentiated treatment. Although women are 
found to spend more time at a physician’s consulta-
tion, men receive more specific therapies under the 
same diagnosis and a higher number of follow-ups. 
Another source of discredited stigma is ethnicity. 
For example, previous unfair treatment in health-
care and experience of hostility toward blacks leads 
to the preference of same-race doctors among 
blacks. These findings suggest that the ethnic back-
ground influences different approaches to health-
care. A study focusing on mental illness showed 
that women of ethnic minorities sought mental 
healthcare services to a lesser extent than U.S.-born 
white women—due to their stigma-related concerns 
about mental healthcare.

Stigma Awareness

Stigma in the medical context can be regarded as 
omnipresent. Due to its appearance in so many 
health issues, it seems that illness itself is already 
a stigma. Exposed to the power of a health insti-
tution, a person may feel treated as if he or she is 
not of the same status as the medical personnel. 
Being marked as a patient implies not only a loss 
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of status but also the impossibility to escape this 
label while staying in the health institution. Once 
diagnosed, decisions of caretakers tend to be 
unshiftable, as they typically try to confirm previ-
ous assumptions. An example can be given by an 
early study, where pseudopatients gained admis-
sion to several hospitals pretending that they 
would hear voices. After the health personnel had 
assigned the diagnosis of schizophrenia, the vol-
unteers acted perfectly normal and tried to con-
vince the staff that they were sane. However, the 
pseudopatients’ behavior was consequently per-
ceived as insane, confirming the primarily assumed 
illness. For instance, when a pseudopatient was 
pacing along the corridor, the medical staff inter-
preted this as chronic tension. Labeling and 
stigma have a strong impact on the processing of 
information and can hardly be diminished—one 
unfortunate volunteer was only discharged after 
52 days.

Taken together, stigma should never be underes-
timated in the medical context. Healthcare would 
benefit from changing attitudes toward stigma-
tized illnesses to avoid wrong medical decisions. 
This could happen through informative programs, 
contact with patients during education for health 
professionals, and especially the everyday attempt 
to realize and overcome active stigmas (at least) 
within the medical professional’s mind.

Stephanie Müller and Rocio Garcia-Retamero

See also Confirmation Bias; Diagnostic Process, Making a 
Diagnosis; Errors in Clinical Reasoning; Uncertainty in 
Medical Decisions
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StocHaStic medical 
inFormaticS

Stochastic medical informatics is an approach to 
reasoning about clinical phenomena that manages 
the inherent uncertainty and complexity through 
statistical methods such as random sampling  
from probability distributions. The representation 
of information, such as the possible clinical out-
comes for patients, and reasoning about it can be 
highly complex and computationally overwhelming. 
Simplifying assumptions must be made to manage 
such information to make useful predictions and 
rational decisions. Observations of patient popula-
tions and possible events can often be described 
conveniently in terms of conditional probability dis-
tributions. Such statistics can then be assembled into 
rational, decision-analytic or simulation models that 
can then be subjected to systematic analyses for 
making predictions and policy decisions.

Decision Making Under Uncertainty

Medical decision makers may want to answer a 
variety of questions about individual patients  
or populations. This may require comparing 
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alternative treatment strategies in terms of their 
cost and effectiveness or predicting the likely 
frequency of outcomes that have differing chances 
of occurrence, such as the side effects of treat-
ments. At the level of the individual patient, such 
comparisons can assist in making treatment deci-
sions. At the population level, policy decisions 
can be made that optimize the quality of care 
and allocate limited resources. Such policy deci-
sions may also include the value of obtaining 
more accurate information on which to make 
more optimal subsequent decisions or invest in 
more effective implementations of policies.

Answers to such questions can be found  
by modeling and simulating the interactions of 
probable events in various treatment scenarios that 
may be subject to different conditional criteria 
over time.

All statistical models are based on observations 
of the real world. Uncertainty can arise in a num-
ber of ways, from the intrinsic variability of the 
underlying phenomena being measured through 
the imprecision in the measurements themselves 
and how they are assembled into a model. Such 
measurements are typically treated as “random 
variables,” unknown values that may be approxi-
mated by point estimate statistics, such as averages 
over observed values, or distributions describing 
the frequency of observations over a range of pos-
sible values. For example, the probability that an 
event occurs can be estimated by a single number 
between 0 and 1 (0% and 100%), while a simula-
tion for a group of patients may be based on an 
average age. Alternatively, these estimates can be 
expressed as distributions over a range of values, 
reflecting the frequency of observations. Probability 
distributions can be represented similarly in the 
form of probability density functions, which may 
be visualized as graphs for which the area under 
the curve sums to a total probability of 1 (100%). 
For example, the probability of an event might be 
described using a beta function (with parameters 
α = 2, β = 5), whose probability density function is 
shown in Figure 1. Alternatively, a simpler model 
may use a point estimate for this probability, such 
as the mean (.28) or mode (.2) of this distribution. 
Point estimates or distributions may also be formu-
lated as functions of other parameters in a model, 
such as time or age, as implemented through table 
lookup or function calculation.

Models based entirely on constant measure-
ments are referred to as deterministic models and 
are significantly easier to evaluate and analyze, 
yielding reproducible results. Models based on the 
distributions of random variables are referred to as 
stochastic models and provide an additional degree 
of expressiveness at the expense of increased diffi-
culty in evaluation. Due to their complexity, these 
models are typically evaluated by averaging the 
results of repeatedly drawing samples to approxi-
mate the underlying distributions, often yielding 
results that are not exactly reproducible.

Additional uncertainty arises from how such 
values can be extrapolated or accuracy of predic-
tions made with a particular model. Many of these 
sources of uncertainty can be handled using sensi-
tivity analysis, considering the effect of varying the 
values of the underlying estimates.

Model Components

Virtually all the types of statistical models used 
in medical informatics represent the following 
components:

Patients, Populations, and Clinical Settings—in 
terms of their various characteristics and 
frequencies. These may form the initial health 
states or parameters of a model. While individual 
patients may have fixed characteristics, populations 
must often be described in terms of distributions 
over the possible values of those characteristics.

Events—which may occur nondeterministically 
with varying frequency and which may result in 
transitions between health states over time.

Outcomes—associated with transitions between 
or terminal health states, typically assessed in 
terms of utilities that may include life expectancy, 
often adjusted for quality and measured in 
quality-adjusted life years (QALYs) or disutility-
adjusted life years (DALYs), and costs incurred. 
Quality measurements of each outcome may 
reflect individual preferences that may be elicited 
from patients using a variety of assessment 
techniques.

Each of these components may be described 
statistically in terms of random variables having 
some degree of uncertainty. Furthermore, each of 
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the probability or utility estimates is often condi-
tional on health states, previous events, or time 
within a simulation.

Modeling Techniques

A variety of modeling formalisms are used in 
medical informatics, with varying data require-
ments and purposes. These include the following.

Decision Trees

Decision trees are models in which alternative 
decisions and possible events are organized as suc-
cessive nodes, each with a number of branches, 
forming a tree structure. Probabilistic events are 
represented by nodes whose alternate branches 
each occur with a given probability for the condi-
tional context as it appears in the tree. Leaves of 
the tree represent outcomes that are associated 
with utility values. The fundamental evaluation 
technique of such trees, referred to as Foldback, 
involves the computation of the weighted average 
of utilities according to their relative probability. 
According to decision theory, rational decisions 
are made to optimize the utilities of their corre-
sponding subtrees.

Influence Diagrams and Bayesian Belief Networks

Influence diagrams and Bayesian belief networks 
are organized as directed graphs in which each 
decision, chance, or outcome variable is represented 
by a single node, and arcs between nodes represent 
the influence of one variable on another. The value 
of each influence arc can be conditional on any 
influences of its source node. Such models are 
evaluated deterministically by Belief Propagation 
techniques, which compute the belief that each 
variable is true. While Bayesian belief networks 
lack the construct of a decision node, each influence 
diagram has a corresponding decision tree in which 
each event or outcome is represented by a node in 
the tree for each conditional case.

Markov and Semi–Markov Models

Markov and semi–Markov models (Markov 
chain Monte Carlo methods) are organized around 
a set of possible health states, each having one or 
more corresponding utility values for each discrete 
time interval spent in that state, and probabilities 
for which transitions to other states occur over time. 
In a graphical representation, states are represented 
as nodes with state transitions denoted by arcs 
between them. Figure 2 depicts a three-state model 
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Figure 1  The probability density function for the beta function with α = 2, β = 5
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in which patients may alternate between “Sick” and 
“Well” states, with transition probabilities pi until 
they are absorbed into the “Dead” state.

By assuming that state transitions depend only on 
the current state and time and are not conditional 
on any previous states, the Markov assumption, 
computational complexity can be significantly 
reduced, sometimes to deterministic solutions. 
However, this assumption is sometimes relaxed to 
result in semi–Markov models, which, while orga-
nized similarly around states, may include addi-
tional “micromodeling” variables on which state 
transitions may depend. As a result, semi–Markov 
models require evaluation by simulation, such  
as first-order Monte Carlo analysis. Additional 
expressive power and flexibility can be achieved by 
incorporating Markov, and semi–Markov models 
can also be incorporated into a decision tree frame-
work, by representing each state transition of the 
Markov as a decision tree whose terminal nodes are 
assigned to subsequent states. Alternatively, a graph-
ical representation analogous to influence diagrams 
or purely statistical representations of Markov mod-
els can also be used. Such models can be evaluated 
using Markov chain Monte Carlo methods such as 
Gibbs Sampling, in which underlying but unknown 
joint distributions are approximated by taking 
samples from univariate conditional distributions.

Markov Decision Processes

Markov decision processes are generalized 
Markov models that can explicitly involve embed-
ded decisions and are represented as sets of states, 
actions, transition probabilities, and rewards (or 
costs) for each state transition. These models can 
be solved to arrive at optimal decision policies, 
specifying the best action to take in a given state, 

to maximize the cumulative utility. Due to their 
combinatorial complexity, such models must often 
be evaluated using heuristic search techniques in 
which some subspace of possible paths, as deter-
mined by clinical decision policies, are searched by 
minimizing or maximizing some guiding criterion.

Discrete Event Simulations

Discrete event simulations are a class of models 
that also involve the representation of alternative 
health states but in which state transition events 
occur at any point in time, according to their cor-
responding transition probabilities. These models 
are typically used to compare policy decisions 
when applied to entire populations that compete 
for limited resources that are also taken into 
account by the model. Due to the inherent uncer-
tainty in the occurrence of events, the evaluation of 
such simulations must also involve statistical sam-
pling techniques, as with complex Markov models, 
by averaging the results of repeated simulations 
with new samples drawn at each iteration.

Analysis Techniques

When only point estimates of probabilities are 
used, many of these types of models can be evalu-
ated deterministically to result in reproducible, 
optimal answers, using techniques such as Foldback 
or Belief Propagation. However, when models  
considering an overwhelming number of possible 
choices or variables are estimated in terms of prob-
ability distributions, deterministic solutions cannot 
easily be achieved. In such cases, evaluation 
requires the employment of statistical sampling, 
stochastic simulation, or search for optimal poli-
cies through the potentially vast numbers of pos-
sible strategies. Monte Carlo evaluation techniques 
involve repeatedly reevaluating the models, draw-
ing new samples from the underlying variable  
distributions each time, and reporting the final 
outcome results in terms of statistical distributions 
that include averages, standard deviations, and 
confidence intervals.

First-Order Monte Carlo Analysis

A first-order Monte Carlo analysis is essen-
tially a simulation that repeatedly considers the 
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outcomes of one individual at a time. At each 
chance point in the simulation, the occurrence of 
possible events is determined by sampling from 
their corresponding probability distributions and 
making choices as if by rolling dice. Successive 
events result in final outcomes for each individual, 
and then, summary statistics are computed across 
individuals. This can be visualized in a decision 
tree by choosing a single path through the tree to 
an outcome, for each individual, and then averag-
ing the results. The first-order analysis of the 
Markov model depicted in Figure 2 would involve 
repeatedly simulating the state of individual 
hypothetical patients as they make state transi-
tions throughout some “time horizon,” a number 
of cycles representing a period of time or indi-
vidual’s lifetime, and then averaging the expected 
utility of each patient.

Second-Order Monte Carlo Analysis

A second-order Monte Carlo analysis repeatedly 
considers the outcomes that occur in entire popula-
tions, simultaneously. Each repeated iteration of 
the simulation, also referred to as a realization, 
involves computing the proportion of the original 
population for which successive events occur and 
results in a distribution of the population over ter-
minal health states and their corresponding out-
come utilities. As in the first-order analysis, the 
conditional probability of each event is drawn from 
a distribution, but all such possible states, each 
having some proportion of the entire population, 
are computed simultaneously. This can be visual-
ized in a decision tree by dividing an initial popula-
tion into subgroups partitioned by successive levels 
of the tree. Each iteration results in a final distribu-
tion across health states, each associated with their 
respective utilities, and summary statistics can be 
computed across all the iterations. Gibbs Sampling 
is an efficient method for performing what is effec-
tively a second-order Monte Carlo analysis, in 
which the proportions of the population in all pos-
sible states are considered simultaneously, typically 
using a matrix representation, repeatedly drawing 
new samples for state transitions at each iteration. 
In the example Markov model of Figure 2, a 
second-order simulation would involve following 
the membership of each state as a percentage of an 
entire population cohort, for some fixed number of 

cycles or until the entire population is absorbed 
into the “Dead” state.

Sensitivity and Threshold Analyses

Sensitivity analysis can provide insight into the 
degree to which the results of a model depend on 
one or more of its parameters. A one-way sensitiv-
ity analysis can be achieved deterministically by 
repeatedly evaluating a model for each of a range 
of values for an individual parameter. Threshold 
analyses involve a search for the specific threshold 
values of one or more parameters to the model, at 
which point one strategy becomes more effective 
or cost-effective than another or reaches a speci-
fied willingness-to-pay threshold by repeatedly 
varying the selected parameters. Multiway sensi-
tivity analyses involve reevaluating the model for 
different values of two or more variables or per-
forming a threshold analysis for a number of 
(dependent) variables for each iteration of a sensi-
tivity analysis on a selected (independent) variable. 
Such searches are typically performed heuristically 
or systematically over the grid formed by the pos-
sible values, but since variables may be continu-
ous, it is in general a nondeterministic optimization 
problem. However, sensitivity or threshold analy-
ses are further complicated when underlying vari-
ables of the model are described in terms of 
distribution and must then be estimated by using 
Monte Carlo techniques. Stochastic or probabilis-
tic sensitivity analyses (PSAs) are essentially analy-
ses in which any number of parameters are drawn 
from suitable distributions of possible values.

Value of Information

Value of information calculations facilitate 
decision making at a resource allocation level by 
comparing the scenarios with different degrees of 
uncertainty in the net benefits of alternative treat-
ments. By considering the possible loss in making 
wrong decisions, one may compute the expected 
value of perfect information (EVPI) and expected 
value of partial perfect information (EVPPI). This 
can assist decision makers in determining whether 
or not to invest in further research. One may also 
compute the expected value of perfect implementa-
tion (EVPIM) by considering scenarios in which 
prescribed policies are followed more diligently 



1081Story-Based Decision Making

and by considering how much to invest in achiev-
ing new compliance goals.

C. Gregory Hagerty and Frank A. Sonnenberg
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Story-baSed deciSion making

Story-based decision making submits that indi-
viduals attempt to find meaning in their life expe-
riences, and part of this meaning-making process 
is achieved through the construction of stories 
based on preexisting experiences and beliefs. 
When faced with an unfamiliar predicament, mul-
tiple stories can be created. The story that best fits 
the situation is selected, based on coherence, com-
prehensiveness, plausibility, and so on. As applied 
to medical decision making, facts and statistics are 
often presented in isolation and, therefore, may be 
difficult to understand or relate to an individual’s 
situation. A story might be able to provide a 

meaningful contextual frame to guide an individ-
ual’s decision-making process.

Stories as Decision Aids

Traditional, didactic patient education materials 
on healthcare prevention and treatment intended 
to inform patient decision making often lack both 
context and cultural sensitivity. There is evidence 
that these materials are not as effective with people 
of color and minority populations, often those at 
greatest risk. To reach these populations, an alter-
native approach is to use stories.

People have always learned about themselves 
and their past through stories; human brains are 
designed to process stories instinctively. The ease 
with which stories are understood may be particu-
larly important for patients who feel emotionally 
overwhelmed and psychologically exhausted yet 
still have to face complex treatment decisions. An 
example of a particularly difficult decision is one 
that involves uncertain, future benefits combined 
with upfront, guaranteed costs, such as mild to 
severe side effects and/or the potential for unneces-
sary, invasive treatments. If patients are unpre-
pared for such immediate costs and/or fail to 
understand the trade-off they face, they may not 
adhere to the proscribed treatment regimen or 
engage in the preventive behavior. However, if 
patients could hear the stories of those who have 
gone through this decision-making process before 
them and come out the other end, they may be 
more likely to absorb and apply the information to 
reach a more informed decision.

Stories of Cancer Survival

An example of a medical decision for which stories 
may be particularly helpful is whether to undergo 
adjuvant cancer treatment, such as chemotherapy, 
after completion of one’s initial treatment for can-
cer, often surgical removal of the malignant tumor. 
This decision is extremely difficult for most 
patients. First, there may be no benefit to the 
treatment—surgery could have removed all the 
cancer cells. Second, if there were any cancer cells 
left, they would typically be at the molecular level 
and, consequently, undetectable. So even if the 
treatment worked, the patient may never even 
know. Third, duration of survival is only one of 
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the issues. All adjuvant therapies are toxic, so 
experiencing side effects is nearly certain. Given 
such uncertain benefits and guaranteed, upfront 
costs, there is no “right” decision. Patients’ choices 
will depend on how they perceive the trade-off 
between experiencing the toxicity of treatment 
now versus the (unknown) possibility of increased 
survival in the future.

Clinicians can provide factual information 
about this trade-off and may even use a decision 
aid to facilitate deliberations. At a minimum, a 
decision aid will have two components: (1) visual 
representations of the risks, benefits, and outcomes 
for each option and (2) a discussion of patients’ 
values.

An alternative to such traditional approaches is 
the use of stories. Stories can serve multiple pur-
poses, including informative (e.g., what is the short-
est route to the hospital), instrumental (e.g., how to 
deal with nausea from treatment), and emotional 
(e.g., coping strategies). But stories also have a 
fourth distinct purpose: It is only through stories 
that individuals know they are not alone. It is 
through stories that individuals are seen and heard 
by others. Therefore, storytelling may be an espe-
cially potent avenue for reaching populations with 
insufficient numeracy or health literacy skills and/or 
limited access to or historical mistrust of the medi-
cal establishment. Stories may affect such individu-
als through any of three mechanisms: (1) overcoming 
barriers, (2) improving information processing, and 
(3) providing surrogate social connections.

Overcoming Barriers

To affect cancer decision making, one must first 
overcome patients’ resistance to and fear of the 
diagnosis and treatment of cancer. Stories may be 
uniquely positioned to do so for three reasons.

First, hearing the story of a patient who success-
fully completed cancer treatment may enhance 
patients’ self-efficacy, instilling the belief that “if 
she did it, I can do it, too!” Poor self-efficacy is a 
common basis for the failure to engage in or main-
tain a health behavior.

Second, others’ stories can help patients develop 
realistic expectations. This is vital for adjuvant 
therapy because of the high toxicity of treatment. 
Through others’ stories, patients may be able to 
envision their own ability to adapt to possible 

short- and long-term side effects and even be better 
prepared to persevere if faced with possible nega-
tive outcomes.

Third, others’ stories may be better at challeng-
ing and overcoming misperceptions. Hearing sto-
ries from survivors who have completed their 
treatment provides living proof that cancer patients 
can survive, thereby challenging potential misper-
ceptions, such as the beliefs that (a) cancer is a 
death sentence and (b) treatment may be worse 
than the disease.

Cognitive Information Processing

When exposed to a didactic presentation of can-
cer facts, such as those in traditional decision aids 
and patient education materials, patients can (and 
do) quickly generate counterarguments as to  
why this information does not apply to them. 
Consequently, the information may never even be 
processed.

There are at least four reasons why patients 
may be less resistant to stories. First, it may be 
more difficult to generate counterarguments for a 
story (compared with a list of facts) because recip-
ients’ thoughts are devoted to imagining how the 
story will end. Therefore, the motivation to coun-
terargue is lessened—they do not want to interrupt 
the flow of the story. Because counterarguments 
are not generated, the information is absorbed and 
processed, at least at some level.

Second, such stories represent the lived experi-
ence of another and, therefore, may be more diffi-
cult to discount. Third, because these stories are 
about patients’ lived experiences, the message may 
seem more relevant and, thus, more likely to be 
absorbed and remembered (vs. generic educational 
material). Finally, given the fear and dread that 
surrounds the decision to undergo adjuvant ther-
apy to treat cancer, stories may be perceived as less 
threatening than a document that explicitly lists all 
the risks and benefits of treatment.

Providing Surrogate Social Connections

A large body of research has found that face-to-
face social support can have significant health 
benefits, both physical and psychological. More 
recent research has shown that the same benefits 
can accrue when communicating virtually with 
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(initially) anonymous others, as in online cancer 
support groups or chat rooms.

Though reading or hearing a story is not as 
interactive as direct communication, stories may 
still be able to provide a type of social support. 
This is indirectly evidenced by the increasing popu-
larity of autobiographies and biographies that 
describe the personal experience of illness, with the 
vast majority focusing on cancer. Though each of 
these stories is about an individual’s unique experi-
ence, they all share a need to find meaning in being 
diagnosed with cancer and to integrate their pre-
cancer and postcancer realities.

These stories may approximate a kind of social 
interaction that provides a sense of social support, 
especially if recipients identify with the authors 
and/or perceive them to be in an analogous situa-
tion. This type of writing has become prevalent 
enough that a new field has emerged to study 
it—pathography.

Hearing a survivor’s story has the potential to 
go beyond the validation of cancer patients’ expe-
riences. Stories can help patients transcend the 
limitations of their individual minds and introduce 
alternatives that they might never otherwise have 
considered. However, further research is needed to 
examine the myriad effects, both positive and 
negative, that stories may have on the medical- 
decision-making process.

Julie Goldberg
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SubJective expected 
utility tHeory

Subjective expected utility (SEU) theory is a pre-
scriptive theory of decision making that grew out 
of economics. The translation of economic con-
cepts to medicine has a number of problems. 
Although SEU can assist with overcoming some of 
these problems, the value of SEU is primarily in 
helping the decision maker to structure the deci-
sion. Key concepts in SEU are decision making 
under risk, utility, and probability. These concepts 
will be briefly described first.

Key Concepts

Decision Making Under Risk

Decisions are normally choices between alterna-
tives with different probabilities. Even if one 
chooses an alternative with a sure outcome, one 
risks rejecting an alternative with some chance of 
a better outcome. An important understanding is 
that whether a given decision is viewed as good or 
bad is not dependent on the outcome but rather on 
the process. In the world of risk and probability, 
unfortunately, there is no guarantee of an optimal 
outcome. Decision makers must make the best 
decision they can based on the information avail-
able to them at the time the decision is made.

Decision theory was derived from economic 
models, historically constituting gambles. Gambles 
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provide a paradigm for decision making, in which 
each alternative has a different value as well as a 
different probability. Structuring decisions as gam-
bles allows for mathematical analysis of the deci-
sion so that a rational or best outcome can be 
prescribed. The first models were based on expected 
value (or average value), usually shortened to EV.

Value as a Decision Concept

Mathematical calculation of an optimal decision 
is easiest when the outcome is defined in terms  
of money. In that case, both alternatives have the 
same metric and the metric is quantified. It is taken 
as a primitive that more money is better than less. 
However, the amount that a decision maker might 
be willing to risk is not in a 1:1 relationship to the 
amount of the alternatives. Prospect theory has 
demonstrated that there is a decrease in the psycho-
logical value of a gain with the increase in overall 
value of both options. For instance, the subjective 
difference in the value of a gain of $10 is less when 
one is betting $2,010 against $2,000 than when 
one is betting $20 against $10. The opposite is true 
of loss, although the effect appears to accelerate 
more rapidly. However, calculation of an optimal 
choice becomes more problematic when the gamble 
involves an outcome that is nonmonetary, such as 
health or a specific physical function.

Probability in Decision Models

Rationality in economic theories of decision 
making assumes that there are multiple opportuni-
ties to make a decision, as is typical in most gam-
bling situations. Over infinite replications of the 
decision, the best outcome is achieved through 
choosing the gamble with the largest arithmetic 
product of value and probability. The assumption 
underlying this EV model is that people seek to 
maximize the amount they will gain. Using a gam-
bling paradigm, if one is offered a gamble of .5 
probability (a coin flip) of $5 vs. 1.0 probability (a 
sure thing) of $1, the rational choice would be to 
take the former gamble because its EV is greater, 
that is, 5 × $5 = $2.50, versus 1.0 × $1 = $1.00 on 
average. Sometimes the $5 bet will win $5, and 
sometimes it will win $0, but over a very large 
number of gambles, on average, it will gain $5 half 
the time. On the other hand, the $1 gamble will 

always win $1, so its expected value = $1.00. This 
works with money, as long as one is able to bet a 
very large number of times.

When gambling for money, the probability  
of any outcome can be objectively established. 
However, probability for many healthcare deci-
sions is not so precisely defined. To complicate 
matters, generally, medical decisions are made 
only once, and the patient must live, or sometimes 
die, with the consequences of the decision made.

Subjective Expected Utility in Healthcare

Subjective Estimates of Probability

In healthcare, it becomes hard to determine  
an objective probability for specific outcomes. 
Probability must be estimated based on the experi-
ence of the decision maker and/or the evidence 
from the literature. For instance, a physician who 
has performed a number of surgeries of a specific 
type can generally estimate the probability of suc-
cess under a given set of circumstances. This 
experience-based probability estimate can be bol-
stered by published reports from other surgeons. 
Rather than an objective estimate of probability, 
this approach provides the best subjective estimate 
of probability for various outcomes. However, 
subjective estimates are not precise and are subject 
to various biases.

Subjective estimates of probability are known to 
be influenced by various cognitive variables such 
as saliency and recency of experience. For instance, 
a person who has just been through a bad outcome 
is likely to see adverse outcomes as more likely 
than is a person who has never experienced a 
severe adverse outcome.

Expected Utility

Expected utility (EU) takes into account the fact 
that the value of a commodity is subjective and dif-
ferent from one person to another due to differences 
in circumstance, among other reasons. When choos-
ing a best decision using EU, the value of the com-
peting outcomes to the decision maker is first 
established. Using EU, it is possible to incorporate 
nonmonetary decisions. For instance, value can 
reflect time trade-offs so that the decision maker 
may choose a short-term gain in health state over a 
worse state of health for a year. Then the probability 
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of each can be multiplied by the value placed on an 
outcome to make a “rational” choice.

In healthcare, the preferences of the patient are 
considered in determining subjective utilities. 
Patients’ preferences may involve the amount of 
pain involved in a given procedure as well as qual-
ity of life as affected by the procedure. These pref-
erences are not stable but are dependent on 
numerous other factors that can change over time. 
For instance, in the terminal stages of cancer treat-
ment, the utility of avoiding pain may trump any 
slight chance of extending life when cure is not 
likely. In the early stages, however, the chance of 
cure may have more utility than avoiding tempo-
rary pain. Circumstances of the patients and their 
experience also affect their subjective utilities. 
People who have never experienced disability gen-
erally will rate the disability as giving more disutil-
ity than people who live with a disability.

Physicians also have utilities for different deci-
sions. A doctor may decide to treat a patient for 
whom the treatment has little objective utility if 
the patient or his or her family demands treatment. 
The physician may also weigh the utility of provid-
ing a treatment of dubious value against the dis-
utility of being accused of doing nothing.

However, understanding how to make good 
subjective probability estimates and good estimates 
of utilities are not the most important aspect of 
SEU. The real value of SEU is in providing a way 
to structure decisions so that justifiable (i.e., defen-
sible) decisions can be made. SEU is often used 
with decision trees for a careful analysis of 
sequences of decisions. Moreover, SEU can be of 
value in clinical decision making without con-
structing an elaborate decision analysis. When the 
clinician understands the importance of subjective 
probability estimates and utility estimates, it 
becomes easier to visualize the structure of the 
decision process.

How a decision is structured is the cornerstone 
of effective decision making. For instance, when 
deciding what antibiotic to order, one should first 
estimate the likelihood that the disease process  
is amenable to antibiotic therapy. If the disease is 
responsive to antibiotics, one must still determine 
which antibiotic is most appropriate. Assuming 
that the patient has a bacterial infection rather than 
a virus or some other disease process, it is useful to 
determine whether or not the disease organism is 

sensitive to the antibiotics available. Furthermore, 
patient-specific variables, such as allergy and the 
presence of a pregnancy, can influence choice of 
antibiotic. SEU allows one to identify the outcome 
possibilities and their utilities to the patient and/or 
the physician and to evaluate the order in which 
decisions should be made. In this way, thoughtful, 
defensible decisions can be made.

SEU allows decisions to be tailored to specific 
individuals, groups, and situations. It is particu-
larly useful in situations when the value and the 
probability of each outcome cannot be determined 
for the specific situation with any accuracy. 
However, understanding the role of experience 
and evidence in providing the best guess for prob-
ability can help the physician provide a reasoned 
estimate for key decisions. More important, SEU 
helps the physician explain the process with an 
understanding of which decisions are contingent 
on other decisions so that the process can be com-
municated effectively.

Application to Medical Decision Making

SEU is an approach to decision making that helps 
the decision maker structure the problem so that 
contingent relationships between choices are rec-
ognized. SEU uses subjective estimates of both the 
value of options to stakeholders and the decision 
maker’s subjective estimates of the probability of 
these options. As such, SEU is useful in healthcare 
for discussing healthcare options with individuals, 
families, and small groups. It does not prescribe an 
optimal economic outcome but rather helps clarify 
which decisions should be made, discuss options in 
terms of possible outcomes, and choose the best 
course of action for the patient, given the informa-
tion available at that point in time.

James Shanteau and 
Alleene M. Ferguson Pingenot

See also Decision Trees: Introduction; Expected Utility 
Theory; Informed Consent; Prospect Theory; Risk 
Communication
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SubJective probability

Subjective probability is a measure of the degree 
of belief held for the truth of an answer to a ques-
tion. It is used in the quantification of uncertainty 
due to lack of knowledge, also called epistemic 
uncertainty. The word epistemic stems from the 
Greek word for knowledge. It indicates that this 
uncertainty has its origin in the nature and limits 
of knowledge. In the case of epistemic uncertainty, 
there are several answers to a question that are 
considered as possibly true, while there is only 
one true answer. The true answer will either be 
deterministic or probabilistic, depending on the 
formulation of the question. Both may be subject 
to epistemic uncertainty. A probabilistic answer 
uses probability in its classical frequentistic inter-
pretation to quantify uncertainty due to random 
(or stochastic) variability, also called aleatory 
uncertainty.

Decision making involves asking questions. The 
answers to most of the questions will be subject to 
epistemic uncertainty. Quantitatively expressing 
this uncertainty by subjective probability enables 
one to employ all concepts, methods, and tools 
from probability calculus in the quantification of 
the combined influence of the uncertainties on 
decision making.

The following paragraphs explain by example 
the difference between subjective probability and 
probability in its classical frequentistic interpreta-
tion. Then, the connection with medical decision 

making is briefly pointed out. Rules for calculation 
are followed by a short introduction into the 
specification of subjective probability values. The 
discussion ends with two practical examples and a 
summary of how subjective probability is used in 
the uncertainty and sensitivity analysis of results 
from decision models.

Explanation

Consider the following illustrative example: A die 
is under the dice box, and it is uncertain which side 
is up. The question “Which side is up?” has a 
deterministic answer, namely, the number of eyes 
on the upper side of the die. This number could be 
known—one would only have to lift the dice box. 
There is only one true number, and the uncertainty 
about the correct number is quantified by subjec-
tive probability. Does it make any difference 
whether the die was cast in the past and covered so 
that one just needs to lift the dice box or whether 
the question is “Which side will be up in the next 
cast?” In both cases, there is only one true but 
unknown number that answers the question, and 
subjective probability is used to quantify the 
uncertainty that prevails until the next cast has 
been executed. However, the question “Which side 
is up in any cast of the die?” does not specify the 
cast and therefore does not have one true number 
as an answer. Rather, the population of numbers 
1, 2, . . ., 6 applies such that for any cast the num-
ber can be thought of as randomly chosen from 
this population. The question can therefore be 
only answered probabilistically. The probabilistic 
answer summarizes the random variability among 
casts in the form of a probability distribution 
assigning, for instance, probability 1/6 to each of 
the six possible numbers. Probability is used here 
in its classical frequentistic interpretation as the 
limit of relative frequencies and is simply called 
probability. For instance, the probability for the 
side with number 3 to be up in any cast is the limit 
approached by the number of times this side was 
up in n casts divided by n, for an increasing num-
ber n of casts.

Clearly, the frequentistic interpretation does not 
make sense in the case of the “next cast.” Performing 
this next cast many times (in the sense of repeating 
it exactly) is not possible, and if it were, would 
always show the same number up. It is, however, 
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also clear that the subjectivistic interpretation of 
probability does not make sense in the case of 
“any cast.” There is no single number that would 
answer the question.

If it is unknown whether the die is fair, then it is 
doubtful whether 1/6 for each side is correct. 
There is epistemic uncertainty about the distribu-
tion that answers the “any cast” question. This 
uncertainty about the true probabilistic answer 
(i.e., the true distribution) is quantified by subjec-
tive probability.

The following is a brief summary of the above 
discussion of differences between two interpreta-
tions of probability.

 
Subjectivistic Interpretation

Classical Frequentistic 
Interpretation

Probability is the degree of 
belief (held for the truth of 
an answer to a question)

Probability is the limit 
of relative frequencies 
(of a random event)

Expresses state of 
knowledge

Summarizes random (or 
stochastic) variability

Quantifies uncertainty due 
to lack of knowledge 
(epistemic uncertainty)

Quantifies uncertainty 
due to random 
variability (aleatory 
uncertainty)

Connection to Medical Decision Making

Medical decision making is concerned either with 
a population of patients or with a specific patient. 
A decision model dealing with a population uses 
probability distributions to summarize the vari-
ability of characteristics of the patients in the 
population. The distributions are usually impre-
cisely known. Their state of knowledge, or 
epistemic uncertainty, is quantified by subjective 
probability. Since the decision model is concerned 
with the variability among a population of patients, 
the quantification of the variability and the quan-
tification of the state of knowledge, or epistemic 
uncertainty, of the variability must be carefully 
kept apart.

In a decision model dealing with a specific 
patient, all parameters and input values are patient-
specific. They are therefore fixed yet imprecisely 
known values. Their uncertainty is epistemic, and 

subjective probability is used throughout the model 
for state-of-knowledge quantification.

Rules for Calculation

Subjective probabilities have to comply with the 
same rules as probabilities in their frequentistic 
interpretation. The main rules are as follows:

R1: Subjective probabilities cannot be negative, nor 
can they be larger than 1.

R2: If A1 is a possibly true answer to Question A 
and B1 is a possibly true answer to Question B, 
then the subjective probability for both to be true 
is sp(A1B1) = sp(A1)sp(B1|A1) = sp(B1)sp(A1|B1), 
where the vertical stroke is to be read as “if.” If the 
subjective probability for B1 to be true is the same 
whether A1 is true or not, then sp(B1|A1) = sp(B1) 
and the subjective probability for both to be true is 
sp(A1B1) = sp(A1)sp(B1).

R3: If A1 is a possibly true answer to Question A 
and B1 is a possibly true answer to Question B, 
then the subjective probability for at least one of 
them to be true is sp(A1 + B1) = sp(A1) + sp(B1) − 
sp(A1B1). If A1 and B1 cannot be true together, then 
the subjective probability for at least one of them 
to be true is sp(A1 + B1) = sp(A1) + sp(B1). 
Particularly, if sp(A1) is the subjective probability 
for Answer A1 to be true and sp(not A1) for A1 to 
be false, then sp(A1) + sp(not A1) = 1.

R4: If A1, A2, . . . , An are possibly true answers to 
Question A, not any two or more of them can be 
true together, since there is only one true answer. It 
follows that sp(A1 + A2 + . . . + An) = sp(A1) + 
sp(A2) + . . . + sp(An), for any integer value n. 
Particularly, if these are the only answers that are 
possibly true, then sp(A1 + A2 + . . . + An) = 1.

Specification of Subjective Probability Values

For many questions, there are only two possibly 
true answers, for instance, “yes” and “no.” In the 
case of complete uncertainty, equal subjective 
probability, namely, .5 each, for “yes” and for 
“no,” is an adequate expression of the state of 
knowledge. The smaller the degree of belief for 
“yes,” the closer the specified subjective probabil-
ity value to 0 and, correspondingly, the larger the 
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subjective probability for “no.” The larger the 
degree of belief for “yes,” the closer the subjective 
probability value to unity and the smaller the sub-
jective probability for “no.”

If the question asks for a parameter or input 
value, plausibility considerations will often suggest 
limits such that values beyond these limits cannot 
possibly be true. Correspondingly, a uniform sub-
jective probability distribution over the parameter 
value range that lies between these limits is an 
adequate quantitative expression for the state of 
knowledge of the true value according to the max-
imum entropy principle. Information additional to 
the limits may justify not using a uniform distribu-
tion but using one that exhibits some characteristic 
behavior toward the end points of the range of pos-
sibly true parameter values. This may, for instance, 
be a piecewise uniform or a triangular or truncated 
normal or lognormal distribution, to name just a 
few. The choice will need to observe the maximum 
entropy principle; that is, the distribution chosen 
must be such that it introduces a minimum of 
information in addition to what is actually given.

The plausibility considerations will have to take 
into account every aspect of the question, all pos-
sibly true answers, all arguments for and against 
each answer, and so on. They will use all available 
relevant information from experience, literature 
studies, extrapolations from related fields, labora-
tory experiments, theoretical models, and the input 
from interviews of experts and patients. If the 
epistemic uncertainty concerned is judged to be the 
main contributor to the uncertainty of results of a 
decision model, and the question to be answered 
by the model application is of sufficient impor-
tance, then the interviews will need to be per-
formed using a structured approach to expert 
judgment elicitation. This includes methods of 
how to elicit the opinion of several experts, par-
ticularly how to avoid bias from the use of heuris-
tics, and how to aggregate the opinions.

If there is uncertainty about the parameter value 
of a probability distribution that summarizes vari-
ability, and there are random observations of the 
variable quantity, then the likelihood of the obser-
vations can be evaluated for each of the possibly 
true parameter values. The Bayesian method can 
then be used to employ this likelihood in an update 
of the a priori state of knowledge of the true 
parameter value. The a priori state of knowledge 

may be based on plausibility considerations only, 
and the resulting subjective probability distribution 
is an a posteriori (after the observations) state of 
knowledge quantification for the true parameter 
value. A subjective probability interval, read from 
such a distribution, closely resembles a correspond-
ing classical statistical confidence interval, provided 
that the Bayesian method starts with a minimum of 
a priori information (noninformative a priori dis-
tribution). Plausibility considerations and results 
from laboratory studies may often justify starting 
with an informative a priori distribution. In this 
case, the close resemblance mentioned above may 
no longer be given due to the additional informa-
tion content, unless the number of random obser-
vations used in the update is large and the a priori 
information is not too restrictive.

Examples

Example 1

A patient has to undergo an operation. There is 
uncertainty about the outcome. The patient asks, 
“Will the operation be a success?” The physician 
can only give the patient his subjective probability 
for “success.” A medical aid, on the other hand, 
may specify the probability (in its frequentistic 
interpretation) of a successful operation, without 
specifying the particular patient. If one assigns the 
value 1 to success and 0 to failure, the average 
value over many operations of this kind is an esti-
mate of this probability. For example, the proba-
bility estimate derived from the recorded operations 
of a large number of patients may be .65 for “suc-
cess.” The physician may use .65 as his starting 
point for the specification of sp(O+Z), where O+Z 
stands for “operation will be successful for patient 
Z.” He finds that his patient shows the character-
istic C, which reduces the subjective probability 
for a successful operation. The physician therefore 
needs to specify a factor that adjusts the value .65 
accordingly. If he could obtain, from the docu-
mented operations, the relative frequencies of indi-
viduals with characteristic C among all recorded 
operations and among all recorded successful 
operations, then he could use them as estimates of 
p(C) and p(C|O+), respectively, and use p(C|O+)/p(C) 
as the adjustment factor (since p(O+|C) = p(O+)
p(C|O+)/p(C) according to Rule R2). An estimate 
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of any of these probabilities that is not based on 
observations of recorded operations is called a 
subjective estimate. This does, however, not make 
it a subjective probability. If estimates are not 
available from the recorded operations, they will 
need to be specified by the physician on the basis 
of his or her experience, literature studies, inter-
views of experts and patients. There will also be 
other influencing factors, such as relevant differ-
ences among patients showing characteristic C, so 
that additional judgment is needed to finally arrive 
at the subjective probability sp(O+Z) for the truth 
of the answer “The operation of patient Z will be 
successful.” Both the patient and the physician 
may prefer to use the colloquial term chance in 
place of subjective probability. The term chance 
does not, however, properly convey the message 
that the quoted value is the physician’s degree of 
belief held for the truth of the answer “Yes, the 
operation will be a success.”

Example 2

As mentioned above, a priori subjective prob-
abilities derived from plausibility considerations 
can be updated by random observations using 
Bayes’s theorem. This theorem is a consequence of 
Rule R2. For instance, patient W shows symptom 
X, and the physician intends to perform test Y to 
update the a priori subjective probability sp(DW) = 
.15, where DW stands for “Individual W has dis-
ease D.” This a priori value may be taken from 
statistics, saying that among a large number of 
individuals with symptom X, 15% had disease D. 
Test Y is known to give a positive result (Y+) in 
90% of the cases with disease, and it is known to 
give a negative result (Y−) in 90% of the cases 
without disease. The test, performed on individual 
W, gave a positive result (this is the observation). 
The probability p(D|Y+) = p(Y+|D)p(D)/p(Y+), with 
p(Y+) = p(Y+|D)p(D) + p(Y+|not D)p(not D), is 
then used as the updated or a posteriori subjective 
probability sp(DW|Y+). The result of this calcula-
tion is sp(DW|Y+) = .9 × .15/(.9 × .15 + .1 × .85) = 
.61. This result may, however, still need some 
adjustment. The percentages for a positive and a 
negative test result, derived from many tests per-
formed on a population of patients, may need to 
account for the relevant characteristics of patient 
W. For example, p(Y+|DX) may not be equal to 

p(Y+|D); that is, the test may not give a positive 
result in 90% of the cases with disease D and 
symptom X, and so on.

Use in Uncertainty and Sensitivity Analysis

A decision model concerned with a population of 
patients uses imprecisely known probabilities and 
probability distributions to summarize variability. 
All probabilities and distributions estimated from 
statistics are subject to errors of various sources. 
The limited sample size, leading to wide confidence 
intervals around estimates of probabilities and esti-
mates of parameter values of probability distribu-
tions, is only one (albeit often the most important) 
source. Consequently, there is epistemic uncer-
tainty about the true value of a probability and the 
true distribution that summarizes the variability 
concerned. This uncertainty is quantitatively 
expressed by subjective probability. The decision 
model also uses other imprecisely known model 
parameters and input values such as utilities. Their 
state of knowledge (or epistemic uncertainty) can 
also be expressed by subjective probability distri-
butions. Performing a Monte Carlo simulation 
with the decision model, where each simulation 
run is a complete evaluation of the decision model 
for a possibly true set of all ingredients that are 
subject to epistemic uncertainty, chosen at random 
according to their subjective probability distribu-
tions, provides a quantitative expression of the 
combined influence of the epistemic uncertainties 
on the model results. This is called an uncertainty 
analysis of the model application. If the resulting 
uncertainty is large (wide subjective probability 
distribution for model results), the physician will 
have to know where he or she needs to improve his 
or her state of knowledge in order to reduce the 
epistemic uncertainty of model results most effec-
tively. This information is available from a sensi-
tivity analysis that can be performed with the 
output from the Monte Carlo simulation. The 
wide uncertainty is less critical if most of it (as 
measured by subjective probability) lies below (or 
above) a given threshold value for a decision or if 
the physician finds from the sensitivity analysis 
that there is a good chance to improve the state of 
knowledge for main contributors to uncertainty.

Eduard Hofer
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SubSet analySiS: inSigHtS 
and pitFallS

Subset analysis, also called subgroup analysis, is 
the statistical analysis of the effect of treatment 
intervention within subsets of the subjects in clini-
cal trials. The subsets are usually defined by base-
line characteristics of the subject population such 
as age groups, gender, or pretreatment comorbid-
ity. As a supplement to the primary analysis of the 
clinical trial, which compares the randomized 
groups as a whole and ignores the potential het-
erogeneity within each subset, the subset analysis 
is widely used to explore whether the treatment 
effect is consistent across various subsets and, if 
different, which patient subsets might benefit 
more from the treatment under study. While the 
subset analysis provides valuable insights to the 
heterogeneity of subject population, it can be eas-
ily mismanaged or misinterpreted. The following 
sections discuss methodological issues with the 
subset analysis and point out the pitfalls and ways 
to avoid them.

An Example of Subset Analysis

In a clinical trial of the effect of reduced blood 
transfusion on postoperative morbidities after car-
diac surgery, the target population is the patients 

undergoing coronary artery bypass grafting or 
heart valve surgery. A representative sample of 
1,500 eligible patients is recruited from a clinical 
center. Since the number of transfused red blood 
cell units during an operation can not be predeter-
mined, these patients are randomized to two trans-
fusion triggers: (1) a liberal transfusion trigger that 
requests a unit of blood being transfused whenever 
the patient’s hematocrit level (%) drops below 28 
during the operation and (2) a conservative transfu-
sion trigger that requests a unit of blood whenever 
the hematocrit level (%) drops below 24. Under 
this design, the conservative transfusion group 
would receive less transfused blood than the liberal 
group. The primary analysis is to compare, between 
the two treatment groups, the mean rate of the pri-
mary end point, a postoperative composite morbid 
outcome. In this way investigators are able to draw 
a conclusion on whether the conservative transfu-
sion strategy is more beneficial than the liberal 
transfusion strategy for the target population.

In the primary analysis, the two randomized 
groups of patients are treated as a whole, and the 
within-group heterogeneity is ignored. However, 
the investigators speculate that the treatments may 
have different effects on patients with different 
body sizes (body mass index <18.5, 18.5–24.9, 
25–30, >30), as patients of smaller body size are at 
higher risk of anemia if insufficient blood is trans-
fused. The primary analysis cannot tell investiga-
tors whether the treatment effect is the same across 
different subsets and, if different, which patient 
subsets might benefit more from the conservative 
transfusion strategy. Subset analysis is the statisti-
cal analysis exploring such heterogeneity. People 
sometimes use the term quantitative heterogeneity 
for the case where one treatment is always better 
than the other across all levels of the subset vari-
able (e.g., body mass index levels) but the magni-
tude of benefit varies; the term qualitative 
heterogeneity is often used for the case where one 
treatment is better than the other in some levels of 
the subset variable but worse in other subsets. 
Qualitative heterogeneity is rare in clinical studies.

In a subset analysis, one extracts data from the 
subset of patients and estimates and tests the treat-
ment effect with it. Sometimes, it can yield intrigu-
ing insights that help in generating new hypotheses 
for further investigation. Hence, the subset analy-
sis is an important consideration in the design and 
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analysis of both clinical trials and observational 
studies.

The subsets are usually defined by baseline 
characteristics that are known or speculated to 
influence the effect of the treatment. Put in statisti-
cal terms, the subset variables must be the ones 
that can potentially form interactions with the 
treatment groups.

Pitfalls in the Conduct of Subset Analysis

One problem with the subset analysis is the inad-
equate sample size. Clinical trials are usually 
designed with a sample size that is just big enough 
for the primary analysis to have enough power. In 
subset analysis, only a portion of the original data 
set is used. The confidence intervals for the treat-
ment effect are expected to be wider, and the sta-
tistical tests have less power. If the sample size of 
the subset is half of the original, the corresponding 
confidence interval could be 41% wider; if the 
sample size is a quarter of the original, the confi-
dence interval could double its width. The lack of 
power may lead to excessive false-negative find-
ings (i.e., inflated Type II error) on the tests of 
treatment effect within subsets. For example, if the 
overall treatment effect is significant but one of the 
subset tests is not significant, it does not suggest 
lack of treatment effect in that subset.

Another problem is the multiplicity and infla-
tion of Type I error when many subset analyses are 
conducted simultaneously. A common mistake is 
to do a statistical test for the treatment effect 
within each subset for many subsets, and pick out 
the ones with significant p values, and claim treat-
ment effects on those subsets and no treatment 
effects on others. For the transfusion trial, four 
subsets are defined based on body size. Other sub-
sets of interest are those defined by gender and by 
blood types (A, B, AB, O). Since the Type I error 
of the statistical tests is usually .05, even if there is 
no treatment effect in any of the subsets, as long as 
enough subsets are conducted, one can always find 
some (on average 5% chance) significant ones. If 
the family of subset tests is considered as a whole, 
the family-wise Type I error rate, that is, the prob-
ability of finding one false-positive result where 
none exists, is much higher than .05 (if there are 
10 independent tests, this probability is estimated 
to be 40%). Therefore, any positive treatment 

effects from repeated subset tests should be viewed 
with caution. Multiplicity adjustments to the  
p values are available but do not always work 
well: The Bonferroni method is too conservative, 
especially in the presence of many tests; the Sidak 
method does not guarantee controlling the error 
rate under the prespecified level when the tests are 
not independent (which is almost always the case 
because many subsets are overlapped); resampling-
based methods, such as bootstrap and permutation 
tests, often require the null hypothesis being 
“None of the subset variables have any effect,” 
which does not always hold.

Subset analysis can be used in observational 
studies. For those that analyze large databases or 
registries, the sample size may be less of an issue 
because such studies often have more than enough 
sample size for the primary analysis and certain 
subset analyses. But the multiplicity problem still 
remains.

How to Avoid Them

In light of the two problems above, the subset 
analysis is usually not used as the primary or con-
firmatory analysis in clinical research. For a statis-
tical analysis to be confirmative, the Type I and 
Type II errors must be strictly controlled. In most 
cases, the subset analysis is part of the secondary 
or exploratory analysis, for which strict error con-
trol is not required. The results can be used to cor-
roborate the primary findings or to suggest new 
hypotheses for further research. Although it is 
often difficult to dispel the uncertainty associated 
with subset analysis, there are ways to reduce the 
false-positive or false-negative findings. The fol-
lowing are a few practical suggestions.

Use Interaction Tests Instead  
of Repeated Subset Tests

As mentioned before, a common mistake is to 
claim treatment effect on tests within individual 
subsets. Take the transfusion trial as an example. 
Suppose, after analyzing a number of subsets, the 
investigator finds that the conservative strategy 
significantly reduces postoperative morbidity 
among patients with bigger body size (body mass 
index >30) but not in the other three groups; it 
does not lead to the conclusion that the treatment 



1092 Subset Analysis: Insights and Pitfalls

effect differs by body size. When many subsets  
are analyzed, a significant result may be a false-
positive finding due to multiplicity. On the other 
hand, if none of the three subset tests are signifi-
cant, it does not mean that there is no treatment 
effect. It may be the case that none of the tests have 
enough power to claim significance. A better way 
to assess the treatment effect heterogeneity is to 
include an interaction term between the treatment 
group and the subset variable in the model and test 
for the significance of that interaction. The interac-
tion test produces a single p value based on all the 
data, no matter how many levels the subset vari-
able has. In this way, the multiplicity is effectively 
reduced. Usually, the sample size of the trial is 
determined by the overall main effect of the treat-
ment, and the interaction test may have much less 
statistical power. A clinical trial should be designed 
such that the conclusion is applicable to all the 
eligible patient population. If the treatment effect 
is very different in some subpopulations, they 
should have been left out and studied in a separate 
study. The lack of power of the interaction test 
ensures that only strong evidence can overthrow 
this assumption of homogeneity. In most cases, the 
interaction tests are used to check whether every-
thing is in line with the homogeneity assumption.

Limit the Number of Prespecified Subset Analyses

Even when the interaction test is adopted, one 
may still do a lot of “data snooping” using various 
subset variables and only report the significant 
ones. Clearly, this kind of practice leads to exces-
sive false positives. One way to reduce (but not 
eliminate) the false-positive rate (family-wise Type 
I error rate) is to prespecify the list of subset vari-
ables at the design phase of the clinical study. This 
is the same rationale as choosing the primary end 
point for a clinical trial: It has to be chosen prior to 
data collection. If the investigator has the freedom 
to choose the primary end point after seeing the 
data, he or she may be inclined to choose the one 
in favor of the research hypothesis and hence bias 
the conclusion. Subset analyses that are not pre-
specified are sometimes called post hoc subset 
analyses. Such analyses are also valuable to research-
ers: Unexpected phenomena may be observed dur-
ing the conduct of the trial and prompt new subsets 
to be analyzed; the investigator may want to check 

for the consistency of treatment effect in various 
subsets. However, one should always keep in mind 
the limitations of unplanned subset analyses and 
interpret and report the results with caution, espe-
cially when unexpected results are found. Many 
scientific and reporting guidelines recommend that 
all the prespecified and post hoc analyses (includ-
ing all that have been looked at by the data analyst) 
should be listed in the report of the study. It is also 
a good practice to limit the number of prespecified 
subsets to those that are justified by strong biologi-
cal rationale. If Types I and II error rates are not 
strictly controlled, one should not emphasize the 
finding from subset analyses in the conclusion and 
should rather report the magnitude of the multi-
plicity problem informally by calculating how 
many statistically significant tests are expected by 
chance alone (this is usually the number of subset 
tests times .05, the level of significance).

Use the Forest Plot to Summarize  
the Result From Subset Analysis

The forest plot is a graphical display that shows 
the treatment effect heterogeneity across various 
subsets. Figure 1 is an exemplary forest plot using 
the published results from the MATCH trial 
(Diener et al., 2004). To make a forest plot, one 
first calculates the confidence intervals of the treat-
ment effect (in this example, the odds ratio of the 
primary end point between the two treatment 
groups) for each subset and the entire data set. The 
confidence intervals are represented in the forest 
plot by parallel horizontal lines. The point estima-
tor of the treatment effect is represented by the 
solid square on the confidence interval, with the 
size of the symbol proportional to the sample size 
of that subset. It is clear that the confidence inter-
vals are shorter with bigger subset sample sizes. 
There are two vertical reference lines. One corre-
sponds to the overall treatment effect. By compar-
ing the subset confidence intervals with this line, 
one can assess the heterogeneity of subsets visu-
ally. The other reference line corresponds to null 
treatment effect. Note that the forest plot is a tool 
for descriptive analysis only. The sample size and 
multiplicity problems with subset tests apply to the 
subset confidence intervals as well. Therefore, one 
cannot claim treatment heterogeneity even if some 
subset confidence intervals do not cross the overall 
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effect reference line. It has to come from the test  
of interaction. Jack Cuzick recommended de- 
emphasizing the null reference line because it 
encourages the misinterpretation that confidence 
intervals that cross this line indicate no treatment 
effect in those subsets.

