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Preface

The year 2006 is the centenary of Alois Alzheimer’s presentation to a meeting of German
psychiatrists held in Tübingen, Germany. In 1906, Alzheimer described the results of his
studies on a female patient known as Auguste D., who had suffered from a progressive pre-
senile dementia. In 1907, Alzheimer published this study in a paper entitled “Über eine
eigenartige Erkrankung der Hirnrinde” in Allgemeine Zeitschrift für Psychiatrie und
psychisch-gerichtliche Medizin. This paper was a landmark in our understanding of the
disease that now bears his name. The paper described the major lesions that are now
known to be common to all forms of Alzheimer’s disease.

After 100 years it is time to reflect upon the enormous progress that has been made since
Alois Alzheimer’s first observations were reported. The chapters within this book describe
some of the major conceptual advances of the last few years, particularly in understanding
Alzheimer’s disease pathogenesis, and the research that may lead to successful therapies.
Central to the story of Alzheimer’s disease is the β-amyloid protein or Aβ, a 4-kDa
polypeptide that is intimately involved in the pathogenic cascade. Increasingly it is
recognized that Aβ is a causative agent that plays a key role in disease pathogenesis.

The chapters in this book are written by experts in their respective fields, and each
author provides individual insight into the role of Aβ in the pathogenesis of Alzheimer’s
disease. The chapters contain innovative ideas on the biochemical, cellular, and behavioral
pathogenesis of Alzheimer’s disease that should propel research over the next few years.

Colin J. Barrow, PhD
Ocean Nutrition Canada
Dartmouth, Nova Scotia

Canada

David H. Small, PhD
Monash University

Clayton, Victoria
Australia
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1
A Brief Introduction to the History 
of the β-Amyloid Protein (Aβ) of
Alzheimer’s Disease
David H. Small and Colin J. Barrow

1

Alzheimer’s disease (AD) is the most common
cause of dementia in the elderly. Typically, the dis-
ease progresses in a prolonged, inexorable manner
[1]. Patients initially show symptoms of mild cog-
nitive impairment, which may include some mem-
ory loss. As the disease progresses, more severe
memory loss occurs (e.g., retrograde amnesia)
leading to confusion and lack of orientation. The
patient is often institutionalized in this period, as it
becomes increasingly difficult for family members
to cope with the constant requirements of care. In
later stages of the disease, apathy and stupor can
occur, and the patient becomes bedridden.

The histopathology of AD is characterized by
gliosis and tissue atrophy caused by both synaptic
and neuronal loss, which are most pronounced in
the frontal and temporal cortices [2]. Proteinaceous
deposits are seen in both the intracellular and extra-
cellular compartments of the brain, typically in the
hippocampus and neocortex. The intracellular
deposits consist of neurofibrillary tangles that are
made up of paired helical filaments of a hyper-
phosphorylated form of the cytoskeletal protein tau
[3]. Extracellular amyloid plaques are found most
commonly in the hippocampus and neocortex and
may be diffuse or compact in nature [4]. Amyloid
is also deposited as cerebral amyloid angiopathy
within small- to medium-sized arterioles [5].
Although neurofibrillary tangles are associated
with a number of different types of neurodegenera-
tive disease, the presence of numerous compact or
neuritic amyloid plaques is a hallmark feature of
Alzheimer’s disease. For this reason, it may be
argued that accumulation of the β-amyloid protein

(Αβ) is a key step in the pathogenic mechanism of
Alzheimer’s disease. In contrast, although the den-
sity of neurofibrillary tangles correlates more
closely with the cognitive symptoms, it is now
commonly thought that tangles are a secondary
feature or the underlying disease process [6].

1.1 The Role of Aβ in AD

Glenner and Wong [7] first identified the major
protein component of vascular amyloid, which was
a low-molecular-weight, 4-kDa polypeptide, now
referred to as the β-amyloid protein (Αβ). Subse-
quent studies established that the same protein was
the major component of amyloid plaques [8]. The
complete amino acid sequence of Αβ led to the
identification of its precursor, the β-amyloid pre-
cursor protein (APP) [9].

APP has features of an integral type I transmem-
brane glycoprotein, with a large ectodomain con-
taining the N-terminus and a small cytoplasmic
domain containing the C-terminus (Fig. 1.1).
Multiple mRNA splicing of exons can generate sev-
eral different isoforms of APP that lack domains
homologous to Kunitz-type protease inhibitors
(KPI domain) and the OX-2 antigen as well as a
domain encoded by an exon that regulates O-linked
glycosylation by chondroitin sulfate. The Αβ
sequence itself comprises part of the ectodomain of
the protein and extends into, but not all the way
through, the transmembrane domain [9, 10].

Soon after its identification, APP was shown
to undergo ectodomain shedding by an enzyme



dubbed the α-secretase. The α-secretase cleaves
APP within the Αβ sequence, adjacent to lysine-16,
thereby destroying the sequence [11, 12]. Recently
studies suggest that enzymes of the ADAM family
of metalloproteases are responsible for this activity
[13, 14]. Other studies have demonstrated that
APP can also be cleaved at the N- and C-terminal
ends of the Αβ sequence by enzymes dubbed β-
and γ-secretase, respectively, to generate the full-
length Αβ sequence [15]. Amyloidogenic process-
ing by β- and γ-secretase is a normal, albeit minor,
pathway of APP processing. The β-secretase has
been unequivocally identified as an aspartyl pro-
tease termed BACE1 (an acronym for β-site APP
cleaving enzyme-1) [16–19]. The γ-secretase com-
prises a complex of several proteins including
presenilin-1, presenilin-2, Aph1, Pen2, and nicas-
trin. However, other protein components of this
complex may also exist [15].

There is considerable evidence that the accumu-
lation of Αβ in the brain is toxic to neurons and that
this toxicity underlies the neurodegeneration that
occurs in AD (Fig. 1.1) [20]. Aβ peptides are toxic
to cells in culture [21], and this toxicity is

associated with aggregation of the peptide [22].
Recent studies support the view that the most toxic
species are the low-molecular-weight, soluble
oligomers of Αβ [23].

Despite many studies that have shown that Αβ
can disrupt biochemical events within neurons,
direct proof that the accumulation of Αβ is the
cause of AD has been lacking. Nevertheless, evi-
dence that this is the case has slowly been accumu-
lating. Some of the strongest evidence that Αβ
accumulation is the cause, rather than an epiphe-
nomenon, of AD has come from the finding of
familial AD mutations present in the APP gene
[24]. All of these mutations have been found to
cluster around the Αβ sequence, and all of them
have so far been shown to directly or indirectly
cause an increase in forms of Αβ that aggregate
[25]. For example, although the most commonly
produced form of Αβ contains 40-amino-acid
residues (Αβ40), a minor form containing 42 residues
is also formed. This minor form aggregates into
amyloid fibrils much more readily than Αβ40 [26].
The first mutation to be identified in the APP gene,
the London mutation, involves a single base change
at codon 717, which encodes a form of APP that is
more readily cleaved to produce Αβ42. To date, at
least 10 familial AD mutations are known to occur
in APP [27].

The direct involvement of APP and Αβ in the
pathogenesis of AD is also strongly supported by
studies on transgenic mice. A number of transgenic
lines have been developed in which human APP is
expressed [28]. Many of these mice develop amy-
loid plaques. In addition, other features of AD
pathology such as neuritic dystrophy, abnormal tau
phosphorylation, gliosis, synaptic loss, and behav-
ioral abnormalities have been observed. Although
human APP mice do not develop neurofibrillary
tangles, this is probably due to differences between
mouse tau and human tau isoforms. Indeed, in
double transgenic mice expressing both mutant
human tau and APP, Αβ is seen to increase tau
deposition [29].

Mutations in the APP gene account for only a
very small percentage of all familial Alzheimer’s
disease (FAD) cases. Shortly after the identifica-
tion of the first familial AD mutation in the APP
gene, mutations were identified in two other genes,
PS1 encoding presenilin-1 and PS2 encoding

2 D.H. Small and C.J. Barrow
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FIGURE 1.1. Proteolytic processing of APP and the role of
Aβ in AD. APP can be proteolytically cleaved via two
different processing pathways. Cleavage by α-secretase
and γ-secretase generates C-terminal fragments known
as C83 and p3, whereas cleavage by β-secretase
(BACE1) and γ-secretase generates C99 and Aβ.
According to the amyloid hypothesis, Aβ aggregates
into amyloid fibrils or low-molecular-weight oligomers
that are neurotoxic. The resulting neurotoxicity causes
neurodegeneration and leads to dementia.



presenilin-2, located on chromosomes 14 and 1,
respectively [30, 31]. Both presenilin proteins are
components of the γ-secretase complex, and famil-
ial AD mutations within the PS1 and PS2 genes
alter γ-secretase processing in a way that leads to
the production of more Αβ42 [32].

In general, mutations in the APP, PS1, and
PS2 genes lead to early-onset forms of AD. In
contrast, the apolipoprotein E (apoE) gene
located on chromosome 19 is a risk factor for
late-onset AD [33]. There are three forms of
apoE, termed E2, E3, and E4, encoded by three
allelic variants ε2, ε3, and ε4. The ε4 variant is a
risk factor for late-onset AD, whereas the ε2 may
be protective. Although the reason for this is still
unknown, it is undoubtedly related to Aβ pro-
duction, aggregation, or clearance from the
brain. Individuals with the ε4 allele have more
Aβ deposition within the brain [34]. In addition,
APP x apoE knockout transgenic mice develop
little amyloid deposition in their brains, unlike
normal APP mice [35]. Thus, studies on the role
of apoE in AD provide strong support for the Aβ
hypothesis.

1.2 Anti-Αβ Therapies for AD

The idea that Aβ is a primary causative agent in
AD leads inevitably to the view that an effective
therapy based on inhibiting the production, aggre-
gation, clearance, or toxicity of Aβ may be achiev-
able. One of the most promising but controversial
approaches in recent years has been Αβ immuniza-
tion. Studies show that in transgenic mice, immu-
nization with Αβ42 leads to the generation of
an immune response [36]. Anti-amyloid antibod-
ies bind to amyloid plaques and appear to facilitate
their removal from the brain, leading to an
improvement in cognitive performance compared
with nonimmunized control animals. Unfortu-
nately, clinical trials of this approach in humans
have been halted because a small percentage of
individuals immunized with Αβ have developed a
severe meningoencephalitis [37]. Nevertheless,
there is some evidence that patients who develop a
strong immune response to Αβ without the associ-
ated brain inflammation may benefit from this
approach [38].

1.3 Current Status of the Aβ
Hypothesis of AD

There is now very strong evidence that accumula-
tion of oligomeric or fibrillar Αβ in the brain is a
key event in the pathogenesis of AD. Perhaps the
most important unresolved question is the mecha-
nism by which Αβ causes its neurotoxic effect. It is
also unclear what form of aggregated Αβ is the
most neurotoxic. Another major question is how
many unidentified genetic risk factors there are and
how these risk factors affect Αβ production, aggre-
gation, or clearance. If anti-Αβ therapies can be
used successfully for the treatment of AD, then the
remaining concerns about the role of Αβ in the
pathogenesis of AD will have been answered.

References

1. Storey E, Kinsella GJ, Slavin MJ. The neuropsycho-
logical diagnosis of Alzheimer’s disease. J Alzheimers
Dis 2001; 3:261-285.

2. Probst A, Langui D, Ulrich J. Alzheimer’s disease: a
description of the structural lesions. Brain Pathol
1991; 1:229-239.

3. Iqbal K, Alonso Adel C, Chen S, et al. Tau pathology
in Alzheimer’s disease and other tauopathies.
Biochim Biophys Acta 2005; 1739:198-210.

4. Wisniewski HM, Wegiel J, Kotula L. Review. David
Oppenheimer Memorial Lecture 1995: Some neu-
ropathological aspects of Alzheimer’s disease and its
relevance to other disciplines. Neuropathol Appl
Neurobiol 1996; 22:3-11.

5. Castellani RJ, Smith MA, Perry G, Friedland RP.
Cerebral amyloid angiopathy: major contributor or
decorative response to Alzheimer’s disease patho-
genesis. Neurobiol Aging 2004; 25:599-602.

6. Small DH, McLean CA. Alzheimer’s disease and the
amyloid beta protein: What is the role of amyloid?
J Neurochem 1999; 73:443-449.

7. Glenner GG, Wong CW. Alzheimer’s disease: initial
report of the purification and characterization of a
novel cerebrovascular amyloid protein. Biochem
Biophys Res Commun 1984; 120:885-890.

8. Masters CL, Simms G, Weinman NA, et al. Amyloid
plaque core protein in Alzheimer’s disease and Down
syndrome. Proc Natl Acad Sci U S A 1985; 82:4245-
4249.

9. Kang J, Lemaire HG, Unterbeck A, et al. The precur-
sor of Alzheimer’s disease amyloid A4 protein resem-
bles a cell-surface receptor. Nature 1987; 325:733-736.

1. Brief Introduction to the History of the β-Amyloid Protein 3



10. Wilquet V, De Strooper B. Amyloid-beta precursor
protein processing in neurodegeneration. Curr Opin
Neurobiol 2004; 14:582-588.

11. Weidemann A, Konig G, Bunke D, et al.
Identification, biogenesis, and localization of precur-
sors of Alzheimer’s disease A4 amyloid protein. Cell
1989; 57:115-126.

12. Esch FS, Keim PS, Beattie EC, et al. Cleavage of
amyloid beta peptide during constitutive processing
of its precursor. Science 1990; 248:1122-1124.

13. Buxbaum JD, Liu KN, Luo Y, et al. Evidence that
tumor necrosis factor alpha converting enzyme is
involved in regulated alpha-secretase cleavage of the
Alzheimer amyloid protein precursor. J Biol Chem
1998; 273:27765-27767.

14. Lammich S, Kojro E, Postina R, et al. Constitutive and
regulated alpha-secretase cleavage of Alzheimer’s
amyloid precursor protein by a disintegrin metal-
loprotease. Proc Natl Acad Sci U S A 1999; 96:
3922-3927.

15. Nunan J, Small DH. Regulation of APP cleavage by
alpha-, beta- and gamma-secretases. FEBS Lett
2000; 483:6-10.

16. Vassar R, Bennett BD, Babu-Khan S, et al. Beta-sec-
retase cleavage of Alzheimer’s amyloid precursor
protein by the transmembrane aspartic protease
BACE. Science 1999; 286:735-741.

17. Lin X, Koelsch G, Wu S, et al. Human aspartic pro-
tease memapsin 2 cleaves the beta-secretase site of
beta-amyloid precursor protein. Proc Natl Acad Sci
U S A 2000; 97:1456-1460.

18. Sinha S, Anderson JP, Barbour R, et al. Purification
and cloning of amyloid precursor protein beta-secre-
tase from human brain. Nature 1999; 402:537-540.

19. Yan R, Bienkowski MJ, Shuck ME, et al. Membrane-
anchored aspartyl protease with Alzheimer’s disease
beta-secretase activity. Nature 1999; 402:533-537.

20. Small DH, Mok SS, Bornstein JC. Alzheimer’s dis-
ease and Abeta toxicity: from top to bottom. Nat Rev
Neurosci 2001; 2:595-598.

21. Yankner BA, Dawes LR, Fisher S, et al. Neurotox-
icity of a fragment of the amyloid precursor associ-
ated with Alzheimer’s disease. Science 1989;
245:417-420.

22. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J,
et al. Structure-activity analyses of beta-amyloid
peptides: contributions of the beta 25-35 region to
aggregation and neurotoxicity. J Neurochem 1995;
64:253-265.

23. Walsh DM, Selkoe DJ. Deciphering the molecular
basis of memory failure in Alzheimer’s disease.
Neuron 2004; 44:181-193.

24. Hardy JA, Higgins GA. Alzheimer’s disease: the
amyloid cascade hypothesis. Science 1992; 256:184-
185.

25. Scheuner D, Eckman C, Jensen M, et al. Secreted
amyloid beta-protein similar to that in the senile
plaques of Alzheimer’s disease is increased in vivo
by the presenilin 1 and 2 and APP mutations linked
to familial Alzheimer’s disease. Nat Med 1996;
2:864-870.

26. Jarrett JT, Lansbury PT, Jr. Seeding “one-dimen-
sional crystallization” of amyloid: a pathogenic
mechanism in Alzheimer’s disease and scrapie? Cell
1993; 73:1055-1058.

27. Bertram L, Tanzi RE. The current status of
Alzheimer’s disease genetics: what do we tell the
patients? Pharmacol Res 2004; 50:385-396.

28. Hock BJ Jr., Lamb BT. Transgenic mouse models of
Alzheimer’s disease. Trends Genet 2001; 17:S7-12.

29. Lewis J, Dickson DW, Lin WL, et al. Enhanced
neurofibrillary degeneration in transgenic mice
expressing mutant tau and APP. Science 2001;
293:1487-1491.

30. Sherrington R, Rogaev EI, Liang Y, et al. Cloning of
a gene bearing missense mutations in early-onset
familial Alzheimer’s disease. Nature 1995; 375:754-
760.

31. Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate
gene for the chromosome 1 familial Alzheimer’s dis-
ease locus. Science 1995; 269:973-977.

32. Saunders AM, Strittmatter WJ, Schmechel D, et al.
Association of apolipoprotein E allele epsilon 4 with
late-onset familial and sporadic Alzheimer’s disease.
Neurology 1993; 43:1467-1472.

33. Schmechel DE, Saunders AM, Strittmatter WJ, et al.
Increased amyloid beta-peptide deposition in cere-
bral cortex as a consequence of apolipoprotein E
genotype in late-onset Alzheimer’s disease. Proc
Natl Acad Sci U S A 1993; 90:9649-9653.

34. Bales KR, Verina T, Dodel RC, et al. Lack of
apolipoprotein E dramatically reduces amyloid beta-
peptide deposition. Nat Genet 1997; 17:263-264.

35. Schenk D, Barbour R, Dunn W, et al. Immunization
with amyloid-beta attenuates Alzheimer’s-disease-
like pathology in the PDAPP mouse. Nature 1999;
400:173-177.

36. Nicoll JA, Wilkinson D, Holmes C, et al.
Neuropathology of human Alzheimer’s disease after
immunization with amyloid-beta peptide: a case
report. Nat Med 2003; 9:448-452.

37. Hock C, Konietzko U, Streffer JR, et al. Antibodies
against beta-amyloid slow cognitive decline in
Alzheimer’s disease. Neuron 2003; 38:547-554.

4 D.H. Small and C.J. Barrow



2
The Aβcentric Pathway 
of Alzheimer’s Disease
Victor L. Villemagne, Roberto Cappai, Kevin J. Barnham, Robert A. Cherny, 
Carlos Opazo, Kathy E. Novakovic, Christopher C. Rowe, and Colin L. Masters

5

2.1 Introduction

Alzheimer’s disease (AD), the leading cause of
dementia in the elderly, is an irreversible, progres-
sive neurodegenerative disorder clinically charac-
terized by memory loss and cognitive decline [1],
leading invariably to death, usually within 7–10
years after diagnosis. The dominant risk factor for
sporadic AD is increasing age.

In the absence of biologic markers, direct patho-
logic examination of brain tissue derived from either
biopsy or autopsy remains the only definitive method
for establishing a diagnosis of AD [2]. The typical
macroscopic picture is gross cortical atrophy.
Microscopically, there is widespread cellular degen-
eration and neuronal loss that affects primarily the
outer three layers of the cerebral cortex, initially
affecting more the temporal and frontal cortical
regions subserving cognition than the parietal and
occipital cortices. These changes are accompanied
by reactive gliosis, diffuse synaptic and neuronal
loss, and by the presence of the pathological hall-
marks of the disease, intracellular neurofibrillary tan-
gles (NFT) and extracellular amyloid plaques [3, 4].

Neurofibrillary tangles are intraneuronal bundles
of paired helical filaments. The main structural
component of NFT is a normal constituent of cellu-
lar microtubules, but present in AD is an abnor-
mally phosphorylated form, known as tau protein
[5, 6]. They are most easily identified in the hip-
pocampus. NFT are not specific to AD and are
found in a variety of other neurodegenerative con-
ditions such as frontotemporal dementia, subacute

sclerosing panencephalitis, Hallervorden-Spatz dis-
ease, Parkinson dementia complex, and dementia
pugilistica [2, 7]. Tau is a widely expressed phos-
phoprotein from the microtubule associated family,
the main function of which is to maintain micro-
tubule stability [8]. In AD, hyperphosphorylated tau
aggregates reduce its ability to bind microtubules
[9], leading to cytoskeletal degeneration and neu-
ronal death [10–12]. A number of in vitro and in
vivo studies have shown Aβ protein to be directly
toxic to neurons, leading to the aggregation and sec-
ondary phosphorylation of the tau protein [13].

Amyloid plaques are extracellular aggregates of
β-amyloid peptide (Aβ) of about 50–100 µm in
diameter intimately surrounded by dystrophic axons
and dendrites, reactive astrocytes, and activated
microglia. Though mainly located in the amygdala
and hippocampus, they are present throughout the
cortex [6].

The progressive nature of neurodegeneration
suggests an age-dependent process that ultimately
leads to synaptic failure and neuronal damage [14]
in cortical areas of the brain essential for memory
and higher mental functions.

Currently, the clinical diagnosis of AD is based
on progressive impairment of memory and decline
in at least one other cognitive domain and on exclud-
ing other diseases that might also present with
dementia such as frontotemporal dementia, demen-
tia with Lewy bodies, stroke, brain tumor, normal
pressure hydrocephalus, or depression [15, 16]. A
variable period of up to 5 years of prodromal
decline in cognition characterized by a relatively



isolated impairment in long-term memory that may
also be accompanied by impairments of working
memory, known as mild cognitive impairment
(MCI), usually precedes the formal diagnosis of
AD. These deficits presumably relate to damage
to the medial temporal lobe and/or specific pre-
frontal–temporal lobe circuits. About 40–60%
of carefully characterized subjects with MCI will
subsequently progress to meet criteria for AD over
a 3- to 4-year period [17–19].

Briefly, the Aβ hypothesis postulates that the
progressive rise, either by increased production
or decreased clearance, in Aβ cerebral levels is
the central event in the pathogenesis of AD [20].
Genetic evidence not only indicates that the metab-
olism of Aβ is clearly linked to the disease [21] but
also points to specific metabolic pathways with the
potential for developing diagnostic and therapeu-
tic agents, and though there is a poor correlation
between the density of deposits and disease sever-
ity, there is a correlation between the levels of solu-
ble Αβ and cognitive impairment [22]. Even though
synthetic Αβ is toxic to neuronal cells [10, 23], the
precise mechanism(s) of action and the nature of the
toxic Αβ species remain to be identified [24].

2.1.1 In Illo Tempore

November 4, 1906
On entering [he] looked at me blear eyed and vacuous,

[. . .] now and again pulled his tangled wits together, and
hints and sparkles of intelligence came and went in his
eyes. There they crouched by the fire, [. . .] at the end of
their days, old and withered and helpless. [He] rocked
back and forth in a slow and hopeless way, and regularly
once every five minutes he emitted a low groan. It was
not so much a groan of pain as of weariness. [He]
seemed singing back into his senility.

The preceding extract does not belong to
Dr. Alois Alzheimer’s presentation to his col-
leagues in Tübingen that very same day but is
rather an excerpt of The White Man’s Way, a short
story by Jack London, first published on the cre-
puscular shore of the Atlantic that same November
4, 1906, in the Sunday Magazine of the New York
Tribune. The audience present at the Conference in
Tübingen witnessed Alzheimer’s very first descrip-
tion of the neuropathology of AD, with the silver
stained “miliary foci” and the “tangled bundle of
fibrils.” Alzheimer’s presentation of Auguste D.’s

case was published the following year on the
Allegmeine Zeitschrift für Psychiatrie und
Phychisch-Gerichtliche Medizin [25].

In 1910, Gaetano Perusini [26], in a depiction
that has now become the everyday ritual for mil-
lions of AD caretakers around the world, published
extracts of the clinical history of Auguste D.,
admitted by Alzheimer to the Hospital of Mentally
Ill and Epileptic in Frankfurt in 1901. Perusini
transcribes: “she becomes excited again and
screams terribly” (Nov. 30, 1901). “She is in a state
of fright, anxious and completely disoriented, vio-
lent towards everything. She lies in bed in a strange
way” (Feb. 1902). “Completely rebellious, screams
and stamps her feet when someone goes near her.
She refuses to be examined, screams spontaneously
and often for hours” (June 1902). “Her legs are
drawn up to her chest. She does not speak but con-
tinues to mutter. She must be helped to eat” (Oct.
1905). On April 8, 1906, she died.

Four years later, Emil Kraepelin, the leading
German psychiatrist, wrote: “That the involutional
processes, known in man as old age, can also influ-
ence mental health seriously is most clearly
demonstrated by the well-known fact of senile
dementia which in certain circumstances can lead
to a progressive transformation and, finally, to the
destruction of the personality in the last decades of
life” [27]. In the same book, Kraepelin graciously
bestowed on the disease the eponymy of his col-
league [27]. A new disease was born.

2.1.2 The Weight of Time

Age is the dominant risk factor in AD. The increase
in the number of new cases of AD is the con-
sequence of an improvement in life expectancy.
AD is just another tragic adverse side effect of
progress.

The research that dawned with the 20th century
gathered momentum with the passing of the
decades. New pathological approaches were devel-
oped, histochemical and cytochemical techniques
were tested, and though a magnificent increase in
AD research was seen on the 1980s, it seems not
only that there is no slowdown but also that
renewed efforts are dedicated to further character-
ize the pathogenic mechanisms of this devastating
disease, one discovery after another leading to
more elegant, refined, and sophisticated studies.
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Epidemiological approaches, assisted by pioneer-
ing genetic evaluation, contributed to establishing
the prevalence of the disease [28–32]. In 1968,
Tomlinson, Blessed, and Roth [33] published a
seminal work showing that 62% of the brains of
deceased demented elderly patients presented the
same pathological hallmarks described by Alzheimer
50 years earlier. AD was no more considered an
unusual disease—a special case of Senium Praecox—
but became the leading cause of dementia in the eld-
erly [34]. By 1976, on the heels of the discovery of
dopamine deficits in Parkinson disease, decreases in
cholinergic neurons in the basal forebrain areas of AD
patients were described in AD [35].

From the early days, controversy centered
around the identification of the lesion(s) or sub-
stance(s) responsible for the neuronal death. The
“drusige Entartung,” or plaque-like degeneration,
proposed by Scholz as the origin of the plaques
[36] has been known since 1954 as congophilic
angiopathy [37]. Now, as it was then, the contro-
versies do not lie in the description of the neu-
ropathological lesions but in the discrepant views
on their role in the pathogenesis of AD. The intro-
duction of the electron microscope in the 1960s
allowed new insight into the disease, leading to the
description of the structure of the senile plaques
[38] and to the realization that NFT were composed
of pairs of abnormal intertwined filaments [39].

Alzheimer’s original description “these fibrils
can be stained with dyes different from the normal
neurofibrils, a chemical transformation of the fibril
substance must have taken place” [25] proved to be
accurate when NFT were shown to contain a hyper-
phosphorylated form [40] of a normal constituent
of cellular microtubules: the tau protein [41–45].
Due to the stubborn insolubility of NFT [46],
research mainly focused on plaques, specially on
its main component: the amyloid protein. One hun-
dred fifty years earlier, Virchow, at the zenith of the
19th century [47], called the waxy substance he
likened to starch “amyloid” (from amylum or amy-
lose). The term stuck.

2.1.3 Aggregated Time

By the mid-1980s a cascade of discoveries was trig-
gered by the isolation and characterization of the
amyloid protein. Glenner, who specialized in study-
ing amyloidosis, first isolated an enriched sample of

amyloid out of vessels from an AD brain [48, 49].
The following year, Masters and Beyreuther char-
acterized amyloid from plaques in the brains of AD
and Down syndrome patients [50]. The realization
that whole families developed, generation after gen-
eration, the same symptoms of Senium Praecox,
that patients with Down syndrome developed the
same pathognomonic neuropathological features of
AD, and that a protein played a key role in the com-
position of the plaques triggered the quest to iden-
tify the gene or genes involved in AD. The first
candidate was chromosome 21, though it proved not
to be as straightforward as initially thought [51–53].
By 1987, almost the whole sequence of the gene
encoding the amyloid precursor protein (APP) was
published [54–56]. Gene mutations were subse-
quently identified [57–59] and linked to increased
production of Aβ [60]. Other chromosomes, such as
chromosome 14, were also found to be associated
with familial early-onset AD [61–64]. A fragment
of APP, Aβ, was shown to be toxic to neurons [10,
65]. Aβ toxicity was shown to be linked to Aβ
aggregation into fibrils [66, 67] and, furthermore,
that transition metals were involved in Aβ aggrega-
tion [68, 69]. Aβ was found to bind to apolipoprotein
E (ApoE) and that ApoE was genetically associated
with late-onset AD [70–72]. The presenilins were
eventually identified and cloned on chromosomes
14 and 1, respectively [73, 74]. Individuals with
presenilin mutations were shown to have increased
production of Aβ [75].

But despite all the tremendous corpus of knowl-
edge of genetics, epidemiology, risk factors, and
neuropathological mechanisms, there is no cure
for AD.

2.2 Aβ: The Theory Behind the
Hypothesis

Through the years, several hypotheses have been
postulated to explain the molecular mechanisms
leading to AD [76–82], but the Aβ theory is the dom-
inant etiologic paradigm at this time [83] because it
is the only one that can best or most comprehensively
articulate the current available knowledge regarding
the cellular, molecular, and functional alterations
observed in AD. Not only is there a wealth of
histopathological, biochemical, genetic, animal
model, and functional neuroimaging data that
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support the key role of Aβ in the pathogenesis of AD,
but no alternative hypothesis has emerged in the past
two decades of intensive AD research. Genetic muta-
tions within the APP gene cause rare cases of early-
onset familial AD, and other causative mutations
within genes associated with the secretase complex
(presenilin 1, 2) are the most compelling evidence
that Aβ production is the key factor at the center of
AD pathogenesis.

In short, the hypothesis states that an imbalance
between the production and removal of Αβ leads to
its progressive accumulation triggering a series of
reactions leading to synaptic dysfunction, microglio-
sis, and neuronal loss, clinically manifested with
memory loss and impaired cognitive functions. The
loss of synaptic function seems to be the critical fac-
tor in cognitive decline.

Aβ, the primary component of the characteristic
plaques in the brain of AD patients, is a self-
aggregating, 39- to 43-amino-acid metalloprotein
(4 kDa) product of the proteolytic cleavage of APP
by β- and γ-secretases [50, 84–86]. Aβ is not only
found within senile plaques but is also present
around cortical arterioles as a congophilic angiopa-
thy. Αβ can also be assessed in cerebrospinal fluid,
plasma, and even in neuronal cultures [87–89].

Aβ was first identified and sequenced from
meningeal blood vessels of AD and Down syn-
drome patients 20 years ago [48–50]. The aggrega-
tion process that converts soluble Αβ into amyloid
fibrils is thought to be a nucleation-dependent
process [90] requiring structural transitions of Aβ
[91]. The peptide is referred to as “beta” amyloid
due to its secondary structure of β-pleated sheets.
On electron microscopy, amyloid fibrils are com-
posed of multiple protofibrils wrapped around each
other forming a crossed β-pleated sheet [92, 93].

Much of the controversy derives from the use of
the term amyloid. The broad term can be applied
not only to Aβ but also to several unrelated extra-
cellular deposits of fibrillar protein, such as β2-
microglobulin, amylin, or serum amyloid A, each
one of them associated with a specific disease
[94–96].

The earliest structural, microscopically visible
pathological changes in AD are diffuse Aβ deposits.
These deposits are also observed in normal ageing
individuals, but the density is lower than in AD
patients [97, 98], indicative of an immature or not
yet toxic form of Αβ [99]. The presence of extra-

cellular Aβ in highly specialized cortical brain
regions implicated in memory and cognition pre-
cede the other pathognomonic pathological fea-
tures of AD, indicating that increases in Aβ are
involved in the early presymptomatic stages of
the disease. Being the earliest phenotypical marker
of disease has crucial implications for neuroimag-
ing and treatment. The increase in Aβ-deposition
is accompanied by decreases in Aβ in CSF.
Presymptomatic carriers of missense mutations of
APP or PS present elevated Aβ42 in plasma and
skin fibroblasts indicating again that increases in
Aβ are the earliest signs of the disease.

Recent studies have detected stable intraneu-
ronal pools of insoluble Aβ deposits, generated in
the endoplasmic reticulum [100], indicating that
Aβ is also produced intracellularly, suggesting that
Aβ might not be the end result of the abnormal
cleavage of APP but a protein with a specific phys-
iological role [88, 89, 101, 102] and that only the
alteration of its metabolism, leading to its increase,
precipitates the neurotoxic effects, leading to
synaptic loss and cell death.

Though extracellular amyloid plaques are the hall-
mark brain lesions of sporadic AD, the distribution
and density of both diffuse and Aβ plaques at the
light microscopic level [22] have not been consis-
tently shown to correlate with the degree of cognitive
impairment [103, 104]. The best correlation occurs
with soluble levels of Aβ, measured biochemically
[22, 105–108]. Soluble Aβ is in equilibrium with
insoluble Aβ in the plaques. The significance of these
aggregates can be interpreted as they either are a
reservoir for the soluble oligomers or represent the
sequestered pool of soluble and now precipitated Aβ,
therefore fulfilling a “protective” function, or just the
end stage or final product of the Aβ cascade.

One of the criticisms of the amyloid hypothesis
has come from some of the interpretations of the
work of Braak and Braak [109], who stated that
neurofibrillary degeneration of cell bodies and
their neurites not only predate morphologically
detectable amyloid plaques but they also increase
gradually with age. However, as Hardy and Selkoe
point out [110], the postmortem cases used to
establish the Braak Stage I neuropathology criteria
were nondemented older individuals, in whom it is
impossible to determine whether their neurofibril-
lary changes represents early stages of AD or a dif-
ferent process altogether [111], because it has been
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well established in patients with Down syndrome
that Aβ deposition predates the formation of neu-
rofibrillary tangles [112, 113].

2.3 Insights into the Genetics 
of Aβ

The Αβ hypothesis is further supported by genetic
data [114–118]. Though it is highly probable than
additional genes are associated with AD, to date only
four different genes, associated with either Αβ pro-
duction or removal, are implicated in the pathophys-
iology of AD and have been described in patients
with the rare early-onset familial AD [119–121]:
mutations of the APP gene [59, 60, 122–125] on
chromosome 21, mutations in the presenilin 1 (PS1)
[73, 126] and presenilin 2 (PS2) [127] genes on chro-
mosome 14 and 1, respectively [73–75, 128–130],
and polymorphism of the apolipoprotein E (ApoE)
on chromosome 19 [70, 71, 131]. Three of them—
PS1, PS2, and APP—have a clear-cut autosomal
dominant pattern with a penetrance above 85%;
whereas the other, APOE, despite being the most
prevalent of these risk factors for AD, has a weaker
susceptibility factor. The main feature of mutations
on APP, PS1, and PS2 involved in different steps of
APP processing pathway is the increased production
and elevated plasma levels of Αβ specially Αβ42 [75,
129, 130, 132]. These various genetic mutations, all
manifesting as a similar clinical entity, all leading to
increased levels of Aβ and to Aβ buildup in the brain
before AD symptoms arise, further support the Αβ
theory of AD [72, 104, 129, 133–136].

2.3.1 APP

The Αβ hypothesis was further supported by the
cloning and sequencing of the APP gene [54,
137–139] and its localization to chromosome 21
[54, 55, 140, 141], the chromosome involved in
Down syndrome, a condition that invariably devel-
ops the typical AD neuropathology by age 50 [142]
though they start getting amyloid plaques as early
as age 12, long before they get NFT and other AD
lesions [112, 143].

APP is a 751–770 residue ubiquitously expressed
glycosylated transmembrane protein with a large
hydrophilic aminoterminal extracellular domain,
a single hydrophobic transmembrane domain

consisting of 23 residues, and a small carboxy-
terminal cytoplasmic domain [144].

The majority of APP is degraded in the endoplas-
mic reticulum and only a small fraction enters the
secretase cleavage pathway [145, 146]. While APP
is usually proteolytically cleaved by α-secretase,
mutations on the APP gene were shown to be asso-
ciated with increased Aβ self-aggregation [57–59,
147–150] and Aβ production by the sequential
cleavage by β- and γ-secretases [60, 123, 124].

The free N-terminus of Aβ, considered the first
critical step in amyloid formation [151], is derived
from the APP by proteolytic cleavage by β-secretase.
Several lines of evidence demonstrate that β-secre-
tase cleavage of APP is required for Aβ generation
[152, 153]. Generation of the N-terminus is followed
by C-terminal cleavage by γ-secretase to release the
final Aβ-product from the β-secretase cleavage frag-
ment C99. Cleavage by γ-secretase occurs within the
transmembrane region of APP yielding mainly 40-
and 42-amino-acid Aβ C-terminal variants, Aβ40
and Aβ42 (Fig. 2.1).

APP can also undergo nonamyloidogenic pro-
cessing by α-secretase, which cleaves APP within
the Aβ domain to generate α-APPs (the ectodomain
of APP ending at the α-secretase cleavage site)
[119] and C83 (the C-terminal tail of APP), which
can then undergo γ-secretase cleavage leading to the
release of p3 (Fig. 2.1), a shortened, probably non-
pathogenic, form of Aβ [75].

Although the function of APP is unknown,
recent evidence suggests it functions as a kinesin-1
cargo receptor mediating the targeting of several
synaptic proteins to the nerve terminals [154] and
as part of a complex metal-transport systems essen-
tial in maintaining cellular Cu and Fe homeostasis
[155, 156] by delivering Cu and Fe to metalloen-
zymes and proteins, such as superoxide dismutase
1 (SOD1) [157] and the Cu ATPase [158]. Overex-
pression of the Αβ containing carboxyl-terminal
fragment of APP in transgenic mouse models
results in significantly reduced brain Cu, but not Fe
levels [159], whereas APP knockout mice have
increased Cu levels in both brain and liver [160].
Cu modulates APP processing [161, 162] with
higher Cu levels resulting in a reduction in Αβ pro-
duction and a consequential increase in the non-
amyloidogenic p3 form of the peptide [163].
Independent Cu-binding sites have been identified
on both Αβ and APP. The Cu-binding domain of
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APP, homologous to copper chaperones, contains a
tetrahedral binding site consisting of two histidine
residues (147, 151), a tyrosine (168) and methion-
ine (170) that favors Cu(I) coordination [164].

2.3.2 Presenilins

There is also more genetic evidence coming from
mutations of PS1 and PS2 [75] and from the
cloning of presenilin proteins [73–75, 129, 130,
132] that affect secretases [165, 166]. The major-
ity of early onset familial AD cases are linked to
mutations within the PS genes. More than 40
mutations have been described in the gene for PS1
that can subsequently result in AD. Mutations in
both genes selectively increase the production of
Aβ42 in cultured cells and in the brains of trans-
genic mice and are associated with early onset
familial AD [73, 120, 151, 166]. Some PS muta-
tions associated with increases in Aβ metabolism
instead of presenting AD symptoms show large
plaques and special symptoms such as spastic
paraparesis [167–171].

Presenilins are two proteins, presenilin 1 (PS1)
and presenilin 2 (PS2), encoded by two closely
related genes PS1 and PS2, and located in intracel-
lular membranes [172]. They are ubiquitously
expressed within the brain, primarily in neurons.
PS1 and PS2 contain multiple transmembrane
domains, with both amino and carboxy terminus as
well as a large hydrophilic loop. Both proteins, the
46 kDa PS1 and 55 kDa PS2, share 67% amino
acid identity [132]. The exact functions associated
with PS protein have not been fully elucidated yet.
PS1 is involved in normal neurogenesis and forma-
tion of the axial skeleton, as well as in γ-secretase
activity and binding of PS to APP. Gene deletion of
PS1 shows that it is indispensable for the genera-
tion of Aβ [166]. Two transmembrane aspartate
residues in PS1 are essential for Aβ production,
indicating that PS1 is either an essential cofactor
for γ-secretase or maybe γ-secretase itself [173].
PS2 also contains two transmembrane residues
critical for γ-secretase activity.

A growing list of proteins, including tau, have
been identified as interacting directly or indirectly
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with PSs [174–176]. PS proteins have also been
proposed to function in the control of apoptosis.
While PS2 appears to play a direct role in fas-
mediated apoptosis [177], mutations in PS1,
through the activity of related kinases and phos-
phatases [178] and destabilized calcium homeostasis
[175], may present a higher predisposition to neu-
ronal apoptosis [177]. Par-4, a protein implicated
in apoptosis, is overexpressed in AD brain and
mutated PS-1 transfected cells [179].

2.3.3 ApoE

Genetic variability in Aβ catabolism and clearance
increase the risk for late-onset AD [180–184]. In
contrast to the rare, early-onset autosomal domi-
nant forms, the only consistent marker for both the
early-onset familial and late-onset nonfamilial
form of dementia is the polymorphism of ApoE
allele on chromosome 19 [185, 186]. Encoded on
the long arm of chromosome 19, ApoE is a 34-kDa
lipid transport protein considered the major genetic
risk factor in the pathogenesis of AD [187, 188].
ApoE is normally present in oligodendroglia,
astrocytes, and microglia. ApoE is a lipid carrier
protein involved in the transport of cholesterol and
phospholipids, believed to play an important role in
synaptic plasticity and neuronal repair mecha-
nisms. ApoE protects neuronal-glial cells cultures
against H2O2 oxidative injury from by reducing
secondary glutamate excitotoxicity in vitro [189].
ApoE is both directly and indirectly involved in
oxidative mechanisms in the brain [190]. ApoE
interacts directly with Aβ and with APP through
the carboxy-terminal domain of ApoE. The associ-
ation of ApoE and Aβ inhibits fibril formation
[191] and also attenuates glial activation by Aβ
[192]. ApoE exists in three allelic variants: ε2
(8%), ε3 (77%), and ε4 (15%). The presence of the
ApoE4 allele increases fourfold the risk of AD and
much more if the allelic variant is inherited from
both parents. The ε4 allele is absent in approxi-
mately 30–40% of patients with AD and present in
about 30% of healthy subjects [193], as well as in
patients with Down syndrome [194, 195]. In carri-
ers of ApoE4 allele, Aβ deposition responsible for
the congophillic angiopathy [196, 197] could play
an important role in contributing to the chronic cor-
tical hypoperfusion typically observed in neu-
roimaging studies of patients with AD [198]. While

the ε4 allele is associated increased risk for AD, the
ε2 allele is believed to represent no increased or
decreased risk, while the ε3 allele may confer some
protection against Aβ-induced toxicity [71] through
its antioxidant and membrane stabilizing properties
and via complexation and internalization of Aβ
through ApoE receptors [199].

Furthermore, ApoE is also a metal chelator, and
the ε4 allele variant binds more rapidly to Αβ while
at the same time displaying the weakest chelator
affinity [200].

2.3.4 Transgenic Mice Models

Further insight was gained through the development
of transgenic mice models of AD. Transgenic mice
models with mutations in APP and PS genes lead to
increase production and progressive aggregation of
Aβ, reproducing the major features of AD: Aβ
plaques, associated with neuronal and microglial
damage [201–203]. The absence of human tau mol-
ecules in transgenic mice might explain why despite
the progressive Αβ deposition [201, 203], there are
no NFT and very little neuronal loss [204, 205].
Other reasons to be considered are species differ-
ences in neuronal vulnerability, the relatively short
duration of exposure to Aβ, and the lack of certain
cytokines necessary for a full complement inflam-
matory response.

Mutations in tau protein leading to large deposits
of tau in intracellular NFT is not associated with
amyloid deposits and is clinically manifested
as frontotemporal dementia with parkinsonism
[206–209], indicating that the NFT in AD are sec-
ondary to Αβ production [210] and probably trig-
gered by Aβ [13, 211].

While the density of NFT correlates better than
Αβ aggregates with the degree of dementia [212],
and the hyperphosphorylation of tau leading to the
formation of NFT has neurotoxic consequences in
and of itself, mutations in tau are associated not
with familial AD but with frontotemporal dementia
[206]. Furthermore, in patients with the rare PS1
mutations or in individuals with Down syndrome
who died prematurely from other diseases, Aβ
either as diffuse deposits or typical plaques precede
the appearance of NFT [213, 214].

Transgenic mice overexpressing both mutant
human tau and mutant human APP while showing
the same number and structure in their amyloid
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plaques present a significant higher number of tau-
positive NFT than transgenic mice overexpressing
only mutant human tau [215] indicating that the
mutant APP and the consequent Αβ production
precede and promote the formation of NFT [211].

The offspring of ApoE-deficient mice crossed
with APP transgenic mice showed a significant
reduction in Aβ deposition [216] supporting the
role played by ApoE in the metabolism of Aβ [71].

2.4 Aβ Is Toxic

A common factor in the postulated mechanisms of
Aβ toxicity is the oligomerization of Αβ, whether as
dimers or trimers [217, 218], protofibrils [219], or
fully formed fibrils [220, 221]. Despite several
attempts, the main obstacle to the full validation of
the Aβ hypothesis lies in the identification in vivo of
the specific neurotoxic Aβ soluble oligomer. There is
an inverse relationship between amyloid burden and
oxidative damage in vivo as assessed by 8-OH
guanosine levels in AD-affected tissue [222–224].
Several lines of evidence demonstrate that diffusible
soluble Aβ oligomers, but not monomers or insolu-
ble amyloid fibrils, are toxic to cultured neurons and
responsible for the neurotoxicity and synaptic dys-
function present in AD [225, 226]. Microinjection
into rats of culture medium containing soluble
oligomers of human Αβ (in the absence of monomers
and amyloid fibrils) inhibits long-term potentiation in
the hippocampus [218]. Αβ fibrils injected into the
brain of aged primates induces local gliosis and neu-
ronal loss [8]. Similar changes are observed in young
APP transgenic mice before plaque formation [227,
228], though the diversity and unstable nature of Αβ
intermediates, from monomers to mature fibrils,
makes it difficult to identify the specific species
responsible for the neurotoxic effects.

2.5 Mechanisms of Aβ Toxicity

As a result of its high lipid content and high oxygen
consumption, the brain is particularly susceptible
to oxidative stress [229]. Several mechanisms have
been proposed to explain Αβ neurotoxicity: pro-
duction of reactive oxygen species (ROS) such as
hydrogen peroxide, nitric oxide, superoxide, highly
reactive hydroxyl radicals and nitric oxide (NO), exci-

totoxicity with intracellular calcium accumulation,
decreased membrane fluidity, energy depletion,
alteration of the cytoskeleton, and inflammatory
processes [110, 156, 177, 230–234]. All of these
events converge into similar pathways of necrosis
or apoptosis, leading to progressive dysfunction
and loss of specific neuronal cell populations [156]
(Fig. 2.2).

2.5.1 Generation of ROS

Extra- and intracellular production of ROS initiate
and promote neurodegeneration in AD [235–239].
Evidence of oxidative stress in AD is manifested
through higher levels of oxidized proteins [238,
240], advanced glycation [241], lipid peroxidation
products [188, 242], formation of toxic species,
such as peroxides, alcohols, aldehydes, ketones,
cholesterol oxide (toxic to microglial cells) [243],
cholestenone [244], altered gene expression [245],
damaged DNA [246], and induced apoptosis [247].
Aβ induces lipoperoxidation of membranes and
lipid peroxidation products [248]. Lipids are mod-
ified by ROS and there is a high correlation
between lipid peroxides, antioxidant enzymes,
amyloid plaques, and NFT in AD brain [249].
Markers of oxidative DNA damage have been
localized in plaques and NFT [241, 250–253].

Several breakdown products of oxidative stress
including 4-hydroxy-2,3-nonenal (HNE) [254, 255],
acrolein, malondialdehyde, and F2-isoprostanes
have been observed in AD brains when compared
with age-matched controls [256]. HNE modifies
proteins resulting in a multitude of effects, includ-
ing inhibition of neuronal glucose and glutamate
transporters [257], Na-K ATPases [258], plus acti-
vation of kinases and dysregulation of intracellular
calcium signaling that ultimately induce an apop-
totic cascade [259–266].

Catalase, superoxide dismutase (SOD), glu-
tathione peroxidase, and glutathione reductase,
indicators of cellular defense mechanisms against
oxidative stress, are increased in the hippocampus
and amygdala of AD patients [267, 268].

DNA bases are vulnerable to oxidative stress
damage involving hydroxylation [269], protein car-
bonylation, and nitration. ROS-induced calcium
influx, via activation of glutamate receptors, trig-
gering an excitotoxic response leading to cell death
have also been observed in AD brains [266, 270].
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ROS are also generated when oxygen reacts with
unregulated redox-active metals. Metalloproteins
such as Αβ in AD might abnormally present Cu or
Fe for inappropriate reaction with O2 are impli-
cated in several age-dependent neurodegenerative
disorders [156].

2.5.2 Generation of RNS

NO induced neurotoxicity has been extensively
studied. NO is synthesized by NO synthases (NOS),
and the three isoforms of NOS, endothelial (eNOS),
neuronal (nNOS), and inducible (iNOS), are present
in the brain [271]. NO synthesis is activated by glu-
tamate release accompanied by excess calcium ion
influx through activation of the NMDA [272] and
AMPA receptor [273]. Aβ induces NO production
by interacting with glial cells or by disrupting Ca++

homeostasis through NMDA receptor [272, 274].
NO combines with superoxide anion forming

peroxynitrite, and the resultant RNS can induce
significant oxidative stress leading to lipid peroxi-
dation, damaged DNA, and neuronal death [275].

NO also promotes the over expression of metallo-
proteinases, particularly MMP9 enzymes, that dis-
rupt the extracellular matrix [276, 277].

2.5.3 Activation of Inflammatory
Processes

Aβ fibrils are toxic for cultured neurons and activate
microglia. Blocking Aβ fibril formation prevents this
toxicity [220, 221, 278, 279]. Astrocytes and
microglial cells are involved in the chronic inflamma-
tory responses in AD through the upregulated expres-
sion of phospholipase A2, leading to increased
arachidonic acid/prostaglandin inflammatory pathway
activity by secreting interleukin-1 [280], activation of
complement pathways [281], and by producing a vari-
ety of potentially neurotoxic compounds, including
superoxides, glutamate, and NO [282, 283].

2.5.4 Altered Energy Metabolism

Intermediate metabolism is essential to maintain
signaling activities and depends on mitochondrial
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function. Disturbed energy metabolism and the
appearance of degenerating mitochondria in axonal
terminals are an early feature of AD [284, 285].

ROS production, calcium ion uptake, and mito-
chondrial membrane depolarization have been
linked to neuronal apoptosis [286, 287] by disrupt-
ing the normal mitochondrial functioning, through
the uncoupling of oxidative phosphorylation and
impairment of cellular respiration, compromising
energy production [288]. The mitochondrial elec-
tron transport chain specifically, cytochrome C oxi-
dase or complex IV, is altered in AD [289, 290]
maybe secondary to mutated and oxidatively dam-
aged mitochondrial DNA [253, 291, 292]. This is
supported by results with cytoplasmic hybrid or
cybrid cells [290] that resemble electron transport
chain defects observed in AD [289].

2.5.5 Altered Metal Homeostasis

The evidence not only supports Αβ as the key fac-
tor in the pathogenesis of AD [21, 50, 54, 293], but
it also points to the fact that brain metal homeosta-
sis, specially Zn and Cu, is significantly altered in
AD [101, 294–297]. The progressive synaptic dis-
ruption and ultimately neuronal loss observed in
AD might be secondary to toxic oxidative stress
from excessive free-radical generation favored by
transition metals bound to Αβ [101, 156, 294,
297–300]. The generation of ROS usually requires
the reaction of O2 with a redox metal ion such as
Cu or Fe. Aβ is a metalloprotein with high in vitro
affinity for Cu (highest), and Fe and Zn (lowest)
[101, 301–303]. Aβ coordinates transition metal
ions through bridging histidine residues at posi-
tions 6, 13, and 14, similar to the ones found in the
active site of superoxide dismutase [156]. When
Αβ binds Cu and Fe, extensive redox chemical
reactions take place [156, 224, 294, 304–307].
Isolated senile plaques generate ROS in a manner
dependent upon Cu and Fe [300, 306].

Several lines of evidence point to the participa-
tion of transition metals in Aβ neurotoxicity. Brain
copper and iron concentrations increase with age
[159, 308, 309]. Very high concentrations of Cu
(400 µM), Zn (1 mM), and Fe (1 mM) have been
found in plaques of AD-affected brains [298, 310].
Genetic ablation of the zinc transporter 3 protein,
required for zinc transport into synaptic vesicles,
reduced plaque formation in Tg2576 transgenic

mice [311]. There are two methods of inducing
aggregation of Αβ, metal induced cross-linking
leading to amorphous aggregates and fibril forma-
tion, or lowering the pH [312]. Zn, Cu, and Fe
induce Αβ aggregation in vitro [302, 313]. Soluble
oxidized Aβ accumulates within the synaptic cleft,
at which high concentrations of Zn (300 µM) and
Cu (30 µM) are released during neurotransmission,
which could coordinate with soluble Aβ, pro-
moting its toxicity, explaining the synaptic loss
observed in AD [311, 314]. The high Zn concen-
trations also promotes the aggregation of the
Cu/Fe-metallated Aβ, creating a reservoir of poten-
tially toxic Aβ that is in equilibrium with the solu-
ble pool. The large polymeric deposits of
misfolded proteins do not only represent the end
result of the aggregation process but they may
mainly act as inactive reservoirs in equilibrium
with the small diffusible oligomeric toxic species
responsible for the neurodegenerative pathology.
Paradoxically, some emerging data suggest that Aβ
might have a role as an antioxidant, a function that
may wane with aging [101, 315].

Addition of Cu or Zn to Αβ causes a conforma-
tional change from β-sheet to α-helix, generating
an allosterically ordered membrane-penetrating
oligomer [222]. The extensive oxidative damage
associated with Αβ [299, 307, 316, 317] may
involve calcium dysregulation, caused by either the
formation of membrane calcium channels [318] or
modulation of an existing channel [319]. In the
normal brain, most Aβ will form a hexamer that is
embedded in the cell membrane [222, 320–322],
but reactions of Cu with Aβ lead to the oxidative
modification of the methionine 35 (Met35) [323]
producing covalent cross-linking of Aβ yielding
soluble oligomers [22, 303, 323, 324] that are
released from the membrane with a toxic gain of
function and that resist clearance [156]. Met(O)Αβ,
which has been isolated from AD amyloid brain
deposits [325, 326], is toxic to neuronal cells, tox-
icity attenuated by clioquinol and completely res-
cued by catalase. Unlike the unoxidized peptide,
Met(O)Αβ is unable to penetrate lipid membranes
to form ion channel-like structures and alters the
aggregation profile of the peptide such that the for-
mation of Αβ trimers and tetramers is attenuated
[327] and fibril formation inhibited [328].
Met(O)Αβ production contributes to the elevation
of soluble Αβ seen in the brain in AD [323]. These
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abnormally soluble toxic forms are correlated with
cognitive and memory decline [22]. Spectroscopy
studies have shown that Zn and Cu are coordinated
to the histidine residues of the deposited Aβ in the
senile plaque and that the Met35 of Aβ is oxidized
[329]. Aβ toxicity is enhanced in the presence of
Cu [306] and inhibited by extracellular catalase
[306, 307]. Association of soluble Aβ with both Fe
and Cu produces H2O2, which is neurotoxic in vitro
[224, 304, 305], while complexing of Aβ with
redox-inert Zn causes precipitation of the soluble
metalloprotein complex [69]. The Zn associated to
the aggregated amyloid partly reduces H2O2 pro-
duction [224], which might explain the poor corre-
lation between plaque amyloid burden and
cognitive decline, while soluble Aβ levels correlate
well with clinical severity [22].

2.6 Prospects for Treatment and
Neuroimaging

The insight into the molecular mechanism of AD
pathogenesis has not only opened new opportuni-
ties for the successful development of neuroprotec-
tive treatment strategies aimed at the prevention
of Αβ generation but also for new neuroimaging
approaches [330].

2.6.1 Therapeutic Strategies

2.6.1.1 Traditional Therapeutic Approaches

To date, no current therapy has been shown to halt
or reverse the underlying disease process, and these
remain confined to symptomatic palliative inter-
ventions [331]. Given the neuronal degeneration
with impairment in cholinergic transmission in hip-
pocampal and basal forebrain, areas associated with
memory and cognition [332], as well as decreased
levels of the cholinergic markers choline acetyl-
transferase and acetyl cholinesterase [333], most
treatment strategies are based in increasing intrasy-
naptic ACh levels. Though now approved for AD,
the cholinesterase inhibitors tacrine, donepezil,
rivastigmine, and galantamine only provide patients
with modest relief to their symptoms [334].
Recently, the noncompetitive NMDA antagonist
memantine has been proposed as a safe and effective
symptomatic treatment of AD patients [335–338].

Other approaches to alter the progression of AD
involve the use of estrogen, antioxidants (alone or
in combination with selegiline), or nonsteroidal
anti-inflammatory drugs (NSAIDs) (Fig. 2.3).

Compounds with the ability to inactivate ROS
might have therapeutic potential in the treatment of
AD, and some cell culture toxicity studies have
shown beneficial effects [339], though there has
been limited clinical evaluation of antioxidants
The classical lipophilic free-radical scavenger, α-
tocopherol (vitamin E), has been evaluated in both
AD and Parkinson disease (PD), and though it
showed some encouraging results in AD patients
[340], especially when combined with ascorbic
acid [229, 341], it was found to have no beneficial
effects in PD [342]. Upregulation of ROS-scavenging
enzyme capacities through neurotrophins [343] may
provide a mechanism for the prevention of neuro-
toxicity. Cholinergic drugs are routinely used in the
treatment of AD to improve cognitive functions
and in association with antioxidants have been pro-
posed to be more effective in the treatment of AD
than the individual agents alone [237]. There is a
growing interest in the use of polyphenolic antiox-
idants to reverse age-related decline in neuronal
signal transduction and cognitive and motor behav-
ior deficits [344, 345].

ROS generation triggers glutamate-mediated
excitotoxicity. Memantine, which targets the NMDA
receptor, slows the development of the disease and is
of modest benefit to patients in the moderately
severe to severe range of the disease [335, 336, 338].
Use of coenzyme Q10, L-carnitine, and creatine
might prevent mitochondrial oxidative damage and
mitochondrial mutations [285, 346, 347]. Another
potential therapeutic strategy proposes the use of
brain-derived neurotrophic factor or nerve growth
factor [348]. Estrogens have been shown not only to
modulate neurotransmission but also to act as free-
radical scavengers, activating nuclear estrogen recep-
tor in intracellular signaling [349] and preventing
Αβ formation by promoting the α-secretase APP
non-amyloidogenic pathway [350].

2.6.1.2 Novel Therapeutic Approaches

If, as postulated, AD pathology is the consequence
of a chronic imbalance between Aβ production and
clearance, the most rational strategy to treat the
disease would involve either retarding, halting, or

2. The Aβcentric Pathway of Alzheimer’s Disease 15



even reversing the process that leads to increase
production of Aβ [331, 334, 351, 352].

The most promising strategy for neuroprotection
might be reducing formation of Αβ by partially
inhibiting either β- or γ-secretase (Fig. 2.3), which
generate Aβ from APP, and/or stimulation of 
α-secretase activity [151, 353–358]. Total inhibi-
tion of either β- or γ-secretase should block Αβ pro-
duction completely. There are vigorous attempts to
identify small lipophillic inhibitors of β-secretase.
There are already potent γ-secretase inhibitors
available [359–365] and undergoing human trials.

Given the evidence that levels of soluble Aβ cor-
relate with disease severity [22, 108] and that the
Aβ amyloid is probably the main neurotoxic factor
in the development of AD, the development of
agents inhibiting Αβ oligomerization should be
more effective than those that merely block Αβ
deposition [366]. Two basic strategies have been
proposed in order to reduce or remove Aβ from the
brain: immunization [367–371] breaking the path-
way that leads to Aβ deposition [372] by precipi-
tating an active immune response against the Aβ
[370, 373, 374], or the passive administration of
specific anti-Aβ antibodies [375–377] promoting

microglial clearance [370, 375] and/or by redistri-
bution of Aβ into the systemic circulation [376]
(Fig. 2.3). Active immunization with synthetic Aβ
was effective in APP transgenic mice without
detectable toxicity, [375] though recent human tri-
als resulted in the development of encephalic
inflammatory reactions that precluded further
human evaluation [378–381].

The use of anti-inflammatory medications is not
only aimed at reducing the Aβ-elicited cellular
inflammatory response [382], but it has also been
shown to have direct effects on the cleavage of APP
by γ-secretase, an effect that is independent of their
inhibition of cyclooxygenase and other inflamma-
tory mediators [383, 384] (Fig. 2.3). Some such
drugs reduce cytopathology in APP transgenic
mice [385, 386].

Another approach postulates modulating choles-
terol homeostasis. The use of cholesterol-lowering
drugs has been shown to reduce pathology in APP
transgenic mice [387] and has been associated with
lower incidence of AD [388, 389] while high-
cholesterol diets increase Aβ pathology in experimen-
tal animals [390, 391] through a yet not elucidated
effect of cholesterol on APP processing [392, 393].
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Based on the role that metal ions such as Cu, Fe,
and Zn play in the biochemical processes associated
with Aβ deposition and neurotoxicity [69, 156, 224,
295, 302–305, 310, 321], a further therapeutic strat-
egy using the metal binding sites of Aβ lead to the
design and development of molecules, known as
metal–protein attenuating compound (MPAC) [156]
(Fig. 2.3), which inhibit the deleterious effects of
aberrant metal interactions through competition
with the target protein for the metal ions, leading to
a normalization of metal homeostasis. MPAC not
only inhibit the in vitro generation of hydrogen per-
oxide but also have been shown to reverse the pre-
cipitation of Aβ in vitro and in postmortem human
brain specimens [394], reducing Aβ burden by a
direct solubilization and by reducing toxic oxidative
stress [372]. Clioquinol (CQ), 5′-chloro-7-iodo-8-
hydroxyquinoline, is a hydrophobic quinoline Zn
and Cu chelator that freely crosses the blood–brain
barrier [395]. After initial studies showed that CQ
increased soluble phase Aβ by more than 200% in
a concentration-dependent fashion in homogenized
postmortem human brain samples, its efficacy was
tested in transgenic Tg2576 mice expressing mutant
APP protein and which develop Aβ amyloid
deposits and showed a dramatic 49% decrease in
brain Aβ deposition after 9 weeks of oral treatment
[372]. CQ was chosen to be tested as an Aβ amy-
loid solubilizing and antitoxic agent in a random-
ized, double-blind, placebo-controlled pilot Phase
II clinical trial [396]. The effects of oral CQ treat-
ment was statistically significant in preventing cog-
nitive deterioration in the moderately severe AD
patient group, with no evidence of toxicity [396].

2.6.2 Funtional Neuroimaging
Approaches

When in his 1907 [25] report Alzheimer wrote,
“there exist many more mental diseases than our
textbooks indicate. In many such cases, a further
histological examination must be effected to deter-
mine the characteristics of each single case,” he
stated what for the past century remained the gold
standard for the diagnosis of AD. We are now at the
threshold of a new era of noninvasive, in vivo diag-
nosis through molecular imaging. The same way
neuropathology was boosted by the techniques and
dyes introduced by visionary pioneers like Cajal
and Nissl, we are now seeing some derivatives of

those histological dyes finding their way into emis-
sion tomography [198, 397] and magnetic reso-
nance imaging [398, 399].

Modern functional neuroimaging techniques
such as positron emission tomography (PET), sin-
gle photon emission tomography (SPECT), mag-
netic resonance spectroscopy (MRS), functional
magnetic resonance imaging (fMRI), and magne-
toencephalography (MEG) have been developing
new approaches not only to determine if an indi-
vidual suffers from a particular form of dementia
but also to delve into the molecular mechanisms of
AD [400–402].

PET allows in vivo quantification of radiotracer
concentrations, where either the radiotracer bears
the same biochemical structure or is an analogue,
or is a substrate of the chemical process being
evaluated, allowing the in vivo assessment of the
molecular process at their sites of action [403] per-
mitting detection of disease processes at asympto-
matic stages when there is no evidence of anatomic
changes on CT and MRI.

Several studies have evaluated regional cerebral
glucose metabolism with fluorodeoxyglucose
(FDG) and PET. A typical pattern of reduced tem-
poroparietal FDG uptake with sparing of the basal
ganglia, thalamus, cerebellum, and primary sensori-
motor cortex is typical of AD [404, 405]. FDG-PET
might improve diagnostic and prognostic accuracy,
thereby reducing both disease and treatment-related
morbidity of patients with AD [406] due to its high
sensitivity (94%) for detecting temporoparietal
hypometabolism in patients with probable AD [405,
407, 408]. In a multicenter study, the prognostic
value of FDG-PET showed a high degree of sensi-
tivity (93%) and moderate specificity (73%) for pre-
diction of progressive dementia [409].

Though clinical criteria together with current
structural neuroimaging techniques (CT or MRI)
are sensitive and specific enough for the diagnosis
of AD at the mid or late stages of the disease, the
development of a reliable method of assessing Aβ
amyloid burden in vivo may permit early diagnosis
at presymptomatic stages, more accurate differ-
ential diagnosis, while also allowing treatment
follow-up.

Extracellular amyloid plaques are the hallmark
brain lesions of sporadic AD. These microscopic Aβ
aggregates [22] are well beyond the resolution of
the usual neuroimaging techniques used for the
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evaluation of patients with AD. Furthermore, current
techniques focus on nonspecific features derived
mainly from neuronal loss and atrophy, which are
late features in the progression of the disease, and are
secondary to the basic functional alteration. Because
Aβ is at the center of pathogenesis of AD, and
because we are now approaching a point at which
several pharmacological agents aimed at reducing
levels of Aβ in the brain are being developed and
tested, many efforts are focused on developing radio-
tracers that allow Aβ in vivo imaging [198, 397].

Several compounds have been evaluated as poten-
tial Aβ probes: derivatives of histopathological dyes
such as Congo red, Chrysamine-G, Thioflavin S and
T, and acridine orange [410–438] (Fig. 2.4), NSAID
derivatives [439–445], as well as self-associating Aβ
fragments [446–452] and anti-Aβ monoclonal
antibodies [453, 454], serum amyloid P, and basic
fibroblast growth factor [455].

The criteria for the diagnosis, management, and
early detection of dementia [456–458] published
by the American Academy of Neurology Quality
Standards Subcommittee supports the use of CT
and MRI in the work-up of the patient with demen-
tia while recommending further research to deter-
mine the utility of other neuroimaging modalities
such as PET and to a lesser degree SPECT [456].
Though FDG PET is mainly used in the differential
diagnosis of AD, it is the neuroimaging technique
that has been shown to yield the highest prognostic
value for providing a diagnosis of presymptomatic
AD 2 or more years before the full dementia pic-

ture is manifested [409, 459–461]. Given the grow-
ing evidence, PET will likely come to be at the
forefront of the AD neuroimaging tools both as a
diagnostic as well as a prognostic tool, providing
new insights into the spatial and temporal pattern
of disease progression.

Because new treatment strategies to prevent or
slow disease progression through early intervention
are being developed and implemented, there is an
urgent need for early disease recognition, which is
reflected in the necessity of developing sensitive and
specific biomarkers, specific for a particular trait
underlying the pathological process, as adjuncts to
clinical and neuropsychological tests.

But the emphasis should not be limited to the
ability of early diagnosis. With new therapeutic
approaches being developed that either prevent the
deposition of Aβ or increase its solubilization—
agents that could delay the onset of dementia—the
role of imaging and quantifying Aβ amyloid in
vivo is becoming crucial. The ability to detect
preclinical or early-stage disease through clinical,
laboratory, and neuroimaging tests, combined with
anti-Aβ amyloid in the at-risk patient, or the patient
with MCI, may prevent or delay functional and
irreversible cognitive losses, allowing one at the
same time to customize and monitor treatment.

2.7 Conclusions

Alzheimer’s disease is a neurodegenerative disor-
der characterized by a slow but relentless progres-
sive cognitive decline and memory loss. It has a
devastating effect not only on the sufferer but also
on their caregivers, with a tremendous socioeco-
nomic impact not only on families but also on the
health care system that will only increase in the
upcoming years.

The neuropathologic hallmarks of the disease
are extracellular deposits of Αβ in senile plaques,
NFT, with selective neuronal and synaptic loss in
cortical areas of the brain associated with cognitive
and memory functions.

Αβ is the main component of the amyloid plaques.
All the available evidence points at the breakdown of
the economy of Αβ as playing the key role in AD
pathogenesis. Genetic studies have shed light on the
pathogenesis and progression of AD. To date, four
genes have been linked to autosomal dominant,
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FIGURE 2.4. Coronal PET images showing the regional
uptake of a thioflavin derivative, 11C-PIB, reflecting Aβ
burden in the brain. The images demonstrate a marked
difference in 11C-PIB regional distribution between an
Alzheimer’s disease patient (AD) and an age-matched
healthy control (AC) subject, with high uptake of 11C-
PIB in gray matter areas in AD but only nonspecific
uptake in white matter in AC. Images were obtained at
Centre for PET, Austin Hospital, Melbourne, Australia.



early-onset familial AD: APP, PS1, PS2, and ApoE.
All mutations linked to APP and PS proteins lead to
an increase in Αβ production. Αβ not only aggregates
into amyloid plaques but is toxic per se while having
an effect on intracellular tangle formation and other
factors (e.g., cytokines, neurotoxins, etc.) that also
play an important role in the neurotoxic progression
of AD.

Αβ is neurotoxic through a number of possible
mechanisms including oxidative stress, excitotoxi-
city, energy depletion, inflammatory response, and
apoptosis, and while the exact mechanism by which
Aβ might produce synaptic loss and neuronal death
is controversial, it is believed that a toxic oxidative
interaction between various metal species and Aβ
triggers an oxidative response with free-radical
production leading to progressive disruption of neu-
ronal function and ultimately to cell death.

At this point, there is no cure for AD. A deeper
understanding of the molecular mechanism of Αβ
formation, degradation, and neurotoxicity is being
translated into new neuroimaging and therapeutic
approaches. Most of the approved palliative treatment
regimens involve the use of acetylcholinesterase
inhibitors, glutamatergic agents, nonsteroidal anti-
inflammatory drugs, as well as antioxidants. The
most promising approaches focus on either reducing
Αβ formation through secretase inhibitors or increas-
ing its removal either by immunotherapy or MPAC
aiming at blocking the formation of Αβ oligomers
and fibrils therefore inhibiting neurotoxicity.

Like the attendees at Alois Alzheimer’s presen-
tation 100 years ago, we might be at the threshold
of groundbreaking developments.
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3.1. The Amyloid Precursor
Protein Is a Multidomain Molecule

The purification and sequencing of the β-amyloid
peptide (Aβ) [1–3] led to the cloning of the
Alzheimer’s disease (AD) amyloid precursor pro-
tein (APP) gene in the late 1980s [4]. Despite an
extensive research effort toward understanding the
function of APP, its physiological role remains
poorly defined. This review will summarize the key
activities associated with APP and its paralogues
the amyloid precursor like proteins 1 and 2
(APLP1 and APLP2, respectively).

The human APP gene is encoded by 19 exons
located on the long arm of chromosome 21 [4–7]
and is ubiquitously expressed in vertebrates [8]. It
is highly expressed in the brain, with APP consti-
tuting 0.2% of the total mRNA of neurons [9]. APP
undergoes extensive alternative splicing of exons
7, 8, and 15 to yield at least 8 isoforms that have
cell-specific expression patterns [10, 11].

The primary sequence identified APP as a type I
transmembrane glycoprotein with a single trans-
membrane region, a large extracellular domain, and
a short cytoplasmic tail that was suggestive of a cell-
surface receptor [4]. A combination of sequence and
structural analysis has indicated that APP is organ-
ized into distinct domains (Fig. 3.1) [12–15]. The
N-terminal signal peptide is followed by a cys-
teine-rich domain that is composed of two separate
smaller domains joined by a short linker [12, 14].
The first N-terminal domain contains a heparin-
binding site (HBD) with structural homology to
growth factors [12], which is consistent with its

neurite outgrowth promoting activity [16]. The sec-
ond portion of the cysteine-rich region is the metal-
binding domain (MBD) with binding sites for
copper [17, 18] and zinc [19]. The copper-binding
site acts as a modulator of copper homeostasis
[20–23], copper-mediated toxicity [24–26], and
modulation of APP processing into Aβ [22, 23, 27,
28]. The cysteine-rich domain is followed by an
acidic domain that is rich in glutamate and aspartate
residues, and these residues constitute nearly 50%
of the acidic domain. In some APP isoforms, the
acidic domain is then followed by an alternatively
spliced exon that is homologous to the Kunitz-type
serine protease inhibitor (KPI) family. This is
followed by an alternatively spliced 19-residue
sequence encoded by exon 8 that lies adjacent to
the KPI domain. This sequence is homologous to
the immunoregulatory OX2 antigen [29, 30].

The different isoforms of APP are designated by
the number of amino acids they contain. There are
three major species: APP695, APP751, and APP770.
The APP695 isoform lacks the KPI and OX-2 exons,
while APP751 contains the KPI domain and APP770
contains both the KPI and OX-2 sequences
[31–34]. The C-terminal portion of the ectodomain
is glycosylated [30] and is composed of two
domains. The first domain of the glycosylated
region has been called the central APP domain
(CAPPD) [13, 15] or the E2 domain [15]. The
NMR and crystal structures of CAPPD/E2 indicate
it is composed of six α-helices folded tightly
together as a coiled-coil substructure [13, 15]. An
E2 dimer was identified in the crystalline state with
E2 binding to itself in an antiparallel orientation.



The N- and C-terminal ends of the individual sub-
units were located at a concave surface formed by
the dimer. The dimerization of APP via the
E2/CAPPD domain may relate to the role of APP
in cell-cell adhesion. The CAPPD/E2 region is fol-
lowed by an unstructured region that contains the
α- and β-secretase cleavage sites. Alternative splic-
ing of exon 15 occurs within the sequence, and
the omission of exon 15 creates a chondroitin sul-
fate acceptor site. The large extracellular domain
is followed by the transmembrane domain of APP
[4, 35]. The γ-secretase cleavage site is located
approximately in the middle of the transmembrane
domain.

The Aβ peptide is derived from the last 29 C-
terminal amino acids of and the first 11–13 amino
acids of the transmembrane domain. The final
domain of APP is the APP intracellular cytoplas-
mic domain (AICD) which is released into the cyto-
plasm following either ε- or γ-secretase cleavage of
APP [36]. The AICD has multiple binding partners
including Fe65, Jip1b, X11alpha (MINT1), and
Tip60 and is transported to the nucleus after its
release into the cytoplasm [37–39].

3.2 Expression Patterns of APP
Isoforms

The most abundantly expressed isoforms are
APP695, APP751, and APP770, and they all contain
the Aβ sequence. APP is widely expressed
throughout the body in both fetal and adult tissues
[40]. Expression of total APP is highest in the brain

and kidneys, with lower levels in the spleen, adre-
nal glands, lungs, and liver [6, 41]. APP is present
in the CSF [30, 42], and its expression is increased
after traumatic brain injury [43, 44]. The tissue
distribution of the various isoforms varies consid-
erably. The APP695 species is the most abundant
isoform in neurons [4, 6], while the APP-KPI iso-
forms (APP751 and APP770) are predominantly
expressed by glial cells [45–47], platelets [48, 49],
and peripheral tissue [33, 34]. In AD brains, KPI-
containing isoforms are increased approximately
twofold as compared with non-AD control brains
[50]. The KPI-containing isoforms are the most
amyloidogenic [51, 52]. Alternative splicing of
exon 15, located in the ectodomain close to the
transmembrane domain, occurs resulting in APP
isoforms lacking exon 15, termed L-APP, and were
initially found in lymphocytes and microglia [53].
Later, cell-associated chrondroitin sulfate proteo-
glycan (termed appicans) were found to contain
L-APP as their core protein [54]. These L-APP
isoforms are not detectable in neurons but com-
prise the majority of APP transcripts in aorta and
pancreatic tissue and are also abundant in skeletal
muscle [10, 11]. Activation of the Wnt-1 signaling
pathway promotes the deletion of exon 15 leading
to increased expression of L-APP [55]. This pro-
vides a functional link to APP for the association
between presenilin and the Wnt-1 pathway [56].

There is considerable evolutionary conservation
of the APP-family [57]. APP and the APLPs are
found in mammals, whereas homologues to APP
have been identified in non-mammalian species
including Drosophila melanogaster, Xenopus levis,
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FIGURE 3.1. Schematic representation of the domain structure of APP. SP, signal peptide; HBD, heparin-binding
domain; MBD, metal-binding domain, ACIDIC, acidic rich domain; KPI, Kunitz protease inhibitor domain; OX2,
immunoregulatory OX-2 antigen domain; E2/CAPPD, extracellular domain 2/central APP domain; exon 15, alterna-
tively spliced exon 15; TM, transmembrane domain; AICD, APP intracellular domain; Aβ42, Aβ42 peptide. The
amino acid numbering is based on the APP770 isoform.



Caenorhabditis elegans, Narke japonica (electric
ray), Fugu rubripes, and Tetraodon fluviatilis (both
are puffer fish) [58–61]. The evolutionary preser-
vation of proteins homologous to APP strengthens
the physiological importance of these proteins.

3.3 Cellular Processing of APP

The metabolism of APP occurs via a complex
process involving the activity of three proteases
termed secretases. Only a small portion of the total
pool of APP is cleaved by the secretases leaving the
majority intact as full-length APP [62]. Secretase
cleavage can occur via two major pathways, termed
the amyloidogenic and non-amyloidogenic path-
ways [62, 63]. Which pathway is utilized depends
on the cell type with neurons and astrocytes pro-
ducing more amyloidogenic APP compared with
glial cells [64]. Importantly, the processing of APP
will clearly regulate the actions and ultimately the
function of APP.

APP processing via the non-amyloidogenic
pathway occurs in the late Golgi compartment or
in caveolae (plasma membrane invaginations) [65]
and destroys the Aβ sequence and thus prevents
amyloid formation. Three members of the ADAM
(a disintegrin and metalloprotease) family ADAM
9, 10, and 17 have been proposed to be α-secretases
[66–69]. The α-secretase cleavage releases the
majority of the ectodomain as a soluble fragment,
termed sAPPα, while leaving a C-terminal frag-
ment (CTF-α) in the cell membrane with a trun-
cated Aβ sequence [70, 71]. The CTF-α is then
cleaved by γ-secretase, resulting in a truncated 3-kDa
Aβ fragment, termed p3 [65, 72].

The amyloidogenic pathway occurs via β-secretase
or BACE-1 (beta-site APP-cleaving enzyme-1)
[73–76] cleavage on the N-terminal side of the Aβ
sequence. This releases a large soluble fragment of
the ectodomain, termed sAPPβ, and leaves the
membrane-associated CTF-β fragment, which con-
tains an intact Aβ sequence [72, 77, 78]. The CTF-
β is then cleaved by the multiprotein complex
γ-secretase, which releases Aβ [79, 80]. BACE-1 is
a transmembrane aspartyl protease. There are two
BACE genes, BACE-1, which is highly expressed
in the brain, and BACE-2, which is predominantly
expressed in peripheral tissues including the pan-
creas, stomach, and placenta [81]. BACE-1 expres-

sion is upregulated in the brain after an ischemia
whereas BACE-2 expression is unchanged [82].
This response in BACE-1 expression coincides
with an upregulation in APP expression after
ischemia [45]. The γ-secretase is composed of the
presenilins, PS1 and PS2, nicastrin, Aph1, and
PEN2 (reviewed in [83]).

3.4 The Function of APP

The APP promoter has the sequence elements that
are indicative of a housekeeping gene [84, 85].
Such genes are functionally important in all cell
types, irrespective of the specialized role of the
cells. The actions of APP may depend on the cell
type it is expressed in. Given the seemingly ubiqui-
tous nature of its expression throughout the body in
both neuronal and non-neuronal tissue, it is not sur-
prising that numerous activities have been attrib-
uted to APP, but no single definitive function has
been established. APP can affect neuronal survival
[86], neurite outgrowth and synaptogenesis [16],
cell adhesion [87], inhibition of coaggulation fac-
tors [49, 88, 89], inhibition of platelet activation
[90], and modulation of copper homeostasis [20].

The neuroprotective activity is associated with
soluble APP (sAPP), which can protect cell cultures
against death from glutamate or Aβ excitotoxicity,
and glucose deficiency [86, 91]. This protective
effect appears to occur by the lowering of intracel-
lular calcium levels [86, 92]. The neuroprotective
activity is mediated by sAPPα and not by sAPPβ as
the sAPPα was approximately 100-fold more neu-
roprotective than sAPPβ [92]. Therefore, the active
site is localized to the first 15 amino acids of the Aβ
sequence as part of the carboxyl-terminus of sAPPα
[86]. The neuroprotective activity of APP also
occurred after intraventricular administration of
either APP695 or APP751 in a transient ischemia
animal model [93]. The in vivo relevance of this
activity is supported by endogenous APP being
upregulated after brain injury with strong
immunoreactivity being present in both human and
experimental models of head injury [43, 94, 95, 96].

APP could be a modulator of synaptogenesis as
in both developing and mature neurons, APP is
localized primarily to the neurites [97, 98]. In neu-
ronal cultures, APP is predominantly found on cell
surface adhesion patches of axons and dendrites
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[99]. In the rat brain, the expression levels of APP
are highest during the second postnatal week when
extensive synaptogenesis occurs [100]. High levels
of APP are expressed in the olfactory bulb, the only
area of the brain where synaptogenesis continu-
ously occurs in adults [100, 101]. The addition of
APP to cell cultures enhances neurite outgrowth
[102, 103] presumably via the N-terminal, heparin-
binding domain [16, 104]. The interaction with
heparin would allow a link between APP and the
extracellular matrix. The neurite outgrowth promot-
ing activity of APP varies in an isoform-specific
manner with cell-surface expressed APP751 and
APP770 being more active promoters of neurite out-
growth than APP695 [105]. This suggests regulation
of APP alternative splicing would influence the cell
adhesion activity of APP [105]. Moreover, the pre-
senilins and APP are coexpressed and colocalize in
the synaptic compartments. Therefore, the synapto-
genic activity of APP could be regulated by prese-
nilin-mediated processing [106].

APP is present in non-neuronal peripheral tis-
sues and cells. The KPI-containing isoforms are
abundantly expressed in platelets and are released
upon platelet activation [48, 49, 107, 108]. The
release of APP from platelets is modulated by pro-
tein kinase C, rather than by cyclooxygenase [109].
In contrast, Aβ release is independent of either
cyclooxygenase or protein kinase C [109]. The KPI
containing isoforms can inhibit a range of coagula-
tion factors including IXa, X, and XIa (reviewed in
[110]). However regions other than the KPI are nec-
essary for maximal activity as non-KPI species are
active. The sAPP can in turn inhibit platelet aggrega-
tion and secretion induced by ADP or adrenaline
in vitro [90]. In addition, sAPP potently inhibited the
activation of washed platelets by low-dose thrombin
indicating that the activity does not require plasma
cofactors. This occurs via a non-KPI-dependent
mechanism as the active site was localized to the
N-terminal cysteine rich region [90].

The cytoplasmic and transmembrane domains of
APP are capable of complexing with and activating
the trimeric Go protein, a major GTP-binding pro-
tein in the brain [111, 112]. This interaction may be
a contributing factor to the neurodegeneration of
AD as G-protein–associated signaling pathways
in AD brains are altered [113–116]. The AICD
domain interacts with a number of adaptor proteins
including Fe65, Jip1b, X11alpha (MINT1), Dab1,

Dab2, Numb, and Tip60 [117]. The binding of
these proteins to the AICD generates a transcrip-
tionally active complex that is released from the
membrane after ε- or γ-secretase cleavage of APP.
The AICD complex translocates to the nucleus and
regulates the transcription of APP, BACE, Tip60,
GSK3beta, and KAI1 [37, 39, 118–120]. The phys-
iological relevance of this activity is not clear but
may reflect the adaptor proteins acting as linkers
between APP and its target proteins. This pathway
is analagous to NOTCH signaling, which involves
the binding of NOTCH to its ligand. This induces a
cleavage in the extracellular domain of NOTCH
followed by a ε- or γ-secretase cleavage of the cyto-
plasmic domain (NICD), which then acts as a tran-
scriptional activator. This suggests a functional
relationship between APP and NOTCH processing.

3.5 Activities Associated with
APLP2

The APLP2 gene is localized to human chromosome
11 [121] and has 71% similarity to APP [122].
APLP2 has two alternatively spliced exons, a KPI-
domain exon and a exon equivalent to exon 15 [123],
which in APLP2 is exon 14 that provides an chon-
droitin sulfate attachment site when it is spliced out.
The promoter for APLP2, like that for APP, has the
features of a housekeeping gene promoter [85].

The expression levels of APLP2, like those of
APP, are high in brain, heart, and kidney and lower
in the liver and thymus. The APLP2 expression
pattern within various brain regions is also similar
to that for APP, except APLP2 levels are greater
in the thalamus [122]. Interestingly, APLP2 is
increased in AD cerebellum samples compared
with normal brain, whereas APP levels are
decreased. It was proposed that this APLP2 expres-
sion is a compensatory response to the decreased
APP levels [122, 124]. In contrast with APP,
APLP2 is found in the small intestine and lung
[122] and the APLP2 isoforms containing the KPI-
domain are abundant in both neuronal and non-neu-
ronal tissues [10]. An APLP2 orthologue has been
identified in Xenopus, which is highly homologous
to human APLP2 and contains an a KPI exon and
an exon 14, which are alternatively spliced [125].
Similar to its mammalian orthologue, the Xenopus
APLP2 is ubiquitously expressed.
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APLP2 appears to be processed through the
same secretory and proteolytic pathways as APP
[126]. A number of functions have been attributed
to APLP2 including a modulator of synaptogenesis
[127], neurite outgrowth [128], and neuronal dif-
ferentiation [129], which are comparable with the
functions associated with APP. APLP2 is also local-
ized to the sensory axons and glomeruli in the olfac-
tory bulb. As olfactory sensory neurons are the only
regenerating neuronal population in the adult CNS,
the presence of APLP2 within them suggests it has
a function in axonal growth or the establishment of
synaptic connections [130]. This proposed function
is supported by recombinant APLP2 stimulating neu-
rite outgrowth on chick sympathetic neurons [128].

