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  Abstract   The current epidemic of obesity and overweight has caused a surge of 
interest in the study of adipose tissue formation. Much progress has been made in 
defi ning the transcriptional networks controlling the terminal differentiation of 
preadipocytes into mature adipocytes. However, the early steps that direct mesen-
chymal stem cells down the adipocyte lineage remain largely unknown. Similarly, 
the study of the developmental origin of adipocytes during embryogenesis has been 
largely disregarded until now. This review summarizes the surprising fi ndings that 
have recently emerged from in vivo lineage tracing studies, unraveling unsuspected 
developmental origins for white adipocytes. We will propose that the differential 
origin of adipocytes could also refl ect functional differences and site-specifi c regu-
lations of adipose tissue. This chapter also reports recent work that has led to the 
identifi cation of discrete immature cell populations from which white adipocytes 
are derived in mice. 

 A pool of adipocyte progenitors remains present in adipose tissue during adult 
life. This pool is responsible for the renewal of adipocytes and the potential of this 
tissue to expand in response to chronic energy overload. However, factors control-
ling proliferation and differentiation of human adipocyte progenitors are largely 
unknown. We will present stem cells derived from human adipose tissue (human 
Multipotent Adipose tissue Derived Stem (hMADS) cells) for studying prolifera-
tion and differentiation of adipocyte progenitors and will show that fi broblast growth 
factor 2 and activin A are key regulators of human adipocyte precursor self-renewal. 
Finally, we will discuss about the plasticity of hMADS cells.  

  Keywords   Adipocyte precursors  •  Stem cells  •  Adipose tissue  •  Adipocyte 
development      
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    Chapter 1   
 Adipocyte Precursors: Developmental Origins, 
Self-Renewal, and Plasticity       

       Christian   Dani       and    Nathalie   Billon      
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    1.1   Introduction 

 Two adipose tissues with different functions coexist in humans, i.e. white and brown 
adipose tissues. White adipose tissue (WAT) is mainly involved in energy storage 
and mobilization. WAT is localized in various sites of the body, has an enormous 
capacity for expansion, and excess of fat accumulation is associated with metabolic 
disorders. Brown adipose tissue is specialized in energy expenditure. It is a key ther-
mogenic organ, and brown adipocytes burn fat. We will concentrate in this chapter 
on adipocyte precursors (APs) giving rise to white adipocytes. 

 The main cellular components of WAT are mature adipocytes and stromal-
vascular cells, which include immune cells, endothelial cells, and APs. Expansion 
of WAT during normal development and in obesity is the result of an increase in 
size and number of adipocytes. As mature adipocytes do not divide in vivo, regen-
eration of adipocytes and the increase in adipocyte number depend on self-renewal 
of a pool of APs that remains present during adult life and that can be recruited to 
form new fat cells (Hauner et al.  1989 ; Spalding et al.  2008  ) . Therefore, charac-
terization of the cellular and molecular events involved in the generation of APs 
and the identifi cation of factors regulating their self-renewal could provide a 
means for better understanding the mechanisms that lead to hyperplasia and 
excessive development of adipose tissue. 

 Adipogenesis is described as a two-step process. The fi rst step consists in the 
generation of APs, also named preadipocytes, or adipose-derived stem cells depend-
ing on their potential to differentiate in adipocyte only or in additional cell types. 
The second step involves the terminal differentiation of these precursors. Key events 
controlling terminal differentiation of preadipocytes into adipocytes have been 
identifi ed. Transcription factors such as CCAAT/enhancer binding proteins (C/
EBPs) and peroxisome proliferator-activated receptors (PPARs) are known to play 
a critical role in this process, whereas Wnt and Hedgehog signaling pathways are 
critical regulators of terminal differentiation (Rosen and Spiegelman  2000 ; Longo 
et al.  2004 ; Fontaine et al.  2008  ) . Terminal differentiation has been extensively stud-
ied (Rosen and MacDougald  2006  )  and will not be reviewed in this chapter. We will 
focus on the earliest steps of adipogenesis, i.e. the generation of APs and regulators 
of their self-renewal and plasticity (Fig.  1.1 ).   

    1.2   Developmental Origins of Adipocyte Precursors 

 Strikingly, the study of the developmental origin of APs has received very little 
attention until now. APs are generally described to derive from mesenchymal stem 
cells (MSCs), which themselves are thought to arise from mesoderm. It is worth 
noting that during development of higher vertebrates, the mesoderm is not the only 
germ layer source of mesenchymal cells. In the head, for instance, the facial bones 
have been shown to derive from the neural crest (NC). The NC is a vertebrate cell 
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population that arises from the neuroectoderm. After neural tube closure, NC cells 
(NCCs) undergo an epithelio–mesenchyme transition and migrate to diverse regions 
in the developing embryo, where they differentiate into various cell types. In the 
head and neck, the NC also yields mesenchymal precursors differentiating into con-
nective tissue cells (reviewed in Dupin et al.  2006  ) . Adipogenesis of mouse embry-
onic stem (mES) cells in vitro provided a powerful model to investigate the earliest 
steps of adipocyte development and revealed the surprising conclusions regarding 
the ontogeny of such cells in the NC. 

    1.2.1   Adipocyte Development in Mouse Embryonic Stem Cells 

 Mouse embryonic stem cells (mESCs) are proliferating, pluripotent stem cells that 
have been isolated from the epiblast of blastocyst-stage mouse embryos. They can 
be propagated indefi nitely at the undifferentiated state in vitro. Furthermore, when 
transplanted into a mouse blastocyst, mESCs integrate into the embryo and contrib-
ute to all cell lineages, including germ cells (Smith  1992  ) . When aggregated to form 
embryoid bodies (EBs) in vitro, they undergo differentiation in ectodermal, meso-
dermal, and endodermal derivatives (Keller  1995  ) . In addition, ESCs are easily 
genetically modifi able and can be produced in large numbers, thus offering a unique 
cell culture model to study the earliest steps of mammalian development. Directed 
differentiation of mESCs towards the adipocyte lineage was fi rst accomplished in 
1997 by Dani et al.  (  1997  ) , who showed that functional adipocytes could be obtained 
when mESCs were exposed to appropriate extracellular cues. In this system, the 
generation of adipocytes is dependent on an early and transient exposure of EBs to 

  Fig. 1.1    Different steps of the adipocyte development. Adipose tissue is composed of mature 
adipocytes and stromal-vascular cells including adipocyte precursors (APs). Key events control-
ling terminal differentiation of APs have been identifi ed. The developmental origins of APs, factors 
regulating AP self-renewal, as well as the plasticity of APs are discussed in this chapter       
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retinoic acid (RA) and a subsequent treatment with conventional adipogenic factors 
(e.g., insulin, triiodothyronine, and rosiglitazone). Both, lipogenic and lipolytic 
activities, as well as high levels of expression of adipocyte-specifi c genes, could be 
detected in mESC-derived adipocytes. Remarkably, the sequence of expression of 
key transcription factors known to govern preadipocyte differentiation, such as 
members of the C/EBP and the PPAR families, was closely conserved during mESC 
adipogenesis. Thus, this model has provided a powerful system to address the 
different steps of adipocyte development (Wdziekonski et al.  2003,   2006,   2007 ; 
Billon et al.  2010 ; Schulz et al.  2009 ; Carnevalli et al.  2010 ; Tong et al.  2000 ; 
Takashima et al.  2007  ) . More recently, adipocytes have been obtained from human 
ESCs and from human induced pluripotent stem (iPS) cells using a protocol based 
on mESC studies (e.g., Xiong et al.  2005 ; Taura et al.  2009 ; T. Mohsen-kanson and 
C. Dani, unpublished data). 

    1.2.1.1   Mesenchymal Stem Cells and Adipocytes Developing 
from RA-Treated mESCs Derive from the Neuroectoderm, 
Rather Than from the Mesoderm 

 In a fi rst attempt to unravel the events underlying the formation of mesenchymal 
derivatives in RA-treated mES cells, Kawaguchi et al.  (  2005  )  examined the expres-
sion of various mesodermal and mesenchymal markers in early EBs. Surprisingly, 
they noticed that treatment with RA resulted in a sharp reduction in several meso-
dermal markers, as well as in the suppression of cardiomyocyte formation, suggest-
ing that RA reduces overall mesoderm formation in mESCs (Kawaguchi et al. 
 2005  ) . Since at high concentrations, RA was shown to promote neural differentia-
tion of mESCs and since some mesenchymal tissues are known to be generated by 
the NC, which itself derives from neuroectoderm, these authors then analyzed the 
expression of various NC markers in mES cells. They showed that  sox9 ,  sox10 , 
 foxD3 , and  runx2 , which all play an important role in NC formation and/or mesen-
chymal condensation, were upregulated upon RA treatment. Together, these data 
suggest that neuroectoderm/NC is the major source of mesenchymal cells in 
RA-treated mESCs. To test this hypothesis with respect to adipocytes, we have 
developed a genetic lineage selection approach in mESCs, which is outlined in 
Fig.  1.2 . We used genetically engineered, selectable  Sox2- b geo/oct4-tk  mESCs that 
allow selection for neuroepithelial precursors (Sox2 + ) and eliminate residual undif-
ferentiated mESCs (Oct4 + ). After induction of neural differentiation via RA treat-
ment, highly enriched populations of neuroepithelial cells were selected in the 
presence of G418 and Gancyclovir. We then exposed them to adipogenic signals 
and showed that indeed, they could give rise to mature adipocytes within 14 days. 
Interestingly, a signifi cant increase in  sox9 ,  sox10 , and  FoxD3  mRNAs was observed 
prior to adipocyte formation, suggesting that NC-like cells present in the selected 
population could undergo adipocyte differentiation (Billon et al.  2007,   2008  ) . 
Together, these data suggest that neuroectoderm/NC is the major source of adipo-
cytes, at least in mESCs exposed to RA (Fig.  1.2a ).  
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 These fi ndings were later corroborated by Takashima et al. who used an elegant 
approach to unravel the NCC origin of MSCs in both mESC culture and during 
mouse development (Takashima et al.  2007  ) . All together, these studies suggest that 
MSCs, as well as adipocytes generated from RA-exposed mES cells, arise from the 
neuroectoderm/NC, rather than from the mesoderm.   

    1.2.2   Study of Adipocyte Precursor Developmental Origins 
in Quail and Mouse Embryos 

 To better understand adipocyte lineage specifi cation from the NC, we checked 
whether adipocytes could be obtained from NCCs isolated from a normal develop-
ing embryo. We used primary cultures of quail NCCs, since they have been instru-
mental in establishing the developmental potentialities of the NC. NCCs were 
isolated from both the cephalic and thoracic level and maintained in culture media 
permissive for adipocyte differentiation (Rodriguez et al.  2004  ) . This analysis 
revealed that typical mature adipocytes could readily be produced from cephalic 

  Fig. 1.2    Subset of adipocytes that originated from the neural crest. ( a ) Genetic selection strategy 
used for the generation of adipocyte of neuroepithelium origin in mESCs. ( b ) Adipogenic potential 
of cephalic and truncal NCCs isolated from quail embryo. ( c ) Permanent genetic lineage-labeling 
approaches used in mouse to reveal NC-derived adipocytes in adult cephalic adipose tissues       
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NCCs and, to a lesser extent, from truncal NCCs (Billon et al.  2007  ) . Therefore, 
quail NCCs from both the cephalic and the thoracic level exhibit an adipogenic 
potential in vitro (Fig.  1.2b ). Finally, we have used a lineage tracing approach in 
mouse to address the origin of the adipocyte lineage in vivo and to provide direct 
evidence for the contribution of the NC. We have investigated whether subsets of 
adipocytes originate from the NC using  Sox10-cre /yfp transgenic mice to map NC 
derivatives in vivo because to date, Sox10 is considered as the best bona fi de NC 
marker. Indeed, Sox10 is strongly and specifi cally expressed in the NC from early 
embryonic development and is not expressed in mesoderm. This study revealed 
adipocytes derived from NC in cephalic adipose depots, between the salivary gland 
and the ear area. In contrast, no NC-derived adipocytes could be detected in truncal 
adipose depots, including subcutaneous, perirenal, periepididymal, and interscapu-
lar tissues (Fig.  1.2c ). These data therefore provide new information about the ontog-
eny of the adipocyte lineage and demonstrate that during normal development, a 
subset of adipocytes in the face originates from NC, and not from mesoderm (Billon 
et al.  2007  ) . The role of RA in the early steps of adipocyte development remains to 
be demonstrated in vivo in mouse. Interestingly, RA has recently been shown to be 
required for differentiation of cephalic NCCs into adipocytes in developing zebrafi sh 
embryos (Li et al.  2010  ) , which is reminiscent of the role of RA in mESC adipogen-
esis. Due to the lack of specifi c markers of undifferentiated APs in the studies 
described above, these cells were functionally traced by the appearance of adipo-
cytes, or identifi ed a posteriori, by their potential to differentiate into adipocytes. The 
AP phenotype allowing their identifi cation in a prospective manner, as well as their 
tissue localization in adult mice, has recently been addressed (see below).   

    1.3   Cellular Origins and Tissue Localization 
of Adipocyte Precursors 

 Recently, Graff and Friedman laboratories performed critical experiments to iden-
tify and localize APs in mouse adipose tissue. Rodeheffer et al. used Fluorescence 
Activated Cell Sorting (FACS)    analysis to isolate various cellular subpopulations 
from stromal-vascular fraction (SVF) and tested their adipogenic potential both 
in vitro and in vivo after transplantation in lipoatrophic A-Zip mice. By this approach, 
the authors identifi ed mouse APs in the SVF of adipose tissue as lin − /CD34 + /CD29 + /
sca-1 + /CD24+ cells (Rodeheffer et al.  2008  ) . Whether APs originated from NC or 
from mesoderm display the same immunophenotype remains to be determined. By 
a different approach, based on the expression of PPAR g  in SVF of adipose tissue, 
(Tang et al.  2008 ) isolated undifferentiated cells able to undergo adipogenesis 
in vitro and in vivo in  nude  mice. These cells express markers of preadipocytes 
but not those of mature adipocytes, indicating that PPAR g  can also be used to trace 
APs. Interestingly, these cells are CD45 − /Ter119 − /CD34 + /sca1 + , indicating that they 
are similar, if not identical, to cells isolated by Friedman laboratory. Thanks to 
the expression of a reporter gene under the control of PPAR g  promoter, APs have 
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been localized in the mural cell compartment of adipose tissue vasculature in mice 
(Tang et al.  2008  ) . The immunophenotype of human APs has not yet been fully 
characterized, although they have been shown to reside in the CD34 + /CD31 −  sub-
population of stromal-vascular cells of adipose tissue (Sengenes et al.  2005  ) . 

 APs are resident in adipose tissue, but other sources have been recently reported. 
Bone marrow appeared to be a source of APs in the adipose tissue as it has been 
reported that a small subpopulation of adipocytes in WAT might arise from bone 
marrow progenitors (Crossno et al.  2006  ) . More recently, a hematopoietic origin of 
APs has also been proposed. Indeed, clonal analysis and cell sorting-based studies 
of hematopoietic progenitors suggested that adipocytes could be derived from 
hematopoietic stem cells via progenitors for monocytes/macrophages or via myel-
oid intermediates in mice. These conclusions are supported by previous studies 
showing that the phenotypes of adipocyte and macrophages are closed. Interestingly, 
hematopoietic-derived adipocytes seem to accumulate with age in visceral fat depot, 
where they display higher expression of infl ammatory genes than “conventional” 
adipocytes (Sera et al.  2009 ; Majka et al.  2010 ; Cousin et al.  1999  ) . The contribu-
tion of these nonresident APs on metabolic diseases remains to be determined.  

    1.4   Do Adipocyte Precursors Produced from Different Sources 
Differ in Their Biological Properties? 

 It is well established that APs isolated from different depots display different fea-
tures in terms of proliferation, differentiation, and gene expression profi les (Tchkonia 
et al.  2007 ; Gesta et al.  2006  ) . In addition, adipocytes derived from these APs have 
different functional properties and have different contributions to metabolic dis-
eases (Montague et al.  1998  ) . The cellular and molecular mechanisms underlying 
these fat depot-dependent differences are currently unknown. However, several 
observations suggest that developmental mechanisms contribute to regional varia-
tion in function. Therefore, studies on the origins of APs open at least two ques-
tions: are adipocytes derived from different developmental origins or cellular 
sources functionally different? And what are the developmental origins of APs in 
humans? As adipocytes can be now generated from human ESCs and from human 
iPS cells (Xiong et al.  2005 ; Taura et al.  2009 ; T. Mohsen-kanson and C. Dani, 
unpublished data), studies of APs properties related to their cellular and develop-
mental origins can be now addressed in human cellular models.  

    1.5   Self-Renewal of Human Adipocyte Precursors 

 A pool of APs remains present in adipose tissue during adult life. This pool is 
responsible for the renewal of adipocytes and the potential of this tissue to expand 
in response to chronic energy overload. Therefore, the identifi cation of factors 
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regulating self-renewal of APs cells could provide a means for better understanding 
the mechanisms that lead to hyperplasia and excessive development of adipose 
tissue and could ultimately be translated into clinical interventions. Ex vivo and 
in vitro cellular models are used to gain insight into cellular and molecular mecha-
nisms of early steps of adipogenesis. 

    1.5.1   Cellular Models to Investigate Self-Renewal of Human 
Adipocyte Precursors 

 Three types of AP populations can be isolated from the SVF of human adipose 
tissue (Fig.  1.3 ) to study the regulation of human adipogenesis. Primary cultures of 
preadipocytes derived from SVF of adipose tissue, although being able to differen-
tiate into adipocytes in vitro, undergo a dramatic decrease in their ability to differ-
entiate, and replicative senescence occurs with serial subculturing, making it 
diffi cult to investigate molecular mechanisms in a fully reproducible manner. It has 
been clearly demonstrated that native APs are contained in the CD34 + /CD31 −  cell 
population. This population can be easily isolated from the SVF using the immu-
noselection/depletion protocol as previously described (Bourlier et al.  2008  ) . 
Finally, human Multipotent Adipose tissue Derived Stem (hMADS) cells are adi-
pocyte progenitors isolated from the SVF of infant adipose tissues (Rodriguez et al. 
 2005a  ) . As these cells display the characteristics of MSCs, they have been termed 
hMADS cells.  

  Fig. 1.3    Three types of adipocyte precursors isolated from the stromal-vascular fraction of human 
adipose progenitors       
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    1.5.1.1   Human Adipose-Derived Stem (hMADS) Cells 

 hMADS cells exhibit the capacity to self-renew, as cells can be expanded in vitro for 
more than 160 population doublings (i.e., around 30 passages) while maintaining a 
normal diploid karyotype. They also differentiate under serum-free adipogenic con-
dition into cells able to exhibit characteristics of human fat cells (Rodriguez et al. 
 2004  ) . Within 14 days after induction of adipocyte differentiation, more than 90% 
of cells accumulate intracellular lipids present as multiple droplets. These cells 
express the major molecular markers, key transcription factors, and nuclear recep-
tors of human white adipocytes. Then, after differentiation, they exhibit the panoply 
of lipolytic responses, which are characteristic of human adipocytes. Interestingly, 
hMADs cells respond to the atrial natriuretic peptide, a unique characteristic both 
in vitro and in vivo of adipocytes from primates (Lafontan et al.  2000  ) . An impor-
tant feature of differentiated hMADS cells is their ability to secrete leptin and 
adiponectin within values reported for isolated human adipocytes. More recently, 
hMADs cells have been described as a faithful model to study human fat cell metab-
olism (Poitou et al.  2009 ; Bezaire et al.  2009  ) . Altogether, these data indicate that 
hMADS cells commit to the adipose lineage at a high rate and differentiate into cells 
that display a unique combination of properties similar, if not identical, to those of 
native human adipocytes making them a powerful cellular model to investigate 
human adipogenesis.   

    1.5.2   Fibroblast Growth Factor 2    (FGF2) and Activin A, Both 
Secreted by hMADS Cells, Are Key Regulators 
of Self-Renewal 

 Regarding factors regulating proliferation and differentiation of hMADS cells, it 
has been shown that FGF2 plays a crucial autocrine role (Zaragosi et al.  2006  ) . 
Analysis of FGF2 secretion revealed that FGF2 is exported to hMADS cell surface 
without being released into the culture medium, suggesting a strictly autocrine loop. 
Indeed, treatment of FGF2-expressing hMADS cells with PD173074, a specifi c 
FGF receptor inhibitor, decreased dramatically their clonogenicity and differentia-
tion potential. Thus, hMADS cells express a functional autocrine FGF loop that 
allows maintenance of their self-renewal ability in vitro. Inhibition of Mitogen-
Activated Protein Kinase (MEK1)    reduced the clonogenic potential of hMADS 
cells but did not affect their differentiation potential, indicating that the Extracellular 
Signal Regulated Kinase (ERK)   1/2 signaling pathway is partly involved in FGF2-
mediated self-renewal. FGF1 is also expressed in human adipose tissue (Widberg 
et al.  2009  ) . However, the involvement of FGFs in human WAT growth remains to 
be investigated. Activin A is expressed in the SVF of human adipose tissue and is 
secreted by undifferentiated hMADS cells and by preadipocytes isolated from dif-
ferent human fat depots. However, its expression is down regulated as soon as cells 
undergo adipocyte differentiation and is not only a marker of undifferentiated cells 
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but plays also a functional role in proliferation as observed by activin A supple-
mentation and activin A knockdown expression (Zaragosi et al.  2010  ) . Altogether, 
data support the hypothesis that activin A represents a novel crucial player control-
ling self-renewal of human adipose progenitors. We have proposed a model in which 
activin A is involved in the maintenance of the pool of adipose progenitors in adi-
pose tissue of lean subjects by promoting proliferation and inhibiting differentia-
tion. The molecular mechanisms involved in activin A effects have been identifi ed. 
Sustained activation or inhibition of the activin A pathway impairs or promotes 
adipocyte differentiation via C/EBP b -LAP and Smad2 pathway, respectively, in an 
autocrine/paracrine manner (Zaragosi et al.  2010  ) . It has been proposed recently 
that the bone morphogenetic protein pathway, which shares signaling components 
with the activin pathway, regulates both adipose cell fate determination, differentia-
tion of committed preadipocytes, as well as function of mature adipocytes in mouse 
models (Schulz and Tseng  2009  ) . Altogether, these data support the hypothesis that 
the Smad pathway regulates different steps of adipogenesis. Therefore, we propose 
a model in which FGF2 and activin A, both secreted by undifferentiated cells, are 
involved in the maintenance of the pool of APs in adipose tissue by promoting pro-
liferation and inhibiting differentiation. 

    1.5.2.1   Regulation of AP Self-Renewal by Obese Adipose Tissue 
Microenvironment 

 Obesity is associated with new macrophages that are recruited into adipose tissue 
and is accompanied by chronic low-grade infl ammation in this tissue (Weisberg 
et al.  2003 ; Xu et al.  2003  ) . Interestingly, an increase in the proportion of CD34 + /
CD31 −  cells exhibiting proliferative potential is observed in obese adipose tissue 
(Maumus et al.  2008  ) . In addition, it has been recently reported that the differentia-
tion potential of human preadipocytes is inversely correlated with obesity, whereas 
the pool of precursors cells was positively correlated to BMI (Permana et al.  2004 ; 
Isakson et al.  2009  ) , suggesting that the obese microenvironment is capable of 
inducing proliferation of human preadipocytes while inhibiting their differentia-
tion. Concordantly, human macrophages conditioned medium stimulates prolifera-
tion of human preadipocytes in vitro (Lacasa et al.  2007 ; Keophiphath et al.  2009  ) . 
Therefore, a model of cross talk between APs and macrophages, in which immuno-
infl ammatory cells that accumulate within adipose tissue with obesity might con-
tribute to fat mass enlargement through paracrine effects on APs, can be proposed. 
We observed that levels of secreted activin A and of FGF2 are dramatically increased 
in hMADS cells maintained in the presence of factors secreted by macrophages 
isolated from obese adipose tissues. Adipose-tissue macrophage secreted factors 
involved in stimulation of activin A expression remain to be identifi ed. IL-1 b  and/
or TNF a  are potent candidates as previous studies have shown in other cell models 
that activin A secretion is increased upon treatment with these two cytokines 
(Mohan et al.  2001  ) . Therefore, we propose a model in which FGF2 and activin A, 
both secreted by undifferentiated cells and induced by signals secreted from 
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adipose tissue-derived immune cells, are involved in the maintenance of the pool 
of APs in adipose tissue by promoting proliferation and inhibiting differentiation. 
The disappearance of macrophages (Cancello et al.  2005  ) , and by consequences, 
the reduction of activin A levels in adipose tissue, for instance as a consequence of 
dieting, might be favorable to the formation of additional adipocytes from adipose 
progenitors upon ending dietary restriction, a situation reminiscent of the “yoyo” 
phenomenon. Related with the concept of adipose tissue expandability (Sethi and 
Vidal-Puig  2007  ) , blocking activin A signals that prevent differentiation of APs in 
adipose tissue of obese patients could represent a new therapeutic avenue to increase 
the number of new adipocytes and therefore to decrease the accumulation of fat in 
ectopic tissues not specialized to store large amount of triglycerides. Further studies 
are required to validate activin A as a candidate biomarker for obesity and associ-
ated metabolic complications. 

 Finally, we would like to point out that APs are also present in skeletal muscles. 
In 2010, two papers have been published showing a critical role of undifferentiated 
APs in muscle of mouse models (Uezumi et al.  2010 ; Joe et al.  2010  ) . Proliferation 
and differentiation of APs seem to be controlled in healthy skeletal muscle. However, 
in several pathological situations including obesity, type II diabetes, aging, and 
muscular dystrophies (Wren et al.  2008 ; Goodpaster and Wolf  2004  ) , APs undergo 
adipocyte differentiation, and adipocytes accumulate and replace a large proportion 
of muscle fi bers. As previously described in human adipose tissue, APs are con-
tained in the CD34 +  cell population of human skeletal muscle (Pisani et al.  2010  ) . 
However, it is not know whether skeletal muscle and adipose tissue APs are identi-
cal. Nevertheless, clinical knowledge of muscular dystrophy disease may lead to the 
identifi cation of new regulators of AP biology.    

    1.6   Plasticity of Human Adipocyte Precursors 

 Zuk et al. fi rst reported that human adipose tissue contains a population of unchar-
acterized cells, harvested by liposuction, able in vitro to undergo adipogenic, osteo-
genic, chondrogenic, and myogenic differentiation (Zuk et al.  2001,   2002  ) , 
suggesting that APs could be multipotent stem cells. A few years later, isolation and 
characterization of hMADS cells demonstrated that human adipose tissue is a rich 
source of multipotent stem cells (Rodriguez et al.  2005a,   b  ) . hMADS cells display 
the potential to undergo differentiation into adipocytes, osteoblasts, and chondro-
cytes at the single cell level (Rodriguez et al.  2005a ; Zaragosi et al.  2006  )  (Fig.  1.4 ). 
The plasticity of hMADS cells led us to investigate their therapeutic potential. 
Actually, transplantation of hMADS cells into  mdx  mouse, an animal model for 
Duchenne muscular dystrophy, results in substantial expression of human dystro-
phin on a long-term basis, and engraftment takes place in non-immunocompromised 
animals (Rodriguez et al.  2005a  ) . hMADS cells have a weak intrinsic myogenic 
potential. However, ectopic expression of MyoD1 dramatically increases the ability 
of hMADS cells to form myotubes in vitro and in vivo (Goudenege et al.  2009  ) . 
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When transplanted with a scaffold, hMADS cells are able to form ectopic bone in 
mouse, suggesting that cells can be used for bone repair (Elabd et al.  2007  ) . More 
recently, culture conditions to turn hMADSc-white adipocytes into brown adipo-
cytes have been reported (Elabd et al.  2009  ) . Upon chronic exposure to a specifi c 
PPAR g  agonist, but not to a PPAR b / d  or PPAR a  agonists, white adipocytes derived 
from hMADS cells are able to switch to a functional brown phenotype by express-
ing uncoupling protein 1 (UCP1)    protein. This switch is accompanied by an increase 
in oxygen consumption and uncoupling. The existence of a common precursor for 
white and brown adipocytes has been a debate for several years. Recently, elegant 
experiments in mouse have reported the surprising fi ndings of a common precursor 
between brown adipocytes and skeletal myocytes while white adipocytes derived 
from a different lineage (Timmons et al.  2007 ; Seale et al.  2009  ) . These studies also 
report the existence of a second type of brown adipocytes, localized in WAT, that do 
not derive from an adipocyte/myocyte precursor. The ability of hMADS cells to 
 differentiate into both white and brown adipocytes strongly suggests that a common 
precursor for these two types of adipocytes may exist in humans.  