If a post hoc subset analysis suggests some inter-
esting treatment effect in a subset and the researcher 
wants to draw a confirmatory conclusion about it, 
he or she may conduct a separate meta-analysis 
that increases the sample size and credibility of the 
result by combining information from various 
(independent) sources. One can also design a new 
trial to specifically answer that question.

Liang Li

See also Analysis of Covariance (ANCOVA); 
Randomized Clinical Trials; Sample Size and Power
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Figure 1  An exemplary forest plot for subset analysis

Notes: Lag time = time from qualifying event for enrollment to randomization. MI = myocardial infarction. PAD = peripheral 
arterial disease.
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SubtreeS, uSe in conStructing 
deciSion treeS

A subtree is a portion of a decision model that is 
repeated in various places throughout the tree. 
Since decision models must reflect the real-world 
complexity of clinical medicine, compact notational 
representations that highlight repetitive structure 
throughout the decision model significantly improve 
comprehensibility. Much like a subroutine in com-
mon computer programming languages, the deci-
sion tree fragments represented by common subtrees 
are homologous structures that can be shared by 
many decision strategies and events.

Subtrees are a powerful notational representation 
and cognitive tool that can simplify and compact the 
decision tree representation graphically, emphasize 
analogies among events shared by multiple paths in 
the tree, highlight relations among factors in a deci-
sion model (e.g., through linkages and bindings), 
and ensure structural symmetry, helping the deci-
sion analyst to avoid inadvertent omissions.

Good Tree-Building Etiquette

A “Primer on Medical Decision Analysis” pub-
lished in Medical Decision Making made a number 
of recommendations regarding tree structure. These 
included the following: (a) The tree must have sym-
metry, and (b) the branches must be “linked.” The 
use of subtrees contributes to these goals.

Symmetry

A common error made in building decision 
tree models is to neglect to include the same 

chance events in all strategies of the decision 
tree. This may occur in several contexts. For 
instance, in a tree examining diagnostic testing, 
the modeler may neglect to consider a chance 
node representing the presence or absence of 
disease (i.e., disease prevalence) in the strategy 
that does not involve testing. In a tree examin-
ing different treatment options, the modeler may 
neglect to include a chance node representing 
treatment-related adverse events in the Do Not 
Treat strategy. While this may be reasonable in 
some clinical circumstances, there are many dis-
eases in which the same adverse events may 
occur in both treated and untreated patients. 
For instance, patients with atrial fibrillation 
who receive anticoagulation or blood thinning 
treatment may have bleeding complications. 
However, even patients who do not receive this 
therapy may suffer from similar bleeding events, 
albeit at a lower risk. Similarly, patients receiv-
ing radiation therapy for prostate cancer may 
suffer from difficulty in urinating. However, 
even patients who do not receive radiation may 
have similar problems, albeit at a lower rate. 
The use of common subtrees to model these 
events ensures symmetry and reduces the risk of 
conceptual or programming errors. Of note, an 
alternative representational notation for deci-
sion models is the influence diagram, which by 
its very nature enforces complete syntactic sym-
metry. An automated decision-tree-critiquing 
program, BUNYAN, takes advantage of the 
principle of symmetry to diagnose common 
errors in decision tree models.

Consider the simple decision tree shown in 
Figure 1, where the underlying presence or 
absence of disease is explicitly modeled only on 

Well

Well

Sick

Prognosis

Treat

No Treat

Disease

Cure

No cure

pDisease

No disease

Figure 1  Treat/No Treat decision
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the upper Treat branch. If one were to perform a 
sensitivity analysis on the parameter representing 
the probability of disease (pDisease), increasing 
pDisease would decrease the expected utility or 
value of the Treat strategy by shifting patients 
from well to sick. However, variations in pDis-
ease would have no impact on the No Treat strat-
egy because this factor is left implicit in the 
outcome prognosis. This would result in clini-
cally nonsensical sensitivity analysis results—the 
more likely the patient was to have disease, the 
worse treatment would appear to be compared 
with no treatment; whereas in reality patients 
more likely to have disease are the ones who ben-
efit most from treatment.

Figure 2 shows the same decision tree, now 
modified to use common subtrees. The curly 
bracket following the Treat and No Treat strate-
gies signifies that the subtree connects to both 
strategies. However, while pDisease will cor-
rectly and explicitly be modeled for both strate-
gies, the probability of cure (pCure) will likely be 
lower in the No Treat strategy. It is reasonable 
for many diseases that there be a nonzero prob-
ability of cure without treatment. Using the anal-
ogy of a computer program subroutine once 
more, the subtree needs to be “called” with the 
appropriate value for the parameter pCure. This 
is accomplished in some decision software pack-
ages, such as Decision Maker and SMLTREE, 
through a binding mechanism, in which the val-
ues of parameters, such as probabilities and 
utilities, can be set at some point proximal in the 
tree (e.g., to the left of the subtree) to alter the 
value of those parameters at all points in the tree 
distal to where the binding is set. Therefore, 
parameters in subtrees can take on different values 

depending on their context (i.e., which branches 
they are attached to). The use of subtrees and 
bindings also supports the tree-building principle 
of linkage, discussed below.

Linkage of Branches and Variables

Consider the classic Test, Treat, No Treat deci-
sion tree fragment shown in Figure 3. Note that 
the probability of being sick is described by four 
different variables. In the Treat strategy, the prob-
ability of being sick is pSickRx; in the No Treat 
strategy, it is pSickNoRx; and it the Test strategy, 
it is pSickRxT+ or pSickNoRxT−, depending on a 
positive or negative test result. What happens if we 
want to perform a sensitivity analysis on the prob-
ability of getting sick? If we do this by examining 
pSickNoRx, we will find that, while the outcome 
(expected utility) for the No Treat strategy gets 
better as pSickNoRx gets smaller, outcomes for 
the other two strategies will remain the same and 
at some point patients not receiving treatment may 
actually do better than those receiving therapy. 
Unless the risk of side effects is very high, this is 
not likely. Furthermore, if the probability of get-
ting sick without treatment decreases, it is also 
likely that the probability of getting sick with 
treatment will also decrease. Therefore, what we 
really want to accomplish by doing a sensitivity 
analysis on pSickNoRx is to examine some under-
lying probability of getting sick that influences or 
is linked to all the other probabilities of getting 
sick (pSickRx, pSickRxT+, pSickNoRxT−).

Figure 4 shows the same decision tree, now rep-
resented through extensive use of subtrees. Since 
the subtrees may be referenced by different con-
texts proximal in the tree, the binding mechanism 

Well

Well

Sick

Treat

No Treat

Disease

Cure

No cure

pDisease

pCure

No disease

Figure 2  Treat/No Treat decision using a common subtree
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Sick

Sick

Well

Sick
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Sick
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Well

Sick
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Treat
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No Treat

Side effect

No cure

Cure

Cure

No cure

Cure

Cure

Cure

No cure

Cure

pSideEffect

No side effect

Side effect

pSideEffect

No side effect

pSickRx

pSickRx

pSickRxT +

pSickNoRxT −

pSickNoRx

pTest + No cure

pSickRxT +

Test +/Treat

Test −/NoTreat

Figure 3  Treat/Test/No Treat decision

is used to pass parameter values to the variables 
appearing distally in the subtree. For instance, in 
the bottommost No Treat strategy, pSick is set 
equal to pSickNoRx (the underlying risk of get-
ting sick without treatment). In the topmost 
Treat strategy, pSick is set equal to pSickRx, 
which itself is equal to pSickNoRx(1 − effRx). 
Using the binding mechanism to link all these 
probabilities to the underlying risk of getting 
sick (pSickNoRx) allows us to explicitly repre-
sent the efficacy of treatment, and if desired, we 
could perform a sensitivity analysis on this 
parameter to examine the impact of treatment 

efficacy without altering the underlying proba-
bility of getting sick. In a similar manner (not 
shown in this simple example), bindings and 
additional subtree notation can be used to model 
explicitly the presence or absence of disease caus-
ing the symptoms of being sick and appropriately 
adjust pSickNoRx to account for the absence or 
presence of disease, along with the occurrence of 
false-positive and false-negative test results.

Mark H. Eckman

See also Decision Trees, Construction; Decision Trees: 
Sensitivity Analysis, Deterministic; Influence Diagrams
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Sunk coStS

The sunk-cost or escalation effect leads a decision 
maker to continue a course of action into which an 

initial investment of time, thought, or expense has 
been “sunk,” even after that particular course of 
action has proven to be a suboptimal choice. Like 
most cognitive heuristics, maintaining an unsuc-
cessful course of action is often adaptive, as positive 
outcomes can take time to accrue, and there are 
always costs involved in switching. However, it can 
be counterproductive when the decision is based 
solely (or primarily) on the mere fact of having 
made a large prior investment instead of on an 
objective appraisal of current and future prospects.

Sunk Costs in Medical Decisions

Every day, medical practitioners are faced with 
making decisions where no clearly right or wrong 
answers exist. These decisions frequently involve 
weighing evidence in evaluating competing hypoth-
eses, estimating probabilities, and predicting uncer-
tain outcomes—for example, which test should be 
ordered to confirm or eliminate a particular diag-
nosis; should a patient continue with a given medi-
cation or switch to an alternative one; do the signs 

Binding:
pSickRx = pSickNoRx * (1 – eff Rx)
pSick = pSickRx

Sick

Well

Test +/Treat

pTest +

Test −/NoTreat

Test

Treat

No Treat

Side effect

No cure

Cure

pSideEffect

pSick

No side effect

Binding:
pSick = pSickNoRx

Figure 4  Treat/Test/No Treat decision using common subtrees
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and symptoms presented indicate Disease A, Disease 
B, or no disease at all? Research has shown that in 
making these sorts of decisions, physicians behave 
in a manner very similar to that of expert decision 
makers in other domains (e.g., physics, logic, chess); 
that is to say, rather than using time- and labor- 
intensive computational procedures, they rely on 
rules of thumb or heuristics. In doing so, they are 
able to apply a wealth of accumulated knowledge 
relatively quickly and efficiently. These heuristics 
are generally an effective way of allocating limited 
cognitive resources in dealing with uncertain situa-
tions, but they can also introduce reasoning biases 
that adversely affect a decision. The sunk-cost 
effect is one example of how heuristics can lead to 
biased decisions in medical decision making.

This effect has been studied extensively in the 
fields of economics and behavioral decision mak-
ing, where numerous studies show that decision 
makers’ commitment to a decision increases as a 
function of the amount of their initial investment, 
in money, effort, or time. A number of variables 
can affect individuals’ susceptibility to the sunk-
cost effect, including personality. Of particular 
relevance to medical decision making, individuals 
with a Type A personality—a disposition shared 
by many physicians—are more likely to demon-
strate the effect. In medical decision making, the 
sunk-cost effect can have important diagnostic or 
therapeutic implications on an individual-patient 
level and perhaps even on a national level when 
looking at the system of delivering medical care.

Individual-Patient Level

An example of the sunk-cost effect at the patient 
level is one where the physician recommends that 
the patient continue with further courses of the 
same medication even after the patient fails to 
improve on that medication because of the time and 
money that the patient has invested or the time and 
energy that the physician has invested in coming up 
with the present, apparently inaccurate diagnosis or 
ineffective treatment plan. Research addressing the 
sunk-cost effect in physicians’ reasoning has asked 
physicians (medical residents) to evaluate different 
responses to scenarios where an initial diagnosis or 
treatment is suspect, as a function of the amount of 
time and/or money that had already been invested 
(by varying, e.g., the cost of medication). The 

results showed that residents were surprisingly 
good at not allowing the sunk costs to affect their 
decisions in evaluating medical treatment scenarios, 
but they were no better than laypeople at prevent-
ing the sunk cost bias from affecting their decisions 
in everyday situations outside the medical realm. 
Although physicians were not susceptible to the 
sunk-cost bias in judging medical scenarios, they 
nonetheless considered it more important to con-
tinue the original treatment for purposes of consis-
tency when they, as opposed to another physician, 
had made the original decisions.

These findings would seem to indicate two 
things: first, that commitment effects are less in the 
absence of prior involvement, which supports the 
practice of obtaining additional medical opinions, 
and second, that medical training and expertise may 
ameliorate some of the nonnormative effects of 
biases. Indeed, recent studies involving emergency 
room doctors have shown that those involved in 
medical education are less likely to exhibit various 
forms of cognitive bias than their colleagues who do 
not mentor students. Although medical decision 
makers are by no means immune to cognitive biases, 
these biases are not unavoidable, and they can be 
ameliorated somewhat through medical education.

National Level

On a more global level, the sunk-cost effect 
could play a role in a country’s continued reliance 
on a particular kind of medical delivery system, 
even when that system provides fractured medical 
care, leaves a large number of patients under- or 
uninsured, and is financially inefficient. To be 
sure, questions of how best to optimize healthcare 
are enormously complex, but public policy debates 
on the issue—in the United States and elsewhere—
contain elements of a sunk-cost rationale (i.e., 
“We have too much invested in our current health-
care system to start making changes now”). A 
similar resistance to changing failing policies has 
characterized other political and policy debates 
(e.g., the American government’s reluctance to pull 
out of Vietnam). Thus, there is potential for the 
sunk-cost effect to operate at both the microlevel 
and the macrolevel of medical decision making.

Brian H. Bornstein and A. Christine Emler

See also Bias; Personality, Choices; Treatment Choices
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Support tHeory

Support theory is a descriptive model of probabil-
ity judgment that posits that judgments of proba-
bility are made based on descriptions of events 
rather than on events themselves.

Probability theory provides a normative 
framework for determining the probability of a 
combination of disjoint events. If two events A 
and B are exclusive, and have probabilities p(A) 
and p(B) of occurrence, the probability of one or 
the other occurring is exactly p(A) + p(B) = p(A 
or B). “A or B” is referred to as the disjunction 
of A and B. For example, if A is “The patient’s 
heart rate is between 60 and 70 beats per min-
ute” and B is “The patient’s heart rate is between 
70 and 80 beats per minute,” the disjunction 
might be expressed as “The patient’s heart rate 
is between 60 and 70 beats per minute or 
between 70 and 80 beats per minute” (an explicit 
disjunction) or as “The patient’s heart rate is 
between 60 and 80 beats per minute” (an 
implicit disjunction).

Support theory attempts to explain the obser-
vation that people often judge the probability 
of implicit disjunctions to be lower than the 
sum of the probabilities of the constituent 
events. This property is referred to as subaddi-
tivity and is contrasted with the normative 
probability theory model’s additivity property 

(and with superadditivity, in which the proba-
bility of a disjunction is judged to be higher 
than the sum of the probabilities of the con-
stituent events).

In support theory, descriptions of competing 
events are evaluated by assessing the relative sup-
port (s) for each description, characterized by  
a nonnegative real number associated with the 
strength of evidence for that description. Formally,

pðA rather than BÞ= sðAÞ
sðAÞ+ sðBÞ :

Support for a description may be a function of 
the strength of memories for events matching the 
description. As the name suggests, it may also be 
related to the ability to provide reasoned justifi-
cations for the described event. A stochastic 
extension of support theory, random support 
theory, extends the basic support theory model 
by representing support for events as a random 
variable. That is, people are assumed not to 
assign a fixed level of support to a given descrip-
tion but to sample support at random from a 
distribution of support. As a result, it is possible 
to speak of the variance and expectation of sup-
port associated with a given description. This 
enables random support theory to model the 
calibration of judgments (whether the objective 
frequencies of events are correctly predicted by 
their subjective probabilities).

Support theory assumes that the support for an 
implicit disjunction is less than or equal to the sup-
port for an equivalent explicit disjunction. It also 
holds that the support for an explicit disjunction is 
less than or equal to the sum of the support for  
the two descriptions. Formally, if A describes an 
implicit disjunction of B and C,

s(A) ≤  s(B or C) = s(B) + s(C).

Two cognitive processes, unpacking and repack-
ing, operate on descriptions of events and determine 
whether they are considered to be implicit or explicit 
disjunctions. Unpacking an implicit disjunction into 
its constituents increases the overall support, and 
thus the judged probability, of the event. A classic 
illustration is that judgments of “the likelihood of 
death by any vehicle accident” are often lower than 
judgments of “the likelihood of death by car acci-
dent, death by plane accident, death by bicycle 
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accident, or death by any other vehicle accident.” 
Moreover, the latter is often lower than the sum of 
the judgments of “the likelihood of death by car 
accident,” “the likelihood of death by plane acci-
dent,” “the likelihood of death by bicycle accident,” 
and “the likelihood of death by any other vehicle 
accident” when elicited individually.

Unpacking may call attention to alternatives 
that were not considered in the implicit disjunction 
or may highlight the salience of such alternatives. 
For example, house officers assessing a hypotheti-
cal case for the probabilities of gastroenteritis, 
ectopic pregnancy, and none of the above (G, E, N) 
assigned a lower probability to none of the above 
(N) than house officers judging probabilities of 
gastroenteritis, ectopic pregnancy, appendicitis, 
pyelonephritis, pelvic inflammatory disease (PID), 
and none of the above (G, E, A, PY, PI, N) assigned 
to “appendicitis, pyelonephritis, PID, and none of 
the above” (A, PY, PI, N). In this case, it is possible 
that unpacking none of the above to include, for 
example, PID may have reminded the residents 
about the possibility of PID.

Conversely, repacking an explicit disjunction 
into a corresponding implicit disjunction can occur 
when the events are very similarly described (as 
with the heart rate example). Once repacked in the 
mind, support theory predicts subadditivity for  
the repacked (implicit) disjunction and, thus, that 
what appears to be an explicit disjunction can have 
less support than the sum of the support of its con-
stituent events. In addition, judges may anchor 
their probability estimate on one of the constitu-
ents of the explicit disjunction (e.g., “60–70” bpm) 
and then determine the probability of the disjunc-
tion by adjusting upward from the anchor for each 
of the other constituents. Insufficient adjustment 
(which is typical) also leads to subadditivity for 
explicit disjunctions.

Most research studies have provided evidence 
for support theory’s key insight—that it is support 
for descriptions, rather than events, that are used 
in probability judgment. Some researchers, how-
ever, have reported cases in which unpacking leads 
to additive or even superadditive probability judg-
ments. Subadditivity may be limited to conditions 
in which the events are unpacked into descriptions 
that do not easily come to mind and yet have 
higher support than those that do easily come to 
mind, as noted by Sloman and colleagues. It has 

also been suggested by Bearden, Wallsten, and Fox 
that there are other important contributors to sub-
additivity besides support theory, such as response 
variability.

Support theory suggests that clinical decision 
makers must take care when making decisions 
based on judged probabilities for sets of events 
that can be variously described, as, for example, a 
list of differential diagnoses for a patient. The 
medical research literature facilitates the determi-
nation of the likelihood of single diagnoses given 
clinical findings, but when the problem necessi-
tates considering a disjunctive diagnosis (e.g., 
“bacterial or viral meningitis”), patients, clini-
cians, and research subjects may not combine con-
stituent probabilities normatively. Studies of 
smoking suggest that judged risk of lung cancer is 
greater when it is presented alone than when it is 
included in a list of causes of death. By increasing 
the availability of other causes of death, it may be 
possible to reduce overestimates of risk of a par-
ticularly salient disease by patients.

Alan Schwartz

See also Bias; Differential Diagnsosis; Heuristics; 
Judgment; Probability
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Support vector macHineS

Support vector machines (SVMs) are machine 
learning models that share some similarities with 
neural networks and logistic regression models for 
classification tasks. Examples of such tasks arise 
naturally in clinical settings, whenever one is given 
a set of data descriptors (e.g., lab results, clinical 
findings, imaging data, genetic information) and 
wants to predict health status or medical outcome 
given such data. In the simplest case, which is dis-
cussed in this entry, there are only two possible 
outcomes to predict. In a clinical context, these 
two can, for example, correspond to healthy and 
diseased patient states, respectively.

Traditionally, logistic regression and artificial 
neural network models have been the tools of 
choice for solving classification tasks as outlined 
above. In the past 10 years, SVMs have increas-
ingly been used in data-intensive machine learning 
scenarios in clinical contexts, for example, as deci-
sion aids for the classification of mass spectronomy 
data or imaging data.

The following assumptions and notational con-
ventions are used here: An n-element data set D = 
{xi, ti} contains m-dimensional data points (cases) 
xi that serve as inputs to the SVM that classifies 
these cases into the associated class labels ti {1, +1} 
(outcomes or outputs of the SVM). The data 
points xi are mathematical representations of the 
clinically relevant information that is to be used in 
the classification task. In a similar vein, the class 
labels ti are abstractions of the two classes that 
should be predicted by the model. Because they are 
m-dimensional, the data points will sometimes be 
referred to as vectors. The pattern classification 
task is to find a model (in this case, the SVM) and 
associated parameter settings that are able to pre-
dict class labels, given the data points, while mak-
ing the fewest mistakes. This means that, when 

given a new data point x* from the same distribu-
tion as D, the model output should be the correct 
class label of x* as often as possible. For most data 
sets, it will not be possible to reduce the average 
error to 0. A model that makes few mistakes on 
unseen data is said to generalize well.

The following presentations are mathematical 
in nature because SVMs are based on geometrical 
concepts. Nevertheless, it is hoped that the essence 
of SVMs (the “what”) can be grasped without 
having to understand all the mathematical details 
(the “how”).

Optimal Separating Hyperplanes

A hyperplane is the extension of the concept of a 
straight line (in 2D) or a plane (in 3D) to n > 3 
dimensions. A hyperplane, H, defined as the set of 
all points x that satisfy the equation w ⋅ x + b = 0, 
partitions its enclosing space into three parts: (1) the 
points directly on the plane, (2) the points for 
which w ⋅ x + b > 0, and (3) the points for which 
w ⋅ x + b < 0. Here, w ⋅ x denotes the dot product 
of the two m-dimensional vectors w and x, that is, 
the result of multiplying all components of x with 
the corresponding components of w and adding  
up the results. The two parameters w and b encode 
the position of the hyperplane in its enclosing 
space: w encodes the orientation and b the distance 
to the origin. Together, these two parameters 
uniquely determine where H lies. A hyperplane H 
can thus be used as a classification model: All the 
points on one side of H belong to one class; all the 
points on the other side belong to the other class. 
A data set that can be classified in this sense by a 
hyperplane is called linearly separable.

It was one of the fundamental results of early 
machine learning research that a simple iterative 
procedure (the perceptron learning rule) will always 
find a separating hyperplane for a linearly separable 
data set. This result guarantees the existence of a 
separating hyperplane. It is not clear, however, 
whether this hyperplane generalizes well. To investi-
gate this question, researchers from the field of sta-
tistical learning theory have defined the notion of an 
optimal separating hyperplane: This hyperplane is as 
far as possible from the two classes it separates. This 
means that the margin between the two classes is as 
large as possible; SVMs are therefore also known  
as large-margin classifiers. It can be demonstrated 
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theoretically (and backed up by empirical results) 
that optimal separating hyperplanes generalize  
better than arbitrary hyperplanes.

Below, the computations required for determin-
ing this optimal separating hyperplane are out-
lined. The computations are nothing more than the 
mathematical apparatus for finding the best pos-
sible separating line (in 2D) or hyperplane (in 
higher dimensions). Remember that the two param-
eters w and b uniquely determine the position and 
orientation of the hyperplane. Determining the 
correct values of these parameters therefore consti-
tutes solving the classification task. Unfortunately, 
the two parameters do not have an additional 
interpretation in any useful clinical sense; this is in 
contrast to logistic regression, where the β coeffi-
cients do have such an interpretation.

As an example, consider the problem of diag-
nosing pigmented skin lesions as malignant mela-
noma or common nevi based on imaging data 
acquired, for example, by dermoscopy. Several 
dozen data descriptors such as size, asymmetry, 
color distributions, and so on, constitute the m- 
dimensional data points xi; the class labels ti 
encode whether the lesion in question is benign or 
malignant. This gold standard diagnostic informa-
tion would have to be obtained by histopathology 
or follow-up examinations (to rule out malig-
nancy). The data set with established gold stan-
dard diagnoses is known as training data. Assuming 
that it were possible to always correctly diagnose 
lesions as benign or malignant, an SVM could 
accomplish this diagnosis by calculating the opti-
mal separating hyperplane between the two sets of 
lesions in the training data. Diagnosing a novel 
lesion described by a data point x*, for which the 
gold standard is not known, then amounts to 
determining on which side of the separating hyper-
plane the point x* lies. The parameters w and b of 
the hyperplane do not convey any clinical informa-
tion and cannot be used other than for encoding 
the position and orientation of the hyperplane.

The mathematical details for calculating the 
optimal separating hyperplane are as follows. For 
a point x0 and a hyperplane H given by the equa-
tion w ⋅ x + b = 0, the value of w ⋅ x0 + b is pro-
portional to the distance of x0 from H (positive if 
x0 is on one side, negative if it is on the other). 
Note that a given hyperplane can be expressed by 
an infinite number of equations: If H is given by 

w ⋅ x + b = 0, then it is also given by α(w ⋅ x + b) = 
0, for any α ≠ 0. We can thus make the expres-
sion w ⋅ x0 + b arbitrarily large or small by chang-
ing the parametrization of H. This also means 
that there exists a parametrization such that w ⋅ 
xi + b = −1 for the points xi closest to H on one 
side and w ⋅ xi + b = +1 for the points xi closest 
to H on the other side (these points are said to lie 
on the margin). We now want to find a hyper-
plane such that the distance between these closest 
points is as large as possible, that is, the margin 
is largest. By observing that the distance of x0 to 
H is given by |w ⋅ x0 + b|/||w|| , it follows that the 
distance between the closest points on both sides 
is 2/||w||. Here, single vertical bars denote the 
absolute value of a number, and double vertical 
bars the length of a vector. Maximizing 2/||w||  
thus yields the value of w that corresponds to the 
optimal separating hyperplane.

Maximizing 2/||w|| is equivalent to minimizing 
||w||, or 1/2||w||2 (the latter form is chosen for its 
mathematical convenience). (It is immediately 
obvious that w = 0 minimizes the value 1/2||w||2, 
but this does not represent a sensible solution to 
the original problem—it would violate the assump-
tion that the closest points satisfy w ⋅ xi + b = −1 
and w ⋅ xi + b = +1, respectively.) All other points 
have to be further than this from the hyperplane. 
The problem of determining the optimal separat-
ing hyperplane is thus a constrained optimization 
problem of the form (known as primal format):

Minimize 1=2jjwjj2

subject to tiðw ·xi + bÞ≥ 1; for 1≤ i≤ n;

where the two forms of constraints w ⋅ xi + b ≤ −1 
and w ⋅ xi + b ≥ +1 are written in one format so 
that they can both be treated the same way. This 
format can be achieved by requiring all points for 
which w ⋅ xi + b ≤ −1 holds to have class label ti = −1 
and all points with w ⋅ xi + b ≥ +1 to have class 
label ti = +1.

The above problem is a convex quadratic opti-
mization problem that can be solved by standard 
mathematical methods. In contrast to the error 
optimization algorithms used in neural network 
training, this constrained optimization problem 
has a unique global solution. The standard way of 
calculating the solution is to use the method of 
Lagrangian multipliers αi to convert the problem 
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to its so-called dual format, in which it can be 
stated as

Maximize
X

ai 
1
2

XX
aiajtitjxi · xj

subject to ai ≥ 0; for all i and
X

aiti = 0:

The solution to the problem in this format is 
exactly the same as the solution to the original 
problem. Although this dual format seems to be 
more complicated than the primal format, it has 
the major advantage that the data points enter the 
calculation only via their dot products xi ⋅ xj. As we 
will see later on, it is this particular form of depen-
dence that allows the generalization of linear 
hyperplanes to nonlinear decision boundaries.

The quadratic optimization problem, whether 
in primal or dual format, has a unique solution 
w=

X
ajtixi —that is, as a weighted sum of the 

inputs. This solution is sparse: In general, few of 
the αj are nonzero. The corresponding xi are 
exactly those data points that lie on the margin; 
these are known as support vectors. A graphical 
representation is shown in Figure 1. A hypotheti-
cal clinical situation that may be represented by 
Figure 1 is the distinction between high-risk and 
low-risk patients in the prediction of cardiovascu-
lar disease, given two risk indicators (e.g., systolic 
blood pressure and total cholesterol). Patients on 
one side of the hyperplane are deemed to be at 
high risk, while those on the other side are 
deemed to be at low risk. It is, however, rare that 
two health states can be distinguished as easily 
(by a straight line) as shown in Figure 1. The 
extensions to basic SVM methodology discussed 
below explain how to deal with more compli-
cated situations.

Note that the solution is determined completely 
by the position of the support vectors; all other 
data points could be removed without changing 
the solution. Because the support vectors satisfy 
ti(w ⋅ xi + b) = 1, these vectors can be used to cal-
culate the value of the parameter b.

Based on the parameters w=
X

ajtixi  and b, 
the decision function for an SVM is

sign
X

ajtixi · x+ b
 

:

This means that all the points x for which X
ajtixi ·x+ b> 0 belong to one class, and all the

 

points with 
X

ajtixi ·x+ b< 0  belong to the 
other class.

Note the implication of considering only the 
support vectors and ignoring all other points in 
determining the SVM parameters: If incorrectly 
labeled cases are support vectors, the hyperplane 
will be incorrectly determined. Other classifiers 
such as linear discriminant analysis, artificial neu-
ral networks, classification and regression trees, 
and logistic regression do not discard information 
from the majority of cases as SVMs do and are 
therefore not as easily influenced by the labels and 
positions of the data points on the margins.

Soft Margin Support Vector Machines

Few data sets that contain biomedical information 
are linearly separable. In many situations, the above 
derivations are therefore not directly applicable. To 
overcome this limitation, Cortes and Vapnik intro-
duced the notion of soft margin SVMs. In this exten-
sion to the standard SVM methodology, data points 
are also allowed to lie on the wrong side of the mar-
gin. Of course, the total distance of these points 
from the separating hyperplane, measured by non-
negative slack variables ξi, should be as small as 

Figure 1   The optimal separating hyperplane for 
distinguishing between two classes of data 
points

Note: The solution depends only on the support vectors 
(shown as circles).
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possible. In the primal format, the constraints that 
allow slack variables are ti(w ⋅ xi + b) ≥ 1 − ξi. The 
optimization goal is then twofold: Minimize the 
original optimization goal, and minimize the total 
sum of slack variables. The trade-off between these 
two goals is given by a parameter C that weights the 
contribution of the slack variables. The primal for-
mat of the soft margin SVM problem is

Minimize 1=2jjwjj2 +C
X

ξi

subject to tiðw · xi +bÞ≥1 and ξi ≥ 0; for 1< i< n:

In the dual format, the slack variables vanish, 
and the only difference to the dual format of the 
original problem is that C is an upper limit to 
the weighting terms αi of the support vectors; 
that is, there are now n constraints 0 ≤ αi ≤ C. 
As in standard SVMs, the decision boundary is 
again a hyperplane for soft margin SVMs. Cases 
that are not support vectors therefore still con-
tribute no additional information to that gath-
ered from the support vectors and incorrectly 
classified cases.

Nonlinear Support Vector Machines  
and the Kernel Trick

Nonlinear decision boundaries can be represented 
by SVMs by using the following observation: If a 
data set is not linearly separable, and one can pro-
ject it onto a higher-dimensional feature space F 
with a nonlinear function Φ (followed by the opti-
mal separating hyperplane construction presented 
above), then the linear hyperplane in F is a nonlin-
ear decision boundary in the original data space. It 
was the achievement of Boser and colleagues to 
apply a shortcut to these calculations: They noted 
that the kernel function method of Aizerman and 
colleagues can be applied to optimal separating 
hyperplanes. This method consists of calculating a 
so-called kernel function k(xi, xj) of two data 
points instead of the dot product Φ(xi) ⋅ Φ(xj) of 
the data points after projecting onto F via Φ. One 
can show that several large classes of functions 
satisfy the requirements of being such kernel func-
tions. Using these functions, one need not specify a 
projection Φ or a feature space F—all calculations 
are performed in the original data space.

The most widely used classes of kernel func-
tions are polynomials (with the degree d of the 

polynomial as parameter of the kernel) and 
Gaussian radial basis functions (with the variance 
σ2 as parameter). These two classes of kernels are 
defined as

k(xi, xj) = (xi ⋅ xj)
d

and

k(xi, xj) = exp(−1/2||xi − xj||
2/σ2).

An example of the nonlinear nature of decision 
boundaries in the original space is given in Figure 2. 
This situation could, for example, correspond to the 
diagnosis of breast cancer from two imaging param-
eters. The distinction between healthy and diseased 
cases can only be achieved by a curved line.

Other Topics of Interest

The standard SVM algorithm can be modified to 
allow regression problems (predicting a real value, 
instead of a class label) to be solved by SVMs. For 
this, one defines an ε-insensitive loss function that 
penalizes predictions only when they are more 
than a value of ε from the correct value. The cor-
responding optimization problem can be handled 
in a manner similar to the hyperplane calculations 

Figure 2  Decision boundary for a nonlinear SVM 
using a Gaussian radial basis function kernel and 
parameter C = 100

Note: The points on the margin are marked as support 
vectors.
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outlined above. In particular, nonlinearities are 
again introduced by use of kernel functions.

Another topic of interest, especially in a bio-
medical context, is the possibility to associate 
probability values with the outputs of machine 
learning model. While the outputs of suitably 
trained neural networks and logistic regression 
models can be interpreted as class membership 
probabilities, the same is not true for SVMs, which 
only provide outputs of −1 or +1. It is, however, 
possible to fit a logistic model to the “raw” SVM 
outputs 

X
ajtixi · x+b  that determine the sign 

and distance from the hyperplane. The larger this 
distance, the higher the probability of belonging to 
the class associated with this side of the hyperplane. 
The exact form of the logistic model can be 
obtained by minimizing a cross-entropy error  
function.

Stephan Dreiseitl and Lucila Ohno-Machado

See also Artificial Neural Networks; Logistic Regression
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Surrogate deciSion making

Surrogate decision making is the process by which 
one or more medical treatment decisions, or other 
decisions relating to healthcare and personal wel-
fare, are made on behalf of adults who are judged 
to lack the decision-making competence (or capac-
ity) to make such decisions for themselves.

When Is Surrogate  
Decision Making Required?

Surrogate decision making is required when a 
medical decision needs to be made for a patient 
who is judged to be unable to give, or withhold, 
informed consent. Surrogate decision making is 
distinguished, therefore, from medical decision 
making without consent, which relates to compul-
sory psychiatric assessment or treatment for adults 
with mental disorders, and the involuntary deten-
tion and treatment of adults with communicable 
diseases that pose a risk to public health.

In numerous legal jurisdictions, decision-making 
competence acts as a threshold concept that pre-
serves the right of self-determination. If adults are 
judged able to make an autonomous decision relat-
ing to their medical treatment, that decision must 
be respected, even if considered unwise. There is 
little academic consensus about the abilities that 
need to be demonstrated for an adult to be judged 
competent; however, the legal criteria for compe-
tence revolve primarily around a number of cogni-
tive and communicative abilities. If a patient is, for 
example, unable to understand information rele-
vant to the decision, to retain that information and 
weigh it to make a decision, or to communicate a 
choice, surrogate decision-making procedures will 
need to be invoked. Adopting a threshold for 
decision-making competence that is primarily cog-
nitive in nature means that adults with a “mental 
disability” may require one or more medical deci-
sions to be made on their behalf. This includes men 
and women with acute mental illness, dementia, 
intellectual disabilities, brain damage, or head 
injury or those who are unconscious, confused, or 
affected by fatigue, pain, or drugs.

Once a judgment of incompetence has been 
made, attention turns to how a surrogate decision 
should be made and who should make it. These 
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questions have shaped research into surrogate 
decision making, the majority of which lies at the 
intersection of law, ethics, and medical practice. 
Empirical studies exploring how surrogate deci-
sions are made in practice have been a relatively 
recent development. This entry explores the ethical 
principles and regulatory procedures that have 
been developed for surrogate decision making for 
adults and highlights some problems that arise 
when invoking these principles and procedures in 
medical practice.

Ethical Principles for Surrogate  
Decision Making

Ethical and legal engagement with surrogate deci-
sion making has exposed three different principles.

Proxy Decision Making

Proxy decision making refers to a set of proce-
dures, built on the primacy of autonomy, that aim 
to ensure that incompetent patients’ known wishes 
guide the surrogate decision-making process. In 
the ideal scenario, incompetent patients would 
have made an advance directive and appointed a 
proxy decision maker, when competent, using a 
power of attorney. The proxy decision maker is 
then required to uphold the patient’s advance 
directive if relevant. Despite academic debate 
about the nature of personal identity, advance 
directives are believed to best reflect autonomous 
choice. If no advance directive exists, the surrogate 
decision-making process should be guided by other 
principles.

Substituted Judgment

The substituted judgment principle requires a 
surrogate to attempt to make the same decision 
that the incompetent patient would make, if he or 
she were able to do so. The need for the surrogate 
to be able to “speak” for the incompetent patient 
means that the next of kin has become established 
as the most appropriate surrogate. This subjective 
approach to surrogate decision making requires a 
detailed inquiry into incompetent adults’ lives to 
make a best guess about their preferences, with 
this guess being substituted for that which is 
impossible to obtain directly.

Best Interests

The best-interests principle requires a surrogate 
decision to be made by focusing on achieving the 
best outcome. Traditionally, this principle has been 
seen as paternalistic, with patients’ interests being 
served by receiving treatment that is clinically indi-
cated, such that surrogate decision making operated 
on the basis that “the doctor knows best.” However, 
in legal jurisdictions where the best-interests princi-
ple dominates, it is now well established that the 
concept of best interests has both an objective and a 
subjective component. There is broad acceptance 
that best-interests judgments should incorporate 
objective medical evidence relating to the decision at 
hand, interpreted in the context of subjective values, 
wishes, and beliefs. In this way, the principle is used 
both to express ideals and goals and to find reason-
able solutions to practical problems, such that the 
“good” of the decision for the individual is pro-
moted to the greatest extent.

The Pervasiveness of Ethical  
Dilemmas in Medical Practice

While these ethical principles have developed in 
the context of the practical challenges posed by 
individual cases, operationalizing these principles 
to make a broad range of medical decisions, on 
behalf of different groups of individuals, remains 
problematic. For example, examining the subjec-
tive values of adults with profound intellectual and 
multiple disabilities is difficult, or, arguably, impos-
sible. For surrogate decision making at the end of 
life, drawing on ethical principles might lead to 
decisions being made that are controversial and 
potentially unacceptable for people with certain 
religious beliefs.

For medical practice to avoid potential prob-
lems, legal regulation has formalized the proce-
dures for surrogate decision-making around these 
principles in a number of jurisdictions to enable 
the surrogate decision-making process to be con-
sistent, transparent, and defensible.

Legal Regulation of  
Surrogate Decision Making

The legal regulation of surrogate decision making 
in different jurisdictions revolves around a number 
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of procedural safeguards. To demonstrate the 
range of approaches that have been taken, the legal 
frameworks in England and the United States are 
compared and contrasted.

The English Approach

In England and Wales, the historical context of 
surrogate decision making lies in the parens patriae 
jurisdiction. This jurisdiction, which still exists for 
children, places an obligation on the state to pro-
tect its most vulnerable citizens. With the passing 
of mental health statutes, this jurisdiction fell into 
desuetude and was replaced nearly two decades 
ago, in the landmark case of Re F [1990], by the 
best-interests principle. Since 1990, the conceptu-
alization of best interests in the common law has 
shifted from medical interests, defined objectively, 
to those relating to patients’ broad welfare, defined 
subjectively.

The introduction of the Mental Capacity Act of 
2005 (MCA) formalized the surrogate decision-
making process and codified the best-interests 
principle for “acts in connection with the care or 
treatment” of incompetent adults. Reflecting devel-
opments in the common law, the MCA provides a 
“best-interests checklist” that requires healthcare 
practitioners to consider

whether competence will be regained and, if so,  •
when;
whether the person can be permitted and  •
encouraged to participate in the decision-making 
process regardless of incompetence;
the person’s past and present wishes, feelings,  •
beliefs, and values;
the views of other people who are deemed  •
practicable and appropriate to consult; and
all other circumstances deemed to be relevant. •

Healthcare practitioners must, therefore, incor-
porate a range of objective and subjective evidence, 
grounded in the specific decision that is being con-
sidered, and based on consultation with individu-
als in a position to provide advice on patients’ 
preferences. While family members should expect 
to be consulted, no surrogate or guardian is 
appointed, and the process of weighing a range of 
evidence to make the final decision lies with 
healthcare practitioners themselves.

The best-interests checklist approach represents 
an amalgamation of both the best interests and 
substituted judgment principles and is accompa-
nied by additional safeguards for surrogate deci-
sion making in relation to medical matters. These 
include lasting powers of attorney, advance deci-
sions to refuse treatment (the adherence to which 
by a surrogate decision maker is mandatory), 
advance statements (which are designed to provide 
a rich source of evidence about a person’s treat-
ment preferences but the adherence to which is not 
mandatory), and restricted decisions (such as the 
withdrawal of artificial hydration and nutrition 
from patients in a persistent vegetative state, non-
therapeutic sterilization, and tissue donation), 
which can only be made by a court.

The U.S. Approach

In the United States, aspects of surrogate deci-
sion making are regulated in state law, and this 
process has become recognized as a way of uphold-
ing the protected liberty interests of U.S. citizens to 
receive beneficial medical treatment under the 
14th Amendment of the U.S. Constitution.

In contrast to English law, the incompetent 
patients’ next of kin have been accorded a key role. 
Following the landmark judgment In re Quinlan 
by the New Jersey Supreme Court in 1976, numer-
ous state courts have drawn on the substituted 
judgment principle when no advance directive 
exists. While procedures differ markedly across 
different states, hierarchies for family members 
who should be appointed as surrogates have devel-
oped, and the decisions made by the individual(s) 
appointed are binding.

For incompetent patients whose preferences are 
judged unable to be known because, for example, 
they have lifelong and profound disabilities or 
when no appropriate surrogates are available, the 
best-interests principle has formed the basis of reg-
ulation. Acting in the best interests of incapacitated 
patients requires medical practitioners to exercise 
their judgment and expertise, with subjective fac-
tors being excluded as unreliable or unknowable.

The Empirical Validity of Ethical Principles

Recently, there has been increased interest in 
exploring surrogate decision making empirically, 
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with quantitative and qualitative studies examin-
ing the empirical validity of substituted judgment 
and best interests. These empirical studies have 
produced findings that problematize the conceptu-
alization of surrogate decision making in law and 
ethics.

Empirical studies of the operation of the substi-
tuted judgment principle in practice have shown 
that there is little concordance between patients’ 
wishes and the substituted judgments of family 
surrogates and doctors in a number of medical 
treatment scenarios. The reasons for surrogates 
and doctors predicting patients’ treatment prefer-
ences incorrectly are explained on the basis of the 
liability for these preferences to change substan-
tially over time and the family dynamics and stress 
associated with the responsibility of making deci-
sions on behalf of loved ones.

Empirical studies of the operation of the best-
interests principle in practice have confirmed that 
surrogate decision makers believe that their per-
sonal values and interests are important and rele-
vant to the decisions that they make, challenging 
the possibility of their being able to ground their 
decisions in objective and subjective evidence relat-
ing to incompetent patients’ lives only. It is also 
clear that familial influences in assessments of the 
“best” course of action are often underappreci-
ated, particularly in cross-cultural contexts. In 
Pakistani culture, for example, it has been shown 
that an individual’s wishes and values are seen as 
synonymous with those of his or her family and 
that it is common for healthcare practitioners to be 
placed in the role of a family member.

In practice, the formal legal duty to follow the 
best-interests checklist under English law will likely 
facilitate deliberation about the pros and cons 
of the treatment options available, but not help 
to determine the “best” outcome. While medical 
practitioners are obliged to obtain a range of objec-
tive and subjective evidence relating to the patient 
and the decision at hand, there is no guidance 
about the weight that should be given to different 
evidence.

Moving Forward

Attempts to both do justice to the ways that sur-
rogate decisions are made in practice and to ensure 
that these decisions can be defended ethically have 

led to a reconsideration of the principles that 
should frame surrogate decision making on the 
basis of empirical data. Largely, this has involved 
reformulating surrogate decision making around a 
situated and relational approach, with calls for 
narrative engagement that aims to preserve the 
dignity and identity of the individual and with the 
incorporation of community norms to contextual-
ize a broad range of relevant factors.

With regard to the regulation of surrogate deci-
sion making, there have been parallel calls for an 
approach built on legal pragmatism rather than 
legal formalism. A pragmatic interpretation would 
recognize that (a) surrogate decision making is a 
practical experiment; (b) surrogate decisions are 
made on the basis of a range of information much 
of which is likely to be limited, conflicting, and 
emotive; and (c) the decisions that are made may 
lead to a range of outcomes, many of which might 
be ethically defensible.

Michael Dunn

See also Advance Directives and End-of-Life Decision 
Making; Decision-Making Competence, Aging and 
Mental Status; Decisions Faced by Hospital Ethics 
Committees; Decisions Faced by Surrogates or Proxies 
for the Patient, Durable Power of Attorney; Informed 
Consent
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Survival analySiS

Survival analysis is the analysis of time-to-event 
data. The event may be death (hence the term sur-
vival), or it may be some other event such as can-
cer recurrence or a stroke. In engineering, when 
analyzing mechanical failures, the topic is known 
as reliability analysis. Although these methods are 
traditionally used for time-to-event data, they are 
also applicable to other types of data, for example, 
the total amount paid due to an accident. As with 
many statistical methods, there are parametric 
and nonparametric methods for survival analysis. 
Parametric models assume that the data come 
from some parametric distribution such as the 
normal distribution, which is defined by two 
parameters, the mean and the standard deviation. 
Nonparametric models do not assume a given 
parametric distribution.

Data have

 1. a density function: f(t) for t ≥ 0, the probability 
of the event at time t;

 2. a cumulative distribution function: 
FðtÞ=

Z t

0
f ðtÞdt;  the probability of the event 

before time t;

 3. a survival function: S(t) = 1 − F(t), the 
probability of surviving (event-free) until time t;

 4. a hazard function: λ(t) = f(t)/S(t), the probability 
of the event at time t given survival until time t 
(may also be denoted h(t));

 5. a cumulative hazard function: 
LðtÞ=

Z t

0
lðtÞdt= ln SðtÞ (may also be denoted 

H(t));

 6. mean survival time:
 

Z ∞

0
tf ðtÞdt;

 7. median survival time: tmed such that S(tmed) = .5.

As usual in statistics, the density function is 
non-negative and the integral from 0 to ∞ is 1, the 
cumulative distribution function ranges from 0 to 
1, and the survival function ranges from 1 to 0.

Caution should be exercised as to the choice of 
time 0. If the event of interest is survival after a clini-
cal procedure, then t = 0 is the time of that procedure. 
For individuals randomized into a clinical trial, t = 0 
is often the date of randomization. The start of the 
study is not appropriate as a t = 0 for individuals who 
enter the study after the starting date.

As an example (of a parametric distribution), 
suppose the event data have an exponential distri-
bution, f(t) = λ e−λt. Remember that this is the distri-
bution of event times. The density function, f(t), for 
the exponential distribution is monotone, decreas-
ing with its highest value, λ, at t = 0. The cumula-
tive distribution function is then F(t) = 1 − e−λt, the 
survival function S(t) = 1 − F(t) = 1 − 1 + e−λt = e−λt, 
the hazard function λ(t) = f(t)/S(t) = λ e−λt/e−λt = λ (a 
constant), and the cumulative hazard function  

Λ(t) = λt; the mean survival time is 
Z ∞

0
tl e− lt dt 1=l; 

and the median survival time is ln(2)/λ. The expo-
nential distribution was one of the first distribution 
functions used as the calculations are reasonably 
straightforward. It is thought that some manufac-
tured items such as light bulbs have an exponential 
distribution for their failure times. However, it is 
now recognized that a constant hazard function 
may be too restrictive. Also, with the advent of 
readily available cheap computing, models are no 
longer chosen for computational simplicity.

Parametric survival analysis assumes a paramet-
ric distribution for the density function such as the 
exponential distribution described above. Other 
density functions frequently used for survival 
analysis include the Weibull, Gamma, normal, and 
lognormal density functions.

Often, one does not want to assume a particu-
lar parametric distribution. Therefore, nonpara-
metric analyses are desired. If one has complete 
data on n people or objects of interest, that is, you 
know the event time ti, i = 1,  . . . , n, for all n obser-
vations, the survival function is simply a step 
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function starting at 1 (at time 0), which drops by 
1/n at each of the event times until it reaches 0 at 
the last event time. For simplicity, let the distinct 
event times be 0 ≤ t1 < t2 <  . . .  < tn and the number 
at risk be n1 = n, n2 = n − 1,  . . . , ni = n − i + 1,  . . . , 
nn = n − n + 1 = 1. The survival function can be 
written as

SðtÞ=
Y

tj ≤ t

ðnj − 1Þ=nj:

Note that the symbol 
Y

tj ≤ t  means the product 
of terms indexed by j, where tj ≤ t. As an example, 
suppose there are 10 observations. At the first 
event time t1, there are 10 people at risk, and there-
fore, the survival function at the first event time is 
9/10 (only t1 is less than or equal to t1). At the sec-
ond event time t2, there are 9 people at risk, and 
the survival function is (9/10)(8/9) = 8/10 (here t1 
and t2 are the only times less than or equal to t2). 
If there are multiple events at a given time, then let 
the k distinct event times be 0 ≤ t1 < t2 <  . . .  < tk, 
the number of events at ti equal di, and the number 
at risk (just prior to ti) be equal to ni. The survival 
function then drops by di/n at each event time and 
can be written as

 

SðtÞ=
Y

tj ≤ t

ðnj − djÞ=nj: (1)

Often, one does not have complete data, as 
some observations are censored. Observations 
may be censored for many reasons (such as the 
study ended but a participant had not yet experi-
enced the event of interest or a participant is lost 
to follow-up). What is known is that the event 
time is at least some value (such as the time to the 
end of the study or the time last observed free of 
the event of interest). In addition to the event or 

censored times, ti, one observes an indicator vari-
able Ii, where Ii = 1 for an observed event and Ii = 
0 for a censored observation. The number at risk, 
ni, remains the same; however, the survival func-
tion only changes at event times, not at censored 
observations. The survival function is then

 

SðtÞ=
Y

j:tj ≤ t and Ij = 1

ðnj −djÞ=nj:  (2)

Here, it should be noted that 
Y

j:tj ≤ t and Ij = 1  means 
the product of terms indexed by j such that tj ≤ t 
and Ij = 1; that is, the product includes terms 
whose event time is less than or equal to t (and 
only includes j such that tj is time to an event, not 
a censoring time). Equation 2 is known as the 
Kaplan-Meier estimate or product-limit estimate 
of the survival function. Note that the mean sur-
vival time cannot be calculated unless S(tn) = 0. 
Therefore the median survival time is often reported 
if it exists.

As an example, suppose the data in the table 
below are observed for 10 participants. It is pos-
sible to calculate a standard deviation for the 
Kaplan-Meier estimate using Greenwood’s for-
mula. Also, the log-rank test may be used to com-
pare two or more survival functions calculated 
using Kaplan-Meier estimates.

Although Kaplan-Meier estimation has been 
used for 50 years, an older nonparametric method 
of survival analysis has been in use for a century 
or more. It is known as life table analysis and has 
been used extensively in demography and actuar-
ial science. The exact lifetime or censoring time 
(withdrawal time) of a given individual is 
unknown, only that the event or withdrawal 
occurred within a given interval of time (e.g., 
month or year). The survival function is then 

Observation 1 2 3 4 5 6 7 8 9 10

ti 3 5 8 11 12 17 20 30 30 30

Ii 1 0 0 1 0 0 1 0 0 0

ni (at risk) 10 9 8 7 6 5 4 3 2 1

S a a a b b b c c c c

Note: a = 9/10, b = (9/10)(6/7), c = (9/10)(6/7)(3/4).
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calculated as a series of probabilities of survival 
of each interval, given that one has survived to the 
beginning of the interval.

Parametric models may be estimated with com-
plete or censored data by using the appropriate 
likelihood function. However, it should be noted 
that parameter estimates and inferences may not 
be robust to departures from the parametric 
assumptions. This is the reason why most survival 
analyses of medical data are based on nonparamet-
ric methods.

The next step in survival analysis is often  
the incorporation of additional information in the 
form of covariates such as gender, age, comorbidi-
ties, cancer stage, and so on. For parametric mod-
els, the parameters are often modeled as a function 
of one or more covariates. There are no strictly 
nonparametric methods to incorporate covariates. 
However, a semiparametric method is available if 
one assumes that the hazard function includes 
covariates. For example, if the hazard function is 
equal to

λ(t) = λ0(t)e
b′X,

where λ0(t) is an unspecified hazard function and 
b′ a vector of parameters for the vector X of cova-
riates (which may or may not depend on t), you 
have Cox’s proportional hazard model. It should 
be noted that some parametric models (e.g., 
Weibull and exponential) are themselves propor-
tional hazard models.

Carol L. Link

See also Cox Proportional Hazards Regression; 
Likelihood Ratio; Log-Rank Test
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Tables, Two-by-Two 
and ConTingenCy

Contingency tables are used in medical research to 
organize summary data from research studies. The 
data are arranged in columns and rows according 
to two or more categorical variables. The term 
two-by-two (2 × 2) table is used to describe the 
specific contingency table that compares two 
dichotomous categorical variables and thus has 
two columns and two rows of data. Contingency 
tables are also sometimes called row-by-column 
tables, or R-by-C tables for short. Contingency 
tables efficiently display summary data about two 
or more categorical variables. A variety of statisti-
cal tests can be quickly calculated with the data 
contained in a contingency table.

Structure

The “classic” 2 × 2 table will have a dichotomous 
outcome variable labeled at the top of the two 
columns and a categorical exposure variable 
labeled to the left of the two rows. A typical struc-
ture for a 2 × 2 table is shown in Table 1.

As in Table 1, rows and columns are typically 
summed individually with the totals entered into 
extra cells to the right and to the bottom of the 
table. Care must be taken when analyzing 2 × 2 
tables because the rows and columns may be orga-
nized differently by different researchers (i.e., the 
first column may contain patients with disease in 

one study but might contain patients without dis-
ease in another study).

Application

Contingency tables are an efficient means for 
quickly summarizing the association between an 
independent and a dependent variable. Contingency 
tables are used extensively in epidemiological stud-
ies and are very popular for case-control studies. In 
addition, contingency tables can be used to evalu-
ate the predictive ability of medical tests. The gold 
standard for the presence or absence of disease can 
be compared with the dichotomous result of a new 
medical test using the same format as in the first 
example. In this way, sensitivity, specificity, posi-
tive predictive value, and negative predictive value 
can be quickly calculated with the data in this 
table. These characteristics of medical tests form 
the backbone of medical decision making sur-
rounding medical tests (i.e., Which test is most 
important for screening? Which test is most appro-
priate as a confirmation test?).