The APLP2 molecule may function within the
extracellular matrix and assist in corneal epithelial
wound healing as there is a marked increase in
APLP2 mRNA and the KPI-contain chondroitin
sulfate positive species in the basal epithelial cells
that were actively migrating after injury [131]. In
contrast, in a skin wound model, APLP2 expres-
sion was decreased whereas APP expression
increased [132] indicating APLP2 has tissue-
specific responses and effects. Retinoic acid can
induce APLP2 expression in neuroblastoma cells,
indicating it may be involved in neuronal differen-
tiation [133]. Increased expression of APLP2 was
also detected in Aβ-treated neuronal cultures,
implying that APLP2 expression may be induced
by Aβ [134, 135]. Interestingly, the APLP2 gene is
the same as the Cdebp gene, which encodes a
DNA-binding protein thought to be necessary for
DNA replication or segregation [136]. This indi-
cates APLP2 may bind DNA, which is an activity
not reported for APP [137, 138].

3.6 Activities Associated with
APLP1

The human APLP1 gene has a 64% similarity to the
APP gene, is located on the long arm of chromosome
19, and consists of 17 exons [139]. APLP1 is not
known to have any alternatively spliced transcripts.

Cell culture–based studies showed that APLP1,
like APP and APLP2, can undergo both N- and O-
linked glycosylation [140]. APLP1 can also be
phosphorylated by PKC [141]. APLP1 has been
identified in the perinuclear and Golgi regions,

which resembles the subcellular distribution of
APP [124]. Although limited, proteolysis of APLP1
occurs, resulting in the carboxy-terminal truncated
peptide being secreted into the culture medium
[140, 142]. The identification of APLP1 in human
CSF suggests that its secretion from brain cells also
takes place in vivo [143].

APLP1 has a more restricted expression pattern
compared with that of APP and APLP2. It is pri-
marily expressed in the CNS, with expression
peaking during early embryo development, sup-
porting a role for APLP1 in neurogenesis [124,
144]. The discovery of APLP1 expression in the
cerebral cortex postsynaptic density of rats and
humans suggests that like APP and APLP2, it has a
role in synaptogenesis or synaptic maturation
[145]. APLP1 may also be involved in neuronal
differentiation [133].

3.7 APP-Family Knockout Mice

3.7.1 APP Knockout Mice

Mice homozygous for a deletion of the entire APP
gene (APP−/−) are viable and fertile but have
reduced body weight, decreased locomotor activ-
ity, reduced forelimb grip strength, and reactive
gliosis, particularly in the cortex and hippocampus
[146]. Aged APP−/− mice display impaired learning
abilities [147], cognitive deficits, and impaired
long-term potentiation [148]. The mice also have
decreased level of synaptic marker proteins at
various ages, along with abnormal neuronal mor-
phology and synaptic function [148, 149]. This
supports the evidence that APP has an important
role in maintaining synaptic function during aging
[150]. The generation of APP knockout mice car-
rying a hypomorphic deletion of APP resulted in
impaired spatial learning and increased agenesis of
the corpus callosum [151]. They also exhibited
reduced postnatal body weight and alterations in
sensorimotor development [152]. Furthermore,
when these mice with decreased APP expression
were compared with the APP−/− mice, both strains
were hypersensitive to seizure activity [153] and
had reduced brain weight and reduced size of fore-
brain commissures [154].

Cultured neuronal cells derived from APP−/−

mice indicated hippocampal neurons had a
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decrease in cell viability and neurite development
[155]. Studies using cortical or cingulate gyral neu-
rons from APP−/− mice found no differences in their
survival or neurite length compared with wild-type
mice, even in the presence of various neurotoxic
insults including Aβ, glutamate, hydrogen peroxide,
or glucose deficiency [134, 156, 157]. This indicates
there are cell type–specific responses to APP expres-
sion. In contrast, APP−/− cortical cultures grown at
low density exhibited less susceptibility to Aβ tox-
icity, suggesting that APP expression is required
for Aβ toxicity [158]. These apparently conflicting
results probably reflect experimental differences
such as cell culture densities and suggest the
response of neurons to APP can be influenced by
their growth conditions. The APP−/− cortical neu-
rons did exhibit a clear difference in viability when
exposed to neurotoxic levels of copper. The APP−/−

cortical neurons were significantly less susceptible
to copper-mediated toxicity as compared with
wild-type neurons [24]. This correlated with differ-
ences in lipid peroxidation between the different
genotypes consistent with APP promoting copper
reduction and toxicity via a redox-dependent
mechanism.

The finding that APP−/− mice exhibit only mild
deficits implies that the loss of functional APP is
compensated by its paralogues APLP1 and APLP2.
The APLPs share many structural similarities with
APP and are distributed in a similar manner to APP
within brain tissues, providing further evidence for
a similarity of function [159].

3.7.2 APLP2 Knockout Mice

Two different lines of APLP2 knockout mice have
been described with distinct phenotypes. One line
of APLP2 knockout mouse contained an 11.35-kb
deletion that removed exons 7 to 14 [138]. The het-
erozygous APLP2−/+ mice developed normally, but
in APLP2−/− homozygous mice, there was a clear
effect on embryo development, which was arrested
before the blastocyst stage [138]. This suggests that
APLP2 is involved in the mitotic segregation of the
genome and DNA replication. This APLP2−/−

mutant mouse varies greatly from another APLP2−/−

line that had no obvious abnormalities [160]. This
phenotypic variation is most likely due to the size
of the genomic deletion as the viable APLP2−/−

mice lacked only the APLP2 promoter and exon 1

[160]. Therefore, the smaller deletion may leave
sufficient DNA for embryological proteins and
cofactors to interact with the DNA-binding regions
of the APLP2 gene.

3.7.3 APLP1 Knockout Mice

Mice lacking APLP1 are viable and show a postna-
tal growth deficit as their only obvious abnormality
[157].

3.7.4 APP, APLP1, and APLP2
Combined Knockouts

The lack of an obvious phenotype in the single
knockout mice indicates that there may be a redun-
dancy in gene function and that the APP and APLPs
supplement for their functions. The generation of
double and triple knockout mice has clarified the
relationship between the APP-family members.
More than 80% of APP and APLP2 double knock-
out mice die within days of birth [157, 160]. The
surviving double knockouts have 20–30% reduced
weight and show ataxia, spinning behavior, diffi-
culty in righting, and a head tilt. Similarly, APLP1
and APLP2 double knockouts display postnatal
lethality, but APP and APLP1 double knockouts are
viable [160]. Together, these results suggest redun-
dancy between APLP2 and both other family mem-
bers. One allele of APLP2 is not sufficient for
survival in APP−/− APLP1−/− APLP2+/− because
these mice also die postnatally. Therefore, APLP2
is the most essential member of the family for via-
bility with APP being least necessary.

The lethal double mutants appeared to have no
discernible histopathological abnormalities in the
brain or any other organ examined [157, 160].
However, there is a defect in the development of neu-
romuscular synapses [161]. The APP−/− APLP2−/−

double knockouts displayed aberrant expression of
the presynaptic vesicle protein Syn and a reduction
in synaptic vesicle density and excessive nerve ter-
minal sprouting. This resulted in defective neuro-
transmitter release and a high incidence of synaptic
failure. Therefore, the expression of APP and
APLP2 is necessary for functional neuromuscular
junction formation. An effect by APP on the
neuromuscular junction is observed with the
Drosophila APP orthologue APPL that is
expressed in all neuronal cell bodies [162] and
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modulates the neuromucular junction if overex-
pressed [163].

Cortical neuronal cultures from the various com-
bined mutant mice showed unaltered survival rates
under basal culture conditions or in the presence of
glutamate and hydrogen peroxide excitotoxicity
[157]. It is interesting that none of the single or com-
bined knockout mice showed basal upregulation of
the remaining family members [134, 157, 160].

3.8 Physiological Function of 
APP as a Cuproprotein

A substantial body of data supports the function of
APP as a cuproprotein. APP has a copper-binding
domain composed of histidine residues located in
the N-terminal cysteine-rich region downstream of
the growth factor–like domain [17]. A secondary
copper-binding domain is generated in the Aβ pep-
tide after it is proteolytically released from APP
[164, 165]. However, it is unclear if the Aβ sequence
binds Cu when the Aβ sequence is part of the APP
molecule. Both APP and Aβ can strongly bind cop-
per and reduce Cu(II) to Cu(I) in vitro [18, 165]. The
first, and most definitive, demonstration of an in vivo
physiological role for APP Cu binding came from
APP−/− knockout mice studies. The absence of APP
resulted in increased brain and liver Cu levels but no
change in zinc or iron [20]. Moreover, the APLP2−/−

knockout mice also had an increase in brain Cu lev-
els but to a lesser extent than the APP−/− mice.

Subsequent studies in three different APP-
transgenic mice models have confirmed a role for
APP in modulating Cu homeostasis. The trans-
genic mice all displayed a decrease in brain Cu
levels due to APP overexpression [21–23]. The
knockout and transgenic data firmly establish the
function of APP as a modulator of Cu homeostasis.
This activity is particularly important as Cu home-
ostasis is a tightly regulated process in order to
control copper’s redox generating properties from
causing damage. This results in the absence of free
unbound intracellular copper and all the Cu is
bound to proteins [166].

Cell-based studies have further elucidated the
ability of APP to regulate Cu levels. Cultured pri-
mary cortical neurons or embryonic fibroblast cell
lines from either APP and APLP2 knock out mice
displayed increased Cu accumulation as the redun-

dancy in the APP gene family was reduced.
Conversely, primary cortical neurons from APP
transgenic mice had lower levels of Cu [167].
Therefore, APP and to a lesser extent APLP2 are
Cu-sensing proteins that regulate intracellular Cu
levels. The overexpression of APP in the yeast
Pichia pastoris has confirmed the histidines
residues are important for APP and APLP2 medi-
ated Cu transport [168]. It also established that
APLP1 is inactive as a Cu transporter consistent
with the sequence differences in its CuBD [25, 26]
where it has a serine for histidine substitution at
position 147.

The consequence of Cu binding to APP is to
increase α-secretase cleavage of APP and a corre-
sponding decrease in Aβ levels. Elevated Cu con-
centrations will reduce Aβ production and increase
secretion of APP in a cell line transfected with
human APP cDNA [27]. The physiological rele-
vance of this effect was replicated in vivo where
increasing brain Cu levels caused a decrease in Aβ
production in APP transgenic mice [22, 23].
Moreover, modulating Cu levels in the APP23
mouse dramatically increased their survival.

The APP CuBD can also modulate Cu-mediated
neurotoxicity in a species-dependent manner. APP−/−

knockout primary cortical neurons are less sus-
ceptible to Cu-mediated toxicity as compared with
wild-type neurons [24]. This correlated with APP
reducing Cu(II) to Cu(I) as cell toxicity was associ-
ated with increased lipid peroxidation. This activity
was localized to the APP N-terminal CuBD site as
recombinant CuBD could potentiate Cu-mediated
toxicity. This activity varies among the various
APP paralogues and orthologues [25].

Although the CuBD sequence is similar among
the paralogues and orthologues, there are sequence-
dependent differences that profoundly affect the
activity of this site. Conservation of the histidine
residues corresponding with residues 147 and 151
of APP promoted Cu-mediated toxicity. The
Xenopus APP and the human APLP2 CuBDs fell
into this class. However, the C. elegans APL-1
CuBD has a tyrosine and lysine residues at posi-
tions 147 and 151, respectively, and it strongly
protected against Cu-mediated neurotoxicity.
Replacement of the histidines 147 and 151 with
tyrosine and lysine residues conferred this neuro-
protective Cu phenotype to human APP, APLP2,
and Xenopus APP CuBD peptides.
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Conversely, replacing the C. elegans tyrosine and
lysine residues with histidines coverted it to a Cu-
toxicity promoting sequence. Moreover, the toxic
and protective CuBD phenotypes are associated
with differences in Cu binding and reduction [26].
These studies identify a significant evolutionary
change in the function of the CuBD in modulating
Cu metabolism.

A possible in vivo molecular target for the
APP:Cu or APLP2:Cu complexes has been identi-
fied as glypican-1 [169]. The glypican-1 molecule is
a cell-surface proteoglycan that undergoes Cu-medi-
ated degradation of its heparan sulfate chains. APP
can bind glypican-1 with low nanomolar affinity,
and this interaction inhibits APP-induced neurite
outgrowth [170]. In a cell-free system, APP, but not
APLP2, stimulates glypican-1 autodegradation in
the presence of both Cu(II) and Zn(II), whereas the
Cu(I) form of APP and the Cu(II) and Cu(I) forms of
APLP2 inhibit autodegradation [169]. Primary corti-
cal neurons and brain tissue from APP and APLP2
knockout mice had an increase in nitric oxide–
catalyzed degradation of heparan sulfate compared
with brain tissue and neurons from wild-type mice.
Therefore, the rate of autoprocessing of glypican-1
is modulated by APP and APLP2 in neurons.

Importantly, these observations identified a
functional relationship between the heparin/HS and
copper-binding activities of the cysteine-rich
region in APP and APLP2 in their modulation of
the nitroxyl anion–catalyzed HS degradation in
Gpc-1. Structural studies indicate this region is
composed of a separate heparin-binding/growth
factor domain [12] and a copper-binding domain
[14] joined by a linker. The former domain should
connect APP to the heparin sulfate in Gpc-1, and
the second domain should be involved in modulat-
ing the Cu-dependent redox reactions required for
NO-catalyzed HS degradation.

The three-dimensional structure of the human
APP copper-binding domain (APP residues 124 to
189) has been determined by NMR spectroscopy
[14]. It showed structural homology to copper
chaperones, thus strongly supporting the in vivo
data and suggesting that the APP copper-binding
domain functions as a neuronal metal-transporter
and/or metal-chaperone to modulate copper home-
ostasis. The Cu binding site had a distorted square
planar arrangement toward a tetrahedral arrange-
ment, which would favor Cu(I) binding. This is

consistent with Cu(II) binding to the APP CuBD
and promoting its reduction to Cu(I). However, the
mechanism by which the APP and APLP2 function
together in cellular copper homeostasis is unknown.

3.9 Conclusions

Significant progress has been made in elucidating
both the structure and neuronal function of the APP
and APLPs. The data points toward the APP-family
acting upon the development of the synapse and pre-
sumably synaptic activity. The challenge is to ratify
this with the other main effects associated with APP,
in particular its upregulation after axonal injury and
its copper-binding activity. Moreover, there is a need
to understand how the alternative splicing and its
processing via the α- and β-secretase pathways and
the release of the AICD relates to its function.
Finally, what is the relationship between the redun-
dant and unique roles played by the different APP-
family members? Determining the function of APP
and relating this to its structure will provide a more
complete understanding of the role of APP in AD
and should provide information necessary for the
development of therapeutic strategies.
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4.1 Introduction

In the same year as Alzheimer described the case of
Auguste D. as a peculiar disease of the cerebral cor-
tex, Fischer published his classic paper about miliary
plaque formation in a large number of brains from
patients with senile dementia [1]. In this paper and a
following one from 1910, Fischer stated that plaque
formation is the result of the deposition of a peculiar
foreign substance in the cortex that induces a regen-
erative response of the surrounding nerve fibers [2].
He described spindle-shaped thickening of nerve
fibers terminating with club forms in the corona of
plaques (Fig. 4.1). These altered nerve fibers were
considered as axonal sprouting, and the terminal club
forms showed a strong similarity with the club-
shaped buddings of axons found in developing nerve
fibers and after transections of peripheral nerves as
described by Cajal some years earlier. According to
Fischer, the crucial step of the plaque formation is the
deposition of a foreign substance that provokes a
local inflammatory response step followed by a
regenerative response of the surrounding nerve
fibers. However, Fischer could not find morphologi-
cal characteristics of an inflammatory process around
the plaques after extensive histopathological obser-
vations including complement binding studies. The
only tissue reaction appeared to be an overgrowth of
club-formed neurites.

In the last quarter of the 20th century, the compo-
sition of plaques was elucidated on a molecular level
using various new techniques. In 1984, Glenner and
Wong identified the major component of the amy-
loid deposits in Alzheimer’s disease (AD) brains, the
so-called β-amyloid peptide (Aβ) [3]. The following

years it was found that this 40- to 42-amino-acid
peptide was a cleavage product of a much larger
membrane spanning protein, the β-amyloid precur-
sor protein (βAPP) [4–6]. Studies in familial AD
presented evidence that an altered metabolism of
βAPP with progressive deposition of the Aβ frag-
ment is a crucial event in the pathogenesis of AD.
This work led to the controversial concept that AD
may be a primarily amyloid-driven process, with the
neuritic tau-pathology (neurofibrillary tangles and
neuropil threads) being an important secondary
phenomenon that is closely correlated with the
syndrome of dementia [7, 8].

Although the formation of fibrillar forms of Aβ
plays a crucial role in the pathogenesis of AD, the
presence of diffuse deposits of Aβ in the cerebral
cortex of nondemented elderly and in brain regions
of AD patients not associated with clinical symp-
toms, such as the cerebellum, suggests that the dep-
osition of Aβ by itself is not sufficient to produce
the AD clinical symptoms [9, 10]. AD most likely
results from a complex sequence of steps involving
multiple factors beyond the production and deposi-
tion of Aβ alone. During the past 20 years, a vari-
ety of inflammatory proteins have been reported to
be associated with the amyloid plaques. The idea
that inflammation is implicated in AD pathology
has received support from epidemiological studies
indicating that the use of anti-inflammatory drugs
can prevent or retard the process of AD [11–13].
In this chapter, we will review the evidence of the
original assumption of Fischer that a peculiar sub-
stance in AD can induce a local chronic inflamma-
tory response with a reactive aberrant regenerative
response of neurons, which is highly topical in



current AD research. The clinical and therapeutical
implications of this view will be discussed.

4.2 Senile Plaques: The Nidus of a
Chronic Inflammatory Response

In 1982, we demonstrated in an immunohisto-
chemical study that senile plaques contain the early
complement factors C1q, C3, and C4, and these
findings were confirmed by others [14–16]. With a
panel of specific monoclonals directed against neo-
epitopes, which are specific for activated comple-
ment products and not present on native proteins,
it could be demonstrated that the complement pro-
teins in plaques were not the result of passive
absorption but the result of complement activation
[17]. McGeer and co-workers extended these find-
ings by the demonstration of the presence of the
terminal membrane attack complex, indicating that
a full-blown activation of the complement cascade
occurs in senile plaques [18].

At the end of the 1980s, several groups demon-
strated with monoclonals, directed against cells of
the monocyte-macrophage cell lineage, immunohis-
tochemically an association of clusters of activated
microglia (brain macrophages) with senile plaques
(Fig. 4.2A) [19–22]. The association of amyloid
plaques with complement proteins (Fig. 4.2B), as

well as clusters of activated microglia, strongly sug-
gest some form of an inflammatory process. In con-
trast, the absence of immunoglobulins and T-cell
subsets within or around plaques indicates that
humoral or classical cellular immune-mediated
responses are not involved in cerebral β-amyloid
plaque formation [23]. Also the recruitment of
leukocytes from the blood into the inflammatory
foci in the neuropil would require adhesive interac-
tions between leukocytes and endothelial cells of
brain capillaries. However, no (increased) expres-
sion of the most relevant intercellular adhesion mol-
ecules (ICAM-1, VCAM-1, E-selectin) has been
found on endothelial cells of capillaries in AD
brains [24]. Thus, unlike other brain disorders such
as multiple sclerosis [25] and HIV-dementia [26] in
which the expression of E-selectin and VCAM-1
coincides with monocyte/macrophage infiltration,
the influx of blood-borne cells is not likely to occur
in AD brains. Taken together, these data support the
view that the (fibrillar) Aβ plaques in AD brains are
closely associated with a locally induced, nonim-
mune mediated, chronic inflammatory type of
response without any apparent influx of leukocytes
from the blood.

A wealth of data indicate now the extracellular
deposition of Aβ in AD brains as one of the triggers
of inflammation [27]. For example, Aβ activates
microglia by binding to the receptor for advanced
glycation end products (RAGE) [28] and to other
scavenger receptors [29, 30]. Furthermore, the LPS
receptor, CD14, interacts with fibrillar Aβ [31], and
microglia kill Aβ1-42 damaged neurons by a
CD14-dependent process [32]. The involvement of
CD14 in Aβ-induced microglia activation strongly
suggests that innate immunity is linked with AD
pathology. The concept that Aβ peptide can induce
a local inflammatory-type response received impe-
tus from the in vitro findings that fibrillar Aβ can
bind C1 and hence potentially activate the classical
complement pathway in an antibody-independent
fashion [33]. Such activated early complement fac-
tors could play an important role in the local recruit-
ment and activation of microglial cells expressing
the complement receptors CR3 and CR4 [22].

In vitro studies indicate that a certain degree of Aβ
formation is required for the initiation of the comple-
ment system [34]. This in vitro finding is consistent
with the immunohistochemical data in AD brains
showing no or a weak immunostaining for early
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FIGURE 4.1. Drawing of a senile plaque by O. Fischer [1].



complement components in diffuse plaques com-
posed of non- or low-grade fibrillar Aβ peptide [24].
The diffuse plaques are not associated with activated
microglia and altered neurites, in contrast with the
so-called classical and neuritic plaques, which are
characterized by congophilic fibrillar Aβ deposits.
So, the nidus for the chronic inflammatory response
in AD brains is the plaque containing fibrillar Aβ
deposits but not the diffuse plaque with the non-
congophilic low-fibrillar Aβ depositions [10, 35].

After the initial reports on complement proteins
and activated microglia in senile plaques, a long list
of inflammation-related proteins, such as com-
plement factors, acute-phase proteins, and pro-
inflammatory cytokines, were found to be localized
in senile plaques (for a review, see Ref. 36). Activated
microglia, particularly in the vicinity of senile
plaques, has been shown to be immunoreactive
with antibodies for interleukin-1 [37], interleukin-6
[38, 39], and tumor necrosis factor-α [38]. The
so-called Aβ-associated proteins (most of them are

acute-phase proteins) include, apart from the com-
plement factors, α1-antichymotrypsin, ICAM-1,
α2-macroglobulin, clusterin, apolipoprotein E
(ApoE), serum amyloid P component (SAP), and
heparan sulfate proteoglycans. In vitro studies
showed that most of these Aβ-associated proteins
are involved in the amyloidogenic process. For
example, ApoE and complement factor C1q can
accelerate Aβ fibrillogenesis [40].

One of the biological functions of ApoE is to
transport Aβ. The ε4 allele of ApoE is a risk factor
for AD and cerebral amyloid angiopathy [41, 42].
There is strong evidence to suggest that the major
mechanism underlying the link between ApoE and
both AD and congophilic angiopathy is related to
the ability of ApoE to interact with the Aβ peptide
and influence its clearance, aggregation, and con-
formation [42]. Clusterin may prevent Aβ aggrega-
tion because in cerebrospinal fluid, clusterin is
found to be complexed with Aβ thereby maintain-
ing the solubility of Aβ in biological fluid [43].
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FIGURE 4.2. (A) Asociation of clusters of activated microglia (brain macrophages) immunostained for HLA
DP/DQ/DR (CR3/43) with a congophilic plaque in an Alzheimer’s disease case. (B) The association of complement
protein C3d with a classical amyloid plaque. (C) Immunostaining of Aβ deposits around small blood vessels in a
“vascular variant of Alzheimer’s disease” case. (D) Clusters of activated microglia (immunostained for HLA
DP/DQ/DR [CR3/43]) localized with small congophilic blood vessel in a “vascular variant of Alzheimer’s disease”
case. Bar represents 20 µm.



SAP and heparan sulfate proteoglycans are
thought to be essential for amyloid formation and
persistence [44, 45]. SAP may protect amyloid
deposits against proteolytic breakdown and prevent
Aβ phagocytosis by microglia. In the presence of
chondroitin sulfate proteoglycans or astrocyte condi-
tioned medium that contains this proteoglycan,
microglial capacity to remove deposits of Aβ in cul-
ture dishes is inhibited [46]. This indicates that astro-
cyte-derived factors may downregulate the actions of
microglia. In contrast with the other Aβ-associated
proteins, α1-antichymotrypsin specifically accu-
mulates in plaques containing the Aβ-peptide but
not in other types of amyloid [47]. Hence, α1-
antichymotrypsin seems to be involved primarily in
the process of Aβ production and deposition and the
other plaque-associated proteins more generally in
the process of amyloidogenesis independent of the
specific chemical structure of the amyloid peptide.

The lack of evidence for blood-brain barrier dys-
function in AD suggests that these Aβ-associated pro-
teins are produced locally [48]. Indeed, with possible
exception of the amyloid P component, the messenger
RNA for these proteins can be found in brain tissue
[49]. Astrocytes are known to synthesize a variety of
Aβ-associated proteins including complement fac-
tors, α1-antichymotrypsin, and lipid transporters like
ApoE and clusterin (apolipoprotein J) [36].
Surprisingly, the major mRNA signal for complement
factors and the complementary regulatory proteins is
found in neurons and not in glial cells [50, 51].

The involvement of neurons as a source of
inflammatory mediators in response to brain injury
in AD and lesion studies in animal models was first
suggested by Finch and co-workers [52–54].
Neurons in AD brain were found to express mRNA
for C1q, C4, and clusterin as detected by combined
RNA in situ hybridization and immunocytochem-
istry. In vitro, the production of early complement
proteins by neuronal cell cultures increased in
response to the cytokines Il-1, Il-6, and TNF-α,
which are found in amyloid plaques [55]. These
findings implicate that neurons are active players in
the inflammatory response in AD brains.

4.3 Concept of Neuroinflammation

Although inflammation is a well-recognized patho-
logical phenomenon, the precise definition of inflam-
mation remains obscure [56, 57]. Consequently,

inflammation can be defined in clinical, pathological,
and molecular terms. Clinically, the brain of AD
patients does not show the cardinal symptoms of
Celsus: dolor, tumor, calor, and rubor (i.e., pain,
swelling, heat, redness). At the histopathological
level, while cells associated with a classical acute
inflammatory response (neutrophils) are absent, AD
brains show miliary foci with clusters of activated
microglia (brain macrophages) indicating a process
of focal recruitment and activation of mononuclear
phagocytes.

At the molecular level, amyloid plaques in AD
brains contain numerous proteins associated with an
inflammatory response, including activated comple-
ment factors, acute-phase proteins, and proinflam-
matory cytokines. However, most of these proteins
have pleiotrophic effects dependent on their concen-
trations, and so the precise role of most of these mol-
ecules in the amyloid formation is largely unknown.
At the present time, the most convincing argument
to support the concept of chronic inflammation is
related to the histopathological and immunohisto-
chemical observations of recruitment and focal
accumulation of phagocytic cells to meet the classi-
cal criteria for an inflammatory process as suggested
by Metchnikoff [58].

Inflammation is often regarded as a stereotypi-
cal nonspecific response to destructive stimuli, and
chronic inflammation occurs when there is a fail-
ure to eliminate the initiating targets. In most tis-
sues, acute injury is followed by a release of
histamine with vascular changes as a consequence.
This results in exudation of fluid into the injured
tissue and migration of neutrophils. Such a
response resulting in fluid exudation with raised
intracranial pressure and tissue destruction by neu-
trophils would be detrimental with respect to the
requirement for tight homeostatic control of the
neuronal environment to permit efficient neuronal
transmission and to maintain a postmitotic neu-
ronal population. Thus, it is conceptually possible
that the brain, and the endothelial interface with
the bloodstream, has become adapted in such a
way as to prevent “bystander” tissue damage after
injury. Therefore, in this regard, microglia activa-
tion could be considered as a specialized CNS
response to injury.

In the normal CNS, most microglial populations
are more downregulated than resident tissue
macrophages in other organs, and the extent to
which they become activated and upregulate a

4. The Involvement of Aβ in the Neuroinflammatory Response 55



range of factors, including proinflammatory
cytokines, complement receptors, and MHC class
II receptors, would be a graded response dependent
on the nature, severity, and extent of the stimulus.
In this scheme, the presence of clusters of activated
microglia in senile plaques in AD would be consis-
tent with a neurological form of low-grade chronic
inflammation [57].

It is unlikely that neurons are merely passive
passengers in the sequence of inflammation that
leads to neuronal loss. Recent findings indicate that
the neurons themselves appear to be active players
in the neuroinflammatory process in AD brains.
Increased expression of complement factors and
the inducible cyclooxygenase-2 [COX-2] is mainly
found in neurons and not or to a lesser extent in
glial cells in AD brains [50, 59–61]. Whether the
increased levels of inflammation-related proteins
within neurons reflect a protective reaction pre-
venting neuronal damage, or stimulate degenera-
tion, remains unknown. Microglial inflammatory
mediators have neuropathic as well as neuroprotec-
tive actions. Thus, whereas excess levels of reactive
oxygen species or TNF-α might cause neurotox-
icity, mild oxidative stress and low-dose TNF-α
could, alternatively, trigger the neuroprotective
and/or anti-apoptotic genes [36, 62].

The role of glial cells is to support and sustain
proper neuronal function, and microglia are no
exception to this. Kreutzberg, Streit, and co-workers
have studied the neuroprotective and proregenera-
tive role of microglia in acute injured CNS [63, 64].
The primary mode of action of microglia may be
CNS protection. However, upon excessive or sus-
tained activation, microglia could significantly con-
tribute to chronic neuropathologies. Dysregulation of
microglial cytokine production could result in
harmful actions of the defense mechanisms, lead-
ing to neurotoxicity, as well as disturbances in neu-
ral function as neurons are sensitive to cytokine
signaling [65].

4.4 Brain Changes in an 
Early-Stage AD

At the neuropathological level, AD brains are char-
acterized by plaques and tangles. There is a long-
lasting and still ongoing debate about the question
which lesion comes first: the plaque or the tangle

[66, 67]. It has been repeatedly shown that in many
cases, entorhinal tangles are the first morphological
lesions to be detected in the brain of aging patients.
However, these findings in the entorhinal system
may not be generalized to the whole brain. In the
isocortex, the plaques precede the tangles. In psy-
chometrically well-evaluated subjects, it seems that
in the aging process plaques and tangles develop
independently. A majority of normal subjects have
tangles in the entorhinal-hippocampal areas, but
diffuse Aβ deposits are first detected in old sub-
jects above 80 years of age [68, 69]. In subjects at
the threshold of detectable dementia, high densities
of senile plaques (predominately of the diffuse sub-
type) are observed [70]. These results suggest that
senile plaques in the neocortical regions may not
be part of normal aging but instead represent
presymptomatic or unrecognized early sympto-
matic phenomena in AD. Duyckaert and co-work-
ers proposed the following chronological sequence
of neuropathological events in the neocortical
regions: diffuse fibrillar Aβ deposits, fibrillar Aβ
deposits (classical plaques), neurofibrillar tangles.
We and others have studied the presence of some
inflammation related events in relation to the pro-
posed sequence of occurrence of neuropathological
lesions in neocortical areas.

4.4.1 Microglia

In a clinicopathological study of a sample of clini-
cally well-evaluated patients, the volume of tissue
occupied by activated microglia, congophilic amy-
loid, Aβ and tau deposits were studied in neocortical
areas [71]. The volume density of activated microglia
cells (with CD-68 as marker) correlated highly with
the volume density of congophilic deposits, but not
with the volume density of Aβ or tau. If cases were
ranked in increasing order of severity of clinical
dementia, the peak volume densities of activated
microglia and congophilic deposits occurred in mod-
erately affected cases, whereas Aβ and tau steadily
accumulated with progression of the disease.
A decrease of congophilic deposits in the neuropil in
the most severe AD cases was already reported [72].

The finding that formation of the congophilic
amyloid/microglia complex is a relatively early
event in the AD pathogenesis is in agreement with
another recently published clinicopathological
study. In this study, the CERAD classification was
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used to show that the prevalence of activated
microglia were significantly increased in early
stages, while the significant association between
astrocytic reaction and clinically manifest demen-
tia suggests that the occurrence of activated astro-
cytes reflects later stages of the disease, when
dementia develops. Tau immunoreactivity in the
cerebral neocortex was observed only in the neu-
ropil of definite cases [73].

Studies using positron emission tomography
(PET) and the peripheral benzodiazepine ligand
PK11195 as marker for activated microglial cells,
indicate that activation of microglia precedes cere-
bral atrophy in AD [74]. Thus, neuropathological
and neuroradiological studies indicate that the acti-
vation of microglia is a relatively early pathogenic
event that precedes the process of neuropil destruc-
tion in AD patients. Similarly, in prion disease, the
onset of microglial activation was found to coincide

with the earliest changes in cerebral morphology. In
scrapie-infected mice, microglial activation occurs
many weeks before neuronal loss and subsequent
clinical signs of disease become apparent [75, 76].

4.4.2 Aβ-Associated Proteins

Intracerebral deposits of Aβ amyloid plaques are
invariably associated with a number of proteins,
including complement factors, α1-antichymotrypsin,
ApoE, clusterin, SAP, and proteoglycans (Fig. 4.3).
Strong immunostaining for C1q and SAP is observed
in the dense-core and primitive plaques in the cere-
bral cortex of AD patients. Weak to moderate
immunostaining is observed in a variable number of
circumscript diffuse plaques in AD and in nonde-
mented controls with plaques, but not in irregular-
shaped diffuse Aβ plaques in nondemented controls
[77, 78]. α1-Antichymotrypsin and ApoE are present
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FIGURE 4.3. Immunohistochemical distribution of SAP, C1q, C4d, C3d, ACT, ApoE, AT8, and activated microglia in
morphologically distinguished cerebral Aβ plaque types; -, none; ±, maximally 50% of total; +, >75% of total; ++,
all plaques (SAP, serum amyloid P component). Adapted from Ref. 78.



in all forms of plaques including the diffuse type.
Accumulation of most of the Aβ-associated proteins
is dependent on the degree of fibril density of the Aβ
deposits and precede the appearance of clusters of
activated microglia and neuronal tau-related changes,
suggesting that the associated factors have a modula-
tory role in early stages of the amyloid-driven pathol-
ogy cascade.

Only in those Aβ plaques that have accumulated
SAP and C1q can clusters of activated microglia be
observed in AD neocortex [78]. This suggests that
microglia may be attracted to and activated by Aβ
deposits of certain fibril density that, in addition,
have fixed SAP and C1q. When exposed to a
mixture of Aβ1-42, SAP, and C1q, a combination
that is relevant to the in vivo situation, adult human
microglia secrete significantly higher levels of
proinflammatory cytokines in vitro than cells
treated with Aβ1-42 alone [78]. Although fibril
formation was enhanced in the presence of SAP
and C1q, as judged by electron microscopy, cellu-
lar effects of the Aβ-SAP-C1q mixture may also be
due to interactions of SAP and C1q with microglial
acceptors sites, which include receptors for C1q
[79, 80]. Taken together, these findings indicate a
role of Aβ-associated proteins in Aβ deposition
and removal and in microglial activation, and that
both events are relatively early steps in the patho-
logical cascade of AD [81].

4.4.3 Adhesion Molecules

Early on, investigators noted that the brain in AD is
not only undergoing degeneration but also signs of
regeneration and sprouting in and outside the
plaques [1, 82, 83]. Regulation of tissue degrada-
tion and remodeling involves a complex network
including proteases and protease inhibitors,
cytokines, integrins, and adhesion molecules [84].
Some growth-promoting factors, such as GAP43,
APP, laminin, and collagen IV, have been found in
dystrophic neurites but not in neuropil threads out-
side the plaques [85–87]. Cell adhesion to the
extracellular matrix is mediated by integrins, a set
of heterodimeric cell-surface receptors that inte-
grate the extracellular matrix or other cells with the
intracellular network.

There are different subfamilies of integrins, each
defined by a common β-subunit with multiple,
distinct α-subunits. The dystrophic neurites associ-

ated with the fibrillar Aβ deposits in classical
plaques are next to laminin and collagen IV also
outlined by different β1 integrins including the
laminin-receptor (α6/β1). Interactions between
APP and laminin [88] or collagen IV [89] have
been described in studies in vitro. The presence of
low amounts of extracellular matrix components
promotes neurite outgrowth in a dose-dependent
manner [90]. The expression of cellular matrix adhe-
sion molecules is regulated by transforming growth
factor β1 (TGF-β1), which is present in amyloid
plaques [91]. βAPP is in the strict definition of the
term a cell adhesion molecule. βAPP can bind
heparin and laminin and it appears capable of
mediating cell-cell or cell-matrix adhesion.

In antisense βAPP transfected cells, adhesion is
reduced and this can be repaired by addition of
βAPP [92]. Furthermore, APP has neurite-growth
promoting activity and in its secreted form appears
to protect against neuronal excitotoxicity [93].
Thus, the plaque actually seems to form a local
abnormal microenvironment that employs some of
the same principles that are used during normal
growth and development [94]. Aβ fibrils appear to
have the ability to serve as pseudo “cell adhesion
molecules.” Aβ assembled into fibrils develops a
β-sheet conformation and induces neurites in and
around plaques to express the morphological fea-
tures of dystrophic neurites.

Findings of Cotman and colleagues suggested that
β-amyloid activates signal transduction via adhesion
molecules and their cross-linking [95, 96]. Fibrillar
Aβ could promote dystrophy through aberrant acti-
vation of signal transduction cascades, which leads to
cytoskeletal changes [97]. Aβ binds to integrins and
activates the focal adhesion proteins paxillin and
focal adhesion kinase, which are downstream of inte-
grin receptors, suggesting that focal adhesion signal-
ing cascades might be involved in Aβ-induced
neuronal dystrophy [98, 99].

Recent experiments indicate that fibrillar Aβ
treatment induced integrin receptor clustering, pax-
illin tyrosine phosphorylation, and translocation to
the cytoskeleton and promoted the formation of
aberrant focal adhesion-like structures, suggesting
the activation of focal adhesion signaling cascades
[100]. Focal adhesion signaling induced by fibrillar
Aβ may lead to deregulation of kinase and phos-
phatase activities responsible for tau hyperphos-
phorylation. Focal adhesion signaling leads to
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activation of cyclin-dependent kinase 5 (CDK5)
and glycogen synthase 3β (GSK-3β), two kinases
that phosphorylate tau at epitopes corresponding
with those found in neurofibrillary tangles [101].

In summary, the aberrant activation of focal
adhesion pathways appears to be critically involved
in fibrillar Aβ-induced neuronal dystrophy. The
ability of the neuron to respond dynamically to
extracellular cues is reminiscent of plasticity mech-
anisms. In this regard, maladaptive neuronal plas-
ticity may play a major role in AD [95, 100, 102].

4.4.4 Early Neuronal Changes

Cyclooxygenase-2 (COX-2) is involved in the pro-
duction of prostaglandins and is upregulated at sites
of inflammation [103]. It is an enzyme that gathered
great interest in AD scientists because of its thera-
peutic potentials. While it was expected that activated
microglia and astrocytes would show increased
expression of COX-2 in AD, it was eventually found
by immunohistochemistry that mainly neurons
express COX-2, whereas astrocytes and microglia
are almost unlabeled [59–61,104]. It appears that the
neuronal COX-2 is upregulated in early stages of
AD, whereas its expression is diminished in
advanced stages of AD [105, 106]. Interestingly, this
upregulation of COX-2 in early AD and downregula-
tion in advanced AD correlate well with the
prostaglandin E2 levels in the CSF, which are ele-

vated in probable AD patients and which decline
with increasing severity of dementia [107].

The role of COX-2 in early AD pathogenesis is
still elusive. The expression of COX-2 in numerous
types of cancers and the effect of selective COX-2
inhibitors on tumor growth suggest a role for COX-2
in cell-cycle control. A dysregulation of cyclins,
cyclin-dependent kinases (CDKs), and their
inhibitors has been observed in postmitotic neurons
in AD [108, 109] and also in other neurodegenera-
tive disorders like Parkinson disease (PD) [110,
111] and amyotrophic lateral sclerosis (ALS) [112,
113]. This suggests that proteins that normally
function to control cell-cycle progression in divid-
ing cells may play a role in the death of terminally
differentiated postmitotic neurons. During our
studies into the expression and role of neuronal
COX-2 in AD, the question was raised whether
neuronal COX-2 could also be involved in mediat-
ing cell-cycle changes in neurons during disease.
Indeed, recent studies have shown that COX-2
expression in AD neurons parallels neuronal cell-
cycle changes (Fig. 4.4) [106, 114]. It is possible
that the increase in neuronal COX-2 expression
leads to increased expression of cell-cycle media-
tors in postmitotic neurons, as shown using a trans-
genic mouse model with increased neuronal
COX-2 expression [115]. Whether COX-2 can be
used as a therapeutic target to modulate neuronal
cell-cycle changes remains elusive.
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FIGURE 4.4. Shown are the mean immunoreactive scores of patients grouped according to the Braak score for Aβ
deposits. COX-2, cyclin D1, cyclin E, and pRb are increased in neurons at Braak stage A, in which already a small
number of Aβ plaques is present and almost no neurofibrillary changes are visible in the temporal cortex. At later
Braak stages and with the increase of plaques and tangles, the number of neurons immunoreactive for cell-cycle pro-
teins decreases. Data adapted from Refs. 106 and 126.



Although COX-2 may play a role, it is still elusive
how and why terminally differentiated neurons in
neurodegenerative disorders attempt to reenter the
cell cycle. In AD, the presence of growth-associated
and growth promoting factors as well as growth fac-
tor receptors around the plaques might be an indica-
tion of an increased mitogenic force [116]. In
addition, conditioned medium from Aβ-stimulated
microglia can also trigger neuronal cell division fol-
lowed by cell death [117]. Aβ protein itself has mito-
genic properties and can induce cell cycle–mediated
cell death in cultured neurons [118]. Initial studies
implicating cell-cycle events in degenerating neurons
in AD showed induction and activation of CDC2 and
its partner cyclin B1 in postmitotic neurons [119,
120]. CDC2 activity has been proposed to play a
major role in the hyperphosphorylation of the tau
protein and the subsequent formation of neurofibril-
lary tangles [119], which suggests a direct link
between the reactivation of the cell cycle and the
pathogenesis of AD. The reexpression of cell cycle
proteins is also closely associated with apoptosis in
neurons [118, 121]. These findings led to the sugges-
tion that uncoordinated expression of cell-cycle mol-
ecules and the resulting breach of cell-cycle
checkpoints is one of the primary mechanisms by
which postmitotic neurons undergo apoptotic death
[102, 122].

Cell-cycle changes can be detected in neurons
that are vulnerable to neurodegenerative changes
that are associated with AD [120, 123–125]. This
implies that neuronal cell-cycle changes are
involved in the early steps of AD neurodegeneration.
Cell-cycle proteins cyclin D1, cyclin E, and phos-
phorylated retinoblastoma protein (ppRb) are found
to be increased in cases with Braak stage A for amy-
loid deposits [106, 126]. These cases already show
some Aβ deposits but lack neurofibrillary changes
(Fig. 4.4). In later Braak stages, these neuronal cell
changes become less apparent. Double-immunohis-
tochemistry for ppRb and the neurofibrillary marker
AT8 shows that the nuclear expression of ppRb does
not coincide with the occurrence of neurofibrillary
changes inside the neuron [126]. These data support
the view that the increase of cell-cycle proteins is an
early event in the pathogenesis that occurs before the
formation of neurofibrillary tangles.

In general, an aberrant cell-cycle reentry has
been implicated in neuronal death during the patho-
genesis of AD as well as other neurodegenerative

disorders. Interestingly, neurodegenerative diseases
like AD, ALS, and PD do not only show neuronal
cell-cycle abnormalities [110, 113, 127] but also
have aggregation of abnormal or misfolded proteins
in common [128]. The accumulation of misfolded
or aggregated proteins in the endoplasmic reticu-
lum (ER) activates a homeostatic pathway: the
“unfolded protein response” (UPR) [129, 130]. The
activation of the UPR results in an overall decrease
in translation, increased protein degradation, and in
increased levels of ER chaperones like BiP/GRP78
to increase the protein folding capacity of the ER. In
vitro data show that activation of the UPR induces a
G1 phase arrest, linking the occurrence of unfolded
proteins in the ER to altered control of cell-cycle
regulation [131, 132]. The occurrence of misfolded
proteins in the ER and the resulting UPR could
directly mediate the regulation of cell-cycle pro-
teins in postmitotic neurons. In a recent study, we
investigated the role of the UPR in cell-cycle regu-
lation during AD pathogenesis [133]. Activation of
the UPR, as measured by the levels of BiP/GRP78,
is progressively occuring in AD as compared with
nondemented control cases. Furthermore, activation
of the UPR also negatively correlates with the
expression of cell-cycle proteins (Fig. 4.5).

Activation of the UPR in a neuronal cell model
inhibits cell-cycle progression showing a direct
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expression levels of BiP/GRP78 as determined by
Western blot analysis were correlated with the occur-
rence of nuclear ppRb immunoreactivity in neurons in
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link between UPR activation and cell-cycle regula-
tion in neurons. This interaction between the UPR
and an aberrant cell cycle in postmitotic neurons
might eventually determine the fate of a neuron
during the progression of AD. On the other hand,
these data suggest that there are two phases in AD
pathogenesis: an early neuronal response involving
COX-2 and cell-cycle changes followed by a sec-
ond phase involving an advanced stage of protein
aggregation and neurofibrillary changes. The first
phase could be a response of the neurons to extra-
cellular (inflammatory) cues activating mecha-
nisms that induce plasticity. The second phase
reflects the inability of the neurons to regenerate,
resulting in widespread neurodegeneration [134].

4.4.5 Convergence of the
Immunohistochemical Data 
and Gene Findings

Recently, new tools have been developed that can
address the complexity of the pathogenesis of
Alzheimer’s disease. Gene microarrays simulta-
neously allow the study of the activity of multiple
cellular pathways. Although microarray data inter-
pretation is hindered by low statistical power and
high false positives and negatives, recent microar-
ray studies have confirmed the involvement of sev-
eral cellular pathways in AD pathogenesis.

An earlier study, comparing gene expression in the
CA1 of the hippocampus between AD and control
subjects already indicated the involvement of apop-
totic and neuroinflammatory signaling [135]. More
recently, Blalock and colleagues performed an analy-
ses of the correlation between hippocampal gene
expression with Mini-Mental State Examination
(MMSE) and Neurofibrillary Tangles (NFT) scores
[136]. Upregulation of biological process categories
included genes regulating cell proliferation and dif-
ferentiation and genes encoding cell adhesion and
complement factors. Most interestingly, proliferation
and prostaglandin synthesis pathways were among
the main categories of upregulated genes in incipient
AD cases.

It has been recognized by immunohistochemical
studies that inflammation, synaptic dysfunction,
glial reactivity, protein misfolding, lipogenesis, and
cell-cycle disturbances are involved in AD. Although
cDNA microarray is a relatively new and emerging
technique, it confirms the immunohistochemical

findings for the early involvement of inflammatory
and regenerative pathways in AD pathogenesis.

4.5 Inflammation in Transgenic
Models

Familial autosomal dominant mutations identified
in AD patients have been introduced in transgenic
mice to establish models that reconstitute the path-
ogenic process associated with Aβ amyloidosis
[137–139]. These models display several patholog-
ical characteristics of AD such as Aβ-immunoreac-
tive plaques that are accompanied by dystrophic
neurites and reactive gliosis. The different trans-
genic models display various types of plaques early
in the amyloidogenic process. In some models, dif-
fuse and compact fibrillar plaques accumulate con-
comitantly even at the earliest stages of deposition,
in contrast with other models in which exclusively
fibrillar compact plaques are seen. In these models,
the amyloid deposits are associated with an inflam-
matory response characterized by clustering of acti-
vated microglia, complement factors, and glial
expression of both pro- and anti-inflammatory
cytokines [140–144]. In some of these models,
microglia are associated with compact deposits
only. The TgCRND8 mouse model exhibits neu-
ropathological changes with a robust increase in
cerebral Aβ level and formation of diffuse and com-
pact plaques as early as 9–10 weeks of age. The for-
mation of plaques was concurrent with the
appearance of activated microglia and followed by
the clustering of activated astrocytes around plaques
at 13–14 weeks of age [145]. The simultaneous
deposition of plaques and the activation of the
inflammatory processes underline the relationship
between both events in the initial stage of neu-
ropathological brain changes. Although the fibrillar
Aβ-induced inflammatory response is a relatively
early event in transgenic mice, the earliest cognitive
impairment is correlated with the accumulation of
intraneuronal Aβ in the hippocampus and amygdala
before plaque pathology become apparent [146].

Transgenic mouse cell lines expressing human
βAPP harboring the vasculotropic Dutch and/or
Iowa mutations exhibit an early and robust cerebral
microvascular accumulation of fibrillar Aβ amy-
loid exhibiting strong thioflavin S staining and
numerous largely diffuse plaque-like structures in
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the parenchyma [147, 148]. The distribution of Aβ
in these transgenic cell lines is consistent with the
cerebral Aβ distribution that is seen in patients with
the Dutch and Iowa disorders. The depostion of
cerebral microvascular amyloid in the transgenic
mice harboring the vasculotropic mutation is
accompanied by large increases in the numbers of
neuroinflammatory reactive astrocytes and acti-
vated microglia as well as elevated cerebral levels
of the proinflammatory cytokines Il-1β and Il-6
[149].

Transgenic models seem also a promising model
to elucidate the role of the Aβ-associated factors in
amyloidogenesis. Studies in these models have
already established the role of ApoE, α1-antichy-
motrypsin (ACT), complement factors, and clusterin
in amyloid formation. The transgenic hAPP mouse
studies show that increased expression of some Aβ-
associated proteins (ApoE, ACT) leads to higher
amyloid load, whereas inhibition of complement
factors results in low amyloid load. On the other
hand, the amyloid formation is strongly hampered in
mouse strains that expressed mutant hAPP and are
“null” for ApoE [150]. When ACT transgenic mice
are crossed to transgenic hAPP mice, the ACT/APP
mice have twice the amyloid load and plaque density
compared with the mice carrying mutant hAPP
alone [151]. Inhibition of complement activation in
the brain of hAPP mice by expressing soluble com-
plement receptor-related protein (sCrry), a comple-
ment inhibitor, lead to a two- to threefold higher
amyloid load and more neuronal loss than in age-
matched hAPP mice [152]. In transgenic hAPP mice
crossed with clusterin [-/-] mice, the levels of Aβ
deposits are similar to these in hAPP mice express-
ing clusterin, but there are significantly fewer fibril-
lar Aβ deposits. In the absence of clusterin, neuritic
dystrophy associated with the amyloid deposits is
markedly reduced, resulting in dissociation between
amyloid formation and neuritic dystrophy [153]. All
these observations in transgenic mice models sup-
port the idea that Aβ-associated proteins play an
important role in the dynamic balance between Aβ
deposition and removal.

The fundamental discussion about the beneficial
or detrimental aspects of inflammation in amyloid
deposition and its therapeutical consequences are
well illustrated by the findings from inflammation-
based treatment strategies in transgenic mice mod-
els. Recent work in transgenic models has revealed

that either intercranial lipopolysaccharide (LPS)
injection or treatment with the nitric oxide–releasing
nonsteroidal anti-inflammatory drug NCX-2216
potentiates microglial activation and leads to
reduction in Aβ plaque load [154, 155]. Another
inflammation-based treatment strategy is immu-
nization with Aβ [156]. Immunization of the young
animals prevents the development of amyloid
plaque formation, and in older animals it markedly
reduces the extent and progression of amyloid
pathology. Injections with anti-Aβ antibodies
cleared the plaques in the cortex of transgenic mice
and activated the microglia [157, 158]. The thera-
peutic option for vaccination in AD patients is
hampered by severe side effects [159]. These side
effects reflect most probably the double-edged
sword role of the inflammatory response in AD
pathogenesis.

4.6 Inflammation and the
Pathological Cascade

Although the role of inflammatory molecules in the
pathological process of AD is not fully understood,
current findings indicate that these molecules may
be involved in a number of key steps in the pro-
posed amyloid-driven cascade (Fig. 4.6) [160].

1. The brain concentration of Aβ is the result
of the equilibrium between the Aβ-producing
enzymes and the catabolic enzymes involved in Aβ
degradation. During the past few years, a growing
list of candidate enzymes for Aβ degradation has
been described, including the metalloproteases,
for example, insulin-degrading enzyme, neprilysin,
angiotensin converting enzyme, and serine pro-
teases such as plasmin [161]. It has been shown that
Il-1 (possibly together with other cytokines) can
regulate βAPP synthesis and Aβ production in vitro
[162–164]. Such a cytokine-induced production in
vivo may initiate a vicious circle whereby Aβ
deposits stimulate further cytokine production by
activated microglia to even higher synthesis rates of
βAPP and its Aβ fragments. There is a lack of infor-
mation about the effect of inflammatory mediators
on the enzymes involved in Aβ degradation.

2. The Aβ-associated proteins (most of which
are acute-phase proteins) are involved in regulation
of the Aβ amyloidogenic process. These proteins
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are involved in the fibrillization, deposition, and
removal of the Aβ peptide as discussed earlier.

3. Once fibrillar, Aβ can induce a microglia-
mediated chronic inflammatory response. Activated
microglial cells produce and release potentially
toxic products, including reactive oxygen species,
proinflammatory cytokines, excitotoxins, and pro-
teases, which could damage the neighboring neu-
rons. Recent studies suggest that the oligomeric
forms of Aβ are more toxic for neurons than the
high-fibrillar forms. However, the high-fibrillar
forms of Aβ that are in vivo associated with acti-
vated complement fragments induce the inflamma-
tory response leading to gliosis and destruction of
functional nervous tissue architecture.

It is important to keep in mind that the involve-
ment of numerous inflammatory proteins in the
pathological cascade is not related to a single patho-
genic event but to a number of subsequent steps.
Most of these proteins have pleiotrophic effects
depending on their concentrations, and thus the pre-
cise role of these molecules in the different steps of
the pathological cascade is largely unknown. In addi-
tion to the production of proinflammatory cytokines,

microglial cells can also produce anti-inflammatory
cytokines such as interleukin-10 (Il-10) [165]. The
neuroinflammatory response includes both beneficial
and deleterious effects on the progression of the dis-
ease process. On the one hand, inflammatory activa-
tion by Aβ could be viewed as a potential contributor
to AD neurodegenerative processes, however,
inflammatory proteins, particularly complement pro-
teins, may also play a role in microglial-mediated Aβ
removal [166].

The role of inflammation as a double-edge
sword in neurodegenerative disorders attracts much
interest in current AD research [167]. This is not
surprising because eliminating pathogenic stimuli,
such as the removal of fibrillar Aβ deposits, and
tissue repair with scar formation are essential char-
acteristics of inflammatory processes. In this con-
text, it is interesting to recall the suggestion that
there are two phases in AD neurodegeneration:
a first phase, involving increased neuronal COX-2
and cell-cycle protein expression, as a response to
induce neuronal plasticity, and a second phase in
which neurons fail to cope with the increasing
presence of unfolded proteins and eventually
undergo neurofibrillary degeneration. Aβ deposi-
tion, inflammation, and neuroregenerative mecha-
nisms are related and early pathogenic events in
AD that can be also seen in the transgenic mouse
AD model, while “later” neurodegenerative char-
acteristics are not seen in these models. The precise
relation between the neuroregenerative and neu-
rodegenerative events in AD pathology remains
elusive.

4.6 Inflammation-Related Systemic
Changes in AD Patients

A systemic consequence of a local inflammatory
response is the acute-phase response. This
response is characterized by a change in plasma
concentrations of proteins, collectively known as
acute-phase reactants. In serum of AD patients, a
significant increase of the levels of several acute-
phase proteins has been found [168]. Most notably,
an increase in serum levels of the acute-phase reac-
tant α1-antichymotrypsin has been reported in sev-
eral studies [169–173]. Moreover, increased serum
levels of Il-6 and TNF-α and decreased levels of
albumin have been reported in some studies
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FIGURE 4.6. Mismetabolism of the β-amyloid precursor
protein (βAPP) with progressive deposition of its Aβ
fragment is a crucial event in the pathogenesis of AD.
Once aggregated, Aβ is able to activate the classical
complement pathway, resulting in the attraction and acti-
vation of microglial cells. In turn, these microglial cells
produce multiple proinflammatory and neurotoxic fac-
tors. Factors such as interleukin-1 (Il-1) and -6 (Il-6) can
reinforce the pathological amyloid cascade by a positive
feedback loop. Modified from Ref. 160.



[174–176]. The acute-phase response can be con-
sidered as part of a complex generalized stress
reaction in which the activation of the sympathic
nervous system coincides with endocrine changes,
including the activation of the hypothalamic-
pituitary-adrenal (HPA) axis. Abnormalities of the
HPA system linked to AD include both basal corti-
sol hypersecretion and insufficient cortisol suppres-
sion after dexamethasone administration [177–180].
Another sign of activation of the HPA axis in AD
patients is the increased neuronal expression of
mRNA for corticotropin-releasing hormone in the
hypothalamic paraventricular nucleus [181].

With respect to the activation of the sympathetic
system, it has been reported that the basal 
3-methoxy-4-hydroxyphenylglycol levels were
positively associated with the degree of cognitive
impairment in AD patients [182]. Although plasma
3-methoxy-4-hydrophenylglycol is a much better
indicator of peripheral rather than central nora-
drenalin metabolism, these findings could reflect
alterations in the central noradrenergic activity.
In AD patients, the cerebrospinal fluid levels of
3-methoxy-4-hydrophenylglycol correlated posi-
tively with post-dexamethasone cortisol levels and
with rating of dementia severity [180]. A strong
activation of the remaining noradrenergic neurons
in the locus coeruleus has been reported in AD
brains [183]. The findings concerning the activa-
tion of the HPA axis and the sympathic system,
together with changes in the levels of some acute-
phase reactants, indicate that a systemic acute-
phase response can be found in AD patients [184].

4.7 Inflammation and the
Epidemiological Findings

Recent epidemiological and genetic studies favored
the idea that the acute-phase response in AD patients
can be a crucial part of the pathophysiology. In four
different prospective case-cohort studies, it has been
shown that high serum levels of the acute-phase pro-
teins α1-antichymotrypsin, C-reactive protein, and
Il-6 and low serum levels of albumin were each
associated with an increased risk of cognitive
decline/AD [185–188]. In a recent study, Yaffe and
colleagues reported that elderly subjects, with a
metabolic syndrome and a high serum level of Il-6
and C-reactive protein, were more likely to experi-

ence cognitive decline in the next 4 years, compared
with those with a metabolic syndrome and low lev-
els of these inflammatory markers [189].

These epidemiological findings from several
case cohort studies indicate that nondemented sub-
jects with an acute-phase response profile in serum
are at risk of developing AD. The acute-phase
response is initiated and orchestrated by cytokines,
most notably Il-1. Several studies have shown that
an Il-1α -899 C/T gene polymorphism is associated
with AD. A strong association between the Il-1α
T/T genotype and AD onset before 65 years was
found, with carriers of this genotype showing an
onset 9 years earlier than Il-1α C/C carriers [190].
This study also reported a weaker association with
age of onset for the Il-1β and Il-1 receptor agonist
genes. In neuropathologically confirmed AD
patients, the prevalence of the Il-1α T/T genotype
was higher than in controls (odds ratio 3.0 con-
trolled for age and ApoE status) [191]. Other
authors also found an increased risk for AD for the
heterogeneous carriers of the C/T genotype and
much stronger for the homogeneous carriers of the
T/T genotype [192]. These findings were further
confirmed in a study reporting the association of Il-
1 T/T genotype with increased risk of early onset
of AD. Clinically, this genotype was associated
with earlier age of onset but not with a change in
the rate of progression of AD [193].

Others reported that the risk of this Il-1α allele
polymorphism is not restricted to AD patients of a
particular age and found the association in both
early-onset and late-onset AD patients [194].
However, the association between this Il-1α poly-
morphism and (late-onset) AD could not be con-
firmed in other studies [195–198]. In a meta-analysis
on the association between the Il-1α genotypes and
AD, the data showed a significant but modest associ-
ation in patients with an early-onset AD but not in
late-onset AD [199]. In a recent study, it was found
that the polymorphism association in the Il-1α gene
influences the microglial load (volumetric percent-
age of the brain occupied by microglia) in AD brains.
It was 31% greater in patients with one T allele and
62% in patients with the TT genotype but no effects
on microglial load occurred with polymorphisms in
Il-1β [200]. Results of studies on polymorphisms of
Il-1β, Il-1Ra, Il-6, and TNF-α as risk factors for AD
show contradictory findings, which makes it difficult
to draw conclusions [189, 201–211].
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A potential role of polymorphisms of Aβ-
associated proteins as genetic risk factor of
Alzheimer’s disease is strongly suggested by genetic
association of the apolipoprotein E4 (ApoE4) allele
as a susceptibility gene increasing the risk and low-
ering the age of onset distribution of AD [41]. It has
been reported that the ApoE4-associated risk is
modified by α1-antichymotrypsin (ACT) polymor-
phism [212]. A high frequency of a combined ACT
A/A and ApoE4 genotype was found in patients
with a familial late-onset AD [213]. Others reported
that the ACT T/T genotype was overrepresented in
patients with early onset of sporadic AD but no rela-
tionship with ApoE genotype was found suggesting
ACT T/T genotype is an independent risk factor of
early-onset AD [214]. The concomitant ACT T/T
and Il-1β T/T strongly increased the risk of AD and
the age of onset of the disease. Patients with these
genotypes showed the highest levels of plasma ACT
and Il-1β [215]. However, several studies from
China, Germany, and Japan could not confirm an
association between ACT polymorphism and AD
[216–223]. In respect to these inconsistent data
between ACT genetic variation and AD risk,
Kamboh and co-workers have recently studied the
relationship between ACT polymorphism with age
of onset and disease duration [224]. They found in
male AD patients that the mean of age-of-onset and
the disease duration among ACT/AA homozygotes
were significantly lower than that in the combined
AT+TT genotype group.

A genetic association analysis for AD and α2-
macroglobulin (A2M) has also been controversial.
Initially, an association between AD and an
intronic deletion polymorphism in the spliced site
of exon 18 of A2M was reported in a sample of dis-
cordant sibships [225]. While this initial finding
was later replicated in independent family-based
AD samples, case-control association studies of
AD and A2M18i deletion polymorphism have been
largely negative (for a review, see Ref. 226). The
discrepancy between the generally positive associ-
ation findings in family-based samples and the gen-
erally negative association findings in case-control
samples suggests that A2M may be a risk factor
primarily in individuals with a family history of
AD. For the complement factors, an association for
C3 [227] and C4 [228] phenotypes and AD has
been reported but these findings could not be repli-
cated [229, 230].

In conclusion, several epidemiological studies
have shown consistently in prospective case-cohort
studies that a higher serum level of certain acute-
phase reactant is a risk factor for AD. With respect
to the association of polymorphisms of cytokines
and Aβ-associated proteins, the role of ApoE4 as
risk factor is firmly established. Il-1α polymor-
phism could be a risk factor in early-onset AD but
probably not in late-onset AD. For the other
cytokines and acute-phase proteins, the findings
about an association between polymorphisms and
AD are too inconclusive to consider them at this
moment as genetic risk factors for AD.

4.8 Inflammation and the 
Etiology of AD Subtypes

In the past decade, the research agenda for unrav-
eling the pathogenesis of AD was strongly domi-
nated by the findings in rare autosomal dominant
variants of AD. The finding that most studied
causal mutations in familial AD lead to higher pro-
duction of Aβ1-42 has stimulated the concept that
mismetabolism of βAPP with increased production
of its Aβ fragment must be considered as the cru-
cial pathogenic event in all forms of AD. However,
it is becoming increasingly clear that factors other
than mismetabolism of βAPP can initiate or stimu-
late the pathological cascade. In this chapter, we
have reviewed the evidence from genetic, epidemi-
ological, pathological, and experimental transgenic
animal studies that inflammation-related mecha-
nisms are most likely involved in the early stages of
the pathological process. The involvement of
cytokines and acute-phase proteins in Aβ produc-
tion, fibrillization, deposition, and removal indicate
that inflammatory molecules are involved in early
key events in the pathological cascade. In this
respect, the findings in transgenic AD models are
illustrative. On one hand, these models convinc-
ingly document the important effect of βAPP or
presenilin mutants, but, on the other hand, these
models show also that cross-breeding of mice with
variation in the expression of Aβ-associated pro-
teins strongly influence the rate and load of cere-
bral amyloid deposition. In addition, immunization
studies in the transgenic mouse models illustrate
the importance of Aβ removal for the process of
amyloid deposition. These findings indicate the
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involvement of multiple factors in the initial steps
of the pathological cascade and could explain the
heterogeneity of AD.

In the autosomal dominant forms, the initial
event is increased Aβ1-42 deposition that elicits a
brain inflammatory response. An example where
inflammatory mechanisms could play a role in ini-
tiating AD is the development of AD after head
trauma. It has been proposed that in these cases, the
βAPP overexpression and increased Aβ production
is a direct consequence of the Il-1–driven acute-
phase response [231].

Most Down syndrome patients develop AD
pathology after the age of 50. With respect to the
role of inflammatory mechanisms in AD, it is note-
worthy that in earlier days, chronic inability to resist
infection was a major cause of death in patients
with AD. The most likely reason for susceptibility
to infection in Down syndrome is that gene dosage
results in altered expression of a gene on chromo-
some 21 that is crucial for an adequate immune
response. The observation that the deposition of dif-
fuse Aβ plaques precedes other Alzheimer-related
brain lesions by many years, together with the dis-
covery, that the βAPP gene is localized on chromo-
some 21, which is overexpressed in Down syndrome,
suggest that the increased expression of βAPP and
consequent deposition of Aβ is the prime cause of
AD in Down patients [232].

However, it is important to realize that in addition
to βAPP, several other proteins that are implicated
in the regulation of inflammation and oxidative
stress (e.g., superoxide dismutase and carbonyl
reductase) are encoded on chromosome 21 [233].
Taylor and co-workers have demonstrated an
altered expression of the leukocyte adhesion mole-
cules belonging to the β2 integrin subfamily in
patients with Down syndrome [234]. Their mem-
bers constitute a family of three noncovalently
associated αβ-heterodimers with homologous α-
subunits and a common β-subunit that is encoded
on chromosome 21. The most important ligands for
β2 integrins are ICAM-1 and the activated frag-
ments of complement factor C3. As mentioned ear-
lier, the amyloid plaques in AD are characterized by
the presence of activated complement fragments,
ICAM-1, and clusters of activated microglia that
strongly express the leukocyte adhesion molecules
of the β2 integrin family. The activated microglia
with the complement receptors CR3 and CR4

(members of the β2 integrin family) can play an
essential role in the phagocytosis of complement-
opsonized Aβ fibrils [22, 24]. As the amyloid bur-
den in AD brains is most likely determined by a
dynamic balance between amyloid deposition and
resolution [235], it is important to note that both
βAPP and β2 integrins, which are involved in amy-
loid production and removal, respectively, are
encoded on chromosome 21. Therefore, the high
amyloid burden of amyloid found in Down syn-
drome patients with AD could be the net result of
high Aβ production and impaired complement-
mediated phagocytosis of Aβ.

Another example for the involvement of inflam-
mation in the etiology of certain subtypes could be
the role of vascular factors in the etiology of AD
[236]. Accumulating evidence suggests inflamma-
tion as a secondary injury mechanism after
ischemia and stroke [237]. So, head trauma and
ischemia do not only cause acute brain damage but
also induce brain inflammatory responses that
could contribute to the development and/or aggra-
vation of AD pathology. In relatively older patients
with a clinical dementia syndrome, the neuropatho-
logical findings show frequently both vascular and
Alzheimer changes. This form of dementia is
described as a mixed type dementia, a combination
of two different pathologies that are both common
in the elderly [238]. From a pathogenic view, it can
be hypothesized that this clinical syndrome is not
simply the result of summation of two different,
independent disease processes but rather the out-
come of synergistic interactions between the vascu-
lar and Alzheimer components that are both
mediated by neuroinflammatory processes [239].
After the proposal of Blennow and Wallin [240] and
Hoyer [241] to distinguish AD in type I (early
onset) and type II (sporadic late onset), we would
suggest that in type I AD mismetabolism of βAPP
with increased Aβ deposition is frequently the ini-
tial and crucial pathogenic event that is followed by
a fibrillar Aβ-induced neuroinflammatory response.

In contrast, in type II AD a broad variety of
inflammatory molecules, including cytokines and
acute-phase reactants, seem to play a major role in
the initiation of the pathological cascade (Fig. 4.7)
[242]. Although both forms of AD do not form a
single, homogeneous nosological entity, the clini-
cal picture and neuropathological end stage charac-
teristics are strikingly uniform. The very same

66 P. Eikelenboom et al.



combination of pathogenic heterogeneity with
homogeneity in clinical appearance is not uncom-
mon in medicine and known for diabetes and
arthrosclerosis. In the early-onset form of diabetes
mellitus, type I DM, the insulin production is defi-
cient, and in type II the function of the insulin
receptor is damaged. There is increasing evidence
that the inflammatory response is associated with
the presence of insulin resistance. Experimental
studies in humans and animals show that treatment
with proinflammatory cytokines produce hyper-
triglyceridemia and insulin resistance. TNF-α down-
regulates the tyrosine kinase activity of the insulin
receptor, thereby increasing insulin resistance [243].

Recent research suggests that atherosclerosis is a
lipid-driven macrophage-dependent process [244,
245]. Inflammatory processes mark all stages of
atherogenesis; from endothelial activation to even-
tual plaque rupture. It is well-known that a high
plasma concentration of cholesterol, in particular
those of low-density lipoprotein cholesterol, is one
of the principal risk factors for atherosclerosis.
Although hypercholesterolemia is important in
approximately 50% of patients with cardiovascular
disease, other factors need to be taken into consid-
eration. Over the past decade, it was found that
inflammatory mechanisms couple dyslipidemia to
atheroma formation. Arteriosclerosis, diabetes
mellitus, and AD have in common that their etiol-
ogy is heterogeneous and that the late-onset variant
is multifactorial. The etiological event can be a
disturbance of (altered) cholesterol production,

insulin, or Aβ production but also inflammation.
The inflammatory processes can lead to the devel-
opment of insulin resistance and disturbances in
the removal of lipoproteins and Aβ with as conse-
quence the development of (late-onset) diabetes,
arteriosclerosis and AD, respectively. The common
etiological role of inflammation in the late-onset
variants of these disorders could explain that dia-
betes mellitus and arteriosclerosis are considered
as risk factors for the late-onset form of AD.

4.9 Inflammation and the Clinical
Symptoms

In the cerebral cortex of elderly nondemented sub-
jects with high numbers of diffuse Aβ deposits,
immunohistochemical signs for an inflammatory
process are absent. In brain areas of AD patients not
linked to Alzheimer symptomatology but with wide-
spread deposition of Aβ (such as the cerebellum), the
levels of acute-phase proteins and early complement
factors, as well as the numbers of activated microglia,
are low (10, 246). In a clinicopathological study
including demented and nondemented cases, Lue
and co-workers [247] found correlations between
inflammatory markers, such as complement activa-
tion and activated microglia, and synapse loss, a
major correlate of cognitive decline in AD patients.

The idea that the site of inflammation is related
to the clinical manifestations can be illustrated by
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neuropathological findings in brains from patients
with hereditary cerebral hemorrhage with amyloi-
dosis–Dutch type (HCHWA-D). This disorder
belongs to the cerebral Aβ diseases and is a rare
autosomal dominant characterized by a single base
mutation at codon 693 of the APP gene [248].
Clinically, HCHWA-D is characterized by recur-
rent hemorrhagic strokes and at the neuropatholog-
ical level by extensive vascular amyloid and diffuse
plaques in the absence of neuritic plaques and
neurofibrillary degeneration. The congophilic
angiopathy in HCHWA-D is associated with strong
monocyte/macrophage reactivity, but there is no
evidence for microglia activation seen in the cere-
bral cortex [249, 250].

However, in AD brains the congophilic angiopa-
thy (with exception of “drüsige Entartung,” see
below” is not associated with an increased number
of cells expressing monocyte/macrophage markers
in contrast with the fibrillar Aβ plaques in the neu-
ropil [251–254]. Therefore, in AD brains the
inflammatory response is associated with fibrillar
Aβ deposits in the neuropil, whereas in HCHWA-D
brains, the inflammatory response is associated
exclusively with the fibrillar Aβ deposits in the vas-
cular walls. The most characteristic clinical features
of AD and HCHWA-D are dementia and recurrent
strokes, respectively. Hence, these findings indicate
that in both AD and HCHWA-D, the clinical symp-
toms are associated to a great extent with the site of
inflammation [184].

In some cases with AD, the pathological process
differed from that typically seen in AD. These
patients show a severe amyloid angiopathy associ-
ated with perivascular tau neurofibrillary pathology
in absence of neuritic plaques unrelated to blood
vessels [255]. The vascular plaques are related to
capillaries, and the amyloid deposits, radiating from
the vessel wall into the surrounding neuro-
parenchyma, are associated with a crown of tau-
positive neuritis and astrogliosis. This phenomenon
is also called dyshoric angiopathy or microcapillary
amyloid angiopathy. The neuropathology of these
atypical AD cases is different from that observed in
HCHWA-D because of the presence of dementia
with neurofibrillary lesions and the absence of
deadly cerebral hemorrhages and from the pathol-
ogy found in typical AD because of the absence of
senile plaques in the neuroparenchyma. This atypi-
cal form of AD has been described and diagnosed as
“vascular variant of Alzheimer’s disease” [256]. In

our cases with this AD variant, we found that the
vascular amyloid plaques were immunolabeled for
the complement proteins and always associated with
clusters of activated microglia (Fig. 4.2). These find-
ings indicate that the site of the chronic inflamma-
tory response in these cases is related to the
microcapillary amyloid angiopathy [257].

Cognitive symptoms are the cardinal clinical
signs of a dementia syndrome. These symptoms are
related to destruction of neuronal circuits in hip-
pocampal and neocortical brain regions, and these
cognitive deficits are seen in relatively late stages
of the underlying disease process. Epidemiological
studies indicate that depressive-like symptoms,
such as loss of interest and energy, as well as men-
tal slowing (subjective bradyphrenia), can be pres-
ent at a preclinical stage of AD [258, 259].

In human prion disease, it is also reported that
psychiatric symptoms can precede the neurological
symptoms. Thus, in the new BSE-related variant of
Creutzfeldt-Jakob disease (nvCJD), psychiatric
symptoms (especially depression) are an early and
prominent clinical feature preceding other neurolog-
ical symptoms in many cases [260]. Experimental
animal and human studies have shown that proin-
flammatory cytokines produced as a part of the
“stereotypical” macrophage/microglia response to
injury can induce behavioral changes such as a
“depressive-like” syndrome [261–264]. As dis-
cussed earlier, the fibrillar Aβ-induced activation of
microglia is a relatively early pathogenic event in
AD brains and precedes the process of severe neu-
ropil destruction. The effect of proinflammatory
cytokines derived from activated microglia may
cause disturbances in the neurotransmission leading
to behavioral changes at an early stage of the disease
with no or little structural brain tissue damage. The
characteristic cognitive symptoms in more advanced
stages of AD are the result of the inflammation-
related events that lead to neuropil destruction.
Thus, distinct inflammatory mechanisms seem to be
involved in a broad spectrum of behavioral and cog-
nitive symptoms in several stages of AD [265].

4.10 Inflammation and Therapeutic
Aspects

Based on observations from neuropathology,
genetics, epidemiology, as well as from in vitro and
animal experiments, the inflammatory component
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of AD has been considered a compelling target for
therapeutic intervention. The idea that the neuroin-
flammatory response is an interesting therapeutic
target was strongly stimulated by epidemiological
studies that the use of classical NSAIDs could pre-
vent or retard AD [11, 12]. The first clinical trials
fostered the hopes for anti-inflammatory treat-
ments of AD patients. In two small studies, the
effects of indomethacin and diclofenac, both clas-
sical NSAIDs, were studied.

The therapeutic activity of indomethacin, a
NSAID that crosses the blood-brain barrier, was
investigated in a double-blind, placebo-controlled
pilot study [266]. A small positive effect on the cog-
nitive outcome measurement was reported. However,
during the 6-month treatment period, the dropout rate
in the indomethacin group was approximately 40%,
mostly owing to drug-related gastrointestinal adverse
events. The second trial suggested disease stabiliza-

tion to some degree in patients treated with
diclofenac in combination with misoprostol [267].
However, the observed differences in this small study
failed to reach significance on intention-to-treat
analysis of standard outcome measures. A consistent
picture emerged from four larger randomized con-
trolled trials with longer treatment periods. Studies
on the effect of prednisone, hydroxychloroquine,
naproxen (a traditional nonselective NSAID), cele-
coxib, and rofecoxib (both selective COX-2
inhibitors) in patients with early AD, with relatively
few dropouts, all failed to document a benefit in favor
of patients that were treated with the specific anti-
inflammatory drug under study [266–273] (Fig. 4.8).
When these data are put together, it is clear that the
best available evidence to date does not support the
idea that AD patients benefit from treatment with
anti-inflammatory drugs [274]. How can this finding
be explained in the light of the widespread support
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Anti-inflammatory drug
(AID)

duration
(months)

N completing
(% of all patients)

Diclofenac/misoprostol (267) 6 26 (63%)

Indomethacin (266) 6 28 (64%)

Nimesulide (268) 3 38 (95%)

Prednisone (271) 12 108 (78%)

Hydroxychloroquine (270) 18 155 (92%)

Rofecoxib (272) 12 177 (76%)

Naproxen (272) 12 178 (78%)

Celecoxib (269) 12 413 (97%)

Rofecoxib (273) 12 521 (75%)

Weighted mean 1644

5 0 5

ADAS-cog points difference at endpoint
between placebo and AID treated patients

placebo better AID better

FIGURE 4.8. Overview of randomized clinical trials on the effects of anti-inflammatory drugs (AID) on the course of
Alzheimer’s disease. The trials are identified by study drug, the name of the first author, and the year of publication
(see References), and they are listed according to their size indicated by the number of patients completing the study.
For each trial, the difference between AID and placebo-treated patients in change of the Alzheimer’s Disease
Assessment Scale (ADAS-cog) scores is shown. The diamond represents the weighted mean, and its size reflects the
95% confidence interval of this measure.



for the inflammatory hypothesis of AD? What was
wrong with the studies of anti-inflammatory treat-
ment in AD? Was it the concept of neuroinflamma-
tion, the class of drugs that were used in the trials, or
was it the timing of anti-inflammatory treatment?

In respect to the concept of the role of neuroin-
flammation in AD, it is important to keep in mind
that inflammation is not linked to a single patho-
genic event but that inflammatory mediators are
involved in a number of key steps of the patholog-
ical cascade. As discussed before, there is a lack of
knowledge on the detrimental or protective role of
each of the inflammatory molecules involved in
pathological cascade in AD. Several studies in
transgenic mice encoding the familial AD muta-
tions have shown that immunization with Aβ pep-
tide reduces deposition of cerebral fibrillar Aβ
deposits and that this is associated with the benefi-
cial behavioral effects [154, 275].

The idea of treatment with anti-inflammatory
drugs is based on the reduction of the inflammatory
reaction, whereas immunization leads to stimulation
of the inflammatory response that may be benefi-
cial for Aβ removal. Treatments with either anti-
inflammatory drugs are based on reduction of the
inflammatory process, whereas immunization
stimulates a more efficient phagocytic activity of
microglia. The immunization story in transgenic
mice suggests that inflammatory mechanisms play
a beneficial role in the removal of Aβ [166]. When
there is failure of Aβ removal, microglia become
prolonged highly activated, and they produce
potential neurotoxic factors. However, it would be
possible that both therapeutic options are not mutu-
ally exclusive and that the effects of immunization
and anti-inflammatory drug therapy may act on dif-
ferent inflammation-mediated events in the patho-
logical cascade.

The second explanation for the failure of anti-
inflammatory drug treatment of AD patients could
be the timing of the treatment. An important differ-
ence between epidemiological studies suggesting
protective effects of inhibition of inflammatory
processes and the clinical trials is that both deal
with entirely different parts of the time frame of the
disease. In a long-term prospective population
study of the incidence of AD, it was found that
for those whose cumulative use of NSAIDs was
2 years or more, the relative risk of developing AD
was reduced by 80% [12]. This 2-year lag-time
may explain some of the negative findings in pre-

vious epidemiological studies because most studies
relied on brief periods of follow-up after classify-
ing patients according to NSAIDs use [276]. The
2-year lag-time seems also biologically plausible
because neuropathological and neuroradiological
studies indicate that neuroinflammation is an early
pathogenic event that precedes the process of
severe neuropil destruction in AD patients.
Similarly, elevation of neuronal COX-2 activity is
an early event in the pathogenesis of AD. The cog-
nitive deficits are the cardinal clinical signs of a
dementia syndrome, and these symptoms are
related to destruction of hippocampal and neocorti-
cal brain regions. Therefore, the cognitive deficits
are generally assumed to reflect relatively late
stages of the underlying process. Inhibition of the
neuroinflammatory process even at the time that
the first symptoms of dementia exceed clinical
detection thresholds might be simply too late to
attenuate the alleged detrimental effects of inflam-
matory processes. This view implicates that inter-
vention with anti-inflammatory drugs should take
place in the earliest stage of the pathogenesis.

The third explanation for the failure of the anti-
inflammatory drug treatment in AD patients could be
the choice of the studied drugs. Theoretically speak-
ing, it could be possible that the positive effects of
drugs with a broad range of anti-inflammatory
actions, such as prednisone and hydrochloroquine,
on the harmful component of inflammation can be
neutralized by a negative effect of these drugs on
the beneficial components of the inflammatory
response. Therefore, potential positive clinical
effects of “broad” anti-inflammatory drugs on cer-
tain components of the inflammatory response can
remain unrecognized in clinical trials. The positive
epidemiological findings with anti-inflammatory
drugs to prevent or retard AD are reported for the
classical NSAIDs, which are known to inhibit both
COX-1 and COX-2. Both COX isoenzymes have
high structural identity but differ in substrate and
inhibitor activity and are involved in the first steps
of the synthesis of prostaglandins from the sub-
strate arachidonic acid [103]. COX-1 is normally
expressed constitutively and is involved in the pro-
duction of prostaglandins and effective housekeep-
ing functions. Under normal condition, COX-2 has
a low expression in most human tissues, but it can
be induced by inflammatory stimuli such as Il-1.

With respect to the adverse effect of the classic
NSAIDs, the novel class of gastrointestinal-sparing
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COX-2 selective NSAIDs seemed to be promising in
the treatment of AD patients. This therapeutic per-
spective has stimulated investigations into the role
and distribution of both COX enzymes in normal and
AD brains. Surprisingly, COX-2 has been immuno-
histochemically detected in neurons in normal and
AD brains, whereas astrocytes and microglia are
almost unlabeled [59, 60, 61, 104]. In contrast, the
immunoreactivity for COX-1 is found particularly in
the activated microglia cells associated with plaques
[60, 61]. In vitro studies with adult human microglia
cells show that neither the proinflammatory
cytokines that are increased at sites of Aβ plaques
nor Aβ1-42 induces COX-2 expression in these cells
[277]. Therefore, the distribution patterns are strik-
ingly different for COX-1 and COX-2 in AD brains.

The initial idea for COX-2 inhibitors as a drug for
AD was based on the idea of limitation of side
effects of the classical NSAIDs. The current find-
ings implicate distinct cellular expression of COX-1
and COX-2. As discussed before, the neuronal
upregulation of COX-2 is found in early stages of
AD and diminished neuronal COX-2 expression in
advanced stages of AD [105, 106]. For treatment of
AD patients with COX-2 inhibitors, it is important
to realize that it is yet unclear in which respect the
neuronal COX-2 upregulation in early stages and
downregulation in advanced stages are involved in
protective or damaging mechanisms. Irrespective of
the issue of the selectivity of NSAIDs in COX-1 or
COX-2 inhibition during the past few years, several
studies suggest that classical NSAIDs have modes
of action that are independent of COX activity [27].
Some of the widely used classical NSAIDs, such as
indomethacin and ibuprofen, can activate the
nuclear receptor peroxisome proliferator receptor
gamma (PPARγ), which has been shown to inhibit
the production of proinflammatory cytokines [278].
Recent findings indicate that PPARγ can induce a
clearance mechanism for the Aβ peptide [279].

A variety of experimental studies indicate that a
subset of classical NSAIDs such as ibuprofen, flur-
biprofen, indomethacin, and sulindac also possess
Aβ42-lowering properties in both AD transgenic
mice and cell cultures of peripheral, glial, and neu-
ronal origin [280–282]. While COX inhibition occurs
at low concentrations in vitro (nM to low µM range)
the Aβ-lowering activity is observed at high concen-
trations (50 µM) [27]. The inhibition of Aβ1-42 lev-
els by a subgroup of NSAIDs is based on direct
modulation of γ-secretase activity [283]. Recently, it

was demonstrated that these NSAIDs have an
allosteric effect on γ-secretase by which these drugs
selectively reduce Aβ1-42 but do not affect process-
ing of other γ-secretase targets [284, 285]. These
findings illustrate the possibility to develop drugs
that lower the amyloid burden without affecting other
important physiological pathways (e.g., Notch cleav-
age). In a recent published paper, the role of down-
stream prostaglandin pathways in COX-mediated
inflammation and Aβ production was investigated
[286].

