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Chapter 1
Introduction

Climatology and meteorology has been basically a descriptive science without the
means to perform quantitative experiments under controlled conditions. In fact, un-
til the second half of the twentieth century, the border between climatology and
geography was often blurred and the two disciplines were confused one with the
other.The situation changed when the solution of the evolution equations for the
climate system became possible using numerical methods. The development of nu-
merical models allowed the application of standard scientific verification machinery
for testing hypotheses, but crucial to the success of the strategy is that the model
must be a good representation of the real climate system of the Earth. Assessing the
quality of models regarding their capability to reproduce the climate became a cor-
nerstone in the scientific progress of climatology. Tighter and tighter standards were
required for the model simulations in comparison with the real characteristics of cli-
mate. Models were required to reproduce not only the mean properties of climate,
but also its variability. In the last decades of the XX century the amount of data
available was becoming very large and strong evidence of remote spatial relations
between climate variability in geographically diverse regions were emerging. Quan-
titative techniques were developed to explore the climate variability and its relations
among different geographical locations. Methods were borrowed from descriptive
statistics, where they were developed to analyze variance of related observations-
variable pairs, or to identify unknown relations among variables.

These methods were introduced to meteorology in the mid-1960, but they became
increasingly popular in the early 1980s where their capability to identify dynami-
cally significant modes in the climate variability was demonstrated. Since then they
have been further developed and many variants and extensions have been proposed
and applied. Very often these developments were taking place separately from the
formal development in the mainstream statistics and reflected ad hoc solution to the
particular vies that climatology was using.

There are excellent books treating these methods in a formal and rigorous way
(von Storch and Zwiers 1999; Wilks 2005; Jolliffe 2002) and we refer the reader
to these excellent texts for proofs and a more formal treatment. We take in this
booklet a different approach, trying to introduce the reader to a practical applica-
tion of the methods and to the kind of real problems that can be encountered in a
practical application. We are including in the book data sets from real simulations

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 1,
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2 1 Introduction

from a climate model that we use as a workbench to illustrate the various methods,
their limitations and their potential. The algorithms have been implemented using
MATLAB and we include some sample source codes for a few of the key methods
employed. All pictures and examples used in the book may be reproduced by using
the data sets and the routines available in the book WebSite.

Though the main thrust of the book is for climatological and meteorological ex-
amples, we feel that the treatment is sufficiently general that the discussion is useful
also for student and practitioners in other fields, as long as they deal with variables
that depend on two parameters like for instance space and time. This book can then
be used as a reference for practical applications or it can be used in graduate courses
as a companion to a more extensive book like (von Storch and Zwiers 1999; Wilks
2005; Preisendorfer 1988).

For most of this book we will use two data sets to illustrate our discussion. The
first is a time series of monthly mean geopotential data at 500 mb (Z500), obtained
from a simulation with a general circulation model forced by observed values of
monthly mean Sea Surface Temperatures (SST). The data sets cover 34 years, cor-
responding to the calendar years 1961–1994. Z500 is a very good indicator of upper
air flow, since the horizontal wind is predominantly aligned along the geopotential
isolines. Figure 4.1 shows a few examples taken from the data set. It is possible to
note the large variability from 1 month to the other (top panels), but also the large
variability at the same geographical point, as the time series for the entire series
(lower panels) show. It is clear that the geopotential at 500 mb is characterized by
intense variability in space and time and a typical month may be as different from
the next month as another one chosen at random. The large variability in space and
time makes it a very good test case to practice at will. In the final chapter we will
use two more time series, also 34 years long, obtained imposing the same SST dis-
tribution but with a small perturbation in the initial condition of the atmospheric
numerical model. These small errors grow very quickly in a typical expression of
the chaotic nature of the atmosphere and soon the two simulations are as different
from each other as any other two started independently.

The second data set is the set of Sea Surface Temperatures (SST) used to force
the simulations. The data have been compiled in monthly means on the same grid
as the atmospheric data. The SST force a special signal on the geopotential field,
leaving an identifiable signature in the atmosphere. The variability of the Z field
is therefore composed of variability that is intrinsic to the atmosphere and maybe
other components of the Earth system and variability that is induced by the SST
variability, that varies more slowly. This mixture creates a very rich and challenging
situation for the methods presented here. In the last chapter we will use two data
sets obtained from simulations from a climate models. They represent the tropical
SST and the east-west wind and they also are monthly means for about 200 years of
simulations. This is a case of tightly coupled fields that show how the generalized
regression methods can really identify covarying fields.

The Empirical Orthogonal Functions are introduced in Chap. 4, after two in-
troductory chapters on basic algebra and basic statistics that are needed to refresh
elementary notions and fix the vocabulary. Extensions to the EOF concept are
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presented in Chap. 5. After having introduced the concept of rotation, we discuss
then how EOF can be extended to analyze travelling signals, introducing complex
and extended EOF and finally we discuss combined EOF that an effective introduc-
tion to the advanced methods of analyzing covariations in Chaps. 6 and 7. A final
generalization using linear regression methods is then discussed in Chap. 8.



Chapter 2
Elements of Linear Algebra

2.1 Introduction

This book will use some basic concepts of linear algebra. In this chapter we will
briefly recall the essential elements that will be necessary in the rest of the book to
understand the various tools devoted to the analysis of variance. Readers that are
interested in the more detailed treatment of the subject are directed, for instance, to
Golub and Van Loan (1996), Horn and Johnson (1991), Meyer (2000).

2.2 Elementary Vectors

The typical geometric definition introduces a vector as a segment emanating from
the origin, with an arrow at the second extreme, indicating a “pointing” direction,
or orientation (cf. Fig. 2.1), showing that a vector may be characterized by two
properties: length and direction. Although this definition is usually employed on
the plane, the same characterization can be used in higher dimension, that is on
hyper-planes (e.g. space). While magnitude and direction, for instance, would be
sufficient to uniquely identify a vector on the plane, this is not so in higher di-
mensions. In high dimensions, it is thus more appropriate to characterize vectors
by means of their “components”. In Cartesian coordinates, these are the orthogonal
projections of the vector on each Cartesian axis. Rigorously speaking, a vector is
given by an ordered n-uple of real or complex numbers, that is, b D .b1; : : : ; bn/

is a (row) vector with n components, where each bi is a real or complex num-
ber. Note that the order of the components is important, so that, e.g., the vector
a D .1; 3/ is different from the vector b D .3; 1/. The ensemble of all possible vec-
tors is then identified by the ensemble of all possible n-uples of numbers that can be
formed with real or complex numbers. A vector with only one component is called
a scalar. The vector 0 D .0; : : : ; 0/ is the zero vector. It is customary to identify
the whole of the real and complex numbers with the symbols R and C, respectively.
It thus follows, for instance, that the set of all possible couples is denoted by the
symbol R � R D R2. In general, Rn is the set of vectors having n components.

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 2,
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6 2 Elements of Linear Algebra

Fig. 2.1 Elementary vectors
on the plane

(7,7)

(5,2)

(2,5)

The addition between two vectors with the same number of components, is defined
as the vector whose components are the sum of the corresponding vector compo-
nents. If a D .a1; a2; : : : ; an/ and b D .b1; b2; : : : ; bn/, then c WD a C b as
c D .a1 C b1; a2 C b2; : : : ; an C bn/. Note that c is a vector of n components.
By again acting at the component level, we can stretch a vector by multiplying it
with a scalar k: we can define c D ak where c D .ka1; ka2; :::; kan/, meaning
that each component is multiplied by the factor k. These are the basic operations
that allow us to generate a key space for our analysis. In particular, Rn is closed
with respect to the sum and with respect to multiplication by a real scalar, which
means that the result of these operations is still an element of Rn. A real vector
space is a set that is closed with respect to the addition and multiplication by a real
scalar. Therefore, Rn is a real vector space. There are more complex instances of
vector spaces, but for the moment we will content ourselves with this fundamental
example. An immediate generalization is given by the definition of a real vector
subspace, which is a subset of a real vector space.

2.3 Scalar Product

We next introduce an operation between two vectors that provides the main
tool for a geometric interpretation of vector spaces. Given two real vectors
a D .a1; a2; : : : ; an/ and b D .b1; b2; : : : ; bn/, we define the scalar product
(or inner product) the operation ha; bi D a1b1 C a2b2 C � � � C anbn. Note that the
operation is between vectors, whereas the result is a real scalar. We remark that if
a and b were complex vectors, that is vectors with complex components, then a
natural inner product would be defined in a different way, and in general, the result
would be a complex number (see end of section). The real inner product inherits
many useful properties from the product and sum of real numbers. In particular, for
any vector a; b; c with n real components and for any real scalar k, it holds

1. Commutative property: ha; bi D hb; ai
2. Distributive property: h.a C c/; bi D ha; bi C ha; ci
3. Multiplication by scalar: h.ka/; bi D kha; bi D ha; .kb/i
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The scalar product between a vector and itself is of great interest, that is

ha; ai D a2
1 C a2

2 C � � � C a2
n:

Note that ha; ai is always non-negative, since it is the sum of non-negative numbers.
For n D 2 it is easily seen from Fig. 3.1 that this is the square of the length of a
vector. More generally, we define the Euclidean norm (or simply norm) as

jjajj D
p

ha; ai:

A versor is a vector of unit norm. Given a non-zero vector x, it is always possible
to determine a versor x0 by dividing x by its norm, that is x0 D x=jjxjj. This is a
standard form of normalization, ensuring that the resulting vector has norm one.
Other normalizations may require to satisfy different criteria, such as, e.g., the first
component equal to unity. If not explicitly mentioned, we shall always refer to nor-
malization to obtain unit norm vectors. Given a norm, in our case the Euclidean
norm, the distance associated with this norm is

d.a; b/ D jja � bjj D
p

.a1 � b1/2 C .a2 � b2/2 C � � � C .an � bn/2:

Scalar products and the induced distance can be defined in several ways; here we are
showing only what we shall mostly use in this text. Any function can be used as a
norm as long as it satisfies three basic relations: (i) Non-negativity: kak � 0 and
kak D 0 if and only if a D 0; (ii) Commutative property: d.a; b/ D d.b; a/; (iii)
Triangular inequality: d.a; b/ � d.a; c/ C d.c; b/. Using norms we can distinguish
between close vectors and far away vectors, in other words we can introduce a topol-
ogy in the given vector space. In particular, property (i) above ensures that identical
vectors (a D b) have a zero distance. As an example of the new possibility offered
by vector spaces, we can go back to Fig. 2.1 and consider the angles ˛ and ˇ that
the vectors a and b in R2 make with the reference axes. These angles can be easily
expressed in terms of the components of the vectors,

cos ˇ D b1q
b2

1 C b2
2

sin ˇ D b2q
b2

1 C b2
2

;

cos ˛ D a1q
a2

1 C a2
2

sin ˛ D a2q
a2

1 C a2
2

;

and also the angle between the two vectors, cos.ˇ � ˛/,

cos.ˇ � ˛/ D cos ˇ cos ˛ C sin ˇ sin ˛

D b1q
b2

1 C b2
2

a1q
a2

1 C a2
2

C b2q
b2

1 C b2
2

a2q
a2

1 C a2
2

; (2.1)
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(1,0)

(0,1)
(cos(π/4), sin(π/4))

π/4

Fig. 2.2 Angles between vectors

or, equivalently,

cos.ˇ � ˛/ D ha; bi
jjajj jjbjj : (2.2)

We just proved that this relation holds in R2. In higher dimension, the cosine of the
angle of two vectors is defined as the ratio between their inner product and their
norms, which is nothing but (2.2).

We explicitly observe that the scalar product of two versors gives directly the
cosine of the angle between them. By means of this new notion of angle, relative
direction of vectors can now be expressed in terms of the scalar product. We say
that two vectors are orthogonal if their inner product is zero. Formula (2.2) provides
a geometric justification for this definition, which can be explicitly derived in R2,
where orthogonality means that the angles between the two vectors is �=2 radians
(90ı); cf. Fig. 2.2. If in addition the two vectors are in fact versors, they are said to
be orthonormal.

We can also introduce another geometric interpretation of scalar products that
follows from (2.2). The scalar product is also the projection of the vector a on b:
from Fig. 2.3 and from the definition of the cosine the projection of a onto the
direction of b is Proja D jjajj cos �. Analogously, the projection of b onto the
direction of a is Projb D jjbjj cos �. For normalized vectors the norm disappears
and the scalar product gives directly the projections, that are obviously the same
in both cases (bottom panel in Fig. 2.3). We close this section with the definition
of inner product in the case of complex vectors. Let x; y be vectors in Cn. Then
hx; yi D Nx1y1 C Nx2y2 C � � � C Nxnyn, where Nx D a � ib denotes the complex
conjugate of x D a C ib, i D p�1. With this definition, the norm of a complex
vector is defined as jjxjj2 D hx; xi D jx1j2 C � � � C jxnj2.
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Fig. 2.3 Angles between vectors

Exercises and Problems

1. Given the two vectors a D .1; �2; 0/, b D .�3; �1; 4/, compute a C b, a � b,
a C 2b and ha; bi.
We have aCb D .1�3; �2�1; 0C4/ D .�2; �3; 4/, a�b D .1C3; �2C1; 0�
4/ D .4; �1; �4/ and aC2b D .1C2.�3/; �2C2.�1/; 0C2.4// D .�4; �4; 8/.
Finally, we have ha; bi D 1.�3/ C .�2/.�1/ C 0.4/ D -3+2+0=-1.

2. Given the two complex vectors x D .1 C i; �2 C 3i/, y D .�5 C i; 4i/, compute
x C y and hx; yi.
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We have x C y D .1 � 5 C .1 C 1/i; �2 C .3 C 4/i/ D .�4 C 2i; �2 C 7i/.
Moreover, using the definition of the product between complex numbers, hx; yi D
.1 � i/.�5 C i/ C .�2 � 3i/.4i/ D 8 � 2i .

3. Given the vectors a D .1; �2; 1/ and b D .0; 2; �3/, compute jjajj, jjbjj and
jja � bjj. Moreover, normalize a so as to have unit norm.
We have jjajj D .12C.�2/2C12/1=2 D 61=2 and jjbjj D .02C22C.�3/2/1=2 D
131=2. Moreover, jja � bjj D ..1 � 0/2 C .�2 � 2/2 C .1 � 3/2/1=2 D 211=2 .
Finally, ai D a=jjajj D .1=6/1=2.1; �2; 1/.

4. Check whether the following operations or results are admissible: (i) x C y, with
x D .1; �1/, y D .1; 2; 0/; (ii) hx; yi with x and y as in (i); (iii) jjajj D �1; (iv)
ha; bi D �hb; ai, with a; b real vectors of equal dimension; (v) d.c; d/ D �1:5.
None of the statement above is correct. (i) x and y have a different number of
components hence the two vectors cannot be added. (ii) Same as in (i). (iii)
The norm of any vector is non-negative, therefore it cannot be equal to -1. (iv) The
inner product of real vectors is commutative, therefore ha; bi D hb; ai. (v) Same
as in (iii).

5. Compute the cosine of the angle between the vectors a D .�1; 2/ and b D
.�3; 0/.
We first compute ha; bi D �1.�3/ C 2.0/ D 3, jjajj D p

5 and jjbjj D 3, from
which we obtain cos � D ha; bi=.jjajj jjbjj/ D 1p

5
.

2.4 Linear Independence and Basis

Some vectors can be combined and stretched by scalars, hence they can be obtained
one from the other. For instance, the vector .4; 4; 4/ can be obtained as .1; 1; 1/ � 4

in such a way that all vectors of the form .k; k; k/ are really different stretched
versions of the same vector .1; 1; 1/. Vectors that cannot be reached with a simple
stretching can be obtained with a combination, for instance the vector .5; 2/ can
be written as 2 � .1; 1/ C 3 � .1; 0/. With this simple example we see that we can
choose some particularly convenient vectors to represent all other vectors in the
given space. Given r nonzero vectors x1; x2; : : : ; xr , we say that a vector x is a
linear combination of these r vectors if there exist r scalars ˛1; : : : ; ˛r , not all equal
to zero, such that

x D ˛1x1 C ˛2x2 C � � � C ˛r xr :

This definition is used to distinguish between linearly dependent and independent
vectors. In particular, x1; x2; : : : ; xr are said to be linearly dependent if there ex-
ist r scalars, not all equal to zero, such that ˛1x1 C ˛2x2 C � � � C ˛r xr D 0. In
other words, they are linearly dependent if one of the vectors can be expressed as
a linear combination of the other vectors. We are thus ready to define linearly in-
dependent vectors, and the associated concept of a basis of a vector space. We say
that r vectors x1; x2; : : : ; xr are linearly independent if the only linear combination
that gives the zero vector is obtained by setting all scalars equal to zero, that is if
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the relation ˛1x1 C ˛2x2 C � � � C ˛r xr D 0 implies ˛1 D ˛2 D � � � D ˛r D 0.
The maximum number of linearly independent vectors is called the dimensionality
of the vector space, maybe is not surprising that for Rn this number turns out to be
n. Given n linearly independent vectors in Rn, any other vector can be obtained as a
linear combination of these n vectors. For this reason, n linearly independent vectors
of Rn, are called a basis of Rn. Clearly, a basis is not uniquely determined, since any
group of n linearly independent vectors represents a basis. However, choices that
are particularly convenient are given by sets of normalized and mutually orthogo-
nal and thus independent vectors, namely, we select an “orthonormal basis”. In the
case of R2, orthonormal bases are for instance .1; 0/; .0; 1/, and also .1=

p
2; 1=

p
2/,

.1=
p

2; �1=
p

2/. In fact, the latter can be obtained from the first one with a rotation,
as it is shown in Fig. 2.2.

The orthonormal basis e1; e2; : : : ; en, where ek D .0; 0; : : : ; 1; 0; : : : ; 0/,
that is, all components are zero except the unit kth component, is called the canon-
ical basis of Rn. Note that it is very simple to obtain the coefficients in the linear
combination of a vector of Rn in terms of the canonical basis: these coefficients
are simply the components of the vector (see Exercise 3 below). The choice of a
particular basis is mainly dictated by either computational convenience or by ease
of interpretation. Given two vectors x; y in Rn, it is always possible to generate
a vector from x, that is orthogonal to y. This goes as follows: we first define the
vector y0 D y=jjyjj and the scalar t D hy0; xi, with which we form x0 D x � y0t .
The computed x0 is thus orthogonal to y. Indeed, using the properties of the inner
product, hy0; x0i D hy0; x � y0ti D hy0; xi � thy0; y0i D t � t D 0.

Determining an orthogonal basis of a given space is a major task. In R2 this is
easy: given any vector aD.a1; a2/, the vector bD.�a2; a1/ (or cD�b D .a2; �a1/)
is orthogonal to a, therefore the vectors a; b readily define an orthogonal basis. In
Rn the process is far less trivial. A stable way to proceed is to take n linearly in-
dependent vectors u1; : : : ; un of Rn, and then orthonormalize them in a sequential
manner. More precisely, we first normalize u1 to get v1; we take u2, we orthog-
onalize it against v1 and then normalize it to get v2. We thus continue with u3,
orthogonalize it against v1 and v2 and get v3 after normalization, and so on. This
iterative procedure is the famous Gram-Schmidt process.

Exercises and Problems

1. Given the two vectors a D .�1; �2/ and b D .�3; �1/: (i) verify that a and b
are linearly independent. (ii) Compute a vector orthogonal to a. (iii) If possible,
determine a scalar k such that c D ka and a are linearly independent.
(i) In R2 vectors are either multiple of each other or they are independent. Since
b is not a multiple of a, we have that a and b are linearly independent. (ii) The
vector d D .2; �1/ is orthogonal to a, indeed ha; di D .�1/.2/C.�2/.�1/ D 0.
(iii) From the answer to (i), it follows that there is no such c.

2. Obtain an orthonormal set from the two linearly independent vectors: a D .2; 3/

and b D .1; 1/.
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We use the Gram-Schmidt process. First, a0 D a=jjajj D 1p
13

.2; 3/. Then, we

compute ha0; bi D 5p
13

, so that b D b � a0ha0; bi D .1; 1/ � 5p
13

a0 D .1; 1/ �
5

13
.2; 3/ D 1

13
.3; �2/, from which b0 D b=jjbjj D 1

2�13
.3; �2/. Hence, a0; b0 is

the sought after set. Not surprisingly (cf. text), b0 is the normalized version of
.�3; 2/, easily obtainable directly from a.

3. Given the vector x D .3; �2; 4/, determine the coefficients in the canonical basis.
We simply have x D 3e1 � 2e2 C 4e3.

4. By simple inspection, determine a vector that is orthogonal to each of the follow-
ing vectors: a D .1; 0; 0; 1/; b D .4; 3; 1; 0; 0/; c D .0:543; 1:456; 1; 1/.
It can be easily verified that any of the vectors .0; ˛; ˇ; 0/, .�1; ˛; ˇ; 1/,
.1; ˛; ˇ; �1/, with ˛; ˇ scalars, are orthogonal to a. Analogously, .0; 0; 0; ˛; ˇ/

are orthogonal to b, together with .�1; 1; 1; ˛; ˇ/, .1; �1; �1; ˛; ˇ/.
For c, simple choices are .0; 0; �1; 1/ and .0; 0; 1; �1/.

2.5 Matrices

A matrix is an n � m rectangular array of scalars, real or complex numbers, with n

rows and m columns. When m D n the matrix is “square” and n is its dimension.
In this book, we will use capital bold letters to indicate matrices, whereas roman
small case letters in bold are used to denote vectors; Greek letters will commonly
denote scalars. The following are examples of matrices of different dimensions,

A D
�

0 �1 4
1
2

2 1

�
; B D

�
0 1

i 0

�
; C D

0

B
B
B
B
B
@

1 0

0 1 C 2i

0:05 �1

1:4 C 5i 2

0 3

1

C
C
C
C
C
A

: (2.3)

Matrix A is 2 � 3, B is 2 � 2 and C is 5 � 2. Note that B and C have complex
entries. The components of a matrix A are denoted by ai;j , where i corresponds to
the i th row and j to the j th column, that is at the .i; j / position in the array. In the
following we shall use either parentheses or brackets to denote matrices. The n � m

matrix with all zero entries is called the zero matrix. The square matrix with ones
at the .i; i/ entries, i D 1; : : : ; n and zero elsewhere, is called the identity matrix
and is denoted by I. If the order is not clear from the context, we shall use In.
The position of the scalars within the array is important: matrices with the same
elements, but in a different order, are distinct matrices. Of particular interest is the
transpose matrix, i.e. the matrix bAT obtained by exchanging rows and columns of
the matrix A. For instance, for the matrices in (2.3),
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AT D
0

@
0 1

2

�1 2

4 1

1

A ; BT D
�

0 i

1 0

�
;

CT D
�

1 0 0:05 1:4 C 5i 0

0 1 C 2i �1 2 3

�
;

are the transpose matrices of the previous example. In the case of matrices with com-
plex entries, we can also define the complex transposition, indicated by the subscript
‘�’, obtained by taking the complex conjugate of each element of the transpose,

B� WD NBT
, so that

B� D
�

0 �i

1 0

�
; C� D

�
1 0 0:05 1:4 � 5i 0

0 1 � 2i �1 2 3

�
:

Clearly, for real matrices the Hermitian adjoint B� coincides with the transpose ma-
trix. Transposition and Hermitian adjoint share the reverse order law, i.e. .AB/� D
B�A� and .AB/T D BT AT , where A and B have conforming dimensions. See later
for the definition of matrix-matrix products. Matrices that satisfy A�A D AA� are
called normal. A real square matrix X such that XT X D I and XXT D I is said
to be an orthogonal matrix. A square complex matrix X such that X�X D I and
XX� D I is said to be unitary.

An n�n matrix A is invertible if there exists a matrix B such that AB D BA D I.
If such a matrix B exists, it is unique, and it is called the inverse of A, and it is de-
noted by A�1. An invertible matrix is also called nonsingular. Therefore, a singular
matrix is a matrix that is not invertible. Recalling the definition of orthogonal matri-
ces, we can immediately see that an orthogonal matrix is always invertible and more
precisely, we have that its inverse coincides with its transpose, that is XT D X�1

(for a unitary matrix X, it is X� D X�1). Matrices with special structures are given
specific names. For instance,

D D

0

B
B
@

1 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

1

C
C
A ;

U D

0

B
B
@

1 1 C 2i 4 C 2i 3

0 2 1 3

0 0 5 4i

0 0 0 1

1

C
C
A ; L D

0

B
B
@

1 0 0 0

1 � 2i 2 0 0

4 � 2i 1 5 0

3 3 4i 1

1

C
C
A : (2.4)
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Note also that in this example, L D U�. Matrices like D are called diagonal (zero
entries everywhere but on the main “diagonal”), whereas matrices like U and L are
called upper triangular and lower triangular, respectively, since only the upper (resp.
lower) part of the matrix is not identically zero. Note that it is very easy to check
whether a diagonal matrix is invertible. Indeed, it can be easily verified that a diag-
onal matrix with diagonal components the inverses of the original diagonal entries
is the sought after inverse. For the example above, we have D�1 D diag.1; 1

2
; 1

5
; 1/

(we have used here a short-hand notation, with obvious meaning). Therefore, if all
diagonal entries of D are nonzero, D is invertible, and vice versa. Similar considera-
tions can be applied for (upper or lower) triangular matrices, which are nonsingular
if and only if their diagonal elements are nonzero. Explicitly determining the in-
verse of less structured matrices is a much more difficult task. Fortunately, in most
applications this problem can be circumvented.