  Fig. 1.4    Plasticity of human adipose derived Stem (hMADS) cells. hMADS cells are isolated 
from the stromal-vascular fraction of young donor adipose tissues. In vitro, they can undergo dif-
ferentiation into osteoblasts, skeletal myocytes (after ectopic expression of MyoD gene), and white 
adipocytes, which can turn into brown adipocytes. In vivo, they are able to contribute to muscle 
regeneration after transplantation into mdx mice or to form ectopic bone after subcutaneous 
transplantation       
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 Altogether, the plasticity of APs suggests that these cells could be an important 
tool for cell-mediated therapy. They also represent an invaluable cell model to 
screen for drugs stimulating the formation and/or the uncoupling capacity of human 
brown adipocytes that could help to dissipate excess caloric intake of individuals.      
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  Abstract   Adipocyte differentiation is a highly controlled process that has been 
extensively studied for the last 25 years. Two different kinds of in vitro experimental 
models, essential in determining the mechanisms involved in adipocyte prolifera-
tion, differentiation and adipokine secretion, are currently available: preadipocyte 
cell lines, already committed to the adipocyte lineage, and multipotent stem cell 
lines, able to commit to different lineages including adipose, bone and muscle 
lineage. Many different events contribute to the commitment of a mesenchymal 
stem cell into the adipocyte lineage, including the coordination of a complex net-
work of transcription factors, cofactors and signalling intermediates from numerous 
pathways. New fat cells constantly arise from a preexisting population of undiffer-
entiated progenitor cells or through the dedifferentiation of adipocytes to preadipo-
cytes, which then proliferate and redifferentiate into mature adipocytes. Analysis of 
adipocyte turnover has shown that adipocytes are a dynamic and highly regulated 
population of cells. Adipogenesis is a multi-step process involving a cascade of 
transcription factors and cell-cycle proteins regulating gene expression and leading 
to adipocyte development. Several positive and negative regulators of this network 
have been elucidated in recent years. This review is focused in the main molecular 
and cellular processes associated with adipocyte differentiation, including tran-
scriptional factors and cofactors and extranuclear modulators. The role of epige-
netic factors, microRNAs and chronobiology in adipogenesis is also summarized.  

  Keywords   Adipocyte  •  Adipogenesis regulatory factors  •  PPAR- g   •  C/EBP- a   
•  Preadipocyte cell lines  •  Adipose-derived stem cells  •  Mesenchymal stem cells      
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    2.1   Introduction 

 Adipose tissue is characterized by a marked cellular heterogeneity: among its 
cellular components, we can fi nd adipocytes, preadipocytes, fi broblasts, endothelial 
cells and multipotent stem cells able to differentiate into several cell types. Overall, 
fat tissue consists of approximately one-third of mature adipocytes. The remaining 
two-thirds are a combination of small mesenchymal stem cells (MSCs), T regula-
tory cells, endothelial precursor cells, macrophages and preadipocytes in various 
stages of development. Preadipocytes have the ability to proliferate and differentiate 
into mature adipocytes, conferring adipose tissue a constant functional plasticity, 
which determines its ability to expand throughout the entire lifespan. 

 Adipocytes, also known as fat cells and lipocytes, are found in stereotypical 
depots throughout the body and mixed with other cell types in some other positions, 
such as loose connective tissue. There are two kinds of adipose tissue, white adipose 
tissue (WAT) and brown adipose tissue (BAT), both of which differ in a few signifi -
cant properties. Most of our understanding about adipocyte differentiation and 
adipogenesis comes from in vitro studies of fi broblasts and preadipocytes (Rosen 
and MacDougald  2006  ) . White adipocytes contain single, large lipid droplets that 
appear to comprise the majority of cell volume, while the cytoplasm and nucleus are 
found at the cell periphery. Preadipocytes that resemble fi broblasts are cultured and 
after differentiation is induced, the cell cultures may be used for metabolic studies. 
Brown adipocytes, which are characterized by multilocular lipid droplets and high 
mitochondrial content, are derived from distinct adipose tissue depots that are highly 
vascular and innervated. 

 Obesity can be characterized into two main types, hyperplasic (increase in adi-
pocyte number) and hypertrophic (increase in adipocyte volume). Hypertrophy, to a 
certain degree, is characteristic of all overweight and obese individuals. Hyperplasia, 
however, is correlated more strongly with obesity severity and is most marked in 
severely obese individuals (Hirsch and Batchelor  1976  ) . Prolonged periods of 
weight gain in adulthood may result in an increase in adipocyte number. Indeed, 
animal studies suggest that increases in adipocyte size precede increases in adipo-
cyte number. Adipose hypertrophy might be diabetogenic, with two independent 
prospective studies showing that adipose hypertrophy is an independent risk factor 
for developing type 2 diabetes (Weyer et al.  2000 ; Lonn et al.  2010  ) . 

 At the cellular level, obesity was originally considered an hypertrophic disease 
resulting from an increase in the fat cell number or the size of individual adipocytes. 
New fat cells constantly arise from a preexisting population of undifferentiated pro-
genitor cells or through the dedifferentiation of adipocytes to preadipocytes, which 
then proliferate and redifferentiate into mature adipocytes. In both cases, the gen-
eration of new fat cells plays a key role in the development of obesity. Given that in 
adulthood, adipocyte number stays constant, and weight changes are predominantly 
accompanied by changes in adipocyte volume, one may conclude that at some criti-
cal point in development, the fi nal fat cell number is attained, and after this point, no 
fat cell turnover occurs. Analysis of adipocyte turnover using carbon-14 dating, 
however, has recently shown that this is not the case, but rather that adipocytes are 
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a dynamic and highly regulated population of cells. New adipocytes form constantly 
to replace lost adipocytes, such that approximately 50% of adipocytes in the human 
subcutaneous fat are replaced every 8 years (Spalding et al.  2008  ) . 

 Adipogenesis is a multi-step process involving a cascade of transcription factors 
and cell-cycle proteins regulating gene expression and leading to adipocyte devel-
opment. Several positive and negative regulators of this network have been eluci-
dated in recent years (Lefterova and Lazar  2009  ) . The fi rst hallmark of the 
adipogenesis process is the dramatic alteration in cell shape as the cells convert 
from fi broblastic to spherical shape. These morphological modifi cations are paral-
leled by changes in the level and type of extracellular matrix (ECM) components 
and the level of cytoskeletal components (Gregoire et al.  1998  ) . Mediation of the 
proteolytic degradation of the stromal ECM of preadipocytes by the plasminogen 
cascade is required for cell-shape change, adipocyte-specifi c gene expression and 
lipid accumulation (Selvarajan et al.  2001  )    . Ectoderm-Neural Cortex-1 (ENC-1), a 
Drosophila kelch-related actin-binding protein, may also play a regulatory role early 
in adipocyte differentiation by affecting cytoskeletal reorganization and cell-shape 
change. In preadipocytes, ENC-1 colocalizes with actin fi laments, and its mRNA 
levels are transiently increased 8–12-fold early in adipocyte differentiation, preced-
ing peroxisome proliferator-activated receptor- g  (PPAR- g ) and CCAAT/enhancer 
binding protein- a  (C/EBP- a ) gene expression (Zhao et al.  2000  ) . 

 During the terminal phase of differentiation, activation of the transcriptional cas-
cade leads to increased activity, protein and mRNA levels for enzymes involved in 
triacylglycerol synthesis and degradation. Glucose transporters, insulin receptor 
number and insulin sensitivity also increase. Synthesis of adipocyte-secreted prod-
ucts including leptin, adipsin, resistin and adipocyte-complement-related protein 
(Acrp30) begins, producing a highly specialized endocrine cell that will play key 
roles in various physiological processes. 

 We here review the main molecular and cellular processes associated with adipo-
cyte differentiation. First, we summarize the main cellular models to study and 
characterize these fascinating cellular changes.  

    2.2   In Vitro Experimental Systems to Study 
Adipocyte Differentiation 

 Two different kinds of cell lines are currently available: preadipocyte cell lines, 
already committed to the adipocyte lineage, and multipotent stem cell lines, able to 
commit to different lineages including adipose, bone and muscle lineage. 

    2.2.1   Preadipocyte Cell Lines 

 3T3-F442A and 3T3-L1 cells, isolated from the Swiss 3T3 cell line, derived from 
disaggregated 17–19-day-old Swiss 3T3 mouse embryos, are the most frequently 
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used preadipocyte lines (Green and Meuth  1974 ; Green and Kehinde  1976  ) . 
Importantly, clonal cell lines are homogenous in terms of cellular population, and 
their cell types are all at the same differentiation stage. This allows a homogeneous 
response to treatments. In addition, these cells can be passaged indefi nitely, which 
provides a consistent source of preadipocytes for study. For all these reasons, clonal 
cell models are an interesting and complementary tool to animal models for the 
study of relevant biological questions. 3T3-F442A are generally regarded as a model 
with a more advanced commitment in the adipose differentiation process than 3T3-
L1 (Gregoire et al.  1998  ) . During proliferation, all preadipose cell models show a 
similar morphology to fi broblasts. Induction of differentiation triggers deep pheno-
typical changes of preadipocytes that become spherical and fi lled with lipid drop-
lets, displaying many morphological and biochemical characteristics of adipocytes 
differentiated in vivo. 

 Ob17 cells, derived from adipose precursors present in epididymal fat pads of 
genetically obese (ob/ob) adult mice, are employed less frequently. In comparison 
to 3T3-F442A and 3T3-L1 cells, adult derivation of Ob17 cells represents a later 
preadipocyte stage. The derivation from an obese animal could also confer proper-
ties different from those of embryonic origin (Negrel et al.  1978  ) . 

 Most available models of murine preadipocyte (3T3-L1, 3T3-F442A and Ob17), 
once they reach confl uence and growth arrest, upon opportune hormonal induction, 
re-enter cell cycle and undergo several rounds of postconfl uent mitosis, known as 
mitotic clonal expansion (MCE). This is a fundamental requirement for terminal 
adipocyte differentiation. In fact, blocking the entry of 3T3-L1 cells into S phase at 
the time of MCE completely inhibits the adipose conversion program (Tang et al. 
 2003  ) . Also, inhibition of DNA synthesis in 3T3-F442A cells prevents formation of 
fat cells (Kuri-Harcuch and Marsch-Moreno  1983  ) . However, confl uent 3T3-F442A 
cells shifted to suspension culture maintain their ability to differentiate, suggesting 
that growth arrest but not confl uency is required for adipocyte formation (Pairault 
and Green  1979  ) . Similarly, C3H10T1/2 cells treated with bone morphogenetic pro-
tein-4 (BMP-4) that triggers commitment to adipose lineage undergo MCE in the 
presence of differentiation inducers (Tang et al.  2004  ) . 

 The availability of adipose clonal cell lines and primary preadipocytes has allowed 
us to investigate the adipogenic or antiadipogenic potential of hormones, growth 
factors and various pharmacological compounds. Confl uent 3T3-L1 preadipocytes 
can be differentiated synchronously by a defi ned adipogenic cocktail. Maximal dif-
ferentiation is achieved upon early hormonal induction for 48 h with a combination of 
insulin, GCs and methylisobutylxanthine (MIX), which elevates intracellular cAMP 
levels, in the presence of fetal bovine serum. Dexamethasone (DXM), a synthetic GC 
agonist, is traditionally used to stimulate the GC receptor. After the fi rst 48 h, insulin 
alone is required to continue the differentiation program. Interestingly, DXM is a 
powerful inductor of adipogenesis at early stages of differentiation, but displays anti-
adipogenic effects when added at later stages of adipose maturation, indicating that 
the effects of hormones are strictly time dependent (Caprio et al.  2007  ) . 

 Differentiation of 3T3-F442A preadipocytes does not require early induction 
with GCs, since their commitment in adipogenesis is more advanced compared to 
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3T3-L1 cells. It is worthy to note that treatment of 3T3-442A cells with DXM 
represses adipogenesis, confi rming that observed in 3T3-L1 cells exposed to GC 
at a later stage of adipose conversion.  

    2.2.2   Mature Adipocyte-Derived Dedifferentiated Fat Cells 

 Recently, several authors showed that mature adipocytes derived from fat tissue 
retain the ability to dedifferentiate in vitro into fi broblast-like cells. The culture 
technique developed to dedifferentiate adipocytes is known as ceiling culture 
(Sugihara et al.  1986 ; Yagi et al.  2004 ; Matsumoto et al.  2008 ; Nobusue et al.  2008  ) . 
In this protocol, fl oating unilocular mature adipocytes adhere to the top inner sur-
face of a culture fl ask fi lled completely with medium. After about 7 days of culture, 
the adipocytes change morphology, spread and show fi broblast-like shape with no 
lipid droplets. These cells, known as dedifferentiated fat (DFAT) cells, retain remark-
able proliferative ability and are able to differentiate again into mature adipocytes 
both in vitro and in vivo. Human DFAT cells from human subcutaneous adipocytes 
do not express adipocyte markers such as LPL, leptin, glucose transporter-4 (GLUT-4) 
and C/EBP- a , showing low levels of PPAR- g , C/EBP- b  and C/EBP- d  transcripts. 
Interestingly, these cells express RUNX2 and SOX9, critical factors for osteogenesis 
and condrogenesis respectively, and are able to undergo osteogenic and chondro-
genic differentiation in vitro in the presence of appropriate culture conditions. 
Moreover, they are able to form osteoid matrix when implanted in nude mice, after 
osteogenic induction in vitro (Matsumoto et al.  2008  ) . The ability of DFAT cells to 
proliferate and differentiate into multiple mesenchimal lineages confers to these 
cells the characteristics of adult stem cells.  

    2.2.3   Mesenchymal Stem Cells 

 C3H10T1/2 cells, established in 1973 from 14- to 17-day-old C3H mouse embryos, 
are MSCs which, following treatment with 5-azacytidine, can be differentiated into 
cells showing morphology and biochemical features of muscle, bone, cartilage and 
adipose tissue. Unlike 3T3-L1 cells, pluripotent C3H10T1/2 stem cells do not dif-
ferentiate into adipocytes in the presence of adipose differentiation inducers 
(Konieczny and Emerson  1984  ) . Treatment of proliferating C3H10T1/2 cells with 
BMP-4 is required to induce commitment to adipocyte lineage cells, which can dif-
ferentiate into adipocytes when exposed to adipocyte differentiation inducers.  

    2.2.4   Adipose-Derived Stem Cells (ADSCs) 

 Adipose-derived stem cells (ADSCs) show a cell surface antigen profi le similar to 
that observed on MSCs in adult bone marrow, but are more simple to purify, given 
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that their source is easily available. MSCs and ADSCs are characterized by a 
heterogeneous population that contains also differentiated cells, contaminating the 
stem cell preparation. Removal of the contaminating differentiated cells requires 
several passages. In fact, fl ow cytometer analysis shows that DFAT cells are more 
homogeneous than ADSCs, representing an interesting cell source for cell engineer-
ing and regenerative medicine applications (Matsumoto et al.  2008  ) . Thanks to the 
adipose differentiation potential of DFAT cells, they represent a valuable cell system 
to study adipocyte development and metabolism, which could potentially replace 
conventional primary preadipocyte cultures. 

 ADSCs can be isolated and differentiated in vitro into mature adipocytes. Primary 
preadipocyte cultures may better refl ect the context of adipose function in vivo, 
representing a suitable cellular system to confi rm data deriving from preadipocyte 
lines. In addition, primary preadipocytes do not undergo continuous passages, hence 
they keep a diploid status, better refl ecting the context in vivo. Interestingly, prolif-
eration and differentiation of primary preadipocytes is clearly infl uenced by the 
anatomic site of the depots as well the age of the donor. In particular, aging reduces 
replicative ability of primary preadipocytes in cell culture. Subcutaneous ADSCs 
replicate and differentiate better than visceral ADSCs (Djian et al.  1983  ) . 

 Cells corresponding to the adipose-derived stromal cells are defi ned by the 
following phenotype: CD31 − , CD34 + , CD45 − , CD90 + , CD105 − , CD146 − , and repre-
sent 70–90% of the total CD45 −  adipose cells. Stromal Vascular Fraction (SVF) also 
includes endothelial cells, defi ned as CD34 + /CD31 +  cells, and machrophages, which 
express CD14 and CD31. Cells capable of differentiating into adipocytes are 
included in the CD34 + /CD31 −  cell fraction and do not express the MSC marker 
CD105 (Sengenes et al.  2005  ) . For this reason, adipose committed preadipocytes 
express a specifi c pattern of cell surface markers, allowing selective purifi cation by 
immune-magnetic beads or by fl ow cytometric cell sorting.   

    2.3   Stages of Adipocyte Differentiation 

 Two phases of adipogenesis have been extensively characterized: 

  Determination phase : This stage results in the conversion of the stem cell to a 
preadipocyte, which cannot be distinguished morphologically from its precursor 
cell but has lost the potential to differentiate into other cell types. 

  Terminal differentiation phase : In this stage, the preadipocyte takes on the charac-
teristics of the mature adipocyte. It acquires the machinery that is necessary for lipid 
transport and synthesis, insulin action and the secretion of adipocyte-specifi c pro-
teins. The molecular regulation of terminal differentiation is more extensively char-
acterized than determination because most studies have used cell lines that have a 
restricted potential to differentiate into other cell types. Some preadipocyte models 
(such as the mouse cell lines 3T3-L1, 3T3-F442A) need one or two rounds of cell 
division prior to differentiation, whereas others (such as mouse C3H10T1/2 and 



232 Adipocyte Differentiation

human preadipocytes) differentiate without postconfl uence mitosis. In MCE of 
preadipocytes, cells re-enter the cell cycle and undergo several rounds of supple-
mentary cell divisions (Ntambi and Young-Cheul  2000  ) . These events depend on a 
complex coordinated cascade of cell-cycle proteins, such as members of E2F and 
retinoblastoma protein, that are necessary for terminal adipocyte differentiation of 
murine preadipocytes (Fajas et al.  2002a,   b  ) . The mitosis is believed necessary to 
unwind DNA, allowing transcription factors access to regulatory response elements 
present in genes involved in adipocyte differentiation (Cornelius et al.  1994  ) . Growth 
arrest is followed by expression of fi nal adipogenic genes. It is clear that some of the 
checkpoint proteins for mitosis also regulate aspects of adipogenesis. 

 The course of adipocyte differentiation has been well studied using cell lines and 
primary preadipocyte cell cultures (reviewed above). In the presence of a hormonal 
cocktail consisting of insulin, DXM, and 3-isobutyl-1-methylxanthine, 3T3-L1 and 
3T3-F422A preadipocytes can differentiate into mature adipocyte cells, expressing 
specifi c adipocyte genes and accumulating triacylglycerol lipid droplets (Cornelius 
et al.  1994  ) . Differentiation requires the activation of numerous transcription factors 
which are responsible for the coordinated induction and silencing of more than 
2,000 genes related to the regulation of adipocyte in both morphology and physiol-
ogy (Farmer  2006  )  (Fig.  2.1 ).   

  Fig. 2.1    Transcriptional regulation of adipocyte differentiation during 3T3-L1 mitotic clonal 
expansion and terminal differentiation       
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    2.4   Nuclear Regulation of Adipocyte Differentiation 

    2.4.1   Transcriptional Regulation of Adipocyte Differentiation 

 Terminal adipocytes differentiation involves a series of transcriptional processes. 
The fi rst stage of adipogenesis consists of the transient dramatic induction of C/
EBP- b  and C/EBP- d , stimulated in vitro by hormonal differentiation cocktail (Ramji 
and Foka  2002  ) . C/EBP- b  and C/EBP- d  begin to accumulate within 24 h of adipo-
genesis induction and the cells re-take the cell cycle and execute MCE synchro-
nously (Tang et al.  2003  ) . In the conversion from G1 to S stage, C/EBP- b  is 
hyperphosphorylated and sequentially activated by glycogen synthase kinase-3 b  
and mitogen-activated protein kinase (MAPK). Then, both C/EBP- b  and C/EBP- d  
directly induce expression of PPAR- g  and C/EBP- a , the key transcriptional regula-
tors of adipocyte differentiation (Tang et al.  2005  ) . PPAR- g  and C/EBP- a  initiate 
positive feedback to induce their own expression and also activate a large number of 
downstream target genes whose expression determines the adipocyte. By day 2 of 
the differentiation course, C/EBP- a  protein initiates to accumulate, and then is 
phosphorylated by the cyclin D3, inducing a proliferation inhibition effect on the 
cells, which allow to begin fi nal differentiation phase of adipogenesis (Wang et al. 
 2006  )    . By day 8 after differentiation induction, more than 90% of the adipocytes are 
already mature (Huang and Donald  2007  )  (Fig.  2.2 ).  

 C/EBP- a  induces many adipocyte genes directly, and in vivo studies indicate an 
important role for this factor in the development of adipose tissue. PPAR- g  is a 
member of the nuclear receptor superfamily of ligand-activated transcription factors 
and is a prerequisite for the differentiation of both brown and white adipocytes 
(Kajimura et al.  2008  ) . All the studies performed on PPAR- g  gain and loss of func-
tion models confi rmed that PPAR- g  is both necessary and suffi cient for fat forma-
tion (Farmer  2006  ) . Ectopic expression of C/EBP- a  in fi broblasts can induce 
adipogenesis only in the presence of PPAR- g  (Freytag et al.  1994  ) . Accordingly, 
PPAR- g  ectopic expression can induce adipogenesis in mouse embryonic fi broblasts 
lacking C/EBP- a , but C/EBP- a  cannot rescue adipogenesis when PPAR- g  is not 
expressed, showing that PPAR- g  is a master regulator of adipogenesis (Rosen et al. 
 2002  ) . No factor has been discovered that promotes adipogenesis in the absence of 
PPAR- g , and most pro-adipogenic factors seem to function at least in part by activat-
ing PPAR- g  expression or activity. The action of PPAR- g  is mediated through two 
protein isoforms: PPAR- g 1 and PPAR- g 2. PPAR- g 1 is constitutively expressed, and 
PPAR- g 2 expression is restricted to adipose tissue. Expression of each isoform is 
driven by a specifi c promoter that confers distinct tissue-specifi c expression and 
regulation (Zhu et al.  1995  )    . Both isoforms are strongly induced during preadipo-
cyte differentiation in vitro, and both are highly expressed in adipose tissues in ani-
mals. PPAR- g 1 is induced earlier than PPAR- g 2 and is maintained at high levels 
during adipocyte differentiation (Morrison and Farmer  1999  ) . PPAR- g  is also 
required for maintenance of the differentiated state. Adenoviral introduction of a 
dominant-negative PPAR- g  into mature 3T3-L1 adipocytes causes dedifferentiation 
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with loss of lipid accumulation and decreased expression of adipocyte markers 
(Tamori et al.  2002  ) . 

 In addition to PPAR- g  and C/EBPs, several other transcription factors are likely 
to play an important role in the molecular control of adipogenesis. These proteins 
include pro- and anti-adipogenic transcription factors, and the adipocyte differentia-
tion process is thus the result of an equilibrium between these intervening factors. 

 The Kruppel-like factors (KLFs) are a large family of C2H2 zinc-fi nger proteins 
that regulate apoptosis, proliferation and differentiation. The range of KLF genes 
that are expressed in adipose tissue, the variability in their expression patterns 

  Fig. 2.2    Adipogenesis phases of human subcutaneous and visceral preadipocytes. PM is prolif-
eratium medium and composed of DMEM/Nutrient Mix F-12 medium (1:1, v/v), HEPES, FBS, 
penicillin and streptomycin. DM is differentiation medium and composed of PM, human insulin, 
DXM, isobutylmethylxanthine and peroxisome proliferator-activated receptor- g  agonists (rosigli-
tazone). AM is adipocyte maintenance medium and composed of DMEM/Nutrient Mix F-12 
medium (1:1, v/v), HEPES, FBS, biotin, panthothenate, human insulin, DXM, penicillin, strepto-
mycin and amphotericin       
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during adipocyte differentiation and their effects on adipocyte development and 
gene expression indicate that a cascade of KLFs function during adipogenesis. 
For example, KLF15 promotes adipocyte differentiation (Mori et al.  2005  )  and 
induces expression of the insulin-sensitive GLUT-4 (Gray et al.  2002  ) . KLF5 is 
induced early during adipocyte differentiation by C/EBP- b  and C/EBP- d  and acti-
vates the  Pparg2  promoter, functioning in concert with the C/EBPs. KLF6 inhibits 
the expression of preadipocyte factor-1 (Pref-1) in 3T3-L1 cells and fi broblasts. 
Although overexpression of KLF6 is not suffi cient to promote adipocyte differentia-
tion, cells with reduced amounts of KLF6 show decreased adipogenesis (Li et al. 
 2005  ) . Recently, KLF9 has been reported as a key pro-adipogenic transcription 
factor through regulation of PPAR- g 2 expression with C/EBP- a  at the middle stage 
of adipogenesis. The expression of KLF9 was markedly upregulated during the 
middle stage of 3T3-L1 adipocyte differentiation and inhibition of KLF9 by RNAi 
impaired adipogenesis (Pei et al.  2011  ) . However, not all KLFs promote adipocyte 
differentiation. KLF2 and KLF7 are both anti-adipogenic factors, and KLF2 
represses the  Pparg2  promoter (Wu et al.  2005 ; Kanazawa et al.  2005a,   b  )    . KLF 
factors would presumably be functioning through the differential recruitment of co-
repressors and co-activators to the  Pparg2  promoter. 

 Sterol regulatory element binding transcription factor 1 (SREBP1c) was identifi ed 
as a pro-adipogenic basic helix–loop–helix transcription factor that induces PPAR- g  
expression and possibly generation of an as-yet-unknown PPAR- g  ligand (Kim et al. 
 1998a ; Kim and Spiegelman  1996  ) . SREBP1c also mediates the induction of lipid 
biosynthesis by insulin in adipocytes increasing the gene expression of the main lipo-
genic genes, as fatty acid synthase and acetyl-CoA carboxylase (Kim et al.  1998b  ) . 