Contingency tables can also be used to calculate 
odds ratios, relative risks, kappa statistics, chi-
square statistics, Fisher’s exact test, McNemar’s 
test, and so on.

Example

Table 2 shows a silly, hypothetical example that 
uses a 2 × 2 table to display the results of a study. 
A researcher develops a theory that the mechanical 

T
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vibrations experienced by school-age children 
while skipping rope cause microtrauma to the 
brain, which could increase the risk of Alzheimer’s 
disease in old age. The researcher performs a 
case-control study in which she asks Alzheimer’s 
patients and control patients if they had ever 
skipped rope as a child. The results reveal that 38 
out of 100 Alzheimer’s patients and 22 out of 
100 control patients report a history of skipping 
rope. The results of this study are reported in 
Table 2.

The odds ratio can be easily calculated using the 
cross products from the 2 × 2 table:

Odds ratio = (a × d)/(b × c) 
 = (38 × 78)/(22 × 62) = 2.17

The odds ratio indicates that the Alzheimer’s dis-
ease patients were 2.17 times more likely to have a 
history of skipping rope than the control patients.

Calculating a relative risk from this study would 
not be appropriate because of the case-control 

Table 2  Example 1: Case control of Alzheimer’s disease

Alzheimer’s Patients Controls Totals

History of skipping rope
38
(a)

22
(b)

60
(a  + b)

No history of skipping 
rope

62
(c)

78
(d)

140
(c + d)

Totals
100

(a + c)
100

(b + d)
200

(a + b + c + d)

Table 1  Structure of the traditional 2 × 2 table

  Outcome

Developed Disease Did Not Develop Disease Totals

Exposed A

Number of exposed 
patients who 
developed disease

B

Number of exposed patients who  
did not develop disease

A  + B

Total number of 
exposed patients

Not exposed C

Number of 
unexposed patients 
who developed 
disease

D

Number of unexposed patients who 
did not develop disease

C + D

Total number of 
unexposed patients

Totals

A + C

Total number of 
patients with disease

B + D

Total number of patients without disease

A + B + C + D

Total number of 
patients in the study
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design and high frequency of exposures in both 
groups. Even though it’s not plausible, if we 
assume for the moment that the data in Table 2 
were somehow collected in a prospective fashion, 
then we can calculate the relative risk. The relative 
risk is defined as the proportion of people who 
develop the disease among the exposed divided by 
the proportion of people who develop the disease 
among the unexposed:

Relative risk = (a/(a + b))/(c/(c + d)) 
 = (38/60)/(62/140) = 1.43.

A relative risk of 1.43 would indicate that chil-
dren who skip rope are 43% more likely to develop 
Alzheimer’s disease later in life than children who 
do not skip rope.

Continuing with our example, the researcher 
decides that the categorical variable for “skip-
ping rope” may not be adequately discriminating 

patients according to exposure. She decides to 
repeat the survey and asks more detailed ques-
tions about the exposure to skipping rope. 
Patients are then stratified into the following 
rope-skipping categories: none, low to moderate, 
and excessive. The new data are reflected in 
Table 3, which would now be called a 3 × 2 con-
tingency table.

A colleague points out to the researcher that the 
risk of dementia increases with age and suggests 
that age might confound any associations that are 
observed between Alzheimer’s disease and a history 
of skipping rope. Data for matched case-control 
studies are generally entered into 2 × 2 tables as 
pairs of data, as described in the following example: 
The researcher decides to match each of the cases 
to a single control patient of the same age. The 
results are the same as the first example and reveal 
that 38 out of 100 Alzheimer’s patients have a his-
tory of skipping rope compared with 22 out  

Table 3  Example 2: Skipping rope

Alzheimer’s Patients Controls Totals

Excessive skipping 
rope

16 11 27

Low to moderate 
skipping rope

22 11 33

No history of skipping 
rope

62 202 264

Totals 100 224 324

Table 4  Example contingency table from a matched case-control study

Matched Controls

History of Skipping Rope No History of Skipping Rope Totals

Matched 
cases

History of 
skipping rope

 8
A (concordant pairs)

30
B (discordant pairs)

 38

No history of 
skipping rope

14
C (discordant pairs)

48
D (concordant pairs)

 62

Totals 22 78 100

Note: Each cell in this table refers to “pairs” of patients. For instance, cell “A” has 8 pairs of patients, or 16 patients.
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of 100 control patients. These numbers have been 
entered into Table 4. With the original information 
given, we can only fill in the totals of each row and 
column. Detailed information about the exposures 
of each pair of patients would be required to fill in 
the rest of the table. For instance, a matched pair in 
which the case had a history of skipping rope and the 
control had no history of skipping rope would be 
counted in Cell B of the table (note that Cell B = 8, 
which represents 8 pairs of patients, or a total of 16 
patients). Let’s assume that the study obtained the 
results entered into Table 4.

We could try to determine if the cases and con-
trols had statistically different historical exposures to 
skipping rope using the McNemar chi-square test:

The McNemar statistic (χ2) = (b − c)2/(b + c)  
= 5.81, p = .016.

These results indicate that there is only a 1.6% 
chance that the difference observed between skip-
ping rope and Alzheimer’s disease occurred by 
chance.

Brian J. Wells

See also Basic Common Statistical Tests: Chi-Square Test, 
t Test, Nonparametric Test; Bayes’s Theorem; Case 
Control; Diagnostic Tests

Further Readings

Berger, R. L. (2003). Exact unconditional tests for a  
2  × 2 matched-pairs design. Statistical Methods in 
Medical Research, 12, 91–108.

Gordis, L. (2004). Epidemiology. Philadelphia:  
W. B. Saunders.

Haviland, M. G. (1990). Yates’s correction for continuity 
and the analysis of 2 × 2 contingency tables. Statistics 
and Medicine, 9, 363–367.

Pezzullo, J. C. (2005, April). Contingency tables, cross-
tabs, chi-square tests. Retrieved May 2, 2008, from 
http://statpages.org

Richardson, J. T. (1994). The analysis of 2 × 1 and 2 × 2 
contingency tables: An historical review. Statistical 
Methods in Medical Research, 3, 107–133.

Rigby, A. S. (2001). Statistical methods in epidemiology. 
VII. An overview of the chi2 test for 2 × 2 contingency 
table analysis. Disability and Rehabilitation, 23,  
693–697.

TeaChing diagnosTiC 
CliniCal Reasoning

Most medical students in the United States are not 
systematically taught clinical reasoning with the 
same rigor as they are taught the medical inter-
view and physical examination. Despite the  
exponential growth of interest in evidence-based 
medicine, the integration of such inquiries into 
clinical reasoning with individual patients remains 
a relatively weak link.

Diagnostic strategies of inexperienced medi-
cal students frequently begin with an exhaustive  
collection of data, whereas expert clinicians use 
multiple complex “scripts” gained through reflec-
tion on clinical experience. Experts test a limited 
number of hypotheses starting early in the inter-
view and move quickly to closure, sometimes with 
inappropriately heavy reliance on the clinical labo-
ratory. Yet if the laboratory is routinely used to 
rule out improbable diagnoses without estimating 
pretest probability, the odds of missing serious 
diseases with false-negative tests, as well as giving 
people inaccurate diagnoses based on false-positive 
results, are significantly increased.

The case of Mrs. B is used throughout this entry 
for illustrative purposes: Mrs. B was a 40-year-old 
woman who presented to the emergency depart-
ment with substernal chest pressure radiating to 
her neck associated with shortness of breath, pal-
pitations, numbness in her hands and lips, and a 
feeling of impending doom. She smoked one pack 
per day, and her father had his first myocardial 
infarction (MI) at age 55. Other than a heart rate 
of 104, her physical examination was normal, as 
was her initial electrocardiogram. Her admitting 
diagnoses were rule-out MI and rule-out pulmo-
nary embolism.

Initial Diagnostic Approaches

Table 1 summarizes the four most common diag-
nostic approaches used by clinicians at various 
levels of training. In traditional medical school 
curricula, beginning students are taught to conduct 
an exhaustive review of a patient’s medical history 
and physical examination before initiating clinical 
reasoning.
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In our illustrative case, Mrs. B’s past medical 
history included several emergency department 
visits during her early 20s for similar chest pain 
that defied diagnosis. Her younger sister was both-
ered by “anxiety attacks.” An exhaustive review of 
systems uncovered a feeling of unreality and terror 
during the episode. These data were in the medical 
student note, unread by the rest of the team.

Experienced clinicians quickly recognize pat-
terns of symptoms and signs that mirror previously 
seen pictures of disease. For example, Mrs. B’s 
attending physician knew that coronary artery dis-
ease is frequently underdiagnosed in women and 
thought that her pattern and risks fit reasonably 
well. No one on the team matched the pattern of 
her presentation with panic disorder, so it was not 
initially considered.

Multiple branching algorithms have been pro-
posed for exploring and evaluating common clini-
cal problems such as chest pain in the emergency 
department. Here, the clinician asks a series of yes/
no questions where the answer determines the next 
step, usually based on the best available clinical 
evidence for populations of similarly situated 
patients. In the example above, Mrs. B was placed 
on “rule out MI” and “rule out pulmonary embo-
lism” algorithms based on her presentation with 
substernal chest pain. Troponins were drawn, a 
ventilation-perfusion scan was ordered, and she 
was tentatively scheduled for an exercise tolerance 
test. No estimate of pretest probability for either 
diagnosis was in the chart. Her ventilation- 
perfusion scan was “low probability.” Her stress 
test showed minor nonspecific flattening of her T 
waves at an excellent rate-pressure product.

The validity, accuracy, and efficiency of the 
hypothetico-deductive approach improve with 
knowledge and experience. Clinicians using this 
method are actively listening and looking for pat-
terns that “fit” with clinical presentations that 
they recognize. Experienced clinicians store large 
numbers of scripts against which a patient’s pre-
sentation is rapidly tested, moving to closure 

quickly using a mix of symptoms, signs, epidemiol-
ogy, pattern recognition, and algorithms. For 
example, Mrs. B’s physicians entertained two main 
hypotheses based on what they thought was most 
life threatening, but they did not explicitly estimate 
the probability of coronary artery disease or  
pulmonary embolism. If they had considered the 
underlying epidemiology of chest pain in 40-year-
old women and Mrs. B’s atypical associated symp-
toms (feeling of depersonalization, past history of 
similar episodes in her 20s, family history of anxi-
ety attacks), other diagnoses such as panic disorder 
might have been considered.

A Six-Step Approach to Teaching  
Probabilistic Clinical Reasoning

Table 2 outlines a six-step approach to teaching 
diagnostic clinical reasoning that formally inte-
grates the hypothetico-deductive approach and 
evidence-based medicine. Although diagnostic 
accuracy frequently depends on substantial base-
line knowledge and experience, being explicit 
about the process of probabilistic reasoning over 
time will improve decision making for all levels  
of clinicians. This six-step process is often used to 
teach and evaluate undergraduate medical students 
throughout all 4 years, and the same strategy is 
used to teach internal medicine and family medi-
cine residents, especially during attending rounds 
and the morning report. In addition, experienced 
clinicians can use the same method when con-
fronted with a challenging clinical problem.

Step 1: Generate a Problem List

Care should be taken in the selection of accurate 
names for problems. For example, “chest pain” 
describes a symptom with an uncertain cause, 
whereas “angina” clearly implicates a diagnostic 
etiology. This problem list should be exhaustive and 
multidimensional, including all “loose ends.” The 
problem list may include symptoms, physical find-
ings, laboratory abnormalities, past diagnoses, 
salient psychosocial problems, and family history. 
The challenge is to provide the reader of the medical 
record a chance to rethink the diagnosis based on 
unique ways of putting the constellation together.

Mrs. B’s problem list might have included an 
acute episode of chest pain, shortness of breath, 

Table 1  Initial diagnostic approaches

Exhaustive review of history and physical exam
Pattern recognition (Gestalt)
Multiple branching (arborization)
Hypothetico-deductive
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palpitations, numbness in the hands and lips, and 
feelings of terror and impending doom. The list 
would also include a one-pack-per-day smoking 
and a family history of coronary artery disease (in 
her father), as well as a history of similar episodes 
in her early 20s and a family history of anxiety 
attacks (in her sister).

Step 2: Brainstorm Diagnostic  
Possibilities Around Major Problem(s)

Critical thinking is put aside, and any ideas 
about what could explain the patient’s main 
problem(s) are encouraged. Loose ends from the 
problem list should be reviewed to see if any new 
ideas emerge. Both common and rare conditions 
should be considered, as well as biomedical and 
psychosocial explanations.

The clinicians caring for Mrs. B were most wor-
ried about coronary artery disease and pulmonary 
embolism, but they considered no other possibilities. 
A brainstorm might have added a variety of rela-
tively common (musculoskeletal pain, panic attack, 
pericarditis) as well as relatively rare (dissecting aor-
tic aneurysm, pheochromocytoma) conditions.

Step 3: Place General Probabilities on Diagnoses

Goodness of fit of the patient’s presentation to 
typical disease patterns and knowledge of basic 
epidemiology should play major roles in determin-
ing probabilities. From the original brainstorm list, 
diagnoses should be divided into those that are 
“likely” (best fit), “possible” (could fit), and “very 
unlikely” (do not fit well at all). The “very 
unlikely” group should be temporarily set aside, 
and actual probabilities should be placed on the 
“likely” and “possible” diagnoses so that the total 
of all probabilities equals 100%. An attempt 
should be made to achieve a consensus among 

participants about the probabilistic range for each 
possible diagnosis using the best available clinical 
and epidemiologic evidence.

Both coronary artery disease and pulmonary 
embolism would be considered both “possible” 
and “worrisome,” yet other possibilities should 
have been considered. The characteristic pattern of 
panic attacks along with the genetic and gen-
der predisposition made this diagnosis likely. 
Musculoskeletal chest pain is also very common 
but could not explain many of this patient’s symp-
toms. Lack of physical and laboratory findings 
(and relative rarity) made pericarditis, pheochro-
mocytoma, and aortic dissection very unlikely. 
Given her clinical presentation, the probabilities 
might have been panic attack (60%), unstable 
angina (20%), pulmonary embolism (10%), and 
musculoskeletal pain (10%).

Step 4: Decide on Probabilistic  
Thresholds for Action (or Inaction)

All diagnoses in the “likely” group should be 
ruled in or out if possible. Those that are in the 
“possible” category should be worked up if life 
threatening or if making a firm diagnosis would 
decisively change management. If a diagnosis is 
only “possible” and the consequences of delay in 
diagnosis are not significant, the natural history of 
the disease might determine the diagnosis through 
watchful waiting. Potentially serious but “very 
unlikely” diagnoses should not be worked up 
unless the probabilities change based on subse-
quent information.

In Mrs. B’s case, panic attack should clearly be 
ruled in since it was the most “likely” diagnosis 
and not making the diagnosis can have serious 
consequences. Coronary artery disease and pulmo-
nary embolism were “possible,” but the conse-
quences of missing these diagnoses can be lethal, 

Table 2  A six-step approach to probabilistic clinical reasoning

Step 1: Generate a problem list
Step 2: Brainstorm diagnostic possibilities around major problem(s)
Step 3: Place general probabilities on diagnoses
Step 4: Decide on probabilistic thresholds for action (or inaction)
Step 5: Select areas for further inquiry (history, physical exam, diagnostic tests)
Step 6: Act once thresholds are achieved
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so they needed to be ruled out. Musculoskeletal 
etiologies were also “possible,” but these can be 
managed by watchful waiting since the conse-
quences of delay in diagnosis would be minor. 
Pericarditis, aortic dissection, and pheochromocy-
toma were all “worrisome” but “very unlikely” 
and would not be worked up at this time.

Step 5: Select Areas for Further Inquiry

The goal of further inquiry is to reduce diagnos-
tic uncertainty and to cross a threshold toward 
effective action or inaction. Clinicians should learn 
to think out loud and justify why further inquiry 
will help them make a more accurate diagnosis. 
Inquiry may involve gathering more information 
from the history, the physical examination, the 
diagnostic test(s), a therapeutic trial, or watchful 
waiting.

The key to ruling in the most likely diagnosis of 
panic disorder would have been to further explore 
the history of the prior attacks in the early 20s and 
the family history of anxiety disorders. Concurrent 
stresses and exposure to stimulant medications, 
alcohol, or drugs might also have been explored. 
Even with this additional information, coronary 
artery disease or pulmonary embolism would not 
have gone below the threshold to be ruled out. 
However, the low pretest probability of pulmonary 
embolism (10%) in conjunction with a ventilation-
perfusion scan interpreted as “low probability” 
took this diagnosis below the threshold for further 
workup of pulmonary embolism. Similarly, the 
low pretest probability of coronary artery disease 
(20%) combined with the relatively negative stress 
test took Mrs. B below the threshold for further 
workup of coronary artery disease.

Step 6: Act Once Thresholds Are Achieved

This step illustrates the interface between clini-
cal reasoning and clinical judgment. Most diagno-
ses are not 100% certain; so even with a “highly 
likely” diagnosis, clinicians should rethink proba-
bilities if unexpected changes occur. It is wise to 
track a patient’s problem list and loose ends and 
keep an open mind to the unexpected. Finally, the 
patient’s values and preferences should be taken 
into account before making any significant clinical 
intervention.

Mrs. B had a very high likelihood of having 
panic disorder, and her chances of significant coro-
nary artery disease or pulmonary embolism became 
“very unlikely.” She was given information about 
the diagnosis and treatment of panic disorder  
and of the potential consequences if it were left 
untreated (phobias, depression, hypochondriasis, 
iatrogenic problems, suicide attempts). The clini-
cian felt that the diagnosis was highly likely  
(95%) but worried about how to stay alert about 
the 5% chance that something else was causing the 
disorder.

Potential Pitfalls to Good Clinical Reasoning

Table 3 outlines several pitfalls that frequently 
undermine good clinical reasoning, and some 
questions to counteract them. Premature closure is 
one of the most common. In Mrs. B’s case, the 
mention of chest pain led to exclusive inquiries 
directed toward coronary artery disease and pul-
monary embolism without considering other pos-
sibilities. A variant of this pitfall is to consider only 
one (or two) hypothesis at a time. These two diag-
noses, while both serious, only had a cumulative 
probability of 30%, begging the question about 
what makes up the remaining 70%.

Errors frequently stem in part from clinicians 
overly shaping the patient’s story. The mention  
of chest pain, especially in the emergency depart-
ment, frequently leads to a highly structured, 
physician-controlled inquiry about specific symp-
toms to rule in or out potentially lethal diagnoses. 
This approach may cause the physician to miss 
relevant historical data crucial in establishing a 
more accurate diagnosis. A related phenomenon  
is the tendency to overestimate the probability of 
worrisome diagnoses, confusing likelihood with 
clinical concern.

Another potential error is physician-driven end-
less inquiry without decisions, leading to a cascade 
of potentially inappropriate decisions. In Mrs. B’s 
case, the minor nonspecific T-wave changes on her 
treadmill test might have led to a stress thallium test 
and/or a cardiac catheterization, each of which 
might have had nonspecific findings of uncertain 
significance. Unless one thinks probabilistically and 
simultaneously attempts to rule in the most likely 
diagnosis, there is potential to overinterpret these 
nonspecific findings, leading to a false-positive 
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diagnosis. Moving down such a path might involve 
ignoring data that do not fit, such as the full con-
stellation of symptoms consistent with panic attack, 
as well as past episodes and family history.

If the physician had recently seen a young 
female patient with coronary artery disease, he or 
she may overemphasize recent experience (recall 
bias) and overestimate the statistical risk of coro-
nary artery disease in this patient. Finally, if this 
patient had falsely been given a diagnosis of coro-
nary artery disease, the next time she presented, 
there might be an overreliance on prior diagnoses 
or tests. The parts of her story that did not fit 
would be ignored, labeling her clinical situation as 
a treatment failure rather than a wrong diagnosis. 
Healthy skepticism and a need to independently 
reconfirm prior diagnoses are the basic skills of 
experienced clinicians.

Continued clinical curiosity about how to 
account for a patient’s unique experience (includ-
ing the elements that do not seem to fit) in the 
context of medical diagnostic models, pathophysi-
ology, epidemiology, and probability is essential. 
Using one’s clinical experience while at the same 
time maintaining the openness of a beginner’s 
mind is an ongoing challenge, and it is sometimes 
helpful if there are a few beginners in the group 
thinking through the problem. Reasoning through 
this six-step process with students and colleagues 

is good practice for eventually sharing one’s think-
ing as transparently as possible with patients and 
their families.

Timothy E. Quill, Nancy S. Clark, 
Kathryn Markakis, Ronald Epstein, 
Donald Bordley, and Robert Panzer

See also Diagnostic Process, Making a Diagnosis; 
Diagnostic Tests; Differential Diagnosis; Errors in 
Clinical Reasoning; Hypothesis Testing; Probability 
Errors; Problem Solving
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Table 3  Some pitfalls to good clinical reasoning

Pitfall Counterbalancing Questions

Premature closure 

Considering only one hypothesis at a time 

Overly shaping the patient’s story 

Overestimating the probability of 
worrisome diagnoses

Endless inquiry without decisions, leading 
to a cascade of diagnostic tests

Ignoring data that do not fit

Overemphasis on recent experience  
(recall bias)

Overreliance on prior diagnoses or tests

Do we have a complete accounting of the patient’s history? What 
else might cause this picture?

Let’s think of two or three other diagnoses that might explain this 
patient’s problem.

Let’s go over your experience one more time. Please let me know 
if I do not have it right.

Let’s try to separate what we are most worried about from what is 
most likely.

What are you going to do differently with the results of the next 
test?

Which data do not fit? What possibilities do they raise?

Have you seen a patient with a similar presentation in the past? 
What did you learn from that case?

Let’s review the primary data that led to this prior diagnosis. How 
certain are we that it is accurate?
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Team dynamiCs and gRoup 
deCision making

Individuals make decisions differently in teams 
than they do on their own. Some of these changes 
are improvements. Teams are more likely to bring 
different perspectives to the table. Sometimes, 
however, they can make decision making worse. 
An extensive literature exists on team building.

Within medical decision making, this literature 
has been applied to understanding how to improve 
clinical performance within teams. Particular atten-
tion has been devoted to performance improvement 
and eliminating preventable errors. Although this 
literature began with the study of individual cogni-
tion and performance, there has been increasing 
recognition that care is provided by multiple pro-
viders, working in formal or informal teams. Within 
institutions, care must be handed off; issues of com-
munications and the transfer of information are 
thus critical. One element is the need to back up this 
communication with documentation, for which 
electronic tools can be valuable. Another question 
is regarding who can be considered a member of the 
team. The literature about shared decision making 
between patients and providers can thus be consid-
ered an aspect of team decision making.

This entry discusses several aspects of teams and 
team building, including the key principles; ele-
ments for the formation of effective teams, success-
ful team functioning, and effective meetings; and 
types of team members. The entry also addresses 
common problems and the importance of trust. 
Finally, the entry applies teams and team building 
to medical care.

Key Principles

The literature on teams and team building suggests 
key principles, which may be easier or harder to 
achieve in practice:

The team must have a leader who is responsible  •
for the outcomes expected of the team, although 
an effective leader will rely on the team itself to 
work together to deliver these results.
The team must be focused on quantifiable goals  •
so that the members have a very clear idea of 
what they’re trying to achieve.
The team must have clearly defined roles, so that  •
every member of the team knows exactly what 
he or she must do on a daily basis to avoid 
crossovers and cross-purposes.
The team must be willing to share the resources  •
under its control—talent and money—so that the 
team can achieve its goals.
The team must establish good communication;  •
that is, it must be frequent and effective. 
Frequency is fairly easy to achieve; effectiveness 
is far more difficult but required.
The team must have constancy and consistency  •
and be fully committed to its goals.

Starting Teams: Forming, Storming,  
Norming, Performing

In most organizations, individuals are assigned to 
teams rather than voluntarily choosing to join. The 
literature suggested several elements seen to make 
these teams more effective, commonly referred to 
by the following rhyming terms associated with 
Bruce Tuckman.

Forming. This term refers to the first stage of 
teaming, which is designed to allow team member 
designees to begin their team processes by gathering 
together. To the extent that what is said and done 



1122 Team Dynamics and Group Decision Making

at the first few meetings will mold the team and 
affect team functioning, the literature suggests that 
leaders with more outgoing personality types can 
be more effective at making team members feel 
welcome, facilitating discussion, and clarifying 
goals. Relevant materials can also be helpful in 
clarifying team goals.

Storming. This descriptor refers to brainstorming 
potential solutions to the problem that is presented. 
Successful teamwork during this stage, therefore, 
requires good information on what is to be done 
(e.g., project overview, guidelines, and other 
specifications) and good structure and guidance 
during the discussion process (e.g., to prevent it 
being hijacked by a person who talks too much; 
getting mired in disagreements, slights, and 
innuendo; or simply being allowed to go on too 
long and well past the point when adequate 
information has been gained).

Norming. Group norming processes are used to 
bring group members together so that the members 
begin to function in consonance with each other. 
These guidelines tend to be enforced initially by the 
team leader, but in well-functioning teams, they 
will be shared by all team members.

Performing. Good group performance, of all 
members, is a necessity for the appropriate 
completion of work projects. It is not enough for 
one or two members to conduct their jobs well; all 
group members need to be able to perform at 
appropriate levels and to complement one another’s 
contributions and personal behavioral tendencies. 
This will also involve measuring and tracking 
protocols, as well as “softer” approaches to enhance 
good working relationships.

Content, Process, and Successful  
Group Functioning

The literature thus stresses that both content and 
process are essential for successful group function-
ing. There is considerable emphasis on being a 
good teammate, which has been described as being 
all about thoughtful behavior and mutual respect 
(e.g., offering to help teammates; arriving on time 
for team meetings; listening attentively to what 
members have to say, accepting idiosyncrasies, and 

sharing the excitement of others). Teams must be 
able to process information and deal with it with-
out wasting time, but they must also make good 
decisions. Within healthcare settings, emphasis is 
heavily on content.

Types of Team Members

The literature also speaks of two different catego-
ries of roles of team members: (1) roles related to 
tasks and (2) roles related to relationships.

Task-Related Roles

Task roles can be characterized as Harmonizer, 
Analyzer, Gatekeeper, and Encourager. A harmo-
nizer is one who recognizes conflicts and instigates 
discussion to help resolve differences. An analyzer 
watches for how well people are working together 
and takes action (e.g., if the team has lost energy). 
A gatekeeper stresses communication and partici-
pation and ensures that all team members have 
opportunities to participate. An encourager is  
one who shows support for the efforts, ideas, and 
achievements of team members.

Relationship-Related Roles

Relationship roles are the following: Initiator, 
Orienter, Fact Seeker, and Summarizer. An initia-
tor helps ensure that there is agreement on how to 
proceed. An orienter helps ensure that the team 
stays on the topic. A fact seeker is one who tests 
reality, ensures that there is adequate information 
to back up decisions, and ensures that the team has 
the authority to act on the decisions it makes. A 
summarizer urges the group to reach a decision.

Effective Team Meetings

The literature often focuses on formal team meet-
ings. The elements noted as being critical to an 
effective meeting are good preplanning and the 
ability to enact certain required strategies, includ-
ing the following: (a) a good game plan, (b) appro-
priate decision-making processes, (c) effective 
brainstorming processes, (d) good ground rules, 
and (e) organized and informative minutes. 
Decision making can use majority rule or consen-
sus. One suggestion is to reserve consensus forms 
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for vital tasks while using majority rule decision 
making for smaller matters not considered impor-
tant enough to require that level of time and atten-
tion. Similarly, processes vary in the extent to 
which they seek creative solutions (where brain-
storming is a popular approach) as opposed to 
requiring a hard look at all the relevant informa-
tion available. Possible approaches include dialog-
ing (a rapid process in which team members 
comment on the ideas as they are presented), force 
field analysis, fish boning, root cause analysis, and 
priority gridding.

Various approaches can be used to communi-
cate results to other team members. Flip charts, 
blackboards, and similar approaches are often use-
ful in meetings; to ensure that material is not for-
gotten, recording methods can range from minutes 
(for formal meetings) to various electronic health 
records.

Common Team Problems

Teams come up against many obstacles that 
impede or limit their progress. The team may not 
be composed of the right players, may not have  
the best mix of complementary skills, or may lack 
adequate resources and/or effective leadership.

A major challenge is conflict among team mem-
bers. Teams seeking creative products often wel-
come conflict as an indication of energy and 
enthusiasm; a key skill for team leaders is to under-
stand the advantages conflict brings to a team and 
to manage natural conflicts well for the greater 
good of the work of the team. If poorly managed, 
team members may shrink from conflict and enter 
a paralysis mode that severely limits team prog-
ress. Conflict is generally of two types—work 
related and personality related. Work-related con-
flicts can be resolved by sorting out the details  
and the confounding components of the conflict. 
Personality-related conflicts, however, are of a 
more challenging nature and might require a vari-
ety of interventions. The most regularly used is 
that of reflecting the effects of the poor behavior 
back to the perpetrator. The “Three Cs of Conflict 
Resolution” are the following:

 1. Confidently address all instances of conflict 
when they arise.

 2. Carefully investigate the nature and causes of 
the conflict.

 3. Consistently deal with aberrant and detracting 
behaviors.

Importance of Trust in Teamwork

Trust among team members is deemed essential  
for the successful functioning of a team. If handled 
well, conflict resolution will engender trust among 
team members. Trust typically requires a span of 
time to build, yet it must also be constantly main-
tained. The team leader must never assume that 
once trust is built it will remain constant. Trust is 
the most fragile of all the relationships that make 
up a team’s functioning component, and it requires 
constant vigilance to create an ongoing environ-
ment in which the members of the team find it 
possible to trust one another.

Applications to Healthcare

Multidisciplinary teams are an integral part of 
healthcare delivery. Anne Fleissig and colleagues 
note that such teams are widely accepted and are  
a major element of managing cancer care in the 
United Kingdom, among other countries. In their 
review, they note that such teams are resource inten-
sive. Purported benefits include ensuring quality of 
care, both through pooling necessary expertise and 
ensuring that care is evidence based, and from 
enhancing continuity of care. Such coordination is 
clearly most important in more complex cases, 
where multiple specialists may be involved and 
where care must be delivered over an extended time 
period. Advantages to staff include mutual support 
and reinforcement and improved communication.

Many of the requisites for team functioning  
are the same as noted above: leadership, trust and 
mutual respect, information, and communication. 
Others—particularly funding and administrative 
support—are implicit but not always specified. 
However, there are other differences between busi-
ness and healthcare teams. One issue is the stability 
and anticipated longevity of teams. Teams intended 
to accomplish a particular goal may differ from 
teams expected to function together on an ongoing 
basis. The staff of an emergency department, for 
example, is likely to fluctuate over time, and new 
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staff will need to be oriented and incorporated 
rapidly. Oncology teams may deal with individuals 
in other organizations. Decisions must often be 
made rapidly, and the consequences of poor deci-
sions may be both immediate and severe.

One key rationale for teams in healthcare is the 
advantages of distributing responsibilities; Vimla 
Patel and colleagues argue that this, in turn, allows 
teams to process the massive amounts of informa-
tion needed to treat patients. Teams thus allow col-
laboration and provide a safety net for catching 
errors. Successful multidisciplinary teams allow mul-
tiple domains of knowledge to be brought together.

The emphasis on collaborative, interdisciplinary 
teams has affected clinical education. More empha-
sis is being placed on group processes and commu-
nication skills, both among team members and 
between clinicians and patients. One clear distinc-
tion between clinical teams and those in business  
is the presence of hierarchical structures, which are 
reinforced by administrative and professional 
structures. This is particularly pronounced in 
teaching hospitals (e.g., the role of residents). 
Another distinction is the existence of clearly 
defined domains, each with its own professional 
knowledge and expertise. Another is the issue of 
when team members are physically available. In 
consequence, clinical teams tend to have well- 
defined demarcated task responsibilities, ideally 
organized to minimize both duplication of care and 
falling through the cracks. Communication tends 
to be focused on specific patient-related problems, 
with some attention to ensuring smooth team func-
tioning. Patel and colleagues stress the importance 
of clear definition of roles and delineation of tasks 
and responsibilities, particularly when there is a 
potential for overlap. They stress the importance of 
balancing authority and autonomy and breaking 
down hierarchical structures when they interfere 
with smooth functioning. Communication and 
respect both appear to be key. These studies thus 
indicate that the general literature on team com-
munication and collaboration considers them to  
be transferable skills, which should probably be 
incorporated into educational curricula.

To date, there is little good evidence as to the 
impact of teams, in part because it is difficult to 
isolate the impact of any particular factor. However, 
the limited evidence available does suggest that 
well-functioning teams do improve communication, 

patient outcomes, and staff well-being. As Louise 
Lemieux-Charles and Wendy McGuire have sug-
gested, no single model of team effectiveness is 
likely to hold; effectiveness is likely to vary by fac-
tors such as the patient population, the care deliv-
ery setting, the team membership, and the team 
tasks. Considerable research is required to deter-
mine which elements contribute to effective team 
decision making.

Raisa Deber and Whitney Berta

Note: Some material has been used with permission 
from Berta, W. (2007). Team building: The indispens-
able process of the 21st century (FastPocket Series). 
Temecula, CA: Leading & Learning.

See also Choice Theories; Cognitive Psychology and 
Processes; Medical Errors and Errors in Healthcare 
Delivery; Shared Decision Making
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TeChnology assessmenTs

Technology assessment in medical decision mak-
ing, or health technology assessment (HTA), is a 
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form of policy analysis that seeks to examine the 
broader impact of decisions surrounding medical 
technology in healthcare. Many definitions of 
HTA exist, but it is generally characterized as an 
instrument for decision making that bridges the 
world of research with the world of decision  
making. Organizations conducting HTA began to 
proliferate in the 1980s and 1990s, and HTA con-
tinues to be an active field internationally. HTA is 
conducted in very small and very large healthcare 
settings under a variety of models and using a 
variety of methods. Subsequently, HTA is used by 
a large number of those involved in medical  
decision making, including patients, clinicians, 
researchers, institutional managers, and public 
policy makers. HTA is largely practiced by private 
research firms, academic collaborations, private 
health plans, specialty societies, governments, and 
manufacturers of health technologies. HTAs can 
increase the legitimacy of the health policy deci-
sion-making process by giving decision makers 
the information they need to improve population 
health.

Defining Technology Assessment

Current Definitions of Health  
Technology Assessment

Several definitions of HTA are currently in com-
mon use, but they are generally consistent with 
definitions from the field of technology assessment, 
from which it originated. These definitions generally 
reflect analytic frameworks for policy analysis, 
including analysis of the probable political, eco-
nomic, social, technical, ethical, legal, and environ-
mental impacts of technology use. These approaches 
to examining multiple dimensions of a policy deci-
sion are also referred to as PEST (e.g., political, eco-
nomic, social, technical), STEP, PESTLE, STEEP, or 
STEEPLE analyses.

The International Network of Agencies of Health 
Technology Assessment (INAHTA) defines HTA 
as “a multidisciplinary process of policy analysis 
that examines the medical, economic, social and 
ethical implications of the incremental value, diffu-
sion and use of a medical technology in health 
care.” A more recent definition, developed by the 
European Collaboration for Assessment of Health 
Interventions and Technology (ECHTA/ECAHI), a 

network of HTA producers, suggests that “health 
technology assessment (HTA) seeks to inform 
health policy makers by using the best scientific 
evidence on the medical, social, economic and ethi-
cal implications of investments in health care.” 
They additionally suggest that health technology 
should be broadly defined as technology assess-
ment, and it is not only concerned with machines 
and devices.

Disciplines Related to Health  
Technology Assessment

The academic origins of HTA can be traced to 
the expanding field of applied health research in 
the 1970s, including public health, evidence-based 
medicine, clinical epidemiology, health services 
research, health economics, and medical bioethics. 
Some have suggested that the field of HTA, with its 
health policy focus, is strictly confined to decisions 
regarding funding or reimbursement of health-
technology-based interventions. Others have com-
mented that HTA is not different from the broader 
field of health services research, although training 
in either discipline may involve different analytic 
approaches as a result of their different academic 
history and the widely adopted analytic approaches 
within them. Other related disciplines are clinical/
biomedical engineering; health impact analysis; 
healthcare environmental health, risk, and safety 
management; and healthcare information technol-
ogy analysis.

History of Technology  
Assessment in Healthcare

Origins

The origins of technology assessment trace back 
to the origins of the U.S. Office of Technology 
Assessment, which came into being in 1972. The 
original bill was introduced by Congressman 
Emilio Q. Daddario (D-Conn.), Chairman of  
the Subcommittee on Science, Research and 
Development in the House of Representatives, and 
it sought to provide legislation for a formal body 
that would provide “early indications of the prob-
able beneficial and adverse impacts of the applica-
tions of technology.” The OTA’s mission expanded 
to healthcare after 1975, but the agency was closed 
in 1995.
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Health Technology Assessment  
in the 1980s and 1990s

HTA institutions intended to support public 
policy decisions at the regional or national level 
began to proliferate in the late 1980s. These insti-
tutions generally emerged as academics interested 
in applied health research responded to govern-
ment-driven needs for evaluation of high-profile 
emerging technologies and as a solution to the 
increasing scarcity of healthcare resources. 
Following the creation of an agency in France 
(CEDIT, 1982) designed to look at the impact of 
technology diffusion in hospitals, subsequent orga-
nizations emerged in Sweden (SBU, 1987) and 
Canada (AETMIS, 1988; CCOHTA, 1989). The 
reemergence of national technology assessment in 
the United States was seen with the development of 
the Agency for Health Care Policy and Research 
(AHCPR) in 1989 (now the Agency for Health 
Care Research and Quality).

In 1985, the International Society of Technology 
Assessment in Health Care (ISTAHC) appeared, a 
nonprofit organization established to encourage 
research, education, cooperation, and the exchange 
of information on the clinical, economic, and 
social implications of health technologies. The first 
issue of ISTAHC’s journal, the International 
Journal of Technology Assessment in Health Care, 
appeared as well. Some organizational difficulties 
led to the replacement of ISTAHC with another 
society, Health Technology Assessment Interna-
tional (HTAi), in June 2003.

The 1990s

Additional agencies appeared worldwide in the 
1990s in France (ANDEM, 1990), Canada (British 
Columbia Office of HTA, 1991), Spain (OSTEBA, 
1991), Switzerland (SWISS-TA, 1992), Israel 
(ICTAHC, 1992), the United Kingdom (NCCHTA, 
1993), the United States (VA-TAP, 1994), Finland 
(FinOHTA, 1995), and Australia (MSAC, 1998). 
A majority of these agencies continue to operate 
today.

Health Technology Assessment Today

More recently, HTA has emerged in newly 
industrialized countries such as Brazil, South 
Korea, Singapore, Malaysia, and South Africa and 

new European Union member states in transition 
(e.g., Hungary). International networks continue 
to emerge and include EUnetHTA, a European 
network of HTA agencies.

National and regional networks have also 
emerged, including the Swiss Network for HTA, 
the Italian Society for HTA, and the Canadian 
Health Technology Analysis Exchange. The emer-
gence of HTA special interest groups in similar 
organizations, such as the International Society  
for Pharmacoeconomics and Outcomes Research 
(ISPOR) Health Technology Assessment Council, 
reflect the growth of this field.

Settings for Health Technology Assessment

The aim of the activity of HTA is to provide an 
input for healthcare decisions. As healthcare deci-
sion making can occur at the macrolevel (i.e., pol-
icy), mesolevel (i.e., institutional management), or 
microlevel (i.e., healthcare professional), and there 
is no universal manner in which healthcare is deliv-
ered and decisions are made, there is no single cor-
rect setting for the conduct of HTA. The structure 
and processes of any HTA institution must fit the 
purpose of the decision-making processes that they 
are supporting. As such, HTA can be seen in very 
small (e.g., hospital or hospital department) or very 
large (e.g., regional or national) settings. An HTA 
organization may be located inside a government 
or may be completely independent from govern-
ment. HTA organizations may focus on a narrow 
set of health technologies (such as drugs) or deci-
sions (such as adoption decisions) or may try to 
address a broader set of technologies and decisions. 
HTA organizations may also focus on a narrower 
set of dimensions of analysis, such as clinical and 
economic, or a much wider set, including the psy-
chosocial, ethical, and legal implications of deci-
sions surrounding health technologies.

HTA is largely practiced by private research firms, 
hospital departments, academic collaborations, pri-
vate health plans, specialty societies, governments, 
and manufacturers of health technologies.

Hospital-Based Health Technology Assessment

Hospital-based HTA is becoming a more popu-
lar setting for the conduct of HTA activities. A 
hospital-based HTA unit in Montreal reported 
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that hospital policy was developed from 16 out of 
17 HTA findings and that hospital resources were 
more effectively used, resulting in budgetary sav-
ings of Can$3.2 million annually.

Drug Reimbursement

With the advent of public and private plan drug 
formularies, the application of HTA to drug adop-
tion and reimbursement decisions has also become 
widespread. Larger national bodies that conduct 
assessment and provide recommendations to gov-
ernment include Australia’s Pharmaceutical Benefits 
Advisory Committee, Canada’s Common Drug 
Review, Scotland’s Scottish Medicines Consortium, 
the U.S. Medicare Evidence Development and 
Coverage Advisory Committee (MedCAC), and 
the U.K. National Institute for Health and Clinical 
Excellence. More recent examples include Taiwan’s 
Center for Drug Evaluation.

How Is Health Technology  
Assessment Performed?

Some HTA organizations conduct assessment only, 
providing relevant findings, while others addition-
ally appraise the findings and provide advice or 
recommendations. The methods and approaches 
used to assess and appraise information may vary 
but usually reflect the policy-driven need for reli-
able information and advice.

The conduct of HTA generally places an empha-
sis on transparency, comprehensiveness, and rigor. 
The systematic review has been widely adopted as 
a tool to examine the technologic (health) impact 
of any decision as the conduct of systematic review 
is in itself a transparent and rigorous approach  
to the identification and selection of appropriate 
information. Some HTA organizations may rely on 
publicly available information, while others may 
work more closely with manufacturers or govern-
ments and assess confidential information.

As the quantity and quality of information 
required to answer specific policy questions are 
often lacking, many HTA organizations rely on 
mathematical modeling to further inform policy 
decisions. Mathematical modeling can assist ana-
lysts in estimating the comparative effectiveness 
of available interventions when direct evidence 
does not exist and in projecting the long-term 

consequences of a technology-based decision 
when data are unavailable.

Economic evaluation in technology assessment 
usually involves the analysis of health as a com-
modity or system output and seeks to analyze how 
health can be optimally exchanged with available 
healthcare resources within a specific healthcare 
context. The central role of economics in HTA  
has led to the recognition that consistency in the 
approaches to economic evaluation is required to 
promote consistency in decision making. As such, 
country-specific guidance for those conducting 
economic evaluation has widely emerged. ISPOR 
has a comparative table and database of existing 
guidelines from specific countries.

Because of the forward-looking nature of HTA 
and the need to consider multiple sources of evi-
dence for informed decision making, Bayesian meth-
ods are becoming more widely adopted to examine 
the likelihood of future health benefits from tech-
nology. Economic evaluation methods have also 
adopted probablistic methods to examine decision 
uncertainty when statistical uncertainty is present. 
More recently, some HTA organizations have used 
the value of information analysis to compare poten-
tial or foregone opportunity costs with the costs of 
reducing uncertainty through further research.

Like methods to examine the clinical and eco-
nomic dimensions of health policy, appropriate 
methods to conduct analyses of additional dimen-
sions of a policy decision, such as political or envi-
ronmental analyses, are generally borrowed from 
current acceptable approaches in their respective 
disciplines.

How Is Health Technology Assessment Used?

Findings from an HTA can be disseminated to 
appropriate recommendatory or decision-making 
bodies using appropriate knowledge transfer 
approaches. HTA organizations that also appraise 
findings and provide guidance may do so through 
well-defined and highly collaborative relationships 
or by using much more passive approaches, giving 
advice to various levels of decision makers in the 
hope of influencing decisions. HTA organizations 
must decide to whom findings and advice are to be 
communicated and in what format.

Recommendations and guidance from HTA 
findings usually involve a deliberative process or 
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method. These deliberative methods may involve 
deliberation among representatives of all those 
affected by a decision or deliberation among sub-
ject or content experts who make technical recom-
mendations to decision makers. Since decisions 
involve more than scientific evidence, an emphasis 
on properly capturing the values of those affected 
by health policy has seen greater involvement of 
patients and consumers in deliberative processes. 
Frameworks for codifying evidence and evaluating 
recommendatory processes have been developed. 
One such framework is the “accountability for 
reasonableness,” which suggests that evidence-
based recommendations should be transparent and 
clearly defined.

Don Husereau
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TeRminaTing TReaTmenT, 
physiCian peRspeCTive

The involuntary dissolution of an established 
physician–patient relationship can be one of the 
more difficult medical decisions a clinician must 
make. Cultivating a relationship and gaining the 
trust of patients is a fundamental skill in clinical 
medicine. Without trust, patients will not provide 
the necessary information for an accurate diagno-
sis and are less likely to comply with recom-
mended treatment. The process of gaining trust 
and establishing a relationship is more overt in 
primary-care specialties, where it is often neces-
sary to obtain sensitive historical details for clini-
cal decision making. However, the establishment 
of trust is no less necessary in surgical specialties, 
where the consequences of clinical decision mak-
ing are more immediate and where the risks of 
poor decision making are often higher.

In nonprofessional relationships, trust is 
acknowledged to require equal participation by 
both parties. Trust is both earned and given in 
equal measure by both participants. This is not the 
general view of clinicians, who understand that 
there is an unequal power balance between physi-
cian and patient and who therefore feel dispropor-
tionately obligated to earn the trust of their 
patients in order to provide good care. During 
training, it is understood that this empathetic skill 
will be required of trainees even when patients are 
personally objectionable or even hostile toward 
the physician. Physician trainees are considered to 
bear the majority of the responsibility for estab-
lishing a mutually trusting and beneficial therapeu-
tic relationship. As a result of this professional 
socialization, a physician–patient relationship that 
has deteriorated to the point of termination can be 
experienced as a sign of failure on the part of the 
clinician. This feeling can contribute significantly 
to the emotional difficulty of the decision to termi-
nate treatment.

Having said this, it is widely acknowledged 
that not all physicians will be able to cultivate 
mutual trust with all patients and that a small 
percentage of physician–patient relationships will 
need to be terminated. The difficult medical deci-
sion comes in determining which relationships 
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have reached this threshold and when they 
have reached it. There are three accepted reasons 
for terminating a physician–patient relationship: 
(1) noncompliance with treatment, (2) disruptive 
behavior, and (3) nonpayment of bills.

Noncompliance With Treatment

It is generally understood that irresponsible or 
unhealthy behavior does not release a physician 
from the duty to provide care. While patients are 
expected to be good stewards of their health, non-
compliance and poor patient decision making are 
so widespread that they are viewed as a part of the 
landscape of care. Indeed, it is broadly recognized 
that physicians and nurses are some of the least 
compliant patients. Clinicians also recognize that 
noncompliance is not always entirely the fault of 
the patient, for many reasons: (a) Patients may not 
understand instructions, (b) they may understand 
instructions but fail to understand the consequences 
of noncompliance, (c) they may lack the financial 
resources to follow through, (d) they may be too 
emotionally overwhelmed with the responsibility 
of following treatment recommendations, and 
(e) they may be distracted by other priorities that are 
temporarily competing with their time and energy.

The reasons for noncompliance are often tempo-
rary or relatively easily overcome, and in keeping 
with the empathetic socialization process discussed 
above, some physicians will go to extreme lengths 
to help patients become more compliant. Generally, 
clinicians are tolerant and understand that the 
patient’s social, emotional, and financial situations 
will change and compliance can be expected to 
wax and wane accordingly. Isolated noncompli-
ance is almost never the reason for termination of 
treatment and is usually combined with one of the 
other two reasons to provide justification for end-
ing a physician–patient relationship.

Disruptive Behavior

Physicians are not obligated to provide futile treat-
ment. If a patient relationship has deteriorated to 
the point where the physician feels that further inter-
action is extremely unlikely to provide benefit to the 
patient, then the treatment has become futile and 
the physician is no longer obligated to provide care. 
It is important to keep the focus on the benefit to the 

patient when considering whether disruptive behav-
ior meets the threshold of termination of treatment. 
Countertransference is a psychiatric process whereby 
a physician transfers the abusive behavior of the 
patient back to the patient in the form of dislike or 
outright hatred. Conscientious clinicians are aware 
of this tendency and will do their best to ameliorate 
it. As is the case with noncompliance, there are rea-
sons for disruptive behavior that may be temporary: 
(a) The patient may have an undiagnosed substance 
abuse problem, (b) the patient may have poor cop-
ing skills and be acting out as a result of being over-
whelmed by the stress of his or her illness, and (c) the 
patient may be in extreme pain. Substance abuse 
disorders can be diagnosed and rehabilitated, cop-
ing skills can be strengthened with counseling, and 
pain can be treated with analgesics. However, all 
three barriers to treatment must first be uncovered 
by a clinician who is willing to overlook dysfunc-
tional behavior to get at the reason behind it.

Some patients may not be aware that their 
behavior is disruptive, because it is considered 
acceptable in their nonprofessional relationships. 
Therefore a clinician is obligated to inform the 
patient that his or her behavior is unacceptable 
and is hindering care. The next step is to offer help 
concerning more constructive ways of interacting. 
This gives the patient the opportunity to change 
his or her behavior in an effort to demonstrate that 
he or she wishes to preserve the physician–patient 
relationship. When repeated attempts at help are 
rejected and disruptive behavior continues or when 
there is a concern about physical violence, physi-
cians feel justified in ending a relationship based 
solely on disruptive behavior. However, disruptive 
behavior almost always occurs hand in hand with 
noncompliance, in which case the threshold for 
termination is lowered. A patient who is disruptive 
but at least making an effort to get better is still 
deriving benefit from the physician–patient rela-
tionship. A patient who is both disruptive and 
noncompliant is often viewed as a lost cause.

Nonpayment of Bills

In countries with government-funded healthcare 
systems, nonpayment of bills is not an issue. 
However, in the United States, where a large 
percentage of healthcare is funded by commer-
cial insurance and many physician practices still 
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function as small businesses, nonpayment is still 
considered a legitimate reason for termination. 
Nevertheless, because of their own interaction 
with an increasingly complex and burdensome 
payment system, American physicians often 
have a surprising degree of sympathy for patients 
who cannot pay their bills. Physicians working 
in publicly owned American hospitals have an 
obligation to treat regardless of a patient’s abil-
ity to pay; and even in private hospitals, the 
responsibility for admitting uninsured patients is 
rotated among physicians. Performance of “unas-
signed call” is usually a condition of mainte-
nance of privileges at private U.S. hospitals.

The obligation to care for patients who present 
with an urgent threat to life or function and require 
admission to the hospital does not extend to the 
outpatient setting. Outpatient care in the United 
States is seen as discretionary and may be refused 
by an American physician for any reason, includ-
ing inability to pay. If an individual physician has 
an ongoing relationship with a patient who loses 
his or her insurance or falls on hard times, the 
physician may be willing to continue providing 
outpatient care for token payments. In the U.S. 
system, nonpayment of bills usually accompanies 
one of the other two reasons for termination, and 
together, the threshold for the decision to termi-
nate is lowered.

In large private U.S. systems of care where the 
individual physician is not in direct control of 
scheduling patients, a new phenomenon of “finan-
cial clearance” has arisen that functions as a de 
facto termination of care on grounds of nonpay-
ment. Financial clearance is a process whereby pay-
ment must first be assured by a third-party payer or 
the patients themselves before an appointment can 
be made with a physician. The patient without 
means is thereby excluded from seeing a physician 
before the nonpayment has actually occurred and 
without the direct consent of the treating physician. 
Financial clearance is an increasingly frequent 
“inadvertent” cause of the termination of a physi-
cian–patient relationship for nonpayment of bills.

Mechanics of Termination of a  
Physician–Patient Relationship

Once a decision has been made to terminate 
treatment, the process of notifying the patient is 

mandated by the legal system and/or the patient’s 
insurance company. Third-party payers typically 
have policies for termination of care by physi-
cians in their panel, and this may affect a physi-
cian’s response to the patient. Letters are always 
the preferred method of communication because 
they can be documented accurately. A letter 
should be sent by certified mail to ensure that it 
has been received by the patient. The letter should 
contain (a) the reason for termination, (b) an 
offer of alternative care to the patient, (c) ample 
opportunity to secure alternative care, and (d) an 
offer of assistance in transferring medical records 
to a new provider.

The reason for termination and the offer of 
assistance in transferring records are not required 
by law and can be omitted, but the other two com-
ponents are required in the United States to avoid 
a legal charge of patient abandonment. The offer 
of alternative care should not be a referral to spe-
cific providers but should instead provide the 
address and phone number of the patient’s insur-
ance company or the local medical society, which 
could, in turn, provide the patient with a list of 
acceptable alternative providers. Ample opportu-
nity to secure alternative care usually constitutes a 
window of 30 days from the date of notice, during 
which the terminating physician is required to con-
tinue to provide care for the patient. However, in 
cases where very subspecialized care is required by 
the patient and few providers are available in a 
given geographic area, this period may be extended 
to 60 or 90 days. U.S. government payers may 
have much stricter policies regarding involuntary 
termination of a patient. Medicare and Medicaid 
can require actions such as offering of anger man-
agement classes, intervention by a social worker, 
or a “second chance,” meaning transfer of care to 
another provider within the physician’s group or 
system. These requirements are usually unique to 
the individual state in which the federal program is 
administered.

The decision to terminate treatment and invol-
untarily dissolve the physician–patient relationship 
can be one of the more difficult decisions a physi-
cian must make in his or her clinical practice. The 
difficulty of this medical decision arises not from 
its logical complexity but from the difficulties of 
successfully navigating any physician–patient rela-
tionship and from the emotions it generates as a 



1131Test-Treatment Threshold

result of the professional socialization process. 
Establishment of an empathetic, mutually benefi-
cial relationship with a patient is seen by many 
clinicians as every bit as important as making the 
correct diagnosis or selecting the most appropriate 
treatment. Failure in this realm of medical decision 
making can be equally distressing to both physi-
cian and patient.

Robert Patrick

See also Decision Making and Affect; Models of 
Physician–Patient Relationship
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TesT-TReaTmenT ThReshold

How can physicians decide whether a particular 
treatment could provide benefits to a patient 
rather than harm by unnecessary treatment? If a 
physician has 100% confidence that a particular 
patient has a disease (100% pretest probability), 
the physician should treat the patient. In contrast, 
a physician would not treat the patient if he or she 
had 100% confidence that the patient did not have 
the disease (0% pretest probability). Unfortunately, 
the pretest probability is not always 0% or 100% 
but usually lies somewhere in between these num-
bers, which is usually called a gray area. Taking 
potential adverse events into consideration, what 
estimated probability of disease do physicians need 
to decide whether or not to treat?