If we look closely at the definition of a matrix we can see that there are several
analogies to the definition of vectors we have used in the preceding sections. In fact
we can think of each column as a vector, for instance the first column of the ma-
trix C is the vector .1; 0; 0:05; 1:4 C 5i; 0/ a vector of the four-dimensional vector
space C4. More generally, any row or column of C can be viewed as a single vector.
In the following we will need both kinds of vectors, but we will follow the conven-
tion that we will use the name “vector” for the column orientation, i.e. matrices with
dimension n � 1. Since a vector is just a skinny matrix, we can go from a column to
a row vector via a transposition:

u D
0

@
1

2

3

1

A ; uT D .1 2 3/:

From now on, the use of row vectors will be explicitly indicated by means of the
transposition operation.

It can be shown that matrices are representations of linear transformations con-
necting vector spaces. In other words, an m � n matrix M is an application that
maps a vector u of an n-dimensional vector space U onto an element v of an
m-dimensional vector space V , that is

v D Mu:

The vector space U is known as the domain of M and the vector space V is called the
range. Another important vector space associated with a matrix M is the null space,
i.e. the subset of the domain such that for all u in this space, it holds Mu D 0.

The product of a matrix A D .ai;j / on a vector is defined as another vector
v D Au whose components are obtained by the row-by-column multiplication rule

vi D
mX

j D1

ai;j uj ; i D 1; : : : ; n:
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It can be noticed that the i th component of the resulting vector v is the scalar product
of the i th row of A with the given vector u. The matrix–vector product rule can be
used to define a matrix–matrix multiplication rule by repeatedly applying the rule
to each column of the second matrix, such that the element of the product matrix
C D AB of the q � m matrix A with the m � p matrix B is given by

ci;j D
mX

kD1

ai;kbk;j ; i D 1; : : : ; q; j D 1; : : : ; p:

Note that the resulting matrix C has dimension q � p. For the product to be cor-
rectly defined, the number of columns of the first matrix, in this case A, must be
equal to the number of rows of the second matrix, B. Note that this operation is not
commutative, that is, in general AB ¤ BA, even if both products are well defined.
On the other hand, matrices that do satisfy the commutative property are said to
commute with each other. Subsets of matrices that commute with each other have
special properties that will appear in the following. A simple class of commuting
matrices is given by the diagonal matrices: if D1 and D2 are diagonal matrices, then
it can be verified that it always holds that D1D2 D D2D1.

Our last basic fact concerning matrices is related to the generalization to matrices
of the vector notion of norm. In particular, we will use the Frobenius norm, which
is natural generalization to matrices of the Euclidean vector norm. More precisely,
given bA 2 Rn�m,

kAk2
F WD

mX

j D1

nX

iD1

a2
i;j ; (2.5)

which can be equivalently written as kAk2
F DD Pm

j D1 kaj k2, where aj is the j th
column of A (a corresponding relation holds for the rows). In particular, it holds that
kAk2 D trace.AT A/, where the trace of a matrix is the sum of its diagonal elements.
The definition naturally generalizes to complex matrices. It is also interesting that
the Frobenius norm is invariant under rotations, that is the norm remains unchanged
whenever we multiply an orthonormal matrix by the given matrix. In other words,
for any orthonormal matrix Q it holds that kAkF D kQAkF .

Exercises and Problems

1. Given the matrices A D
��1 �3

�1 2

�
and B D

�
0 �1

�3 1

�
, compute AB.

We have

AB D
��1 �3

�1 2

� �
0 �1

�3 1

�
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D
� �1.0/ � 3.�3/ �1.1/ � 3.1/

�1.0/ C 2.�3/ �1.�1/ C 2.1/

�
D
�

9 �4

�6 3

�
:

2. Given the matrix A above, compute AT .

We have AT D
��1 �1

�3 2

�
.

3. Given the matrix A above, and the row vector xT D .�1; 5/, compute xT A.

We have xT A D .�1; 5/

��1 �1

�3 2

�
D . .�1/.�1/ C 5.�3/; .�1/.�1/ C

5.2/ / D .�14; 11/.
4. Compute xyT with xT D .1; �3/ and yT D .2; �2/.

The result of this computation is the 2 � 2 matrix given by

xyT D
�

1

�3

�
.2 ; �2/ D

�
2 �2

�6 6

�
:

(In the computation, the vectors x; yT are viewed as 2 � 1 and 1 � 2 matrices,
respectively)

2.6 Rank, Singularity and Inverses

The maximum number of columns or rows that are linearly independent in a matrix
A is called rank, denoted in the following by rank(A). For a given m � n matrix A,
clearly rank(A) � minfn; mg. The rank can be used very efficiently to characterize
the existence of the solution of a linear system of equations. In matrix terms, a linear
system can be written as

Ax D b; (2.6)

where x represents the vector of the unknown variables, the entries of A the
system’s coefficients, and the components of b are the given right-hand sides of
each equation. The system in (2.6) can either have no solution, one solution or in-
finite solutions. Let us write A D .a1; a2; : : : ; an/, where ai , i D 1; : : : ; n are the
columns of A. By reading (2.6) backwards, we look for x D .x1; : : : ; xn/T such that
b D Ax, that is, we seek the coefficients x1; : : : ; xn, such that b D a1x1C� � �Canxn.
In other words, the solution vector x yields the coefficients that allow us to write b
as a linear combination of the columns of A. At least one solution exists if rank(A)
= rank(.A; b/), where .A; b/ is the matrix obtained by adding the vector b as a col-
umn besides A. This corresponds to saying that the nC1 vectors fa1; a2; : : : ; an; bg
are linearly dependent. The condition on the rank also shows that the existence of
solutions to the system is related to the rank of the coefficient matrix A. For square
matrices, using the definition of inverse, Ax D b is equivalent to A�1Ax D A�1b,
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that is x D A�1b. Hence, assuming that b is a nonzero vector, a unique solution x
exists if and only if A is nonsingular. A crucial result of linear algebra is the follow-
ing: an n � n (square) matrix A is invertible if and only if rank(A) = n. In particular,
this result implies that if A is singular, the columns of A are linearly dependent
(rank(A/ < n), or equivalently, there exists a vector x, not identically zero, such that
Ax D 0. We have thus found that a singular matrix is characterized by a non-empty
null space (cf. Sect. 3.5).

2.7 Decomposition of Matrices: Eigenvalues and Eigenvectors

A complex scalar � and a nonzero complex vector x are said to be an eigenvalue
and an eigenvector of a square matrix A, respectively, if they satisfy

Ax D �x: (2.7)

A vector satisfying (2.7) has the special property that multiplication by A does not
change its direction, but only its length. In the case of Hermitian A (i.e. A D A�),
it can be shown that such vectors arise in the problem of maximizing hx; Axi, over
all vectors x such that jjxjj D 1. It is then found that the solution must satisfy
the equation Ax D �x, where � is a scalar. The pair .�; x/ is called an eigenpair
of A. The set of all eigenvalues of A is called the spectrum of A. It is important
to notice that eigenvectors are not uniquely determined. For instance, if x is an
eigenvector associated with �, then ˛x with ˛ ¤ 0 is also an eigenvector associated
with �. Finally, we observe that if A is singular, then there exists a vector x such
that Ax D 0 D 0x, that is, � D 0 is an eigenvalue of A and x is the corresponding
eigenvector.

A fundamental result is that each square matrix A of dimension n has exactly
n complex eigenvalues, not necessarily all distinct. In case of multiple copies of
the same eigenvalue, such a number of copies is called the multiplicity of that
eigenvalue.1 On the one hand, there can be at most n linearly independent eigen-
vectors. If an eigenvalue has multiplicity m larger than one, then there may be at
most m linearly independent eigenvectors associated with that eigenvalue. On the
other hand, eigenvectors corresponding to different eigenvalues are always linearly
independent. Therefore, for a general matrix A, the only case when there may not
be a full set of independent eigenvectors is when there are multiple eigenvalues.

The case of Hermitian matrices is particularly fortunate, since in this case, there
always exists a set of n linearly independent, and even mutually orthonormal, eigen-
vectors, regardless of the eigenvalue multiplicity. For a general square matrix A, if
there exist n linearly independent eigenvectors, A can be written as

A D XƒX�1; (2.8)

1 To be more precise, this number is the algebraic multiplicity of the eigenvalue.
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where ƒ is a diagonal matrix having the eigenvalues of A as diagonal entries, while
X D Œx1; x2; : : : ; xn� is a matrix formed by normalized eigenvectors. The inverse
of X exists in this case because we are assuming that the eigenvectors are linearly
independent, namely X has rank n. If a form as in (2.8) can be written, we say
that A is diagonalizable. In the important case of Hermitian matrices, thanks to the
orthogonality of the eigenvectors, we can write

A D XƒX�

where X is the matrix of the eigenvectors, normalized so as to have unit norm.
Therefore, for Hermitian matrices, no inversion is required, as X� D X�1. If A is
real and symmetric, then the eigenpairs are real.

It can be shown that the eigenvalues can be found by solving the following scalar
equation as a function of �,

det.A � �I/ D 0; (2.9)

whose left-hand side is a polynomial (the characteristic polynomial) of degree n

in �. Afterwards, the eigenvectors are obtained by solving the singular system

.A � �i I/xi D 0; i D 1; : : : ; k;

where the index i runs over all k distinct eigenvalues found from solving (2.9). From
the theory of polynomials, it follows that if A is real, then its eigenvalues are real
or, they appear as complex conjugates, that is, if � is a complex eigenvalue of A,
then N� is also an eigenvalue of A. Eigenvectors corresponding to real eigenvalues of
a real matrix A, can be taken to be real. Finally, Hermitian matrices have only real
eigenvalues.

Nondiagonalizable matrices cannot be written in the form (2.8) with ƒ diagonal.
In particular, a nondiagonalizable matrix of dimension n does not have n linearly
independent eigenvectors. This situation may only occur in the presence of multiple
eigenvalues (see Exercises 4 and 5 at the end of this chapter).

The transformation indicated by (2.8) is an example of a class of transformations
known as similarity transformations. Two matrices A and B are said to be similar if
they can be obtained from each other by a similarity transformation via a nonsingu-
lar matrix S, that is

A D SBS�1: (2.10)

Similar matrices share important properties, for instance, they have the same set of
eigenvalues. The similarity transformation is equivalent to a change of basis in the
representation of the matrix, in fact it can be shown that the transformation (2.10) is
equivalent to changing the basis of the column vectors of the matrix B, resulting in
different coordinates.
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2.8 The Singular Value Decomposition

Square as well as rectangular matrices can always be diagonalized if we allow the
usage of two transformation matrices instead of one. Any m � n matrix A with
m � n, can be decomposed as:

A D U
�

†

0

�
V�; (2.11)

where U D Œu1; u2; : : : ; um� and V D Œv1; v2; : : : ; vn� are square, unitary ma-
trices of dimension m and n, respectively. Matrix † is diagonal and real, † D
diag.�1; �2; : : : ; �n/, with �iC1 � �i , i D 1; : : : ; n � 1, and �i � 0, i D 1; : : : ; n.
A completely analogous decomposition holds for n � m. The decomposition in
(2.11) is called singular value decomposition (SVD); the columns of U and V are
left and right singular vectors, respectively; the real numbers �1; �2; : : :, �n are
called singular values. The following relations can be derived,

AA� D U†2U�; A�A D V†2V�;

indicating that the columns of the matrix U are the eigenvectors of the matrix AA�,
while the columns of V are the eigenvectors of the transpose matrix A�A. Using the
orthogonality of U and V in (2.11), we can write

AV D U
�

†

0

�
; A�U D V.†; 0/:

If A is real, then all matrices have real entries. A series of very important results links
the SVD with the determination of the rank of matrices. It can be shown that the
rank, i.e. the number of linearly independent columns or rows in a matrix, is given by
the number of non-zero singular values. The problem of finding the rank of a matrix
can therefore be reduced to the problem of finding the number of nonzero singular
values. Full rank square matrices of dimension n, have therefore exactly n strictly
positive singular values. Comparing (2.8) with (2.11) we can see that the singular
values decomposition extends the diagonalization property of the eigenvalues to
more general matrices, including rectangular ones. The eigenvalue decomposition
looks for a similarity transformation to a diagonal form, whereas in the singular
value decomposition, we look for two, in general different, unitary transformations
to a diagonal form.

We next briefly discuss the tight connection between the SVD and certain matrix
norms that are induced by a vector norm. Let A be an m � n matrix. Using the
Euclidean norm we can define

kAk2 D max
x¤0;x2Cn

kAxk2

kxk2

:
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It can be shown that the vector x that achieves this maximum is the first right singular
vector, v1, so that kAk2 D kAv1k2 D �1. The SVD allows us to also determine the
matrix of low rank that is closest to the original matrix A in the 2-norm. More
precisely, let

Ak D .u1; : : : ; uk/

0

B
@

�1 � � � 0

0
: : : 0

0 0 �k

1

C
A .v1; : : : ; vk/�

be the matrix formed by the first k singular triplets. In other words, Ak is the matrix
obtained by a truncated SVD of rank k. Then it holds

min
B2Cm�n;rank.B/Dk

kA � Bk2 D kA � Akk2 D �kC1:

The relation above says that Ak is the rank-k matrix that is closest to A when using
the 2-norm. Moreover, it provides an explicit value for the error of such approxima-
tion, which is given by the first neglected singular value, �kC1.

The SVD can also be employed for computing the Frobenius norm of a matrix;
see (2.5). Indeed, it holds that

kAk2
F D

minfn;mgX

j D1

�2
j ;

where �j ’s are the singular values of the n � m matrix A.
The singular value decomposition provides a formidable tool to replace the in-

verse of a singular or rectangular matrix. Assume that an m � n matrix A with
m � n is decomposed as in (2.11), where † is nonsingular. Then the Penrose
pseudo-inverse of A (cf., e.g., Golub and Van Loan 1996) is defined as2

A� WD V
�
†�1 0

�
U�: (2.12)

Note that V and U are unitary, so that

AA� D U
�

I 0

0 0

�
U�:

Note that in general, AA� ¤ I, unless A is square and nonsingular.
The definition above can be generalized to any singular square matrix.
Finally, we make a simple connection between eigenvalues, singular values and

singularity of a square matrix. Using the SVD of a given matrix A, we can say that A

2 Common notations for the pseudo-inverse also include A� and AC.
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is nonsingular if and only if † has nonzero diagonal elements, indeed A�1 exists if
and only if †�1 exists. A similar consideration holds with respect to the eigenvalue
decomposition.

2.9 Functions of Matrices

It is possible to define functions of matrices in analogy to the familiar function on the
real and complex numbers; see, e.g., Horn and Johnson (1991) for a more detailed
treatment of this topic. For a given square matrix A, a matrix polynomial of degree
k is defined as

p.A/ D ˛0I C ˛1A C ˛2A2 C ::: C ˛kAk ; (2.13)

where the scalar coefficients ˛0; : : : ; ˛k can be real or complex. The polyno-
mial p.A/ is a matrix and there is no ambiguity in its construction, as long
as matrix powers are carried out with the matrix product rule. If A is a diago-
nal matrix, that is A D diag.a1;1; : : : ; an;n/, then it can be easily verified that
p.A/ D diag.p.a1;1/; : : : ; p.an;n//, that is, the polynomial is applied to the sin-
gle diagonal entries (cf. Exercise 6). We stress that this is only true for diagonal
matrices, when their dimension is greater than one. If A is diagonalizable, that is
A D XƒX�1, then it is possible to write

p.A/ D p.XƒX�1/ D X

2

6
4

p.�1/ � � � 0

� � � : : : 0

0 � � � p.�n/

3

7
5X�1 D Xp.ƒ/X�1;

where we have used the property that p.XAX�1/ D Xp.A/X�1 (this can be easily
deduced first for Ak , for any k > 0, and then for p.A/ using (2.13); see also Exercise
6). The calculation is rather interesting if we replace the polynomial p with a more
general function f , such as exp.x/, ln.x/,

p
x, etc. Assume that f is a smooth

function at the eigenvalues of A. Then, as before, for diagonalizable A we can write

f .A/ D f .XƒX�1/ D X

2

6
4

f .�1/ � � � 0

� � � : : : 0

0 � � � f .�n/

3

7
5X�1 D Xf .ƒ/X�1:

In general the definition of a function of a matrix can be made rigorous without
resorting to the diagonalization of A, so that the matrix is not needed to be diag-
onalizable. We will assume that the function and the matrix we will use are all
sufficiently well-behaved that the above definition can be used without special care.
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Exercises and Problems

1. Given the matrix A D
�

2 �4

1 0

�
, and the vector bT D .�2; 1/, verify that the

vector xT D Œ1; 1� is the (unique) solution to the system Ax D b.
We need to check that the definition is satisfied. Indeed, we have

Ax D
�

2.1/ � 4.1/

1.1/ C 0.1/

�
D
��2

1

�
D b:

Note that A is nonsingular, since the first row of the matrix is not a multiple of the
second row (this is a sufficient consideration only in R2). Therefore the system
solution is unique.

2. Given the matrix A D
�

3 �4

�1 1

�
, verify that xT D .�1 � p

5; 1/ and � D
2 C p

5 are respectively an eigenvector and the associated eigenvalue of A.
We need to check that the definition is satisfied. Indeed, we have

Ax D
�

3.�1 � p
5/ � 4.1/

�1.�1 � p
5/ C 1

�
D
��7 � 3

p
5

2 C p
5

�
and �x D

��7 � 3
p

5

2 C p
5

�
:

3. Show that the eigenvalues of an n � n real triangular matrix A coincide with its
diagonal entries.
This can be checked by explicitly writing det.A � �I/ D 0. Indeed, we have
det.A � �I/ D .� � a1;1/.� � a2;2/ � : : : � .� � an;n/ D 0, which is satisfied for
� D ai;i , i D 1; : : : ; n.

4. Show that the matrix A D
�

2 1

0 2

�
only has one linearly independent

eigenvector.
The matrix is triangular, therefore the eigenvalues are the diagonal elements (see
exercise above). Hence, �1 D �2 D 2. Using the definition Ax D �x, eigenvec-
tors of A are obtained by solving the singular system .A � �I/x D 0 with � D 2.
We have

.A � �I/x D
�

0 1

0 0

��
x1

x2

�
D
�

0

0

�

whose solution is x D .x1; 0/T , x1 2 R. No other linearly independent solutions
exist.

5. Show that the matrix A D
0

@
2 1 0

0 2 0

0 0 2

1

A has two linearly independent

eigenvectors.
Proceeding as above, one finds that �1 D �2 D �3 D 2, and there are two lin-
early independent eigenvectors, x D .x1; 0; 0/T and y D .0; 0; y3/T , x1; y3 2 R.
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6. Show that if A is diagonal, A Ddiag.a1;1; : : : ; an;n/, then p.A/ D diag.p.a1;1/;

: : : ; p.an;n// for any polynomial p.
The result follows from observing that for any k � 0, Ak D diag.ak

1;1; : : : ; ak
n;n/.

7. Given a square diagonalizable matrix A D XƒX�1, show that p.A/ D
Xp.ƒ/X�1.
We write p.A/ D ˛0IC˛1AC� � � ˛kAk . We have A2 D AA D XƒX�1XƒX�1 D
Xƒ2X�1. This in fact holds for any j , that is Aj D Xƒj X�1. Therefore,

p.A/ D ˛0XX�1 C ˛1XƒX�1 C � � � C ˛kXƒkX�1 D Xp.ƒ/X�1;

where in the last equality the matrices X and X�1 have been collected on both
sides.



Chapter 3
Basic Statistical Concepts

3.1 Introduction

A key scientific challenge is to better understand the functioning of the environment.
Informed analysis of observations can make a strong contribution to this goal.
The most insightful analysis requires knowledge of the relevant environmental
processes and of statistical methodologies, that can lead the analyst towards a
true understanding.

Compared to other aspects of the environment, climatology has a rich archive
of direct observations. This has created an opportunity for the application of a
wide range of statistical methods. This chapter reviews some of the basic statistical
concepts that have been applied to better understand climate processes and to repre-
sent physically based predictability in the climate system. Like many environmental
datasets, climate observations are sampling processes that evolve in space and time;
the analysis of spatial patterns in time series of fields is the core of this book.
Most reference is made to the application of special statistical techniques to study
the fluctuation of climate from year to year. An additional special challenge is given
by the size of the historical record. Typically, an analyst is faced with about 30–40
years of reliable data, which is sufficiently long to tease out some clues about the
functioning of the climate system, but sufficiently short to lend itself to considerable
imaginative interpretation. Thus, it becomes important to have a good appreciation
for the effective sample size, so as to apportion the appropriate weight to the result in
the overall investigation. When estimated properly, statistical significance allows us
to have the correct degree of surprise at the statistical outcome, and therefore allows
us to give the correct weight to this clue in our attempt to understand the big picture.

3.2 Climate Datasets

Climate observations were traditionally made at a known location. On land, this
would be a climate station; over the ocean, this would normally be a ship, such
that the exact location of the observations needed to be reported in addition to the
climate state. The raw climate datasets from satellites can take a different form,

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 3,
c� Springer Science+Business Media B.V. 2010
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being samples of space–time averages across the domain covered by the satellite.
The blending of traditional and satellite datasets is therefore a critical step. In the
context of climate analysis, data usually represent distinct observations at different
times, possibly but not necessarily obtained at constant time intervals. In this case
the term time series is usually employed for the data.

Since climate evolves in a continuous field, climate observations are often in-
terpolated to a regular grid before analysis. These interpolation schemes may take
in mind the processes and scales in the physical environment, and the ability of the
data to resolve those scales. A good example are datasets of SST (monthly mean Sea
Surface Temperatures). More recently, physically based interpolation schemes have
been used to generate complete fields that are dynamically and physically consis-
tent. These datasets have become known as the reanalysis datasets. They represent
an ambitious advance in the creation of environmental datasets. In many ways, the
user of such datasets needs more than ever to be aware of the types of data that were
used in the study. Yet with careful analysis, they can provide an extremely powerful
tool to deepen the understanding of the climate system.

The family of methods that are described in the following chapters are often
applied to gridded datasets, such that the vectors derived from the analysis can be
plotted as spatial patterns. However, there is no need to restrict the analysis to the
gridded datasets. Analysis can equally be made of individual station time series.
If the network of stations is sufficiently dense, contours of the weights can again be
constructed to better communicate the meaning of the derived pattern. Alternatively,
regional indices of climate, or regional indices of other environmental indicators
can be used.

3.3 The Sample and the Population

An important concept in statistics is the relation between sample and popula-
tion. Applying this concept to the analysis of short environmental series is not
straightforward. It is assumed that the sample is taken from an infinite size pop-
ulation. The challenge is to infer characteristics of the population from the sample.
The problem for climate science is that most properties of the system are not sta-
tionary. The problems of decadal climate variability have been mentioned above.
In addition, the relationship between two variables need not be stationary. It can
depend on the background climate state that prevailed over the analysis period. In
fact, the degree of association between two variables may actually have varied dur-
ing the 30 year period itself – though the sample size will likely be too small to
deduce with any certainty that a real change took place. Let us pause to ask what
we would mean by “a real change”. Assume that we find a run of 10 years when
the correlation is lower than during the whole historical record. What we want to
know is the following: in case the interannual variability were repeatedly run with
the prevailing background climate state of those 10 years, would that low correla-
tion be maintained? or, would the 10 years of low correlation be merely due to the
inevitable sampling fluctuations that occur even when the correlation between two
variables is statistically stationary?
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In addition, how does the situation change when we take a sample of a correlation
coefficient over 30 years? The question we are trying to answer by taking that sam-
ple is: if the same background climate state were to continually operate and generate
an infinite number of years of interannual variability, what would the correlation
between the two variables be? In other words, the population is an imaginary in-
finite set of realizations generated from a given background climate state. For the
purposes of making inferences (see statistical significance section below), we must
assume that the correlation coefficient was stationary over the 30 year period itself.

3.4 Estimating the Mean State and Variance

A critical step in climate analysis is nearly always the estimation of the background
mean state. Given the data x1; : : : ; xn, the mean, or average, is given by

Nx D 1

n

nX

iD1

xi :

The computation of the mean is crucial to allow estimation of climate anomalies,
given by the deviation from the mean, that is,

x0
i D xi � Nx:

The climate anomaly represents the departure from the assumed population mean at
a given time for a given time series. If there is a systematic bias in the estimation of
the mean from one location to another, this can introduce bias in the covariance of
anomalies between the two series; see later chapters for a more detailed discussion.
Most widely available datasets have given careful consideration to the estimation of
the mean from which anomalies are calculated.

For the background mean state for a dataset, the dataset creator will have con-
sidered such features as the period with best data coverage. If one is working
with the subsequent anomaly dataset, one still has to make a choice over which
years to run your analysis. This requires careful consideration and some experi-
mentation, because of multi-year (decadal and beyond) variability in the climate
system. Choice of period can greatly impact the amount of variance represented
by a decadal mode of variation. For example, an analysis over West Africa for
1971–2000 contains little decadal variability, whereas 1950–1980 is dominated by
a decadal fluctuation.