 Cyclic AMP response element-binding protein (CREB) also seems to have a 
possible role in the control of adipogenesis. CREB expression in 3T3-L1 preadipo-
cytes is necessary and suffi cient to induce adipogenesis, whereas silencing of 
CREB expression blocks adipogenesis (Reusch et al.  2000 ; Zhang et al.  2004  ) . 
Other transcription factors that promote adipogenesis include Endothelial PAS 
domain Protein 1 (EPAS1) (Shimba et al.  2004  ) , the signal transducer and activator of 
transcription-5a (Nanbu-Wakao et al.  2002 ; Floyd and Stephens  2003  )  and the circadian 
regulator Brain and Muscle ARNT-like Protein 1 (BMAL1) (Shimba et al.  2005  ) . 

 Many transcription factors repress adipogenesis, including several members of 
the GATA   -binding and forkhead families (Forkhead Box O1 (FOXO1) and Forkhead 
Box A2 (FOXA2)). GATA2 and GATA3, two members of the GATA family of tran-
scription factors which are zinc-fi nger DNA-binding proteins involved in develop-
mental processes, are expressed in preadipocytes and downregulated during terminal 
maturation (Tong et al.  2000  ) . Forced expression of GATA2 reduces adipogenesis, 
and GATA2-defi cient embryonic stem cells displayed enhanced adipogenic poten-
tial. Constitutive expression of GATA2 and GATA3 blunts adipocyte differentiation 
and traps cells at the preadipocyte stage. This inhibitory effect on adipogenesis 
could be mediated through reduced PPAR- g  promoter activity. Although GATA fac-
tors can bind to and inhibit the  Pparg2  promoter, a mutant GATA2 protein that does 
not bind to DNA retains anti-adipogenic activity by binding to C/EBPs and inhibit-
ing their ability to transactivate  Pparg  (Tong et al.  2005  ) .  
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    2.4.2   Transcriptional Cofactors in Adipogenesis 

 Nuclear cofactors do not bind to DNA directly but participate in the formation of 
large transcriptionally active (co-activator) or inactive (co-repressor) complexes 
that link transcription factors to the basal transcription machinery. 

 Some cofactors modify chromatin directly, such as the histone acetyltransferases 
(HATs) and the ATP-dependent chromatin remodeling proteins of the SWI/SNF 
family, whereas other cofactors that do not have enzymatic activity function as plat-
forms for the recruitment of chromatin modifi ers. Many co-activators, including 
members of the p160 family, function as scaffolds and also have some HAT activity. 

 TRAP220 (or PPAR-binding protein) is a known binding partner of PPAR- g , and 
the absence of this protein prevents adipogenesis (Ge et al.  2002  ) , as well as the 
absence of a related co-activator called PPAR-interacting protein (Qi et al.  2003  ) . 

 Another interesting example involves TATA binding protein-associated factor-8 
(TAF8), which is a member of the TFIID complex of basal-promoter binding factors. 
TAF8 expression is upregulated during adipogenesis, and its expression is necessary 
for adipocyte differentiation (Guermah et al.  2003  ) . 

 Several checkpoint-control proteins might also function as cofactors in adipogen-
esis. The cyclin D3–cyclin-dependent kinase-6 (CDK6) complex binds to and phos-
phorylates PPAR- g  and leads to increased transcriptional activity of PPAR- g , which 
promotes adipogenesis (Sarruf et al.  2005  ) . CDK4 also interacts with and activates 
PPAR- g  through the kinase domain of CDK4 (Abella et al.  2005  ) . Conversely, cyclin 
D1 represses PPAR- g  activity and inhibits adipocyte differentiation (Fu et al.  2005  ) . 
TAZ (transcriptional co-activator with PDZ-binding motif), represses PPAR- g  activ-
ity in adipocytes but activates RUNX2 activity in osteoblasts (Hong et al.  2005  ) . 

 Some co-repressors recruit histone deacetylases (HDACs) to target promoters, 
thereby blocking transcription. HDACs repress adipogenesis and show coordinated 
reduction of expression during adipocyte differentiation. Mammalian sirtuins 
(SIRT1) with HDAC activity represses 3T3-L1 adipogenesis through its interaction 
with PPAR- g . Other co-repressors, such as the nuclear receptor co-repressor and 
silencing mediator of retinoid and thyroid hormone receptors, are anti-adipogenic, 
and their reduction promotes differentiation (Yu et al.  2005  ) .   

    2.5   Extranuclear Regulation of Adipocyte Differentiation 

 Adipogenesis can be infl uenced in a positive or negative way by many hormones, 
cytokines, growth factors and some pharmacological compounds. 

    2.5.1   Adipogenic Factors 

 It is well known that insulin, insulin-like growth factor-1 (IGF-1), thyroid hormones, 
GC s, mineralocorticoids and PPAR- g  agonists promote differentiation. 
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 Insulin has marked effects on adipogenesis. Downstream components of the 
insulin/IGF-1 signalling cascade are also crucially important for adipogenesis. The 
loss of individual insulin-receptor substrate (IRS) proteins inhibits adipogenesis 
(Smith et al.  1988 ; Bluher et al.  2002  ) . Downstream effectors of insulin action 
cascade, such as phosphatidylinositol-3 kinase, AKT1/2 and mammalian target of 
rapamycin, have been shown to be involved in adipogenesis (Garofalo et al.  2003 ; 
Kim and Chen  2004  ) . IRS signalling also promotes CREB phosphorylation, which 
is important for adipogenesis of cultured cells (Klemm et al.  2001  ) . 

 Thyroid hormone (T3) plays a central role in normal development, differentia-
tion and metabolic homeostasis. It is well known that thyroid hormone stimulates 
basal metabolic rate and adaptive thermogenesis. In mammals, there are two major 
thyroid receptors isoforms, thyroid receptor  a 1 (TR a 1) and thyroid receptor  a 2 
(TR a 2), which are functionally antagonistic. T3 induced adipogenesis through 
TR a 1-induced lipogenic gene expression, whereas TR a 2 antagonizes T3 action. 
In obese subjects, subcutaneous fat, with higher expression of TR a 1, is more T3 
responsive than visceral fat (Ortega et al.  2009  ) . 

 GCs are potent inducers of adipogenesis in vitro, and hypercortisolism is associ-
ated with obesity and disturbances in fat tissue distribution (Joyner et al.  2000  ) . GC 
receptors are present in human preadipocytes, and GCs activate the expression of C/
EBP- d  and PPAR- g  (Wu et al.  1996  ) . The enzyme 11- b -hydroxysteroid-dehydroge-
nase 1 (11BHSD1), which ensures the conversion of inactive cortisone to active 
cortisol (or corticosterone in rodent), is expressed in preadipocytes and adipocytes, 
and is thus able to sensitize adipose tissue to GCs. Interestingly, mice overexpress-
ing 11BHSD1 in adipose tissue exhibit metabolic disturbances, including visceral 
adiposity, insulin resistance, dyslipidaemia and hypertension (Masuzaki et al.  2001  ) . 
In contrast, mice lacking 11BHSD1 have reduced adiposity (Stewart and Tomlinson 
 2002  ) . Moreover, obesity is associated with increased 11BHSD1 expression in adi-
pose tissue in both rodents and humans (Rask et al.  2001  ) . Locally produced cortisol 
may thus act in a paracrine manner to promote adipogenesis in visceral fat tissue. 

 Several studies have reported the effects of MAPK family members on adipo-
genesis with confl icting results. ERK1 is required in the proliferative phase of 
differentiation, and blockade of ERK activity in 3T3-L1 cells or in mice inhibits 
adipogenesis. Conversely, in the terminal differentiation phase ERK1 activity leads 
to phosphorylation of PPAR- g , which inhibits differentiation (Bost et al.  2005  ) . p38 
MAPK is required for adipogenesis in 3T3-L1 but not in primary preadipocytes 
(Aouadi et al.  2006  ) . 

 Some fi broblast growth factors (FGFs), as FGF1, FGF2 and FGF10, show pro-
adipogenic activity on human preadipocytes, and their neutralization inhibits adipo-
genesis (Hutley et al.  2004  ) . 

 In recent years, the infl uence of environmental factors on adipogenesis is being 
increasingly reognized. For instance, infection with human adenovirus type 36 (Ad-
36) has been demonstrated to promote adipogenesis, increasing adipose tissue-
induced glucose uptake in the context of increased insulin action, similar to the effects 
of thiazolidinodiones. Ad-36 modulated regulatory points that covered the entire adi-
pogenic cascade ranging from the upregulation of cAMP, phosphatidylinositol 
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3-kinase and p38 signaling pathways, downregulation of Wnt10b expression, and 
increased expression of CEBP b  and PPAR- g 2 and consequential lipid accumulation 
via its E4 orf-1 gene (Rogers et al.  2008a,   b  ) .  

    2.5.2   Antiadipogenic Factors 

 The Wnt family of secreted glycoproteins act through autocrine or paracrine mechanisms 
to infl uence the development of many cell types. Wnt completely blocks induction of 
the key adipogenic transcription factors C/EBP- a  and PPAR- g . In contrast, inhibition 
of Wnt signalling in preadipocytes results in spontaneous differentiation, indicating 
that preadipose cells produce endogenous Wnt that is a potent inhibitor of differentia-
tion. Ectopic expression of the Wnt gene potently represses adipogenesis (Ross et al. 
 2000  ) . In particular, the constitutive expression of  WNT10b , a gene which is highly 
expressed in preadipocytes and downregulated during the course of differentiation, 
inhibits adipogenesis (Longo et al.  2004  ) . Ectopic expression of  WNT10b  stabilizes 
free cytosolic  b -catenin and is a potent inhibitor of adipogenesis. In vivo, transgenic 
expression of  WNT10b  in adipocytes results in a 50% reduction in WAT mass and the 
development of BAT is absent. In this sense, WNT10a and WNT6 have also been 
identifi ed as determinants of brown-adipocyte development. 

  b -catenin functions as a Wnt effector, binds to the androgen receptor and is trans-
located to the nucleus in response to testosterone where it interacts with the TCF/
LEF transcription factors to inhibit adipogenesis. Loss of  b -catenin in myometrial 
tissue causes its conversion to adipose tissue, which shows that the Wnt– b -catenin 
pathway is an important regulator of adipogenesis and mesenchymal-cell fate 
in vivo (Kanazawa et al.  2005a,   b ; Singh et al.  2006  ) . 

 The transforming growth factor  b  (TGF b ) superfamily members, TGF b , BMPs 
and myostatin regulate the differentiation of many cell types, including adipocytes. 
TGF- b  is a cytokine that stimulates preadipocyte proliferation and inhibits adipo-
genesis in vitro. TGF b  and its signalling components are expressed in cultured adi-
pocytes and adipose tissue. Transgenic overexpression of TGF b  impairs the 
development of adipose tissue (Clouthier et al.  1997  ) . Blockade of endogenous 
TGF b  signalling by inhibition of SMAD3 increases adipogenesis. SMAD3 binds to 
C/EBPs and inhibits their transcriptional activity (Choy and Derynck  2003  ) . 
Exposure of multipotent mesenchymal cells to BMP4 commits these cells to the 
adipocyte lineage, allowing them to undergo adipose conversion. The effects of 
BMP2 are more complex and are dependent on the presence of other signalling 
molecules. BMP2 stimulates adipogenesis of multipotent C3H10T1/2 cells at low 
concentrations, but favors chondrocyte and osteoblast development at higher con-
centrations. Myostatin, positively or negatively regulates adipogenesis in vitro, 
depending on the type of cell and culture conditions (Rebbapragada et al.  2003  ) . 

 Pref-1 is a transmembrane protein that belongs to a family of epidermal-growth-
factor-like repeats containing proteins and is activated by proteolytic cleavage 
(Villena et al.  2002  ) . Pref-1 cleavage releases an extracellular moiety that inhibits 
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adipogenesis, possibly through interaction with Notch. Expression of Pref-1 is high 
in preadipocytes and normally declines during differentiation, and forced Pref-1 
expression in 3T3-L1 cells blocks adipogenesis. A soluble form of Pref-1 is suffi -
cient to decrease adipose tissue mass and insulin sensitivity (Lee et al.  2003  ) . Pref-1 
is implicated in the regulation of adipogenesis by FOXA2 (Wolfrum et al.  2003  ) , 
KLF2 (Li et al.  2005  )  and KLF6 (Wu et al.  2005  ) . 

 Exposure of preadipocytes to pro-infl ammatory cytokines inhibits adipogenesis 
by reducing PPAR- g  and C/EBP- a  expression and by blocking insulin action. 
TNF- a  and IL-1 suppress adipose conversion by activation of the TAK1/TAB1/NIK 
cascade, which in turn inhibits PPAR- g  activity (Suzawa et al.  2003  ) . In fact, cytok-
ines have the potential to decrease adipocyte numbers through multiple points in the 
adipogenic program and by activation of several distinct intracellular signalling 
pathways (Constant et al.  2006 ; Lumeng et al.  2007 ; Yarmo et al.  2009  ) . 

 Some drugs show a strong infl uence on adipogenesis. Highly active antiretroviral 
therapy on human immunodefi ciency virus (HIV) infection, has been associated 
with metabolic syndrome including insulin resistance, dyslipidemia, peripheral 
lipoatrophy and visceral adiposity (Leow et al.  2003  ) . Studies in cell culture have 
shown that several protease inhibitors, for example nelfi navir and indinavir, decrease 
preadipocyte differentiation and lipogenesis, while increasing apoptosis and lipoly-
sis (Dowell et al.  2000 ; Lenhard et al.  2000 ; Zhang et al.  1999  ) . In addition, studies 
in patients with HIV-associated lipoatrophy display an increase in pro-infl ammatory 
cytokines in adipose tissue, suggesting that the reducing effects of protease inhibi-
tors on adipogenesis could be the consequence of the local overproduction of these 
cytokines (Bastard et al.  2002 ; Kannisto et al.  2003  ) . 

 Metformin, a widely prescribed drug in the treatment of patients with type 2 
diabetes, inhibited the differentiation of mouse 3T3-L1 cell line and primary human 
preadipocytes, decreasing lipogenic gene expression and increasing AMPK activity 
and glucose intake (Lenhard et al.  1997 ; Huypens et al.  2005 ; Alexandre et al.  2008 ; 
Fischer et al.  2010  ) . Metformin effects on human adipocytes are likely to mediate 
through organic cationic transporter 1, which is induced during adipocyte differen-
tiation (Moreno-Navarrete et al.  2011  ) .  

    2.5.3   Other Players in the Regulation of Adipogenesis 

    2.5.3.1   Epigenetic Factors in Adipogenesis 

 Epigenetic regulation plays a critical role in several differentiation processes and 
possibly in adipocyte differentiation (D’Alessio et al.  2007  ) . Recently, differentia-
tion of 3T3-L1 cells was demonstrated to be associated with genome-wide epige-
netic changes, as evidenced by the ratio of demethylation/methylation and 
furthermore maintenance of a static demethylated/methylated state, both of which 
depend on differentiation phase (Sakamoto et al.  2008  ) . DNA methylation might be 
associated with the course of determination phase. 
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 In addition, the study of 3T3-L1 cells using microarray-based integrated method 
clarifi ed that adipogenesis is regulated by a ras homologue guanine nucleotide 
exchange factor (RhoGEF, WGEF) expression through DNA methylation change 
(Horii et al.  2009  ) . Furthermore, like DNA demethylation, the methylation of 
histone H3 lysine 4 was related to transcriptional activation. In order to detect the 
change of histone methylation, 3T3-L1 fi broblast cells were treated with low dose 
of the methyltransferase inhibitor methylthioadenosine, which eliminates this epi-
genetic sign from the promoters, and generates a signifi cant decreased adipogenesis, 
therefore, suggesting the crucial role of this histone modifi cation in the regulation 
of adipocyte differentiation (Musri et al.  2006  ) . The transcription factors and co-
regulators involved in preserving appropriate levels of histone methylation and 
modifi cation at the late adipogenic genes remain unknown. Above all, the role of 
DNA and histone modifi cation in adipogenesis is very important, and some func-
tions remain unknown.  

    2.5.3.2   The Role of miRNAs in Adipogenesis 

 MicroRNAs (miRNAs) are small non-coding RNAs that bind to regulatory sites of 
target mRNA and modify their expression, either by translational repression or tar-
get mRNA degradation, resulting in decreased protein production. MiR-143 was the 
fi rst miRNA associated with regulation of adipocyte differentiation. Its expression 
increases in differentiating adipocytes, and antisense oligonucleotides against miR-
143 inhibit human-cultured adipocyte differentiation and lead to a decrease in trig-
lyceride accumulation and the downregulation of PPAR- g 2, adipocyte fatty acid 
binding protein and GLUT-4. Several miRNAs (including miR-103, miR-107 and 
miR-143) are induced during adipogenesis, which may play a role in accelerating 
adipocyte differentiation, and then be downregulated in the obese state. Conversely, 
miR-222 and miR-221 are decreased during adipogenesis but upregulated in obese 
adipocytes. Forced miR-103 and miR-143 expression accelerate the rate of 3T3-L1 
differentiation, increasing triglyceride accumulation and the expression of many 
adipocyte important genes at early stages of adipogenesis (Xie et al.  2009  ) . 

 miRNA378/378 is highly expressed during adipocyte differentiation. 
Overexpression of miRNA378/378 during adipogenesis also increased triglyceride 
triacylglycerol accumulation, and lipogenic genes, PPAR- g 2 and GLUT-4 expres-
sion. In addition, in the presence of microRNA378/378, C/EBP- a  and C/EBP- b  
activity on the GLUT-4 promoter was increased (Gerin et al.  2010  ) . 

 The miRNA expression profi le has been recently demonstrated to change during 
adipocyte differentiation (Ortega et al.  2010  ) . These authors found a differential 
expression of 70 miRNAs during adipocyte differentiation. In addition. The miRNA 
expression profi le of visceral and subcutaneous adipose tissue is different in obese and 
non-obese subjects (Ortega et al.  2010 ; Klöting et al.  2009  ) . A genome-wide miRNA 
profi ling study of 723 human miRNAs have disclosed the expression of 40 (in preadi-
pocytes) and 31 (in adipocytes) mature miRNAs that signifi cantly differed according 
to obese status. The expression pattern of 22 miRNAs in human subcutaneous adipose 
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tissue was also associated with parameters of adipose tissue physiology, glucose 
metabolism and obesity status. This study revealed that miRNAs may constitute 
biomarkers for obesity and obesity-related complications. For example, some miR-
NAs (miR-221, miR-125b, miR-34a and miR-100) were upregulated in fat depots 
from obese subjects and downregulated during adipocyte differentiation. On the 
contrary, miR-185 was upregulated in mature adipocytes while downregulated in 
obese men. Others, as 130b and miR-210, were both downregulated during adipo-
cyte differentiation and in fat depots from obese subjects. Only miR-34a was found 
to be positively upregulated during adipogenesis and associated positively with 
BMI (Ortega et al.  2010  ) .  

    2.5.3.3   Chronobiology in Adipogenesis 

 Some clock genes, especially Bmal1 and Rev-Erba, may play a part in adipocyte 
differentiation and lipogenesis. It has also been shown that clock genes can oscillate 
accurately and independently of the central nervous system in human AT explants 
and that this intrinsic oscillatory mechanism may participate in regulating the tim-
ing of other clock-controlled gene such as PPAR- g  and GC metabolism genes. 
Moreover, these circadian patterns differ between visceral and subcutaneous AT 
depots (Gómez-Santos et al.  2009 ; Hernández-Morante et al.  2009  )    . 

 A number of adipocyte-specifi c factors show rhythmic expression. Some exam-
ples are leptin, adipsin, resistin, adiponectin and visfatin, all of them showing circa-
dian rhythmicity, For example, adiponectin shows both ultradian pulsatility and a 
diurnal variation (Gómez-Abellan et al.  2010  ) . Recently, nocturnin, a circadian-
regulated gene, has been demonstrated to promote adipogenesis by stimulating 
PPAR- g  nuclear translocation and enhancing its transcriptional activity (Kawai 
et al.  2010  ) .    

    2.6   Future Perspectives 

 This review provides a brief overview on various adipocyte cell lines that could be 
used in appropriate experiments to gain insight in the molecular mechanisms that 
underlie adipocyte differentiation. The selection and use of an in vitro system must 
consider all known levels of regulation of proliferation, differentiation and function 
to ensure relevant results. 

 The information summarized here concerning intracellular pathways and nuclear 
and extranuclear modulators of adipocyte differentiation is continuously expanding. 
Further research is necessary to gain insight in the molecular processes that are 
involved in adipocyte differentiation, connecting extranuclear and nuclear media-
tors. New areas, as epigenetic, microRNAs and circadian clock, also need to be 
more investigated. An in-depth knowledge of adipocyte differentiation is absolutely 
essential to gain insight in the treatment of important metabolic diseases associated 
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with obesity and adipose tissue expandability, such as type 2 diabetes, atherosclero-
sis, cardiovascular disease and cancer.      
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  Abstract   A constant body temperature can only be maintained when the rate of 
heat dissipation equals the rate of heat loss. Thermoregulatory heat production 
mechanisms compensating heat loss are classically categorized as shivering and 
non-shivering thermogenesis. Non-shivering thermogenesis occurs in brown adi-
pose tissue, a unique heater organ only found in mammals. In brown adipose tissue 
mitochondria, the proton motive force across the inner membrane is dissipated as 
heat rather than converted to ATP. This tightly regulated process is catalyzed by the 
uncoupling protein 1. Non-shivering thermogenesis is elicited by the sympathetic 
innervation from hypothalamic and brain stem control regions which are activated 
by cold sensation. In a cold environment, up to half of the metabolic rate of rodents 
can be attributed to non-shivering thermogenesis in brown adipose tissue. The high 
thermogenic capacity of brown adipose tissue recruited in the defense of normo-
thermia may also play a role in the regulation of energy balance in the face of 
hypercaloric nutrition. In this light, the recent discovery of signifi cant amounts of 
metabolically active brown adipose tissue in healthy adult humans reintroduces an 
old player in human energy balance research and may enable new strategies to 
prevent excess body fat accumulation in man.  

  Keywords   Uncoupling protein 1  •  Brown adipose tissue  •  White adipose tissue  
•  Adipocyte  •  Progenitor  •  Mitochondria  •  ATP synthesis  •  Non-shivering thermo-
genesis  •  Progenitor  •  Proliferation  •  Differentiation      
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    3.1   Biological Signifi cance of Brown Adipose Tissue 

 A simple thermophysiological principle states that body temperature can only be 
maintained at a constant level when the rate of heat dissipation equals the rate of 
heat loss. The rate of heat loss depends on two variables, the body’s thermal conduc-
tance (reciprocal of insulation) and the difference between body and ambient 
temperatures. In the thermoneutral zone, heat released by basal metabolic rate is 
suffi cient to maintain body temperature. In this zone, which is around 30°C for mice 
and men, physical adjustments of thermal conductance suffi ce, and the rate of heat 
loss is rather low. When moving to colder environments, however, increased heat 
loss will inevitably result in a drop in body temperature. Two strategies are regularly 
employed to prevent sustained and life threatening hypothermia in the cold. The 
thermal conductance of the body is decreased to a minimum, and chemical thermo-
regulatory mechanisms are activated (Scholander et al.  1950a,   b  ) . The underlying 
thermogenic mechanisms are classically categorized as shivering and non-shivering 
thermogenesis. Shivering involves episodic or sustained vigorous contractions of 
antagonistic muscle fi bers without effi cient work output which cause an increased 
turnover of the myofi brilar ATP pool and thus heat dissipation. Non-shivering 
thermogenesis occurs in brown adipose tissue, a unique heater organ only found in 
mammals. 

 We here provide a condensed overview of brown adipose tissue biology covering 
the anatomical distribution and principle physiological function of brown adipose 
tissue for non-shivering thermogenesis in the cold, the evidence for a role of brown 
adipose tissue thermogenesis in energy balance and possible mechanisms of regula-
tion, the new discoveries on the developmental origin of brown adipocytes, the pres-
ence of brown adipocyte-like cells in classical white adipose tissue depots, the 
evolution of brown adipose tissue and UCP1 in vertebrates and fi nally highlight the 
most recent discoveries of metabolically active brown adipose tissue in adult healthy 
humans.  

    3.2   Anatomy and Innervation 

 Brown adipose tissue is found in several distinct anatomical locations including 
subcutaneous, intraperitoneal and intrathoracic sites. The subcutaneous depots are 
found in the interscapular and subscapular, dorsal-cervical, suprasternal and axil-
lary regions. Together they surround the upper part of the body like a “heating 
jacket” worn underneath the fur (cf. Heldmaier and Neuweiler  2004 , p. 130). 
Intraperitoneal depots are mainly found around the kidneys and adrenals (perirenal 
and suprarenal), and the main intrathoracic depots surround the large mediastinal 
blood vessels, heart, trachea, esophagus and descending aorta. 

 In most rodent studies, the subcutaneous interscapular brown adipose tissue depot 
has been investigated. The interscapular brown adipose tissue is organized into two 
lobes and displays the prototypical morphology of this heater organ. It is densely 
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capillarized to ensure suffi cient supply of oxygen and substrates and is drained by a 
large blood vessel (Sulzer’s vein) to rapidly redistribute locally produced heat into 
the body. Upon activation of thermogenesis, blood fl ow through interscapular brown 
adipose tissue is massively increased by more than tenfold and together with all 
brown adipose tissue depots can engross an incredible fraction of more than 25% of 
total cardiac output (Foster and Frydman  1979 ; Puchalski et al.  1987  ) . Conversion 
of tissue oxygen consumption rates (mL O 

2
 /min) measured in vivo into energy units 

(assuming 20 J/mL O 
2
 ) reveals that the maximal rates of heat dissipation range from 

160 to 190 mW and 330 to 480 mW per gram of brown adipose tissue in warm and 
cold acclimated rodents, respectively (Table  3.1 ; Foster and Frydman  1978 ; 
Puchalski et al.  1987 ; Thurlby and Trayhurn  1980  ) . With this impressive ther-
mogenic capacity, brown adipose tissue can contribute up to nearly 50% of the total 
oxygen consumption of a rat in the cold (Foster and Frydman  1979  ) . Activation is 
conveyed by postganglionic sympathetic nerves which independently (unilaterally) 
innervate the two interscapular brown adipose tissue lobes. These nerves form a 
dense network of unmyelinated fi bers within the tissue and can thereby reach virtu-
ally every cell by release of their transmitter norepinephrine through varicosities 
(Bargmann et al.  1968 ; De et al.  1998  ) . Surgical denervation studies on interscapu-
lar brown adipose tissue have clearly demonstrated the indispensible role of this 
innervation in the control of the thermogenic function of brown adipose tissue. 
A parasympathetic innervation of brown adipose tissue is largely absent, with the 
exception of pericardial and mediastinal brown adipose tissue (Giordano et al.  2004 ; 
Schafer et al.  1998  ) .  

 Brown adipocytes are characterized by an abundance of small lipid droplets 
(multilocular) in contrast to white adipocytes which typically feature a single 
large lipid droplet (unilocular). They furthermore contain an unusually high 
amount of mitochondria which confer the eponymous brown color to the tissue. 