Threshold analysis is a mathematical approach 
to determine the answer. The treatment threshold 
(the probability of disease above which the patient 
should be treated) can be expressed in terms of the 

benefit-risk ratio: Treatment threshold = R/(B + R). 
For example, let us consider a patient who may 
have an acute disease that has 10% risk of short-
term mortality. If a treatment could reduce the risk 
of short-term mortality from 10% to 5%, the ben-
efit (B) of the treatment is 5%. In contrast, if the 
treatment can cause a severe adverse event, it 
would result in a 1% increased risk of short-term 
mortality; that is, the risk (R) is 1%. Thus, the 
treatment threshold can be calculated as .01/(.05 + 
.01) = .1666 . . . (16.7%). Therefore, the treatment 
could provide benefit if the probability of disease 
is equal to or greater than 16.7%.

Role of the Diagnostic Test

Whereas the above mathematical approach could 
provide a threshold for decision making, it is rare 
for many individuals to select either of the options 
without any hesitation. Indeed, it is always diffi-
cult to answer “yes” or “no” to such questions.  
A desire for more information for making better 
decisions tends to be the natural response to such 
a situation.

In clinical decision making, diagnostic tests usu-
ally provide the additional information required by 
clinicians. The diagnostic process can be defined as 
a process to increase or decrease the probability of 
the target disease until it is possible to rule in or rule 
out specific diseases. The role of diagnostic tests is 
to increase or decrease the probability of selecting 
the target disease in clinical decision making.

Figure 1 demonstrates the concept of diagnosis. 
Physicians can select “Treat” if they have a suffi-
cient number of reasons to estimate that the prob-
ability of the target disease is high enough to start 
a particular treatment. In other words, benefits 
from the treatment can be assumed to be higher 
than the potential risk of the treatment. This 
threshold is referred to as the test-treatment 
threshold, or test-treat threshold. In contrast, the 
physician can confidently choose “Don’t treat” if 
there are a sufficient number of reasons that the 
probability is low enough to rule out the disease. 
This threshold is referred to as the no treatment-
test threshold, or no treat-test threshold.

Diagnostic tests are useful as long as they have 
sufficient information to increase the probability 
(i.e., posttest probability) above the test-treatment 
threshold (i.e., rule in) or to decrease it below the 
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no treatment-test probability (i.e., rule out). Figure 
2 shows the role of diagnostic tests in medical deci-
sion making. Assuming that physicians estimate 
the probability of the target disease as A (%), 
which is between the no treatment-test and test-
treatment thresholds, the diagnostic test is useful if 
the posttest probability can be increased to C but 
not to D, which is still below the test-treatment 
threshold. If the probability is still below the 
threshold, further diagnostic tests will be needed  
to increase the posttest probability appropriately. 
Similarly, the diagnostic test should have sufficient 
information to decrease the posttest probability to 
B if the results are negative.

The amount of information required to increase 
or decrease the probability of the target disease can 
be quantified by a positive-negative likelihood ratio 
of each diagnostic test for a particular target dis-
ease. A combination of multiple tests can be used if 
no single test can provide enough information or if 
the cost of a specific test is too expensive.

No Treatment-Test and  
Test-Treatment Thresholds

How can a physician determine the two thresholds: 
(1) no treatment-test threshold and (2) test-treatment 

threshold? Figure 3 shows a geometric approach to 
describe these two thresholds.

Let us assume that there is a diagnostic test 
without adverse effects. If the pretest probability 
of the target disease is 0, all patients treated 
would be harmed by the treatment. The expected 
harm from performing the test instead of not 
treating can be calculated as Harm × False-
positive ratio (FPR). This is the point at which the 
“test” line intersects the y-axis in Figure 3. In 
contrast, by performing the test, the patients with 
true-negative test results are spared the harm of 
treatment. Thus, the expected harm avoided by 
performing the test instead of treating equals 
Harm × True-negative ratio (TNR), which is 
shown in Figure 3 as the vertical distance between 
the “test line” and the “treat” line along the 
y-axis.

Similarly, when the pretest probability of the 
target disease is equal to 1, all patients with false-
negative test results would miss out on the benefit 
of treatment (Benefit × False-negative rate [FNR]), 
which is shown as the height between the “treat” 
and “test” lines on the right side of Figure 3. Also, 
by performing the test, patients with true-positive 
results are given the benefits of treatment  
(i.e., Benefit × True-positive rate [TPR]).

Do Not Treat Need More Information = Test Treat

No treat-test
threshold

0% 100%
Test-treat
threshold

Figure 1  Concept of diagnosis

Figure 2  Role of diagnostic test
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A mathematical formula to calculate these two 
thresholds can be derived as follows.

To identify the no treatment-test threshold, we 
should focus on two similar triangles that are made 
by “No treat” and “Test,” DACD and DAHG. In 
these triangles, the ratio between pD1 and  
(1 − pD1) equals the ratio between CD and HG. 
Therefore, we derive

pD1:(1 − pD1) = (Harm × FPR):(Benefit × TPR),

pD1 × Benefit × TPR = (1 − pD1)  
× (Harm × FPR),

pD1 × ([Benefit × TPR] + [Harm × FPR])  
= Harm × FPR.

Therefore, no treat-test threshold (pD1)  
= (Harm × FPR)/([Benefit × TPR] + [Harm × FPR]).

Similarly, focusing on two triangles made by “Test” 
and “Treat” (i.e., DBDE and DBGF), we derive

pD2:(1 − pD2) = Harm × TNR:Benefit × FNR.

Test-treatment threshold (pD2) can be calculated as

(Harm × TNR)/(Harm × TNR + Benefit × FNR).

Noriaki Aoki, Michi Sakai, and Sachiko Ohta

See also Expected Value of Perfect Information; Expected 
Value of Sample Information, Net Benefit of Sampling
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ThReshold TeChnique

The Threshold Technique measures individuals’ 
attitudes toward a single key attribute of a par-
ticular “target” therapy. The procedure involves 
repeatedly varying the levels of the key attri-
bute of primary interest and, with each varia-
tion, asking the respondent to choose between 
the target therapy and an alternate reference 
therapy.

The key attribute that is varied depends on the 
study purpose. For example, the attribute could be 
chance (e.g., the probabilities of side effects or ben-
efits), time (e.g., time waiting for therapy or life 
expectancy), or distance to travel (e.g., for access 
to care). Compared with other methods for evalu-
ating therapies, it is close to the Willingness-to-Pay 
method, in which cost is the key attribute that is 
varied.

The technique can be appropriately adapted  
to a wide range of clinical dilemmas in medical 
decision making. For example, one version can 
reveal patients’ minimal required reduction in 
the long-term risk of a heart attack that they 
would want from a cholesterol-lowering agent 
(the target) before considering it worthwhile 
compared with lifestyle management alone (the 
reference). In another example, consider the 
choice between a current analgesic (the refer-
ence) and a new medication (the target) that 
offers potentially greater pain relief but carries a 
higher risk of gastric bleed. Different versions of 
the technique could be designed to reveal either 
the minimal amount of pain relief that patients 
would require or the maximal level of risk for 
gastric bleed that patients would accept before 
considering the new drug to be preferable to 
their current medication.

Therefore, the technique is very flexible. However, 
because it focuses on a single key attribute, it can 
appropriately address only narrowly defined and 
context-dependent research questions. Conceptually 
and procedurally, the technique is very different 
from other methods for evaluating therapies— 
including formal Decision Analysis, Conjoint 
Analysis, the Analytic Hierarchy Process, the Balance 
Technique, and the Leaning Scale, which work with 
multiple attributes in a more holistic manner and 
are designed for different research purposes.

Procedure

The technique is described below by using a  
particular clinical context and a particular key 
attribute—the benefit probability—to illustrate its 
general approach. Although the technique could 
be carried out using interactive electronic media, 
the entire procedure is outlined here as it would 
occur in an in-person interview.

The interviewer uses a preconstructed, study-
specific toolkit, consisting of information cards, 
probability wheels, and sliding scales. Together, 
the interviewer and the respondent work through 
three interview phases.

Setting the Stage

First, the interviewer places a Condition 
Overview Card on the table in front of the respon-
dent. This card outlines the relevant clinical condi-
tion’s probable causes, signs and symptoms, and 
natural prognosis. The interviewer reviews this 
information with the respondent.

When the respondent understands this informa-
tion, the interviewer explains that there are two 
relevant therapeutic options, Treatments A and B. 
The interviewer explains that he or she will sys-
tematically present the respondent with cumula-
tive pairs of Treatment Information Cards with 
“bits” of information about the two options, that 
they will review each pair together, and that they 
will not proceed to the next pair until each piece of 
information is understood by the respondent.

The first pair describes the two treatment proto-
cols. They are arranged side-by-side in front of  
the respondent, immediately below the Condition 
Overview Card, and reviewed. When the respon-
dent understands the protocols, the next pair of 
cards is presented. These describe each treatment’s 
side effects, including the evidence-based estimated 
probabilities of their occurrence. These cards are 
arranged side by side, just below the treatment 
protocol cards, and reviewed. When the side effect 
information is understood, the next pair of cards is 
presented. They describe each treatment’s antici-
pated benefits as well as their associated probabil-
ities. These cards are arranged side by side, just 
below the anticipated benefits cards, and also 
reviewed. Throughout this stage-setting phase, 
devices such as moveable probability wheels are 
used to foster comprehension of the probabilities.
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Identifying the Initial Choice

At this point, the Treatment Information Cards 
are arranged in parallel columns that permit clear 
across-therapy comparisons. In effect, the respon-
dent sees a map delineating two process-and- 
outcome paths describing what the treatments 
would entail, their possible outcomes, and the 
probabilities of encountering those outcomes. The 
respondent is invited to indicate which treatment 
option would be preferable if he or she were actu-
ally making this therapeutic choice.

Finding the Threshold

Once the respondent has indicated his or her 
initial choice, the investigator could proceed in dif-
ferent ways; the particular version of the technique 
that is used depends on two major considerations.

The First Major Consideration

The study’s research objective dictates the 
answers to two design questions: (1) “Which are 
the target and the reference therapeutic options?” 
and (2) “What is the single key attribute that will 
be systematically varied?”

Suppose our respondents are patients consider-
ing lifestyle management alone (Treatment A), 
which has an estimated 10-year risk of myocardial 
infarction equal to 15%, versus a new, cholesterol-
lowering medication (Treatment B), which has an 
estimated 10-year risk of myocardial infarction 
equal to 10% but also has some side effects. The 
objective is to find the minimal required reduction 
in the 10-year risk of myocardial infarction that 
these patients would want from the medication 
before considering it worthwhile relative to lifestyle 
management alone. The medication is the target 
option, lifestyle management is the reference option, 
and the key attribute is the 10-year risk of myocar-
dial infarction while taking the medication.

The Second Major Consideration

The respondent’s identified initial choice, in 
conjunction with the research objective, dictates 
the answer to the design question “In which direc-
tion should the key attribute be systematically 
varied?”

Suppose the respondent initially chose 
Treatment A—lifestyle management alone. Then, 

the investigator would systematically decrease the 
risk of myocardial infarction while taking the medi-
cation (from 10% to 9% to 8%, etc.) until the 
respondent switches his or her stated preference 
from lifestyle management alone to the medication.

On the other hand, suppose the respondent  
initially chose Treatment B—the medication. Then, 
the investigator would systematically increase the 
risk of myocardial infarction while taking the 
medication (from 10% to 11% to 12%, etc.) until 
the respondent switches his or her stated preference 
from medication to lifestyle management alone.

In either case, all respondents are weighing their 
aspiration for a reduced 10-year risk of myocardial 
infarction relative to their aversion to the medica-
tion’s side effects. Regardless of the individual’s 
initial choice, the subsequent assessment steps 
move up or down a common underlying attitudi-
nal scale; here, that scale is the minimal risk reduc-
tion required to render the medication acceptable 
to the respondent.

Conceptual Basis

Assessing Multi-Attribute Utility Functions

Ralph Keeney extended the axioms and proce-the axioms and proce-
dures used to elicit an individual’s utility function 
for a particular attribute, such as cost, to the elici-to the elici-
tation of utility functions for multi-attribute enti-multi-attribute enti-
ties. The initial step in assessing multi-attribute 
utility functions involves a set of preliminary tasks 
in which the individual makes different choices 
between entities and lotteries.

These tasks reveal whether the individual’s 
underlying multi-attribute function satisfies the 
assumptions of utility independence, mutual utility 
independence, and additive independence. Veri-
fication of the assumptions, in turn, reveals whether 
the underlying multi-attribute utility function is 
multiplicative or additive in form. The analyst 
exploits this insight in subsequent elicitation tasks 
that quantify the individual’s full multi-attribute 
utility function.

The Threshold Technique basically borrows the 
assumption-verification strategies used to initially 
characterize the form of a multi-attribute utility 
function and applies them in a simplified single-
attribute manner to the problem of revealing the 
respondent’s attitude toward the key attribute of 
primary research interest.
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Decisional Conflict

Decisional conflict is induced when there are 
simultaneous opposing tendencies to accept and 
reject a course of action. Extremely low or high 
levels could be dysfunctional, in that they can lead 
to defective information search/processing strate-
gies and ineffective decision making. On the other 
hand, some degree of decisional conflict could be 
functional if it encourages effective information 
search and processing strategies, greater clarity of 
one’s own preference structure, and a comfortable 
level of motivation to resolve a decision dilemma.

The Threshold Technique begins with a descrip-
tive, evidence-based overview of the condition  
and two relevant treatment options. For individuals 
without a clear prior preference, this presentation of 
the options could itself induce some decisional con-
flict as they consider the choice and make an initial 
selection. In the next steps, however, the decision 
problem is altered by changing the level of a key 
attribute so that the initial choice becomes less and 
less favorable. These changes could induce func-
tional degrees of decisional conflict that motivate 
the decision maker to focus on the relevant informa-
tion and arrive at a new choice that explicitly— 
albeit partially—reveals his or her underlying 
preference structure. It is important to note that this 
is a partial revelation; it is only in terms of the key 
attribute, and it is only relative to the other option.

Applications and Outcomes

Research Applications

The technique has been adapted to assess atti-
tudes toward the different attributes inherent in a 
wide variety of treatments, including chemother-
apy, radiation therapy, surgery, palliative care, and 
medications for hypercholesterolemia, hyperten-
sion, anticoagulant therapy, Crohn’s disease, and 
osteoarthritis. These applications have been moti-
vated by curiosity about patients’ attitudes not 
only toward treatment choice but also toward the 
design of and entry into clinical trials, the resolu-
tion of ethical issues, the construction of practice 
guidelines, and the development of health policy.

Measurement Outcomes

In each application, the technique was designed 
to suit the studies’ unique research purposes, 

which determine the target option, the risk/benefit 
attribute that will be probabilistically altered, and 
the direction in which that alteration will proceed. 
Accordingly, in each application, the underlying 
attitudinal scale is idiosyncratic to the original 
research problem. Therefore, it is inappropriate to 
apply the technique to problems that require an 
absolute preference scale, permitting across-disease 
comparisons. The technique should not be regarded 
as an alternative to the Standard Gamble, nor 
should its results be considered to represent deci-
sion-analytic expected utilities for the treatment 
under consideration. However, when the research 
problem requires us only to assess individuals’ 
strength of preference for A relative to B, within 
the confines of the particular clinical context, the 
disease-dependent nature of the technique is not a 
concern.

Whether the technique generates internally logi-
cal, consistent, and stable results is more impor-
tant. Test-retest reliability coefficients ranging 
from the high .70s to the high .90s have been 
observed, and the method can reveal logically con-
sistent subgroups. This implies that when the 
underlying preferential attitudes are not expected 
to be labile, patients report reasonably stable and 
valid switch points. However, since the relative 
preference scales are uniquely determined by the 
particular trade-offs in each decision problem, we 
cannot talk in terms of the psychometric properties 
of the technique, as if they were characteristics that 
carry across all applications.

Hilary A. Llewellyn-Thomas

See also Conjoint Analysis; Decisional Conflict; Decision 
Trees, Construction; Decision Trees, Evaluation; 
Multi-Attribute Utility Theory; Utility Assessment 
Techniques; Willingness to Pay
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Time hoRizon

Time horizon is the duration of time being consid-
ered when evaluating clinical strategies. When com-
paring multiple strategies for the same scenario, the 
time horizon over which the outcomes are evalu-
ated must be the same across all potential strategies 
to make a fair and appropriate comparison.

Some authors consider two terms: time frame 
and analytic horizon. The distinction is made as 
follows: Time frame refers to the specified period in 
which the strategies are actually applied; the ana-
lytic horizon is the period over which the outcomes 
are considered as a result of the strategies consid-
ered. In this framework, the analytic horizon can 
be longer than the time frame because the costs and 
benefits of an intervention may continue long after 
the intervention is completed. This is particularly 
true in the case of preventive interventions (e.g., 
immunization), in which case the benefits of such 
activities will occur later in a person’s lifetime.

What should be the time horizon? Some have 
stated that no particular time horizon can be gener-
ally recommended since the time horizon for each 
study should be matched to the intervention and 
outcomes being studied. The time horizon should 
be explicitly stated at the beginning of the study.

There are situations in which a very narrow 
time horizon should be used: When making deci-
sions about acute or short-term events, it may be 
appropriate to use a time horizon of a few hours 
or days. For chronic or long-term events, a lon-
ger time horizon would be appropriate. The time 
horizon should encompass the entire decision 
process being modeled. All events and their 
resulting effects, including clinical and eco-
nomic, should be considered within the time 
horizon when a clinical problem or situation is 
being modeled.

Decision and cost-effectiveness analyses use time 
horizons that vary from hours to a lifetime. Changing 
the time horizon in an analysis can greatly alter the 
apparent differences in life expectancy among vari-
ous alternatives. For cost-effectiveness analysis, the 
Panel on Cost-Effectiveness in Health and Medicine 
recommends that a lifetime time horizon be used. 
Analyses of models with lifetime horizons usually 
employ Markov models, which divide the lifetime 
horizon into equal periods or cycles.
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Of note, if the evaluation is to be over multiple 
years and the analysis performed is a cost- 
effectiveness analysis, then the present value of 
costs and outcomes should be discounted to the 
base year of the analysis.

Scott B. Cantor and Lesley-Ann N. Miller

See also Cost-Effectiveness Analysis; Costs, Direct Versus 
Indirect; Costs, Fixed Versus Variable; Costs, 
Incremental; Costs, Opportunity; Costs, Out-of-
Pocket; Costs, Semifixed Versus Semivariable; Costs, 
Spillover; Discounting; Efficacy Versus Effectiveness; 
Markov Models
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ToRnado diagRam

A tornado diagram (given this name due to its 
resemblance to a tornado) is a graphical method 
for displaying a series of univariate (or one-way) 
sensitivity analyses that has been commonly used 
in cost-effectiveness analysis. Figure 1 shows an 
example of a tornado diagram—with incremental 
cost-effectiveness value ranges arranged from the 
largest at the top to the smallest at the bottom. In 
a tornado diagram, the effects of individual param-
eter variation on results can be compared visually, 
allowing analysts to intuitively communicate 

which parameters are more sensitive to variation—
that is, parameters whose variation has the great-
est effects on the results of the analysis. In the 
example shown in Figure 1, individual variation of 
Drug A costs has the greatest effects on model 
results, and variation of Drug A side effect utility 
has the least effect. More recently, the use of tor-
nado diagrams and univariate sensitivity analyses 
has been downplayed due to limitations of these 
methods and due to the use of other techniques 
that overcome these limitations.

To construct a tornado diagram, the analyst varies 
a single parameter over its range and notes the effects 
of this variation on the analysis results. In Figure 1, 
the incremental cost-effectiveness varies from $10,000 
per quality-adjusted life year (QALY) gained when 
Drug A costs $54 to $97,000/QALY gained when 
Drug A costs $139. The vertical line through the bars 
at $39,000/QALY shows the base case results of the 
analysis, the expected value of the analysis when all 
parameters are set at their base case point estimates. 
The analyst will then repeat this procedure for each 
of the remaining parameters to be varied. Once the 
result range for each parameter has been calculated, 
parameters are arranged in the diagram from great-
est to least effect on model results.

Some decision analysis software packages allow 
construction of tornado diagrams within the pro-
gram itself. Tornado diagrams may also be con-
structed using the graphing functions of Microsoft 
Excel or through the use of a variety of Excel 
add-in programs.

Tornado diagrams have a number of limita-
tions. They can be useful when two strategies are 
being compared, since tornado diagrams typically 
depict changes in the incremental cost-effectiveness 
ratio between two strategies. However, when three 
or more strategies are being considered, tornado 
diagrams become more difficult to use due to the 
differential effects of individual-parameter varia-
tion on multiple competing strategies and, at times, 
the effects of strategy dominance. Due to these 
shortcomings, alternative structures for tornado 
diagrams have been proposed. One such structure 
uses the net benefit framework to convert incre-
mental cost-effectiveness ratios to either net mon-
etary or net health benefits, thus bypassing some of 
the shortcomings of the conventional tornado dia-
gram. However, this formulation gives a less intui-
tive picture of sensitive parameters and requires, 
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due to the net benefit calculation, the choice of a 
single cost-effectiveness acceptability threshold.

Tornado diagrams are also limited by their deter-
ministic nature. The model result ranges depicted in 
a tornado diagram give no indication of how fre-
quently a given parameter might have a certain value 
or, similarly, how often a given incremental cost- 
effectiveness result might occur. From a distribu-
tional standpoint, a tornado diagram tacitly assumes 
that all parameter values have a uniform distribu-
tion, where all values in the range are equally likely 
to occur; however, this almost never is the case.

Another major criticism of tornado diagrams is 
their reliance on variation of individual parame-
ters, which often may underestimate uncertainty 
compared with analyses where multiple parame-
ters are varied jointly. Probabilistic sensitivity 
analysis, where multiple parameters are varied 
simultaneously over distributions, has been suc-
cessfully posited as a means of answering the 

deterministic and univariate limitations of tornado 
diagrams, leading to the recent decrease in em -
phasis on tornado diagrams in published cost- 
effectiveness analyses.

As a result, some have questioned the usefulness 
of tornado diagrams in medical decision analysis. 
However, the simple and intuitive structure of the 
tornado diagram can still be useful in an appropri-
ately structured analysis, showing the parameters 
whose variation causes the most change in model 
results. Nonetheless, due to its deterministic and 
univariate nature, the tornado diagram has become 
less important in the reporting and interpretation 
of cost-effectiveness analyses.

Kenneth J. Smith

See also Cost-Effectiveness Analysis; Decision Trees: 
Sensitivity Analysis, Basic and Probabilistic; Decision 
Trees: Sensitivity Analysis, Deterministic; Net Benefit 
Regression; Net Monetary Benefit

Figure 1   A tornado diagram, depicting changes in incremental cost-effectiveness ratios (the x-axis) when individual 
parameter values are varied

Note: The numbers at either end of the horizontal bar are the high and low parameter values considered in a univariate sensitivity 
analysis. The vertical line depicts the base case incremental cost-effectiveness ratio of the model.
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Toss-ups and Close Calls

The term toss-up has different senses in the differ-
ent contexts in which it is used. In a more techni-
cal sense, it is best understood in terms of the flip 
of a fair coin, where the chance of heads coming 
up is 50:50 and the chance of tails coming up is 
also 50:50. The term close call has more variation 
in the medical literature; for example, in the peer-
reviewed scientific medical literature, a close call 
can be interpreted as a near miss in relation  
to patient safety—for example, during a surgical 
operation. Yet some individuals may interpret the 
term close call to reflect a decision to be made 
where the separation of a chance of a benefit 
accruing to a patient from one of two treatments 
being compared is, say, 48:52 and not strictly a 
50:50 decision between the two treatments.

There are also other senses of the term toss-up. 
In some contexts, it can reflect an unpredictable 
situation of decision making—for example, in a 
population, as in an election or any process involv-
ing the counting of secret ballots, or in voting, such 
as on a medical, mental health, surgical, or other 
ward team. Or there are mixed cases, where, for 
example, it may not be clear in an individual’s care 
what is the optimal treatment for the patient or 
which way a vote among medical team members 
with mixed opinions on what is the best strategy 
would go if a vote were taken.

In other contexts of speech in medicine, the 
term toss-up simply may be used in an even more 
general sense to refer to any unpredictable situa-
tion and the fact underlying the opinion that there 
is no systematic way to adequately determine what 

is optimal care in the patient at a particular time. 
Jerome Kassirer and Stephen Pauker point to this 
last sense of the term toss-up, where—after careful 
systematic assessment of the peer-reviewed scien-
tific medical literature and the clinical experience 
of physicians—the evidence reviewed and assessed 
shows that there is no difference between treat-
ments and the result is still the same. Thus, the 
treatments are considered a toss-up from the 
standpoint of the published peer-reviewed scien-
tific medical literature and a toss-up from the 
standpoint of clinicians’ opinions.

The contemporary published peer-reviewed  
scientific medical literature contains examples of 
decisions that are described as “a virtual toss-up” 
in the areas of screening, diagnostic, and treatment 
decisions.

Close-Call Versus Clear-Cut  
Decision Making

Close-call decision making has been separated from 
more clear-cut decision making and linked to cog-
nitive biases in decision making. Andrea Gurmankin 
Levy and John C. Hershey studied what they 
termed value-induced bias. They asked volunteers 
to imagine a serious illness with two possible diag-
noses and a treatment with the “same probability” 
of success for each diagnosis. The authors designed 
the more serious diagnosis as a clear-cut decision  
to motivate most subjects to choose treatment.  
The authors designated the less serious diagnosis a 
close-call choice. Study participants were random-
ized to estimate the probability of treatment success 
before or after learning their diagnosis. The “after” 
group had the motivation and the ability to distort 
the probability of treatment success in order to jus-
tify their treatment preference. The authors found 
that in the close-call decision making (but not in 
clear-cut decision making), individuals may distort 
relevant probabilities to justify their preferred 
choices. The authors further argue that those indi-
viduals who exhibit value-induced bias in close-call 
decision making may make suboptimal decisions 
by distorting relevant probabilities to justify the 
medical decisions made. This suggests that medical 
decision making in close-call (or toss-up) decisions 
is different from decisions that appear to be clear-
cut. But there is much more to understand about 
such apparent toss-ups.
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Toss-Up Decisions in Medical Contexts

In medical decision making in the clinic or on hos-
pital wards, for example, the term toss-up may be 
used by a physician or provider loosely in his  
or her conversation with a patient (or with the 
patient’s family member or significant other when 
the patient is too ill to make decisions on his or her 
own behalf) to mean that the physician cannot 
personally predict how a decision will turn out in 
the patient’s care. Indeed, even an assembled team 
of experts may not be able to come up with any 
agreement regarding what is the best course of 
treatment for the patient with a particular stage of 
disease at a particular time.

Toss-ups can also be the result of a careful 
search of the peer-reviewed scientific medical litera-
ture on a particular topic in the case of a patient 
over time. Here, let us consider the case of two 
treatments, Treatment 1 and Treatment 2, both of 
which were used in a randomized controlled trial 
that compared Treatment 1 with Treatment 2 for a 
particular disease at a certain stage under study. 
Here, at the end of the research study after the data 
are analyzed, the results show the same benefits 
and the same risk for both Treatment 1 and 
Treatment 2. If this research study was submitted 
to the peer-reviewed scientific medical literature 
and survived the peer review process, the resultant 
published scientific article would state that there 
were no statistically significant differences between 
Treatment 1 and Treatment 2 based on this research 
study, and hence, Treatment 1 and Treatment 2 
would be toss-ups in the patient’s care. The ques-
tion that arises here is the degree of surety regard-
ing whether the careful search of the peer-reviewed 
scientific medical literature was broad enough and 
had enough depth to capture all relevant scientific 
research published in the peer-reviewed literature.

When Kassirer and Pauker addressed the toss-up 
in medical decision making, they took a strict 
approach to the toss-up in the patient–physician 
relationship. In a toss-up, the patient can make a 
decision in any way he or she wants because there 
is nothing in the scientific evidence or clinical expe-
rience of the physician that is available to shed light 
on the decision. The key word here is available—
the conditions that exert control on what scientific 
medical information is available or not available at 
a particular time.

Kassirer and Pauker’s view depends highly on 
the peer-reviewed medical literature and what it 
contains and what local experts have to say in case 
there is no solid peer-reviewed medical literature 
available to access for guiding the patient’s deci-
sion making. Where there is no scientific medical 
evidence or clinical experience on what direction 
treatment should take, then it is completely up to 
the patient to base his or her decision on whatever 
grounds he or she sees fit.

Why Toss-Up Situations Exist in Medicine

This analysis of why toss-up situations exist in 
medicine may ferret out answers to the question 
why some toss-up situations are allowed to con-
tinue to exist in medicine.

First, there may be no peer-reviewed scientific 
medical literature on a certain topic because there 
have been no scientific studies at all carried out on 
the medical condition, its diagnosis, or its treat-
ment. Rare diseases may fall into this category. The 
literature may have a letter to the editor of a jour-
nal or a case report but no research studies and no 
clinical case series describing the disease across a 
set of patients. Hence, there is no scientific research 
that has been conducted and no published clinical 
experiences of experts or other physicians manag-
ing and treating the disease in question.

Second, there may be no high-quality studies 
that involve randomized controlled trials among a 
set of treatments that could be offered to a patient 
with a particular type of disease at a particular 
stage. Indeed, the disease itself may be so rare that 
there is no way to stage the disease because there 
have not been enough patients with the disease to 
describe the disease as part of a taxonomy.

Third, there may have been trials, but the trials 
may not have been completed, and there may be 
no published scientific articles on the topic in 
question.

Fourth, there may be cases where the disease is 
not rare and there are patients with the disease, but 
these patients may be widely scattered, or there  
are physicians and researchers would who like to 
study the disease, but there is no public or private 
financing available to fund the study of the disease. 
Here, there is a need to establish the diseases as 
important enough to study and to receive govern-
mental or public financing.
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Fifth, there may have been trials on the disease 
and its treatment, but the organization that financed 
the study may not allow the research study to be 
published. For example, if a prescription medicine 
does not do well in terms of benefits or risks as 
contrasted with the other prescription medicines 
tested in the trial, the manufacturer may not allow 
the results to be published. Unless there are regula-
tions requiring product manufacturers to publish 
results of all trials enrolling human study partici-
pants, the results may never be available.

Sixth, product manufacturers funding clinical 
trials on human study volunteers may have princi-
pal investigators and representatives of academic 
medical centers sign contracts that allow only the 
product manufacturer the right to decide when 
and if risk data are released to the public.

In addition, product manufacturers may use 
ghostwriters to help write the scientific articles 
that are submitted for publication in peer-reviewed 
medical journals. These ghostwritten articles may 
attempt to enhance the product’s benefits and 
mute the product’s risks. It can be argued that such 
ghostwritten papers (a) reduce the public trust in 
product manufacturers, (b) distort the peer- 
reviewed medical literature as to what the real 
benefits and real risks of the medical product are, 
and (c) make the medical decisions based on the 
enhanced benefit data and muted risk data seem 
more like toss-ups or close calls when in reality—if 
all scientific data were released and all facts were 
known—the medical decisions would be more 
clear-cut. Full and open discussion of all data 
straightforwardly expressed in terms of benefit 
and risk is needed so that medical decisions can be 
made with the best available information.

Dennis J. Mazur

See also Biases in Human Prediction; Construction of 
Values; Subjective Probability
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TReaTmenT ChoiCes

Treatment choices are the range of options that 
people may use to deal with a health issue or  
illness. This might involve different approaches, 
or combinations of approaches, to treating a 
health condition. The approaches may range from 
self-care, with or without medical advice, to 
deciding to stop treatment. Choices could be made 
about where, when, how, and by whom to be 
treated and may include complementary or alter-
native approaches. The choices that people make 
are at the heart of patient involvement in medical 
decision making.
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Changes in Consultation Style

In the paternalistic (“Doctor knows best”) form  
of healthcare, relatively widespread until the end 
of the 20th century, the doctor was consulted for 
treatment advice, and the patient was expected to 
follow the advice more or less unquestioningly. 
Sometimes, the treatment was even performed on 
the patient without discussion; often there was 
little by way of information or explanation for a 
treatment regime. Patients who did not follow 
advice (and there were, of course, many) were 
deemed noncompliant.

In the past few decades, the conduct of the con-
sultation and the relationship between patient and 
doctor have changed from the paternalistic model 
to a more equal style of consultation, sometimes 
termed mutualistic. In this model, the doctor may 
be seen as an expert in the diagnosis and treatment 
of the condition; but the patient has a unique expe-
rience of the disease, as well as preferences and 
values that may affect the choice of treatment. 
Patients’ expectations, influenced in part by a 
more consumerist and less deferential attitude  
to the medical profession, have combined with 
changes in clinical training to promote a more bal-
anced encounter between patients and profession-
als. Instead of talking about compliance with 
doctors’ orders, or even adherence to treatment 
plans, concordance between patients and doctors 
has become the aim.

Rationale for Patient Involvement  
in Treatment Choices

When someone is diagnosed with an illness, he or 
she wants to hear that there is a remedy, that it has 
minimal adverse effects, and that there is agree-
ment in the medical profession that this is the best 
course of action. Of course, where many condi-
tions are concerned, the patient may find out that 
almost the opposite is true: A definitive cure is still 
being sought; the adverse effects are off-putting; 
and specialists in the field have different ideas 
about the best form of treatment, leading to varia-
tion between, or even within, different treatment 
centers. This can be (at the very least) disappoint-
ing and confusing for the patient.

When the outcomes of treatment are more than 
usually uncertain, the treatment choice may rest 

heavily on the patient’s own priorities and the 
patient’s attitude to the limitations and adverse 
effects that are associated with the different treat-
ments. In such situations, the outcome that is best 
for the patient is only likely to be achieved if he or 
she is involved in making the choice. For example, 
a surgeon cannot detect through clinical examina-
tion whether a woman would prefer a lumpectomy 
or mastectomy for breast cancer. Surgeons expected 
that women would prefer conservative treatment, 
yet when women were given the opportunity to 
make the choice, many surgeons were surprised 
how often women chose to have a mastectomy. 
Among the reasons that affected these women’s 
choice were the belief that if the whole breast is 
removed, there must be less chance of recurrence. 
For some women, the fear of recurrence is, quite 
understandably, greater than the desire to conserve 
their breast.

There are several possible advantages in involv-
ing patients in treatment choices. Many patients 
leave the consultation apparently willing to follow 
directions but then either do not get their prescrip-
tion filled or do not complete the recommended 
course of tablets. If the patient is involved in mak-
ing the choice about treatment, it is more likely 
that he or she will follow and complete the course. 
In U.K. general practice, it is not unusual for 
patients to be given a delayed prescription for an 
antibiotic for a self-limiting condition, such as a 
sore throat. If the symptoms do not improve within 
a specified time, the prescription can be filled. This 
gives the patients the option of deferring their 
choice about whether they want to embark on the 
course of antibiotics and helps avoid unnecessary, 
wasteful, and potentially harmful use of antibiot-
ics. As this example demonstrates, patient involve-
ment in treatment choice does not necessarily mean 
that more resources are used.

There is also evidence that the public (who, 
after all, directly or indirectly pays for medical 
care) wants more involvement in treatment choices. 
A 2006 survey of eight European countries by the 
Picker Institute found that only a quarter of the 
respondents from the general public believed that 
doctors should choose the treatment on their own. 
Half of the respondents thought that the patient 
and the doctor should make the choice together, 
and the other quarter said that the patient alone 
should decide.
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“Real” Choices

To make a choice, people need to be aware that 
there are options. There is always the option of 
having no treatment, but people often do not see 
this as a “real” choice. Women who were offered 
the option of having adjuvant chemotherapy after 
treatment for breast cancer did not perceive it as a 
choice. If the alternative was no treatment, it was 
simply seen as no choice. Prenatal screening in 
pregnancy may be optional, but many couples 
regard it as an inevitable part of prenatal care and 
are often not even aware that they have exercised 
a choice. Treatment for prostate cancer includes 
the option of watchful waiting, sometimes known 
as active monitoring. Despite uncertainty about the 
benefits of any treatment for the disease and the 
unpleasant, and sometimes long lasting, side effects 
(which include impotence and incontinence) of the 
standard treatments of surgery, radiotherapy, che-
motherapy, and hormone therapy, relatively few 
men choose watchful waiting. A qualitative inter-
view study of men with prostate cancer sought to 
understand why nearly all those for whom watch-
ful waiting could have been an option had chosen 
active treatment. Many men did not feel that they 
could live with the idea of the disease “hanging 
over them” and preferred to go ahead with treat-
ment despite the prospect of unpleasant adverse 
effects. Some initially thought that they might  
try watchful waiting but were persuaded by their 
families, and sometimes by support groups, that 
they should have active treatment. Reasons included 
preferring to act quickly and decisively and feeling 
that it must be better to treat than to leave the 
cancer to possibly grow. The few who had chosen 
watchful waiting had dedicated time to learning as 
much as they could about the treatments and the 
uncertainties; were particularly keen to avoid the 
common adverse effects of treatment; or had found 
others to support their choice.

Information for Treatment Choices

When patients are diagnosed, they often have little 
knowledge about the condition or the treatment 
options that might be available to them. Choices 
cannot be made without information. The infor-
mation that patients may use to help them choose 
between treatments includes clinical evidence about 

the outcomes (including survival, quality of life, 
symptom control) of the various treatments; the 
likely consequences of having no treatment; the 
frequency of adverse effects in different treatment 
regimes; what their own doctor would choose to 
do in similar circumstances; and what it has been 
like for other people who have followed the vari-
ous treatment paths. Some of this information is 
routinely included in decision-making aids. New 
information and communication technologies have 
made all types of information much more easily 
accessible to patients.

The Internet, in particular, has had a dramatic 
effect on patients’ ability to call on a wide variety 
of types of information to support treatment 
choices. Patients often feel that only others who 
have been through what they are going through 
can really understand and guide them. It is not 
surprising therefore that people who use the 
Internet for health information seek out other 
patients’ stories and experiences online. Clinicians 
may feel frustrated when patients seem to be more 
influenced by the experiences of friends, family, or 
Internet acquaintances than by research evidence. 
However, the experiences and accounts of other 
people who have faced similar issues may help 
patients establish the relevance and salience of dif-
ferent courses of action in their own lives. For 
example, parents who need to make a decision 
about whether to enter their child in an immuniza-
tion program may benefit from hearing how other 
parents came to make their decision.

Negative Consequences of Patient  
Involvement in Treatment Choices

Some commentators have suggested that, while 
greater autonomy and access to information  
have been widely welcomed, the expectation that 
patients should make their own treatment choices 
has gone too far. There is a danger that the exper-
tise of health professionals can become down-
graded, or even lost, if the informed advice that 
they can offer is viewed as equivalent to any other 
factor or influence on the choice.

In some circumstances, when facing some health 
problems, patients simply do not want to have 
to make treatment choices. For example, patients 
who have just been diagnosed with a life-threatening 
illness or who have heard that their child is seriously 
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ill often want to feel cared for and not faced with 
decisions. A person who has just heard bad news is 
unlikely to be in the best frame of mind to make 
consequential treatment choices, even in the rare 
event that he or she knows enough about the con-
dition and treatment options involved.

A qualitative interview study of women with 
ovarian cancer found that those who were asked to 
choose between two chemotherapy regimes often 
felt that their doctors were abnegating their respon-
sibility to advise them about treatment. The option 
had been offered because a trial comparing the two 
regimes was at that time incomplete and there was 
thus no evidence about any difference in overall 
quality of life or survival. The side effects of the 
treatments were known to differ and were a matter 
of individual preferences and priorities. However, 
women who had either not been told or had not 
understood the reason that they were being asked 
to make the treatment choice felt that they were 
being abandoned by their doctors, sometimes sus-
pecting that this was because of fear of litigation. 
Women could not understand why their doctors 
would not tell them what they thought was the 
best option—especially when they responded with 
visible relief when the woman made the “right” 
treatment choice. Patients may not make the 
choice that their doctor recommends, but they do 
usually like to know what their doctor would do 
in similar circumstances. Doctors are sometimes 
wary of disclosing this information because they 
are concerned that it will harm their relationship 
with the patient and be too strong an influence on 
the choice.

There is often a difference between what people 
anticipate they might do in a health crisis and what 
they choose to do when they are actually diag-
nosed. Barry Schwartz quotes research showing 
that while 65% of people in a survey said that they 
would want to choose their own treatment if they 
were diagnosed with cancer, research with people 
who had really been diagnosed with cancer showed 
that only 12% actually wanted to make their own 
choice. This might be because in a life-threatening 
situation, the need to feel cared for by a trusted 
health professional may overtake the desire for 
autonomy.

Another negative aspect for patients can be liv-
ing with the responsibility of making their treat-
ment choice. When they are making choices, 

people often consider which options they are more 
likely to regret. Choices that are supported by 
health professionals, as well as friends and family, 
and that use available information, may be easier 
to live with because the responsibility is less stark.

Discussion of patients’ involvement in treat-
ment choices highlights the importance of good 
information and clear communication between 
doctor and patients. It can be hard for the doctor 
to admit uncertainty to the patient—and no less 
hard for the patient to hear, but it is a key reason 
why treatment choices need to involve the patient. 
This has to be balanced with the humane recogni-
tion that patients need to feel cared for and often 
want some guidance in making their choice.

Sue Ziebland

See also Choice Theories; Decision Quality; Informed 
Decision Making; Patient Decision Aids; Shared 
Decision Making
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TRee sTRuCTuRe, advanCed 
TeChniques

The basic decision tree is a graphical representa-
tion of a decision model consisting of nodes, 
branches, variables, and expressions. The standard 
node types are decision, chance, and terminal 
nodes. Since decision analysis first became widely 
used in healthcare, analysts have gradually extended 
the basic representation to include a number of 
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advanced features that make models more flexible 
and versatile. This entry describes these advances 
and their use in decision modeling.

Branches and Bindings

A branch connects two nodes in the tree (Figure 1) 
and specifies a specific context. Each branch, or 
collective path of branches, between nodes in a  
tree represents a different clinical context, having 
potentially different probabilities of subsequent 
events, costs, and utilities. When such values are 
expressed in terms of symbolic expressions, any 
parameters may be affected by the corresponding 
series of events. Bindings are mathematical expres-
sions that reassign the value of parameters in a tree 
context. For example, in Figure 1, the parameter 
pCure should be different in the contexts of 
“Empiric therapy” and “Observation.” This can 
be implemented by applying a binding of the form

pCure: = pCureRx

on the branch “Empiric therapy.” This expression 
uses the assignment operator “: =” to indicate that 
the variable on the left of the operator is assigned 
to the value of the expression on the right. The 
assignment of the new value applies to all tree con-
texts downstream from the binding expression but 

does not affect other tree contexts at any other 
points of the tree. While the previously bound 
value of the variable may be used in the binding 
expression, the new value overrides the previous 
value in the subsequent contexts.

Local Versus Global Variable Values

The binding mechanism creates local values for 
variables. The values apply only to tree contexts 
downstream from the binding. In some cases, it is 
useful to create global values, which apply in all 
parts of a tree. An example is precalculating 
parameters such as mortality rates and incidence 
of disease that depend on other variables, such as 
age. The calculated variables can be used in all 
parts of the decision model and not only down-
stream from where they are defined. However, the 
same effect can often be accomplished by setting a 
binding at the root of the tree.

Applying Bayes’s Rule in a Decision Tree

A common application of bindings in decision 
models is application of Bayes’s rule to calculate 
the posttest probability of a test from the pretest 
probability and the test characteristics (sensitivity 
and specificity). Figure 2 shows a tree with an 
additional decision node branch labeled “Test.” 

Empiric Therapy

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDIS

pCure
1 – UDisCure – URx

1 – UDisNoCure – URx

1 – URx

1 – UDisCure

1 – UDisNoCure

1

1– pCure

pCure

1– pCure

1 – pDIS

pDIS

1 – pDIS

Observation

Figure 1  Decision tree
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The Test branch leads to a chance node with two 
branches, “Test positive” and “Test negative.”

The probability of the “Test positive” branch 
(pPOS) is equal to pDIS × SENS + (1 − pDIS) ×  
(1 − SPEC), where SENS is the test sensitivity and 
SPEC is the test specificity, and pDIS is the prob-
ability of disease. Note that it is common to use 
short mnemonics for variable names, using the 
first character to indicate type, such as “p” for 
probability variables. This formula can be applied 
as a binding on the “Test” branch to convey an 
updated, posterior probability of positive test 
results in contexts in which disease is present. 
Given the values for pDIS in Figure 4, SENS = .95 
and SPEC = .99, pPOS = .19. It is higher than 
pDIS because of false-positive tests.

Bayes’s rule can be applied by placing bindings 
on the “Test positive” and “Test negative” branches, 
as shown in Figure 7. The bindings result in pDIS = 
.78 following “Test positive” and pDIS = .002 fol-
lowing “Test negative,” reflecting the likelihood of 
detecting the disease in each scenario.

Shared Subtrees and Symmetry

Every node or branch of a tree is effectively the root 
of a unique subtree. However, many decision trees 
contain repeated structures. For example, in the 
tree shown in Figures 1 and 2, the two chance 
nodes with branches “Disease present” and “Disease 
absent” have structurally identical subtrees. The 
only difference between these occurrences is the 
upstream nodes and branches and the values of 
variables. A convenient modeling construct is to 
allow nodes to share common subtrees, often 
denoted by placing a bracket around all the 
upstream branches, so that the subtree appears 
only once, as in Figure 3. The bracketed notation is 
helpful in depicting very large decision models in a 
compact illustration.

In computer-based implementations of decision 
trees, subtrees may be represented by attaching 
them to upstream branches by means of label or 
link nodes, as depicted in Figure 4. The label node 
is indicated here by two vertical bars. The labels on 

Test positive

Empiric Therapy

Test

Observation

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDIS

pCure

1–pCure

pCure

1 – pCure

1 – pDIS

pDIS

1 – pDIS

Test negative

pPOS

pNEG

Disease present

Cure

No cure

Cure

No cure

Disease absent

Disease present

Disease absent

pDIS
pCure

pCure

1 – pCure

1 – pDIS

pDIS

1 – pDIS

pDIS = .78

pDIS = .002

pDIS : = pDIS * SENS/pPOS

pPOS : = pDIS * SENS + (1 – pDIS) * (1 – SPEC)

pDIS : = pDIS * (1 – SENS)/(1 – pPOS)

1 – pCure

Figure 2  Tree with diagnostic test and bindings



1148 Tree Structure, Advanced Techniques

the unique branch following each label node refer 
to the subtree structure downstream from the 
Disease branch that needs to be represented only 
once in the model. However, the subtree is evalu-
ated differently in each context because of the 
action of the bindings. Figure 4 indicates the bind-
ings needed to specify the probability of disease in 
the “Test positive” and “Test negative” contexts, 
due to the differences in the bindings to the vari-
able pDIS, which appear on the two label node 
branches that lead to the Disease subtree.

Shared subtrees are important not only as a 
convenience but also to enforce symmetry. Shared 
subtrees ensure that similar elements of prognosis 
are modeled the same way for each strategy of the 
decision tree. Attempting to replicate the subtree 
structure manually can lead to unintended differ-
ences in structure, parameters, or bindings that 
may lead to errors in evaluation. For example, if 
the prognosis of disease depends on a particular 
variable in one part of the tree but appears as a 
hard coded value or a different variable in another, 
it can lead to errors when performing sensitivity 
analysis on that variable.

Chance Nodes With Multiple Outcomes

Chance nodes may contain any number of branches 
that must represent a set of mutually exclusive, col-
lectively exhaustive events. Therefore, the proba-
bilities of the branches of a chance node must sum 
to 1. When there are only two branches, this pres-
ents no problem because the probability of the 
second branch can be assumed to be 1 minus the 
probability of the first branch. The previous deci-
sion tree examples in this entry involved a binary 
disease state: Disease was either present or absent. 
In many situations, the patient may have one of 
several diseases. In Figure 5, a chance node models 
a situation where the patient may have one of two 
diseases, but they are mutually exclusive, each hav-
ing an independent marginal probability. In this 
case, the probability of the “No disease” state must 
therefore be the remaining complement of the dis-
ease states. In reality, the probability of mutually 
exclusive disease states is not independent. When 
the probability of one state goes up, the probability 
of the other goes down. This situation must be 
represented by a functional relationship between 

Test Positive

Test

Empiric Therapy

Observation

Test negative

pPOS

pNEG

Disease present

Cure

No curepDIS

1 – pDIS

pCure

1 – pCure

Disease absent

Figure 3  Subtrees: Bracketed notation
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the variables using algebraic expressions or by 
retrieving the precalculated probabilities from 
tables (see Figure 5).

When disease states are not mutually exclusive 
(e.g., when the model includes coronary artery 
disease and diabetes), the tree structure in Figure 5 
is clinically inaccurate because it doesn’t allow for 
both disease states to occur in the same patient.  
In this case, the chance node structure shown in 
Figure 6 is required. Instead of representing all 
combinations of disease states together as mutu-
ally exclusive events at a single node, based on the 
joint probabilities of events, disease states can also 
be represented as sequential chance nodes in which 
the probability of the second event may be condi-
tional on the first. There are four possible out-
comes, representing either disease alone, both 
diseases, or neither disease. This structure also 
ensures that no set of probability estimates will 
violate the assumption that the combined proba-
bility of mutually exclusive events is 1.

Embedded Decision Nodes Versus  
Normal-Form Strategies

The simplest decision trees have a single decision 
node at the root of the tree, as shown in Figures 1 
and 2. However, decision problems often involve 

sequential decisions. For example, the first part of 
the decision may be whether to do a diagnostic 
test. The second decision may involve which of 
several treatments to use if the test is positive. This 
can be illustrated with a tree as shown in Figure 7. 
The decision node at the root of the tree represents 
the test decision. The branches of the chance node 
representing the test result lead to a second deci-
sion node, referred to as an embedded decision 
node, which models the treatment decision. A rela-
tively efficient heuristic algorithm to evaluate this 
model involves first folding back the tree distal to 
each branch of the second decision node and for 
each, and selecting the branch with the highest 
expected utility. Then the root decision node 
would be evaluated, substituting the values of the 

Test positive

Test

Cure

No cure

Disease present

Disease absent

pCure

1 – pCure

pDIS

1 – pDIS

Test negative

Disease

Disease

pPOS

pNEG

Disease present

Cure

No cure

Disease absent

pDIS

pCure

1 – pCure

1 – pDIS

pDIS : = pDIS * SENS/pPOS

pDIS : = pDIS * (1 – SENS)/(1 – pPOS)

Figure 4  Subtrees with label node and bindings

Disease 1

pDIS1

Disease 2

pDIS2

Disease absent

1 – (pDIS1 + pDIS2 )

Figure 5  Chance node with three branches
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embedded decision nodes for the branches of the 
Test node. However, this evaluation method only 
results in an overall optimal combination of deci-
sions if one can assume that the optimal embedded 
decision will always appear in the optimal policy. 
Furthermore, this algorithm breaks down com-
pletely in cost-utility models because there is no 
defined decision rule at embedded decision nodes; 
the preferred option depends on the willingness-to-pay 

threshold and varies according to the threshold 
chosen.

The proper evaluation algorithm involves con-
sidering all possible choices, policies, or strategies 
and may be represented explicitly by converting 
such a tree into a structure in which each combina-
tion of decisions appears as a top-level alternative, 
as shown in Figure 8. Instead of representing the 
downstream decisions as embedded decision nodes, 

Disease 1 Present
Disease 1 and 2

Disease 1 only

Disease 2 only

Neither disease

Disease 2 present

Disease 2 absent

Disease 1 Absent

Disease 2 present

Disease 2 absent

Figure 6  Two nonmutually exclusive diseases

Test positive

Empiric Therapy

Fold back here
second

Fold back here first

Test

Observation

Treatment 1

Treatment 2

No treatment

Treatment 1

Treatment 2

No treatment

Test negative

pPOS

pNEG

Figure 7  Embedded decisions
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each combination of decisions is represented as a 
separate branch of the root decision node. This is 
sometimes referred to as normal form. The combi-
nation of initial choice and contingent downstream 
choice (e.g., “Test, treat if positive”) is referred to 
as a strategy. In this case, there are possible strate-
gies that are not represented by branches of the 
decision node because they do not make sense. For 
example, the strategies “Test, Treatment 1 if nega-
tive” or “Test, No treatment if positive” do not 
make logical sense because if treatment is indicated 
after a negative test, then empirical treatment is 
better than testing. If treatment is not indicated 
after a positive test, then observation is better than 
testing. These illogical strategies are sometimes 
referred to as degenerate strategies and may  
be pruned from the tree so that they will not be 
subject to unnecessary consideration. Nevertheless, 
the number of strategies that can be represented in 
normal form can be very large and is determined 
by the number of sequential decisions and the 
number of possible choices for each.

Boolean Nodes and  
Dynamic Tree Structure

There are times when the structure of the tree needs 
to change depending on the context or  
the characteristics of a patient or population. For 
example, a decision problem may consider an event 
that occurs only when certain characteristics of the 
patient are present. While such cases might be rep-
resented in terms of chance nodes having mutually 
exclusive probabilities of 0 and 1, a simpler and 
more explicit representation can be achieved using a 
Boolean node, which may have any number of 
branches, only one of which is active. The active 
branch is determined by the truth of logic expres-
sions (whose truth values, true and false, are analo-
gous to the probabilities, 1 and 0, of branches of 
a chance node). Any branch with a false logic 
expression is ignored. One such example, shown in 
Figure 9, models events that might occur with post-
menopausal hormone replacement. One of the 
events of interest is endometrial cancer, but only in 
women who have a uterus. This can be modeled by 
using a Boolean node. The risk of endometrial can-
cer is included in the model only when the logical 
variable “Uterus” is true. Another example of the 
use of Boolean nodes is to control the structure of 
the tree based on a condition. For example, the tree 
may be a diagnostic test that is to be considered only 
when a Boolean variable (e.g., “Do test”) is true. If 
the test branch is reached through a Boolean node 
and its logic expression is “Do test,” then the test 
will be performed only when “Do test” is set to true. 
Logic expressions may be of arbitrary complexity 
and may incorporate control variables (such as “Do 
test”) and patient characteristics (e.g., “age < 60”).

Empiric Therapy

Test-treatment 1 if positive (no treatment if negative)

Test-treatment 2 if positive (no treatment if negative)

Observation

Figure 8  Decision node in normal form

Breast cancer

pBreast cancer

No cancer

#

At risk

Events

Uterus

No risk

#

Endometrial cancer

pEndometrial

No cancer

#

Figure 9  Boolean node
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Recursive Trees

The decision trees illustrated so far indicate events 
occurring simultaneously (e.g., performance of a 
test, obtaining a result, and having or not having a 
disease) or in an unspecified time frame (e.g., being 
cured of a disease) and consider each event to 
occur only once. This structure may be inadequate 
to model situations where (a) an event may occur 
more than once or (b) the timing of an event is 
uncertain and the time when it occurs is important 
(e.g., because the risk of the event or its conse-
quences change over time). Although they have 
been almost entirely replaced by Markov models, 
recursive trees were an early means of modeling 
these situations.