The sample variance of the observed data is defined as

s2 D 1

n � 1

nX

iD1

.xi � Nx/2:



28 3 Basic Statistical Concepts

In particular, we note the multiplicative factor 1
n�1

, as opposed to the more intu-
itive factor 1

n
. The new factor allows the variance defined above to represent an

unbiased estimator of the population variance; see Clarke and Cooke (1998). To in-
tuitively explain this fact, we note that in s2 there are n � 1 degrees of freedom,
rather than n, because x1; : : : ; xn are related via the mean Nx. Therefore, roughly
speaking, the division by n � 1 takes into account the actual number of degrees of
freedom in the data.

The variance provides a measure of dispersion of data around the mean. The
larger the variance, the more spread the data. It is important to remark that the
variance is expressed in the square of the data measure unit. For this reason, its
square root s, called the standard deviation, is also referenced. Both statistics in-
troduced above are dimensional quantities. To be able to perform a meaningful
comparison among data expressed in different measure units, observational data
are usually standardized to adimensional numbers. This is achieved by using the
following transformation:

zi D xi � Nx
s

: (3.1)

The standardized variable has mean zero and standard deviation equal to one.

Exercises and Problems

1. Given the data f1:2; �1:0; 1:1; 0:8; �0:4; 0:95; �0:2g, determine their mean,
variance and standard deviation. Then, standardize the variables by means
of (3.1).
We have n D 7. Simple computation gives Nx D 0:35, s2 D 0:75583 and
s D 0:86939. Standardization using (3.1) provides the following new data (final
results rounded to the first five decimal digits),

f0:97770; �1:5528; 0:86268; 0:51761; �0:86268; 0:69014; �0:63263g;

for which we obtain Nz D 0 and s.z/ D 1.

2. Given the data f1:2; �19; 2:68; 0:8 � 3:0; 20:0; �0:2g, compute mean, variance,
standard deviation. Compare the results with those of the previous exercise.
We have n D 7. Simple computation gives Nx D 0:3542, s2 D 129:7 and s D
11:39. Although the mean is basically the same as for the previous data, the
variance and the standard deviation are much larger in this case. This shows
that these data are more spread around the mean, as it can be clearly noticed by
directly inspecting the data.
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3.5 Associations Between Time Series

The basis for applying EOF methods derives from the realization that the evolution
of climate processes in time leads to relationships between time series of differ-
ent atmospheric variables at nearby and remote locations. There are many ways to
measure the nature and extent of a relationship between two time series. One of the
most common is the Pearson correlation coefficient. This is closely related to the
concept of least squares linear regression. To illustrate this concept, we first do the
simplest thing possible to explore the relationship between two time series – we
make a scatter plot of the observation pairs .xi ; yi / (see the symbols “�” in Fig.
3.1).

Making an assumption of a linear relationship, we try to draw a straight line
through the data points. We can fit the line to minimize the sum of squared errors
in the Y variable. This line captures some of the variance in the independent series.
In mathematical terms, this line yields the “best approximation” straight line, in the
least squares sense, and it is given by the equation y D b1x C b0, with

b1 WD

X

i

.xi � Nx/.yi � Ny/

X

i

.xi � Nx/2
; b0 D Ny � b1 Nx:

The fraction of variance represented, corresponds to the degree of association (cf.
Fig. 3.1). Analogously, the line x D c1y C c0 can be drawn to minimize the sum
of squared errors in the X variable. The fraction of variance explained is the same
as for the Y variable. The combination of the two coefficients b1 and c1 yields the

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

Fig. 3.1 Scatter plot of observations and fitting line
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correlation coefficient r , which provides a measure of association among the two
variables, and it is defined as

r2 D b1 � c1 D

 
X

i

.xi � Nx/.yi � Ny/

!2

X

i

.yi � Ny/2
X

i

.xi � Nx/2
:

To generalize this concept to multidimensional data, assume now that a set of m � n

data x1;1; x1;2; : : : ; x1;n; : : : ; xm;n is given. Here we are considering m variables
and n observations (time series of length n for each of the m variables). Let Nxj ; Nxk

be the means associated with the time series j and k. Analogously, we define the
standard deviations sj , sk . For each pair of variables, the associated correlation
coefficient is given by

rj;k D 1

n � 1

nX

iD1

.xj;i � Nxj /.xk;i � Nxk/

sj sk

:

For the i th observation, i D 1; : : : ; n, the sum above multiplies the standardized
j th and kth variables. The coefficient associated with these two variables is small
(large) in absolute value, if both standardized variables are small (large), in all n

observations. The normalization operates such that the correlation takes values be-
tween �1 (all points would lie on a backward sloping line) and 1 (all points would
fall on a forward sloping line, cf. Fig. 3.1). Note that rj;j D 1 for all j . In case
standardization is not used, a related measure of association between deviations is
the covariance coefficient, which can be viewed as a non-normalized correlation:

sj;k D 1

n � 1

nX

iD1

.xj;i � Nxj /.xk;i � Nxk/: (3.2)

Here sj;j D s2
j is the variance of the j th variable. The matrix S D .sj;k/ of all

coefficients above is called the (cross-)covariance matrix and is symmetric, that is
the covariance between the j th and kth variables is the same as the covariance
between the kth and j th variables. The total variance of the field is then given by

T D 1

n � 1

mX

iD1

nX

j D1

.xi;j � Nxi /
2 D

mX

iD1

si i D trace.S/; (3.3)

showing that the total field variance is just the trace of the covariance matrix.
Both the above are related to the squared error departures from a linear relation.

There are other ways to measure association. An example is the rank order
Spearman correlation coefficient; see, e.g., Clarke and Cooke (1998).
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Other measures could be determined based on absolute error. For instance, the
Linear Error in Probability Space (LEPS) works on the mean absolute difference in
the ranking, or cumulative probability. Associations could be measured in terms of
the extent to which variance is explained by some specified non-linear relationship,
such as quadratic or log linear. The correlation coefficients introduced above can
be collected in one matrix, that more clearly visualizes the association of each time
series with all others.

For instance, the correlation matrix is given by

R D

0

B
BB
@

r1;1 r1;2 � � � r1;m

r2;1 r2;2 � � � r2;m

:::
: : :

: : :
:::

rm;1 rm;2 � � � rm;m

1

C
CC
A

:

As will be shown, there are special properties of correlation and covariance matri-
ces that can be uncovered by a Principal Component Analysis. Matrix properties
of other measures of association have not been as much investigated; they will be
alluded to in the following chapters.

Exercises and Problems

1. Given the data x D f�1:1; 0:8; 1:2g and y D f0:6; 0:9; 2:4g, determine the co-
variance and correlation matrices.
We have m D 2 variables, and n D 3 observations. Therefore, Nx D 0:3,
Ny D 1:3, s.x/ D 1:2288 and s.y/ D 0:9643, so that the standardized variables
are z.x/ D f�1:1393; 0:40689; 0:73241g and z.y/ D f�0:72587; �0:41478;

1:1406g. The correlation coefficient is given by r1;2 D 1=2.z.x/1z.y/1 C
z.x/2z.y/2 C z.x/3z.y/3/ D 0:74 (note that the computation of r1;2 is actu-
ally done with full accuracy and only the first 2 decimals are reported). Hence,
the corresponding matrix is

R D
�

1 0:74

0:74 1

�
:

The value of r1;2 shows a significant positive correlation between the two vari-
ables. Analogously, the covariance is given by s1;2 D 0:885.

2. Given the data x D f�1:1; 0:8; 1:2g, y D f0:6; 0:9; 2:4g and z D f4:2; �1:1;

6:8g, determine the covariance and correlation matrices.
We have m D 3 variables, and n D 3 observations. The first two sets are as in the
previous example. We have, z D 3:3, s.z/ D 4:0262, so that the new standardized
variable is z.x/ D f0:22354; �1:0929; 0:86931g. We obtain r1;3 D �0:00313

and r2;3 D �0:64. The correlation between the y and z variables is significant,
whereas that between x and z is negligible. Analogously, we obtain s3;3 D 16:21,
s1;3 D �0:155 and s2;3 D 2:49.
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3. Given the data x D f�1:1; 0:8; 1:2g, y D f0:6; 0:9; 2:4g and z D f104:2;

�100:1; 126:8g, determine the covariance coefficients. Comment on the role of
dimensionality.
Only the third variable has changed. We have s3;3 D 1562:2, s1;3 D �40:90 and
s2;3 D 53:29. Note that the larger variability is due to the significantly different
unit of z, which is also reflected in the covariance coefficients.

3.6 Hypothesis Testing

In an attempt to infer conclusions on an unobservable population, we can set about
estimating the extent to which our available sample can tell us something about
that population. Let us consider the simple example of testing whether the popula-
tion mean is zero. Statistical significance is estimated by formally expressing two
possibilities that we need to choose between. Here, the first one is that the popu-
lation mean is zero. As an alternative possibility, we can say that the population
mean is not zero (other options may be more significant in some cases, such as
“mean greater than zero”). Formally, the original hypothesis is termed the null hy-
pothesis (H0), whereas the second one is called the alternative hypothesis (H1), and
these are written as

H0 W � D 0; H1 W � ¤ 0:

We want to distinguish between these two possibilities in a way that allows us to
know the likelihood that our choice is in fact wrong (i.e. how surprised we should
be if our decision turns out to be the wrong one). We start out by assuming that H0

is true. If H0 is true, then the sample should obey certain statistical properties. If the
sample does not reflect these properties, then we start to doubt H0. For example, we
can define a test statistic whose distribution we know under the assumption that H0

is true and we explore to what extent our sample obeys this distribution.
A particularly popular distribution is the normal distribution, as it represents an

effective model for data stemming from a variety of applications. Data following
a normal distribution distribute around their mean with a probability that decreases
significantly as data move away from the mean. The set of normally distributed vari-
ables with mean � and variance �2 is usually denoted by N.�; �2/. The probability
of normal data distributes along a bell-shaped curve, as described in the plots of
Fig. 3.2 for various values of � and � . In other words, the probability that a sample
taken from an N.�; �2/ normal population has mean in the interval Œ� � d; � C d�

equals the area of the region below the bell-shaped curve, with extremes on the
ascissa at � � d and � C d . A normally distributed variable x with mean � and
variance �2 can be transformed into a standardized normally distributed variable
in N.0; 1/ by means of the change of variable z D .x � �/=� . Reference values
for a variable z in N.0; 1/ are tabulated and can be used for hypothesis tests. Most
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Fig. 3.2 Normal distributions for various values of � and �

statistical computer software provides a pretty accurate evaluation of the probability
and other quantities associated with the normal distribution.

The trick in hypothesis testing is to define powerful test statistics, such as the
standardized statistic

z D x � �

se
;

where se is the standard error of x, given by

se D �p
n

;

� is the population standard deviation and n is the sample size. The standard error
represents the standard deviation of the sample mean distribution. In other words,
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imagine estimating the mean of the population ten times, each time taking a sample
of n individuals from the population. The ten resulting sample means will all be
slightly different. The expected standard deviation of the sampled means is what
we refer to as the standard error of the estimated mean.

Assume that H0 is true. If the sample is sufficiently large, namely if n is suffi-
ciently large, then z approximately behaves as if it were normally distributed with
mean 0 and standard deviation 1.

Now, if the distribution of z departs substantially from 0, then we may start to
doubt H0. If the variable z were exactly normally distributed with zero mean and
unit variance, then only on 2:5% of occasions z would take a value of C1:96 or
higher. Likewise, on a further 2:5% of occasions, z would take a value not greater
than �1:96 (cf. Fig. 3.3). That is, there is a 5% chance of the absolute value of z be-
ing greater than 1.96. So, if z takes an absolute value greater than 1.96, such a result
is certainly quite surprising if in fact, the true mean is zero (surprising because we
only expect it to happen on 5% of occasions when we sample a population mean
with mean 0). Note that we can never be certain that H0 is wrong. For statistical
significance, we may decide that something that would only happen by chance on
5% of occasions is just too surprising, and that the wisest choice to make in this
situation is to conclude that the available evidence does not support H0. That is, at
the 5% level of significance, we reject H0 and accept the alternative hypothesis H1,
that the mean is not equal to zero. However, in terms of acquiring clues about the
overall functioning of the environment, we may prefer not to work in the discrete
terms of rejection or acceptance of H0. Rather, acknowledging that using statis-
tics alone, we can never distinguish between the two hypotheses with certainty, we
may prefer to note the likelihood that H0 can be rejected based on statistics alone,
and absorb this information into broader evidence based on physical theories and
physically based models.

The above approach estimates the probability of rejecting H0 by starting with
the assumption that H0 is actually true. This is the usual way to frame a statistical

−1.96 1.96

Fig. 3.3 Normal distribution. The area of the region below the curve and absissas in Œ�1:96; 1:96�

is equal to 0.95
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significance test, on the premise that the analyst is usually interested in whether H0

can be rejected, such as with whether a correlation coefficient is non-zero. Here, if
we choose to reject the idea that the true correlation is zero, what is the probability
that we are wrong (and in fact, there is a linear association between the two vari-
ables). This probability of wrongly rejecting H0 is often termed the probability of
making a Type I error, and is the statistical significance probability, alpha. However,
there is another error type that can be made, usually referred to as Type II error,
that of accepting H0 when in fact H0 should be rejected. This probability can also
be estimated assuming the distribution of test statistics. However, it is generally not
considered as useful as the Type I error probability, that focuses on whether we can
reject H0.

The distribution of the reference statistic z is easy to derive and work with. In
many instances the test statistic is more complex. A typical complication appears
when the standard deviation of the population is not known (of course, this is usually
the situation we find ourselves in). In this situation, we can use the Student statistics,
or t-statistic, in which the population standard deviation is replaced by the sample
standard deviation, that is

t0 D x � �

Ns
p

n (3.4)

The new variable t0 depends on n, more precisely on n � 1, and for each value of n,
t0 follows a specific distribution. Is it important to stress that to be able to employ
the Student distribution as test statistic, we need to assume that the given sample
comes from a normal distribution.

As n grows, the Student distribution increasingly resembles the normal distri-
bution. The likelihood of t0 exceeding a reference value is tabulated, for different
values of n � 1, called the degrees of freedom, Df; which is related to the size
of the available sample. The degrees of freedom is a complicated issue for many
climate analyses. The above holds if each term in the sample is independent. How-
ever, in many climate time series, adjacent observations are correlated in time, and
this reduces the effective degrees of freedom (and can complicate the distribution
of the test statistic). This is particularly a challenge for estimating the significance
of the relationship between two variables. The correlation coefficient significance is
very difficult to estimate because of this effect; see von Storch and Zwiers (1999).
This problem transfers into the estimation of significance for EOFs, since they them-
selves are summaries of the cross-correlations/covariances in datasets.

Exercises and Problems

1. Assume that a sample of 100 units is taken from a population which was in
the past known to have mean � D 12:3 and standard deviation � D 15. The
computed sample mean is x D 14:2. Carry out a hypothesis test with 5% level
of significance, to analyze whether the population mean has changed.
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We set H0: � D 12:3 and H1 W � ¤ 12:3. We have z D .x � �/=� D 0:12.
The critical region for 5% level of significance would be jzj > 1:96, therefore
the new variable z is well away from the critical region. We do not reject the null
hypothesis.

2. What would happen in the example above if the standard deviation were � D
0:9? What if the significance level were 1%?
With the same framework as before, we have z D .x � �/=� D 2:11, hence
this variable falls within the critical region jzj > 1:96. We have to reject the null
hypothesis in favor of the alternative hypothesis H1 for a 5% level of signifi-
cance. For a significance level equal to 1%, the corresponding critical region is
jzj > 2:57, so that the null hypothesis would not be rejected.

The inherent difficulty associated with the effective number of degrees of freedom
in the Student statistics is one of the reasons why alternatives such as Monte Carlo
estimates of significance are attractive. To illustrate the concept, consider that we
have two time series of length 30 years. Each time series has serial correlation and
can be represented by an autoregressive process:

xt D axt�1 C zt : (3.5)

We can use random number generators in combination with the above model to
simulate 500 pairs of time series with the same serial correlation properties as the
original two series. The distribution of the 500 correlations between each randomly
generated pair of series is now constructed empirically. We expect the mean of the
correlations calculated to be zero, but the spread will depend on the degree of au-
tocorrelation in the two series. If the pair of series are highly auto-correlated, the
location of the correlation magnitude that occurs on 5% of occasions will be much
higher than if the pair of series were uncorrelated. Now we are using the correlation
itself as the test statistic, knowing the distribution of the sample correlations under
the assumption that the true population correlation is 0. The correlation magnitude
corresponding to the 5% significance level can be found by identifying the thresh-
old above which were found only 5% of the sample correlations. The temporal d.f.
problem is also present for methods devised to estimate the statistical significance of
EOFs. Higher percentage of variance explained are expected by chance, when time
series used in the EOF analysis contain serial correlation. Thus caution is needed
not to place excessive weight on significance estimates of EOFs when series have
serial correlation.

3.7 Missing Data

Dealing with missing data is an important aspect for application of EOF methods.
In some datasets, the fields will have been made complete for the analyst, in which
case the analyst should investigate carefully the way the data were interpolated and
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possible consequences for EOF analysis as discussed below. The EOF methods
are applied to correlation and covariance matrices. It is tempting to calculate
correlations using the available data for each pair of series, assuming that this gives
the best estimate of the correlation between each series, even if some correlations
are based on a smaller sample than others. However, this approach can lead to prob-
lems with the inversion of the correlation/covariance matrices to derive the EOF
solutions. It is usually best to make all series complete in some way over the analy-
sis period.

Usually, the analyst decides on a fixed analysis period (say, 1961–1990) and de-
cides on the maximum number of missing values that is acceptable for a series to be
included (say, at least 25 out of 30 values must have data). A simple and quite robust
solution to missing data is to set all missing values in a series equal to the mean of
the available data for that series. This will ensure the missing values are all zero
anomalies when the correlation/covariance matrices are calculated. Zero anomalies
have least impact on the correlation/covariances. While it can reduce some genuine
cross correlations between time series and this can distort the EOF solutions, it is
nonetheless a cautious conservative approach and as such, is an attractive solution.
Application of more sophisticated interpolation methods requires care for any in-
crease in correlations/covariances that it may introduce into the datasets.



Chapter 4
Empirical Orthogonal Functions

4.1 Introduction

The atmospheric fields are three-dimensional fields by nature, the variation in
longitude, latitude and altitude of winds, temperatures and the other quantities are
normal. A major jump forward in the development of climate science was reached
when it was realized that the analysis of simultaneous values of the variables con-
tained significant information. Indeed, to advance scientific understanding it is
essential to have a view of the relation that links together various climate variables,
for instance the temperature and the pressure in various places.

The covariance matrix is the statistical object that rigorously describes such rela-
tions. Let us consider the case of monthly time series data, for instance temperatures,
for stations in m locations and for a period of n months. Each station can be repre-
sented by a vector, xi D .xi .1/; xi .2/; : : : ; xi .n//; and the stations can be arranged
in an array;

x1 D Œx1.1/ x1.2/ ::: x1.n/�

x2 D Œx2.1/ x2.2/ ::: x2.n/�
:::

:::
:::

:::
:::

xm D Œxm.1/ xm.2/ ::: xm.n/�:

Organizing the data in this way suggests an alternative description for the global
data set of station time series. Instead of ordering them as time series, we can order
along the vertical columns. The array we obtain is equivalent to considering vectors
of values at the same time, the so called synoptic view. In mathematical terms we
can treat the array as an m � n matrix as follows

X D

2

6
6
6
4

x1.1/ x1.2/ ::: x1.n/

x2.1/ x2.2/ ::: x2.n/
:::

:::
:::

:::

xm.1/ xm.2/ ::: xm.n/

3

7
7
7
5

; (4.1)

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 4,
c� Springer Science+Business Media B.V. 2010
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or introducing the synoptic vectors x�
j D Œx1.j /; x2.j /; : : : ; xm.j /� for j D

1; 2; : : : ; n we have the matrix X defined in terms of column vectors,

X D Œx1; x2; :::; xn�;

where the rows of the matrix now describe the values at the same spatial location.1

In the analysis of meteorological or climatological data it is very common that
time series come from observations or from numerical simulations taken at reg-
ular intervals. A typical example are for instance temperatures taken at several
stations around the world, grouped in monthly means, so that only one value per
month is available. In this case the columns of the data matrix X indicate the time
series at each station, whereas the synoptic vectors, i.e. the rows of the data ma-
trix, describe the geographic distribution of the temperature at a particular time. The
time evolution of the temperature can then be followed by looking at the sequence
of geographical maps depicting the temperature distribution every month. Usually,
for interpretation purposes it is useful to use contouring algorithms to represent the
field as a smooth two-dimensional function. Contouring is not a trivial operation
and especially for observations that are distributed in space with large gaps and far
from being a regular covering of the surface of the Earth, must be done with care.
Sophisticated techniques, known as data assimilation, are employed to make sure
the data sets are put on regular grids in a physically consistent manner. In any case,
either that we are looking at data from modelling, or that we are working with ob-
servations coming from data assimilation systems, we end up with data on regular
grids, covering the Earth with a regular pattern.

As already mentioned, we use two data sets to illustrate our discussion. The first
is a time series of monthly mean geopotential data at 500 mb (Z500), obtained from
a simulation with a general circulation model forced by observed values of monthly
mean Sea Surface Temperatures (SST). The data sets cover 34 years, corresponding
to the calendar years 1961–1994. The Z500 set is a very good indicator of upper
air flow, since the horizontal wind is predominantly aligned along the geopotential
isolines. Figure 4.1 shows a few examples taken from the data set. It is possible
to note the large variability from one month to the other (top panels), but also the
large variability at the same point, as the time series for the entire series (lower
panels) show. It is clear that the geopotential at 500 mb is characterized by intense
variability in space and time and a typical month may be as different from the next
month as another one chosen at random.

We can consider the maps at each month as a vector in a special vector space, the
data space. Each vector in this data space represents a map, a possible case of a Z500
monthly mean. The space covers all possible shapes of the Z500, the vast majority
of which will never be realized, like the one in which the heights are constant every-
where, or some other similar strange construction. The mathematical dimension of

1 This matrix notation is very common in meteorological data, whereas in many other fields, data
are stored as an n � m matrix, namely as X�. This difference affects the whole notation in later
chapters, when defining the covariance matrix and other statistical quantities.
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Fig. 4.1 Examples of Z500 data set. The maps are seasonal means for winter taken from a model
simulation with prescribed Sea Surface Temperatures for a period of 34 years from 1961 to 1994.
Here seasonal anomalies are shown, after removal of the climatological winter mean

the vector space is very high, it is equivalent to the number of observations points, n.
In the case of the test data sets used in this book, which have 96 points along the
longitude for each latitude line and 48 latitude lines, it is n D4608. In fact, this value
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is so large that the question arises whether the geopotential in the natural variability
of climate is really exploring all possible combinations of numbers in this 4608 ob-
servation points, in other words the data set we are using may be lying on a subspace
of much smaller dimension.

One question that arises when one is confronted with such an intricate pattern
of behaviors is whether there are special ways in which the Z500 fields can express
themselves, in other words whether typical recurring patterns exist. In the following
we introduce a possible technique to identify patterns of this kind.

We can gain some insight into the determination of possible subspaces that are
frequently visited if we again consider the data matrix

X D Œx1; x2; :::; xn�:

The simplest case of a recurrent pattern subspace occurs if the n vectors are not
linearly independent. In this case, the successive realizations 1,..., n are linear com-
binations of just a few fundamental patterns. The first thing to attempt is then to
assess the number of linearly independent columns of X. We have seen in Sect. 2.9
that the rank of X, that is its number of independent columns, may be obtained by
using the SVD. If the rank of X is less than min fm,ng, then some columns will be
just a mixture of the others. The SVD also provides us with a basis for the vector
space spanned by the columns of X (and also for the vector space spanned by the
rows, but we are not interested in that part now) according to X D U†VT : The
decomposition of the data space gives us a mathematical basis for the maps, the
right and left singular vectors, namely the columns of the two matrices V and U.
However, they do not seem to have any special meaning. This is what we will try to
describe in the rest of this chapter.

4.2 Empirical Orthogonal Functions

In the discussion that follows we assume that the data matrix has been transformed
so as to have zero mean vector. This can be easily achieved by subtracting the mean
value to each corresponding row of X, that is X D Xorig�Nx1�, where 1 is the column
vector of all ones, while Nx is the vector of sample means.

With these scaled data, the covariance matrix S can also be written in the follow-
ing way

S D 1

n � 1
XXT : (4.2)

It is easy to check that the combination in (4.2) indeed satisfies the definition of
covariance matrix in (3.2). We can then use the decomposition in singular values of
X that we introduced in the previous section so that

S D U†VT V†UT D U†2UT : (4.3)
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This expression reveals that the left singular vectors of the data matrix X are also
the eigenvectors of the (symmetric) covariance matrix S. We can now understand a
little better the role of the vectors in U. The number of independent maps in the data
sets, the columns of U, are the same as the eigenvectors of the covariance matrix.
Since one is mostly concerned with these modes, which are invariant under scaling
of S, the factor 1=.n � 1/ is often omitted when using the covariance matrix S. On
the other hand, care should be taken in working with the eigenvalue diagonal matrix
†2, since scaling S correspondingly scales the eigenvalues.