Aged transgenic APPSwe-PS1 mice crossed
to mice with deletion of the prostaglandin E2
E prostanoid subtype 2 (EP2) receptor show a
marked reduction in lipid peroxidation and a sig-
nificant decrease in Aβ levels. The current findings
indicate that PGE2 signaling via the EP2 receptor
promotes age-dependent oxidative damage and
increased Aβ peptide burden in this model, possi-
bly via effects of increased oxidative stress on
BACE1 activity in processing APP. Flurbiprofen
has been proposed as a candidate drug for the
treatment of AD [282]. To avoid the gastrointesti-
nal side effects of classical NSAIDs, which limit
their chronic use, two different strategies have been
identified [27]. One is the use of the R enantiomer
of flurbiprofen, which maintains the Aβ-lowering
properties of the racemate but does not cause gas-
tric damage due to a lack of COX inhibitory activ-
ity [281]. The other strategy is based on the use of
NO-releasing derivates of flurbiprofen, which have
been shown in animal studies to reduce brain
inflammation and Aβ burden [155, 287].

The discovery that a subset of NSAIDs such as
ibuprofen, indomethacin, and fluriprofen may have
direct Aβ-loweing properties in cell cultures as well
as in transgenic models of AD amyloidosis suggest
new pharmacological properties of these drugs with
novel therapeutic implications for the treatment of
AD [288]. The clinical trials with naproxen, rofe-
coxib, celecoxib, all with negative results, are per-
formed with NSAIDs that have the least potency in
modulating Aβ in experimental models.

4.11 Conclusions and Future
Directions

Studies performed over past 20 years to elucidate
the molecular composition of plaques have shown
that the original assumption of Fischer dating from
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1907 that an inflammatory process occurs in AD
brain was indeed correct. The challenge for this
response is the extracellular deposition of fibrillar
Aβ that Fischer considered as a “foreign sub-
stance.” The recent finding that removal of this
substance by anti-Aβ antibodies leads to clearance
of the Aβ deposits with subsequent reduction of the
plaque-associated (neuroregenerative) dystrophic
neurites in transgenic APP support this notion
[289]. Immunohistochemical and gene profiling
findings in the initial stages of AD pathology
showing upregulation of genes involved in cell-
cycle regulation, adhesion, and inflammation indi-
cate the early involvement of inflammatory and
regenerating pathways in AD pathogenesis. These
brain changes precede the tau-relatred neurofibril-
lary pathology and the extensive process of neu-
rodestruction and (astro)gliosis.

The role of inflammation in the pathological cas-
cade is not restricted to a single event, but inflam-
matory mechanisms appear to be involved in nearly
every pathogenic step of the pathological cascade.
For the near future, the beneficial and detrimental
aspects of the inflammatory mediators will have to
be investigated in vitro in cell cultures that reflect
the distinct steps of the pathological cascade. In
neuronal cell cultures, the role of cytokines in the
metabolism of βAPP and the production of its Aβ
fragments can be studied. In in vitro models, the
role of Aβ-associated proteins on Aβ aggregation
can be evaluated with thioflavin assays and elec-
tron microscopy. In cell cultures, the effects of Aβ
alone or complexed with Aβ-associated proteins on
microglial activation and neuronal toxicity can be
studied. Likewise, neuronal-glial interactions and
the effects of Aβ whether or not complexed with
certain Aβ-associated proteins on these interac-
tions can be investigated in mixed neuronal and
glial cell cultures. The advantage of this approach
is that the role of inflammatory mediators can be
studied on a mechanistic level for each of the dis-
tinct steps of the pathological cascade with the rel-
evant human peptides and cell types.

Other promising avenues for the near future are
(1) the recent neuropathological findings that
inflammatory mediators are upregulated in early
stages of the disease process, (2) the epidemiological
findings that nondemented subjects with high serum
levels of acute-phase proteins have a higher risk to
develop AD, and (3) the observation that Il-1α

polymorphisms seem to be a genetic risk factor.
Taken together, these pathological and epidemio-
logical findings suggest that inflammation-related
mechanisms can play a role in the etiology of cer-
tain (sub)types of AD. Nearly 100 years after the
assumption of Fischer that the senile plaque is a
nidus of inflammation, a role of inflammatory
mechanisms in amyloid plaque formation is well
established. The research agenda for the near future
will include the etiological, clinical, and therapeu-
tic implications of the view that inflammatory
mechanisms are involved in the pathological cas-
cade of AD.
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5.1 Introduction

Alzheimer’s disease (AD) a progressive, age-related
neurodegenerative disorder that affects memory,
cognition, and speech, is present in more than 4 mil-
lion persons. The number of cases of AD will sig-
nificantly elevate, because the mean population in
the United States is increasing [1]. AD is character-
ized pathologically by the presence of extracellular
senile plaques, intracellular neurofibrillary tangles,
and synapse loss. Senile plaques are composed of
an amyloid beta-peptide (Aβ) core surrounded by
dystrophic neurites.

Amyloid precursor protein (APP) is a transmem-
brane glycoprotein of unknown function that is pres-
ent in many cells. The protease α-secretase cleaves
APP between residues 16 and 17 of Aβ(1-42) to
release soluble APP and form a C-terminal fragment
of APP. β-secretase proteolytically cleaves APP at
the N-terminal side of Aβ(1-42), while γ-secretase
cleaves APP on the carboxy-terminus of this
sequence. γ-Secretase cleavage takes place at differ-
ent residues near the carboxy terminus of Aβ result-
ing principally in the 40-mer and 42-mer, Aβ(1-40)
and Aβ(1-42), respectively. These two peptides
comprise most of the brain-resident peptide. The
more toxic of the two peptides, Aβ(1-42), aggre-
gates more quickly than Aβ(1-40). Aβ(1-42) plays a
central role in the pathogenesis of AD, mostly evi-
denced by the observation of mutations in the genes
for APP or presenilin-1 and presenilin-2, all of
which result in familial AD and increased produc-
tion of Aβ(1-42) [2]. We and others have also
demonstrated that the AD brain is under extensive
oxidative stress as indexed by protein oxidation and

lipid peroxidation [3–7]. Moreover, Aβ(1-42)
induces protein oxidation and lipid peroxidation
both in vitro and in vivo [3–6, 8–11]. Thus, Aβ(1-
42), central to the pathogenesis of AD, is likely also
to be central to the oxidative stress under which the
AD brain exists.

We developed a unifying model for the pathogen-
esis of AD based on the central role of Aβ(1-42) as
a mediator of free radical–induced oxidative stress
in AD brain [4, 12–14]. In this model, Aβ(1-42)
inserts into the lipid bilayer as a small aggregate
resulting in lipid peroxidation and oxidative modifi-
cation of proteins [3, 15], both of which are inhibited
by vitamin E [16]. In addition, the AD-related
peptide Aβ(1-42) causes an influx of Ca2+ into the
neuron, resulting in loss of intracellular Ca2+ home-
ostasis, mitochondrial dysfunction, and ultimately
cell death [17, 18].

In this review, the role of Aβ(1-42)-induced lipid
peroxidation and protein oxidation in the patho-
genesis of AD is discussed. Additionally, we point
out the importance of the single methionine of
Aβ(1-42) (residue 35 of this 42-mer) to the oxida-
tive stress and neurotoxic properties of Aβ(1-42).

5.2 Aβ(1-42)-Mediated Lipid
Peroxidation and Protein Oxidation

The 1300-g normal brain, though small, consumes
more than 30% of inspired oxygen. Unfortunately,
the brain is especially vulnerable to lipid peroxida-
tion due to the relatively high abundance of
polyunsaturated fatty acids (PUFAs), such as



arachidonic acid and docosohexenoic acid, the
presence of redox metal ions that can take part in
free-radical reactions, and the relatively low abun-
dance of brain-resident antioxidants. These factors,
coupled to the high rate of oxygen respiration in
the brain, lead to lipid peroxiation, which is initi-
ated by a free radical–mediated hydrogen atom
abstraction from an unsaturated carbon on a lipid-
resident acyl chain, resulting in the formation of a
carbon-centered lipid radical (L.). Because oxygen
is both paramagnetic and of zero dipole moment,
the lipid radical can readily react with lipid-soluble
molecular oxygen to form a peroxyl radical
(LOO.). This latter reactive free radical subse-
quently expropriates a hydrogen atom from a
neighboring unsaturated lipid acyl chain, forming a
lipid hydroperoxide (LOOH) and another carbon-
centered lipid radical (L.), Thus, the free-radical
chain reaction is propagated. If chain-breaking
antioxidants, such as vitamin E are present, the
chain reaction is terminated (Fig. 5.1).

Lipid peroxidation leads to the production of reac-
tive alkenals such as 4-hydroxy-2-nonenal (HNE) and
2-propen-1-al (acrolein), both of which are increased
in AD brain [15, 19, 20]. These electrophilic α,β-
unsaturated aldehydes easily react with protein-
bound cysteine, lysine, and histidine residues by
Michael addition to form covalently bound adducts
that change protein conformation and structure [21],

resulting in loss of protein function and initiation of
cell death (Fig. 5.2).

Aβ(1-42) leads to oxidative stress in vivo [8, 10,
21]. Increased protein oxidation (and where meas-
ured, lipid peroxidation as well) was found in
C. elegans that express human Aβ(1-42) [8, 10]
and in brains from knock-in mice with the mutated
human gene for APP, PS-1, or the double mutant
APP/PS-1 [11, 22, 23].

The mitochondrial enzymes pyruvate dehydro-
genase and α-ketoglutarate dehydrogenase are
inactivated by HNE or acrolein, presumably by
covalent modification of the lipoic acid cofactors
of each enzyme via Michael addition [22].
Acrolein and HNE, as well as Aβ(1-42), apparently
covalently modify the transmembrane aminophos-
pholipid-translocase (flippase), an ATP-requiring
enzyme that maintains phospholipid asymmetry
[17, 18]. Appearance of phosphatidylserine (PS) on
the outer leaflet of the lipid bilayer is an early sig-
nal of apoptosis. Flippase activity is inhibited if a
critical cysteine residue in the active site is not free.
Consequently, oxidative modification of flippase
by HNE or acrolein at this Cys residue could result
in exposure of PS on the outer leaflet of the cell
membrane leading to neuronal loss [17, 18].

As noted above, the AD brain is under extensive
oxidative stress, manifested by, among other indices,
increased oxidation of DNA [25]. We hypothesized
that one means by which DNA would be oxidized in
AD brain is if the protective function of the sur-
rounding histone proteins were altered due to their
oxidative modification. To test this hypothesis, we
added HNE to histones and showed that (a) the con-
formation of histones was markedly altered as deter-
mined by magnetic resonance methods; (b) the
resulting interactions of oxidatively modified his-
tones with DNA were significantly changed from
control, consistent with the notion that the protective
functions of histones would be compromised in AD
brain; and (c) acetylated histones seemed even more
vulnerable to oxidative modification by HNE than
nonacetylated histones [26]. Thus, we found evi-
dence to support the hypothesis that the lipid perox-
idation product, HNE, known to be elevated in AD
brain [15, 20], may contribute to the vulnerability of
DNA to oxidation in the AD brain.

Addition of Aβ(1-42) to neurons or synapto-
somes resulted in increased HNE, with consequent
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LH + X.→ L. + XH

L.+ O2 → LOO.

(1)

(2)

LOO. + LH → LOOH + L. (3)

LOO. + LOO.→ nonradical + O2 (4)

FIGURE 5.1. Mechanism of lipid peroxidation. The free
radical X. abstracts a H atom from unsaturated sites on
the fatty acid chains of phospholipids (LH) to produce a
carbon-centered free radical (L.) (1). The latter in turn is
immediately bound by paramagnetic oxygen to form
lipid peroxyl free radicals (LOO.) (2). The chain reaction
is propagated by attack of LOO. on another fatty acid
chain to form the lipid hydroperoxide and L. again (3).
The chain reaction is terminated by radical-radical
recombination (4).



covalent modification of key proteins [3, 15, 27].
Additionally, treatment of synaptsomes with Aβ(1-
42) resulted in an increase in HNE bound to
choline acetyltransferase and the glutamate trans-
porter GLT-1 (EAAT2) [3, 15]. An increase in HNE
bound to glutathione-S-transferase (GST), the mul-
tidrug resistance protein-1 (MRP1), and EAAT2 in
AD brain also was found [15, 28]. The activities of
GST and EAAT2 are decreased in AD brain [29,
30]. Thus, removal of HNE from neurons by the
action of GST and MRP1 likely is compromised,
resulting in accumulation of this harmful alkenal
[28]. These findings are consistent with the notion
that Aβ(1-42)-induced lipid peroxidation leads to
HNE modification of important enzymes and trans-
porters in AD brain, resulting in loss of function.
Similar considerations might explain in part the
decreased activity of choline acetyltransferase in
AD brain compared with control [31].

Protein oxidation, which generally results in loss
of function, is also evident in AD brain [3, 5, 15,
32]. Protein carbonyls are a marker of protein oxi-
dation [33]. Four processes cause carbonyl moi-
eties to be introduced to proteins: (a) free
radical–induced scission of the peptide backbone;

(b) oxidation of specific amino acid side chains; (c)
HNE or acrolein covalent modification of proteins
by Michael addition; and (d) glycoxidation reac-
tions [33]. Protein carbonyls are measured by
derivatization of the carbonyl moiety by 2,4-dini-
trophenylhydrazine to form a hydrazone product,
which can be detected spectroscopically or
immunochemically (Fig. 5.3). Additionally, protein
oxidation can be indexed by measure of 3-nitroty-
rosine (3-NT) (Fig. 5.3). Increased levels of 3-NT
have been reported in AD brain [7, 34–36] and CSF
[37], and Aβ(1-42) addition to neurons results in ele-
vated 3-NT [38, 39]. RNS leads to 3-NT in synapto-
somes, and novel antioxidants are able to prevent
damage to these synaptosomes or synaptosome-resi-
dent mitochondria [38–42].

Oxidative modification of glutamine synthetase
(GS) and creatine kinase (CK) are found in AD
brain, and both GS and CK have significantly
decreased activity in AD brain [5, 32, 43, 44]. We
have used proteomics to identify brain proteins that
are excessively oxidatively modified in AD brain
relative to control brain (Fig. 5.4) [34, 36, 43,
45–50]. These include: CK (BB isoform), phospho-
glycerate mutase, glyceraldehydes-3-phosphate
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dehydrogenase, GS, ubiquitin carboxy-terminal
hydrolyze L-1 (UCH L-1), α-enolase, triosphos-
phate isomerase, neuropolypeptide h3, and dihy-
dropyrimidinase related protein-2 (DRP-2), among
others. A wide spectrum of cellular functions includ-
ing energy metabolism, glutamate uptake and
excitotoxicity, proteosomal dysfunction, tau hyper-
phosphorylation, mitochondrial function, and neu-
ronal communication are affected by these oxidized
proteins. As noted above, oxidative modification of
protein nearly always leads to loss of protein func-
tion. Thus, several plausible mechanisms of neu-
rodegeneration can be proposed based on each of the
oxidized proteins.

CK BB, α-enolase, phosphoglycerate mutase,
glyceraldehydes-3-phosphate dehydrogenase, and
triosphosphate isomerase are all directly or indi-
rectly involved in the synthesis of ATP. Consistent
with PET scanning findings that show decreased
metabolism in AD brain [51, 52], CK and enolase
activities are decreased in AD brain [5, 48]. Lack
of ATP would cause dysfunction in ion pumps,
electrochemical gradients, voltage-gated ion chan-
nels, and cell potential, all of which are needed to
combat the oxidative stress of synaptic regions of
neurons induced by Aβ(1-42).

The oxidative modification and dysfunction of
EAAT2 in AD brain [15, 29] coupled to diminution
of GS function as a result of its oxidation (as
revealed by proteomics) would result in a decreased
conversion of glutamate. This in turn would stimu-
late N-methyl-D-aspartate (NMDA) receptors lead-
ing to an increase in Ca2+ influx. Alterations in
calcium homeostasis would lead to dysfunctional
long-term potentiation (LTP), which, in turn, would
affect learning and memory. Additionally, Ca2+-
mediated mitochondrial swelling, resulting in reac-
tive oxygen species (ROS) and proapoptotic
cytochrome c release, ER stress, and activation of
calcium-sensitive proteases such as calpain and cas-
pases, are downstream consequences of oxidative
stress–related loss of Ca2+ homeostasis. These
insults are known to lead to neuronal death, and we
have hypothesized that such processes are impor-
tant in AD brain [45, 49, 50].

Accumulation of damaged, misfolded, and
aggregated proteins in AD brain may be due to pro-
teasomal dysfunction [53, 54]. One protein
involved in proteasome function is UCH L-1.
Dysfunction of this protein is observed in AD brain

[48]. UCH L-1 catalyzes removal of polyubiquitin
from damaged proteins, and its dysfunction, as a
result of its oxidation, would lead to excess protein
ubiquitinylation, loss of activity of the proteasome,
and accumulation of damaged or aggregated pro-
teins, all of which are found in AD.

DRP-2, which has decreased expression in AD
[55–57] and is oxidatively modified in AD brain
[46], is involved in pathfinding and guidance for
axonal outgrowth. Moreover, DRP-2 interacts with
and modulates the function of collapsin, a protein
involved in dendrite elongation and guidance to
adjacent neurons. Therefore, DRP-2 is envolved in
forming neuronal connections and maintaining neu-
ronal communication. Consequently, the oxidation
and diminished activity of DRP-2 could result in the
reported shortened dendritic lengths in AD brain
[58]. Neurons with shortened neurites are predicted
to communicate less well with adjacent neurons, a
process that could conceivably be important in a
memory and cognitive disorder like AD.

Proteomics analysis has identified neuropolypep-
tide h3 as specifically nitrated in AD brain [34].
Neuropolypeptide h3 is also identified as phos-
phatidylethanolamine-binding protein (PEBP) and
hippocampal cholinergic neurostimulating peptide
(HCNP). A decrease in the function of PEBP could
lead to loss of phospholipid asymmetry, resulting in
the exposure of phosphatidylserine on the outer
leaflet of the lipid bilayer, a signal of apoptosis. As
noted, both Aβ(1-42) and the Aβ(1-42)-mediated
lipid peroxidation product HNE lead to loss of lipid
asymmetry, which may be relevant to oxidative
stress–related AD [17, 18]. Upregulation of choline
acetyltransferase (CAT) in cholinergic neurons after
NMDA receptor activation is one function of HCNP
[59]. CAT activity is known to be decreased in AD
[31], and cholinergic deficits are prominent in AD
brain [1, 60]. Aβ(1-42) leads to elevated HNE on
CAT, possibly contributing to its loss of function in
AD brain [3]. Nitration of neuropolypeptide h3
could lead to diminution of neurotrophic action on
cholinergic neurons of the hippocampus and basal
forebrain, which may be related to the observed
decline in cognitive function in AD brain.

Proteomics studies in our laboratory are ongoing
to identify proteins that are oxidatively modified by
Aβ(1-42) in model systems relevant to AD
[61–65]. The results of these studies show some
common proteins that are oxidized by Aβ(1-42) in
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vivo and in AD brain, consistent with the notion
that Aβ(1-42) significantly contributes to the
oxidative stress of AD brain.

5.3 Methionine-35 of Aβ(1-42):
Role in Aβ(1-42)-Induced
Oxidative Stress and Neurotoxicity

Methionine 35 is a critical residue in Aβ(1-42)-
mediated oxidative stress and neurotoxicity.
Substitution of the sulfur atom of methionine 35 by
a methylene group, –CH2– (norleucine), signifi-
cantly modulates the oxidative stress and neurotox-
icity of Aβ(1-42), but the fibrilar morphology of
both peptides is similar [10]. Methionine 35 of
Aβ(1-42) is also involved in the oxidative stress and
neurotoxicity properties of this peptide in vivo. C.
elegans expressing human Aβ(1-42) exhibited sig-
nificantly increased protein oxidation, but replace-
ment of the codon for Met by that for Cys in the
DNA sequence for human Aβ(1-42) resulted in no
increase in protein oxidation in the worm compared
with C. elegans expressing native human Aβ(1-42)
[10]. Additionally, studies involving a temperature
inducible C. elegans model expressing human
Aβ(1-42) revealed that protein oxidation preceeds
the deposition of fibrilar aggregates [8]. This find-
ing is consistent with increasing evidence that small
soluble aggregates of Aβ(1-42) are the toxic species
of this peptide [66–68]. Moreover, that Aβ(1-42)
containing the norleucine deriviative of Aβ(1-42),
which through producing fibrils, was not oxidative
or neurotoxic supports our hypothesis that methion-
ine is critically involved in the neurotoxic and
oxidative properties of Aβ(1-42) [10, 69].

Lipid peroxidation is induced by Aβ(1-42) [15,
27] and is found in AD brain [15, 19, 20]. Because
lipid peroxidation requires that the free radical
involved must be located in the immediate vicinity
of the labile H-atoms of unsaturated acyl-chains on
phospholipids, this requirement suggests that the
Met residue of Aβ(1-42) is located in the bilayer
[70], a suggestion confirmed by others [71]. It has
been proposed that, due to the hydrophobic car-
boxy terminus of Aβ(1-42), the peptide inserts into
the lipid bilayer [70–72]. Aβ(1-42) adopts an α-
helical conformation, similar to other proteins that
insert into the lipid bilayer. A methionine sulfu-

ranyl radical (MetS.) on Aβ(1-42) is formed by a
one-electron oxidation [12–14, 69, 72–75]. This
radical, in turn, can abstract a hydrogen atom from
a neighboring unsaturated lipid resulting in the for-
mation of a carbon-centered lipid radical (L.). Via
mechanisms described above (Fig. 5.1), the car-
bon-centered radical on the lipid can readily react
with molecular oxygen to form a peroxyl radical
(LOO.). Hydrogen abstraction from a neighboring
lipid results in the formation of a lipid hydroperox-
ide (LOOH) and another carbon-centered lipid rad-
ical (L.), thereby, propagating the free-radical chain
reaction [69, 74, 75]. Both theoretical and experi-
mental studies demonstrate that the α-helical sec-
ondary structure of the peptide provides
stabilization of the sulfuranyl radical formed by a
one-electron oxidation of methionine [72, 76].
Mutation of isoleucine 31 in Aβ(1-42) to proline,
an α-helix breaker, attenuated the oxidative stress
and neurotoxic properties of the native peptide,
suggesting that the amide oxygen of isoleucine 31
in the α-helix conformation interacts with a lone
pair of electrons on the sulfur atom of methionine
35, priming this atom for a one-electron oxidation
[72]. Subsequently, the sulfuranyl radical of
methionine can react with other moieties of
methionine to form an α(alkylthio)alkyl radical of
methionine (–CH2-CH2-S-CH2 or –CH2-CH-S-
CH3) [69, 72, 74, 76]. Such carbon-centered radi-
cals provide potential substrates for reaction with
molecular oxygen leading to the formation of per-
oxyl radicals, and consequently, potentiation of
free-radical generation and HNE formation [69, 75,
77]. Recently, others have confirmed our hypothe-
sis, directly demonstrating the existence of the sul-
furanyl free radical in Aβ(1-40) [78]. Other
researchers [79, 80] invoke Cu(II) reduction and
subsequent H2O2 formation in the oxidative stress
and neurotoxic properties of Aβ(1-42). Critical in
this scenario are the three His residues at positions
6, 13, and 14 and the Tyr at position 10. The former
are the likely binding sites for Cu(II) on Aβ(1-42),
while Tyr 10 is proposed to be the source of the
electron to reduce Cu(II) to Cu(I). However, sub-
stitution of the three His residues by asparagine
(which has at least a 100-fold less binding affinity
of Cu(II) than does His) or substitution of Tyr 10
by aromatic Phe (which, though still aromatic, is
incapable of providing an election to Cu(II)) leads
to peptides that are similarily toxic and oxidative as
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native Aβ(1-42) [81, 82]. In contrast, substitution
of Met by norleucine, which still has the three His
residues and Tyr 10 present, is no longer toxic or
oxidative [10]. Using the reverse peptide, Aβ(40-
1), which is nontoxic, others showed that a Tyr free
radical could be formed [78]. That is, a central fea-
ture required in mechanisms that involve Cu(II)
reduction as a cardinal paradigm occur only in a
peptide that is nontoxic [78].

Oxidative modification of methionine 35 to
methionine sulfoxide constitutes a major compo-
nent of the various amyloid β-peptides isolated
from AD brain [83–85], consistent with the role of
methionine in the oxidative properties of Aβ(1-42).
In vitro oxidation of methionine to methionine sul-
foxide has been shown to abolish the oxidative
stress and neurotoxic properties of Aβ(1-42) after a
24-h incubation with neurons. Mitochondrial dys-
function as measured by MTT reduction was also
observed [73]. This finding was confirmed in a
recent study [80]. However, after a 96-h treatment,
the methionine sulfoxide of Aβ(1-42) reportedly
resulted in neuronal death as observed by phase
contrast microscopy. Aβ(1-42) containing methion-
ine sulfoxide does not associate itself with the lipid
bilayer due to the hydrophilic oxidized sulfur atom
[80]. It is conceivable that Aβ(1-42) containing
methionine sulfoxide may not form fibrils readily
but does so after a long enough period. Thus, toxic-
ity of Aβ(1-42) containing methionine sulfoxide
may occur via a different mechanism than with
native Aβ(1-42), that is, fibril formation conceivably
could activate the receptor for advanced glycation
end products (RAGE)  leading to oxidative stress
and neurotoxicity [86, 87].

5.4 Conclusions

Aβ(1-42) plays a critical role in the oxidative stress
present in AD brain and, consequently, may play a
central role in the pathogenesis of the disease.
Aβ(1-42) induces protein oxidation and lipid per-
oxidation both in vitro and in vivo. Methionine 35
has been shown to play a vital role in the oxidative
stress and neurotoxic properties of Aβ(1-42).
Ongoing proteomic studies will lead to the identifi-
cation of proteins that are specifically oxidatively
modified by Aβ(1-42), providing insight into
mechanisms of Aβ(1-42)-induced neurodegenera-

tion and, consequently, a greater insight into the
role that Aβ(1-42) plays in the pathogenesis of this
dementing disorder.
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6.1 Introduction

Despite considerable progress over the past few
years in our understanding of β-amyloid protein
(Aβ) production, aggregation, and degradation, lit-
tle is known about the mechanism of Aβ-mediated
neurotoxicity. Although numerous targets of Aβ’s
action have been reported [1], it has been difficult to
determine which, if any, of these targets is impor-
tant for disease causation. In this article, we review
what is known about the cellular and biochemical
mechanisms involved in Aβ neurotoxicity
(Fig. 6.1).

6.2 Cellular Mechanisms of
Neurotoxicity: Cell Loss versus
Synaptic Dystrophy

Considerable attention has been paid to the mecha-
nisms by which Aβ causes neuronal cell death.
Studies have implicated a variety of mechanisms
(e.g., generation of reactive oxygen species, cas-
pase activation, disturbanced in calcium homeosta-
sis) in Aβ-induced cell death [1]. However,
although the number of neurons is lower in the AD
brain compared with age-matched brains, there are
good reasons to believe that cell loss does not play
an important role in cognitive decline in AD. First,
cell loss is only a minor neuropathologic feature of
AD, and it is poorly correlated with cognitive
decline [2]. Most of the brain atrophy can be
accounted for by synaptic loss, rather than a
decrease in the number of cell bodies [2]. Second,

it may be argued on purely theoretical grounds that
the pattern of retrograde amnesia that occurs in AD
is unlikely to be caused by cell death.
Computational studies involving attractor neural
network models of memory suggest that synaptic
dysfunction is more likely to be the mechanism
that causes memory loss [1].

In contrast with cell death, neuritic dystrophy is
an important diagnostic and pathologic feature of
AD. Amyloid plaques are commonly surrounded
by neurofibrillary tangle-bearing dystrophic neu-
rites. Aberrant neuronal sprouting can be seen in
areas of synaptic loss in the hippocampal forma-
tion and neocortex [3]. The dystrophic neurites are
a characteristic of AD brains and are typically, but
not exclusively, associated with Aβ deposition. Aβ
has been reported to induce neurite dystrophy in
culture [4] as well as in mutant mouse models [5].
For example, Tsai et al. [6] have recently demon-
strated that microdeposits of Aβ amyloid can
cause neuritic dystrophy and the breakage of neu-
ronal branches in an APP transgenic mouse model
of AD.

6.3 Aβ Aggregation: The Search
for Neurotoxic Species

Aggregation of Aβ is a key step in the generation
of neurotoxic Aβ species. Aβ neurotoxicity is
increased when the peptide is incubated over many
hours to days, a process known as aging [7].
Although there is a relationship between aggrega-
tion and toxicity, the major toxic form of Aβ in AD



is not known. It has been demonstrated that
aggregated Aβ in fibrillar form has neurotoxic
properties in cell culture as well as in vivo.
However, more recent findings suggest a toxic role
of Aβ oligomeric species [8]. In vitro studies have
shown that oligomeric Aβ, particularly diffusible
low-molecular-weight species, are neurotoxic [9,
10]. This idea is reinforced by genetic studies,
which demonstrate that familial AD mutations
favor the production Aβ species that aggregate
more readily [11].

Aβ aggregation is a complex process that is
influenced by incubation time, concentration, tem-
perature, pH, and ionic strength. Initially,
monomeric Aβ probably develops an abnormal
conformation, after which a variety of different
aggregated structures, including oligomers,
protofibrils, spheroids, and mature amyloid fibrils,
can be produced. Protofibrils are thin 3- to 4-nm-
diameter nonbranching linear aggregates [12],
whereas fibrils are ~6 to 10 nm in diameter and are
long and semiflexible [13]. Fibril formation pro-
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FIGURE 6.1. Possible mechanisms of Aβ-mediated neurotoxicity. A variety of different mechanisms have been pro-
posed to explain the neurotoxic effects of Aβ. These mechanisms include the generation of ROS; binding to p75NTR,
RAGE, or nAChRs. The interaction of Aβ with lipid rafts may disturb membrane fluidity and alter the function of
membrane proteins such as calcium channels. It is still not clear which, if any, of these mechanisms may contribute
to the synaptic dysfunction that is thought to underlie the cognitive decline in AD.



ceeds with a lag time, which has been interpreted
as a nucleation-dependent process, where oligomer
formation takes place through the initial formation
of nuclei or seeds [14, 15]. This idea is supported
by studies where prepolymerized Aβ was added to
monomeric protein, which led to the immediate
onset of fibril formation [7, 14].

In the past, it was thought that only fibrillar Aβ
was pathogenic. However, new evidence supports
the hypothesis that prefibrillar structures may be
even more important in AD. Brain cell damage and
dementia do not correlate well with plaque location
and quantity [16]. However, soluble Aβ oligomers
are found in human AD cerebrospinal fluid, and the
soluble Aβ content of human brain is better corre-
lated with the severity of the disease than plaque
density [17, 18]. Oxidative stress has been shown
to precede fibrillar deposition of Aβ, suggesting
that oxidative stress observed in the AD brain may
be caused by nonfibrillar forms of Aβ [19]. It has
even been suggested that plaques may not be toxic,
and that instead, they may have a protective role in
AD by decreasing the amount of the more toxic
prefibrillar Aβ species [20].

6.4 Biochemical Effects of Aβ

The exact sequence of events whereby Aβ causes
neurodegeneration in AD is not known. In vitro,
Aβ can cause oxidative stress, mitochondrial dys-
function, disturbances in calcium homeostasis, and
microglial activation [1]. However, the relative
contribution of these biochemical changes to neu-
rodegeneration in vivo is unclear.

6.5 Oxidative Stress and
Mitochondrial Dysfunction

Aβ neurotoxicity is associated with oxidative stress
and mitochondrial dysfunction [21]. Changes in
mitochondrial enzymes have been described in the
AD brain [22]. For example, cytochrome oxidase
activity is decreased in AD [23], and defects in
mitochondrial energy metabolism can lead to
increased production of reactive oxygen species
(ROS). Increased Aβ is associated with increased
nitric oxide (NO) and reduced ATP levels [24]. NO
can, in turn, interact with superoxide radicals to

form peroxynitrite, which can damage cells by
promoting membrane lipid peroxidation and
apoptosis [25].

The interaction of metal ions with Aβ has been
proposed to accelerate peptide aggregation and ini-
tiate hydrogen peroxide generation [26], although
there is not yet strong evidence for metal-Aβ inter-
actions in vivo. During the process of aggregation
in vitro, Aβ can generate hydrogen peroxide and
free radicals in the presence of Cu+ or Fe2+ [27].
The binding of Aβ to Zn2+ does not generate ROS,
although Zn2+ competes with Cu+ or Fe2+ for bind-
ing to Aβ and therefore Zn2+ could inhibit the oxi-
dizing properties of metal-bound Aβ [28]. The
production of these ROS induces membrane lipid
peroxidation, which can impair the function of
membrane enzymes [29, 30], which in turn can
cause an elevation in intracellular calcium [29].
The ability of antioxidants to prevent the loss of
membrane enzyme function as well as to stabilize
calcium homeostasis in vitro supports the role of
membrane lipid peroxidation by Aβ [31, 32]. The
major antioxidant glutathione (GSH) is greatly
reduced in astrocytes and neurons exposed to Aβ
[33, 34].

The role of oxidation in Aβ-induced neurode-
generation in vivo still remains very unclear.
Notwithstanding the success of the in vitro experi-
ments and evidence from epidemiological studies
that antioxidants may be of value for the treatment
of vascular dementia [35], antioxidants have yet to
prove themselves in clinical trials for the treatment
of AD [36]. There are many possible reasons for
this failure. For example, the right drug may not yet
have been found. However, it is also possible that
the oxidative changes seen in vivo are the conse-
quence of the neurodegeneration rather being than
the underlying cause.

6.6 The Role of the Endoplasmic
Reticulum

Some studies suggest that neuronal dysfunction in
AD could arise from a defect in the endoplasmic
reticulum (ER). As the ER is involved in protein
folding and assembly, ER dysfunction could con-
tribute to abnormal protein folding. It has been sug-
gested that ER dysfunction could be due to a defect
in the presenilins [37, 38]. Indeed, cells expressing
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mutant presenilins have an impaired ER response
to stress [39]. However, presenilin mutations may
also cause an increase in Aβ production [13, 38],
which is known to be linked to AD pathogenesis. It
is still unclear what role ER dysfunction plays in
familial AD caused by presenilin mutations.

6.7 Aβ-Membrane Interactions

The binding of Aβ to a component of the plasma
membrane may be the first event in Aβ-mediated
neurotoxicity [1]. Aβ has been shown to interact
either directly or indirectly with a number of dif-
ferent membrane components including lipids, car-
bohydrates, ion channels, and receptors. This
section describes some of the interactions and their
potential roles in neuronal dysfunction.

6.7.1 Interaction of Aβ with Membrane
Lipids

Membrane lipids are localized in different
domains: exofacial and cytofacial leaflets, choles-
terol pools, annular lipids, and lipid rafts [40]. Aβ
can interact strongly with the lipid bilayer [41, 42].
This binding causes an increase in Aβ fibrillogene-
sis and modifications of bilayer properties [42]. Aβ
binds strongly to gangliosides and lipid rafts [43],
which are also rich in cholesterol. Lipid rafts con-
taining a ganglioside cluster serve as a conforma-
tional catalyst or chaperone, helping to seed Aβ
oligomerization after binding [44, 45]. In mice, Aβ
dimers appear in lipid rafts at 6 months of age and
then continue to accumulate by 24–28 months of
age [46].

Although it has been observed that Aβ binds
preferentially to acidic lipids, it has also been sug-
gested that charge-charge interactions are not
required for Aβ-membrane interactions [47].
However, this idea is not supported by the results of
Subasinghe et al. [42], which demonstrate that Aβ
binds exclusively to lipid membranes through
charge-charge interactions. Liposomes composed
of phosphatidylserine and phosphatidylcholine
induce rapid formation of Aβ aggregates [48].

The consequences of Aβ binding to membranes
for cell function are unclear. Biological membranes
are fluid in nature, and membrane fluidity is
important for the proper functioning of integral

membrane proteins and signal transduction path-
ways. Aβ may disturb the acyl chain layer of the
membrane [49]. Aβ reportedly decreases mem-
brane fluidity so the membrane has a more rigid
structure, with the presence of gangliosides
increasing this effect [50]. The addition of
oligomeric Aβ to cultured neurons also causes the
release of lipid particles such as cholesterol, phos-
pholipids, and monosialogangliosides [51],
although the significance of this effect for the
pathogenesis of AD is unclear.

6.7.2 Effects of Aβ on Membrane
Calcium Permeability

Insertion of Aβ into the lipid membrane may set
off a series of independent events including dis-
ruption of Ca2+ homeostasis and free-radical for-
mation, catalyzed by perturbation of the
conformation of membrane proteins [52]. Aβ-
mediated disruption of calcium homeostasis may
in turn produce downstream effects [53]. Aβ may
increase membrane permeability by interacting
with membrane components to destabilize the
structure of the membrane [54, 55], or it may be
directly inserted into the membrane to form a pore
[56, 57]. Aβ aggregation is associated with
enhanced ion permeability [58]. Sustained
increases in intracellular calcium may also
enhance the production and release of Aβ [59, 60].
Aβ-induced destabilization of calcium can lead to
caspase activation and apoptosis [61], however
this effect may be caused by changes in the ER
transport of calcium rather than from calcium
transported across the plasma membrane.
Reduction of calcium release from the ER may
provide partial protection from Aβ toxicity by
reducing stress signals in the ER and decreasing
the increase in calcium triggered by Aβ [62].

6.7.3 Effect of Aβ on Membrane
Receptors

Aβ may exert a toxic effect by binding to or alter-
ing the normal function of cell-surface receptors.
A number of receptors have been found to interact
directly or indirectly with Aβ. There receptors
include the α7-nicotine acetylcholine receptor, the
receptor for advanced glycation end products
(RAGE), and the p75 neurotrophin receptor.
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6.7.3.1 α7 Nicotinic Acetylcholine Receptor

The nicotinic acetylcholine receptor (nAChR) is a
member of the pentameric ligand-gated ion chan-
nel family of receptors [63]. In the central nervous
system, most nicotinic receptors are of the α4β2 or
homomeric α7 subtype. α7 nAChR receptors are of
particular interest for AD because of their high cal-
cium permeability, which suggests an important
role in neuronal plasticity and cognition [64]. α7
nAChRs are mainly located at nerve terminals and
are believed to be involved in regulating the neuro-
transmitter release that mediates fast cholinergic
neurotransmission [65, 66].

Several studies have shown that Aβ can bind to
and influence the activity of α7 nAChRs [67–69]. α7
nAChRs are present in senile plaques and Aβ42
selectively and competitively binds α7 nAChRs with
high affinity [67]. This binding may have functional
consequences because Aβ40 and Aβ42 can impair
cholinergic signaling and acetylcholine release [70].
Although Aβ can block α7 nAChRs on neurons in
culture [68], other studies suggest that, under certain
conditions, Aβ may activate α7 nAChRs.

The interaction of Aβ with α7 nAChRs may
explain some of the biochemical changes that
occur in the AD brain. For example, although
acetylcholinesterase (AChE) is decreased in the
brain of AD patients, AChE is increased around the
amyloid plaques [71]. Fodero et al. [72] have
demonstrated that this increase may be due to inter-
actions between Aβ and the α7 nAChR. In primary
cortical neurons, Aβ42 is more potent than Aβ40 in
its ability to increase AChE [72]. Studies by Wang
et al. [73] suggest that the binding of Aβ to α7
nAChRs may also influence phosphorylation path-
ways leading to increased tau phosphorylation.

6.7.3.2 p75 Neurotrophin Receptor

The p75 neurotrophin receptor (p75NTR) is a mem-
ber of the tumor necrosis factor receptor family that
binds neurotrophins nonselectively and mediates
neuronal apoptosis and survival [74]. p75NTR can
bind Aβ and may thereby mediate some forms of
Aβ toxicity [75–77]. However, notwithstanding
these findings, levels of p75NTR have been found to
correlate inversely with the degree of cognitive
impairment in early AD, supporting the view that
p75NTR may be protective for AD [78]. The idea

that p75NTR is neuroprotective for AD is further
supported by the observation that there are
increased levels of p75NTR in the presence of extra-
cellular Aβ deposits [79], that low concentrations
of Aβ increase the level of p75NTR in primary cul-
tures of neurons, and that this increase protects
neurons from Aβ-induced toxicity [80].

6.7.3.3 RAGE

The receptor for advanced glycation and end prod-
ucts (RAGE) is a member of the immunoglobulin
family of cell-surface molecules that exhibits a
wide tissue distribution and interacts with a range of
ligands. Aβ can bind to RAGE, and this binding
may influence neuronal and microglial function
[81]. Aβ is not the only protein that binds to RAGE,
as the receptor interacts broadly with β-sheet fibrils
[82]. The interaction of Aβ with RAGE expressed
on endothelial cells, neurons, and microglia report-
edly causes oxidative stress and activation of the
transcription factor nuclear factor kappa B (NF-κB)
[81], which in turn enhances expression of
macrophage-colony stimulating factor (M-CSF)
[83]. Aβ-mediated M-CSF expression has also been
described in microglia, and anti-RAGE antibod-
ies can block this effect. These findings suggests
a feedback loop may exist, whereby Aβ-
RAGE–mediated microglial activation enhances the
expression of M-CSF and RAGE [84].

6.8 Conclusions

We still have a relatively poor understanding of the
mechanism(s) by which Aβ causes neurotoxicity.
There is increasing evidence to suggest that Aβ
toxicity is caused by synaptic dysfunction rather
than cell death. It is clear that aggregation of Aβ is
a key step in the generation of neurotoxic species.
However, whether the toxic species are fibrils,
protofibrils, amyloidβ derived diffusible ligands
(ADDLs), or some other aggregated form of Aβ
remains to be established. It is also clear that
Aβ can promote the formation of ROS as well as
increase oxidation. The central question is whether
these changes in oxidation are the underlying cause
of synaptic dysfunction or simply the effect of
some neurodegenerative mechanism.
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Aβ Variants and Their Impact on 
Amyloid Formation and Alzheimer’s
Disease Progression
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7.1 Introduction

Alzheimer’s disease (AD) is characterized patho-
logically by abnormal accumulation of amyloid
plaques and neurofibrillary tangles in vulnerable
brain regions [1]. Although the main proteinaceous
component of the plaques is the amyloid β peptide
(Aβ), the tangles are primarily made up from
hyperphosphorylated versions of the microtubule-
associated protein tau [2]. Emerging evidence for
the overlap in the pathological and clinical features
of patients with brain amyloidosis suggests that the
plaques and tangles may be linked mechanistically
[3]. Increased levels of Aβ peptides in brain can
promote the formation of intracellular tau aggre-
gates, although the mechanism for this process is
still unclear. These results indicate that one form of
amyloid can directly or indirectly impact the forma-
tion of another form of amyloid composed of differ-
ent protein, likely contributing to the overlap in
clinical and pathological features. Aβ is an approxi-
mately 4-kDa peptide with a strong potential to
aggregate during electrophoresis [4] and when iso-
lated from amyloid deposits or control brain tissue
represents a family of numerous peptide species [5].

It is increasingly believed that Aβ amyloidogen-
esis and Alzheimer’s disease are causally related,
and this notion derives from both genetic and cel-
lular observations. On one hand, all four genes
definitively linked to inherited forms of the disease
to date have been shown to increase the production
and/or deposition of Aβ in the brain [6]. On the
other hand, drugs known to reduce the prevalence
of Alzheimer’s disease in epidemiological studies
also reduce Aβ levels in cultured cells [7]. In gen-

eral, Aβ aggregates can directly and indirectly
mediate neurotoxic effects, inflammatory respon-
ses, and abnormal tau phosphorylation, the hall-
marks of Alzheimer’s disease [8]. In spite of this
correlation, no major differences in Aβ concentra-
tion between samples acquired from diseased or
normal tissues could initially be identified, at least
not from the cerebrospinal fluid [9]. The explana-
tion may rest in the insensitivity of early Aβ ana-
lytical methodology [10] or more likely from the
heterogeneity of the samples in Alzheimer’s dis-
ease–affected or normal brains.

Aβ was originally isolated and sequenced as a 42
(43) residue-long peptide with no sequence homol-
ogy to proteins available at that time [11]:

H-Asp1-Ala2-Glu3-Phe4-Arg5-His6-Asp7-Ser8-Gly9-
Tyr10-Glu11-Val12-His13-His14-Gln15-Lys16-Leu17-
Val18-Phe19-Phe20-Ala21-Glu22-Asp23-Val24-Gly25-
Ser26-Asn27-Lys28-Gly29-Ala30-Ile31-Ile32-Gly33-
Leu34-Met35-Val36-Gly37-Gly38-Val39-Val40-Ile41-
Ala42-(Thr43)-OH

Ensuing biochemical characterization and com-
parison of soluble Aβ secreted by cells, soluble
Aβ in the cerebrospinal fluid, and insoluble Aβ
isolated from the brains of affected individuals has
revealed that there are numerous Aβ species with
extensive amino and carboxyl-terminal hetero-
geneity as well as featuring a series of mid-chain
amino acid alterations [12]. As soon as the alter-
ations were discovered, these genetic mutations or
post-translational modifications, including oxida-
tion by radicals, truncations, isomerization, and
racemization, were speculated as modifiers of Aβ
metabolism and/or enhancers of aggregation and



hence as progression factors for familiar and spo-
radic cases of Alzheimer’s disease. This article
tries to unify the divergent views and provide a
comprehensive account for the impact of Aβ vari-
ations in the development of amyloid diseases.
Table 7.1 lists all known major Aβ sequence mod-
ifications and their relevance in molecular or clin-
ical pathogenesis.

After a short analysis into the origin of modi-
fied Aβ forms in tissues and cultured cells, we
will concentrate on the major properties of the
amyloid protein, as regulated by the amino acid
alterations. The two dominant attributes of Aβ,
the golden standards to which every derivative is
compared, are fibrillogenesis [13] and neurotoxi-
city [14], this latter frequently related to oxidative
stress [15]. Fibril formation can be viewed
directly as true aggregation [16] or indirectly as
the ability of the peptide to assume β-pleated
sheet conformation, the prerequisite for
fibrillogenesis [17]. More precisely, the character-
istic α-helix/random coil → β-pleated sheet con-
formational transition is considered an easily
observable sign of increased ability to form aggre-
gates [18]. Neurotoxicity can also be studied as
direct killing of cells [19] or as an outcome of
long-lived protein variants, unable to turn over
within the life cycle of cells [20].

7.2 The Origin of Modified Aβ
Forms

Mid-chain modifications, concentrated around
residue Glu22, are clearly due to mutations in the
precursor gene. Aβ is a normally secreted prote-
olytic product [21] of the amyloid precursor protein
(APP), a 677–770 reside-long type 1 integral mem-
brane protein [22]. A constitutive secretory meta-
bolic pathway involves APP cleavage at Aβ
position 16 by the α-secretase enzyme producing
two halves of Aβ. When the γ-secretase further
cleaves the product, a carboxy-terminal Aβ 17-
40/42 fragment is formed, named p3 [23]. During
an alternative proteolytic pathway, a third enzyme,
the β-secretase, cleaves APP at the amino-terminus
of Aβ [24] followed by γ-secretase action at the C-
terminus producing the full-length amyloid peptide.
C-terminal alterations are thought to originate from
mutations in the APP gene. Processed from wild-
type APP, the major 4-kDa Aβ species in both con-
ditioned medium and human cerebrospinal fluid is
Aβ 1-40 (>60–70%), although some Aβ 1-42 is also
present (≈15%) along with minor amounts of other
Aβ fragments [10]. However, when the APP gene
includes mutations immediately downstream of the
Aβ coding region, the production level of Aβ 1-42
significantly increases [25].
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TABLE 7.1. Aβ variations known to affect Alzheimer’s disease development.

N-terminal truncations and isomerizations
First residue in truncated Ab Species abbreviation in text Presence in amyloid forms
D-Asp1 rD-1 In plaques of controls with atherosclerosis
isoAsp1 iD-1 Increased amyloid in parenchyma
pGlu3 pGlu3-Nterm Fifty percent in senile plaques
isoAsp7 iD-7 Increased amyloid in parenchyma
pGlu11 pGlu11-Nterm Thirty percent in serum
Leu17 p3 Early deposits in Down syndrome

Mid-chain genetic mutations
Mutated residue Species abbreviation in text Clinical phenotype
Ala2 → Thr Thr2 Stroke and myocardial infarction
Ala21→ Gly Flemish type Presenile dementia and cerebral hemorrhage
Glu22 → Gln Dutch type Cerebral hemorrhage
Glu22 → Gly Arctic type Early-onset Alzheimer’s disease
Glu22 → Lys Italian type Presenile dementia and cerebral hemorrhage
Asp23 → Asn Iowa type Early-onset Alzheimer’s disease
Ala42 → Val Val42 Schrizophrenia
Ala42 → Thr Thr42 Early-onset Alzheimer’s disease

C-terminal truncation
Last residue in truncated Aβ Species abbreviation in text Present
Val40 1-40 When the precursor protein is not mutated 

downstream



In wild-type APP, the fourth residue after Aβ
Ala42 is a valine; in familiar Alzheimer’s disease
in Anglo-Saxon, Italian, and Japanese kindreds,
this Val is substituted with Ile, Phe, or Gly, respec-
tively [26–28]. We compared Aβ production in
human neuroblastoma (M17) cells transfected with
constructs expressing wild-type APP or the
APP717 mutants by either isolation of metaboli-
cally labeled Aβ from conditioned medium, diges-
tion with cyanogen bromide, and analysis of the
carboxyl-terminal peptides released, or by analysis
of the amyloid peptide in conditioned medium with
immunosorbent assays that discriminate Aβ 1-40
and 1-42. Both methods demonstrated that Aβ
released from wild-type βAPP is primarily, but not
exclusively, 40 residues long. The APP717 muta-
tions consistently caused a 1.5- to 1.9-fold increase
in the percentage of 42-residue Aβ generated. The
pathological consequences of longer Aβ assembly
will be discussed later.

In general, peptides are subjected to endopepti-
dase and exopeptidase cleavages with amino- and
carboxy-peptidases being the major culprits for pep-
tide degradation [29]. Carboxy-terminal truncations
may theoretically occur from the cleaved Aβ 1-42
[43] peptides in tissues, but apparently genetic pro-
cessing of APP is a more common explanation for
explaining heterogeneity at the C-terminus [30].
Indeed, a novel expression system was developed,
one that in the secretory pathway selectively gener-
ates Aβ 1-40 or Aβ 1-42 fused to the transmembrane
BRI protein. Significantly, expression of Aβ 1-42
results in no increase in secreted Aβ 1-40, suggest-
ing that the majority of Aβ 1-42 is not trimmed by
carboxypeptidase to Aβ 1-40. Yet, as the identity
and role of secretases responsible for APP process-
ing in the human brain have yet to be clarified [31],
the search for enzyme activities capable of cleaving
native brain APP in human hippocampus is under-
way. A 40-kDa protein with proteolytic activity that
degrades native brain APP in vitro was purified and
characterized; molecular analysis identified it as a
novel protease belonging to the carboxypeptidase B
family [32]. PC12 cells overexpressing this protease
generate a major 12-kDa Aβ-bearing peptide in
cytosol, a peptide that has also been detected in a
cell-free system using purified brain APP as sub-
strate. Having said this, carboxypeptidase process-
ing of longer Aβ variants enjoy much less attention
than exopeptidase activity at the amino-terminus.

The amino acid sequence of wild-type Aβ starts
with an N-terminal Asp residue, and a Glu residue
is found two positions downstream; these amino
acids are the main substrates of aminopeptidase A
[33]. When the activity of aminopeptidases as a
function of age or sex was studied, significant age-
related increases were observed in glutamic
aminopeptidase A activity in both human genders
and in aspartic aminopeptidase A activity in
females [34]. This may reflect the evolution of sus-
ceptible circulating substrates during development
and aging. In support, when specific soluble and
membrane-bound aspartyl-hydrolyzing activities
were assayed in brain subcellular fractions from rat
fetuses (19–20 days of gestation), and from 1- to
260-week-old rats, significant age-related changes
were observed in all fractions for both enzymatic
activities [35]. Taken together, it is well conceiv-
able that the amino terminal Asp1 and Glu3
residues in Aβ undergo enzymatic degradation.

Alternatively, Asp is subject to a completely
nonenzymatic processing pathway. It was hypothe-
sized that Alzheimer’s disease is initiated by a pro-
tein aging-related structural transformation in
soluble Aβ [36]. According to this theory, sponta-
neous chemical modification of aspartyl residues in
Aβ to transient succinimide induces a non-native
conformation in a fraction of soluble Aβ, rendering
it amyloidogenic and neurotoxic. As shown later,
conformationally altered Aβ is characterized by
increased stability in solution and the presence of a
non-native β-turn that determines folding.
Formation of the succinimide from Asp is a result
of an intramolecular nucleophilic attack of the pep-
tide amide-nitrogen on the side-chain carbonyl
group of Asp (Fig. 7.1). Hydrolysis of succinimide
leads to accumulation of stable isoaspartyl sites
(isoAsp) in which a peptide bond is formed by the
side-chain carboxyl group of Asp. A competing
hydrolysis pathway leads to the production of pep-
tides containing D-aspartic acid.

7.3 Different Aβ Variants in 
Space and Time

In order to identify the proteolytic enzymes respon-
sible for the formation of the distinct Aβ forms and
the organelles in which diverse forms of Aβ are
generated and from which they are secreted, the Aβ
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compositions of subcellular compartments were
investigated together with the compartments from
which the Aβ variants were secreted [37]. It was
found that Aβ 1-40 (or Aβ x-40) is generated
exclusively within the trans-Golgi network and
packaged into post–trans-Golgi network secretory
vesicles; Aβ x-42 is made and retained within the
endoplasmic reticulum in an insoluble state; all Aβ

42 forms are made in the trans-Golgi network and
packaged into secretory vesicles; and finally the
amyloid peptides formed consist of two pools (a
soluble population extractable with detergents and
a detergent-insoluble form). It was concluded that
cell-free Aβ generation assays may distinguish
between intracellular insoluble peptides and
secreted soluble analogues.
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To this extent, soluble Aβ and its variants, pro-
duced by mouse neuroblastoma cells, were selec-
tively isolated by immunoprecipitation with
anti-Aβ monoclonal antibodies, and the identities
of these isolated amyloid peptides were determined
by measuring their molecular masses using matrix-
assisted laser desorption/ionization time-of-flight
mass spectrometry. The relative signal intensities
were used to estimate the concentrations of Aβ10.
Although pharmacologically mass spectrometry
without chromatographic quantitation steps is not
fully defendable [38], this approach detected sev-
eral novel Aβ variants and successfully quantified
soluble Aβ in conditioned media of cultured mam-
malian cells. The identified 64 Aβ-related peptides
(44 from human and 20 from murine amyloid
sequences) included a cascade of N- and C-termi-
nal truncations with little preference of a given
structural motif. The human APP samples featured
an increased abundance of peptides starting with
Ala2 and Phe4 (in agreement with the hypothe-
sized aminopeptidase A activity on Asp1 and
Glu3) but without major statistical significance. At
least, analysis of degradation products of synthetic
human Aβ peptides revealed four primary cleavage
sites (C-terminal to His13, Phe19, Lys28 and
Gly33) with three different endopeptidase substrate
specificities. These Aβ variants may contribute to
the low levels of certain Aβ subpopulations nor-
mally observed in cell culture media of transfected
cells.

Of course, these findings raise the question as to
which residues promote aggregation and which
endorse soluble Aβ derivatives. Because this
review is concerned with natural Aβ variants, list-
ing of all designer Aβ analogues falls outside the
scope of this article. Yet, one study that claims to
represent an unbiased search for sequence determi-
nants of Aβ amyloidogenesis may fit the bill. This
screen is based on the finding that fusions of the
wild-type Aβ 1-42 sequence to green fluorescent
protein form insoluble aggregates in which the
green fluorescent protein is inactive. Cells express-
ing such fusions do not fluoresce as opposed to Aβ
with reduced tendencies to aggregate, which can be
constructed and screened from randomly mutated
Aβ 1-42 green fluorescence protein libraries [39].
Not surprisingly, most of the observed solubility-
enhancer residues are replacements of hydrophobic
amino acids in the Leu17-Phe19, Ile31-Ile32,

Leu34-Val36, and Val39-Ala42 fragments. The
only notable finding is that some conservative
amino acid changes (Val18 → Ala, Phe19 → Leu,
and Ile32 → Val) also increase solubility, and these
curiously fall into or proximal to the detected pri-
mary enzymatic cleavage sites of the previous
paragraph.

7.4 Animal Models

A major obstacle to the pharmaceutical develop-
ment of Aβ aggregation inhibitors is the lack of
appropriate small animal models [40]. In most of
the current mouse models of Alzheimer’s disease,
the animals contain amyloid plaques in their brain,
but the amyloidosis is not accompanied by exten-
sive tangle formation or massive neuronal loss.
This is partially understandable if we compare the
Aβ sequences in different animal species and their
ability to form aggregates. When the Aβ sequences
of human, dog, polar bear, rabbit, cow, sheep, pig,
and guinea-pig are compared with the correspon-
ding rodent sequences and a phylogenetic tree is
generated, it is obvious that the Aβ amino acid
sequence of human, dog, and polar bear and other
mammals that may form amyloid plaques is con-
served, and the mice and rats where amyloid has
not been detected may be evolutionarily a distinct
group [41, 42]. In addition, the predicted secondary
structure of mouse and rat Aβ lacks the propensity
to form a β-pleated sheet secondary structure.

Compared with human Aβ, the amino acid
sequence of mouse Aβ differs at three positions:
Arg5 is replaced with Gly, Tyr10 is replaced with
Phe, and His13 is replaced with Arg [43], with the
rat sequence being identical to that of mouse [44].
To study the preferred β-pleated sheet forming
ability of the human peptide compared with the
rodent analogue, we synthesized, purified, and
characterized the two different Aβ sequences [45].
Circular dichroism (CD) and Fourier-transformed
infrared spectroscopy were used with various
membrane-mimicking solvents, different peptide
concentrations, and variable pH to identify those
environmental conditions that promoted β-pleated
sheet formation of the human versus rodent amy-
loid peptides. We found that higher β-pleated sheet
content was observed for the rodent sequence
in acetonitrile/water mixtures. In contrast, more
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β-pleated sheets were detected for the human Aβ in
trifluoroethanol/water mixtures at neutral pH.
Remarkably, at relatively low peptide concentra-
tions, only the human sequence assumed an
extended secondary structure (Fig. 7.2). These data
suggest that subtle inter-species amino-acid differ-
ences may account for the inability of the rodent
peptide to form amyloid fibrils in situ, when only
low amounts of soluble peptides are available for

aggregation. However, if fibrils once formed, these
N-terminal amino acid differences have virtually
no effect on the morphology or organization of the
fibrils [46]. It needs to be added that in the current
article, altered peptide conformations are consid-
ered as factors that promote disease pathogenesis.
However, the opposite can be equally true: differ-
ences in Aβ secondary structure may be a
consequence of disease progression.
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Earlier we briefly mentioned that in human
Alzheimer brain, the major C-terminal variant that
forms amyloid fibers is Aβ 1-42. In contrast, the
major fibrillar aggregates that present Congo red
birefrigence in rat brain consist of the Aβ 1-40 pep-
tide, whereas Aβ 1-42 aggregates as a nonfibrillar
amorphous material [47]. Thus, instead of the lack
of deposition process per se, factors might exist in
the rat brain that inhibit the fibrillar assembly of the
most pathogenic soluble Aβ 1-42 variant. In sup-
port of differences in fibril assembly rather than
postsecretory processing, freshly solubilized
human Aβ 1-40 or Aβ 1-42 were injected into rat
brains, and it was shown that both peptides were
equally processed at their amino-termini to yield
variants starting at pGlu3 and at their C termini to
yield variants ending at Val40 and at Val39 [47].
Contradictory to the previous argument, normal rat
brain can produce enzymes that mediate the con-
version of Aβ 1-40/1-42 into processed variants
similar to those in Alzheimer’s disease.

Obviously, the loss of the side-chain positive
charge at position 5 in the native rodent Aβ ana-
logue can influence metal-binding, a well-studied
risk factor in Aβ aggregation [48] and fibril forma-
tion [49]. Indeed, Cu(II) (at concentrations lower
than that associated with amyloid plaques) induces
the generation of dityrosine cross-linked, sodium
dodecyl sulfate–resistant oligomers of human, but
not rat, Aβ peptides [50], and the alteration must
involve Tyr10 (also missing in rodent Aβ) because
no detectable peroxidative modifications are
observed with Aβ 12-28 [51]. The coordination of
metal ions for human and mouse N-terminal Aβ
fragments starts from the N-terminal Asp residue,
which stabilizes significantly the 1N complex as a
result of chelation through the side-chain carboxy-
late group [52]. In a wide pH range of 4–10, the
imidazole nitrogen of His6 is coordinated to form a
macrochelate. Results show that, in the pH range
5–9, the human fragments form the complex with
different coordination mode compared with that of
the mouse fragments. The low pK(1)(amide) val-
ues (approximately 5) obtained for the mouse N-
terminal Aβ fragments may suggest the
coordination of the amide nitrogen of His6 while in
case of the human fragments the coordination of
the amide nitrogen of Ala2 is a more likely sce-
nario. The Gly → Arg residue replacement in posi-
tion 5 of the Aβ peptide sequence changes the

coordination modes of a peptide to metal ion in the
physiological pH range. The mouse fragments of
Aβ are much more effective in Cu(II) binding than
the human fragments.

Human and rat variants of Aβ 1-42 were com-
pared to determine whether they produce the same
amount of neuronal loss when combined with iron
[53]. Coinjection of iron with either Aβ variant
caused significantly more neuronal loss than the
Aβ peptide alone, suggesting that iron may con-
tribute to the toxicity associated with senile
plaques. Rat Aβ 1-42 combined with iron was as
toxic as iron alone, whereas iron combined with
human Aβ 1-42 was significantly less toxic. This
latter finding indicates that fibrillar human Aβ is
able to reduce iron-induced neurotoxicity in vivo
and raises the interesting possibility that senile
plaques in Alzheimer’s disease may represent a
neuroprotective response to the presence of ele-
vated metal ions.

When the human sequence is introduced into
rodents, a thorough chemical and morphological
comparison of the Aβ molecules and the amyloid
plaques present in the brains of APP transgenic
mice and human Alzheimer’s disease patients show
that despite an apparent overall structural resem-
blance to Alzheimer pathology, transgenic mice
produce amyloid cores that are completely soluble
in buffers containing sodium dodecyl sulfate,
whereas human amyloid plaques are highly resist-
ant to chemical and physical disruption [54]. It was
suggested that Aβ chemical alterations account for
the extreme stability of Alzheimer plaque core
amyloid. Curiously, the corresponding lack of post-
translational modifications such as N-terminal
degradation, isomerization, racemization, pyroglu-
tamyl formation, oxidation, and covalently linked
dimers, all the alterations we review in this article,
in transgenic mouse Aβ may provide an explana-
tion for the differences in solubility between
human and APP transgenic mouse plaques. It was
hypothesized that either insufficient time is avail-
able for Aβ structural modifications to take place
or the complex species-specific environment of the
human disease is not precisely replicated in the
transgenic mice. The appraisal of therapeutic
agents or protocols in these animal models must be
judged in the context of the lack of complete equiv-
alence between the transgenic mouse plaques and
human Alzheimer’s disease lesions.
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However, perhaps there is light at the end of the
tunnel. In transgenic mice overexpressing the
London mutant of human APP, N- and C-termi-
nally modified Aβ peptides were detected, similar
to the modified Aβ versions in humans [55]. The
ratios of deposited Aβ 1-42/1-40 were of the order
2–3 for human and 8–9 for mouse peptides, indi-
cating a preferential tendency for the deposition of
the longer amyloid peptide. In protein extracts
from soluble and insoluble brain fractions, the most
prominent peptides were truncated either at the car-
boxyl- or the amino-termini yielding Aβ 1-38 and
Aβ 11-42, respectively, and the latter was strongly
enriched in the extracts of deposited peptides.
These data indicate that plaques of APP-London
transgenic mice consist of aggregates of multiple
human and mouse Aβ variants, possibly indeed
characteristic for those in the brains of Alzheimer’s
disease patients.

Most recently, a similar transgenic mouse
model, named APP(SL)PS1KI, was presented [56].
This transgenic mouse model carries knocked-in
mutations in the presenilin-1 gene and overex-
presses mutated human APP. Just like in the human
cases, Aβ (x-42) is the major form of Aβ species
present in this model with progressive development
of a complex pattern of N-truncated variants and
dimers, similar to those observed in Alzheimer’s
disease brain. Significantly, an extensive neuronal
loss (>50%) is present in the CA1/2 hippocampal
pyramidal cell layer at 10 months of age together
with strong reactive astrogliosis. Due to the appear-
ance of the critical Aβ variations, APP(SL)PS1KI
mice may provide a long-awaited tool to investi-
gate therapeutic strategies designed to prevent neu-
rodegeneration in Alzheimer’s disease.

7.5 N-Terminal Truncations and
Modifications

After so much about the modifications in general,
let’s look at the variant human Aβ peptides in
detail. We start with N-terminal modifications, fol-
lowed by mid-chain alterations; finally, a brief dis-
cussion of the differing fibrillogenesis by the
C-terminal Aβ variants will be presented.

In a seminal report, Aβ peptides were isolated
from the compact amyloid cores of neuritic plaques
and separated from minor glycoprotein compo-

nents by size-exclusion high-performance liquid
chromatography [57]. Parenchymal Aβ was shown
to have a maximal length of 42 residues, but shorter
forms with “ragged” amino-termini were also pres-
ent. Most of the heterogeneity was found in Aβ 1-
5 and Aβ 6-16 fragments, each of which eluted as
four peaks. Amino acid composition and sequence
analyses, mass spectrometry, enzymatic methyla-
tion, and stereoisomer determinations revealed that
these multiple peptide forms resulted from struc-
tural rearrangements of Asp1 and Asp7. The L-
isoaspartyl form predominated at each of these
positions, whereas the D-isoaspartyl, L-aspartyl,
and D-aspartyl forms were present in lesser
amounts. Aβ purified from the leptomeningeal
microvasculature contained the same structural
alterations as parenchymal Aβ, but at the C-termi-
nus ended at Val40. It was suggested that the abun-
dance of structurally altered aspartyl residues
affect the conformation of the Aβ peptide within
plaque cores and thus significantly impact normal
catabolic processes designed to limit its deposition.

To this end, in a series of consecutive papers, we
reported on the conformation-modifying effect of
aspartic acid isomerization in general, and at the
amino terminus of Aβ in particular. First we used
circular dichroism and Fourier-transform infrared
spectroscopy to characterize the conformational
changes on human Aβ upon substitution of Asp1
and Asp7 to isoaspartic residues [58]. We found
that the intermolecular β-pleated sheet content is
markedly increased for the post-translationally
modified peptide compared with that in the corre-
sponding unmodified human or rodent Aβ
sequences both in aqueous solutions in the pH
7–12 range and in membrane-mimicking solvents
(such as aqueous octyl-β-D-glucoside or aqueous
acetonitrile solutions). These findings underline the
importance of the originally α-helical N-terminal
regions of the unmodified Aβ peptides in defining
its secondary structure and may offer an explana-
tion for the selective aggregation and retention of
the isomerized Aβ variants in Alzheimer’s dis-
ease–affected brains. For identifying the general
effect of isoaspartic acid–bond formation on pep-
tide conformation, we selected five sets of syn-
thetic model peptides, each representing one of the
major secondary structures as the dominant spec-
troscopically determined conformation: a type I
β-turn, a type II β-turn, short segments of α- or 
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310-helices, or extended β-strands. We found that
both types of turn structures are stabilized by the
aspartic acid–bond isomerization. The isomeriza-
tion at a terminal position did not affect the helix
propensity, but placing it in mid-chain broke the
helix structure [59]. Interestingly, when Asp was
already part of a β-pleated sheet, this structure was
also destabilized.

The physical-chemical explanation for the con-
formational changes in Aβ upon isoAsp1 and
isoAsp7 incorporation into the amino-terminal
decapeptide fragment was provided based on
molecular mechanics calculations [60]. The model-
ing showed that insertion of the extra –CH2– group
into the decapeptide backbone results in the forma-
tion of stable reverse-turns and destabilizes the hel-
ical conformer that competes with the extended
structure at the full-sized peptide level (Fig. 7.3).
The molecular modeling also revealed a limited
propensity of the Asp1, Asp7 diisomerized peptide

to form extended structure directly. These basic
findings were later confirmed by reports from other
research groups. To test how changes in the aspar-
tate forms influence peptide conformation, a series
of designed peptides having the sequence
VTVKVXAVKVTV, where X represents aspartic
acid or its derivatives, were synthesized [61].
Studies using circular dichroism showed that neu-
tralization of the aspartate residue through the for-
mation of a methyl ester or an amide, or
replacement of aspartate with glutamate led to an
increased β-sheet content at neutral and basic pH.
A higher content of β-sheet structure correlated
with increased propensity for fibril formation and
decreased solubility at neutral pH [61].

Anti-Aβ polyclonal antibody 2332 is more sen-
sitive for the non-isomerized status of the decapep-
tide than that of the full-sized peptide [59].
Monoclonal antibody 6E10, raised against unmod-
ified Aβ recognizes only the unmodified decapep-
tide or the peptide isomerized at the first aspartic
acid in a conformation-dependent manner but does
not recognize the mid-chain isomerized or diiso-
merized decapeptide in any circumstance. The di-
isomerized decapeptide was used as immunogen to
generate polyclonal antibody 14943 that is not
selective for the isomerized status of either the full-
size peptide or the decapeptide but recognizes the
isomerized peptides preferentially when the pep-
tide antigen structures are conserved during the
enzyme-linked immunoassay procedure [62].
Owing to the poor peak shape of the full-sized Aβ
peptide during standard reversed-phase chromatog-
raphy [63], serum stability studies that indicate
extracellular stability can be more effectively per-
formed on the decapeptide fragments. Remarkably,
the diisomerized Aβ 1-10 peptide exhibits a signif-
icantly increased stability toward serum peptidases
than the unmodified or monoisomerized peptides,
suggesting a possible mechanism of the retention
of the isomerized Aβ peptide in the affected brains.

More contemporary techniques are able to iden-
tify and quantitate the various Aβ forms with
higher accuracy. Although the protein is not
directly Alzheimer’s disease related, serum amy-
loid α-1 can be detected in serum as full-length
protein, as well as its well-characterized des-argi-
nine and des-arginine/des-serine variants at the N-
terminus by surface-enhanced laser desorption
ionization mass spectroscopy [64]. The method is
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FIGURE 7.3. Low-energy conformers of wild-type Aβ 1-
10 and Aβ 1-10 containing isoaspartyl residues in posi-
tions 1 and 7. The conformers for each subset are
superimposed, and their peptide backbones are displayed
as a line. For each conformer, the Cα trace of helical or
β-turn regions are indicated by a ribbon and Asp and
isoAsp residues in positions 1 and 7 by a ball and stick
plot. Upper right: Type I β-turn with Glu in position i+1.
Lower right: Type III β-turn with Phe at position i+1.
Upper left: Aβ 1-10 with residues 3–9 and 5–9 posi-
tioned in a helix. Lower left: Type III β-turn with Arg in
position i+1. Reprinted from Ref. 60, with permission
from Blackwell Publishing.



sensitive enough to detect a low-abundant variant
with the first five N-terminal amino acids missing.
Mass spectroscopy is reproducible, fast, and simple
mode for the discovery and analysis of marker pro-
teins of various diseases or for quality control of
synthetic products.

This leads us to the quantification of the various
Aβ forms in cells and tissues. We performed two-
site enzyme-linked immunosorbent assay with
antibodies specific for isomerized (i.e., Aβ with L-
isoAsp at positions 1 and 7) and pGlu-modified
(i.e., Aβ beginning with pyroglutamic acid at posi-
tion 3) forms of Aβ to quantitate the levels of these
different Aβ peptides in formic acid extracts of
Alzheimer’s disease frontal cortex [65]. The major
species of Aβ in these samples were Aβ pGlu3-42
as well as Aβ x-42, whereas isomerized Aβ was a
minor species. More specifically, across a panel of
14 samples, the µg/g wet tissue weight of the vari-
ous Aβ species were as follows: Aβ 1-40 (1,7 di-
isoAsp), 0.03; Aβ pGlu3-40, 0.14; Aβ 1-42 (1,7
di-isoAsp), 0.61; Aβ x-40 (where x is 1 or 2), 1.66;
Aβ x-42, 3.14; and Aβ pGlu3-42, 3.18. As seen, the
forms ending with Ala42 greatly exceeded those
ending with Val40. This study was in line with an
earlier report on cortical sections from 28 aged indi-
viduals with a wide range in senile plaque density.
According to these results, the major Aβ molecular
species deposited in the brain contain PGlu3 as the
N-terminal amino acid residue [66]. The abundance
of the pGlu N-terminal forms suggests that these
Aβ variants can play important roles in the deposi-
tion of amyloid in Alzheimer’s disease brains.

Of course, all quantitative data have to be viewed
in light of the availability of the given Aβ analogue
in the given sample. However, the hydrophobicity
of the modified peptides is greatly different giving
rise to potential inaccuracy in concentration-deter-
mination. After many years of trouble with
reversed-phase chromatographic analysis of Aβ
peptides, a new protocol was developed that uses
high column temperature for optimal peak shape
and separation [67]. Coupled with mass spec-
troscopy, the method is suitable for the quantifica-
tion of Aβ isoforms in solution. Upon identical
separation conditions, the recovery of the different
Aβ species from the hydrophobic column were Aβ
1-40, 36%; Aβ pGlu11-40, 34%; Aβ pGlu3-40,
22%; and p3, 14%. It is obvious that the more
hydrophobic the samples were, the lower recovery

yield was obtained. If this experiment can be
extrapolated to tissue samples, there is a good pos-
sibility that the total quantity of the less
hydrophilic variants is regularly underestimated.

How would the increase the pGlu3 amino-
terminal forms influence the two major properties
of Aβ, aggregation and neurotoxicity? Using circu-
lar dichroism spectroscopy, it was determined that
the pyroglutamic acid–containing peptides form β-
sheet structure more readily than the corresponding
full-length Aβ peptides, both in aqueous solutions
and in 10% sodium dodecyl sulfate micelles [68].
CD spectra taken in aqueous trifluoroethanol solu-
tions indicated that the relative β-sheet to α-helical
stability is higher for the pGlu-containing peptides.
The conformational differences were mirrored by
alterations in the level of precipitated Aβ species
and the kinetics of the sedimentation (Fig. 7.4).
According this, pGlu3 and pGlu11-N-terminal Aβ
1-40 peptides have greater aggregation propensities
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FIGURE 7.4. Time-dependent aggregation of Aβ 1-28,
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Reprinted from Ref. 68, with permission of the
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than the corresponding nonmodified peptides, with
about 4- to 5-fold reduction in the unaggregated
form at various pH and after three different incuba-
tion periods. Comparison between peptides ending
with Val40 or Lys28 (the carboxy-terminal end of
the extracellular domain) indicated that the greater
β-sheet forming and aggregation propensities of
the pyroglutamyl peptides are not simply due to an
increase in hydrophobicity [68]. As for the mecha-
nistic explanation, it was suggested that the loss of
N-terminal charges may facilitate β-sheet forma-
tion by decreasing the level of unfavorable inter-
strand charge repulsion, as long as the Aβ fibril is
a hydrogen-bonded parallel β-sheet as previously
suggested [69]. In addition, the loss of the Asp and
Glu side-chain negative charges may destabilize
helix formation by eliminating favorable charge
dipole interactions [70].

In another study, the toxic properties, fibrillo-
genic capabilities, and in vitro degradation profile
of Aβ 1-40, Aβ 1-42, Aβ pGlu3-40, and Aβ pGlu3-
42 were compared [71]. The data show that the
fiber morphology of the Aβ peptides is greatly
influenced by the C-terminus while toxicity, inter-
action with cell membranes, and degradation are
influenced by the N-terminus. Aβ pGlu3-40
induces significantly more cell loss than the other
species both in neuronal and glial cell cultures. The
numerical values are 23% decrease relative to con-
trols at 0.1 µM, 31% loss at 1 µM, and 51% at 10
µM, well within the range of modified Aβ level in
tissues (compare with the Aβ tissue concentrations
above). Aggregated Aβ peptides starting with
pyroglutamic acid in position 3 were heavily dis-
tributed on plasma membrane and within the cyto-
plasm of treated cells. The Aβ pGlu3-40/42
peptides showed a significant resistance to degra-
dation by cultured astrocytes, while unmodified
peptides were partially degraded. These findings
suggest that formation of N-terminally modified
peptides enhance both β-amyloid aggregation
and neurotoxicity, likely worsening the onset and
progression of Alzheimer’s disease.

The question arises whether the isomerized/
racemized forms are spatially and/or temporally
separated from the unmodified Aβ isoform.
Neuritic plaques in Alzheimer’s disease brain typi-
cally immunostain with antibodies against noniso-
merized Aβ and Aβ starting with pGlu3, but not
Aβ starting with Leu17 (p3) or Asp1 racemized

Aβ. Neuritic deposits in nondemented individuals
with atherosclerotic and vascular hypertensive
changes could be identified with all three Aβ iso-
forms [72]. The presence of Aβ with racemized
Asp1 in neuritic plaques in nondemented individu-
als with atherosclerosis or hypertension, but not in
Alzheimer’s disease, suggests a different evolution
of the plaques in the two conditions. In another
antibody-based assay, the amino- and carboxyl-ter-
minal properties of the various Aβ peptides
deposited in diffuse plaques, one of the earliest
forms of amyloid deposition, were examined [73].
It was concluded that the amino termini of the Aβ
species that initially deposit in diffuse plaques
begin with Asp1 with or without structural modifi-
cations (isomerization and racemization), as well
as with pGlu3, and terminate preferentially at Aβ
1-42(43) rather than Aβ 40. This last paper well
represents a research trend that looks at modifica-
tions in multiple positions along the Aβ sequence.
In the end of this review, this approach will be scru-
tinized in detail. Finally, here is an interesting
observation regarding the spatial relationship
between a 100-kDa unidentified “AMY” protein
and N-terminally modified Aβ peptides: AMY
immunoreactive plaques colocalized with amyloid
plaques labeled by antibodies to Aβ starting at
position 3 with a pGlu, however AMY immunore-
active deposits colocalized to a lesser degree with
amyloid plaques labeled by antibodies to other
variants of the Aβ peptide [74] supporting the well-
known finding that automatic water loss on natural
and synthetic peptides with glutamine amino ter-
minus leads to massive pGlu production.

Isomerized Aβ variants are not restricted to the
amino-terminus of the peptide. A specific antibody
recognizing isoAsp23 of Aβ suggests the isomer-
ization of Aβ at Asp23 in vascular amyloid as well
as in the core of senile plaques [75]. The widespread
isomerization of aspartic acids in Alzheimer’s dis-
ease is quite interesting, as biochemical analyses of
neurofibrillary tangles also revealed L-isoaspartate
at Asp193, Asn381, and Asp387 [76], indicating a
modification, other than phosphorylation, that dif-
ferentiates between normal tau and tau found in the
paired helical filaments of Alzheimer’s disease.
Protein L-isoaspartyl methyltransferase is sug-
gested to play a role in the repair of isomerized pro-
teins containing L-isoAsp [77]. This enzyme is
upregulated in neurodegenerative neurons and
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colocalizes in neurofibrillary tangles [75]. Taken
together with the enhanced protein isomerization in
Alzheimer’s disease brains, it is implicated that
upregulated isoaspartyl methyltransferase activity
may associate with increased protein isomerization
in Alzheimer’s disease. It needs to be added that
aspartic acid isomerization occurs during synthetic
glycosylation reactions of tau fragments a well,
suggesting a chemical rather than enzymatic modi-
fication in aged and post-translationally modified
proteins [78]. Indeed, isomerization and racemiza-
tion of aspartyl residues are often considered as
products of spontaneous nonenzymatic reactions
that give rise to many aspartyl forms, including L-
and D-isoAsp and D-Asp [79].

7.6 Abundant Alterations at 
Mid-Chain Positions

The appearance of isoaspartate at position 23 takes
us to Aβ modifications in mid-chain positions.
Assays with the isoAsp23-specific antibody docu-
mented that Aβ isomerized at position 23 is
deposited on plaques and vascular amyloids [80].
In vitro experiments showed that isomerization at
position 23, but not position 7, enhanced aggrega-
tion. Furthermore, Aβ with the Dutch-type mid-
chain mutation (Gln22), but not the Flemish-type
mutation (Gly21), also showed greatly enhanced
aggregation. These results suggest that mutations
or modifications at unmodified Aβ positions Glu22
and Asp23 have a pathogenic role in amyloid dep-
osition. The development and progression of spo-
radic Alzheimer’s disease may be accelerated
by spontaneous isomerization at position 23.
However, the pathological consequences of the
genetic mutation leading to the Flemish-type Aβ
variant need alternative explanation as the Flemish
mutation fails to show potent aggregation
properties [80].

The previous study also showed that the aggre-
gation rate of the Dutch-type mutation is more
extensive than that of unmodified Aβ in the pres-
ence of Cu and Zn ions [80]. In support, in 8–28
residue Aβ fragments, the Dutch-type mutation
accelerated fibril formation, this time around with-
out metal ion addition [81]. The Gln22 Dutch,
Asn23 Iowa, and Gln22, Asn23 Dutch/Iowa double
mutant Aβ 1-40 peptides rapidly assembled in

solution to form fibrils, whereas wild-type and
Gly21 Flemish Aβ 1-40 peptides exhibited little
fibril formation [82]. Similarly, the Dutch- and
Iowa-type peptides, especially the double mutant
form, were found to induce robust pathologic
responses in cultured human cerebrovascular
smooth muscle cells, including elevated levels of
cell-associated APP, proteolytic breakdown of
smooth muscle cell α-actin, and cell death. These
data suggest that the different mid-chain mutations
in Aβ may exert their pathogenic effects through
different mechanisms. Whereas the Gly21 Flemish
mutation appears to enhance Aβ production, the
Gln22 Dutch and Asn23 Iowa mutations enhance
fibrillogenesis and the pathogenicity of Aβ toward
cultured cells. Very similar results with basically
identical conclusions were reported based on an
experiment in which the kinetics of aggregation
was followed by reversed-phase high-performance
liquid chromatography at 37˚C at pH 7.4 [83].

Using size-exclusion chromatography and cir-
cular dichroism spectroscopy, kinetic and second-
ary structural characteristics were compared with
other Aβ 1-40 peptides and the extracellular
Aβ12-28 fragment, all having single amino acid
substitutions in position 22 [84]. The Aβ 1-40
Gly22 protofibrils are a group of comparatively
stabile β-sheet–containing oligomers with a het-
erogeneous size distribution, ranging from >100
kDa to >3000 kDa. Salt promotes protofibril for-
mation. When all the Glu22 substitutions were
compared, the rank order of protofibril formation
of Aβ 1-40 and its variants was Val22 > Ala22 >
Gly22 > Gln22 > Glu22 and correlated with the
degree of hydrophobicity of the substituent in
position 22. The conclusion was drawn that the
physical properties of Aβ 1-40 Gly22 suggest an
important role for the peptide in the neuropatho-
genesis in the Arctic form of Alzheimer’s disease
[84]. In support, a membrane-mimicking environ-
ment generated in the presence of detergents or a
ganglioside is sufficient per se for amyloid fibril
formation from soluble Aβ and hereditary variants
of the Aβ peptide, including the Dutch, Flemish,
and Arctic types. The peptides exhibit mutually
different aggregation behavior in these environ-
ments [85]. Notably, the Arctic-type Aβ peptide,
in contrast with the wild-type and other variant
forms, shows a markedly rapid and higher level of
amyloid fibril formation in the presence of sodium
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dodecyl sulfate or GM1 ganglioside. While in the
presence of a zwitterionic detergent, unmodified
Aβ forms 8- to 10-nm helical fibrils, and the
Dutch- and Flemish-type variants grow rather thin
6- to 7-nm fibers. The Arctic-type Aβ peptide
forms short and curved fibers with a diameter of
6–7 nm, and these can be defined as protofibrils
(Fig. 7.5). These results underline the importance
of favorable local environments for fibrillogenesis
of the amyloid peptide.

This last report surveyed additional potential
changes in the biochemical and biophysical prop-
erties of Aβ, brought upon mid-chain modifica-
tions [85]. In addition to the more extensively
studied aggregation properties, the possible alter-
ations included the formation of more toxic
oligomeric and fibrillar Aβ species corresponding
with the Dutch- and Arctic-type variants [86] or
alteration in sensitivities to peptidase degradation
[87]. The Dutch, Flemish, Italian, and Arctic
mutations apparently make Aβ resistant to prote-
olysis by neprilysin, the peptidase with the most
important role in catabolism of Aβ in the brain.
Monomeric Aβ wild-type, Flemish, Italian
(Lys22), and Iowa variants were readily degraded

by a rat insulin-degrading enzyme, an important
component of the Aβ clearance process [88], with
similar efficiency. However, the proteolysis of
Dutch- and Arctic-type Aβ variants was signifi-
cantly less extensive as compared with the
unmodified or the rest of the mutant peptides [89].
All of the Aβ variants were cleaved between
Glu3-Phe4 and Phe4-Arg5 in addition to the pre-
viously described major endopeptidase sites
around positions 13–15 and 18–21. Detergent-
stable Aβ dimers were highly resistant to proteol-
ysis regardless of the variant, suggesting that the
insulin-degrading enzyme recognizes a conforma-
tion that is available for interaction only in
monomeric Aβ.