   Table 3.1    Mass-specifi c metabolic rates in brown adipose tissue of warm- and cold-acclimated 
rodents   

 Species 
 Acclimation 
temperature (°C) 

 Oxygen consumption 
(mL O 

2
 /g/min) 

 Heat production 
(mW/g brown 
adipose tissue)  References 

 Rat  28  0.57  160  Foster and Frydman 
 (  1979  )   6  1.44  330 

 Mouse  23 a   1.26  420  Thurlby and 
Trayhurn  (  1980  )  

 Djungarian 
hamster 

 23 a   0.48  190  Puchalski et al. 
 (  1987  )   −2 to +12 b   1.05  480 

  Oxygen consumption values were calculated from measurements of blood fl ow and arteriovenous 
O 

2
  differences across the interscapular brown adipose tissue depot and converted into heat produc-

tion assuming 20 J/mL O 
2
  

  a  The thermoneutral zone of mice is around 30°C, whereas it is about 23–25°C in Djungarian 
hamsters. At room temperature (23°C), mice are cold acclimated, whereas Djungarian hamster are 
not 
  b  Djungarian hamsters were kept outdoors in this study  
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The interscapular brown adipose tissue lobes are surrounded by adhering white 
adipose tissue which allows direct comparison of brown and white adipocyte mor-
phologies in histological sections (Fig.  3.1 ). In such cross sections, the adipose 
tissue type often gradually fades from brown to white, i.e. the number of brown 
adipocytes per white adipocyte steadily decreases. It is diffi cult to draw a clear 
border between both tissue types by visual inspection in this classical brown 
adipose tissue depot. In other adipose tissue depots, the categorization is even 
more complicated. Some depots usually regarded as white adipose tissue contain 
some interspersed brown adipocytes, and vice versa, within classical brown adi-
pose tissue depots, white adipocytes are found. Furthermore, the fraction these 
cells constitute is not stable and can be altered by the ambient temperature or dur-
ing developmental processes. For instance, in mice, the retroperitoneal fat depot 
changes its appearance from classically white to completely brown and backwards 
to white adipose tissue during the fi rst weeks of life (Xue et al.  2007  ) . In the light 
of this diffi cult distinction between white and brown adipose tissue depots, both 
are sometimes described as two aspects of a single “adipose organ” (Cinti  2005  ) . 
However, novel insight into the origin of brown and white adipocytes questions 
this view, as we will highlight later.  

 Unknowingly anticipating the current debate on the origin of brown adipocytes 
(Sect.  3.6.1 ), Conrad Gesner already made a proposition of his own in the fi rst 

  Fig. 3.1    Histology of brown and white adipose tissue. A section of paraffi n-embedded interscapu-
lar brown adipose tissue was treated with haematoxylin to stain nuclei in  blue . UCP1 was immu-
nodetected and is indicated by a  brownish  color. Typical multilocular brown adipocytes positive 
for UCP1 can be seen in the  left half  of the picture, while unilocular white adipocytes devoid of 
UCP1 dominate the  right half  (image kindly provided by David Lasar)       
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written account of brown adipose tissue in 1551. He wrote about the marmot: “They 
have a lot of fat on their back, although the other parts of the body are lean. In truth 
it can be called neither fat nor fl esh, but similar to the bovine mammary gland, it is 
something in between” 1  (Gesner  1551 , p. 842). More than 400 years after this fi rst 
anatomical description of brown adipose tissue, the thermogenic function of brown 
adipose tissue was fi rst recognized (Smith  1961  ) . Elegant blood fl ow studies con-
ducted in warm- and cold-acclimated rats revealed that a large fraction of cold-
induced thermogenesis (60%) is contributed by heat dissipated from brown adipose 
tissue (Foster and Frydman  1979  ) . In addition to the role of brown adipose tissue in 
cold defense, a role of brown adipose tissue in energy balance regulation was 
suggested (Rothwell and Stock  1979  ) . Since publication of the fi rst evidence for a 
thermogenic function of brown adipose tissue almost 50 years ago, several labs have 
made important contributions to unravel the underlying biochemical mechanism of 
heat dissipation in the mitochondria of brown adipocytes (reviewed by Nicholls 
 2001 ; Cannon and Nedergaard  2004  ) .  

    3.3   Molecular Mechanism of Thermogenesis 
in Brown Adipose Tissue 

    3.3.1   Mitochondrial Bioenergetics 

 Early on, bioenergetic studies on mitochondria isolated from brown adipose tissue 
demonstrated a complete lack of the regular control of mitochondrial respiration 
(Smith et al.  1966  ) . In the absence of ADP, mitochondria normally consume oxygen 
at a low rate (state 2), but strongly increase oxygen consumption in the presence of 
ADP (state 3). Once ADP is completely converted to ATP, respiration returns to the 
initial low rate (state 4). Freshly isolated brown adipose tissue mitochondria, how-
ever, always respire at their maximal rate and are devoid of respiratory control. This 
was puzzling because in all other tissues, the central function of mitochondria is to 
convert the energy contained in nutrient and storage macromolecules (carbohy-
drates, fat and proteins) into the universal cellular energy currency ATP which can 
then be utilized by all energy demanding enzymatic processes in the cell. The bulk 
of ATP is produced at complex V of the respiratory chain. Complex V, the ATP 
synthase, is located within the mitochondrial inner membrane and driven by a fl ux 
of protons from the intermembrane space through transmembraneous subunits of 
the complex into the mitochondrial matrix. The energy driving this fl ux and being 
chemically fi xed in ATP is called proton motive force and stems from an unequal 
distribution of protons across the inner membrane. This proton gradient is con-
stantly maintained by the proton pumps of the respiratory chain which are powered 

   1   Dorsum præpingue habent, quũ cæteræ corporis partes sint macræ. Quand3 hæc vere nec pingui-
tudo nec caro dici potest: sed ut mamillarũ caro in bubus, inter eas est medium quidda.  
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by energy-rich electrons delivered from reduction equivalents out of the citric acid 
cycle and b-oxidation. After discharging their energy to the proton pumps and thus 
to the proton gradient across the mitochondrial inner membrane, electrons are dis-
carded by reaction with oxygen to water (Fig.  3.2 ).  

 Whenever protons re-enter the matrix without concomitant ATP synthesis, the 
energy formerly stored in the proton gradient is released as heat. The diminished 
proton gradient has to be restored by electron-driven proton pumping leading to 
oxygen consumption. Therefore, protons leaking through the membrane cause an 
“uncoupling” of oxygen consumption from ATP production (Fig.  3.2 ). Uncoupling 
(=proton leak) is a constant process in all mitochondria and accounts for more than 
20% of total oxygen consumption in mammals (Rolfe and Brand  1996  ) . Brown 
adipose tissue mitochondria are an exception to this rule. They are able to dissipate 
up to 100% of their proton motive force by a regulated leak mechanism driving non-
shivering thermogenesis in this heater organ (Nicholls and Locke  1984  ) .  

    3.3.2   UCP1 as a Catalyst of Uncoupled Respiration 
in Brown Adipocytes 

 Today, it is well established that the thermogenic proton leak in brown adipocyte 
mitochondria is catalyzed by the uncoupling protein 1 (UCP1), a member of the 
mitochondrial transporter family. UCP1 was discovered as a purine nucleotide bind-
ing protein inserted into the inner mitochondrial membrane with an apparent molec-
ular weight of 32 kD (Heaton et al.  1978 ; Ricquier and Kader  1976  ) . In reference to 
the size and the preferential binding of GDP, it was initially termed 32 kD protein 
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  Fig. 3.2    Uncoupling the respiratory chain. The respiratory chain generates a proton gradient 
across the mitochondrial inner membrane by translocation of protons from the matrix into the 
intermembrane space. This process is driven by energy-rich electrons from nutrient macromole-
cules which stepwise release their energy to proton pumps and are afterwards discarded by reac-
tion with oxygen to water. Protons can re-enter the matrix by complex V or by proton leak. The 
latter is catalyzed by UCP1. Proton motive force is either chemically fi xed in the form of ATP at 
complex V or dissipated as heat energy at UCP1       
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or GDP-binding protein. First insight into the regulation of UCP1 activity by fatty 
acids and purine nucleotides was gained by two experimental conditions: (1) 
removal of endogenous fatty acids by stimulation of mitochondrial b-oxidation 
(Hittelman et al.  1969  )  as well as (2) addition of GDP or GTP (Rafael et al.  1969  ) . 
In both conditions, respiration in isolated brown adipose tissue mitochondria could 
be measured in a coupled state. It took 10 more years until the primary structure of 
UCP1 was determined on the cDNA and protein level, respectively (Aquila et al. 
 1985 ; Bouillaud et al.  1986  ) . This has triggered a lot of ongoing efforts to scrutinize 
the molecular details of the unique heat dissipation mechanism. The fi nal proof of 
concept that UCP1 is indeed essential for the thermogenic function of brown adi-
pose tissue was delivered by the discovery that UCP1 knockout mice are cold sensi-
tive (Enerback et al.  1997  ) . 

 UCP1 is exclusively found in brown adipocytes although recent evidence sug-
gests low-level expression in thymocytes (Carroll et al.  2004  ) . Biochemical purifi -
cation of UCP1 from brown adipose tissue of cold-acclimated golden hamsters 
demonstrated that UCP1 constitutes 5–8% of mitochondrial protein and even 
15–20% of the extractable membrane protein fraction (Lin and Klingenberg  1980  ) . 
A similar high abundance of UCP1 was found in other cold acclimated rodents 
(Stuart et al.  2001  ) . In the activated state, UCP1 increases proton leak by facilitating 
proton translocation into the matrix and thus collapses the proton motive force at the 
inner mitochondrial membrane. This completely uncoupled state in turn leads to 
maximal activity of the respiratory chain with all the food energy conserved in the 
proton motive force being dissipated as heat. It is by this mechanism that brown 
adipose tissue can serve as a central heater organ of mammals.  

    3.3.3   Mode of UCP1 Action 

 In brown adipocytes, in vivo UCP1 activity is under tight control and only dissipates 
proton motive force in response to appropriate stimuli. Strong inhibitors of UCP1 
uncoupling activity are the Mg 2+ -free di- and triphosphate forms of purine nucle-
otides (i.e., ADP, ATP, GDP and GTP). They interact with a nucleotide binding site 
located on a matrix loop of UCP1 that is accessible from the cytosolic side probably 
due to its steric position close to the transport channel (Ledesma et al.  2002  ) . The 
apparent binding affi nity ( K  

D
 ) of UCP1 for GDP is ~1  m M ( K  

D
  increases with pH) 

(Nicholls  1976 ; Rafael et al.  1994  ) , and accordingly, the GDP concentration required 
for half-maximal inhibition of proton conductance across the inner mitochondrial 
membrane is 10  m M (Nicholls  1974  ) . As the total purine nucleotide concentration in 
a cell is usually in the millimolar range (Traut  1994  ) , a complete block of UCP1 
activity appears to be the default setting. The affi nity of binding, however, is largely 
reduced in the presence of Mg 2+  cations, which chelate the di- and triphosphate moi-
ety of purine nucleotides in the cell. A cytosolic concentration of ~1 mM Mg-ATP is 
required to fully inhibit UCP1 (Nicholls and Locke  1984  ) . It is not fi nally settled 
whether UCP1 is completely inactive in the presence of purine nucleotides under 
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fatty acid-free conditions or may still exhibit some basal leak activity (Parker et al. 
 2009 ; Shabalina et al.  2010  ) . Positive regulators are free fatty acid anions that in the 
nanomolar range already partially overcome UCP1 inhibition by endogenous purine 
nucleotide concentrations (Nicholls and Locke  1984  ) . This explains the early obser-
vation that the oxidation of endogenous fatty acids by addition of ATP, CoA and 
carnitine conveys coupled respiration in isolated brown adipose tissue mitochondria 
(Hittelman et al.  1969  ) . The exact molecular mechanism of fatty acid-induced 
uncoupling by UCP1 is unresolved and is tightly linked to the question how UCP1 
actually creates a proton leak. Possibly, UCP1 acts as a direct translocase which 
forms a channel with negatively charged amino acid residues passing protons from 
the intermembrane space to the matrix. In such a model, fatty acids could act as a 
cofactor with their carboxyl terminus serving to close a gap in the transport chain of 
residues (Winkler and Klingenberg  1994  ) . In a similar model, UCP1 is able to trans-
locate protons without a cofactor but is prevented from doing so by bound inhibitory 
nucleotides. Fatty acids compete for an overlapping binding site and can thereby 
overcome inhibition (=activate) without being part of the actual transport process 
(Huang  2003 ; Shabalina et al.  2004  ) . In a third hypothesis, fatty acid anions are 
themselves the transported substrate. Free fatty acid anions can be protonated into 
their neutral form when they encounter high proton concentrations as is the case in 
the mitochondrial intermembrane space. Neutral fatty acids can cross biological 
membranes uncatalyzed by a so-called fl ip-fl op mechanism and could thereby enter 
the mitochondrial matrix. In this environment of low proton concentration, the 
carboxyl group would release its proton and thereby generate a net proton fl ux across 
the inner membrane. UCP1 closes the circuit by exporting fatty acid anions out of 
the mitochondrial matrix and perhaps additionally catalyzes fl ip-fl op events in its 
vicinity (Garlid et al.  1996 ; Skulachev  1991  ) . All models are compatible with the 
observable increase in UCP1-mediated uncoupled respiration upon liberation of free 
fatty acid anions in a brown adipocyte, but it is not known which of them is correct.   

    3.4   Activation of Non-Shivering Thermogenesis 

 A mouse or a rat when acutely transferred from room temperature to the cold (5°C) 
shows vasoconstriction and a slight drop in body temperature resulting in reduced 
thermal conductance and an immediate increase in thermoregulatory heat produc-
tion by shivering and by non-shivering thermogenesis in brown adipose tissue. The 
latter invokes the activation of UCP1 resulting in uncoupled respiration of brown 
adipocyte mitochondria. However, how is the environmental information on a low-
ering of ambient temperature sensed and processed by the animal and immediately 
translated into an appropriate thermogenic response in brown adipocytes? To answer 
this question, we need to examine how neuronal (and endocrine) communication 
along the brain-brown adipose tissue axis controls non-shivering thermogenesis. 
During the past decade, considerable progress has been made in this research area 
by the application of electrophysiology and neuroanatomical tracing techniques. 
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    3.4.1   Neuronal Control of Brown Adipose Tissue Thermogenesis 

 Upon cold exposure, thermal afferent signals elicited by thermoceptors in the skin 
are transmitted to the brain and result in efferent stimulation of vasoconstriction in 
peripheral blood vessels, shivering in skeletal muscle and non-shivering thermogen-
esis in brown adipose tissue. A current model of this thermal somatosensory refl ex 
suggests that peripheral thermoceptors transmit cold sensation through afferent 
neuronal projections to a command center in the brain, the preoptic area (POA) in 
the rostral hypothalamus (Morrison et al.  2008  ) . At thermoneutrality, efferent inhib-
itory neurons projecting from the POA to the dorsal medial hypothalamus and the 
brain stem tonically block sympathetic outfl ow to brown adipose tissue (Nakamura 
and Morrison  2008  ) . 

 Transduction of thermal information from the skin via the POA to brown adipose 
tissue involves multiple steps of neurotransmission and processing (Fig.  3.3 ). 
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  Fig. 3.3    Schematic illustration of the thermal somatosensory refl ex. Thermal afferent signals elic-
ited by thermoceptors in the skin are transmitted to the brain and activate inhibitory GABAergic 
interneurons in the POA of the rostral hypothalamus. In the activated state these interneurons block 
the activity of efferent inhibitory neuronal projections to the brain stem. Target neurons in the 
medullary raphe nuclei of the brain stem upon disinhibition convey increased sympathetic outfl ow 
to BAT (see text for further details).  DH  dorsal horn;  VH  ventral horn;  RN  medullary raphe nuclei; 
 LBA  lateral parabrachial nucleus;  POA  preoptic area;  SG  stellate ganglion;  NE  norepinephrine; 
 iBAT  interscapular brown adipose tissue       
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Primary somatosensory neurons fi rst deliver cold sensation of skin thermoceptors to 
the dorsal horn of the spinal cord, from where secondary afferent fi bers relay this 
information to the lateral parabrachial nucleus (LBA) in the midbrain. LBA neurons 
are then activated and stimulate inhibitory GABAergic interneurons in the POA. 
These interneurons upon stimulation diminish the activity of efferent inhibitory 
neurons projecting from the POA to caudal brain regions, including the raphe nuclei 
in the brain stem. Retrograde tracing of the central origins of sympathetic neurons 
innervating brown adipose tissue identifi ed rostral hypothalamic nuclei, like the 
nucleus paraventricularis, and several regions in the brain stem including the medul-
lary raphe pallidus and obscurus nuclei (Bamshad et al.  1999  ) . The medullary raphe 
nuclei are currently regarded as the prime brain stem region involved in the control 
of brown adipose tissue thermogenesis (but also of peripheral vasoconstriction). 
Functional studies in interscapular brown adipose tissue support the view that effer-
ent sympathetic premotor neurons emerging from these raphe nuclei descend to 
preganglionic sympathetic fi bers which project from the third and fourth thoracic 
segments into the stellate ganglion and stimulate the postganglionic sympathetic 
fi bers (Morrison  2004  ) . These postganglionic fi bers directly innervate brown adi-
pose tissue and upon preganglionic (cholinergic) stimulation activate non-shivering 
thermogenesis by the release of their transmitter norepinephrine.  

 According to this model, skin cooling elicits feedforward activation of inhibitory 
GABAergic interneurons in the POA resulting in the disinhibition of medullary 
raphe nuclei and increased fi ring rates of efferent sympathetic neurons innervating 
brown adipose tissue. Several studies, however, suggest that independent of this 
neuronal pathway which implements an essential role of hypothalamic nuclei (POA) 
in cold responses, the caudal brain stem also appears to receive direct sensoric input 
from peripheral thermoceptors and can directly elicit increased sympathetic outfl ow 
to brown adipose tissue (Bartness et al.  2010 ; Nautiyal et al.  2008  ) . Moreover, the 
known thermoregulatory responses controlled by the central nervous system are the 
result of the integration of thermal information not only from the skin, but also from 
thermoception in the core of the body, the spine and the brain itself.  

    3.4.2   Neuroendocrine Stimulation of Brown Adipose 
Tissue Thermogenesis 

 Several lines of evidence suggest that brown adipose tissue not only serves in the 
defense of body temperature but may also dissipate food energy in the defense of 
energy balance (Himms-Hagen  1979 ; Nedergaard and Cannon  2010 ; Rothwell and 
Stock  1979  ) . In the same manner as the thermoregulatory heat production described 
above, diet-induced non-shivering thermogenesis is thought to be activated by the 
excitation of sympathetic neurons innervating brown adipose tissue. The peripheral 
signals and central mechanisms and pathways involved to elicit diet-induced ther-
mogenesis in brown adipose tissue are only partially understood. Many peripheral 
signals derived from adipose tissue and the gastrointestinal tract are involved in the 
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regulation of energy intake and expenditure, and it has been suggested that brown 
adipose tissue is the effector organ for the catabolic action of some of these signals 
(Spiegelman and Flier  2001  ) . Once these signals reach the brain, they are integrated 
in the hypothalamus and the brain stem, which are the primary metabolic sensors of 
the brain. Different neuronal subpopulations within these sensors secrete neuropep-
tides which either stimulate or inhibit food intake and energy expenditure (Morton 
et al.  2006  ) . 

 Soon after the discovery of leptin which is secreted from adipose tissue in direct 
proportion to body fat mass, it was reported that intraperitoneal leptin injection in 
mice causes an increase of sympathetic nerve activity in brown adipose tissue with-
out affecting food intake (Collins et al.  1996  ) . Leptin binds to leptin receptors in 
neurons of the arcuate nucleus in the hypothalamus and stimulates the synthesis and 
neurosecretion of alpha-melanocyte stimulating hormone ( a -MSH). Binding of 
 a -MSH to melanocortin receptors, mainly MC4R, not only inhibits food intake but 
also increases the sympathetic outfl ow to brown adipose tissue. Peripheral leptin 
injection stimulates UCP1 expression of brown adipose tissue in wildtype, but not 
in Mc4r −/−  mice (Ste et al.  2000  ) . A large proportion of neurons in the paraventricu-
lar hypothalamus identifi ed by retrograde transsynaptic tracing to be part of the 
efferent outfl ow from the brain to the sympathetic innervation of brown adipose 
tissue also show Mc4r expression (Song et al.  2008 ; Voss-Andreae et al.  2007  ) . 
Injection of the melanocortin receptor agonist MTII into the paraventricular hypo-
thalamus caused a dose-dependent rise in interscapular brown adipose tissue 
temperature (Song et al.  2008  ) . 

 The ventromedial hypothalamus was identifi ed early on as a satiety center and 
has been implicated in the regulation of the sympathetic outfl ow to brown adipose 
tissue by multiple studies. Neuroanatomical evidence for the latter function is rather 
weak (Bamshad et al.  1999  )  and the published functional evidence has been ques-
tioned (Morrison et al.  2008  ) . A revival of the role of the VMH in controlling brown 
adipose tissue thermogenesis has occurred recently by demonstrating that in the rat, 
both systemic hyperthyroidism and T3 injections into the VMH stimulate sympa-
thetic nerve activity in brown adipose tissue (Lopez et al.  2010  ) . The neuronal path-
way by which this effect is mediated remains to be elucidated. In any case, it might 
explain a signifi cant proportion of the long-known necessity of thyroid hormones 
for brown adipose tissue thermogenesis (reviewed in Silva  2006  ) . 

 Taken together, considerable knowledge has already accumulated on the endo-
crine effectors of sympathetic outfl ow to brown adipose tissue, but it is not clear at 
which level thermal and metabolic efferent pathways converge.  

    3.4.3   Acute Activation of Uncoupled Respiration 
in Brown Adipocytes 

 Within minutes after cold exposure the sympathetic outfl ow from the brainstem to 
brown adipose tissue leads to the acute activation of non-shivering thermogenesis in 
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brown adipocytes by the release of norepinephrine from postganglionic sympathetic 
neurons. Parenchymal varicosities and axon terminals of sympathetic nerve fi bers 
have been described in close proximity to brown adipocytes (Bargmann et al.  1968  ) . 
Upon cold exposure, norepinephrine release activates adrenoreceptors situated in 
the plasma membrane of brown adipocytes (Fig.  3.4 ). Adrenoceptors (AR) of all 
three known  b -subtypes ( b 1-,  b 1- and  b 3-AR) are expressed in brown adipocytes of 
which the  b 3-adrenoreceptor seems to be most relevant for the acute activation of 
thermogenesis (Lafontan and Berlan  1993  ) . This G-protein coupled receptor 
activates adenylyl cyclase, an enzyme that converts ATP to the second messenger 
molecule cyclic AMP (cAMP). Signal transduction proceeds to the protein kinase A 
(PKA) complex that releases its catalytic subunit to phosphorylate target proteins in 
response to increased cytosolic cAMP levels (Fig.  3.4 ).  

 Activation of PKA in the  b -adrenergic signaling cascade leads to an increase in 
lipolytic activity at the surface of lipid droplets in the brown adipocyte. Remarkably, 
the fi rst and crucial step in the breakdown of triglycerides catalyzed by adipose 

  Fig. 3.4    Signaling pathways in brown adipocytes. Release of norepinephrine at the plasma mem-
brane of brown adipocytes leads to activation of G-protein coupled adrenoreceptors. The resulting 
signaling network prominently relies on PKA which mediates both acute and longer term conse-
quences. The immediate increase in heat generation is affected by fast liberation of fatty acids at 
the lipid droplets. A network of adaptive gene expression is initiated by the transcription (co-)fac-
tors CREB, ATF-2 and PGC1 a . Please refer to the main text for a detailed description of all 
depicted processes.  Double arrows  indicate pathway segments with interconnections unknown or 
deliberately left out       
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triglyceride lipase (ATGL) is adrenergically activated by a different and so far 
unresolved pathway (Zimmermann et al.  2004  ) . However, the lipid droplet coating 
protein perilipin and hormone-sensitive lipase are direct PKA targets. Their phos-
phorylation leads to an increased rate of lipolysis and emergence of cytosolic free 
fatty acid anions (Holm  2003  ) . Beyond this well-characterized mechanism, the  b 3-
receptor can additionally activate a second, extracellular signal regulated kinase 
(ERK) mediated signaling cascade to reach a maximal lipolytic activity in the pres-
ence of high ligand concentrations. The proteins involved and targeted in this 
process are not entirely known, but ERK signaling further augments maximal PKA-
mediated lipolysis by ~20% (Robidoux et al.  2006  ) . Brown adipocytes abundantly 
express both heart-type and adipose tissue-type fatty acid binding proteins, to shut-
tle lipophilic fatty acids through the cytosolic compartment (Daikoku et al.  1997  ) . 
These fatty acids serve a dual purpose in brown adipocyte thermogenesis. Esterifi ed 
to coenzyme A, fatty acids are shuttled as metabolic fuel into the mitochondrial 
b-oxidation pathway, while in their unbound non-esterifi ed anion form, they act as 
potent activators of UCP1 (Sect.  3.3.3 ). At this point, the complex regulatory path-
way from cold sensation to acute heat generation by uncoupled respiration in brown 
adipose tissue is complete. The increased cytosolic free fatty acid concentration is 
the fi nal effector directly leading to increased UCP1 activity and concomi tant heat 
production to compensate an increased heat loss by non-shivering thermogenesis.   

    3.5   Recruitment of Non-Shivering Thermogenesis Capacity 

    3.5.1   Magnitude of Cold-Induced Increase in Heat 
Production Capacity 

 A normal B6 mouse (body weight = 23 g) when subjected to a cold challenge test in 
which ambient temperature is rapidly lowered from 30 to 5°C must develop a ther-
mogenic power of ~850 mW to prevent life-threatening hypothermia. When previ-
ously housed at thermoneutrality, however, the mouse only has a maximal heat 
production capacity (HP 

max
 ) of 750 mW. Despite this substantial 4.7-fold increase in 

the power of heat dissipation above basal metabolic rate, it is insuffi cient to survive 
at 5°C (Meyer et al.  2010  )  (Fig.  3.5 ). Acclimation of the mouse to moderate cold 
conditions (18°C) for >3 weeks causes an increase of HP 

max
  to ~1,000 mW and 

enables the mouse to pass the acute cold challenge test without problems. A mouse 
cold acclimated at 5°C will further increase HP 

max
  to ~1,200 mW. This recruitment 

of additional capacity for heat production with decreasing acclimation temperature 
has been reported in many small rodents (Heldmaier et al.  1990  ) . It is due to a large 
rise in non-shivering thermogenesis capacity in brown adipose tissue and a com-
paratively small increment in basal metabolic rate. This is also true for the labora-
tory mouse. The maximal capacity for non-shivering thermogenesis is determined 
by measuring the thermogenic response to a single subcutaneous injection of 
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norepinephrine (Heldmaier  1971  ) . Comparing B6 mice acclimated to 30, 18, and 5°C, 
a three to fourfold increase in norepinephrine-inducible non-shivering thermogen-
esis capacity can be observed (Fig.  3.5 ). In spite of vigorous shivering and maximal 
activation of uncoupled respiration in brown adipose tissue, the thermoneutral-
acclimated mouse cannot generate 850 mW for survival at 5°C. A mouse acclimated 
to moderate cold (18°C) has to utilize the maximal capacity for non-shivering ther-
mogenesis, but also needs some shivering to survive. In the cold-acclimated mouse, 
already submaximal activation of non-shivering thermogenic capacity compensates 
for heat loss in the cold with no additional need for shivering thermogenesis 
(Fig.  3.5 ). This is why it is often stated that during cold acclimation, non-shivering 
thermogenesis replaces shivering thermogenesis. It should be noted, however, that a 
further lowering of ambient temperature will also cause the activation of shivering 
thermogenesis in cold-acclimated mice once the capacity for non-shivering thermo-
genesis approaches maximal power. The limit of cold-acclimated mice is reached at 
approximately −18°C (Meyer et al.  2010  ) .  