According to (4.3), the vectors in the unitary matrix U are such that the covari-
ance matrix in that basis is diagonal, that is each vector u is uncorrelated with the
others and contributes to the total variance an amount given by the diagonal element
of †2; indeed, because of the invariance property of the trace, the total variance is
also given by the sum of the squared singular values. Dividing them by the trace we
can get the percentage contribution �i of each mode �2

i ,

�i D �2
i

nX

iD1

�2
i

: (4.4)

If X is not full rank, that is if some of its columns/rows are linearly dependent, then
we will get fewer nonzero singular values, say q, and associated left singular vec-
tors. Equivalently, the covariance matrix has q < minfm; ng nonzero eigenvalues
with corresponding q orthonormal eigenvectors. The independent modes of varia-
tions in U, associated with nonzero singular values, via the SVD of the data matrix,
or via the eigenanalysis of the covariance matrix, are called Empirical Orthogonal
Functions, or in short EOF. Note that in the wide literature on Principal Component
Analysis, these modes are called Principal Components, or PC (see, e.g., Jolliffe
2002).

4.3 Computing the EOFs

The calculation of the eigenpairs of the covariance matrix can be a difficult numer-
ical problem because the dimension of the matrix tends to grow with the number
of observation points. A much faster way to obtain the EOF is to use (4.3) and
perform an SVD on the data matrix. The difference can be of several orders of mag-
nitude in terms of computational cost and it should be considered the right way to
get the EOFs. The SVD decomposition is also more stable and accurate. EOFs can
then be readily computed using MATLAB that has primitive functions for both the
SVD and eigenvectors calculation, the former being preferred for computational ef-
ficiency (cf. Sect. 4.3.1). As an example, below is a Matlab code that generates all
EOF and projected selected components.
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function [u,lam,proj]=eoffast(z,indf,nmode,nproj)
%
% Compute all EOF of matrix z and expand it for nmode modes
% Also returns nproj projection coefficients
%
resol = [96 48];

[uu,ss,vv]=svd(z,0); %Memory saving decomposition

lam = diag(ss.ˆ2)/sum(diag(ss.ˆ2)); % Explained variances
%
u=zeros([resol(1)*resol(2) nmode]);
u(indf,1:nmode)=uu(:,1:nmode);

proj=vv*ss(1:nproj,:)’; % Compute projections

return

For a large matrix, the call to svd in the algorithm above may be replaced by a call
to svds, which computes only a subset of all singular triplets of the given matrix,
as requested by the user. Also in this case, this procedure should be preferred to
the nowadays obsolete strategy of using the power method to compute a few of the
largest eigenvalues of the correlation matrix.

4.3.1 EOF and Variance Explained

The plots in Fig. 4.2 show the results of performing EOF on a test data set
constructed from the Z500 test set, but in which we have artificially restricted the
variations to only three independent vectors. An entire data set has then been created
by random combinations of the three. It is possible to see how the EOF has correctly
identified that there are only three independent vectors.

Following the ratio in (4.4), the three basic modes are contributing to the variance
a fraction that is given in the bottom of Fig. 4.2. The first mode is contribut-
ing more than 60% of the variance, whereas the remaining two are more or less
equally dividing the rest. This is somewhat strange since the data set was constructed
by combining the basic vectors with random coefficient uniformly distributed, we
would expect each vector to contribute equally to the variance of the field. One hy-
pothesis is that the sample size is too small, but we can see in the subsequent picture
(Fig. 4.3) that increasing the sample size (top row) does not modify the distribution,
and the contribution to the variance remains non-uniform.

The solution to the puzzle must be found in the fact that we have arbitrarily se-
lected the basis vectors. Investigating the vectors it can be found that they are not
mutually orthogonal since their scalar product is not zero. Removing the depen-
dency with an orthogonalization procedure and repeating the analysis we obtain the
bottom row of the figure. We can see that now each vector contributes uniformly to
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Fig. 4.2 Empirical Orthogonal Functions (EOF) for the test case in which only three independent
maps have been chosen in the Z500 data set and then a complete 34 years set has been reconstructed
with random combination of the three. Here are shown the first and the second mode (upper pan-
els) and the spectra of the singular values (lower panels) that reveals that three modes have been
correctly identified
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Fig. 4.3 Variance explained by the three independent modes, in the case of the preceding picture.
The top row shows the variance explained as the sample size increases, passing from 50 to 100
and 500 global maps. The distribution is stable, in fact it is well captured even with 50 cases, but
it is not uniform. In the bottom row we see the variance explained as a function of the sample size
for a test data set in which the basic vector are orthonormalized prior to the generation of the data.
The EOF correctly estimate an equal contribution to the variance, and a modest improvement of
the accuracy can be seen with the increase of the sample size.

the variance as it was expected. In this case the estimation improves with the sample
size as we pass from 50 to 500 cases. This simple experiment leads us to conclude
that the EOF are abstract patterns, that can be used to better (more cheaply) represent
the system total variance. Finally, it is worth noticing that had we used standardized
data, or equivalently the correlation matrix, we would not have observed this in-
triguing phenomenon.

Figure 4.4 shows the EOF for the Z500 data set without any treatment. The mode
patterns are qualitatively similar, but the spectrum is quite different, and it appears
that there are no zero singular values, corresponding to all 34 months being linearly
independent. The interpretation in terms of covariance eigenvectors shows that they
are not all equally important, since we can now rank them according to the size of the
contribution to the total variance. Some vectors give a relatively large contribution
to the variance, whereas others are basically contributing nothing. This means that
this field has a preference to vary according to the first modes of variations and
consequently the corresponding patterns are most typical.

In general we will obtain as many significant EOF as the smallest number be-
tween the length of the time series n and the number of observation points m.
With our test data sets and almost always when treating with climate or weather data,
the number of observation points, either as grid points from simulations or station
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Fig. 4.4 Empirical Orthogonal Functions (EOF) for the Z500 data set. Here are shown the first
and the second mode (upper panels) and the singular values (middle panel) that reveals that several
independent modes have been correctly identified. For instance, the bottom panel illustrates the
cumulative variance explained by the first k modes: the first five modes describe together about
60%. The last ten modes have zero contribution
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Fig. 4.5 Empirical Orthogonal Functions (EOF) for the Z500 data set. Here are shown the first 6
modes and the amount of variance explained by each mode. The modes have increasingly complex
spatial structures, as it is required by the constraint of orthogonality. The higher modes, shown in
the following pictures, are increasingly disordered. The physical interpretation of the higher modes
is very tricky and it must be done very carefully

data from observations, is always much larger than the length of the time series, that
is m � n. In our case we will therefore obtain a maximum of n D 34 EOF. Figure
4.5–4.6 shows the first 12 EOF for the Z500 data. The first three EOF are of course
the same as those in Fig. 4.4, but the others have more complicated structures. They
present themselves as irregular oscillations in space, with an increasing number of
positive and negative centers. This is to be expected as the orthogonality constraint
with respect to previous EOF forces them to have zero scalar product. We can also
see from the spectrum (Fig. 4.4) that the vast majority of the modes correspond to
very small eigenvalues, contributing very little to the total variance. In fact the cu-
mulative variance expressed by the first m modes (bottom of Fig. 4.4) shows that in
this case the first 15 modes contribute 80% of the variance, and the rest of the vari-
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Fig. 4.6 Empirical Orthogonal Functions (EOF) for the Z500 data set. Here are shown the first
7–17 modes and the amount of variance explained by each mode. The modes have increasingly
complex spatial structures, as it is required by the constraint of orthogonality. The higher modes,
shown in the following pictures, are increasingly disordered. The physical interpretation of the
higher modes is very tricky and it must be done very carefully

ance must be attributed to the remaining modes. It is very reasonable to conclude
that these latter modes are not important to describe the overall variance of the field,
whereas the first modes, corresponding to large fractions of contributed variance,
must be of larger relevance.

4.4 Sensitivity of EOF Calculation

We have seen that EOF can be readily calculated, even for large data sets, like the
artificial uniformly distributed data with 500 cases of Fig. 4.3. The interpretation
of the EOF is provided by the terms of variance explained and recurrent patterns,
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but if a viable interpretation has to be found, it must rely on a robust determination
of the pattern themselves. The SVD algorithm is robust and reliable algorithm, so
we are not really concerned with mathematical and/or numerical sensitivities, but
with sensitivities deriving from the other possible choices that we can tackle in the
definition of the problem itself. A simple mathematical uncertainty is, for instance,
that eigenvectors are computed up to a change in sign, as it can be derived from (4.2).
Moreover, data can be normalized in different ways. This operation is often done to
stress one aspect or another of the data, as one may want to consider a different
geographical domain or to analyze a certain area for economy of calculation and
space. In the following we will discuss how the EOF react to this kind of changes.

4.4.1 Normalizing the Data

Data can be normalized in several ways. As we have seen when discussing the
correlation matrix, the most common normalization is the division by the standard
deviation. For the considered multi-variate set this implies dividing by a standard de-
viation that is different for each station. This approach allows us to compare time
series for stations that have large differences in the amplitude of the variability and
focus on the time consistency relation among station time-series. As in previous
sections, in the following we assume that the vector mean has been removed from
the data matrix, so that we can assume that the sample mean is 0. The normalization
of the data can be obtained by dividing each column of the data matrix X in (4.1) by
the standard deviation of each station, �1; �2; : : : ; �m, that is

Y D D�1
X X; with DX D diag.�1; : : : ; �m/: (4.5)

We can then proceed to compute EOF on the normalized data matrix Y. As we
already observed, the covariance matrix of Y is the correlation matrix of the original
data X. However, by normalizing the original matrix, we can compute the EOF at
once directly using the SVD of Y, without first computing the correlation matrix.

The EOF of Y are sometimes called correlation EOF as opposed to the covari-
ance EOF of the unnormalized data that we have seen in the last section. The main
differences between the two approaches is that the covariance EOF are going to
be biased toward the region of highest standard deviation, so the patterns will try
to optimize as much as possible the variation of the field in those regions. On the
contrary in the correlation EOF, the normalization equalizes the field variations and
so the time series at every station are considered equally important, as a result the
patterns will try to described as much as possible the overall spatial variation of
the field. The standard deviation has a spatial structure (Fig. 4.7) and the effect of
normalization is to reduce the amplitude of the variations in the North Pacific and
North Atlantic, whereas the amplitude is expanded in the other regions.

We show in Figs. 4.8 and 4.9 what happens when computing covariance and cor-
relation EOF on our test data set. The main comment is that the first mode is weakly
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affected, whereas the impact is more noticeable in the higher modes. This is to be
expected: the first mode is expressing the major variance mode, so that large, active
centers of variation will be well represented with or without normalization. But after
the large variations have been removed and higher modes are considered, the impact
of normalization increases as the residual variance is different from one case to the
other. Here, it is possible to see that correlation and covariance EOF convey differ-
ent information and we cannot conclude that there is a preferred method regarding
normalization. Correlation EOF are to be preferred if the investigator is seeking an
overall treatment of all stations, whereas the covariance EOF are simpler to inter-
pret physically, as long as the predominance of the major center of variation is not
an impediment to the investigation. In most cases, the most important patterns will
remain only slightly affected by the change, as in our example.

The effect of the change in normalization becomes progressively larger as we
go up the ladder of modes. This gives some confidence on the reliability of the first
mode, but it may cast some doubts on the other modes; how are we going to interpret
the other modes?

4.4.2 Domain of Definition of the EOF

To analyze the EOF, in the previous discussion we have selected only a portion of the
globe. This is different from the other pictures that represented the entire global data
set. The algebraic tools we have used are valid for any row length m that is, there is
complete freedom in the choice of the number of stations to perform the EOF anal-
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ysis. In fact, in terms of the discussion in Sect. 4.1, a different geographical domain
means that a different subset of observation points must be selected. The compu-
tation of the EOF follows the same steps for any number of observation points.
We will obtain patterns that will try to maximize the variance over the new region,
but the optimization of the variance explained is done globally over all stations, so it
is possible that eliminating some station may influence the overall optimization and
hence generate different patterns. Therefore, it is important to determine whether the
obtained patterns are really capturing the major modes of variation we are interested
in, without being overly influenced by far stations.

Figure 4.10 shows the result of computing EOF over different geographical do-
mains. The top picture represents the first EOF of the test case for a domain that has

Fig. 4.10 Sensitivity to geographical domain for the Z500 data. The top picture represents the
first EOF for the Northern Hemisphere, the other panels are again the first EOF but excluding the
shaded domain
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been already altered from the global domain used previously. We have selected here
the North Hemisphere. Each panel in the picture shows the same first mode com-
puted on smaller and smaller domains. We can see that the EOF are very consistent
from one domain to the next, the computed pattern shape is very similar to each
other and the activity centers are correctly identified in each domain. In this case
we can be confident that the EOF really represent a major mode of variation. On
the other hand, it is interesting to note that the amount of explained variance varies
considerably, more than doubling from the hemispheric case to the smallest domain.
This reflects the fact that as the domain gets smaller the mode becomes more and
more dominant over the total variance in the area and it explains a larger and larger
fraction of the variance.

It is important to keep in mind that the smaller modes of variation are depen-
dent on the geographical domain; what we see here is that we do not get spurious
influences from areas of low variability on the identification of the areas of high
variability. Had we chosen a completely different domain not including the major
center in the Pacific, we would have gotten a completely different mode, because
that mode would explain most of the variance over the new area, unless we attempt
to also explain the variance elsewhere. For instance, the shape over India would have
been different had we chosen a domain only over India.

4.4.3 Statistical Reliability

The EOF computed in previous sections are an estimate. They represent the estimate
of the true modes of variability performed with the particular available sample. It
is very important to give an assessment of the statistical significance of the patterns
that have been found with the method. This is a very active and challenging area
of research since we are dealing with spatial fields and it is actively investigated,
but sometimes a simpler approach can still give a rough idea, that can be used to
identify gross problems. A simple idea is to divide the data sets and repeat the anal-
ysis, aiming to test the statistical robustness to perturbations in the sampling and
distribution of the data. In practice a subset must be defined within the data set and
the EOF analysis must be repeated on the smaller sample. The choice of the sub-
set is of course arbitrary: splitting in two the time series, or sub sampling them in
some manner are very popular choices. Figure 4.11 shows what happens when the
EOF are computed on subsets of the original data consisting of the odd and even
years.

The first mode appears rather insensitive to the subsampling, repeating almost
identical in the smaller sets and in the total time series. Though this is not a rigorous
test, it is usually a reasonably good indication of the absence of major problems in
the data sampling.
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Exercises and Problems

1. Show by Matlab computation that the covariance matrix of the (tall rectangular)
data matrix

X D

0

B
B
BB
B
@

1 1 1

1 0 �2

1 1 1

1 0 �2

1 1 1

1

C
C
CC
C
A

:
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can be obtained both by the command S D cov.X/, as well as by means of the
SVD of X. Comment on the computed EOF.
On the one hand, we obtain

S D cov.X/ D 3

10

0

@
0 0 0

0 1 3

0 3 9

1

A :

The mean vector of X is Nx� D Œ1; 0:6; �0:2�, so that the zero mean matrix asso-
ciated with X is

bX D X � 1Nx� D 1

5

0

B
B
B
B
B
@

0 2 6

0 �3 �9

0 2 6

0 �3 �9

0 2 6

1

C
C
C
C
C
A

:

The SVD ofbX, ŒU; ˙; V� D svd.bX/ yields the matrices

V D 1p
10

0

@
0 0

p
10

1 3 0

3 �1 0

1

A ; ˙ D diag.
p

12; 0; 0/;

from which, for n D 5, we obtain 1
4

V†2V� D S. We observe that the only signif-
icant EOF is given by the scaled version of the vector v D Œ0; 1; 3��, associated
with the only nonzero singular value.

2. Do the same for the matrix X�. The covariance matrix is

S D cov.X�/ D

0

B
B
BB
B
@

0 0 0 0 0

0 7
3

0 7
3

0

0 0 0 0 0

0 7
3

0 7
3

0

0 0 0 0 0

1

C
C
CC
C
A

;

while the SVD of X� � 1mean.X�/ yields

˙ D diag.
p

28=3; 0; 0; 0; 0/: V D

0

B
BB
B
B
@

0 1 0 0 0

� 1p
2

0 0 � 1p
2

0

0 0 1 0 0

� 1p
2

0 0 1p
2

0

0 0 0 0 1

1

C
CC
C
C
A

;

from which the result follows.



58 4 Empirical Orthogonal Functions

4.5 Reconstruction of the Data

The interpretation of the EOF via the SVD has also another important consequence.
The SVD decomposition of the data matrix

X D U†V� (4.6)

with V D Œv1; : : : ; vn�, can be written in terms of each column of the matrix as

xk D
qX

iD1

ui �i vi .k/; q � minfm; ng (4.7)

where we can see that the data can be expressed as a linear combination of the u
vectors, weighted by the singular values (the square root of the variance explained)
and by the kth component of the vectors v. The summation extends to q vectors
depending on the number q of nonzero singular values of X. Equation 4.6 can also be
rearranged to provide the interpretation for the vectors u. We have X D U†V�, so
that, multiplying from the left by U� and exploiting the orthogonality of its columns,
we get U�X D †V�. Substituting in (4.7) we obtain for each location vector in
X D Œx1; : : : ; xn�,

xk D UU�Xek D
qX

iD1

ui hui ; xki ; k D 1; : : : ; n: (4.8)

This equation shows that the data can be reconstructed as a linear combination of
the EOF, with coefficients obtained by projecting each data vector onto each EOF.
In this way, the singular value decomposition indicates the minimum number of
vectors that is needed to describe the data space. Individual EOF can still have no
contribution to a certain data map, if the projection of the data vector onto the EOF
is tiny.

Exercises and Problems

1. Consider the matrix of the first exercise of Sect. 4.4.3. Show that bX D X � 1Nx�
can be fully reconstructed as a rank one matrix.
Using the SVD ofbX, we can write

bX D u1

p
12v�

1 :

2. Consider the following matrix:

A D U˙V�
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D

0

B
@

cos 	1 sin 	1 0

� sin 	1 cos 	1 0

0 0 �1

1

C
A diag.1; 10�3; 10�6/

0

B
@

1 0 0

0 cos 	2 sin 	2

0 � sin 	2 cos 	2

1

C
A

�

;

with U D Œu1; u2; u3�, and V D Œv1; v2; v3� and ˙ D diag.�1; �2; �3/, 	1 D �=6

and 	2 D �=8. Numerically show that

kA � u1�1v�
1k2 D �2; kA � u1�1v�

1kF D
q

�2
2 C �2

3 :

This result is very general, and provides the error (in the given norm) occurring
in the reconstruction of the given matrix A by means of the first few terms in the
SVD.

4.5.1 The Singular Value Distribution and Noise

The set of singular values is sometimes called the spectrum, in analogy with the
spectrum of eigenvalues. We have seen examples of spectra in our constructed case
to show the role of carefully selected data with known composition of the basis
vectors and with known statistics of the data distribution. Reality is much more
complex. Multiple time scales and statistics are present in the data and the problem
is to identify in the total variability the sector of insightful variability where we think
the real physical processes may be at work. The issue is further complicated because
there is no clear and absolute distinction between signal and noise, as the separation
is problem dependent. What is noise for some investigators may be signal for others,
or even for the same investigator at a different time.

The possibility of expanding the data on the EOF that we have seen in the preced-
ing section gives us a very nice opportunity. The results we have obtained are purely
algebraic with no reference to statistics, but the issue of statistics comes in when
we consider again Fig. 4.12 (the spectra for real Z500). In this case, the spectrum
is similar to the preceding examples, there is a small number of large singular val-
ues, with a long tail of rapidly decreasing values, representing modes that contribute
less and less to the variance. As with all numerical calculations, we have to check
that these values are really non-zero by checking them against the numerical zero of
the calculation. A very useful test for this purpose is to assume that a singular value
of a matrix A is nonzero if

� > 
 kAk2 ; (4.9)

where 
 is the smallest number represented in the floating point arithmetic in use (in
MATLAB double precision computation this is 2.2204e-16) and kAk2 is the 2-norm
of A (cf. Sect. 2.8), namely its largest singular value. In other words, (4.9) says that
the numerical zeros are those values that, when normalized by the largest singular
value, are smaller than the smallest number represented in the employed arithmetic.
A quick inspection reveals that all the sigma’s in Fig. 4.12 pass the test, when the
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Fig. 4.12 Singular value distribution for a real case (global Z500 data sets). Top panel: the mean
value of the data is subtracted before calculation of the EOF. Bottom panel: the mean is not re-
moved. Values are normalized with the trace to express explained variance

double precision computation in MATLAB is taken into account, actually they pass
the test very well, with a difference of several orders of magnitude. We have then
eliminated the idea that some of the small sigma’s can in fact be zero, that only the
finite nature of the computation is preventing from showing up. It is also interesting
to note that in the case we are mostly interested in here, that is for m � n, there is
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exactly one zero singular value when the mean is removed, because the subtraction
of the mean reduces the degrees of freedom of the data by one.2

The conclusion that we need to retain all modes may in fact be premature. There
is another issue that we need to investigate. We have computed the EOF on the
available data sample, but it is not at all clear how representative of the true EOF
they are. In practice, we have to realize that our computation is only an estimate of
the EOF of the population from which we have extracted a sample, and we need to
investigate how accurate this estimate is. In particular, we need to evaluate the prob-
ability that some of the sigma’s are zero just because of the choice of the members of
the sample. Some sigma’s can really be zero and correspond to degrees of freedom
that do not contribute to the variability of the field, but others may appear nonzero
just because of our particular sampling. An EOF analysis is therefore incomplete
without some consideration on the robustness of the results and their sensitivities to
changes in the sampling or in other aspects of the procedure.

The EOF have identified some patterns corresponding to observation points that
vary together in an organized manner, but each observation point may have variance
that is uncorrelated from other points, from the point of view of the spatial analysis
of variance that is considered noise.

Mathematically the EOF will tend to fit also those components, thus generating a
fictitious pattern. This is one of the reasons that explains why the higher order EOF
have very complex patterns. They try to fit the variance point by point: a desperate
job since it is mostly uncorrelated. This portion of variance is not really interesting,
but we can exploit this property of the EOF, because we can then use it to gener-
ate data that is free of the noise component, simply by reconstructing the data sets
retaining only the higher modes corresponding to covarying modes (cf. Sect. 4.5).

Another example is shown in the following pictures. A two-dimensional wave is
propagating in a square domain from left to right. The wave is a fairly regular sine
wave, but a substantial amount of noise is superposed. At any time the wave pattern
is substantially distorted by the noise (Fig. 4.13). In Fig. 4.14 we display the EOF of
the time evolution, obtained by considering as observation points the local position
at which the wave is observed to pass.

The EOF recover fairly quickly the coherent pattern of the propagating wave
and the first two modes explain most of the total variance. We can also see how
propagation is represented by EOF usually employing two modes that are in quadra-
ture and fairly similar in distribution. This indicates that those modes are two phases
of the same propagating pattern. The noise is relegated to higher modes; having
added a significant amount of noise, these modes are not insignificant. The totally

2 More precisely, using Nx D 1
n

X1, we have

X � Nx1� D X.In � 1

n
11�/:

Since the matrix In � 1
n

11� has rank n � 1, the relation above shows that .X � Nx1�/ has rank not
greater than minfn � 1; mg. Therefore, the scaled covariance matrix .X � Nx1�/.X � Nx1�/� has
rank at most n � 1, if m � n.
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Fig. 4.13 The propagating wave at an arbitrary instant in the propagation. The average is substan-
tially distorted by the superposed noise

incoherent distribution of these patterns is a very clear indication that in this case
the EOF are trying to fit the individual noise at each observation point.

4.5.2 Stopping Criterion

The division between signal and noise is somewhat arbitrary: how can we decide
when to stop? Though a number of rules to select significant EOF have been pro-
posed, their statistical foundation is tenuous. It is better to realize that in practice
the choice is essentially driven by empirical considerations. In the atmospheric lit-
erature, North (North et al. 1982) has proposed the following rule of thumb. He
estimated typical errors using the eigenvalues of the covariance matrix, �k , and the
number of statistically independent samples in the data

��k 	
r

2

n
�k: (4.10)

The rule can then be stated by saying that when the error is larger than or comparable
to the spacing between neighboring eigenvalues, then the sampling error on the EOF
will be comparable to the size of the neighboring EOF. This rule of thumb is often
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Fig. 4.14 Empirical orthogonal functions for a propagating wave. The wave propagates from left
to right in the picture. The first two modes correspond to the waves, the other modes apparently
try to capture the random noise that had been added to the wave

consistent with another highly employed empirical rule that basically looks for sharp
changes in the convergence to zero of the eigenvalues, the so-called “elbow”. Figure
4.12 shows a sharp change in the curve slope around the fifth and sixth eigenvalues.
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The larger eigenvalues are of similar magnitude and they would not pass North’s rule
anyway. The idea is then to retain the eigenvectors before the change and interpret
the others as noise. In practice, there is no objective rule and only the physical
discussion and the identification of mechanisms can support the patterns of the EOF
from merely statistical patterns to real physical objects. We refer to Jolliffe (2002),
Quadrelli et al. (2005) for a general thorough presentation of truncation strategies
and error estimation.