What are the conformational differences
between unmodified and Dutch-type Aβ peptides?
We used Fourier-transform infrared and circular
dichroism spectroscopies on synthetic peptides to
demonstrate that the Glu22 → Gln mutation results
in altered secondary structure in membrane mim-
icking solvents, characterized by a considerably
higher β-structure content for the Dutch-type pep-
tide [90]. Moreover, extreme high and low pH were
less effective in eliminating the β-conformation for
the Dutch-variant than for the normal human
sequence (Fig. 7.6). The differences in the strength
and stability of the aggregates are attributed to the
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FIGURE 7.5. Electron micrographs of Aβ 1-40 solutions
including wild-, Dutch-, Flemish-, and Arctic-type vari-
ants, incubated 24 h in the presence of 0.02%
Zwittergent 3-14. Reprinted from Ref. 85, with permis-
sion of the International Society for Neurochemistry.
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FIGURE 7.6. Infrared absorbance spectra of unmodified
(broken line) and Dutch-type (solid line) Aβ 1-42 pep-
tides in D2O at pH 11. Reprinted from Ref. 91, with per-
mission of the Society for Applied Spectroscopy.



presence of varying (small) proportions of the clas-
sical secondary structures [91]. Infrared spectra of
material from autopsied human Alzheimer’s dis-
ease brain show spectral features indicative of the
formation of similar aggregates, which may be
related to plaque formation. These results were
later confirmed by additional spectroscopic, micro-
scopic, and biochemical assays [92]. According to
these, in the Dutch-type peptide the propensity of
the Aβ N-terminal domain to adopt an α-helical
structure is decreased, with a concomitant increase
in amyloid formation. It was proposed that Aβ
exists in an equilibrium between two species: one
“able” and another “unable” to form amyloid,
depending on the secondary structure adopted by
the N-terminal domain. Thus, manipulation of the
Aβ secondary structure with therapeutic com-
pounds that promote the α-helical conformation
may provide a tool to control the amyloid deposi-
tion observed in Alzheimer’s disease patients.

In a more recent study, the cytotoxic properties
of the Dutch- and Italian-type (Lys22) Aβ variants
were compared with the unmodified peptide on
cultured human cerebral endothelial cells after
flow cytometry analysis [93]. Under the conditions
tested, the Dutch-type Gln22-modified analogue
exhibited the highest content of β-sheet conforma-
tion and the fastest aggregation/fibrillization prop-
erties. The Dutch variant also induced apoptosis of
cerebral endothelial cells at a concentration of 25
µM, whereas the wild-type Aβ and the Italian
mutant had no effect. The data suggest that differ-
ent amino acids at position 22 confer distinct struc-
tural properties to the peptides that appear to
influence the onset and aggressiveness of the dis-
ease rather than the phenotype.

7.7 C-Terminal Forms: Aβ 1-40
and Aβ 1-42

One of the studies concentrating on the amino-ter-
minal modifications compared the fiber types as
regulated by the length of the Aβ peptide [71].
Peptides ending with Ala42 grew to a mature fiber
type regardless of the N-terminal residue, forming
a dense meshwork of long fibrils by the end of the
aggregation process. In contrast, Aβ variants end-
ing with Val40 assembled more slowly to generate
short, curly fibers.

To quantitate the various Aβ C-terminal forms
present in the brains of patients with Alzheimer’s
disease, cerebral cortex was homogenized in 70%
formic acid, and the supernatant was analyzed by
sandwich enzyme-linked immunoabsorbent assays
specific for various forms of Aβ [94]. In 9 of 27
brains examined, there was minimal congophilic
angiopathy and virtually all Aβ (96%) ended at
Ala42 (Thr43). The other 18 Alzheimer’s disease
brains contained increasing amounts of Aβ ending
at Val40. From this set, 6 brains with substantial
congophilic angiopathy were separately analyzed.
In these brains, the amount of Aβ 1-42(43) was
much the same as in brains with minimal
congophilic angiopathy, but a large amount of Aβ
1-40 (76% of total Aβ) was also present.
Immunocytochemical analysis with monoclonal
antibodies selective for the various Aβ C-terminal
forms confirmed that, in brains with minimal con-
gophilic angiopathy, virtually all Aβ species ended
at Ala42 (Thr43) and this Aβ variant was deposited
in senile plaques of all types. In the remaining
brains, Aβ 1-42(43) accumulated in a similar fash-
ion in plaques, but, in addition, widely varying
amounts of Aβ 1-40 were also deposited, primarily
in blood vessel walls. The blood vessel also con-
tained some Aβ 1-42(43) variants. These observa-
tions indicate that Aβ ending at Val42 (Thr43),
which are a minor component of the Aβ in human
cerebrospinal fluid and plasma, are critically
important in Alzheimer’s disease where they
deposit selectively in plaques of all kinds.

A postmortem cross-sectional study comparing
the deposition of Aβ variants in the prefrontal cor-
tex of 79 nursing home residents having no, ques-
tionable, mild, moderate, or severe dementia
revealed that all three Aβ forms, 1-40, 1-42, and 
1-43 deposited in large quantities and the Aβ accu-
mulation level could be correlated with the severity
of the dementia [95]. The deposition of Aβ x-42
and Aβ x-43 occurred very early in the disease
process before Alzheimer’s disease could be actu-
ally diagnosed. Levels of accumulated Aβ x-43
appeared surprisingly high given the low amounts
that are constitutively synthesized. These data indi-
cate that Aβ x-42/43 are important species associ-
ated with early disease progression and suggest
that the physiochemical properties of the Aβ
species may be a major determinant in amyloid
deposition. The results support an important role
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for Aβ in mediating initial pathogenic events in
Alzheimer’s disease dementia and reinforce that
treatment strategies targeting the formation, accu-
mulation, or cytotoxic effects of Aβ should be
equally pursued.

Incubation of Aβ solutions at 37˚C and pH 7.4
produces soluble oligomers in a concentration-
dependent manner [96]. On one hand, fresh Aβ
1-42 solutions rapidly form soluble oligomers,
whereas Aβ 1-40 solutions require prolonged incu-
bation to produce oligomeric structures. On the
other hand, fresh Aβ 1-42 solutions are more toxic
to human neuroblastoma SH-SY5Y cells than Aβ
1-40 solutions, possibly mediated by soluble
oligomers. Thus, differences in solution-phase tox-
icity between Aβ 1-42 and Aβ 1-40 could explain
the association of the longer form with familial
early-onset Alzheimer’s disease.

Because Aβ 1-42/43 appear early in the deposi-
tion process, the question was asked whether the
appearance of the other Aβ forms is dependent
upon the longest form [97]. Aβ ending at residues
Val40, Ala42, and Thr43 have been identified in
neuritic deposits, while the peptide in vascular
amyloid appears to terminate at residue Val39 or
Val40. Kinetic studies of aggregation by three nat-
urally occurring Aβ variants (1-39, 1-40, 1-42) and
four model peptides (Aβ 26-39, Aβ 26-40, Aβ
26-42, and Aβ 26-43) demonstrate that amyloid
formation, like crystallization, is a nucleation-
dependent phenomenon [98]. The length of the 
C-terminus is a critical determinant of the rate of
amyloid formation (“kinetic solubility”) but has
only a minor effect on the thermodynamic solubil-
ity. Amyloid formation by the kinetically soluble
peptides (e.g., Aβ 1-39, 1-40, 26-39, or 26-40) can
be nucleated, or “seeded,” by peptides that include
the critical C-terminal residues (Aβ 1-42, 26-42,
26-43, and 34-42). These results suggest that nucle-
ation may be the rate-determining step of in vivo
amyloidogenesis and confirm that Aβ 1-42/43,
rather than Aβ 1-40, is the pathogenic protein(s) in
Alzheimer’s disease.

All we have left is a brief survey of the environ-
ment in which the various C-terminal Aβ variants
form. We mentioned in the beginning of this review
that the carboxy-terminus of Aβ is generally
released from the precursor by γ-secretase.
Whether the production of all Aβ peptide species
requires the action of γ-secretase was investigated

by a combination of surface-enhanced laser des-
orption/ionization time-of-flight mass spectrome-
try and a specific inhibitor of γ-secretase [99].
Using this approach, it was demonstrated that the
production of all truncated Aβ peptides except
those released by the action of the non-amyloido-
genic α-secretase enzyme or potentially β-site APP
cleaving enzyme 2 depends on γ-secretase activity.
This indicates that none of these peptides are gen-
erated by a separate enzyme entity, and a specific
inhibitor of the γ-secretase should have the potential
to block the generation of all amyloidogenic vari-
ants. The majority of the early onset Alzheimer’s
disease cases is inherited as autosomal dominant
disorders and cosegregate with mutations in the
presenilin genes 1 and 2 [100, 101]. Mutations in
presenilin (PS) 1 and 2 were found to be causative
in ≈50% of pedigrees with early-onset familiar
Alzheimer’s disease [102]. It was shown that the
ratio of Aβ 1-42(43) to Aβ 1-40 in conditioned
media of N2a cell lines expressing three familiar
Alzheimer’s disease–linked PS-1 variants is uni-
formly elevated relative to cells expressing similar
levels of wild-type PS1 [103]. Similarly, the Aβ 1-42
(43)/Aβ1-40 ratio is elevated in the brains of young
transgenic animals coexpressing a chimeric amy-
loid precursor protein and a PS-1 variant compared
with brains of transgenic mice expressing APP
alone or transgenic mice coexpressing wild-type
human PS-1 and APP. These studies provide com-
pelling support for the view that one mechanism by
which these mutant PS-1 cause Alzheimer’s dis-
ease is by increasing the extracellular concentra-
tion of Aβ peptides terminating at 42(43), species
that foster Aβ deposition.

7.8 Multiple Mutations May Point
to a Unified Picture

As all the studies cited above indicate, single Aβ
alterations affect various properties of the wild-
type peptides without a clear view of the patholog-
ical consequences of the modifications. We
suggested that some Aβ species feature multiple
amino acid residue changes, and the coexistence of
these alterations may better define the role of cer-
tain changes in the deposition or neurotoxic
processes. The first, and quite obvious, double
modification represents the appearance of cyclized
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Asp residues (succinimidyl) both at the amino-
terminus and in the middle of the Aβ chain, at posi-
tions 7 and 23. A potential consequence of
succinimide formation is a significant increase in
the water accessibility to the backbone and α-car-
bon atoms of the succinimidyl-modified Asp7 and
Asp23 residues [104]. If cell toxicity of Aβ is
mediated by soluble forms [105], this would
explain the increased neurotoxicity of the multiply
modified peptide. It was also suggested that spon-
taneous Asp → Suc transformation might lead to
an increase of the racemization rates due to the
higher accessibility of water at these sites [104].
Moreover, adjacent residues may influence the
selectivity of the racemization to given Asp
residues, and these residues may indirectly control
the water accessibility at the modification sites.

Increased solubility influences amyloidogenic
properties of the Flemish Aβ variant [106].
Comparative biophysical and neurotoxicity studies
on wild-type and Flemish (Gly21) Aβ 1-40, Aβ
5-40, and Aβ 11-40 revealed that the Flemish
amino acid substitution increases the solubility of
each form of peptide, decreases the rate of forma-
tion of thioflavin-T-positive assemblies, and
increases the sodium dodecyl sulfate stability of
peptide oligomers. Although the kinetics of peptide
assembly are altered by the Ala21 → Gly substitu-
tion, all three Flemish variants form fibrils, as do
the wild-type peptides. The N-terminally truncated
peptides were chosen on the basis of earlier cell
culture studies, which detected increased amounts
of N-terminally truncated peptides secreted by
cells transfected with the Flemish APP [107].
Importantly, toxicity studies using cultured pri-
mary rat cortical cells showed that the Flemish
assemblies were as potent a neurotoxin as were the
wild-type assemblies regardless of peptide length.
These results are consistent with a pathogenetic
process in which conformational changes in Aβ
induced by the Gly21 form would facilitate peptide
adherence to the vascular endothelium, creating
nidi for amyloid growth. Increased peptide solubil-
ity and assembly stability would favor formation of
larger deposits and inhibit their elimination [108].
In addition, increased concentrations of neurotoxic
assemblies would accelerate neuronal injury and
death.

The effects of amino-terminal truncations on the
Dutch-(Gln22) and Flemish-type Aβ peptides were

also compared with more conclusive data on the
toxicity induced by the various N-terminal forms
[109]. At a concentration of 5 µM, the aggregation
of the Aβ peptides followed the order Aβ 1-42
unmodified > Aβ 12-42 normal mid-section >Aβ
12-42 Flemish type> Aβ 12-42 Dutch type. The
lower level of aggregation of the shorter peptides,
especially for the Dutch variant, could be due to the
formation of smaller Aβ fibrils, and this is in accor-
dance with previous studies that observed shorter
and stubbier fibrils for the Dutch version [110].
Apoptosis was induced in neuronal cells by the
truncated Aβ wild-type and Flemish peptides at
concentrations as low as 1–5 µM, as evidenced by
propidium iodide staining, DNA laddering, and
caspase-3 activity measurements. Even when
longer incubation times and higher peptide concen-
trations were applied, the N-truncated Dutch-type
peptide did not induce apoptosis. Apoptosis
induced by the full-length Aβ 1-42 peptide was
weaker than that induced by its N-truncated vari-
ant. These data suggest that N-truncation enhanced
the cytotoxic effects of unmodified Aβ and
Flemish-type peptides, which may play a role in
the accelerated progression of dementia. When the
effects of the modifications at different parts of the
Aβ peptide are compared, it can be concluded that
while loss of charge at Glu22 (for either Gln or
Ala) enhances the pathogenic effects on cere-
brovascular smooth muscle cells, the N-terminal
residues in the wild-type variant confer a neuropro-
tective effect, partially in agreement with earlier
findings [111].

This latter study leads us to double modifica-
tions at the two termini. Aβ variants starting with
Asp1, Phe4, Ser8, Val12, and Leu17 and ending
with Val40 or Ala42 were synthesized and their
aggregation and neurotoxic properties were com-
pared [111]. The N-terminally truncated peptides
exhibited enhanced peptide aggregation relative to
full-length species, as quantitatively assessed by
sedimentation analyses. The sedimentation levels
were greater for peptides terminating at residue 42
than for those terminating at residue 40. The
increased aggregation properties of the N-terminal
short and C-terminal long peptides were accompa-
nied by increased β-pleated sheet conformation,
fibrillar morphology under transmission electron
microscopy, and toxicity in cultures of rat hip-
pocampal neurons. Indeed, decreased level of
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in vitro solubility of N-terminally truncated Aβ
peptides were noted earlier [112], but the negative
relationship between peptide solubility and toxicity
reported here is in contrast with the positive rela-
tionship of these properties as discussed at the
beginning of this section. It has to be noted that
assessing the solubility and hydrophobic properties
of different Aβ variants is not easy. In 8 M urea, the
otherwise α-helical or β-pleated sheet Aβ peptide
becomes 100% random coil and remains
monomeric [113]. However, during electrophoresis
in this medium, the peptide and its truncated vari-
ants do not obey the law of mass/mobility relation-
ship that most proteins—including Aβ peptides
—follow in conventional sodium dodecyl sulfate
gel electrophoresis. Rather, the smaller carboxy-
terminally truncated Aβ 1-38 or 1-40 peptides
migrate slower than the larger Aβ 1-42 full-length
peptide, while the amino terminally truncated Aβ
13-42 peptide does migrate faster than the full-
length Aβ variant. Thus, despite their small size
(2–4 kDa) and minor differences between their
lengths, the Aβ peptides display a wide separation
in this low-porosity (12% acrylamide) gel. It was
found that this unusual electrophoretic mobility in
8 M urea is due to the fact that the quantity of
labeled detergent bound to the Aβ peptides, instead
of being proportional to the total number of amino
acids, is rather proportional to the sum of the
hydrophobicity consensus indices of the con-
stituent amino acids. In turn, this underlines the
importance of the total number and each individual
charged residue in the sequence in defining the
three-dimensional shape and physical relationship
with the immediate environment.

Photo-induced cross-linking was used to evalu-
ate systematically the oligomerization of 34 physi-
ologically relevant Aβ variants, including those
containing familial Alzheimer’s disease–linked
amino acid substitutions, naturally occurring N-ter-
minal truncations, and modifications altering the
charge, the hydrophobicity, or the conformation of
the peptide [114]. The most important structural
feature controlling early oligomerization was the
length of the C-terminus. Specifically, the side-
chain of Ile41 in Aβ 1-42 was found to be impor-
tant both for effective formation of paranuclei and
for self-association of paranuclei into larger
oligomers. The side-chain of Ala42, and the C-
terminal carboxyl group, affected paranucleus -

self-association. Aβ 1-40 oligomerization was par-
ticularly sensitive to substitutions of Glu22 or
Asp23 and to truncation of the N-terminus but not
to substitutions of Phe19 or Ala21. Aβ 1-42
oligomerization, in contrast, was largely unaffected
by substitutions at positions 22 or 23 or by N-ter-
minal truncations but was affected significantly by
substitutions of Phe19 or Ala21. These results
reveal how specific regions and residues control
Aβ oligomerization and show that these controlling
elements differ between diverse Aβ C-terminal
forms.

Both mid-chain and C-terminal Aβ modifica-
tions were made in synthetic peptides to explain
the increase of cerebral amyloid angiopathy in
familiar Alzheimer’s disease [115]. All Aβ 1-40
mutants at positions 22 and 23, including those cor-
responding with the Dutch (Gln22), Arctic
(Gly22), Italian (Lys22), and Iowa (Asn23) types,
showed stronger neurotoxicity than wild-type Aβ
1-40. Similar tendency was observed for Aβ 1-42
mutants at positions 22 and 23 whose toxic effects
were 50–200 times stronger than that of the corre-
sponding Aβ 1-40 variants, suggesting that these
Aβ 1-42 species are the ones that are mainly
involved in the pathogenesis of cerebral amyloid
angiopathy. While the aggregation of Arctic- and
Iowa-type Aβ 1-42 was similar to that of wild-type
Aβ 1-42, Gln22- and Lys22-containing Aβ pep-
tides aggregated extensively, supporting the clini-
cal evidence that Dutch and Italian patients are
diagnosed as hereditary cerebral hemorrhage with
amyloidosis. In contrast, the Flemish Gly21 muta-
tion needs alternative explanation with the
exception of altered physicochemical properties.
Although attenuated total reflection–Fourier trans-
form infrared spectroscopy spectra suggested that
the β-pleated sheet content correlated with Aβ
aggregation, the enhanced β-turn around positions
22 and 23 in the mutated versions also enhanced
the aggregative ability [115].

A noteworthy feature of the last report is the
exceptional purity of the synthetic Aβ peptides,
supported by mass spectroscopy data. It had previ-
ously been reported that Gln22 Aβ 1-40 rather than
Gln22 Aβ 1-42 plays a significant role in Dutch-
type cerebral amyloid angiopathy because the
Dutch-type Aβ 1-42 did not show any cytotoxic
effects [116]. However, the newer report clearly
demonstrates the most potent cytotoxicity of Gln22
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Aβ 1-42 among all the Aβ 1-42 variants. In addi-
tion, in the newer paper, wild-type Aβ 1-42 aggre-
gated far more rapidly than wild-type Aβ 1-40,
differing from earlier data published by other
groups [47, 117]. Potentially novel and reliable
synthetic methods of pure Aβ 1-42 peptides [118,
119] allowed more reliable measurements. If this is
indeed true, the varying purity levels of synthetic
Aβ peptide preparations might be one of the major
reasons of the discrepancies in the biological data.

7.9 Conclusions

It is an undeniable fact that different Aβ variants
populate the tissues in different amyloid diseases
and the N-terminal, mid-chain, or C-terminal mod-
ifications are likely to contribute to the develop-
ment of a given clinical phenotype. Due to the lack
of naturally occurring material in quantities large
enough for detailed biochemical, biophysical, and
biological analysis, synthetic peptides correspon-
ding with the isolated Aβ forms are prepared, and
the potential role of the modifications in the patho-
genesis of the disease, mostly Alzheimer’s disease,
is investigated on these synthetic products. In gen-
eral, Aβ mutations enhance both typical properties
of the amyloid peptide: fibrillogenesis and neuro-
toxicity. The first is quite understandable because
deletion of the amino-terminal hydrophilic
residues, addition of two carboxy-terminal
hydrophobic residues, or elimination of charged
side-chains in mid-chain positions all likely con-
tribute to the reduction of the α-helical conformer
and to an increased β-pleated sheet formation as
well as aggregation. Less clear is the effect of the
changes on cell toxicity, especially as contrasting
views are present on the requirement for neurotoxic
properties. Peptide solubility is certainly one fac-
tor, and while most modifications are expected to
decrease aqueous solubility, N-terminal cyclization
of aspartyl residues actually increases it. Moreover,
toxic properties associated with interactions with
the cell membrane or other hydrophobic cell-origi-
nated components may play a role in the ability of
the modified Aβ variants to disrupt cellular func-
tions.

The modified Aβ forms are partly due to post-
translational processing of the unmodified peptide;
however, the mutations themselves may lend to

decreased sensitivity to further proteolytic degra-
dation hence delayed turnover. One aspect is cer-
tain: The Aβ peptide is a very difficult compound
to prepare and purify, and the purity of the syn-
thetic products (and we are usually dealing with
single amino acid mutations) can significantly
influence the results of comparative biological
assays. Aβ peptides are notorious for irregular
behavior during chromatography or other separa-
tion techniques, and single amino acid modifica-
tions, often of charged residues as they are present
in the Dutch-, Italian-, Arctic-, or Iowa-type Aβ
variants, may dramatically change the physical
behavior of the peptide and this reflects in
controversial biochemical data.

The development of reliable and reproducible
synthetic, separation, and analytical Aβ protocols as
well as the refinement of characteristic assays for
fibrillogenesis and cell toxicity will allow the views
on the effects of the various Aβ forms to unify and
provide clues for molecular or cellular therapeutic
interventions to eliminate the pathogenic Aβ
species.
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8.1 Introduction

It is nearly two decades since high concentrations
of the redox active transition metal ions Cu2+ and
Fe3+ found in β-amyloid plaques were first pro-
posed to play an important role in the pathology of
Alzheimer’s disease (AD) (see review by Bush [1]).
Over this time, a new field of metallo-neurobiology
relating to AD and other neurodegenerative dis-
eases has arisen with approximately 250 original
papers and more than 1000 references in secondary
publications to date. At first, many neuroscientists
failed to recognize the importance of this growing
literature. However, a recent pilot Phase II clinical
trial of a blood-brain barrier permeable metal pro-
tein attenuating compound (MPAC), clioquinol, in
patients with moderately severe AD has shown
promising results [2]. In a randomized sample of
36 subjects, the effect of treatment was significant
in the more severely affected group, where those
treated with clioquinol showed minimal deteriora-
tion in their cognitive scores (Alzheimer’s disease
Assessment Scale ≥25) compared with substantial
worsening of the scores for the placebo group.
Although subjected to the usual cautions applied to
small-scale trials, this is an encouraging result that
renders even more urgent the full elucidation of the
possible role of transition metals, particularly Cu
and Zn, in AD. It must be stressed that, although
there is much experimental evidence on various
aspects of the interaction between Cu, Zn, and the
constituent of the amyloid plaques, the β-amyloid
peptide (Aβ), the structural biology and elucidation
of the neuropathological significance of metal
binding are very much works in progress.

The naturally occurring Αβ1–42, 1–41 and 1–39
peptides (sequence of Aβ1–42 given in Fig. 8.1)
represent part of the putative trans-membrane
domain of the amyloid precursor protein, liberated
from the membrane by proteolytic (secretase)
action. Although its sequence is generally highly
conserved, the rat sequence has Arg5, Tyr10, and
His13 of human Aβ replaced by Gly5, Phe10, and
Arg13 (see highlighted residues in Fig. 8.1).
Because the murine species do not develop amy-
loid plaques in the brain with aging, it was recog-
nized that these substitutions could be an important
pointer to mechanisms of plaque formation in
human beings. The coordination of transition met-
als by Aβ has been linked variously to their role in
promoting peptide aggregation to form amyloid
plaques, in the production of cytotoxic reactive
oxygen species (ROS), and in promoting poten-
tially cytotoxic interactions with cell membranes.

8.2 Cu2+ and Zn2+ Induced
Aggregation of Aβ

Transition metal ion homeostasis is severely dys-
regulated in the AD brain [3, 4] and the role of
these metals has been the subject of continuing
study [5–11]. The transition metal ions Cu2+, Fe3+,
and Zn2+ have been reported to occur at high con-
centrations in the neocortical parenchyma of
healthy brain (total dry weight concentrations of
70, 340, and 350 µM, respectively). These concen-
trations may seem high but are not surprising when
one considers the intense bioenergetics of the brain
and the fact that the transition metal ions are an



essential part of the redox systems involved. Their
levels are far higher in the neuropil of the AD-
affected brain, where they reach 0.4 and 1.0 mM
for Cu and Fe/Zn, respectively in the amyloid
plaque deposits [12]. It is of interest that these have
been termed “trace metals,” an evident misnomer
because their concentrations in the gray matter
are of the same order of magnitude as Mg
(0.1–0.5 mM).

Miller et al [13] have imaged the in situ second-
ary structure of the amyloid plaques in AD brain
tissue. Using synchrotron Fourier transform
infrared micro-spectroscopy and a synchrotron 
x-ray fluorescence microprobe on the same sam-
ple, they showed a strong spatial correlation
between elevated β-sheet content in Aβ plaques
and accumulated Cu2+ and Zn2+, emphasizing an
association of metal ions with amyloid formation
in AD. There was also a strong spatial correlation
between the two ions. Higher Zn2+ concentrations
have also been seen histologically in plaque
deposits [14], and the importance of Zn2+ in plaque
formation has been emphasized by the finding that
age- and female sex-related plaque formation in
APP2576 transgenic mice was greatly reduced
upon the genetic ablation of the zinc transporter 3
protein, which is required for zinc transport into
synaptic vesicles [15].

Bush et al. [16] found that Aβ coordinated Cu2+,
Zn2+, and Fe3+ with high affinity [17, 18], which
would explain the presence of these metals in amy-
loid plaques. This study also showed stabilization
of an apparent Αβ1–40 dimer by Cu2+ on gel chro-
matography suggesting an interaction between
Cu2+ and Aβ1–40. Clements et al. [19] observed
displacement of 65mZn2+ from Aβ when co-
incubated with excess Cu2+, while Yang et al. [20]
found that Cu2+ and Zn2+ shared a common binding
site. Atwood et al. [21] found that Cu2+ was bound
to soluble Aβ via histidine residues and that the
precipitation of soluble Aβ by Cu2+ was reversibly
modulated by pH with mildly acidic conditions
(pH 6.6) greatly promoting Cu2+-mediated precipi-

tation, whereas raising the pH dissolved precipi-
tated Αβ:Cu2+ complexes. Cherny et al. [22]
observed that Zn2+ induced aggregation of soluble
Αβ at pH 7.4 in vitro, which was totally reversible
with chelation. They also found that marked Cu2+-
induced aggregation of Αβ1–40 occurred as the
solution pH was lowered from 7.4 to 6.8 and that
the reaction was completely reversible with either
chelation or raising the pH. Αβ1–40 was reported
to bind three to four Cu2+ ions when precipitated at
pH 7.0. Rapid, pH-sensitive aggregation occurred
at low nanomolar concentrations of both Α β1–40
and Αβ1–42 with submicromolar concentrations of
Cu2+. Unlike Αβ1–40, Αβ1–42 was precipitated by
submicromolar Cu2+ concentrations at pH 7.4. Rat
Αβ1–40 and histidine-modified human Αβ1–40
were not aggregated by Zn2+, Cu2+, or Fe3+, indi-
cating that histidine residues are essential for
metal-mediated Αβ assembly. Cherny et al. [23]
also showed that Cu2+- and Zn2+-selective chelators
enhanced the dissolution of amyloid deposits in
postmortem brain specimens from AD subjects and
from amyloid precursor protein overexpressing
transgenic mice, confirming the part played by
these metal ions in cerebral amyloid assembly. In
particular, Zn2+ efficiently induces aggregation of
synthetic Αβ under conditions similar to the physi-
ological ones in the normal brain, that is, at
nanomolar and submicromolar concentrations of
Αβ and free Zn2+, respectively [15–17].

Recently, it has been demonstrated that Aβ will
not precipitate when trace metal ions are rigorously
excluded [24]. On the other hand, the very strong
precipitating effect of Zn2+ implies that there are
some factors protecting Αβ from Zn2+-induced
aggregation in the normal brain. Certain metal ions
such as Mg2+ and Ca2+, which do not exhibit a pre-
cipitating effect, have been hypothesized to have
this protective effect [25]. However, the inhibition
of Zn2+-induced Αβ aggregation by these metal
ions has not yet been verified. The effect of Cu2+ on
the aggregation of Αβ is ambiguous compared with
Zn2+. Cu2+ has been shown to be a strong inducer of
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FIGURE 8.1. Sequence of human Aβ compared with that of the rat.



Αβ aggregation under certain conditions [24]. In
contrast with the Zn2+-induced Αβ aggregation that
occurs over a wide pH range (5.5–7.5), the Cu2+-
induced aggregation occurs primarily at mildly
acidic pH [21].

Atwood et al. [21] determined a half-maximal
binding of Cu2+ for Αβ in the micromolar range
(4.0 µM for Αβ1–40 and 0.3 µM for Αβ1–42) by
indirect spectrophotometric analysis. However, this
analysis of binding affinities was limited by the
sensitivity of the spectrophotometric technique and
the lack of competitive binding factors in the incu-
bation that would emulate the physiological situa-
tion more closely. Garzon-Rodriguez et al. [26]
used a more sensitive fluorescence technique and a
single tryptophan (F4W) mutant of Aβ1-40 to
show that the relative affinities were Fe < Cu > Zn.
Syme et al. [27] used the competitive effects of
glycine and L-histidine to measure Cu2+ affinity for
Aβ by fluorescence spectroscopy. Adding Cu2+ to
Aβ1–28 caused marked quenching of the tyrosine
fluorescence signal at 307 nm. Added glycine com-
petes with Aβ for the Cu2+, and the tyrosine fluo-
rescence signal reappears at a sufficiently high
glycine levels. Cu2+ coordinates to glycine via the
amino and carboxylate groups with an apparent
pH-adjusted Ka of 1.8 × 106 M−1, and two glycine
residues will bind to a single Cu2+ ion [27]. It took
more than 100 mol equivalents of glycine to cause
the tyrosine fluorescence signal to completely
return to its maximal strength. Half of the maximal
quenching is achieved at approximately 18 ± 2 eq.
of glycine. Finally, Huang et al. [24] had shown
that binding of Cu2+ to Αβ1– 42 promoted precipi-
tation with so high an affinity that it was hard to
avoid aggregation unless buffers were most rigor-
ously treated with chelating agents. Even then, it is
difficult to remove the last traces of metal ion,
which may account for many of the inconsistencies
reported in the Aβ metal binding literature.
Extremely small changes in free or exchangeable
Cu2+ concentration are also likely to have a signif-
icant effect on Αβ solubility in vivo.

8.3 Αβ Structures

The structure of the metal binding site of Aβ must
be considered in the context of the structure of the
whole molecule. Because it has been widely held

that Aβ exerts its neurotoxic action via interactions
with neuronal membranes additionally to or in con-
cert with its redox activity, there have been many
studies on its structure in a variety of membrane
mimetic systems. A major obstacle to the determi-
nation of definitive structures is the difficulty of
obtaining reproducibly a random-structured start-
ing material or, alternatively, of mimicking its
transmembrane conformation immediately after
secretase cleavage. Furthermore, because aqueous
solutions of Aβ accumulate significant amounts of
aggregates within a few hours, NMR studies can be
difficult. Nevertheless, early NMR studies of
human Aβ1-40 showed a random coil structure in
aqueous solution (pH 4) at micromolar concentra-
tion [28]. The secondary structure of Aβ40 peptide
in 40% TFE buffered at pH 2.8 with 50 mM potas-
sium phosphate was also studied by NMR. Under
these conditions, there was aggregation only after a
week and the NMR spectra were well resolved.
Solution structures of Aβ1–40 in perdeuterated
sodium dodecyl sulfate (SDS-d25) micelles
obtained by Coles et al. [29] showed two α-helical
segments. The helical arrangement of residues
15–25 and 29–37 was confirmed by intense NOE
connectivity (3–4 residues) while medium-range
NOE for residues 25–29 were either weak or not
observed. The “break” between the two helices was
suggested by D2O exchange experiments, where
protons on residues 25–29 were shown to exchange
rapidly and, from quantitative structural and dihe-
dral angle restraint calculation prediction, a kink
was seen at residues 26–27 acting as a “hinge” for
the two helices.

Shao et al. [30] showed two α-helical regions
between Tyr10-Val24 and Lys28-Val36 for both
Aβ1–40 and Aβ1–42 in SDS-d25 at pH 7.2. The
data were supported by structural calculations indi-
cating α-helices between residues 10–24 and
28–42 with the region Gly25-Asn27 as a connect-
ing loop. Similar downfield shifts of Aβ1–40 and
Aβ1–42 at Val39-Val40 and Val40-Ile41, respec-
tively, suggested a structural preference for the
peptides at their C-terminus. This may be related to
conformational averaging between a micelle bound
α-helical structure and β-sheet when the peptides
leave the micelle surface.

Most NMR studies in solution were done in
either trifluoroethanol (TFE) [31] or SDS-d25 /D2O
to mimic a membrane environment, although an
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early study by Sorimachi and Craik [32] showed
some α-helical structure in dimethyl sulfoxide
(DMSO). The α-helical conformation found by
NMR was further supported by far ultraviolet cir-
cular dichrosim (CD) spectroscopy which showed
that Aβ1–28 in the presence of charged membrane-
like surfaces, especially negatively charged SDS,
preferred a helical structure. Other membrane-like
species, zwitterionic dodecylphosphocholine
(DPC) and dodecyltrimethylammonium chloride
(DTAC), with heterogenous amphiphilic environ-
ments similar to biological systems have been
used. Fletcher and Keire [33] used solution NMR
and CD to study the conformation of Aβ12–28 in
dodecylphosphocholine (DPC) and SDS micelles
as a function of pH and lipid type. Interaction with
micelles was weak but changed the conformation
when compared with aqueous buffer alone.
However, the peptide interacted strongly with
anionic SDS micelles, where it was mostly bound,
was α-helical from Lys16 to Val24, and aggregated
slowly. The pH-dependent conformational changes
of the peptide in solution occurred in the pH range
at which the side-chain groups of Asp22, Glu23,
His13, and HisI4 are deprotonated (pKs ~ 4 and
6.5). The authors concluded that the interaction of
Aβ12–28 with SDS micelles altered the pH-
dependent conformational transitions of the pep-
tide whereas the weak interaction with DPC
micelles caused little change.

These conformational changes indicate a rela-
tionship between peptide structure and electro-
static interactions involving protonation and
deprotonation of the micelle lipid head groups at
different pH. In experiments using Aβ1–40 with
the imidazole side chains of the histidine residues
6, 13, 14 methylated, Tickler et al. [34] found that
the peptide-lipid interaction was modulated by the
histidine residues and, therefore, would be pH
sensitive. Aβ1–28 appears to associate with the
surface of the membrane based on an irregular
pattern in the amide chemical shift temperature
coefficient dependence, suggesting that the amide
backbone is situated at the water and micelle
interface. Narrower NMR line widths indicated
conformational mobility at the micelle surface
and the concentration of Aβ1–28 not affecting CD
and NMR data suggested that the α-helical struc-
ture is more likely to be stabilized by rapid
exchange [33].

Jin et al. [35] used NMR spectroscopy to deter-
mine the solution structure of rat Aβ1–28 (see
Fig. 8.1) and its binding constant for Zn2+. They
found that the three-dimensional solution structure
of rat Aβ1–28 was more stable than that of human
Aβ1–28 in DMSO-d6 and that a helical region from
Gln15 to Val24 existed in the rat Aβ1–28. The
affinity of Zn2+ for rat Aβ1–28 was lower than that
for human Aβ1–28, and Arg13, His6, and His14
residues provide the primary binding sites for Zn2+.
They also found that Zn2+ binding to rat Aβ1–28
caused the peptide to change to a more stable
conformation.

Gröbner et al. [36] have outlined a method for
structure determination of Αβ in membrane sys-
tems. First, they used CD and 31P magic angle spin-
ning (MAS) NMR spectroscopies to characterise
the peptide in a dimyristoyl phosphatidyl
choline/dimyristoyl phosphatidyl glycerol vesicle
system. Their most notable finding was that they
could get Aβ1–40 to give an α-helical structure if
the peptide were dialyzed from TFE solution into
the vesicles. That is, it was given no opportunity to
form β-structure inducing fibrils by contact with
water. Second, they used rotational resonance 13C
CP MAS NMR recoupling techniques to show that
the membrane-penetrant part of the peptide was 
α-helical before major aggregation had occurred.
To gain further insights, these authors concluded,
future MAS studies would have to be made on mul-
tiple uniformly labeled peptides. Further advances
in spectral resolution and sensitivity are vital, as is
development of labeling methodologies. The devel-
opment of pulse sequences and appropriate algo-
rithms to extract multiple distance and torsion
angle constraints from these systems would also be
needed. Thus, the determination of the structure of
Aβ by NMR in a membrane environment is still
incomplete.

8.4 The Structure of Aβ in Fibrils

Conventionally, the supramolecular structure of 
β-sheet entities such as amyloid plaques can be con-
sidered to be either parallel or antiparallel. Which
mode is likely to be important for determining the
residues involved in the metal-bridged cross-links
that occur in amyloid plaques and for the subsequent
redox chemistry. 13mC multiple quantum SS-NMR
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has been used to probe the structure of the full-
length Aβ peptide [37]. Internuclear distances of
approximately 4.8 Å would be observed for 13mC-
labeled residues if the β-sheets form an in-register
parallel structure. An antiparallel structure, on the
other hand, would have nearest neighbor residues
exhibiting far larger distances than 4.8 Å. Using
these NMR techniques, Aβ1–40 was shown to form
a parallel β-structure [35]. This finding is similar to
that of Benziger et al. [38] for Aβ10–35.
Comparison with their data shows evidence that
Aβ10–35 fibrils have parallel β-sheet organization
beyond dimers. However, SS-NMR studies on
Aβ34–42 fibrils suggested an antiparallel β-struc-
ture, which was also observed for Aβ16–22 capped
at both ends [39]. Lansbury et al. [40] characterized
fibrils made from the C terminal fragment Aβ34–42.
They found the alignment of Aβ34–42 fibrils to be
antiparallel and two residues out of register using
rotational resonance experiments on doubly 13C-
labeled samples. Therefore, SS-NMR studies have
presented evidence for both parallel and antiparallel
alignments of Aβ fragments, depending on the pep-
tide sequence studied and the methodology
employed.

In a different approach, Egnaczyk et al. [41]
used photo cross-linking. They synthesized a
photoreactive Aβ1–40 ligand by substituting 
L-p-benzoylphenylalanine (Bpa) for phenylalanine
at position 4. This peptide was incorporated into
synthetic amyloid fibrils and exposed to near-UV
radiation. Analysis of the fibrils showed a Bpa4-
Met35 intermolecular cross-link, which was con-
sistent with an antiparallel alignment of Aβ
peptides within amyloid fibrils. Together, the above
results show that fibrils can adopt different
supramolecular structures depending on the pep-
tide length and properties of the residues present.
The differences are of considerable significance.
For example, the photo cross-linking data show
that the Met35 could be very close to the metal
binding site, thus favoring redox reactions with the
Met as an electron donor. On the other hand, it is
quite conceivable that parallel alignment would
greatly favor metal-peptide cross-linking. It is pos-
sible that physiologically both kinds of alignment
could occur, the proportions being affected by dif-
ferent environments, such as extracellular or mem-
brane associated, the presence/absence of metal
ions or differing ratios of Zn to Cu.

8.5 The Metal-Binding Sites and
the Structure of Aβ

The randomness of the Aβ peptide in aqueous solu-
tion makes it difficult to determine the nature of the
metal-binding sites. The problem has been
approached using various spectroscopic tech-
niques, such as Raman, CD, and magnetic reso-
nance. Miura et al. [42] used Raman spectroscopy
to study the binding modes of Zn2+ and Cu2+ to Aβ
in solution and insoluble aggregates. They found
two different modes of metal-Aβ binding, one
characterized by metal binding to the imidazole Nτ
atom of histidine, producing insoluble aggregates,
the other involving metal binding to the Nπ, but not
the Nτ, atom of histidine as well as to main-chain
amide nitrogens, giving soluble complexes. Zn2+

binds to Aβ only via the Nτ regardless of pH, while
the Cu2+ binding mode is pH dependent. At mildly
acidic pH, Cu2+ binds to Aβ in the former mode,
whereas the latter mode is predominant at neutral
pH. Miura et al. [42] proposed that the transition
from one binding mode to the other explained the
strong pH dependence of Cu2+-induced Aβ aggre-
gation. Dong et al. [43] also employed Raman
microscopy to study the metal-binding sites in
amyloid plaque cores, using the spectra-structure
correlations for Aβ–transition metal binding. They
observed that Zn2+ was coordinated to the histidine
Nτ and the Cu2+ to the Nπ, confirming that the metal
binding mode was the same in both the synthetic
peptide and its aggregates and the naturally
occurring plaques.

Huang et al. [44] used multifrequency EPR 
(L-band, X- and Q-band) to show that copper coor-
dinates tightly to Aβ1–40 and that an approxi-
mately equimolar mixture of peptide and CuCl2
produced a single Cu2+-peptide complex.
Computer simulation of the L-band spectrum with
an axially symmetrical spin Hamiltonian and the g
and A matrices (g||, 2.295; g⊥, 2.073; A||, 163.60; A⊥,
10.0 × 10−4 cm−1) suggested a tetragonally distorted
geometry, which is commonly found in type 2 cop-
per proteins. Expansion of the MI = −1/2 resonance
revealed nitrogen ligand hyperfine coupling.
Computer simulation of these resonances indicated
the presence of at least three nitrogen atoms. This
and the magnitude of the g|| and A|| values, together
with Peisach and Blumberg [45] plots, are
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consistent with a fourth equatorial ligand binding
to copper via an oxygen rather than a sulfur donor
atom. Thus, the coordination sphere for the copper-
peptide complex was considered to be 3N1O.
These authors also used EPR spectroscopy to
measure residual Cu2+ remaining after incubating
stoichiometric ratios of CuCl2 with Aβ1–40. There
was a 76% loss of the Cu2+ signal, compatible with
peptide-mediated reduction of Cu2+ to diamagnetic
Cu+, which is undetectable by EPR, agreeing with
the corresponding concentration of Cu+ measured
by bioassay. There was no evidence of free, unco-
ordinated Cu2+ remaining after addition of the pep-
tide, because unbound Cu2+ itself gives a different
multiple resonance signal.

Using a combination of NMR and EPR spectro-
scopies, Curtain et al. [46] proposed a structure for
the high-affinity site and drew some conclusions
about the interaction of the peptide with lipids and
its modification by Cu2+, Zn2+, and pH. NMR stud-
ies on Aβ1–28 and Aβ1–40/2 indicated that both
peptides were undergoing significant conforma-
tional exchange in aqueous solution. NMR and
EPR spectra were also recorded for Aβ1–28 where
the Nε2 nitrogens of the imidazole ring of the His
residues 6, 13, and 14 were methylated (Me-
Aβ1–28). The NMR spectra of Me-Aβ1–28 were
virtually identical to Aβ1–28, the only significant
differences being three strong singlets in the 1H
spectrum at 3.80, 3.82, and 3.83 ppm from the
methyl groups attached to the His imidazole rings.
A precipitate formed when Zn2+ was added to the
solutions of Aβ1–28 or Aβ in PBS. NMR spectra
of the supernatant of Aβ1–28 treated with Zn2+

showed that peaks assigned to C2H and C4H of
His6, His13, and His14 of Aβ1–28 had broadened
significantly. However, there was little or no
change in the rest of the spectrum compared with
Aβ1–28 prior to the addition of Zn2+. This broad-
ening of the NMR histidine residue peaks is the
result of the interaction of these residues with Zn2+.

The histidyl side chain is a well-established lig-
and of zinc in proteins and peptides [47], so this
result suggested that three of the ligands bound to
Zn2+ were most likely to be the imidazole rings of
the histidine residues [48]. Indeed, His13 had been
established by Liu et al. [49] as a crucial residue in
the Zn2+-mediated aggregation of Aβ. The broad-
ening of these peaks is the result of chemical
exchange between free and metal-bound states or

among different metal-bound states. The extent of
broadening of the peaks indicated intermediate
exchange, which on the NMR timescale suggests
that the metal-binding affinity is in the micromolar
range, in agreement with the low-affinity site
described by Bush et al. [16]. The absence of any
change in the rest of the spectrum suggested that
the metal-bound form of the peptide was
monomeric and that there was little or no signifi-
cant amount of soluble oligomer in solution,
because higher order aggregates would have
resulted in significantly broadened resonances.

When Cu2+ or Fe3+ was titrated into an aqueous
solution of Aβ1–28, similar changes were observed
in the 1H spectrum, with the peaks assigned to the
C2H and C4H of His6, His13, and His14 disap-
pearing from the spectrum (Fig. 8.2). A slight
broadening of all peaks in the spectrum (associated
with the paramagnetism of Cu2+ and Fe3+) was also
observed, but there were no other major changes
after the addition of the metal ions. Metal-induced
precipitation blocked attempts to saturate the
metal-binding site. The precipitate made the col-
lection of NMR spectra difficult, and few conclu-
sions could be drawn from spectra of peptide
remaining in solution. When Cu2+ was added to an
aqueous solution of Me-Aβ1–28, the changes
observed in the spectrum were identical to those
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FIGURE 8.2. Amide and aromatic region of the 600 MHz
1H NMR spectra of Aβ in aqueous PBS solution and fol-
lowing the addition of Cu2+. Peaks caused by the C2H
and C4H of histidines 6, 13, and 14 have been broadened
beyond detection because of coordination to the copper.
There is a generalized broadening of the rest of the spec-
trum due to the paramagnetism of the added Cu2+. After
Curtain et al. [46].



observed for Cu2+ added to Aβ1–28, but there was
no visible precipitate. In aqueous solution and lipid
environments, coordination of metal ions to Αβ is
the same, with His6, His13, and His14 all involved.

The X-band EPR spectrum of Cu2+ bound to the
peptides had the unsplit intense g⊥ resonance char-
acteristic of an axially symmetric square planar
3N1O or 4N coordination, g|| = 2.28 and g⊥ = 2.03,
Α|| = 173.8 gauss. Similar parameters were found
for Cu2+ coordination by Aβ1–16, Aβ1–40, and
Aβ1–42, indicating that the site was not affected by
the size of the C-terminal regions of the peptides.
A notable finding with peptides of all lengths was
that increasing the Cu2+ above ~0.3 mol/mol pep-
tide caused line broadening in the Cu2+ EPR spec-
tra, over a pH range of 5.5 to 7.5, suggesting the
presence of dipolar or exchange effects (Fig. 8.3).
These would be observed if two or more Cu ions
were within approximately 6 Å of each other.
These effects could be explained if at Cu2+/peptide
molar ratios >0.3, Αβ coordinated a second Cu2+

atom cooperatively. They were abolished if the his-
tidine residues were methylated at either Nδ1 or
Νε2, suggesting that bridging histidine residues
were being formed (Fig. 8.4) [32, 46].

One consequence of coordination by a metal ion
to the Nδ1 of a histidine residue is a reduction in
the pKa of Nε2 NH, making this nitrogen more
suitable for metal binding [48], resulting in a histi-
dine residue that can bridge metal ions; a good
example being His63 at the active site of superox-
ide dismutase [50]. Similar bridging histidine
residues have been proposed in the octarepeat
region of the prion protein [51], which has been
shown to possess significant SOD activity in the
presence of Cu2+ [52]. The line-broadening effects
observed in the EPR spectra at Cu2+/Aβ molar frac-
tions up to 1.0 by Curtain et al. [46] were not
observed by Syme et al. [27], Huang et al. [44] or
Antzutkin [52]. It is relevant that Huang et al. [54]
along with Narayanan and Reif [55] have shown
that NaCl has a marked effect on metal-induced
aggregation of Aβ. Huang et al. [44] and Curtain
et al. [46] obtained their spectra from samples in
phosphate-buffered saline at pH 7.4, Antzutkin
[53] adjusted the pH of his sample to pH 7.4 and
dialyzed against distilled water, while Syme et al.
[27] used ethyl morpholine buffers.

Similar line-broadening phenomena to that
observed by Curtain et al. [46] have been observed
in the EPR spectra of imidazole-bridged copper
complexes designed as SOD mimetics [56]. The
bridging histidine may be responsible for the
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FIGURE 8.3. EPR spectra (9.7 GHz) of Aβ1–28 to which
had been added respectively: A, 0.2/1 M/M; B, 0.4/1
M/M; C, 0.6/1 M/M; D, 0.8/1 M/M Cu2+/peptide. All
spectra recorded at 130 K in pH 7.4 phosphate-buffered
saline. Spectra C and D show significant broadening of
the g⊥ line. All lengths of Aβ studied give identical spec-
tra (Curtain et al. [46, 79]).
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FIGURE 8.4. Model showing how two Aβ strands (A and
B) could be linked by two copper atoms through a bridg-
ing histidine. The 6 Å distance between the copper atoms
is within the range at which we would expect to see dipo-
lar broadening of Cu2+ EPR spectra of the type seen in
Figure 8.2.



reversible metal-induced aggregation that is
observed when Aβ is metallated with Cu2+ and
Zn2+. The bridging histidine residues may also
explain the multiple metal-binding sites observed
for each peptide and the high degree of cooperativ-
ity evident for subsequent metal binding. With
three histidines bound to the metal center, a large
scope exists for metal-mediated cross-linking of
the peptides leading to aggregation, which will be
reversible when the metal is removed by chelation.
It should be noted here that the bridging histidine
hypothesis of peptide association would favor a
parallel over an antiparallel β-sheet structure for
the fibrils and plaques. It is quite possible that
metal-induced precipitation of Aβ is quite different
from that induced by prolonged incubation of
monomeric peptide in the putative absence of
metal. For example, Miura et al. [42] strongly sug-
gested that the metal-induced aggregation of Aβ
was promoted by cross-linking of the peptides
through metal-His[Nτ] bonds, most likely through
His[Nτ]-metal-His[Nτ] bridges at three histidine
residues.

Observations that rat Aβ, which differs from
human Aβ by three substitutions (Fig. 8.1) [57],
does not reduce Cu2+ and Fe3+, is not readily pre-
cipitated by Zn2+ or Cu2+, does not produce ROS as
strongly as the human sequence, and does not pro-
duce plaques highlight the importance of the three
histidines. Rat Aβ forms a metal complex via two
histidine residues and two oxygen ligands rather
than three histidine residues and one oxygen lig-
and, compared with human Aβ where the side
chain of His13 of human Aβ is ligated to the metal
ion. This was borne out by the EPR spectrum,
which was typical of a square planar 2N2O Cu2+

coordination [44].
Syme et al. [27] and Antzutkin [53] both used 

X-band EPR to study the interaction of Aβ with
Cu2+ in solution, confirming the axially symmetric
binding site. Syme et al. [27] obtained EPR spectra
at pH 7.4 and higher that showed heterogeneity
attributed to a second high-affinity binding site.
This site became much more prominent when the
pH was raised to 10.0. The heterogeneity at pH 7.4
was not observed by Huang et al. [44], Curtain
et al. [46], or by Antzutkin [53] and warrants fur-
ther investigation. It is possible that the second
binding site is a buffer ion effect. In order to define
the binding site, Syme et al. [27] also prepared

mutants of Aβ1–28 in which each of the histidine
residues had been replaced by alanine or in which
the N-terminus was acetylated, and their data sug-
gested that the N-terminus and His13 and His14
are crucial for Cu2+ binding and that H6 also played
a part. On this basis, they proposed a square planar
model with the Cu2+ coordinated to His13, His14,
His6, and the amino N of the N-terminus. Although
a 4N model may be fitted to Syme et al.’s [27] X-
band spectra, it is not compatible with the conclu-
sions derived by Huang et al. [44] from L-band
spectra and their superhyperfine structure that
point to a 3N1O coordination.

Karr et al. [58] found that Aβ peptides lacking
one to three N-terminal amino acids but containing
His6, His13, and His14 and Tyr10 did not coordi-
nate Cu2+ in the same environment as the native
peptide, suggesting that these N-terminal residues
are significant for Cu2+ binding. They also con-
firmed that the coordination is identical with any
length of peptide (Aβ1–16, Aβ1–28, Aβ1–40,
Aβ1–42) that contained the first 16 amino acids.
These authors also showed [59] that the coordina-
tion of Cu2+ did not change during organization of
monomeric Aβ into fibrils and that neither soluble
nor fibrillar forms of Aβ1–40 contained antiferro-
magnetically exchange-coupled binuclear Cu2+

sites in which two ions were bridged by an inter-
vening ligand. The latter conclusion was based on
a temperature-dependence study of the EPR spec-
tra for Cu2+ bound to soluble or fibrillar Aβ
showing that the Cu2+ center displayed normal
Curie behavior, indicating that the site was
mononuclear.

Further advances in understanding the N coordi-
nation of Cu2+ will require more sophisticated EPR
techniques than have been used so far, supported
by input from other methods such as XAFS.
Equally, there remains uncertainty as to the nature
of the potential O ligand. Proton NMR data
obtained by Syme et al. [27] agreed with the find-
ings of Huang et al. [44] and Curtain et al. [46] that
histidine residues are involved in Cu2+ coordina-
tion, but they found that Tyr10 was not involved.
Further, Karr et al. [58] found that the coordination
of Cu2+ in the Y10F mutant of Aβ remained 3N1O
with EPR spectra identical to the wild-type spectra.
Isotopic labeling experiments showed that water
was not the O-atom donor to Cu2+ in Aβ fibrils or
in the Y10F mutant. However, the Raman data of
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Miura et al. [42] suggest that the ligand was the O
of the tyrosine hydroxyl. They were able to assign
the 1504 cm−1 band in the Raman spectra of insol-
uble Cu2+-Aβ1–16 aggregates to Cu2+-bound
tyrosinate, and the high intensity of the 1604 cm−1

band was attributed to a contribution from the Y8a
band of tyrosinate. Unlike Zn2+, Cu2+ binds to tyro-
sine in the insoluble aggregates of Aβ1–16. When
the deprotonated phenolic oxygen of tyrosinate is
bound to a transition metal ion such as Cu2+ and
Fe3+, the Y19a band shifts to about 1500 cm−1 and
gains intensity through resonance with a ð (pheno-
late) f d (metal) charge-transfer transition in the
visible. Such charge transfer does not occur for
Zn2+, the d orbitals of which are fully occupied. It
should be noted that in these experiments, Miura
et al. [42] used phosphate-buffered saline, which
might have had the effect of encouraging peptide
association [54, 55].

In conclusion, although there is general agree-
ment as to the nature of the monomeric binding site
insofar as it is type two Cu2+ with a 3N10 coordi-
nation, varying buffer conditions, peptide concen-
tration, and conformation make it difficult to
compare one set of published data with another.
There is a similarity here with the studies on the
alignment of the peptide in fibrils. In considering
the issue of monomeric versus dimeric Cu2+, it is
important to remember that Aβ may form
oligomers and multimers in a variety of ways,
some more relevant to its neurotoxicity than others
[60–64].

8.6 Aβ Redox Activity and the
Role of Metal Coordination

Oxidative stress markers characterize the neu-
ropathology both of Alzheimer’s disease and of
amyloid-bearing transgenic mice. The neurotoxic-
ity of Aβ has been linked to hydrogen peroxide
generation in cell cultures by a mechanism that is
still being fully described but is likely to be
dependent on Aβ coordinating redox active metal
ions. Huang et al. [65] showed that human Aβ
directly produces hydrogen peroxide (H2O2) by a
mechanism that involves the reduction of metal
ions, Fe3+ or Cu2+. They used spectrophotometry to
show that the Aβ peptide reduced Fe3+ and Cu2+ to
Fe2+ and Cu+ and that molecular oxygen is then

trapped by Aβ and reduced to H2O2 in a reaction
that is driven by sub-stoichiometric amounts of
Fe2+ or Cu+. In the presence of Cu2+ or Fe3+, Aβ
produced a positive thiobarbituric-reactive sub-
stance, compatible with the generation of the
hydroxyl radical [OH*]. Tabner et al. [66] used the
5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-
trap to identify the radical produced by Aβ in the
presence of Fe2+ and concluded that it was OH*.
However, they also found OH* was produced in the
presence of Fe2+ by Aβ25–35, which does not con-
tain a strong metal binding site. Because Fe2+ with
trace amounts of Cu2+ as low as 0.01 mol%, corre-
sponding with the amount of adventitious Cu found
in the average peptide preparation, will produce an
OH* adduct with the DMPO spin trap [Curtain
et al., unpublished], Tabner et al.’s [66] results
should be treated with caution even though they
appear to confirm the findings of Huang et al. [65].

In the course of metal-catalyzed redox activity,
Aβ may undergo under a number of changes.
Atwood et al. [67] found that Cu2+ induced the for-
mation of SDS-resistant oligomers of Aβ that gave
a fluorescence signal characteristic of the cross-
linking of the peptide’s Tyr10. This finding was
confirmed by directly identifying the dityrosine by
electrospray ionization mass spectrometry and by
the use of a specific dityrosine antibody. The addi-
tion of H2O2 strongly promoted Cu2+-induced dity-
rosine cross-linking of Aβ1–28, Aβ1–40, and
Aβ1–42, and it was suggested that the oxidative
coupling was initiated by interaction of H2O2 with
a Cu2+ tyrosinate. The dityrosine modification is
significant because it is highly resistant to proteo-
lysis and would be important in increasing the
structural strength of the plaques. Schoneich and
Williams [68], however, were unable to find any
evidence of tyrosine oxidation. They used ascor-
bate/Cu2+-induced oxidation and electrospray
ionization-time-of-flight MS/MS analysis to study
the oxidation products of Aβ1–16, Aβ1–28, and
Aβ1–40. Initial oxidation targets were His13 and
His14, which were converted to 2-oxo-His, while
His6 and Tyr10 were unchanged, although His6
was oxidized after longer oxidation times. The for-
mation of 2-oxo-His suggests that a transient 2C
centered His radical might have been formed. Such
radicals have been described in a number of bio-
logical redox systems [69, 70], although not so
far in any of neuropathological significance.
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Schoneich and Williams [68] explained the insen-
sitivity of His6 to initial oxidation by suggesting
that histidine bridging of two Cu2+-Aβ molecules
lowered the electron density on His6, comparable
with similar results on a Cu2+- and Zn2+-bridging
His61 residue of bovine Cu,Zn superoxide
dismutase.

Barnham et al. [71] used density functional the-
ory calculations to elucidate the chemical mecha-
nisms underlying the catalytic production of H2O2
by Aβ/Cu and the production of dityrosine. Here,
Tyr10 was identified as the critical residue. This
finding accords with the growing awareness that
the O2 activation ability of many cupro-enzymes is
also coupled to the redox properties of tyrosine and
the relative stability of tyrosyl radicals. The latter
play important catalytic roles in photosystem II,
ribonucleotide reductase, COX-2, DNA pho-
tolyase, galactose oxidase, and cytochrome-c
oxidase [72].

With ascorbate as the electron donor, the first
step in the catalytic production of H2O2 is the
reduction of Cu2+ to Cu+. Barnham et al. [71] pro-
posed that the transfer could take place via a pro-
ton-coupled electron transfer (PCET) mechanism.

Reactions involving PCET are being increasingly
implicated in a range of biological systems, includ-
ing charge transport in DNA and enzymatic oxygen
production [73]. In this system, the electron trans-
fer involves both p- and d-orbitals on the ascorbate,
Tyr10, and the copper ion, while proton transfer
involves p-orbitals on the O2-atom of ascorbate,
and the side-chain oxygen of Tyr10 (Figs. 8.5A and
8.5B). The significant change in electron spin on
the copper ion going from the ground state to the
transition state suggests that the proton and the
electron are transferred within different molecular
orbitals, as is predicted to be necessary for PCET to
occur [73]. The activation energy for this one
electron reduction step was computed to be only
0.9 kcal/mol.

Barnham et al. [71] tested the Cu/tyrosinate
hypothesis using an Aβ1–42 peptide with Tyr10
substituted with alanine (Y10A). Both peptides
gave rise to similar 65mCu EPR spectra with the
strong single g⊥ resonance characteristic of an axi-
ally symmetric square planar complex, although
there was a significant increase in the g|| value of
Y10A. The increase was probably due to some
distortion of the coordination sphere because the
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FIGURE 8.5. (A) The transition state that is formed when a hydrogen atom is transferred from ascorbate to the side-
chain oxygen of Aβ Y10, which acts as a gate, and passes an electron to Cu2+ reducing it to Cu+ [71]. (B) An inter-
mediate formed along the reaction path where Y10 has transformed into a tyrosyl radical giving up its side-chain
hydroxyl hydrogen atom to O2
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H2O2. Ascorbyl radical anion coordinates via its O1-oxygen anion in an apical position to Cu2+. Figures based on data
of Barnham et al. [71].



oxygen ligand, which was possibly from Tyr10,
was now derived from another oxygen donor
(e.g., phosphate, or carboxylate from the peptide).
While wild-type Aβ1–42 rapidly reduces Cu2+ to
Cu+ in aqueous solution, with near-complete reduc-
tion taking 80 min, the mutation of Tyr10 to ala-
nine markedly decreased the ability of Aβ to
reduce Cu2+. Further, spin trapping studies also
confirmed the DFT observation that Tyr10 acts as a
gate that facilitates the electron transfer needed to
reduce Cu2+ to Cu+. When the spin trap 2-methyl-
2-nitrosopropane (2MNP) [74] was added to the
reaction mixture w.t. Aβ1– 42/Cu2+/ascorbate, a
broad line triplet characteristic of a trapped carbon-
centered radical bound to a peptide appeared in the
EPR spectra. However, if Y10A peptide were sub-
stituted for the w.t., formation of this triplet was
inhibited (Fig. 8.6). Although this is not conclusive
evidence that the radical is on Tyr10, the possibil-
ity that a His radical was trapped by the 2MNP can
be discounted because the AN value (15.5) of the
spectrum in Figure 8.6 is closer to those found for
Tyr adducts [75] than for C-centered His, which
furthermore show marked superhyperfine structure
[69]. It is likely that which transient radical is
trapped in a given Cu:Aβ redox system will depend
on a number of experimental variables only some
of which may be biologically relevant.

8.7 The Effect of Metal Binding 
on the Interaction of Aβ with
Membranes

An alternative explanation of Aβ. neurotoxicity, not
necessarily excluding the production of ROS, is
based on the peptide’s interaction with membranes
and/or membrane proteins. Numerous reports have
described the effects of Aβ on membranes and lipid
systems and their possible roles in its neurotoxicity.
The NMR studies cited earlier in this chapter
showed considerable variation in peptide confor-
mation in different membrane-mimetic systems.
There is much experimental evidence from CD and
Fourier transform infrared spectroscopies that the
Aβ peptides can be membrane associated in the β-
configuration [75], although there are reports of
membrane-associated α-helices being found in the
presence of gangliosides [76], cholesterol [77], and
Cu2+ or Zn2+ [46]. This variability under different
conditions can be understood because most of the
amyloidogenic peptides have been identified, along
with viral fusion peptides, as being exceptionally
pleiomorphic in structure [78]. This identification
was based on the high prevalence of alanine and
glycine residues within a hydrophobic sequence.

As the cell membrane is a mosaic of lipids and
protein segments, it is possible that the peptides
will exhibit different structures with different
properties in different parts of the mosaic. The
pleiomorphism is highly relevant to the cytotoxic-
ity of the peptide, because factors influencing it
could act as switches to determine whether the pep-
tide is a β-sheet with the potential to form amyloid
or be membrane surface seeking, or a membrane-
penetrant α-helix.

Curtain et al. [46, 79] used a combination of
EPR and CD spectroscopies to study the effect of
metal ions, pH, and cholesterol on the interaction
of Aβ with bilayer membranes. EPR spectroscopy,
using spin-labeled lipid chains or protein segments,
has been used extensively to study translational and
rotational dynamics in biological membranes.
Lipids at the hydrophobic interface between lipid
and transmembrane protein segments and peptides
in their monomeric and oligomeric states have their
rotational motion restricted [80]. This population
of lipids can be resolved in the EPR spectrum as a
motionally restricted component distinct from the
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FIGURE 8.6. X-band EPR spectra of adducts formed after
the addition of 100 mM spin trap 2-methyl, 2-nitroso-
propane to respectively wild-type Aβ (50 mM incubated
at 20˚C for 30 min with 25 mM Cu2+ in pH 7.4 PBS) and
the Y10A mutant of Aβ at the same Cu/peptide ratio and
pH. End-to-end width of spectrum, 100 gauss. Figure
based on data of Barnham et al. [71].



fluid bilayer lipids (Fig. 8.7), which can be quanti-
fied to give both the stoichiometry and selectivity
of the first shell of lipids interacting directly with
membrane-penetrant peptides. The stoichiometric
data can give an estimate of the number of subunits
in a membrane-penetrant oligomeric structure.
Using this approach, it was shown that Aβ1–40 and
Aβ1–42 bound to Cu2+ or Zn2+ penetrated bilayers
of negatively charged, but not zwitterionic lipid,
giving rise to such a partly immobilized component
in the spectrum (see Fig. 8.7 and its caption)
[46, 79].

When the peptide:lipid ratio was increased, the
relationship between the mole fraction of peptide
and proportion of slow component was linear.
Even at a fraction of 15%, all of the peptide was
associated with the lipid, suggesting that the struc-
ture penetrating the membrane lipid was well
defined, although at such a high peptide:lipid ratio
further study would be needed to confirm whether

the lipid still retained a lamellar structure.
Formation of non-lamellar structures in regions of
the membrane associated with Aβ could well be
the cause of the peptide’s cytotoxicity. From the
spin-label data, the first shell lipid:peptide was
approximately 4:1. This stoichiometry can be sat-
isfied by 6 helices arranged in a pore surrounded
by 24 boundary lipids. This hypothetical structure
gains credibility from atomic force microscopy
studies of Aβ1–42 reconstituted in a planar lipid
bilayer that showed multimeric channel-like struc-
tures, many resembling hexamers, similar to that
modeled in Figure 8.8 [81]. It was found [46] that
in the presence of Zn2+, Aβ1–40 and Aβ1–42 both
inserted into the bilayer over the pH range 5.5–7.5,
as did Aβ1–42 in the presence of Cu2+. However,
Aβ40 only penetrated the lipid bilayer in the pres-
ence of Cu2+ at pH 5.5–6.5; at higher pH, there
was a change in the Cu2+ coordination sphere that
inhibited membrane insertion. The addition of
cholesterol up to 0.2 mole fraction of the total lipid
inhibited insertion of both peptides under all con-
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FIGURE 8.7. A: X-band EPR spectrum recorded at 305 K
of the negatively charged spin probe 1-palmitoyl-2-(16-
doxyl stearoyl) phosphatidyl serine in negatively charged
LUV made from 50% palmitoyl oleoyl phophatidyl ser-
ine and 50% palmitoyl oleoyl phophatidyl choline
(probe/lipid 1/300). B: X-band spectra of system A at the
same temperature after the addition of Cu2+Aβ1–42
(peptide/lipid 1/50), showing a shoulder (marked with
arrow) to the left of the low field line. This is typical of
peptide penetration into the bilayer core [73, 75]. C: The
difference spectrum × 5 obtained when spectrum A is
subtracted from spectrum B. This spectrum represents
the motionally restricted lipid in the boundary. Original
data given in Curtain et al. [46, 79].

FIGURE 8.8. Animation of hexameric pore formed by
Aβ1–40 helices calculated from annular lipid stoichiom-
etry as determined from the EPR data shown in Figure
8.5. Polar residues are shown as dark and nonpolar as
light. View from N-terminus. Peptide coordinates (in
SDS) obtained from Barrow and Zagorski [31]. Model
prepared using Sculpt® by aligning hydrophobic contacts
between helices and orienting nonpolar residues in
sequence 21–40 to annular lipid.



ditions investigated. CD spectroscopy revealed
that the Aβ peptides had a high α-helix content
when membrane penetrant, but were predomi-
nantly β-strand when not. Simulation of the spec-
tra and calculation of the on-off rates suggested
that the peptide was most likely penetrating as an
α-helix [82].

In membrane-mimetic environments, coordina-
tion of the metal ion is the same as in aqueous solu-
tion, with the three-histidine residues, at sequence
positions 6, 13, and 14, all involved in the coordi-
nation, along with an oxygen ligand. As had been
observed at Cu2+/peptide molar ratios >0.3 in aque-
ous solution, line broadening was detectable in the
EPR spectra, indicating that the peptide was coor-
dinating a second Cu2+ atom in a highly coopera-
tive manner at a site 6 Å from the initial binding
site. So, there appear to be two switches, metal ions
(Zn2+ and Cu2+) and negatively charged lipids,
needed to change the conformation of the peptide
from β-strand nonpenetrant to α-helix penetrant.
The closest parallel to this behavior is that
observed with the B18 fusogenic sequence of the
fertilization protein bindin [83] that, like Aβ, pos-
sesses three histidine residues strategically placed
to coordinate metals. In the absence of Zn2+, this
peptide forms nonfusing β-sheet amyloid fibrils. In
the presence of Zn2+, an α-helical conformation is
imposed on its backbone and it forms fusogenic
oligomers.

8.8 The Relevance of Membrane
Binding to Aβ Cytoxicity:
The Role of Methionine 35

In vitro, the methionine at position 35 can act as an
electron donor, and its conversion to the sulfoxide
form has been the subject of several studies, given
that the Met(O)Aβ. peptide has been isolated from
AD amyloid brain deposits [84, 85]. Furthermore,
the Raman spectroscopic study by Dong et al. [43]
of senile plaque cores isolated from diseased brains
has shown that much of the Aβ in these deposits
contained methionine sulfoxide with copper and
zinc coordinated to the histidine residues.

Although there are several potential electron
donors such as GSH and ascorbic acid, in vivo it is
likely that Met35 occupies a privileged position

being part of the Aβ sequence. When it is missing
as in Aβ1–28, the addition of exogenous methion-
ine permits redox action to proceed, but with
slower kinetics [46]. When Met35 is sequestered
within a lipid environment, there is also no metal
reduction. Its oxidation also alters the physical
properties of the peptide. Met(O)Aβ is more solu-
ble in aqueous solution, and there is a disruption of
the local helical structure when the peptide is dis-
solved in SDS micelles [86].

The formation of trimers and tetramers by
Met(O)Aβ is significantly attenuated and fibril for-
mation is inhibited [87, 88]. Barnham et al. [89]
showed by solid-state NMR that when Aβ coordi-
nates and reduces Cu2+ to Cu+, the Met35 is oxi-
dized. Although the Cu2+ coordination of the
oxidized peptide is identical to nonoxidized Aβ
and it will produce H2O2, it cannot penetrate lipid
bilayers either in the presence or absence of Cu2+ or
Zn2+. On the other hand, Met(O)Aβ is toxic to neu-
ronal cell cultures, a toxicity that is rescued by
catalase and the MPAC clioquinol. These results
suggest that fibril formation and membrane pene-
tration by Aβ could be epiphenomena, and that the
main requirement for cytotoxicity is redox compe-
tence. In this connection, it is important to note that
the oxidized M35 has the potential for further
reduction to the sulfone [90] and could thus still act
as a Cu2+ reductant, acting in vivo in concert with
agents such as ascorbic acid and GSH.

It might be legitimately asked whether Met35
could act as a Cu2+ ligand. After all, there are
many instances of copper proteins where the ion
is coordinated to a thioether, giving in most cases
a type 1 binding site [91]. Such coordination
involving two nitrogens and an oxygen in addition
to the sulfur is generally distorted tetrahedral
rather than square planar and would favor Cu+

over Cu2+. Because the former is EPR silent, the
possibility of this coordination might have been
overlooked. However, in their Raman spectro-
scopic studies, Miura et al. [42] were unable to
detect any Cu-S bonds.

Ciccotosto et al. [92] further probed the role of
Met35 by preparing Aβ1–42 in which it was
replaced with valine (AβM35V). The neurotoxic
activity on primary mouse neuronal cortical cells
of this peptide was enhanced, and this diminished
cell viability occurred at a much faster rate com-
pared with Aβ1–42. When cortical cells were
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treated with the peptides for only a short 1-h
duration so as to minimize the incidence of cell
death, and the amount of peptide bound to cortical
cell extracts was quantitated by Western blotting,
it was found that twice as much AβM35V com-
pared with wild-type Aβ peptide bound to the cells
after a 1-h cell exposure. It was suggested that the
increased toxicity was related to the increased
binding.

AβM35V bound Cu2+ with the same coordina-
tion sphere as w.t. Aβ and produced similar
amounts of H2O2 as Aβ1–42 in vitro. The neuro-
toxic activity was rescued by catalase. The redox
activity of the mutated peptide was followed by
measuring the decline in time of the strength of
the Cu2+-AβM35V EPR signal, which showed
that the reduction of Cu2+ to the EPR silent Cu+

was much slower compared with Aβ1-42, con-
firming that the M35 residue in Aβ42 plays an
important part in the redox behavior of this pep-
tide in solution. Like Cu2+-Aβ1–42, Cu2+-
AβM35V inserted into a spin-labeled lipid bilayer
gave a partially immobilized component in the
EPR spectrum. This component had a narrower
linewidth than that found for the similar compo-
nent obtained with w.t. Cu2+-Aβ1–42, suggesting
that the valine substitution made the mutant pep-
tide less rigid in the bilayer region and possibly
easier to insert, thus explaining the increased cell
membrane binding. The on- and off-rate constants
estimated from the simulation experiments
showed that AβM35V had a higher affinity for the
lipid bilayer as compared with Aβ42. CD analysis
showed that AβM35V had a higher proportion of
β-sheet structure and random coil than Aβ1–42,
which would also suggest a more flexible struc-
ture in the bilayer [80, 82]. In summary, these and
the results described above tell us that the wild-
type Aβ, its oxidized form, Met(O)Aβ, and the
mutant peptide, AβM35V, induce cell death via
similar pathways that are metal-dependent and
can generate H2O2 in the absence of a methionine
residue. Fibril formation as a toxic species is
not responsible for cell death. Membrane associ-
ation per se may play a part in localizing the
peptide, perhaps in domains particularly suscep-
tible to oxidative damage. It follows, therefore,
that elucidating the metal ion binding site of Aβ
may provide a promising new therapeutic target
for AD.

References

1. Bush AI. Copper, zinc, and the metallobiology of
Alzheimer’s disease. Alzheimer Dis Assoc Disord
2003;17:147-50.

2. Ritchie CW, Bush, AI, Mackinnon, A et al. Metal-
protein attenuation with iodochlorhydroxyquin (clio-
quinol) targeting Abeta amyloid deposition and
toxicity in Alzheimer’s disease: a pilot phase 2 clini-
cal trial. Arch Neurol 2003;60:1685-91.

3. Hershey CO, Hershey LA, Varnes A et al.
Cerebrospinal fluid trace element content in demen-
tia: clinical, radiologic and pathologic correlations.
Neurology 1983;33:1350-53.

4. Ehmann WD, Markesbery WR, Alauddin M, et al.
Brain trace elements in Alzheimer’s disease.
Neurotoxicology 1986;7:195-206.

5. Thompson CM, Markesbery WR, Alaudin M et al.
Regional brain trace-element studies in Alzheimer’s
disease. Neurotoxicology 1988;9:1-8.

6. Basun H, Forssell LG, Wetterberg L, et al. Metals
and trace elements in plasma and cerebrospinal fluid
in normal aging and Alzheimer’s disease. J Neural
Transm Park Dis Dement Sect 1991;3:231-58.

7. Samudralwar DL, Diprete CC, Ni BF, et al.
Elemental imbalances in the olfactory pathway in
Alzheimer’s disease. J Neurol Sci 1995;130:139-45.

8. Deibel MA, Ehmann WD, Markesbery WR. Copper,
iron, and zinc imbalances in severely degenerated
brain regions in Alzheimer’s disease: possible
relation to oxidative stress. J Neurol Sci
1996;143:137-42.

9. Cornett CR, Markesbery WR, Ehmann WD.
Imbalances of trace elements related to oxida-
tive damage in Alzheimer’s disease brain.
Neurotoxicology 1998;19:339-45.

10. González C, Martin T, Cacho J, et al. Serum zinc,
copper, insulin and lipids in Alzheimer’s disease
epsilon 4 apolipoprotein E allele carriers. Eur J Clin
Invest 1999;29:637-42.

11. Atwood, CS, Huang, X, Moir, RD, et al. Role of free
radicals and metal ions in the pathogenesis of
Alzheimer’s disease. Met Ions Biol Syst
1999;36:309-64.

12. Lovell MA, Robertson JD, Teesdale WJ, et al.
Copper, iron and zinc in Alzheimer’s disease senile
plaques. J Neurol Sci 1998;158:47-52.

13. Miller LM, Wang Q, Telivala TP, et al. Synchrotron-
based infrared and X-ray imaging shows focalized
accumulation of Cu and Zn co-localized with beta-
amyloid deposits in Alzheimer’s disease. J Struct
Biol 2006; 155:30-37.

14. Suh SW, Jensen KB, Jensen MS, et al. Histological
evidence implicating zinc in Alzheimer’s disease.
Brain Res 2000;852:274-78.

138 C.C. Curtain and K.J. Barnham



15. Lee JY, Cole TB, Palmiter RD, et al. Contribution by
synaptic zinc to the gender disparate plaque forma-
tion in human Swedish mutant APP transgenic mice.
Proc Natl Acad Sci USA 2002;99:7705-10

16. Bush AI, Pettingell WH Jr, Paradis MD, et al.
Modulation of Abeta adhesiveness and secretase site
cleavage by zinc. J Biol Chem 1994;269:12152-58.

17. Bush AI, Pettingell WH, Multhaup G, et al. Rapid
induction of Alzheimer A beta amyloid formation by
zinc. Science 1994;265:1464-67.

18. Bush AI, Moir RD, Rosenkranz KM, et al. Zinc
and Alzheimer’s disease -response. Science 1995;
268:1921-23.

19. Clements A, Allsop D, Walsh DM, et al. Aggregation
and metal-binding properties of mutant forms of the
amyloid Aβ peptide of Alzheimer’s disease.
J Neurochem 1996;66:740-47.

20. Yang DS, McLaurin J, Qin K, et al. Examining the
zinc binding site of the amyloid-beta peptide. Eur J
Biochem 2000;267:6692-8.

21. Atwood CS, Moir RD, Huang X, et al. Dramatic
aggregation of Alzheimer A-beta by Cu(II) is
induced by conditions representing physiological
acidosis J Biol Chem 1998;273:12817-26.

22. Cherny RA, Atwood CS, Xilinas ME, et al.
Treatment with a copper-zinc chelator markedly and
rapidly inhibits beta-amyloid accumulation in
Alzheimer’s disease transgenic mice. Neuron
2001;30:665-76..

23. Cherny RA, Legg JT, McLean CA, et al. Aqueous
dissolution of Alzheimer’s disease A-beta amyloid
deposits by biometal depletion. J Biol Chem
1999;274:23223-28

24. Huang X, Atwood CS, Moir RD, et al. Trace metal
contamination initiates the apparent auto-
aggregation, amyloidosis, and oligomerization of
Alzheimer’s A-beta peptides. J Biol Inorg Chem
2004;9:954-60.

25. Basun H, Forssell LG, Wetterberg L, Winblad B.
Metals and trace elements in plasma and cere-
brospinal fluid in normal aging and Alzheimer’s dis-
ease. J Neural Transm Park Dis Dement Sect
1991;3:231-58.

26. Garzon-Rodriguez W, Yatsimirsky AK, Glabe CG.
Binding of Zn(II), Cu(II), and Fe(II) ions to
Alzheimer’s A beta peptide studied by fluorescence.
Bioorg Med Chem Lett 1999;9:2243-8.

27. Syme CD, Nadal RC, Rigby, SEJ, et al. Copper bind-
ing to the amyloid-beta (Abeta) peptide associated
with Alzheimer’s disease: folding, coordination
geometry, pH dependence, stoichiometry and affinity
of Abeta-(1-28) :insights from a range of comple-
mentary spectroscopic techniques. J Biol Chem
2004;279:18169-77.

28. Zagorski MG, Barrow CJ. NMR studies of amyloid
beta-peptides: proton assignments, secondary struc-
ture and mechanism of an alpha-helix-beta-sheet
conversion for a homologous, 28-residue, N-terminal
fragment. Biochemistry 1992;31:5621-31.

29. Coles M, Bicknell W, Watson AA, et al. Solution
structure of amyloid beta-peptide (1-40) in a water-
micelle environment. Is the membrane-spanning
domain where we think it is? Biochemistry
1998;37:11064-77.

30. Shao H, Jao S.-C, Ma K, et al. Solution structures of
micelle-bound amyloid beta-(1-40) and beta-(1-42)
peptides of Alzheimer’s disease. J Mol Biol
1999;285:755-73

31. Barrow CJ, Zagorski MG. Solution structures of beta
peptide and its constituent fragments: relation to
amyloid deposition. Science 1991;253: 179-82

32. Sorimachi K, Craik DJ. Structure determination of
extracellular fragments of amyloid proteins involved
in Alzheimer’s disease and Dutch-type hereditary
cerebral haemorrhage with amyloidosis. Eur J
Biochem 1994;219:237-51

33. Fletcher TG, Keire DA. The interaction of beta-amy-
loid protein fragment (12-28) with lipid environ-
ments. Protein Sci 1997;6: 666-75

34. Tickler AK, Smith, DG, Ciccotosto, GD, et al.
Methylation of imidazole side chains of the
Alzheimer’s disease amyloid beta peptide results in
abolition of SOD-like structures and inhibition of
neurotoxicity. J Biol Chem 2005;280:13355-63

35. Jin H, Yong Y, Jun L, et al. The solution structure of
rat Abeta-(1-28) and its interaction with zinc ion:
insights into the scarcity of amyloid deposition in
aged rat brain. J Biol Inorg Chem 2004;9:627-35.

36. Gröbner G, Glaubitz C, Williamson PTF, et al.
Structural insight into the interaction of amyloid-beta
peptide with biological membranes by solid state
NMR. Focus Struct Biol 2001;1:203-14.

37. Antzutkin ON, Balbach JJ, Leapman RD, et al.
Multiple quantum solid-state NMR indicates a paral-
lel, not antiparallel, organization of β-sheets in
Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci
USA 2000;97:13045-50

38. Benzinger T, Gregory DM, Burkoth TS, et al.
Propagating structure of Alzheimer’s beta-amyloid
10-35 is parallel beta-sheet with residues in exact
order. Proc Natl Acad Sci USA 1998;95:13407-12.

39. Balbach JJ, Ishii Y, Antzutkin ON, et al. Amyloid
fibril formation by Abeta16-22, a seven residue frag-
ment of the Alzheimer’s beta-amyloid peptide, and
structural characterization by solid state NMR.
Biochemistry 2000;39:13748-59.

40. Lansbury PT, Costa PR, Griffiths JM, et al. Structural
model for the beta-amyloid fibril based on inter-

8. Copper Coordination by β-Amyloid and Neuropathology of AD 139



strand alignment of an antiparallel-sheet comprising
a C-terminal peptide. Nat Struct Biol 1995;2:990-98.

41. Egnaczyk GF Greis KD, Stimson ER, et al.
Photoaffinity cross-linking of Alzheimer’s disease
amyloid fibrils reveals interstrand contact regions
between assembled beta-amyloid peptide subunits.
Biochemistry 2001;40:11706-14

42. Miura T, Suzuki K, Kohata N, et al. Metal binding
modes of Alzheimer’s amyloid beta-peptide in
insoluble aggregates and soluble complexes.
Biochemistry 2000;39:7024-31.

43. Dong J, Atwood CS, Anderson VE, et al. Metal bind-
ing and oxidation of amyloid-beta within isolated
senile plaque cores: Raman microscopic evidence.
Biochemistry 2003;42:2768-73.

44. Huang X, Cuajungco MP, Atwood CS, et al. Cu(II)
potentiation of Alzheimer abeta neurotoxicity.
Correlation with cell-free hydrogen peroxide pro-
duction and metal reduction. J Biol Chem
1999;274:37111-16.

45. Peisach J, Blumberg WE. Structural implications
derived from the analysis of electron paramagnetic
resonance spectra of natural and artificial copper pro-
teins. Arch Biochem Biophys 1974;165:691-708.

46. Curtain CC, Ali F, Volitakis I, Cherny RA, et al.
Alzheimer’s disease amyloid-beta binds copper and
zinc to generate an allosterically ordered membrane-
penetrating structure containing superoxide dismu-
tase-like subunits. J Biol Chem 2001;276:20466-73.

47. Alberts IL, Nadassy K, Wodak SJ. Analysis of zinc
binding sites in protein crystal structures. Protein Sci
1998;7:1700-16

48. Sundberg RJ, Martin RB. Interactions of histidine
and other imidazole derivatives with transition metal
ions in chemical and biological systems. Chem Rev
1974;74:471-517.

49. Liu S-T, Howlett G, Barrow CJ. Histidine-13 is a cru-
cial residue in the zinc ion-induced aggregation of
the Aβ peptide of Alzheimer’s disease. Biochemistry
1999;38:9373-78.