 Translated to a wildlife scenario, small rodents benefi t from the large increase in 
the capacity for non-shivering thermogenesis during cold acclimation in two ways. 
They can move around in cold environments more freely when foraging for food or 
in the escape from predators, and they have a better chance of survival in extreme 
cold bouts. The large increase in non-shivering thermogenesis is due to adaptive 
remodeling of brown and white adipose tissue.  

  Fig. 3.5    Maximal cold-induced heat production. Contribution of basal metabolic rate and 
NE-induced thermogenesis to maximal cold-induced heat production. Wildtype B6 mice were 
acclimated to 30, 18, and 5°C for several weeks. Basal metabolic rate was measured during 3–4 h 
at 30°C, NE-induced thermogenesis in response to a single injection of 1 mg/kg NE and maximal 
cold-induced heat production by stepwise lowering of ambient temperature until the cold limit was 
attained (Meyer et al.  2010  )        
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    3.5.2   Beta Adrenergic Control of Cold-Induced Adaptations 
in Brown Adipose Tissue 

 Noradrenergic stimulation of brown adipose tissue leads to immediate UCP1 
activation by means of increased lipolysis. At the same time, brown adipocytes 
increase their capacity for heat production by expression of genes encoding com-
ponents of the thermogenic machinery, among them prominently UCP1. 
Transcriptional control by transcription factor binding sites in the UCP1 pro-
moter and an essential upstream enhancer region are well studied and can serve 
as an example to illustrate this process. Both the posttranslational and the tran-
scriptional responses to norepinephrine share a common signaling pathway up to 
the point at which PKA is activated by cAMP (see Sect.  3.4.3  and Fig.  3.4 ). A 
direct target of PKA is the transcription factor cAMP response element binding 
protein (CREB) which is activated upon phosphorylation and binds to response 
elements in the promoter region of many genes including UCP1 (Rim et al.  2004  ) . 
In parallel to PKA, a fraction of CREB phosphorylation is mediated by an inde-
pendent, less well-characterized pathway emanating from  a 1-adrenoreceptors 
and involving protein kinase C (Thonberg et al.  2002  ) . 

 CREB is a central transcription factor in the regulation of gene expression 
following noradrenergic stimulation of brown adipose tissue but certainly not the 
only one (Fig.  3.4 ). The mitogen activated pathway kinase (MAPK) p38 is activated 
downstream of PKA although p38 is not itself a direct target of PKA (Cao et al. 
 2004  ) . This MAP kinase phosphorylates the activating transcription factor 2 (ATF-2) 
which binds and transactivates the UCP1 enhancer and the promoter of the 
peroxisome proliferator activated receptor  g  (PPAR g ) coactivator 1 a  (PGC1 a ) gene. 
PGC1 a  is not only positively regulated by p38 via ATF-2 on the transcriptional 
level but also posttranslationally activated as a direct target of p38 phosphorylation. 
Activated PGC1 a  in turn is a strong coactivator of UCP1 transcription and of many 
genes involved in mitochondrial biogenesis. 

 This interwoven, self-amplifying network of transcriptional control processes is 
typical for the noradrenergically induced gene expression cascade in brown adipo-
cytes in response to cold. We fi nd a further example in peripheral thyroid hormone 
actions beyond the centrally mediated effects on brown adipose tissue already 
discussed above (see Sect.  3.4.2 ). One of the CREB target genes is the thyroid hor-
mone converting enzyme deiodinase 2 (DIO-2) (Canettieri et al.  2000  ) . DIO-2 con-
verts the transport form of thyroid hormone T4 to the bioactive form T3. As a ligand 
of thyroid hormone receptors, T3 transactivates these transcription factors. In brown 
adipose tissue, the T3 receptor  b 1 isoform is a positive (albeit permissive) regulator 
of UCP1 gene transcription (Golozoubova et al.  2004  ) . DIO-2 is also targeted by 
this T3 receptor thus forming a positive feedback loop (Martinez de et al.  2010  ) . 

 The goal of cold-induced transcriptional changes in brown adipose tissue is to 
increase the capacity for heat generation and thus for oxidative metabolism. 
Accordingly, the protein amounts of virtually all components of energy metabo-
lism including fatty acid oxidation and transport, citrate cycle, respiratory chain 



54 M. Klingenspor and T. Fromme

and many more are increased (Forner et al.  2009 ; Watanabe et al.  2008  ) . The key 
organelle implicated in these processes is the mitochondrium. Mitochondrial bio-
genesis is strongly activated in the cold and results in a more than threefold increase 
in the amount of mitochondrial protein per brown adipocyte (Rafael et al.  1985 ; 
Klingenspor et al.  1996b  ) . The transcriptional coactivator PGC1 a  is regarded the 
master regulator of this adaptation, because overexpression in several cell types 
including white adipocytes and muscle cells leads to strong elevation of mRNA 
levels for both nuclear- (cyclooxygenase-4 [COX4],  b -F 

1
 -ATPase) and mitochon-

drial- (COX2) encoded subunits of the respiratory chain as well as mitochondrial 
copy number (Lowell and Spiegelman  2000 ; Wu et al.  1999  ) . PGC1 a  enforces 
expression of the nuclear respiration factors 1 and 2 (NRF-1, NRF-2) which bind 
to response elements in many genes coding mitochondrial proteins. Given the 
prominent role of PGC1 a  in the regulation of the UCP1 gene and its strong norepi-
nephrine-induced expression and activation in brown adipose tissue, it seems clear 
that mitochondrial biogenesis in response to cold is also under the control of 
PGC1 a  and NRF1/2. In addition, the effi ciency of the mitochondrial translation 
machinery in brown adipocytes contributes to the cold-induced mitochondrial 
biogenesis (Klingenspor et al.  1996b  ) . 

 By all these means, brown fat cells enhance their capacity for heat production. 
This improvement in the  quality  of brown adipocytes is complemented by increas-
ing their  quantity  during adaptive thermogenesis. In laboratory mice and rats, cold 
exposure elicits growth of brown adipose tissue and a large increase of  3 H-thymidine 
incorporation can be observed during the fi rst days of cold acclimation, indicating 
proliferation mainly of preadipocytes (Rehnmark and Nedergaard  1989  ) . The mass 
of the interscapular depot increases 3–4 fold when warm-acclimated rats are cold 
acclimated for several weeks (Bukowiecki et al.  1982  ) . The larger tissue mass not 
only refl ects the increased number of brown adipocytes, but in part also lipid storage 
in the newly differentiated cells, mitochondrial biogenesis and notably angiogene-
sis. The formation of new capillaries under adrenergic control (Asano et al.  1997  )  
highlights that these processes are all aspects of adaptive hyperplasia of the entire 
organ brown adipose tissue in response to cold exposure.  

    3.5.3   Non-Shivering Thermogenesis Outside 
of Brown Adipose Tissue 

 The recruitment of brown adipose tissue in the cold is clearly the major contributor 
to increased non-shivering thermogenesis capacity but whether this heater organ is 
the exclusive site of adaptive thermogenesis in mammals is controversial (Golozoubova 
et al.  2006 ; Meyer et al.  2010 ; Ukropec et al.  2006  ) . The UCP1 knockout mouse has 
been utilized by several groups to address this question. A B6 UCP1 knockout mouse 
(body weight = 23 g) when acclimated to thermoneutrality has a HP 

max
  of ~710 mW 

which closely resembles the thermogenic capacity of a wildtype B6 mouse (see 
Fig.  3.5  and Sect.  3.5.1 ). In this acclimation state, the presence or absence of UCP1 
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has no impact on the thermogenic performance in the cold as brown adipose tissue is 
in a non-recruited (atrophied) state, and both genotypes mainly have to rely on shiv-
ering thermogenesis. In contrast, when comparing wildtype and UCP1 knockout 
mice acclimated to room temperature, the latter become hypothermic when trans-
ferred to the cold whereas wildtype mice are cold resistant (Enerback et al.  1997  ) . 

 Notably, UCP1 knockout mice can survive for months at 5°C when fi rst pre-
acclimated to cool conditions (18°C). Pre-acclimation results in an increase of HP 

max
  

to ~870 mW, and subsequent cold acclimation to 5°C further mounts HP 
max

  to 
~940 mW (Meyer et al.  2010  ) . A straightforward conclusion from these data is that 
UCP1 knockout mice do exhibit adaptive thermogenesis, perhaps by increasing the 
capacity for shivering thermogenesis in skeletal muscle and/or recruitment of non-
shivering thermogenesis capacity in other tissues. Pertaining to shivering capacity, 
the search for structural and functional adaptations of skeletal muscle, however, 
revealed no striking differential training effects when comparing cold-acclimated 
wildtype and UCP1 knockout mice (Meyer et al.  2010  ) , despite continuous shiver-
ing of UCP1 knockout in the cold (Golozoubova et al.  2001  ) . Therefore, it has been 
suggested that mice living at thermoneutrality cannot bail out their maximal capac-
ity for shivering thermogenesis capacity in skeletal muscle due to limitations in 
physical endurance which is improved by pre-acclimation. The metabolic scope, 
representing the ratio of maximal heat production and basal metabolic rate, is a reli-
able measure of fi tness. The metabolic scope of thermoneutral acclimated wildtype 
and UCP1 knockout mice at their cold limit is 4.7- and 4.3-fold BMR, correspond-
ing to HP 

max
  of 740 and 710 mW, respectively. This closely resembles the sustained 

metabolic scope of laboratory mice in the cold which ranges between four- and 
fi vefold BMR in subsequent exposures to 8, 0, −10, and −15°C ambient temperature 
(Konarzewski and Diamond  1994  ) . Based on these data, cold acclimation does not 
invoke a striking improvement of physical endurance. This is in favor of the view 
that UCP1 knockout mice in the absence of functional brown adipose tissue can also 
recruit signifi cant capacity for thermogenesis at other sites of the body. Notably, in 
cold-acclimated UCP1 knockout mice, a striking remodeling of white adipose tissue 
occurs with the appearance of multilocular brown adipocyte-like cells, a nearly 
fourfold increase in mitochondrial respiration capacity (cytochrom-c-oxidase 
activity) and an increased expression signature of brown adipocytes (Meyer et al.  2010 ; 
Ukropec et al.  2006  ) . It remains to be resolved whether this increased respiratory 
capacity in WAT may contribute to adaptive thermogenesis in UCP1 knockout mice.   

    3.6   Origin of Brown Adipose Tissue 

    3.6.1   Brown Adipocytes 

 For decades, researchers have tried to answer the question whether white and brown 
adipocytes share a common preadipocyte-type cell that can be triggered to differen-
tiate into the white or the brown lineage, or whether there are two distinct sets of 
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preadipocytes, brown and white. Recently, major advances have shed some light on 
the identity of brown adipocyte precursors and revealed an unexpected relationship. 

 The pattern of expressed genes in primary cells derived from brown adipose 
tissue is much more similar to that of skeletal muscle than of white adipose tissue 
cells (Timmons et al.  2007  ) . This is also true for the mitochondrial proteome of 
mouse adipose tissues (Forner et al.  2009  ) . Initially interpreted as the activation of 
a muscle gene set in adipocytes, it has now become clear that skeletal muscle 
myotubes and brown adipocytes indeed share a common progenitor that is distinct 
from white preadipocytes. In lineage tracing experiments, all cells of an organism 
that have ever expressed a certain gene at any timepoint during ontogenesis are 
labeled by reporter gene expression. Such a study demonstrated that both brown 
adipocytes and skeletal muscle myotubes derive from progenitor cells expressing 
Myf-5, a transcription factor well known for its important role during skeletal 
muscle cell differentiation (Seale et al.  2008  ) . White adipocytes, in contrast, had 
never expressed Myf-5. Furthermore, a single transcription factor named PR domain 
containing 16 (PRDM16) has been identifi ed as a molecular switch deciding the fate 
of a common progenitor cell (“adipomyoblast”) to become either a myotube or a 
brown adipocyte and vice versa (Seale et al.  2007,   2008  ) . Knocking down PRDM16 
in preadipocytes isolated from brown adipose tissue leads to formation of myotubes 
in primary cell culture while overexpression of PRDM16 in myoblasts leads to 
differentiation to brown adipocytes. 

 Despite all differences between white and brown adipocytes, they share several 
key transcription factors that are involved in adipogenic differentiation (Rosen and 
MacDougald  2006  ) . It could be argued that brown adipocytes are rather muscle type 
cells with an adipogenic expression signature than the other way round. These 
adipogenic factors include the PPAR g  and members of the CCAAT/enhancer binding 
protein family (C/EBP). Although they are essential for brown adipocyte differentia-
tion and the maintenance of other adipogenesis-induced genes, the expression of 
PPAR g  or C/EBP a  in stem cells leads to formation of white and not brown fat cells 
(Kim et al.  2005 ; Wu et al.  1995  ) . A further transcription factor expressed in both 
white and brown adipose tissue is the forkhead factor C2 (FOXC2) which upon trans-
genic, forced expression confers several brown adipocyte characteristics to white 
adipose tissue (Cederberg et al.  2001  ) . Its specifi c requirement for brown adipocyte 
differentiation, however, has not been demonstrated. Thus, the only known factor 
conferring identity to brown adipocytes during differentiation remains PRDM16. 

 Apart from endogenous factors, external stimuli have been identifi ed that induce 
brown adipocyte differentiation. Of paramount importance in this context is cer-
tainly norepinephrine which leads to increased proliferation in brown adipose tissue 
(see Sect.  3.5.2 ). A novel effector was recently identifi ed in primary cell culture of 
brown preadipocytes. Treatment with bone morphogenetic protein 7 (BMP7) leads 
to their differentiation into typical brown fat cells. Conversely, mice devoid of 
BMP7 show a drastically decreased brown adipose tissue mass and UCP1 expres-
sion (Tseng et al.  2008  ) . So far neither the source of this BMP7 signal in vivo nor 
the information it conveys are known and thus the physiological relevance remains 
to be assessed. 
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 The fundamental knowledge on the regulation of cellular differentiation of brown 
adipocytes, however, is not entirely transferable to brown adipocytes found inter-
spersed within white adipose tissue depots. The  b -adrenergic recruitment of inter-
spersed brown adipocytes e.g. requires the presence of COX-2, while brown 
adipocytes in pure brown adipose tissue depots do not (Madsen et al.  2010 ; 
Vegiopoulos et al.  2010  ) . A hypothesis recurringly brought forward in this context 
is that white adipocytes may be able to transdifferentiate into brown adipocytes and 
thus constitute a second type of brown adipocyte distinct from those found in brown 
adipose tissue depots. The emergence of fat cells with an intermediate appearance 
in terms of lipid droplet and mitochondrial number following a  b -adrenergic stimu-
lus seems to support this view (Barbatelli et al.  2010  ) . On the other hand, the 
stromal-vascular (non-adipocyte) fraction of white adipose tissue contains a sub-
population that in primary cell culture forms thermogenically competent, UCP1-
containing cells when properly stimulated (Petrovic et al.  2010  ) . It is thus unclear 
whether the source of brown adipocytes in white adipose tissue depots is mainly 
transdifferentiation or differentiation of a separate pool of precursor cells within the 
tissue or both. In view of a possible pharmacological intervention leading to trans-
differentiation of fat-storing white into fat-burning brown adipocytes, this particular 
fi eld needs to be intensely investigated.  

    3.6.2   Emergence of Brown Adipose Tissue in Mammals 

 Beyond the ontogenic origin of brown adipocytes, their evolutionary history has 
been object of investigation. Based on the study of a small subset of investigated 
species, it is often stated that brown adipose tissue can be found in all Eutherian 
mammals (>5,000 species) and is indeed a monophyletic trait of this vertebrate 
subclass. This view is supported by the identifi cation of brown adipose tissue in the 
rock elephant shrew ( Elephantulus myurus ), a species belonging to the Afrotheria, 
a group of mammals thought to be at the base of the Eutherian radiation (Mzilikazi 
et al.  2007  ) . On the other hand, the UCP1 gene, encoding the unique molecular 
marker of brown adipocytes, is non-functional in several breeds of domestic pigs 
and in wild boars, clearly demonstrating a loss of brown adipose tissue function in 
some Eutherian species (Berg et al.  2006  ) . The actual origin of brown adipose tissue 
may date back much earlier to the common ancestors of all mammals (Theria) as 
UCP1 expression is induced in response to cold exposure in the interscapular adi-
pose tissue depot of a small Australian marsupial, the fat-tailed dunnart  Sminthopsis 
crassicaudata  (Jastroch et al.  2008  ) . More physiological studies must be conducted 
to demonstrate the capacity for adaptive thermogenesis in evolutionary ancient 
mammalian species. 

 In the subset of species in which brown adipose tissue was studied, some anatomi-
cal and functional differences have been identifi ed. The relative mass of brown adi-
pose tissue decreases with increasing body mass which is related to the decreased need 
for thermoregulatory heat production with increasing body mass. Larger mammals 
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rather rely on improved insulation. The relative amount of brown adipose tissue in 
relation to body mass also varies between species. Comparing 16 non-hibernators and 
eight hibernators in a body mass range of <10 g to 5 kg, it was observed that hiberna-
tors have about twice the amount of brown adipose tissue (Heldmaier  1971  )  which 
most likely represents an genetic adaptation to the increased need for non-shivering 
thermogenesis in periodic arousals during the hibernation season. Pertaining to the 
anatomical distribution of brown adipose tissue, the interscapular depot typically 
found in rodents is regularly found only in neonate and juvenile humans but is lost 
during adolescence (Heaton  1972  ) . 

 The recruitment of thermogenic capacity in response to cold acclimation is a 
hallmark of brown adipose tissue in rodents. The mechanisms involved in recruit-
ment, however, differ even between closely related species. In mice and rats, the 
capacity is increased by hyperplasia as described above. In contrast in the Djungarian 
hamster, only a small increase in the cellularity of brown adipose tissue occurs 
(Klingenspor et al.  1996a  ) . In fact, the brown adipose tissue wet weight in this 
species decreases during cold acclimation due to a reduction in the cellular lipid 
content. In spite of decreased brown adipose tissue mass, cold-acclimated Djungarian 
hamsters in winter develop a maximal non-shivering thermogenesis capacity of 
1,600 mW as compared to 1,000 mW in warm-acclimated hamsters in summer 
(Heldmaier et al.  1990  ) . This is accomplished by a nearly threefold increase of 
mitochondrial protein content in brown adipose tissue when expressed on a per 
animal basis (Rafael et al.  1985  ) . 

 In the light of the recent discovery of metabolically active brown adipose tissue 
in healthy adult humans (see Sect.  3.7 ), such differences between species in the 
recruitment mechanisms should be kept in mind.  

    3.6.3   UCP1 

 The previous assumption that UCP1 has emerged ~150 million years ago with the 
evolution of eutherian mammals has been disproved. Based on molecular phylog-
eny and conserved synteny, orthologs of mammalian UCP1 were found in fi sh, 
amphibians and non-eutherian mammals (Fig.  3.6 ) (Jastroch et al.  2005,   2008  ) . Not 
only UCP1, but also the paralogs UCP2 and UCP3, have already been present 420 
million years ago in the common ancestors of ray-fi nned and lobe-fi nned verte-
brates. In contrast to mammalian UCP1 in brown adipose tissue, fi sh UCP1 is 
mainly expressed in the liver and downregulated in response to cold exposure. GDP-
sensitive uncoupled respiration in the presence of palmitate was found in liver mito-
chondria isolated from warm acclimated fi sh, but absent after cold acclimation 
(Jastroch et al.  2007  ) . Thus, the biochemical properties of fi sh UCP1 may resemble 
mammalian UCP1. Regarding the molecular phylogeny of UCP1 in vertebrates, a 
striking observation was made. The branch length between UCP1 in marsupials and 
eutherian mammals is more than twice the length between marsupials and amphib-
ians (Fig.  3.6 ) (Jastroch et al.  2008  ) . In evolutionary time, however, marsupials are 
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much closer related to eutherians than to amphibians. This demonstrates that UCP1 
underwent an accelerated rate of sequence changes during the evolution of euthe-
rian mammals which is most likely explained by relaxed constraints (Hughes et al. 
 2009  ) , not positive selection (Saito et al.  2008  ) . A possible evolutionary scenario 
assumes that all three UCPs initially had a common physiological function. This 
functional redundancy as well as the ubiquitous expression of UCP2 enabled relaxed 
constraints for the evolution of UCP1. At some point in time, the UCP1 gene gained 
exclusive expression in mammalian adipocytes of the multilocular type. In this 
specialized cell type, the original function of UCP1 was no longer essential and 
allowed for structural and functional changes (Hughes et al.  2009  ) . It is of interest 
to identify the functional residues critical for uncoupling activity and fatty acid-
induced activation of UCP1 (Klingenspor  2003 ; Rial and Zardoya  2009  ) .    
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  Fig. 3.6    Schematic representation of a UCP species tree. The molecular phylogeny of the UCP 
family was analyzed using 79 UCP sequences from vertebrates. Branch lengths represent the number 
of substitutions; the Eutherian branches are highlighted in  black  (for details see Hughes et al.  2009  )        
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    3.7   Brown Adipose Tissue in Humans 

 In a review published in 2007, the unexpected presence of brown adipose tissue in 
adult humans was brought to the broader attention of physiologists and physicians 
interested in thermoregulation and energy balance (Nedergaard et al.  2007  ) . The key 
observations had initially been made by radiologists applying fl uordeoxyglucose 
positron emission tomography (FDG PET) combined with computerized tomogra-
phy (CT) in tumor diagnosis. Using this metabolic imaging technique, regions with 
high glucose uptake identifi ed in the upper part of the body were found to be due to 
adipose tissue rather than musculature (Hany et al.  2002  ) . These metabolically 
active adipose tissues can be visualized by FDG PET in different anatomical regions, 
namely the neck and supraclavicular, para-aortic, paravertebral and suprarenal 
regions and were reported to cause false-positive results in tumor diagnosis. Less 
successful attempts to reduce the intensity of these adipose FDG PET signals, 
including the pretreatment of patients with benzodiazepines and other sedating 
drugs, had been made until two treatments were found to be effi cient. Prior to FDG 
infusion, patients were either subjected to a core warming maneuver (Christensen 
et al.  2006  )  or treated with the b AR antagonist propranolol (Soderlund et al.  2007  ) . 
Both treatments diminished the adipose FDG PET signals. These two independent 
observations strongly supported the view that adipose FDG PET signals were due to 
metabolically active brown adipose tissue. 

 From what we learned in animal studies, brown adipose tissue thermogenesis is 
turned on in the cold by increased sympathetic nerve activity which increases glu-
cose uptake into brown adipocytes (Cannon and Nedergaard  2004  ) . The observed 
inhibition of glucose uptake into brown adipose tissue in the warm and in response 
to propranolol is therefore exactly what we would anticipate in brown adipose 
tissue. This motivated several labs worldwide to conduct follow-up studies which 
clearly confi rmed the presence of brown adipose tissue in adult humans (Fig.  3.7 ).  

 Some of these studies performed FDG PET scans on a small number of healthy 
adult volunteers (Saito et al.  2009 ; van Marken Lichtenbelt et al.  2009 ; Virtanen 
et al.  2009  )  whereas others analyzed a large number of clinical scans which had 
been performed on patients with different indications (Cypess et al.  2009 ; Au-Yong 
et al.  2009  ) . All studies identifi ed substantial depots of brown adipose tissue in the 
cervical and thoracal region. The retrospective analyses of clinical scans reported 
rather low prevalence of FDG visualization in brown adipose tissue with more posi-
tive scans in females (~7%) than in males (~3%) (Cypess et al.  2009 ; Au-Yong 
et al.  2009  ) . Notably, the prevalence of brown adipose tissue positive patients was 
largely altered by season. The percentage of brown adipose tissue positive scans 
increased fourfold from summer to winter, and also the number of FDG positive 
depots increased in the winter season (Au-Yong et al.  2009  ) . Naturally these scans 
were all performed under routine conditions in the hospital with no experimental 
control of ambient temperature before and during the scan. In contrast, the experi-
mental studies investigating healthy adult volunteers repeated FDG PET scans 
under warm and cold conditions. In the warm condition, the detection of brown 
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adipose tissue was negligible whereas in the cold condition, a large number of the 
subjects showed FDG uptake in several brown adipose tissue depots. Cold-induced 
FDG uptake in brown adipose tissue was detected in 16 out of 31 and 23 out of 24 
young subjects, respectively (Saito et al.  2009 ; van Marken Lichtenbelt et al.  2009  ) . 
These results demonstrate cold-induced glucose uptake in brown adipose tissue and 
suggest that the prevalence of brown adipose tissue is much higher than estimated 
from clinical scans. 

 Despite the presence of brown adipose tissue, the activity of the tissue under rou-
tine clinical conditions is mostly low. This view is supported by the reanalysis of a 
set of FDG PET scans which demonstrated a poor reproducibility of brown adipose 
tissue detection in repeated scans of the same individuals (Lee et al.  2010  ) . Only 13% 
of the patients which had been positive for brown adipose tissue in their fi rst scan 
were also positive in the second. Correcting for this high rate of false negative obser-
vations, the prevalence of brown adipose tissue was estimated at 64% (Lee et al. 
 2010  )  which is in line with the reported high prevalence in healthy adult subjects 
(Saito et al.  2009 ; van Marken Lichtenbelt et al.  2009  ) . Clearly, cold exposure stimu-
lates human brown adipose tissue activity, but notably, the seasonal increase in brown 
adipose tissue positive scans in winter is more closely associated with the change in 
photoperiod than ambient temperature (Au-Yong et al.  2009  ) . Photoperiod may 
therefore represent an important environmental signal in the control of human brown 
adipose tissue activity. In seasonal rodents, it is well known that a short winter-like 
photoperiod stimulates mitochondrial biogenesis and UCP1 expression to increase 
the thermogenic capacity of brown adipose tissue (Heldmaier and Klingenspor 
 2002  ) , but it remains to be investigated by FDG PET or other means whether brown 
adipose tissue activity in vivo is also increased in this winter-acclimatized state. 

 The conclusion that FDG positive adipose tissue depots are indeed brown adipose 
tissue was confi rmed by the analysis of biopsy specimen. FDG PET detection was 

  Fig. 3.7    Brown adipose tissue in humans. I: In humans brown adipose tissue depots are found in 
the tracheal ( A ), mediastinal ( B ), supraclavicular ( C ), paravertebral ( D ) and supra-/perirenal ( E ) 
areas (depicted from Enerback  2010  ) . II: In a comparison of FDG PET scans taken after cold 
exposure and in thermoneutral conditions, the localization of active brown adipose tissue is evident 
(depicted from van Marken Lichtenbelt et al.  2009  )        
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combined with CT for precise anatomical localization of the depots and enabled 
sampling of biopsies for immunohistological inspection and Western blot analysis. 
The presence of UCP1 was confi rmed in several studies (Cypess et al.  2009 ; Saito 
et al.  2009 ; van Marken Lichtenbelt et al.  2009 ; Virtanen et al.  2009 ; Zingaretti 
et al.  2009  ) . 