From a statistical viewpoint, if the data follow a normal distribution, then it is
possible to formulate an hypothesis test as a stopping strategy. However, in our
context, the condition of normality is often too restrictive to be feasible.

4.6 A Note on the Interpretation of EOF

The technical preparation of the data for analysis and the performance of the EOF
computation themselves may be demanding and time-consuming, to the point that
the original motivations for the work tend to fade. The EOF analysis is just a tool,
and filling the gap between the EOF modes and the original problem is of major
importance to be able to deduce useful information on the system under analysis.

Interpretation of the EOF is not a form of divination, but it is about connecting
them to the problem. In physical sciences, such an interpretation is often cast in the
form of an “identification” of the system physical modes. In more general terms,
EOF may be used to identify recurrent patterns of variations. However, the mathe-
matical nature of EOF generates common mistakes that lead to misinterpretation of
the obtained results.

The main source of the problem lies in the orthogonal nature of the EOF. Or-
thogonality forces a special structure for the modes and sometimes can alter the
dominant modes quite significantly. Figure 4.15 shows an idealized example. Two
modes of variations are set in rectangular domain without overlapping with the same
amplitude (top panels) as two distinct centers of action. The time variation is given
by another sine wave (bottom left panel). These waves have the same phase so that
they show the same time variation. Each of them represents 50% of the variance in
the data.

The middle panel shows the first three EOFs. The first EOF shows both centers
together and it explains 100% of the variance, the higher EOF are just noise and
also the time evolution of the EOF coefficients (right bottom panel) shows that the
first EOF captures the correct time behavior. This example shows very clearly how
efficiently the EOF will capture any co-varying phenomenon, when the center of
actions are separated, but of course does not provide any indication of the causes of
the variations. The EOF aim at maximizing the variance with the smallest possible
number of modes, and this can be done very nicely with only one mode in this
case, but interpreting the first EOF mode as the only mode of the system is incorrect
because by construction we had two.
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Fig. 4.15 An idealized example. Two modes are considered within a rectangular domain with
a simple sine shape with the same amplitude (top panels). The first three EOF are shown in the
middle panel. The first mode explains 100% of the variance and the remaining modes represent
just noise. The time evolution of the modes is shown in the left bottom panel. The modes are in
phase so that the time plots are exactly on top of each other. The EOF coefficients in time (right
bottom panel) show the correct behavior for the first mode, but just noise for the higher modes

By varying the phase relation in time between the modes the situation changes.
In Fig. 4.16 we have used the same data as in Fig. 4.15, but we have changed the
time phase in a way that the two modes are uncorrelated (bottom left panel). The
variance is split evenly between the modes, except for sampling errors. The EOF
now identifies correctly the existence of two distinct modes; moreover, the estima-
tion of the explained variance is in the right ball park. The higher modes are noise
and they count for a negligible fraction of the variance anyway.

The results for the data in quadrature in time suggest that if the modes are uncor-
related then the EOF can pick them up rather easily. We tried that in Fig. 4.17 where
we assigned as a time evolution random data normally distributed with mean zero
and standard deviation one. In this case the EOF generate two modes that are quite
different from the “modes”. The modes have two centers of action and the first one
has the same sign everywhere in the domain; the second must have opposite signs,
so that the overlapping space integral between the two modes is zero, as required by
the orthogonality condition for the EOF. This example is highly influenced by the
sampling error. The 34 time samples used in this case are simply not sufficient to
correctly identify the independence of the two modes, but it is easy to check that by
increasing the number of time samples the modes are recovered correctly.
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Fig. 4.16 As in Fig. 4.15 but for the case when the two modes are in quadrature. The time evo-
lution (bottom) shows that they are in quadrature. In this case the EOF modes capture two distinct
modes. The estimation of the variance explained is also good and it will get better as the statistics
is improved
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Fig. 4.17 As in Fig. 4.15 but for the case when the two modes are uncorrelated in time. The time
evolution (bottom) coefficients are random numbers extracted from a normal distribution with zero
mean and unit standard deviation. In this case the EOF modes capture two distinct modes
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Fig. 4.18 As in Fig. 4.15 but for the case when there are three modes uncorrelated in time. The
time evolution (bottom) coefficients are random numbers extracted from a normal distribution with
zero mean and unit standard deviation. In this case the EOF modes capture two distinct modes

The general picture changes completely in case the analyzed physical modes are
not orthogonal. In Fig. 4.18 we display a situation when we have three modes: the
first two modes are the same as the previous examples, but we have added a third
mode that is not localized to only one quarter of the domain but it extends over the
entire domain, overlapping the other modes. The EOF are shown in the middle panel
and it is clear that they have significant deviations from the target modes. Of course
sampling errors are still playing a role, but the main problem here is that the overlap
makes it really hard for the orthogonal EOF to identify the modes.

These examples show that the interpretation of the EOF is often a delicate issue
and it is important to keep in mind that the orthogonality constraint will very easily
generate wave-like patterns, which may be easily misinterpreted as oscillations.

Exercises and Problems

1. Show by Matlab computation how the EOF modes change in Fig. 4.17 if the
sample size is increased.

2. Show by Matlab computation how the EOF modes change in Figs. 4.15–4.17 if
the phase relation between the modes is modified.



Chapter 5
Generalizations: Rotated, Complex, Extended
and Combined EOF

5.1 Introduction

We have seen in the last section that the difficulty in identifying real physical pat-
terns from EOF stems from their orthogonal nature. Orthogonality translates into
the fact that typical patterns appear in secondary (higher order) EOF. Very often the
first EOF has little structure, the second has a positive and a negative center, the
third more centers and so on, in a way so as to maintain orthogonality.

In fact, the overall structure of the EOF is often determined by the geometrical
shape of the domain chosen and different data on the same domain, with different
covariance relations, may actually result in similar EOF. Moreover, in the preceding
chapter we have seen the issue of sensitivity to partitioning the analysis domain
into subdomains and we can interpret it as a case of the overall sensitivity to the
domain shape. Another point is that EOF are obtained by trying to maximize the
amount of total variance explained by a single mode. It is possible that the resulting
optimized modes are difficult to interpret physically, either because the real relation
is localized and the EOF are spreading it, creating artificial nonlocal relations, or
because the EOF are so close in terms of eigenvalue separation, that the numerical
techniques cannot really distinguish between them.

The risk of creating misleading or illusory representations of relations within the
data is particularly troubling. The most common situation in which these malfunc-
tioning can arise is when data represent localized variances. In this case the EOF
will try to fit globally the domain under consideration, with as few modes as possi-
ble, generating first EOF (low order modes) with very large structures. For instance,
it is possible that the first mode indicates anomalies all of the same sign, whereas the
data do not indicate that there is ever a time when all stations were reporting such a
one-sign pattern. This may be a fiction created by the EOF trying to maximize the
variance explained. This is another way of realizing that the EOF have no way to
guess the physical relations within the data.

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 5,
c� Springer Science+Business Media B.V. 2010
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5.2 Rotated EOF

The problems mentioned in the previous section do not mean that the EOFs must
be ditched. They simply indicate that much care must be taken in producing and
interpreting EOF and it is not simply a matter of using some canned routines out of
a package.

Unfortunately we cannot produce a recipe for the intelligent use of EOF, but some
techniques have been devised to make a misuse of EOF less probable. Rotation is
one of them.

Simply put, we need to transform the EOF to another system of coordinates,
exploiting the freedom to choose a different basis in the data space. We have seen
from (4.3) that the EOF can be seen as the eigenfunctions of the covariance or
correlation matrix, that is

S D U†2U�: (5.1)

The basic indeterminacy in the EOF can be seen if we consider a similarity trans-
formation that changes the matrix S into a different matrix. More precisely, let T be
an n � n nonsingular matrix. Then we can write

G D TST�1; that is S D T�1GT:

Substituting in (5.1) we obtain T�1GT D U†2U�, and the eigenvalue decomposi-
tion of the non-Hermitian matrix G is

G D .TU/†2.U�T�1/: (5.2)

The similarity of G and †2 (cf. Sect. 2.7) implies that the transformed matrix G
has the same eigenvalues as S. However, the eigenfunctions have been transformed
according to

UT D TU: (5.3)

Owing to the non-orthogonality of T, the columns of the new matrix UT are corre-
lated. In the derivation above, the aim is to exploit the freedom of choosing T so as
to add some constraints to the EOF. The purpose is to alleviate some of the problems
discussed earlier, especially the problem of the generation of patterns that cannot be
reconciled with the expected physical relations in the data.

Whenever T is non-orthogonal, the transformed EOF represent an oblique co-
ordinate system for the given data. Therefore, in this case, they are called oblique
EOF, and each of them has a nonzero projection (correlation) on each other. On the
other hand, if T is an orthogonal matrix, we can refer to it as a rotation matrix, Q,
and we write

UQ D QU:

The choice of rotation is arbitrary, although we may want to require that some
“nice” pattern feature be emphasized after rotation. In the most popular case, we
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Fig. 5.1 Simple structure. The plots are scatterplot of the value of the EOF for each spatial points
by pairs of modes, in this case EOF1 and EOF2. The standard EOF yield a situation in which there
are several points where both modes have nonzero values (top left panel, bottom right quadrant).
Rotated EOFs reduce such an effect, aligning the point values along the axis (top right panel), the
maximum effect is obtained by relaxing the constraint of orthogonality with the oblique modes of
PROMAX (bottom panels)

require that the spatial variance be concentrated in as few points as possible, to
obtain simpler patterns. The definition of what simple is, is far from being straight-
forward. The issue has been discussed at length in the specialized literature, but a
rigorous definition of “simple” is elusive. A set of empirical principles to describe
the properties of simple structures has been proposed, but the overall philosophy of
the existing school of thought essentially reduces to trying to concentrate the co-
efficients of the EOF in few modes, in such a way that for each variable, i.e. for
each spatial point in our examples, only a very small number of EOF is needed to
explain the variance. This is easily checked by producing scatter plots of the EOF
modes two at a time. Figure 5.1 shows an example of such a plot, shown here for
the case of the marine SST in our test dataset. The EOF are not well separated in
the sense that there are several points for which both EOF1 and EOF2 have nonzero
elements, as it can be seen by the alignment of the points along the diagonal of the
third quadrant in the top left panel of Fig. 5.1. These points are positions where both
EOF1 and EOF2 are needed to describe the variance in that point. Ideally, we would
like to separate as much as possible the variance in such a way that distinct EOF
describe most of the variance at separate points. This means that different EOF have
to reach large values in different places, so that if EOF1 has large values in certain
points then the higher modes must have small values in those same points. The top
left panel of Fig. 5.1 shows that the EOF do not guarantee this property: there is a
whole class of points where both EOF1 and EOF2 have important amplitudes.
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Orthogonal Rotations

We can exploit the arbitrariness in the coordinate system definition to try to trans-
form the original EOF to another coordinate system that yields a better separation of
the EOF for each spatial points, i.e. simple structure. In principle the transformation
is quite unrestricted, but orthogonality is a desirable quantity if we want to separate
the variance of the field under examination.

The following panel (top right) shows a popular method to introduce some simple
structure and maintain orthogonality. This result can be achieved by requiring that Q
is such that the new pattern minimizes a functional, sometimes called the simplicity
functional, that provides a distribution measure of spatial variance. The choice of
the functional is very important and there are no rules to prescribe it, but a very
popular choice is the VARIMAX method, where the functionals are chosen so that
the rotated patterns maximize the functional

FR.u1; u2; : : : ; ur/ D
rX

kD1

f .uk/; with f .uk/ D 1

n

nX

iD1
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/2

!2

;

where the pik are the grid-point values of the kth EOF patterns (uk) that we are
trying to rotate, the hi are the point-by-point standard deviations (communalities)
of the r patterns we are rotating; see, e.g., Harman (1976). Both forms aim at max-
imizing the spatial variance of the EOF modes by concentrating the point values
toward zero or one: the first example is known as the raw VARIMAX and the second
one as the normal VARIMAX. Below is a possible simple Matlab implementation of
the normal VARIMAX procedure, closely following Harman (1976).

function [coef,u,varrotated]=eofrot(z,ind,index)
%
% Algorithm for eof rotation with the varimax method
% Inputs:
% z Data Matrix
% ind Index for domain
% index indeces of EOFs to be rotated
% Outputs:
% coef Cofficient for the rotated EOFs
% u Rotated Eof in ascending order
% varrotated Variance explained by rotated EOFs

[npoints,ntime]=size(z); % Time and space points
[uneof,ss,vneof]=svd(z,0); % Unrotated EOF for variance
totvar = sum(diag(ss.ˆ2)); % calculation
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lding = uneof(:,index);
sl = diag(ss(index,index).ˆ2);
varexpl = sum(sl)/totvar; % Relative variance explained

% by the unrotated modes
[n,nf]=size(lding);
b=lding;
hl=lding*(diag(sl));

hjsq=diag(hl*hl’);
hj=sqrt(hjsq); % Normalize by the communalities
bh=lding./(hj*ones(1,nf));

Vtemp=n*sum(sum(bh.ˆ4))-sum(sum(bh.ˆ2).ˆ2); % VARIMAX functional
% to be minimized

V0=Vtemp;
for it=1:10; % Number of iterations
for i=1:nf-1; % Program cycles through 2 factors

for j=i+1:nf;
xj=lding(:,i)./hj; % notation here closely
yj=lding(:,j)./hj; % follows harman
uj=xj.*xj-yj.*yj;
vj=2*xj.*yj;
A=sum(uj); B=sum(vj); C=uj’*uj-vj’*vj; D=2*uj’*vj;
num=D-2*A*B/n; den=C-(Aˆ2-Bˆ2)/n;
tan4p=num/den; phi=atan2(num,den)/4; angle=phi*180/pi;
if abs(phi)> eps;
Xj=cos(phi)*xj+sin(phi)*yj; Yj=-sin(phi)*xj+cos(phi)*yj;
bj1=Xj.*hj; bj2=Yj.*hj;
b(:,i)=bj1; b(:,j)=bj2;
lding(:,i)=b(:,i); lding(:,j)=b(:,j);
end

end
end;
lding=b; bh=lding./(hj*ones(1,nf));
Vtemp=n*sum(sum(bh.ˆ4))-sum(sum(bh.ˆ2).ˆ2);% Update functional
V=Vtemp;
if abs(V-V0)<.0001;break;else V0=V;end;

end;

for i = 1:nf % Reflect vectors with negative sums
if sum(lding(:,i)) < 0

lding(:,i) = -lding(:,i);
end

end
Arot=lding ; % rotated eof
coef=z’*Arot(:,1:nf); % time series for rotated eof

for i=1:nf
varex(i) = sum(var(coef(:,i)*Arot(:,i)’)*(ntime-1));

end

varexplrot = sum(varex)/totvar; zvar=sum(var(z’)*(ntime-1));
[varex,I]=sort(varex); % Sort in decreasing order of variance
Arot=Arot(:,I); Arot = fliplr(Arot); varex = flipud(varex’);
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varunrotated = sl/totvar; varrotated = varex/totvar;
u=zeros([96*48 nf]);
u(ind,1:nf) = Arot(:,1:nf); % Rotated EOF in mapping formats

end

The previous function performs a rotation using orthogonal rotations; the sis-
ter function eofpromax uses oblique rotations to maximize the spatial variance
and can be found in the book Website. The Matlab Statistics Toolbox ((matlab7))
includes a few routines to compute the EOFs (Principal components) and the rotated
factors; see Exercise 1 below.

The pictures in Figs. 5.2 and 5.3 show the difference between unrotated and
rotated EOF, in this case after a normal VARIMAX rotation has been used. The
rotation has been applied to the first ten modes. We can see how the rotation tends
to separate the original EOF in a spatial sense. The first unrotated mode (top panel,
Fig. 5.2), for instance, is composed of centers of activity, i.e. relative maxima and
minima for the patterns of the EOF, that are distributed across the North American
continent and the North Atlantic extending well into the European continent.

The rotated equivalent (top panel, Fig. 5.3) shows the emergence of a pattern
that is more confined to the North American sector, with small or no amplitude
elsewhere. The variation over Europe and Asia is picked up by the higher modes,
represented here by modes 3 and 10, that instead tend to accumulate amplitude
over the regions where there is little or no amplitude for mode 1. The separation is
not perfect, as it can be noticed that mode 3 still has some amplitude in the central
Pacific, in correspondence of the centers of mode 1. The effect is larger on the higher
modes, and the rotated mode 10 is now more concentrated over Asia, showing a
clear pattern from India to the Mediterranean. It is not possible to give a general
rule on when rotation is necessary. It is found that when the EOF modes are very
close together, i.e. the separation in the eigenvalues is not great, then rotation can
disentangle the modes in the previous case between the Pacific and Atlantic modes.

The rotated modes can still be used to decompose the variance, in the sense that
each of them explains a certain portion of the variance that can be attributed only
to that mode, since the rotated EOF are still mutually orthogonal. The rotated EOF
can then be ranked in order of percentage of explained variance.

The issue of rotation is still not widely accepted. Some investigators think that
rotation should become the standard and therefore recommend to rotate all modes
before attempting an interpretation, others are less convinced especially because of
the ad hoc choices of the simplicity functional. In general, rotated EOF are more
stable than the conventional vectors since they introduce another constraint that can
be used to distinguish between eigenvectors. The well separated rotated EOF are
therefore more resilient and then show less sensitivity to the errors that we have
discussed in the previous chapters.
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Fig. 5.2 Conventional EOF for the test data sets Z500
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Exercises and Problems

1. Given the set of data

X D

0

B
BB
B
B
B
BB
B
B
B
@

1 1 0 1 0

1 0 �1 0 �1

�1 1 0 1 0

1 0 1 �1 1

�1 1 0 1 1

0 0 �1 0 �1

�1 1 1 1 1

�2 1 1 1 1

1

C
CC
C
C
C
CC
C
C
C
A

;

compute the first two EOF and the rotated EOF with VARIMAX (use the MAT-
LAB functions princomp and rotatefactors).

The command L = princomp(X); yields

L D

0

B
B
B
BB
B
@

�0:6756 �0:4171 0:6047 �0:0192 0:0600

0:2740 0:1259 0:4752 0:0060 �0:8266
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0:3233 0:4582 0:6261 0:0680 0:5374

0:4577 �0:5273 0:1125 �0:6948 0:1310

1

C
C
C
CC
C
A

;

and the subsequent command [L1,T]=rotatefactors(L(:,1:2));
gives

L1 D

0

B
B
BB
B
B
@

�0:7908 0:0714

0:2948 �0:0636

�0:0259 �0:6900

0:5335 0:1728

0:0500 �0:6964

1

C
C
CC
C
C
A

:

After rotation, it is possible to better decompose the data variance among the two
principal components: the first data column and also somehow the forth column,
are well represented by the first component. On the other hand, the third and fifth
data columns are well represented by the second (rotated) principal component.

Non-orthogonal Rotations

The main conceptual difficulty with rotations is the fact that again we are forcing a
condition on the data that we do not know whether it is reasonable to enforce. On
the other hand the freedom of changing coordinate system includes transformations
of type (5.3) that are not orthogonal, therefore we can ask whether it is possible to
use a modal decomposition that does not require orthogonality from the start. By
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removing the orthogonality constraint, we are left with a large selection of possible
transformations.

The method aims at identifying a transformation of a preliminary standard EOF
pattern to achieve simpler structure. The transformation matrix is obtained by solv-
ing an oblique Procrustes problem. This mathematical problem can be stated as
follows: Given matrices A and B of size n � m with A having full column rank, find
a matrix T satisfying

B D AT C E

such that the Frobenius norm of the error matrix E,

kEk2
F D trace..B � AT/�.B � AT//; (5.4)

is minimized. B is often called the target matrix. The matrix T can be found as the
only critical point of the function to be minimized, that is, as the solution of

@

@T
.kEk2

F / D �2A�B C 2A�AT D 0:

Solving for T yields
T D .A�A/�1A�B:

The interpretation of the problem is relatively simple. The successful solution of
the Procrustes problem is the identification of a linear relation between two sets of
data. In case A is not full column rank, A�A is singular and T cannot be deter-
mined as outlined above. However, a (non-unique) minimizing solution can always
be obtained by recurring to the pseudoinverse of A�A (cf. end of Sect. 2.8).

The PROMAX method uses the Procrustes problem to obtain a simple structure
solution. The basic idea is to create a “simple” target matrix and then use a Pro-
crustes transformation to obtain an oblique set of modes that have a more insightful
structure than the original modes. The observation that orthogonally rotated modes,
such as those obtained by VARIMAX, are usually a good deal simple themselves
suggests that the VARIMAX modes can be used as starting point. Therefore, each
element of the target matrix B can be defined as

bij D jvij jk
vij

; (5.5)

where vij are the VARIMAX pattern values in each spatial point, previously normal-
ized. The Procrustes problem is then formulated with B as target matrix and with V
the VARIMAX pattern matrix as the data matrix

B D VT C E;

with solution
T D .V�V/�1V�B:
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The oblique patterns are then given by

Vpromax D VTD;

where the matrix D scales the oblique modes to unit length, namely

D2 D diag.T�T/�1:

The definition of the target matrix as a power of the original pattern (cf. the exponent
k in (5.5)) is an attempt to emphasize the differences between maxima and minima,
to obtain a simpler structure in which intermediate values are unfavored. The value
of the parameter k is arbitrary, but there is a difference in the sensitivity of the
modes according to the shape of the sought after real pattern. If we expect a strong
pattern with large variations between its extreme values, then k should be set to a
low number. In practice, k D 2 or k D 4 are often used.

The comparison between the standard and rotated modes is shown in Fig. 5.4
for the first mode in the test data set for Z500. The orthogonal VARIMAX rota-
tion results in an intense pattern, better localized, as we have seen in the preceding
pictures. The PROMAX solution (lower panels) obtains patterns even more local-
ized on North America, but we can notice one of the problems with PROMAX,
especially if a large value of k is selected (bottom panel is for k D 12). The con-
struction of these modes tends to polarize the spatial variability, concentrating the
variance in smaller regions. The modes have fewer peaks, but of larger amplitude.
We can see that for k D 12 the centers are more intense, even in regions where the
EOF or the VARIMAX showed little amplitude. This example emphasizes that sim-
ple structure in principle that does not necessarily imply more meaningful modes.
Figure 5.1 shows that from the point of view of simple structure, i.e. the polariza-
tion and separation of the pattern values in space, we are getting better every time.
The concept of simple structure is therefore a very useful concept, but it cannot be
considered as the only guiding principle.

Oblique modes have not found a widespread usage in data analysis, perhaps be-
cause of the parametric freedom, but also because they cannot be used to separate
the variance.

5.3 Complex EOF

We have seen how conventional and rotated EOF can be employed to identify pat-
terns that optimize the explanation of the variance. EOF identify the dominant
pattern, but the information on the time evolution is only implicitly included into
the evolution of the coefficients. Data that contain oscillations in time or in space
and time as a propagating signal, are very common in applications. In Sect. 4.5.1
we have seen an example in which the standard EOF have been applied to an ideal
example of a propagating wave. The signature of the propagation is visible in the
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Fig. 5.4 Conventional, rotated and PROMAX (oblique) EOF for the test data sets Z500
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EOF, but it requires some indirect interpretation. The presence of propagation is in-
dicated by two modes whose patterns are in quadrature, namely the relative maxima
and minima of one pattern correspond to the zero lines of the other and the two EOF
explain a similar amount of variance (see Fig. 4.13).

The variations of the coefficients in time (top panel of Fig. 5.5) show a periodic
behavior in time. There is a shift in time corresponding to a quarter of a wavelength
between EOF1 and EOF2. A quarter wavelength shift in time is the phase lag typical
of a harmonic wave of the form

V.x; t/ D <ŒU.x/e�i!t � D <ŒU.x/.cos.!t/ C { sin.!t//�: (5.6)

Therefore, the variation in time of the EOF coefficient seems to identify a kind
of variability that can be expressed as a harmonic wave with real part EOF1 and
imaginary part EOF2. The EOF analysis has been able to find couples of modes that
are strongly linked, in fact they may be part of the same physical system.