50. Parge HE, Hallewell RA, Tainer JA. Atomic struc-
tures of wild-type and thermostable mutant recombi-
nant human Cu, Zn superoxide dismutase. Proc Natl
Acad Sci USA 1992;89:6109-13.

51. Viles JH, Cohen, FE, Prusiner SB, et al. Copper
binding to the prion protein: Structural implications
of four identical cooperative binding sites. Proc Natl
Acad Sci USA 1999;96:2042-47.

52. Brown DR, Wong BS, Hafiz F, et al. Normal prion
protein has an activity like that of superoxide dismu-
tase. Biochem J 1999;344:Pt 1:1-5.

53. Antzutkin ON. Amyloidosis of Alzheimer’s A
peptides: solid-state nuclear magnetic resonance,
electron paramagnetic resonance, transmission elec-

tron microscopy, scanning transmission electron
microscopy and atomic force microscopy studies.
Magn Reson Chem 2004;42:231-46.

54. Huang X, Atwood CS, Moir RD, et al. Zinc-induced
Alzheimer’s Abeta1-40 aggregation is mediated by
conformational factors. J Biol Chem 1997;272:
26464-70.

55. Narayanan S, Reif B. Characterization of chemical
exchange between soluble and aggregated states of
beta-amyloid by solution-state NMR upon variation
of salt conditions. Biochemistry 2005;44:1444-52.

56. Ohtsu H, Shimazaki Y, Odani A, et al. Synthesis and
characterization of imidazolate-bridged dinuclear
complexes as active site models of Cu, Zn-SOD.
J Am Chem Soc 2000;122:5733-41.

57. Shivers BD, Hilbich C, Multhaup G, et al.
Alzheimers-disease amyloidogenic glycoprotein
expression pattern in rat-brain suggests a role in cell
contact. EMBO J 1988;7:1365-70.

58. Karr JW, Akintoye H, Kaupp LJ, Szalai VA. 
N-Terminal deletions modify the Cu2+ binding site
in amyloid-beta. Biochemistry 2005 12;44:5478-87

59. Karr JW, Kaupp LJ, Szalai VA. Amyloid-beta binds
Cu2+ in a mononuclear metal ion binding site J Am
Chem Soc 2004 20;126:13534-8

60. Roher AE, Chaney MO, Kuo YM, et al. Morphology
and toxicity of Abeta-(1-42) dimer derived from neu-
ritic and vascular amyloid deposits of Alzheimer’s
disease. J Biol Chem 1996;271:20631-5.

61. Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally
secreted oligomers of amyloid beta protein potently
inhibit hippocampal long-term potentiation in vivo.
Nature 2002 ;416:535-9.

62. Roher AE, Chaney MO, Kuo YM, et al. Morphology
and toxicity of Abeta-(1-42) dimer derived from neu-
ritic and vascular amyloid deposits of Alzheimer’s
disease. J Biol Chem 1996;271:20631-5.

63. Cleary JP, Walsh DM, Hofmeister JJ, et al. Natural
oligomers of the amyloid-beta protein specifi-
cally disrupt cognitive function. Nat Neurosci
2005;8:79-84

64. Karr JW, Akintoye H, Kaupp LJ, Szalai VA. Copper
is implicated in the in vitro formation and toxicity of
Alzheimer’s disease amyloid plaques containing the
beta-amyloid (A-beta) peptide. Proc Natl Acad Sci
USA 2003;100:11934-40

65. Huang X, Atwood CS, Hartshorn MA, et al. The A
beta peptide of Alzheimer’s disease directly pro-
duces hydrogen peroxide through metal ion reduc-
tion. Biochemistry 1999;38:7609-16

66. Tabner BJ, Turnbull S, El-Agnaf OM, et al.
Formation of hydrogen peroxide and hydroxyl radi-
cals from A(beta) and alpha-synuclein as a possible
mechanism of cell death in Alzheimer’s disease and

140 C.C. Curtain and K.J. Barnham



Parkinson’s disease. Free Radic Biol Med
2002;32:1076-83.

67. Atwood CS, Perry G, Zeng H, et al. Copper mediates
dityrosine cross-linking of Alzheimer’s amyloid-
beta. Biochemistry 2004;43:560-68.

68. Schoneich C, Williams TD. Cu(II)-catalyzed oxida-
tion of beta-amyloid peptide targets His13 and His14
over His6: Detection of 2-Oxo-histidine by HPLC-
MS/MS. Chem Res Toxicol 2002;15:717-22.

69. Gunther MR, Peters, JA, Sivaneri MK. Histidinyl
radical formation in the self-peroxidation reaction of
bovine copper-zinc superoxide dismutase. J Biol
Chem 2002;277:9160–66

70. Alvarez B, Demicheli V, Durán R, Trujillo M, et al.
Inactivation of human Cu,Zn superoxide dismutase
by peroxynitrite and formation of histidinyl radical
Free Radic Biol Med 2004;37: 813–22.

71. Barnham KJ, Haeffner F, Ciccotosto GD, et al.
Tyrosine gated electron transfer is key to the toxic
mechanism of Alzheimer’s disease β-amyloid.
FASEB J 2004;18:1427-9.

72. Whittaker, JW. Free radical catalysis by galactose
oxidase. Chem Rev 2003;103:2347-63.

73. Cukier RI, Nocera DG. Proton-coupled electron
transfer. Annu Rev Phys Chem 1998;49:337-69.

74. Davies MJ, Hawkins CL. EPR spin trapping of pro-
tein radicals. Free Radic Biol Med 2004;36:1072-86.

75. Choo-Smith LP, Surewicz WK. The interaction
between Alzheimer amyloid beta(1-40) peptide and
ganglioside GM1-containing membranes. FEBS Lett
1997;402:95-98.

76. McLaurin Jo-A, Franklin T, Fraser PE, et al.
Structural transitions associated with the interaction
of Alzheimer β–amyloid peptides with gangliosides.
J Biol Chem 1998;273:4506-15.

77. Ji S-R, Wu Y, Sui S-F. Cholesterol is an important
factor affecting the membrane insertion of beta-amy-
loid peptide (A beta 1-40), which may potentially
inhibit the fibril formation. J Biol Chem
2002;277:6273-79.

78. Del Angel VD, Dupuis F, Mornon J-P, et al. Viral
fusion peptides and identification of membrane-
interacting segments. Biochim Biophys Res
Commun 2002;293:1153-60.

79. Curtain CC, Ali FE, Smith DG, et al. Metal ions, pH,
and cholesterol regulate the interactions of
Alzheimer’s disease amyloid-β peptide with
membrane lipid. J Biol Chem 2003;278:2977-82.

80. Marsh D, Horváth LI Structure, dynamics and com-
position of the lipid-protein interface. Perspectives

from spin-labelling. Biochim Biophys Acta
1998;1376:267-96.

81. Lin H, Bhatia R, Lal R. Amyloid beta protein forms
ion channels: implications for Alzheimer’s disease
pathophysiology. FASEB J 2001;15: 2433-44.

82. Horváth LI, Brophy PJ, Marsh D. Exchange rates at
the lipid-protein interface of myelin proteolipid pro-
tein studied by spin-label electron spin resonance.
Biochemistry 1988;27:46-52.

83. Ulrich AS, Tichelaar W, Förster G, et al.
Ultrastructural characterization of peptide-induced
membrane fusion and peptide self-assembly in the
lipid bilayer. Biophys J 1999;77:829-41

84. Kuo YM, Kokjohn TA, Beach TG, et al. Comparative
analysis of amyloid-beta chemical structure and
amyloid plaque morphology of transgenic mouse and
Alzheimer’s disease brains. J Biol Chem 2001;276:
12991-98.

85. Naslund J, Schierhorn A, Hellman U, et al. Relative
abundance of Alzheimer A beta amyloid peptide
variants in Alzheimer’s disease and normal aging.
Proc Natl Acad Sci USA 1994;91:8378-82.

86. Watson AA, Fairlie DP, Craik DJ. Solution structure
of methionine oxidized amyloid beta-peptide (1-40).
Does oxidation affect conformational switching?
Biochemistry 1998;37:12700-06.

87. Palmblad M, Westlind-Danielsson A, Bergquist
J. Oxidation of methionine 35 attenuates formation
of amyloid beta-peptide 1-40 oligomers. J Biol Chem
2002;277:19506-10.

88. Hou L, Kang I, Marchant RE, et al. Methionine 35
oxidation reduces fibril assembly of the amyloid A-
beta-(1-42) peptide of Alzheimer’s disease. J Biol
Chem 2002;277:40173-76.

89. Barnham KJ, Ciccotosto GD, Tickler AK, et al.
Neurotoxic, redox-competent Alzheimer’s beta-amy-
loid is released from lipid membrane by methionine
oxidation. J Biol Chem 2003;278:42959-65.

90. Ali FE, Separovic F, Barrow CJ, et al. Methionine
regulates copper/hydrogen peroxide oxidation prod-
ucts of Abeta. J Pept Sci 2005;11:353-60.

91. Boas JF. Electron paramagnetic resonance of copper
proteins. In: Lontie R, editor. Copper Proteins and
Copper Enzymes. Boca Raton, FL: CRC Press, 1984:
5-62.

92. Ciccotosto GD, Tew D, Curtain CC, et al. Enhanced
toxicity and cellular binding of a modified amyloid
beta peptide with a methionine to valine substitution.
J Biol Chem 2004;279:42528-34.

8. Copper Coordination by β-Amyloid and Neuropathology of AD 141



9
Cholesterol and Alzheimer’s Disease
Joanna M. Cordy and Benjamin Wolozin

142

9.1 Introduction

Recent studies indicate that cholesterol plays an
important part in the regulation of amyloid-β pep-
tide (Aβ) production, with high cholesterol levels
being linked to increased Aβ generation and depo-
sition. The mechanisms underlying the role(s) of
cholesterol are not fully understood at present, but
from the evidence currently available, it appears
that there are many different ways in which abnor-
malities in cholesterol metabolism can affect
the development of Alzheimer’s disease (AD).
Polymorphisms in genes involved in cholesterol
catabolism and transport have been associated with
an increased level of Aβ and are therefore potential
risk factors for the disease. The best known of these
genes is the apolipoprotein E gene (apoE), which
encodes a protein involved in cholesterol transport.
The existence of a particular allele of apoE, ε4, is
the major genetic risk factor known for late-onset
AD. Other genes implicated include cholesterol
24-hydroxylase (Cyp46), the LDL receptor related
protein (LRP), the cholesterol transporters ABCA1
and ABCA2, acyl-CoA:cholesterol acetyl trans-
ferase (ACAT), and the LDL receptor (LDLR).

In addition to this genetic evidence, epidemio-
logical and biochemical findings also demonstrate
relationships between cholesterol and AD and/or
Aβ. The prevalence of AD has been shown to be
reduced among people taking 3-hydroxy-3-methyl-
glutaryl (HMG)-CoA reductase inhibitors, such as
lovastatin, which inhibit de novo cholesterol syn-
thesis, while levels of serum low-density lipopro-
tein (LDL) and total cholesterol have been reported
to correlate with Aβ levels in the AD brain. These

studies are supported by work on transgenic mice
overexpressing the amyloid precursor protein
(APP), demonstrating that increased dietary cho-
lesterol results in higher levels of Aβ, and also by
experiments showing that cholesterol loading or
depletion of cells in culture leads to an increase or
decrease, respectively, in Aβ production.

In this chapter, all the evidence described above
will be discussed in more detail to provide a picture
of our current understanding of the ways in which
cholesterol may affect the production of Aβ and the
development of AD.

9.2 Cholesterol Metabolism

9.2.1 Synthesis

Cholesterol performs many important functions
within cells, particularly as a structural component
of cell membranes and as a precursor for the gen-
eration of steroid hormones and bile salts. It is
vital, however, that a balance is maintained
between cholesterol synthesis, uptake, and catabo-
lism, as an excess of cholesterol is a major risk
factor for the development of atherosclerosis.

Within the body, cholesterol is only synthesized
in the liver and brain and is the product of a com-
plex multi-enzyme pathway. This pathway begins
with the condensation of acetyl-CoA with ace-
toacetyl-CoA to form HMG-CoA. This is then
converted to mevalonate by HMG-CoA reductase,
in the rate-limiting step of the process [1]. A cas-
cade of other reactions then occurs to produce cho-
lesterol (Fig. 9.1), and this pathway generates



many intermediate molecules that have important
biological functions. For example, dolichol, which
is involved in synthesis of the oligosaccharide
chains of glycoproteins, and ubiquinone, a compo-
nent of the electron transport chain, are both
synthesized from farnesyl pyrophosphate, a cho-
lesterol intermediate.

After synthesis in the endoplasmic reticulum
(ER), cholesterol builds up in membranes through
the Golgi apparatus to the plasma membrane,
which has the highest cholesterol content. Within
these membranes, the distribution of cholesterol is
not uniform, but instead it clusters in regions
known as lipid rafts, which are also enriched in
glycosphingolipids and particular proteins [2–4].
These domains will be discussed in more detail
below.

In addition to the de novo synthesis of choles-
terol by the brain and liver, dietary cholesterol can
also be absorbed from the gut. The identity of the

transporter(s) involved in this process is elusive,
but one protein recently shown to have a critical
role is the Niemann-Pick C1 like 1 (NPC1L1) pro-
tein [5]. This protein shows ~50% homology to
NPC1, the protein that is defective in the choles-
terol storage disease Niemann-Pick type C [6].

9.2.2 Transport and Uptake

Cholesterol is insoluble in the blood and therefore
must be transported to and from cells by carriers
known as lipoproteins. Absorbed dietary choles-
terol in the intestine is assembled into chylomi-
crons, which then enter the bloodstream, while
cholesterol from the liver is released in very-low-
density lipoproteins (VLDL). These particles con-
tain triacylglycerols, phospholipids, and proteins
known as apolipoproteins in addition to having
cholesterol. VLDL, LDL, and other lipoproteins
contain varying ratios of protein to lipid and also

9. Cholesterol and Alzheimer’s Disease 143

FIGURE 9.1. The biosynthesis of cholesterol. The synthesis of cholesterol begins with the condensation of acetyl-CoA
with acetoacetyl-CoA, to form HMG-CoA, which is then converted to mevalonate. A cascade of other reactions
occurs to produce cholesterol and many biologically important intermediate molecules.
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different species of apolipoproteins. ApoB, which
is present in VLDL and LDL, is the most important
lipoprotein in the periphery and is responsible for
binding to the LDL receptor. ApoD, E, and J are
also important, although animals with defects in
the apoD gene show normal cholesterol levels,
while cholesterol uptake is impaired if apoB or E
are knocked out [7–9].

After their synthesis in the liver or intestine, both
VLDL and chylomicrons are converted, through
the loss of triacylglycerol, to LDL, which is the pri-
mary carrier of plasma cholesterol to extrahepatic
tissues. LDL is then taken up into cells via interac-
tion with the LDL receptor, and cholesterol is
released into the cells after degradation of the LDL
particle by lysosomal enzymes.

9.2.3 Storage and Catabolism

Cholesterol within the cell can either be stored as
free cholesterol (FC) in the membrane or it can be
converted to cholesteryl esters (CEs) and stored in
cytoplasmic droplets. An equilibrium exists

between these two pools of cholesterol controlled
by acyl-CoA:cholesterol acyltransferase (ACAT),
which catalyzes the formation of CEs from FC.
ACAT is activated by a rise in FC levels, and con-
versely, low FC levels promote the hydrolysis of
CEs back to FC.

An alternative route of elimination of FC from
cells is oxidation. In the periphery, the majority of
cholesterol is oxidized at the 7α position (Fig. 9.2)
and is then glycosylated and secreted as bile acids.
Oxidation can also occur at the 24 or 27 positions
by the mitochondrial enzymes cholesterol 24 or 27
hydroxylase (Cyp46 and Cyp27, respectively).
This generates oxysterols, which diffuse from cells
into the extracellular fluids and vasculature.
Oxysterols play an important role in cholesterol
biology by acting as transcriptional regulators.
They bind to and activate the liver X receptor
(LXR), which then can dimerize with the retinoic
acid receptor or retinoic X receptor to stimulate
transcription of genes important in cholesterol
metabolism. Genes regulated by LXR include apoE
[10] and the ABCA1 transporter [11].
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9.2.4 Cholesterol Metabolism in the
Brain

The brain contains approximately 20% of the total
cholesterol in the body, despite only accounting for
2% of body mass. The majority of this cholesterol
is found in myelin membranes, with some also
present in neurons and glial cells. Compared with
the periphery, the turnover of cholesterol in the
human brain is very slow, with a half-life of almost
a year, as opposed to a matter of hours in plasma,
and this is largely due to the stability of the myelin
sheaths. Most brain cholesterol is synthesized
in situ, and production of cholesterol in the brain is
largely independent of plasma cholesterol levels.
The extent of regulatory separation between brain
and periphery, though, might differ depending on
the species or conditions. Mice fed a high-lipid diet
exhibit increased cholesterol levels in the CNS as
well as in plasma [12]. However, changes in dietary
cholesterol do not appear to affect apoE levels [13].

Cholesterol metabolism in the brain differs from
that in the periphery. Cholesterol is mainly gener-
ated in glia and then transported to neurons. After
synthesis and secretion from glia via the ABCA1
transporter, cholesterol is packaged into lipoprotein
particles resembling HDL. These HDL particles
differ from those in the periphery in that they con-
tain apoE but no apoB, as occurs in the periphery.
HDL is taken up into neurons through recognition
of ApoE by a variety of lipoprotein receptors
including the LDL receptor (LDLR), the LDL
receptor related protein (LRP), the apoE receptor,
as well as other lipoprotein receptors. Elimination
of cholesterol from the brain occurs mainly via oxi-
dation at the 24 and 27 positions to produce a class
of compounds termed oxysterols, rather than being
oxidized at the 7α position by Cyp7a to produce
bile acids, as occurs in the periphery. The two
oxysterols 24(S) hydroxycholesterol and 27
hydroxycholesterol are produced by enzymes
Cyp46 and Cyp27, respectively. As mentioned
above, 24(S) hydroxycholesterol is predominantly
made in the brain, and within the brain, predomi-
nantly made by neurons. In contrast, 27 hydroxyc-
holesterol is produced by many cells including
neurons and oligodendrocytes [14]. Oxysterols are
far more soluble than cholesterol and diffuse across
the blood-brain barrier (BBB) where they enter the
peripheral circulation for excretion. Although the

enzymes that represent the first step in bile acid
production, Cyp7a, is present in the brain, bile
acids are not a major mechanism of cholesterol
catabolism in the CNS [15].

9.3 The Genetics of AD and
Cholesterol Metabolism

9.3.1 ApoE

Three genes associated with early-onset AD have
been identified to date. These are the APP gene on
chromosome 21 [16–18] and the genes encoding
presenilin 1 and 2 on chromosomes 14 and 1,
respectively [19–21]. The only gene, however,
that has been unequivocally linked to late-onset
AD is the ApoE gene [22]. This gene, found on
chromosome 19, has three common variants, ε2,
ε3, and ε4, and it is the presence of the ε4 allele
(apoE4) that is the most potent known risk factor
for late-onset AD, after age. The lifetime risk of
AD for an individual without the ε4 allele is
approx. 9%, whereas the presence of at least one
ε4 allele is believed to increase the risk to approx-
imately 29% [23] and also to lower the average
age of onset of the disease [22, 24]. Conversely,
the presence of the ε2 allele delays the onset of
the disease and is thought to have a protective
effect [24].

The strongest hypothesis explaining how apoE
impacts on AD derives from the effects of apoE on
Aβ deposition and clearance. ApoE is believed to
act as a chaperone protein and accelerate the for-
mation of Aβ fibrils [25], with the apoE4 isoform
being most efficient at promoting fibrillogenesis
in vitro (Fig. 9.3) [26]. Results obtained from studies
with transgenic mice also support these data, show-
ing that mice expressing apoE4 and APP have
accelerated Aβ deposition compared with mice
expressing other apoE isoforms or no apoE [27,
28]. More recently, experimental studies demon-
strate that blocking the interaction of Aβ and apoE
using a synthetic peptide not only reduces Aβ fib-
ril formation in vitro but also reduces Aβ load and
plaque formation in a mouse model of AD [29].
These studies provide experimental evidence that
the ability of apoE4 to accelerate Aa aggregation
and deposition represents an important mechanism
by which apo E4 accelerates the progression of
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AD. ApoE is also involved in Aβ clearance, in an
isoform specific manner, with apo E2 and E3, but
not E4 being important for the removal of Aβ from
the extracellular space (Fig. 9.3) [30].

The importance of apoE in cholesterol metabo-
lism, though, remains a striking phenomenon that
raises the possibility that the presence of different
apoE isoforms may alter cholesterol homeostasis in
the brain and thereby influence the progression of
AD. ApoE genotype is known to correlate with
plasma cholesterol levels, with apoE4 being asso-
ciated with the highest LDL cholesterol levels [31],
a believed risk factor for AD [32, 33]. However,
whether the association between apoE4 and AD
derives from its effect on cholesterol metabolism
remains a source of debate. Some studies suggest
that the effects of apolipoprotein E4 on AD are
independent of cholesterol while others show a
relationship between cholesterol, apoE, and AD
[32, 34–36]. In the periphery, apoE4 appears to
associate predominantly with VLDL particles,
which contain a high percentage of cholesterol,
whereas apoE2 prefers to associate with the less
cholesterol-rich high-density lipoprotein particles
[37–39]. It is not known whether different apoE
isoforms associate with different lipid particles in
the brain, but the occurrence of a similar effect
could alter cholesterol metabolism and help to
explain the increased risk of AD associated with
apoE4.

9.3.2 Other Genes Linked to Late-Onset
AD and Cholesterol Metabolism

9.3.2.1 Cyp46

Cholesterol 24-hydroxylase, encoded by the Cyp46
gene on chromosome 14, is expressed almost exclu-
sively in the brain, with only very low levels of
mRNA found in other tissues such as liver and testis
[40]. The enzyme is a member of the cytochrome
P450 family and is responsible for the catabolism of
nearly all CNS cholesterol to 24S-hydroxycholes-
terol. Knockout of the gene in mice results in a
decrease of more than 98% in the level of 24S-
hydroxycholesterol in the brain, however total brain
cholesterol remains unchanged, perhaps because
there is a compensatory downregulation of de novo
cholesterol synthesis by approximately 40% [41].
Not surprisingly, knockout of Cyp46 produces no
appreciable differences in the levels of peripheral
cholesterol and lipoproteins in these mice.

In AD, and in mild cognitive impairment, the
levels of 24S-hydroxycholesterol in cerebral spinal
fluid are elevated [42], however other studies sug-
gest that plasma levels are decreased or unchanged
[43–45]. The reason for the discrepancy might lie
in the dependence of plasma 24(S) hydroxycholes-
terol levels on a variety of factors including disease
state, cerebral injury, brain size, cerebro-vascular
blood flow, and so forth. The integration of all of
these factors might produce effects that counteract
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each other and limit the linkage between serum
24(S) hydroxycholesterol and Alzheimer’s disease.
Our own studies demonstrate that Cyp46 is selec-
tively expressed around neuritic plaques, perhaps
reflecting the need of neurons to remove excess
cholesterol from degenerating neuritis [14].
Recently, a number of studies have investigated the
link between polymorphisms in the Cyp46 gene
and late-onset AD, with varied results. Two differ-
ent intronic polymorphisms with potential associa-
tion with AD, Aβ levels and/or phosphorylated tau
have been identified [46, 47], and these results have
since been corroborated in other populations [48,
49]. The genotyping results are ambiguous,
though, because other studies have failed to detect
any associations between Cyp46 polymorphisms
and AD [50, 51]. These contradictory findings
leave the role of Cyp46 in AD development
controversial.

9.3.2.2 ABCA1

The adenosine triphosphate–binding cassette trans-
porter ABCA1 functions to secrete cholesterol
from the cell and is an important regulator of cho-
lesterol metabolism. The gene encoding this pro-
tein, on chromosome 9, is another gene with a
potential link to AD. In the periphery, ABCA1
transports free cholesterol out of cells, and lack of
this protein results in reduced plasma HDL levels
and an increased risk of cardiovascular disease
[52–54]. Overexpression of the transporter in mice
leads to opposite effects [55, 56]. In the brain,
ABCA1 is also important in cholesterol trafficking,
and it has been shown that its expression in
cerebral endothelial cells can be stimulated by 24S-
hydroxycholesterol, suggesting a role in the
removal of excess brain cholesterol [57].

An increasing number of studies suggest that
ABC proteins are important to the pathophysiology
of AD. A polymorphism in the ABCA1 gene,
already known to be linked to a modified risk of
coronary heart disease [58, 59], has recently been
shown to delay onset of AD by 1.7 years [60], and
a larger study has provided further evidence that
variants of ABCA1 alter the risk of developing AD
[61]. ABCA1 has also been shown to directly alter
production of Aβ. Transfectng ABCA1 or induct-
ing ABCA1 via LXR reduces Aβ generation, pre-
sumably by lowering cholesterol levels [62, 63].

Recently, a second ABC transporter that is
expressed in the brain has been cloned. ABCA2 is
expressed in the endolysosomal compartment, pri-
marily in oligodendrocytes, but also in the cortex
[64]. When expressed in cell culture ABCA2
strongly regulates formation of cholesterol esters
and expression of other proteins implicated in cho-
lesterol metabolism, such as the LDLR. A poly-
morphism in ABCA2 strongly increases the risk of
AD, with a LOD score of 3.5 [65]. The association
of two different ABC transporters with AD, com-
bined with the direct evidence that these proteins
modulate Aβ metabolism, suggests that these
proteins could be particularly relevant to AD.

9.3.2.3 ACAT

Proteins like ABCA2 and Cyp46/LXR modulate
many other proteins important to cholesterol catab-
olism or transport. One of these proteins is acyl-
Coenzyme A:cholesterol acyl transferase (ACAT),
which is a protein that converts cholesterol to cho-
lesterol esters, which are highly insoluble and are
thought to be used for storage. ACAT could be par-
ticularly important for AD because pharmacologi-
cal inhibitors of ACAT are available, and these
inhibitors have recently been shown to reduce Aβ
production and decrease amyloid load in a trans-
genic mouse model of AD [66]. Because related
compounds have also been investigated in human
clinical trials and found to be safe, these
compounds hold great promise for therapy of AD.

9.3.3 LRP and LDLR

LRP is a member of the LDL receptor family and,
in brain, is expressed predominantly on neurons
and reactive astrocytes [67, 68]. The main ligand
for LRP in the brain is apoE, although it can also
bind a number of different proteins, including
LDLR, urokinase-type plasminogen activator, and
lactoferrin [69]. The fact that LRP is an important
neuronal receptor for apoE, which has long been
implicated in AD, suggests that this protein may
also be important in the disease. In addition, LRP
and many of its ligands are found in senile plaques
[70], suggesting that the function of LRP could be
impaired in AD, resulting in this buildup. Another
interesting link between LRP and AD is that it can
bind APP and regulate its internalization and
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processing [71, 72], thereby potentially affecting
production of Aβ, as well as its clearance via apoE.

More evidence for a role for LRP in AD comes
from genetic association studies. A polymorphism
in exon 3 of the gene has been identified, which is
linked to reduced AD susceptibility and decreased
amyloid burden [73]. This has since been corrobo-
rated by other studies [74–77]. In addition, another
polymorphism in the LRP gene has also been iden-
tified and linked to AD [78] providing further
genetic evidence for a connection between LRP
and AD. A meta-analysis of LRP polymorphisms
has recently been done at the Alzgene website
(http://www.alzforum.org/res/com/gen/alzgene/def
ault.asp), which suggests a slight increased risk of
AD associated with the C allele of the rs1799986
polymorphism. However, the main message pro-
vided by the meta-analysis is that the effect of this
polymorphism, if real, is much, much smaller than
the effect of apoE4.

9.3.4 α2M

One of the ligands for LRP is α-2-macroglobulin
(α2M), a protein capable of binding Aβ with high
specificity [79, 80] and preventing its fibrillization.
α2M is found in neuritic plaques in AD brain [81,
82] and it may play a role in Aβ clearance via LRP,
as it is known to be able to bind other ligands and
target them for internalization and degradation
[83]. The gene encoding α2M has also been iden-
tified as a potential risk factor for AD in some stud-
ies, but the overwhelming majority of studies have
failed to observe a linkage [84–86].

9.4 Cholesterol and APP
Processing

9.4.1 In Vitro Studies

A large number of experiments performed on
cells in culture demonstrate that cellular process-
ing of APP and production of Aβ can be modu-
lated by cholesterol metabolism (Table 9.1). Klein
and colleagues were the first investigators to
examine this issue. They added cholesterol com-
plexed with methyl-β-cyclodextrin to the cell line
HEK and demonstrated that the cholesterol
decreased APP secretion [87]. Next, Simons et al.

[88] used a combination of an HMG-CoA reduc-
tase inhibitor and methyl-β cyclodextrin to
deplete cholesterol levels in hippocampal neurons
by 70%. This caused a dramatic decrease in pro-
duction of Aβ. Later studies using similar treat-
ments confirmed these results [89, 90]. The
system appears to be reciprocal with respect to
cholesterol levels because adding exogenous cho-
lesterol to cells in culture upregulates Aβ produc-
tion [89]. The mechanism underlying the
regulation appears to depend in part on activity of
β-secretase, because cholesterol depletion
reduces CTFβ [88, 90]. Regulation of APP pro-
cessing by cholesterol is not limited to β-secretase
activity; it appears to occur on multiple levels. For
instance, α-secretase activity is also controlled by
cholesterol, with low cholesterol levels stimulat-
ing production of sAPPα [91]. The third enzyme
involved in APP processing, γ-secretase, could
also be affected by cholesterol, as recent work has
shown that disruptions in cholesterol trafficking
cause a redistribution of the presenilins and an
associated increase in Aβ generation [92, 93].
However, γ-secretase activity appears to be the
least affected by cholesterol of all the enzymes
regulating APP processing.

Cholesterol metabolism can also modulate APP
processing through trafficking. There are many dif-
ferent pools of cholesterol, cholesteryl esters
(CEs), or free cholesterol (FC) present in cells. In
addition, APP processing also occurs in many dif-
ferent compartments. Modulation of particular
enzymes in particular compartments or modulation
of the distribution of APP among different vesicles
can alter generation of Aβ and APPs. For instance,
the enzyme responsible for controlling the inter-
conversion of these cholesterol pools is the ER-res-
ident enzyme ACAT, and it has been shown that the
activity of this enzyme can regulate Aβ generation,
suggesting that it may be the distribution of intra-
cellular cholesterol that is important rather than the
total amount [94]. This investigation by Puglielli
and co-workers [94] showed that the level of Aβ
was most closely correlated with cholesteryl ester
levels, although they could not rule out the possi-
bility that it may be the ratio of FC to CEs that is
most important. It is likely that other types of cho-
lesterol-related modulation also act by changing he
vesicular distribution of components that affect
APP processing.
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9.4.2 APP Processing and Lipid Rafts

A key to understanding how cholesterol might
modulate APP processing lies in the concept of
lipid rafts. Lipid rafts are small domains within cell
membranes consisting of sphingolipids in the outer
leaflet of the bilayer and phospholipids with satu-
rated fatty acid chains in the inner leaflet, tightly
packed together with cholesterol (Fig. 9.4). The
surrounding bilayer is less tightly packed due to the
unsaturated nature of the phospholipid hydrocar-
bon chains, with the result that the rafts form
ordered, although still fluid, platforms within this
liquid-disordered phase (for reviews, see Refs. 2–4,
95). As well as containing particular classes of
lipids, rafts can bind certain proteins. Different pro-
teins are found to be associated with raft domains
to varying extents, for example proteins with a gly-
cosylphosphatidyl inositol (GPI) membrane anchor
and doubly acylated proteins such as Src family

tyrosine kinases tend to reside in rafts constitu-
tively [96], whereas many proteins are able to
move in and out of rafts depending on ligand-bind-
ing, oligomerization, or palmitoylation [97, 98].
Because of this, the movement of proteins in and
out of rafts, and their associations within these
domains, can be tightly controlled.

Lipid rafts have been hypothesized to be
involved in APP processing and could therefore
help to explain how the connection between cho-
lesterol and AD occurs [99]. Several proteins rele-
vant to Aβ production have been shown to be
present in raft domains including a small propor-
tion of APP [100–103], the β-secretase BACE (β-
site APP cleaving enzyme) [104, 105], the
presenilins [101, 103, 106], and Aβ itself [101].
These results, which were obtained from several
different cell-lines and from samples of human,
mouse, and rat brain, prompted the hypothesis that
amyloidogenic processing of APP may take place
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TABLE 9.1. Summary of the effects of cholesterol modulation on amyloid precursor protein (APP) processing and
amyloid-β peptide (Aβ) production.

In vitro / in vivo Modulation of cholesterol Effects Reference

In vitro ↑ Cholesterol Exogenous cholesterol added ↓ sAPPα production 87
Exogenous cholesterol added ↑ Aβ production 89

↓ Cholesterol Cholesterol depleted using statin ↓ Aβ production 88
Cholesterol depleted using statin ↓ β-secretase cleavage products 89
Cholesterol depleted using statin ↓ Aβ production 90
Cholesterol depleted using statin or ↑ sAPPα production 91

methyl-β-cyclodextrin ↓ Aβ production

In vivo ↑ Cholesterol Primates fed high-fat diet ↑ Aβ deposition 108
APP Tg mice fed high-fat diet ↑ Aβ deposition 109

Learning impairments
APP Tg mice fed high-fat diet ↑ Aβ and CTFβ production 12

↓ sAPPα production
APP Tg mice fed high-fat diet ↑ Aβ deposition 110
APP Tg mice fed high-cholesterol diet ↓ Aβ and sAPPβ production 112

↓ sAPPα production
APP Tg mice fed high-cholesterol diet ↓ Aβ deposition 113

↓ sAPPα production
↑ AICD

↓ Cholesterol Guinea pigs treated with simvastatin ↓ Aβ deposition 90
APP Tg mice treated with cholesterol-

lowering drug ↓ Aβ and CTFβ productionn 111
↑ sAPPα production

APP Tg mice treated with lovastatin ↑ Aβ deposition in female mice 138
No change in male mice

The in vitro studies suggest that increasing cholesterol levels results in an upregulation of amyloidogenic APP processing, whereas
lowering cholesterol levels has the opposite effect. The majority of results from in vivo studies show the same pattern, however there
are some reports (highlighted) that contradict this trend.



within lipid rafts. The putative α-secretase
ADAM10, however, is predominantly soluble after
detergent extraction [91], leading to a model being
proposed in which amyloidogenic and non-amy-
loidogenic processing of APP occur in separate
membrane compartments [99]. The existence of
two pools of APP within the cell membrane, one
raft-localized and one present in phospholipid
domains [100, 101], fits in with this theory by
allowing APP access to both α-secretase and β-
and γ-secretases. According to this model of APP
cleavage, a high concentration of membrane cho-
lesterol would therefore favor Aβ production,
whereas a reduced cholesterol level would favor
the non-amyloidogenic α-secretase pathway.

The studies described above, demonstrating that
depletion of cellular cholesterol levels results in
inhibition of Aβ production [88–90], support this
hypothesis, as cholesterol removal disrupts lipid raft
domains. Further evidence that amyloidogenic APP
processing, particularly by BACE, occurs in lipid
rafts comes from recent work showing that antibody
cross-linking of APP and BACE causes them to co-
patch with known raft marker proteins, and that this
dramatically increases production of Aβ [107]. In
addition, the direct dependence of BACE activity on
lipid rafts has been demonstrated by targeting BACE
exclusively to these domains using a GPI-anchor
[104]. The production of Aβ and sAPPβ was
increased significantly by targeting BACE to lipid
rafts, confirming that this environment is favorable
for the amyloidogenic processing of APP [104].

9.4.3 In Vivo Studies

A number of studies suggest that cholesterol also
modulates APP processing in vivo (Table 9.1), but
when interpreting the studies, one must consider
the added complexity of the in vivo situation. When
analyzing in vivo and human data, one must distin-
guish between plasma cholesterol and cerebral
cholesterol because the amount of cross-talk
between the two pools of cholesterol and the mech-
anism of cross-talk is unclear. One must also dis-
tinguish between the type of animal being
investigated because lipid metabolism differs
among species such as mice, guinea-pigs, and
humans. For instance, mice generally have high
levels of LDL while humans tend to have higher
levels of HDL.

Despite these differences, several groups have
shown that changes in cholesterol metabolism
induced by pharmacological means (e.g., statins)
or by feeding alter cholesterol metabolism. This
has been shown in primates [108] and transgenic
mouse models of AD [12, 109, 110]. For example,
Refolo et al. [12] showed that both β-cleaved C-ter-
minal APP fragments (CTFβ) and Aβ were
increased in the CNS of mice fed a high-choles-
terol diet, whereas the production of α-cleaved sol-
uble APP (sAPPα) was decreased, suggesting that
cholesterol was regulating APP processing. Other
in vivo studies have demonstrated that treatment of
guinea-pigs or transgenic mice with cholesterol-
lowering drugs resulted in lowered levels of Aβ
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[90, 111] and also increased sAPPα and decreased
CTFβ production [111]. Each of these studies pres-
ents cogent examples of the impact of cholesterol
metabolism on APP processing in vivo.

Although the results from these in vivo studies
indicate that hypercholesterolemia leads to an
increase in the amyloidogenic processing of APP,
whereas reduced cholesterol level has the opposite
effect, some studies have observed contradictory
evidence. Howland et al. [112] examined the effect
of a high-cholesterol diet on a different transgenic
mouse model of AD and found that levels of
sAPPα, sAPPβ, and Aβ were all reduced. More
recently, another study has shown a similar effect
[113]; the reasons for these apparent discrepancies
are not clear. Possible differences that could con-
tribute to these conflicting results could lie in the
transgenes present in the mouse models, the
genetic backgrounds of the mouse models, vari-
ability in the ages, or differences in the sex of the
animals studied. Interestingly, the study by George
and colleagues [113] demonstrated that production
of the APP intracellular domain (AICD) is
increased in mice fed a high-cholesterol diet. This
fragment appears to act as a transcriptional activa-
tor [114, 115] and can induce apoptosis in neurons
[116], leading to the possibility that cholesterol
could affect AD progression via the regulation of
AICD production [113].

9.4.4 Aβ Aggregation and Toxicity

Cholesterol also appears to be important for the
aggregation and toxicity of Aβ. Aggregated or fib-
rillar Aβ is widely believed to be more toxic to neu-
rons than the monomeric peptide [117], and there is
evidence to suggest that polymerization of Aβ is
seeded by a species of the peptide that is tightly
bound to GM1 ganglioside (GM1-Aβ) [118]. GM1-
Aβ has been shown to accelerate amyloid fibril for-
mation in vitro [119, 120], and the formation of this
species appears to be sensitive to the lipid environ-
ment, with cholesterol being an important factor
[121]. Kakio et al. [122] demonstrated that Aβ
bound preferentially to clusters of GM1 molecules
and that these clusters formed in cholesterol-rich
environments such as lipid rafts, and this is sup-
ported by a study reporting that depletion of cellu-
lar cholesterol can protect cells from the toxic
effects of Aβ [123]. More recently, Subasinghe and

colleagues [124] have shown that binding of Aβ to
membrane lipids is important for toxicity of the
peptide and that both membrane-binding and toxic-
ity were reduced by the removal of cholesterol.

9.5 Epidemiological and Clinical
Evidence

9.5.1 Cholesterol Levels and AD

Despite the strong genetic and biochemical evi-
dence that points to a strong connection between
cholesterol and AD, epidemiological evidence
linking plasma levels of cholesterol and lipopro-
teins with the development of AD is conflicting.
Some studies have demonstrated a link between
cholesterol level, particularly in mid-life, and AD.
For example, Pappolla and colleagues [125] found
that there was a strong correlation between total
cholesterol level and amyloid deposition in sub-
jects aged between 40 and 55 years, but this corre-
lation became weaker as the age of the subjects
increased. In another study, Finnish men who had
displayed a high serum cholesterol level at age
40–59 were found to be three times more likely to
have developed AD 30 years later [35]. Kivipelto
et al. [126, 127] also demonstrated a correlation
between mid-life cholesterol level and the risk of
developing AD later in life. These results, and the
fact that in the study by Notkola et al. [35] the cho-
lesterol level of men who developed AD decreased
before the disease manifested itself, suggest that
hypercholesterolemia in mid-life could be a risk
factor for AD, while cholesterol level in later life
shows less correlation with the disease. Kuo et al.
[33], however, examined serum levels of LDL and
HDL cholesterol at postmortem and found signifi-
cantly higher LDL cholesterol and lower HDL cho-
lesterol in AD patients than in control subjects.

In contrast with these studies, which have found
correlations between cholesterol levels and AD,
other investigations have failed to find such a con-
nection. Tan et al. [128] looked at total serum cho-
lesterol levels from participants in the Framingham
study and found no association between average cho-
lesterol level over a 30-year period and development
of AD 10–20 years later. Another study investigating
a wide variety of serum markers in neurodegenera-
tive diseases also found no correlation between
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serum cholesterol and AD [129], although, interest-
ingly, the levels of precursors to cholesterol synthesis
appeared to be significantly different in AD patients
compared with controls.

9.5.2 Use of Statins

An alternate approach to addressing the issue of
cholesterol and AD is to shift the question from
whether abnormal cholesterol metabolism
increases the risk of AD to the question of whether
modulating cholesterol metabolism can alter the
incidence or progression of AD. HMG-CoA reduc-
tase inhibitors, known collectively as statins, were
developed in the 1970s and have been widely used
since the late 1980s to lower cholesterol levels in
patients at risk of coronary heart disease. Examples
of statins that are currently available include lovas-
tatin (Mevacor, currently off patent), pravastatin
(Pravacor), simvastatin (Zocor), rosuvastatin
(Crestor), and atorvastatin (Lipitor). In 2000, two
retrospective studies suggested that the prevalence
of AD was reduced by approximately 70% among
patients taking statins compared with control sub-
jects [130, 131]. Similar studies have since corrob-
orated these findings in different groups of patients
[132, 133].

More variable results have been obtained by
prospective studies examining the use of statins as
potential therapeutic agents in AD. Simons et al.
[134] observed a decrease in the CSF Aβ40 levels of
patients suffering from mild AD after treatment
with simvastatin for 26 weeks, but this was not
seen in patients with a more severe form of the dis-
ease. Cognitive decline appeared to be slowed in
both groups compared with subjects receiving a
placebo. Another small study of AD patients found
that CSF levels of sAPPα and sAPPβ were
decreased after a 12-week treatment with simvas-
tatin, but Aβ42 levels were unaltered [135]. Two
larger studies, looking primarily at the cardiovas-
cular benefits of longer term (3- to 5-year) statin
treatment, found that cognitive decline was not
prevented by statins [136, 137], however, a recent
pilot study of the effects of atorvastatin, reported at
the American Heart Association’s Scientific
Sessions 2004, has shown that it appears to slow
mental decline and improve cognitive symptoms in
AD patients (www.americanheart.org). These stud-
ies have used a variety of statins with differing

lipophilicities, suggesting that the variable results
cannot be explained by the ability of the drug to
cross the blood-brain barrier (BBB). The reason for
the mixed results obtained is unknown but have to
do with the severity of AD or the cholesterol level
in the patients examined or the methods used to test
for cognitive function. Other clinical trials of
statins in AD, such as the Cholesterol Lowering
Agent to Slow Progression (CLASP) of AD Study,
sponsored by the NIA, are currently in progress, so
these should provide more information about the
possible therapeutic benefits of these drugs.

9.6 Future Directions

Despite the current interest in determining the
association between cholesterol and AD, there are
still many crucial questions that need to be
addressed before a complete picture of this com-
plex relationship emerges. The effects of statins on
Aβ production appear to be clear in cell culture, but
the effects in vivo and the role of cholesterol in the
pathogenesis of AD are by no means clear-cut, and
if these drugs are to be used in the treatment of AD,
many issues still need to be resolved. One impor-
tant factor that has recently come to light is a pos-
sible gender-related difference in response to statin
treatment. When male and female APP transgenic
mice were treated with lovastatin, both groups
showed the expected reduction in cholesterol lev-
els, but female mice showed an increase in both Aβ
production and plaque load [138]. No changes
were seen in the male mice. These results suggest
that it will be important to reexamine the results
from other studies and trials involving statins, to
take into account gender differences. Another issue
that is currently being investigated is whether the
neuroprotective effects of statins are due less to
their role as inhibitors of cholesterol synthesis and
more to other effects such as their anti-inflamma-
tory properties [139, 140].

The fact that ageing leads to alterations in the
lipid and cholesterol distribution within mem-
branes could affect the number and stability of
lipid rafts. Currently, however, no data exist
regarding changes in raft number, size, or compo-
sition during aging or AD progression. If this issue
could be addressed, the results would be valuable
in assessing exactly how lipid rafts are involved in

152 J.M. Cordy and B. Wolozin



APP processing. Unfortunately, native rafts are
very difficult to study, as detergent isolation can
cause individual rafts to coalesce [141] providing
an inaccurate picture of the actual organization of
rafts within the membrane. The development of
new technologies to study lipid rafts may be
required before this question can be answered
satisfactorily.

Despite all of these questions, there continues to
be a great deal of promise for cholesterol modula-
tion in therapy of AD. Whether statins modulate Aβ
in vivo remains a question, but increasing data sug-
gest that statins have potent anti-inflammatory prop-
erties, which could be valuable in treating AD [142].
Other means of modulating cholesterol metabolism
also appear to be promising. For instance, ACAT
inhibitors appear to be very effective in reducing Aβ
and plaque load in vivo. Other matters that require
further investigation include the relationship
between plasma and brain cholesterol. A better
understanding of brain cholesterol metabolism is
required to clarify how modulating plasma choles-
terol using diet or drugs could affect Aβ production
or deposition in the brain. In addition, the contribu-
tion of different forms of cholesterol, free choles-
terol, or cholesteryl esters, to the overall effect of
cholesterol in AD needs to be examined further.

9.7 Conclusions

Over the past few years, an increasing amount of
evidence has accumulated suggesting that choles-
terol metabolism is strongly connected to the
development of Alzheimer’s disease. This evidence
includes studies showing linkages between genes
involved in cholesterol metabolism, such as apoE
and cyp46, and AD and epidemiological evidence
that drugs aimed at lowering cholesterol levels may
be useful for treating AD. Additionally, there are a
large number of biochemical studies indicating that
cholesterol is involved in APP processing, possibly
by providing a favorable membrane environment in
which the amyloidogenic secretase enzymes can
act, and also in Aβ aggregation and toxicity. This
evidence has led to the possibility that drugs affect-
ing cholesterol metabolism, such as statins and
ACAT inhibitors, or the modulation of cholesterol
levels by dietary control, may be beneficial in the
treatment of AD.

Despite this growing amount of evidence, we do
not currently have a clear picture of the relation-
ships between cholesterol and AD, and more work
is needed to confirm the importance of cholesterol
in the progression of the disease and to elucidate
the molecular basis of the relationship. The
advances in our knowledge that will surely come
over the next few years may lead to the develop-
ment of new strategies for both prevention and
treatment of Alzheimer’s disease.
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10.1 Introduction

Alzheimer’s disease (AD), the most common form
of dementia affecting individuals over 65 years of
age, is a progressive neurodegenerative disorder. It
is characterized by a global deterioration of intel-
lectual function that includes an amnesic type of
memory impairment, deterioration of language, and
visuospatial deficits. Motor and sensory abnormali-
ties are uncommon until the late phases of the
disease, and basic activities of daily living are grad-
ually impaired as the disease enters advanced
phases. Psychosis and agitation also develop during
middle or later phases of the disease. The average
course of AD from the onset of clinical symptoms
to death is approximately a decade, but the rate of
progression is variable [1, 2]. Epidemiological data
have shown that AD afflicts about 8–10% of the
population over 65 years of age, and its prevalence
doubles every 5 years thereafter [3].

Although our understanding of the pathophysiol-
ogy of AD still remains fragmentary, it is widely
accepted that both genetic and environmental fac-
tors can contribute to the development of the dis-
ease. In the majority of cases, AD appears to occur
as sporadic disease after the age of 65 years, but in
a small proportion of cases the disease is inherited
as an autosomal dominant trait and appears as an
early-onset form prior to 65 years of age. To date,

mutations within three genes—the amyloid precur-
sor protein (APP) gene on chromosome 21, the pre-
senilin 1 (PS1) gene on chromosome 14, and the
presenilin 2 (PS2) gene on chromosome 1—have
been identified as the cause of early-onset familial
AD [4–6]. Although these findings are of impor-
tance in elucidating the biological pathogenesis of
AD, it is vital to recognize that mutations in these
three genes may only account for 30–50% of all
autosomal dominant early-onset cases. The inheri-
tance of late-onset AD is more complex than that of
the early-onset form. Various factors, including
concomitant pathology and limited sample sizes,
make it difficult to identify genetic causes of 
late-onset disease by conventional linkage analysis.
However, association studies have identified candi-
date genes that significantly increase the risk for
late-onset disease. The ε4 allele of the apolipopro-
tein E (APOE) gene, on chromosome 19, is one
such risk factor. Possessing a single copy of the
allele may increase the chance of developing AD
two- to fivefold, whereas having two ε4 alleles
raises this probability to more than fivefold [5–8].
Despite these advances in understanding the genet-
ics of AD, the vast majority of cases has not yet
been associated with any of the four genes impli-
cated to date, thus suggesting that additional
causative mutations and genetic risk factors remain
to be identified [4–6, 9]. Other factors that may



play an important role in the pathogenesis of AD
include age, head injury, and oxidative stress [10].

10.2 Neuropathological Features 
of AD

The neuropathological changes of AD are character-
ized by the presence of intracellular neurofibrillary
tangles, extracellular parenchymal and cerebrovas-
cular amyloid deposits, and loss of neurons and
synaptic integrity in specific brain areas. These fea-
tures are also seen in Down syndrome (DS) brains
(<40 years of age) and, to a limited extent, in the
normal aging brain [9–11].

10.2.1 Neurofibrillary Tangles and
Neuritic Plaques

Neurofibrillary tangles in the AD brain are
particularly abundant in the entorhinal cortex, hip-
pocampus, amygdala, association cortices of the
frontal, temporal, and parietal lobes, and certain
subcortical nuclei. This abnormal pathology, which
is evident in neuronal cell bodies, neuropil threads,
and dystrophic neuritis, is composed of hyperphos-
phorylated form of microtubule-associated protein
tau. Accumulation of phospho-tau reduces the abil-
ity of tau to stabilize microtubules, leading to dis-
ruption of neuronal transport and eventually to the
death of affected neurons [12–15]. The extent of
neurofibrillary pathology, and particularly the
number of cortical neurofibrillary tangles, corre-
lates positively with the severity of dementia.
However, tangles are also found in a variety of
other neurodegenerative diseases without any evi-
dence of amyloid deposits [9, 12, 13, 16]. Neuritic
plaques, on the other hand, are multicellular lesions
containing a compact deposit of amyloid peptides
in a milieu of reactive astrocytes, activated
microglia, and dystrophic neurites. The major amy-
loid peptides that are found in the plaques are 
β-amyloid1-42 (Aβ1-42) and Aβ1-40, peptides that are
generated by proteolytic cleavage of APP. The time
required to develop a neuritic plaque is not known,
but these lesions are believed to evolve gradually
over a period of time from “diffuse plaques” con-
taining only Aβ1-42 [9, 17–19]. The diffuse plaques
are found in large numbers in areas that are not typ-
ically affected in AD pathology (e.g., cerebellum,

striatum, and thalamus), whereas neuritic plaques
are usually seen in areas affected by neurodegener-
ation such as entorhinal cortex, hippocampus, and
association cortices [9, 17]. Neuritic plaque num-
ber does not itself correlate with the severity of
dementia, although a clinical correlation between
elevated levels of the total Aβ peptide in the brain
and cognitive decline has been reported [20].
Recent investigations in animal models and human
brain samples have placed a special emphasis on
measurement of soluble Aβ species [9, 21, 22].

Diverse lines of evidence suggest that accumula-
tion of Aβ peptide in the brain may, over time, ini-
tiate and/or contribute to AD pathogenesis. These
include the association of some AD cases with
inherited APP mutations [4, 9, 11]; the elevation of
Aβ peptides and the appearance of amyloid plaques
in advance of other pathology in AD and DS brains
[23]; the inheritance of APOE e4 allele(s) leads to
enhanced Aβ deposition in the brain [5, 6, 9]; the
increased production of Aβ1-42 in vivo and in vitro
by pathogenic mutations in PS1 and PS2 [9]; and
the in vitro neurotoxic potential of fibrillar Aβ pep-
tides [9, 24, 25]. Recent studies of APP transgenic
mice [26–29] and of intrathecally administered Aβ
in nontransgenic adult animals [30–33] reinforce
the notion that overexpression of Aβ peptide, or
injection of aggregated Aβ, induces subcellular
alterations or neuronal loss in selected brain
regions. It has been suggested that overexpression
or injection of Aβ peptide may potentiate the for-
mation of neurofibrillary tangles in tau transgenic
mice [34, 35], a relationship first inferred from con-
sideration of familial AD kindreds. Although these
results implicate a role for Aβ peptides in the neu-
rodegenerative process, both the role of Aβ in the
normal brain and the mechanisms by which it
causes neuronal loss and tau abnormalities in AD
remain poorly understood.

10.2.2 Loss of Basal Forebrain
Cholinergic Neurons

Selective synapse loss along with neuronal dys-
function and death are part of the elemental lesions
associated with AD pathology. Evidence suggests
that degenerating neurons and synapses are pre-
dominantly located in neuroanatomic regions that
either project to or from the brain areas displaying
highest density of plaques and tangles. Regions
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that are severely affected in AD brains include the
hippocampus, entorhinal cortex, amygdala, neo-
cortex, some subcortical areas such as basal fore-
brain cholinergic neurons, serotonergic neurons of
the dorsal raphe, and noradrenergic neurons of the
locus coeruleus [36–38]. Biochemical investiga-
tions of biopsy and autopsy tissues indicate that
various neurotransmitters/modulators, including
acetylcholine (ACh), serotonin, glutamate, nora-
drenaline, and somatostatin, are differentially
altered in AD brains [11, 36, 39]. One of the most
consistently reproduced finding is a profound
reduction in the activity of the ACh synthesizing
enzyme choline acetyltransferase (ChAT) in the
neocortex that correlates positively with the sever-
ity of dementia [36, 38, 40]. Reduced choline
uptake, ACh release, and loss of cholinergic neu-
rons from the basal forebrain region further indi-
cate a selective presynaptic cholinergic deficit in
the hippocampus and neocortex of AD brains [39,
41]. Some of the earlier studies have also reported
that depletion of cholinergic markers in the cortical
regions of the AD brain may occur early in the
course of the disease, perhaps as initiating events.
In contrast, the cholinergic markers of the striatum
(originating from striatal interneurons) and of the
thalamus (originating from the brain stem) are
either spared or affected only in late stages of the
disease [36, 38, 39]. Together with pharmacologi-
cal evidence of cholinergic involvement in the
affected cognitive processes, these findings led to
the development of a “cholinergic hypothesis” of
AD. This hypothesis posits the degeneration of the
cholinergic neurons in the basal forebrain and the
loss of cholinergic transmission in the cerebral cor-
tex and other areas as the principal cause of cogni-
tive dysfunction in AD patients [38, 39, 41–43].
The hypothesis is supported, in part, by evidence
that drugs that potentiate central cholinergic func-
tion (such as donepezil, rivastigmine, and galanta-
mine) have some value in symptomatic treatment
during early stages of the disease [38, 44].
However, some of the recent reports, all based on
elderly subjects, have challenged the assumption
that the cholinergic depletion is an early event in
AD pathology [45]. Two of these studies report that
mild AD is not associated with a loss of cortical
ChAT activity [46, 47], whereas the third report
suggests that the neurons containing ChAT and
vesicular ACh transporter protein may not be

decreased in early AD [48]. Collectively, these
studies have not only raised doubts over the valid-
ity of the cholinergic hypothesis as it applies to
early AD but also raise the possibility that the mod-
est efficacy of cholinesterase inhibitor drugs in
mild-to-moderate AD may involve mechanisms
other than simple upregulation of a central cholin-
ergic deficit [49, 50]. While these studies have cre-
ated a number of new questions related to the role
of the cholinergic system in the prodromal stage of
AD, further investigations using in vivo imaging
techniques or biochemical analysis of autopsy tis-
sue using complementary approaches are needed to
evaluate other components of cholinergic function
(e.g., high-affinity choline transporter and nicotinic
receptors) during aging and the progression of AD.

The loss of basal forebrain cholinergic neurons
has prompted extensive study of ACh receptors in
AD brains [36, 38, 39, 41, 50, 51]. ACh exerts
effects on the central nervous system by interacting
with G-protein–coupled muscarinic and ligand-
gated cation channel nicotinic receptors. Five dis-
tinct muscarinic receptor subtypes, m1–m5, have
been cloned and shown to correspond with five
pharmacologically defined M1–M5 muscarinic
receptors. It is generally believed that M2 recep-
tors, most of which are located on presynaptic
cholinergic terminals, are reduced in AD brains
[38, 51]. The density of postsynaptic M1 receptors
remains unaltered, but there is some evidence for
disruption of the coupling between the receptors,
their G-proteins, and second messengers [50–52].
The profiles of M3 and M4 receptors in the AD
brain remain equivocal [53, 54]. For the nicotinic
receptor family, 11 genes encoding 8 α (α2–α9) and
three β receptor subunits (β2–β4) have been identi-
fied [38, 55]. High-affinity central nervous system
binding sites of the agonist nicotine are mostly
composed of α4β2 subunits, whereas homomers of
the α7 receptor subunit contribute to the high-affin-
ity binding of the antagonist α-bungarotoxin (α-
BgTx) [55, 56]. Epibatidine, a potent nicotine
agonist, binds with high-affinity to a subtype of
nicotinic receptor containing the α3 subunit [55].
Nicotinic receptors are predominantly located on
cholinergic terminals. High-affinity nicotinic bind-
ing sites are markedly reduced in the hippocampus
and cortex of the postmortem AD brains, and these
observations have been confirmed in vivo by
positron emission tomography [39, 57]. There is
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also evidence of a significant decrease in α7 protein
expression and α-BgTx binding sites in the hip-
pocampus of AD brains [58]. However, a recent
immunocytochemical study demonstrated an
increase in the proportion of astrocytes expressing
α7 immunoreactivity in the hippocampus and
entorhinal cortex of the AD brain relative to the
age-matched controls [59]. Notwithstanding these
data, no muscarinic or nicotinic receptor–based
therapeutic approaches have provided convincing
evidence of an adequate level of efficacy and relia-
bility in AD balanced with an acceptable burden of
side effects. Whether alterations in cholinergic
receptors play a pathogenic role in dysregulating
APP processing or promoting tau phosphorylation
associated with AD pathology remains an area of
intense investigation.

10.3 Cholinergic System and 
APP Processing

10.3.1 APP Processing

Aβ peptides, the principal component of amyloid
deposits, are a group of hydrophobic peptides of
39–43 amino acid residues. These peptides are
derived by proteolytic cleavage of APP—a type 1
integral membrane protein with a long N-terminal
extracellular region, a single membrane-spanning
domain, and a short C-terminal cytoplasmic tail [9,
11, 19, 60]. Multiple isoforms are produced from a
single APP gene by alternative mRNA splicing and
encode proteins ranging from 365 to 770 amino
acids. In the nervous system, APP695 isoform is
expressed predominantly in neurons, whereas
APP770 and APP751 isoforms are found in neuronal
as well as non-neuronal cells [9, 18, 19]. Mature
APP is proteolytically processed by mutually exclu-
sive α-secretase or β-secretase pathways. The α-sec-
retase activity cleaves the Aβ domain within Lys16

and Leu17 residues, thus precluding the formation of
full-length Aβ peptide. This pathway yields a solu-
ble N-terminal APPα and a 10-kDa C-terminal APP
fragment that can be further processed by γ-secre-
tase to generate Aβ17-40 or Aβ17-42, also known as the
P3 peptides. Three members of the disintegrin met-
alloproteases family that can act as potential candi-
dates for α-secretase are tumor necrosis factor alpha
converting enzyme (TACE or ADAM-17), ADAM-

10, and MDC-9 [9, 18]. The β-secretase pathway,
which results in the formation of intact Aβ peptide,
is carried out by the sequential actions of two dis-
tinct proteases namely, β-secretase and γ-secretase.
The β-secretase cleavage is mediated by a novel
aspartyl protease referred to as the β-site APP cleav-
ing enzyme (BACE), which generates a truncated
soluble APPβ and a membrane-bound Aβ-contain-
ing C-terminal fragment. Further proteolysis of the
C-terminal fragment by γ-secretase yields the full-
length Aβ1-40 or Aβ1-42 peptide and a recently
described C-terminal fragment termed γ-CTF [9, 18,
19, 61]. γ-Secretase activity resides in a multimeric
protein complex that contains PS, considered as a
putative aspartyl protease [62] along with four com-
ponents (nicastrin, PEN-2, APH-1, and CD147) that
are required for substrate recognition, complex
assembly, and targeting the complex to its site of
action [63, 64].

Assimilated evidence suggests that the majority
of Aβ1-40/1-42 is generated in the endosomal recy-
cling pathway, whereas only a minority of Aβ1-40/1-

42 is produced in the secretory pathway, within the
endoplasmic reticulum and Golgi apparatus [9, 18,
19]. Once generated, Aβ peptide, depending on the
concentrations, can exist in multiple forms, includ-
ing monomers, dimers, higher oligomers and poly-
mers; the latter includes the fibrils that accumulate
in amyloid deposits [9]. At present, the mecha-
nisms by which APP processing is regulated under
normal or pathological conditions remain unclear.
However, several lines of experimental data have
clearly shown that the discrete APP processing
pathways can be influenced by a variety of factors,
including the stimulation of receptors for ACh,
serotonin, glutamate, estrogen, neuropeptides, and
growth factors [65, 66]. The influence of choliner-
gic stimulation on amyloid formation is of particu-
lar interest in view of the preferential vulnerability
of the cholinergic basal forebrain in AD and the
possibility that maintenance of this cholinergic
tone might slow amyloid deposition in cholinergic
terminal fields.

10.3.2 Cholinergic Regulations of 
APP Processing

Over the years, a clear connection has been estab-
lished between the cholinergic system and APP
metabolism. Nitsch and colleagues first demon-
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strated cholinergic regulation of APP processing in
human embryonic kidney (HEK) 293 cell lines that
were stably transfected with human muscarinic m1,
m2, m3, and m4 receptors [67]. Carbachol, a nonse-
lective muscarinic receptor agonist, significantly
increased the release of soluble APPα in cells
expressing m1 and m3, but not in cells expressing
m2 or m4 receptor subtypes. This response was both
atropine-sensitive and blocked by staurosporine,
indicating the mediation of intracellular protein
kinases in receptor-controlled APPα secretion
[67]. Activation of muscarinic m1 receptor–trans-
fected cells not only enhanced soluble APPα secre-
tion but also reduced the secretion of Aβ peptide,
thus suggesting that cholinergic agents may acti-
vate the non-amyloidogenic α-secretase pathway
with the potential to prevent amyloid formation.
Similarly, muscarinic m1 and m3 receptor agonists
stimulated soluble APPα release from rat cortical
slices [68] as well as brain cultured neurons [69].
Both m1 and m3 receptors activate signaling cas-
cades involving phosphatidylinositol hydrolysis/
protein kinase C (PKC) as well as mitogen acti-
vated protein (MAP) kinase pathways [70].
Treating cells with phorbol esters mimicked the
effect of agonist administration on soluble APPα
secretion, and this effect was blocked by PKC
inhibitors [65, 71]. There is also evidence from cul-
tured SH-SY5Y cells that carbachol-mediated sol-
uble APPα secretion could be mediated, at least in
part, by a MAP kinase–dependent pathway [69].
The mechanism whereby PKC- or MAP kinase–
dependent pathways increase soluble APPα secre-
tion is still unknown but may involve additional
kinase steps and the eventual activation of the pro-
teases that mediate APP cleavage [65, 66, 69, 71].
Moreover, a variety of other neurotransmitter/hor-
mone receptors that activate PKC- or MAP
kinase–dependent signaling pathways, including
the vasopressin, bradykinin, estrogen, serotonin,
and metabotropic glutamate receptors, share this
capacity to stimulate soluble APP secretion and
inhibit Aβ formation [65, 69, 71, 72].

In addition to the muscarinic receptor, some
studies have examined the influence of the nico-
tinic receptor on APP processing. Treatment of
PC12 cells with nicotine increases the release of
soluble APPα without affecting Aβ secretion or
expression of APP mRNA [73]. The relative
increase in soluble APPα was attenuated by the α7

nicotinic receptor antagonist methyllycaconitine
and also by EGTA, a Ca2+ chelator. The nicotine
antagonist chlorisondamine blocked in vivo eleva-
tion of total soluble APP induced by exposure to a
high dose (8 mg kg−1day−1) of nicotine [74]. A
nicotine-induced increase in Ca2+ influx was found
to correspond with the increase in soluble APP
secretion, suggesting that Ca2+ influx through nico-
tinic receptors may be involved in enhanced secre-
tion. This result is in agreement with the findings
from several studies showing that increased cyto-
plasmic Ca2+ levels can stimulate soluble APP
secretion [66, 71, 75].

A number of studies have investigated whether
acetylcholinesterase (AChE) inhibitors, which
improve central cholinergic neurotransmission, can
influence APP processing with the potential to
modulate the biochemical pathways involved in the
AD pathogenesis. The effects of various AChE
inhibitors on soluble APPα levels differ between
cell types and depend upon the specific drug, dura-
tion of treatment and the dose tested. For example,
metrifonate did not alter soluble APP or Aβ levels
in human SK-N-SH neuroblastoma cells [76],
whereas acute treatment of the inhibitor could
increase the secretion of soluble APPα in SH-
SY5Y neuroblastoma cells, presumably by increas-
ing the availability of ACh and thereby stimulating
muscarinic receptors [69, 77]. Donepezil, a rever-
sible AChE inhibitor, was found to increase the
secretion of soluble APPα in a neuroblastoma cell
line and platelets from AD patients by altering the
activity/trafficking of α-secretase enzyme [78, 79].
Physostigmine elevated soluble APPα secretion in
rat cortical slices [80] but decreased soluble APP
secretion without altering Aβ levels in SK-N-SH
neuroblastoma cells [76]. Tacrine, a potent
cholinesterase inhibitor, was found to attenuate
secretion of soluble APPα in glial, fibroblast, and
PC12 cells. The addition of tacrine to neuroblas-
toma cell lines resulted in reduction of the levels of
total Aβ, Aβ1-40/1-42 along with soluble APPα [81].
Other AChE inhibitors such as phenserine, cymser-
ine, and tolserine decreased soluble APPα levels,
whereas 3,4-diaminopyridine failed to affect solu-
ble APPα levels in SK-N-SH neuroblastoma cells
[76]. The differential effects of the AChE inhibitors
on APP processing appear to be unrelated to their
selectivity for the cholinesterase enzymes but may
depend upon other mechanisms, such as their
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influence on APP synthesis, expression, turnover,
trafficking, or the regulation of APP processing
enzymes [69, 71, 76, 82].

10.4 Regulation of Cholinergic
System by Aβ Peptides

10.4.1 Effects of Aβ on ACH Synthesis
and Release

Several studies over the past decade have clearly
shown that nM concentrations of Aβ peptides,
under acute as well as chronic conditions, can neg-
atively regulate various steps of ACh synthesis and
release, without apparent neurotoxicity. The high
potency and reversible nature of this effect, together
with the fact that pM to nM concentrations of Aβ
peptides are found constitutively in normal brain
cells, suggest that Aβ-related peptides may act as a
modulator of cholinergic function under normal
conditions (Table 10.1; Fig. 10.1) [41, 71, 83–86].
A 1-h exposure to pM to nM concentrations of Aβ
can inhibit K+- or veratridine-evoked endogenous
ACh release from rat hippocampal and cortical
slices. This effect is tetrodotoxin-insensitive, sug-
gesting that Aβ peptide may act at the level or in
close proximity to the cholinergic terminals [87,
88]. Structure activity studies reveal that inhibitory
effects of Aβ-related peptides on ACh release from
rat hippocampal slices reside within the sequence
Aβ25-28 (GSNK; the C-terminal domain of the non-
toxic Aβ1-28 fragment). In contrast with the effects
on hippocampal and cortical slices, striatal ACh
release is relatively insensitive to Aβ peptides [87].
This regional selectivity indicates that factors other
than transmitter phenotype, such as the distance
over which cholinergic axons project to their termi-
nal fields and regional variation in the expression of
Aβ binding sites, may contribute to the differences
in cellular responsiveness to Aβ-related peptides.
However, the sensitivity to Aβ of cholinergic neu-
rons in cortex, hippocampus, and striatum matches
the pattern of regional vulnerability in AD.

The inhibitory effects of Aβ on ACh release have
been confirmed in rat and guinea-pig cortical
synaptosomes [89], rat retinal neurons [90], and in
cholinergic synaptosomes from the electric organ of
the electric ray Narke japonica [91]. These effects

may be affected by age-related cognitive deficits.
Higher levels of Aβ1-40 were observed in the aged
rat hippocampus than were found in young adult
rats, and the cholinergic neurons of aged cogni-
tively impaired rats may be more sensitive to Aβ-
mediated inhibition of hippocampal ACh release
than either cognitively unimpaired aged or young
adult rats [92]. This is supported in part by recent
data showing that administration of antibody to Aβ
can increase ACh levels in the hippocampus of 12-
month SAMP8 mice that exhibit age-related
increases in Aβ levels and deficits in learning and
memory [93]. Lee et al. reported that inhibition of
ACh release by Aβ25-35 could be reversed by
ginkgolide B and certain ginseng saponins at con-
centrations that did not by themselves alter ACh
release [94, 95]. This effect was tetrodotoxin-insen-
sitive, suggesting a direct interaction of ginseng at
the level of the cholinergic synapse.

At present, the cellular mechanisms by which Aβ-
related peptides, under acute conditions, can attenu-
ate ACh release from selected brain regions remain
unclear. Given the nature and potency of the effects,
several steps that are critical for ACh synthesis and
release—ranging from precursor recruitment to
vesicular fusion—could be impaired by Aβ peptides
(Table 10.1; Fig. 10.1). Turnover of ACh in the
cholinergic terminals is regulated so that increased
transmitter release is associated with increased syn-
thesis. When brain slices are exposed to submaximal
concentrations of depolarizing agents such as K+ or
veratridine, ongoing synthesis of ACh keeps pace
with release from the terminals [96]. ACh synthesis
under these conditions depends on the high-affinity
uptake of choline from extracellular sources to intra-
cellular acetyl CoA and ChAT. The availability of
choline is a rate-limiting determinant of ACh
biosynthesis, whereas ChAT activity is not [96].
Under acute treatment conditions, pM to nM con-
centrations of Aβ1-40/1-42 do not affect ChAT activity
in tissue homogenates or in slice preparations from
hippocampus, cortex, or striatum [88]. Additionally,
it is also reported that soluble Aβ25-35 did not affect
ChAT activity, under acute conditions, in the adult or
aged rat brain [97]. The phosphorylation of the
ChAT enzyme in IMR32 neuroblastoma cells
expressing human ChAT is known to be regulated by
Aβ1-42, but its significance to ACh synthesis and/or
release remains unclear [98].
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In contrast with ChAT activity, high-affinity
[3H]choline uptake is found to be decreased after
20 minutes of preincubation with Aβ. This effect is
particularly marked in tissues from the hippocam-
pus and cortex, mirroring the effect of Aβ on ACh
release in these regions [88]. Acute incubation of
hippocampal synaptosomes with low nM Aβ1-40
attenuates depolarization-induced high-affinity
choline uptake as well as [3H]hemicholinium-3
([3H]HC-3) binding [99]. Further analysis of these
data indicates that changes in the transport are due
to an alteration of Vmax, whereas the changes in
specific binding possibly involve alterations of
both Bmax and KD. Micromolar concentrations of

Aβ1-40 decrease high-affinity choline uptake and
the [3H]HC-3 binding under basal conditions in a
time-dependent manner [99]. These results indicate
that Aβ can affect acute ACh release, at least in
part, by regulating high-affinity choline uptake, but
not the activity of the ChAT enzyme. The possible
involvement of Aβ in the intracellular transport of
newly synthesized ACh molecules and the fusion
of ACh-containing vesicles with the presynaptic
membrane remain to be investigated.

In addition to the acute effects, a 2-day exposure
to pM to nM concentrations of Aβ1-42, Aβ1-28, Aβ25-

35, and to a lesser extent Aβ25-28 was found to
decrease intracellular ACh concentrations in the
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FIGURE 10.1. Targets of β-amyloid (Aβ) peptide on central cholinergic neurons. 1, Aβ reduces high-affinity uptake of
choline; 2, Aβ reduces activity of pyruvate dehydrogenase (PDH), an enzyme that generates acetyl-CoA from pyru-
vate; 3, chronic exposure to Aβ reduces activity of the enzyme choline acetyltransferase (ChAT); 4, Aβ reduces
acetylcholine (ACh) content; 5, Aβ reduces ACh release from presynaptic terminals; 6, Aβ interacts directly with
nicotinic receptor; 7, Aβ impairs muscarinic M1-like signaling. AChE, acetylcholine-sterase; Ch U, site of choline
uptake; M2, presynaptic muscarinic M2 receptor; N, presynaptic nicotinic receptor. Modified from Kar et al. [94].
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cholinergic hybrid SN56 cell line without causing
toxicity (Table 10.1; Fig. 10.1). The decrease in ACh
could be attributed to reduced biosynthesis, as it was
accompanied by a reduction in ChAT activity.
Interestingly, the observed decrease could be pre-
vented by a cotreatment with trans-retinoic acid, a
compound that increases ChAT mRNA expression
in SN56 cells, or by coadministration of tyrosine
kinase inhibitors [41, 100, 101]. However, inhibition
of DNA synthesis or treatment with antioxidants did
not alter ACh concentrations, thus suggesting that
neither gene transcription nor free-radical produc-
tion is involved in mediating the long-term effect of
Aβ on the cholinergic SN56 cell line [101]. In keep-
ing with these results, treatment of rat primary sep-
tal neurons with nM concentrations of Aβ1-42 was
found to decrease ACh production and reduce activ-
ity of the acetyl-CoA biosynthesizing enzyme pyru-
vate dehydrogenase (PDH) without affecting ChAT
activity or neuronal survival. The decreased PDH
activity possibly results from Aβ activation of the
glycogen synthase kinase-3β (GSK-3β), which can
phosphorylate and inactivate PDH [102].
Collectively these results suggest that chronic expo-
sure to Aβ peptide may impair ACh synthesis/levels
by reducing the availability of acetyl CoA and/or
activity of the ChAT enzyme.

10.4.2 Effects of Aβ on Whole-Cell
Currents in Cholineric Neurons

Apart from interacting with cholinergic terminals
in the hippocampal and cortical regions, Aβ pep-
tide can also act at the level of cell body of cholin-
ergic neurons within the basal forebrain to
increase neuronal excitability [84]. Application of
1 µM Aβ1-42/25-35 to acutely dissociated rat neurons
from the diagonal band of Broca decreased whole-
cell voltage-sensitive currents in cholinergic neu-
rons that were identified by single cell RT-PCR
[84]. This reduction was observed for a suite of K+

currents, including the Ca2+-activated K+ currents
(BK or Ic), the delayed rectifier current (IK), and
transient outward current (IA), but not for calcium
or sodium currents. The responses were blocked
by tyrosine kinase inhibitors, suggesting that Aβ
induces phosphorylation-dependent cascades to
alter these currents [84]. These results indicate that
Aβ peptides acutely modulating K+ currents at the
level of the cell body can increase excitability of
the basal forebrain cholinergic neurons. More

recently, it has been demonstrated that the effects
of Aβ peptide on whole-cell currents are similar to
those evoked by human amylin, a 37-amino-acid
pancreatic peptide that is deposited in the islet
cells of patients with non-insulin-dependent dia-
betes mellitus. Aβ evoked responses can be
occluded by human amylin and can be blocked by
AC187—a specific amylin receptor antagonist.
These data raise the intriguing possibility that the
effects of Aβ on basal forebrain cholinergic neu-
rons may be expressed through the amylin recep-
tor [103].

10.4.3 Effects of Aβ on Cholinergic
Receptors

Over the years, a variety of receptors (e.g., recep-
tors for advanced glycation end products [RAGE],
class A scavenger receptor [SR], the 75-kDa neu-
rotrophin receptor [p75NTR], amylin receptor, and
serpin-enzyme complex receptors) have been
shown to interact with Aβ in vitro [103–107].
These interactions have attracted attention both for
the insights they may provide into the mechanism
of Aβ action and also as potential targets for drug
design. A number of recent studies suggest that
Aβ1-42 can interact with the nicotinic ACh receptors
to mediate its acute as well as chronic effects. The
first reported observation of an interaction between
Aβ and α7/α-BgTx nicotinic receptors showed that
these proteins co-immunoprecipitated in samples
from postmortem AD hippocampus, and α7/α-
BgTx nicotinic receptor antagonists compete for
Aβ1-42 binding to heterologously expressed α7/α-
BgTx nicotinic receptors [108]. A subsequent
study indicated that Aβ1-42 can bind with high affin-
ity (Ki ~ 4–5 pM) to α7/α-BgTx nicotinic receptors
and with lower affinity (Ki ~ 20–30 nM) to
α4β2/cytisine nicotinic (but not muscarinic) recep-
tors in the rat and guinea-pig hippocampus and
cerebral cortex [109]. This is supported by the
observation that nanomolar Aβ peptide was found
to inhibit nicotine-evoked currents via the α7/α-
BgTx receptor and/or the non-α7 nicotinic receptor
in both rat hippocampal slices and cultured neu-
rons, human SH-EP1 cells expressing α4β2 nico-
tinic receptor subunits, and in Xenopus oocytes
containing heterologously expressed rat or human
α7 nicotinic receptor subunits [110–114]. However,
there is also evidence that Aβ peptide can directly
activate acutely dissociated rat basal forebrain

10. Amyloid β-Peptide and Central Cholinergic Neurons 167



neurons via non-α7 nicotinic receptors and in the
case of Xenopus oocytes expressing α7 nicotinic
receptor subunit through the α7/α-BgTx receptors
[115, 116]. In addition, it has been reported that
α7/α-BgTx receptors can facilitate internalization
of Aβ1-42 in transfected human SK-N-MC neurob-
lastoma cells [117] and can mediate Aβ-induced
tau phosphorylation in cultured SK-N-MC cells
and hippocampal synaptosomes [118]. The effects
of Aβ on the nicotinic receptor are consistent with
receptor involvement in Aβ-mediated inhibition of
ACh release. In support of this notion, the
inhibitory effects of Aβ1-40 on cortical ACh release
were found to be restored by addition of α7 agonist,
such as nicotine and epibatidine, but not by α4β2
nicotinic receptor agonist cytosine [119]. However,
further studies are needed not only to define the
precise role of the α7 nicotinic receptor in regulat-
ing the inhibitory effects of Aβ peptides on ACh
release but also to establish its significance in rela-
tion to AD pathology.

In addition to interacting with nicotinic ACh
receptors, solubilized Aβ peptide has been shown
to disrupt transduction of the muscarinic M1-like
receptor signal [120]. A 4-h exposure to nM-µM
Aβ1-40 reduced carbachol-induced GTPase activity
in rat cortical cultured neurons without affecting
muscarinic receptor ligand binding parameters. At
higher concentrations, similar treatment with Aβ
attenuated muscarinic M1 receptor signaling by
decreasing intracellular Ca2+ and the accumulation
of Ins(1)P, Ins(1,4)P2, Ins(1,4,5)P3, and Ins(1,3,4,5)
P4 [120]. Exposure of rat cortical cultured neurons
to nM Aβ1-42/Aβ25-35 inhibits carbachol-, but not
glutamate-, induced increases in intracellular Ca2+

and Ins(1,4,5)P3 indicating that selective disruption
of the muscarinic M1-like signaling pathway is
another means by which Aβ can affect the function
of cholinoceptive neurons [121].

10.4.4 Effects of Aβ on Cholinergic
Neuron Survival

A number of in vitro studies have shown that
chronic exposure to Aβ peptides can induce toxic-
ity in a variety of cell lines, as well as in primary rat
and human cultured neurons. The toxicity of the
peptide is considered to be related to its ability to
form insoluble aggregates [24, 25]. However, recent
evidence suggests that the most detrimental forms

of Aβ peptides are the soluble oligomers and that
the insoluble amorphous or fibrillar deposits repre-
sent a less harmful form of the peptide [9, 122].
Some neuronal phenotypes, such as GABAergic
and serotonergic neurons, appear resistant to Aβ
toxicity, and various cell lines differ in their degree
of sensitivity [123, 124]. Differentiated SN56
cholinergic cell lines are a susceptible line for toxi-
city studies, and when exposed to Aβ1-40, these cells
exhibit retraction of neurites, cell shrinkage, and
death [125]. When treated with ciliary neurotrophic
factor, the RN46A cell line develops a cholinergic
phenotype and is highly sensitive to Aβ peptides. In
contrast, stimulation of RN46A differentiation with
brain-derived neurotrophic factor yields an Aβ-
insensitive cell population with a serotonergic trans-
mitter phenotype.124 Prolonged exposure of rat
primary septal cultured neurons to µM Aβ peptides
induces both cell death and a concomitant decrease
in ChAT activity [126–128]. Collectively, these
results suggest that cells expressing cholinergic
transmitter phenotype are vulnerable to the toxic
effects of Aβ peptide.

The mechanisms by which Aβ induces choliner-
gic cell death remains unclear but may involve
alteration in intracellular calcium and/or the pro-
duction of toxic and inflammatory mediators such
as nitric oxide, cytokines, and reactive oxygen
intermediates [129–131]. Studies on a variety of
cell lines and primary cultured neurons suggest that
Aβ toxicity might be mediated either by interaction
with a hydroxysteroid dehydrogenase enzyme or
by plasma membrane RAGE, SR, p75NTR, amylin,
or α7 nicotinic receptors [105–109, 127]. A role for
the death domain of p75NTR in Aβ-induced cell
death was observed in neuroblastoma (SK-N-BE)
cells expressing full-length or truncated forms of
p75NTR, but recent evidence from primary human
cultured neurons suggest that overexpression of
p75NTR can provide protection against Aβ-medi-
ated toxicity by activating a phosphatidylinositide
3-kinase–dependent but Akt-independent pathway
[132, 133]. Studies of transfected neuroblastoma
(SK-N-MC) cells indicate that expression of α7
nicotinic receptor may also have a critical role in
the degeneration by facilitating internalization and
accumulation of Aβ1-42 into neurons [117]. Given
the marked expression of p75NTR and of the α7
nicotinic receptor in the cholinergic basal fore-
brain, their role in cholinergic cell death bears
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further investigation. More recently, it has been
demonstrated that the amylin receptor antagonist
AC-187 can attenuate Aβ-induced toxicity in rat
primary septal cultured neurons by inhibiting a cas-
pase-dependent pathway thus suggesting a possible
role for this receptor in mediating the toxic effects
of Aβ [127].

Tau phosphorylation has long been considered to
contribute to neuronal vulnerability by destabilizing
microtubules and impaired axonal transport [125,
134–136]. Aggregated Aβ induces the phosphoryla-
tion of tau protein in SN56 cholinergic cell lines
[125]. Studies with rat septal cultured neurons have
indicated that aggregated Aβ increases levels of both
total tau as well as phosphorylated tau [126].
Phosphorylated tau immunoreactivity could be
detected primarily in the distal axons of untreated
cells, whereas staining was evident in axons, soma,
and dendrites of neurons exposed to Aβ [126].
Hyperphosphorylated tau protein can lead to the neu-
ronal death via disruption of the cytoskeletal network
[13–15]; it is likely that the increase in tau phospho-
rylation plays some role in Aβ-induced death of the
cholinergic neurons. However, the mechanisms by
which Aβ might induce the phosphorylation of the
tau protein remain unclear. Reactive oxygen species
and the lipid peroxidation product 4-hydroxynonenal
may be involved in Aβ-neurotoxicity and cross-link-
ing of tau proteins [137]. Additionally, Aβ might also
affect tau phosphorylation by directly increasing rel-
evant kinase activity or by decreasing phosphatase
activity [125, 134, 138–140]. Activation of GSK-3β
[136, 139, 141] and MAP kinase [138] induces tau
protein phosphorylation and cell death in a variety of
cultured neuron paradigms, and prolonged exposure
of rat septal cultured neurons to µM Aβ peptide has
been shown to induce tau phosphorylation by acti-
vating MAP kinase and GSK-3β [126]. Various
kinases phosphorylate tau at discrete sites, and it is
likely that the phosphorylation of tau protein in
cholinergic neurons is regulated by multiple kinases,
including MAP kinase and GSK-3β. Thus, it is
important to explore both the biochemical potential
of additional tau kinases, such as cyclin-dependent
kinase 5, PKC, and calcium-calmodulin kinase to
phosphorylate tau [13–16], and the particular cellular
expression of these kinases by cholinergic neurons.

Tau phosphorylation can be regulated by cholin-
ergic agonists, and control of tau hyperphosphory-
lation by muscarinic receptor activation may

provide a side benefit of cholinomimetic therapeu-
tics. Muscarinic agonists, carbachol and AF 102B,
attenuate tau phosphorylation in cultured PC12
cells stably transfected with muscarinic m1 recep-
tors [142]. On the other hand, activation of the
nicotinic receptor by nicotine and epibatidine
increased the levels of phosphorylated as well as
non-phosphorylated tau in SH-SY5Y human neu-
roblastoma cells [143]. The mechanisms by which
muscarinic m1 or nicotinic receptor activation mod-
ify tau phosphorylation remain unclear, but recent
data suggest that stimulation of α7/α-BgTx nico-
tinic receptors by Aβ1-42 can induce tau phosphory-
lation in human neuroblastoma cells and
hippocampal synaptosomes via extracellular recep-
tor kinases (ERKs) and c-Jun N-terminal kinase
(JNK-1) [118]. These activities may likely involve
alteration of other protein kinase/protein phos-
phatase systems [71].