 Taken together, the above studies found unexpected amounts of brown adipose 
tissue in healthy adult humans, which could be metabolically activated by acute 
cold exposure of the subjects. Furthermore, several studies observed a high preva-
lence in young adults which decreased with age and body mass index, and low 
fasting glucose levels were associated with the presence of brown adipose tissue. 
Obviously, the urgent question is whether energy expenditure due to the metabolic 
activity of brown adipose tissue depots signifi cantly alters energy balance regula-
tion in humans. This is not a new question and has been a matter of heated debates 
in the past. The presence and anatomical distribution of brown adipose tissue in 
humans was described decades ago (Heaton  1972  )  and had been suggested to lower 
the susceptibility to obesity in man (Himms-Hagen  1979 ; Rothwell and Stock 
 1979  ) . Several critical papers have dismissed this possibility in the past (Astrup 
et al.  1984 ; Cunningham et al.  1985  ) . In the light of the present FDG PET fi ndings, 
the previous negative outcomes were mainly due to the underestimation of brown 
adipose tissue mass in adult humans. The new studies estimate brown adipose tissue 
mass to account for 0.05–0.1% of body mass in humans, thus in the range of 35–70 g 
in a 70 kg individual. The metabolic activity of this brown adipose tissue mass was 
calculated based on glucose (FDG) uptake measurements. Taking into account that 
only 10% of the oxygen consumption in brown adipose tissue is fueled by glucose, 
the estimated metabolic rate could allow us to burn ~4 kg of adipose tissue in 1 year 
(Virtanen et al.  2009  ) , corresponding to ~120 MJ (30 MJ/kg adipose tissue). This 
amount of energy is less than ~3% of the annual energy budget of a 70 kg individual 
but in the long run may effectively partition excess food energy towards catabolism 
in brown adipose tissue and thereby prevent this energy to be stored as triglyceride 
in adipocytes. To achieve this anti-obesity effect, human brown adipose tissue would 
have to dissipate heat at a power of ~50 mW/g of tissue which is below the values 
reported for brown adipose tissue in rodents (Table  3.1 ). Based on such theoretical 
assumptions, it seems feasible to expect a signifi cant contribution of brown adipose 
tissue to the defense of energy balance in humans. Pertaining to the research efforts 
in the prevention of obesity and impaired glucose homeostasis, it appears worth-
while to search for treatments effectively slowing down the loss of brown adipose 
tissue with age and also increasing the proportion of brown adipocytes in white 
adipose tissue. 

 The actual thermogenic activity of brown adipose tissue in humans remains to be 
quantifi ed, which will be a technically challenging task. Although human brown 
adipose tissue may be relevant for long-term energy balance regulation, a signifi cant 
contribution to thermoregulatory heat production at ambient temperatures below the 
thermoneutral zone must be questioned. Using Kleiber’s equation, an individual 
with 70 kg body mass at thermoneutrality would dissipate 82 W for basal metabolic 
rate (Kleiber  1967  ) . In the cold (5°C), heat production is increased by 3–4 fold 
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BMR, thus corresponding to ~300 W (Scholander et al.  1958  ) . Assuming the 
estimated heating capacity of 50 mW/g, the contribution of human brown adipose 
tissue to cold-induced increment of heat production would be negligible (1.7%). 
Only if human brown adipose tissue could attain the maximal thermogenic power 
measured in brown adipose tissue of cold acclimated rats (480 mW/g) it could be of 
marginal signifi cance. One important prerequisite to achieve such a high ther-
mogenic activity is that the abundance of UCP1 in the mitochondria of human 
brown adipocytes should be of comparable high level as in rodents (5–8% of the 
mitochondrial protein). The presence of UCP1 in human brown adipose tissue 
depots has been demonstrated unequivocally but whether the abundance of the pro-
tein in the inner mitochondrial membrane is suffi cient to support a high power of 
heat dissipation is not known, so far.      
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  Abstract   White adipose tissue (WAT) is one of the most abundant tissues in 
mammals, exhibiting numerous complex functions. The primary purpose of WAT is 
to store excess energy in the form of fat for future use by other cells of the organism 
during periods of energy deprivation. In order to do this, white adipocytes acquire 
the expression of specifi c enzymes during their differentiation, which enable both 
the accumulation and mobilization of fat. Fat accumulation is achieved by de novo 
synthesis of fatty acids (lipogenesis) as well as fatty acid uptake, while fat mobiliza-
tion is accomplished during lipolysis. Both processes are regulated by various 
hormones including insulin and catecholamines. In addition, WAT secrete various 
factors, known as adipokines, which can act locally or distally on other tissues. 
These adipokines, which include leptin, adiponectin, RBP4, and others, are involved 
in the regulation of whole body energy homeostasis. In mammals, WAT is distrib-
uted throughout the body in two main depots, located subcutaneously and intra-
abdominally. In obesity, intra-abdominal fat accumulation is strongly associated 
with the development of related diseases, including type 2 diabetes, while accumu-
lation of subcutaneous fat exhibits no correlation. This phenomenon is the result of 
differences in anatomical location and developmental intrinsic properties of subcu-
taneous and intra-abdominal white adipose depots. In this chapter, we discuss how 
the developmental origins of fat may play a role in the heterogeneity in WAT distri-
bution and function and the impact of fat distribution on obesity-related diseases.  
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    4.1   Introduction 

 Every organism must have the ability to acquire and use energy to live. While simple 
organisms, like bacteria, acquire energy only in response to their immediate needs 
and are therefore highly dependent on the constant presence of energy sources in 
their ecosystem for survival, higher organisms have developed mechanisms to store 
excess energy which can be used as fuel when external energy sources are limited. 
For this, in virtually all animal species, from  Caenorhabditis elegans  to  Homo sapi-
ens , the major form of energy storage is fat. In most higher animal species, this is 
done in a specialized tissue – adipose tissue. 

 In mammals, adipose tissue exists in two forms, white adipose tissue (WAT) and 
brown adipose tissue (BAT), each performing different functions. The primary role 
of BAT is to store only small amounts of fat that can be used, when needed, to 
produce heat and maintain body temperature (Nicholls and Locke  1984  ) . WAT, on 
the other hand, is designed to store large amounts of excess energy in the form of 
triglycerides for use during periods of food deprivation. This requires the process of 
lipogenesis as well as triglyceride uptake for accumulation of fat, and the mobiliza-
tion of this energy for use by other cells of the organism through the process of 
lipolysis. In addition, WAT has an endocrine function which contributes to the regu-
lation of whole body energy homeostasis through the secretion of various adipose-
derived hormones or adipokines. 

 WAT is the most abundant tissue in mammals, and its bodily distribution varies 
greatly among species, as well as between individuals from the same species. 
Generally, WAT is considered to exist in two main depots: the subcutaneous adipose 
tissue located beneath the skin and the intra-abdominal adipose tissue, which is pres-
ent surrounding the intestine, kidneys, and in rodents, the gonads. These depots har-
bor major differences in their properties and function. When excessive fat accumulation 
occurs in obesity, whether it is deposited in the subcutaneous or intra-abdominal 
depots has a very different impact on the development of obesity-related diseases.  

    4.2   Development of WAT: Adipocyte Differentiation 

 The major lipid storage cell in WAT is the white adipocyte which conducts the 
primary functions of WAT, e.g., lipid and glucose transport, fatty acid synthesis 
and mobilization, regulation of insulin sensitivity, and endocrine function. These 
cells are derived from undifferentiated preadipocytes, which undergo terminal dif-
ferentiation through a complex process orchestrated by a transcriptional cascade 
involving the nuclear receptor peroxisome proliferator-activated receptor  g  (PPAR g ) 
and members of the CCAAT/enhancer-binding protein (C/EBP) family (Farmer 
 2006  ) . Over the past 3 decades, these transcriptional events have been extensively 
studied using 3T3-L1 and 3T3-F442A cells preadipocyte cell lines (Rosen and 
Spiegelman  2000 ; Rosen and MacDougald  2006  ) . In these cultured preadipocytes, 
induction of adipocyte differentiation is under the control of hormonal stimuli 
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including glucocorticoids, cyclic adenosine monophosphate (cAMP)   , and the 
 insulin/IGF-1 pathways. In culture, this induction occurs during the fi rst 2 days of 
differentiation and involves a sequential transciptional cascade beginning with a 
transient high expression of C/EBP b  and C/EBP d , which in turn promotes the 
expression of the transcription factors involved in terminal adipocyte differentia-
tion, C/EBP a  and PPAR g . These two latter transcription factors cooperate to induce 
terminal differentiation by increasing the expression of genes involved in the 
acquisition of adipocyte function, such as the glucose transporter (GLUT) 4, the 
fatty acid transporter aP2, the insulin receptor, and the enzymes involved in triglyc-
eride synthesis (e.g., fatty acid synthase [FAS]) and lipolysis (e.g., hormone sensi-
tive lipase [HSL]) (Rosen and Spiegelman  2000 ; Farmer  2006  ) . A similar 
transcriptional cascade and pattern of differentiation is observed with brown pread-
ipocytes in culture (Tseng et al.  2008  ) . 

 In order to understand the relative importance of these transcription factors in 
controlling adipocyte differentiation, the role played by PPAR g  and the C/EBPs has 
been carefully dissected using gain and loss of function studies both in vitro and 
in vivo. PPAR g  plays a critical role in the control of adipogenesis and has been 
demonstrated to be necessary and suffi cient for adipocyte differentiation. Indeed, 
forced expression of PPAR g  is suffi cient to induce adipocyte differentiation of non-
adipogenic fi broblastic cells (Tontonoz et al.  1994b  ) . Conversely, loss of function of 
PPAR g  reduces or eliminates adipogenesis in vivo and in vitro (Barak et al.  1999 ; 
Rosen et al.  1999 ; Kubota et al.  1999  ) . PPAR g  also appears to be required for main-
tenance of the terminal differentiated state of adipocytes, and expression of a domi-
nant negative PPAR g  in differentiated 3T3-L1 cells induces dedifferentiation with 
loss of lipid accumulation and decreased expression of adipocytes markers (Tamori 
et al.  2002  ) . Likewise, an inducible knockout of PPAR g  in mature adipocytes in vivo 
leads to death of both brown and white adipocytes followed by generation of new 
adipocytes (Imai et al.  2004  ) . However, mice with adipocyte-specifi c inactivation of 
the  Pparg  gene still develop some WAT, suggesting some mechanism of escape 
from this genetic manipulation (He et al.  2003  ) . 

 There are two isoforms PPAR g , PPAR g 1 and PPAR g 2, that are generated by 
alternative splicing and alternative promoter usage of the  Pparg  gene (Fajas et al. 
 1997 ; Tontonoz et al.  1994a  ) . While both are expressed in the adipocyte, PPAR g 2 is 
more specifi c to white and brown adipocytes and has been regarded as a specifi c 
marker of these cell types (Tontonoz et al.  1994a  ) . However, mice with germline 
knockout of PPAR g 2 still have some WAT, suggesting that PPAR g 1 has the ability 
to compensate for many of the adipogenic functions of PPAR g 2 (Zhang et al.  2004 ; 
Medina-Gomez et al.  2005  ) . Interestingly, mice with PPAR g 2 knockout develop 
whole body insulin resistance, suggesting a specifi c role for PPAR g 2 in the control 
of insulin sensitivity, independent of its effects on adipogenesis (Medina-Gomez 
et al.  2005  ) . Together, these studies have led to the now commonly used character-
ization of PPAR g  as the “master regulator” of adipogenesis. 

 However, it is important to note that PPAR g  expression during adipocyte differ-
entiation is partly under the control of the C/EBP transcription factors. Indeed, the 
transient expression of C/EBP b  and C/EBP d  during early adipocyte differentiation 
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has been shown to promote the expression of C/EBP a  and PPAR g  (Farmer  2006  ) . 
Indeed, forced expression of C/EBP b  in 3T3-L1 cells can promote adipocyte 
differentiation even in the absence of the required hormonal inducers (Yeh et al. 
 1995  ) . Overexpression of C/EBP d , on the other hand, accelerates the process of 
differentiation after it is triggered by these agents (Yeh et al.  1995  ) . Although 
expression of C/EBP b  and C/EBP d  appears earlier than PPAR g  during the progres-
sion of adipocyte differentiation, it seems that these two factors are not absolutely 
required for WAT development. Mice defi cient in the  Cebpb  gene have a reduced 
WAT mass; however, mesenchymal embryonic fi broblasts (MEFs) derived from 
these mice are still able to differentiate into adipocytes in vitro, albeit with reduced 
effi ciency (Tanaka et al.  1997  ) . Furthermore, mice with deletion of both C/EBP b  
and C/EBP d  still develop some WAT (Tanaka et al.  1997  ) . 

 The transcription factor C/EBP a , like PPAR g , appears to be essential for adipo-
cyte differentiation in vitro. MEFs derived from C/EBP a  defi cient mice lose their 
capacity to differentiate into adipocytes. Interestingly, although forced expression 
of PPAR g  in these cells restores their adipogenic capacity, these cells present several 
defects in triglyceride storage and insulin-stimulated glucose transport capacities. 
In addition, while forced overexpression of PPAR g  in  C/ebpa  − / −  MEFs can restore 
adipocyte differentiation, forced expression of C/EBP a  in  Pparg  − / −  MEFs is unable 
to restore the adipocyte differentiation capacity of these cells, suggesting that PPAR g  
is dominant factor controlling adipocyte differentiation. In vivo, C/EBP a  has been 
shown to be essential for the development of only certain adipose depots. Although 
germline deletion of the  C/ebpa  gene is postnatal lethal due to the critical role 
played by C/EBP a  in the control of gluconeogenesis in liver (Wang et al.  1995  ) , 
re-expression of  C/ebpa  in the liver rescues these mice from death and these animals 
present with an absence of subcutaneous, perirenal, and epididymal WAT, but near 
normal WAT in mammary gland (Linhart et al.  2001  ) . Furthermore, in these mice, 
BAT is actually somewhat hypertrophied. These observations indicate a depot-specifi c 
importance played by C/EBP a  in the development of adipose tissue, as well as 
intrinsic developmental differences which exist in the formation of the various adi-
pose depots in mice.  

    4.3   Functions of WAT 

    4.3.1   Metabolic Function of WAT 

 One of the main characteristics of the energy metabolism is mammals is that energy 
utilization by cells is continuous, whereas energy intake is discontinuous. Therefore, 
to maintain energy balance and address the needs of all cells, the organism must be 
able to store and quickly mobilize excess energy sources. This requires two closely 
related energetic compartments. The fi rst is a circulating compartment, i.e., the 
blood, which continuously provides energy to the cells. The second is the WAT, 
which constitutes a storage compartment constantly exchanging substrates with the 
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circulating compartment. Only glucose and fatty acids, which are the two principal 
energy sources of the organism, can be stored in WAT in the form of triglycerides. 
For this, WAT can take up and transform the glucose into fatty acids, through the 
process of lipogenesis. Following this, intracellular glycerol is esterifi ed with fatty 
acids derived from the circulation or lipogenesis, to form triglycerides (Fig.  4.1 ).  

  Fig. 4.1    Metabolic functions of WAT. The main metabolic functions of WAT are the storage of 
energy in the form of triglycerides and the mobilization of this energy when it is required by the 
body. In WAT, triglycerides can be synthesized ( turquoise box ) following the uptake and metabo-
lism of glucose ( pink box ) by the process of de novo lipogenesis ( green box ) and/or after the uptake 
of free fatty acids from the circulation ( blue box ). The triglycerides stored in the adipocyte can be 
hydrolyzed by the process of lipolysis ( yellow box ), which delivers free fatty acids to the circula-
tion. These processes are regulated by the insulin pathway, the adrenergic pathway and the atrial 
natriuetic hormone pathways.   a 2-AR   a 2-adrenergic receptor;   b -AR   b -adrenergic receptor;  5 ¢  - AMP  
5 ¢ - adenosine monophosphate ;  AC  adenylate cyclase;  ACC  acetyl-CoA carboxylase;  ACLY  ATP 
citrate lyase;  ACS  acyl-CoA synthetase;  AGPAT  1-acylglycerol-3-phosphate  O -acyltransferase; 
 ANP  atrial natriuretic peptide;  ATGL  adipose triglyceride lipase;  BNP  brain natriuretic peptide; 
 cAMP  cyclic adenosine monophosphate;  cGMP  cyclic guanosine monophosphate;  CM  chylomi-
cron;  DAG  diacylglycerol;  DGAT  diacylglycerol acyltransferase;  DHAP  dihydroxyacetone phos-
phate;  F1,6BP  fructose 1,6 bisphosphate;  FAS  fatty acid synthase;  FFA  free fatty acid;  G3P  
glycerol-3-phosphate;  G6P  glucose 6 phosphate;  GADH  glyceraldehyde 3-phosphate;  GC  guany-
late cyclase;  Gi  G a i protein;  GLUT4  glucose transporter 4;  GPAT  glycerol 3-phosphate acyltrans-
ferase;  GPDH  glycerol-3-phosphate dehydrogenase;  Gs  G a s protein;  HSL  hormone sensitive 
lipase;  IR  insulin receptor;  IRS  insulin receptor substrate;  LPA  lysophosphatidic acid;  LPL  lipopro-
tein lipase;  MAG  monoacylglycerol;  MGL  monoacylglycerol lipase;  OA  oxaloacetate;  PA  
phosphatidic acid;  PAP  phosphatidic acid phosphatase;  PDE3B  phosphodiesterase 3B;  PI3K  
phosphatidylinositol 3-kinase;  PKA  cAMP-dependent protein kinase;  PKG  cGMP-dependent pro-
tein kinase;  PLIN  perilipin;  Pyr  pyruvate;  PD  pyruvate dehydrogenase;  TAG  triacylglycerol;  TTT  
tripartite tricarboxylate transporter;  VLDL  very low density lipoprotein       
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    4.3.1.1   Adipose Tissue Lipogenesis 

 Lipogenesis ensures the de novo synthesis of fatty acids from glucose for storage. 
This occurs in WAT and liver. While lipogenesis in rodents is considered to generate 
an important amount of the triglycerides stored in WAT, lipogenesis only minimally 
contributes to the total body lipid storage in humans (Hellerstein  1999  ) . De novo 
fatty acid synthesis requires the production of cytoplasmic acetyl-coenzyme A 
(CoA) from metabolism of glucose. For this, glucose enters the cells through spe-
cifi c GLUTs and is then metabolized to pyruvate via glycolysis. Under aerobic con-
ditions, pyruvate enters the mitochondria and is transformed by pyruvate 
dehydrogenase into acetyl-CoA which then enters the tricarboxylic acid cycle to be 
condensed with oxaloacetate to form citrate. Citrate is then able to leave the mito-
chondria and enter the cytoplasm, through the mitochondrial tricarboxylate trans-
porter (Kaplan et al.  1993  ) . This cytoplasmic citrate is then broken down by citrate 
lyase to give cytoplasmic acetyl-CoA, which is the mainstay of de novo fatty acid 
synthesis. 

 Fatty acid synthesis is carried out by the sequential action of two cytosolic enzy-
matic systems: acetyl-CoA carboxylase (ACC), which mediates the formation of 
malonyl-CoA from acetyl-CoA, and the multi-enzyme complex referred to as FAS, 
which mediates elongation of malonyl-CoA to acyl-CoAs with various carbon chain 
lengths by the successive addition of acetyl-CoA molecules. 

 Key enzymes of de novo fatty acid synthesis can be controlled by hormones, 
especially insulin, or metabolites. Thus, glucose uptake in adipocytes is increased 
after insulin stimulation by its transfer across the plasma membrane by GLUT4 
(James et al.  1988  ) . This process is reduced by high intracellular levels of ATP 
(Begum et al.  1993  ) . Pyruvate dehydrogenase is also activated by insulin through 
dephosphorylation of its alpha subunit (Macaulay and Jarett  1985  ) , and can be inac-
tivated when the ratio of ATP/ADP, NADH/NAD+ or acetyl-CoA/CoA are increased 
(Pettit et al.  1975  ) . FAS and ACC gene expression have both been shown to be 
upregulated by insulin, but this regulation is dependent on the presence of glucose, 
as insulin alone has no effect on these genes. Thus, insulin indirectly increases the 
gene expression of FAS and ACC by stimulating glucose metabolism through the 
regulation of glucose transport (Foufelle et al.  1992  ) . In addition, insulin activates 
ACC, via activation of protein phosphatases which dephosphorylate the enzyme 
(Witters et al.  1988  ) . 

 Deletion of the insulin receptor in adipose tissue of mice in the fat insulin recep-
tor knockout (FIRKO) leads to a 90% decrease in insulin-stimulated glucose uptake 
and a corresponding decrease in insulin-stimulated incorporation of glucose into 
triglycerides, lactate, and carbon dioxide (Bluher et al.  2002  ) . These mice have a 
~50% reduction in WAT mass and are protected against diet-induced obesity. 
Unexpectedly, histological examination of FIRKO fat tissue also reveals that a small 
subset of adipocytes (~45%) are protected from excessive triglyceride load, whereas 
a second subset maintains normal triglyceride storage capacity, despite a 90% 
decrease in insulin-stimulated lipogenesis. This adipocyte knockout unveils intrin-
sic differences of adipocytes within a given WAT depot.  
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    4.3.1.2   Fatty Acid Uptake 

 As noted above, de novo lipogenesis in adipose tissue makes only a minor contribution 
to total lipid storage in humans. In fact, in humans, most de novo lipogenesis and 
triglyceride synthesis occurs in the liver, after which triglycerides are transported in 
the circulation by very low density lipoproteins (VLDL) to peripheral tissues includ-
ing WAT. The main source of fat accumulation in human WAT, therefore, comes 
from the uptake of circulating triglycerides and fatty acids from VLDL produced in 
the liver and chylomicrons produced by absorption of fat in the small intestine. In 
order for fatty acids to be stored in the WAT, triglycerides from chylomicrons and 
VLDL must fi rst be processed in the extracellular space by the enzyme lipoprotein 
lipase (LPL). This enzyme is produced by various tissues, including white and 
BATs, skeletal muscle, heart, mammary gland, brain, and macrophages (Camps 
et al.  1990 ; Goldberg et al.  1989 ; Khoo et al.  1981  ) . Low levels of LPL activity can 
also be found in liver, spleen, and lung, where it is found in Kupffer cells and infi l-
trating macrophages (Camps et al.  1991 ; Neuger et al.  2004  ) . 

 In adipose tissue, LPL is secreted by the adipocytes and released into the lumen 
of capillaries where it becomes anchored to endothelial cells. Here, this enzyme 
interacts with chylomicrons and VLDL to liberate fatty acids and monoacylglycerol 
(MAG), facilitating their uptake (Seo et al.  2000  ) . LPL activity depends on its inter-
action with the co-factor apoC-II (Kinnunen et al.  1977  )  and in adipocytes apoC-II 
expression and activity is increased by insulin (Semenkovich et al.  1989  ) . 
Interestingly, this regulation appears to be both depot and gender dependent. In 
humans, regulation of LPL expression and activity by insulin is observed in subcu-
taneous, but not omental, adipose tissue (Fried et al.  1993  ) . However, after stimula-
tion by glucocorticoids, both depots show an increase in LPL expression and activity 
in response to insulin, but this is still more marked in subcutaneous adipose tissue 
of women (Fried et al.  1993  ) . Although LPL plays an important role in the fatty acid 
uptake by adipose tissue, mice with LPL defi ciency in adipose tissue are able to 
maintain normal fat mass by increasing de novo lipogenesis in adipose tissue 
(Weinstock et al.  1997  ) . In addition, patients with LPL defi ciency also exhibit 
normal fat mass (Ullrich et al.  2001  ) . However, there is a change in the fatty acid 
composition of their adipose tissue with an increase in 16:1 and decrease in 18:0, 
18:2, and 18:3 fatty acids. The reduction in essential fatty acids, which cannot be 
synthesized by cells, associated with the increase in non-essential fatty acids, which 
can be synthesized, suggests that fat mass is maintained in these subjects primarily 
through an increase in adipocyte de novo lipogenesis (Ullrich et al.  2001  ) . 

 The fatty acids generated by the action of LPL on lipoproteins are rapidly taken 
up by the adipocytes. The mechanisms for fatty acid uptake are still a subject of 
debate and may include passive diffusion across the membrane and active transport 
facilitated by a membrane transporter (Kampf and Kleinfeld  2007  ) . Fatty acids can 
diffuse passively across the membrane through a mechanism called “fl ip-fl op.” This 
mechanism was fi rst tested using an in vitro model membrane (small unilamellar 
vesicle [SUV]) by measuring pH gradients across a protein-free phospholipid mem-
brane bilayer in response to free fatty acid (FFA) (Kamp and Hamilton  1992  ) . 
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Addition of long-chain fatty acids to this model membrane causes their absorption 
within the outer leafl et of SUV, and 50% of these absorbed fatty acids are then 
ionized. Un-ionized fatty acids “fl ip” from the outer to the inner leafl et of the SUV. 
This is associated with a release of protons creating a proton gradient which is then 
slowly dissipated. On the other hand, addition of albumin to the external buffer 
extracts fatty acids from the external leafl et. Un-ionized fatty acids “fl op” from the 
inner to outer leafl et of the SUV rapidly to restore the concentration equilibrium in 
the bilayer. This theory has been proven using isolated adipocytes incubated with 
FFAs or treated with a lipolytic agent, which cause a rapid intracellular acidifi cation 
that can be reversed by addition of albumin (Civelek et al.  1996  ) . Conversely, stimu-
lation with insulin, which promotes fatty acid esterifi cation, leads to alkalization of 
the cells (Civelek et al.  1996  ) . However, this passive diffusion of fatty acids across 
the phospholipid bilayer can be accelerated by certain membrane proteins, includ-
ing fatty acid translocase (CD36/FAT) (Abumrad et al.  1993  ) , caveolin (Trigatti 
et al.  1999  ) , fatty acid transport protein (FATP) (Schaffer and Lodish  1994  ) , and 
fatty acid binding protein plasma membrane (FABPpm) (Schwieterman et al.  1988  ) , 
implicating these proteins in facilitated fatty acid uptake by adipocytes. 

 The fatty acid translocase CD36/FAT is highly expressed in adipose tissue 
(Abumrad et al.  1993  ) , where its role in regulating fatty acid uptake has been clearly 
demonstrated (Harmon and Abumrad  1993 ; Baillie et al.  1996  ) . Mice with a whole 
body deletion of CD36/FAT have higher levels of circulating FFAs and triglycerides 
(Febbraio et al.  1999  ) . Injection of labeled fatty acids analogs in these mice revealed 
a 60–70% reduction in the uptake of these analogues by adipose tissues (Coburn 
et al.  2000  ) . Isolated adipocytes of CD36/FAT null mice exhibit a 60% reduction in 
 3 H-labeled palmitate (Coburn et al.  2000  )  and oleate (Febbraio et al.  1999  )  uptake, 
consistent with the in vivo observations. This impairment in fatty acid uptake results 
in a decrease in triglyceride accumulation in adipose tissue of CD36/FAT null mice 
(Coburn et al.  2000  ) . In 3T3-L1 adipocytes, CD36/FAT is located in lipid rafts, 
along with caveolin-1 (Pohl et al.  2004a  ) . Disruption of these lipid rafts by beta-
cyclodextrin reduces the uptake of  3 H-labeled oleate in these cells (Pohl et al. 
 2004a  ) . Furthermore, the presence of caveolin-1 appears to be required for FAT/
CD36 localization and function at the plasma membrane (Ring et al.  2006  ) . 

 The FATP family is comprised of six members, FATP1–6, of which two, FATP1 
and FATP4, are present in adipose tissue (Pohl et al.  2004b  ) . The transport activity 
of FATPs appears to be specifi c for long-chain fatty acids (Schaffer and Lodish 
 1994 ; Stahl et al.  1999  ) ; however, no specifi c binding sites have yet been identifi ed. 
In fact, these FATPs appear to differ from other fatty acid binding proteins, in that 
they possess an acyl-CoA synthetase activity conveyed by an AMP-binding motif 
(DiRusso et al.  2005  ) . This acyl-CoA synthetase activity has been reported for 
FATP1, and there is strong evidence suggesting that the uptake of fatty acids by 
FATP1 requires the conversion of fatty acids to fatty acyl-CoA within the intracel-
lular leafl et of the plasma membrane (Schaffer and Lodish  1994  ) . In addition, a 
constitutive interaction between FATP1 and acyl CoA synthetase 1 contributes to 
the effi cient cellular uptake of long-chain fatty acids in adipocytes through vectorial 
acylation (Richards et al.  2006  ) . The expression of FABP1 and FABP4 is induced 
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during adipocyte differentiation of 3T3-L1 cells, and a peroxisome proliferator-
activated receptors responsive element has been described in the promoter of the 
murine FATP1 gene (Frohnert et al.  1999  ) . In addition, positive regulation of the 
expression of these transporters has been observed in response to activators of 
PPAR a  and PPAR g  (Martin et al.  1997  ) . 