Figure 10 shows an example of a tree that uses 
a recursive tree to model the outcome during a 
6-month course of anticoagulant therapy. For each 
month considered, the “Event” chance node mod-
els whether an episode of bleeding occurs. If so, a 
terminal node is reached (perhaps because it is 
assumed that anticoagulant therapy would be 
stopped). If no bleeding occurs, the patient is “At 
risk” for further events. “At risk” has two branches, 
one of which leads back to the Event node. 

Therefore, a cycle, or recursion, is set up. This 
structure requires either a stopping criterion (exit 
condition) or probability functions, which are cer-
tain to decrease below some threshold, to ensure 
that evaluation is not infinite. The Boolean node 
“At risk” models the stop condition using a coun-
ter variable, “Month,” which represents the num-
ber of months on anticoagulant therapy. The “At 
risk” node returns to Event if Month < 6. Month 
is set globally to 0. At each return to the “At risk” 
node, a binding increments Month by 1. This 
ensures that the model doesn’t try to evaluate more 
than six passages through the Event node. The 
recursive tree is one method for modeling recur-
rent events or risk using a simple tree. Recursive 
trees have been replaced almost entirely by Markov 
models in which the iterative parameters are 
explicit and easier to control. However, technically 
any Markov model can be represented and evalu-
ated by a corresponding recursive tree.

Functions and Tables

Mathematical expressions can be used in probabili-
ties, utilities, and bindings to represent relationships 
(linkages) between variables. Functions can be used 

Bleed

Bleed

Event

End

Month < 6

Event

End

Month < 6

At risk
At risk

Month: = Month + 1

Month: = Month + 1

Month = 0
Month = 1

At Risk

Figure 10  Recursive tree
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to express the values when there is a convenient 
closed-form expression describing the relationship. 
However, many relationships do not fit this require-
ment. Examples are the relationship between age 
and mortality, age-related incidence of disease, and 
rates of complications after a clinical event. These 
situations can be modeled conveniently using tables. 
These associate each value of an independent vari-
able (e.g., age) with a unique value of a dependent 
variable. The independent variable is referred to as 
the index of the table. A common example is the 
relationship between age and mortality rate. A por-
tion of the corresponding table showing annual 
mortality rates for ages 50 to 60 is given below:

Age Annual Mortality Rate

 50 .0024

 51 .0030

 52 .0033

 53 .0036

 54 .0039

 55 .0043

 56 .0048

 57 .0053

 58 .0059

 59 .0065

 60 .0072

Mortality rates are related to age by inserting 
an expression into a probability or binding of the 
form TableName[index]—for example, mAge[Age]. 
This is replaced during evaluation by the value of 
the table corresponding to the value of Age. If the 
value of Age is in between two index values of the 
table, the decision analytic software can perform 
interpolation to determine the appropriate table 
value.

Frank A. Sonnenberg and  
C. Gregory Hagerty
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TRusT in healThCaRe

This entry examines the conceptual issues and 
empirical research regarding patients’ trust in 
healthcare. First, the meaning of the concept trust 
is explained. Second, the impact of trust in health-
care systems is explained, and the elements of 
trust that may be particularly important in this 
context are discussed. Finally, several relevant 
results that emerge from a review of the literature 
on the topic are described.

Concept

Trust has been defined as “the optimistic accep-
tance of a vulnerable situation in which the trus-
tor believes that the trustee will care for the 
trustor’s interests.” According to Lucy Gilson, this 
definition emphasizes several key features of trust. 
First, it implies that trust is a relational notion; 
that is, it emerges from a set of interpersonal 
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behaviors. These behaviors are guided by sets of 
institutional rules, laws, and customs. At the 
microlevel, we can distinguish several types of 
trust relations: between an individual patient and 
a physician, between two physicians, and between 
a physician and his or her manager. At the mac-
rolevel, we can consider patient and public trust 
in physicians and managers in a particular health-
care organization and in the whole healthcare 
system. Second, the definition of trust involves a 
notion of vulnerability and risk, and it is rooted 
in the expectation that the other will have con-
cern for one’s own interests. That is, trust appears 
to be necessary to cope with situations that have 
an element of uncertainty regarding the motives, 
intentions, and future actions of other individu-
als and organizations that we depend on. Trust 
appears to be particularly important in the 
healthcare area because this is a setting charac-
terized by uncertainty regarding the competence 
and intentions of the physician on whom the 
patient is reliant. The need for interpersonal trust 
emerges from the vulnerability associated with 
being ill as well as the information asymmetries 
and unequal relationships specific to the medical 
domain. This explains why most definitions of 
trust combine expectations about ability, compe-
tence, and knowledge of the physician with 
expectations about his or her ethics, integrity, 
and motives.

Impact

What are the consequences of trust in the health-
care system? There is substantial evidence that 
trust mediates healthcare processes. In fact, it has 
been argued that trusting patient–physician rela-
tions have a direct therapeutic effect, although 
evidence to support such claims is still scarce, 
mainly because of the lack of intervention studies 
examining the effect of trust on health outcomes. 
There is a broad agreement that trust has an indi-
rect influence on health outcomes through its 
impact on patient satisfaction, adherence to treat-
ment, and continuity with a provider. Trust also 
encourages patients to access healthcare and to 
disclose the information necessary to make an 
accurate and timely diagnosis. Trust, therefore, 
underpins patient behaviors important for effective 

treatment. Trust is also a quality indicator, with 
patients suggesting that high-quality doctor-patient 
interactions are characterized by high levels of 
trust. From an organizational perspective, trust is 
believed to be important in its own right; that is, it 
is intrinsically important for the provision of effec-
tive healthcare and has even been described as a 
collective good, similar to social capital. Specific 
organizational benefits that might be derived from 
trust as a form of social capital include the reduc-
tion in transition costs due to lower surveillance 
and monitoring costs and the general increase in 
efficiency. It has been argued that trust also has 
some costs and dangers. Although trust may pro-
vide legitimacy for the exercise of power, trusting 
too much, without caution, may also enable the 
abuse of power in the form of exploitation, domi-
nation, or conspiracy against others. This is a par-
ticular danger for healthcare given the vulnerability 
of all patients, but particularly those from disad-
vantaged backgrounds, in relation to healthcare 
providers.

Research

Trust research started to gain momentum with the 
1990 publication of Anderson and Dedrick’s trust 
in physician scale. Trust continues to gain increas-
ing attention in the medical and health literatures. 
The dominant focus of this research is on patients’ 
interpersonal trust in a specific physician. Studies 
of dimensions of trust in broader medical institu-
tions are lacking. Despite this limitation, several 
interesting points emerge from the extant literature 
on the topic. First, in addition to the scale noted 
above, several research groups have published 
scales for studying medical trust, each one address-
ing a patient’s trust in his or her individual physi-
cian. Second, regarding the core of patient trust, 
researchers tend to agree that trust depends heavily 
on a patient’s overall assessment of a physician’s 
personality and professionalism and that it is 
driven fundamentally by the vulnerability of 
patients seeking care in a compromised state of ill-
ness. Accordingly, trust in physicians consists of 
the following domains in the following order of 
importance: loyalty or caring, competency, hon-
esty, and confidentiality. All reported trust scales 
that include these dimensions have high internal 
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reliability and good construct validity in that they 
show expected associations with other measures, 
such as being positively correlated with the length 
of the relationship. Some of them have been found 
to have good predictive validity for outcomes 
expected to be sensitive to trust, such as following 
treatment recommendations and staying with the 
same physician.

Research into trust relations also explored the 
nature and form of trust in terms of its different 
types; the factors that build, sustain, or detract 
from trust; and the effects of high or low trust. 
Overall, this research suggests that while patients 
retain high levels of trust in individual physicians 
(“your own doctor”), lower levels of trust are 
found for healthcare institutions. In fact, patients’ 
trust in their personal physicians has stronger 
elements of faith than does trust related to other 
social or economic areas—perhaps more like the 
form of trust that exists in intimate or fraternal 
interpersonal relationships. This result suggests 
that the relationship between the perceived  
performance of the healthcare system at the 
microlevel and the perceived quality of health-
care provision at the macrolevel is a complex 
one. Research needs to examine how institu-
tional trust influences interpersonal trust and 
vice versa.

Taken together, empirical research clearly com-
plements theory and suggests that developing a 
trustworthy healthcare system requires more than 
competent physicians. More important, it needs 
health workers that have the motivation and 
capacity for empathetic understanding of patients, 
as well as institutions that sustain ethical behaviors 
and so provide a basis for trust.

Rocio Garcia-Retamero and Mirta Galesic
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Uncertainty in Medical 
decisions

Uncertainty has many definitions and conceptual-
izations. In decision making, uncertainty refers to 
unknown or uncertain (probabilistic) outcomes of 
decisions. Probability is the mathematical expres-
sion of the degree of uncertainty. Medicine is 
fraught with uncertainty, and medical practice 
involves dealing with it on a day-to-day basis. Due 
to the uncertainty inherent in the environment, 
optimal decisions are not guaranteed to give the 
desired outcome. Furthermore, uncertainty can 
lead to variability in medical decisions, with the 
same (type of) patient being treated differently  
by different physicians. Uncertainty is therefore a 
central issue in medical decision making. This 
entry (a) explores uncertainty in the medical tasks 
of diagnosis, treatment, and prognosis, providing 
examples; (b) uses a decision analytic framework 
to identify types of uncertainty in clinical deci-
sions; and (c) identifies ways of coping with 
uncertainty and facilitating decision making.

Uncertainty in Diagnosis, Treatment  
Decisions, and Prognosis

Uncertainty characterizes all core activities in medi-
cine: diagnosis, treatment decisions, and prognosis. 
Differential diagnosis is essentially a process of deal-
ing with uncertainty in the interpretation of infor-
mation relating to the symptoms and signs of disease 
and the results of diagnostic tests. Examples include 

whether chest pain indicates angina, pulmonary 
embolism, musculoskeletal cause, or dyspepsia; or 
whether a normal electrocardiogram (ECG) can 
exclude acute coronary syndrome. Uncertainty in 
treatment decisions relates to the probability that an 
individual patient will be benefited or harmed, for 
example, a crucial choice between ventilation and 
palliative care for a patient with chronic obstructive 
pulmonary disease who is in acute respiratory dis-
tress. In addition, decisions about particular treat-
ments within a healthcare system will revolve 
around issues of uncertainty in cost-effectiveness, 
for example, the best strategy for a patient with 
dyspepsia (test for H-pylori, treat anyway, or just 
prescribe proton pump inhibitors [PPIs]). Prognosis 
is probably the most uncertain of all medical tasks 
due to the unpredictability of future events in rela-
tion to specific patients, for example, the risk of 
developing postoperative complications, the likeli-
hood of cancer recurrence, or a patient’s life expec-
tancy. Prognosis influences treatment choice and 
decisions; therefore, uncertainty in prognosis will 
increase uncertainty in treatment decisions.

Collecting more information can increase  
certainty; however, this often implies some cost, 
financial or otherwise (delay, inconvenience to the 
patient, pain, risk of injury). On the other hand, if 
there is no cost involved or the cost is small, physi-
cians may collect more information than required 
or information that is not guided by specific 
hypotheses. This may increase physician confi-
dence without necessarily altering the objective 
probability of the disease or may provide data that 
are difficult to interpret.

U
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Types and Sources of Uncertainty

From a statistical viewpoint, there are two types  
of uncertainty: first- and second-order uncertainty. 
Take the example of whether a patient will benefit 
more from surgery or medical therapy, where the 
rates of cure at 5 years are 40% for medical ther-
apy and 60% for surgery. First, one cannot predict 
precisely whether an individual patient will benefit 
or be harmed. In spite of the observed mean dif-
ferences obtained by research (40% vs. 60%), 
individuals in a population are either “cured” or 
“not cured,” not “20% cured.” This is first-order 
uncertainty and is governed by chance and the 
mathematical laws of probability. There is also the 
uncertainty about the precision of the estimate of 
the relative effectiveness of surgery or medical 
therapy. This is known as second-order uncertainty 
and can be due to insufficient or conflicting evi-
dence. If there is high second-order uncertainty 
about a treatment procedure (rates of success or 
failure, complications), the physician’s confidence 
in its efficacy will be low. Second-order uncertainty 
is expressed as statistical variation around a point 
estimate of probability and can be reduced by 
greater information in terms of research findings. 
For example, although the absolute risk difference 
is 20% in favor of surgery, the 95% confidence 
interval of that estimate may cover the range of a 
5% harm to a 45% benefit.

Using a decision analytic framework, different 
types of uncertainty can be identified in medical 
decisions:

 1. Uncertainty about the options available for 
diagnostic and treatment strategies, for example, 
diagnostic tests, medications, and treatment 
procedures

 2.  Uncertainty about the outcomes of each option, 
for example, the potential interactions and side 
effects of drugs and complications from 
treatment

 3. Uncertainty about the probability of each 
outcome, for example, the positive predictive 
value of a test and the success or failure rate  
of a treatment

These types of uncertainty may stem from the lack 
of published, scientific evidence; the difficulty  
of the physician to keep up-to-date with medical 

developments; and his or her ability to assess the 
published evidence critically.

 4. Uncertainty about the utility of each outcome, 
that is, the values patients place on outcomes 
(e.g., miscarriage due to amniocentesis vs. a baby 
with Down syndrome). Patient preferences and 
values about different health outcomes are 
volatile, and utilities are difficult to measure. It 
is also debatable whether a mean utility, used in 
health policy decisions, is appropriate for 
decisions concerning individual patients.

Lack or unreliability of scientific evidence is the 
most widely cited source of uncertainty in medi-
cine. However, a second, major source of uncer-
tainty relates to the application of evidence to 
individual patients. Patients respond differently  
to the same risk factor, drug, or treatment. They 
experience the same disease differently and exhibit 
different symptoms. Moreover, they communicate 
their symptoms differently. These patient-related 
individual differences make diagnosis, manage-
ment, and prognosis in medicine different from 
related tasks in other domains, for example, fault 
diagnosis in man-made systems.

Uncertainty in Policy Decisions

Over and above the decisions that physicians 
make about the management of individual patients, 
healthcare systems, insurers, and government 
departments make decisions about the provision of 
care to patient populations with particular condi-
tions and the treatments that they are able to 
receive. The accepted means of incorporating evi-
dence into this process has become (a) the use of a 
probabilistic model that encapsulates the second-
order uncertainty in the relevant parameters and 
(b) value of information analysis to determine the 
trade-offs between taking a policy decision (e.g., 
recommending adoption of a test, drug, or treat-
ment procedure) and commissioning more research 
on the topic.

Coping With Uncertainty

Bounded Rationality

The concept of bounded rationality was intro-
duced by Herbert Simon to describe the ability of 
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humans to make good decisions in complex, 
uncertain situations and under time constraints, 
despite their limited memory and information pro-
cessing capacity. Humans are limited in their abil-
ity to encode and retain information in memory, 
retrieve information when needed, and manipulate 
information as required for optimal decisions. At 
the same time, they have access to limited or uncer-
tain information and must decide more or less 
quickly. Examples of such situations in medicine 
range from managing rapidly deteriorating patients 
in the operating theater, emergency room, or inten-
sive care to diagnosing a patient with chest pain in 
the primary care clinic.

Despite the difficulties outlined above, doctors 
will make good decisions or help patients make 
good decisions, most of the time. This is because 
humans are adaptive decision makers and have 
learned to cope with uncertainty. They have adapted 
to the demands of their environment and devel-
oped strategies that allow them to make satisfac-
tory, albeit not necessarily optimal, decisions. This 
is known as satisficing. People thus manage to sur-
vive and operate successfully in complex environ-
ments. Examples of such “approximate” strategies 
include pattern matching, various heuristics (rules 
of thumb), and the tendencies to consider only a 
few options, to evaluate options sequentially, and 
to seek confirmatory evidence. These are uncon-
scious strategies and people are not necessarily 
aware that they are using them. These approximate 
strategies can sometimes lead to error, for example, 
when the probability of an event (e.g., a disease)  
is judged by how easily it is remembered. This is 
known as the availability heuristic. This heuristic 
can lead to wrong diagnoses, as memorability is 
influenced by a number of factors other than true 
frequency of an event (in this case, the true preva-
lence of the disease in the population of interest).

Coping Strategies

Physicians employ a number of strategies for 
coping with uncertainty, for example, reducing, 
acknowledging, or suppressing uncertainty.

Reducing Uncertainty

Uncertainty can be reduced by collecting more 
information (e.g., diagnostic tests or a second opin-
ion); deferring the decision until more information 

becomes available (i.e., watchful waiting); or initi-
ating management on the basis of a hypothesized 
diagnosis and monitoring how it influences the 
patient’s symptoms. Uncertainty can also be reduced 
by extrapolating from the available information, 
for example, by making assumptions on the basis 
of circumstantial and contextual information (e.g., 
how the patient looks, his or her age, sex, area of 
residence, occupation, hobbies). Experienced physi-
cians are known to make more and better use of 
contextual information than less experienced ones.

Acknowledging Uncertainty

Physicians may acknowledge uncertainty and 
make contingency planning when selecting a course 
of action, for example, by safety netting for a seri-
ous but less likely disease. This could be consid-
ered as an attempt to minimize regret, should the 
patient be found to suffer from the serious disease. 
Safety netting may involve close follow-up, further 
tests and investigations, or referral of the patient to 
a specialist. Safety netting is also employed when 
the physician is sufficiently unsure of the diagnosis 
or thinks that the patient is sufficiently unwell or 
worried about his or her symptoms.

Suppressing Uncertainty

Finally, uncertainty may be suppressed and phy-
sicians may appear more confident and categorical 
than the available information warrants. This may 
be an unconscious process and a survival strategy 
in situations where reducing uncertainty and con-
tingency planning are not possible but an action is 
still required.

Physicians who have been longer in medical 
practice report less stress from uncertainty than 
their younger colleagues. Physicians with less 
experience tolerate uncertainty less well and seek 
to reduce it by gathering more information; this 
can sometimes involve performing unnecessary 
tests and investigations.

Decision Support

Uncertainty can be reduced by following clinical 
algorithms and practice guidelines. These can be 
available to the physician on paper or as part of a 
decision support system. Guidelines that are vague 
and general do not reduce uncertainty effectively, 
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as they cannot easily be applied to specific patients. 
Simple and easy-to-remember diagnostic or predic-
tion rules are more effective, especially when they 
are incorporated in a computerized decision sup-
port system, activated at the point of care.

Olga Kostopoulou 
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Unreliability of MeMory

Patients may exhibit many different forms of cog-
nitive vulnerabilities. The areas where cognitive 
vulnerabilities take on an important form is when 
there is a strong need for patients’ active participa-
tion in medical decision making. Oftentimes, in 
the discussion of medical decision making there is 
limited discussion of cognitive processes after the 
decision is made. And these after-the-fact cognitive 
processes fall under the rubric of memory. Memory 
is defined as the processes in both living and non-
living entities that acquire, store, and retrieve 
information. Two areas where memory plays a key 
role in medical decision making are in consent and 
informed consent in clinical care and informed 
consent in research on humans.

Memory in Medical Decision Making

In the area of medical decision making, medical 
decision makers would prefer a state of the world 
where everyone had perfect memory. But there is 
often confusion regarding what is meant by the 
term memory. In addition, there is a need to explore 
what is meant by the concept of “memory” when 
one alleges that a person’s memory is unreliable.

Memory is key in medical decision making. 
Both the individual who has to come to a decision 
involving his or her medical care and the individual 
involved in disclosing information related to that 
decision ideally must have optimal short- and 
long-term memory about what actually transpired 
in that decision-making session. There are two ses-
sions that are key in medical decision making.

First, there is the consent or informed consent 
session in clinical care between the patient who 
comes to a physician (or other healthcare provider) 
for care and the physician (or other healthcare 
provider) who discloses the information about the 
medical intervention or procedure the physician is 
recommending (if there is one optimal medical 
intervention), the risks, and the alternatives 
involved in the patient’s decision.

Second, there is the informed consent session in 
research on humans between the individual being 
approached for research study participation as a 
study volunteer and the principal investigator of 
the study (or the principal investigator’s designee).

Ideally in both of the above cases, both parties 
of the decision of whether to embark on the physi-
cian-recommended medical intervention or whether 
to enroll in the research study involving humans 
would have highly accurate recall of what was said 
and what transpired in each session. However, this 
is not the case, and the existence of such an ideal 
memory about events held between two parties is 
often fraught with errors of memory. The research 
on two types of memory—gist memory and verba-
tim memory—helps understand what is going on 
with such errors of memory in two-party decision-
making sessions.

Gist Memory

Andrew Budson and colleagues define gist as the 
general meaning or general idea conveyed by a col-
lection of items. There is an increasing recognition 
among memory researchers, for example, Valeria 
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Reyna and Allan Hamilton, that individuals—
during and after consent and informed consent 
sessions—behave more as having gist memory. In 
cases of consent and informed consent, for these 
authors, gist memory is a “selective” memory of 
things that are important to individuals that are 
gleaned from disclosures that are made by physi-
cians or research investigators in consent or 
informed consent sessions.

Verbatim Memory

Verbatim memory is memory that involves the 
actual accurate remembering of what went on in a 
decision-making session in terms of facts and 
details. Verbatim memory is what everyone would 
like to have to carry out a successful prospective 
decision-making session. In addition, verbatim 
memory is what courts would like patients to have 
when patients allege lack of physician or principal 
investigator disclosure and when the courts are 
called in to adjudicate problem cases alleging lack 
of disclosure related to risks in consent in clinical 
care or lack of disclosure related to risks in 
informed consent in clinical care settings or in 
research studies on humans.

Illustrative Study

Andrew Lloyd and colleagues surveyed 71 patients 
on the waiting list for carotid endarterectomy 
(CEA). CEA is a surgical intervention that is 
designed to remove a blockage at the site of the 
carotid artery to prevent future stroke, but it is also 
a procedure that carries with it the risk of stroke 
during or shortly after the performance of the CEA 
itself.

Lloyd and colleagues assessed these 71 patients 
on the CEA waiting list regarding their recall of 
risk and benefit to health information provided by 
their surgeon related to the CEA they were waiting 
to undergo in the surgeon’s care. Patients were 
surveyed 1 month after their initial consultation, 
and a subgroup was surveyed again on the day 
before their operation.

The researchers found that patients’ estimates of 
their baseline risk of stroke without surgery were 
significantly different from what they had been 
told by the surgeon. Patients’ estimates of stroke 
risk due to surgery ranged from 0% to 65% (actual 

local risk 2% that was provided to the patient by 
the surgeon at the initial consent session).

The researchers also found that patients also 
had unreasonable expectations about the benefit 
of the operation for their health that were well 
beyond the information provided to them by their 
surgeon. Estimates of stroke risk correlated posi-
tively with the degree of expected benefit from the 
operation (r = .29, p = .05). When resurveyed the 
day before the operation, patients’ perceptions of 
both risk and benefit had increased significantly.

The authors concluded that most patients in 
their study failed to understand the risks and ben-
efits associated with CEA and did not recall the 
risk disclosure information provided to them by 
their physician. Some patients’ estimates of stroke 
risk were actually greater than the perceived poten-
tial benefit of surgery in terms of risk reduction.

In their analysis of Lloyd and colleagues’ study, 
Reyna and Hamilton clarify what is going on in 
Lloyd and colleagues’ study in terms of verbatim 
memory and gist memory in relation to patient 
memory related to physician disclosure of risk and 
benefit information.

First, verbatim memory in Lloyd and colleagues’ 
study involves remembering the facts and details  
of disclosed information. Second, gist memory in 
Lloyd and colleagues’ study involves the under-
standing and interpretation that is placed on that 
disclosed information by the individual hearing the 
disclosure message.

Reyna and Hamilton argue that what needs  
to be more widely recognized is that verbatim 
memories—that is, memories of the facts and details 
of the disclosed message in consent and informed 
consent sessions or other decision-making sessions—
are the memories that fade rapidly, while the gist 
memories of the individual—that is, memories of 
how that disclosed message is understood and inter-
preted by the individual hearer of the message—are 
the memories that endure with the patient over time. 
Thus, unreliability of memory can be understood in 
terms of memory traces of gist memory, which are 
the memories that endure over time and the failure 
of persistence of verbatim memories that are apt to 
fade rapidly after disclosures are made.

Dennis J. Mazur

See also Cognitive Psychology and Processes
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Utilities for Joint 
HealtH states

Utility is a quantitative expression of an individu-
al’s preference for a particular state of health 
under the condition of uncertainty. Similarly, utili-
ties for joint health states are the quantitative 
expression of an individual’s preference for having 
two or more health states or comorbid disease 
conditions, for example, a person with both 
asthma and diabetes. Same as utilities for single 
health state, utilities for joint health states are 
assessed on a scale where 0 represents death and  
1 represents perfect health.

One important usefulness of utility assessment 
arises from the ability to compute quality-adjusted 
survival, measured in quality-adjusted life years 
(QALYs), which has gained increasing attention 
from clinical investigators to evaluate the treat-
ment outcomes for medical decision making. 
QALY is achieved by multiplying quantity by qual-
ity of life, as measured by utility. For example, if  
a patient lives 1 year of life with utility .8, this 
amounts to 1 × .8 = .8 QALYs. If we were to mea-
sure the patient’s utility routinely, until death, we 
could compute his or her quality-adjusted survival. 

If all patients were followed until death, we would 
sum the products of these quantity by quality of 
life values.

Purpose of Research

Standard catalogs of utilities have been developed, 
primarily for single health state or one disease con-
dition, to facilitate the clinical decision analyses or 
treatment comparisons from a population perspec-
tive. The challenges arise when these off-the-shelf 
utilities are not readily available for those with 
joint health states or multiple disease conditions. 
There is no standard method to calculate the utility 
of comorbid disease conditions except by directly 
sampling from the population, which could be 
costly and time-consuming.

Existing Methods to Estimate  
Utilities for Joint Health States

There currently exists no gold standard method to 
deal with joint health states or comorbidities, with 
most being selected for convenience. That said, 
several simplistic estimators have been proposed to 
assess utilities for joint health states when only the 
separate utilities of the individual health states are 
available. The commonly suggested ones include 
multiplicative, minimum, and additive estimators.

Multiplicative Model

Given its appealing simplicity, the multiplicative 
model [u(A&B) = u(A) × u(B)] is probably the one 
that has been most commonly used. For example, if 
the average utilities for asthma and diabetes are .71 
and .63, respectively, the utility for individuals with 
both asthma and diabetes would be estimated as 
.71 × .63 = .45 based on the multiplicative model.

The multiplicative model has been empirically 
examined using the preference-based scores derived 
from Health Utility Index Mark 3 within a Canadian 
community population and the findings supported 
the use of the multiplicative model. It is worth not-
ing that an extra step of rescaling, or “purification” 
as referred to in the study, was applied. This step 
was conducted by dividing the observed utilities by 
the utility of persons reporting no disease condi-
tions to achieve the purified utilities. This step 
adjusted for health problems other than the disease 
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conditions being studied such as loss of functional 
health attributable to unknown factors. However, 
a difficulty with rescaling (purification) in medical 
decision making is that the utility of persons report-
ing no disease conditions may likely differ between 
a specified sample and the general population. That 
utility also may not be readily available for clinical 
investigators or decision analysts.

The multiplicative model was also examined 
using the preference-based scores derived from 
EQ-5D (EuroQol) within a U.S. national represen-
tative community-dwelling population. The results 
showed that multiplying the two utilities of single 
health states has a large difference from the utility 
of those who actually have both health states. Such 
a difference is larger than most of the other sim-
plistic estimators with or without purification. The 
reason the multiplicative estimator does not empir-
ically work well was explained that it is almost 
impossible for individuals to report all their 
comorbid disease conditions during a question-
naire survey. Therefore, even though a list of 
comorbid conditions is reported for certain indi-
viduals, it does not mean that such a list is compre-
hensive and exhaustive. That is to say, when 
multiplying two utilities together, researchers are 
likely using utilities of patients with more than one 
health state, and comorbid conditions are likely 
correlated. So multiplying two utilities is double 
counting because some patients naturally have 
both and not all have just one disease condition. A 
difficulty with any study in this context is that it is 
impossible to be sure that a patient has no other 
comorbidities beyond those queried and that those 
queried were measured without error.

Minimum Model

Minimum model [u(A&B) = Min(u(A), u(B))] is 
another method that has been used to assess utili-
ties for joint health states when only the separate 
utilities of the individual health states are avail-
able. For example, if the utilities for asthma and 
diabetes are .71 and .63, respectively, the recom-
mended utility score assigned for individuals with 
both asthma and diabetes would be the minimum 
of .71 and .63, in this case .63, based on the mini-
mum model.

It has been found that the minimum estimator 
has the smallest difference among a list of simplistic 

estimators, including the multiplicative and addi-
tive estimators from the same aforementioned 
study. However, none of the estimators was found 
unbiased from the utility of those who actually 
have both health states. Nonetheless, the identified 
bias for the minimum estimator is smaller than the 
minimally important difference of the preference-
based EQ-5D index score ranging from .033 to .07 
in existing literature. Those identified biases for 
both multiplicative and additive estimators are 
larger than such a range. Thus, the minimum esti-
mator is still preferred to the multiplicative estima-
tor for measuring utilities of joint health states with 
the empirical evidence from a U.S. national repre-
sentative population.

Using the time trade-off utilities in prostate can-
cer, another study compared the multiplicative, 
minimum, and additive estimators and also found 
that the minimum estimator is the least biased and 
most efficient among the three. Similar to the pre-
vious study, none of the estimators provided unbi-
ased results.

Additive Model

Researchers have also suggested the additive 
model [u(A&B) = u(A) + u(B) − 1] to estimate the 
utilities of joint health states. To use the same 
example, if the utilities for asthma and diabetes are 
.71 and .63, respectively, the recommended utility 
score assigned for individuals with both asthma 
and diabetes would be (.71 + .63 − 1) = .34 based 
on the additive model.

The predictive values of the additive and the 
multiplicative models were compared using the 
standard gamble technique in a sample of patients 
with recurrent rectal cancer. It was found that the 
multiplicative estimator predicted the utility of 
joint health states better than the additive estima-
tor. Such a finding was echoed by the aforemen-
tioned study. Both studies found that the additive 
estimator has a larger difference from the utility of 
those with both health states than the multiplica-
tive estimator, although none of these two estima-
tors is preferred.

Regression Models

The mapping method with regression models 
was used in recent literature to estimate the utilities 
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for joint health states when the utilities of the indi-
vidual health states are available. This method is 
typically applied based on a large sample of popu-
lation, nationally representative sample preferred, 
to get the marginal disutility for each disease con-
dition. For example, if the utility for asthma is 0.71 
and the marginal disutility for diabetes is −.035, 
the recommended utility assigned for individuals 
with both asthma and diabetes would be .71 + 
(−.035) = .675 based on this method.

The concept of marginal disutility associated 
with each disease condition is intuitively attractive. 
Using regression modeling, marginal disutility of  
a certain disease is the utility difference between 
patients with that disease and those without after 
controlling for other covariates in the model. A 
series of related studies have been conducted to 
identify the marginal disutilities for most of the 
common disease categories using the preference-
based scores derived from EQ-5D (EuroQol) 
within a U.S. national representative community-
dwelling population. The regressions can provide 
marginal disutilities for not only each disease con-
dition but also other covariates that were con-
trolled in the model.

However, this method has not been found to be 
widely used in medical decision making likely due 
to the following reasons. First, the estimated mar-
ginal disutilities can be sensitive to the appropri-
ateness of the regression modeling. This includes 
both the choice of the regression model and the 
covariates that are controlled in the model. It is 
well established that utility score itself is far from 
being normally distributed. It has a ceiling at 1 
with a significant number of people rating them-
selves in full health. Methods designed for continu-
ous data, such as the ordinary least squares (OLS) 
regression, are often inappropriate for such data. 
Several other methods have been proposed includ-
ing the Tobit model, the censored least absolute 
deviations estimator (CLAD), and the two-part 
model. The appropriateness of these models is still 
in need of further research. Additionally, the esti-
mated marginal disutilities are likely to vary based 
on the selection of included covariates in the 
model. Second, while disease conditions and other 
covariates are adjusted for in regression models, 
statistical assumptions are made about how these 
conditions and covariates interact with one another. 
A simple linear regression can omit or oversimplify 

these interactions, which may bias the estimated 
marginal disutilities. Third, the estimated marginal 
disutilities are highly dependent on the data source 
that is used for the regression modeling. It is likely 
that even with the same model, different database 
may produce distinct marginal utilities for the 
same health state. Fourth, the method of marginal 
disutilities is not easy to implement, which dis-
courages the use by clinical investigators.

Other Methods

Other methods that have been proposed include 
more robust modeling techniques to convert  
the single health state utilities into those for joint 
health states. For example, utilities may be statisti-
cally estimated as

u(A&B) = β0 + β1 × Multiplicative(u(A),  
u(B)) + β2 × Min(u(A),  

u(B)) + β3 × Additive(u(A), u(B)),

where the utility of joint health states A and B is  
a linear combination of the multiplicative, mini-
mum, and additive estimators. The βs are the coef-
ficients that need to be estimated from least square 
linear regressions. If any of the βs are not statisti-
cally significantly different from 0, the correspond-
ing estimator can be omitted from the equation. 
This method uses the estimated β coefficients to 
construct correction factors, which may produce 
more flexible models than those simplistic models 
aforementioned. However, it also requires a wealth 
of data and is not straightforward to implement by 
clinical investigators.

Alex Z. Fu

See also Disutility; EuroQoL (EQ-5D); Expected Utility 
Theory; Health Utilities Index Mark 2 and 3 (HUI2, 
HUI3)
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Utility assessMent tecHniqUes

In medical decision making, a utility is a measure 
of the relative desirability that a person attributes 
to a particular health state, under conditions of 
risk. Two points are noteworthy here.

First, a utility is a relative measure. A person’s 
utility for the health state of interest—the target 
health state—is revealed by comparing it with two 
extreme health states. One extreme is preidentified 
as highly undesirable and arbitrarily ascribed a 
utility of 0.00. The other extreme is preidentified 
as highly desirable and arbitrarily ascribed a utility 
of 1.00. Unless the person considers the target 
health state to be preferentially equivalent to either 
extreme, his utility for that state falls somewhere 
between 0.00 and 1.00.

Second, a utility is measured under conditions of 
risk. The assessment process involves asking the 
individual to choose between the certainty of the 
target health state or a hypothetical lottery with the 
probabilities p and 1 − p of entering, respectively, 
either the highly desirable extreme health state or 
the highly undesirable extreme health state. 
Therefore, the reported utility for the target health 

state incorporates the individual’s personal attitudes 
toward the risks of gains and losses in health.

Utilities in Medical Decision Making

An investigator elicits and uses utilities in different 
ways depending on whether her ultimate research 
purpose is operating at the patient-population 
level or at the individual-patient level.

At the patient-population level, for example, 
utilities are computationally integral to the perfor-
mance of formal medical decision analyses, to the 
conduct of cost-utility analyses, and to the deriva-
tion of quality-adjusted life years. The aggregated 
results of these computations then may be used  
in the subsequent development of evidence-based 
health policies and clinical guidelines.

Another example involves eliciting utilities for 
baseline and outcome health states from patients 
in clinical trials who have been randomized to 
receive different therapeutic interventions. Then 
across-time and across-group comparisons of the 
reported utilities can be used to make inferences 
about the interventions’ relative effectiveness, in 
terms of the patients’ own reported health-related 
quality of life.

A third example at the patient-population level 
occurs when a new, preference-based, population 
health index is under development. After specify-
ing which health states will most likely be captured 
by her new index in the future, the investigator 
elicits utilities for these anticipated health states 
from large groups of people in the community. The 
observed utilities are then aggregated and incorpo-
rated into the new index, as the “weights” to use 
in future applications of the new index.

Utilities also come into play at the individual-
patient level, when a clinical investigator is provid-
ing decision support for a patient. A patient may 
wish to be informed about the distributions of 
utilities other patients have reported for the health 
states they experienced after therapy and then use 
that information in arriving at his own treatment 
choice. On the other hand, an investigator could 
elicit the patient’s own utilities for the different 
possible outcome states, incorporate those patient-
specific utilities into an individualized decision 
tree, and then use formal decision analysis to iden-
tify the treatment that would have the highest 
expected utility for that patient.
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Standard Gamble Technique

The standard gamble technique, devised by John 
von Neumann and Oskar Morgenstern, is an 
application of expected utility theory. Because it is 
based on explicit axioms of rationality, it is often 
cited as the criterion method for eliciting utilities 
for health states.

When an investigator wishes to elicit a rater’s 
standard gamble utility for a particular target 
health state, her elicitation strategy depends on her 
ultimate research purpose. One strategy is used if 
the target health state is one of several outcome 
health states on a decision analytic tree, and the 
investigator needs the rater’s utility for each of 
these imagined health states. A different strategy is 
used if the target is the rater’s baseline health state 
when he is first entering a clinical trial, and the 
investigator needs the rater’s utility for this current 
experienced health state.

Imagined Health States

Preliminary Steps

The investigator first provides the rater with a 
number of cards. Each card bears a description of 
one of the relevant health states. Suppose there are 
five health states in the set: (1) K (mild symptoms 
and functional problems), (2) L (moderate symp-
toms/problems), (3) M (severe symptoms/problems), 
(4) Perfect Health, and (5) Immediate Death. The 
states Perfect Health and Immediate Death are 
customarily included when the investigator needs 
to compare her observed utility distributions with 
those reported by other investigators; for such 
across-study comparisons, the raters in the differ-
ent studies must have reported their utilities rela-
tive to the same two extreme health states.

The rater is asked to rank order the set of health 
states from the most preferred to the least pre-
ferred. Suppose he ranks them as follows: Perfect 
Health, K, L, M, and Immediate Death. The inves-
tigator then arbitrarily assigns the utilities 1.00 
and 0.00 to the top- and bottom-ranked health 
states, respectively. Now the challenge is to elicit 
the rater’s standard gamble utilities for K, L, and 
M, relative to Perfect Health (utility = 1.00) and 
Immediate Death (utility = 0.00).

The investigator first uses imaginary money lot-
teries to illustrate the standard gamble technique. 

The rater is repeatedly asked whether he would pay 
a particular amount of money to buy a ticket for a 
lottery with particular chances of either winning a 
larger amount of money or losing the money he 
would pay for the ticket. Each time the question is 
asked, the cost of the lottery ticket is kept constant, 
but the chances of winning/losing are systemati-
cally varied. Often, visual aids such as probability 
wheels are used to illustrate these shifts in the prob-
abilities. Once the rater indicates that he under-
stands the logic involved in choosing between a 
certainty and a lottery with a particular set of prob-
abilities, he is ready to use the standard gamble 
technique to reveal his utilities for K, L, and M.

Assessing the Utility of a Single  
Imagined Health State

Suppose the investigator begins with health 
state L. She asks the rater to imagine the certainty 
of living in health state L for the rest of his natural 
life. Formal life expectancy tables can be used to 
specify a reasonable lifetime duration for a rater of 
a particular age. For illustrative purposes, suppose 
a rater has an estimated remaining life expectancy 
of 30 years.

Next, the rater is asked to imagine a hypotheti-
cal situation in which he is asked to choose 
between living for the next 30 years in health state 
L or accepting an imaginary lottery. The lottery 
has two possible outcomes. The “best” outcome is 
the top-ranked health state—Perfect Health—
which has already been arbitrarily assigned a  
utility of 1.00. The “worst” outcome is the bot-
tom-ranked health state—Immediate Death—
which has already been arbitrarily assigned a util-
ity of 0.00.

This lottery is initially presented to the rater 
with the probability (p) of Perfect Health = 1.00 
(or 100%) and the counterpart probability (1 − p) 
of Immediate Death = 0.00 (or 0%). Under these 
conditions, this is a “dominated” choice. This ini-
tial version of the lottery is, in effect, an assurance 
of a lifetime of excellent health, and the rater’s 
rationally logical choice is to opt for the lottery.

Then the investigator asks the rater to suppose 
that the lottery’s probability (p) of Perfect Health 
is lowered from 1.00 to .95, while the probability 
(1 − p) of Immediate Death is raised from .00 to 
.05 (again, visual aids such as probability wheels 
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are used to illustrate these probabilities, which also 
can be expressed as percentages). The rater is 
asked to choose between the certain health state L 
and this new lottery. Suppose the rater considers 
health state L—with its moderately severe symp-
toms and functional problems—to be quite unde-
sirable, and he again chooses the lottery. He is 
indicating that, to have a .95 chance to be in excel-
lent health instead of health state L, he is willing to 
accept a .05 risk of death.

Next, the investigator asks the rater to suppose 
that the lottery’s probability (p) of Perfect Health 
is lowered further, from .95 to .90, and the prob-
ability (1 − p) of Immediate Death is, by corollary, 
raised from .05 to .10. Again, the rater is asked to 
choose. Suppose he again chooses the lottery; he’s 
indicating that, to have a .90 chance to be in excel-
lent health instead of health state L, he’s willing to 
accept a .10 risk of death.

In this manner, the probabilities in the lottery 
are systematically altered in 5% decrements/ 
increments, until an indifference point is reached 
at which the rater cannot choose between the cer-
tainty of continued life in state L and the lottery. 
Suppose this point is reached when the lottery’s 
chance for Perfect Health has decreased to .75 and 
its risk of Immediate Death has increased to .25. 
(The investigator may alter the values of p and  
1 − p in 1% increments/decrements around this 
point, in an attempt to precisely estimate the indif-
ference point. This refinement is referred to as 
ping-ponging.)

Any lottery’s expected utility = (p of the “best 
outcome”)(utility of the “best outcome”) + (1 − p of 
the “worst outcome”)(utility of the “worst out-
come”). Therefore, the lottery at this rater’s indiffer-
ence point has an expected utility of (.75)(1.00) + 
(.25)(0.00) = .75. According to the axioms of 
rationality that underlie the standard gamble, the 
expected utility of the lottery at the rater’s indiffer-
ence point is, by substitution, this rater’s utility for 
health state L, because the rater is indicating that 
this particular lottery and health state L are prefer-
entially equivalent. Therefore, in our example, the 
rater’s standard gamble utility for health state L 
over the next 30 years is equivalent to .75.

Then the investigator elicits the rater’s utilities 
for K and M, the remaining target health states in 
the set, by repeating each of the steps outlined 
above.

If the investigator is working at the individual-
patient level, the utilities for K, L, and M would be 
incorporated into the underlying decision analytic 
tree to reveal the therapeutic option with the high-
est expected utility for that particular patient. If the 
investigator is working at the patient-population 
level, she would carry out the entire procedure with 
each of the raters in the study sample, generate  
a distribution of utilities for each outcome health 
state, incorporate the “average” utilities into the 
underlying decision analytic tree, and thereby 
reveal the therapeutic option with the highest 
expected utility for that patient population.

Experienced Health States

Preliminary Steps

The investigator begins by asking the rater to 
report his current status on a set of relevant symp-
tomatic and functional dimensions (Y1, Y2, Y3, 
Y4). Then these self-reports are compiled into an 
overall description of his current experienced 
health state, X.

Before launching into the standard gamble  
technique, the investigator illustrates the technique 
using questions about imaginary money lotteries, 
as outlined above. Once the rater has indicated 
that he understands the logic involved in choosing 
between a certainty and a lottery with a particular 
set of probabilities, he is ready to use the standard 
gamble technique to reveal his utility for his cur-
rent experienced health state, X.

Assessing the Utility of a Single  
Experienced Health State

The investigator begins by asking the rater to 
imagine the certainty of living in health state X for 
the rest of his natural life (in this example, for 30 
years). Then she asks him to imagine a hypotheti-
cal situation in which he must choose between that 
certainty or an imaginary lottery with two possible 
outcomes.

If the investigator plans to eventually compare 
her rater’s utilities for his current experienced 
health state with those reported in other studies, 
she may need to use Perfect Health (with an arbi-
trarily assigned utility of 1.00) and Immediate 
Death (with an arbitrarily assigned utility of 0.00) 
as the lottery outcomes. However, if across-study 
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comparisons are not scientifically indicated, and it 
is only necessary to ensure that the utility assess-
ment procedures are internally consistent, she may 
elect to use different win/lose outcomes in the hypo-
thetical lottery. For example, the best lottery out-
come could be a health state in which there are no 
problems on any of the dimensions Y1, Y2, Y3, and 
Y4 (with an arbitrarily assigned utility of 1.00), and 
the worst lottery outcome could be a health state in 
which there are extremely severe problems on all 
the dimensions Y1, Y2, Y3, and Y4 (with an arbi-
trarily assigned utility of 0.00). This strategy offers 
two advantages. First, replacing Perfect Health as 
the best lottery outcome reduces the likelihood of 
eliciting confounded utilities when the raters are 
actually experiencing two or more comorbid condi-
tions. Second, replacing Immediate Death as the 
worst lottery outcome reduces the likelihood of 
eliciting invariant, skewed utility distributions due 
to the rater’s aversion to gambles involving death.

In any case, the lottery is initially presented to the 
rater as a dominated choice, with the probability (p) 
of the best outcome = 1.00 (or 100%) and the coun-
terpart probability (1 − p) of the worst outcome = 
0.00 (or 0%). Then the investigator proceeds as 
outlined above. The rater is repeatedly asked to 
choose between the certainty of living for the rest of 
his natural life in his current experienced health 
state and different lotteries. Appropriate visual aids 
are used to illustrate lotteries in which the probabil-
ity (p) of the best outcome is lowered from 1.00 in 
5% decrements, while the probability (1 − p) of the 
worst outcome is raised from 0.00 in 5% incre-
ments. Eventually, the rater’s indifference point is 
identified, the expected utility of the lottery at this 
point is computed, and the utility for the rater’s cur-
rent experienced health state is thereby inferred.

The investigator could proceed to elicit utilities 
for the current health states experienced by the 
other raters in the study. The particular timing  
of these utility assessments would depend on her 
overall research purpose. For example, in a clinical 
trial, the research purpose may be to compare 
treatments in terms of their effects on patients’ 
health-related quality of life. This purpose could 
be met by repeatedly assessing the utilities for rat-
ers’ current experienced health states as they prog-
ress through treatment and then comparing the 
observed distributions in terms of across-group 
and across-time differences.

In another example, the research purpose may 
be to investigate the raters’ ability to accurately 
predict their utilities for future experienced health 
states. This purpose could be met by asking the 
raters to describe the health states that they antici-
pate entering after their therapy, assessing their 
utilities for these anticipated health states, then fol-
lowing the raters through their therapy to see not 
only whether they entered their anticipated health 
state but also whether their utilities for this state 
are the same once it actually becomes an experi-
enced health state.

Other Assessment Techniques

Two other techniques—the time trade-off and the 
rating scale—are often used to elicit evaluations 
for health states; occasionally, their results are also 
referred to as utilities. Some purists argue that 
responses collected on rating scales should be 
referred to as rating scale scores, that responses to 
the time trade-off technique should be qualified as 
time trade-off utilities, and that the term utilities 
should be used only to refer to evaluative scores 
obtained using the standard gamble technique.

Time Trade-Off Technique

The time trade-off technique was developed by 
George Torrance, as an alternative, perhaps cogni-
tively easier, strategy for eliciting evaluative scores 
for health states. However, note that, unlike the 
standard gamble technique, the time trade-off 
technique operates under nonrisky, trade-off con-
ditions of measurement.

As in the standard gamble technique, the inves-
tigator begins by presenting the rater with a des-
cription of the target imagined or experienced 
health state, Y. The rater is asked to consider a 
hypothetical situation in which he has to choose 
between the certainty of living either in health state 
Y or in Perfect Health for the rest of his natural life 
(e.g., for 30 years). Under these conditions, this is 
a dominated choice; the rater’s logical choice is to 
opt for 30 years in Perfect Health.

Then the investigator asks the rater to imagine 
another hypothetical situation, in which he has to 
choose between either 30 years in health state Y or 
25 years in Perfect Health. Suppose he again chooses 
Perfect Health. In effect, he is indicating that to be 
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in excellent health instead of health state Y for the 
rest of his natural life, he’s willing to give up—or 
trade off—5 years of his lifetime expectancy.

Next, the investigator asks the rater to imagine 
that he has to choose between either 30 years  
in health state Y or 20 years in Perfect Health. 
Suppose the rater considers health state Y to be 
quite undesirable, and he again opts for a shorter 
expected lifetime in Perfect Health. The time trade-
off technique proceeds by systematically reducing 
the hypothetical lifetime in Perfect Health in 5-year 
decrements, while maintaining the lifetime in 
health state Y at 30 years. (Often, visual aids such 
as sliding scales are used to illustrate how the 
expected lifetime in health state Y remains con-
stant, while the expected lifetime in Perfect Health 
is steadily reduced.)

As the time trade-off technique continues, the 
choice becomes more and more difficult, in that  
the rater becomes less and less willing to trade off 
any further years in lifetime expectancy in Perfect 
Health. Suppose that, when the hypothetical life-
time in Perfect Health has been reduced to 20 years, 
he cannot choose between this option and the alter-
native of a full 30 years in health state Y. (The 
investigator may alter the time at the 20-year point 
in 1-year increments/decrements, in an attempt to 
precisely estimate the indifference point.) At this 
point, the rater is indicating that, for him, 30 years 
in health state Y is preferentially equivalent to 20 
years in Perfect Health, and this rater’s time trade-
off utility for Y is computed as 20/30 = .67.

Rating Scale Techniques

In rating scale techniques, the rater directly 
assigns an evaluative score to the target health 
state, in terms of its desirability/undesirability rela-
tive to two extreme health states that “anchor” the 
ends of a scale. Note that, unlike either the stan-
dard gamble or the time trade-off technique, rat-
ing scale techniques operate under nonrisky, 
non-trade-off conditions of measurement. Hence, 
methodological purists argue that the term utilities 
should not be applied to scores obtained using rat-
ing scale techniques.

The 10-point rating scale and the 10-cm linear 
analog scale are two examples of rating scale tech-
niques. Here, the techniques’ general principles are 
illustrated using the 10-cm linear analog scale.

As in the standard gamble and the time trade-
off techniques, the investigator begins by present-
ing the rater with a description of an imagined or 
experienced health state, Y. The rater is asked to 
imagine living in health state Y for the rest of his 
natural life (e.g., for 30 years). Then the rater is 
asked to consider a 10-cm horizontal line that’s 
anchored by a highly undesirable state (e.g., Death, 
with a preassigned value of 0.00) and a highly 
desirable state (e.g., 30 years in Perfect Health, 
with a preassigned value of 100). The rater is 
asked to make a vertical mark across the horizon-
tal line at the point that indicates his opinion about 
the desirability/undesirability of living in health 
state Y for 30 years, relative to these two extremes. 
The rating scale score for health state Y is then 
determined by measuring the distance, in millime-
ters, from the zero-valued end of the linear analog 
scale to the rater’s mark—yielding, for example, a 
rating scale score of 65.

Hilary A. Llewellyn-Thomas
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Value-Based Insurance desIgn

A value-based insurance design is a health insur-
ance policy where selection of services and pay-
ment for services are decided by evaluating clinical 
benefit as well as cost, where decision making is 
condition specific if not patient specific, and where 
the evaluation process takes into consideration 
multiple time periods. It is not the value of the 
service to the provider, the clinical developer, or the 
payers that matters but the clinical benefit and 
costs to the patient and society. Value-based insur-
ance design offers a potential solution to the 
healthcare-financing crisis. The concept of value, 
defined as the clinical benefit achieved for the 
money spent, is largely absent from most insurance 
policies and design discussions but is perhaps the 
most important aspect of insurance for purchasers 
and consumers. This entry discusses what is meant 
by insurance design and what it means to have 
value as the basis for insurance design decision 
making. It then considers who it is that decides 
value and the evidence base for their decisions.

Insurance Design

Insurance design is a wide-ranging concept that 
encompasses selection of services that may be cov-
ered (physician services, hospital services, specific 
drugs), the level of payment for these services for 
patients (full, a percentage, all except for a copay-
ment), the level of payment for these services for 
providers (full, a percentage, some predetermined 

amount), how providers are paid (prospective, ret-
rospective), which providers are eligible for pay-
ment (exclusive network, preferred network, open 
access), and funding (individual savings accounts, 
employer self-funded, insured). In some cases, 
insurance design issues are packaged in ways that 
aren’t easily separable. The simplest form of tradi-
tional insurance offers full payment to providers 
for all services from whomever the patient sees, 
with the patient being responsible for an initial 
amount (deductible) and a percentage of the 
remaining expenses. At the other end of the spec-
trum, the prototype managed-care organization is 
a health maintenance organization that offers a 
wide range of services under predetermined pay-
ments to providers (capitation) and modest copay-
ments on the part of patients within a closed panel 
of providers on a fully insured basis. The offerings 
by insurance companies often include choices along 
each dimension of design.

With the subset of insurance design issues that 
are before the consumer—selection of services  
and payment for these services—there are notable 
philosophical differences about the most appropri-
ate decision-making process. The wave of man-
aged care that grew during the 1980s was associated 
with greater payer oversight on covered services 
and lower cost sharing on the part of the con-
sumer. By exerting oversight through both market 
share and payment options, managed-care organi-
zations achieved substantial cost savings. However, 
the push-back from the decision making by  
managed-care organizations was pronounced during 
the early 2000s. Providers and many consumers 

V
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and consumer rights organizations didn’t appreci-
ate oversight, at times for good reasons, which is 
partly the reason why more than 30 states have 
enacted patient’s bill-of-rights legislation.

Of course, managed care has not completely 
gone away. Managed care is still the modal form 
of insurance coverage in the United States, with 
there being more than a one-third market share  
of preferred provider organization coverage and a 
one-quarter market share of health maintenance 
organization coverage. Within Medicaid, managed 
care has a two-thirds market share and is growing. 
Cost savings associated with Medicaid managed 
care are mostly associated with control of inpa-
tient hospitalization and prescription drugs. 
Consumers have pushed away from the stricter 
forms of decision making exhibited by commercial 
managed-care organizations, but voters and regu-
lators permit such decision making for govern-
ment-sponsored programs.

Lacking the cost control of managed care, deci-
sion making by insurance companies has reverted 
to consumer- or patient-oriented cost control, 
largely through increased cost sharing. Proponents 
of what are now called consumer-directed health 
plans suggest that it is the consumer who is in the 
best position to decide what services he or she 
wants and it should be the consumer making these 
decisions at point-of-care. Going beyond simply 
having higher coinsurance rates and copayments, 
the development of health savings account and 
health reimbursement arrangements to accompany 
high-deductible health plans has given consumers 
the opportunity to make decisions about specific 
services and decisions about how they allocate 
healthcare dollars over time.

The Bases for Insurance Design

Early designs in health insurance were largely pro-
vider based. Blue Cross for hospital services and 
Blue Shield for physician services played an impor-
tant role in shaping commercial health insurance 
and were the models for Medicare. Given all the 
changes in the ownership and structures of Blue 
Cross and Blue Shield plans, the provider focus of 
insurance design is less apparent today. Some pro-
vider-owned managed-care organizations may also 
have organizational support as a motivation for 
insurance design decisions.