10.4.5 Effects of In Vivo Administration
of Aβ on Cholinergic Neurons

Attempts have been made to measure the impact of
intracerebroventricular or local administration of Aβ
on cholinergic system under in vivo conditions.
Several studies have reported that Aβ peptides can
induce cholinergic hypofunction when administered
to the brain [31, 41, 83, 144, 145]. Injection of Aβ25-

35/1-40 into the rat medial septum causes a reduction
in ACh release from the hippocampus in the absence
of toxicity [146]. Using a similar approach, Harkany
et al [31]. demonstrated that Aβ1-42 is toxic to cholin-
ergic neurons, as indicated by reduction in ChAT-
immunoreactive cell bodies in the basal forebrain
and fibers in the cerebral cortex. This effect was
partly antagonized by the N-methyl-D-aspartate
(NMDA) receptor antagonist MK-801, thus suggest-
ing a possible involvement of an excitotoxic path-
way in mediating the effects of Aβ peptide [31].
More recently, it has been shown that aging and
high-cholesterol diet can enhance in vivo toxicity of
Aβ peptide on cholinergic neurons [145]. Other
studies have reported that infusion of Aβ into the lat-
eral ventricles of adult rats impairs performance on
learning and memory tasks in a manner similar to
the effect of cholinergic inhibition [30, 32, 83, 144].
Local injection of preaggregated Aβ1-42 into the
nucleus basalis magnocellularis (NBM) produces
congophilic deposits and a strong inflammatory
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response, characterized by activation of astrocytes
and microglia and by induction of microglial
p38MAP kinase activity [147]. These changes were
accompanied by a decrease in the number of cholin-
ergic neurons around the congophilic amyloid
deposit and hypofunction of the cortical cholinergic
system [147]. Clearly, the influence of these astro-
cytic and microglial responses must be considered in
assessing in vivo effects of Aβ peptides on choliner-
gic function.

10.4.6 Cholinergic System in Transgenic
Mice Overexpressing Aβ Peptide

Over the past few years, the central cholinergic sys-
tem has been examined extensively in a variety of
mutant APP, PS1, or APP/PS1 transgenic mouse
lines, all of which exhibit elevated Aβ levels
[148–163].

In mice expressing the hAPPV642I London mutant
transgene, a selective decrease was found in the size
of medial septal cholinergic neurons, but not in NBM
cholinergic neurons. At 17–22 months of age, this
line exhibits both reorganization of AChE-positive
fibers in the hippocampus and dystrophic AChE-pos-
itive fibers around amyloid plaques in the cortex
[149]. Cerebral amyloidosis was found to cause a
significant cholinergic fiber loss and severe disrup-
tion of neocortical cholinergic fiber networks in aged
APP23 mice expressing hAPPKM670/671NL Swedish
mutant transgene [148]. Although the cholinergic
neurons of the medial septum and vertical limb of the
diagonal band of Broca were smaller in APP23 trans-
genic mice than in non-transgenic controls, the num-
ber and volume of ChAT-positive neurons in the
NBM complex were not affected. Hippocampal
cholinergic fiber density in APP23 mice has yet to be
reported [148]. Homozygous PDAPP mice express-
ing the hAPPV717F mutant transgene showed an age-
dependent decrease in hippocampal and cortical
cholinergic fiber density without any evident loss of
basal forebrain cholinergic neurons compared with
the non-transgenic controls. The degeneration of
cholinergic nerve terminals in these transgenic mice
was found to occur prior to the deposition of Aβ-con-
taining neuritic plaques [159].

In another study, hAPPKM670/671NL mutant mice
demonstrated an upregulation in the density of
cholinergic synapses in the frontal cortex, parietal

cortex, and the hippocampus, whereas PS1M146L
transgenic mice showed no changes in either the
size or density of cholinergic synapses. When
crossed to yield hAPPKM670/671NL/PS1M146L double
transgenic mice, extensive amyloid plaques were
found to be associated with decreased density and
size of cholinergic synapses in the frontal cortex
and hippocampus [150]. A significant inverse rela-
tionship was noted between the presynaptic cholin-
ergic bouton density and size of Aβ-containing
neuritic plaques located in the frontal cortex of the
hAPPKM670/671NL/PS1M146L double transgenic mice
[160]. In one study, a selective increase in
immunostaining for p75NTR (a marker of basal fore-
brain cholinergic neurons) was evident in the
medial septum of 12-month-old hAPPKM670/671NL or
PS1M146L single transgenic mice but not in
hAPPKM670/671NL/PS1M146L double transgenic mice.
Staining of p75NTR-immunoreactive fibers in hip-
pocampus was more robust in single transgenic
mice, relative to non-transgenic controls, while
double transgenic mice displayed less intense
p75NTR fiber staining [151]. Whether the increased
immunostaining in singly transgenic mice indicates
a trophic effect on the cholinergic neurons as a con-
sequence of either hAPPKM670/671NL or PS1M146L
gene overexpression remains to be investigated.
However, a separate study revealed no differences
between hAPPKM670/671NL mice and non-transgenic
controls in ChAT activity, AChE activity, vesicular
ACh transporter binding, or high-affinity choline
uptake sites in cortex, hippocampus, striatum, or
cerebellum at multiple times up to 23 months of age
[152]. Interestingly, a recent study showed that
extracellular hippocampal ACh levels, but not stim-
ulated ACh release, were slightly but significantly
reduced (~26% decrease) in knock-in mice carrying
hAPPKM670/671NL/PS1M146L transgenes compared with
mice overexpressing hAPPKM670/671NL/PSwild-type
transgenes, thus suggesting expression of mutant
APP/PS1 genes may induce subtle alteration in
cholinergic transmission [164].

Densities of M1/[3H]pirenzepine, M2/[3H]AF-
DX 384, or α7 nicotinic/[125I]α-BgTx receptor
binding sites in all brain regions of mutant PS1L286V
transgenic and wild-type PS1 transgenic mice are
comparable with those found in non-transgenic
controls [153]. In hAPPKM670/671NL mutant mice, a
decrease in M1/[3H]pirenzepine and α4β2 nico-
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tinic/[3H]cytisine, but not M2/[3H]AF-DX 384,
receptor binding was evident in the hippocampus
and cortex compared with non-transgenic controls
[157]. However, in other studies, elevated hip-
pocampal α7 nicotinic receptor levels have been
reported in hAPPK670N/M671L single and two lines
(i.e., hAPPK670N/M671L/PS1A246E and APPKM670/671NL+

V717F/PS1M146L+L286V) of double transgenic mice
[154, 156]. In triple transgenic mice harboring
hAPPKM670/671NL/PS1M146V/TauP301L transgenes, an
age-dependent reduction of α7/α-BgTx nicotinic
receptor binding sites was observed in the hip-
pocampus and cortical regions compared with non-
transgenic mice. Additionally, chronic nicotine
intake was found to exacerbate tau pathology in
these transgenic mice, suggesting an in vivo role
for the nicotinic receptor in the phosphorylation of
tau protein [163]. Apart from receptor binding site,
high-affinity [3H]HC binding (i.e., choline uptake
sites) was found to be reduced in cortical regions of
5- and 17-month-old hAPPKM670/671NL mutant mice,
whereas [3H]vesamicol binding (i.e., vesicular Ach
transporter sites) was increased in 17-month-old
but not in 5-month-old transgenic mice compared
with littermate non-transgenic controls [162].
However, the significance of the changes in these
presynaptic cholinergic markers and their associa-
tion with the amyloid pathology remains unclear.
In sum, increased expression of Aβ peptides pro-
duces a range of effects on cholinergic systems of
mutant APP, PS1, or APP/PS1 transgenic mice.
Establishing which of these effects are robustly
related to the type of pathogenic mutation, the level
of transgene expression, or to the intensity of
amyloid deposits remains to be defined in future
studies.

10.5 Significance of Amyloid
Interactions with Cholinergic
Neurons

Earlier results have shown that Aβ-related pep-
tides are produced constitutively by brain cells and
are found in the pM to nM range in the cere-
brospinal fluid of normal individuals [9, 165–167].
These concentrations of Aβ can have a neuromod-
ulatory role in the regulation of normal cholinergic

functions, possibly through their negative effects
on ACh biosynthesis and release. Conversely,
there is evidence that ACh can regulate APP syn-
thesis and processing. For example, lesions of the
basal forebrain cholinergic neurons or transient
inhibition of cortical ACh release could elevate
local APP synthesis [65, 168–170], whereas ago-
nist-induced activation of muscarinic m1 and m3
receptor subtypes increases the secretion of solu-
ble APP derivatives and reduces the production of
amyloidogenic Aβ peptides [65–71, 171]. These
results suggest a reciprocal mechanism whereby
normal cholinergic innervation participates in the
nonamyloidogenic maturation of APP via the α-
secretase pathway, while the amyloidogenic Aβ-
related peptides depress the activity of cholinergic
neurons. A shift in the balance between these
activities may possibly be a key factor in the tar-
geting of cholinergic neurons in AD. Insults that
reduce cholinergic transmission, increase Aβ gen-
eration, or reduce Aβ clearance may enhance vul-
nerability of neurons to direct toxicity of Aβ
peptide [9, 24, 25] or to choline limitation [83, 86,
88, 99, 172, 173]. Because cholinergic neurons
utilize choline from membrane phosphatidyl-
choline to synthesize ACh, it is likely that Aβ-
induced alteration in intracellular choline levels
might lead to an autocannibalistic process in
which membrane turnover is disrupted to sustain
neurotransmission [173]. Given the evidence that
Aβ deposits precede any other lesions in AD
brains [23], it is possible that amyloid-induced tau
phosphorylation may also play a critical role in
neuronal loss. This is supported by some in vivo
studies in which intrathecal administration, or
transgene-delivered expression of Aβ peptides was
shown to induce a loss of neurons, or a change in
presynaptic cholinergic markers, within selected
brain regions [30–33, 148–150, 159]. The selec-
tive interactions of Aβ with basal forebrain cholin-
ergic neurons provide candidate mechanisms that
may contribute, at least in part, to the vulnerability
of these neurons and their projections in AD. It
remains to be determined whether changes in
cholinergic transmission alter APP processing
pathways so as to further AD pathology. If so,
appropriate cholinomimetic therapeutics might be
expected both to provide symptomatic benefit and
to abrogate AD pathogenesis.
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11
Physiologic and Neurotoxic Properties 
of Aβ Peptides
Gillian C. Gregory, Claire E. Shepherd, and Glenda M. Halliday

11.1 Introduction

Alzheimer’s disease (AD) is characterized by a
gradual decline of numerous cognitive processes,
culminating in dementia and neurodegeneration. It
is the most common form of dementia and a sig-
nificant cause of death in the elderly. Definitive
diagnosis of AD requires the presence of the extra-
cellular accumulation of Aβ peptides in senile
plaques in the cortex of the brain (Fig. 11.1) [1]. 
β-Amyloid (Aβ) peptides are ~4-kDa polypeptides
with the main alloforms consisting of 40 and 42
amino acids. Analysis of the insoluble protein frac-
tion has identified the longer Aβ42 alloform as the
predominant peptide species in the neuropatho-
logic accumulations (see [2]), although Aβ pep-
tides of variable length accumulate within plaques
[3–8]. The association between the abnormal accu-
mulation of Aβ peptides in the brain and dementia
is strong evidence that Aβ peptides are vital for
normal brain functioning.

Some of our understanding about Aβ and brain
function has occurred after the identification of
genetic mutations in the amyloid precursor protein
(APP) that cause AD [9, 10] and the subsequent
use of molecular biology to study the cellular
mechanisms involved in Aβ production and clear-
ance. Initial reports using human APP695 mice and
PDAPP mice with the APP717 mutation revealed
that these mutations caused Aβ levels to increase
two to three times over control mice with Aβ dep-
osition only occurring at these levels of production
[11–13]. Subsequent studies revealed that these
genetic mutations increase the amount of the Aβ42
alloform over other Aβ species [14–16]. The study

of these abnormalities in Aβ processing has led to
a better understanding of the role Aβ peptides play
within the brain.

11.2 Production of Aβ Peptides

The Aβ peptides are derived from the proteolytic
processing of APP [17]. APP belongs to a het-
erogenous group of ubiquitously expressed
polypeptides, with the heterogeneity arising from
alternative splicing and post-translational modifi-
cations [18]. The pre-mRNA is spliced to produce
three major isoforms APP770, APP751, and APP695
with the APP695 isoform expressed at high levels in
neurons (APP 770:751:695 mRNA ratio is 1:10:20
in the cortex [19]). APP is a single membrane–
spanning protein with a large extracellular 
N-terminal and small intracellular C-terminal
domain and is localized to numerous membranous
structures in the cell; the endoplasmic reticulum,
Golgi compartments, and cell membrane [18]. In
the axonal membrane, APP acts as a receptor for
kinesin 1 during the fast axoplasmic transport of
vesicles containing numerous proteins [20]. In
addition to its possible role in membrane functions,
APP undergoes considerable post-translational
modifications including glycosylation and specific
proteolytic cleavage to produce fragments that are
believed to be extensively involved in adhesion,
neurotrophic and neuroproliferative activity, inter-
cellular communication, and membrane-to-nucleus
signaling [21].

Proteolytic cleavage of APP occurs via at least
two pathways involving three secretases (α, β,



and γ), with only one pathway generating full-
length Aβ peptide [18]. The α- and β-secretase
cleavages are seen as mutually exclusive events,
each releasing a large extracellular domain of the
APP protein, soluble APP (sAPP). α-Secretase
cleavage precludes the formation of Aβ, instead
producing a shortened fragment, together with γ-
secretase cleavage, called p3 [22]. Production of
these non-amyloidogenic sAPP and p3 fragments
occurs within the endoplasmic reticulum, the trans-
Golgi apparatus, and at the cell membrane [23].

The Aβ peptides are generated early in the secre-
tory trafficking of APP and at the cell surface. APP

not cleaved at the cell surface by α-secretase is
reinternalized for processing in the endosome/lyso-
some system by β-secretase [24, 25]. β-secretase,
an aspartyl protease known as BACE (β-site APP
cleavage enzyme) [26], cleaves APP both within
the endocytic and secretory pathways of the endo-
plasmic reticulum and the Golgi [27]. The remain-
ing APP fragment, the C-terminal fragment, is
secured to the membrane. γ-Secretase cleavage
occurs in the hydrophobic transmembrane domain,
after the α- or β-secretase cleavage events, and cre-
ates the carboxyl terminus of the Aβ peptide.
Studies suggest that Aβ peptides produced in the
endoplasmic reticulum may not be secreted and are
instead retained and catabolized inside the cell
[27]. Most Aβ, however, is believed to be secreted
into the extracellular space [18].

The γ-secretase consists of a complex of proteins
made up of presenilin 1 and 2 (PS1 and PS2),
nicastrin [28, 29], Aph-1 [30, 31], and pen-2 [31],
though recent data suggest that different combina-
tions of these proteins may exist [32]. This cleav-
age event occurs at different sites in the C-terminal
fragment producing the predominant Aβ1-40 and
Aβ1-42 fragments as well as Aβ1-39 and Aβ1-43. It is
not clearly understood how the γ-secretase deter-
mines its particular cleavage site in the C-terminal
fragment and what regulates the production of one
peptide length over another. Such regulation is
likely to have a substantial effect on overall Aβ
function due to the different physicochemical
properties of the peptides.

11.3 Detection and Tissue Location
of Aβ Peptides

The Aβ peptides can be detected in numerous bio-
logical milieus, such as the CSF, plasma, and brain.
Many studies have determined the concentrations
of the peptides in these different locations, pre-
dominantly in the plasma and CSF because avail-
ability and access to these areas is markedly easier
than brain tissue [33–46]. Comparisons and quan-
tification of Aβ in plasma and CSF between control
and AD samples have been performed for the
development of biomarkers or objective predictors
of cognitive dysfunction [47]. However, conflicting
results have precluded any advances in this area
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FIGURE 11.1. Tissue section from the temporal lobe of an
early-onset AD case immunohistochemically stained for
Aβ42. Initially, Aβ deposits in diffuse plaques that are
typically 10–200 µm in diameter with ill-defined bound-
aries. Over time, the accumulating Aβ becomes fibrillar
acquiring a β-pleated sheet structure, and neuritic
plaques develop. These plaques are associated with
axonal and dendritic injury of pyramidal cells, known as
dystrophic neurites, which occur both within this amy-
loid deposit and immediately surrounding it. The accu-
mulating Aβ in neuritic plaques develops further into the
classic senile plaques that have a distinct concentrated
Aβ core surrounded by a ring or “corona” of neuritic
pathology.



because Aβ peptide concentrations in both CSF
and plasma are highly variable [33, 35, 45, 48, 49].

The CSF bathes and drains from the brain, which
implies that CSF Aβ mainly arises from brain tis-
sue and in nondiseased states reflects brain tissue
concentrations of these peptides. In control CSF,
Aβ40 is the dominant species, with concentrations
consistently higher than Aβ42 [33–36]. This sug-
gests that the dominant Aβ peptide secreted by the
cells of the brain is Aβ40 and that γ-secretase cleav-

age preferentially produces this shorter Aβ peptide.
It has been shown that CSF Aβ levels follow a nat-
ural U-shaped course in normal aging (Fig. 11.2).
Proportionately higher concentrations of both Aβ40
and Aβ42 are detected in children compared with
adults between 30 and 60 years of age [36, 37].
Concentrations then increase proportionately with
further aging [36]. Low levels of Aβ during adult-
hood suggests that equilibrium has been reached
between the cellular synthesis and extracellular
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anisms of Aβ clearance from the brain. The left-hand graph shows the natural U-shaped course of CSF Aβ during
normal aging. Proportionately high concentrations of both Aβ40 and Aβ42 occur in childhood and are then downreg-
ulated between the ages of 30 and 60 years. Aβ peptide levels then proportionately increase with subsequent aging.
Low levels of Aβ during adulthood suggests that equilibrium has been reached between the cellular synthesis and
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converting enzyme (ACE) and α2-macroglobulin (α2M) through interactions with LDL-receptor–related protein
(LDLR) and apolipoproteins (ApoE). The right-hand graph shows that breakdown in one of the clearance pathways,
and failure to clear the Aβ peptide, leads to increased brain Aβ and, hence, AD.



clearance of these peptides and that with older age
this equilibrium is changed (Fig. 11.2).

Numerous studies of CSF Aβ in AD show a con-
sistent decrease in Aβ42 concentrations compared
with controls [33–35, 37–44] and a negative corre-
lation between Aβ42 levels and disease severity [40,
50]. Aβ40 levels in AD CSF remain the same
[33–35, 37, 39] or decrease [40, 43] compared with
controls. The lower Aβ42 CSF levels in AD are
thought to be due to reduced Aβ42 clearance con-
sistent with the preferential deposition of Aβ42 in
AD brain [51]. However, there is an overlap in CSF
Aβ42 values between AD and control groups [35]
with the clearance problem occurring primarily in
early disease [50]. More intriguing are studies that
show low CSF Aβ42 levels in patients with a vari-
ety of other disorders, some of which do not
deposit Aβ in the brain. These include major
depression [40, 50] and Creutzfeldt-Jakob disease
[52], suggesting a possible dissociation between
Aβ clearance and deposition. In addition, the same
deficit occurs in patients with dementia with Lewy
bodies [53] limiting the role of this measurement as
a specific diagnostic marker for AD. Overall, these
findings suggest that Aβ40 is preferentially cleared
through the CSF at all ages and in all brain disor-
ders compared with Aβ42.

In the plasma of normal elderly, the Aβ40 peptide
is the dominant species, with average concentra-
tions of Aβ40 well above those of Aβ42 [35, 45, 46].
Plasma Aβ originates from many sources, but par-
ticularly blood-borne platelets, which preferen-
tially produce Aβ40 [54]. Platelet activation
releases Aβ, and in patients with AD there is an
increase in the plasma concentrations of Aβ, par-
ticularly Aβ42 [45, 55, 56]. The binding of platelet-
activating factor to platelets in AD has been used to
measure platelet activation. This measure corre-
lates with the degree of cognitive impairment in
patients with AD [57], with decreasing platelet
APP predicting conversion to dementia [58]. This
raises the possibility that increased platelet activa-
tion and plasma Aβ may play some role in the
dementing process.

Aβ peptides complex with apolipoprotein E
(ApoE) and apolipoprotein J (ApoJ) to cross the
blood-brain barrier (BBB) [59]. In primates, infused
Aβ40 readily crosses the BBB compared with other
peptides, with the rate of Aβ sequestration into the
brain parenchyma after a single exposure increasing

with age [60]. In rats, infusions of Aβ40 or Aβ42
increase BBB permeability [61]. Enhancement of
Aβ transport across the BBB along with reduced
CSF clearance is thought to contribute to the
increased brain deposition of Aβ in a transgenic
model of AD [62]. Alternatively, intravenous admin-
istration of anti-Aβ antibody promotes a rapid efflux
of Aβ from the CNS into plasma [63]. These studies
show considerable flux of Aβ peptide across the
BBB and suggest that a proportion of brain Aβ
could originate from the circulating pool found in
plasma.

The “amyloid cascade” hypothesis proposes that
the increased burden of Aβ in the brain is the pri-
mary intrinsic pathogenic event in AD [64].
Consequently, most studies analyzing brain Aβ
peptide levels have concentrated on AD tissue with
few studies focusing on Aβ levels in normal (dis-
ease free) brain tissue [3, 15, 65–79]. In contrast
with the results obtained in CSF and plasma, a
large number of these studies show that Aβ40 levels
in elderly controls are low compared with the lev-
els of Aβ42 (for review, see [2]). This suggests that
Aβ40 is preferentially cleared from the brain, con-
sistent with higher levels in the CSF. Despite these
consistent findings, the literature commonly states
that Aβ40 is the dominant peptide species in the
normal brain (for review, see [2]). This misconcep-
tion is consistent with measurements from periph-
eral tissues and supernatant from cell lines
(equivalent of CSF) [80] but is not supported by
data from nondiseased human brain tissue.
Unfortunately, this has also influenced research
into AD pathogenesis to focus on changes in the
production from the more “normal” Aβ40 peptide
to the Aβ42 peptide that has been wrongly thought
to only associate with AD.

11.4 Structure of Aβ Peptides

Aβ peptides exist as monomers, dimers, and higher
oligomers, with aggregation producing protofibrils
and eventually fibrils, in a β-pleated sheet confor-
mation. The Aβ oligomers are believed to play a
key role in AD neurotoxicity [81–85]. The forma-
tion of Aβ oligomers by the different alloforms
occurs through different pathways. Aβ40 aggregates
as monomers, dimers, trimers, and tetramers in
rapid equilibrium, whereas Aβ42 preferentially
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forms pentamer/hexamer units that are able to
assemble further to form early protofibril structures
[86, 87]. These differences suggest different
peptide functions.

Recent experiments have established that the
major secondary structure adopted by Aβ depends
on the environment [88]. The Aβ monomer con-
tains an amphipathic sequence that favors an α-
helix structure (Fig. 11.3) in a membrane or
membrane-mimicking environment [89, 90],
whereas in an aqueous solution, a nontoxic random
coil configuration with few components of α-helix
and/or β-sheet conformations is preferred [91–94].
The highly hydrophobic C-terminus of Aβ is
embedded in the lipid membrane with its
hydrophilic N-terminus protruding extracellularly

[95]. Two lipophilic regions (Lys16 to Ala21 and
Lys28 to Val40) are believed to be the main func-
tional areas. The first region has an α-helical struc-
ture and the second a β-pleated sheet structure,
which is able to form hydrophobic forces with
other β-sheets of Aβ peptides [91]. The two
lipophilic helical regions are separated by a flexible
hinge or kink region (Fig. 11.3), which may be
important for its membrane-inserting properties
and conformational rearrangements [89, 95, 96].

The different lengths and structure of the Aβ
peptides contribute to their different oligomeric
states. Aβ aggregation into oligomers occurs when
the dominant structure of Aβ is converted from an
α-helix or random coil to a β-sheet conformation
[97, 98] through intermediates of mixed helices
and β-sheets [88, 92]. In contrast with Aβ42, Aβ40
has a tendency to move out of the lipid environ-
ment [88], possibly contributing to the smaller and
more soluble oligomers formed by this peptide.

In disease conditions, when Aβ fibrillogenesis
occurs, the structure of the Aβ peptides changes
substantially due to increased concentrations and
conformational effects. Over time, the helical Aβ
residues 29–40 that are embedded into the stabiliz-
ing cell membrane leave the lipid bilayer and enter
the extracellular environment where they have a
high tendency to form short β-sheets in a concen-
tration-dependent fashion thereby precipitating
polymers [88, 92]. During the “lag phase” prior to
the development of Aβ fibrils, no Aβ precipitates
are detectable in brain tissue, suggesting that nucle-
ation of a different structure is required, like seed-
ing a crystallization process. The lag phase can be
removed by seeding Aβ monomers with preaggre-
gated Aβ fibrils [99]. Using kinetic studies, Aβ42
has been shown to form precipitated fibrils signifi-
cantly faster than Aβ40, leading to the frequently
coined phrase that Aβ42 is more amyloidogenic
than Aβ40 [99]. This is probably due to its greater
propensity for helical structures and lipid associa-
tion. In fact, Aβ40 has been shown to be compara-
tively neuroprotective against Aβ42-induced
neurotoxicity in vitro and in vivo. The mechanism
for this neuroprotection may involve the Aβ40 pep-
tide inhibiting the β-sheet transformation and fibril
formation of Aβ42 [100].

Comparison between the concentrations of solu-
ble and insoluble Aβ peptides in control brain tis-
sue [3, 66, 69, 72, 74, 78] suggests that Aβ40 is
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Aβ1-40

Aβ1-42

FIGURE 11.3. Membrane-bound structure of the main Aβ
peptides, Aβ40 and Aβ42. Both peptides exhibit α-helical
conformations (shown as large arrows) in conditions
mimicking lipid membranes (in the presence of organic
modifiers such as SDS). Aβ42 has two α-helices, on
either side of the “kink” region, in contrast with Aβ40,
which has only one α-helical domain.



greater in the soluble fraction, whereas Aβ42 is the
predominant species in the insoluble fraction [2],
as may be expected based on the physiochemical
properties of the two peptides. There is a signifi-
cant change in the Aβ levels in the brain tissue of
AD cases (both sporadic [3, 15, 65–67, 70, 72, 73,
75, 78, 79, 101, 102] and familial [15, 65, 70, 77,
101, 103, 104]), with significant increases in the
amount and insolubility of Aβ42 in AD compared
with controls (Fig. 11.2), in agreement with the
dominant hypothesis that it is the pathogenic
species in AD. In addition to the changes in Aβ42,
Aβ40 levels are also increased in AD cases
(Fig. 11.2), with greater increases in the amount of
insoluble Aβ40 than insoluble Aβ42 in sporadic AD
(for review, see [2]). These studies support the con-
cept that increases in Aβ peptide levels promote
significant changes in their structure and therefore
their solubility and that these structural changes
produce less soluble Aβ peptides and have signifi-
cant pathogenic effects.

11.5 Other Aβ Binding Partners

Apart from concentration-dependent self-aggrega-
tion, Aβ peptides readily bind to other molecules,
including lipids, proteins, and metal ions. Three
histidine residues in the N-terminal hydrophilic
region provide primary metal binding sites on the
Aβ peptides. The binding of certain metal ions to
Aβ can promote aggregation. Zn2+ induces Aβ
aggregation at acidic to neutral pH and is the most
powerful metal inducer of Aβ aggregation [105].
Cu2+ induces aggregation at mildly acidic pH com-
parable with the pH-dependent effect of Cu2+ on
insulin aggregation [105]. Under normal physio-
logic conditions, Cu2+ protects Aβ against Zn2+-
induced aggregation by competing with Zn2+ for
the histidine residues of Aβ [106]. A mildly acidic
environment together with increased Zn2+ and Cu2+

are common features of inflammation, which sug-
gests that Aβ aggregation by these factors may be
a response to local injury [105].

Lipid membranes are important binding partners
for Aβ as the peptide plays a role in the regulation
of lipid membrane function, metabolism, and
homeostasis [107]. The binding efficacy of lipids to
Aβ increases when Aβ forms polymers [108] with
the lipids binding to the hydrophobic areas of

aggregated Aβ. Cholesterol is a key component of
membranes and interacts with Aβ in a reciprocal
manner [107]. Aggregated Aβ40 in particular has a
high affinity for cholesterol with oligomeric Aβ
peptides promoting the normal release of lipid
from neurons [109]. These Aβ-lipid particles have
a very low binding affinity for neurons, reducing
lipid internalization and thereby affecting intracel-
lular lipid metabolism. Gangliosides (sialylated
glycosphingolipids) are the predominant glycans
on neuronal plasma membranes and are concen-
trated into membrane rafts by cholesterol where
they mediate important physiological functions.
These lipid rafts (made of cholesterol, sphin-
gomyelin, and glycosphingolipids such as GM1
ganglioside) play an essential role in cell-cell com-
munications and signal transduction across mem-
branes [110]. GM1 ganglioside associates with
cholesterol and binds to Aβ peptides, with GM1
ganglisoside–bound Aβ acting as a seed for Aβ
fibrillogenesis [111].

In addition to the binding of Aβ to lipids, Aβ
also binds to lipid-trafficking lipoproteins. Aβ
complexes with ApoJ, a universal lipoprotein
expressed in many cells throughout the body.
Soluble Aβ also binds to normal human plasma
high-density lipoprotein (HDL), including
apolipoprotein A (ApoA)-I, ApoA-II, ApoE, and
ApoJ [112]. Aβ. binding with ApoE, alleles E2 and
E3, form stable membrane-bound complexes that
are more abundant than ApoE4-Aβ. complexes
[113]. In contrast with neurons, Aβ-ApoE lipid
particles are internalized mainly by glia and vascu-
lar cells presenting a clearance pathway through
which parenchymal Aβ is modulated [114].
Exogenous ApoE3 but not ApoE4 prevents Aβ-
induced neurotoxicity by a process requiring ApoE
receptors [113].

A subset of plasma membrane proteins and recep-
tors also bind Aβ (for review, see [115]). Heparan
sulfate proteoglycans are cell-surface binding sites
for Aβ. The serpin-enzyme complex receptor and
the insulin receptor can bind monomeric forms of
Aβ peptides. The alpha7nicotinic acetylcholine
receptor, integrins, RAGE (receptor for advanced
glycosylation end-products), and formyl peptide
receptor-like 1 are able to bind monomeric and fib-
rillar forms of Aβ peptides. In addition, APP, colla-
gen-like Alzheimer’s amyloid plaque component
precursor/collagen XXV, the NMDA (N-methyl-D-
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aspartate) receptor, P75 neurotrophin receptor, scav-
enger receptors A, BI, and CD36 and complexes
bind fibrillar forms of Aβ peptides. It is therefore
likely that the function of Aβ differs depending on
the associated binding partners, which are modu-
lated by its structure and solubility.

11.6 Function of the Aβ Peptides

The functional properties of the Aβ peptides have
not been completely elucidated to date, though
numerous studies suggest that the peptides possess
a number of neurotrophic and neurotoxic proper-
ties. As stated above, the divergent roles of Aβ seem
dependent on their physicochemical properties,
aggregation state, and binding partners, with Aβ40
function primarily studied (both neurotoxic and
trophic) due to its greater solubility. Recent studies
suggest that soluble Aβ plays important roles in the
facilitation of neuronal growth and survival, in the
modulation of synaptic function, and in neurotoxic
surveillance and defense against oxidative stress
[116, 117], whereas oligomeric and fibrillar Aβ
have less trophic and greater toxic properties.

11.6.1 Neurotrophic Functions

Recent studies have shown that Aβ peptides may be
vital for neuronal development, plasticity, and sur-
vival due to its integral membrane interactions
[118]. Neuronal viability appears to be dependent on
Aβ [117] with the peptide possessing neurogenic
properties [119]. Despite some controversy [120,
121], there is increased differentiation of hippocam-
pal neural stem cells treated with Aβ42, with no
change to the rate of cell death or proliferation.
Interestingly, this effect is only seen with soluble
oligomeric Aβ42 peptide, as neither monomeric
Aβ42, Aβ25-35, nor Aβ40 (aggregated or not) increased
the percentage of neurons [119]. This may suggest
that the formation of new neurons is induced by the
more “soluble” forms of Aβ42 that form larger pen-
tamer/hexamer subunits and membrane channels.

11.6.2 Physiologic Functions

Because Aβ binds to the plasma membranes in
both soluble and fibrillar forms, it changes the
structure and function of the membranes by

modifying the fluidity or forming ion channels
[115]. Soluble Aβ40 increases voltage-gated
K(+) channel currents in cerebellar granular neu-
rons without neurotoxic consequences [122].
Neuronally released soluble Aβ selectively
depresses excitatory synaptic transmission through
interactions with NMDA receptors [116]. The
modification of membrane channels in vascular
smooth cells causes vasoconstriction, with Aβ40
having significantly greater vasoconstrictive effects
compared with Aβ42 [123]. The negative feedback
after synaptic excitation coupled with an ability to
reduce local blood flow and oxygen and glucose
delivery would keep neuronal hyperactivity in
check [116]. This suggests that the nonpathologic
soluble forms of Aβ are important synaptic protec-
tors through their ability to change ionic channel
functions within cell membranes [122].

Monomeric Aβ peptide is also thought to have
an antioxidant function through its metal-binding
capabilities, particularly capturing Zn, Cu, and Fe
ions and preventing them from participating in
redox cycling with other ligands [124]. Aβ produc-
tion increases with oxidative stress [125–127], and
the peptides may be involved in altering ion fluxes
by chelating metal ions in an attempt to prevent
oxidation [128]. This suggests that Aβ production,
in conjunction with its neuroprotective and neu-
rotrophic properties, may be a normal stress
response to minimize oxidative damage [129]. The
formation of diffuse Aβ plaques in AD may be a
compensatory event for the removal of reactive
oxygen species.

11.6.3 Neurotoxic Properties

The key to Aβ cellular toxicity appears to be its
aggregation state [130]. Aβ appears to promote
neuron degeneration only when the peptide
assumes a particular β-pleated structure either in
oligomeric and/or fibrillar forms. Yankner and col-
leagues first showed that synthetic Aβl-40 was neu-
rotoxic in primary rat hippocampal cell cultures
[131]. Roher et al. reported that Aβ isolated from
AD brains inhibited neurite sprouting and caused
cell death in cultured sympathetic neurons [132].
Further studies then demonstrated that the toxicity
of the peptide was strongly correlated with its
propensity to form fibrillar aggregates [130,
133–137]. However, more recent work has
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indicated that oligomeric Aβ, the Aβ form required
prior to fibrillization, may be the most toxic species
involved in neuronal death [81–85]. Studies have
shown that oligomeric Aβ induces greater cell
death and apoptosis than soluble or fibrillar forms
[138, 139], confirming that the structural confor-
mation of the peptide is important in determining
its physiological action.

A change in the binding properties of Aβ pep-
tides may induce significant toxicity. In particular,
the interaction between oligomeric Aβ and lipids
may be an important cause of neuronal degenera-
tion and would certainly impact on lipid homeosta-
sis and function [109]. Michikawa and colleagues
propose that the stimulation of lipid release from
neurons by the increase in oligomeric Aβ in AD
induces a disruption of cholesterol homeostasis and
membrane raft maintenance in the brain, with the
consequent neurotoxic changes such as an increase
in tau phosphorylation [109, 140].

A change in the neurotrophic properties of Aβ
peptides may also induce considerable toxicity.
Physiological levels of Aβ can interfere with
functions critical for neuronal plasticity [141].
Pretreatment of neurons with sublethal concentra-
tions of the more amyloidogenic Aβ1-42 suppresses
the phosphorylation of cAMP-response element
binding protein (CREB) and the downstream acti-
vation of brain-derived neurotrophic factor
(BDNF). As both CREB and BDNF play critical
roles in neuronal plasticity, an increase in the Aβ1-42
suppression of this function may play a role in the
cognitive deficits associated with AD [141].

Significant toxicity may also be induced by a
change in the regulation of synaptic feedback and
local blood flow by Aβ peptides. Increased release
of Aβ from neurons significantly downregulates
synaptic activity [116], and increased Aβ binding
to vascular smooth muscle cells increases vasocon-
striction and decreases local blood flow [123].
These changes would reduce synaptic function and
therefore affect cognition. Aβ aggregation also
changes synaptic properties due to downstream
increases in intracellular free Ca2+ and decreased
transmitter manufacturing through lower enzyme
activities [142].

Changes in metal binding to Aβ peptides may
also induce significant toxicity due to increased
oxidation [143–146] leading to mitochondrial
dysfunction [147]. The methionine residue 35

(met-35) of Aβ is critical to its oxidative stress and
neurotoxic properties, with its removal abolishing
the neurotoxic properties of Aβ1-42 [148]. Although
Zn2+ binding induces the greatest Aβ aggregation,
the oxidative toxicity of Aβ in cell culture is medi-
ated through its interaction with Cu2+ and Fe3+

[149, 150]. Aβ catalyzes the reduction of Cu2+ to
Cu+ and Fe3+ to Fe2+, generating H2O2 from molec-
ular oxygen and available biological reducing
agents such as vitamin C, cholesterol, and cate-
cholamines [150]. Any reduced activity of the
detoxifying enzymes, such as cytosolic Cu/Zn
superoxide dismutase (SOD1), catalase, and/or
glutathione peroxidase, allows H2O2 to further
react with reduced Fe2+ and Cu+ to generate toxic
hydroxyl radicals. Aβ42 has greater oxidative toxi-
city than Aβ40 [149] due to their relative Cu2+ and
Fe3+ reducing potentials and the ability to catalyti-
cally generate H2O2 from biological reducing
agents [150].

11.7 Clearance of Aβ Peptides
from the Brain

Aβ clearance occurs through at least three path-
ways (Fig. 11.2): extracellular proteolysis by
degrading enzymes [151], transport across the
BBB [152], and receptor-mediated endocytosis
[152]. Several proteolytic enzymes have been
implicated in the degradation of Aβ. Two metallo-
proteinases; insulin-degrading enzyme (IDE) and
endothelin-converting enzyme (ECE) 1 and 2
[153], the plasmin system, and a neutral endopep-
tidase known as neprilysin are involved in the
extracellular degradation of Aβ [154–156]. IDE
acts on soluble monomeric and particularly intra-
cellular Aβ [157, 158], whereas plasmin is capable
of degrading aggregated Aβ [156]. The ECE zinc
metallopeptidases are a class of type II integral
membrane protein named for their ability to
hydrolyze a family of biologically inactive inter-
mediate endothelins [159]. ECE-1 has been shown
to cleave Aβ at multiple sites within the peptide
sequence, with ECE inhibitors significantly
increasing the accumulation of Aβ in culture, indi-
cating a role for this protease in Aβ catabolism
[153]. Neprilysin plays a major role in Aβ42 degra-
dation [160] with this enzyme concentrating in the
brain regions most vulnerable to AD [161]. A loss
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of such clearance mechanisms may be responsible
for the accumulation of Aβ with recent work show-
ing that the degrading activity of neprilysin is
insufficient to clear brain Aβ accumulation in
either AD or pathologic aging [162].

Aβ transport across the BBB is less well under-
stood. Aβ is thought to be able to move from the
extracellular spaces into the perivascular pathways,
along the small and large intracranial artery walls,
possibly draining to the lymph nodes in the neck
[163]. This mechanism of clearance occurs via
the endothelium, mediated by the enzymes
angiotensin-converting enzyme and α2-macroglobu-
lin through interactions with LDL-receptor–related
protein and apolipoproteins [164, 165]. Microglia
and astrocytes also take up Aβ through receptor-
mediated mechanisms [166, 167]. Aβ-ApoJ com-
plexes are transported over the BBB through the
ApoJ receptor megalin [59]. The high affinity of
aggregated Aβ40 with cholesterol suggests that cho-
lesterol bound peptide trafficking may also play a
role in its removal from the extracellular space
[108]. Aβ40 transport across the BBB is faster than
Aβ42 [168] with Aβ40 the predominant constituent
of abnormal Aβ peptide deposits in blood vessel
walls [169]. There is some evidence that age-asso-
ciated changes in BBB transport stops the efflux of
Aβ42 via this route [168].

Although still poorly understood, it appears that
a number of regulatory mechanisms are important
for modulating Aβ levels in the brain (Fig. 11.2).
Under normal circumstances, local catabolism or
clearance mechanisms efficiently prevent accumu-
lation of these amyloidogenic peptides in the brain
[170]. In AD, the considerable build-up of Aβ pep-
tides suggests difficulties with Aβ clearance even if
other production pathways are affected. In the
absence of knowing any common initiating event
or mechanism for AD, modification of clearance
pathways provides the most obvious therapeutic
targets for this disease.

11.8 Potential Therapeutic
Strategies for Aβ Toxicity

Genetic and animal models of AD have provided an
important basis for the design and testing of thera-
peutic strategies to alter Aβ production, aggregation,
and/or accumulation. Strategies for lowering Aβ

production include secretase inhibitors [171].
Strategies for reducing Aβ aggregation include
metal chelators [172], and strategies for ameliorat-
ing Aβ accumulation include Aβ immunization,
nonsteroidal anti-inflammatory drugs (NSAIDs),
peroxisome proliferator-activated receptor-γ (PPAR)
agonists, and statin medication [173].

11.8.1 Secretase Inhibitors

Since identifying the importance of β- and γ-secre-
tase in the production of the Aβ alloforms, thera-
peutics aimed at inhibiting these enzymes have
been the focus of a great deal of research. Initial
studies of BACE1 therapy in mouse models
appeared promising as, despite their role in normal
physiological functioning, BACE1/BACE2 double
knockout animals do not show any phenotypic
problems (for review, see [174]). To date, no BACE
inhibitors have been trialed in the literature,
although significant numbers have been patented
[175]. In contrast, models knocking out γ-secretase
have been more problematic behaviorally due to
the importance of PS1 in the γ-secretase protein
complex and Notch signaling [176]. Fortunately,
specific γ-secretase inhibitors have recently shown
promising results with a shift toward the produc-
tion of the less toxic Aβ38 alloform and a reduction
in Aβ40 and Aβ42 both in vitro and in transgenic
mice [177, 178]. Importantly, these effects were
achieved without affecting other components of the
γ-secretase complex, although clinical trials have
not yet been carried out. Unfortunately, clinical tri-
als of 70 AD patients with the γ-secretase inhibitor
LY450139, which showed promising results in ani-
mal models, have failed to show a marked reduc-
tion in CSF Aβ42 [179]. Although there is still great
promise for the development of specific and effica-
cious γ-secretase inhibitors, many researchers are
calling on the development of BACE1 inhibitors as
a safer alternative.

11.8.2 Metal Chelators

Given the interaction between Aβ and metal ions,
and the suggestion that they may mediate Aβ
aggregation and toxicity, therapeutic strategies
have focused on disrupting this interaction. Many
of these studies have generated promising data with
the demonstration that specific chelators of Zn and
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Cu ions can solubilize Aβ plaques from Alzheimer’s
disease postmortem brain tissue [180]. The com-
pound used, cloquinol, also substantially decreased
Aβ deposition in the brains of transgenic mice after
just 9 weeks of treatment [181]. This drug also
slowed the rate of cognitive decline in a clinical
trial of AD and controls and appeared to be well-
tolerated among patients [182]. Interestingly, this
improvement was only reported as evident in indi-
viduals who were more severely impaired and
scored over 25 on the Alzheimer’s Dementia
Assessment Scale–cognition subscale (ADAS-
cog), although this could have been a type I error
and greater sample numbers need to be assessed. In
contrast, while no significant effect on cognition
was seen in individuals who scored below 25 (the
authors suggest a lack of sensitivity in this measure
[182]), their plasma Aβ42 levels were significantly
decreased. These discrepant results warrant further
experimental studies in this area, although given
the heterogeneous roles of Aβ and the potential
antioxidant roles arising from an interaction
between Aβ and metal ions, great caution is
required when trialing such therapies.

11.8.3 Aβ Immunization

Recent evidence suggests that reducing Aβ deposi-
tion in the brain by way of immunotherapy can
reverse disease-associated functional deficits [183,
184]. The immunization of transgenic APP mice
with Aβ42 appears to prevent the formation of Aβ-
containing plaques and subsequent AD-related
neuropathologic changes in animals as young as
6 weeks to 11 months [184]. This reduction in Aβ
is associated with reductions in memory impair-
ment [185]. Similar results occur with the adminis-
tration of other Aβ alloforms [186] and shorter
peptide fragments [187], as well as with peripheral
immunization with Aβ antibodies [188]. Clinical
trials using active Aβ42 immunization, however,
caused severe central nervous system inflammation
in a small but significant number of subjects [189].
Although no definitive data exists, it is generally
agreed that these side effects were attributable to a
cytotoxic T-cell–mediated response against Aβ,
raising questions about immunizing against a self-
protein and the effect of such a reaction on normal
peptide function [190]. An additional safety con-
cern arises with the use of Aβ alloforms that are

capable of forming toxic fibrils and seeding plaque
formation [191]. Despite this data, neuropathologic
studies of patients treated with the AB vaccine
showed low levels of cortical Aβ [192]. In addition,
those subjects who developed robust antibody titers
did show some clinical improvement [193]. These
data provide support for the continued develop-
ment of immunization strategies in the treatment of
AD.

Active immunization with nontoxic Aβ frag-
ments may be more effective in clinical trials as
they have been shown to have reduced fibrillogenic
properties while maintaining immunogenicity in
transgenic mice [187]. More recent studies have
also shown promising results from intracerbroven-
tricular immunization of Aβ fragments in trans-
genic mice [194], thereby avoiding perivascular
hemmorhage concerns associated with intravenous
administration. Despite promising results using
transgenic murine models, these animals still
express endogenous APP and are therefore less
likely to reflect the autoimmune problems that may
be associated with human Aβ vaccines. With this in
mind, the serious adverse immune reactions seen in
clinical trials highlights the need to test potential
therapies in large primate cohorts [195] prior to
clinical testing in patients.

11.8.4 NSAIDs and PPAR-γ Agonists

Epidemiological evidence indicates that NSAIDs
may lower the risk of developing AD [196, 197].
Although a direct effect on reducing the damag-
ing Aβ-stimulated inflammation has been postu-
lated, recent studies have demonstrated that
NSAIDs are capable of directly affecting Aβ pro-
duction via several mechanisms. Ibuprofen,
indomethacin, and sulindac sulfide are capable of
reducing Aβ42 production, and increasing the less
toxic Aβ38 alloform, in cultured cells [198].
These effects have also been reported in trans-
genic mice and are proposed to occur by shifting
γ-secretase activity [199]. Unfortunately, clinical
trials of NSAIDs have been less fruitful [200],
possibly due to the fact that most trials have been
carried out in AD patients where the disease is
too advanced for NSAID therapy to be effective.
However, recent reports suggest that the doses
required to lower Aβ in patients may be toxic
[201] and better results may be achieved through
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the development of more specific inhibitors
of Aβ42.

A subset of NSAIDs can also bind to and acti-
vate the nuclear hormone receptor, PPAR-γ [202,
203]. Given that the principal effect of PPAR-γ is to
transcriptionally silence proinflammatory gene
expression [204, 205], it was argued that the anti-
inflammatory effects of NSAIDs may be partially
mediated through this pathway. Recent studies
have demonstrated a decrease in focal Aβ42-posi-
tive amyloid deposits and soluble Aβ42 levels in
transgenic mice treated with ibuprofen and the
PPAR-γ agonist pioglitazone [206]. Whether these
effects on Aβ occur directly or via inflammation-
mediated mechanisms remains to be seen, but
decreased BACE1 mRNA and protein levels were
also evident. These studies suggest that combina-
tion therapies may be valuable in the treatment of
AD to treat both the Aβ accumulation and down-
stream events.

11.8.5 Cholesterol and Statins

As described above, several findings suggest a link
between cholesterol metabolism, Aβ levels, and the
development of AD [107]. Indeed, reduction of
cholesterol using specific inhibitors of 3-hydroxy-
3-methyl-glutaryl coenzyme A (HMG CoA) reduc-
tase (statins) have been supported in the possible
treatment of AD [207]. Direct links between cho-
lesterol and Aβ processing are supported by stud-
ies showing that cholesterol-rich diets increase the
production of Aβ [208], and statins decrease Aβ
deposition in transgenic mice [209]. These effects
are thought to be mediated by shifting APP pro-
cessing to a non-amyloidogenic route, possibly via
changes in membrane fluidity and cholesterol gra-
dients [210]. However, immunomodulatory proper-
ties of statins have also been identified and are
thought to act by reducing leukocyte migration into
the CNS and by inhibiting a number of proinflam-
matory factors [211]. In this regard, statins may
have roles similar to NSAIDs in the treatment
of AD.

Data from clinical trials of AD patients have
reported lower serum cholesterol and lower CSF
APP fragments after treatment with simvastatin for
12 weeks [212]. Despite this, patients continued to
show cognitive decline during the study. However,
this effect is difficult to assess after such a short

period of treatment, and a more recent double-
blind, placebo-controlled study has shown signifi-
cant improvements in cognition in AD patients
after 6 months, and a trend toward significance at
1-year, of treatment with atorvastatin [213].
Unfortunately, epidemiological studies have been
less useful in determining whether statins are pro-
tective against AD. A recent large study of 2798
older adults reported a reduced incidence of AD in
current statin users versus never-users [214], con-
sistent with other case-control studies [207].
However, an increase risk of dementia was seen
among individuals who had previously used statins
compared with never-users [214]. Although this
study involved a large number of patients required
to trial such therapies, only prospective case-con-
trol studies can answer whether statins can prevent
AD. Fortunately, such studies are currently in
progress.
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12.1 Introduction

Dementia is a generic term that describes chronic
or progressive dysfunction of cortical and subcorti-
cal functions that result in complex cognitive
decline. These cognitive changes are commonly
accompanied by disturbances of mood, behavior,
and personality. In developed countries with an
increasingly aging population, the prevalence of
dementia is currently at around 1.5% at 65 years of
age, which doubles every 4 years and reaches about
30% at the age of 80 [1].

Of all age-related neurodegenerative disorders,
Alzheimer’s disease (AD) is the most prevalent. It
is characterized histopathologically by β-amyloid
(Aβ)-containing plaques, tau-containing neurofib-
rillary tangles (NFTs), reduced synaptic density
and neuronal loss in selected brain areas [2]. In
familial forms of AD (FAD), pathogenic mutations
have been identified in both the gene encoding the
precursor of the Aβ peptide, APP, itself and in the
presenilin genes, which encode part of the protease
complex involved in processing APP. This genetic
evidence supports the amyloid cascade hypothesis,
which claims that Aβ causes or enhances the NFT
pathology.

Frontotemporal dementia (FTD) is the preferred
term for a spectrum of non-Alzheimer dementias
characterized by focal atrophy of frontal and ante-
rior temporal regions and NFTs in the absence of
Aβ deposition. Recent epidemiological studies
suggest that FTD is the second most common
cause of dementia in persons younger than 65 years
[3]. In familial forms of FTD (frontotemporal
dementia with parkinsonism linked to chromosome

17; FTDP-17), pathogenic mutations have been
identified in tau proving that tau dysfunction in
itself can lead to neurodegeneration and dementia.

AD and FTD have a distinct neuropathological
profile, but histopathological studies have shown
that mixed states (with people presenting with fea-
tures of more than one type of dementia) are prob-
ably more frequent than pure dementia syndromes
[1, 4, 5]. Here, we discuss how aspects of the
human pathology have been modeled in animals,
with a special emphasis on tau transgenic mice.
Furthermore, we present experimental evidence
obtained in tau transgenic mouse and tissue-culture
models that to some extent support the amyloid
cascade hypothesis in mice.

12.2 Alzheimer’s Disease

The clinical presentation of AD is dominated by
early memory deficits, followed by gradual erosion
of other cognitive functions such as judgment, ver-
bal fluency, or orientation. Although this sequential
order may vary, memory impairment is normally
the first and dominating feature.

In addition to a reduced synaptic density and
neuronal loss in selected brain areas, AD is char-
acterized by two forms of insoluble protein aggre-
gates, the extracellular Aβ-containing plaques and
the intracellular NFTs. The major component of
the plaques is a 40–42 amino acid aggregated
polypeptide termed β-amyloid (Aβ; Aβ40 and
Aβ42), which is derived by proteolysis from the
larger amyloid precursor protein, APP (Fig. 12.1)
[6, 7]. APP can be proteolytically cleaved by the



membrane-associated α-secretase, which cleaves
APP within the Aβ domain. This pathway is non-
amyloidogenic, as this cleavage precludes the for-
mation of Aβ. Alternatively, cleavage may occur

in the endosomal-lysosomal pathway, first by 
β-secretase and then by γ-secretase, which
together generate the Aβ peptide. β-Secretase
activity has been attributed to a single protein,
BACE, whereas γ-secretase activity was shown to
depend on the presence of a total of four compo-
nents: presenilin, nicastrin, APH-1 and PEN-2 [8,
9] (Fig. 12.1).

The second histopathological hallmark of AD
are the neurofibrillary lesions that are found in
cell bodies and apical dendrites as NFTs, in dis-
tal dendrites as neuropil threads, and in the
abnormal neurites that are associated with some
Aβ plaques (neuritic plaques). NFTs develop in
specific sites and spread in a predictable, nonran-
dom manner across the brain. This sequence of
the tau pathology is subjected to little inter-indi-
vidual variation and provides a basis for distin-
guishing six stages in the progression of the
disease [10, 11].

The major component of NFTs are abnormal fil-
aments [12, 13]. The core protein of these fila-
ments is tau, a microtubule-associated protein
[14]. In the course of the disease, tau becomes
abnormally phosphorylated, it adopts an altered
conformation and is relocalized from axonal to
somatodendritic compartments. Phosphorylation
tends to dissociate tau from microtubules. Because
this increases the soluble pool of tau, it might be
an important first step in the assembly of tau fila-
ments [5, 15–21]. Tau filaments have a clear 
β-cross structure, which is the defining feature of
amyloid fibers [22]. They share this structure with
the extracellular deposits present in the systemic
and organ-specific amyloid diseases. It is therefore
appropriate to consider the diseases with filamen-
tous tau aggregates, the so-called tauopathies, a
form of brain amyloidosis [23].

Physiological functions of tau include the assem-
bly and stabilization of microtubules. Microtubules
are hollow, 25-nm-wide cylindrical polymers, assem-
bled primarily from heterodimers of α- and β-tubulin
and a collection of microtubule-associated proteins
(MAPs). Microtubules have two general functions, as
the primary structural component of the mitotic spin-
dle and in organizing the cytoplasm. Microtubules
isolated from cell extracts by multiple cycles of
assembly/disassembly and differential centrifugation
yield a final microtubule preparation of which about
80% is tubulin, while the remaining 20% are MAPs.
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FIGURE 12.1. Cleavage of the amyloid precursor protein
(APP) by the membrane-associated α-secretase is within
the Aβ domain and thus precludes the formation of
Aβ. Therefore, this pathway is non-amyloidogenic. Alter-
natively, cleavage may occur in the endosomal-lysosomal
pathway, first by β-secretase and then by γ-secretase gener-
ating the Aβ peptide. Aβ is deposited around meningeal and
cerebral vessels and in the gray matter as β-amyloid
plaques. To determine the relationship between Aβ and the
NFT/tau pathology in AD, two alternative approaches were
pursued. One involved the intercrossing of APP and tau
mutant mice with a plaque and NFT pathology (“breeding
approach”), the other the stereotaxic injection of fibrillar
preparations of Aβ42 into mutant tau transgenic brains
(“stereotaxic approach”). These approaches resulted in five-
to sevenfold increased NFT formation, which was associ-
ated with phosphorylation of tau at the phospho-epitopes
Thr212/Ser214 and Ser422. Together, these studies provide
evidence for the amyloid cascade hypothesis in mice. The
finding that Aβ42 was not capable of inducing NFT forma-
tion in non-NFT-forming wild-type tau transgenic mice
may reflect species differences between mice and men.
Alternatively, it may imply that, at least in mice, Aβ42 can-
not induce NFT formation de novo.



Initially isolated from mammalian neurons, MAPs
were named according to the three major size classes
of polypeptides: MAP1 (>250 kDa), MAP2 (~200
kDa), and tau protein (50–70 kDa). MAP2 and tau
are expressed together in most neurons, where they
localize to separate subcellular compartments.
MAP2 is largely found in dendrites, whereas tau is
concentrated in axons. Tau has also been found in
astrocytes and oligodendrocytes, although, under
physiological conditions, levels are relatively low
[24]. Additional roles have been assigned to tau in
signal transduction, the organization of the actin
cytoskeleton, intracellular vesicle transport, and
anchoring of phosphatases and kinases [25–34]. In
the adult human brain, six tau isoforms are produced
by alternative mRNA splicing of exons 2, 3, and 10
(Fig. 12.2). They differ by the presence or absence of
one or two short inserts in the amino-terminal half
and have either three or four microtubule-binding
repeat motifs in the carboxy-terminal half (3R and
4R). All six brain tau isoforms are found in the neu-
rofibrillary lesions of AD brains [35].

In early-onset familial forms of AD (FAD),
mutations were identified in three genes: in the
APP gene itself and in the genes encoding prese-
nilin 1 and 2 [36, 37]. Expression of FAD mutant
forms of APP in transgenic mice by several
research groups caused Aβ-plaque formation and
concomitant memory deficits that progressed with
age (reviewed in Ref. 5). These were more pro-
nounced in transgenic mice coexpressing mutant
forms of presenilin and APP, yet, NFT formation
could not be reproduced [5].

For late-onset sporadic AD (SAD), around
two dozen risk-conferring genes have been iden-
tified until today, but of these only the
apolipoprotein E (APOE) gene has been con-
firmed unanimously and found to be associated
with SAD [38]. When FAD is compared with
SAD, the histopathological hallmarks are indis-
tinguishable. This implies that lessons learned
from the familial forms of AD may be applicable
also to the sporadic forms.

12.3 Frontotemporal Dementias

Although AD is the most frequent form of demen-
tia at high age, NFTs are, in the absence of β-amy-
loid plaques, also abundant in additional

neurodegenerative diseases. The preferred term for
this spectrum of non-Alzheimer dementias is
“frontotemporal dementia” (FTD) [39]. FTD is
characterized by focal atrophy of frontal and ante-
rior temporal regions. Three broad subdivisions
have been recognized, depending on the profile of
immunohistochemical staining and the pattern of
intracellular inclusions [39–42]: one with tau-posi-
tive aggregates (Pick disease [PiD], progressive
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FIGURE 12.2. By alternative mRNA splicing of exons E2,
E3, and E10, six tau isoforms are produced in the adult
human brain. They differ by the presence or absence of
one or two short inserts in the amino-terminal half (0N,
1N, and 2N, respectively) and have either three or four
microtubule-binding repeat motifs in the carboxy-termi-
nal half (3R and 4R). The microtubule-binding motifs
are indicated in black. All six brain tau isoforms are
found in the neurofibrillary lesions of AD patients. In
FTDP-17, the majority of the exonic mutations in tau are
clustered around the microtubule binding domain,
whereas the intronic mutations (indicated by the stem
loop) result in a shift of 3R to 4R tau isoforms.



supranuclear palsy [PSP], corticobasal degenera-
tion [CBD], argyrophilic grain disease [AgD], and
frontotemporal dementia with parkinsonism linked
to chromosome 17 [FTDP-17]), a second with tau-
negative and ubiquitin-positive inclusions (FTD
with motor neuron inclusions; FTD-MND), and a
third category named dementia lacking distinctive
histology (DLDH) [39].

The tau field experienced significant advances
with the identification of both exonic and intronic
tau mutations in FTDP-17; this established that
dysfunction of tau in itself can cause neurodegen-
eration and lead to dementia (Fig. 12.2). Initially,
three missense (“exonic”) mutations were identi-
fied in exons 9, 10, and 13 (G272V, P301L, and
R406W) and three (“intronic”) mutations in the 5′
splice site of the alternatively spliced exon 10 [43].
At the same time, the V279M mutation and a G to
A mutation in the nucleotide adjacent to the exon
10 splice-donor site of the tau gene, were identified
[45]. The intronic mutations all destabilize a poten-
tial stem-loop structure, which is probably involved
in regulating the alternative splicing of exon 10.
This causes a more frequent use of the 5′ splice site
and an increased proportion of tau transcripts that
include exon 10. This increase in exon 10–contain-
ing mRNAs results in an increased proportion of
tau with four microtubule-binding repeats (4R >
3R). Together, these findings indicate that either an
altered ratio of 4R to 3R tau isoforms or a missense
mutation can lead to the formation of abnormal tau
filaments. The majority of the tau mutations identi-
fied so far are in the carboxy-terminal half of the
tau protein, suggesting that this is a hot spot for dis-
ease-causing mutations [21] (Fig. 12.2). In the
amino-terminus, two mutations have been identi-
fied at position R5, which may affect the confor-
mation of tau. Mutations in exons 9, 12, and 13
(such as G272V) affect all six tau isoforms. By
contrast, mutations in the alternatively spliced exon
10 (such as P301L) only affect 4R tau isoforms.
The silent mutations L284L (CTT to CTC) and
N296N (AAT to AAC) in exon 10 are believed to
disrupt an exon 10 splicing silencer sequence,
which causes an increased production of exon
10–containing 4R tau mRNAs [46–60]. Until
today, a total of 32 mutations have been described
in more than 100 families with FTDP-17 [23].

All frontotemporal dementias with tau mutations
that have been examined to date have a filamentous

tau pathology. The morphology of these tau fila-
ments and their isoform composition appears to be
determined by whether tau mutations affect mRNA
splicing of exon 10 or whether they are missense
mutations located inside or outside of exon 10 [61].
The major component of NFTs in AD are straight
(SF) and paired helical filaments (PHFs) [12, 13].
The Pick bodies found in PiD ultrastructurally con-
sist of random coiled and straight tau filaments.
There are reports showing that only 3R tau iso-
forms aggregate into Pick bodies [62]. One recent
study showed that cases containing predominantly
3R tau were classic PiD (100%), cases with pre-
dominantly 4R tau were either CBD (71%) or PSP
(29%), cases with both 3R and 4R tau were either
a combination of PiD and AD (67%) or NFTD
(neurofibrillary tangle dementia, 33%) [63].
Aggregated tau proteins in PiD are not
reactive with the monoclonal antibody 12E8
directed against the phosphorylated tau epitope
Ser262/Ser356 (for a map of tau phospho-epitopes,
see Ref. 21). In contrast, this phosphorylation site
is readily detected in other tauopathies [62].

Although tau is mainly a neuronal protein, it has
also been found albeit at low levels in astrocytes
and oligodendrocytes [24]. In PSP and CBD, tau
forms aggregates in these cell-types, much in con-
trast with AD [20, 64]. In PSP, the neuritic and glial
changes are composed of straight filaments and
tubules, and in CBD of twisted filaments, which
are different from the PHFs [65–67]. Although the
filament morphologies and their tau isoform com-
position vary between diseases, it is the repeat
region that forms the core of the filament, with the
amino- and carboxy-terminal regions forming a
fuzzy coat around the filament [68]. During the
course of the disease, the fuzzy coat is frequently
proteolysed, such that filaments may comprise only
the repeat region of tau [69]. However, it is the full-
length protein that assembles into filaments in the
first place [35].

To which extent do the familial forms of FTD
model other tauopathies such as PSP or CBD?
Interestingly, nine of the missense mutations in tau
found in FTDP-17 (K257T, L266V, G272V,
L315R, S320F, Q336R, E342V, K369I, and
G389R) gave rise to a clinical and neuropathologi-
cal phenotype reminiscent of PiD [48, 58, 70–76],
cases with four exonic (R5L, N279K, ∆N296 and
S305S) and one intronic (+16) mutation presented
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a clinical picture similar to PSP [49, 59, 77–79],
and some patients with mutations N296N and
P301S presented a disease resembling CBD
[80, 81].

12.4 Pathogenic Relationship of
Plaques and NFTS

The pathogenic relationship of the two major
lesions of AD, plaques and NFTs, and their relative
contribution to the clinical features of the disease
are a long-standing matter of debate, especially
when sporadic forms of AD are considered, which
comprise the majority of all cases. Human carriers
of pathogenic mutations in the APP gene ulti-
mately develop both Aβ plaques and NFTs. This
finding led to the proposition of the amyloid cas-
cade hypothesis, which claims that β-amyloid
causes or enhances the NFT pathology in AD.
Although this concept at first sight seems intrigu-
ing, it is difficult to reconcile with the anatomical
distribution of plaques and NFTs.

The NFTs develop in specific predilection sites
and spread in a predictable, nonrandom manner
across the brain. This sequence of the tau pathol-
ogy provides a basis for distinguishing six stages of
disease progression [10, 11]: the transentorhinal
stages I–II representing clinically silent cases; the
limbic stages III–IV of incipient AD; and the neo-
cortical stages V–VI of fully developed AD.
A comparative study of the Aβ-associated pathol-
ogy defined five phases. These differ markedly
from the stages, which define the spreading of
NFTs: The neocortical phase 1 is followed by the
allocortical phase 2. In phase 3, the diencephalic
nuclei, the striatum, and the cholinergic nuclei of
the basal forebrain develop Aβ deposits, and in
phase 4, several brain-stem nuclei become addi-
tionally involved. Finally, phase 5 is characterized
by cerebellar Aβ-deposition. These findings sug-
gest that Aβ deposition expands anterogradely into
regions that receive neuronal projections from
regions already exhibiting Aβ [82].

Numerous studies failed to demonstrate a clear
relationship between the severity of dementia and
Aβ deposition (that is, Aβ plaques) in human AD
brain, whereas a correlation between NFT numbers
and severity of dementia has been reported
[83–86]. It was shown that total NFT counts in spe-

cific brain areas such as the entorhinal and frontal
cortex, as well as neuron numbers in the CA1
region of the hippocampus were the best predictors
of cognitive deficits in brain aging and AD [87].
Recently, however, Delacourte and co-workers pro-
posed a synergistic interaction between the APP-
and tau-related pathology, despite a different spa-
tiotemporal distribution of plaques and NFTs [88,
89]. They also found that whenever Aβ aggregates
were detected, a tau pathology was found, at least
in the entorhinal cortex. The opposite was not true
as cases were found with an advanced tau pathol-
ogy and no trace of Aβ aggregates [89]. As far as
Aβ is concerned, the focus has recently shifted
from plaques and their fibrillar Aβ constituent to
mono- and oligomeric Aβ with the latter possibly
being the more toxic species [90]. This implies that
to correlate with dementia, Aβ levels may need to
be measured rather than merely counting plaque
numbers.

A relationship has been postulated between neu-
ronal loss and NFT formation in AD [91], yet only
part of the neuronal loss can be explained by NFT
formation as demonstrated for brain areas such as
the visual cortex, the superior temporal sulcus, the
entorhinal cortex, and area 9 [87, 92, 93]. For the
CA1 region, the number of extracellular NFTs
accounted for less than 20% (2.2–17.2%, mean
8.1%) of neurons lost in all cases [94]. These cal-
culations were based on the assumption that NFTs
persist until the end of the life, once they have
formed. The findings imply that non-NFT-related
mechanisms of neurodegeneration may also
compromise vulnerable subsets of neurons.
Alternatively, tau-related neuronal dysfunction
may lead to cell death long before sufficient num-
bers of tau filaments accumulate and become visi-
ble as NFTs at the light microscopic level using
silver impregnation techniques. A quantitative
analysis of NFTs in human brain revealed that a
substantial number of pyramidal cells may persist
either unaffected or in a transitional stage of NFT
formation. Whereas it is not possible to assess
whether such transitional neurons are fully
functional, these affected neurons might respond
positively to therapeutic strategies aimed at pro-
tecting the cells that are prone to neurofibrillary
degeneration [95].

As plaques and NFTs are the histopathological
hallmarks of both FAD and SAD, it will be impor-
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tant to know what triggers their formation and how
they are functionally related. Some insight may be
gained by the analysis of adult lifestyle risk factors
combined with the evidence of a genetic predispo-
sition (as determined by the inheritance of risk alle-
les of susceptibility genes), which together may
cause SAD [96]. Although the etiology of FAD and
SAD differ, the clinical picture and the morpholog-
ical end stage in the brain appear to be the same.

12.5 Tau Transgenic Mice:
Requirements for and Role of 
NFT Formation

To better understand the role of β-amyloid plaques
and NFTs in AD and related disorders, experimen-
tal animal models have been developed that
reproduce aspects of the neuropathological charac-
teristics of these diseases (reviewed in Ref. 5).
Their suitability largely depends on the purpose a
model has to suit. If one wants to model
histopathological features, one has to discriminate
between the precise anatomical “reproduction” of
the pathology and modeling at the cellular level.
This is important when the animals (in particular
transgenic mice) are employed in behavioral stud-
ies intended to correlate the histopathology with
dementia. These animal models may either offer a
general proof of principle or reproduce more spe-
cific aspects of the human disease. Animal models
may be used to identify disease modifiers, compo-
nents of pathocascades, and susceptibility genes
[97]. Furthermore, they may be employed in drug
screenings [5]. Finally, insight gained from these
models can be translated to human disease
and assist in the development of treatment thera-
pies [99].

After the very first APP transgenic animals had
failed to show an extensive AD-like neuropathol-
ogy, in 1995 Games and co-workers successfully
expressed high levels of the disease-linked
V717F mutant form of APP, under control of the
platelet-derived growth factor (PDGF) mini-pro-
moter. These PDAPP mice showed many of the
pathological features of AD, including extensive
deposition of extracellular amyloid plaques, astro-
cytosis, and neuritic dystrophy [100]. Similar fea-
tures were observed in a second transgenic model

by Hsiao and co-workers that expressed the APPsw

mutation inserted into a hamster prion protein
(PrP) cosmid vector [101]. Then, by expressing
the Swedish double APP mutation under control of
the mThy1.2 promoter, a research group at
Novartis established the APP23 mouse model with
a sevenfold overexpression of APP [102, 103].
Subsequently, many more models have been
developed by both academic and industrial
research groups (such as the TgCRND8 [104] or
J20 mice [105]). Using these mice, aspects of Aβ
toxicity have been addressed and therapies have
been tested. The APP transgenic mice were also
crossed with presenilin, BACE, ApoE, and TGF-
β1 transgenic and/or knockout strains (reviewed in
Ref. 5).

The first tau transgenic models were established
by us in 1995 (Table 12.1) and expressed the
longest human 4R brain tau isoform (2N4R), with-
out a pathogenic mutation, in mice using the hThy1
promoter for neuronal expression [106]. Despite
the lack of NFT pathology, these mice modeled
aspects of human AD, such as the somatodendritic
localization of hyperphosphorylated tau and, there-
fore, represented an early pre-NFT phenotype. The
subsequent use of stronger promoters caused a
more pronounced phenotype in transgenic mice
[107–109] (Table 12.1). In some strains, high
expression levels of the transgene in motor neurons
caused the formation of large numbers of patholog-
ically enlarged axons with neurofilament- and tau-
immunoreactive spheroids, a neuropathological
characteristic of most cases of amyotrophic lateral
sclerosis (ALS), where they are believed to impair
slow axonal transport [110–112]. Tau protein
extracted from transgenic brain and spinal cord was
shown to be increasingly insoluble as the mice
became older. Despite the decreased solubility of
tau, NFTs did not form with the exception of one
study where they were reported to be present at low
numbers when the mice had reached a very old age
[113]. Taken together, these findings demonstrate
that overexpression of human tau can lead to an
axonopathy resulting in nerve cell dysfunction and
amyotrophy [5, 20].

When the first pathogenic FTDP-17 mutations
had been identified in the tau gene in 1998, several
groups achieved NFT formation both in neurons
[114–118] and in glial cells of transgenic mice
[119–122] (Table 12.1).
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The P301L mutation was one of the first FTDP-
17 mutations that had been identified in human
patients [43]; it is quite frequent [123] and was
the first mutation to be expressed in transgenic
mice. Expression of a human tau isoform lacking
the two amino-terminal inserts (0N4R) together
with the P301L mutation under the control of the
murine PrP promoter [114] caused severe motor
and behavioral disturbances in 90% of the mice
by 10 months of age (Table 12.1). These were
more pronounced than in the previously published
wild-type tau transgenic mouse models [107–
109]. Importantly, NFTs were identified by
Gallyas silver stainings and thioflavin S-fluores-
cent microscopy both in brain and spinal cord,
and motor neurons were reduced twofold in the
spinal cord [114]. We expressed the same muta-
tion using the longest human tau isoform contain-
ing both amino-terminal inserts (2N4R). The
mThy1.2 promoter was chosen instead of the PrP
promoter, which may account for different
expression patterns [115]. Again, NFTs were
identified and tau filaments were revealed by
immuno-electron microscopy of sarkosyl extracts
using phospho-tau-specific antibodies. No motor
phenotype was observed, possibly due to low
expression levels of the transgene in motor neu-
rons of the spinal cord.

The P301S mutation is an aggressive mutation
that causes clinical signs of FTDP-17 already in the
third decade of life [80]. When P301S mutant tau
was expressed under control of the mThy1.2 pro-
moter, massive NFT formation was observed [118].
To address the role of distinct tau phospho-epitopes
in tau filament formation, tau was analyzed in both
the soluble and insoluble fraction. Perchloric-acid
soluble tau was phosphorylated at many phospho-
epitopes of tau, with the exception of the AT100
phospho-epitope S214, whereas sarkosyl-insoluble
tau was strongly immunoreactive with all antibodies
including AT100. Interestingly, this site has been
shown, together with S422, to be linked to NFT for-
mation in P301L mice (see below) [124]. Together,
this indicates that immunoreactivity for phospho-
S214 closely mirrors the presence of tau filaments,
suggesting that phosphorylation of this site occurs in
the course of, or after, filament assembly.

To address the tau pathology in glial cells,
G272V mutant tau was expressed by combining a
PrP-driven expression system with an autoregula-
tory transactivator loop that resulted in high
expression in a subset of both neurons and oligo-
dendrocytes. Electron microscopy established
filament formation associated with hyperphospho-
rylation of tau. Thioflavin S-positive fibrillary
inclusions were identified in oligodendrocytes and
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TABLE 12.1. List of currently available tau transgenic mice.

Promoter Tau isoform Mutation Strain name Reference

hThy1 4R-tau (2N) Wild-type ALZ7 106
mHMG-CoAR 3R-tau (0N) Wild-type TG23 154
mPrP 3R-tau (0N) Wild-type htau44 107
mThy1.2 4R-tau (2N) Wild-type htau40 108
mThy1.2 4R-tau (2N) Wild-type ALZ17 109
mPrP 3R-tau (2N) P301L JNPL3 114
mThy1.2 4R-tau (2N) P301L pR5 115
mPrP-TA 4R-tau (2N) G272V pR3 119
mPDGF 4R-tau (2N) V337M Tg214 116
CaMKII 4R-tau (2N) R406W 117
mThy1.2 4R-tau (0N) P301S 118
Tα1 α-tubulin 3R-tau (0,1,2N) Wild-type Tα1-3RT 120
mThy1.2 4R-tau (0N) P301L 3×Tg-AD 121*

mThy1.2 4R-tau (2N) P301L tau-P301L 122†
mThy1.2 4R-tau (2N) Wild-type tau-4R/2N 122†
KOKI 4R-tau (2N) Wild-type KOKI 122†

* Triple transgenic approach: PS1 M146V knock-in oocytes microinjected with APPsw and P301L tau transgenes.
†Three transgenic approaches in parallel: P301L tau transgenic mice were compared with wild-type tau transgenic mice of compa-
rable expression levels. A third strain contained a single copy of a wild-type tau transgene (under the control of the mThy1.2
promoter) inserted into the endogenous murine tau locus.



motor neurons in spinal cord [119]. The clinical
phenotype of these mice was subtle. In contrast,
when human wild-type tau was overexpressed in
neurons and glial cells using the mouse Tα1 α-
tubulin promoter, a glial pathology was found
resembling the astrocytic plaques in CBD and the
coiled bodies in CBD and PSP [120].

To reproduce the plaque and NFT pathology in
one single animal model, triple-transgenic mice
were developed harboring PS1 M146V, the APPSwe

and P301L tau transgenes. Instead of crossing
independent lines, the APP and tau transgenes were
microinjected into transgenes embryos derived
from homozygous PS1 M146V knock-in mice,
generating mice with the same genetic back-
ground. In the triple transgenic mice, synaptic dys-
function, including LTP deficits, manifested in an
age-related manner, but before plaque and NFT
pathology [121].

To allow a better side-by-side comparison of
wild-type and P301L mutant mice, a total of three
strains were generated by another research group
and analyzed in parallel [122]. First, they compared
two strains, both expressing the longest human tau
isoform, one bearing the P301L mutation and one
without mutations, at similar, moderate levels [122].
The two strains developed very different pheno-
types. Nonmutant mice became motor-impaired
already around at 6–8 weeks of age, accompanied by
axonopathy, but no tau aggregates, and survived
normally. In contrast, the mutant mice developed
NFTs from 6 months of age, without axonal dilata-
tions and, despite displaying only minor motor prob-
lems, all succumbed before the age of 13 months.
The authors concluded that excessive binding of
wild-type human tau as opposed to reduced binding
of P301L mutant tau to microtubules may be respon-
sible for the development of axonopathy and tauopa-
thy, respectively, in the two strains and that the
conformational change of P301L tau is a major
determinant in triggering the tauopathy. The third
strain (a tau knock-in of human wild-type tau-4R/2N
aimed to inactivate the endogenous murine tau gene
and to replace it with a single copy of the thy1-tau-
4R/2N expression construct) survived normally with
minor motor problems late in life and without any
obvious pathology [122]. When these findings are
compared with those obtained by other research
groups, it becomes obvious that the different strains
show a range of phenotypes, possibly due to the use

of different promoters for transgene expression, the
integration site of the transgene, expression levels,
and the mouse strain used for transgenesis [5].

In light of the neuropathological findings in
humans that only a subset of the neuronal loss can
be explained by NFTs, an important question
arises, namely whether NFTs are an incidental
marker for the neurotoxic cascade in AD or rather
represent a protective neuronal response, allowing
sequestration of neurotoxic species into a less
harmful stable form [125]. To address this ques-
tion, P301L mice were generated where the trans-
gene can be turned off (or at least reduced from
very high to only high overexpression levels). It
was found that mice expressing doxycycline-
repressible human P301L mutant tau developed
progressive age-related NFTs, a remarkable neuron
loss, and behavioral impairment. After the suppres-
sion of transgenic tau from 13- to 2.5-fold overex-
pression, memory function recovered, and neuron
numbers stabilized, but NFTs continued to accu-
mulate. These data convincingly show that tau dys-
function impairs memory, when massively
overexpressed. The data further imply that NFTs
per se (as entities of fibrillar accumulation that are
visible by light microscopy) are not sufficient to
cause cognitive decline or neuronal death in this
model of tauopathy [125]. Not surprisingly, cogni-
tive impairment in a second P301L tau transgenic
mouse strain was shown to occur in the absence of
NFT formation [126, 127]. As NFTs make up only
a small percentage of all neurons in any animal
model published so far, and as they are by far
exceeded by dysfunctional neurons with tau aggre-
gates but lacking NFTs, it is not surprising that,
considering the limited life-span of mice compared
with humans, NFT numbers do not correlate with
functional impairment in these mice but rather the
high number of cells that display tau aggregates.

12.6 Tau Transgenic Mice:
Correlation of Histopathology 
and Behavioral Impairment

Similar to the APP transgenic models, the tau
transgenic mouse models have been assessed using
a wide range of behavioral tasks. Our mThy1.2
promoter-driven P301L mice accumulate tau in
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many brain areas but develop NFTs mainly in the
amygdala. This brain area is involved in mediating
effects of emotion and stress on learning and mem-
ory [124, 128, 129]. Therefore, behavioral alter-
ations and cognitive deficits of the P301L mice
were investigated using an amygdala-specific test
battery for anxiety-related and cognitive behavior.
These included an open-field, a light-dark box, fear
conditioning, and a conditioned taste aversion
(CTA) test [126]. The P301L mice showed an
increased exploratory behavior but normal anxiety
levels and no impairment in fear conditioning. In
the P301L mice, fear conditioning was unaffected
probably due to the absence of tau aggregates in the
central and lateral nucleus of the amygdala. In the
CTA test, the mice learn to associate a novel taste
with nausea and, as a consequence, avoid con-
sumption of this specific taste at the next presenta-
tion. We found that acquisition and consolidation
of CTA memory was not significantly affected by
the P301L transgene. However, transgenic mice
extinguished the CTA memory more rapidly than
did wild-type mice [126]. This rapid extinction
may be due to the presence of tau aggregates in the
basolateral nucleus of the amygdala, which has
been shown to be essential for the extinction of
CTA memory, whereas acquisition is dependent on
an intact central nucleus, where no tau aggregates
were found. When the P301L mice were assessed
in hippocampus-dependent behavioral tests, the
Morris water maze and Y-maze revealed intact spa-
tial working memory but impairment in spatial
reference memory at 6 and 11 months of age. In
addition, a modest disinhibition of exploratory
behavior at 6 months of age was confirmed in the
open-field and the elevated O-maze and was more
pronounced during aging [127].

The PrP promoter-driven P301L tau transgenic
mice strongly overexpress mutant tau in several
neuronal cell-types, including motor neurons.
Therefore, they develop a progressive motor phe-
notype [114]. The V337M tau mutant mice show a
very confined expression pattern as mutant tau was
detected only in the hippocampus. These mice
show an increased locomotor activity and memory
deficits in the elevated plus maze, increased spon-
taneous locomotion in the open-field, but no sig-
nificant impairment in the Morris water maze
[130]. R406W tau mutant mice express tau at
highest levels in the hippocampus and, to a lesser

extent, in other cortical and subcortical brain areas.
However, in the amygdala, only a few cells
strongly express mutant tau, even in old animals
[117]. These mice show a slight decrease in loco-
motor activity during the first minutes of the open-
field test and a significant impairment in the
contextual and cued fear-conditioning test.

When triple-transgenic mice (PS1 M146V
knock-in microinjected with APPsw and P301L tau
transgenes) were analyzed, 2-month-old mice
were cognitively unimpaired. The earliest cogni-
tive impairment manifested at 4 months as a deficit
in long-term retention and correlated with the
accumulation of intraneuronal Aβ in the hip-
pocampus and amygdala. Plaque or NFT pathol-
ogy was not apparent at this age, suggesting that
they contribute to cognitive dysfunction at later
time points [131].

In summary, these findings demonstrate that tau
aggregation in distinct brain areas directly affects
the performance in memory tests controlled by
these brain areas. They also show that tau aggrega-
tion per se, in the absence of NFT formation, is suf-
ficient to cause behavioral deficits.

12.7 Cross-Talk of β-Amyloid and
Tau in Experimental Model
Systems

Before NFT formation had been achieved in tau
transgenic mice, the interaction of plaques and
NFTs has been addressed in different non-trans-
genic species such as rats and monkeys [132].
Intracerebral injection of plaque-equivalent con-
centrations of fibrillar, but not soluble, Aβ resulted
in profound neuronal loss, tau phosphorylation,
and microglial proliferation in the aged rhesus
monkey cerebral cortex. In contrast, the same
preparations were not toxic in the young adult rhe-
sus brain, indicating a role for age in Aβ toxicity.
This toxicity was also highly species-specific as it
was neither observed in young nor in aged rats
[132]. These results suggested that Aβ neurotoxic-
ity in vivo is a pathological response of the aging
brain, which is most pronounced in higher order
primates. Thus, longevity may contribute to the
unique susceptibility of humans to AD by render-
ing the brain vulnerable to Aβ neurotoxicity.
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In transgenic mice, the presence of the P301L
mutation appeared to accelerate tau filament for-
mation as transgenic mice with high expression
levels of human tau developed NFTs only at a high
age [113–115]. P301L mutant mice are therefore
suitable models to determine whether Aβ affects
the tau pathology in these mice. Synthetic prepara-
tions of fibrillar Aβ42 were stereotaxically injected
into the somatosensory cortex and the hippocampal
CA1 region of P301L and wild-type human tau
transgenic mice and non-transgenic littermate con-
trols, causing a fivefold increase of NFTs in the
amygdala of P301L transgenic, but not wild-type
tau transgenic or control mice, 18 days after the
injections [124]. In contrast, when the non-fibrillo-
genic reversed peptide Aβ42-1 was injected, levels
of NFTs were not affected (Fig. 12.1). NFT forma-
tion in the Aβ42-injected P301L mice was tightly
correlated with the pathological phosphorylation of
tau at S422 and the epitope AT100 (T212/S214),
but not AT8 (S202/T205). The finding that Aβ42
was not capable of inducing NFT formation in non-
NFT-forming wild-type tau transgenic mice may
reflect species differences between mice and men.
Alternatively, it may imply that, at least in mice,
Aβ42 cannot induce NFT formation de novo, which
would be in disagreement with the amyloid cas-
cade hypothesis. Interestingly, in cultured murine
hippocampal neurons, toxicity of Aβ42 has been
shown to be dependent on the presence of tau
[133].

An alternative approach was chosen by Lewis
and co-workers who crossed Aβ-producing APP-
mutant Tg2576 mice with their PrP promoter-
driven P301L tau mutant mice [134]. Double
transgenic mice showed a more than sevenfold
increase in NFT numbers in the olfactory bulb, the
entorhinal cortex, and the amygdala compared with
P301L single transgenic mice, whereas Aβ plaque
formation was unaffected by the presence of the tau
lesions (Fig. 12.1).