Waves are a pervasive physical phenomenon so it is not surprising that the EOF’s
feature of detecting propagating modes has raised considerable interest. On the other
hand, it is also true that this capability is a sort of byproduct of the general property
of EOF to maximize variance. Would it be possible to sharpen the EOF definition
so as to go after propagating modes?
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Fig. 5.5 EOF coefficients of the example in Sect. 4.5. Top panel: a propagating wave. Bottom
panel: a stationary wave
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We have seen that the quarter wavelength shift is a peculiar phase relation that
indicates propagation. Can we find a way to enhance the modes that are in that
particular phase relation? One possibility is to change the available data to stress
the phase relation we are looking for; in our case we can expand the data by adding
a new data set obtained by shifting all data by one quarter wavelength. This is a
mathematical procedure that can be performed by Hilbert transform. The analytical
definition of the transform is

Of D HŒf .x; t/� D 1

�

Z 1

�1
s.�/

t � �
d�

where the integral is to be understood to be a Cauchy principal value to avoid the
singularities at infinity and at t D � . In practice, the transform of discrete signal is
performed using a discrete Fourier transform (Hahn 1996)

Of D HŒf .x; t/� D
X

!

fH .x; !/e�2�{!t ; fH .x; !/ D
8
<

:

ig.x; !/ for ! > 0

0 for ! D 0

�ig.x; !/ for ! < 0:

where g.!/ is the discrete Fourier transform of f . The Hilbert transform shifts the
data series a quarter period to obtain a new, augmented, data series of complex data,

XC D X C iH.X/;

where the real part contains the original data and the imaginary data the quarter
period shifted data. Let us assume that XC has been detrended, so that its mean is
zero. The variance is thus given by the sum of the diagonal elements of the following
matrix

XC X�
C D XX� C H.X/�H.X/ C i.X .H.X//� � H.X/X�/: (5.7)

Therefore, the variance of the new data set XC is twice the variance of the origi-
nal data series, as the imaginary term does not contribute to the variance. However,
the balance in the imaginary term is rather delicate and it often happens that in real
cases affected by noise, the variance is only approximately twice the original vari-
ance of the data. Complex EOF defined through Hilbert transforms will therefore
try to optimize variance using patterns that are complex and whose real and imagi-
nary parts are shifted by a quarter period. Below is a Matlab implementation of this
procedure, that was used to generate later plots.

function [u,lam,v,proj]=ceof(z,indf,nmode,nproj)
%
% Compute complex EOF of z and expand it for nmode modes
%
% Inputs:
% z Data Matrix
% indf Index for the data
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% nmode Number of EOF to return
% nproj Number of EOF to generate projections
% Outputs:
% u EOF arrays (nspace x nmode)
% lam variance explained (ntime)
% v Unnormalized EOF coefficients
% proj Projection on the nmode EOF
%
resol = [96 48];
zh=hilbert(z);
[uu,ss,v]=svd(zh,0);

lam = diag(ss).ˆ2/sum(diag(ss).ˆ2); % Explained variances

u=zeros([resol(1)*resol(2) nmode]); % Keep Only first modes
u(indf,1:nmode)=uu(indf,1:nmode);
proj=zh’*uu(:,1:nproj); % Compute projections

return

Figure 5.6 shows the first complex EOF (CEOF 1) for the case of the analytical
wave of Sect. 4.5.1. The top panels show the real and imaginary parts of the first
mode and they display the familiar shape in quadrature one with the other. The real
and imaginary parts of the coefficient are also shifted one quarter wavelength. We
can see that the CEOF has recovered the propagating wave hidden in the noise.

Being focused on extracting the signals that are shifted one quarter wavelength,
the CEOF are very efficient at doing that, but at the same time the Complex EOF
do not comparably perform if the oscillatory signal has a structure with a different
phase relation. For instance, if the signal is stationary, namely it changes in time
without a change of phase in space, like an oscillating beam, CEOF run into trouble.
Propagation and stationarity are identified clearly in our ideal experiment by simple
EOF (Fig. 5.5) because the stationary signal (bottom panel) shows no clear phase
relation between the time series of the coefficient. Application of the CEOF to a
stationary signal (Fig. 5.7) produces a spatial pattern that bears indication of the
signal stationary nature. Only the real or imaginary component is now needed to
give the spatial structure of a stationary signal, in this case the real part, whereas the
other component is usually noise, without a clear pattern. It would appear that CEOF
have successfully identified the signal, however if one looks at the time coefficient
(bottom panel) it is possible to see that both time coefficients oscillate, pretty much
in the same way as in the preceding propagating case. CEOF can only distinguish
between spatial propagation and lack of it, implying the absence of spatial phase
relations; in general, however, the inspection of the time coefficient alone is not
sufficient to distinguish between them. As an example, in Fig. 5.6 it is possible
to see that the variation of the spatial phase (the arrows in the panel) is organized
and smooth, corresponding to the organized propagation. In contrast, in Fig. 5.7
the phase variation is disorganized and dominated by noise. This investigation can
be somewhat difficult to perform with real data, where spatial phase relations are
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Fig. 5.6 First complex EOF of the analytical example. Top panels: spatial patterns of the real and
imaginary parts, then the amplitude and phases of the mode. In the title, the explained variance is
recorded. Bottom panel: time evolution of the coefficient
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Fig. 5.7 As in Fig. 5.6 but for the case of a stationary wave
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difficult to identify. In practice Complex EOF cannot be used to distinguish between
propagating and non-propagating (i.e. stationary) oscillations.

A complex analysis of the test data set for SST yields the result shown in Fig. 5.8.
This picture displays the second mode represented in its real and imaginary compo-
nents. The top panel is the real part, showing a mode of variability concentrated in
the equatorial area, the middle panel is the imaginary component of the mode. The
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Fig. 5.8 Second complex EOF of the marine temperatures in the Pacific. Top panel: real compo-
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Fig. 5.9 Time series of the coefficient of the second Complex EOF shown in the previous picture.
The top panel shows the amplitude of the complex coefficient, whereas the bottom panel shows
the evolution of the unwrapped phase angle. The phase velocity is obtained as the derivative of the
phase, showing an acceleration after 1980

bottom panel is the representation in amplitude and phase. The amplitude is con-
centrated in the east equatorial Pacific, the rotation of the phase indicates a phase
velocity towards the west. Here the convention used is that the phase arrows point
to the east if the real part is positive and the imaginary part is zero.

The time evolution of the mode coefficient is displayed in Fig. 5.9, indicating the
periods of time in which such a mode is more or less energetic. The “unwrapped”
phase, that is the phase of the time coefficient reduced to a single-value function by
adding a factor 2� every time it crosses the zero line, also shows different phase
speed from a period to the next.

Figure 5.10 shows the modal actual evolution, cycling through the real and imagi-
nary parts with alternate signs. The reported field is only based on the reconstruction
of the second mode, starting from 1980 onward. The picture shows that the CEOF
indicates an oscillatory behavior that can also be aperiodic in time. There are pe-
riods in which oscillations are clearly visible, and periods where oscillations are
quiescent and there is very little appearance of the mode. This is a good example of
the capability of the CEOF to capture irregular oscillations.

5.4 Extended EOF

Complex EOF are based on the analysis of variance by taking into account the data
time behavior. This is done by creating a new data set that includes the original data
series and a new series that is shifted by a quarter wavelength. The Hilbert transform
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COMPLEX EOF 51%

Fig. 5.10 Time evolution of the second for SST from Winter 1980 (top left panel) for each con-
secutive season. Time is increasing downwards and from left to right. The 1982–1983 El Niño
event is visible in the first and second column on the left

makes the procedure very rigorous. However, it is sometimes desirable to use a less
rigorous approach and to gain some flexibility in the process. Complex EOF change
the state vectors in a way that the basic data are not the data at a given time, but the
combination data at a single time plus data shifted one quarter wavelength in time.
A possible alternative is to introduce a derivative EOF analysis that crudely realizes
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this fact. This new method, often called the Extended EOF (EEOF), simply consists
in extending the data set with repetitions of the time series suitably lagged. For the
test cases we are using here it will mean to extend the data by adding several copies
of the time series with proper time shifts, i.e.

XE D
2

4
x1 x2 � � � xm�2

x2 x3 � � � xm�1

x3 x4 � � � xm

3

5 :

The basic observation vector at time n is given by

yE .n/ D
2

4
xn

xnC1

xnC2

3

5 :

It is formed by k C 1 fields, each showing the dominant mode of variations over
the k lags. A single mode is then formed by several components each representing
the spatial pattern for that phase of the lags. The trick is to include the lags that
are important for reproducing possible oscillatory patterns. It is advisable to inves-
tigate the autocorrelation function to gather some indications of the number of lags
that need to be included. The method is very flexible, the lags do not need to be
consecutive. Instead of using three consecutive months like in the previous exam-
ple, we could have chosen some three months in three months. In principle they do
not even need to be equally distributed; arbitrary lags could be defined, but results
would be extremely difficult to interpret. In practice it is advisable to use regularly
spaced lags. The variance of the augmented series is a multiple of the variance of
the original series and it is approximately k C 1 times the original variance, so the
amount of variance explained must be assessed against this augmented variance.

A simple Matlab implementation of the Extended EOFs approach follows.

function [u,lam,v,proj]=eeof(z,indf,nmode,nproj)
%
%Compute Extended EOFs of matrix z and expand it for nmode modes
% Use 3 lags
% Inputs:
% z Data Matrix
% indf Index for the data (from the reading routine)
% nmode Number of EOF to return
% nproj Number of EOF to generate projections
% Outputs:
% u EOF arrays (nspace x nmode)
% lam variance explained (ntime)
% v Unnormalized EOF coefficients
% proj Projection on the nmode EOF
%
resol = [96 48];
[np,nt]=size(z);
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lags=3; nmode=2;
zh=ones((lags+1)*np,nt-lags);
zh(1:np,:) = z(:,1:nt-lags);
zh(np+1:2*np,:) = z(:,2:nt-lags+1);
zh(2*np+1:3*np,:) = z(:,3:nt-lags+2);
zh(3*np+1:4*np,:) = z(:,4:nt-lags+3);
[uu,ss,v]=svd(zh,0);

lam = diag(ss).ˆ2/sum(diag(ss).ˆ2); % Explained variances

u=zeros([resol(1)*resol(2) 4]); % Only first mode
uc=zeros(np,4);
for i=1:4

uc(:,i) = uu((i-1)*np+1:i*np,nmode);
end
u(indf,1:4)=uc(:,1:4);

proj=zh*uu(:,1:nproj); % Compute projections

return

The example reported in Fig. 5.11 shows the result of applying an EEOF analysis
to the tropical SST. The lags have been defined to the seasonal means of the SST
and three seasonal lags have been used. It is possible to see how the main pattern of
variations are captured.

Exercises and Problems

1. Show that the diagonal terms of the imaginary term in (5.7) do not contribute to
the variance of the field.

2. Show that the total variance of the EEOF time series is approximately k C 1

times the original one, and that the approximation gets better as the number of
time observations increases.

3. Construct the time evolution for the first mode for the EEOF technique.

5.5 Many Field Problems: Combined EOF

The extension of the EOF analysis to the time domain shows that the concept is
more general than we may have thought. The logical path that we have followed
to go into the time domain has exploited the freedom to change the rules of com-
positions of the data fields. We have generated other ways to analyze variance by
arranging/transforming the data differently. The extension we have made in the pre-
vious section was mainly in the time variable, but we can use the freedom to change
the definition of the data vectors to explore the variation of combined fields. We can,
for instance decide to define a new data set by putting together the height and SST
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Fig. 5.11 First EEOF mode for the SST data set. The analysis has been performed by season,
using three lags of one season each. The picture depicts the evolution of the mode through four
consecutive seasons. The amount of variance explained by the mode is referred to the total variance
of the augmented series
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data. The data matrix can then be written as

Yn D
�

z1 � � � zn

s1 � � � sn

�
;

where the data are arranged in such a way to keep the time correspondence between
the different fields, so that fields at the same time are put in the same column. We can
also use the data matrix for the fields Z D Œz1; z2; : : : ; zm� and S D Œs1; s2; : : : ; sm�

so that the new combined data matrix Y becomes

Y D
�

Z
S

�
:

Assuming zero mean, we can compute the covariance matrix for the combined field
as

YY� D
�

Z
S

�
ŒZ�; S�� D

�
ZZ� ZS�
SZ� SS�

�
; (5.8)

showing that the total variance of the combined field is the sum of the variance of
the composing fields.

The two data sets can have different geographic extensions, though they must
have the same number of time levels. There is also no limitation in the number
of fields that are patched together in this way. We can put in the same data space
three or four different fields, in principle there is no limit. This a very useful and
rather unique feature of the combined EOF. There are several situations when this
may be convenient. For instance, when treating tropical air-sea phenomena it is
often useful to look for combined modes of variations of wind stress, SST, Outgoing
Lonwave Radiation (OLR), precipitation, clouds, etc. The combined EOF is the only
method that allows a simultaneous considerations of the possible modes of variation
of different variables.

The combination of fields in this way requires some care to handle different units
and quantities. Different data have widely different numerical values corresponding
to the different units that are used to measure them. These differences could generate
systematic deviations in the resulting patterns that do not correspond to real variabil-
ity patterns. The problem can be overcome by transforming the data to values of the
same order of magnitude by using suitable scales, making the data adimensional.
The simplest way is to divide the data by constants that represent typical value for
that variable. For instance, in our case we could use a temperature scale of 300 K,
and a geopotential height scale of 5000 m, that would change all the data values
to order one. Another possibility is to normalize them by the point-by-point stan-
dard deviation, in a similar way to what was done in Sect. 4.4.1. In the first case
the scaling is simply equivalent to a multiplication by a constant and the covariance
structure is not modified, so we get the Combined Covariance EOS, in the latter case
the covariance structure is modified and we get Combined Correlation EOF.
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Each mode is now a combination of the fields that have been used to create the
combined data set. The mode describes the principal mode of variations of the com-
bined data and it is not different from the EOF that we have described in the previous
chapter. However, the various fields can be identified in the mode by reconstructing
the different components with the corresponding order in the data field. In this sense,
the combined EOF is a straight generalization of the EOF that can be considered as
a one-parameter Combined EOF. A typical implementation is as follows

function [u,lam,v,proj]=combeof(zz,inds,indz,nmode,nproj)
%
% Compute combined EOF of matrix zz. The matrix zz contains
% the ordered fields to be combined, in this case Z and S.
% Inputs:
% zz Combined Data Matrix
% inds Index for the S data (ocean)
% indz Index for the Z data (atmosphere)
% nmode Number of EOF to return
% nproj Number of EOF to generate projections
% Outputs:
% u EOF arrays (nspace x nmode)
% lam variance explained (ntime)
% v Unnormalized EOF coefficients
% proj Projection on the nmode EOF

resol = [96 48]; ss=resol(1)*resol(2);
[uu,ss,vv]=svd(zz,0);
lam = diag(ss).ˆ2/sum(diag(ss).ˆ2); % Explained variances

ls=length(inds); lz=length(indz);
u=zeros([ss nmode]); v=zeros([ss nmode]);
for i=1:nmode

u(indz,i)=uu(1:lz,i);
v(inds,i)=uu(lz+1:lz+ls,i);

end

proj=zz*uu(:,1:nproj); % Compute projections

return

We have used the standard deviation normalization to produce Combined Corre-
lation EOF of the height and SST fields showed in Figs. 5.12 and 5.13. The mode
resembles very much the EOF obtained by performing the analysis of the SST or
the height field alone. The pattern can be superposed almost exactly. It is possible
to understand this effect by inspecting the structure of the combined data covari-
ance matrix in (5.8). The structure is essentially given by a block matrix structure
where the blocks are the covariance matrix of the component fields along the di-
agonal and the cross-covariance matrices of the fields in the off diagonal positions.
Therefore, the diagonal terms express the internal variability of the fields, whereas
the off-diagonal terms express the variance of one field that is related to the other
field.
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Fig. 5.12 The first three combined EOF modes for the Height-SST data set. Here is shown the
SST component in descending order of explained total combined variance

The combined EOF will obtain the same EOF as the individual fields if the off-
diagonal terms are small compared to the diagonal ones. This happens if the data
fields are independent of each other and therefore the cross-covariance components
are small; in this case, the structure of the combined covariance matrix is essentially
dominated by the individual covariance of the fields. The combined EOF will be
dominated by the autocovariance of each field if the internal variability of the fields
less larger than the cross-covariance.
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Fig. 5.13 The first three combined EOF modes for the Height-SST data set. Here is shown the
Z component in descending order of explained total combined variance
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This observation leads to the main weakness of the combined EOF: by mix-
ing the autocovariance of each field and the cross-covariance of one field with the
other, combined EOF cannot separate the patterns for the different kind of variabil-
ity and one cannot tell the respective amount due to the autocovariance or to the
cross-covariance. The Combined EOF mode will bear the imprint of both sectors of
variability of a particular variable. It is a pity, because the cross-covariance could
be extremely useful when one has to study coupled problems, like the air-sea inter-
action in the tropics. The Combined EOF cannot give a suitable help on this issue,
but we will see in the following chapter that we can work out specific methods to
address this exciting issue.



Chapter 6
Cross-Covariance and the Singular
Value Decomposition

6.1 The Cross-Covariance

At the end of the previous chapter we have introduced the concept of the simulta-
neous analysis of different fields. We have introduced the Combined EOF that, after
a suitable scaling, allow us to produce patterns of variability that reflect the covari-
ance properties of different data types. This is an interesting development because it
leads to the consideration of the cross-covariance along the same lines we have used
for the covariance of a single field. The program we have followed in Chaps. 4 and 5
has been inspired by the attempt to analyze the variance of a single field, finding the
best way to represent the data, maximizing the variance with the smallest number
of patterns. The modes we have found have been identified as “preferred” modes
of variations and we have shown that they are linked to the number of degrees of
freedom in the data space.

The observations on the cross-covariance poses now the question whether it is
possible to proceed with an analogous program for the cross-covariance. Can we
analyze the cross-covariance in a similar way as what we have done for the covari-
ance? Can we identify patterns that are “preferred” in the sense that few of them can
explain most of the cross-covariance between two fields? The Combined EOF seems
a good conceptual starting point, but we will have to abandon the extra flexibility to
allow for any number of fields restricting the analysis to two fields.

Starting from the definition of the data space that we have used for the Combined
EOF, the data matrix can be written as

X D
�

z.1/ z.2/ ::: z.n/

s.1/ s.2/ ::: s.n/

�
:

As in the preceding chapter, data are arranged so that fields at the same time are in
the same column. Introducing in a similar manner the data matrices for the fields

Z D .z.1/; z.2/; :::; z.n//; and S D .s.1/; s.2/; :::; s.n//;

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 6,
c� Springer Science+Business Media B.V. 2010
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where the vectors can have different length (z 2 Rm and s 2 Rp), the new combined
data matrix Y is

Y D
�

Z
S

�
;

and the covariance matrix for the combined field can be written as

YY� D
�

Z
S

�
�

Z� S� � D
�

ZZ� ZS�
SZ� SS�

�
: (6.1)

The structure of the combined covariance already contains a lot of information. The
relative size of the four blocks in (6.1) tells us something about the possible linear
relation between the fields. It is possible, for instance, that the off-diagonal blocks
are smaller than the diagonal blocks. An extreme situation occurs when the fields
are independent of each other. In this case, in the language of the vector spaces, the
data space splits in two separated subspaces, each corresponding to one of the fields,
and the covariance matrix is

YY� D
�

ZZ� 0
0 SS�

�
: (6.2)

The EOF of the combined data sets are the same as the EOF of the individual fields.
In the general case of non-negligible off-diagonal blocks, the EOF of the combined
fields differ from the EOF computed for the single fields.

Therefore, the computed combined EOF represent both the cross-covariance of
the fields involved, but also the “autocovariance” of the fields themselves and in this
sense they do not represent the pure cross-covariance relations. We could think the
data matrix of a field as composed of two parts

Z D Za C Zc:

The “autocovariant” part Za is annihilated by the other field so that

ZaST D 0;

and the signals that appear in Z can be divided into a signal that does not correlate
with S and a portion that does. If this splitting is possible, then we are interested
in ways to identify the space spanned by Zc , corresponding to the main modes of
covariation.

A possible solution to this problem can be obtained by considering the cross-
covariance matrix

ZaST :

It is not possible to use the techniques we have described previously to identify the
main modes of variations. In general such matrices are not square, so it is impossible
to apply the eigenmode/eigenvector analysis and diagonalize it. Even in case of
a square matrix, this would be unsymmetric in general, therefore its eigenvectors
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would not be pairwise orthogonal. Generic matrices of this kind are difficult to treat
and they appear to have no particular properties that can be exploited to our aims.
However, in this situation we can probably fully appreciate the power of the results
presented in Chap. 2 regarding the Singular Value Decomposition. Any matrix can
in fact be decomposed with an SVD. In our case we can apply the SVD to the cross-
correlation matrix,

ZS� D U†V�: (6.3)

The orthogonal matrices composed of the column vectors u’s and v’s, U D
.u1; u2; : : : ; un/, V D .v1; v2; : : : ; vn/ yield bases in the Z and S data fields,
respectively, and the modes are paired, sharing the same singular values. The fields
can be reconstructed using the columns of U; V with

zk D
nX

iD1

ui hui ; zki and sk D
nX

iD1

vi hvi ; ski : (6.4)

We can give an interpretation of the singular values and modes that is similar to
the EOF: the decomposition corresponds to saying that the total cross-covariance is
given by the singular value sum. The ratio of each singular value can be interpreted
as the fraction of cross-covariance that can be attributed to that particular mode, as
in the following relation:

�i D �i

nX

iD1

�i

: (6.5)

6.2 Cross-Covariance Analysis Using the SVD

The cross-covariance seems a natural extension of the concept of the covariance (the
autocovariance) that we have discussed in the previous chapters. It is then reasonable
to wander whether it is possible to extend the concept of EOF to the more general
case. We have to resort to the general idea that the EOF are the directions, in the data
space, that explain most of the cross-covariance. We may ask to look for a similar
pattern that performs the same role. It is easy to see that if we choose the basis of
the left and right singular vectors defined in the preceding section we can get indeed
what we are looking for. With (6.4) in mind, we expand the data over the right and
left singular vectors, obtaining two matrices of expansion coefficients, A and B, that
represent the data in the new bases formed by the singular vectors,

Z D UA; S D VB:

The cross-correlation matrix has a very simple form in this basis, namely
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ZST D UA.VB/T D UABT VT :

Comparing this decomposition with that in (6.3), it follows that it must be

† D ABT : (6.6)

This means that the basis of the singular vectors of the cross-covariance matrix
is such that the matrix itself is diagonal. It can also be shown that the diagonal val-
ues on the left-hand side of (6.6) are the values of the time series covariance of
the singular vectors coefficient and that such covariances are maximized. Therefore,
the singular vectors represent patterns with maximum covariances between the time
series. They diagonalize the cross-covariance matrix in the same way the EOF diag-
onalize the covariance matrix, yielding a special basis of unconnected patterns. The
following pictures show the result of this analysis when it is applied to the already
introduced height and SST fields. Figure 6.1 shows the patterns for the Z component
of the SVD analysis, whereas Fig. 6.2 shows the SST component.

The interpretation of the explained variance needs some discussion. The “diag-
onalization” of the cross-covariance matrix indicates that it is possible to interpret
the diagonal singular values as the contribution to the total cross-covariance for that
particular mode, in case we define the total cross-covariance as the trace of the ma-
trix †, namely the sum of the singular values. The modes can be ranked according
to the amount of explained cross-covariance (CC) as it is represented in Figs 6.1
and 6.2. The amount is the same for the separate component of the mode. However,
when we consider the mode components as a basis for the height or the SST, there
is no guarantee that any relation exists between the relative importance of the two
modes and it is possible that we get different amount of variance explained by the
two factors. The amount of total variance explained by the two components when
they are considered separately (TC) is also shown in the pictures. In some cases they
are similar and in others different, there is no relation that forces a particular amount
of explained variance.

The patterns themselves show some resemblance to the pattern of the EOF of
the height field (Fig. 4.8) and to the Combined EOF (Fig. 5.13). This is not too
surprising, since we are dissecting the same variability, each time trying to stress
different aspects of it. The difference is larger when we go to higher modes, as it
should be expected.

As in the case of the EOF, the analysis yields patterns that are idealizations, in
the sense that they do not represent any physically realized pattern, but patterns
that correspond to an optimization criterion for the cross-covariance. The SVD has
identified patterns of covariation between the two different fields, as it can be seen
from the inspection of the time series of the coefficients (Fig. 6.3).

It is possible to have a measure of the method’s ability to capture the covariations,
by applying it to a data set of randomly chosen data. Figure 6.4 shows the result
when the cross-covariance SVD method is applied to a random data set of the same
dimension in time and space of the previous pictures. The random nature of the
cross-covariance is very well expressed by the absence of any structure, in the sense
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Fig. 6.1 The first three SVD modes for the Height-SST data set. Here is shown the Z component
in descending order of explained total combined variance
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Fig. 6.2 The first three SVD modes for the Height-SST data set. Here is shown the SST component
in descending order of explained total combined variance

of organized, large scale features, in the pattern spatial distribution. The patterns
are indeed casual, indicating that the SVD is trying to do its best at optimizing
the little cross-covariance occurring in the random data, but with limited success,
since the amount of cross-covariance explained (TC) is very small, as the amount of
total variance explained (CC) is also small. The cross-covariance is in fact almost
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Fig. 6.3 The time series coefficients for the first three SVD modes for the Height-SST data set

uniformly distributed among the modes, a symptom of the data randomness and of
the absence of any relation between the two fields.