 FATP1 and FATP4 appear to have a distinct and complementary role in the regu-
lation of long-chain fatty acid uptake by adipocytes (Lobo et al.  2007  ) . FATP4 has 
been shown to be involved in fatty acid re-uptake and re-esterifi cation after stimula-
tion of lipolysis (Stahl et al.  2002  ) , whereas FATP1 appears to play a major role in 
the uptake of fatty acids in response to insulin, which induces its translocation from 
an intracellular perinuclear compartment to the plasma membrane (Stahl et al.  2002 ; 
Lobo et al.  2007  ) . This critical role of FATP1 in fatty acid uptake regulated by insu-
lin has also been demonstrated in vivo. Indeed, mice with inactivation of the FATP1 
gene are protected against long-term high fat diet (HFD) induced-obesity, and their 
fatty acid uptake in response to insulin is completely abolished in isolated adipo-
cytes (Wu et al.  2006b  ) . However, when exposed to a short-term HFD or lipid infu-
sion, these mice have no alteration of whole body adiposity but exhibit a decrease in 
intramuscular accumulation of fatty acyl-CoA associated with improved insulin 
sensitivity in skeletal muscle (Kim et al.  2004  ) . Interestingly, these mice also fail to 
maintain their body temperature under cold exposure, indicating a critical role of 
FATP1 in BAT in the regulation of non-shivering thermogenesis (Wu et al.  2006a  ) . 
While there is strong evidence for a role of CD36/FAT, caveolin 1, fatty FATPs and 
FABPpm in the regulation of fatty acid infl ux and effl ux in adipocytes, in preadipo-
cytes, a different and still unknown membrane protein pump has been proposed to 
regulate fatty acid uptake (Kampf et al.  2007  ) .  

    4.3.1.3   Triglyceride Synthesis 

 In adipocytes, fatty acid esterifi cation with CoA followed by acylation of the glyc-
erol backbone represent the last steps in the formation of triglycerides (Coleman 
and Lee  2004  ) . This requires the formation of glycerol 3-phosphate from glycolysis. 
For this, fructose 1,6-bisphosphate is broken down to glyceraldehyde 3-phosphate 
and dihydroxyacetone phosphate by the fructose bisphosphate aldolase. In adipo-
cytes, the dihydroxyacetone phosphate is then reduced into glycerol 3-phosphate by 
the glycerol-3-phosphate dehydrogenase (Schlossman and Bell  1976  ) . As men-
tioned above, esterifi cation of fatty acid with CoA can occur through the acyl-CoA 
synthetase activity of the FATPs during fatty acid uptake, but also through a long-
chain fatty acyl-CoA synthetase which acts in synergy with FATPs (Gargiulo et al. 
 1999  ) . Subsequently, the acylation of the glycerol backbone occurs by action of 
glycerol 3-phosphate acyltransferase (GPAT) which catalyzes the addition of acyl-
CoA on position 1 of glycerol 3-phosphate to give 1-acyl- sn -glycerol-3-phosphate, 
also known as lysophosphatidic acid or LPA. Two different GPAT isoforms have 
been characterized based on their subcellular localization and biochemical proper-
ties (Saggerson et al.  1980  ) . In adipocytes, the major isoform is microsomal and is 
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the product of two separate genes,  Gpat3  and  Gpat4  (previously named  Agpat6 ) 
(Cao et al.  2006 ; Shan et al.  2010  ) . Expression of these two genes is regulated during 
adipocyte differentiation, but only GPAT3 knockdown leads to profound inhibition 
of triglyceride accumulation, suggesting a critical role of this gene in triglyceride 
synthesis in adipocytes (Shan et al.  2010  ) . Interestingly, in vivo studies have sug-
gested that GPAT4 has an important role in triglyceride accumulation in certain fat 
depots, as GPAT4/AGPAT6-defi cient mice have been reported to exhibit a mild 
decrease in intra-abdominal epididymal fat and subcutaneous inguinal fat mass, but 
an almost complete absence of subdermal adipose tissue (Vergnes et al.  2006  ) . 

 The addition of a second fatty acid on position 2 of LPA occurs through the 
action of the 1-acylglycerol-3-phosphate  O -acyltransferase (AGPAT) (also called 
lysophosphatidate acyltransferase) which produces the 1,2-diacyl-sn-glycerol 
3-phosphate (also called phosphatidic acid or PA). To date, ten different AGPATs 
have been reported (AGPAT1–10), but only AGPAT1 and AGPAT2 have been impli-
cated in the regulation of triglyceride synthesis (Takeuchi and Reue  2009  ) . Both 
enzymes are expressed in WAT, but AGPAT2 is the major isoform and is the only 
AGPAT which has been associated with a human disease. Several different muta-
tions of  Agpat2  gene have been associated with congenital generalized lipodystro-
phy (Agarwal et al.  2002 ; Magre et al.  2003  ) , and mice defi cient in AGPAT2 have a 
generalized lipodystrophy demonstrating that this enzyme has a non-redundant 
function in adipose tissue triglyceride synthesis (Cortes et al.  2009  ) . In vitro in 3T3-
L1 adipocytes, overexpression of AGPAT1 increases oleate uptake and incorpora-
tion into triglycerides (Ruan and Pownall  2001  ) . In addition, this overexpression 
leads to an increase in insulin-stimulated glucose transport and a suppression of FFA 
released during basal and stimulated lipolysis occurring without changes in glycerol 
release, suggesting a normal rate of lipolysis with increased re-esterifi cation of 
FFAs (Ruan and Pownall  2001  ) . 

 PA generated by the action of the AGPATs can serve as a precursor for the synthesis 
of acidic phospholipids, or be dephosphorylated by a phosphatidic acid phosphatase 
(PAP) to produce diacylglycerol (DAG), the last intermediate before the production of 
triglyceride. Two types of PAP enzyme have been described: PAP1 which is depen-
dent of Mg 2+  and PAP2 which is independent of Mg 2+ . Only PAP1 appears to be 
involved in triglyceride synthesis (Coleman and Lee  2004  ) . PAP1 activity in mammals 
is determined by the lipin family of proteins, lipin-1 (LPN1), lipin-2, and lipin-3, 
which have a distinct tissue expression pattern (Donkor et al.  2007  ) . LPN1 accounts 
for all of the PAP1 activity in adipose tissue and was initially identifi ed through the 
study of a spontaneous mouse mutation known as fatty liver dystrophy ( fl d ) (Peterfy 
et al.  2001  ) . In addition to other defects in lipid homeostasis, these mice have severe 
lipodystrophy indicating the critical role played by LPN1 in adipose tissue triglyceride 
synthesis. Interestingly, in addition to its PAP activity, LPN1 has been shown to act as 
a transcriptional co-activator for a number of transcription factors including PPAR a , 
PPAR d , PPAR g , HNF 4 a , and the glucocorticoid receptor (Finck et al.  2006  ) . Thus, 
mouse embryonic fi broblasts from  fl d  mice exhibit defects in the expression of key 
adipogenic genes PPAR g  and C/EBP a  suggesting that LPN1 plays a critical role in the 
regulation of adipocyte differentiation (Phan et al.  2004  ) . More importantly, LPN1 is 
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required for the maintenance of adipocytes and has been shown to be specifi cally 
recruited to the PPAR g -response elements of the phosphoenolpyruvate carboxykinase 
gene through a direct physical interaction with PPAR g  (Koh et al.  2008  ) . 

 Acylation of a third fatty acid on DAG to produce triglyceride can be catalyzed 
by several enzymatic activities, including those of the diacylglycerol acyltrans-
ferases (DGATs), which have been shown to be a critical step in vivo in transgenic 
mice. Two different DGAT enzymes have been characterized, encoded by two 
distinct genes,  Dgat1  and  Dgat2  (Cases et al.  1998,   2001 ; Lardizabal et al.  2001  ) . 
Both enzymes are highly expressed in adipose tissue, and their levels increase with 
adipocyte differentiation, but they exhibit different biochemical properties and 
substrate selectivity (Yen et al.  2005  ) . Mice lacking expression of DGAT1 have a 
normal body weight, enhanced insulin sensitivity, and are resistant to diet-induced 
obesity, due to increased energy expenditure and activity (Smith et al.  2000  ) . 
Conversely, adipose tissue specifi c overexpression of DGAT1 in mice leads to an 
increase in adipose tissue mass when on a regular diet and a greater susceptibility to 
diet-induced obesity without impaired glucose tolerance (Chen et al.  2002  ) . This 
last observation is consistent with results obtained in human adipose tissue, where 
DGAT1 expression has been reported to be strongly positively correlated with 
insulin sensitivity (Ranganathan et al.  2006  ) . In addition, these studies demonstrate 
that DGAT1 is not essential for triglyceride synthesis in adipose tissue, but can be 
considered as a potential therapeutic target for obesity control. Unlike DGAT1, 
mice defi cient in DGAT2 have a severe reduction of lipid in both blood and tissues 
and die shortly after birth due to a lack of suffi cient substrates to maintain energy 
homeostasis. These studies demonstrate the fundamental role played by DGAT2 in 
mammalian triglyceride synthesis and the non-redundancy between DGAT1 and 
DGAT2 in vivo (Stone et al.  2004  ) .  

    4.3.1.4   Lipolysis and Its Regulation 

 During lipolysis, the hydrolysis of triglycerides results in the effl ux of non-esterifi ed 
fatty acids (NEFA) and glycerol in the blood stream which can then be used as sub-
strates by other tissues. For this, each fatty acid moiety is sequentially removed 
from triglyceride to produce successively DAG, MAG, and fi nally glycerol itself. In 
WAT, this lipolytic cascade is catalyzed by at least three different lipases, adipose 
triglyceride lipase (ATGL), HSL, and monoacylglycerol lipase (MGL), which have 
been proposed to act sequentially in the conversion of triglyceride to glycerol and 
three NEFAs (Jaworski et al.  2007  ) . Since its cloning in 1988, HSL has been thought 
to be responsible for the fi rst two steps of triglyceride hydrolysis (Holm et al.  1988  ) . 
However, the characterization of mice defi cient in this enzyme revealed a substan-
tial residual triacylglycerol lipase activity in WAT (Osuga et al.  2000  )  which was 
associated with accumulation of DAG rather than triglyceride (Haemmerle et al. 
 2002  ) , suggesting the presence of an additional unidentifi ed triacylglycerol lipase. 
These unexpected observations led to the identifi cation of a triacylglycerol lipase in 
adipose tissue by several groups, which has been called ATGL, desnutrin, TTS2.2, 
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PNPLA2, or iPLA2 z  (Zimmermann et al.  2004 ; Villena et al.  2004 ; Jenkins et al.  2004  ) . 
This enzyme, which is predominantly expressed in adipose tissue, exhibits high 
substrate specifi city for triglyceride and is induced under conditions that favor lipol-
ysis, such as fasting. Mice defi cient in ATGL have increased WAT mass and ectopic 
triglyceride storage in several tissues, including the heart, leading to heart failure 
and shortened lifespan (Haemmerle et al.  2006  ) . 

 It is well accepted now that ATGL is responsible for the fi rst step of the lipolytic 
cascade, hydrolyzing triglycerides to form DAG and releasing a NEFA. A second 
fatty acid is then removed by HSL to generate MGA. Finally, MGL hydrolyzes 
MGA, producing glycerol and a third NEFA. Recently, a hypothetical model for the 
regulation of basal and stimulated lipolysis has been proposed based on studies of 
the different components involved in the lipolytic cascade (Bezaire and Langin 
 2009  ) . Under basal conditions, lipid droplets are coated with perilipin, a protein 
relatively specifi c to adipocytes (Greenberg et al.  1991  ) . ATGL is found in the cyto-
sol and on the surface of lipid droplets, associated with a co-factor named compara-
tive gene identifi cation 58 (CGI-58), which also interacts with perilipin (Subramanian 
et al.  2004 ; Yamaguchi et al.  2004  ) . This complex has been shown to be required for 
ATGL activation (Lass et al.  2006 ; Schweiger et al.  2008  ) . In this state, ATGL and 
CGI-58 facilitate the hydrolysis of triglyceride, delivering DAG to the cytosol. HSL, 
which is exclusively located in the cytosol under basal conditions (Egan et al.  1992  ) , 
hydrolyzes the DAG produced by ATGL to give monoacylglycerol. Hormones 
which stimulate lipolysis, such as catecholamines, lead to the activation of protein 
kinase A (PKA), which phosphorylates perilipin (Miyoshi et al.  2007  ) . This pro-
motes the fragmentation of the lipid droplet and the release of CGI-58 and ATGL, 
which form a highly active complex around the small fragmented lipid droplets 
(Granneman et al.  2007  ) . At the same time, phosphorylation of HSL by PKA 
increases its activity (Huttunen et al.  1970  ) , promotes its association with fatty acid 
binding protein 4 (FABP4), and stimulates its translocation to the lipid droplet 
where it hydrolyzes the DAG produced by ATGL (Smith et al.  2004  ) . In both basal 
and stimulated conditions, monoglycerol lipase completes this lipolytic cascade by 
hydrolyzing MAG and releasing a fatty acid and glycerol. FABP4 ensures the intra-
cellular traffi cking of NEFA from lipid droplets to the plasma membrane. 

 Regulation of intracellular cAMP levels in adipocytes allows rapid and precise 
regulation of PKA activity and subsequently lipolysis. Adenylyl cyclase is the 
enzyme responsible for the production of cAMP in adipocytes (Mendes et al.  1978  ) . 
Its activity is tightly controlled by several membrane receptors including adrenergic 
receptors (Langin  2006  ) . Catecholamines (epinephrine and norepinephrine) exert a 
bimodal regulation of lipolysis through their interaction with different adrenergic 
receptors (Lafontan et al.  1997  ) . Binding of catecholamines to  b -adrenergic recep-
tors ( b  

1
 -,  b - 

2
 , and  b  

3
 -), acting through G a s protein, stimulates adenylyl cyclase and 

induces cAMP production leading to the activation of lipolysis. This is counteracted 
by binding of catecholamines to the  a  

2
 -adrenergic receptor, which is coupled to 

the inhibitory G a i protein, leading to inhibition of adenylyl cyclase and subse-
quently to inhibition of lipolysis. The regulation of lipolysis in response to cate-
cholamine results in a balance between the affi nity of  a  

2
 - and  b -adrenergic receptors 
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for catecholamines and their presence and number at the cell membrane. In humans, 
catecholamines have a higher affi nity for the  a  

2
 -adrenergic receptor than for 

 b -adrenergic receptors. More importantly, adipose tissue depots are heterogeneous 
with regard to their response to catecholamine-stimulated lipolysis due to expres-
sion differences of these two receptors. 

 Although, catecholamines are able to stimulate lipolysis in both intra-abdominal 
and subcutaneous abdominal WAT in human, intra-abdominal WAT is more respon-
sive to catecholamine-stimulated lipolysis than subcutaneous abdominal WAT, 
due to a greater presence of  b -adrenergic receptors than  a  

2
 -adrenergic receptors on 

the cell membrane (Hellmer et al.  1992 ; Mauriege et al.  1987  ) . By contrast, cate-
cholamines have a very small lipolytic effect in gluteal subcutaneous WAT of nor-
mal and obese women and subcutaneous abdominal WAT of obese men, due to a 
concomitant increase in  a  

2
 -adrenergic and decrease in  b -adrenergic responsiveness 

(Mauriege et al.  1991  ) . Adipocyte hypertrophy strongly affects this functional 
balance between  b - and  a  

2
 -adrenergic receptors (Arner et al.  1987  ) . In addition to 

the role of G protein-coupled receptors in controlling adenylyl cyclase production 
of cAMP to regulate lipolysis, insulin can inhibit lipolysis through the activation of 
phosphodiesterase 3B which hydrolyzes cAMP and reduces PKA activity (Hagstrom-
Toft et al.  1995  ) . This regulation is critical in the postprandial state where insulin 
not only favors substrate uptake and storage but also limits hydrolysis of triglycer-
ide in adipocytes. Interestingly, the anti-lipolytic effect of insulin is greater in 
subcutaneous than in visceral WAT, due to an increased insulin receptor autophos-
phorylation and signal transduction through the insulin-receptor substrate 1-associated 
phosphatidylinositol 3-kinase pathway in subcutaneous adipose tissue (Meek et al. 
 1999 ; Lafontan and Berlan  2003  ) . 

 An alternative pathway in the regulation of lipolysis which does not involve PKA 
is starting to emerge. Atrial natriuretic peptide (ANP) and brain natriuretic peptide 
(BNP), which are secreted by the heart, have been reported to stimulate lipolysis in 
human adipocytes through a cGMP/PKG-signaling pathway leading to the phos-
phorylation and activation of HSL (Sengenes et al.  2000,   2003  ) . Although the phys-
iological relevance for this regulation is still debated, it has been proposed that the 
secretion of ANP/BNP by the heart during and after strenuous endurance exercise 
contributes, in part, to the regulation of WAT lipolysis (Moro et al.  2004  ) .   

    4.3.2   Endocrine Function of WAT 

 Classically, the role of WAT was viewed as limited to energy storage in the form of 
triglyceride. However, in 1953, Kennedy hypothesized that adipose tissue might 
make a circulating lipostatic factor that coordinated fat mass and food intake 
(Kennedy  1953  ) . A decade later, LPL was the fi rst protein characterized as being 
secreted by the adipocyte (Rodbell  1964  ) . In 1994, the fi rst adipocyte hormone was 
discovered with the cloning of leptin (Zhang et al.  1994  ) . Since that time, the list of 
factors secreted from WAT, which infl uence metabolic homeostasis, has increased 
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exponentially, leading to the notion of WAT as an endocrine organ (Mohamed-Ali 
et al.  1998  ) . Indeed, WAT produces a large number of peptides (hormones, growth 
factors, cytokines, etc.), proteins (enzymes, extracellular matrix components), and 
lipids (fatty acids and derived products) which affect metabolism. Many of these 
factors act locally within the WAT through autocrine/paracrine mechanisms, but 
others act systemically to infl uence the function of distant tissues like the brain, 
skeletal muscle, liver, pancreas, and heart. 

 More recently, proteomic screening approaches have been used to characterize 
the complete secretome of WAT. Using this approaches, over 250 proteins secreted 
by human visceral adipose tissue have been identifi ed (Varez-Llamas et al.  2007  ) . 
Using a similar technique, thus far only 84 proteins from isolated rat adipocytes 
have been identifi ed (Chen et al.  2005  ) . This may represent a species difference, but 
more likely indicates that many of secreted proteins by the adipose tissue come 
from cells types others than adipocytes. Several studies have shown that mac-
rophages contained in the stromovascular fraction of adipose tissue are responsible 
for many of the proteins secreted by WAT (Fain et al.  2004,   2006  ) . Among the large 
number of factors secreted by the WAT, leptin, adiponectin, retinol binding protein 
4 (RBP4), resistin, tumor necrosis factor  a  (TNF a ), and interleukin-6 (IL-6) have 
been the most studied for their role and effect on metabolism homeostasis. Of these, 
leptin and adiponectin are the only two proteins recognized as being secreted almost 
exclusively by adipocytes (Fain et al.  2004  ) , whereas the other proteins are also 
secreted by other tissues and other cell types within the fat pad. In addition, regional 
differences in the secretory capacity of the different adipose depots have been 
reported. Thus recently, a quantitative analysis of the secretomes comparing visceral 
and subcutaneous WAT showed that visceral WAT has a higher secretory capacity 
than subcutaneous WAT, and that this difference was an intrinsic feature of its 
cellular components (Hocking et al.  2010  ) . 

    4.3.2.1   Leptin 

 In 1959, Hervey carried out a series of parabiotic experiments between rats which 
had hypothalamic lesions leading to hyperphagia-induced obesity and normal con-
trol rats (Hervey  1959  ) . In these experiments, he noted that while the obese rats 
maintained their hyperphagia, the control rats stop eating, suggesting the presence 
of a circulating factor controlling food intake and coming from the obese rats. This 
hypothesis was further supported by the work of Coleman at the Jackson Laboratory 
in which mice carrying genetic lesions leading to obesity, the  ob/ob  and  db/db  mice, 
were subjected to parabiosis (Ingalls et al.  1950 ; Hummel et al.  1966  ) . These experi-
ments led to the conclusion that  ob/ob  mice are hyperphagic because they lack a 
satiety factor, and that  db/db  mice are hyperphagic because they are insensitive to 
this factor (Coleman  1973  ) . Positional cloning revealed that the  ob  and  db  genes 
were leptin and its receptor, respectively (Zhang et al.  1994 ; Tartaglia et al.  1995  ) . 

 Leptin is a 16 kDa hormone secreted by adipocytes which acts at the hypo-
thalamus to control appetite and energy expenditure. The plasma concentration of 
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leptin correlates with the size of the fat mass and nutritional state. Obesity is 
associated with an increase in the plasma levels of leptin, whereas subjects with 
lipodystrophies exhibit almost undetectable levels (Maffei et al.  1995  ) . In addition, 
in the postprandial state, plasma levels of leptin increase, at least in rodents (Saladin 
et al.  1995 ; Korbonits et al.  1997  ) . In humans, high-fat meals also provoke a post-
prandial elevation of plasma leptin concentration (Poppitt et al.  2006  ) . In both 
rodents and humans, fasting strongly decreases circulating leptin levels. In accor-
dance with these results, insulin has been reported to regulate the expression or 
secretion of leptin in vitro and in vivo (Saladin et al.  1995 ; Kolaczynski et al.  1996 ; 
Rentsch and Chiesi  1996  ) . Several other factors have been reported to regulate the 
expression and secretion of leptin including glucose, glucocorticoids (Kolaczynski 
et al.  1996  ) , thiazolidinedione (De Vos et al.  1996 ; Kallen and Lazar  1996  ) , TNF a  
(Zhang et al.  2000  ) , fatty acids (Deng et al.  1997  ) , estrogens (Shimizu et al.  1997  ) , 
interleukin-1 (Janik et al.  1997  ) , growth hormone (Isozaki et al.  1999  ) , and several 
endotoxins (Grunfeld et al.  1996  ) . 

 Leptin mediates its action through the activation of its transmembrane receptor 
termed ObR (Tartaglia et al.  1995  ) . To date, six ObR isoforms have been identifi ed 
(ObRa to ObRf) which are the result of alternative splicing of ObR messenger RNA 
(mRNA). These isoforms are categorized in three classes: long, short, and secreted 
(Myers  2004  ) . Among these receptors, the long isoform ObRb, which contains an 
intracellular domain of 306 amino acids, is mainly expressed in the hypothalamus 
and is regarded as the signaling form of receptor. Thus,  db/db  mice, which only lack 
the ObRb isoform (Lee et al.  1996  ) , have a phenotype indistinguishable than that of 
mice lacking all isoforms of ObR (Lee et al.  1997 ; Cohen et al.  2001  ) . The principal 
target of leptin in the hypothalamus is the arcuate nucleus which contains two popu-
lations of neurons, orexigenic, and anorexigenic that are involved in the control of 
energy homeostasis. Leptin inhibits orexigenic    neuropeptide Y (NPY) and agouti-
related protein (AgRP) neurons while it activates anorexigenic pro-opiomelanocor-
tin (POMC) and cocaine and amphetamine regulated transcript (CART) neurons. 
ObRb is expressed in others tissues including cells of the immune system and pan-
creas. In the immune system, ObRb plays a critical role in regulating proliferation 
of naive and memory T lymphocytes (Lord et al.  1998  ) , and its specifi c disruption 
in pancreas affects  b -cell growth and function (Morioka et al.  2007  ) . 

 Depot-specifi c variation in leptin secretion has been observed in WAT and 
appears to be determined by intrinsic factors. Thus, leptin expression and secretion 
are higher in subcutaneous than in visceral WAT in humans (Van Harmelen et al. 
 1998  ) . In addition,  b -adrenergic stimulation can inhibit leptin expression and pro-
duction (Slieker et al.  1996 ; Gettys et al.  1996 ; Hardie et al.  1996  ) . As noted above, 
the highest  b -adrenergic responsiveness observed in visceral vs. subcutaneous WAT 
could explain these regional differences in leptin secretion.  

    4.3.2.2   Adiponectin 

 Adiponectin is a protein of 30 kDa (also called adipocyte complement-related 
 protein of 30 kDa [ACRP30] or AdipoQ) which is specifi cally secreted by adipose 
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tissue (Scherer et al.  1995 ; Maeda et al.  1996  ) . However, the expression of 
adiponectin is reduced with obesity in rodents and humans (Hu et al.  1996  ) . 
Adiponectin is found in the plasma as a monomer, trimer, hexamer, and in higher 
molecular weight structures consisting of the assembly of up to six trimers (Pajvani 
et al.  2003 ; Tsao et al.  2003  ) . In addition to these multimeric assemblies, a circu-
lating globular form derived from the proteolysis of the C-terminal domain of 
adiponectin has been postulated to exist in vivo (Fruebis et al.  2001  ) . Adiponectin 
exhibits insulin-sensitizing and anti-atherosclerotic properties (Fruebis et al.  2001 ; 
Yamauchi et al.  2001 ; Berg et al.  2001 ; Funahashi et al.  1999  ) . Although mice defi -
cient for adiponectin have normal body weight, these mice present all the character-
istics of the metabolic syndrome including insulin resistance, glucose intolerance, 
hyperglycemia, and hypertension (Kubota et al.  2002 ; Maeda et al.  2002 ; Ouchi 
et al.  2003  ) . Transgenic mice with overexpression of adiponectin show decreased 
weight gain and fat accumulation, due to inhibition of adipocyte differentiation, 
associated with an increase in life span and resistance to premature death induced 
by a high-calorie diet (Otabe et al.  2007 ; Bauche et al.  2007  ) . Adiponectin mediates 
its effects through the activation of two unique seven transmembrane receptors, 
AdipoR1 and AdipoR2, which are ubiquitously expressed (Yamauchi et al.  2003  ) . 
AdipoR1 has a high level of expression in skeletal muscle whereas AdipoR2 is 
most highly expressed in liver. These receptors have opposite functions in the 
control of metabolism. Mice defi cient in AdipoR1 exhibit decreased energy expen-
diture and are obese and glucose intolerant, whereas AdipoR2 defi cient mice are 
lean, exhibit increased energy expenditure, and do not become obese on a HFD 
(Bjursell et al.  2007  ) . 