When both approaches are taken together, they
imply that not all brain areas are similarly suscep-
tible to Aβ-mediated NFT induction. In both stud-
ies, the amygdala is a hot spot of NFT induction.
Unless tau levels are particularly high in the amyg-
dala compared with other brain areas such as
the hippocampus or cortical areas, a different
mRNA/protein profile may account for the
observed differences. A recent study of amygdala-

specific gene expression provided a list of genes,
some of which may confer an increased tau-related
vulnerability of amygdaloid neurons to Aβ42 [135].
Alternatively, it may be the nerve terminals, which
are susceptible to Aβ42, whereas direct exposure of
the cell body or neurites may not pose a risk to the
tau-expressing neuron. Whether Aβ is taken up by
receptor-mediated mechanisms or whether it forms
pores is still a matter of debate [136, 137]
(Fig. 12.3).

Antibody-directed approaches were pursued in a
recent study to dissect the cross-talk of Aβ and tau.
When triple transgenic mice (PS1 M146V knock-
in microinjected with APPsw and P301L tau trans-
genes) were intracerebrally injected with anti-Aβ
antibodies or a γ-secretase inhibitor, this resulted in
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FIGURE 12.3. The mechanism of Aβ-mediated neurotox-
icity is not understood at all. Whereas some neurons are
particularly vulnerable already early in disease (A, 1a),
others are relatively spared (B, 1b). Possible mechanisms
of Aβ neurotoxicity and downstream NFT formation
include uptake and transport of Aβ (2), (receptor-medi-
ated) damage to nerve terminals (3), and the formation of
pores (4). The receptors may have a selective specificity
for Aβ or may, alternatively, bind peptides with a β-cross
structure as the defining feature of amyloid fibers such
as Aβ.



the disappearance of somatodendritic tau staining
in young, but not old, mice [138]. It thus appears
that extracellular Aβ deposits can exacerbate the
intraneuronal pathology caused by the expression
of mutant human tau protein [23].

An interaction between Aβ and tau was also
demonstrated after the functional validation of pro-
teomics findings in P301L tau transgenic mice
[139]. Here, mainly mitochondrial proteins, antioxi-
dant enzymes, and synaptic proteins were identified
as modified in the proteome pattern of P301L tau
mice. Significantly, the reduction in mitochondrial
complex V levels in the P301L tau mice found by
using proteomics was also confirmed as decreased in
brains derived from human carriers of the P301L
mutation of tau. Functional analysis demonstrated a
mitochondrial dysfunction in P301L tau mice
together with reduced NADH-ubiquinone oxidore-
ductase activity and, with age, impaired mitochondr-
ial respiration and ATP synthesis. Mitochondrial
dysfunction was associated with higher levels of
reactive oxygen species in aged transgenic mice.
Increased tau pathology as in aged homozygous
P301L tau mice revealed modified lipid peroxida-
tion levels and the upregulation of antioxidant
enzymes in response to oxidative stress. To investi-
gate whether brain cells from P301L tau mice are
more susceptible to Aβ, we measured the mitochon-
drial membrane potential of isolated cortical brain
cells with and without Aβ treatment [139]. Previous
experiments using PC12 cells had shown that extra-
cellular Aβ treatment lead to a significant decrease
in mitochondrial membrane potential [140]. We
found that, interestingly, the basal mitochondrial
membrane potential was still conserved in cerebral
cells from P301L tau mice. However a secondary
insult with Aβ42 resulted in a higher reduction in
membrane potential in P301L tau mitochondria than
in wild-type controls. Importantly, this effect was
brain region–specific and therefore probably
dependent on the presence of P301L tau because
cells from the cerebellum with very low P301L tau
expression levels were not vulnerable to this damage
whereas cells from the cerebrum with high P301L
tau expression levels were. These data suggests a
synergistic action of Aβ and tau pathology on mito-
chondrial function. Moreover, it can be concluded
that the tau pathology involves a mitochondrial and
oxidative stress disorder distinct from that caused by
Aβ [139].

The interaction between Aβ and tau has also
been addressed in cell lines. Several studies have
shown that tau-expressing cell lines are responsive
to different forms of pathogenic stimuli. For exam-
ple, when human SH-SY5Y neuroblastoma cells
were incubated with okadaic acid (OA), a potent
phosphatase inhibitor, together with HNE, a prod-
uct of lipid oxidation found to be associated with
NFTs in vivo [141–143], this resulted in the
assembly of tau into aberrant polymers [144].
Most of them had a diameter of 2–3 nm and were
straight, whereas PHFs have a diameter of 20 nm
and are twisted. Fibrillar aggregates of tau were
also observed in Chinese hamster ovary (CHO)
cells that have been transfected with mutant tau
expression constructs [145]. For example, ∆280K,
but not several other single tau mutants (such as
V337M, P301L, and R406W), developed insolu-
ble amorphous and fibrillar aggregates, whereas a
triple tau mutant containing V337M, P301L, and
R406W substitutions (VPR) also formed similar
aggregates. Furthermore, the aggregates increased
in size over time. The formation of aggregated
∆280K and VPR tau protein correlated with their
reduced affinity to bind microtubules. Reduced
phosphorylation and altered proteolysis was also
observed in R406W and ∆280K tau mutants. Thus,
distinct pathological phenotypes, including the
formation of insoluble filamentous tau aggregates,
result from the expression of different FTDP-17
tau mutants in transfected CHO cells suggesting
that these missense mutations cause diverse neu-
rodegenerative FTDP-17 syndromes by multiple
mechanisms.

As mentioned above, in human tauopathies other
than AD, tau-positive inclusions are not restricted
to neurons. They are found in oligodendrocytes and
are a consistent neuropathological feature of CBD,
PSP, and some forms of FTDP-17. When an oligo-
dendroglial cell line was engineered to stably
express high levels of the longest human tau iso-
form, treatment with OA caused tau hyperphos-
phorylation and a decreased binding of tau to
microtubules. Transiently, tau-positive aggregates
formed that could be stained with the amyloid-
binding dye thioflavin-S. However, when the pro-
teasome was inhibited by MG-132 after OA
treatment, the aggregates were stabilized and were
still detectable after 18 h in the absence of OA.
Incubation with MG-132 alone did not induce the

208 J. Götz et al.



formation of thioflavin-S-positive aggregates.
Hence, although tau hyperphosphorylation induced
by protein phosphatase inhibition contributed to
pathological aggregate formation, only hyperphos-
phorylation of tau followed by proteasome inhibi-
tion led to stable fibrillar deposits of tau similar to
those observed in human tauopathies [146].
Together, these studies demonstrate that tau is
capable of forming filamentous aggregates under
specific experimental conditions.

Previous stereotaxic injection experiments have
demonstrated principal differences between mice
and men: Whereas Aβ induced NFT formation in
human P301L mutant mice, it failed to do so in
human wild-type tau transgenic mice. This is dif-
ferent from the situation in human AD, where Aβ
aggregation and NFT formation occur in the
absence of pathogenic tau mutations. Therefore, to
address the role of Aβ in tau fibrillogenesis in a tis-
sue culture system, we chose the human SH-SY5Y
neuroblastoma instead of a murine cell line. SH-
SY5Y cells can be neuronally differentiated by the
sequential treatment with retinoic acid and brain-
derived neurotrophic factor (BDNF) [147]
(Fig. 12.4). They can be transplanted into mouse
brain where they persist for a couple of days.

Moreover, they anatomically integrate into organ-
otypic hippocampal slices where they express
synaptic markers and fire action potentials after 20
days in culture [O. Rainteau, A. Ferrari, and
J. Götz, unpublished observations]. We stably
expressed human tau with and without pathogenic
mutations in these cells and exposed them for 5
days to aggregated synthetic Aβ42 (Fig. 12.4)
[148]. This caused a decreased solubility of tau
along with the generation of PHF-like tau contain-
ing filaments, which were 20 nm wide and had
periodicities of 130 to 140 nm in the presence of
P301L mutant tau or 150 to 160 nm in the presence
of wild-type tau (Fig. 12.4). As the stereotaxic
Aβ42 injection experiments had linked the S422
epitope of tau to NFT formation, we mutagenized
serine 422 into alanine (which was intended to
abrogate phosphorylation) and glutamic acid
(intended to mimic phosphorylation). To our sur-
prise, both mutations prevented the Aβ42-mediated
decrease in solubility and the generation of PHF-
like filaments suggesting a role of S422 or its phos-
phorylation in tau filament formation. S422 is
located next to a putative caspase-3 cleavage site at
position 421, and altered caspase cleavage has been
shown to be involved in the rates of tau filament
formation [149–151]. Together, these data under-
score a role of Aβ42 in the formation of PHF-like
filaments. These data are consistent with our previ-
ous results of Aβ42-induced PHF-like tau filament
formation in P301L tau transgenic mice [124] but
in contrast to the transgenic mice Aβ42-induced
PHF formation in tissue culture also occurred with
wild-type mice. This may be related to the species
difference and points to the possibility that human
cells in culture may be more susceptible to the for-
mation of abnormal tau filaments than are murine
cells in vivo.

The tissue culture system has since been used to
map additional phospho-epitopes of tau involved in
PHF formation and revealed that mutagenesis of
some sites is even inhibitory to tau filament forma-
tion of endogenous, non-mutant tau [152]. Further
adaptation of the system may allow the screening
and validation of compounds designed to prevent
PHF formation.

In summary, the above experiments demonstrate
pathological interactions between Aβ and tau that
led to increased NFT formation. Moreover, the
region-specific induction of Aβ-mediated NFT
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FIGURE 12.4. The formation of PHFs in tissue culture
was reproduced by stably expressing human tau (both
wild-type and P301L mutant) in neuronally differenti-
ated human SH-SY5Y cells and exposing them for
5 days to aggregated synthetic Aβ42. An electron micro-
graph of the fibrillar preparations of Aβ42 is included (on
the left). This incubation caused the generation of PHF-
like tau containing filaments that were 20 nm wide and
had periodicities of 130 to 140 nm in the presence of
P301L mutant tau or 150 to 160 nm in the presence of
wild-type tau (on the right).



formation in P301L tau transgenic mice mirrors, to
some extent, the regional vulnerability observed in
AD brains. Finally, besides their major advantages
for an understanding of the pathophysiology of
NFT formation, these models may assist in the
development of therapies designed to reduce NFT
formation and tau-related dysfunction, be they Aβ-
mediated or not.

12.8 Outlook

The recent advent of transcriptomic and proteomic
technology and its application to transgenic mouse
models and tissue culture systems is likely to assist
in the dissection of the pathocascade of AD and
FTD [153]. Transcriptomics and proteomics iden-
tify individual, differentially regulated mRNAs and
proteins and are in addition employed to dissect
signaling pathways and reveal networks by using
an integrated approach. This will undoubtedly lead
to a redefinition and subdivision of disease entities
based on biochemical criteria rather than the clini-
cal presentation. Moreover, it will determine
whether the pathogenesis of FAD and SAD are
shared. Whether this can be reconciled with a uni-
fying theory for AD remains to be determined. In
any case, the new knowledge will have important
implications for treatment strategies [97, 98].
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13.1 Introduction

Alzheimer’s disease (AD) is a tragic neurodegenerative
disorder that targets the elderly and ultimately ends
in dementia. Unfortunately, the ever increasing
length of the human life span in the United States
and throughout the world is now being paralleled
by corresponding increases in the incidence of AD
as well as in the duration of this disease in individ-
ual patients. AD is characterized symptomatically
by progressive cognitive and memory loss, lan-
guage deficits, impairment of judgment, deficient
problem solving, and reduced abstract thought. At
the root of these symptoms is widespread loss of
neurons and their synapses primarily in the cere-
bral cortex, entorhinal area, hippocampus, ventral
striatum, and basal forebrain [1–5]. Other patho-
logical features that make their appearance in the
brain tissue include a variety of different kinds of
amyloid deposits collectively called amyloid
plaques (Fig. 13.1), persistent accumulations of
abnormal tau filaments referred to as neurofibril-
lary tangles, dense focal deposits of fibrillar amyloid
in the walls of certain blood vessels (mostly small
arterioles), intraneuronal accumulation of amyloid,
reactive gliosis, and inflammation [1, 2, 6–9].

The presence of numerous amyloid plaques in
AD brains has attracted great interest because they
appear relatively early in the course of the disease
and thus provide a potential early therapeutic tar-
get. These plaques consist of amyloid deposits,
microglial cells, dystrophic neurites, and bundles
of astrocytic processes. A principal component of
plaques in human brain is amyloid β (Aβ) peptide,
especially Aβ (1-42) (Aβ42), a 42-amino-acid pep-

tide fragment derived from the sequential prote-
olytic cleavage of the amyloid precursor protein by
beta- and gamma-secretases [1, 10]. An enormous
number of studies have implicated Aβ42 as a key
player in the observed neurodegenerative cascade,
and many investigators believe that it may be
directly responsible for the rampant synaptic and
neuronal loss observed during the course of this
disease [11, 12]. Exactly how the accumulation of
this “toxic” peptide is linked to the observed cog-
nitive and memory decline remains to be eluci-
dated, but this is an area of intense research interest
with the hope of changing the long-term outcome
of this disease or, better yet, eradicating the disease
altogether.

It is now well-recognized that glial cells (espe-
cially astrocytes and microglia) play a critical,
dynamic role in inflammatory and neurodegenerative
events that occur in the brain during the course of
AD. Traditionally, astrocytes were assigned the role
of filling tissue voids caused by degenerative events,
a process called glial scar formation, whereas
microglia were presumed to function primarily as
brain phagocytes, responsible for the removal of
Aβ deposits and debris from degenerating neurons
and their processes. More recently, as will be dis-
cussed here, it has become apparent that there may
be some sharing of phagocytic responsibility
among these cell types and that their contribution
to events occuring in the brain is considerably more
complex than previously thought. In this chapter,
we highlight the responses of astrocytes and
microglia to intraneuronal Aβ accumulation, neu-
ronal and synaptic degeneration, and amyloid
plaque formation and focus on how their responses



are intimately and irrevocably integrated into the
fate of Aβ peptides and evolving pathology in AD
brains.

13.2 Astrocytes and the Fate of Aβ
in AD Brains

13.2.1 Astrocytes: Structure and
Function in Normal Healthy Brain

Astrocytes, the predominant glial cell type found
in the gray matter of the human CNS, extend
numerous cytoplasmic processes that contain

abundant bundles of intermediate filaments com-
posed mainly of glial fibrillary acidic protein
(GFAP) (Figs. 13.2A and 13.2B) [13]. In each
astrocyte, the fine, highly branched tips of these
cytoplasmic processes generally lack GFAP and
can come into contact with thousands of local
synapses [14]. In addition to structurally and func-
tionally isolating synapses from events in the sur-
rounding brain tissue, astrocytic processes are now
thought to play an active role in synaptogenesis,
the construction of neuronal circuits during devel-
opment, synaptic stability and plasticity in the
adult brain, ensuring normal neuronal excitability
by maintaining extracellular ion homeostasis, and
in clearing potassium from the region of synapses
[15–19]. In addition, astrocytes are able to take up
the excitatory amino acid glutamate from the
synaptic cleft to levels up to 10,000 times higher
than that in the extracellular space, a function that
is pivotal for optimal gluataminergic neurotransmis-
sion and avoiding neuronal excitotoxicity [20–24].
The interchange of metabolites between astrocytes
and between astrocytes and neurons is complex
and is not well-understood, but gap junctions are
now thought to be critical for this function [17].
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FIGURE 13.1. Section through entorhinal cortex of AD
brain immunostained with anti-Aβ42 antibody (Chemicon
International), which does not show appreciable reactivity
with Aβ40 in ELISA or APP, showing amyloid plaques
(AP) confined to the pyramidal cell layer (PCL). Activated
astrocytes (AA) in both the molecular layer (ML) and
PCL contain substantial quantities of Aβ42-positive mate-
rial. The Aβ42-positive material in ML astrocytes is pre-
sumed to be derived from their active role in clearing
debris associated with local synaptic and dendritic loss,
which is rampant in this layer. Dendritic and synaptic loss
in the ML appears to be temporally linked to the accumu-
lation of Aβ42-positive material by the parent neurons in
the underlying PCLs.

FIGURE 13.2. (A) Section through entorhinal cortex of
AD brain immunostained for glial fibrillary acidic pro-
tein (GFAP) showing prominent GFAP-rich activated
astrocytes in the molecular layer (ML). PCL, pyramidal
cell layer. (B) Higher magnification of similar region
showing the GFAP-rich processes of activated astrocytes
(AA) with their associated end-feet in contact with the
wall of a blood vessel (BV).



Lastly, the end feet of astrocytic processes encapsu-
late brain capillaries that pass through the brain
tissue (Fig. 13.2B), most likely providing additional
structural support for the blood-brain barrier and
participating in regulation of the exchange between
the smaller blood vessels and the surrounding brain
tissue [25–27].

13.2.2 “Activation” of Astrocytes in
Response to Local AD Pathology
Compromises Astrocytic Function

In addition to playing a critical role in the functions
described above, all of which are ultimately devoted
to the maintenance of normal neuronal activity,
astrocytes are capable of responding to pathologi-
cal situations, where they engage in a series of
structural and functional changes collectively
referred to as “activation,” “reactive astrogliosis,”
or “astrocytosis” [28–32]. These “activated astro-
cytes” exhibit a pronounced enlargement of their
cell bodies and a dramatic thickening and lengthen-
ing of their cytoplasmic processes. They are readily
identifiable in regions of CNS trauma, hypoxia, and
in many neurodegenerative conditions by virtue of
the dramatically elevated expression of glial fibril-
lary acidic protein (GFAP), vimentin, and nestin in
their cell bodies and in the main trunks and
branches of their cytoplasmic processes, compared
with their more quiescent counterparts [13, 14, 28,
33] (Figs. 13.2A and 13.2B). Unfortunately, these
changes come with a price—“activation” forces
astrocytes to give up many of the activities men-
tioned above that were essential for normal neu-
ronal function. Physiological functions such as the
buffering of neuronally released potassium and
glutamate from the extracellular space may be
impaired, favoring local nerve cell depolarization,
excessive Ca2+ influx, and excitotoxic damage to
neurons [18, 34–35]. In addition, retraction of
astrocytic end-feet and processes from synapses
and the walls of local blood vessels may jeopardize
the integrity of synapses and the local blood-brain
barrier. Thus, although astrocyte activation no
doubt is intended to be a protective response in the
normal day to day activities in the brain, the intense
and widespread astrocyte activation seen through-
out AD brains may also exacerbate the extent of
neuronal damage and even accelerate the rate of
disease progression [36].

13.2.3 Astrocyte “Activation”
Compromises the Blood-Brain Barrier,
Leading to Leakage of Blood-Borne
Substances, Including Soluble Aβ42,
into Brain Tissue

The blood-brain barrier (BBB) is a diffusion barrier
that blocks the movement of blood-borne sub-
stances into the brain parenchyma [37]. The three
main components of the BBB are endothelial cells,
the end-feet of astrocytes, and pericytes. Tight
junctions between the endothelial cells in cerebral
vessels are thought to provide the structural basis
for the seal. Astrocyte end-feet tightly ensheath the
vessel wall and most likely lend additional stability
to the integrity of the barrier (Fig. 13.2B).
Activation of astrocytes causes them to pull away
many of their processes from the walls of blood
vessels. The loss of astrocyte-endothelial cell con-
tact can lead to breakdown of the BBB, resulting in
an efflux of serum components into the brain tis-
sue. Studies have shown that a significant pool of
Aβ exists in the peripheral circulation [38–40].
Because the breakdown of the BBB is unlikely to
occur uniformly throughout the brain, regions
showing such leaks also exhibit increased levels of
plasma components including serum immunoglob-
ulin, complement, and Aβ42 [R. Nagele, unpub-
lished observations]. Leakage of these components
into AD brains can often be detected in AD brain
as immunopositive perivascular “leak clouds” that,
unexpectedly, are most often associated with small
arterioles rather than capillaries within the brain
parenchyma (Fig. 13.3). Elevated levels of these
substances in the brain tissue may play an impor-
tant role in the development of AD pathology as
described in more detail below and could conceiv-
ably explain the frequent observation of “hot spots”
of AD pathology, especially in the brains of
patients that are early in the course of the disease.

13.2.4 Activated Astrocytes Accumulate
Aβ42 in AD Brains

In early AD pathology, activated astrocytes are
conspicuous in two regions: in the molecular layer
of the cerebral cortex and in the immediate vicinity
of amyloid plaques in the underlying pyramidal
cell layers (Figs. 13.1 and 13.4A). What triggers
these cells to become activated in response to AD-
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related pathological changes is not clear, but in
vitro studies have shown that aggregated Aβ and
the cores of amyloid plaques isolated from human
AD brain tissue are effective in stimulating astro-
cyte activation [41]. Once activated, these cells are
capable of internalizing and degrading Aβ42, sug-
gesting that they may play a direct role in its clear-
ance from the brain parenchyma. In support of this
possibility, activated astrocytes in AD brains posi-
tioned in the cortical molecular layer as well as
those closely association with neuritic or dense-
core plaques in the underlying pyramidal cell lay-
ers can accumulate substantial amounts of Aβ42
(Figs. 13.1 and 13.4A) [42–46]. In the cortical
pyramidal cell layers, astrocytes stationed outside
of amyloid plaques, just beyond the outer edge of
the Aβ42-rich corona, extend thick, intensely
GFAP-immunopositive, cytoplasmic processes that
envelop the amyloid plaque and thinner (mostly
GFAP negative) branches from these processes that
infiltrate deep into the plaque interior. In addition
to intense GFAP immunostaining, these cells often
show impressive intracellular accumulations of
Aβ42-immunopositive material, suggesting that
they are capable of internalizing Aβ42 via their

processes and transporting it back to the cell body,
presumably for degradation within the lysosomal
compartment. In fact, most Aβ42-immunopositive
material within astrocytes localizes to prominent
granules in the perinuclear cytoplasm, and these
granules have the same distribution and size as
those that immunostain with antibodies specific for
cathepsin D (Fig. 13.4B) [44].

13.2.5 The Amount of Aβ42 in Activated
Astrocytes Is Linked to the Local
Abundance of Neurons Containing
Substantial Intracellular Aβ42 Deposits

The amount of Aβ42-positive material contained
within activated astrocytes is not uniform through-
out the cerebral cortex of AD brains but rather
appears to be both spatially and temporally corre-
lated with the extent of local AD pathology [44]. In
the pyramidal cell layers, the Aβ42 content within
individual astrocytes is proportional to the amount
of intracellular Aβ42-positive material within
nearby neurons as well as the presence and local
density of plaques (Fig. 13.1). By contrast, cortical
molecular layer astrocytes contain abundant Aβ42-
positive material despite the fact that this layer gen-
erally lacks Aβ42-burdened neurons and plaques,
especially in the early stages of AD pathogenesis
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FIGURE 13.3. Section through the entorhinal cortex of an
AD brain immunostained for Aβ42 showing and Aβ42-
rich perivascular “leak cloud” surrounding a small blood
vessel (BV) (arteriole). These leak clouds are observed
preferentially around small arterioles and are only seen
around brain capillaries in regions showing advanced
pathology and well-developed inflammation. AP, amy-
loid plaque.

FIGURE 13.4. (A) Section through AD cortex immunos-
tained with anti-Aβ42 antibodies showing large Aβ42-
rich deposits in activated astrocytes (AA) in the
molecular layer (ML). These same cells also exhibit
intense cathepsin D (Sigma) immunoreactivity, suggest-
ing increased activity of their lysosomal compartment.
PC, pyramidal cells; PCL, pyramidal cell layer.



(Fig. 13.1). Interestingly, the amount of Aβ42-
positive material within these astrocytes correlates
closely with the severity of pathology exhibited by
the pyramidal cell layers lying directly under this
layer. In brain regions where pyramidal cells lack
significant intracellular Aβ42 deposits, most of the
overlying molecular layer astrocytes are quiescent
and generally devoid of Aβ42-positive material
[44]. Taken together, these observations emphasize
the temporal and spatial link between Aβ42 accu-
mulation in pyramidal neurons and the appearance
of similar intracellular deposits in the overlying
molecular layer astrocytes.

13.2.6 Activated Astrocytes Accumulate
Aβ42 While Clearing the Products of
Neuronal and Synaptic Degeneration 
and Loss

The source of the Aβ42 and the mechanism by
which it accumulates selectively in activated astro-
cytes and not in their more quiescent counterparts
remains to be determined. Expression of the amy-
loid precursor protein is either extremely low or
nonexistent in astrocytes, thus internal production
is unlikely to be a major source of the Aβ42 that
accumulates in these cells. By contrast, exogenous
(soluble) Aβ42 from the surrounding extracellular
fluid is a much more likely source, and its accumu-
lation in astrocytes could occur via receptor-medi-
ated endocytosis and/or phagocytosis. In support of
this possibility, the phagocytic capability of acti-
vated astrocytes has already been demonstrated and
includes the removal of local synaptic material
[47]. In addition, our previous study has provided
strong evidence that most (possibly all) of the accu-
mulated Aβ42 within activated astrocytes posi-
tioned in the cortical molecular layer is of neuronal
origin and is derived from internalization of degen-
erating synapses and dendrites belonging to neu-
rons in the underlying pyramidal cell layers [44].
Further evidence for this mode of astrocytic Aβ42
accumulation comes from the fact that Aβ42 in acti-
vated astrocytes colocalizes with other neuron-spe-
cific proteins, including choline acetyltransferase
(ChAT) and the alpha7 nicotinic acetylcholine
receptor (α7nAChR) (Fig. 13.5A), neither of which
is synthesized by astrocytes [44]. The selective
accumulation of these neuronal proteins and Aβ42

in activated astrocytes is an expected consequence
of their debris-clearing activity in response to ele-
vated levels of AD-related degeneration of local
dendrites and synapses. The fact that accumulated
ChAT- and α7nAChR-immunopositive material is
most prominent in astrocytes populating the corti-
cal molecular layer is a reflection of the abundance
of synapses containing these proteins in this region
[44]. Studies using electron microscopy have shown
that the corona of dense-core amyloid plaques in
the pyramidal cell layers and the amyloid aggre-
gates associated with capillaries are extensively
infiltrated with astrocytic processes in both human
AD and APP tg mouse brains [48–50]. Aβ deposits
can apparently be degraded by metalloproteases,
including neprilysin and insulysin [51, 52], and
neprilysin has been localized in astrocytes closely
associated with amyloid plaques, suggesting that
they possess the requisite elements for Aβ degra-
dation [53]. In view of the above, the idea that
astrocytes may not become phagocytic until the
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FIGURE 13.5. (A) Section through entorhinal cortex of
AD brain immunostained with rabbit polyclonal antibod-
ies directed against the alpha7 nicotinic acetylcholine
receptor (alpha7) (Santa Cruz Biotechnology, sc-1447,
raised against amino acids 367–502 mapping at the C-
terminus of human a7nAChR). Activated astrocytes
(AA) in the cortical molecular layer are strongly
immunopositive for alpha7. Alpha7 accumulation in
these cells is a by-product of their action in clearing local
dendritic and synaptic debris. Confirmation of the speci-
ficity of this antibody was obtained by Western blot
analysis and deletion of staining by preabsorption with
the immunogen peptide. (B) Death and lysis of Aβ42-
overburdened, activated astrocytes leads to the formation
of small astrocytic amyloid plaques (AP) in the cortical
molecular layer that are both Aβ42- and alpha7-
immunopositive.



phagocytic capacity of brain microglia has become
saturated [54] may have to be discarded. In fact,
the reverse seems more likely—that microglia are
not activated until after the phagocytic activity of
astrocytes is overwhelmed or, at least, sufficiently
taxed above some unknown threshold level.

13.2.7 Effects of Intracellular Aβ42
Accumulation on the Functional 
Activity of Astrocytes

It is not known whether Aβ42-burdened, activated
astrocytes are capable of clearing internalized and
accumulated Aβ42. The fact that the total astro-
cytic amyloid burden seems to increase in AD
brains with the degree of AD pathology suggests
that astrocytes are either not capable of clearing
internalized Aβ42 or that their clearance mecha-
nism may be deficient. The effects of gradual intra-
cellular Aβ42 accumulation on the functional
activity of astrocytes is unknown, but it is likely to
have a progressively deleterious effect on these
cells throughout the accumulation process, eventu-
ally ending in cell death and lysis. As mentioned
above, astrocytes are known to make contacts with
multiple neurons in their immediate vicinity. This
position between neurons allows astrocytes to
facilitate information transfer between neighboring
neurons and other astrocytes, maintain neuronal
excitability by keeping close control over ion
homeostasis, and may contribute to synaptic plas-
ticity [15, 16, 20, 55–57]. Recent work has led to a
new appreciation of the active role of astrocytes
and astrocyte-derived cytokines in the response to
injury and repair and their influence on the
integrity of the blood brain barrier [53, 58, 59].
Degeneration of cortical dendrites and synapses in
AD brains may stimulate the conversion of “quies-
cent” to “activated” astrocytes [31]. Such degener-
ation would result in a severing of astrocyte-neuron
contacts, which may itself provide a signal for acti-
vation of astrocytes, the clearing of local neuronal
debris, and, thus, drive the accumulation of neuron-
derived materials, including Aβ42, in these cells.
Another consequence is impairment of astrocyte-
maintained extracellular ion homeostasis, which
favors excitotoxic neuronal damage [32]. It is
possible that, as in many otherwise protective
processes, this may get out of hand by favoring

oxidative neuronal damage and enhanced Aβ toxi-
city, thus providing a therapeutic target to possibly
slow it down [31].

13.2.8 Aβ42-Overburdened Astrocytes
Can Undergo Lysis to Form Astrocyte-
Derived Amyloid Plaques

The progressive and extensive synaptic loss in the
cortical molecular layer appears to gradually
increase the intracellular load of Aβ42-
immunopositive material that has accumulated in
local activated astrocytes (Fig. 13.1). We have
shown that this increased load is eventually accom-
panied by the appearance of a new population of
amyloid plaques within the cortical molecular layer
(Fig. 13.5B). This new population of plaques
appears to be derived from the death and lysis of
Aβ42-overburdened astrocytes [44]. Upon lysis,
cytoplasmic material from ruptured astrocytes is
dispersed somewhat radially, including their con-
tent of accumulated Aβ42. This dispersion may ini-
tially be facilitated by the action of lysosomal
enzymes that are also released at that time. Cell
lysis leaves in its wake a persistent, roughly spher-
ical, Aβ42-rich residue that takes the form of a dis-
tinctive population of amyloid plaques. That these
plaques are derived from the lysis of astrocytes is
bolstered by the fact that they first appear in the
subpial portion of the cortical molecular layer and
are observed only in regions where nearby astro-
cytes contain large intracellular deposits of Aβ42-
positive material (Fig. 13.1B) [44]. This proposed
mode of “astrocytic” plaque formation is nearly
identical to that which has been described previ-
ously for the larger, spherical, neuron-derived
plaques that populate the underlying pyramidal cell
layers, many of which appear to be the lysis rem-
nants of Aβ42-overburdened neurons [10, 60].
Although both types of plaque are Aβ42-
immunopositive, astrocytic plaques are readily dis-
tinguished from neuron-derived plaques because of
their location, much smaller size, and particularly
intense GFAP-immunoreactivity. The consistent
spherical shape of most plaques (Fig. 13.1) and the
close relationship between the size of both neuron-
and astrocyte-derived amyloid plaques and the
cells from which they are presumably derived
argue strongly against proposed mechanisms for
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amyloid plaque formation that describe the gradual
growth of plaques from a seeding site or “nidus,” at
least for this morphological subset of plaques.

13.2.9 Astrocyte Activation May Be
Triggered by the Intraneuronal
Accumulation of Aβ42 in AD Brains

The formation of large intracellular deposits of
Aβ42 have been reported in several types of neu-
rons in the cerebral cortex and cerebellum of AD
and Down syndrome brains (Fig. 13.6) [8, 44,
61–64]. Our recent studies suggest that their ability
to do so may be linked to neuronal expression of the
alpha7 nicotinic acetylcholine receptor (α7nAChR)
[60]. Previous studies have shown that Aβ42 binds
with exceptionally high affinity to α7nAChRs on
neuronal surfaces [63–64]. As described above, the
leak of serum Aβ42 into the brain parenchyma
through local breaches in the BBB (cf. Fig. 13.3)
would be expected to provide a constant source of
exogenous Aβ42 to local neurons. Thus, neurons
that are particularly well-endowed with α7nAChRs
(e.g., cortical pyramidal cells) would form rela-
tively high levels of Aβ42/α7nAChR complex on
their surfaces. It follows then that any membrane
recycling or endocytic activity on the part of the
neurons would tend to drive the internalization of
Aβ42/α7nAChR complex into neurons and target

this complex to the lysosomal compartment.
Consistent with this mechanism, Aβ42 and the
α7nAChR are invariably colocalized within intra-
neuronal deposits in AD brains, and these deposits
are also immunopositive for cathepsins, confirming
that this accumulation occurs within the lysosomal
compartment [60]. We have suggested that the bind-
ing of “exogenous” Aβ42 to the α7nAChR-bearing
dendrite trees of neurons may not only facilitate inter-
nalization and accumulation of Aβ42 in these cells
via endocytosis but also provides a plausible expla-
nation for the well-known selective vulnerability of
cholinergic and cholinoceptive neurons to AD
pathogenesis [60].

The accumulation of Aβ42/α7nAChR complex
in cortical pyramidal neurons is one of the earliest
signs of developing AD pathology, and work on
transgenic mice has temporally linked this event
with early synaptic degeneration and loss [44,
66–68]. It is likely that these events are also
directly linked to the observed early activation of
astrocytes in the cortical molecular layer. This
layer is densely packed with the fine, α7nAChR-
rich dendrite branches that extend from the main
dendrite trunks of neurons positioned in the pyram-
idal cell layers lying directly below. We have sug-
gested that excessive accumulation of Aβ42 in
neurons (Fig. 13.6) impairs the ability of these cells
to maintain their extensive dendritic arbors. If this
is the case, then the most distal dendrite branches
and their associated synapses, located in the corti-
cal molecular layer, would be most vulnerable to
degeneration and loss, which is consistent with
what is observed. If Aβ42/α7nAChR complex is
present on degenerating dendrites and synapses,
clearing of this debris by local astrocytes via
phagocytosis/endocytosis and the targeting of this
material to the lysosomal compartment would
explain the source of Aβ42 seen in these cells
(Fig. 13.5A). In addition, it would explain why
other neuron-specific proteins, such as α7nAChR
and choline acetyl transferase (ChAT), are also
colocalized within Aβ42-immunopositive deposits
of astrocytes [44]. Thus, “activated” astrocytes are
capable of internalizing neuron-derived materials,
including surface-bound Aβ42, presumably
through their endocytic/phagocytic activity and, as
in neurons, this activity is paralleled by a dramatic
elevation of lysosomal cathepsin D levels [44]. The
great affinity of Aβ42, but not Aβ40, for the
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FIGURE 13.6. Section through the entorhinal cortex of an
AD brain immunostained with anti-Aβ42 antibodies
showing Aβ42 localized to amyloid plaques (AP) and
large intracellular deposits within pyramidal neurons (N).



α7nAChR also provides a straightforward explana-
tion for Aβ42 as the dominant Aβ peptide species
in astrocytic intracellular deposits and in amyloid
plaques throughout AD brains [60]. The proposed
mechanism described above pinpoints a few vari-
ables that may dictate variations in both the nature
of the pathology and rate at which it evolves
in individual AD patients. These variables could
include the serum levels of Aβ42, the location(s) of
the breach in the BBB, whether the breach is focal
or global, and whether the breach is sufficient to
allow passage of materials from the blood into the
brain that could contribute to AD pathology (e.g.,
Aβ42, immunoglobulin, and complement).

13.3 Microglia and the Fate of 
Aβ in AD Brains

Microglia are resident cells of monocyte-phagocyte
lineage in the brain that, when activated, are capa-
ble of phagocytosis and participating in immune
responses by presenting antigens to invading
immune cells. In the normal healthy brain, they are
referred to as “resting microglia” and are widely
scattered, seeming to occupy their own individual
defined territory within the brain parenchyma. The
function of these cells in the resting state is
unknown. However, in response to pathological
changes in the brain tissue, microglia can rapidly
transition to an activated state (Fig. 13.7A). In the
activated state, these cells take on a more amoeboid
character and migrate to the site of injury, where
they can proliferate, launch a phagocytic attack on
the offending material including tissue debris, and
release inflammatory mediators such as cytokines
into the surrounding tissue [69–74]. Much of what
we know about the activity of microglia has been
derived from studies on the actions of these cells in
the culture environment. In cell cultures, microglia
show increased cell surface expression of MHCII
[75], a classic marker for activated microglia, as
well as an increased secretion of inflammatory
cytokines such as interleukin-1B (Il-1B), inter-
leukin-6 (IL-6), and tumor necrosis factor-α (TNF-
α), and chemokines such as interleukin-8 (IL-8),
macrophage inflammatory protein-1α (MIP-1α),
and monocyte chemoattractant peptide-1 (MCP-1)
[76]. In addition, mRNAs encoding C1q, C3, C4,
IL-1 receptor antagonist, and transforming growth

factor-β (TGF-β) have been detected in AD
microglia [77–80]. Where the tissue devastation is
particularly great, brain microglia intermingle with
additional monocytic cells that appear to migrate
into the brain tissue from the blood (Fig. 13.7B).
At this point, it is often difficult to distinguish
microglia from these immigrant macrophages and,
for this reason, it is probably best to refer to them
as microglia/macrophages. The precise identity
and nature of the signals that cause the initial acti-
vation of microglia that are resident in the brain are
unknown.

13.3.1 Relationship Between the
Phagocytic Activity of Microglia and 
Aβ in AD Brains

In AD brains, activated microglia are widely distrib-
uted throughout the brain parenchyma but are also
focally concentrated within amyloid plaques where
they are generally thought to be actively engaged in
the clearance of Aβ from the plaque interior via
phagocytosis [30, 55, 56, 70, 71, 81–89]. In culture,
microglia derived from AD brains are not only able
to congregate around aggregated Aβ deposits, but
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FIGURE 13.7. (A) Section through entorhinal cortex of
AD brain double-immunostained with anti-Aβ42 anti-
bodies and HLA-DR antibodies to immunolabel acti-
vated microglia. Note the strong tendency for activated
microglia to congregate at the exact center of the amy-
loid plaque (AP), a region known to contain a neuronal
nuclear remnant and other debris associated with neu-
ronal lysis. (B) Section through the pyramidal cell layer
immunostained with anti-HLA-DR antibodies showing
microglia/macrophages (M), some of which appear to be
in the process of entering into the brain tissue from local
small blood vessels (BV).



they appear to be able to remove these deposits
over a period of 2–4 weeks [90]. In addition, the
intracellular accumulation of Aβ occurs more rap-
idly and to a greater extent in these cells when
serum is added to the culture medium, suggesting
that serum contains some factor(s) that facilitates
Aβ endocytosis [55]. Microglia applied to unfixed
brain sections in culture reportedly phagocytose
Aβ deposits when anti-Aβ antibodies are included
in the culture medium, suggesting that opsoniza-
tion of the Aβ facilitates this activity [55, 82]. The
Aβ is subsequently found in phagosome-like intra-
cellular vesicles [82].

Unfortunately, studies on the activities of
microglia in the context of the AD brain have been
less revealing. Although ultrastructural studies
have reported that microglia in the AD cortex con-
tain some intracytoplasmic Aβ fibrils, it is not dra-
matic, and there have been reports to the contrary
[85, 91, 92]. One possible explanation for this
apparent discrepancy is that microglia might
process internalized Aβ so rapidly that little of this
material can be demonstrated in a cell at any par-
ticular time. Of course, another possibility is that
Aβ internalization by microglia is a culture anom-
aly and that they do not internalize Aβ at all in the
brain. If the latter proves to be true, we are still left
without assigning a definitive function to the
microglia that are stationed within amyloid
plaques. In contrast to a role in the clearance of Aβ
from plaques and the brain, it has also been sug-
gested that microglia participate in the conversion
of soluble or oligomeric Aβ into polymerized amy-
loid fibrils in the parenchyma, within plaques and
in the walls of blood vessels [85]. This idea is
based on the observation that plaque-associated
microglia display dilated intracellular channels of
endoplasmic reticulum that appear to contain amy-
loid fibers [91, 92]. Also, largely because of their
location within plaques, the actions of plaque-asso-
ciated microglia have been postulated to play a role
in the reported transformation of diffuse amyloid
plaques into neuritic or dense-core Aβ plaques.
However, this role seems to be unlikely in view of
the fact that microglia are generally not found in
association with diffuse plaques but rather clearly
prefer to congregate at the central portions of
dense-core plaques in both AD brains and the
brains of APP-overexpressing transgenic mice [93]
(Fig. 13.7A). In addition, it has not yet been deter-

mined whether one morphological type of plaque
can evolve into another or whether they represent
different plaque types with unique origins. The
general lack of an obvious, well-defined function
for plaque-associated microglia that is related to
either Aβ clearance or deposition inevitably leads
one to consider the possibility that their presence
within plaques may have nothing at all to do with
Aβ clearance in the brain.

13.3.2 Microglial Chemotaxis: Aβ or
DNA Fragments as Chemoattractants

What lures microglia to amyloid plaques is
unknown, but their preferential association with
dense-core plaques as well as the tendency for them
to be positioned at or near the dense core of plaques
suggests that there is something either at or emanat-
ing from the plaque core that is strongly chemotac-
tic to microglia. In elegant studies carried out by
Rogers and co-workers on cultured microglia origi-
nally isolated from the brains of both AD and non-
demented patients, these cells exhibited obvious
chemotaxis to preaggregated Aβ42 deposits that
were adherent to the culture substratum [94, 95] but
were not attracted to Aβ42 scrambled sequence
[96]. It has been reported that Aβ can bind to sev-
eral types of microglial cell surface receptors,
including RAGE [97]. Although they have provided
a wealth of information on the phagocytic actions of
microglia, cultured microglia models also have
some limitations that raise questions about how
accurately and directly the actions of these cells in
culture reflect those of their counterparts in the con-
text of the brain. One obvious limitation is that the
responses of cultured microglia to various test
agents or conditions are occurring in an artificial
environment that lacks their usual interactions with
neurons, neuronal processes, astrocytes, and ele-
ments of the local blood vasculature. Another limi-
tation is that the culture environment alone is
sufficient to activate microglia, which makes it dif-
ficult to determine the identity of factors that can
either induce or influence the activation state.
Lastly, compared with what happens in a slowly
evolving disease state such as AD, studies on cul-
tured microglia are of very short duration.

Direct extrapolation of the results on chemotaxis
obtained from studies on cultured microglia to the
actions of microglia in vivo does not seem to fit
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well with the apparent behavior of microglia and
their response to Aβ peptides in the AD brain. For
example, if Aβ42 is chemotactic to microglia in
AD brains, one would expect to see abundant
microglia near and within all types of Aβ42-
containing plaques. Contrary to this expectation,
microglia are generally not found either within or
associated with diffuse plaques, which contain
abundant Aβ42. In addition, these cells apparently
pass through the Aβ42-rich outer corona of dense-
core plaques and take up residence preferentially at
the plaque core (Fig. 13.7A), which is also rich in
Aβ42. Together, these observations suggest that, in
AD brains, something at or within the core of
dense-core plaques is highly chemotactic to acti-
vated microglia. One likely chemotactic factor is
DNA fragments. Microglia have been shown to
accumulate damaged DNA fragments in AD brain,
and fragmented DNA has been suggested as a
potent promoter of microglial activation [98]. In
support of this possibility, our previous studies
have provided strong evidence that many (possibly
all) dense-core plaques in the pyramidal cell layers
of the cerebral cortex are derived from the lysis of
Aβ42-overburdened neurons. Neuronal lysis
releases the contents of the neuronal perikaryon,
including Aβ42 and lysosomes. The local release
of lysosomal enzymes probably facilitates the
radial diffusion of neuron-derived Aβ peptide,
which explains both the generally spherical shape
of all plaques as well as the fact that their individ-
ual sizes seems to correlate with the size of local
neurons (Fig. 13.6) [8, 44, 60]. Another conse-
quence of neuronal lysis is the persistent presence
of a nuclear remnant at the core of the dense-core
plaque [8]. Here, we propose that the gradual
degradation of this nuclear material releases DNA
fragments that diffuse out from the plaque core into
the surrounding brain parenchyma. Because
microglia are capable of responding to DNA frag-
ments, it is reasonable to suppose that the release of
these fragments is chemotactic to microglia, draw-
ing them ever closer to the source of the DNA posi-
tioned at the plaque core (Fig. 13.7A). In addition,
peripheral monocytes are often observed emigrat-
ing from local small blood vessels into regions
where dense-core plaques are nearby or adjacent,
which is not observed in brain regions containing
only diffuse plaques [66, 99, 100] (Fig. 13.7B). In
fact, it is entirely possible that most of the so-called

microglia/macrophages seen within dense-core amy-
loid plaques in AD brains are immigrants from the
blood and that the involvement of resting/resident
microglia in the formation/evolution and eventual
clearance of Aβ42 and plaques is minimal. The
practicality of DNA fragments serving as the prin-
cipal chemotactic signal attracting local microglia
and moncytic cells from local blood vessels is
obvious because its release into the local milieu can
only occur via local cell death, thus making it an
unambiguous marker indicating that local cellular
degeneration and death has actually occurred.

13.3.3 Mediators of Microglial
Phagocytosis

There are likely to be multiple mediators of
microglial activation, chemotaxis, and phagocytic
activity in the brain, and some of these may depend
on the nature of the pathology that develops in
association with specific brain diseases. The
formyl peptide receptor (FPR), the macrophage
scavenger receptors (MSR) [101], and the receptor
for advanced glycation end products (RAGE) are
expressed by microglia, have opsin-independent
activity, and appear to have Aβ as a ligand [102,
103]. Microglia also express the complement
opsonin receptors CR3 and CR4 and the anaphyla-
toxins C3a and C5a [104–107]. Complement is
well-known to facilitate the phagocytosis of tissue
debris, and there is some evidence that complement
can opsonize Aβ fibrils, facilitating their removal
by microglial phagocytosis. The well-known path-
way for complement activation is initiated with the
attachment of C1q to a target, its interaction with a
number of proteases (including C1r, C1s, C4, C2,
C3) followed by the attachment of C4b and C3b,
which act as ligands for complement receptors on
microglia and other phagocytic cells [108]. When
completed, complement terminal components
(C5b–C9) are assembled into the membrane attack
complex. Complement activation and opsonization
of fibrillar Aβ by C1q in amyloid plaques has been
demonstrated in AD brains [109–111]. The diffi-
culties mentioned above in detecting significant
amounts of phagocytosed Aβ within brain
microglia raise a question as to the relevance of
opsonization of Aβ fibrils within plaques. If this
were, in fact, a driving influence for Aβ-mediated
microglial chemotaxis and the phagocytic activity
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of these cells, it fails to explain why such microglia
are not found in association with Aβ42-rich diffuse
plaques. Perhaps the idea of opsonization-enhanced
phagocytosis is correct except for what is being
opsonized. The lack of microglia in diffuse plaques
and the preferential localization of microglia at the
core of dense-core plaques suggest that the opsonized
material is located exclusively at the core of dense-
core plaques.

13.3.4 Positive and Negative Aspects 
of Microglial Activity in AD Brain

The intent of inflammation is to allow a series of
specific cellular events to occur that will ultimately
result in the removal of the offending agent and its
associated cell and tissue debris from the affected
tissue, leaving the way open for either tissue repair
or replacement (scar formation). The process
seems to work well in instances where there are
clear limits to the amount of offending agent and
the extent of tissue destruction caused by this agent
and in situations where the vascularity of the tissue
can be restored. In this case, elimination of the
offending agent and tissue debris largely by phago-
cytic activity can then be followed by a period of
tissue repair or replacement without additional
insults. On the other hand, this process does not
seem to work well in cases of chronic diseases such
as AD, where the offending agent (presumably Aβ)
is constantly supplied throughout the course of the
disease, leaving little opportunity for repair to
occur in an environment free of additional insults
and progressive tissue destruction. Unfortunately,
AD seems to be one of those diseases where the
rate of tissue destruction exceeds the capacity of
local cells (astrocytes and microglia) to resolve it.
Inevitably, such conditions lead to the recruitment
of additional cells (e.g., blood-borne monocytic
cells) to the site of damage. When the brain tissue
becomes heavily populated with inflammatory
cells (Figs. 13.8A and 13.8B), the additional pro-
duction of unusually high levels of inflammatory
mediators and the excessive phagocytic activity of
these immigrant cells becomes more destructive
than beneficial. Thus, in AD, the chronic and
progressive nature of the disease eventually tips
the balance of the resulting inflammation to
the destructive side, leading to the loss of irre-
placeable neurons.

13.3.5 Microglia as Therapeutic Targets

As detailed above, microglia have been assigned a
role in the inflammatory response associated with
AD pathology and also possibly with the process-
ing and/or clearance of Aβ from the brain. The
concept that runaway inflammation in the brain
may actually precipitate some of the observed neu-
rodegeneration in AD has raised the possibility that
at least some of this damage may be avoided or
alleviated through the use of nonsteroidal anti-
inflammatory drugs (NSAIDs). The results of a
number of clinical trails using NSAIDs, with some
claiming a reduced incidence of AD, have been
somewhat less than convincing [112–120]. Part of
the problem may be that the levels of brain inflam-
mation at the time the patient enters into the clini-
cal trial may be too advanced. Another possibility
proposed by Streit and co-workers is that microglia
in the AD brain show a loss or deterioration of
function that may represent a type of cellular
senescence [121, 122]. If this is the case, then the
collective phagocytic capability of microglia/
macrophages in the brain both before and after
treatment would be insufficient to keep up with the
rate of tissue destruction. This could explain the
marginal benefit of NSAIDs for AD.

In the past few years, great attention has been
given to the possibility that immune stimulation by
vaccination with Aβ peptides (especially Aβ42)
would lead to the production of anti-Aβ peptide
antibodies. From the therapeutic standpoint, the
hope is that this vaccination will ultimately result
in microglia/macrophages becoming more efficient
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FIGURE 13.8. Consecutive sections through the entorhinal
cortex of an AD brain immunostained with anti-Aβ42
(A) and anti-HLA-DR (B) antibodies. The brain tissue
shows considerable inflammation with microglia/
macrophages occurring both individually (in the space
between plaques) and in clusters (within plaques).



at phagocytosing amyloid deposits, which are con-
sidered by many to be the direct or indirect cause
of the neurodegeneration that is associated with
this disease. Some success with this approach has
been reported in animal models of AD, where anti-
bodies generated against Aβ42 caused a reduction
in the amyloid load in the brain of transgenic mice
[123–125]. In these experiments, the clearance of
amyloid fibrils from the brain parenchyma was
determined to occur by the binding of Aβ42/
immunoglobulin complexes to immunoglobulin
Fc receptors on microglia/macrophages, which
enhanced the rate and extent of phagocytosis of
these complexes. On the other hand, results of clin-
ical trials with humans have not been encouraging,
and the development of encephalitis has been prob-
lematic. Several potential problems with this
approach are predictable and noteworthy. First, the
ability of anti-Aβ antibody to bind to anything in
the brain requires that the BBB not be intact, so
that the induced immunoglobulin can enter into the
brain from the blood. A question arises as to
whether the long-term, global breach in the BBB
can ever be repaired in AD brains, even if the amy-
loid load of the brain is successfully lowered.
Second, as mentioned above, Aβ42 has great affin-
ity for the α7nAChR, which is abundantly present
on the surfaces of many types of neurons through-
out the brain. Thus, because Aβ42 is also able to
enter into the brain from the blood, many neurons
in AD brains at the time of treatment will possess
Aβ42/α7nAChR complexes on their surfaces,
which, of course, will be immunoreactive to the
incoming anti-Aβ42 antibodies. In addition to
inducing the formation of cell surface patches of
aggregated anti-Aβ42-Aβ42/α7nAChR complex,
this may prompt stripping of these complexes from
the cell surface via endocytosis. The net effect is
that binding of the anti-Aβ42 antibody to neuronal
surfaces could actually accelerate the rate of Aβ42
internalization and accumulation within neurons.
Another potential negative effect of the binding of
anti-Aβ42 antibodies to neuronal surfaces is that it
attracts complement (including the membrane
attack complex), which can promote neuron degen-
eration and death. Because accelerated neuronal
degeneration and death would be expected to elicit
an enhanced inflammatory response, it is not sur-
prising that the vaccination approach runs the risk
of global brain inflammation.

13.4 Perspectives

The combined activities of astrocytes and
microglia/macrophages eventually become delete-
rious and make a major and direct contribution to
evolution of AD pathology in the brain. Evaluation
of recent data in the context of what is already
known about these two important cell types and the
formation of amyloid plaques has allowed us to
construct a proposed pathological sequence that
highlights the entangled interactions of Aβ and
these cells and their involvement in the pathogene-
sis of AD (Fig. 13.9). A key starting point for AD
appears to be the focal or global compromise of the
BBB. Of course, this can happen in association
with any head or brain trauma but can also evolve
as a result of aging-associated changes in the walls
of blood vessels. The requirement for this step may
explain why aging seems to be a prerequisite for
one to express AD symptoms and pathology. The
chronic leak of serum-bound Aβ42 into the brain
tissue through the defective BBB provides a con-
stant supply of exogenous Aβ42 that can bind with
high affinity to neurons (especially cortical pyram-
idal cells) abundantly endowed with α7nAChR.
For unknown reasons, neurons begin to internalize
Aβ42/α7nAChR complex via endocytosis. Once
neurons have accumulated sufficient Aβ42-positive
material to elicit distal synaptic and dendritic loss,
first in the cortical molecular layer, local astrocytes
are activated and begin to internalize the resulting
neuronal debris, which includes neuron-specific
proteins such as α7nAChR, ChAT and Aβ42 [44].
Aβ42-overburdened neurons and astrocytes even-
tually die and undergo lysis, releasing their content
of Aβ42-positive material [8, 44, 60]. The material
released by cell lysis is dispersed radially with the
aid of the activity of released lysosomal enzymes,
leading to the formation of a spherical deposition
of cell residue in the form of a plaque. Both smaller
astrocytic plaques and larger neuron-derived
plaques are rapidly infiltrated with macrophages/
microglia, many of which are derived from blood
monocytes that immigrate into the brain parenchyma
from local capillaries. The lack of microglia/
macrophages in diffuse plaques and their direct
migration through the Aβ42-rich corona and into
the cores of dense-core plaques suggest that DNA
fragments gradually released from the nuclear
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remnant at the plaque core, and not Aβ peptides,
may be chemotactic to microglia/macrophages.
While at the plaque core, it is not clear if microglia/
macrophages ingest Aβ in AD brains. It is more
likely that their role is to clear remaining nuclear
debris from the plaque core. Local activated astro-
cytes that are positioned just outside the plaque
margin extend long, GFAP immunopositive cyto-
plasmic processes toward the plaque and both
encapsulate it and infiltrate it with finer GFAP-neg-
ative processes. In addition, plaque-associated
astrocytes clearly are able to internalize Aβ42-
immunopositive material which accumulates in
their cell bodies.

The suggested ability of different cell types to inde-
pendently give rise to amyloid plaques (especially
neurons and astrocytes) can account, at least in part,
for the broad spectrum of plaque morphologies
observed in AD brains. The proposed pathological
sequence described in Figure 13.9 highlights the link
between the loss of BBB integrity and the initiation of
AD pathological changes. Equally important is the
dramatic intraneuronal Aβ42 accumulation of Aβ42.
The trigger for this phenomenon is unknown, but the
possibilities include one or more of the following;
binding of serum-derived, exogenous Aβ42 to
α7nAChR on neuronal surfaces, oxidative damage,
reduced delivery of materials to distal dendrites,
impaired neuronal Aβ42 clearance, or binding of neu-
ron-specific immunoglobulins and complement that
have gained entry into the brain parenchyma via local
or global breaches in the BBB. Regardless of the
cause of neuronal Aβ42 accumulation, the fact that it
leads to degeneration of distal dendrites and synapses
in the cortical molecular layer provides a plausible
explanation for the early telltale signs of AD progres-
sion (i.e., cognitive and memory decline), even prior
to the appearance of amyloid plaques within the brain
tissue. From a therapeutic perspective, maintaining or
restoring BBB integrity could be a first line of defense
against AD, and blocking the initial accumulation of
Aβ42 in neurons is an obvious and early target.
Success on either or both fronts would provide an
opportunity to block or at least slow the progression
of AD pathology in the brains of the elderly.

Acknowledgments The authors wish to thank Drs.
Michael D’Andrea and Hoau-Yan Wang for their
many helpful discussions and Alison Rigby,

Jennifer Dubay, Seth Vatsky, Emily Sim, and
James Novak for their technical assistance. This
work is supported by grants from the National
Institute on Aging (AG00925), the Alzheimer’s
Association., the New Jersey Gerontological
Institute, and NJ Governor’s Council on Autism.

References

1. Selkoe D. Alzheimer’s disease: genes, proteins, and
therapy. Physiol Rev 2001; 81:741-66.

2. Wisniewski KE, Wisniewski HM, Wen GY.
Occurrence of neuropathological changes and
dementia of Alzheimer’s disease in Down’s syn-
drome. Ann Neurol 1985; 17:278-82.

3. Selkoe DJ. Alzheimer’s disease: genotypes, pheno-
types, and treatments. Science 1997; 275:630-1.

4. Terry RD, Masliah E, Slmon DP, et al. Physical basis
of cognitive alterations in Alzheimer’s disease:
synapse loss is the major correlate of cognitive
impairment. Ann Neurol 1991; 30:572-80.

5. Cummings JL, Vinters HV, Cole GM, et al.
Alzheimer’s disease: etiologies, pathophysiology, cog-
nitive reserve, and treatment opportunities. Neurology
1998;51(1 Suppl 1):S2-17; discussion S65-7.

6. Dickson DW. The pathogenesis of senile plaques.
J Neuropathol Exp Neurol 1997; 56:321-39.

7. Scheff SW and Price DA. Synaptic density in the
inner molecular layer of the hippocampal dentate
gyrus in Alzheimer’s disease. J Neuropathol Exp
Neurol 1998; 57:1146-53.

8. D’Andrea MR, Nagele RG, Wang HY, et al. Evidence
that neurones accumulating amyloid can undergo
lysis to form amyloid plaques in Alzheimer’s disease.
Histopathology 2001; 38:120-34.

9. D’Andrea MR, Nagele RG, Wang HY, et al.
Consistent immunohistochemical detection of intra-
cellular beta-amyloid42 in pyramidal neurons of
Alzheimer’s disease entorhinal cortex. Neurosci Lett
2002; 333:163-6.

10. Citron M, Diehl TS, Gordon G, et al. Evidence that
the 42- and 40-amino acid forms of amyloid β pro-
tein are generated from the β-amyloid precursor pro-
tein by different protease activities. Proc Natl Acad
Sci U S A 1996; 93:13170-5.

11. Gendelman HE, Folks DG. Innate and acquired
immunity in neurodegenerative disorders. J Leukoc
Biol 1999; 65:407-8.

12. Cotter RL, Burke WJ, Thomas VS, et al. Insights into
the neurodegenerative process of Alzheimer’s dis-
ease: a role for mononuclear phagocyte-associated
inflammation and neurotoxicity. J Leukoc Biol 1999;
65:416-27.

13. Glial Cells and Aβ Peptides in AD Pathogenesis 229



13. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic
protein: GFAP -thirty-one years (1969-2000).
Neurochem Res 2000; 25:1439-51.

14. Bushong EA, Martone ME, Jones YZ, Ellisman MH.
Protoplasmic astrocytes in CA1 stratum radiatum
occupy separate anatomical domains. J Neurosci
2002; 22(1):183-92.

15. Ullian EM, Sapperstein SK, Christopherson KS,
et al. Control of synapse number by glia. Science
2001; 291:657-61.

16. Martin ED, Araque A, Buno W. Synaptic regulation
of the slow Ca2+-activated K+ current in hippocam-
pal CA1 pyramidal neurons: implication in epilepto-
genesis. J Neurophysiol 2001; 86:2878-86.

17. Fields RD, Stevens-Graham B. New insights into
neuron-glia communication. Science 2002; 298:556-
62.

18. Hansson E, Ronnback L. Glial neuronal signaling
in the central nervous system. FASEB J 2003;
17:341-8.

19. Vernadakis A. Glia-neuron intercommunications and
synaptic plasticity. Prog Neurobiol 1996; 49:185-214.

20. Barres BA. New roles for glia. J Neurosci 1991;
11:3685-94.

21. Danbolt NC. The high affinity uptake system for
excitatory amino acids in the brain. Prog Neurobiol
1994; 44:377-96.

22. Rothstein JD, Martin L, Levey AI, et al. Localization
of neuronal and glial glutamate transporters. Neuron
1994; 13:713-25.

23. Lehre KP, Levy LM, Ottersen OP, et al. Differential
expression of two glial glutamate transporters in the
rat brain: quantitative and immunocytochemical
observations. J Neurosci 1995; 15:1835-53.

24. Hertz L, Zielke HR. Astrocytic control of gluta-
matergic activity: astrocytes as stars of the show.
Trends Neurosci 2004; 27:735-43.

25. Dong Y, Benveniste EN. Immune function of astro-
cytes. Glia 2001; 36:180-90.

26. Hatten ME, Liem RK, Shelanski ML, et al. Astroglia
in CNS injury. Glia 1991; 4:233-43.

27. Rubin LL, Staddon JM. The cell biology of the blood-
brain barrier. Annu Rev Neurosci 1999; 22:11-28.

28. Pekny M, Nilsson M. Astrocyte activation and reac-
tive gliosis. Glia 2005; 50:427-34.

29. Eng LF, Ghirnikar RS. GFAP and astrogliosis. Brain
Pathol 1994; 4:229-37.

30. Itagaki S, McGeer PL, Akiyama H, et al. Relation-
ship of microglia and astrocytes to amyloid deposits
of Alzheimer’s disease. J Neuroimmunol 1989; 24:
173-82.

31. Schubert P, Ogata T, Marchini C, et al. Glia-related
pathomechanisms in Alzheimer’s disease: a thera-
peutic target? Mech. Ageing Dev 2001; 123:47-57.

32. Panickar KS, Norenberg MD. Astrocytes in cerebral
ischemic injury: morphological and general consid-
erations. Glia 2005; 50:287-98.

33. Wilhelmsson U, Li L, Pekna M, et al. Absence of glial
fibrillary acidic protein and vimentin prevents hyper-
trophy of astrocytic processes and improves post-
traumatic regeneration. J Neurosci 2004;24:5016-21.

34. Anderson CM, Swanson RA. Astrocyte glutamate
transport: review of properties, regulation, and phys-
iological functions. Glia 2000; 32:1-14.

35. Parpura V, Scemes E, Spray DC. Mechanisms of glu-
tamate release from astrocytes: gap junction
“hemichannels,” purinergic receptors and exocytotic
release. Neurochem Int 2004; 45:259-64.

36. Norenberg MD. The reactive astrocyte. In: Aschner
M, editor. The role of glia in neurotoxicity. Boca
Raton, FL: CRC Press, 2005:73-92.

37. Ge S, Song L, Pachter JS. Where is the blood-brain
barrier . . .really? J Neurosci Res 2005; 79:421-7.

38. Bush AI, Beyreuther K, Masters CL. The beta A4
amyloid protein precursor in human circulation. Ann
N Y Acad Sci 1993; 695:175-82.

39. Haas C, Hung AY, Citron M, et al. beta-Amyloid,
protein processing and Alzheimer’s disease.
Arzneimittelforschung 1995; 45:398-402.

40. Younkin SG. The role of A beta 42 in Alzheimer’s
disease. J Physiol (Paris) 1998; 92:289-92.

41. Dewitt DA, Perry G, Cohen M, et al. Astrocytes reg-
ulate microglial phagocytosis of senile plaque cores
of Alzheimer’s disease. Exp Neurol 1998; 149:
329-40.

42. Akiyama H, Mori H, Saido T, et al. Occurrence of the
diffuse amyloid beta-protein (Abeta) deposits with
numerous Abeta-containing glial cells in the cerebral
cortex of patients with Alzheimer’s disease. Glia
1999; 25:324-31.

43. Kurt MA, Davies DC, Kidd MM. beta-Amyloid
immunoreactivity in astrocytes in Alzheimer’s dis-
ease brain biopsies: an electron microscope study.
Exp Neurol 1999; 158:221-8.

44. Nagele RG, D’Andrea MR, Lee H, Venkataraman V,
et al. Astrocytes accumulate Amyloid beta 42 and
give rise to astrocytic amyloid plaques in
Alzheimer’s disease brains. Brain Res 2003;
971:197-209.

45. Thal DR, Schultz C, Dehghani F, et al. Amyloid
beta-protein (Abeta)-containing astrocytes are
located preferentially near N-terminal-truncated
Abeta deposits in the human entorhinal cortex. Acta
Neuropathol 2000; 100:608-17.

46. Thal DR, Hartig W, Schober R. Diffuse plaques in
the molecular layer show intracellular AB8-17-
immunoreactive deposits in subpial astrocytes. Clin
Neuropathol 1999; 18:226-31.

230 G. Siu et al.



47. Aldskogius H, Liu L, Svensson M. Glial responses to
synaptic damage and plasticity. J Neurosci Res 1999;
58:33-41.

48. Wegiel J, Wang K-C, Tarnawski M, et al. Microglial
cells are the driving force in fibrillar plaque forma-
tion whereas astrocytes are a leading factor in plaque
degradation. Acta Neuropathol 2000; 100:356-64.

49. Wegiel J, Wang K-C, Imaki H, et al. The role of
microglial cells and astrocytes in fibrillar plaque evo-
lution in transgenic APPsw mice. Neurobiol Aging
2001; 22:49-61.

50. Wegiel J, Imaki H, Wang K-C, et al. Origin and
turnover of microglial cells in fibrillar plaques of
APPsw transgenic mice. Acta Neuropathol 2003;
105:393-402.

51. Kurochkin IV, Goto S. Alzheimer’s beta-amyloid pep-
tide specifically interacts with and is degraded by
insulin degrading enzymes. FEBS Lett 1994; 345:33-7.

52. Qiu WQ, Walsh DM, Ye Z, et al. Insulin-degrading
enzyme regulates extracellular levels of amyloid β-
protein by degradation. J Biol Chem 1998; 273:
32730-8.

53. Apelt J, Ach K, Schliebs R. Aging-related down-reg-
ulation of neprilysin, a putative β-amyloid-degrading
enzyme, in transgenic Tg2576 Alzheimer-like mouse
brain is accompanied by an astroglial upregulation in
the vicinity of β-amyloid plaques. Neurosci Lett
2003; 339:183-6.

54. Magnus T, Chan A, Linker RA, et al. Astrocytes are
less efficient in the removal of apoptotic lympho-
cytes than microglia cells: implications for the role of
glial cells in the inflamed central nervous system.
J Neuropathol Exp Neurol 2002; 61:760-6.

55. Ard MD, Cole GM, Wei J, et al. Scavenging of
Alzheimer’s amyloid β-protein by microglia in cul-
ture. J Neurosci Res 1996; 43:190-202.

56. Wisniewski HM, Wegiel J, Wang K-C, et al.
Ultrastructural studies of the cells forming amyloid
fibers in classical plaques. Can J Neurol Sci 1989;
16:535-42.

57. Wisniewski HM, Wegiel J. Spatial relationships
between astrocytes and classical plaque components.
Neurobiol Aging 1991; 12:593-600.

58. Perry VH, Gordon S. Macrophages in the nervous
system. Int Rev Cytol 1991; 125:203-44.

59. Biernacki K, Prat A, Blain M, et al. Regulation of
Th1 and Th2 lymphocyte migration by human adult
brain endothelial cells. J Neuropathol Exp Neurol
2001; 60:1127-36.

60. Nagele RG, D’Andrea MR, Anderson WJ, et al.
Intracellular accumulation of B-amyloid in neurons
is facilitated by the a7 nicotinic acetylcholine recep-
tor in Alzheimer’s disease. Neuroscience 2002;
110:199-211.

61. Gouras GK, Tsaiu J, Nalund J, et al. Intraneuronal
Aβ42 accumulation in human brain. Am J Pathol
2000; 156:15-20.

62. Gyure KA, Durham R, Stewart WF, et al.
Intraneuronal abeta-amyloid precedes development
of amyloid plaques in Down syndrome. Arch Pathol
Lab Med 2001; 125:489-92.

63. Wang H-Y, Lee DHS, D’Andrea MR, et al. β-
amyloid1-42 binds to α7 nicotinic acetylcholine
receptor with high affinity: implications for
Alzheimer’s disease pathology. J Biol Chem 2000;
275:5626-32.

64. Wang H-Y, D’Andrea MR, Nagele RG. Cerebellar
diffuse amyloid plaques are derived from dendritic
Aβ42 accumulations in Purkinje cells. Neurobiol
Aging 2002; 23:213-23.

65. Lee DH, Wang HY. Differential physiologic responses
of alpha7 nicotinic acetylcholine receptors to beta-
amyloid1-40 and beta-amyloid1-42. J Neurobiol
2003; 55:25-30.

66. Nagele RG, Wegiel J, Venkataraman V, et al.
Contribution of glial cells to the development of
amyloid plaques in Alzheimer’s disease. Neurobiol
Aging 2004; 25:663-74.

67. Oddo S, Caccamo A, Sheppard JD, et al. Triple-
transgenic model of Alzheimer’s disease with
plaques and tangles: intracellular Abeta and synaptic
dysfunction. Neuron. 2003; 39:409-21.

68. Mori C, Spooner ET, Wisniewsk KE, et al.
Intraneuronal Abeta42 accumulation in Down syn-
drome brain. Amyloid 2002; 9:88-102.

69. Streit WJ, Walter SA, Pennell NA. Reactive
microgliosis. Prog Neurobiol 1999; 57:563-81.

70. Griffin WS, Sheng JG, Roberts GW, et al.
Interleukin-1 expression in different plaque types in
Alzheimer’s disease: significance in plaque evolu-
tion. J Neuropathol Exp Neurol 1995; 54:276-81.

71. Griffin WS, Stanley LC, Ling C, et al. Brain inter-
leukin 1 and S-100 immunoreactivity are elevated in
Down syndrome and Alzheimer’s disease. Proc Natl
Acad Sci U S A 1989; 86:7611-5.

72. Summers WK. Alzheimer’s disease, oxidative injury,
and cytokines. J Alzheimers Dis 2004; 6:651-7.

73. Perry VH, Andersson PB, Gordon S. Macrophages
and inflammation in the central nervous system.
Trends Neurosci 1993; 16:268-73.

74. Streit WJ, Graeber MB, Kreutzberg GW. Functional
plasticity of microglia: a review. Glia 1988; 1:301-7.

75. Rogers J, Lue LF. Microglial chemotaxis, activation,
and phagocytosis of amyloid beta-peptide as linked
phenomena in Alzheimer’s disease. Neurochem Int
2001; 39:333-40.

76. Burudi EM, Regnier-Vigouroux A. Regional and
cellular expression of the mannose receptor in the

13. Glial Cells and Aβ Peptides in AD Pathogenesis 231



post-natal developing mouse brain. Cell Tissue Res
2001; 303:307-17.

77. Walker DG, Kim SU, McGeer PL. Complement and
cytokine gene expression in cultured microglical
derived from postmortem human brains. J Neurosci
Res 1995; 40:478-93.

78. Strohmeyer R, Shen Y, Rogers J. Detection of com-
plement alternative pathway mRNA and proteins in
the Alzheimer’s disease brain. Brain Res Mol Brain
Res 2000; 81:7-18.

79. Walker DG, Lue LF, Beach TG. Gene expression
profiling of amyloid beta peptide-stimulated human
post-mortem brain microglia. Neurobiol Aging 2001;
22:957-66.

80. Shen Y, Li R, McGeer EG, et al. Neuronal expression of
mRNAs for complement proteins of the classical path-
way in Alzheimer brain. Brain Res 1997; 769:391-5.

81. Schenk D, Barbour R, Dunn W, et al. Immunization
with amyloid-beta attenuates Alzheimer-disease-like
pathology in the PDAPP mouse. Nature 1999;
400:173-7.

82. Bard F, Cannon C, Barbour R, et al. Peripherally
administered antibodies against amyloid beta-pep-
tide enter the central nervous system and reduce
pathology in a mouse model of Alzheimer’s disease.
Nat Med 2000; 6:916-9.

83. Haga S, Akai K, Ishii T. Demonstration of microglial
cells in and around senile (neuritic) plaques in the
Alzheimer brain. An immunohistochemical study
using a novel monoclonal antibody. Acta Neuropathol
(Berlin) 1989; 77:569-75.

84. Perlmutter LS, Scott SA, Barron E, et al. MHC class
II-positive microglia in human brain: association with
Alzheimer lesions. J Neurosci Res 1992; 33:549-58.

85. Wisniewski HM, Wegiel J, Wang KC, et al.
Ultrastructural studies of the cells forming amyloid
in the cortical vessel wall in Alzheimer’s disease.
Acta Neuropathol (Berlin) 1992; 84:117-27.

86. Frautschy SA, Cole GM, Baird A. Phagocytosis and
deposition of vascular beta-amyloid in rat brains
injected with Alzheimer beta-amyloid. Am J Pathol
1992;140:1389-99.

87. Kopec KK, Carroll RT. Alzheimer’s beta-amyloid
peptide 1-42 induces a phagocytic response in
murine microglia. J Neurochem 1998; 71:2123-31.

88. Weldon DT, Rogers SD, Ghilardi JR, et al. Fibrillar
beta-amyloid induces microglial phagocytosis,
expression of inducible nitric oxide synthase, and
loss of a select population of neurons in the rat CNS
in vivo. J Neurosci 1998; 18:2161-73.

89. Paresce DM, Chung H, Maxfield FR. Slow degrada-
tion of aggregates of the Alzheimer’s disease amy-
loid beta-protein by microglial cells. J Biol Chem
1997; 272:29390-7.

90. Rogers J, Lue LF, Walker DG, et al. Elucidating
molecular mechanisms of Alzheimer’s disease in
microglial cultures. Ernst Schering Res Found
Workshop 2002; 39:25-44.

91. Frackowiak J, Wisniewski HM, Wegiel J, et al.
Ultrastructure of the microglia that phagocytose
amyloid and the microglia that produce β-amyloid
fibrils. Acta Neuropathol 1992; 84:225-33.

92. Wisniewski HM, Weigel J. Migration of perivascu-
lar cells into the neuropil and their involvement in
beta-amyloid plaque formation. Acta Neuropathol
(Berlin) 1993; 85:586-95.

93. Stalder M, Phinney A, Probst A, et al. Association
of microglia with amyloid plaques in brains of
APP23 transgenic mice. Am J Pathol 1999;
154:1673-84.

94. Lue LF, Walker DG, Rogers J. Modeling microglial
activation in Alzheimer’s disease with human post-
mortem microglial cultures. Neurobiol Aging 2001;
22:945-56.

95. Rogers J, Lue LF, Walker DG, et al. Elucidating
molecular mechanisms of Alzheimer’s disease in
microglial cultures. Ernst Schering Res Found
Workshop 2002; 39:25-44.

96. Davis JB, McMurray HF, Schubert D. The amyloid
beta-protein of Alzheimer’s disease is chemotactic
for mononuclear phagocytes. Biochem Biophys Res
Commun 1992; 189:1096-100.

97. Yan SD, Chen X, Fu J, et al. RAGE and amyloid-
beta peptide neurotoxicity in Alzheimer’s disease.
Nature 1996; 382:685-91.

98. Kato K, Suzuki F, Morishita R, et al. Selective
increase in S-100 beta protein by aging in rat cere-
bral cortex. J Neurochem 1990; 54:1269-74.

99. D’Andrea MR, Nagele RG. MAP-2 immunolabel-
ing can distinguish diffuse from dense-core amyloid
plaques in brains with Alzheimer’s disease. Biotech
Histochem 2002; 77:95-103.

100. Fiala M, Zhang L, Gan X, et al. Amyloid-beta
induces chemokine secretion and monocyte migra-
tion across a human blood–brain barrier model. Mol
Med 1998; 4:480-9.

101. Loike JD, el Khoury J, Cao L, et al. Fibrin regulates
neutrophil migration in response to interleukin 8,
leukotriene B4, tumor necrosis factor, and formyl-
methionyl-leucyl-phenylalanine. J Exp Med 1995;
181:1763-72.

102. Lorton D, Schaller J, Lala A, et al. Chemotactic-like
receptors and Abeta peptide induced responses in
Alzheimer’s disease. Neurobiol Aging 2000;
21:463-73.

103. Du Yan S, Zhu H, Fu J, et al. Amyloid-beta peptide-
receptor for advanced glycation endproduct interac-
tion elicits neuronal expression of macrophage-

232 G. Siu et al.



colony stimulating factor: a proinflammatory path-
way in Alzheimer’s disease. Proc Natl Acad Sci U S A
1997; 94:5296-301.

104. Gehrmann J, Schoen SW, Kreutzberg GW. Lesion
of the rat entorhinal cortex leads to a rapid
microglial reaction in the dentate gyrus. A light and
electron microscopical study. Acta Neuropathol
(Berlin) 1991; 82:442-55.

105. Lacy M, Jones J, Whittemore SR, et al. Expression
of the receptors for the C5a anaphylatoxin, inter-
leukin-8 and FMLP by human astrocytes and
microglia. J Neuroimmunol 1995; 61:71-8.

106. Gasque P, Singhrao SK, Neal JW, et al. The recep-
tor for complement anaphylatoxin C3a is expressed
by myeloid cells and nonmyeloid cells in inflamed
human central nervous system: analysis in multiple
sclerosis and bacterial meningitis. J Immunol 1998;
160:3543-54.

107. Kaur C, Chan YG, Ling EA. Ultrastructural and
immunocytochemical studies of macrophages in an
excitotoxin induced lesion in the rat brain. J
Hirnforsch 1992; 33:645-52.

108. Hauwel M, Furon E, Canova C, et al. Innate (inher-
ent) control of brain infection, brain inflammation
and brain repair: the role of microglia, astrocytes,
“protective” glial stem cells and stromal ependymal
cells. Brain Res Brain Res Rev 2005; 48:220-33.

109. Jiang H, Burdick D, Glabe CG, et al. beta-Amyloid
activates complement by binding to a specific
region of the collagen-like domain of the C1q A
chain. J Immunol 1994; 152:5050-9.

110. McGeer PL, Akiyama H, Itagaki S, et al. Activation
of the classical complement pathway in brain tissue
of Alzheimer patients. Neurosci Lett 1989;
107:341-6.

111. Tacnet-Delorme P, Chevallier S, Arlaud GJ. Beta-
amyloid fibrils activate the C1 complex of comple-
ment under physiological conditions: evidence for a
binding site for A beta on the C1q globular regions.
J Immunol 2001; 167:6374-81.

112. Akiyama H, Barger S, Barnum S, et al.
Inflammation and Alzheimer’s disease. Neurobiol
Aging 2000; 21:383-421.

113. Anthony JC, Breitner JC, Zandi PP, et al. Reduced
prevalence of AD in users of NSAIDs and H2

receptor antagonists: the Cache County study.
Neurology 2000; 54:2066-71.

114. Colton CA, Chernyshev ON, Gilbert DL, et al.
Microglial contribution to oxidative stress in
Alzheimer’s disease. Ann N Y Acad Sci 2000;
899:292-307.

115. Flynn BL, Theesen KA. Pharmacologic manage-
ment of Alzheimer’s disease part III: nonsteroidal
antiinflammatory drugs—emerging protective evi-
dence? Ann Pharmacother 1999; 33:840-9.

116. in ‘t Veld BA, Launer LJ, Hoes AW, et al. NSAIDs
and incident Alzheimer’s disease. The Rotterdam
Study. Neurobiol Aging 1998; 19:607-11.

117. McGeer PL, McGeer EG. Inflammation, autotoxic-
ity and Alzheimer’s disease. Neurobiol Aging 2001;
22:799-809.

118. Mortimer JA. New findings consistent with
Alzheimer’s-NSAIDs link. Neurobiol Aging 1998;
19:615-6.

119. Pasinetti GM. Cyclooxygenase and inflammation in
Alzheimer’s disease: experimental approaches and
clinical interventions. J Neurosci Res 1998; 54:1-6.

120. Schubert P, Ogata T, Marchini C, et al. Glia-related
pathomechanisms in Alzheimer’s disease: a thera-
peutic target? Mech Ageing Dev 2001; 123:47-57.

121. Flanary BE, Streit WJ. Progressive telomere short-
ening occurs in cultured rat microglia, but not astro-
cytes. Glia 2004; 45:75-88.

122. Streit WJ, Sammons NW, Kuhns AJ, et al.
Dystrophic microglia in the aging human brain.
Glia 2004; 45:208-12.

123. Wilcock DM, Gordon MN, Ugen KE, et al. Number
of Abeta inoculations in APP+PS1 transgenic mice
influences antibody titers, microglial activation, and
congophilic plaque levels. DNA Cell Biol 2001;
20:731-6.

124. Schenk D, Barbour R, Dunn W, et al. Immunization
with amyloid-beta attenuates Alzheimer’s-disease-
like pathology in the PDAPP mouse. Nature 1999;
400:173-7.

125. Bard F, Cannon C, Barbour R, et al. Peripherally
administered antibodies against amyloid beta-pep-
tide enter the central nervous system and reduce
pathology in a mouse model of Alzheimer’s dis-
ease. Nat Med 2000; 6:916-9.

13. Glial Cells and Aβ Peptides in AD Pathogenesis 233



14
The Role of Presenilins in Aβ-Induced
Cell Death in Alzheimer’s Disease
Maria Ankarcrona

234

14.1 Introduction

Neuronal death in specific brain regions is a
common feature of neurodegenerative disorders.
Alzheimer’s disease (AD) is characterized by
synaptic loss and a substantial amount of neuronal
degeneration in regions involved in memory and
learning processes (e.g., temporal, entorhinal and
frontal cortex; hippocampus). The neuropathologic
hallmarks of AD include the accumulation of amy-
loid plaques and hyperphosphorylated tau forming
intracellular tangles. However, no correlation has
been established between the number of plaques
and the cognitive performance in AD patients [1,
2]. Instead, synaptic failure and intracellular pro-
duction of amyloid beta (Aβ) appears to correlate
well with the early cognitive dysfunction in AD
patients [3, 4]. This has also been tested in a triple
transgenic mouse model of AD where accumula-
tion of intracellular Aβ1-42 corresponded with the
early cognitive impairment [5]. Interestingly, no
extracellular deposits of Aβ1-42 were detected in
these mice at 4 months of age suggesting that Aβ1-42
accumulate intracellulary early in the disease
process. Moreover, intracellular accumulation of
Aβ1-42 was cleared with administration of anti-Aβ
antibodies and rescued the retention deficits seen in
young 3×Tg AD mice. Together, results from this
and several other studies indicate that intracellular
Aβ1-42-generation causes the primary toxicity to
neurons in AD [6].

In this chapter, the functions of presenilin (PS)
in Aβ-generation and toxicity will be described. PS
appears to play several roles in cell death mecha-
nisms associated with AD: (i) functional PS is

crucial for the generation of Aβ [7, 8], (ii) PS inter-
acts with proteins involved in cell signaling, regu-
lation of calcium homeostasis, and apoptosis [9],
and (iii) PS mutations sensitize cells to different
apoptotic stimuli in vitro [10] and increase the gen-
eration of Aβ1-42. Whether it is the overproduction
of Aβ1-42 per se or other non-Aβ-related changes
that cause the increased sensitivity of cells carrying
PS mutations is not clear, and the different possi-
bilities will be discussed here.

14.2 Cell Death in AD Brain

The mechanisms of cell death in the AD brain are
not fully elucidated, however it is likely that several
forms of cell death are involved. Loss of synapses
is an early phenotypic manifestation in the pathol-
ogy of AD, and synapse density is significantly
decreased in AD. Synapse loss and impaired long-
term potentiation also precede accumulation of
plaques and tangles in 3×Tg mice [11]. Cytosolic
extracts from synaptosomes exposed to Aβ induced
chromatin condensation and fragmentation of iso-
lated nuclei showing that apoptotic signals can be
generated locally in synapses [12, 13]. Neurons
that lose synapses and therefore also contact and
communication with other cells are still alive but
do not function as before and will not survive in the
long run. Such cells could, however, stay in the tis-
sue as “ghost cells” before they are cleared away
by, for example, apoptosis. There are several evi-
dences for apoptosis in AD. Postmortem analysis
of AD brain showed TUNEL positive neurons and
glia in hippocampus and cortex indicating DNA



fragmentation [14–20]. Increased expression of
Bcl-2 family members [21–25], as well as increa-
sed caspase activities and cleavage of caspase sub-
strates have been detected in AD brain [26–32].
Cells that are triggered to die by apoptosis (e.g.,
have active caspase 8 and 9, which are initiator cas-
pases), but fail to complete the process because
executor caspases such as caspase-3 and -7 are not
active, have also been detected in AD brain [33].
This phenomenon is called “abortosis” and is as an
anti-apoptotic mechanism that might try to protect
neurons from death. However, this process is prob-
ably finally overridden as many neurons still die in
AD. There is also evidence for activation of cell-
cycle proteins in AD brain [34, 35]. This may be a
defense mechanism initiated to survive bad condi-
tions or toxic stimuli. However the neurons do not
go through mitosis, instead they are stuck in a cycle
they cannot complete and eventually die.
Postmitotic neurons do not normally divide, but it
is possible that reentry of the cell cycle is necessary
for the completion of apoptotis. Normally prolifer-
ating cells are regularly checked throughout the
cell cycle and taken aside to die by apoptosis when
damaged. Maybe also postmitotic cells have to take
this way to death.