An extension of provider-based insurance design 
is clinical-service-based benefit design. When a 
clinician develops a new service, an ideal response 
might be expanded insurance coverage to include 
the new service. The rationale for coverage of 
many physician services and procedures is the  
recognition of a service as having an associated 
CPT-4 code.

For some insurance plans, approval by the Food 
and Drug Administration (FDA) is a sufficient 
basis for coverage of a new drug—a clear example 
of a clinical-service-based design. Interestingly, few 
persons with employer-sponsored or government-
sponsored insurance have insurance plans for pre-
scription drugs that are completely clinical service 
based. Merely having FDA approval is no longer 
sufficient to garner coverage. Rather, decisions 
about which drug to cover (on a tier in a formu-
lary) and how much the patient will be required to 
pay (typically a higher amount for drugs on higher 
tiers) are made on the basis of employer demands 
and provider costs. The complexity of provider 
cost structures (with rebates and other arrange-
ments) might imply that there is a provider (manu-
facturer) basis to insurance design, but the plans 
that appeared to be more directly provider based 
(e.g., owned by pharmaceutical companies) have 
largely been disbanded.

An advance in clinical-service-based design is 
clinical-benefit-based design, which takes into con-
sideration the clinical benefit to the patient. Just 
because a service is possible and has demonstrated 
safety doesn’t mean that it is clinically beneficial to 
one or many patients. Most health plans would 
likely argue that their decision making is based on 
clinical benefits. However, costs are a component 
of most health plans’ decision-making process, and 
clinical benefit is not always defined in a very spe-
cific manner. Just because a service is of clinical 
value to one person, or even on average, doesn’t 
mean that it is of clinical benefit to all persons. 
Going beyond making coverage decisions on ser-
vices, an effective clinical benefit design would 
facilitate making benefit design decisions on com-
binations of services and patient characteristics.

Counter to the foundations of health insur-
ance rooted in provider- and clinical-based 
designs is a cost-based insurance design. Indeed, 
one of the motivations for the managed-care 
backlash was the concern that the oversight 
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imposed by managed-care organizations was not 
just on clinical grounds but was also focused on 
costs. Going with the least expensive option may 
not be in the best, long-run interest of everyone 
involved in healthcare.

As an alternative to, or the rational evolution 
of, provider-, clinical-service-, clinical-benefit-, and 
cost-based designs, some are suggesting value-
based insurance designs. The key ideas behind 
a value-based insurance design are as follows: 
(a) Selection of services and payment for services 
are decided by evaluating clinical benefit as well as 
cost, (b) decision making should be condition spe-
cific if not patient specific, and (c) evaluation pro-
cesses should take into consideration multiple time 
periods—permitting consideration of some ser-
vices as investments in health that may pay off in 
the future. It is not the value of the service to the 
provider, the clinical developer, and the payers but 
the clinical benefit and costs to the patient and 
society that matter.

Yet one more step in the evolution of benefit 
design would be to take into consideration the site 
of care in the purchasing decision. So-called value-
based purchasing is now being widely discussed in 
the purchaser community. Just as employers seek 
the best vendors for all other inputs, they are 
increasingly seeking the best prices from the best 
providers of healthcare services. Still, seeking best 
pricing without having first defined which services 
one really values and wants to purchase may lead 
to suboptimal purchasing behavior.

The Evidence for Benefit Design

Making benefit design decisions based on clinical 
value and costs at the condition or patient level has 
substantial intuitive appeal. Beyond the initial 
appeal, however, decision making based on value 
requires both a process for assigning value to a 
service for an individual and a body of evidence to 
support the process. Both processes and evidence 
are in the developmental stage. There are two pro-
cesses in current practice that seek to apply value-
based insurance design. The first process targets 
services that are well-known to be clinically valu-
able and reduce consumer costs (deductibles or 
copayments) for these services. Although these 
services may provide substantial benefit for some 
users and provide less value for other patients, the 

process does not attempt to differentiate between 
these patients.

The second process, requiring more sophisticated 
data systems to implement, creates differential cov-
erage based on patients’ characteristics. Programs 
using this approach typically identify patients with 
specific diseases, such as diabetes or coronary heart 
disease, for which there is a good body of evidence, 
and reduce copayments for only high-value services 
for patients having these diseases. The targeting of 
high-value services and provision of improved cov-
erage for specific groups of patients are elements of 
value-based insurance design, lacking only a clear 
consideration of the time dimension.

Several firms are experimenting with one of 
these two processes for value-based insurance 
design. Pitney Bowes is well known for using the 
first process and reducing copayments for all users 
of drugs commonly prescribed for diabetes, asthma, 
and hypertension. Companies such as ActiveHealth 
Management have created systems that go further 
by identifying patients for whom benefits would be 
greatest and creating communications that target 
these patients.

The University of Michigan Center for Value-
Based Insurance Design was established in 2005 to 
develop, evaluate, and promote value-based insur-
ance initiatives that achieve improvements in 
health outcomes and contain healthcare costs. The 
center is the first academic venue in which faculty 
with both clinical and economic expertise conduct 
empirical research to determine the health and 
economic impact of innovative benefit designs.

A current experiment created and being evalu-
ated by the center involves targeting persons with 
diabetes for reduced cost sharing to increase com-
pliance with physician recommendations for treat-
ment. This experiment has both a study and a 
control group, permitting a formal mechanism to 
evaluate the effectiveness of a value-based insur-
ance design. This experiment is the first prospec-
tive, controlled evaluation of these more nuanced 
benefit designs. The currently ongoing experiment 
is the first of its kind designed to improve the qual-
ity of care for persons while allowing for a rigor-
ous evaluation. Many more such experiments will 
be required to provide evidence of the appropriate-
ness of value-based insurance designs.

Dean G. Smith
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Value FunctIons In domaIns 
oF gaIns and losses

Many medical situations incorporating gains and 
losses involve exchange of present-day costs for 
future benefits. In our era of chronic illness, with 
antecedents often distant in time, decision making 
by physicians or patients is frequently influenced 
in a significant manner by the principles and prac-
tice of discounting. Positive discounting is the 
term for diminishing value over time. A more 
diversified use becomes important as we attempt 
to refine decision models. Temporal effects in the 
medical preventive context include overeating, 
smoking, and drinking. Another example is invest-
ment in calcium intake or vitamin D to prevent 
fractures because of osteoporosis.

These are situations where there is a choice 
between immediate pleasures and the future ben-
efits of good health. The benefits of behavioral 
change often occur so far in the future that they 
seem of little value relative to the immediate 

costs. If individuals prefer to live for the present 
rather than save for the future, such a preference 
may not yield the best lifetime outcomes for the 
individual.

Studies of gains and losses and time preference 
in medical decision making have dealt with either 
life saving or health change. Different methods 
have been used in the two areas to find individuals’ 
time preference rate, however, and this complicates 
comparisons between these areas.

Research on decision making under uncertainty 
has focused largely on expected utility and behav-
iors that violate this axiom. Intertemporal choic-
es—that is, choices between something now and 
something later—have been investigated less. 
Discounted utility, however, is in need of a model 
that takes into account anomalies and framing 
factors in medical decision making. These effects 
are a challenge to normative theory. In spite of the 
difference between economic and medical deci-
sions, both domains have revealed discounting 
biases such as magnitude effect, dynamic inconsis-
tency, instant endowment and status quo bias, 
sequence effect, sign effect, and loss aversion.

Discounting Biases

Magnitude Effect

Magnitude effect signifies that discount rates 
are proportionally lower for large magnitude out-
comes. If a magnitude effect occurs also in medical 
decisions, this suggests that the value of future 
health outcomes would increase if these outcomes 
were seen as important or large. When it comes to 
health behavior, the value range that is discounted 
is often not defined in an absolute sense. Value 
discounting is therefore uncertain and unpredict-
able. In a study by Gretchen Chapman and col-
leagues, a magnitude by domain interaction 
indicated a larger magnitude effect on health than 
on money. The range of health outcomes (1–8 
years of full health) had a greater effect on dis-
count rates than did the range of monetary out-
comes. Discounting of lives saved in future 
generations has in the earlier study obtained esti-
mated annual discount rates of 25% for the 
20-year time horizon, 12% for the 50-year hori-
zon, and 8% for the 100-year horizon, and these 
results support a magnitude effect.
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Dynamic-Inconsistency Effect

Discount rates have also been found to be pro-
portionally lower for time intervals that are rela-
tively more distant, challenging the assumption 
that discount rates are constant over time. Framing 
health messages as long-term outcome might, 
therefore, diminish the discounting effect. The pat-
tern of dynamic inconsistency implies that people 
will reverse their preference over time. An interac-
tion between domain and delay had earlier been 
found, with delay decreasing the differences 
between health and money. With long delays (e.g., 
12 years), discount rates for health and money 
were found to be equivalent.

Instant Endowment and Status Quo Bias

Instant endowment is a concept meaning that 
the loss of utility associated with giving up a valued 
good is greater than the utility gain associated with 
receiving the good. Status quo bias means a prefer-
ence for no changes in decision making. One 
example is court decisions where compensations 
are more likely for out-of-pocket costs than for 
unrealized profits. One example of a status quo 
bias is that new medical plans are more often cho-
sen by new employees than by employees who have 
started that work before the plan was introduced 
and that small changes are preferred to large ones.

Sequence Effect

Health behavior could be regarded as a series of 
short-term choices where each one seems to be a 
good optimal choice but together they give an 
undesirable result. Most analyses of judgments 
and decisions are based on single-period models or 
models that assume time-separable utility. Models 
have so far been applicable mostly to short-range 
decisions with simple outcomes in terms of gains 
or losses. Judgments involving long-term planning 
seem not to have been investigated to the same 
extent.

Many medical decisions could be regarded as 
sequences of choices where the whole picture is 
not perceived and when, at a certain point in the 
sequence, there could be a choice between two 
alternatives: smoking or not smoking, for 
instance, or taking the drug or not. The optimal 
sequencing of drugs in treating a disease such as 

rheumatoid arthritis is one example where this 
issue is of importance. Expected values for 
response might vary with position in the sequence. 
A theoretical point should thus be made about 
the possible relevance of the time sequence  
of interventions when it alters the context of 
expected gains and losses.

Sign Effect

Differences have been found between decisions 
related to losses and to gains; such differences are 
termed sign effect. Many projects have studied the 
efficacy and the toxicity of drugs; in treating a 
disease, efficacy can be regarded as a gain and tox-
icity as a loss. Good health is regarded as a gain, 
and poor health is generally regarded as a loss. 
Discount rates for losses are generally lower than 
discount rates for gains. Consequently, research on 
the sign effect in medical judgments and decisions 
would suggest that discount rates for negative 
health states would be lower than those for posi-
tive health states.

Discount rates have also been found to vary 
between different health settings, thus violating the 
assumption of identical discounting in all settings. 
This finding can be related to whether the health 
state is presented as a gain or a loss. Usually, gains 
(full health) have been studied. Discount rates for 
adverse health states such as blindness and depres-
sion have been found to be quite low, averaging 
3% annually. One practical consequence is that a 
strong asymmetry between gains and losses will 
give a low willingness to undertake actions to 
improve health. This highlights a very important 
aspect of health-related behavior.

Diminishing sensitivity has been noted, as the 
marginal value of both gains and losses decreases 
with their size. Furthermore, the marginal value 
has been found to decrease with distance from the 
reference point (Figure 1). Reference levels seem to 
be adopted in a context. Their impact on decisions 
can be arbitrary when the norm for decisions with 
long-term consequences is being set. Moreover, the 
initial response to these consequences might be of 
relatively small importance if adaptation induces a 
shift of reference. These changes in adaptation 
level and the shift of reference could be further 
investigated in studies involving gains and losses in 
medical decision making.
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Judgments and decisions should also be charac-
terized by invariance of preference over response 
modes, with only the attributes and features deter-
mining preferences toward objects. Choice-choice 
reversals might be due to whether alternatives are 
presented as gains or losses relative to the refer-
ence. Responses to changes might be more intense 
for unfavorable situations such as losses than for 
changes leading to improvements. Therefore, when 
making medical decisions, it is advisable to give 
greater weight to negative than to positive conse-
quences. Judgment reversals might also imply that 
with the same expected value, a safe bet is pre-
ferred to a long shot, but some people prefer the 
long shot. This lack of invariance causes a problem 
in prescribing procedures for decision analysis.

In the past, gains have usually been studied. 
Different behaviors might be experienced by the 
individual as a loss, especially related to a disease. 
Deteriorating in the disease is a loss. Recovering 
from a disease or avoiding progression in the dis-
ease is a gain. A speculative conclusion suggested 
here is that probabilities are perceived in different 
ways depending on the sign of the outcome—that 
is, whether it is a gain or a loss. An interaction 
between sign and perception of probability can be 
assumed. The perceived distribution of loss and 
gain can also vary by sign, with varying discount-
ing effects over time. Future studies need to take 
this into consideration.

Loss Aversion

Loss aversion is related to the sign effect. 
Work in decision theory indicates that potential 
losses have a greater impact on preferences than 
do gains. Smoking, eating unhealthy food, and 
not exercising could give a later loss, such as 
getting cardiovascular disease, whereas sound 
health habits could give a gain. The effect of loss 
aversion applied to the addictive behavior of 
smoking means that it could be expected to vary 
with the gain of a smoke-free life and the loss of 
the immediate satisfaction of smoking. For over-
eating, the behavior would vary with the gain of 
a slim body and the loss of the immediate satis-
faction of eating. Loss aversion has implications 
for medical decisions and has been found to be 
more pronounced for safety than for money. 
Speculatively, loss aversion also might imply a 
status quo bias.

Moreover, an asymmetry in risk aversion has 
been found by Daniel Kahneman and Amos Tversky 
in economics. Certain gains were preferred to 
uncertain gains; but for losses, uncertainty was pre-
ferred to certainty. Such asymmetry, when applied 
to medical decisions, may be important. In health, 
the immediate action might yield a loss with a high 
degree of certainty. For the individual, though, the 
gain in the future is uncertain despite its being pre-
dictable for the population as a whole.

Implications in Medical Decision Making

Many judgments and decisions are made daily in 
clinical work. The issues already described in this 
entry stress the importance of problems related to 
gains and losses in influencing medical decisions. 
These issues have relevance, for example, in treat-
ing patients with rheumatoid arthritis, which is a 
lifelong disease. What constitutes the gain and the 
loss from the treatment?

The probability of the patient enduring the 
adverse complications of a treatment will be 
greater if gains and losses are distributed in the 
best way over time. The gains of the treatment can-
not be too distant in time, though, if discounting 
effects are considered. What is the optimal per-
ceived distribution of different outcome variables 
such as pain, disability, and death? Does the 
patient prefer pain now or at some later time? All 

Gains

Value

Losses

Figure 1   Value function of domains of gains and 
losses
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these factors are potentially decisive for medical 
decisions and treatment choices.

Are treatments the choice of the physician, the 
patient, or both? How do the patients and doctors 
estimate the different variables? The doctor should 
follow expected value combinations more closely, 
while the patient might frequently be risk aversive. 
The importance of shared decision making, where 
patients and providers consider gains and losses 
and reach a healthcare decision based on mutual 
agreement, is increasingly stressed.

There may be differences in value functions of 
gains and losses for physical and mental health 
states and differences for different health states such 
as osteoporosis, diabetes, cancer, and myocardial 
infarct. The differing functions might potentially 
affect the treatment recommended by the physician. 
They might also affect the way the patient perceives 
and complies with the treatment. Doctors have also 
been found to exhibit both interindividual and intra-
individual variation in judgments.

Time on a drug could also be related to the 
losses and gains affected by treatment. Some stud-
ies have found toxicity to be the most common 
reason to discontinue methotrexate for rheuma-
toid arthritis. The shorter duration with a drug 
found in a study for patients with the most nega-
tive initial health state might be explained by a 
difference between the negative effect of toxicity 
and the positive effect of efficacy on judgments 
performed in clinical decision making. Treatment 
choices could also be explained by this difference 
between efficacy and toxicity related to time. A 
drug’s efficacy might have less impact than its tox-
icity on the length of time in a drug treatment and 
its discontinuation, regardless of constant improve-
ment in disease variables such as disability. Further-
more, toxicity and efficacy may have different 
impacts at different periods. Toxicity might have a 
greater impact in the earlier periods, causing 
patients to leave the drug early.

One time-related explanation for change of 
treatment, in connection with gains and losses, is 
that patients expect not a constant level of disabil-
ity but increasing improvement. This expectation 
disregards the failure of the disease process to 
impair, which is a positive outcome in itself. There 
might be an adaptation by time to the level of dis-
ability, with expectations and decisions for future 
treatment being based on the earlier experience of 

treatment. There might be a discounting effect 
operating, in which the present disability level 
matters more than a treatment’s potential future 
positive effects on disability.

Diabetes mellitus, like rheumatoid arthritis, is a 
chronic disease requiring lifelong treatment, and 
there is a high risk of constantly deteriorating 
health in several respects. The patient with type 1 
diabetes must inject insulin several times daily and 
maintain a strict diet. Despite strict treatment, the 
result might be only to decrease the slope of decre-
ment, with a negative outcome in the disease pro-
cess itself. The effects of the disease process might 
be greater than the effects of treatment, but without 
the treatment, the negative effects would be greater 
still. The medical necessity of the treatment moti-
vates carrying on with it in spite of its adverse 
effects. Thus, over a very long period, the incentives 
might be in terms more of losses than of gains.

As the issues raised above indicate, medical 
judgments and decisions are complicated. However, 
discussions of value functions in clinical judgment 
and health policy have been fairly rare to date.

Monica Ortendahl

See also Discounting; Gain/Loss Framing Effects; Shared 
Decision Making 

Further Readings

Baker, F., Johnson, M. W., & Bickel, W. K. (2003). Delay 
discounting in current and never-before cigarette 
smokers: Similarities and differences across 
commodity, sign, and magnitude. Journal of Abnormal 
Psychology, 112, 382–392.

Chapman, G. B., Brewer, N. T., Coups, E. J., Brownlee, 
S., Leventhal, H., & Leventhal, E. A. (2001). Value 
for the future and preventive health behavior. Journal 
of Experimental Psychology Applied, 7, 235–250.

Jan, S. (2003). Why does economic analysis in health care 
not get implemented more? Towards a greater 
understanding of the rules of the game and the costs 
of decision making. Applied Health Economics and 
Health Policy, 2, 17–24.

Kahneman, D., & Tversky, A. (1979). Prospect theory: 
An analysis of decision under risk. Econometrica, 47, 
263–292.

Khwaja, A., Silverman, D., & Sloan, F. (2007). Time 
preference, time discounting, and smoking decisions. 
Journal of Health Economics, 26, 927–949.



1178 Variance and Covariance

Ortendahl, M. (2007). Shared decision-making based on 
different features of risk in the context of diabetes 
mellitus and rheumatoid arthritis. Therapeutics and 
Clinical Risk Management, 3, 1–6.

Ortendahl, M., & Fries, J. F. (2005). Framing health 
messages based on anomalies in time preference. 
Medical Science Monitor, 11, 253–256.

Ortendahl, M., Schettler, J. D., & Fries, J. F. (2000). 
Factors influencing length of time taking methotrexate 
in rheumatoid arthritis. Journal of Rheumatology, 27, 
1139–1147.

Roelofsma, P. H., & van der Pligt, J. (2001). On the 
psychology of time preference and human decisions: 
Introduction to the special issue. Acta Psychologica, 
108, 91–93.

Values

See Utility Assessment Techniques

VarIance and coVarIance

The variance of a random variable X quantifies 
the spread or dispersion of the distribution of X. 
A random variable is essentially a function or rule 
that associates a number with the outcome of an 
experiment. Examples of random variables are an 
individual’s weight, the number of inpatient admis-
sions at a hospital on a single day, and a binary 
indicator (e.g., assigning values of 0 = no or 1 = 
yes) of whether or not a patient participating in a 
study had his or her conditions improve after tak-
ing a new drug.

The variance and its square root, the standard 
deviation, are important summary measures of the 
distribution of X and are essential for providing a 
complete description of X. Suppose that μX denotes 
the mean of X. (The mean is also sometimes 
referred to as the expected value or average value 
of X and is typically estimated by taking the aver-
age—i.e., summing over all observed values and 
then dividing this sum by the total number of 
observations.) While μX, one of the primary quan-
tities used to characterize a distribution, gives an 
important description of X by quantifying an aver-
age of the possible values of X, it does not impart 

any information about the potential variation in 
these values. Consider that two random variables 
may have the same average value but their distri-
butions may differ greatly in the degree of concen-
tration of the values, highlighting the need to 
summarize this concentration or spread.

In addition to evaluating the variation in a sin-
gle random variable, when two random variables 
X and Y are measured, there is often interest in 
evaluating their relationship. The covariance quan-
tifies the tendency of two random variables to vary 
together. For instance, it might be of interest to 
know how weight and height measurements change 
together. It is an important component when char-
acterizing the joint distribution of X and Y.

This entry provides formal definitions of vari-
ance and covariance and describes how to estimate 
these two quantities when analyzing data.

Variance

Let E[g(X)] denote the mean, or expected value, of 
the random variable g(X), a function of X. The 
variance of X is defined as

varðXÞ= σ2 =E½ðX− mXÞ2

=E½X2− E½Xð Þ2;

the expected value of the squared difference 
between X and its mean, μX. It is the second 
moment about the mean of X. Observed values for 
X tend to fall around the center of the distribution, 
μX. The variance quantifies dispersion by looking 
at how far apart these values are on average from 
the mean. The more concentrated the values are 
around the mean, the smaller the variance. The less 
concentrated the values are, the larger the vari-
ance. By definition, the variance of X is always 
positive; that is, var(X) ≥ 0. If the variance of X 
equals 0, then there is no variation in X and every 
observation is identical.

Sometimes the phrase noisiness of the data is 
used when describing the spread of observations. 
Referring to data as being less noisy suggests a 
distribution with a small variance, whereas refer-
ring to data as being more noisy suggests a distri-
bution with a larger variance.

The standard deviation of X, usually written as 
σ, is simply the positive square root of the variance 
of X. Like the variance, it is also a measure of 
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spread of the distribution of X. Unlike the vari-
ance, it quantifies spread using the same scale, or 
units, on which X is measured. For example, the 
variance of weight measurements in a population 
would be reported in terms of squared kilograms 
or squared pounds. In contrast, the standard 
deviation would be reported simply in terms of 
kilograms or pounds.

Alternate expressions for the variance can be 
written based on whether X is discrete or continu-
ous. Discrete random variables have only a finite 
or countable number of distinct values. For 
instance, a binary indicator of whether or not 
patients on a study had their conditions improve 
after taking a new drug is a discrete random vari-
able because it has only two possible values (0 or 
1). Continuous random variables can take any 
value in an interval. Weight is an example of a 
continuous random variable because weight mea-
surements may take any value greater than 0.

If X is discrete, the variance can be written as

varðXÞ=
X

i

ðxi − mXÞ2PðX=xiÞ;

where x1, x2, x3, K, xi, K are the observed values of 
X and P(X = xi), the probability mass function, 
denotes the probability that the random variable X 
takes on the observed value xi. If X is instead con-
tinuous, the variance can be written as

varðXÞ=
Z∞

∞

ðx− mxÞ2f ðxÞdx;

where f(x) is the probability density function  
of X.

If a and b are constants, then the variance of the 
linear transformation a + bX is

because a constant has no variance (var(a) = 0).
In practice, one typically has data on a random 

sample of individuals from a population and is 
interested in estimating the population variance 
using data available from this random sample. 
Suppose that x1, x2, x3, . . ., xn are the observed val-
ues of X from a random sample of size n. In this 
case, the sample mean of the observations is calcu-
lated as x=

Xn

i= 1
xi

.
n; and the variance is esti-

mated using the sample variance s2

x, defined by

s2
x =

Pn
i= 1 ðxi − xÞ2

n− 1
=

Pn
i=1 x2

i −
Pn

i 1
xi

 
2

n

n−1
;

where s2

xis the sample sum of squares divided by its 
degrees of freedom, n – 1. The sample standard 
deviation, sx is the positive square root of s2

x It is the 
most frequently reported measure of variation.

Covariance

The covariance of two random variables X and Y 
is defined as

covðX;YÞ=E½ðX− mxÞðY − mYÞ
=E½XY−E½XE½Y;

where μY denotes the expected value of Y. If X and 
Y tend to vary together, so that large values of  
X are usually observed with large values of Y and 
small values of X are observed with small values  
of Y, then their covariance is positive. In contrast, 
if X and Y tend to have an inverse relationship, so 
that large values of X are usually observed with 
small values of Y and small values of X are 
observed with large values of Y, then the covari-
ance is negative. If X and Y are identically the 
same over all sample points, then cov(X,Y) = 
var(X) = var(Y).

If X and Y are independent random variables 
(i.e., X is not influenced by Y), then their covari-
ance is zero: cov(X,Y) = 0. The converse, however, 
is not necessarily true. It may be the case that 
cov(X,Y) = 0 but X and Y are not independent.

If X and Y are not independent, the covariance 
is an important part of the variance of their sum. 
The variance of the sum X + Y is the sum of the 
variances of X and Y plus twice their covariance:

var(x + y) = var(x) + var(y) + 2cov(x, y).

The covariance is closely related to the correla-
tion coefficient, ρ(X,Y), through the equation

cov(x, y) = ρ(x + y)σx σy,

where σY is the standard deviation of the distri-
bution of Y. The correlation coefficient assesses 
the degree of linearity between X and Y by  

varða þ bXÞ ¼ b2X



1180 Violations of Probability Theory

measuring how close their relationship is to a 
straight line.

The covariance may be difficult to interpret 
alone for two reasons. First, it quantifies the asso-
ciation between X and Y on a scale whose units of 
measurements are X times Y. Second, two compo-
nents contribute to the covariance, as shown in the 
above equation, one component measuring the 
linear relationship between the two variables and 
one component measuring their individual vari-
ability. The covariance will be large if either X or 
Y has a large variance. It may be small if either X 
or Y has a small variance or if the two variables are 
unrelated. In contrast, the correlation coefficient is 
reported on a scale ranging from –1 to +1 regard-
less of the units of measurement of X and Y. The 
correlation coefficient takes the values of –1 or  
+1 only when there is an exact linear relationship 
between X and Y. If ρ(X,Y) = 1, then Y = a + bX, 
where b > 0. If ρ(X,Y) = –1, then Y = a + bX, where 
b < 0. In practice, values of ρ(X,Y) will fall some-
where in the middle of this range. If ρ(X,Y) = 0, 
then X and Y are said to be uncorrelated.

The population covariance is estimated in prac-
tice with the sample covariance. Suppose that  
(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn) are the observed 
values of the distribution (X, Y) from a random 
sample of size n so that (xi, yi) represents the ith 
person’s measurements (e.g., their height and 
weight measurements). The sample covariance,  
sxy, is defined by

sxy

Pn
i 1 ðxi xÞðyi yÞ

n 1

Pn
i 1 xiyi

Pn
i 1

xi

  Pn
i 1

yi

 

n

n 1
:

The sample Pearson product moment correla-
tion coefficient is then

r= sxy

sxsy
;

where sx and sy are the sample standard deviations 
of X and Y, respectively.

Chaya S. Moskowitz

See also Analysis of Covariance (ANCOVA); Analysis of 
Variance (ANOVA); Intraclass Correlation Coefficient; 
Measures of Variability
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VIolatIons oF 
ProBaBIlIty theory

Medical decision making often involves measures 
of uncertainty, including the explicit use of prob-
ability. To the degree uncertainty is present, the 
quality of a medical decision clearly depends on 
avoiding violation of the laws governing probabil-
ity. Adherence to the laws of probability is analo-
gous to following the laws of geometry when 
computing distances or the characteristics of an 
object, such as its volume. The basic laws of prob-
ability are quite simple, but their application can 
be subtle, and they are easily violated. Intuition 
about uncertainty is often at odds with those laws, 
especially when probabilities are small, condi-
tional, or must be combined.

Violations of the laws of probability arise in 
other ways. For example, not using probability to 
measure uncertainty can be problematic in some 
methodologies, such as those based on fuzzy set 
theory. Even when a decision-making methodol-
ogy is inherently probabilistic, misinterpretations 
and violations of the laws can occur. For example, 
in Bayesian statistical analyses, medical profession-
als are sometimes asked to provide input in the 
construction of prior distributions. This is a rela-
tively new context in which there is great potential 
for violating the laws of probability.

The Laws of Probability

The axiomatic foundation of probability, and the 
multitude of theorems derived from it, constitutes 
the formal—and vast—theory of probability. These, 
more technical, results are not the subject of this 
entry. The violations considered here concern the 
basic laws of probability, which are as follows. 
Suppose T is an event about which there is uncer-
tainty, such as whether a subject will respond to a 

sxy

sxsy
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treatment. Let A be another event, such as whether 
the subject will experience an adverse event while 
responding to treatment. Denote by P(∙) the prob-
ability of an event. Thus, P(A) is the probability of 
an adverse event. If one knows that event T has 
occurred, then the conditional probability of A 
given T is written as P(A|T), where the vertical line 
means “given.” All probabilities, conditional or 
otherwise, for any events E and F, must conform 
to the following laws:

 1. 0 ≤ P(E) ≤ 1; this is the convexity law.

 2. If E and F are mutually exclusive (the 
occurrence of one precludes the occurrence of 
the other), then P(E or F) = P(E) + P(F); this is 
the addition law.

 3. P(E and F) = P(E|F)P(F) = P(F|E)P(E); this is the 
multiplication law for the conjunction of E and F.

These laws easily extend to more than two events.

Basic Consequences of the Laws

A useful consequence of the convexity law (1) is 
that the probability of the opposite or complement 
of an event E, denoted by Ec, is 1 − P(E). In the 
addition law (2), note that the “or” in the event “E 
or F” is not exclusive. The statement of the law 
proceeds from the assumption that E and F cannot 
occur simultaneously; that is, they are mutually 
exclusive. This would hardly be reasonable in the 
illustration given. One cannot typically preclude 
the occurrence of an adverse event in a treated 
subject. In such a case, where E and F are not 
mutually exclusive, one adjusts by subtracting the 
probability of their conjunction, a result called the 
addition theorem:

P(E or F) = P(E) + P(F) − P(E and F).

The multiplication law (3) involves the condi-
tional probabilities P(E|F) and P(F|E). From the 
example above, A|T is the event that the subject 
experiences an adverse event given that he or she 
responds to treatment. Note that the events A|T 
and T|A are very different. They can be related, 
however, by using a consequence of the multiplica-
tion law known as Bayes’s theorem:

P(A|T) = P(T|A)P(A)/P(T).

Two events are defined to be independent when 
the occurrence of one has no effect on the probabil-
ity of the other. Thus, events E and F are indepen-
dent if P(E|F) = P(E) or, equivalently, if P(F|E) = 
P(F). If E and F are independent, then, using  
the multiplication law, P(E and F) = P(E|F)P(F) = 
P(E)P(F).

Another basic consequence of the laws is the con-
junction inequality: For any two events E and F,

P(E and F) ≤ min{P(E), P(F)}.

That is, the probability of the conjunction cannot 
be larger than the probability of either component 
event.

Violating the Laws

There are axiomatic and operational justifications 
for the use of probability in the measurement of 
uncertainty. In a sense, the most common “viola-
tion” is measuring uncertainty with something 
other than probability. Such problems are a source 
of controversy in statistical inference (e.g., Bayesian 
vs. non-Bayesian methods) and in other areas such 
as expert system development (e.g., probabilistic 
expert systems vs. those based on fuzzy set theory). 
The focus below is on five common violations of 
the basic laws and their interpretations.

Conjunction Fallacy

This mistake is the result of ignoring the con-
junction inequality. For example, let D be the 
event that an individual has type 2 diabetes. Let O 
be the event that the individual is obese. Suppose 
one asks, “Which has the greater probability, that 
one is Type 2 diabetic or that one is Type 2 diabetic 
and obese?” It is common for the conjunction in 
this sentence, D and O, to be mistaken for the 
conditional event D|O, in which case the conjunc-
tion may be assigned the higher probability, thus 
violating the conjunction inequality.

Transposed Conditionals

Also known as the base-rate fallacy, the prose-
cutor’s fallacy, confusion of the inverse, and the 
inversion error, this is the mistake of confusing the 
conditional event E|F with F|E. To illustrate this 
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error, let R be the event that a person in a popula-
tion has a certain disease. Suppose from extensive 
study one estimates that P(R) = .01. Let D be the 
event that a diagnostic test for the disease is posi-
tive for such a person. Assume that this test has 
well-known properties, such as its sensitivity, 
P(D|R) = .99, and specificity, P(Dc|Rc) = .95. Now, 
suppose a subject tests positive for the disease. 
When presented with scenarios similar to this, it is 
very common for medical professionals to con-
clude that the person is “likely” to have the dis-
ease. In fact, because the prevalence or base rate is 
so low, the probability that the person has the dis-
ease given a positive diagnostic test is just .167 
under this sensitivity and specificity. To see this, 
one can use Bayes’s theorem: P(R|D) = P(D|R)
P(R)/P(D). Only P(D) is unknown on the right-
hand side of this equation. This can be obtained by 
“extending the conversation” to include the ways 
in which a positive diagnostic test can occur. It is 
possible for a patient to test positive whether or 
not the disease is present. The unknown probabil-
ity can thus be written as

P(D) = P(D and R or D and Rc),

where, again, Rc means that the disease is not pres-
ent. Using the multiplication, addition, and con-
vexity laws, it is not hard to show that this can be 
written as

P(D) = P(D|R)P(R) + P(D|Rc)[1 − P(R)].

Given the sensitivity and specificity of the test, 
one can compute all the components on the right-
hand side of the equation. Thus, P(D|R) = .99, 
P(D|Rc) = 1 − P(Dc|Rc) = .05, and P(R|D) = (.99)
(.01)/[(.99)(.01) + (.05)(1 − .01)] ≈ .167.

Incoherence

For a set of numbers to be probabilities, they 
must be consistent with all the laws of probability—
they must “cohere.” Such coherence avoids con-
tradictions in statements about uncertainty. 
Combining rates calculated from different surveys 
can easily lead to incoherent probability estimates. 
Such violations can be subtle. For example, sup-
pose for some events A and B, one claims that 

P(A) = .89, P(B) = .30, P(B|A) = .15, and P(A or 
B) = .94. These numbers are not obviously contra-
dictory. However, from the addition theorem, P(A 
or B) = P(A) + P(B) − P(A and B). For this to equal 
.94, one must have P(A and B) = .25. But this  
is incoherent since, using the multiplication law, 
P(B|A)P(A) = (.15)(.89) = .1335. Detecting inco-
herence can be difficult.

Fallacious Causality

This is the interpretive mistake wherein one 
claims that if P(F|E) is large, then E must be caus-
ing F. While this is not strictly a violation of the 
laws of probability, it certainly overreaches them 
and is similar to the caveat regarding causation and 
correlation. Returning to the adverse event exam-
ple, suppose a drug is indicated for the treatment of 
extreme agitation, perhaps in an emergency room 
setting, where covariates may be hard to assess. Let 
T be the event that a patient responds to this treat-
ment. Let E be the event that a patient treated with 
this drug has an elongated QT interval on the elec-
trocardiogram. Suppose further that P(E|T) has 
been estimated in observational studies of agitated 
patients in emergency room settings. No matter 
how large P(E|T) is, one cannot conclude that the 
treatment has caused the elongated QT interval. 
For example, an agitated patient taking insulin for 
type I diabetes has an increased risk of QT interval 
elongation whether treated for agitation or not. In 
observational studies, and even in poorly designed 
clinical trials, lurking variables, such as the patient’s 
normal treatment regimen in this case, can be the 
source of mistaken causal inferences based on esti-
mated conditional probabilities.

A closely related problem concerns confound-
ing. For example, suppose a disease can affect 
both males and females but females have a higher 
recovery rate without treatment than males. In a 
clinical trial, if a treatment indicated for this  
disease goes more frequently to females than to 
males, then the resulting estimate of the probabil-
ity of recovery under treatment may be inflated. 
Sex and treatment are potentially confounded 
here. If the differential assignment of the treatment 
in the clinical trial is not recognized, then sex 
becomes in effect a lurking variable. This leads to 
Simpson’s paradox, which can make contingency 
table analyses problematic.
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Fallacious Independence

Suppose in a certain population, males above a 
given age are obese (event O) with probability .25 
and are hypertensive (event H) with probability 
.15. Since obesity and hypertension are both risk 
factors for heart disease, one may be interested in 
the probability that a male in this population has 
both factors. That is, one may wish to know P(O 
and H). It is tempting to compute P(O and H) = 
P(O)P(H) = (.25)(.15) = .0375, but this implies 
that O and H are independent. That is, one can 
only multiply the probabilities of O and H if 
P(H|O) = P(H) or, equivalently, if P(O|H) = P(O). 
Clearly, it is unlikely that O and H are indepen-
dent. What happens if one ignores this? Suppose, 
for example, that P(H|O) = .35 for males in this 
population. Then, using the multiplication law, 
P(O and H) = P(O|H)P(H) = (.35)(.15) = .0525, 

instead of .0375 as it would be if independence 
were obtained.

John W. Seaman Jr.

See also Bayes’s Theorem; Causal Inference in Medical 
Decision Making; Conditional Probability; 
Conjunction Probability Error; Decision Analyses, 
Common Errors Made in Conducting; Subjective 
Probability; Uncertainty in Medical Decisions
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Weighted Least squares

One of the most used statistical techniques is 
regression analysis. In its simplest (and most used) 
form, regression analysis is used to describe and 
analyze the relationship between two continuous 
variables (e.g., weight and systolic blood pres-
sure). In such instances, each observation (i.e., 
patient) can be represented with a point in a two-
dimensional plot. The analysis is done by assum-
ing that the relationship follows a known 
mathematical model. The data and the model are 
displayed in a graph called scatterplot, where x, or 
explanatory variable, is plotted in the horizontal 
axis, and y, or response, in the vertical axis. When 
the model is a straight line (defined by a slope and 
an intercept) and it is fitted to the data using the 
method of least squares, it is known as ordinary 
least squares (OLS), and the analysis is called 
simple linear regression (SLR). Weighted least 
squares (WLS) is a modification of OLS. 

Least Squares Methods

The OLS method consists of finding the equation 
(i.e., slope and intercept) of the line that minimizes 
the sum of the squared vertical distances between 
each point and the line, hence the name least 
squares. These distances are called residuals. A pic-
ture helps understand these concepts. In 2001, 
Frank Bengel and colleagues studied the relationship 
between percent change in ejection fraction from 
rest to exercise (y variable) and hydroxyephedrine 

retention (x variable) in heart transplant patients. 
Each point in Figure 1 represents a patient and the 
line was computed using the OLS method. As is 
apparent from the figure, some points are farther 
from the line than others. The residuals are the dis-
tances from the line to each point in the y direction. 
By convention, points below the line have a negative 
residual and those above the line, a positive residual. 
The well-known correlation coefficient is a measure 
of the strength of the linear association and depends 
on the magnitude of the residuals. In this case, r = 
.61, indicating a moderately positive association 
that is statistically significant (i.e., not due to chance, 
since p < .001). An equivalent statement is that the 
slope of the line is significantly different from zero.

Mathematically, the OLS method minimizes the 
quantity

Xn

i=1

e2
i ;

where ei is the residual of the ith point and n is the 
number of points. In this sum, each residual has 
the same weight, and thus, each point (or residual) 
contributes equally to the sum. This is consistent 
with the assumption that every point contains the 
same amount of information, which is one of the 
key statistical assumptions of SLR. The (theoreti-
cal) assumption is that for each x measure, there 
exists a distribution of y measures with a mean 
that depends on the x measure and a variance that 
is the same for all values of x.

In statistical terms, the uniformity of variances 
is called homoscedasticity. Frequently, it is assumed 
that the distribution is normal. Figure 2a illustrates 

W
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this assumption. The popularity of OLS is due, in 
large part, to the fact that, under homoscedasticity 
(together with the independence of the observa-
tions), the fitted line has optimal statistical proper-
ties (i.e., the slope and intercept have smallest 
variance).

In many cases, homoscedasticity is a reasonable 
assumption, but sometimes the data or other theo-
retical reasons do not support it. Some biological 
relationships tend to have variation that depends 

on the average (e.g., larger average producing 
larger variation). This creates a “funnel” effect like 
the one illustrated in Figure 2b. In the example dis-
cussed previously, this would mean larger variation 
in ejection fraction among patients with higher 
hydroxyephedrine retention. The condition of 
unequal variances is called heteroscedasticity, and 
when it is present, the OLS method is not optimal.

The variance can be thought of as a measure of 
the information that a single observation conveys. 

0
−10

−5

0

5

10

15

20

25

2

(11C) Hydroxyephedrine Retention
(% per min)

C
h

an
g

e 
in

 E
je

ct
io

n
 F

ra
ct

io
n

 (
%

)

4 6 8 10

Figure 1  Relationship between hydroxyephedrine retention and percent change in ejection fraction

Source: Bengel et al. (2001).

10

20

30

y

3 6 9

(a)

10

20

30

40

y1

3 6 9

x

(b)
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This is because as the variance increases, the like-
lihood that any observation is far from the mean 
increases (that is why larger samples are needed 
as the variance increases). Consequently, het-
eroscedasticity means that observations have 
different amounts of the information, and thus, 
it is reasonable to assign different weights to 
different points.

A common way to assign weights to observa-
tions is using the reciprocal of their variance. 
That is, if s2

i is the variance at the ith point, the 
weight for the point would be wi = 1/s2

i These 
weights are smaller for observations with larger 
variances. For instance, in Figure 2b the weights 
assigned to the observations with x = 9 would 
be considerably smaller than those for x = 3 
(and x = 6).

Assuming that the weights (i.e., the variances) 
are known, the problem is then to compute the 
straight line that minimizes the expression as

.

The mathematical technique is a straightfor-
ward modification of OLS and is called, appropri-
ately, weighted least squares. Unfortunately, more 
often than not, the variances are not known and 
large samples are needed to estimate them with 
reasonable precision.

In practice, heteroscedasticity is difficult to 
ascertain and frequently goes undetected. If OLS is 
used when heteroscedasticity is present, the calcu-
lated slope and intercept will have larger variation 
than the ones obtained with WLS. Furthermore, 
the OLS will underestimate the true variances, and 
consequently, the confidence intervals will be too 
short and have a lower confidence than the one 
stated. The p values will also tend to be too small, 
increasing the Type I error rate.

Multiple linear regression (MLR) is the extension 
of SLR to the case of multiple explanatory variables. 
The model is more complicated than a straight line, 
but the fitting method is the same. In other words, 
OLS or WLS is used to fit the model depending on 
whether or not there is heteroscedasticity.

Application

WLS is used frequently to analyze public health 
information consisting of a large number of 

records. In 2007, Elyse Olshen and colleagues 
investigated the impact of state policies on vaccine 
coverage by age 13. The data consisted of percent 
vaccine coverage for more than 300 national insur-
ance plans on 29 states. In this case, the response 
was the percent state coverage and the explanatory 
variable the type of state policy regarding vaccina-
tion. Olshen and colleagues used a WLS approach 
with weights that were inversely proportional to 
the variance in coverage across insurance plans 
within each state. Using MLR to adjust for other 
variables, the article found a significant associa-
tion between coverage and middle school vaccina-
tion mandates.

WLS is commonly used in particular areas. In 
calibration, the objective is to estimate the unknown 
concentration of a substance given the observed 
response. The data are obtained by testing known 
concentrations and measuring the response. In 
these cases, the assumption of homoscedasticity is 
frequently not realistic. Estimates of the variance 
for each concentration of interest are obtained by 
running multiple replicates of the same concentra-
tion. Using the variance estimates, the weights can 
be calculated.

Another area in which WLS is used is meta-
analysis. The goal of meta-analysis is to combine 
the results from multiple studies to produce a 
unified and more reliable conclusion. One of the 
challenges in meta-analysis is the pooling of 
results from studies that are heterogeneous in 
many ways, including sample size. One way this is 
done is by using weights that are proportional to 
the sample size.

Actually, any general regression technique such as 
logistic regression and proportional hazards (Cox) 
regression is based on some version of WLS.

Esteban Walker

See also Cox Proportional Hazards Regression; Logistic 
Regression; Ordinary Least Squares Regression
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Xn

i=1

wi · e2
i :
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WeLfare, WeLfarism, 
and extraWeLfarism

Decisions need to be made when there are at least 
two alternatives to choose from. Like other deci-
sion making, medical decision making is about 
making such choices between alternatives. To do 
so in a rational, systematic, and optimal way, a 
decision-making framework must be developed, 
which stipulates how we should evaluate the dif-
ferent options. This first of all requires a defini-
tion of what exactly it is that we are seeking to 
improve by making optimal decisions, that is, the 
underlying goal of our decisions, and what it is 
that will be lost if we fail to do so. In economics, 
this underlying maximand has normally been 
labeled welfare, hence the term welfare econom-
ics. In essence, welfare economics is concerned 
with defining optimal allocations of scarce 
resources, where optimality is defined by the allo-
cation of resources that maximizes (social) wel-
fare. A dominant coherent normative framework 
has been developed to judge whether changes 
from state of the world A to B would improve 
welfare, either for an individual or a society.

Welfare

If welfare is the appropriate maximand of indi-
viduals and societies, in its most comprehensive 
form, it needs to represent some ultimate objective 
of individuals and societies. It should be an overall 
representation (index) of well-being of individuals 
or societies, in which all relevant underlying com-
ponents of welfare are embraced. In this case, 
attaining higher levels of welfare is equivalent to 
saying that the involved individual or society is 
better off. Note that this is also possible when 
some underlying components of welfare decrease 

while others improve, as long as the latter compen-
sate, in an acceptable way, for the former. Welfare 
is therefore also the sphere in which changes in 
individual underlying components of welfare can 
be traded off. Sometimes, it has been suggested 
that the components of welfare would be limited 
to goods and services only, and a few economists 
have even equated welfare, at either the individual 
or the societal level, with income or wealth in 
applied work. This, however, seems unnecessarily 
restrictive. Rather, the components of welfare can 
be diverse and may include aspects such as friend-
ship, leisure, and marriage. For instance, an indi-
vidual may trade off a loss of leisure against a gain 
of income and decide to be better off, that is, 
improve his or her welfare, by working more. A 
society may trade off the loss of an ancient forest 
against reduced travel time and decide to be worse 
off, that is, reduce welfare, when sacrificing the 
forest for more roads. It is especially such trade-
offs of losses and gains that form the heart of wel-
fare economics, as typically observed in economic 
evaluations.

Utility

In economics, a commonly used term for wel-
fare is utility. Its meaning has always been ambigu-
ous. In the days of Jeremy Bentham and John 
Stuart Mill, utility was often equated with happi-
ness (as in the utilitarian motto “the greatest hap-
piness for the greatest number”) or with life 
satisfaction, although this equation always has 
been the topic of debate. The interpretation of util-
ity as happiness or life satisfaction appears to 
become more popular again more recently, also in 
applied economics. However, the dominant view 
on utility moved away from this interpretation, 
also due to the problems of measurability and 
interpersonal comparability of utility (discussed 
below). The focus on the emotional evaluation of 
states of the world was rejected and utility is now 
usually taken to represent simply preference order-
ings or an index of choice. Within health econom-
ics and medical decision making, the term utility is 
indeed often used to refer to preference weights for 
different health states used in quality-adjusted life 
years (QALYs) calculations.

These two distinct interpretations of utility, that is, 
(1) hedonic welfare and (2) (anticipated) preference 
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satisfaction, still are the most prominent ones and 
sometimes are labeled as experienced utility and deci-
sion utility (or anticipated utility), respectively. In the 
first interpretation, an improvement in welfare for an 
individual is attained if a person actually experiences 
more utility (some might say “is happier”) due to 
some change; and in the second interpretation, wel-
fare is improved for that individual when moving a 
person to a state he or she prefers, for whatever rea-
son. (A person may, for instance, prefer one health 
state to another, because one believes that one will be 
happier in that health state, simply because one will 
be healthier in that state, or because one feels that 
one would be less of a burden to others in that health 
state.) The reasons for preferring some state to 
another are normally not considered or evaluated by 
economists. Note that ignoring the quality of utility 
(i.e., the normative evaluation of the individuals’ 
preferences, such as whether they are disgusting or 
cruel) has been criticized by some economists.

Measurability and Comparability

The measurability and interpersonal compara-
bility of utility has been a matter of controversy as 
well and has importantly contributed to the second 
interpretation of utility mentioned above. While 
utility was believed to be measurable cardinally 
and interpersonally comparable in the old days 
(with the concept of the hedonimeter, which would 
interpersonally comparably measure happiness 
and pain in individuals, of Francis Edgeworth as 
the illustrative highlight of this school of thought), 
nowadays the idea of interpersonally incomparable 
ordinal utility is more prominent. This change has 
had a profound impact on welfare economics, 
especially in the context of social welfare. Under 
the assumption of cardinal and comparable utility, 
one may simply maximize social welfare by com-
paring utility gains and utility losses of some 
change. For instance, in a two-person world, if a 
change causes a loss of utility of 3 units in Person 
A but a utility gain of 5 units in Person B, it is 
immediately clear that total happiness increases by 
2 units due to that change. Social welfare would 
then be some (weighted) function of individual 
utilities—like under utilitarianism it is assumed to 
be a simple unweighted summation of all individ-
ual utilities. Without comparability (and cardinal-
ity), it is impossible to directly trade off welfare 

gains and losses between individuals. Then, in the 
above example, we only know that Person A 
decreases in utility while Person B increases, but 
any quantitative comparison of gains and losses is 
impossible and meaningless. This has resulted in 
the popularity of the Pareto criterion, which states 
that social welfare increases unambiguously only 
when the utility of at least one person increases 
and that of no one falls. This criterion is not only 
very restrictive (as it does not allow a decrease in 
utility for anyone, regardless of the gains for oth-
ers), but it has also been criticized for ignoring 
equity considerations. For example, even if in our 
two-person world, Person A would be extremely 
rich, while Person B is extremely poor, any redistri-
bution of wealth from A to B making Person A 
even slightly worse off while dramatically improv-
ing B’s position does not satisfy the Pareto crite-
rion. Such equity considerations can be included in 
approaches using (Bergson-Samuelson) social wel-
fare functions by including equity weights (or 
inequality aversion) attached to different levels of 
welfare, but then, again, interpersonal compari-
sons in terms of utility are made, not only to come 
to social welfare from individual welfares but also 
to determine who should receive more (equity) 
weight in this process.

Welfarism

Welfarism has two distinct, though related, mean-
ings. First of all, it is often used to describe the 
dominant ethical framework used in welfare eco-
nomics to judge states of the world with. This 
dominant framework is built on four key tenets. 
The first tenet is the utility principle. This means 
that individuals are assumed to maximize their 
welfare in a rational way. They are assumed to do 
so by ordering the options open to them and sub-
sequently choosing the preferred option. This 
rational maximization behavior has importantly 
been questioned in the “behavioral economics” 
school, exposing a gap between the behavioral 
assumptions in the neoclassical economic frame-
work and real-world decision making. The second 
tenet is individual sovereignty. Individuals them-
selves are considered to be the best judges of what 
is good for them, that is, what maximizes their 
welfare. They themselves therefore (should) decide 
on what the preferred option is. The third tenet is 
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consequentialism. This indicates that individuals 
derive utility from the outcomes of their choices, as 
opposed to, for instance, merely intentions. Fourth 
is the tenet of welfarism. Welfarism implies that the 
goodness or desirability of a state of the world is 
evaluated only by the level of utility (experienced or 
anticipated to be had) in that state of the world. This 
tenet, therefore, effectively reduces the information 
to be considered in any individual or social ranking 
of states of the world (i.e., the evaluative space) to 
only utility. Thus, only individual preferences are 
relevant in social rankings of states of the world. 
Together, these four tenets build the dominant wel-
fare economic framework, sometimes labeled wel-
farist economics, with the distinct feature that only 
individual utilities are allowed to determine the 
desirability of different states of the world.

The second meaning of the term welfarism 
relates only to the fourth tenet of welfarist eco-
nomics, that is, the one that restricts what can be 
considered in an evaluation (i.e., the evaluative 
space) to individual utility only, ignoring all other 
possible outcomes. These other outcomes may be 
diverse and are often generically labeled as non-
utility information. Especially in the context of 
health economics and medical decision making, it 
has been questioned whether the welfarist restric-
tion on the evaluative space would be appropriate 
and useful; hence the attention for an alternative 
stream, called extrawelfarism (although the label 
nonwelfarism has also been used).

Extrawelfarism

Extrawelfarism is a stream within welfare econom-
ics, which, while like welfarist economics seeking 
to make meaningful statements about the relative 
desirability of different states of the world, rejects 
the tenet of welfarism in doing so. It therefore 
rejects the key characteristic of welfarist econom-
ics, that is, that it only uses utility information in a 
welfare evaluation. Thus, extrawelfarism opens up 
the evaluative space in such evaluations to include 
a range of possible outcomes as well as or instead 
of individual utilities. The underlying reason for 
this relative permissiveness under extrawelfarism 
especially appears to be that the welfarist notion 
that only individuals’ experienced or anticipated 
utilities are important in deciding whether one state 
of the world is preferable to another is considered 

unsatisfactory as a normative underpinning of wel-
fare judgments. There is more to welfare than just 
individual preference-based utility, according to 
extrawelfarists. Extrawelfarism may include in the 
evaluative space other aspects and characteristics 
of human beings, such as their capabilities, their 
potential attainments, their health, or their share of 
such things in society. These outcomes are consid-
ered important in welfare judgments in their own 
right, not merely because they produce utility nor 
just to the extent that they do so.

The extrawelfarist stream, therefore, requires the 
purposeful selection of relevant outcomes to be 
included in welfare judgments and, therefore, the 
development of other normative (but still welfare 
economic) frameworks for deciding on the relative 
desirability of different states of the world. While 
the extrawelfarist framework allows a context- 
dependent definition of the relevant and appropri-
ate outcomes to be considered in the evaluation, 
one important predefined alternative framework 
has been proposed by Amartya Sen. This is his 
capabilities approach. Therein, rather than focusing 
on the (anticipated) emotional reaction of people to 
what they do and are, welfare should be judged 
according to what people are capable of doing, 
being, or becoming. One may draw a parallel here 
to striving for equal opportunity for welfare.

In health economics and medical decision mak-
ing, where extrawelfarism was introduced espe-
cially by Anthony Culyer, the focus has especially 
been on the health of individuals as an important 
human characteristic (or capability). Health, mea-
sured in some meaningful way (perhaps but not 
necessarily entailing utility measurement), may be 
considered an appropriate maximand in the con-
text of healthcare decisions. QALYs, which seek to 
measure and combine the main characteristics of 
what is usually entailed by the idea of physical and 
mental health, have been proposed as such a mean-
ingful measure of health. While QALYs are often 
used in the context of cost-utility analysis, extrawel-
farists have claimed that they do not correspond to 
the traditional idea of utility, for instance, due to 
the rescaling on a fixed scale (so that everyone 
with perfect health gets a utility score of 1 regard-
less of other characteristics) and due to the way 
they are used (e.g., simply adding, subtracting, and 
averaging QALY scores across people). Note that 
a focus on health is not a general feature of the 
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extrawelfarist stream but merely an application  
of it in the context of healthcare. And there also, 
other relevant outcomes (such as relief of burden 
to caregivers or access to healthcare) may be 
selected and included in the evaluation, next to 
relevant health measures.