Another interesting insight can be obtained by repeating the SVD analysis be-
tween the height and SST fields, but this time we rearrange the time series of the
SST in a random way, so that we possibly destroy the relation in time that is the tar-
get of the SVD analysis. The permutation has been selected in such a way to reduce
by 50% the amount of total cross-covariances between the two fields. It is totally
arbitrary, so that months in Z in different years can be paired to different months of
the SST. The results are shown in Figs. 6.5 and 6.6. The patterns do not show any
particular deficiency and in fact they could be plausible patterns. They exhibit the
kind of structure that can be considered typical of the variability of these fields, as
we have seen in the various analyses so far. The SVD aims at emphasizing patterns
that satisfy the optimization requirement even in presence of weak (by construc-
tion) cross-relation. Nevertheless the patterns themselves are plausible because they
bring the signature of the internal variability (namely the individual covariance) of
the fields so as not to get crazy patterns as in the previous example of the completely
random fields.

This example shows one of the most insidious pitfalls of this kind of analysis. The
mathematical requirements, the optimization criterion, the orthogonality constraint
etc., can force structure even when it is unlikely to exist. In a real case, with no a
priori knowledge of what structure to expect, there is a problem on how to assess the
reliability of the structures found by the SVD and of the implicit covariant relations
found. Actually, maybe some warning could be found in the small portion of total
variance explained by the modes found by the SVD (see the TC values in the figures)
that are in any case cautioning towards attributing an excessive importance to the
structures.
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Fig. 6.4 The first three SVD modes for a randomly chosen left and right field data set. Here is
shown the Z component in descending order of explained total combined variance
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Fig. 6.5 The first three SVD modes for the height and a randomly permuted SST data set. Here is
shown the Z component in descending order of explained total combined variance
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Chapter 7
The Canonical Correlation Analysis

7.1 The Classical Canonical Correlation Analysis

The method based on the Singular Value Decomposition described in previous
chapters was able to represent the largest amount of cross-covariance with fewest
modes. The computed modes are designed so as to specifically explain most of
the spatial variance. The spatial view point is a requirement that can be put on the
modes, but it is hardly unique. Another commonly employed point of view arises if
one considers the temporal variations of the modes. In this case one is interested in
modes that generate maximally correlated time coefficients. This method has been
developed in multi-variate analysis and it is known as “Canonical Correlation Anal-
ysis”. In mathematical terms we seek a decomposition of the data matrices such that
the time coefficients are defined as

zk D
nX

iD1

uiaik; and sk D
nX

iD1

vi bik;

where u; v are unknown patterns and a; b are the time coefficients, so that the entire
fields can be reconstructed. We require that the coefficients taken as a time series
are uncorrelated with each other,

hsk ; sl i D ıkl ;

where ıkl satisfies ıkl D 0 for k ¤ l and ıkk D 1, and the angular bracket denotes
the scalar product (or correlation operation). The spatial fields u and v are to be
determined as those particular spatial distributions that enforce orthogonality of the
time coefficients. Assuming Z and S of full row rank, the solution to the problem can
be formally obtained by computing an SVD on a normalized version of the cross-
covariance matrix. In the following we first reproduce the classical description of the
procedure, and then present a computationally more elegant and sound approach that
yields a mathematically equivalent solution. We write the SVD on the normalized
matrices as

.ZZ�/� 1
2 ZS�.SS�/� 1

2 D U†V�: (7.1)

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 7,
c� Springer Science+Business Media B.V. 2010
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The left and right singular vectors cannot be used directly to reconstruct the original
data matrix, they must be scaled to obtain the so-called “weight vectors”bu;bv,

WZ WD .ZZ�/� 1
2 U; WS WD .SS�/� 1

2 V: (7.2)

The weight vectors, that is the columns of WZ and WS, can be used to derive the
time coefficients for the reconstruction of the synthesized data set, aki D hzk;bui i,
bki D hsk;bvii, or in matrix notation,

A D Z�WZ; B D S�WS: (7.3)

The matrices A and B have orthonormal columns (corresponding to time). Indeed,

A�A D WZZZ�WZ D U�.ZZ�/� 1
2 ZZ�.ZZ�/� 1

2 U D I: (7.4)

A similar result holds for B. The cross-product of A and B yields an interesting
result:

A�B D W�
ZZS�WS

D U�.ZZ�/� 1
2 ZS�.SS�/� 1

2 V D U�U†V�V D †; (7.5)

where we have used (7.1) and the orthogonality property of the left and right singular
vectors in the second line. The cross-correlation in time between the coefficients of
the same modes is then a measure of the singular values of the cross-covariance
matrix scaled as in (7.1).

In practice, the explicit computation of the inverse square roots in (7.1) is avoided
by first computing the SVD of the two matrices Z and S. Let

Z D UZ†ZV�
Z; S D US†SV�

S (7.6)

be the so-called “economy size” SVD of Z and S, respectively.1 Therefore,

.ZZ�/� 1
2 Z D UZ.†Z†�

Z/� 1
2 U�

ZUZ†ZV�
Z D UZbV�

Z;

where bVZ is the matrix containing the first columns of VZ, so as to match the size
of UZ. Here we have used the fact that †Z D Œdiag.�1; : : : ; �k/; O�. An analogous
derivation follows for S. Hence

.Z�Z/� 1
2 ZS�.SS�/� 1

2 D UZbV�
Z
bVSU�

S :

Computing the SVD of this latter matrix, that is

UZbV�
Z
bVSU�

S D U†V�; so that bV�
Z
bVS D U�

ZU†V�US;

1 The term “economy size” in the factorization U†V� refers to the fact that only the columns of U
and V corresponding to nonzero diagonal elements in † are retained. Therefore, assuming that the
given matrix has maximum rank, either U or V is rectangular.
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and noticing that U�
ZU and V�US are orthonormal matrices, reveals that the singular

values in † are the cosines of the canonical angles between the spaces spanned by
Z and S; see, e.g., Meyer (2000). The smaller the singular values, the farther away
the two spaces. Note that the decomposition above yields the same matrices U, †,
V as that in (7.1). With these tools, we can easily derive the coefficient matrices A
and B as follows:

A D Z�.Z�Z/� 1
2 U D bVZU�

ZU; B D bVSU�
S V:

It readily follows that A and B have orthonormal columns, and that A�B D †, as
explicitly shown earlier.

The procedure outlined in the previous paragraph performs a correlation analysis
(by means of an SVD) with the orthogonal bases of the spaces spanned by Z and S,
allowing to eliminate spurious small correlation singular values which might be due
to almost linear dependence among the columns of each of the two matrices Z and
S, and not to a true lack of correlation between the two fields. We will explore this
fact more in detail in Sect. 7.3.

The reconstruction of the data sets after a correlation analysis is carried out, is
trickier than in previous cases. We recall that Z and S have full row rank, from
which it follows that the two matrices WZ and WS defined in (7.2) are square and
nonsingular, and it holds .WZ/�� D .ZZ�/

1
2 U, .WS/�� D .SS�/

1
2 V. Therefore,

from (7.3) it follows

Z D .WZ/��A� DW PZA�; S D .WS/��B� DW PSB�:

We can see that we can reconstruct the data matrix as a combination of the col-
umn of the matrix PZ and the coefficients of the matrix A. The rows of A provide the
contribution of each column of PZ to a specific column, that is to say to a specific
time, of the data set Z. The columns of A are the time evolution of the coefficients
for a specific column of PZ through the time evolution of the matrix Z. The columns
of the matrix PZ are called the “patterns”.

The price we are paying to maximize the covariance in the time evolution, is
given by this complication of “weight vectors” and “patterns” that coincide in the
SVD case, realizing a true basis in the data space. Weight vectors and patterns are
not orthogonal. This issue creates problems for the interpretation of the explained
variance. We can still reconstruct the data based on the result from the analysis,
but in this case the data are a linear combination of the patterns according to the
projection of the data on the weight vectors.

7.2 The Modes

Before addressing this interpretation problem, let us have a look at the CCA modes
themselves, as they are represented by the patterns PZ, PS.

The first CCA mode of the height field in Fig. 7.1 is reminiscent of the SVD
modes found earlier (Fig. 6.1), but there are significant differences. In the case of



110 7 The Canonical Correlation Analysis

-10.0111

-10.0111

8.33106

    CCA  Z Component   Expl TC   8% Correlation   100%

-13.4774

-13.4774

4.31636

4.31636

4.31636

4.31636

    CCA  Z Component   Expl TC   9% Correlation   100%

-22.3863-22.3863

-7.26706

-7.26706-7.26706

-7.26706 -7.26706

    CCA  Z Component   Expl TC   7% Correlation   100%

90°N

60°N

30°N

0°

90°N

60°N

30°N

0°

90°N

60°N

30°N

0°

120°E 180°W 120°W 60°W 0°

120°E 180°W 120°W 60°W 0°

120°E 180°W 120°W 60°W 0°

Fig. 7.1 The first three classical CCA modes for the Height-SST data set. Here is shown the Z
component in descending order of explained total combined variance
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the first mode there is a large similarity in shape between the two methods. Both
patterns exhibit several lobes over the Central Pacific, the Southern United States
and the central Atlantic, whereas a contrasting center of action is over Canada. The
intensity contrast is however greater in the case of the CCA and the contrasts be-
tween negative and positive centers appear to be smaller in the case of the SVD
mode.

There are more differences for the second mode in Fig. 7.1. The SVD mode is
somewhat incoherent and it is difficult to assign a particular interpretation.

The second CCA mode shows well defined centers of action over the Central
Pacific and the Atlantic ocean, that can be organized in dipoles over the main ocean
basin. The dipole can be interpreted as expression of variability associated with jet
stream shifting, identified by the strong gradients in the height fields, in a meridional
direction. The two dipoles identify the location of two such areas over the main
ocean basins.

The SST modes in Figs. 7.2 and 6.2 give a similar interesting picture. The first
CCA mode is also similar to the first SVD mode, as in the previous case. The pattern
is broad over the Pacific, with the characteristic wedge shape of the variability of the
SST in the area. The differences increase in the second mode. The SVD mode tries
to capture the main contrast between the east and west portions of the basin, whereas
the second CCA mode is concentrated in the equatorial region of the Central Pacific.
The CCA mode appears to have a “simpler” structure than the SVD mode and there
is no sign of the east–west contrast apparent in the SVD mode.

The third mode is even more striking as the CCA mode attempts to capture
the variability of the wedge area margins, as it can be seen by the strong inten-
sification of the mode amplitude at the area border. The SVD mode is a rather
complicated creature, trying to focus on some detail of the variability in the West
Pacific. Therefore, CCA and SVD “capture different animals in the savana” of the
climate variability; how can we argue in favor of one individual or another?

The differences arise mainly from relaxing the orthogonality requirement in the
CCA case. A careful observer can visually realize that the CCA modes are not spa-
tially orthogonal. The center of action in the Pacific for the first height CCA mode,
for instance, is almost in the same location of the center of action with the same
sign in the second mode. The first and second CCA SST modes have also strong
overlaps of the same sign in the Central Equatorial Pacific. Clearly those modes are
not orthogonal. The CCA method, without the nuisance of generating mutually or-
thogonal patterns, can find more complicated patterns, as long as they maximize the
correlation between the respective time series.

Deciding which mode is more important becomes tricky. The SVD provides a
natural ranking of the modes because the orthogonality allows a clean separation
of the variance among all the modes. In the CCA case this is no longer possible.
We can still have a clue by computing the portion of variance explained by each
CCA mode after the data are reconstructed with just that mode, but the overlap
between the modes will result in a sum of explained variances that is not equal
to the total variance. Indeed, each CCA mode contains a little bit of the others,
since the projection of each mode on the other is not zero; this is another way of
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Fig. 7.2 The first three CCA modes for the Height-SST data set. Here is shown the SST compo-
nent in descending order of explained total combined variance

interpreting their non-orthogonality. One can use the computed explained variance
to rank the modes in order of decreasing explained variance, like in the EOF or SVD
case. The total variance explained in Figs. 7.1 and 7.2 is computed in such a way.
We can see that the result is still acceptable; in practice the explained variances are
not completely off the wall because the amount of overlap between modes is often
small, but it is clear that the idea of explained variance in the CCA case must be
taken with great care.
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Fig. 7.3 Time series coefficients for the first three CCA modes for the Height-SST data set

The CCA was designed to maximize correlation between time coefficients.
Figure 7.3 shows the time series of the time coefficient corresponding to the first
two modes in Figs. 7.1 and 7.2. It is possible to see that the time series are strongly
correlated. The dotted line, corresponding to mode 24, is less correlated.

This result shows that CCA faces an increasingly difficult task as the modes
are found, since the modes must be maximally correlated between height and SST
components, but they must be uncorrelated in time with the modes already found.
In principle one could use the time correlation to rank the modes, ordering them
in decreasing correlation magnitude, but in practice it is easy to find several modes
with high values of correlation with a practical degeneracy. In that case we have to
go back to the ranking based on the amount of variance explained.

Exercises and Problems

1. Given the two matrices

Z D
0

@
1 1 1 1 1 1

�1 0 1 2 0 0

0 1 1 1 �2 1

1

A ; S D
0

@
1 �1 1 �1 1 �1

�1 1 1 2 0 0

�2 0 2 4 0 0

1

A ;
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find the singular values of the scaled cross-covariance in (7.1) and check that if
one of the singular values is equal to one then the corresponding time coefficients
are equal.
The nonzero singular values are † D diag.1; 0:56363; 0:53860/. Explicit com-
putation shows that

A D

0

B
B
B
B
BB
B
@

�4:0825e � 01 4:0131e � 01 �4:2683e � 01

�5:2830e � 16 1:5132e � 01 �5:1883e � 01

4:0825e � 01 1:4079e � 01 �2:9290e � 01

8:1650e � 01 1:3026e � 01 �6:6968e � 02

8:3039e � 17 8:6969e � 01 4:3494e � 01

�5:2830e � 16 1:5132e � 01 �5:1883e � 01

1

C
C
C
C
CC
C
A

;

B D

0

B
BB
B
B
B
B
@

�4:0825e � 01 3:0850e � 01 8:5980e � 02

�1:2630e � 15 2:6847e � 01 �9:6329e � 01

4:0825e � 01 6:1700e � 01 1:7196e � 01

8:1650e � 01 �1:5425e � 01 �4:2990e � 02

�1:1948e � 16 4:6275e � 01 1:2897e � 01

1:1948e � 16 �4:6275e � 01 �1:2897e � 01

1

C
CC
C
C
C
C
A

;

confirming that the first column is indeed the same, up to machine precision.
2. Each CCA mode for height and SST can be considered a vector in the data space.

Compute the angles between the CCA modes for height and SST.

7.3 The Barnett–Preisendorfer Canonical Correlation Analysis

As already mentioned, the explicit computation of .ZZ�/� 1
2 ; .SS�/� 1

2 in the clas-
sical CCA is prone to instability problems, in case the matrices ZZ� and SS� are
singular or almost so, that is, in case Z and S are not numerically full (row) rank
matrices. Mathematically speaking, if the smallest eigenvalue of ZZ� is different
from zero by tiny, say 10�15, it is enough to declare the matrix invertible; how-
ever, this is not sufficient from a numerical standpoint. The inverse matrix will be
dominated by the smallest eigenvalue (see Sect. 2.9) that will contribute predomi-
nantly to the structure of the inverse. We could neglect that, were it not for the fact
that the smallest eigenvalues are the most sensitive to perturbations of the original
matrix, i.e. the covariance matrix. Such perturbations can be variations in the num-
ber of columns that represent a change in the number of time levels represented
in the data, namely a change in the time sampling. Variations in the rows, implying
changes in the spatial domain or in the space sampling, can be just as damaging. The
inverse square root function is very sensitive to small changes in the composition of
the data matrix, introduced for instance by random errors in the data. The effect
can show up in various ways, for instance as spurious large correlations. We have
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already encountered this problem in Chap. 4 and we have seen that the EOF can be
very effective in filtering out the noise present in the data. Barnett and Preisendor-
fer in 1987 proposed to use EOF to filter the data before applying CCA in order to
minimize the unduly relevance of the random errors in the calculation of the scal-
ing matrices; see Barnett et al. (1987). More generally, this strategy may be used
to eliminate spurious (or noisy) information from the original data matrices. In the
following we report the procedure to obtain the modes as described by Barnett and
Preisendorfer (Fig. 7.4–7.5). It should be clear to the reader that the whole process
may be derived by first truncating the SVD of the two matrices Z, S in (7.6) to the
first dominant singular values.

The approach follows the lines of the classical CCA analysis, but the original
covariance matrices are now expanded preliminarily on the respective EOF,

ZZ� D EZ†ZE�
Z ; SS� D ES†S E�

S ; (7.7)

where the E represent the EOF for Z and S respectively and † is the diagonal matrix
of the variances. The data is then projected onto the respective EOF basis to obtain
primed quantities

Z0 D E�
ZZ; S0 D E�

S S: (7.8)

The covariance matrix expressed in terms of the primed quantities, the EOF coeffi-
cients, is particularly simple

Z0Z0� D E�
ZZZ�E�

Z D E�
ZEZ†ZE�

ZEZ D †Z ; (7.9)

with a similar expression for the covariance matrix for S0. In the Barnett–
Preisendorfer (BP) approach, the EOF coefficients are normalized and then a
certain number of them is discarded, retaining only a smaller number. This opera-
tion corresponds to removing the higher order EOF that, as we have seen, are the
most affected by noise and sampling errors. In practice this operation is performed
by removing selected rows in the matrices Z and S, to obtain reduced matrices of
EOF coefficients, indicated by the tilde sign,

X D

2

6
6
6
66
4

x1.1/ x1.2/ ::: x1.n/

x2.1/ x2.2/ ::: x2.n/

x3.1/ x3.2/ ::: x3.n/

::: ::: ::: :::

xm.1/ xm.2/ ::: xm.n/

3

7
7
7
77
5

! Reduce !
�

x1.1/ ::: x1.n/

x2.1/ ::: x2.n/

�
D QZ:

The number of retained modes may be different for the left and right fields, because
the BP-CCA method requires performing an SVD of the cross-covariance matrix of
the normalized reduced coefficients matrix (tilde) quantities:

eZeS� D U†V�: (7.10)
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Fig. 7.4 The first three Barnett–Preisendorfer CCA modes for the Height-SST data set. Here is
shown the Z component in descending order of canonical correlations
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Fig. 7.5 The first three CCA Barnett–Preisendorfer modes for the Height-SST data set. Here is
shown the SST component in descending canonical correlation order

This only requires that the number of time levels (the number of columns) be the
same for the left and right fields. The “weight vectors”bu;bv are then calculated as
before, exploiting the simplified version of the covariance in (7.9). The data can then
be reconstructed using the coefficients computed with the weight vectors,

.†Z/� 1
2 U D WZ; .†S /� 1

2 V D WS; (7.11)

and A D QZ�
WZ, B D QS�

WS, where, as before, the matrices A and B hold the
coefficients required to reconstruct the data.

The first modes are not too different from the classical CCA and we can see that
we can recover the familiar distribution of the centers of action in the height field
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(Fig. 7.5) and the wedge shape that is typical of the SST distribution (Fig. 7.5). The
first mode is dominated by the Pacific North American pattern as it is represented
in the model, whereas the second mode is highly localized in the Atlantic, pointing
to a variability in the position of the Atlantic jet stream. Interpretation of the result
is always difficult, especially since these modes express correlations between the
height fields and the tropical Pacific SST. A straightforward interpretation has to
consider the height modes as those patterns that are most correlated with the corre-
sponding SST pattern. It is probably easy to come to terms with the first Z mode,
indicating an effect of the tropical SST on the immediate neighboring areas of the
north Pacific and North America. Some more sophisticated dynamics are involved
to explain the effect of the tropical SST on the Atlantic region where the second Z
mode is mostly concentrated. Remote effects of SST are well known, but the evi-
dence from this CCA analysis is usually not enough to guarantee such a conclusion.
The time series reflects the fact that the correlations are less saturated than in the
classical CCA case. The canonical correlations, i.e. the singular values of the cross-
covariance matrix, are not clustered around unity and so we can see a drop in the
correlation values from the first to the third mode (Fig. 7.6). The time series of the
coefficients can be quite different from the classical CCA case, even if the patterns
themselves may not seem very different.

There are no rules to recommend the number of EOF to retain in the BP-CCA
approach. The spirit here is to retain only the portion of the variance in the original
field that is less affected by errors, in this sense any of the comments described in
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Fig. 7.6 The time series coefficients for the first three CCA Barnett–Preisendorfer modes for the
Height-SST data set
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Chap. 4 can be used to define a criterion to choose a number of EOF to keep. The
sensitivity of the BP-CCA method is however smaller (Fig. 7.6). We can see in Figs.
7.7 and 7.8 that the first mode is not much affected by the changes in the amount
of variance retained in the BP-CCA analysis. The second mode is more sensitive,
showing marked differences according to the number of EOF kept in the original
data sets.
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Fig. 7.7 The first CCA Barnett–Preisendorfer mode for the Height-SST data set. Here is shown
the Z component for different numbers of retained EOF. The EOF retained correspond to keeping
50%, 80% and 90% of the variance, respectively
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Fig. 7.8 The second CCA Barnett–Preisendorfer mode for the Height-SST data set. Here is shown
the Z component for different numbers of retained EOF. The EOF retained correspond to keeping
50%, 80% and 90% of the variance, respectively

The direct comparison is made difficult by the uncertainty in the sign that the
CCA modes share with the other methods. Weight vectors and patterns are deter-
mined up to a an overall sign by CCA, either in the original version or according
to the BP prescription. This means that the algorithm used to compute the modes
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randomly picks one sign. General consistency is guaranteed by the fact that the co-
efficients sign is changed accordingly. This is easy to recognize in the patterns, but
it may become tricky if time series from different calculation are compared. Care
must be taken to make sure that the modes are comparable in terms of having all
the same sign convention. The strategies used to choose an appropriate sign for the
EOF (see Chap. 4) can also be employed here.



Chapter 8
Multiple Linear Regression Methods

8.1 Introduction

In the previous chapters we have introduced techniques to find relations between
two or more different fields. In this chapter we describe a more general framework
that may provide additional insight into previously analyzed methods. In general a
relation between fields can be formulated symbolically as

Z D f .S/ (8.1)

where, for instance, Z represents the geopotential and S the SST. The exact form
of the relation is unknown, but it is probably time dependent and thus includes
effects of time lags and so on. In practice, it is really difficult to investigate arbitrary
functional forms for f in (8.1); assuming f to be linear represents a simplifying
but viable alternative. In this case the function f may be represented by matrices.
We have seen in the previous chapters that powerful methods have been devised
to identify relations of the form (8.1) assuming that f .S/ is a linear function. We
have seen linear correlation methods, teleconnection analysis and finally methods
that analyze systematically the linear relation between two data sets, such as the
Singular Value Decomposition (SVD) or Canonical Correlation Analysis (CCA).
We will now define a general framework that includes the latter as special case.

Assuming linearity, the relation between the data matrices Z and S can be written
as (Navarra and Tribbia 2005)

Z D AS (8.2)

where A is a matrix, assumed here to be stationary. Z and S are data matrices de-
scribing the atmospheric and oceanic fields arranged at fixed times. In general, the
number of spatial points need not be the same in the Z and S data and so the two ma-
trices will be in general rectangular matrices, with n time columns and, respectively,
p rows for Z and q rows for S.

It is possible to set a simple (least squares) minimization problem for A (Golub
and Van Loan 1996; Richman and Vermette 1993), as

A. Navarra and V. Simoncini, A Guide to Empirical Orthogonal Functions
for Climate Data Analysis, DOI 10.1007/978-90-481-3702-2 8,
c� Springer Science+Business Media B.V. 2010
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min
A

kZ � ASkF (8.3)

where the norm is the Frobenius norm, as defined in (2.5). If SST is full rank, the
minimizing least squares solution can be written as

A D ZST .SST /�1: (8.4)

If S is square, the solution is exact and the residual Z �AS is zero. Otherwise the
obtained solution minimizes the residual among all possible choices of A, yielding
a nonzero residual. If SST is singular, then a solution can still be found by using the
pseudoinverse defined in (2.12).

The matrix A in (8.4) describes the relation between the fields S and Z, and it is
the operation that transforms the S field into Z.

In the case that the minimum is zero, then the entire field Z can be transformed
into S. In this case AS D Z and the range of A spans the whole space Z. In addition,
the variances of AS and of Z coincide, namely

diag..AS/.AS/T / D diag.ZZT /;

where we recall that we are still assuming that the fields have zero mean.
If the minimum is not zero, then AS does not coincide with the space Z and in

general the range of A will be a subspace of Z. Now only a portion of the field
Z’s variability can be associated with the variability of AS. There is a difference
between the field Z and AS so that

Zfree D Z � AS:

In general we can thus write the field Z as

Z D AS C Zfree D ZS C Zf ree : (8.5)

This splitting of Z makes explicit that a portion of the field Z can be reached
directly from S via the operator A (denoted by ZS), but a residual part, Zfree, cannot
be reached. It is interesting to observe that the two parts are uncorrelated in time,
that is

ZSZfree
T D 0:

Indeed,

ZSZfree
T D ZS.ZT � ST AT / D ASZT � ASST AT

D ASZT � ASST .SST /�1SZT D 0:



8.1 Introduction 125

Exercises and Problems

1. Given the matrices S D Œ1; �1; 1; �1I 1; 1; 1; 1�I and Z D Œ1; �1; 2; 0I
0; 1; �1; 2I 0; 0; 1; 1�, compute the least squares solution of the problem
minA kZ � ASkF .
We have

A D .ZST /.SST /�1 D
2

4
4 2

�4 2

0 2

3

5
��

4 0

0 4

���1

D
2

4
1 0:5

�1 0:5

0 0:5

3

5 :

2. With the data of the previous exercise, verify that the residual is orthogonal to
AS.
A direct computation shows that

.AS/ZT
free D 1

2

2

4
3 �1 3 �1

�1 3 �1 3

1 1 1 1

3

5 � 1

2

2

66
4

�1 1 �1

�1 �1 �1

1 �1 1

1 1 1

3

77
5 D 0:

8.1.1 A Slight Digression

The search for a relation between the fields can also be formulated in a different
way, via the following minimization problem:

min
B

kS � BZkF ;

where we are trying to get S in terms of Z. This problem has an analogous mini-
mization solution

B D SZT .ZZT /�1: (8.6)

We now have two operators, A and B, that express the relation between S and
Z, but that are not completely equivalent. The operator A can be interpreted as
expressing the influence of S in terms of Z, whereas the operator B represents the
influence of Z on S. They both involve the cross-correlation matrix ZST and its
transpose SZT . In general there is no reason to expect them to have any special
structure.