A cell dying by apoptosis leaves no traces in the
tissue because it is silently disassembled and
phagocytosed. Therefore, the main part of cells,
which presumably have died by apoptosis during
the course of AD, have already been cleared from
the tissue at the time of autopsy. This is one of the
difficulties with proving the impact of apoptotic
cell death in AD. It has also been argued that the
great difference in time spans between the disease
process (approximately 20 years) and the apoptotic
process (approximately 24 hours), rules out apop-
tosis as a mechanism for cell death in AD.
However, if cell death is triggered at different times
during the course of the disease, it is very likely
that cells die by apoptosis in AD.

From a therapeutic point of view, it would of
course be most attractive to target the early cogni-
tive changes in AD presumably associated with
intracellular accumulation of Aβ and synaptic fail-
ure. When the neuron is dead, it is too late.
Therefore, it is of great importance to understand
the mechanisms behind neuronal failure to be able
to design the best neuroprotection. The treatment
strategies are also highly dependent on diagnostic

methods: the earlier a correct diagnosis can be
given, the earlier a potential treatment could start.

14.3 Presenilins, γ-Secretase
Activity, and APP Processing

Most AD cases are sporadic or have not so far been
genetically linked. Only a minor number of AD
cases have been associated with mutations in spe-
cific genes. These genes are presenilin 1 (PS1),
presenilin 2 (PS2), and amyloid precursor protein
(APP) [36]. All these mutations are autosomal
dominant and fully penetrant. Generally, familial
Alzheimer’s disease (FAD) cases have a lower age
of onset (PS1 mutation carriers 44 ± 7.8 years and
PS2 carriers 58.6 ± 7.0 years [37]) and show a
more aggressive form of the disease compared with
sporadic cases. PS1 and PS2 are encoded on chro-
mosomes 14 and 1, respectively [38–40] and show
63% homology. PS are membrane-bound proteins
with eight transmembrane domains and localized
to the endoplasmatic reticulum, Golgi apparatus
[41– 44], plasma membrane [45], nuclear envelope
[46], lysosomes [47], and mitochondria [48].
Deficiency of PS1 inhibits Aβ generation from β-
amyloid precursor protein (APP) suggesting that
PS1 is involved in γ-secretase cleavage [49]. The γ-
secretase complex consists of at least PS1/PS2,
nicastrin (Nct), presenilin enhancer-2 (Pen-2), and
anterior pharynx defective-1 (Aph-1), and γ-secre-
tase activity has been reconstituted by expressing
these four components in yeast [50] (Fig. 14.1).
The γ-secretase complex is assembled in the ER
and then trafficked to late secretory compartments
including the plasma membrane where it exerts its
biological function [51]. The four γ-secretase com-
ponents are assembled stepwise. Nct and Aph-1
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2, which together form the γ-secretase complex. Courtesy
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first form a stable subcomplex followed by the
addition of full-length PS. Then Pen-2 is added to
the complex and full-length PS is cleaved into C-
terminal (CTF) and N-terminal (NTF) fragments
forming the functional heterodimer of PS. Full-
length PS, CTFs, and NTFs as well as Pen-2 are
degraded by the proteasome when not incorporated
into the γ-secretase complex [52–54]. The impor-
tance of PS for γ-secretase activity has been
demonstrated in several ways: (i) in PS-deficient
cells [7, 8], (ii) by the use of γ-secretase inhibitors
that bind to PS [55, 56], (iii) by the substitution of
either of two aspartyl residues in transmembrane
domains 6 (Asp257) and 7 (Asp385) of PS1 [57].
All these studies showed inhibited γ-secretase
activity and lower production of Aβ.

The γ-secretase complex cleaves APP and other
type I membrane proteins [58]. Before γ-secretase
cleavage, the N-terminal part of APP either facing
the extracellular space or the lumen is cleaved by
β-site APP cleaving enzyme (BACE), a process
referred to as ectodomain shedding. BACE cleav-
age releases secreted sAPP-β and leaves a 99-
amino-acid C-terminal fragment (C99) in the
membrane. Subsequently, the γ-secretase complex
cleaves C99 generating APP intracellular domain
(AICD) and Aβ. In the non-amyloidogenic path-
way, α-secretase cleaves APP in the middle of the
Aβ region resulting in the formation of secreted
sAPPα and an 83-amino acid C-terminal fragment
(C83). γ-Secretase cleavage of C83 also results in
AICD formation [36]. Other γ-secretase substrates
than APP include Notch, ErbB4, E-cadherin,
Delta/Jagged, nectin-1α, CD44, and LRP [59].
Many of these substrates function in intercellular
communication or adhesion. Notch signaling is
important during development as γ-secretase cleav-
age of this receptor generates a Notch intracellular
domain (NICD). NICD translocates to the nucleus
and activates transcription of the cell-fate deter-
mining HES (Hairy/Enhancer of split) genes, thus
initiating a non-neuronal development of the cell
[60, 61]. Similarly, AICD has been detected in the

nucleus where it interacts with the nuclear adaptor
protein Fe65 and the histone acetyltransferase and
activates transcription [62–64]. AICD has also
been implicated in the regulation of phosphoinosi-
tide-mediated calcium signaling [65].

Mice knocked-out for both PS1/ PS2 die before
embryonic day 13.5 [49, 66]. PS1 can compensate
for the loss of PS2 (PS1+/+ PS2−/− and PS1 +/−
PS2−/− embryos survive), while PS2 cannot fully
compensate for the loss of PS1 (PS1−/− PS2+/+ die
at birth; PS1−/− PS2+/− embryos die during
E9.5–E13.5). The results from these animal models
emphasize the importance of PS1/γ-secretase activ-
ity during embryogenesis. In accordance, PS1−/−
PS2+/+ and PS K/O mouse embryonic fibroblasts
(MEFs) accumulate C83/C99 showing that PS1 is
responsible for most of the γ-secretase activity
cleaving APP (Fig. 14.2). The residual γ-secretase
activity comes from PS2 that contributes to Aβ
production to a lesser extent than PS1 [49].

14.4 PS Mutations, Aβ-Generation,
and Apoptosis

To date, almost 150 mutations have been identified in
PS1 and 11 mutations in PS2 (AD mutation database:
http://www.molgen.ua.ac.be/ADmutations/default.cf
m). All these are missense mutations that generate
single amino acid substitutions in the protein primary
structure, with the exception of PS1 exon 9 deletion
splice mutation [67]. The different PS mutations lead
to a similar phenotype: an increased ratio of Aβ1-42 to
Aβ1-40, increased plaque deposition, and early age of
onset [68]. Although the mutations are distributed all
over the PS molecule, with a clustering of mutations
in the transmembrane regions, the effect on Aβ-gen-
eration is similar indicating a common mechanism.
Fluorescent lifetime imaging microscopy (FLIM)
[69] studies have suggested that PS1 mutations,
spread in different regions, all cause a conformational
change in PS1. The proximity between the N- and 
C-terminus of PS1 was increased in the mutant PS1
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compared with PS1 wild-type. A consistent change
was also detected in the configuration of the PS1-APP
complex in PS1 mutants and could explain the com-
mon effect on Aβ generation [70]. In another study,
using a random mutagenesis screen of PS1, five
unique mutations that exclusively generated a high
level of Aβ1-43 were identified [71]. Together, these
two studies show that PS1 mutations may change the
activity and specificity of γ-secretase through a com-
mon mechanism.

PS1 is responsible for the major γ-secretase
activity generating Aβ, and PS2 plays a minor role,
still it has been shown that PS2 mutations also
influence the ratio of Aβ42/40. Of the reported PS2
mutations T122P, N141I, M239V, and M239I sig-
nificantly increased the Aβ42/40 ratio similar to
very-early-onset PS1 FAD mutations [72]. The
shift toward the production of longer and more
amyloidogenic Aβ species induced both by PS1
and PS2 mutations suggest that this common alter-
ation in APP processing by γ-secretase contributes
to the increased neuronal death in FAD.

FAD mutant proteins are expressed from birth,
but it takes decades for AD to manifest itself, and
FAD mutant carriers start to develop the disease as
adults. This suggests that FAD mutants do not
induce neuronal cell death themselves but rather
increase sensitivity to cell death stimuli [73].
Indeed, several in vitro studies have shown that pre-
senilin mutations contribute to neuronal death and
sensitize cells to apoptotic stimuli [10]. It has been
reported that FAD-linked mutant PS1 enhances cell
death in T lymphocytes [74], PC12 cells [75, 76],
SH-SY5Y neuroblastoma cells [77, 78], and pri-
mary neurons [79]. However, another study failed to
demonstrate that mutant PS1 increases sensitivity to
cytotoxic insults in primary neurons [80].

Alterations in cells carrying PS1 mutations
include higher caspase-3 activity [81], increased
oxygen radical levels [82], induction of p53 and
Bax upregulation of calpain, mitochondrial mem-
brane depolarization [83], enhanced phospholi-
pase C activity [84], and altered intracellular
calcium regulation [75]. The PS2 mutant N141I-
PS2 induces neuronal death in immortalized cell
lines and primary neurons [85, 86]. The induction
of apoptosis in PS2 mutant N141I-PS2 cells was
accompanied by increased caspase-3 activity and
decreased Bcl-2 expression after serum-depriva-
tion [87].

Whether it is the increased Aβ42/40 ratio that
causes the cellular alterations detected in PS
mutants or vice versa is not known. One possibility
is that PS mutations affect cellular functions inde-
pendently of γ-secretase activity making such cells
more vulnerable to Aβ and other cell death stimuli.
Another possibility is that the high intracellular
production of toxic Aβ species in PS mutant cells
disturbs different cellular functions and thereby
finally renders the cells more susceptible to cell
death stimuli including Aβ.

14.5 PS Mutations, Aβ, and
Intracellular Calcium Homeostasis

Many studies have shown dysregulation of intra-
cellular calcium (Ca2+) homeostasis in cells carry-
ing PS mutations. Mutant forms of PS1 have been
shown to enhance Ca2+ transients in several differ-
ent cell systems including transfected PC12 cells
[75, 88], fibroblasts from human FAD patients [89,
90], mutant knock-in mouse fibroblasts [91], cul-
tured hippocampal neurons [92], and oocytes over-
expressing mutant PS1 [93]. The effect on
intracellular Ca2+ might be mediated by inositol
triphosphate (IP3) as FAD-linked PS1 mutations
potentiate IP3-mediated Ca2+ release from the ER
[93]. The number of IP3 receptors are not increased
in cortical homogenates of PS1 knock-in mice,
instead it has been suggested that the exaggregated
cytosolic Ca2+ signals result from increased store
filling [94].

Increased intracellular calcium concentrations
[Ca2+]i result in enhanced Aβ generation [95] and
at the same time cells treated with Aβ show
increased [Ca2+]i [96]. One mechanism by which
Aβ could increase [Ca2+]i is the formation of cal-
cium-permeable pores in membranes [97, 98–100].
More recently, Kayed and collegues suggested that
amyloid oligomers rather induce permeabilization
of membranes, without forming pores or channels,
and thereby enhance the ability of ions to move
through the lipid bilayer [101].

Other APP fragments have been shown to stabi-
lize [Ca2+]i and protect from Aβ toxicity. sAPPα is
formed when α-secretase cleaves APP in the non-
amyloidogenic pathway (Fig. 14.2). sAPPα has
been shown to stabilize calcium homeostasis and
protect neurons against excitotoxic, metabolic, and
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oxidative insults including Aβ [102, 103]. The
proapoptotic action of mutant PS1 was counter-
acted by sAPPα, which stabilized [Ca2+]i and mito-
chondrial function and suppressed oxidative stress
by a mechanism involving activation of NF-κB
[104].

Sorcin, calmyrin, and calsenilin are all Ca2+-
binding proteins that have been shown to interact
with PS. Sorcin and calmyrin interact with PS2,
while calsenilin interacts with both PS1 and PS2.
Sorcin is found in mammalian brain associated
with ryanodine receptors [105] and co-expressed
with N-methyl-D-aspartate receptors [106], both
involved in Ca2+ signaling. Calsenilin is a neuronal
calcium-binding protein that interacts with the C-
terminus of PS1 and PS2 [107]. The interaction
with PS promotes Aβ1-42 production and apoptosis
in a γ-secretase dependent manner [108–110].
Calsenilin knock-out mice show decreased levels
of brain Aβ1-42 [111], and co-expression of mutant
PS1 and calsenilin reverse presenilin-mediated
enhancement of calcium signalling in Xenopus
oocytes [112]. It appears that calsenilin regulates
Aβ1-42 production and alterations in calcium signal-
ing by interaction with PS1 C-terminus.

14.6 PS Processing and Aβ
Generation During Apoptosis

As stated above, full-length PS is processed into a
NTF and a CTF that form the functional het-
erodimer in the γ-secretase complex. In addition,
presenilins are substrates for calpains [113] and
caspases, two groups of proteases activated during
apoptosis. Two caspase cleavage sites have been
identified within the cytoplasmic loop of PS1
(ENDD329 and AQRD341) and one in PS2
(DSYD329) [114]. The resulting fragments may
have a regulatory role in apoptosis. Both the nor-
mally cleaved CTF of PS2 and the caspase-cleaved
CTF of PS1 are anti-apoptotic and delay cell death
in different experimental paradigms [115, 116].
The caspase-cleaved CTF of PS1 is degraded by a
calpain-like cysteine proteinase, which may also
influence the regulation of apoptosis [52]. On the
contrary, overexpression of full-length PS2 is pro-
apoptotic [85] and triggers p53-dependent apopto-
sis leading to downregulation of PS1 [117] and
Bcl-2 [118]. Downregulation of PS1 seems to lead

to increased cell death, and therefore the full-length
PS1 is suggested to be anti-apoptotic [119, 120].

The mature γ-secretase complex is very stable,
and protease activity has been detected in samples
from frozen human brain [121]. Results from our
laboratory also show that the γ-secretase complex
is preserved and active in apoptotic cells [Hansson
et al., unpublished data]. Brockhaus and collegues
[122] have previously shown that caspase cleavage
of PS does not change the production of Aβ. These
data suggest that Aβ generation occurs in dying
cells and that these cells contribute to the amyloid
burden in AD brain. The early cognitive impair-
ments in AD are caused by loss of synapses in
regions of the brain critical for memory function
(entorhinal cortex, hippocampus). As discussed
above, neurons without synapses can survive even
though they do not signal and have contacts with
other neurons. Therefore, these neurons are present
in the tissue for some time before they finally
degenerate, and apparently they can produce Aβ
during this time. Maybe dying neurons form seeds
for the growing plaques. Indeed, LaFerla and col-
legues suggested several years ago that intracellu-
lar accumulation of Aβ triggers cell death. Aβ is
then released from the dead cells leading to extra-
cellular deposits of Aβ and the formations of
plaques [123]. They detected DNA fragmentation
in cells from AD brain and Aβ plaques containing
numerous neuronal ghosts, indicating that neuronal
death proceeds the formation of extracellular
deposition of Aβ in AD brains.

14.7 Mitochondria Are Targets for
Aβ-Induced Cell Death

Recent data suggest that it is the intracellular Aβ
species, and not extracellular plaques, that are pri-
marily toxic to cells [5]. Increasing evidence show
that functional mitochondria play a significant part
as targets or mediators of Aβ toxicity. Neurons are
dependent on aerobic oxidative phosphorylation
for their energy needs, and mitochondria are there-
fore essential for neuronal function. Mitochondria
are abundant in presynaptic nerve terminals where
they provide energy for sustained neurotransmittor
release. Mitochondrial damage may lead to release
of death factors (e.g., cytochrome c, Omi/HtrA2,
Smac/Diablo) resulting in apoptosis. Dysfunctional
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mitochondria also lead to decreased ATP produc-
tion and impaired calcium buffering capacity.
Apoptosis can be triggered locally in synapses [12,
13], and loss of synapses correlates well with the
impairment of cognitive functions early in AD.
Local Aβ production in synapses may therefore
damage mitochondria and cause synapse loss.

Aβ accumulates in mitochondria in AD brain
and in APP transgenic mice [124] and has been
shown to inhibit enzymes important for mitochon-
drial functions in vitro, for example, cytochrome c
oxidase, β-ketoglutarate dehydrogenase, and pyru-
vate dehydrogenase [125–127]. Another intracellu-
lar target for Aβ is alcohol binding dehydrogenase
(ABAD) [124] (for a review, see [128]). ABAD is
located to mitochondria where it binds to Aβ and
promotes Aβ-induced cell stress. ABAD is overex-
pressed in AD brain and in brains from transgenic
APP mice.

Aβ-toxicity is dependent on a functional elec-
tron transport chain [129], and Aβ has been shown
to induce oxidative stress [130, 131] and induction
of permeability transition [132, 133] in different
cell models. Aβ also induces p53 and Bax activa-
tion [134] associated with apoptosis signaling
through the mitochondrial pathway. In addition,
Aβ triggers the release of cytochrome c from mito-
chondria [135]. Taken together, it seems that Aβ
induces cell death by affecting different mitochon-
drial functions and triggering apoptotic mecha-
nisms. As discussed above, cells carrying PS
mutations have increased production of Aβ and are
sensitized to apoptotic stimuli. Mitochondria seem
to be an important target for Aβ-induced cell death
in agreement with the central role of mitochondria
in apoptosis signaling.

At present, it is not clear whether Aβ is produced
in mitochondria or imported into mitochondria.
Two studies have shown the localization of APP to
mitochondria. First, APP immunoreactivity was
detected by electron microscopy in the outer mem-
brane of mitochondria [136]. Second, APP was
shown to be imported into the outer mitochondrial
membrane. However, the import is arrested by an
acidic domain that spans sequence 220–290 of
APP leaving a 73-kDa portion of the C-terminal
side of the protein facing the cytoplasm. According
to this topology, the Aβ peptide region of APP is
not located to the membrane making it impossible
for β- and γ-secretases to cleave out Aβ from APP

located to mitochondria [137]. We have shown that
PS, nicastrin, Pen-2, and Aph-1 form active γ-
secretase complexes in mitochondria [138]. So far,
no γ-secretase substrate has been identified in mito-
chondria, and the function of the mitochondrial 
γ-secretase complex is not known. In conclusion, it
is most likely that Aβ is taken up by mitochondria
and that the mitochondrial γ-secretase complex
cleaves other substrates than APP. Exactly how Aβ
gains access to mitochondria is not known, and this
issue has to be addressed in future studies. Aβ is
secreted luminally and has been detected in
ER/Golgi, lysosomes/endosomes, and multivesicu-
lar bodies. One possiblility is that, for example,
ER-to-mitochondrial transfer might occur [139].

14.8 Conclusions

It has been established that PS is essential for γ-
secretase activity, and PS is therefore mandatory
for the generation of Aβ. Aβ is toxic and kills cells
by mechanisms involving perturbed intracellular
calcium homeostasis, oxidative stress, and
impaired mitochondrial functions. PS mutations
sensitize cells to various toxic stimuli in vitro and
increase the production of Aβ. Whether it is the
increased Aβ load that causes the sensitization of
PS mutant cells or if PS mutations cause cellular
alterations independent of Aβ production have not
been elucidated. Further studies have to be per-
formed to shed more light on these complicated
mechanisms. Under all circumstances, it is becom-
ing clear that it is the intracellular Aβ that is pri-
marily toxic. Therefore, it is of great importance to
decrease Aβ-generation and protect neurons from
Aβ in order to block cell death in AD.
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15.1 Concept of Immunotherapy
for Alzheimer’s Disease

The concept of immunotherapy for Alzheimer’s
disease (AD) is based on the molecular findings
that place AD within the group of disorders called
“protein-misfolding diseases.” These disorders are
caused by conformational changes coupled with
the aggregation of misfolded proteins outside of
the cell [1–4]. The concept emerged after the
research group of Salomon [5–8] demonstrated that
the immunologic approach in vitro was successful
in inducing conformational changes in both antigen
and antibody. In particular, it was demonstrated
that the monoclonal antibodies were capable of
stabilizing the conformation of an antigen against
incorrect folding and recognize an incompletely
folded epitope, inducing native conformation in a
partially unfolded protein.

Support for the in vivo relevance of the concept
has been provided by experiments published by the
Schenk’s research group [9]. They found that vacci-
nation of a transgenic mouse expressing the human
β-amyloid protein with the β-amyloid peptide
(Aβ42) significantly decreased the β-amyloid bur-
den in areas of the brain important for cognition and
memory. Furthermore, the studies carried out by
Schenk’s group indicated that the effect of the Aβ42
peptide was mediated by antibodies it induced [10].

The functional relevance of the findings reported
by Schenk’s group was demonstrated in separated,
independent follow-up studies carried out by Janus
and Morgan and their colleagues [11, 12]. They
showed that the β-amyloid peptide vaccine was

able to protect transgenic mice from the memory
deficits they normally develop and to ameliorate
the preexisting behavioral and memory deficits.

After promising preclinical studies in several
species, clinical trials were initiated using Aβ42
(vaccine’s name: AN-1792) in conjunction with the
adjuvant QS-21 [13]. Despite numerous adverse
effects that occurred in some patients that led to
suspension of the study, preliminary data demon-
strated that vaccination can reduce AD pathology
and mitigate progressive cognitive decline associ-
ated with the disease.

The experimental and clinical data obtained to
date indicate that the induction of the systemic
adaptive response to Aβ42 is an effective way to
induce its clearance [14–17], supporting the amy-
loid cascade hypothesis of AD and implying that
Aβ42 deposition is driving the disease pathogenesis
[18, 19]. Consistent with this hypothesis is the
recent finding that the accumulation of Aβ is able
to induce the development of tau pathology [20].
Aβ immunotherapy reduces first Aβ deposits and
subsequently clears aggregates of tau-protein [21].

15.2 Immune Responses to Aβ

15.2.1 Molecular Structure and
Immunological Properties of Aβ
In the Aβ structure, two domains can be discrimi-
nated: the N-terminal domain that encompasses
amino acids 1 to 28 and C-terminal domain from
amino acids 29 to 42. In aqueous solution, the 
N-terminal region exhibits different conformations



and solubility properties depending on environ-
mental conditions [22, 23]. The hydrophobic
region in the C-terminal domain forms a β-strand
structure in aqueous solutions, independently of
pH and temperature. The amino acids sequences in
the N-terminal domain permit the existence of a
dynamic equilibrium between the α-helix and the
β-strand conformations. In addition, results of
in vitro experiments indicate a steady-state equi-
librium between Aβ in plaques and in solution
[24]. The most important conclusion from experi-
ments in vitro is that amyloid formation might be
subjected to modulation in terms of changes in
conformation.

The Aβ molecule exhibits antigenic and
immunogenic properties. Most of the Aβ42-anti-
body-producing epitopes were detected in the 
N-terminal region of the peptide Aβ42. The pre-
dominance of T-cell epitopes lies in the central to
carboxy-terminal region of the peptide. The
reported differences in the location of epitopes
within the Aβ peptide depend on the different
length of the peptides used for the detection of epi-
topes. The effects of antibody binding to various
epitopes may be different. As Aβ42 exists both in
soluble and fibrillar forms, antibodies generated
against this antigen may recognize different
immunogenic structures within it. It is important to
identify within Aβ42 antigenic determinants for B
and T cells in order to design the most effective
vaccine.

Because the dominant B-cell and T-cell epitopes
have distinct location, the humoral and cellular
immune responses may be modulated. The modu-
lation can be achieved for instance by using an
antigen and various adjuvant combinations.
Because the type of immune response generated
may be critical to the efficacy and safety of a poten-
tial vaccine, a careful examination of the overall
immune response, especially of the Th1 and Th2
responses, is of great importance [25].

15.2.2 Innate Immunoresponses to Aβ
Naturally occurring anti-Aβ antibodies (autoanti-
bodies) were found in plasma in the elderly popu-
lation [26]. There were detectable but very low
levels of anti-amyloid antibodies in just over 50%
of all samples and modest levels in under 5% of all
samples. However, neither the presence nor the

level of anti-amyloid-β antibodies correlated with
the likelihood of developing dementia or with
plasma levels of amyloid-β peptide. These findings
suggest that low levels of anti-amyloid-β autoanti-
bodies are frequent in the elderly population but do
not confer protection against developing dementia.

Another group detected anti-amyloid-β autoanti-
bodies in the CSF of AD patients [27, 28]. The
titers of the antibodies were significantly lower in
AD patients than in age-matched controls. These
data indicate an impaired or reduced ability to gen-
erate antibodies specific against AD. This hypoth-
esis has been supported by the finding that
treatment of individuals with intravenous immuno-
globulin preparation containing anti-Aβ antibodies
increase both CSF and serum levels of anti-Aβ
antibodies and significantly lowered CSF levels,
possibly by facilitating transport of Aβ from the
CSF to the serum [29]. These findings suggest that
human Aβ antibodies are able to lower the Aβ con-
centration in the CSF, which may reduce Aβ depo-
sition in brain. It seems that Aβ is recognized in the
CNS as a molecule that needs to be cleared and
provokes activation of microglia and astrocytes.
The innate immunoresponse is also supported by
such findings in AD patients as activation of com-
plement; secretion of proinflammatory cytokines
such as interleukin (IL)-1β and tumor necrosis fac-
tor (TNF)-α; expression of chemokines MIP-1α,
MIP-1β, and MCP-1; and the secretion of nitric
oxide [30, 31].

Monsonego et al. [32] found that some healthy,
elderly individuals, as well as individuals with AD,
possess elevated baseline levels of Aβ-reactive 
T-cells. While the general trend was toward a
diminished immune response with aging, this
demonstrates a selective increase in Aβ-reactive
T cells in older individuals with and without
dementia. The reason for this selective expansion
of Aβ-reactive cells in elderly individuals is
unclear. T-cell reactivity may be considered as an
endogenous reaction to Aβ deposition in the brain
in the context of the local innate immune response
that occurs in AD [32].

The epitopes for Aβ-reactive T cells in humans
are primarily amino acids 16–42. As in studies of
active immunization of humans and of mouse mod-
els of AD, the primary epitope to which antibodies
are generated are residues 1–12 [33]. There exists
the possibility to influence both epitopes separately.
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The function of microglia in AD seems also to
be impaired. The role of microglia cells as a prin-
ciple immune effector and phagocytic cells in the
CNS is established. These cells are associated with
plaques containing fibrillar β-amyloid found in the
brains of AD patients. The plaque-associated glia
undergo a phenotypic conversion into an activated
phenotype. It is believed that microglia are respon-
sible for the development of a focal inflammatory
response that exacerbates and accelerates disease
process. However, despite the presence of abundant
activated microglia in the brains of AD patients,
these cells fail to mount a phagocytic response to
Aβ deposits but can efficiently phagocytose Aβ
fibrils and plaques in vitro. It remains unclear why
the plaque-associated microglia in vivo are unable
to effectively phagocytose the amyloid deposits
despite their close physical vicinity to the plaques
[34]. It could be assumed that other plaque con-
stituents block the interaction of the microglia with
the plaque, as has been suggested for C1q [35].

15.2.3 Adaptive Immune Response 
to Aβ
15.2.3.1 Experience in Transgenic Animals

Although AD is associated with local innate
immune responses, they are not sufficient to protect
against the development of the disease or to atten-
uate the disease progression. The induction of sys-
temic adaptive immune responses to Aβ in mouse
models of AD has been found to be beneficial for
both the neuropathologic and behavioral changes
that these mice develop.

Active immunization with synthetic Aβ peptide
or passive transfer with Aβ antibodies has been
shown to prevent and reduce the cerebral amyloid
load [9, 36, 37]. Using similar experimental settings,
improvements in cognitive deficits in APP and
APP/PS1 transgenic mice were observed [11, 12, 38,
39]. Schenk et al. [9] reported for the first time that
intraperitoneal injections of Aβ42 peptide, with com-
plete or incomplete Freund`s adjuvant, almost com-
pletely prevented plaque deposition when given
before initiation of plaque formation and signifi-
cantly lowered cerebral levels if given after the initi-
ation of plaque deposition in PDAPP transgenic
mice. Evidence has been provided that the antibod-
ies generated by active immunization with Aβ pep-

tide recognized an epitope within the amino-termi-
nus of the Aβ protein [37, 40–44]. Active immu-
nization was shown to be less effective in reducing
cerebral Aβ levels in very old APP transgenic mice
with abundant cerebral Aβ plaques [45].

Passive administration of selected Aβ antibod-
ies achieved similar effects to active immuniza-
tion [36]. Passive transfer with a monoclonal
antibody directed at the midregion of Aβ (mAb
266, recognizing Aβ13-28) has been shown to lower
cerebral levels while increasing Aβ levels in the
blood [46]. When a single dose of Aβ mAb 266
was passively administered to aged transgenic
mice, no reduction in Aβ levels in brain was
found, nevertheless improvements in cognitive
deficits were observed [38].

Since the first report on the effect of immuno-
therapy in animals, several formulations of Aβ
have been investigated, for example, genetically
engineered filamentous phages displaying Aβ3-6
(EFRH) [47], intranasal Aβ immunization [37, 41],
a soluble non-amyloidogenic, nontoxic homologue
of Aβ [48], microencapsulated Aβ [49], and
recombinant adeno-associated virus Aβ vaccine
expressing a fusion protein containing Aβ42 and
cholera toxin B subunit [50]. Irrespective of the
way of administration and the animal species used
(mice, rabbits, guinea-pigs), the immunization
entailed reductions in cerebral amyloid load and
improvements in behavior.

Lemere et al. [51] immunized for the first time a
non-human primate, the vervet monkey, with a
cocktail of human Aβ peptides (Aβ40, Aβ42). This
monkey species develops cerebral amyloid plaques
with aging, and the amyloid deposits are associated
with gliosis and neuritic dystrophy. Immunized
animals generated anti-Aβ antibodies that labeled
Aβ plaques in human, transgenic mouse, and
vervet. Anti-Aβ antibodies bound to Aβ1-7 epitope
and recognized monomeric and oligomeric Aβ but
not full-length APP or C-terminal fragments of
APP. The Aβ levels in the CNS were reduced,
whereas they were increased in plasma. This find-
ing confirms that Aβ can be moved from the cen-
tral to peripheral compartment where the anti-Aβ
antibodies bind them, enhancing clearance of Aβ
[46]. In an experiment by Lemere et al. [51],
immunization did not elicit any side effects. In par-
ticular, no Aβ-reactive T-cell populations were
detected.
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Plaque clearance can be invoked only by anti-
bodies against epitopes located in the N-terminal
region of Aβ [52]. It has also been shown that the
isotype of the antibody prominently influences the
degree of plaque clearance. For example, IgG2a
antibodies against Aβ were more efficient that
IgG1 or IgG2b antibodies in reducing pathology.
Moreover, it was shown that the high affinity of the
antibody for Fc receptors on microglial cells seems
to be more important than high affinity for Aβ
itself and that complement activation is not
required for plaque clearance.

It was reported [53] that after intracranial anti-
Aβ antibody injections into APP transgenic mice,
there is a rapid removal of diffuse amyloid deposits
apparently independent of microglial activation
and also a later removal of compact amyloid
deposits, which appears to require microglial acti-
vation. After suppression of microglial activation
with dexamethasone, administration of anti-Aβ
antibody inhibited the removal of compact,
thioflavine-S-positive amyloid deposits [54].

Wilcock et al. [55] using antibody 2286 (mouse
monoclonal anti-human Aβ28-40 IgG1) for passive
immunization in a transgenic mouse model showed
that the antibody is able to enter the brain and bind
to the amyloid deposits, likely opsonizing the Aβ
and resulting in Fcγ receptor-mediated phagocyto-
sis. This group also showed that passive immuniza-
tion improved behavioral performance. Such
improvement might reflect rapid reduction of the
Aβ pool, closely linked to memory impairments
yet not easily detected by immunochemistry. A
similar phenomenon was previously reported by
Dodart et al. [38] and Kotilinek et al. [39]. They
observed rapid reversal of memory deficits in
transgenic mice after passive immunization with-
out significant reduction in brain Aβ.

The clearance of various types of amyloid
plaque depends on the isotype of the administered
antibody [56]. It was shown that IgG2a antibodies
are efficacious in clearing fibrillar, thio-S-positive
plaque. The high efficacy of IgG2a antibodies is
consistent with their ability to best stimulate
microglial and peripheral macrophage phagocyto-
sis. This finding also supports a crucial role for
microglial Fc receptor-mediated phagocytosis in
the clearance of at least fibrillar plaques. However,
because Fc knockout mice show a reduction of
plaque burden after Aβ immunotherapy [57], alter-

native clearing mechanisms should be taken in
consideration.

Mechanisms by which antibodies act are not
entirely understood. Suggested mechanisms
include (i) microglial-mediated phagocytosis (Fc-
dependent, Fc-independent, or combination of Fc-
dependent and Fc-independent mechanisms
[53–55, 58]), and β1 integrin-dependent [59]; (ii)
direct interaction of antibodies with Aβ with sub-
sequent disaggregation of amyloid deposits [8, 53,
55]; and (iii) removal of Aβ from the brain by
binding circulating Aβ in plasma with the anti-Aβ
antibodies (so-called peripheral sink hypothesis)
[38, 46, 60].

All three proposed mechanisms of anti-Aβ anti-
body-mediated amyloid removal are not mutually
exclusive. They are likely to be synergistic if mul-
tiple mechanisms are elicited by a single antibody
or serum. Other possible mechanisms of amyloid
removal would include activation of scavenger
receptors [61, 62] or receptors for advanced glyca-
tion end products [63].

The effect of immunization on vascular Aβ
deposits has recently been addressed [64]. This
issue seems to be important in light of a study
showing that passive immunization of APP23
transgenic mice, characterized by prominent vascu-
lar Aβ deposition, with anti-Aβ IgG1 antibody,
resulted in a twofold increase in the rate of hemor-
rhages [65]. To better understand this potential side
effect, Racke et al. [64] characterized the binding
properties of several monoclonal anti-Aβ antibod-
ies to deposited Aβ in brain parenchyma and cere-
bral vessels (CAA; cerebral amyloid angiopathy).
They observed an increase in both the incidence
and severity of CAA-associated microhemorrhages
when PDAPP transgenic mice were treated with N-
terminally directed 3D6 antibody, whereas mice
treated with central domain antibody 266 were
unaffected. In this context, the question arises
whether the amyloid angiitis that has been recently
reported [66] would augment the risk of such hem-
orrhages. Taken together, circulating antibodies
elicited by active immunization or administered
passively cross the blood-brain barrier [67, 68].
Moreover, administration to transgenic animals of
monoclonal Aβ antibodies against defined Aβ epi-
topes reduces plaque burden and improves cogni-
tive deficits to the same degree as active
immunization [8].
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Assessment of morphological and behavioral
changes in animals is a very important issue for
comparative purposes and for effectivity and safety
measurements of investigated agents. Assessment
of behavioral deficits observed in transgenic mice
may be particularly difficult, because these deficits
are only in part related to amyloid deposition. As
histological analyses by Dodart et al. [69] indicate,
the behavioral deficits are also related to neu-
roanatomical alterations secondary to overexpres-
sion of the APP transgene and are independent of
amyloid deposition.

Gandy and Walker [70] suggest the use of non-
human primates as adjunctive models for assessing
the efficacy and safety of immunotherapeutics for
AD. Use of this animal model could contribute to
further clarification of potential damage caused by
immunization to the cerebral vessels.

15.2.3.2 Clinical Experience: Human 
Trials of Aβ Vaccination

The finding that active and passive vaccination
with Aβ exerts remarkable Aβ-reducing effects in
animal models of AD led to clinical trials in which
an Aβ42 synthetic peptide was administered par-
enterally with a previously tested adjuvant (QS-21)
to patients with mild to moderate AD.

In a long-term phase I clinical trial [71], the
safety, tolerability, and immunogenicity of AN1792
(human aggregated Aβ42) and exploratory evi-
dence of efficacy in patients with mild to moderate
AD were evaluated. Twenty patients were enrolled
into each of four dose groups and randomly
assigned to receive intramuscularly AN1792 (50 or
225 µg with QS-21 adjuvant 50 or 100 µg) or QS-
21 only (control) in a 4:1 active-control ratio on day
0 and at weeks 4, 12, and 24. Patients were allowed
to receive up to four additional injections of
polysorbate 80 modified formulation at weeks 36,
48, 60, and 72.

During the period of the first four injections,
23.4% of AN1792-treated patients had a positive
anti-AN1792 antibody titer (an anti-AN1792 anti-
body titre of ≥1:1000). This increased to 58.8%
after additional injections with the modified for-
mulation. With regard to efficacy, Disability
Assessment for Dementia scores showed less
decline among active compared with control
patients at week 84 (p = 0.002).

No treatment differences were observed in three
other efficacy measures. Treatment-related side
effects were reported in 19 (23.8%) patients, but no
relationship was observed between AN1792 dose
and their incidence. One patient developed menin-
goencephalitis 219 days after discontinuing from
the study. Diagnostics of meningoencephalitis was
made postmortem, and the cause of death was con-
sidered non-treatment related. Another five deaths
occurred during the study follow-up, but none was
deemed directly related to study treatment.

Although no severe side effects occurred during
the course of the phase I trials, phase IIa trials
were halted when 18 of 298 patients immunized
with AN-1792 presented with symptoms consis-
tent with meningoencephalitis [72]. The symp-
toms and signs of encephalitis included headache,
confusion, and changes on magnetic resonance
imaging scans. Of the 18 patients in the phase II
study, 12 have returned to their baseline status and
six have experienced some type of prolonged neu-
rological deficit. The majority of patients had IgG
responses to Aβ, and all patients mounted at least
a small IgM response. There was no correlation of
the severity of encephalitis with either the level or
epitope specificity of the antibody response.
Moreover, the vast majority of individuals who
mounted the antibody response to Aβ did not
develop encephalitis.

A cohort of 30 patients who participated in the
phase IIa multicenter trial was followed up after
suspension of treatment [73]. The group of patients
who generated antibodies against β-amyloid
showed a marked and long-lasting increase in
serum antibodies against aggregated Aβ42 in both
IgG and IgM classes.

AD patients who generated antibodies against
Aβ performed markedly better on the Mini Mental
State Examination (MMSE) 8 months and 1 year
after the immunization, as compared with control
patients, and they remained unchanged after 1 year,
as compared with baseline. Within this period,
patients in the control group worsened signifi-
cantly. Taken together, the patients who generated
antibodies exhibited slower rates of cognitive
decline 1 year after the last immunization.

The neuropathologic findings in 3 patients who
received AN1792/QS21 were reported to date
[74–76]. Nicoll et al. [76] found infiltrates of lym-
phocytes in the leptomeninges that were identified
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as being composed of T lymphocytes (CD3+ and
CD45RO+); the majority were CD4+ and very few
were CD8+. B lymphocytes were not present. The
large areas of neocortex contained very few Aβ
plaques or they were devoid of plaques. In some
regions devoid of plaques, Aβ-immunoreactivity
was associated with microglia immunoreactive for
CD68 and human leukocyte antigen DR. Moreover,
in the neocortical areas devoid of plaques, densities
of tangles, neuropil threads, and cerebral amyloid
angiopathy similar to unimmunized AD patients
were found. The plaque-associated dystrophic neu-
rites and astrocyte clusters were not seen. At
immunohistochemistry, the plaques were sur-
rounded by IgG and C3 complement. Interestingly,
cerebral white matter showed marked reduction in
the density of myelinated fibers and extensive infil-
tration with macrophages that were not immunos-
tained for Aβ.

Neuropathological data reported by Ferrer et al.
[74] showed some differences in comparison with
the above described case. A focal depletion of dif-
fuse and neuritic plaques was observed, but not of
amyloid angiopathy. In the cerebral white matter,
there was loss of myelin that was accompanied by
moderate microgliosis and astrogliosis. Moreover,
multinucleated giant cells filled with dense Aβ42
and A4β40 were seen.

Interestingly, severe small cerebral blood vessel
lesion (lipohyalinosis) and multiple cortical hemor-
rhages, including acute lesions and lesions with
macrophages filled with hemosyderin, were found.
Focal inflammatory infiltrates were seen in the
meninges as well as in the cerebrum and they were
composed mostly of CD8+, less often of CD4+,
CD3+, CD5+, and, rarely, CD7+ lymphocytes. B
lymphocytes and the detected T cytotoxic markers
were negative.

Masliah et al. [75] reported the results of neu-
ropathologic examination of the patient without
clinical symptoms and signs of meningoencephali-
tis. They found that vaccination with Aβ42 resulted
in a considerable reduction of plaque burden and
promoted amyloid phagocytosis in the frontal cor-
tex and to a lesser extent in the temporal lobe.
Plaque associated neuritic dystrophy in the frontal
cortex was undetectable. Neurofibrillary pathology
and CAA were unchanged. Only minimal lympho-
cytic reaction was observed in the leptomeninges
and the white matter was unaffected.

In summary, it can be said that the clinical and
pathologic data of these two trials support the con-
cept of using immunization in the treatment of AD.
However, many questions remain unanswered.
First, the responder population needs to be charac-
terized. Indeed, assuming that the anti-Aβ antibod-
ies mediate the reduction in the observed amyloid
pathology, only about half of the patients benefit
from the treatment. Second, the risk to benefit ratio
cannot be determinated until an analysis of the
phase IIa trial data is completed and the pathogen-
esis of the side effects is definitively determined.
Inflammatory response, demyelination, and intrac-
erebral bleeding would be severe and intolerable
side effects of the immunization. Current data indi-
cate that the meningoencephalitis may be due to a
T-cell response rather than the anti-Aβ antibodies.

Immunization with the full-length Aβ42 peptide,
containing both B- and T-cell epitiopes, appears
not to be optimual, because it brings about an
extensive T-cell activation. The cerebral bleeding is
possibly due to cerebral amyloid angiopathy
(CAA). The cerebral hemorrhages were reported
after passive anti-Aβ immunotherapy in mice [65].
Investigation into the pathogenesis of meningoen-
cephalitis induced by vaccination with amyloid-β
peptide should now be possible using a recently
constructed appropriate animal model [77].

It cannot be excluded that the differences in
safety results obtained in transgenic animals and in
clinical trials depend, at least to some extent, on the
different adjuvants used in protocols. In the studies
in mice, the adjuvants CFA (complete Freund’s
adjuvant) and IFA (incomplete Freund’s adjuvant)
were used, whereas in clinical trials the immuno-
gen was formulated in adjuvant QS21, a saponine
derivative. Moreover, in clinical trial a detergent
(polysorbate-80) was added to aid the manufactur-
ing and stability of the Aβ peptide [13].

15.3 Current Directions in
Experimental and Clinical 
Research

The experimental evidence indicates that the clear-
ance of Aβ from the brain is dependent on anti-Aβ
antibody and not on T cell–mediated mechanisms.
These mechanisms were probably responsible for
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side-effects observed in the first clinical trials. It is
clear that alternative approaches must be developed
that bias the immune response toward a Th2-
phenotype and/or replace the Aβ T-cell epitope
with a foreign T-cell epitope.

These goals may be attained through modifica-
tions of the Aβ molecule, synthesis of new
immunogens, and by choice of suitable adjuvants.
The use of humanized monoclonal anti-Aβ anti-
bodies will entirely eliminate a cellular response to
Aβ, with comparable effectiveness to active immu-
nization. The development of new delivery systems
can also contribute to the improvement of efficacy
and safety aspects of immunization. Some of the
current approaches are discussed below.

15.3.1 Active Immunization

An immunization procedure was developed for
the production of effective anti-aggregating Aβ
monoclonal antibodies based on filamentous
phages displaying only one epitope, the EFRH
epitope, as a specific and nontoxic antigen.
Effective autoimmune responses were obtained
after phage administration as an antigen in
guinea-pigs, in which the amino acids sequence in
the Aβ molecule is identical to that in humans.
Because of the high antigenicity of the phage, no
adjuvant was required to obtain high affinity anti-
aggregating IgG antibodies [7].

The development of immunoconjugates seems
to be a very promising strategy. The immunoconju-
gates are typically composed of a fragment of the
Aβ peptide derived from either the amino-terminal
or central region linked to a carrier protein that pro-
vides T-cell help. An epitope vaccine has been
engineered composed of the B-cell epitope from
the immunodominant region of Aβ42, Aβ1-15 in tan-
dem with a universal synthetic T-cell epitope, pan
HLA DR-binding peptide (PADRE). Immunization
of BALB/c mice with the PADRE-Aβ1-15 epitope
vaccine produced high titers of anti-Aβ antibodies
[78].

Seabrook et al. [79] have designed two multi-
antigen peptides (MAP) composed of either 8
copies of Aβ1-7 or 16 copies of Aβ1-15 and investi-
gated the immune response in B6D2F1 mice. The
MAP were formulated with the adjuvant LT
(R192G). As the mice receiving Aβ1-15 MAP gen-
erated very high anti-Aβ antibody titers of the

mainly IgG isotype, it was suggested that this MAP
may have potential as an AD vaccine.

Immunization with Aβ40 fibrils generated two
conformation-specific monoclonal antibodies in
BALB/c mice [80]. The monoclonal antibodies
WO1 and WO2 bound to the amyloid fibril state of
the Aβ40 peptide but not to its soluble, monomeric
state. This new class of antibodies appears to rec-
ognize a common conformational epitope with lit-
tle apparent dependence on amino acid side-chain
conformation. Reduction in brain levels of soluble
Aβ42 by 57% was detected after immunization with
a soluble non-amyloidogenic, nontoxic Aβ homol-
ogous peptide in Tg2576 mice. The cortical and
hippocampal brain amyloid burden was reduced by
89% and 81%, respectively [48].

Although compelling evidence has been pro-
vided that the reduction of plaque burden after
immunization is mediated through anti-Aβ antibod-
ies, Frenkel et al. [81] reported that nasal vaccina-
tion with a proteasome-based adjuvant (IVX-908)
and glatiramer acetate, a synthetic copolymer used
in the treatment of multiple sclerosis, clears β-amy-
loid in a mouse model of AD in an antibody-inde-
pendent fashion. Vaccinated animals developed
activated microglia (CD11b+ cells), and the extent
of microglial activation correlated strongly with the
decrease in Aβ fibrils. They also found a strong cor-
relation between CD11b+ cells and IFN-γ secreting
cells and increased numbers of T cells, which may
play a role in promoting microglial activation.

15.3.2 Passive Immunization

Passive immunotherapy has advantages over active
immunization from both efficacy and safety per-
spectives. Particularly, passive immunotherapy
using a humanized monoclonal anti-Aβ antibody
will entirely eliminate a cellular response to Aβ.
The use of polyclonal anti-Aβ antibodies can be
considered as a promising alternative. Polyclonal
anti-Aβ antibodies can be delivered by healthy
individuals because they have circulating autoanti-
bodies against Aβ-peptide.

Bard et al. [52] determinated prerequisites for
monoclonal antibodies to prevent neuropathologic
lesions in transgenic mice. For this purpose,
immune sera with reactivity against different Aβ
epitopes and monoclonal antibodies with different
isotypes were examined for efficacy ex vivo and
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in vivo. They found that only antibodies against the
N-terminal regions of Aβ were able to invoke
plaque clearance. Plaque binding correlated with a
clearance response, whereas the ability of antibod-
ies to capture soluble Aβ was not necessarily cor-
related with efficacy. The isotype of the antibody
influenced the degree of plaque clearance. High
affinity of the antibody for Fc receptors seemed
more important that high affinity for Aβ itself.

High-affinity anti-aggregating monoclonal anti-
Aβ antibodies were obtained in human APP trans-
genic mice after a short immunization time with
phage-EFRH. A dose-response relationship was
observed between antibody-titer and reduced amy-
loid load. High immunogenicity of the phage
enables intranasal administration without use of
adjuvant [40].

Rangan et al. [82] have identified recombinant
antibody light-chain fragments with proteolytic
activity, capable of hydrolyzing Aβ in vitro.
Although these fragments currently demonstrate
broad substrate specificity, they may prove thera-
peutically useful if the antibody could be engi-
neered to specifically target pathogenic forms of
Aβ, such as oligomers or protofibrils.

By screening a human single-chain antibody
(scFv) library for Aβ immunoreactivity, Fukuchi
et al. [83] have isolated a battery of scFvs that
specifically react with amyloid plaques in the
brain. The efficacy of human scFv was tested in a
mouse model of AD. It was observed that relative
to control mice, injections of the scFv into the brain
of transgenic mice reduced Aβ deposits and
improved spatial learning in Morris water maze.
They concluded that human scFvs against Aβ may
be useful to treat AD patients without eliciting
brain inflammation because scFvs lack the Fc-por-
tion of the immunoglobulin molecule.

Frenkel et al. [6] suggested a novel approach,
where intracellular expression of a site-directed
single-chain antibody, which has been shown to
inhibit fibrillogenesis and cytotoxicity in vitro,
could target Aβ before it is released from the cell.

Reducing the ability of an amyloidogenic pro-
tein to form partly unfolded species has been sug-
gested as an effective method of preventing its
aggregation [84]. It was shown that a single-
domain fragment of a camelid antibody raised
against wild-type human lysosyme inhibits the in
vitro aggregation of its amyloidogenic variant,

D67H. The binding of the antibody achieves its
effect by restoring the structural cooperativity char-
acteristic of the wild-type protein. This appeared to
occur at least in part through the transmission of
long-range conformational effects to the interface
between the two structural domains of the protein.

Ultrastructural investigation into structure of
human classical plaques in different stages of
development showed that in the early plaque, the
leading pathology is fibrillar Aβ deposition by
microglial cells. In the late plaques, microglial
cells retract and activation of astrocytes predomi-
nate [85]. In line with these findings, Wyss-Coray
et al. [86] found that adult mouse astrocytes
degrade amyloid-β in vitro and in situ. Further-
more, it was demonstrated [87] that a modest
increase in astroglial production of transforming
growth factor β1 (TGF-β1) in aged transgenic mice
expressing the human APP (hAPP) results in a
threefold reduction in the number of parenchymal
amyloid plaques, a 50% reduction in the overall Aβ
load in the hippocampus and neocortex, and a
decrease in the number of dystrophic neurites. In
mice expressing hAPP and TGF-β1, the reduction
of parenchymal plaques was associated with a
strong activation of microglia and an increase in
inflammatory mediators. Taken together, the stim-
ulation of astrocytes and/or microglia could be
considered an alternative approach for the treat-
ment of AD. However, it was found [88] that over-
activation of microglia induces apoptosis.
Interestingly, in the experiment reported by Weiner
et al. [37], the lowering of Aβ burden was associ-
ated with decreased local microglial and astrocytic
activation after nasal administration of Aβ40 to
PDAPP mice. In serum, anti-Aβ antibodies of the
IgG1 and Ig2b classes were detected, both of which
are characteristic of the Th2-type immune response.

It is possible to generate anti-Aβ antibodies that
are capable of exerting their selective effect on Aβ
fibrils. In the study by McLaurin et al. [43], the
TgCRND8 mice were vaccinated with protofibril-
lar/oligomeric assemblies of Aβ42 that reduced
cerebral Aβ deposits and cognitive impairments
and induced immunoglobulins of IgG2b isotype
against residues 4–10 of Aβ. The generated anti-
Aβ antibodies were able to inhibit Aβ fibrils
assembly and toxicity without activating microglial
or other cellular inflammatory responses. In the
light of the above-mentioned results, both stimula-
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tion and inhibition of either microglia or astrocytes
might be of therapeutic relevance in dependence,
among others, of the stage in classical plaque
development. Schmechel et al. [89] suggest that
monoclonal antibody recognizing Aβ42 homod-
imers, which are potentially the earliest form of
synaptotoxic Aβ oligomers, might be useful for Aβ
amyloid related therapeutic approaches by imped-
ing its precipitation into existing plaques. A multi-
antibody based approach, with one antibody
targeted against Aβ and one against tau, was sug-
gested by Oddo et al. [21].

Specific polyclonal anti-Aβ-IgG in both the serum
and the CNS from non-immunized humans were
identified [27, 29]. The distribution of the different
IgG subclasses in the Aβ antibody sample were as
follows: IgG1, 63.8%; IgG2, 19.9%; IgG3, 9%; and
IgG4, 7.3%. These antibodies were able to block fib-
ril formation, disrupt formation of fibrillar structures,
and prevent neurotoxicity of Aβ in vitro [90]. In
another experiment [52], purified anti-Aβ antibodies
could disaggregate both preformed Aβ40 as well as
active truncated Aβ 25-35 and also block neurotoxicity
induced by both peptides. These results indicate that
the investigated antibody fractions include antibodies
not only against the N-terminal of Aβ but also
against the middle portion of Aβ.

In a pilot study [91], IgG were administered
intravenously (IVIgG) in patients with AD. Five
patients with AD were enrolled and received
monthly IVIgG (0.4 g intravenous IG per kg body
weight) over a 6-month period. After IVIgG, total
Aβ levels in the CSF decreased by 30.1% com-
pared with baseline. Total Aβ increased in the
serum by 233%. No effect on Aβ42 levels was
observed. In addition, stabilization or a mild
improvement in cognitive function was observed in
the patients as detected using ADAS-cog.
(improvement of 3.7 ± 2.9 points). It was postu-
lated that the effects of IVIg in the AD patients
were due to altered cytokine production by
microglial cells. However, the patient population
included in this study was too small to make defi-
nite conclusions regarding the efficacy of IVIg in
AD. From the safety point of view, it is important
that polyclonal antibodies do not bind complement.
Taken together, the available data indicate that
administration of polyclonal human anti-Aβ anti-
bodies isolated from plasma might be a potential
therapeutic agent in AD.

15.3.3 Gentechnologic Approaches

It could be expected that efficacy and safety issues
associated with immunotherapy for AD could be
improved using DNA vaccines or viral vectors [92,
93]. Among the most important goals of the work
being done in the field are (i) the limitation of
extension of amyloid accumulation through gener-
ation of high titers of epitope-specific anti-Aβ anti-
bodies with favorable isotype-profiles; (ii)
reduction of side effects related to Th1-responses;
(iii) induction of Th2-based immune response; and
(iv) breaking of self-tolerance to Aβ. Some of these
goals have already been achieved in animals. For
example, Qu et al. [94] have demonstrated that
gene-gun–mediated genetic immunization with
Aβ42 gene can efficiently elicit humoral immune
responses against mouse Aβ42 peptide in wild-type
BALB/c mice as well as against human Aβ42 in
transgenic mice. It was shown that induction of the
humoral immune response did not induce a signif-
icant cellular immune response. A study is under-
way to detect whether this novel immunization
approach leads to reduction of Aβ burden in the
brains of mice.

Dodart et al. [95] investigated whether gene
delivery of the three common human apoE iso-
forms can directly alter the brain Aβ pathology in
PADPP transgenic mice. They demonstrated that
intracerebral gene delivery of the lentivirus encod-
ing apoE-constructs resulted in efficient and sus-
tained expression of human apoE in the
hippocampus as well as in a significant isoform-
dependent effect of human apoE on hippocampal
Aβ burden and amyloid formation. This experi-
mental data suggests that gene delivery of human
apoE2 may prevent and/or reduce brain Aβ burden
and the subsequent formation of neuritic plaques. It
is possible that the use of gene technology could
enable the construction of new transgenic animals
models suitable for further investigating the effi-
cacy and safety of immunotherapy [96].

15.3.4 Role of Adjuvant

The choice of appropriate adjuvant can
strengthen the antibody response to Aβ42 and shift
the type of the immune response generated (Th1
vs. Th2). To investigate the role of adjuvant in the
humoral and cell-mediated immune response to
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Aβ42, immunization with Aβ42 formulated in four
different adjuvants, complete Freund’s adjuvant
(CFA), incomplete Freund’s adjuvant (IFA), sapo-
nine QS21, alum, and TitreMax Gold (TMG), was
performed in BALB/c mice [25]. All adjuvants
induced a strong anti-Aβ42 antibody response after
the first boost, and the antibody titers increased
considerably after the second and third boosts with
fibrillar Aβ42. A significant difference in the mag-
nitude of the antibody response to Aβ42 immu-
nization with the different adjuvants was observed.
The highest titers of antibody were generated in
mice immunized and boosted with Aβ42 formu-
lated in QS21 followed by CFA/IFA > alum >
TMG.

To provide a relative measure of the contribu-
tion of Th2- and Th1-type humoral responses, the
ratios of IgG1 to IgG2a antibody generated in
response to Aβ immunization were examined. All
mice immunized with Aβ42 formulated in alum
had IgG1:IgG2a ratios >1, indicating that this
adjuvant induced primarily Th2-type antibody
response against Aβ42. On the other hand, CFA,
TMG, and QS21 shifted the humoral immune
responses toward a Th1 phenotype. Promising
results in terms of antibody generation and their
isotypes were obtained in B6D2F1 mice after
immunization with Aβ formulated in adjuvants
monophosphoryl lipid A (MPL)/trehalose dico-
rynomycolate (TDM), cholera toxin B subunit
(CTB), and LT (R192G) [97].

15.4 Other Suggested Treatment
Approaches Targeting Aβ

Amyloid binding ligands (ABL) has been sug-
gested as an alternative, non-immunological thera-
peutic strategy to delay the onset or slow the
progression of AD [98]. The ABL represent deriv-
atives of known amyloid-binding molecules such
as Congo red, chrysamine G (CG), and thioflavin S
(TS). The generated derivatives of CG and TS
specifically recognize fibrillar Aβ in vitro, arrest
the formation of Aβ fibrils, and contrary to the par-
ent substances, they cross the blood-brain barrier of
transgenic mice after intravenous administration. It
was demonstrated that CG derivative IMSB binds
to amyloid plaques composed of Aβ40 with much
higher affinity than Aβ42, whereas TS derivative

TDZM shows the opposite affinity. Furthermore,
IMSB but not TDZM bound selectively to neu-
rofibrillary tangles.

As the microglia activated by Aβ exert their
toxic effects through NMDA receptors in vitro, the
blocking of these receptors may be an effective
therapeutic approach [99]. It is possible that small,
bifunctional molecules that reveal antifibrillogenic
properties may be of relevance in vivo [100]. Zinc-
copper chelation resulting in the solubilization of
Aβ offers promise as a new therapeutic approach
for AD [101, 102]. Curcumin, the unconventional
NSAID/antioxidant, has multiple anti-amyloid
actions. Curcumin, targeting directly Aβ, may act
as a “peripheral sink” [103].

15.5 Conclusions

Although transgenic animals are not the most
favorable models of AD in terms of morphologic
and immunologic aspects, compelling evidence
exists that immunotherapy can prevent or reduce
neuropathology and improve cognitive perform-
ance. The preventative effects of immunization are
mediated by anti-Aβ antibodies, with titer, isotype,
and epitope specificity playing crucial roles in their
effects. Experimentally, the anti-Aβ antibodies
reduced or prevented plaque formation, acted
against aggregation and neurotoxicity, favored dis-
aggregation, and promoted recovery of neuronal
damage. Compelling experimental evidence also
indicates that Aβ immunization may be useful for
clearing aggregates of tau protein, another hall-
mark lesion of AD neuropathology, on condition
that the treatment occurs early in the disease pro-
gression. Clinically, the primary concern is the
safety of immunotherapy, especially the cause of
side effects, including subacute meningoencephali-
tis, microhemorrhages, and demyelination. With
regard to efficacy, slowing down of cognitive
deficits after suspension of vaccine administration
in a cohort study was observed. Modifications of
Aβ-antigen, synthesis of new immunogens, gener-
ation of epitope-specific monoclonal antibodies,
development of new adjuvants and delivery sys-
tems may contribute to future favorable efficacy
and safety profiles of immunotherapy. In this
respect, gentechnology seems to be a particularly
promising approach.
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16.1 Introduction

Transgenic mouse models have been created that
mimic many of the neuropathologic and behav-
ioral phenotypes of Alzheimer’s disease (AD).
Using mutations found in familial AD, the mouse
models exhibit some of the cardinal features of the
human disease. Wong et al. [1] and Higgins and
Jacobsen [2] have written reviews of this topic.
The current review extends a previous one [3] and
will describe the similarities in the neuropathology
of AD and the mouse models of the disease,
specifically regarding neurodegeneration, and also
describe treatments being developed using the
mouse models.

16.2 Neuropathology of
Alzheimer’s Disease

AD is characterized by extensive cortical and hip-
pocampal neuropathology [4], including extracel-
lular neuritic plaques composed of β-amyloid (Aβ)
protein. There are also neurofibrillary tangles
(NFTs), which accumulate within neurons in corti-
cal and subcortical regions. In addition, several
subcortical nuclei degenerate in AD, and many of
the affected nuclei have been shown to project to
the cerebral cortex. The first subcortical nucleus
found to degenerate in AD was the nucleus basalis
of Meynert [5–8], which contains cholinergic neu-
rons that project to cortical and hippocampal
regions [9]. Further study indicated that there is
also degeneration of other cortical-projecting sub-

cortical nuclei: for example, the serotonergic dorsal
raphe nucleus [10], the dopaminergic ventral
tegmental area [11], and the noradrenergic locus
coeruleus [12–14].

AD is also characterized by inflammation;
microglia are located near neuritic plaques and
undergo a phenotypic activation [15]. Microglial
activation results in the expression of a wide range
of proinflammatory molecules that may actively
damage/destroy neurons. Astrocytes are also acti-
vated in AD.

Neurogenesis is abnormal in AD. Adult neuro-
genesis occurs in brain structures that have a high
degree of neuronal plasticity, such as the hip-
pocampus and olfactory bulb [16–20]. In the adult
rat hippocampus, it is estimated that more than
9000 new neurons are born each day [21].
Although the number of newly born neurons is
thought to be much lower in human and non-
human primates [22–24], the presence of adult neu-
rogenesis in a wide range of species suggests a role
for new neurons in shaping the form and function
of the adult brain [25]. Adult neurogenesis is regu-
lated by myriad environmental and physiological
stimuli [26, 27]. In vivo, chronic stress, aging,
inflammation, and repeated exposure to drugs of
abuse decrease adult hippocampal neurogenesis
[28–31].

Neurogenesis takes place in the hippocampus of
the adult primate brain [17, 22, 24]. The first report
of neurogenesis in AD postmortem brain indicates
that it is abnormal [32] and is also abnormal in
other neurodegenerative diseases like Parkinson
disease [33] and Huntington disease [34].



16.3 Mouse Models of Alzheimer’s
Disease

Several transgenic mouse models of AD have been
developed. Although the various models exhibit
some of the neuropathologic features of the human
disease, so far none exhibits all of the features.
Table 16.1 summarizes the gene mutations used to
create nine AD mouse models and how the neu-
ropathology in the mouse models compares with
that in AD. The early mouse models of AD con-
tained mutant genes such as APP717 (PDAPP
mouse, [35]) and APP695 (Tg2576 mouse, [36]).
Additional bigenic models have been developed
that contain mutant APP and PS1 [37, 38], mutant
APP and tau [39], and a triple transgenic mouse
that carries mutant amyloid precursor protein
(APP), presenilin-1 (PS1), and tau [40]. Mice lack-
ing PS1 and PS2 function also exhibit some AD
neuropathology [41].

16.3.1 Amyloid-β Plaques

All APP and PS1 mouse models exhibit diffuse
and/or neuritic Aβ-plaques in the cortex and hip-
pocampus (Table 16.1), as illustrated in Figure 16.1.
Two APP mouse models have been shown to exhibit
an age-related development of neuritic plaques in
the cerebral cortex and hippocampus [35, 36].

One of the earliest AD mouse models was devel-
oped in 1995 by Games et al. [35]: the PDAPP
mouse. This mouse was generated using the
platelet-derived growth factor-β promoter driving a
human APP minigene encoding the APP717V-F
mutation associated with familial AD [42].
Between 6 and 9 months of age, hemizygous
PDAPP mice exhibit thioflavin-S-positive Aβ
deposits and neuritic plaques. The Aβ-containing
plaques are directly associated with reactive gliosis
and dystrophic neurites, suggesting that the
plaques may induce neurodegenerative changes.
Some of the Aβ plaque pathology in the dentate
gyrus appears to originate from nerve terminals
whose axons traverse the perforant pathway, as
lesions of this pathway in mouse models of AD
result in a reduction in hippocampal plaque pathol-
ogy [43, 44].

Protofibrils are precursors to the formation of
fibrilar neuritic plaques, and evidence suggests

that they play a role in the neurodegenerative
process. Protofibrils are short assemblies, 5–200
nm in length, that assemble into Aβ plaques. The
protofibrils have been shown to be neurotoxic [45,
46]. The Aβ oligomers, but not monomers, inhibit
hippocampal long-term potentiation in the rat [47,
48]. The homozygous PDAPP mouse contains
very high levels of soluble Aβ in both CSF and
plasma [49]. That there are region-specific
amounts of the oligomers in APP mouse models is
suggested by the regional differences in splice
variants of β-secretase enzyme, which may
explain why Aβ-extracellular plaques are formed
only in certain brain regions in AD and in AD
mouse models [50].

16.3.2 Neurofibrillary Tangles

In some of the AD mouse models that express APP
and/or PS mutations, there is an age-related hyper-
phosphorylation of tau protein, which comes after
the formation of Aβ-plaques [51–55]. However,
none of these models exhibit NFTs as defined by
the presence of paired helical filaments (PHF)
(Table 16.1). Kurt et al. [54] found evidence of
PHF-like structures in the 24-month-old APP/PS1
mouse but not in younger animals, however,
whether they represent PHF or Hirano bodies is not
clear. In hemizygous PDAPP animals up to 20
months of age, no PHFs were observed [35, 51].
Even in transgenic mice that express mutant APP,
PS1, and tau [40], and in those expressing APP and
tau [39], the NFTs that occur within neurons in the
neocortex and hippocampus are defined solely by
immunostaining with phospho-specific tau anti-
bodies and not by the presence of PHF. In a study
using conditional knock-out of PS1 in PS2 KO
mice (PS cDKO mice), there is hyperphosphoryla-
tion of tau in the cortex of 9-month-old mice and
marked cortical shrinkage [41]. These studies indi-
cate that mouse models containing mutant APP,
PS, and/or tau accumulate abnormally phosphory-
lated tau in an age-related manner, but whether
there is progression to PHF formation in older ani-
mals must await further study.

16.3.3 Glial Activation

In APP transgenic mouse models of AD that
exhibit neuritic plaques in the cortex and hip-
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pocampus, there is an activation of microglia in
regions containing neuritic plaques (Fig. 16.2) [35,
56, 57]. Also, there is activation of astrocytes in the
region of Aβ-containing plaques. Even in the mod-
els that lack mutant APP, astrocytes are still acti-
vated [41]. These data suggest that glial activation
and inflammation are not solely related to the pres-
ence of neuritic plaques.

16.3.4 Hippocampal and Cortical Cell
Loss

Modest neuron loss in hippocampus and cortex has
been reported in some AD mouse models.
Hemizygous 18-month-old PDAPP mice have been
examined for cortical cell loss, but there was none
even in regions that contained a high density of
plaques [58]. However, Calhoun et al. [59] reported
a moderate loss of cortical neurons in old APP23
mice. The cell loss was correlated with amyloid
plaque density in this study. In the PS cDKO
mouse, there is an age-related cortical atrophy and
thinning of the cortical mantle, although no
detailed quantitative cell counts have yet been
reported [41]. In addition, a hallmark of AD, a
marked shrinkage of the hippocampus, has been
observed in the PDAPP mouse [60, 61]. There is
also a loss of CA1 neurons in the hippocampus in
APP+PS1 mutant animals [38].

Neurodegeneration becomes prominent in APP
mouse models with impaired PS function. Using a
mouse model that expresses mutations in both APP
(KM670/671NL and V717I) and PS1 (M146L),
significant neurodegeneration has been reported in
the hippocampal CA1 region. The neurodegenera-
tion appears to be age-related [38], and the neurons
that are destined to degenerate accumulate Aβ pro-
tein within the somata [62]. These data suggest that
neurodegeneration can occur from intracellular
accumulation of Aβ protein. In mice with mutant
tau and APP, there are NFTs in entorhinal cortex
and hippocampus CA1 that increase in number

262 D.C. German

FIGURE 16.1. Aβ-containing plaques accumulate with
age in the PDAPP mouse brain. Brain sections were
stained with an antibody against human Aβ. At 2 years
of age, there are many mature and diffuse plaques in the
cerebral cortex and hippocampus (A). A lower number
of compacted plaques are also found in subcortical
regions (B), such as the caudate-putamen, and in white
matter regions. Compared with the 2-year-old mouse, the
number of compacted plaques is less in the 1-year-old
PDAPP mouse cortex and hippocampus (C), and there
are no plaques in subcortical regions like the thalamus
(D). There are very few Aβ-containing plaques in the 4-
month-old PDAPP brain (E) and none in the 2-year-old
non-transgenic control brain (not illustrated).
Abbreviations: CPu, caudate-putamen; df, dorsal fornix;
DG, dentate gyrus; fmj; forceps major corpus callosum;
RS, retrosplenial cortex; Th, thalamus. Marker, 150 µm
in (A), (C), (E), and 300 µm in (B) and (D). Reproduced
from German et al. [69].

FIGURE 16.2. Microglial cells surround neuritic plaques
in the PDAPP mouse cerebral cortex. Notice the numer-
ous microglial cells (arrow points to one of several) sur-
rounding the neuritic plaque (P). This section is stained
with an antibody against ChAT (black fibers), and the
section is counterstained with cresyl violet. Marker,
6 µm.



with age, especially in female transgenic animals
[39]. Detailed cell counting was not performed in
this study, however. It will be interesting to make
quantitative measurements of neurodegeneration in
cortical, hippocampal, and subcortical regions in
animal models that exhibit NFTs to determine
whether the NFTs play a role in the degeneration of
these neurons.

16.3.5 Cholinergic Cell Loss

Cholinergic nerve terminal abnormalities are com-
mon in the hippocampus and cortex of APP mouse
models [63–69]. Cholinergic degenerative changes
occur specifically in regions that eventually exhibit
neuritic plaque deposition (Fig. 16.3). In 2-year-old
homozygous PDAPP mice, for example, there is a
very high density of Aβ-containing neuritic
plaques in the cingulate cortex but only a low den-
sity in the striatum. At this same time point, there
is a significant reduction in cholinergic enzyme
activity in the cingulate cortex, but no significant
reduction in enzyme activity or cholinergic cell
density in the striatum [69].

Neocortical cholinergic nerve terminals degen-
erate prior to Aβ plaque deposition. There is a sig-
nificant reduction in the number of cholinergic
nerve terminal varicosities in young homozygous
PDAPP mice versus age-matched controls, at a
time when only a very few Aβ plaques are present
[69]. Other types of studies support this conclu-
sion. For example, behavioral impairments [70,
71], synaptic transmission deficits [72], and loss of
cortical nerve terminal markers in the PDAPP
mouse [73] precede the formation of neuritic
plaques in APP mouse models of AD. These find-
ings are consistent with the hypothesis that nerve
terminal toxicity comes from extracellular soluble
forms of Aβ.

There are markedly swollen ChAT-containing
cholinergic nerve terminal varicosities in proximity
to mature Aβ-containing plaques. The morpholog-
ical similarity to the APP-positive neuritic plaques
found in the PDAPP mouse [35] and human AD
tissue [74] indicates that neuritic dystrophy associ-
ated with Aβ deposition affects cortical cholinergic
nerve terminals. The swollen cholinergic nerve ter-
minals are more than twice the normal size, and
their density is extensive within the cortex and hip-
pocampus of 2-year-old homozygous PDAPP

mice. Similar morphological abnormalities have
been observed in cholinergic synapses in mice car-
rying a mutation in APP [64, 68] and double muta-
tions in APP and PS1 [63, 66, 67]. Likewise, the
swollen cholinergic nerve terminals have been
identified using antibodies against ChAT [66, 68,
69], the p75 nerve growth factor (NGF) receptor
[67], the vesicular acetylcholine transporter [63],
and immunostaining for acetylcholinesterase [64].
The swelling may be related to the induction of
brain-derived neurotrophic factor in plaque-associ-
ated glial cells in the APP mouse models [75].

Because cholinergic synaptic transmission is
important for learning and memory [76, 77] reduc-
tions in cholinergic nerve terminals may play a part
in the learning deficits observed in APP-transgenic
mice [78, 79] and in the PDAPP mouse [80]. The
severe cholinergic pathology in the PDAPP mouse
is similar to that in end-stage AD postmortem brain
where there are marked decreases in the density of
cholinergic nerve terminals and ChAT enzyme
activity [81, 82].

Neurodegeneration of the basal forebrain
cholinergic neurons is one of the cardinal features
of AD; however, in AD mouse models these neu-
rons do not degenerate. In the PDAPP mouse,
there is no reduction in the number of basal fore-
brain cholinergic somata in the aged homozygous
PDAPP mouse (Fig. 16.4) [69]. At 2 years of age,
there are a similar number of basal forebrain
cholinergic somata in homozygous PDAPP mice
versus 2-month-old homozygous PDAPP mice.
The basal forebrain cholinergic somata collec-
tively within the medial septal nucleus and in the
vertical and horizontal limbs of the diagonal band
of Broca project to the cingulate cortex and hip-
pocampus in the rodent [83, 84], both of which are
regions that contain dense accumulations of Aβ-
containing neuritic plaques in the 2-year-old ani-
mals. In hemizygous APP transgenic mice, there is
also no loss of basal forebrain cholinergic neurons
[64, 68], nor in APPSWE/PS1M146L transgenic mice
[67]. The lack of reduction in the number of basal
forebrain cholinergic somata in the APP mouse
models differ from that observed in AD patients,
perhaps because the pathologic process in the ani-
mals lasts for a much shorter time period than is
typical in man. It is also possible that expression
of genes or activation of proteins that play a role in
neuroprotection occur in the APP mouse models
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FIGURE 16.3. There is a marked decrease in cortical cholinergic markers in the PDAPP mouse. (A) The density of
nerve fibers, immunostained for ChAT, is decreased in the cingulate cortex and hippocampus of the 2-year-old
PDAPP mouse. ChAT fiber density is illustrated in the control 2-year-old mouse and in a 2-year-old PDAPP animal
in both the cingulate cortex and hippocampus. Arrows in the hippocampus of the PDAPP mouse illustrate CA1 and
CA3 regions, which contain clear losses of ChAT immunostained fibers. Abbreviations: CA1, CA1 field of the hip-
pocampus; CA3, CA3 field of the hippocampus; DG, dentate gyrus. Marker, 70 µm. (B) There is an age-related
decrease in the density of cholinergic varicosities in the PDAPP mouse. Homozygous PDAPP mice and age-matched
control mice were examined at 2 months, 4 months, 1 year, and 2 years of age. Data represent ChAT varicosity den-
sity (varicosities × 106/mm3) for individual animals in the cingulate cortex as a percent of the age-matched control
mice. (C) ChAT enzyme activity is significantly decreased in the cingulate cortex, but not in the striatum, of 2-year-
old PDAPP compared with age-matched control mice. Data represent values for individual mice (nmol mg protein−1

h−1). There was a significant 18% average reduction (asterisk) in enzyme activity in the cingulate cortex (Student’s t
=3.27, p < 0.04), but no change in enzyme activity in the striatum (Student’s t = 1.42). From German et al. [69].

that counter the neurotoxic effects of Aβ, as reported
for the APPsw mouse model of AD [85, 86]. It is also
possible that NFTs are important for neurodegener-
ation to occur, and thus it will be interesting to deter-

mine whether the cholinergic neurons degenerate in
mouse models that have NFTs [39, 40].

The loss of cholinergic nerve terminals in AD
mouse models, without a loss of basal forebrain



cholinergic somata, is consistent with the hypothesis
that the neuropathology begins in the cerebral cortex
and hippocampus prior to spreading in a retrograde
fashion to subcortical regions [87]. The density of
cholinergic nerve terminals in the cortex is reduced by
approximately 65% in the 2-year-old PDAPP mouse
versus age-matched non-transgenic controls, yet there

is no reduction in the number of basal forebrain
cholinergic somata that innervate this cortical region
[69]. Likewise, in 2-year-old APP23 mutant mice,
which carry a lower Aβ burden than in the homozy-
gous PDAPP mice, there is a 29% reduction in total
cholinergic fiber length in the cerebral cortex and no
loss of basal forebrain cholinergic somata [68].
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FIGURE 16.4. There is no age-related change in the number of basal forebrain cholinergic neurons in the PDAPP
mouse. Basal forebrain cholinergic neurons were examined in the medial septal (MS) nucleus, and in the vertical
(VDB) and horizontal limb (HDB) of the diagonal band of Broca. Representative sections, immunostained with an
antibody against ChAT, are illustrated at rostral (A), middle (B), and caudal (C) locations where the basal forebrain
cells were counted. Abbreviations: aca, anterior commissure, anterior; acp, anterior commissure, posterior. Marker,
300 µm. (D) There is no difference in the number of basal forebrain somata per tissue section throughout the rostral-
caudal 1.0 mm of the basal forebrain in 2-month-old versus 2-year-old PDAPP mice. Illustrated are the mean total
number of somata per tissue section ± SEM (n = 6/group) for sections from rostral (0 µm distance) to caudal (1000
µm) within the basal forebrain complex of the two mouse groups. From German et al. [69].



16.3.6 Noradrenergic Cell Loss

There is significant loss of LC neurons in AD
[12–14], however, it is not found in the one AD
mouse model reported to date, the PDAPP mouse
[88]. Comparing 2-year-old homozygous animals
with 2-month-old homozygous animals, the rostral-
caudal distribution of LC neurons is similar. It is
interesting that there is a cell shrinkage selectively
within the region of the LC where cells reside that
project to the cortex and hippocampus [88], sug-
gesting that these neurons are in the early stage of
degeneration. It will be interesting to determine
whether AD mouse models that exhibit NFTs will
exhibit loss of LC neurons that project selectively to
the forebrain regions where Aβ-pathology exists, as
in AD [13]. The NFTs, however, do not appear to be
responsible for all of the neurodegeneration that
occurs in mouse models as some loss of hippocam-
pal neurons occurs in APP mouse models that do
not express NFTs [38, 59]. In addition, in Neimann-
Pick type C (NPC) disease, there is neurodegenera-
tion and NFT formation in man [89]; however, in
the NPC mouse there is marked neurodegeneration
without tangle formation [90, 91].

16.3.7 Neurogenesis

With AD mouse models, changes in adult hip-
pocampal neurogenesis can actually be quantified,
in contrast with the qualitative approach required
in human postmortem studies. Using quantitative
analysis, adult neurogenesis has been observed to
be decreased in several AD mouse models.
Neurogenesis is decreased in an APP mouse
model of AD (Tg2576 mouse) in the subependy-
mal zone, a region of the brain that gives rise to
olfactory neurons [92]. Notably, adult neurogene-
sis is also decreased in the hippocampal subgranu-
lar zone (SGZ), which gives rise to dentate gyrus
neurons, in three different AD mouse models
[93–95]. The Tg2576 mouse [93] and the PDAPP
mouse [95] show an age-related decrease in SGZ
neurogenesis. In the homozygous PDAPP mouse,
neurogenesis is markedly decreased in the hip-
pocampus of 1-year-old animals, and there is a
38% decrease in the number of granule cells in the
dentate gyrus [95]. Given that the PDAPP mouse
model of AD shows decreased hippocampal vol-
ume, an age-related loss of cholinergic input to the

cortex and hippocampus (e.g., Ref. 69), and
deficits in hippocampal function [78, 96], it will be
interesting to determine whether treatments that
restore learning and memory and reduce Aβ-
plaque neuropathology can ameliorate the deficit
in hippocampal neurogenesis.

16.4 Future Treatment 
Possibilities

At least six strategies have been proposed for the
treatment of AD, which have been tested in AD
mouse models. The first potential therapeutic treat-
ment for AD used the PDAPP mouse model and
demonstrated that immunization with the human
Aβ42peptide caused a marked reduction in plaque
pathology when given to older animals. In addition,
when immunization was given to young animals, it
blocked the development of plaque pathology as the
animals aged [97]. Aβ-immunization also reduces
amyloid deposition in the Tg2576 mouse model of
AD [98]. Similar findings were reported after
immunization with antibodies against Aβ42. For
example, Janus et al. [99] found that Aβ antibody
immunization reduced memory impairment and
plaque pathology in an AD mouse model, and
Dodart et al. [49] found that immunization with Aβ-
antibody m266 reversed the memory impairment in
the PDAPP mouse even before there were reduc-
tions in Aβ-plaque neuropathology. Kotilinek et al.
[100] demonstrated that immunization with Aβ-
antibody BAM10 reversed the memory impairment
in the Tg2576 mouse model of AD. Because the
cognitive impairments are improved after such a
short antibody treatment, it is unlikely that the
improvement was due to structural changes in the
brain and perhaps reflects removal of extracellular
Aβ42 oligomers from the synaptic environment [47].

When the Aβ peptide immunization approach
was used on AD patients, aseptic meningoen-
cephalitis occurred in 6% of the patients, and the
trial was stopped [101, 102]. However, recent data
from a group of the immunized patients indicate
that after 1 year, the patients still had high levels
of Aβ42 antibody in blood, and the “dementia
score” was no different from a year previously
versus a decline in dementia score in control
patients that were not immunized [103]. These
data suggest that some form of immunization
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therapy may be of benefit to AD patients; how-
ever, the success may depend upon the degree of
cerebral amyloid angiopathy (CAA) in specific
patients. Recent data suggest that the antibody
target (N-terminal vs. central domain directed)
has an effect on the induction of CAA in the
PDAPP mouse [104], which may provide insight
into the optimal design for future Aβ-antibodies
for immunization therapy.

Epidemiological data indicate that long-term
nonsteroidal anti-inflammatory drug (NSAID)
treatment has dramatic effects on the incidence of
AD [105] resulting in a reduction of risk by as
much as 60–80% [106, 107]. The NSAID ibupro-
fen has been used in the Tg2576 mouse model of
AD and found to significantly decrease Aβ-neuritic
plaques, and decrease brain levels of Aβ42 peptide,
by a mechanism independent of its anti-inflamma-
tory effects [56, 108]. Similar beneficial effects of
reducing AD neuropathology have been found with
different NSAID drugs in an APP mouse model
(e.g., Ref. 109). However, additional work is
needed to identify which NSAIDs will provide
anti-AD effects because some compounds (e.g.,
celecoxib) increase brain Aβ42 in the brains of
Tg2576 mice via effects of γ-secretase [110].

Treatments have been proposed that would slow
the production of the Aβ42 peptide. Inhibitors of the
two proteases, β- and γ-secretase, which cleave Aβ
from APP have been developed. However, the cur-
rent β-secretase inhibitors do not easily cross the
blood-brain barrier, and γ-secretase inhibition can
potentially inhibit Notch signaling [111] and pro-
duce adverse effects. In mice that have signifi-
cantly reduced levels of PS function, there is
seborrheic keratosis and autoimmune disease
[112]. This treatment strategy will require careful
testing in AD mouse models.

Another approach for the treatment of AD
involves modulation of cholesterol homeostasis.
Chronic use of cholesterol-lowering drugs, the
statins, is associated with a lowered incidence of
AD [113, 114]. High-cholesterol diets have been
found to increase Aβ neuropathology in APP
mouse models [115, 116], and cholesterol-lower-
ing drugs reduce neuropathology in APP mice
[117]. However, a recent study questions the use of
statins in females because although lovastatin low-
ered cholesterol in both male and female Tg2576
mice, it increased the number of plaques in the hip-

pocampus and cortex of females but not males
[118]. In addition, the beneficial effects of statins
for AD may also derive from their ability to reduce
the microglial inflammatory response [119].

Another strategy for lowering Aβ concentrations
in brain is based on the observation that Aβ aggre-
gation is partly dependent upon the metal ions Cu2+

and Zn2+. Aβ deposition was reduced in APP trans-
genic mice treated with the antibiotic clioquinol,
which is a chelator of Cu2+ and Zn2+ [120]. Human
clinical trials with clioquinol are in progress.

Recent studies have also examined the effects of
environmental enrichment and dietary supplements
on AD neuropathology in mouse models of the dis-
ease. Two studies have examined whether volun-
tary exercise has an effect on Aβ plaque load and
brain peptide levels and also cognitive function
[121, 122]. One of the studies used the TgCRND8
mouse, which expresses two mutations in APP, and
found that 5 months of voluntary exercise
decreased amyloid plaque load and improved cog-
nitive function, and the effect was related to altered
APP processing [121]. The other study used the
Tg2576 mouse model of AD and found that 6
months of voluntary exercise improved cognitive
function, but amyloid plaque pathology was
enhanced [122]. The latter study demonstrates that
cognitive function is not positively correlated with
plaque pathology, and both studies support clinical
data showing that people leading a physically
active life have a lower incidence of AD. Finally,
using the aged Tg2576 mouse model of AD, it has
been demonstrated that increased intake of the
omega-3 polyunsaturated fatty acid docosa-
hexaenoic acid reduces brain levels of Aβ [123].

The current AD mouse models are being used
for testing putative AD therapies and their effects
on specific aspects of AD neuropathology. Several
AD mouse models exhibit an age-related reduction
in the density of cholinergic nerve terminal vari-
cosities without a reduction in the numbers of basal
forebrain cholinergic somata (e.g., Ref. 69). Will
early administration of therapies that reduce plaque
pathology and restore learning/memory in AD
mouse models, like NSAIDs and immunization
with Aβ42 peptides, block cholinergic nerve termi-
nal degeneration? In the bigenic AD mouse model
of Schmitz et al. [38], which exhibits degeneration
of CA1 hippocampal neurons, will some of the
above AD therapies block and/or reduce the mag-
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nitude of NFTs and neurodegeneration? Because
adult hippocampal neurogenesis is abnormal in AD
[32] and abnormal in APP mouse models [93, 95],
will therapies that reduce brain concentrations of
Aβ42 normalize neurogenesis? Once a mouse
model is developed that mimics all of the major
neuropathologic features of the human disease
(Aβ-plaques, NFTs, and neurodegeneration), these
and numerous other questions can be more fully
addressed in the process of finding novel therapies
for the treatment of the human condition.
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