By allowing outcomes other than utility in the 
evaluative space, extrawelfarist analysis can cir-
cumvent some of the traditional problems of mea-
surement and interpersonal comparability of utility. 
Individuals may be compared, for instance, in terms 
of their health, and one person may be deemed  
to be more in need of care than another on the 
grounds of being in a worse health state (while not 
claiming anything about these individuals’ utility or 
preferences). This also allows weighting of relevant 
outcomes, for instance, to reflect equity consider-
ations, but these equity weights then do not need  
to pertain to the utility of the affected individuals 
(but to some other relevant outcome, such as their 
health status), nor do the weights themselves neces-
sarily need to be preference based. Moreover, unlike 
when eliciting utility, the source of valuation under 
extrawelfarism does not necessarily have to be the 
affected individual (e.g., to avoid the consequences 
of adaptation). This permissiveness of extrawel-
farism depends on its key feature, that is, that it 
allows outcomes other than utility to be considered 
in a welfare economic evaluation.

Werner Brouwer

See also Economics, Health Economics; Equity; Expected 
Utility Theory; Patient Satisfaction; Quality-Adjusted 
Life Years (QALYs); Social Judgment Theory; Utility 
Assessment Techniques
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WiLLingness to Pay

Willingness to pay (WTP) is the maximum amount 
of money an individual is willing to pay to ensure 
that a proposed service or good is available. 
Determining WTP through the contingent valua-
tion method (CVM) is increasingly being used  
to generate information on the benefits of, and 
demand for, healthcare programs. The method is 
called contingent valuation because the respon-
dent is asked to consider the contingency of a 
market existing for the thing being valued. The 
WTP could be for the availability of a resource to 
the individual (own use); for others, for example, 
poor people (altruism); needed by others or the 
individual in the future (option or nonuse); or a 
combination of any of these measures. CVM is 
accepted as a theoretically correct method to esti-
mate the value of goods and services to consumers 
and provides the monetary measure of benefit in 
cost-benefit analysis.

Question Formats

There is still paucity of knowledge about the rela-
tive validity of WTP elicited using different CVM 
question formats. There are many CVM question 
formats for eliciting WTP, which in turn might 
determine the level of validity of elicited responses. 
The various question formats (or elicitation meth-
ods) for eliciting WTP include open-ended, the bid-
ding game, payment cards (or categorical scales), 
dichotomous choice (binary, close-ended, take-it-or-
leave-it), and the dichotomous with follow-through 
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question formats. There are also variants of all 
these question formats. However, it is potentially 
better to use the question formats that are more 
context specific as this would yield more valid esti-
mates. Some question formats have been developed 
to improve the realism of the WTP elicitation for 
the hopeful elicitation of more valid WTP estimates. 
Two CVM question formats that mimic market 
transactions (price taking) are the bidding game 
and the structured haggling technique, which are 
described below.

Bidding Game

The bidding game operates by the respondent 
being presented with an amount and asked whether 
he or she would be willing to pay that amount. 
However, depending on the response, the res-
pondent is bid up or down using a predetermined 
bidding iteration until the maximum number of 
predetermined bidding iteration is reached. The 
final amount is open-ended and represents the 
maximum amount the respondent is willing to pay.

Structured Haggling

The structured haggling technique was devel-
oped to mimic the usual haggling price-taking 
characteristics in open markets (e.g., those found 
in southeast Nigeria). It is structured so that the 
steps are standardized for use by different inter-
viewers in the same study. The seller or interviewer 
initiates the haggling process, by offering the good 
to the buyer at a price that is well above the 
expected sale price. This is to give adequate room 
for the respondent to bargain so that in the end the 
seller will end up selling at a price that is equal or 
more than the sale price of the net. As it does often 
happen, the buyers who feel that sellers normally 
inflate the first offer will say no to the first price 
offered. However, the price-naive ones may agree 
to the first offer, whereby the sale is effected and 
goods and money exchange hands. The structured 
haggling technique has an additional step where 
the respondent is asked his or her WTP in case the 
price of the good rises in the future due to unfore-
seen circumstances. This step is aimed at eliciting 
the maximum WTP. Hence, the final amount is 
also open-ended and represents the maximum 
amount the respondent is willing to pay.

Validity

Validity tests are divided into content, criterion, 
and construct validity. Content validity determines 
whether the contingent valuation scenario presents 
a realistic description of the good or service under 
valuation. Construct validity refers to whether the 
measurement corresponds to theoretical concepts, 
and criterion (or criterion related) validity is the 
correlation of hypothetical or stated WTP with 
actual behavior or actual WTP. Construct validity 
is usually investigated if there is no immediate 
available gold standard with which to investigate 
criterion validity, which is usually the case in most 
CVM studies. In testing construct validity, hypo-
thetical constructs are used to understand elicited 
WTP, usually through econometric analysis, by 
using an appropriate regression analyses model 
depending on how WTP was measured. Usually, in 
testing for construct validity, independent (explan-
atory) variables are used to explain the determi-
nants of elicited WTP.

Illustrative Study: Malaria  
Treatment in Southeast Nigeria

In this study, the structured haggling and bidding 
game techniques were used to elicit WTP for dif-
ferent malaria treatment strategies in the Oji-river 
town in Oji-River LGA of Enugu State. Multistaged 
sampling was used to select the respondents. A 
subsample of the households had a bidding game, 
while the other had structured haggling question 
formats for eliciting WTP. Using the household 
lists as the sampling frame, 370 households were 
selected from each subgroup (total of 740 house-
holds) using simple random sampling. In each 
selected household, an adult was interviewed.

Pretested questionnaires were used to elicit 
respondents’ WTP per episode of malaria. In elicit-
ing WTP, scenarios that explained the different 
malaria treatment strategies were first presented to 
the respondents. Then, either the bidding game or 
structured haggling technique was used to elicit 
WTP from a subsample of the respondents. The 
interventions presented were treatment in public 
hospitals, primary healthcare centers, private hos-
pitals, and by community health workers.

The average WTP amounts that the respondents 
were willing to pay to receive treatment for an 
episode of malaria from four different treatment 



1193Willingness to Pay

providers are shown in Table 1. The four rows 
with the results compare the mean (average) WTP 
for treatment of malaria from different healthcare 
providers. Consistently higher WTP amounts were 
elicited using the structured haggling technique for 
the four valuations and all were statistically sig-
nificant between structured haggling and the bid-
ding game. The highest level of WTP using the 
structured haggling was for improved malaria 
treatment in private hospitals ($5.03), while it was 
for treatment in public hospitals ($3.11) in the case 
of the bidding game. However, in both the bidding 
game and structured haggling, the least WTP was 
for treatment by community health workers.

The relationships between WTP and many of the 
independent variables were consistent with a priori 
hypothesized relationships suggested by demand 
theory, hence supporting the construct validity of 
the two CVM question formats. The results of a 
comparative test of construct validity of the esti-
mates of WTP from the bidding game and struc-
tured haggling show that having formal education 
was positively and statistically significantly related 
to WTP in five out of the eight regression models. 
Also, whether or not a respondent stated that he or 
she was willing to pay for malaria treatment was 
positively related to WTP in all eight valuations (p 
< .05). However, WTP for primary healthcare cen-
ters and WTP for private hospitals were weakly 
construct valid for the bidding game, while WTP 
for private hospitals was weakly construct valid for 
the structured haggling. All the regression analyses 
were statistically significant, and on average, they 

explained more than 40% of the variations (with 
the exception of WTP for private hospitals in the 
structured haggling) in WTP.

Obinna Onwujekwe

See also Contingent Valuation; Cost-Benefit Analysis; 
Health Status Measurement, Construct Validity; 
Human Capital Approach; Monetary Value; Ordinary 
Least Squares Regression
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Table 1  Willingness to pay for different providers in the four communities

BG 
N = 346

Naira (US$)

SH
N = 352

Naira (US$)

 
 

Chi-Square (p value)

WTP for improved quality of malaria treatment 
in public hospitals

373.6 ($3.11) 479.5 ($4.0) 29.4 (p < .0001)

WTP for improved quality of malaria treatment 
in public PHC centers

331.4 ($2.8) 436.2 ($3.6) 45.0 (p <.0001)

WTP to pay for treatment in private hospitals 317.0 ($2.6) 603.2 ($5.03) 179.8 (p < .0001)

WTP to pay for treatment by community health 
workers

245.2 ($2.04) 354.3 ($2.95) 38.8 (p < .0001)

Note: 120 Naira = US$1; WTP, willingness to pay.
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WorLdvieWs

Worldview is the overarching framework through 
which individuals perceive themselves and their 
world. It dictates (a) what information individuals 
seek and (b) how they organize, process, and deter-
mine the meaning of information in their social 
world. Thus, this construct allows for the concur-
rent examination of both (a) intra-individual-level 
beliefs and values and (b) external factors that 
affect behavior. It explores how individuals’ 
unique experience of their world interacts with 
their self-perceptions to guide the decision-making 
process. An improved understanding of individuals’ 
worldviews could be used to match interventions to 
targeted populations at risk to improve health 
outcomes.

Worldview and Self-Fulfilling Prophesy

The construct of worldview examines how beliefs 
about the self and the world interact to affect 
behavior. The following are two examples. 
Individuals with a high sense of self-efficacy may 
be more likely to engage in preventive behaviors 
because they believe that their actions will result in 
reduced harm (the self-controllability dimension). 
This may be amplified by the belief that the world 
is inherently just and that misfortune will not come 
to those who are good, decent, and try hard (the 
justice world dimension). However, this behavior 

may be undermined if individuals believe that they 
are not worthy of receiving good things (the self-
deservingness dimension) and/or that bad things 
arbitrarily befall on people in the world (the ran-
domness world dimension).

This notion is akin to the psychological theory 
of attribution, which studies individuals’ tendency 
to see the world in a habitual way and how it can 
lead to habitual behavioral responses. Attribution 
theory takes this notion one step further to suggest 
that if one believes the world to be uncontrollable, 
as in the example above, it is likely that one will 
actually experience an uncontrollable world, in 
part due to the self-fulfilling prophesy. One exam-
ple in medical decision making is the impact of 
misperception. If individuals hold the view that 
cancer is a death sentence, they are more likely to 
abstain from efforts to prevent or treat cancer; 
therefore, if diagnosed with cancer, it is likely to  
be at a later stage when overt symptoms develop 
(such as acute pain, uncontrolled bleeding) and 
medical treatment becomes necessary. Because the 
cancer was not caught early, treatment options 
become limited and the chance of survival dra-
matically decreases, tragically confirming their 
initial belief.

Imagine that this misperception was prevalent in 
a community at high risk for developing cancer, 
and as a result, community members engaged in 
little to no prevention. If policy makers failed to 
identify their worldview, they might assume that 
low cancer-screening rates were due to structural 
factors, such as limited access to screening centers. 
This mismatch in worldviews could lead policy 
makers to invest their limited healthcare dollars in 
the development of a screening center easily reached 
by public transportation rather than the more 
appropriate, and less costly, intervention aimed at 
addressing the community’s misperceptions.

Therefore, a more informed understanding of 
how individuals perceive themselves, combined 
with specific beliefs about the world, may help 
(a) identify those at increased vulnerability  
for experiencing poor health outcomes and  
(b) inform the development of appropriate, tar-
geted interventions.

Julie Goldberg

See also Cognitive Psychology and Processes; Context 
Effects; Cultural Issues; Decision Psychology; Decisions 
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Childress, James F., 1:72–75
Chi-square notation, 2:1060
Chi-square test, 1:53–54, 1:56, 2:1065, 2:1113
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in consumer-directed health plans, 1:194
discrete, 1:205–206, 1:394–398
as element of decision models, 1:332

Choice anomalies, 2:898
Choice-based conjoint (CBC) analysis, 1:180
Choice dilemmas. See Decisional conflict
Choice processes. See Deliberation and choice processes
Choice theories, 1:131–135

descriptive, 1:134
normative, 1:132–134

CI. See Confidence intervals
Citation analysis, in medical decision making, 1:xxvii–xxxi
Civil Rights Movement, 2:862
CLAD (censored least absolute deviations estimator), 

1:458–459
Claims data, and cost estimates, 1:222
Classical test theory (CTT), 1:567, 1:568–569
Classification and regression tree (CART) analysis

decision trees and, 1:324–326, 1:327–328
prediction rules and, 2:894
See also Recursive partitioning

Classification trees, 1:323–326
Clinical algorithms and practice guidelines, 1:135–139

algorithms, 1:135–137
guidelines, 1:137–138

Clinical Antipsychotic Trials of Intervention Effectiveness 
(CATIE), 1:432–433

Clinical Classification Software (CCS), 2:989–990
Clinical decision support (CDS) systems, 1:158
Clinical practice guidelines (CPGs), 1:137–138, 1:459–461
Clinical reasoning. See Causal inference and diagrams; 

Causal inference in medical decision making; Cognitive 
psychology and processes; Errors in clinical reasoning; 
Teaching diagnostic clinical reasoning

Clinical significance, 1:164–165, 1:519
Close calls, 2:746–747. See also Toss-ups and close calls
Closure, premature, 1:452
CMA. See Cost-minimization analysis

CMR (crude mortality rate), 2:789
CMS. See U.S. Centers for Medicare & Medicaid Services
Cochrane collaboration, 1:25, 1:468–469, 1:471, 2:860
Cochran Q test, 1:56
Co-deciders, healthcare providers as, 1:248, 1:252
Coefficient gamma, 1:56
Coefficient of determination, 2:1060
Coefficient of variation (CV), 2:735, 2:1060
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dual-process theories of, 1:416–417
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processing, complicating factors in, 1:141–142
processing, phases of, 1:140–141
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Collectivistic cultures, 1:249
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history of, 1:145
medical decision making and, 1:147–149
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Complex systems, 1:189–190, 1:447
Complex values, 1:191–192
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causality and, 1:150, 1:151–152
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Comprehensive decision analysis, 1:61
Compromise effect, 1:38
Computational limitations, 1:153–156
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Computer-assisted decision making, 1:156–159
applications of, 1:157–158
barriers to, 1:158
effectiveness of, 1:158
software components for, 1:157

Concentration maximum, 2:1060
Concordance, Kendall coefficient of, 1:56
Conditional independence, 1:159–162

in causal reasoning, 1:160–161
conditional probability and, 1:162–163
as extension of independence, 1:159–160
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Conditional probability, 1:162–163
Bayesian networks and, 1:64, 1:65–66
probability revision and, 1:70
See also Bayesian networks; Bayes’s theorem

Conditional statement, 2:1060
Confidence, as a cultural issue, 1:247–248
Confidence ellipses. See Acceptability curves  
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treatment superiority and, 1:165
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mood effects and, 2:781
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Confounding and effect modulation, 1:175–179
confounding variables, 1:175, 1:176
mediating variables, 1:175, 1:177
moderating variables, 1:175, 1:177, 1:178
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Confounding variables, 1:175, 1:176
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assumptions underlying, 1:179
choice-based, 1:180
data interpretation in, 1:181–184
decomposed measurement and, 1:369
discrete choice experiment compared to, 1:395
full profile, 1:180
methods of conducting, 1:180
steps in, 1:179–184
value of, 1:184

Conjunction probability error, 1:184–188
applicability of, 1:186
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Linda problem in, 1:185, 1:186
reduction of, 1:186–187

Conjunction rule, 1:184–185, 1:187
Consent. See Informed consent
Consequence analysis. See Cost-consequence analysis;  

Evaluating consequences
Consequentialism, 2:1190
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chained gamble and, 1:125–127
decision field theory and, 1:418
decision model errors and, 1:265
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Constraint theory, 1:188–190

essence of, 1:190
quality improvement methods and, 1:188–189
theory of complexity and, 1:189–190
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measurement, construct validity
Consultants, healthcare providers as, 1:248
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case against, 1:193–194
case for, 1:192–193
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Consumer sovereignty, 1:206
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caused by choice options, 1:196–197
caused by task framing, 1:195–196
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biomedical error versus, 1:198–200
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preventing, 1:201–202
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few studies in, 1:203–204
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Contrast analysis, 1:20
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causation and, 1:113
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notation for, 2:1060, 2:1061
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Cost-benefit analysis, 1:205–206
characterizing feature of, 1:205
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complications and, 1:152
conflicts of interest and, 1:174
in contingent valuation, 1:204, 1:205
cost-utility analysis and, 1:241
nature of, 1:205, 1:232–233, 1:424
opportunity costs and, 1:234
in pharmacoeconomics, 2:877
rational choice and, 1:133
in rationing, 2:952
reference case and, 2:966, 2:967–968, 2:970
See also Monetary value
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EuroQol importance in, 1:458
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nature of, 1:214, 1:233, 1:424, 1:426–427
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QALYs and, 1:214
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in rationing, 2:952
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Monetary value
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Cost-effectiveness plane, 1:216–217

Cost-effectiveness ratio. See Incremental cost-effectiveness  
ratio (ICER); Marginal or incremental analysis,  
cost-effectiveness ratio

Cost-effectiveness threshold, 1:217–219
Cost efficiency, 1:435. See also Efficient frontier
Cost-identification analysis, 1:220–223

cost determination for, 1:221–223
reporting of, 1:223
time horizon for, 1:220–221

Costing
limitations of, 1:232
types of, 1:221–223, 1:225, 1:232, 1:238

Cost measurement methods, 1:223–226
goal of, 1:224
identification of resources in, 1:224
measurement of use in, 1:224–225
specification of perspective in, 1:224
steps in, 1:224
valuation of resources in, 1:225–226

Cost-minimization analysis, 1:226–227
choice theories and, 1:133
cost-comparison analysis and, 1:207
nature of, 1:226–227, 1:233, 1:423
in pharmacoeconomics, 2:877

Cost-of-illness (COI) analyses, 1:423, 1:602, 1:603, 2:788
Cost price analysis, 1:423
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Costs, direct versus indirect, 1:227–230

indirect, inclusion of, 1:228, 1:229–230
societal perspective in, 1:228–230
time inputs in, 1:228–229

Costs, fixed versus variable, 1:230–233
economic analysis and, 1:232
identification of, 1:220–221, 1:231
measurement of, 1:232
valuation of, 1:232
See also Costs, semifixed versus semivariable

Costs, incremental. See Marginal or incremental analysis, 
cost-effectiveness ratio

Costs, opportunity, 1:233–235
resource valuation and, 1:226
time-input valuation and, 1:228–229, 1:230

Costs, out-of-pocket, 1:235–236
Costs, semifixed versus semivariable, 1:236–238

costing methods for, 1:238
semifixed, 1:236–237
semivariable, 1:237–238
See also Costs, fixed versus variable

Costs, spillover, 1:238–240
Costs, sunk. See Sunk costs
Cost sharing, 1:193–194
Cost-to-charge ratio, 1:232
Cost-utility analysis, 1:240–241

cost-benefit analysis and, 1:205, 1:206
cost-comparison analysis and, 1:207, 1:208
cost-consequence analysis and, 1:209, 1:213
decision tress and, 1:338
fundamental goal for, 1:240
healthy years equivalents in, 1:591
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opportunity costs and, 1:234
in pharmacoeconomics, 2:877
QALYs, basis for, 2:932
rational choice and, 1:133

Counterfactual principle, 1:119
Counterfactual thinking, 1:241–242

ease of, 1:242
impact of, 1:242
types of, 1:241–242

Courts and law. See Law and court decision making
Covariance. See Analysis of covariance (ANCOVA)
Coverage, in content and face validity, 1:564–565
Cox proportional hazards regression, 1:243–245

in logic regression, 2:678, 2:679
in log-rank procedures, 2:686
for recurrent events, 2:960

CPGs (clinical practice guidelines), 1:137–138,  
1:459–461

Criterion validity, 1:561, 1:587
Critical bioethics, 1:74
Cronbach’s alpha, 1:580
Cross-cultural issues. See Cultural issues
Crude mortality rate (CMR), 2:789
Cruzan v. Director, Missouri Department of Health, 1:11, 

1:320, 2:784
C-S (customer-supplier) model, 1:254
CTT (classical test theory), 1:567, 1:568–569
CUA. See Cost-utility analysis
Cues, 1:245–247

decision maker models and, 1:246–247
environment models and, 1:246
lens model and, 1:246, 2:669–671
validity in, 1:245–246
values and, 1:245

Cultural issues, 1:247–252
advance directives, 1:11–12
comfort, 1:248, 1:249
confidence, 1:247–248
cross-cultural validity, 1:587
deliberation, 1:250–252
explanation and belief, 1:250–251
health facts, 1:250
key challenges in, 1:247–252
language, 1:250
life expectancy, 2:672
participation, 1:249–250
patient-provider relationship, 1:247–249
risk dimensions, 2:987–988
risk perception, 2:1010
surrogate decision making, 1:322
treatment expectations, 1:251
treatment options, 1:251
trust, 1:248–249
value, 1:251–252
See also Ethnographic methods; International differences  

in healthcare systems; Religious factors
Cumulative distribution function (Cdf), 2:1060
Customer-supplier (C-S) model, 1:254
Cutoff values. See Positivity criterion and cutoff values

CV (contingent valuation). See Contingent valuation
CVM (contingent valuation method). See Contingent 

valuation

DAGs. See Directed acyclic graphs
DALYs. See Disability-adjusted life years (DALYs)
DAM (decision analytic modeling), 1:262–263
Data

bias in collection of, 1:83–84
converted into information, 1:188
errors in modeling of, 1:264–265

Data dredging, 1:82
Data envelopment analysis (DEA), 1:435
Data quality, 1:253–256

defining data and, 1:253
improvement of, 1:254–256
principles for, 1:253–254

DCGs (diagnostic cost groups), 2:990
DCS (Decisional Conflict Scale), 1:257–258, 2:692–693
DEA (data envelopment analysis), 1:435
DEALE. See Declining exponential approximation of life 

expectancy
Death. See End-of-life decision making
Decision aids

in advanced disease, 1:285–286
computer-assisted, 1:158
in decisional conflict, 1:259
decision board, 1:266–268
expert systems, 1:497, 1:498
in genetic testing, 1:532
qualitative methods for, 2:932
stories, 2:1081, 2:1082
See also Patient decision aids

Decisional capacity, 1:308, 1:372. See also Decision-making 
competence, aging and mental status

Decisional conflict, 1:256–262
interventions in, 1:257–262
research gaps in, 1:262
research on, 1:256–257
shared decision making and, 2:1037–1038
social judgment theory and, 2:1056
in uncertainty, 2:692–693

Decisional Conflict Scale (DCS), 1:257–258, 2:692–693
Decision analyses, common errors made in conducting, 

1:262–265
Decision analysis

applied. See Applied decision analysis
comprehensive, 1:61
decision curve analysis compared to, 1:269
drawbacks of, 1:269–270
in rational choice, 1:132–133

Decision analytic modeling (DAM), 1:262–263
Decision board, 1:266–269
Decision curve analysis, 1:269–275

compared to other approaches, 1:269–270, 1:273–274
extensions to, 1:274
interpretation in, 1:272–273
steps in, 1:272
theoretical background to, 1:271–272
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Decision field theory, 1:417–418
Decision levels, 1:139–140
Decision making

analytic, 1:290
coherence criterion for, 1:376
correspondence criterion for, 1:376
defective, 1:294–295
descriptive versus normative, 1:293
dual-process theories of, 1:376–378
essential resources for, 1:98
experience-driven, 1:290–291
parallel thinking in, 1:285
patient’s right to, 2:864
population versus individual, 1:293
primary dialectic in, 1:153
principles of, 2:627
problem solving distinct from, 1:133, 1:139
rule-based, 1:290
See also Medical decision making

Decision making and affect, 1:275–278
affect heuristic and, 1:277–278
models for, 1:276–277
theoretical background of, 1:276

Decision-making competence, aging and  
mental status, 1:278–282

assessment of, by physicians, 1:279
assessment procedures for, 1:279–281
decision psychology and, 1:294–296
laws, courts, and, 2:660
in surrogate decisions, 1:322, 2:1105–1106

Decision making in advanced disease, 1:282–286
communication in, 1:283
conflict in, 1:286
decision-making styles in, 1:283–284
need for, 1:282–283
perspectives in, 1:284–285
practical considerations for, 1:286
process of, 1:285–286
prognostication in, 1:283, 2:881–885

Decision managers, healthcare providers as, 1:248
Decision modes, 1:287–292

adequacy in, 1:287
reauthorization, 1:287–289
responsibility, 1:287, 1:288–289
work assignment, 1:290
work details, 1:290–292

Decision psychology, 1:292–296
decisional capacity in, 1:295–296
decision making, defective, 1:294–295
decision making, types of, 1:293
decision making, under risk, 1:293–294

Decision quality, 1:296–299
decision situation in, 1:296–297
information processing in, 1:298
stakeholders in, 1:297

Decision rules, 1:299–303
for ankle and knee, 1:299–300, 1:301
for decision trees, 1:328
development of, mathematics in, 1:301–302

development of, stages in, 1:299
prediction rules and, 2:893–894
for probability prediction, 1:300–301
use of, 1:302

Decisions and judgments, comparison of, 2:645
Decisions faced by hospital ethics  

committees, 1:303–307
authority of, 1:306–307
common topics in, 1:307
functions of HECs, 1:304–306
history of HECs, 1:303–304
questions for, 1:305–306
sample process in, 1:306

Decisions faced by institutional  
review boards, 1:307–312

ethics committees and, 1:304
obligations in, 1:309–312
research participation in, 1:308–309
vulnerable individuals for, 1:308

Decisions faced by nongovernment payers of healthcare:  
indemnity products. See Decisions faced by  
nongovernment payers of healthcare: managed care

Decisions faced by nongovernment payers of healthcare:  
managed care, 1:313–316

advocacy, stewardship, and, 1:316
health plan contracts and, 1:314
health plan rules and, 1:314–315
MCOs, characteristics of, 1:313–314
MCOs, cost reduction techniques in, 1:313
MCOs, physician perspectives on, 1:315–316
physician-patient conversations and, 1:315

Decisions faced by patients: primary care, 1:316–319
characteristics and nature of, 1:317
interventions in, examples of, 1:318–319
lessons learned about, 1:319

Decisions faced by surrogates or proxies for the patient, 
durable power of attorney, 1:319–322

controversies in, 1:321–322
durable power of attorney, 1:9, 1:283, 1:320
laws, courts, and, 2:661–663
on life and death, 1:320–321
research participation in, 1:321
See also Advance directives and end-of-life decision 

making; Surrogate decision making
Decision support software. See Computer-assisted  

decision making; Expert systems
Decision support strategies, 1:259–262
Decision tree: introduction, 1:323–328

Boolean nodes and, 1:96
classification trees, 1:323–326
discrete-event simulation compared to, 1:399
influence diagrams and, 2:620
limitations of, 2:700–701
Markov models as alternative to, 2:700–701
nodes, types of, 1:323, 1:324
rational choice and, 1:132
regression trees, 1:326
in stochastic medical informatics, 2:1078
survival trees, 1:326–328
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Decision trees, advanced techniques in constructing,  
1:328–332

bagging, 1:330–331
boosting, 1:331–332
bootstrap resampling, 1:329–330
decision boundary, 1:328–329
instability of decision trees, 1:329–331
random forests, 1:331
See also Tree structure, advanced techniques

Decision trees, construction, 1:332–338
branches in, 1:333–334
computer applications for, 1:338
expressions for, 1:336
key model elements in, 1:332–333
navigation, orientation, and, 1:335
nodes, types of, 1:333
problem formulation for, 1:333
structure in, 1:333–334
subtrees for, 2:1094–1096
utilities in, 1:336–338
variables for, 1:335–336
See also Recursive partitioning

Decision trees, evaluation, 1:338–345
calculating, 1:340–341
examples for, 1:338–340
folding back, 1:340–344
laying out, 1:339–340
pruning, 1:341, 1:342–343
stopping, 1:344–345
strengths of decision trees, 1:339–340
wait-and-see alternative, 1:342–344

Decision trees, evaluation with Monte Carlo, 1:345–349
deterministic versus iterative models for, 1:346
probability distributions for, 1:347
sensitivity analysis for, 1:349
simulation in, 1:345–349
statistics obtained from, 1:347
uncertainty and, 1:348–349
variables in, 1:346

Decision trees: sensitivity analysis, basic and probabilistic, 
1:349–356

detecting model bugs and errors, 1:355–356
sensitivity analysis, one-way, 1:350–352, 1:357
sensitivity analysis, probabilistic, 1:353–355
sensitivity analysis, three-way, 1:353
sensitivity analysis, two-way, 1:352, 1:357

Decision trees: sensitivity analysis, deterministic, 1:356–361
forms of, 1:357–360
stochastic versus, 1:355

Decision weights, 1:361–363, 2:817–818
Declining exponential approximation of life expectancy, 

1:363–367
applications of, 1:364–366
extensions to, 1:366–367
mathematical formulation of, 1:364
for probability estimation, 1:365–366

Decomposed measurement, 1:367–370
analytical hierarchy process in, 1:368
health states and treatments valued in, 1:368–369

holistic approach compared to, 1:367
multi-attribute utility theory in, 1:367, 1:368
purposes of, 1:367–368

Decoy effect. See Attraction effect
Decoy types, 1:38–39
Degrees of freedom (df), 1:60, 1:62–63, 2:1060
Deliberation

essential for decision making, 1:98
in frequency estimation, 1:511–512
intuition and, 1:34, 1:98, 1:99
See also Intuition versus analysis

Deliberation and choice processes, 1:370–373
with attention, 1:370–371
without attention, 1:372
deficits in, 1:372
legal concepts in, 1:371–372
medical care and research in, 1:371
neuroeconomics and, 1:372
nondelay factor in, 1:370–371

Deliberative decision-making model, 2:776
Delta notation, 2:1060
Dementia. See Decision-making competence, aging and 

mental status
Deontological principles, 2:925–926
Department of Defense, U.S., 1:534
Department of Health and Human Services, U.S., 1:544
Department of Veterans Affairs, U.S., 1:534, 2:844–845
DES. See Discrete-event simulation
Deterministic analysis, 1:373–376

advantage of, 1:374
sensitivity analysis and, 1:373–374
stochastic analysis compared to, 1:374–375, 2:1077

Developmental theories, 1:376–379
fuzzy-trace theory, 1:377–378
informed consent and, 1:378–379
prototype/willingness model, 1:376–377, 1:378

df (degrees of freedom), 1:60, 1:62–63, 2:1060
Diagnosis, and bias, 1:77–78
Diagnostic cost groups (DCGs), 2:990
Diagnostic errors, 1:450–454
Diagnostic process, making a diagnosis, 1:379–382

hypothetico-deductive method of, 1:381–382, 1:385, 2:1117
initial approaches in, 2:1116–1117
pattern recognition method of, 1:380, 1:385, 2:1117
pitfalls in, 2:1119–1120
prediction rules method of, 1:380–381
See also Teaching diagnostic clinical reasoning

Diagnostic related groups (DRGs), 2:990
Diagnostic tests, 1:382–384

index test for, 2:613–617
likelihood ratios and, 2:676–678
threshold analysis and, 2:1131–1133

Differential diagnosis, 1:384–387
breadth of, 1:385
goal of, 1:385
hypothetico-deductive methods and, 1:381
narrowing process in, 1:385–386
negative workups in, 1:386–387

Differential misclassification, 1:84
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Dignity, patient’s right to, 2:864
Direct comparisons, 2:769, 2:770. See also  

Mixed and indirect comparisons
Direct costs. See Costs, direct versus indirect
Directed acyclic graphs (DAGs)

in Bayesian methods, 1:60, 1:62, 1:64
in causal inference, 1:114–116, 1:118–119
lessons learned from, 1:118–119

Disability-adjusted life years (DALYs), 1:387–391
components of, 1:388
cost-utility analysis and, 1:240
QALYs compared to, 1:388, 1:389
uses of, 1:387–388, 1:390–391
weights in, 1:388–390
See also Quality-adjusted life years (QALYs)

Disclosure, 1:371, 2:624–625. See also Informed consent
Discounted utility theory (DUT), 1:392–393, 1:438–439
Discounting, 1:391–394

choice sequences in, 1:393
in discounted utility theory, 1:392
early versus late rewards in, 1:391–392
financial, 2:983
gains, losses, and, 2:1174–1177
health versus money in, 1:393
hyperbolic, 1:393
neurobiology of, 1:393
sign effect in, 1:392

Discount rates, 2:1174–1175
Discrete choice, 1:394–398

conducting an experiment in, 1:395–398
conjoint analysis and, 1:395
in cost-benefit analysis, 1:205–206
in stated preference methods, 1:394

Discrete-event simulation, 1:398–401
compared to other models, 1:399
of disease processes, 1:406–407
key features of, 1:399–400
modeling in, 1:398–399
performance measures in, 1:400
queue theory in, 1:400
software for, 1:400–401
uses of, 1:398

Discriminant validity, 1:562
Discrimination, 1:401–403

measurements of, 1:402–403
types of, 1:401–402

Discrimination, social, 2:864
Disease burden, 2:731–733. See also Attributable risk
Disease management simulation modeling, 1:403–408

care cycle modeling in, 1:405–407
key components of, 1:403–405
power of, 1:407

Disparities in healthcare. See Equity
Distributed as, notation for, 2:1060
Distribution-based approaches, 1:576–577
Distributions: overview, 1:408–409
Distributive justice, 1:410–412

egalitarianism, 1:410
equal opportunity, 1:411

maximization, 1:410–411
procedural approaches, 1:411–412

Disutility, 1:412–413
DNA, 1:91, 1:94.  

See also Genetic testing
DNAR (Do Not Attempt Resuscitation)  

orders, 1:10
DNR (Do Not Resuscitate) orders, 1:10, 1:48
Doctor-centered model, 2:775
DOD (Department of Defense), 1:534
Domain specificity, of expertise, 1:493, 1:494
Dominance, 1:413–415

detection of, 1:428
extended, 1:499–502

Do Not Attempt Resuscitation (DNAR)  
orders, 1:10

Do Not Resuscitate (DNR) orders, 1:10, 1:48
DRGs (diagnostic related groups), 2:990
Dropouts, and conditional independence, 1:161
D-separation, 1:115, 1:118
DTRs. See Dynamic treatment regimens
Dual-process theory, 1:99, 1:416–417
Durable power of attorney. See Decisions faced by 

surrogates or proxies for the patient, durable power of 
attorney; Surrogate decision making

DUT. See Discounted utility theory (DUT)
Dutch complication registry, 1:150–151
Dynamical systems, 1:146–147
Dynamic analysis, 1:129–130
Dynamic decision making, 1:417–419

decision field theory and, 1:417–418
in multistage medial decisions, 1:418–419
strategies for success in, 1:419

Dynamic treatment regimens, 1:419–422
clinical settings for, 1:420–421
development of, 1:421–422
structure of, 1:420

EBM. See Evidence-based medicine
Ecological cue validity, 1:245, 1:246
Economic analyses. See Cost-benefit analysis; Cost-

comparison analysis; Cost-consequence analysis; Cost-
effectiveness analysis; Cost-identification analysis; 
Cost-minimization analysis; Cost-utility analysis

Economics, health economics, 1:423–427
consumer-directed plans and, 1:192–195
of costs, 1:424–425
of effectiveness, 1:424
study designs in, 1:425
types of analyses in, 1:424–425

Editing, segregation of prospects, 1:427–429
Education, medical. See Learning and memory in medical 

training; Teaching diagnostic clinical reasoning
EEG (electroencephalography), 1:130–131
Effect-cause relationship, 1:113
Effectiveness

efficacy versus, 1:431–433
measuring value of, 1:424
See also Cost-effectiveness analysis
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Effect modulation. See Confounding and effect modulation
Effect size, 1:429–431

alternative measures of, 1:431
in continuous outcomes, 1:429–430
in dichotomous outcomes, 1:430
frequentist approach and, 1:516–517
in health status measurement, 1:576–577

Efficacy versus effectiveness, 1:431–433
effectiveness, 1:432–433
efficacy, 1:431–432
evidence-based medicine and, 1:433

Efficiency, 1:434–435
Efficient frontier, 1:433–436

applications of, 1:435
cautions in, 1:435–436
in performance of firms, 1:433–435

Egalitarianism, 1:410
Electroencephalography (EEG), 1:130–131
Embryos, and bioethics, 1:89–90
Emergency care, patient’s right to, 2:865
Emergency Medical Treatment and Active Labor Act 

(EMTALA), 2:865
Emotion and choice, 1:436–439

framework for, 1:437–438
models for, 1:438–439
See also Fear; Regret

Emotions and bounded rationality.  
See Bounded rationality and emotions

EMTALA (Emergency Medical Treatment  
and Active Labor Act), 2:865

End-of-life decision making
automatic thinking and, 1:48
laws, courts, and, 2:662
prognosis and, 1:79, 2:881–885
See also Advance directives and end-of-life decision 

making; Decisions faced by surrogates or proxies for 
the patient, durable power of attorney

Environmental structure, 1:141
Epsilon notation, 2:1060
EQ-5D. See EuroQoL (EQ-5D)
Equal opportunity, in distributive justice, 1:411
Equity, 1:439–442

background on disparities, 1:439–440
decision-making process, 1:440–442
shared decision making, 1:439, 1:441–442

Equivalence testing, 1:442–445
applications of, 1:442–444
noninferiority, 1:444
procedure for, 1:443
sample size in, 1:443–444

Error and human factors analyses, 1:445–450
human error, 1:446–447
human factors analyses, 1:447–449

Errors
clinical reasoning errors, 1:450–455
conjunction probability error, 1:184–188
contextual errors, 1:198–202
contextual versus biomedical errors, 1:198–200
decision analysis errors, 1:262–265

diagnostic errors, 1:450–454
human error, 1:446–447
mean squared error, 2:1061
medical and healthcare delivery errors, 1:198–200,  

2:746–751
probability errors, 2:907–909
risk and, 1:554–555
standard error of measurement, 1:557, 1:582–583
standard error of the mean, 2:735, 2:1063
Type I and II. See Type I and Type II errors

Errors in clinical reasoning, 1:450–455
avoiding, 1:453–454
mental processes and, 1:451
origins of, 1:451–453
reflective reasoning and, 1:453–454
typology for, 1:450–451
See also Decision analyses, common errors made in 

conducting
Estimand, rules for establishing, 1:80–81
Estimation

bias in, 1:76–77, 1:81
conjunction probability error and, 1:187
frequency, 1:511–512
interval, 1:514–516
magnitude, 1:600–601
point, 1:513–514
in prognosis, 2:881–885

Ethical Grid, 1:88
Ethics

informed decision making and, 2:628
IRBs and, 1:309–310
in military medicine, 2:743–746
principles of, 1:72, 1:73–75
of randomized controlled trials, 2:986
spillover costs and, 1:239
of surrogate decision making, 2:1106, 2:1107–1108
See also Bioethics; Moral choice and public policy; Moral 

factors; Patient rights; Protected values
Ethics committees. See Decisions faced by hospital ethics 

committees
Ethnicity. See Cultural issues
Ethnographic methods, 1:455–457

in anthropology, 1:455–456
data collection in, 1:455
medical anthropology and, 1:456
in sociology, 1:455–456
See also Cultural issues

Etiologic fraction. See Attributable risk
EuroQoL (EQ-5D), 1:457–459

application of, 1:458
cost-utility analysis and, 1:240
decomposed measurement and, 1:368
dimensions of, 1:457
floor and ceiling effects in, 1:567
as a generic preference-based measure, 1:570, 1:571
as health outcomes assessment, 1:548
HRQOL and, 2:832
for joint health status, 2:1163, 2:1164
morbidity addressed by, 2:787
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in pharmacoeconomics, 2:876
questionnaire for, 1:457–458
scoring algorithm for, 1:457–458
SF-6D compared to, 2:1027–1028

EUT. See Expected utility theory
Evaluating and integrating research into clinical practice, 

1:459–463
approaches to, 1:460–461
systemic barriers to, 1:459, 1:462

Evaluating consequences, 1:463–467
in Allais paradox, 1:14
biases and, 1:464
model for, 1:466
principles and, 1:465–466
uncertainties and, 1:464–465
values and, 1:463–464

Event simulations. See Discrete-event simulation; Disease 
management simulation modeling

Event theories, 2:652–653
Evidence-based medicine, 1:467–470

applied decision analysis and, 1:25–26
conflicts of interest and, 1:171–174
efficacy and effectiveness studies in, 1:433
goal of, 2:858
origins of, 1:467
process of, 1:468–469
research into practice for, 1:459–461
scope of, 1:467–468
treatment bias and, 1:79

Evidence-based practice, 1:459, 1:461
Evidence propagation, 1:67–68
Evidence synthesis, 1:470–474

Bayesian, 1:59–63
diversity of evidence, 1:470–471
diversity of methods, 1:472
diversity of needs, 1:472
diversity of questions, 1:471
meta-analysis and, 1:59–60
techniques in, 1:472–474

Evolutionarily preserved emotions, 1:437, 1:439
Evolutionarily primitive cognition, 1:48–49
EVPI. See Expected value of perfect information
EVSI. See Expected value of sample information,  

net benefit of sampling
Expectation maximization algorithm, 1:67
Expected utility theory, 1:474–477

Allais paradox and, 1:13–15
axioms of, 1:51–52
Bernoulli’s work in, 1:474–476
certainty equivalent and, 1:122, 1:124
disutility and, 1:412–413
emotions, choice, and, 1:438
origins of, 1:474–477
rational decisions in, 1:361
risk attitude in, 2:996–998
risk measurement in, 1:475
See also Nonexpected utility theories; Rank-dependent 

utility theory; Subjective expected utility theory
Expected value, notation for, 2:1060

Expected value of perfect information, 1:477–481
EVSI and, 1:479–481, 1:483–486

Expected value of perfect partial (parameter) information,  
1:479–480, 1:485–486

Expected value of sample information, net benefit of 
sampling, 1:481–486

EVPI and, 1:479–481, 1:483–486
EVPPI and, 1:479–480, 1:485–486
examples in, 1:481–486
interpersonal aspects of, 1:486
theoretical formulation for, 1:484–485

Experience and evaluations, 1:487–488
Experienced versus imagined health states, 2:1166–1168
Experimental designs, 1:489–493

benefits of, 1:493
experimental effect, reduction of, 1:493
fractionated, 1:490, 1:493
full factorial, 1:490–492
one-factor-at-a-time, 1:489–492
runs needed in, 1:490–491, 1:493
for three factors, 1:489–491
for two factors, 1:489
See also Sample size and power

Expertise
automatic thinking and, 1:46–47
as a cultural issue, 1:248
types of, 1:494–495

Expert opinion, 1:493–496
application of, 1:495–496
expertise and, 1:494–495
measurement of knowledge in, 1:495
selection criteria for, 1:496

Expert systems, 1:496–499
for decision support, 1:497–498
heuristic methods in, 1:154–155
human experts, research on, 1:496–497
human-machine interaction and, 1:497
innovative uses of, 1:498
safety built into, 1:497
See also Computer-assisted decision making

Explanation, as a cultural issue, 1:250–251
Exposure, and attributable risk. See Attributable risk
Extended dominance, 1:499–502
Externalities, spillover costs as, 1:238
Extrawelfarism. See Welfare, welfarism, and extrawelfarism
Extreme groups, 1:561–562

Face validity, 1:561, 1:587. See also Health status 
measurement, face and content validity

FACIT (Functional Assessment in Chronic Illness Therapy),  
1:573, 2:832–833

FACT (Functional Assessment of Cancer Therapy),  
1:573–574, 2:832–834

Factor analysis and principal components analysis,  
1:503–507

factor analysis, 1:504–506
principal components, 1:503–504

Factorial designs, 1:21, 1:24, 1:490–492, 2:946. See also 
Experimental designs
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Factorial notation, 2:1061
Factors, in experimental designs. See Experimental designs
Factual knowledge, as a cultural issue, 1:248
Families. See Decisions faced by surrogates or proxies for 

the patient, durable power of attorney; Surrogate 
decision making

Fast and frugal heuristics, 1:598–599
FDA. See U.S. Food and Drug Administration
F distribution, notation for, 2:1061
Fear, 1:48, 1:507–508
Federal Trade Commission, U.S., 1:533–534
Feedback

cues and, 1:247
inference and, 1:170
social judgment theory and, 2:1055–1056

Fetuses, and bioethics, 1:89–90
Financial motivation

beneficial effects of, 1:173–174
as conflict of interest, 1:171–173

First principles. See Axioms
Fisher’s exact test, 1:54, 1:56, 2:686, 2:1113
Fixed costs. See Costs, fixed versus variable
Fixed versus random effects, 1:508–511
Flexible spending accounts, 1:192
Floor effect. See Health status measurement,  

floor and ceiling effects
Food and Drug Administration, U.S. See U.S.  

Food and Drug Administration
For-profit organizations, 2:631–632
Four-Fold Way, in constraint theory, 1:189
Four principles approach, 1:73–74, 1:86–89
Fractals, 1:146
Fractionated experimental designs, 1:490, 1:493
Framing

choice and, 1:604–605
context effects and, 1:195–196
gain/loss, 1:523–527, 1:605
protected values and, 2:926
risk attitudes and, 2:1001–1002

Frequency estimation, 1:511–512
Frequentist approach, 1:513–520

Bayesian methods compared to, 1:513
to interval estimation, 1:514–516
to point estimation, 1:513–514
to significance and hypothesis testing, 1:516–519
subjectivistic approach compared to, 2:1086–1087

Friction cost method, 1:229
Friedman, George J., 1:189
Friedman’s test, 1:22, 1:56
Friendship, and automatic thinking, 1:47
Frontier techniques, types of

acceptability, 1:1, 1:7
cost-effectiveness, 1:217
efficient, 1:433–436

FTC (Federal Trade Commission), 1:533–534
F test, 1:21–24, 1:55
Full factorial designs, 1:490–492
Full profile conjoint analysis, 1:180
Functional Assessment in Chronic Illness Therapy (FACIT), 

1:573, 2:832–833

Functional Assessment of Cancer Therapy (FACT),  
1:573–574, 2:832–834

Functional status, 2:988
Fuzzy-trace theory, 1:520–521

developmental theories and, 1:377–378
dual-process theory and, 1:417
frequency estimation and, 1:512

Gain/loss framing effects, 1:523–527
early work in, 1:523–524
graphical displays for, 1:524–526
human cognitive systems and, 1:605
questions about, 1:526
tabular displays for, 1:525
typical results in, 1:525
See also Value functions in domains of gains and losses

Gambles, 1:527–529
alternatives to, 1:528–529
assumptions for, 1:527–528
certainty equivalent and, 1:124
chained, 1:125–128
choice between, 2:898
holistic methods and, 1:600
limitations of, 1:528
standard. See Standard gamble
uses of, 1:527

Gambling. See Lottery
GBD (Global Burden of Disease) study, 1:387, 1:388–389
GEE (generalized estimating equation), 2:1061
Gender, as dimension of risk, 2:987
Gene expression microarrays, 1:91
Generalizability, and bias, 1:81
Generalized estimating equation (GEE), 2:1061
Generalized linear model (GLM), 2:1061
General Possibility Theorem, 1:133
General systems theory, 1:145
Genetic screening, 1:529
Genetic testing, 1:529–532

in bioinformatics, 1:92
decisions and, 1:531–532
HIPAA Privacy Rule and, 1:546
risk perception and, 1:530–531

Genome, human, 1:91, 1:92–93
Genotyping, 1:91, 1:92–93
Geographic index system (GIS), 2:1061
g-estimation, 1:119
Gibbs sampling, 2:772
GIS (geographic index system), 2:1061
Gist memory, 1:377–378, 1:520–521, 2:1160–1161
GLM (generalized linear model), 2:1061
Global Burden of Disease (GBD) study, 1:387, 1:388–389
Global differences. See International differences  

in healthcare systems
Global Markov condition, 1:65
Gompertz survival function, 1:364, 1:366
Good, promotion of. See Beneficence
Government perspective, general healthcare, 1:532–535

as driver of information, 1:533
as payer, 1:534
as protector of public health, 1:533
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as regulator, 1:533–534
as stimulator of change and improvement, 1:534

Government perspective, informed policy choice, 1:535–538
informed choice in, 1:535–538
informed consent in, 1:535–536
public health policies and, 1:538
responsibility for, 1:535

Government perspective, public health issues, 1:538–540
Graphical representations

Boolean, 1:96
for conditional independence, 1:161–162
for constraint theory, 1:189–190
for costing, 1:238
DAGs. See Directed acyclic graphs
decision trees, 1:323–361, 2:1094–1097, 2:1145–1153
forest plots, 2:1092–1093
for framing effects, 1:524–526
funnel plots, 2:763–764
influence diagrams, 1:64, 2:617–620, 2:1074, 2:1078
nomograms, 2:814–816
numeracy and, 1:606–607
ROC curve, 2:953–958
scatterplots, 2:737
state transition diagrams, 2:702
tornado diagrams, 2:1138–1140

Greek letters, in statistical notation. See Statistical notations
Gross (top-down) costing

in cost-identification analysis, 1:221–222
in cost measurement methods, 1:225
fixed versus variable costs, 1:232
semifixed versus semivariable costs, 1:238

Group decision making. See Team dynamics and  
group decision making

Guardians, 2:661. See also Decisions faced by surrogates  
or proxies for the patient, durable power of attorney; 
Surrogate decision making

HAQ (Health Assessment Questionnaire), 2:876
Harm principle, 1:89
Harms

benefits and, 1:71, 1:72
complications as, 1:149
substandard performance and, 1:150
unintentional, 1:149–150
See also Risk

Harvard Medical Practice Study (HMPS),  
1:150, 1:151, 1:450

Hazard ratio, 1:541–544
censoring and, 1:542
estimation of, 1:543
notation for, 2:1061
survival data for, 1:541–542

Hazards regression. See Cox proportional hazards 
regression

Health
defined, 1:584
multidimensional nature of, 1:586–587
physical, 1:584–585
psychological, 1:585
social, 1:585–586

Health-adjusted life years. See Quality-adjusted  
life years (QALYs)

Health Assessment Questionnaire (HAQ), 2:876
Healthcare power of attorney. See Decisions faced by 

surrogates or proxies for the patient, durable  
power of attorney

Health economics. See Economics, health economics
Health facts, as a cultural issue, 1:250
Health Insurance Portability and Accountability Act Privacy 

Rule, 1:544–547
de-identification in, 1:546
genetic information and, 1:546
identifiers in, 1:544–545
need for, 1:545–546
patient’s right to, 2:864–865

Health maintenance organizations (HMOs), 1:313, 2:752
Health numeracy, 2:825–826. See also Numeracy; Risk 

illiteracy
Health outcomes assessment, 1:547–550

applications of, 1:547–550
components of, 1:547
decision making informed by, 1:550
See also Outcomes research; Risk adjustment of outcomes

Health plans, consumer-directed, 1:192–195
Health production function, 1:550–553

application of, 1:551–552
hypotheses in, 1:551
influence of, 1:552

Health-related quality of life (HRQOL)
in cancer populations, 2:831–836
in health outcomes assessment, 1:547–550
in health production function, 1:552
in health status measurement, 1:581–582
Quality of Well-Being scale and, 2:832, 2:937, 2:939
utility measurement of, 2:795–799
See also Quality-adjusted life years (QALYs)

Health risk management, 1:553–556
errors and, 1:554–555
modeling and, 1:554
patient satisfaction in, 1:556
shared decision making in, 1:555–556

Health savings accounts, 1:192, 1:194–195
Health status classification system (HSCS), 2:795–796
Health status measurement, assessing meaningful change, 

1:556–560
responsiveness in, 1:556, 1:557–559
sensitivity in, 1:556, 1:557

Health status measurement, construct validity, 1:560–563
approaches to, 1:561–562
challenges in, 1:560–561
internal structure of, 1:562–563

Health status measurement, face and content validity, 
1:563–566

aspects of, 1:564
methods in, 1:564–566
significance in, 1:564

Health status measurement, floor and ceiling effects,  
1:566–569

detecting, 1:567
implications of, 1:568
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item response theory and, 1:568–569
minimizing, 1:567

Health status measurement, generic versus condition-specific 
measures, 1:569–574

choosing a measure, 1:574
condition-specific, 1:573–574
generic, 1:570–573
principle elements of, 1:570

Health status measurement, holistic. See Holistic 
measurement

Health status measurement, minimal clinically significant 
differences, and anchor versus distribution methods, 
1:575–578

anchor-based approaches to, 1:575–576
best practices in, 1:577–578
distribution-based approaches to, 1:576–577

Health status measurement, reliability and internal 
consistency, 1:578–580

repeated administrations, 1:578–579
single administration, 1:579–580

Health status measurement, responsiveness and sensitivity to 
change, 1:581–584

interpretation of, 1:582–583
methods in, 1:581–582

Health status measurement standards, 1:584–588
functioning approach, 1:585–586
medical approach, 1:584–585
multidimensional nature of health, 1:586–587
psychological approach, 1:585

Health technology assessment (HTA). See Technology 
assessments

Health Utilities Index Mark 2 and 3 (HUI2, HUI3),  
1:588–590

attributes in, 1:588–589
development of, 1:588–589
as a generic preference-based measure, 1:570, 1:571–572, 

1:588
HRQOL and, 2:832
for joint health status, 2:1162
as a MAUT-based measure, 2:795–796, 2:798
in pharmacoeconomics, 2:876
SF-6D compared to, 2:1027
utility theory and, 1:589–590

Healthy-worker effects, 1:83
Healthy years equivalents, 1:590–593

concept of, 1:591–592
measurement of, 1:592–593
QALYs compared to, 1:590, 1:591–592

HECs. See Decisions faced by hospital ethics committees
Hedonic prediction and relativism, 1:593–596

prediction, 1:593–594
relativism, 1:594–595
shared decision making and, 1:595–596

Hedonic welfare, 2:1188–1189
Heuristics, 1:596–599

automatic thinking and, 1:46
bias and, 1:98, 1:99, 1:134, 2:853
bounded rationality and, 1:98–99
cognitive processes and, 1:142

as cognitive shortcuts, 1:597–598
computational limitations and, 1:154–155
as error-prone strategies, 1:596–597
judgment modes and, 2:652
in medical errors, 1:452
in pain management, 2:852–854
probability errors and, 2:907

Heuristics, types of
affect, 1:99–100, 1:276–278
anchoring and adjustment, 2:653–654
availability, 1:98–99, 1:512, 1:597, 2:652–653,  

2:853, 2:907
fast and frugal, 1:598–599
priority, 1:14–15
representativeness, 1:596, 2:653, 2:852, 2:908

Heuristics-and-biases approach, 1:98, 1:99, 1:134
HHS (Department of Health and Human Services), 1:544
Hierarchy of needs, 2:792–793
HIPAA. See Health Insurance Portability and Accountability 

Act Privacy Rule
Hippocratic Oath, 1:72, 2:784
HMOs (health maintenance organizations), 1:313, 2:752
HMPS (Harvard Medical Practice Study), 1:150, 1:151, 

1:450
HOA. See Health outcomes assessment
Holistic measurement, 1:599–601
Hospital ethics committees. See Decisions  

faced by hospital ethics committees
HR. See Hazard ratio
HRQL. See Health related quality of life
HRQOL. See Health related quality of life
HSCS (health status classification system), 2:795–796
HTA (health technology assessment). See Technology 

assessments
Hudson, Baby Sun, 1:307
HUI2/3. See Health Utilities Index Mark 2 and 3 (HUI2, 

HUI3)
Human capital approach, 1:602–603
Human cognitive systems, 1:603–607

cognition in, 1:603–604
framing and choice in, 1:604–605
language learning in, 1:606
literacy and numeracy in, 1:606–607
preferences in, 1:604
problem solving in, 1:604, 1:605
See also Cognitive psychology and processes;  

Mental accounting
Human factors analysis. See Error and  

human factors analyses
Human genome, 1:91, 1:92–93
Human Genome Project, 1:93
Human subjects research

decisional capacity in, 1:279, 1:295–296, 1:308
IRB role in, 1:308–312
patient rights and, 2:863

HYEs. See Healthy years equivalents
Hypothesis testing, 1:607–611

confidence intervals in, 1:163–166
evidentiary standards for, 1:608–609
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frequentist approach to, 1:516–519
notation for, 2:1059, 2:1062
proof by contradiction in, 1:607–608
in randomized clinical trials, 2:941–942
technical aspects of, 1:609–611
See also Basic common statistical tests;  

Statistical testing: overview
Hypothetico-deductive diagnosis, 1:381, 1:385, 2:1117

ICC. See Intraclass correlation coefficient
ICD-9-CM, 2:989–990
ICE (incremental cost-effectiveness) plane, 1:216–217
ICER. See Incremental cost-effectiveness ratio
IIT. See Information integration theory
Imagined versus experienced health states, 2:1166–1168
Improvement of quality, 1:188–189
Incidence, measures of, 2:729–730, 2:733, 2:787
Incompetent patients, 2:660, 2:1105–1106. See also  

Decision-making competence, aging and mental status
Inconsistency

chained gamble and, 1:125–127
decision field theory and, 1:418

Inconsistency degrees of freedom, 1:60, 1:62–63
Incremental cost-effectiveness (ICE) plane, 1:216–217
Incremental cost-effectiveness ratio (ICER)

acceptability curves and, 1:1–3, 1:6
in cost-effectiveness analysis, 1:214–219
in deterministic analysis, 1:373, 1:374
estimation of, 2:695
extended dominance and, 1:499–501
league tables for, 2:663–665
in net benefit regression, 2:805–807
in pharmacoeconomics, 2:877, 2:879–880
reference case and, 2:966–967

Incremental costs. See Marginal or incremental analysis, 
cost-effectiveness ratio

Indemnity products. See Decisions faced by nongovernment 
payers of healthcare: managed care

Independence, conditional. See Conditional independence
Independence axiom, 1:13–14, 1:15
Index test, 2:613–616

accuracy, overall, 2:614, 2:615
accuracy, reciprocal measures of, 2:615–616
number-needed measures, 2:615–617
predictive summary index, 2:613–615, 2:617
Youden index, 2:613–617

Indirect comparisons. See Mixed and indirect comparisons
Indirect costs. See Costs,  

direct versus indirect
Indirect linking. See Chained gamble
Individual autonomy. See Autonomy, respect for
Individualistic cultures, 1:249
Individual sovereignty, 2:1189. See also Autonomy, respect for
Inference, 1:167–170. See also Causal inference and 

diagrams; Causal inference in medical decision making
Inferior alternatives. See Attraction effect
Influence diagrams, 2:617–621

algorithms for solving, 2:620
Bayesian networks and, 1:64, 2:1078

elements of, 2:618–619
properties and levels of, 2:619–620
subtrees and, 2:1094

Information
affect as, 1:277
confirmation bias and, 1:167–168, 1:170
data converted into, 1:188
as element of decision models, 1:332
improving acquisition of, 1:170
patient’s right to, 2:864
for treatment choices, 2:1144
value of, 2:1080–1081
See also Expected value of perfect information; Expected 

value of sample information, net benefit of sampling
Information hierarchy, 1:468–469
Information integration theory, 2:621–622
Informed consent, 2:622–626

deliberation and, 1:372
in developmental theories, 1:378–379
disclosure and, 2:624–625
informed choice and, 1:535–536
IRBs and, 1:310, 1:311
laws, courts, and, 2:659–660
memory and, 2:1160
in military medicine, 2:744
origins of, 2:622–623
origins of, in judge-made law, 2:625–626
as a positive patient right, 2:863
standards of, 2:623–624

Informed decision making, 2:626–629
conflicts of interest and, 2:628–629
ethical issues in, 2:628
information role and flow in, 2:627–628
model for, 2:774–775
principles for, 2:627

Innovation, diffusion of, 1:459
In re Quinlan, 1:10–11, 1:304, 2:784, 2:863, 2:1107
Institute of Medicine (IOM), 1:198–200
Institutional review boards (IRBs). See Decisions faced by 

institutional review boards
Instructional advance directives, 1:9, 1:11, 1:12
Insurance, 1:193, 2:632. See also Consumer-directed health 

plans; Medicaid; Medicare; Uninsurance
Insurance design, 2:1171–1173
Integral, notation for, 2:1061
Intention to treat (ITT), 2:1061
Intercept, notation for, 2:1061
Internal consistency, 1:587. See also Health status 

measurement, reliability and internal consistency
International differences in healthcare systems, 2:629–634

in allocation, 2:630
in decision making, 2:633
in delivery, 2:630, 2:631–632
in financing, 2:630, 2:632–633
in life expectancy, 2:672
in need for care, 2:630
in outcomes, 2:633
in shared decision making, 2:1040
in surrogate decision making, 2:1107
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in technology assessment, 2:1125–1126
in valuation surveys, 2:1029
in values, 2:633
See also Cultural issues

Interpretive decision-making model, 2:776
Interquartile range (IQR), 2:735, 2:1061
Interrater reliability, 2:636–637, 2:931
Intraclass correlation coefficient, 2:634–638

in clustering, 2:635–636
in dyad studies, 2:637
notation for, 2:1061
in reliability analysis, 2:636–637

Intuition
cognitive processes and, 1:141–142
deliberation and, 1:34, 1:98, 1:99
dual-process theory and, 1:416–417
essential for decision making, 1:98
in frequency estimation, 1:512
nature of, 2:638

Intuition versus analysis, 2:638–640. See also Bounded 
rationality and emotions; Deliberation and choice 
processes

Investments. See Return on investment
IOM (Institute of Medicine), 1:198–200
IQR (interquartile range), 2:735, 2:1061
IRBs. See Decisions faced by institutional review boards
Irrationality, 1:172–173
Irrational persistence in belief, 2:640–644

motivational processes in, 2:643
nonmotivational bases for, 2:641–643
psychological processes in, 2:641
scientific disagreement and, 2:643

Item response theory, 1:568–569
ITT (intention to treat), 2:1061

Joint health status. See Utilities for joint health states
Journals, highly cited, 1:xxviii–xxx
Judgment, 2:645–649

accuracy of, assessed, 2:648–649
applied decision analysis and, 1:25–26
associative thinking and, 1:34–35
decision compared to, 2:645
deterministic versus likelihood, 2:645–646
expert opinion based on, 1:494
expressed versus true, 2:646–647
formats of, 2:645–646
in lens model, 2:669
meanings of, 2:645, 2:646
point versus interval, 2:646
sources of, 2:647–648
substituted, 1:283–284, 1:320, 2:662, 2:1106
in support theory, 2:1099–1101
verbal versus numerical, 2:646
See also Social judgment theory

Judgment analysis, 2:1055
Judgment modes, 2:649–655

deliberative versus nondeliberative, 2:654–655
importance of, 2:649
individual versus collective, 2:650–655

judgment mode tree for, 2:649–655
taxonomy of, 2:650–655

Judgment reversals, 2:1176. See also Preference reversals
Justice, principle of, 1:73–74, 1:86, 1:88.  