Further insight can be gained by realizing that each of (8.4) and (8.6) represents a
multivariate regression problem for the atmospheric field Z on the oceanic SST field
S. This is a general formulation of the coupling problem, that is the identification of
the relation between two varying fields. It is only subjected to the linearity constraint
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in the coupling, and it will give an indication of the strength of the relation between
one field and the other. The method based on the matrices A and B obtained via
the Least Squares method will be denoted in the following as the PRO method.
This is reminiscent of the name, PROcrustes problem, commonly employed for this
formulation in the climatology community, although the true Procrustes problem
requires additional constraints, and it is discussed in Sect. 8.2.2.

It is interesting to note that the method based on the pseudoinverse can be applied
to any pair of fields. We also have made no assumptions regarding the geographical
location of the data we are using for the analysis. The fields S and Z could be located
in the same geographical domain or they could be placed in remote locations distant
from each other. We might consider, for instance, the geopotential and the SST in the
same domain in the tropics, or we might take the tropical SST and the geopotential
over North America. In the former case we are looking at local relation between
the fields, in the latter case we are really looking at remote influences, probably
mediated by other physical processes.

8.2 A Practical PRO Method

The cost of the calculation described in the preceding section depends strongly on
the order of the data matrices. It is a function of the row and column dimension of
Z and S. The cross-correlation matrix ZST , that is the essential part of A, may have
very large dimension if many grid points are considered. In our case, its dimensions
are p � q. In some applications it is not a problem, but for a typical climate or mete-
orological application the number of grid points can quickly run into the thousand,
making the calculation of ZST unpractical.

A significant simplification of the calculation can be achieved by using the data
compression properties of the EOF. Using the EOF we have introduced in previous
chapters we can achieve a significant reduction in the problem size to be solved. The
maximum number of EOF for a data field, say Z, is given by the smaller dimension
of Z. In typical meteorological applications the number of time levels is often much
smaller than the number of grid points and we can reduce the problem significantly.

If the columns of UZ, US contain the EOFs of the two fields Z, S, respectively,
that is, their left singular vectors, then we know from Chap. 4 that

Z D UZ QZ; S D US QS:

We can then define the significantly smaller problem in terms of the EOF
coefficients as

min
A

k QZ � A QSkF :

Its solution can be found in a similar way in terms of the tilde quantities as

A D QZ QST
. QS QST

/�1: (8.7)
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The reduction of the algebraic dimension of the problem is quite significant.
In the case of a geophysical field, the data matrices are usually very rectangular,
because the number of columns describing the spatial extent of the field is usually
much larger than the number of rows describing the number of time levels analyzed.
The minimization problem is then quite tractable. The use of EOFs also offers the
possibility of an interpretation of the operators A and B. The operator A expresses
the contribution to a single mode of Z, for instance the first mode by all the modes
of S. By inspecting the columns of A we can analyze the regression factor by which
each mode of S contributes to that particular mode. Large values indicate a strong
impact of that S mode on the variability of the first Z mode. The analysis can be
repeated for each column, thereby reconstructing the map of the S modes that have
strong influences on Z. A similar argument can be done for the operator B, in which
the role of S and Z are reversed. In this case the column will indicate which of the
Z modes contributed more strongly to the first S mode. Together, the two operators
contain a fairly detailed map of the influence patterns between the fields.

The operator B can be interpreted in a similar way, with the role of Z and S
reversed. Now the (1,1) component of B expresses the influence of the first Z mode
on the first S mode or of the second mode on the first mode, and so on.

In principle, the usage of the EOF allows one to filter the data prior to the appli-
cation of the PRO method, by retaining only some of the EOF and achieving another
significant saving. This is not required by the method itself, but is a feature that adds
further flexibility to the method and can be helpful in avoiding overfitting.

8.2.1 A Different Scaling

It is interesting to note what happens when the data are scaled by the covariance
matrices. If we take the data in the EOF representation and we scale them by the
square root of their covariance matrices,

OZ D . QZ QZT
/
� 1

2 QZ; OS D . QS QST
/
� 1

2 QS

then

OZ OZT D I; OS OST D I:

When this scaling is used the cross-covariance matrix becomes the cross-
correlation matrix. The minimizing solution to the scaled least squares problem
minA k OZ � A OSkF can then be written as

A D OZ OST
:
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Interestingly the sister problem can be solved as

B D OS OZT

and so A D BT .
In this scaling the influence matrices A and B are one the transpose of the other.

This means that only one matrix is sufficient to describe the interaction among the
various modes. In this case, the upper half of the matrix describes the influence of Z
on S and the lower half the influence of S on Z. This scaling is used in the Canonical
Correlation Analysis approach and this relation prompts us to examine what are
the connections between the PRO methods and the other methods used to analyze
variance.

8.2.2 The Relation Between the PRO Method and Other Methods

It is interesting to analyze what happens if further restrictions are put on the coupling
matrix A. If we require that A be an orthonormal matrix Q, i.e. QQT D QT Q D 1,
then we obtain the orthogonal Procrustes problem,1

min
Q

kZ � QSkF ; (8.8)

whose solution is given by (see, e.g., Golub and Van Loan 1996, sec.12.4.1)

Q D UVT ;

where U and V are obtained by the Singular Value Decomposition of the cross-
correlation matrix, that is

SZT D U˙VT :

This is the definition of the SVD method as proposed by Bretherton et al. (1992),
and we can now see that it is essentially a Procrustes problem. This result is con-
sistent with Cherry (1996, 1997) who found that the SVD method essentially aims
at rotating one data set into the other. Searching coupled modes with SVD is there-
fore equivalent to assuming a priori that the coupling relation between the fields is
special. Similarly, it is also possible to realize that the Canonical Correlation Anal-
ysis imposes a similar orthogonality requirement on Q. From this point of view it is

1 The name is taken from the Greek mythology. Procrustes, the owner of a tavern, had only one
bed and therefore took to sawing off the legs of his guests if they were too long for his bed. In a
similar way, we are trying to “constrain” the matrix Z into S and we are willing to chop off some
part of Z in order to so.
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not surprising that identification of coupled modes via SVD or CCA is sometimes
arduous, since the orthogonality constraint for the influence operators does not seem
to have any physical justification.

8.3 The Forced Manifold

It is often the case in meteorology or climatology that numerical simulations are re-
peated with similar forcing conditions and slightly different initial conditions. The
reason can be found in the extremely sensitive nature of the atmospheric systems to
small perturbations in the initial values. Small initial differences can quickly evolve
in large differences because of the natural growth of instabilities and other nonlin-
ear feedbacks. This phenomenon makes sometimes difficult the detection of signal
imposed on the climate systems by external factors, like for instance a certain pre-
scribed distribution of Sea Surface Temperatures (SST). In the preceding chapters
we have often used data from simulations that were derived exactly in that man-
ner, the objective to isolate the effect on the atmospheric variability of the changes
in SST. This kind of experiments is often designed as an ensemble experiment in
which the same SST distribution changing in time month after month is used and
several simulations with slightly different initial values are used. A number of sta-
tistical methods can then be used on the resulting ensembles to detect the effect of
SST.

We can use the PRO method described in the previous sections to extract the
signal from these experiments. The data matrix for Z must be extended to include
all the members of the ensemble

Z D Œza
1; za

2; : : : ; za
n; zb

1; zb
2; : : : ; zb

n; : : :�;

where the superscripts a; b; : : : label the individual members of the ensemble. The
data matrix for S is obtained by repeating the time series to match the number of
members

S D Œs1; s2; : : : ; sn; s1; s2; : : : ; sn; : : :�:

The PRO method can then be applied to the data matrices Z and S. Figure 8.1
shows the result of the PRO method when it is applied to the Pacific North American
region for the atmospheric field Z and to the tropical region for the SST. The PRO
method divides the field Z in two orthogonal parts, the first component has maxi-
mum correlation with the other field, in this case the SST, the second is uncorrelated
from the SST. In mathematical terms the two parts are subspaces of the original
data, we can call them the Forced Manifold in the first case, to represent the fact
that the subspace contains the effects of the forcing field and we may call the other
Free Manifold to represent its independence of the variations of the forcing field.
The figure shows the ratio between the variance of the Forced Manifold and the total
variance locally point by point. The orthogonality of the two subspaces can be seen
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Variance of Forced manifold for Z 44 %
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Fig. 8.1 Forced Manifold and Free Manifold. The picture represents the division in Forced and
Free Manifold for the North American geopotential field Z in the region north of 20N and the
tropical Pacific SST in the region 20N–20S latitude. The top panel shows the ratio of the variance of
the Forced Manifold to the total variance, the middle panel shows the same for the Free Manifold.
The region used to examine the effect of the SST is in the bottom panel together with the total
variance of the SST

as the sum of the variance of the Free and Forced Manifold sum to the total variance.
There are large differences in the amount of variance in the Forced Manifold from
point to point, the differences identify the area where the influence of the SST is felt
the most. In this way we can easily identify the region where the variability of some
field like the geopotential field is mostly affected by the variance of the other field,
in this case the SST.
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The Forced and Free manifolds are defined with respect to the regions of the field
S that we employ as the forcing region. In Fig. 8.2 we have moved the reference
SST region to the South Atlantic, more precisely the region between 20S and 70S.

Variance of Forced manifold for Z 25 %
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Fig. 8.2 Forced Manifold and Free Manifold. The picture represents the division in Forced and
Free Manifold for the North American geopotential field Z in the region north of 20N and the
Atlantic SST in the region 20S–70S latitude. The top panel shows the ratio of the variance of the
Forced Manifold to the total variance, the middle panel shows the same for the Free Manifold.
The region used to examine the effect of the SST is in the bottom panel together with the total
variance of the SST. The amount of free variance is much larger than in the preceding case, showing
the minor impact of the Southern Atlantic SST on the geopotential in the North Pacific
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We have physical reasons to believe that the SST in this region are only modestly
connected with the activity over the North Pacific. In fact the amount of variance
explained by the Forced manifold is much less than before and most of the variance
is in the Free Manifold, namely, mostly of the variance is not connected with the
variance of the SST in the South Atlantic.

The separation in (8.5) will allow us to study separately the properties of the
field that is related to SST from what is independent. We are pretty free to choose
the forcing region and the study region any way we wish and so we can select them
on the basis of the various scientific hypotheses that we may think interesting. We
next see whether there are some basic properties that we can immediately point out.
The separation in Forced and Free manifold is not trivial, mostly because of the
non linear nature of the pseudoinverse used in the solution of the PRO method. We
have therefore no reasons to expect any particular relation between the structure of
the manifolds and the total field. The variance structure is unrelated and we can
convince ourselves by examining the EOF of the total field compared to those of the
two manifolds.

Figure 8.3 displays the first three EOF modes of the geopotential over the
Pacific/North American region. These show the familiar positive and negative
structures extending from the central tropical Pacific ocean towards the American
continent. The following figure (Fig. 8.4) shows the same three modes but for the
Forced Manifold. The patterns are different. They show significant increase in the
amplitude in the lower tropics ad other features that a more detailed analysis may
indicate. The last picture (Fig. 8.5) shows the same modes but for the Free Mani-
fold. This variability is unconnected with the tropical SST and we can see that the
amplitude is concentrated away from the tropics and in general the patterns are even
more different.

In this example we can use some of our meteorological expertise to interpret the
results and connect them to the phenomenon that they represent; in a particular ap-
plication one will have to do the same, by analyzing in detail the process to discuss
the modes in a scientifically meaningful way. It is clear however that the separa-
tion is real and that is not trivial, in the sense of simply selecting some particular
mode of variations over the others. The main reason for this behavior is the decrease
of degrees of freedom due to the pseudoinverse. The pseudoinverse eliminates the
degrees of freedom corresponding to zero singular values which are associated to
modes that do not contribute to be variance. Hence the Forced Manifold AS is not
the entire space Z. In the case of multiple realizations with the same S, the num-
ber of degrees of freedom of the data Z is not the number of realization times the
time levels, in our case 102, but only the smaller number of degrees of freedom
corresponding to the time levels for S, namely 34.
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Fig. 8.3 EOF of the Total field. The picture shows the first three EOF modes for Z over the region
of the Pacific/North America
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Fig. 8.4 As in Fig. 8.3, but for the Forced Manifold
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8.3.1 Significance Analysis

The PRO method can give us an easy way to find connections between fields, how-
ever there is still the chance that some of the connections are just incidental. It would
be nice to have some method to estimate the probability that the separation is indeed
the result of casual relations.

To understand this point we need to go back to the operator A D ZST . The
discussion is easier if we consider A under the scaling of Sect. 8.2.1. This choice is
no loss of validity with respect to the general case and the structure of A is simpler.
The definition of A means that the components of A are the time correlation between
the time series of the EOF of Z and S. The elements of A therefore can be written as

2

666
666
666
666
4

a11 D
nX

iD1

z1.i/s1.i/ a12 D
nX

iD1

z1.i/s2.i/ : : : a1NS D
nX

iD1

z1.i/sNS .i/

a21 D
nX

iD1

z2.i/s1.i/ a22 D
nX

iD1

z2.i/s2.i/ : : : a2NS D
nX

iD1

z2.i/sNS .i/

:::
:::

:::
:::

aNZ 1 D
nX

iD1

zNZ .i/s1.i/ aNZ2 D
nX

iD1

zNZ .i/s2.i/ : : : aNZNS D
nX

iD1

zNZ .i/sNS .i/

3

777
777
777
777
5

;

where NZ and NS are the number of EOFs for Z and S that have been retained in the
analysis. The matrix is non-symmetric as the components a12 and a21 are in general
different. They are the correlation coefficients of the time series of EOF mode 1 for
Z with EOF mode 2 for S and the correlation coefficients for the time series of EOF
mode 2 of Z with EOF mode 1 of S. In fact they are indeed regression coefficients
in the general case that in this scaling reduce to correlation coefficients. We can see
then the matrix A expresses the influence of each mode of one field on the modes of
the other field as in the following scheme

2

6
6
6
4

S.1/ ! Z.1/ S.1/ ! Z.2/ : : : S.1/ ! Z.NZ/

S.2/ ! Z.1/ S.2/ ! Z.2/ : : : S.2/ ! Z.NZ/
:::

:::
:::

:::

S.NS/ ! Z.1/ S.NS / ! Z.2/ : : : S.NS / ! Z.NZ/

3

7
7
7
5

; (8.9)

or introducing the numerical values for the elements



8.3 The Forced Manifold 137

2

6
66
6
6
6
66
4

�0:4023 0:0126 0:2145 �0:0758 : : :

�0:5741 0:2645 �0:0249 �0:0797 : : :

0:0491 �0:0129 0:0787 0:1200 : : :

0:1705 0:4186 0:0880 0:1497 : : :

0:2999 0:1294 �0:2053 0:0469 : : :
:::

:::
:::

:::
:::

3

7
77
7
7
7
77
5

; (8.10)

where we have shown the first few rows and columns of A. We can see that we can
use A to inspect the strength and the characteristic of the correlation an/or regres-
sion between each particular modes and the others. The arguments is not limited
by the choice of the representation in EOF. If we had elected to used the grid point
or station representation, the operator A could have been interpreted in the same
way. In that case the elements aij would have contained the correlation/regression
coefficient for grid point i of Z with grid point or station j of S.

The description in (8.10) and (8.9) indicates that we have a statistical interpreta-
tion for A. Such an interpretation may be used to establish confidence limits in the
numerical vales of the components of A. We can used heuristic methods to estab-
lish the baseline values that we can attribute to chance. For instance, in the previous
sections we have changed the analysis domain to regions where we were expecting
varying strengths of the relationship between S and Z. We can have an idea of the
sensitivity of the analysis by also scrambling in time one of the fields and using
the method to estimate the possibility of casual relations. The results are shown in
Fig. 8.6.

Here we can see that the amount of variance in the Forced Manifold has de-
creased by a large amount. This level is basically equivalent to the determination of
a zero level, that is the value that is generated by casual relations in the data. The
amount of Forced variance found is very close to the level determined by the exam-
ple in Fig. 8.2 where we used a physically based argument to estimate the level of
no relation, form the result of the scrambled test we can be rather confident that the
relation found in Fig. 8.1 is relatively robust.

We can have a more rigorous estimation of confidence if we recognize that
the correlation/regression coefficients in A can be tested against a Student’s
t-distribution. The test estimates the probability that the true coefficient is in-
deed zero. The acceptable values for the probability levels in order to accept the
computed values is, of course, matter of choice, but usually values of 5% or 1% are
used. These choices correspond to the statement that there a 5% or 1% probability
that the hypothesis that the true value is indeed zero is true. We can insert this pro-
cess into the calculation of the Forced Manifold by testing each element of A and
putting to zero those components that pass the test. We can repeat the calculation
for Fig. 8.1 introducing now the significance test at 1%. The results are shown in
Fig. 8.7.

The Forced and Free manifolds for the geopotential and the tropical SST have
a similar distribution as in Fig. 8.7. Overall the total amount of variance that can
be attributed with confidence to the forcing S is decreased, but the distribution has
concentrated and the difference between maxima and minima has increased. The
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Scrambled case − Variance of Forced Manifold for Z 26 %
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Fig. 8.6 As in Fig. 8.1, but for a randomly permuted field in time. The amount of variance that such
casual relations detect is much lower than in the original picture, giving us some confidence in the
determination of the original A. The amount of variance found is also very close to the physically
motivated examples of Fig. 8.2, adding more confidence to the robustness of the original estimation

coefficients of the operator A that are significant according to the Student t-test
are indicated in the top right panel and they have been retained in the calculation,
whereas the other have been put to zero. The significance test makes it easy to deal
with the time scrambled case (Fig. 8.8). There is no coherent pattern in the Z field
and the relations seem completely casual.
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Fig. 8.7 Forced and Free manifolds for the tropical SST, as in Fig. 8.7 but including a significance
test. The coefficients of the operator A that are significant according to the t-Student test are indi-
cated in the top right panel and they have been retained in the calculation. The left panels show
the Forced and Free Manifolds variance: although overall the total amount of variance that can
be attributed with confidence to the forcing S is decreased, the distribution has peaked and it has
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8.4 The Coupled Manifold

The analysis of the ensemble experiments with multiple realization showed that the
PRO method is very efficient at identifying the influence of one field on the other, but
this is a somewhat easy case. The presence of multiple cases with the same forcing,
the so-called ensemble, makes it possible to apply other techniques for identifying
the portion of variance that is linked to the external forcing itself. Methods like
separation of variance (Rowell 1997) or even the simple usage of the ensemble
mean can give a good indication of the characteristics of the forced response, even
in case they miss the detailed separation of the time series of the field themselves.
All these approaches however fail when we are confronted with the case of a single
realization.

There are several cases in which executing ensembles is impossible or forbidden
by the terms of the physical problem. In general this can happen when the two
fields that we want to examine are part of the same dynamically linked problem
and they cannot be separated in a “forcing” and a “response”. Coupled atmosphere–
ocean climate simulations are in this class with regard to our examples of marine
temperatures (SST) and atmospheric geopotential Z, since in this case the evolution
of the SST is not prescribed externally but is partially determined by the geopotential
itself. We then have to investigate to what extent the geopotential exerts control over
the SST.

Another notable example are observation records that are not reproducible. In
many cases experiments can be repeated and statistical ensembles can be con-
structed but in geophysical application observations cannot be reproduced in a strict
sense. The Earth atmosphere and ocean constantly evolve and our record of observa-
tions in time is a single realization of the Earth climate. The situation is very similar
to a numerical simulation performed with a coupled atmosphere–ocean model, also
in this case no parameter can be considered “external” and traditional separation of
variance methods fail.

However the formulation of the Forced Manifold is sufficiently general that it
can be used also in the case in which we have a single realization. Nothing in the
formulation we have used in (8.3) or (8.8) is linked to the availability of multiple
realizations. We can set up the problem also for single data sets Z and S. The only
victim is probably the name, since in this case we do not have “forcing” field and
“response” field and calling it “Forced Manifold” does not seem very appropriate.
We can still separate the field in sectors, but now we have a mutual effect of one field
on the other, then the name Coupled Manifold rather Forced Manifold seems more
appropriate. The Free Manifold, instead, maintains its meaning of variance that is
free from the influence of the field under examination.

The results are shown in Fig. 8.9. We present here the results obtained both under
the problem Z D AS and S D BZ. The top line shows the Coupled Manifold for
Z and the corresponding Free Manifold. We can see a familiar pattern of locations
where the variance of Z is highly influenced by the variations of the SST in the
region. The non-local nature of the analysis means that we can conclude only that
the various geographical locations in Z are globally influenced by the entire region
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Fig. 8.9 Coupled and Free manifolds for the tropical SST and the North America geopotential.
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used in the two problems are shown. Remember that B D AT in this calculations. The areas with
a ratio larger than 0.6 are shaded



8.4 The Coupled Manifold 143

in S. The other problem S D BZ gives us the opportunity to see the geographical
distribution of the influence of the entire Z region over the SST variability. We are
looking here at distant regions that show very well the flexibility of these methods:
they can be applied to varying field with few limitations in space and time, but they
must be interpreted with caution.

These methods identify patterns of co-variation that may or may not correspond
to physical causal relation between the fields. For instance, we have theoretical ar-
guments to expect the influence by the tropical SST on the geopotential in the North
America sector and the methods very nicely allow us to investigate this relation
in detail. The opposite formulation makes it possible to investigate instead the in-
fluence of the geopotential Z on the tropical SST and to inspect its geographical
distribution. Unfortunately, in this case we do not have a theory for the influence of
the American geopotential on the tropical SST, so what we see here is basically a
representation of the co-variation relations observed in the previous Z D AS case.
These methods cannot really provide us with causal relation, but they can point us to
the right direction. Only our scientific ingenuity and arguments can then transform
them into cause–effect theories.

The situation may change if we analyze fields where we know on physical
grounds that some interaction is present and therefore some mutual influence ex-
ists. We will expand here slightly our data base extending the test case to a time
series of monthly means of SST and the east–west component of the surface winds,
expressed here as wind stress. The data have been obtained from a long simulation
with a coupled model at low resolution and extended for 200 years.

The results shown in Fig. 8.10 indicate a different result from the preceding one.
We know that SST and this component of the surface Wind are strongly interacting
in this region, and we have selected the same geographical domain for the two fields.
The distribution of the Coupled Manifold is consistent with each other as we may
expect in a situation where the two fields exert a mutual influence on each other. The
fraction of variance in the Coupled Manifold is locally very high and values of 70%
are reached. The joint variability region is mostly limited to the equatorial Pacific
and it becomes weaker moving to the higher latitudes.

A random permutation of the time series of SST (Fig. 8.11) completely destroys
the relation. The Coupled manifold disappears except for a small residue. The ef-
fect is more dramatic than in the previous scrambling example using SST and the
geopotential; the larger response is due to the stronger couplings that exist between
the SST and the wind and also to the longer time series. The latter is what makes
the relation between the fields more accurate.

These results are quite general and they are not limited to this atmosphere-ocean
example. In general longer time series will improve the accuracy and the reliability
of the identification of the relation.
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Fig. 8.10 Coupled and Free manifolds for the tropical SST and surface east–west Wind in the
same region. Significance testing at 1% is included. The picture shows the result for the problem
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Fig. 8.11 Coupled and Free manifolds for the tropical SST and surface east–west Wind in the
same region with a time scrambling of the SST time series. The significance testing is included.
The picture shows the result for the problem Z D AS, top row, and for the problem S D BZ,
bottom row. The significant element of the operator A that is used in the two problems are shown.
The areas with a ratio larger than 0.6 are shaded
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Exercises and Problems

1. Using the data sets and the scripts provided compute the EOF of ZS and Zfree and
check that they are different.

2. Show that the elements of A are regression coefficients and that they coincide
with correlation coefficients if the variance scaling is used.

3. Try to compute the Forced and Coupled Manifolds for different regions.
4. Modify the significance settings in the calculation and check how the ratio be-

tween the Forced and Free parts is modified.
5. Show that each field can be expressed as the sum of three terms, using the oper-

ators AB.
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