See also Distributive justice

Kahneman, D., 2:999–1001
Kaplan-Meier analysis, 2:1110. See also Survival analysis
Kappa coefficient, notation for, 2:1061
Karnofsky Performance Status (KPS), 2:882, 2:883
Kendall coefficient of concordance, 1:56
Kendall tau, 1:56
Knowledge, superior. See Expert opinion
Knowledge encapsulation theory, 2:666–667
Kolmogorov-Smirnov two-sample test, 1:55
KPS (Karnofsky Performance Status), 2:882, 2:883
Kruskal-Wallis test, 1:22, 1:55

Labeling (sociocognitive process), 2:1074.  
See also Stigma susceptibility

Labor costs
fixed versus variable costs and, 1:231, 1:232
microcosting of, 1:223
time-input valuation and, 1:228–229, 1:230

Language, as a cultural issue, 1:250
Law and court decision making, 2:659–663

Canterbury v. Spence, 2:623–624, 2:784, 2:863
competent patients, 2:659–660
Cruzan v. Director, Missouri Department of Health,  

1:11, 1:320, 2:784
deciding for others, 2:660–663
In re Quinlan, 1:10–11, 1:304, 2:784, 2:863, 2:1107
incompetent patients, 2:660
Natanson v. Kline, 2:623
Re F, 2:1107
Reibl v. Hughes, 2:625
Roe v. Wade, 2:863
Salgo v. Leland Stanford Junior Board of Trustees, 2:622–

623
Schloendorff v. Society of New York Hospital, 2:659
Slater v. Baker and Stapleton, 2:623
Stamford Hospital v. Vega, 2:784
surrogate decision making, 2:1106–1107

Leadership styles, 2:793–794
League tables for incremental cost-effectiveness ratios, 

2:663–666
history of, 2:663–665
limitations of, 2:665
monetary value and, 2:778
rationing and, 2:663
reference case and, 2:967
standardization in, 2:665

Learning and memory in medical training, 2:666–669
knowledge, biomedical, 2:666, 2:667, 2:668
knowledge, encapsulated, 2:666–668
research findings in, 2:666
script development in, 2:667–668
transitory states in, 2:668

Learning environments, 1:35–36
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Least significant difference (LSD), 2:1061
Least squares. See Ordinary least squares regression;  

Weighted least squares
Lens model, 2:669–671

Brunswik’s theory for, 2:670–671
description of, 1:246, 2:669–670
mathematical expression of, 2:671

Levene’s test, 1:24, 1:55
Liberal utilitarianism, 1:89
Life expectancy, 2:671–676

differences in, 2:672
improvements in, 2:672
morbidity and, 2:787–788
predictions of, tools for, 2:673–675
predictions of, uses for, 2:673
See also Declining exponential approximation of life 

expectancy
Life-sustaining treatments, 1:10–11. See also Physician 

Orders for Life-Sustaining Treatment (POLST)
Life tables, 2:674
Likelihood function, 2:722. See also Maximum likelihood 

estimation methods
Likelihood ratio, 1:71, 2:676–678
Linda problem, 1:185, 1:186
Linear regression, 2:1185–1187. See also Regression; 

Regression to the mean
Linear techniques, 1:128–129
Literacy, 2:825, 2:826
Literature review. See Meta-analysis and literature review
Living wills, 1:9, 1:10, 2:661. See also Advance directives 

and end-of-life decision making
Local Markov condition, 1:65
Logical algebra. See Boolean algebra and nodes
Logic-based systems, 1:155
Logic regression, 2:678–681

description of, 2:678–679
logistic regression compared to, 2:678
modeling in, 2:679–680
other approaches compared to, 2:678, 2:680
software for, 2:681

Logistic regression, 2:681–685
case modeling by, 2:684
exact, 2:684
logic regression compared to, 2:678
model fitting in, 2:683
model for, 2:681–682
odds ratio and, 2:829
parameter interpretation in, 2:682–683
for propensity scores, 2:916
See also Support vector machines

Log-rank test, 2:685–687
Loss aversion, 2:998, 2:1000–1001, 2:1176. See also Risk 

aversion
Lottery, 2:688–690

auctions and, 2:688–689
behavior in, 2:688
medical decision making and, 2:689–690
utility assessment and, 2:1166–1167

Love, and four principles approach, 1:88

LSD (least significant difference), 2:1061
Lurking variables, 1:176

Magnitude estimation, 1:600–601
Mahalanobis statistic, 2:801
Managed care organizations. See Decisions faced by 

nongovernment payers of healthcare: managed care
Management algorithms, 1:135–137
Managing variability and uncertainty, 2:691–694

definitions for, 2:691
knowledge gaps in, 2:693–694
physicians’ reactions in, 2:691–692
strategies for, 2:692–693
See also Uncertainty in medical decisions

Mann-Whitney U test, 1:55, 2:1068–1069
MANOVA. See Multivariate analysis of variance 

(MANOVA)
MAR (missing at random), 2:1061
Marginal or incremental analysis, cost-effectiveness ratio, 

2:694–696. See also Incremental cost-effectiveness  
ratio (ICER)

Marginal probability, and Bayesian networks, 1:64
Markov chain Monte Carlo (MCMC) methods, 1:59, 1:61

in logic regression, 2:678
in stochastic medical informatics, 2:1078–1079

Markov chains, 2:703, 2:717–721
Markov cycle trees, 2:706
Markov models, 2:696–700

absorbing models, 2:698–700
discrete-event simulation compared to, 1:399
disease management simulations and, 1:406
Markov process, 2:696–697
Markov property, 2:697, 2:702–703
regular models, 2:698
stochastic medical informatics and, 2:1078–1079
transitional probabilities in, 2:697

Markov models, applications to medical  
decision making, 2:700–708

as alternative to simple tree models, 2:700–701
assumptions in, 2:702–703
evaluation of, 2:703–707
history of, 2:701

Markov models, cycles, 2:702, 2:708–715
cycle length, 2:714
discrete-event simulation compared to, 1:399
dual increments, 2:714
half-cycle correction, 2:710–711
incremental utility, 2:710
rates and probabilities, 2:708–710
tail utility, 2:711–714
tolls, 2:714
tunnel states, 2:714

Markov processes, 2:715–721
characteristics of, 2:701–702
example of, 2:715–717
Markov chain models, 2:717–721
Markov chain models, limitations of, 2:719–720
semi-Markov models, 2:720–721
steady-state analysis, 2:720



1216 Index

in stochastic medical informatics, 2:1079
tolls, 2:719

Markov property, 2:697, 2:702–703
Maslow, Abraham, 2:792–793
Matching, biased, 1:85
Matrix transpose, notation for, 2:1063
Mauchly’s test, 1:24
MAUT. See Multi-attribute utility theory
Maximization, in distributive justice, 1:410–411
Maximum likelihood chi-square, 1:53
Maximum likelihood estimation methods, 2:722–725

Bayesian methods and, 1:60, 1:67
estimation, 2:722–723
for hypothesis testing, 2:724–725
likelihood function, 2:722
notation for, 2:1061
properties, 2:723–724

MCMC. See Markov chain Monte Carlo (MCMC) methods
McNemar chi-square, 1:54, 1:56, 2:1113, 2:1116
MCOs. See Decisions faced by nongovernment payers of 

healthcare: managed care
MCSDs. See Health status measurement, minimal clinically 

significant differences, and anchor versus distribution 
methods

Mean, 2:726
Mean squared error (MSE), 2:1061
Measures of central tendency, 2:725–728

mean, 2:726
median, 2:726–727
mode, 2:727

Measures of frequency and summary, 2:728–733
incidence, 2:729–730, 2:733
patterns of occurrence, 2:731–733
prevalence, 2:731–733

Measures of variability, 2:733–737
coefficient of variation, 2:735
interquartile range, 2:735, 2:737
range, 2:735
standard deviation, 2:734–735
standard error, 2:735
variance, 2:734

Median, 2:726–727
Median-unbiased estimator, 1:81
Mediating variables, 1:175, 1:177
Medicaid, 2:737–742

advance directives and, 1:11
eligibility for, 2:738–739
enrollment in, 2:741
expenditures for, 2:740–741
health surveillance in, 1:548
Oregon initiative for, 2:741–742
outcomes research on, 2:844
overview of, 2:737–738
payer role of, 1:534
SCHIP and, 2:738, 2:740
services covered by, 2:739–740
See also U.S. Centers for Medicare & Medicaid Services

Medical decision making
citation analysis of, 1:xxvii–xxxi
maturity of the field, 1:xxxi

nature of the field, 1:xxvii
See also Decision making

Medical decisions and ethics in the military context, 2:742–746
goals in, 2:743
treatment decisions in, 2:743–746

Medical errors and errors in healthcare delivery, 2:746–751
classification of, 1:198–200
etiology of, 2:748–749
incidence of, 2:747
types of, 2:747–748

Medical informatics, 1:90–91, 1:94. See also Bioinformatics
Medical Outcomes Study. See SF-36 and  

SF-12 health surveys
Medical savings accounts, 1:192
Medicare, 2:751–756

advance directives and, 1:11
costing of, 1:221–222
educating beneficiaries about, 2:754
health surveillance in, 1:548
history of, 2:751–752
hospice benefit from, 1:285
models for, 2:1172
outcomes research on, 2:844
Parts A to D of, 2:752, 2:753
payer role of, 1:534
prescription drug coverage in, 2:753–754
research on, 2:754–755
spillover costs in, 1:239
types of plans in, 2:752–753
See also U.S. Centers for Medicare & Medicaid Services

Medicare Advantage program, 2:751–752, 2:753–754
Medicare Drug Improvement and Medicare Modernization 

Act, 2:751–752, 2:753
Medigap coverage, 2:753
Memory

decisional capacity and, 1:281
fuzzy-trace theory of, 1:377–378, 1:520–521
gist and verbatim, 1:377–378, 1:520–521, 2:1160–1161
unreliability of, 2:1160–1161

Memory reconstruction, 2:756–759
Mental accounting, 2:759–762

core accounts in, 2:759–760
extensions and issues in, 2:761–762
processes in, 2:760–761
psychological functions in, 2:761
specific accounts in, 2:760
See also Cognitive psychology and processes;  

Human cognitive systems
Mental Capacity Act of 2005, 2:1107
Mental status. See Decision-making competence,  

aging and mental status
Meta-analysis

evidence synthesis and, 1:59–60, 1:61
mixed and indirect comparisons for, 2:769–773
network, 2:771
weighted least squares and, 2:1187

Meta-analysis and literature review, 2:762–767
aims of, 2:762
critical issues in, 2:762–766
of rare events, 2:766–767
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Metadecisions, 1:287
Method of moments (MOM), 2:1061
Microcosting (bottom-up costing)

in cost-identification analysis, 1:222–223
in cost measurement methods, 1:225
fixed versus variable costs, 1:232
semifixed versus semivariable costs, 1:238

MIDs (minimal important differences), 1:581–583
Military context. See Medical decisions and  

ethics in the military context
Mill, John Stuart, 1:89
Minerva-DM, 2:767–769
Minimal clinically significant differences. See Health status 

measurement, minimal clinically significant differences, 
and anchor versus distribution methods

Minimal important differences (MIDs), 1:581–583
Minorities

disparities in care for, 1:439, 1:440–441
ethnographic studies of, 1:456
See also Cultural issues

Misclassification, and bias, 1:84
Missing at random (MAR), 2:1061
Missing data, and bias, 1:83
Missing-data problem, causal inference as, 1:112
Mixed and indirect comparisons, 2:769–773

indirect, 2:769–771
mixed, 2:771–773

Mixed costs, 1:237
Mixed Treatment Comparison structures, 1:62–63
MLE. See Maximum likelihood estimation methods
MLR (multiple linear regression), 2:1187. See also 

Regression; Regression to the mean
Modal logics, 1:155
Mode, 2:727
Modeling, simulation. See Disease management simulation 

modeling
Models of physician–patient relationship, 2:774–777

deliberative decision-making, 2:776
doctor-centered, 2:775
informed decision-making, 2:774–775
interpretive decision-making, 2:776
paternalistic decision-making, 2:775
patient-centered, 2:774
shared decision-making, 2:775–776

Moderating variables, 1:175, 1:177, 1:178
Modulating variables, 1:175
MOM (method of moments), 2:1061
Monetary cost, 1:233
Monetary value, 2:777–780

healthcare cost growth, 2:779–780
thresholds, generic, 2:777–779
thresholds, theoretical, 2:777
See also Cost-benefit analysis; Cost-effectiveness analysis

Monte Carlo methods
Bayesian analysis and, 1:59, 1:61
disease management simulations and, 1:406
for Markov model evaluation, 2:706–707
in stochastic medical informatics, 2:1078–1080
See also Decision trees, evaluation with Monte Carlo; 

Markov chain Monte Carlo (MCMC) methods

Mood effects, 2:780–782
Moral choice and public policy, 2:782–783. See also Ethics
Moral factors, 2:783–786

autonomy and, 2:784–785
bioethics and, 1:85, 1:86
in clinical research, 2:785
in evaluating consequences, 1:465–466
nonmedical considerations in, 2:785–786
protected values and, 2:924–926
scope of, 2:783–784
See also Ethics

Moral hazard, 1:193
Moral rules, 1:89
Morbidity, 2:786–788
Mortality, 2:788–792

data mapping of, 2:791
indicators of, 2:789
measures of, 1:387
modeling of, 1:364–367
standardization, direct, 2:789–790, 2:791
standardization, indirect, 2:790–791
See also Declining exponential approximation of life 

expectancy; Disability-adjusted life years (DALYs)
MOS SF-12/36. See SF-36 and SF-12 health surveys
Motivation, 2:792–795

associative thinking and, 1:35
automatic thinking and, 1:47–48
leadership styles and, 2:793–794
Maslow’s theory on, 2:792–793

MSE (mean squared error), 2:1061
Multi-attribute utility theory, 2:795–799

advantages of, 2:798–799
alternative to, 2:798
classification and, 2:795–796
components of, 2:795
in decomposed measurement, 1:367, 1:368
disadvantages of, 2:799
HRQL and, 2:795–799
in HUI2/3, 1:589
scaling in, 2:798
utilities in, 2:796–797
weights in, 2:797–798

Multiparameter evidence synthesis, 1:61
Multiple linear regression (MLR), 2:1187.  

See also Regression; Regression to the mean
Multivariable regression, 1:114
Multivariate analysis of variance (MANOVA), 2:799–804

advantages of, 2:804
assumptions in, 2:803–804
contrasts specified for, 2:802–803
dimensionality in, 2:801–802
effect size for, 2:800–801
hypothesis tested by, 2:800
latent constructs in, 2:802
notation for, 2:1061
purpose of, 2:800
software for, 2:800, 2:802, 2:803
See also Variance and covariance

Mu notation, 2:1062
MYCIN software, 1:154, 1:157
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Natanson v. Kline, 2:623
National Cancer Institute, U.S., 1:548, 1:549, 2:831
National Center for Education Statistics, U.S., 2:825
National Health Service, U.K. See U.K. National Health Service
National Institute for Clinical Excellence, U.K., 1:28, 2:778,  

2:967–969. See also U.K. National Health Service
National Institutes of Health, U.S., 1:533, 2:833
NCES (National Center for Education Statistics), 2:825
NCI (National Cancer Institute), 1:548, 1:549, 2:831
NDI (Normalized Discrimination Index), 1:402, 1:403
Near misses, 2:746–747. See also Toss-ups and close calls
Needs, hierarchy of, 2:792–793
Negative diagnostic test results, 1:383–384
Nested case-control studies, 1:110
Net benefit, 1:61, 1:271–272. See also Expected value of 

sample information, net benefit of sampling; Net 
monetary benefit

Net benefit regression, 2:805–811
example of, 2:806–810
theory for, 2:805–806

Netherlands, complication registry in, 1:150–151
Net monetary benefit, 2:811–814
Neural networks. See Artificial neural networks
Neuroeconomics, 1:372
NHS. See U.K. National Health Service
NICE (National Institute for Clinical Excellence), 1:28, 

2:778, 2:967–969. See also U.K. National Health 
Service

NIH (National Institutes of Health), 1:533, 2:833
NMB. See Net monetary benefit
NNT. See Number needed to treat
Nodes

Boolean, 1:95–96
in decision trees, 1:323, 1:324
in influence diagrams, 2:618, 2:619–620

Nomograms, 2:814–816
accuracy of, 2:816–817
for outcome probabilities, 2:814–815
validation of, 2:815

Nonasymmetrically dominated decoys, 1:38
Nondifferential distortion, 1:84
Nondiscrimination, right to, 2:864
Nonexpected utility theories, 2:816–821

expected utility and, 2:817
framing in, 2:819
probability transformation in, 2:817
prospect theory and, 2:817, 2:818, 2:819, 2:820
reference level in, 2:817–818
weights in, 2:817–818
See also Expected utility theory

Noninferiority testing. See Equivalence testing
Nonlinear dynamics, 1:144–145. See also Complexity
Nonlinear systems theory. See Chaos theory
Nonmaleficence, principle of, 1:71, 1:72, 1:73–74, 1:86, 1:88
Nonparametric tests, 1:55–56, 2:1067–1069
Nonpolynomial (NP) complete problems, 1:154
Normal distribution

confidence intervals and, 1:164
decision trees and, 1:346

hazard ratio and, 1:452, 1:453
importance of, 1:408–409

Normalized Discrimination Index (NDI), 1:402, 1:403
Notation, statistical. See Statistical notations
Not-for-profit organizations, 2:631–632
Not significant, notation for, 2:1061
Nottingham Health Profile, 1:572, 2:876
NP (nonpolynomial) complete problems, 1:154
Null hypothesis, 1:53, 1:608–609, 2:1063–1064

confidence intervals and, 1:163–166
frequentist approach and, 1:516–518
notation for, 2:1062
in randomized clinical trials, 2:941

Number-needed measures, 2:615–617
Number needed to treat, 2:821–825

calculations for, 2:821–822
limitations of, 2:823–824
risk difference and, 2:828
usefulness of, 2:822–823

Numeracy, 1:277–278, 2:825–826, 2:1002. See also Risk 
illiteracy

Nuremberg Code, 2:784, 2:863

Observational synchronization, lack of, 1:85
Ockham’s razor, 1:386
Odds and odds ratio, risk ratio, 2:827–831

attributable risk and, 1:43–44
bias and, 1:81
case control and, 1:109, 1:110–111
comparisons of, 2:828–829
contingency tables for, 2:1113, 2:1114
effect size and, 1:430
examples of, 2:829–830
interpretations of, 2:831
intraclass correlation coefficient and, 2:636
usefulness of, 2:829

Odds-likelihood-ratio form of Bayes’s formula, 1:71
Office of Personnel Management, U.S., 1:534
Office of Technology Assessment, U.S., 2:1125
OLS regression. See Ordinary least squares regression
Oncology health-related quality of life assessment, 2:831–837

measures, commonly used, 2:832–833
measures, emerging, 2:833
measures, selection of, 2:833–836
measures, types of, 2:831–832
outlook for, 2:836

One-sample nonparametric test, 1:55
One-sample repeated measures design, 1:21
One-way ANOVA, 1:55
One-way independent groups design, 1:21
OOP (out-of-pocket) costs, 1:235–236
OPM (Office of Personnel Management), 1:534
Opportunity costs. See Costs, opportunity
Optimal experimental design, 1:168
OR. See Odds and odds ratio, risk ratio
Ordinary least squares regression, 2:837–843

advantages of, 2:841
example of, 2:838–840
limitations of, 2:841–842
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net benefit regression and, 2:809–810
notation for, 2:1062
See also Weighted least squares

Ottawa Decision Support Framework, 1:257–262
Ottawa knee and ankle rules, 1:300, 1:301
Outcomes research, 2:843–845

methods in, 2:844–845
origins of, 2:843–844
in pharmacoeconomics, 2:876–877
uses of, 2:843, 2:845
See also Health outcomes assessment;  

Risk adjustment of outcomes
Out-of-pocket (OOP) costs, 1:235–236
Overconfidence

in calibration, 1:106
in predictions, 1:78

Overinclusive thinking, 2:845–849
choice, rejection, and, 2:846
thinking episode in, 2:846
underinclusive thinking and, 2:846–849

Pain, 2:851–854
heuristics and, 2:852–854
multidimensional nature of, 2:851–852

Parameter uncertainty, 1:408
Parametric g-formula, 1:119
Parametric survival analysis, 2:854–858

advantages of, 2:857–858
alternative philosophies in, 2:855
alternatives to, 2:855
limitations of, 2:858
models for, 2:856
nature of, 2:855–856
risk factors in, 2:857

Pareto efficiency, 1:434
PARQ elements of disclosure, 2:624
Parsimony, principle of, 1:386
Participation, as a cultural issue, 1:249–250
Part-worths, in conjoint analysis, 1:181–182
Patent and Trademark Office, U.S., 1:533, 1:534
Paternalistic decision-making model, 2:775
Path blocking, 1:65
Patient-centered model, 2:774
Patient decision aids, 2:858–862

assessment of, 2:860
barriers to, 2:862
benefits of, 2:861–862
decision quality and, 2:860
key elements of, 2:859–860
for managing uncertainty, 2:693, 2:694
in primary care, 1:318–319
in shared decision making,  

2:1036, 2:1039, 2:1040
See also Decision aids

Patient involvement in decision making, 2:1036–1040, 
2:1143–1145. See also Informed consent; Informed 
decision making; Patient decision aids

Patient–physician relationship. See Models of  
physician–patient relationship

Patient-reported outcomes (PROs)
in health outcomes assessment, 1:547–550
MCSDs and, 1:575–577
See also EuroQoL (EQ-5D); Health Utilities Index Mark 2 

and 3 (HUI2, HUI3); SF-6D; SF-36 and SF-12 health 
surveys; Sickness Impact Profile

Patient-Reported Outcomes Measurement Information 
System (PROMIS), 2:833

Patient rights, 2:862–866
development of, 2:862–863
negative and positive, 2:863
specific, 2:863–865
standards for, 2:865

Patient satisfaction, 2:866–868
Patient’s Bill of Rights, 2:865
Patient Self-Determination Act (1990), 1:11
Pattern recognition, 2:868–870

algorithms for, 2:868–869
in diagnosis, 1:380, 1:385, 2:868, 2:1117
and diagnostic errors, 1:452, 1:454

pdf (probability density function), 2:1062
Pearson chi-square, 1:53, 2:1065. See also Chi-square test
Pearson correlation coefficient, notation for, 2:1060. See 

also Correlation
Permutations, notation for, 2:1062
Personality, choices, 2:870–872

behavior and, 2:870–871
Big Five traits in, 2:870, 2:871
participation and, 2:871
treatment and, 2:871

Person trade-off, 2:872–875
holistic measurement and, 1:601
method of, 2:872–873
rationale for, 2:873

PFFS (private fee-for-service) plans, 2:752
Phantom decoy, 1:38–39
Pharmacoeconomics, 2:875–880

applications of, 2:878–879
guidelines in, 2:878
history of, 2:875–876
research in, 2:876–878
research in, examples of, 2:879–880

Pharmacogenomics, 1:92
Phase III trials. See Randomized clinical trials
Phase spaces, 1:147
Phi coefficient, 1:56, 2:1062
Physician-assisted suicide, 1:10
Physician estimates of  

prognosis, 2:881–885
end of life and, 2:881–885
implications of, 2:884–885
improvements in, 2:882
inaccuracy in, 2:881–882

Physician Orders for Life-Sustaining Treatment  
(POLST), 1:10, 1:13

Physician–patient relationship. See Models of  
physician–patient relationship

Piggyback evaluation, 1:225
Pi notation, 2:1062
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Poisson and negative binomial regression, 2:885–889
example of, 2:888–889
negative binomial regression, 2:887–888
Poisson regression, 2:886–887

Poisson regression. See Poisson and negative binomial 
regression

POLST (Physician Orders for Life-Sustaining Treatment), 
1:10, 1:13

Population attributable fraction. See Attributable risk
Population mean, notation for, 2:1062
Population proportion, notation for, 2:1062
Population size, notation for, 2:1062
Population standard deviation, notation for, 2:1062
Positive diagnostic test results, 1:383–384
Positivity criterion and cutoff values, 2:889–893

criteria selection for, 2:890–893
example of, 2:890–891

Postdecision processes, 1:141
Posterior distribution, in Bayesian analysis, 1:57–59.  

See also Bayes’s theorem
Postulates. See Axioms
Power of a study. See Sample size and power
Power of attorney. See Decisions faced by surrogates or 

proxies for the patient, durable power of attorney
PPOs (preferred provider organizations), 1:313, 2:752
Predecisional accountability, 1:8
Prediction

actual experience compared to, 1:593–594
biases in, 1:77–80, 1:84
Briar scores and, 1:101–103
calibration and, 1:107
in complex systems, 1:146
See also Hedonic prediction and relativism

Prediction rules and modeling, 2:893–897
applications of, 2:893–894
decision rules and, 2:893–894
in diagnostic process, 1:380–381
impact analysis in, 2:896–897
modeling, 2:893, 2:894, 2:895–897
predictors and outcome in, 2:895
study design in, 2:894–895

Predictive summary index (PSI), 2:613–615, 2:617
Preference-based measures, 1:570–572
Preference elicitation

conjoint analysis for, 1:179–184
in contingent valuation, 1:203
in cost-benefit analysis, 1:205
decision board for, 1:268
by gambles, 1:527
inconsistency in, 1:125–127, 1:127
in person trade-off, 2:872–874
preference construction versus, 1:294
value construction and, 1:192

Preference paradox, 2:905
Preference reversals, 2:898–900

examples of, 2:898–899
in gambles, 2:898
implications of, 2:900
procedural invariance and, 2:913

theories for, 2:899–900
See also Judgment reversals

Preferences
affect heuristic and, 1:277
decision quality and, 1:297
in discrete choice experiments, 1:394–398
dominance related to, 1:414
as element of decision models, 1:332–333
time discounting of, 1:391–393
value construction and, 1:190–191

Preference satisfaction, 2:1188–1189
Preference-sensitive care

decision quality in, 1:297
shared decision making in, 2:1037, 2:1038–1039

Preferred provider organizations (PPOs), 1:313, 2:752
Prejudice, 1:48, 2:1074–1075. See also Stigma susceptibility
Premature closure, 1:452
Prentice criteria, for surrogate outcomes, 1:161
Prescription drug coverage, in Medicare, 2:753–754
Presentation effects. See Framing
Prevalence, measures of, 2:731–733, 2:787
Primary care, patient decisions in. See Decisions faced by 

patients: primary care
Principal components analysis. See Factor analysis and 

principal components analysis
Principles, of bioethics, 1:73–74, 1:86–89
Principlism. See Bioethics
Prior distribution

in Bayesian analysis, 1:57–59
in Bayesian evidence synthesis, 1:60, 1:61
See also Bayes’s theorem

Prior judgment, and Bayes’s theorem, 1:69
Privacy, patient’s right to, 1:544–547, 2:864–865
Privacy Rule. See Health Insurance Portability and 

Accountability Act Privacy Rule
Private fee-for-service (PFFS) plans, 2:752
Probability, 2:901–904

conditional, 1:162–163
evaluation and, 1:106–108
frequency concept of, 1:513
individual, 2:901–903
joint, 2:903–904
laws of, 2:1180–1181
laws of, violated, 2:1181–1183
marginal, 2:903–904
notation for, 2:1062
revision in, 1:69–71
sharpness in, 1:106–108
subjective, 2:1086–1089
threshold, 1:271–272
trade-off method in, 1:601
variables, continuous, 2:901–902, 2:903–904
variables, discrete, 2:901, 2:903
variables, values of, 2:901

Probability, verbal expressions of, 2:904–907
advantages of, 2:906–907
disadvantages of, 2:906
impact of, 2:906
numerical expressions and, 2:904–906
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Probability density function (pdf), 2:1062
Probability errors, 1:184–187, 2:907–909
Problem solving, 2:909–913

decision making distinct from, 1:133, 1:139
domain specificity and, 2:912
historical roots of, 2:909
problem typology and, 2:909–910
strategies in, 2:910–911

Procedural invariance and its violations, 2:913–916
economic, 2:913
implications of, 2:915
medical, 2:914–915
reasons for, 2:914–915

Production function. See Health production function
Production gains and losses, cost of, 1:228, 1:229
Production possibilities curve, 1:433. See also Efficient 

frontier
Productivity, in efficient frontiers, 1:434–435
Professional organizations, 1:173
Profile measures, 1:572–573
Prognosis, 1:77, 1:78–79. See also Physician estimates of 

prognosis
Programming languages, and Boolean nodes, 1:95–96
PROMIS (Patient-Reported Outcomes Measurement 

Information System), 2:833. See also Patient-reported 
outcomes (PROs)

Propensity scores, 2:916–921
causal inference and, 1:114
data application of, 2:920–921
methods for analysis of, 2:916–920
risk adjustment and, 2:994

Proportional hazards. See Cox proportional hazards 
regression

Proportion test, 2:1064–1065
PROs. See Patient-reported outcomes
Prospects, as lotteries, 2:688
Prospect theory, 2:921–924

Allais paradox in, 1:14
context effects in, 1:196
criticisms of, 2:923
cumulative, 2:922–923
decision weights in, 1:361–362
editing and segregation in, 1:427–428
impact of, 2:923–924
key features of, 2:921–922
nonexpected utility theories and, 2:817–820
risk attitude in, 2:997

Protected values, 2:924–927
dynamic nature of, 2:926–927
relevance of, 2:924–925
research in, 2:925–926

Protocols, and IRBs, 1:310
Prototype/willingness model, 1:376–377, 1:378
Proxy advance directives, 1:9–10, 1:11, 1:12, 1:48. See also 

Decisions faced by surrogates or proxies for the patient, 
durable power of attorney; Surrogate decision making

PSI (predictive summary index), 2:613–615, 2:617
Psychology, decision. See Decision psychology
PtDAs. See Patient decision aids

PTO. See Person trade-off
Public health issues. See Government perspective,  

public health issues
Public Health Service, U.S., 2:966
PubMed, 1:xxvii, 1:460, 1:468

QALE (quality-adjusted life expectancy), 2:787–788
QLQ-C30, 2:832, 2:836, 2:876
QMR (Quick Medical Reference) system, 1:157–158
Q-Q (quantile-quantile) plot, 2:1062
Q test, Cochran, 1:56
Q-TWiST. See Quality-adjusted time without symptoms or 

toxicity (Q-TWiST)
Qualitative methods, 2:929–932

applications for, 2:932
disadvantages of, 2:931
mixed, 2:931
purpose and goals of, 2:929–930
specific, 2:930–931

Quality, decisional. See Decision quality
Quality-adjusted life expectancy (QALE), 2:787–788
Quality-adjusted life years (QALYs), 2:932–935

applications of, 2:935
assumptions for, 2:933–934
calculation of, 2:933
consequences evaluated via, 1:463, 1:465
cost-benefit analysis and, 1:206
cost-comparison analysis and, 1:207
cost-effectiveness analysis and, 1:214
costs acceptable per, 1:427
cost-utility analysis and, 1:240, 2:932
DALYs compared to, 1:388, 1:389
deterministic analysis and, 1:374
dissatisfaction with, 1:202, 1:204
EuroQol and, 1:458
expected utility and, 2:820
extended dominance and, 1:500
extrawelfarism and, 2:1190
in health outcomes assessment, 1:547, 1:549
HYEs compared to, 1:590, 1:591–592
league tables for, 2:663–665
monetary value and, 2:777–779
Monte Carlo simulation and, 1:348
morbidity addressed by, 2:788
perfect information in, 1:477–478
person trade-off and, 2:873
procedural invariance violations and, 2:914
Q-TWiST and, 2:936
Quality of Well-Being scale and, 2:938
reference case and, 2:966–969
sensitivity analysis and, 1:357, 1:360
shortcomings of, 2:934–935
simulation modeling for, 1:405
split choice and, 2:1057–1058
utility assessment for, 2:1162
See also Disability-adjusted life years (DALYs); Oncology 

health-related quality of life assessment
Quality-adjusted time without symptoms or toxicity 

(Q-TWiST), 2:936–937
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Quality data. See Data quality
Quality improvement methods, 1:188–189
Quality of life. See Disability-adjusted life years (DALYs); 

Health status measurement; Oncology health-related 
quality of life assessment; Quality-adjusted life years 
(QALYs)

Quality of Life Questionnaire-Core 30, 2:832, 2:836, 2:876
Quality of Well-Being scale, 2:937–940

assessment in, 2:938
cost-effectiveness and, 2:938
HRQOL and, 2:832, 2:937, 2:939
HUI2/3 based on, 1:588
QALYs and, 2:938
self-administered, 2:937, 2:938–939
theoretical basis of, 2:937–938
uses of, 2:939–940

Quantile-quantile (Q-Q) plot, 2:1062
Quasi-experimental design, 1:16, 1:18
Questionnaires, health status. See Patient-reported outcomes 

(PROs)
Queue theory, 1:400
Quick Medical Reference (QMR) system, 1:157–158
Quinlan, Karen Ann, 1:10–11, 1:304. See also In re 

Quinlan
QWB scale. See Quality of Well-Being Scale

Race. See Cultural issues
Random effects model, 1:510
Randomized block design (RBD), 2:1062
Randomized clinical trials, 2:941–947

bias in screening and, 2:1024
cost measurement methods and, 1:224–225
design considerations in, 2:942–946
error types in, 2:942
ethics of, 2:986
evidence synthesis and, 1:471
hypothesis testing in, 2:941–942
purposes of, 2:941
risk adjustment and, 2:986

Randomized controlled trials, 2:769, 2:986, 2:1062
Random versus fixed effects. See Fixed versus random 

effects
Range, 2:735
Range-frequency theory, 2:947–948
Rank-dependent utility theory, 2:948–950

examples for, 2:949–950
overview of, 2:949
rationale for, 2:950

Rank tests
concordance index, 2:816
log-rank, 2:685–687
rank sum, 1:55
signed-rank, 2:1067

Rank-transform procedures, 1:23
Rational choice theory, 1:132–133
Rationing, 2:950–953

allocation and, 2:950, 2:951
approaches to, 2:952–953
implementation of, 2:953

institution-level, 2:952
patient-level, 2:951–952

RBD (randomized block design), 2:1062
RCTs. See Randomized clinical trials; Randomized 

controlled trials
RD (risk difference), 2:827–830
Reasoning. See Causal inference and diagrams; Causal  

inference in medical decision making; Cognitive  
psychology and processes; Errors in clinical reasoning; 
Teaching diagnostic clinical reasoning

Receiver operating characteristic (ROC) curve, 2:953–958
Brier scores and, 1:101, 1:102
in cutoff values, 2:891–893
interpretation of, 2:954
notation for, 2:1062
recursive partitioning and, 2:964
software for, 2:957
statistical inference for, 2:955–957
study design for, 2:957–958
summaries of, 2:954–955

Recurrent events, 2:958–963
data analysis for, 2:958–960
extensions for, 2:961–962
software for, 2:962
survival analysis and, 2:960–961

Recursive partitioning, 2:963–966
accuracy in, 2:964–965
examples of, 2:965
tree construction in, 2:963–964
tree selection in, 2:965
validation in, 2:965
See also Classification and regression tree (CART) analysis

Re F (legal case), 2:1107
Reference case, 2:966–970

context and critique of, 2:967–970
development of, 2:966–967

Regression
causal inference and, 1:114
confounding and, 1:175
in EuroQol analysis, 1:458–459
fixed versus random effects in, 1:508–511
proportional hazards model and, 1:243–245
ROC curve and, 2:955–956

Regression, logic. See Logic regression
Regression, logistic. See Logistic regression
Regression, negative binomial.  

See Poisson and negative binomial regression
Regression, net benefit. See Net benefit regression
Regression, ordinary least squares.  

See Ordinary least squares regression
Regression, Poisson. See Poisson and negative binomial 

regression
Regression to the mean, 2:970–973

bias and, 1:85
dealing with, 2:972
description of, 2:970–971
examples of, 2:971–972
historical background of, 2:970

Regression trees, 1:326
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Regret, 2:973–974
Regularity, principle of, 1:37–38
Reibl v. Hughes, 2:625
Reinforcement, 1:35
Relative risk (RR)

contingency tables for, 2:1113, 2:1114–1115
nature of, 2:828
notation for, 2:1062
number need to treat and, 2:821, 2:823
risk communication and, 2:1007
See also Attributable risk

Relative risk reduction (RRR), 2:821, 2:823
Relativism. See Hedonic prediction and relativism
Relevancy, in content and face validity, 1:565–566
Reliability

interrater, 2:636–637, 2:931
types of, 1:587
See also Health status measurement, reliability and 

internal consistency; Intraclass correlation coefficient
Religious factors, 2:974–977

culture, values, and, 2:975
healthcare organizations and, 2:976–977
healthcare professionals and, 2:975–976
patients and, 2:975
See also Cultural issues

REML (residual maximum likelihood estimation), 2:1062
Reports cards, hospitals and physicians, 2:977–981

content of, 2:978
data sources for, 2:979
risks in, 2:980–981
stakeholders in, 2:978–979
validity of, 2:979–980

Reproductive decision making, 1:89–90
Research

clinical care mistaken for, 1:309
IRB role in, 1:308–312
PubMed access to, 1:xxvii, 1:460, 1:468
See also Human subjects research

Research into practice. See Evaluating and  
integrating research into clinical practice

Residual maximum likelihood estimation (REML), 2:1062
Resource allocation. See Rationing
Respect, patient’s right to, 2:864. See also Autonomy, 

respect for
Responsibility, in decision making, 1:287, 1:288–289
Responsiveness, in health status measurement, 1:556–559,  

1:581–583
Return on investment, 2:982–985

adjustments to, 2:982–983
applications of, 2:982
comparing alternative investments, 2:983–985
formula for, 2:982

Revealed preference, 1:206
Rho notation, 2:1060
Risk

affect heuristic and, 1:277, 1:278
attributable. See Attributable risk
competing risks, 2:732–733
complications in, 1:151, 1:152, 1:153

context effects in, 1:197
dimensions of, 2:987–988
disclosure of, 2:624–625
genetic, perception of, 1:530–531
incidence measures of, 2:729–730
IRB review and communication of, 1:309–311
reduction of, 2:821–822, 2:824
relative. See Relative risk (RR)

Risk adjustment of outcomes, 2:985–995
data sources for, 2:987
decisions in, 2:988–990
dimensions of, 2:987–988
models for, 2:990–995
nature of, 2:985–987
risk scores in, 2:991–992
systems for, 2:989–990

Risk attitude, 2:996–998
decision making and, 2:1001
framing and, 2:1001
situational differences in, 2:996–998
types of, 2:998–999

Risk aversion, 2:998–1003
attraction effect and, 1:40
Bernoulli on, 1:475–477, 2:999
certainty equivalent and, 1:123–124
loss aversion and, 2:998, 2:1000–1001
as a risk attitude, 2:998
Tversky-Kahneman methodology in, 2:1000–1001

Risk-benefit analysis
beneficence and, 1:71
in differential diagnosis, 1:387
emotional processing and, 1:99–100

Risk-benefit trade-off, 2:1003–1006
future benefit in, 2:1003–1004
future risk in, 2:1003
trade-offs in, 2:1004–1005

Risk communication, 2:1006–1008
Risk difference (RD), 2:827–830
Risk illiteracy, 2:1002, 2:1006–1007
Risk management. See Health risk management
Risk neutrality, 2:999. See also Risk attitude; Risk aversion
Risk perception, 2:1009–1011

feeling pathway in, 2:1010
statistic pathway in, 2:1009–1010

Risk ratio. See Odds and odds ratio, risk ratio
Risk seeking, 2:998–999. See also Risk attitude; Risk aversion
Risk taking. See Risk attitude
Robustness. See Sensitivity analysis
ROC curve. See Receiver operating characteristic (ROC) curve
Roe v. Wade, 2:863
ROI. See Return on investment
RR (risk ratio). See Odds and odds ratio, risk ratio
RRR (relative risk reduction), 2:821, 2:823
Rules of thumb, 1:465, 2:777–778. See also Heuristics
Runs test, Wald-Wolfowitz, 1:55

Salgo v. Leland Stanford Junior Board of Trustees, 2:622–623
Sample mean, notation for, 2:1062
Sample size, notation for, 2:1062
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Sample size and power, 2:943–946, 2:1013–1016
mean, estimation of, 2:1014
means, equality of, 2:1014–1015
notation for, 2:1062
outcomes, comparison of, 2:1015–1016
proportion, estimation of, 2:1013–1014
proportions, equality of, 2:1015

Sampling
bias in, 1:75–76, 1:83–84, 1:112–113
cluster, 2:635–636
See also Expected value of sample information, net benefit 

of sampling
Sampling to redundancy, 1:565
Satisfaction, patient. See Patient satisfaction
Satisficing, 1:154, 1:597
Scaling, 2:1016–1020

factors affecting, 2:1018–1019
methods for, 2:1017–1018, 2:1019
properties for, 2:1017
theoretical perspective on, 2:1017
utility versus value in, 2:1018

Scatterplots, 2:737
Scenario thinking, 1:186
Schemata, 1:494
Schiavo, Theresa Marie (Terri), 1:11
SCHIP (State Children’s Health Insurance  

Program), 2:738, 2:740
Schloendorff v. Society of New York Hospital, 2:659
Scoring rules, and probabilities, 1:107
Screening

genetic, 1:529
health, 1:537–538

Screening programs, 2:1020–1024
bias in measurement of, 2:1022–1024
evaluation criteria for, 2:1020–1024
history of the disease and, 2:1021
test accuracy in, 2:1021–1022

SD (standard deviation), 2:734–735, 2:1062
SDM. See Shared decision making
SE (standard error), 2:735, 2:1063
Search engines, 1:468, 1:470. See also PubMed
Segregation of prospects, 1:427–420
Self-determination. See Autonomy, respect for
Self-fulfilling prophecy

Bayesian reasoning and, 2:1047, 2:1050
of prognoses, 1:79
stigmatization and, 2:1075
worldviews and, 2:1194

SEM (standard error of measurement),  
1:577, 1:582–583

SEM (standard error of the mean), 2:735, 2:1063
Semashko healthcare systems, 2:632
Semifixed costs. See Costs, semifixed versus semivariable
Semi-Markov models, 2:720–721, 2:1078–1079. See also 

Markov chain Monte Carlo (MCMC) methods
Semivariable costs. See Costs, semifixed versus semivariable
Sensitivity

in health status measurement, 1:556–557, 1:581–583
specificity and, 2:890–891, 2:954

Sensitivity analysis
in cost-comparison analysis, 1:208
in cost-consequence analysis, 1:210
decision trees and, 1:349–360
deterministic, 1:356–361, 1:373–374
Monte Carlo simulation and, 1:349
one-way, 1:350–352, 1:357
probabilistic, 1:353–355
propensity score analysis and, 2:920
reasons for, 1:350
in stochastic medical informatics, 2:1080
subjective probability in, 2:1089
three-way, 1:353
two-way, 1:352, 1:357

Sentinel events, 2:746
Sequential multiple-assignment randomized  

trials, 1:421–422
Set theory, 1:95
SEU theory. See Subjective expected utility theory
SF-6D, 2:1025–1030

derivation of, 2:1025–1027
EQ-5D compared to, 2:1027–1028
floor and ceiling effects in, 1:567, 2:1027–1028
HUI3 compared to, 2:1027
new developments for, 2:1028–1030

SF-36 and SF-12 health surveys,  
2:1030–1036

applications of, 2:1035
commonly used for HRQOL, 2:832
component summaries of, 2:1032–1033
development of, 2:1031–1032
floor and ceiling effects in, 1:567
as generic profile measures, 1:572–73
interpretation of, 2:1034
morbidity addressed by, 2:787
multidimensional nature of health and, 1:586
in pharmacoeconomics, 2:876
reliability and validity of, 2:1033–1034
scales of, 2:1032
scoring of, 2:1033
SF-6D derived from, 2:1025–1027, 2:1029
software for, 2:1033

Shared decision making, 2:1036–1041
applications of, international, 2:1040
context of, original, 2:1036–1037
contexts of, emerging, 2:1039
equity and, 1:439, 1:441–442
hedonic prediction and, 1:595–596
historical overview of, 2:1039–1040
for managing uncertainty, 2:692
model of, 2:775–776
motivations for implementation of, 2:1037–1039
patient decision aids and, 2:861
process of, 2:1036
roles involved in, 2:1037
See also Team dynamics and group decision making

Sharpness, of probabilities, 1:106–108
Short form 6D, 12, and 36. See SF-6D; SF-36  

and SF-12 health surveys
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Sickness Impact Profile, 2:1041–1044
commonly used for HRQOL, 2:832
development of, 2:1041–1042
as a generic profile measure, 1:572
items and categories in, 1:572
limitations of, 2:1043
in pharmacoeconomics, 2:876
psychometric properties of, 2:1042–1043
use of, 2:1043

Sigma notation, 2:1062, 2:1063
Significance, clinical

frequentist approach and, 1:519
statistical significance versus, 1:164–165

Significance level, 1:609
Significance testing

biased, 1:81
confidence intervals and, 1:163–165
cost-minimization analysis and, 1:227
frequentist approach to, 1:516–519
See also Basic common statistical tests; Hypothesis testing

Sign test, 1:56
Simple linear regression (SLR), 2:1185–1187. See also 

Regression; Regression to the mean
Simulations. See Discrete-event simulation; Disease 

management simulation modeling
Single nucleotide polymorphism (SNP) genotyping, 1:91–92, 

2:679, 2:680
SIP. See Sickness Impact Profile
Situational awareness analyses, 1:449
Six thinking hats model, 1:285
Slater v. Baker and Stapleton, 2:623
SLR (simple linear regression), 2:1185–1187. See also 

Regression; Regression to the mean
SMARTs (sequential multiple-assignment randomized 

trials), 1:421–422
SMARTS and SMARTER (simple multi-attribute rating 

technique), 2:1044–1046
SMR (standardized mortality ratio), 2:790–791, 2:1063
SNP (single nucleotide polymorphism) genotyping, 1:91–92,  

2:679, 2:680
Social factors, 2:1046–1054

Bayesian reasoning, circularity of, 2:1047, 2:1050–1052
client-provided encounter, 2:1047
disparities, generation and amplification of, 2:1052
doctor–patient relationship, 2:1046–1047
methodologies, diverse, 2:1052–1054

Social health insurance systems, 2:632
Social judgment theory, 2:1054–1057

cognitive conflict in, 2:1056
cognitive continuum theory and, 2:1056
cognitive feedback in, 2:1055–1056
judgment analysis in, 2:1055
learning in, 2:1055–1056
overview of, 2:1054–1055

Social welfare functions, 1:133
Societal perspective

in cost-comparison analysis, 1:207
in cost-effectiveness analysis, 1:214
in cost-identification analysis, 1:220

in cost measurement methods, 1:224, 1:226
direct versus indirect costs and, 1:228–230
fixed versus variable costs and, 1:231
opportunity costs and, 1:233

Socioeconomic status, as dimension of risk, 2:988
Speaking style, as a cultural issue, 1:248
Spearman correlation coefficient, 1:56, 2:1060. See also 
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