 In humans, a sexual dimorphism has been reported for the plasma concentration 
of adiponectin with higher levels being observed in women (Nishizawa et al.  2002  ) . 
These differences are the consequence of a regulation of adiponectin by androgens. 
Indeed, while ovariectomy does not affect adiponectin plasma levels, castrated mice 
have higher levels of circulating adiponectin, which can be reduced by testosterone 
treatment (Nishizawa et al.  2002  ) . Studies on differences in adiponectin expression 
and secretion between subcutaneous and visceral adipose tissue have produced 
somewhat confl icting results. Most studies have reported higher adiponectin expres-
sion or secretion in subcutaneous WAT than in visceral WAT in both rodents and 
humans (Lihn et al.  2004 ; Fisher et al.  2002  ) , although this has not been observed in 
all studies (Atzmon et al.  2002 ; Motoshima et al.  2002 ; Perrini et al.  2008  ) . While 
in general, adiponectin levels are low in obese individuals, the association between 
subcutaneous WAT, visceral WAT, and adiponectin levels is less clear. Some studies 
have reported a positive correlation between subcutaneous WAT and serum adi-
ponectin (van der Poorten et al.  2008 ; Hanley et al.  2007  ) , while other have reported 
a negative correlation (Fujikawa et al.  2008 ; Farvid et al.  2005  ) . What is clear, how-
ever, in all of these studies is the negative correlation between visceral WAT and 
serum adiponectin. A recent study in young Danish men reported that abdominal 
subcutaneous fat, rather than intra-abdominal/visceral fat, is negatively associated 
with adiponectin levels, whereas fat in the thighs and lower extremities is positively 
associated with serum adiponectin levels (Frederiksen et al.  2009  ) . As with leptin, 
stimulation of the  b -adrenergic receptor decreases the expression and release of 
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adiponectin by adipose tissue and may explain these depot-specifi c differences 
(Fu et al.  2007 ; Fasshauer et al.  2001 ; Delporte et al.  2002  ) .  

    4.3.2.3   Other Adipocyte Secreted Factors 

 RBP4 belongs to the lipocalin family and is the principal transport protein for retinol 
(vitamin A) in the circulation (Yang et al.  2005  ) . Production of RBP4 by adipose 
tissue was originally identifi ed in mice with deletion of Glut4 in adipose tissue 
(AG4KO) (Yang et al.  2005  ) . These mice are insulin resistant and glucose intolerant 
and have increased expression of RBP4 in adipose tissue and elevated circulating 
RBP4. High circulating levels of RBP4 have been found in insulin-resistant mice 
models and humans with obesity and type 2 diabetes, and in mice can be normalized 
by the insulin sensitizing agent rosiglitazone (Yang et al.  2005 ; Graham et al.  2006  ) . 
In addition, injection of recombinant RBP4 in normal mice is suffi cient to cause 
insulin resistance (Yang et al.  2005  ) . In humans, serum RBP4 concentration has 
been reported to be negatively associated with insulin sensitivity and onset of type 
2 diabetes (Graham et al.  2006 ; Stefan et al.  2007 ; Gavi et al.  2007 ; Kloting et al. 
 2007 ; Cho et al.  2006  ) , although some studies observed no correlations (Promintzer 
et al.  2007 ; Broch et al.  2007  ) . Circulating levels of RBP4 show a strong association 
with fat distribution. Thus, in healthy subjects, serum RBP4 is positively correlated 
with percent of fat in the trunk, but not with percent of total body fat (Gavi et al. 
 2007  ) . RBP4 is also a strong measure of visceral fat accumulation in women (Lee 
et al.  2007  ) . 

 At the level of mRNA expression, RBP4 is higher in visceral WAT than subcu-
taneous WAT. Furthermore, RBP4 expression in visceral adipose shows a stronger 
correlation with circulating RBP4 levels than expression in subcutaneous WAT 
(Kloting et al.  2007  ) . Like adiponectin, plasma levels of RBP4 exhibit a sexual 
dimorphism; however, in this case, higher levels of circulating RBP4 are found in 
men (Cho et al.  2006  ) . Although the mechanisms by which RBP4 might induce 
insulin resistance are not well understood, systemic and paracrine regulations 
have been described. Thus, RBP4 can act on the liver and the skeletal muscle to 
increase expression of phosphoenolpyruvate carboxykinase and decrease insulin 
signaling, respectively (Yang et al.  2005  ) . 

 Resistin is a member of a family of resistin-like molecules, also known as the 
FIZZ family (Holcomb et al.  2000 ; Steppan et al.  2001b  ) . When fi rst discovered, 
this adipokine was proposed to be the link between obesity, insulin resistance, and 
diabetes, and hence the name resistin (Steppan et al.  2001a  ) . Although initial reports 
indicated adipocytes as a main source of resistin, resistin mRNA is present in hypo-
thalamus (Morash et al.  2002 ; Wilkinson et al.  2005 ; Tovar et al.  2005  ) , pituitary 
(Morash et al.  2002,   2004  ) , and pancreatic  b -cells (Minn et al.  2003  )  in mice. 
Resistin expression in adipose tissue is increased in diet-induced and genetic mice 
models of obesity and is down-regulated by the insulin sensitizing agent rosiglita-
zone (Steppan et al.  2001a  ) . In addition, treatment of normal mice with recombinant 
resistin impairs glucose tolerance and insulin action (Steppan et al.  2001a  ) . 
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Somewhat contrary to the view of an insulin resistance factor, resistin mRNA 
expression increases during differentiation of murine preadipocyte into adipocytes 
(Kim et al.  2001  ) . In mice, resistin expression in adipose tissue decreases in response 
to fasting and greatly increases after refeeding (Kim et al.  2001  ) . In addition, resis-
tin expression is strongly upregulated in adipose tissue of streptozotocin-diabetic 
mice after insulin injection (Kim et al.  2001  ) . 

 In humans, the role of resistin in insulin sensitivity is less clear. Human adipose 
tissue expresses only low levels of resistin, and adipocytes seem to contribute very 
little to its production (Nagaev and Smith  2001 ; Pagano et al.  2005 ; McTernan et al. 
 2002,   2003 ; Yang et al.  2003 ; Fain et al.  2003 ; Savage et al.  2001  ) . In fact, in human 
WAT, the major source of resistin expression and secretion is the stromal-vascular 
fraction containing preadipocytes, vascular endothelial, smooth muscle cells, and 
infl ammatory cells (Fain et al.  2003 ; Savage et al.  2001  ) . In this fraction, mac-
rophages have been identifi ed as the primary source of resistin production (Savage 
et al.  2001 ; Curat et al.  2006  ) . In addition, studies of the association between serum 
levels of resistin and obesity or type 2 diabetes in humans have yielded divided 
opinions. While many studies have reported a positive correlation between circulat-
ing resistin levels and obesity (Lee et al.  2005 ; Vendrell et al.  2004 ; Gawa-Yamauchi 
et al.  2003  )  or insulin resistance and type 2 diabetes (Fujinami et al.  2004 ; Silha 
et al.  2003 ; Smith et al.  2003 ; McTernan et al.  2003  ) , others have observed no cor-
relation (Heilbronn et al.  2004 ; Lee et al.  2003 ; Savage et al.  2001  ) . Interestingly, 
there is growing evidence that resistin could be involved in other diseases, including 
atherosclerosis, non-alcoholic fatty liver, cancer, infl ammatory bowel disease, 
chronic kidney disease, and asthma (Filkova et al.  2009  ) . 

 TNF a  was discovered in 1975 as a cytotoxic factor in the serum of mice infected 
with bacillus Calmette-Guerin and was given its name because it was able to induce 
necrosis of tumors (Carswell et al.  1975  ) . TNF a  is produced as a 26 kDa transmem-
brane protein and after cleavage by a metalloproteinase is released in the circulation 
as a 17 kDa soluble molecule (Black et al.  1997 ; Moss et al.  1997  ) . TNF a  was the 
fi rst factor secreted by adipose proposed to represent a link between obesity and 
insulin resistance (Hotamisligil and Spiegelman  1994  ) . TNF a  expression is 
increased in adipose tissue of obese mice models and in human obese individuals 
(Hotamisligil and Spiegelman  1994 ; Hotamisligil et al.  1995 ; Kern et al.  1995 ; 
Yamakawa et al.  1995 ; Hofmann et al.  1994  ) . Although adipocytes can make TNF a , 
it appears that infi ltrating proinfl ammatory (M1) macrophages are responsible for 
almost all of the TNF a  expression in adipose tissue (Weisberg et al.  2003  ) . TNF a  
mediates its effects through the activation of two distinct receptors TNFR1 and 
TNFR2 which homodimerize in the presence of TNF a  (Tartaglia and Goeddel 
 1992 ; Smith et al.  1990  ) . While TNFR1 is ubiquitously expressed, TNFR2 is found 
only in cells of the immune system. Both receptors are found as soluble form in the 
circulation and can block TNF a  effects in vitro and in vivo (Van Zee et al.  1992  ) . 

 A large number of studies have reported the multiple effects of TNF a  on metab-
olism homeostasis. Thus, TNF a  has been shown to impair insulin sensitivity in vitro 
and in vivo (Hotamisligil  1999  ) . TNF a  has also been shown to affect fatty acid 
metabolism by reducing LPL expression and activity (Hauner et al.  1995 ; Cornelius 
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et al.  1988 ; Semb et al.  1987  ) , decreasing expression of fatty acid transporter 
(Memon et al.  1998a  ) , ACC and FAS (Doerrler et al.  1994 ; Pape and Kim  1988  )  
acyl-CoA synthetase (Memon et al.  1998b  ) , and increasing lipolytic activity (Green 
et al.  1994 ; Feingold et al.  1992 ; Hauner et al.  1995  ) . TNF a  is able to block adipo-
cyte differentiation by preventing the induction of C/EBP a  and PPAR g  expression 
(Kurebayashi et al.  2001 ; Xing et al.  1997 ; Zhang et al.  1996  ) , and to induce the 
dedifferentiation of mature adipocytes (Petruschke and Hauner  1993 ; Torti et al. 
 1989 ; Xing et al.  1997  ) . Finally, TNF a  can induce apoptosis of preadipocytes and 
adipocytes (Qian et al.  2001 ; Prins et al.  1997  ) . The regulation of metabolism 
homeostasis by TNF a  is not limited to its action on adipose tissue. Indeed, TNF a  
can impair insulin sensitivity in muscle (Li and Reid  2001  )  and liver (Tilg and 
Moschen  2008  ) . 

 IL-6 is a cytokine with pleiotropic biological effects in multiple organs 
(Kamimura et al.  2003  ) . A large number of tissues and cell types, including WAT, 
secrete IL-6. Adipose tissue has been estimated to account for 10–35% of circulat-
ing IL-6 in healthy humans (Mohamed-Ali et al.  1997  )  and slightly more in obese 
individuals (Hoene and Weigert  2008 ; Bastard et al.  2002  ) . Omental WAT releases 
2–3 times more IL-6 than subcutaneous WAT (Fried et al.  1998  ) . Although several 
studies have reported positive correlations between IL-6 levels and the presence of 
insulin resistance or type 2 diabetes (Pradhan et al.  2001 ; Fernandez-Real et al. 
 2001 ; Pickup et al.  1997  ) , other studies have demonstrated that plasma IL-6 levels 
and increased fat mass are not independent risk factors for the development of insu-
lin resistance (Corpeleijn et al.  2005 ; Carey et al.  2004 ; Kopp et al.  2003  ) . 
Furthermore, whether IL-6 induces or has a benefi cial effect on insulin sensitivity is 
still actively debated (Pedersen and Febbraio  2007 ; Mooney  2007 ; Spangenburg 
et al.  2007  ) .    

    4.4   Depot-Specifi c Differences of WAT 

    4.4.1   Anatomical Distribution of Adipose Tissues 

 With evolution, the adipose organ has become more anatomically dispersed (Gesta 
et al.  2007  ) . In vertebrates, the two major divisions of WAT are in subcutaneous and 
intra-abdominal locations. These were described as being distinct as early as 1871 
by Flemming  (  1871  ) . Today, this simple dichotomization of WAT is still referred to 
in a large number of metabolic studies, due to the different impacts of these depots 
on metabolism. However, this is an over-simplifi cation and often leads to discordant 
observations due to an important heterogeneity within these two divisions. Additional 
diffi culty in attempting to categorize WAT resides in the fact that fat distribution 
varies considerably between species and also between individuals from the same 
species. In this review, we will discuss only WAT distribution in mice and the 
corresponding depots in humans (Fig.  4.2 ).  



90 S. Gesta and C.R. Kahn

  F
ig

. 4
.2

  
  W

hi
te

 a
di

po
se

 t
is

su
e 

di
st

ri
bu

tio
n 

in
 h

um
an

s 
an

d 
m

ic
e.

 W
hi

te
 a

di
po

se
 t

is
su

e 
is

 d
is

tr
ib

ut
ed

 t
hr

ou
gh

ou
t 

th
e 

bo
dy

 i
n 

bo
th

 h
um

an
s 

an
d 

m
ic

e.
 T

he
 t

w
o 

m
aj

or
 c

om
pa

rt
m

en
ts

 o
f 

W
A

T
 a

re
 lo

ca
te

d 
su

bc
ut

an
eo

us
ly

 a
nd

 in
tr

a-
ab

do
m

in
al

ly
, a

lth
ou

gh
 W

A
T

 c
an

 b
e 

fo
un

d 
in

 o
th

er
 r

eg
io

ns
, s

uc
h 

as
 th

e 
in

tr
a-

th
or

ac
ic

 r
eg

io
n.

 
W

hi
le

 th
es

e 
tw

o 
sp

ec
ie

s 
sh

ar
e 

m
os

t o
f 

th
ei

r 
W

A
T

 d
ep

ot
s,

 s
om

e 
de

po
ts

 a
re

 s
pe

ci
es

 s
pe

ci
fi 

c,
 s

uc
h 

as
 th

e 
ep

ic
ar

di
al

 W
A

T
 in

 h
um

an
s 

an
d 

th
e 

pe
ri

go
na

da
l W

A
T

 in
 

m
ic

e       

 



914 White Adipose Tissue

    4.4.1.1   Subcutaneous Adipose Tissue 

 In mice, subcutaneous WAT is referred to as the tissue that is located beneath the 
skin and outside the peritoneal cavity. It consists of two main depots, one which is 
anterior and the other posterior (Cinti  2005  ) . The anterior depot lies in the inter-
scapular region between and under the scapulae and projects into the axillary and 
proximal regions of the forelimbs and the cervical area (Cinti  2005  ) . BAT is also 
located within this interscapular region, the majority being embedded in the WAT. 
BAT also projects anteriorly into a deep cervical depot and laterally into subscapu-
lar and axillo-thoracic depots. Small amounts of BAT are also visible in the medi-
astinal and perirenal regions (Cinti  2005  ) . Interestingly, although these two tissues 
share an intimate location, they are diametrically opposite in their function and their 
developmental origin (Yamamoto et al.  2010  ) . In human fetuses and newborns, BAT 
can be found in this interscapular location in addition to axillary, perirenal, and 
periadrenal regions. In humans, these BAT depots decrease shortly after birth 
(Cannon and Nedergaard  2004  ) , and in adults, only cervical, supraclavicular, axil-
lary, and paravertebral BATs remain (Nedergaard et al.  2007 ; Cypess et al.  2009  ) . In 
humans, enlargement of the subcutaneous WAT in these neck and upper back regions 
has been described as being part of Cushing’s syndrome. In this disease, hypercorti-
cism leads to an increase in fat mass forming a so-called “buffalo-hump,” indicating 
the higher glucocorticoid responsiveness of this depot (Nieman et al.  1985  ) . An 
increase in fat accumulation in these regions has also been observed in the acquired 
form of lipodystrophy that is associated with treatment for human immunodefi -
ciency virus (Miller et al.  1998  ) . 

 The posterior WAT of mice (also called inguinal or fl ank) consists of a long strip 
of tissue located around the hind legs. This tissue can be dissociated in three por-
tions, starting from the dorsum at the lumbar level (dorso-lumbar portion). It then 
extends into the inguino-crural region (inguinal portion) up to the pubic level and 
into the gluteal region (gluteal portion). At the pubic level, this depot joins the con-
tralateral depot (Cinti  2005  ) . In humans, the distribution of subcutaneous fat is simi-
lar with large WAT depositions in the posterior lumbar, epidural, buttock, gluteal, 
and thigh regions. In lean subjects, these regions are dissociated from one other, 
whereas as obesity develops, especially lower body obesity, these regions appear to 
join. In addition, humans have a subcutaneous abdominal adipose depot which is 
absent in mice. This abdominal subcutaneous depot has a great expansion capacity 
and exhibits important differences in several biochemical pathways compared to 
other subcutaneous depots (Lafontan and Berlan  2003 ; Arner  1995  ) . In addition to 
these two main subcutaneous depots in mice, some adipose tissue can be found at 
the root of the limb and at the level of the join in the middle of the limbs (Cinti 
 2005  ) . This latter depot is called the popliteal adipose depot and is well-known by 
radiologists who try to suppress its lingering signal observed during magnetic reso-
nance imaging (Moriya et al.  2010  ) . 

 Besides these well-delimited subcutaneous depots, a subdermal layer of fat is 
present in both mice and humans throughout the body. Unfortunately, this layer of 
fat has been poorly studied in mice, as it cannot be easily dissected. However, this 
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tissue seems to present properties which differ from the other subcutaneous depots. 
Indeed, as mentioned above, a recent genetic engineering study showed that dele-
tion of the gene encoding for GAPT4 (also called AGPAT6) in mice leads to com-
plete absence of subdermal adipose tissue, whereas the posterior (inguinal) 
subcutaneous fat pad was modestly reduced (Vergnes et al.  2006  ) . In humans, 
increased fat accumulation in this subdermal adipose tissue causes skin dimpling 
and nodularity, better known as cellulite. Although this fat accumulation has been 
of limited interest to metabolic researchers, its cosmetic interest is signifi cant. 

 Recently, Sbarbati et al. defi ned three different types of subcutaneous WAT in 
humans, based on their structural and ultrastructural features (Sbarbati et al.  2010  ) . 
Type 1 WAT or deposit WAT (dWAT) is a non-lobulated organized WAT with low 
collagen content and large adipocytes which tend to adhere to one other in parallel 
membrane plates. dWAT is considered as a metabolic depot due to its high lipid 
content. It mainly corresponds to the abdominal subcutaneous depot. Type 2 WAT 
or structural WAT (sWAT) is more polymorphous and variable from site to site. It is 
defi ned as a stromal depot with a non-lobular structure and smaller adipocytes. 
sWAT is located in limited adipose areas, usually rich in muscular tissue, including 
around trochanters, suprapubic, axillae, inner faces of the knees, thighs, hips, arms, 
pectoral, and mammary areas. Type 3 WAT or fi brous WAT (fWAT) has an impor-
tant fi brous component and can be found in areas where a severe mechanic stress 
occurs. Adipocytes of fWAT are the smallest and surrounded by a thick collagen 
layer. fWAT is divided into two subtypes: lobular and non-lobular. Lobular fWAT 
can be found in the calcaneal region where mechanical constraint is important. It is 
organized into micro- and macro-chambers delimited by connective septae. Non-
lobular fWAT is a hard adipose tissue with a major degree of fi brosis and low lipid 
content.  

    4.4.1.2   Intra-Abdominal Adipose Tissue 

 Internal adipose tissue is located in the thoracic and abdominal cavities. Mice and 
humans share the large majority of intra-abdominal adipose depots, but also have 
distinct depots. In the abdominal cavity, large amounts of adipose tissue accumulate 
around the digestive system in two main depots, namely mesenteric and omental 
adipose tissues. Mesenteric adipose tissue (often called visceral adipose tissue) is 
present in both species and is located in the connective tissue of the intestine, along 
with blood and lymph vessels. In mice, this connective tissue also contains the pan-
creas, which is diffuse and irregular, often leading to cross contamination during 
dissection (Caesar and Drevon  2008  ) . Omental adipose tissue is hardly detectable in 
mice; however, in humans, this depot can be substantial. This adipose tissue devel-
ops in the greater omentum, a serous membrane hanging from the greater curvature 
of the stomach. This depot can enlarge in obese humans to cover the entire intestine 
and form a pannus, or apron, of fat. 

 Two other adipose tissues are present in the intra-abdominal cavity and present 
in both humans and mice: the retroperitoneal and the perirenal adipose tissue. 
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In mice, the retroperitoneal adipose tissue lies in the paravertebral position between 
the spine and the posterior abdominal wall. Perirenal adipose tissue is found around 
the kidney and can be separated from the retroperitoneal adipose tissue by a perito-
neal fold (Cinti  2005  ) . In humans, in addition to the perirenal adipose tissue, also 
called the adipose capsule of the kidney, there is an additional depot located super-
fi cially to the renal fascia termed the pararenal adipose tissue (or paranephric body). 
The last adipose depot present in the intra-abdominal cavity is found surrounding 
reproductive organs and is called perigonadal adipose tissue. This is only present in 
mice. In females, this tissue surrounds the uterus, bladder, and ovaries and is called 
periovarian adipose tissue. In males, this tissue surrounds the epididymis, projecting 
anteriorly in the intra-abdominal cavity along the peritoneum and is termed epididy-
mal adipose tissue. Interestingly, although this tissue is absent in humans, it has been 
the most studied WAT depot because of its easy access and dissectability in mice. 
However, this does raise some questions about the relevance of certain physiological 
and pathophysiological studies in mice to humans (Harris and Leibel  2008  ) . 

 Two adipose tissues have been described in the thoracic cavity: epicardial and 
mediastinal adipose tissues. Epicardial WAT develops at different sites around the 
heart: on the free wall of the right ventricle, on the left ventricular apex, around the 
atria, from the epicardial surface into the myocardium, following the adventitia of 
the coronary artery branches and around the two appendages (Iacobellis et al.  2005  ) . 
Epicardial WAT is usually found only in large mammals, such as humans, and is 
almost absent in mice or rats (Marchington et al.  1989  ) , which explains why epicar-
dial adipose tissue has been so poorly studied. However, in humans, the size of 
epicardial adipose tissue has been related to left ventricular mass and other features 
of the metabolic syndrome (Iacobellis et al.  2005  ) . Indeed, increases in epicardial 
adipose tissue are strongly associated with abdominal obesity and visceral adiposity 
as opposed to overall adiposity (Iacobellis et al.  2003a,   b ; Silaghi et al.  2008  ) . The 
mediastinal adipose tissue is located in the superior and posterior mediastinum in 
both mice and humans. Although the presence of this tissue in humans during 
android obesity was observed almost 250 years ago by Joannes Baptista Morgagni, 
this tissue has also been poorly studied in mice (Morgagni  1765  ) . Interestingly, in 
rats, this tissue appears to be a mixture of WAT and BAT (Osculati et al.  1989 ; 
Giordano et al.  2004  ) .  

    4.4.1.3   Mammary Adipose Tissue 

 In mice, there are fi ve pairs of mammary glands, three of which are located in the 
thoracic region and two in the inguinal region. All are surrounded by subdermal 
adipose tissue. In the lipodystrophic mouse model A-ZIP/F-1 transgenic mice, 
rudimentary mammary anlagen were able to form, but were unable to grow and 
branch normally (Couldrey et al.  2002  ) . However during gestation, even in the 
absence of adipocytes, a tremendous amount of epithelial cell division and alveolar 
cell formation occurred, illustrating that adipose tissue was not required for mam-
mary gland differentiation (Couldrey et al.  2002  ) . Adipose tissue represents an 
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important component of the human breast. Using ultrasound imaging, Ramsay et al. 
have calculated that in non-lactating women, the ratio of glandular tissue to adipose 
tissue is 1:1, and this rises to 2:1 during lactation (Ramsay et al.  2005  ) . Although the 
distribution of adipose tissue shows a wide variation between women, they identi-
fi ed several adipose tissue sub-depots within the breast: one located directly under 
the skin (subcutaneous fat), another within the glandular tissue (intraglandular fat) 
and a third behind the glandular tissue in front of the pectoral muscle (retromam-
mary fat) (Ramsay et al.  2005  ) . Mammary adipose tissue represents an important 
source for the synthesis of many diverse molecules involved in the development and 
the function of mammary glands (Hovey et al.  1999  ) . In addition, several studies 
have implicated mammary adipose tissue in the metastatic progression of breast 
tumors (Elliott et al.  1992 ; Chamras et al.  1998 ; Manabe et al.  2003  ) . Interestingly, 
over 350 unique proteins have been identifi ed in the interstitial fl uid of mammary 
adipose tissue from high-risk breast cancer patients (Celis et al.  2005  ) .  

    4.4.1.4   Intermuscular Adipose Tissue 

 Lipid deposition is present in muscle and can be separated into two compartments: 
intermuscular and intramuscular. Intramuscular fat is the result of ectopic lipid 
accumulation within myocytes and therefore by defi nition cannot be considered as 
adipose tissue. However, intermuscular fat is the visible muscle fat marbling result-
ing in infi ltration of adipose tissue between the muscle fi bers that can be observed in 
mice, human and other mammals. In mice, this depot has been poorly studied, but it 
has been reported to increase in mice defi cient in CC chemokine receptor 2 following 
ischemic injury (Contreras-Shannon et al.  2007  )  and decrease in mice overexpress-
ing the mitochondrial uncoupling protein-3 (Changani et al.  2003  ) . In addition, a 
BAT depot, with regulatable expression of the uncoupling protein-1, has been 
recently observed within the muscles of strains of mouse that is resistant to diet-
induced obesity and metabolic disorders, providing a genetically based mechanism 
for this protection (Almind et al.  2007  ) . In humans, intermuscular adipose tissue has 
been well documented to increase with age and obesity, with higher levels in women 
than in men (Ryan and Nicklas  1999 ; Kelley et al.  1999  ) . Its function is not clear, 
but a high amount of intermuscular adipose tissue appeared to be associated with 
muscle weakness in the elderly (Katsiaras et al.  2005 ; Goodpaster et al.  2001  ) .  

    4.4.1.5   Bone Marrow Adipose Tissue 

 Bone marrow is the site of production of red blood cells, platelets, and most white 
blood cells. While bone marrow usually has a red color due to its high content in 
hematopoietic cells, the color changes from red to yellow when adipose tissue 
develops in the bone marrow. Adipose tissue-rich marrow (also called yellow marrow) 
increases with age and in patients with osteoporosis, but unlike the other adipose 
depots, it does not increase with obesity (Justesen et al.  2001 ; Kugel et al.  2001  ) . 
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The function of adipose tissue in the bone marrow is still unclear and subject to 
controversy. It has been suggested to serve simply as a passive space fi ller to be an 
active participant in lipid metabolism, energy storage, or even contribute to cell dif-
ferentiation within the bone marrow (Gimble et al.  1996  ) . Interestingly, thiazolidin-
ediones have been reported to increase adipocyte and decrease osteoblast formation 
in the bone marrow of mice (Rzonca et al.  2004  )  and diabetic women, but not men 
(Schwartz et al.  2006  ) . A recent study reported that bone marrow adipocytes are 
negative regulators of the hematopoietic microenvironment, suggesting that antago-
nizing bone marrow adipogenesis may enhance hematopoietic recovery after bone-
marrow transplantation (Naveiras et al.  2009  ) .   

    4.4.2   Fat Distribution and Associated Risks 

 As noted above, adipose tissue is distributed throughout the body in humans, but 
this distribution can vary considerably from one individual to another. In lean indi-
viduals, when body fat accumulation increases leading to overweight and/or obe-
sity, fat deposition can be exacerbated in specifi c regions of the body, leading to 
altered fat distribution. These changes have an important impact on metabolism 
and lead to the development of metabolic disorders such as type 2 diabetes and 
metabolic syndrome. This has resulted in several classifi cations of different types 
of obesity. 

 At the end of the 1940s, a French physician from Marseille, Jean Vague, noted 
that “fat excess is dangerous because of its metabolic complications and a woman 
normally has twice a man’s fat mass, i.e., the mass of an obese man. Though she is 
often as obese as a man or is fatter, she dies later and less often from metabolic 
complications of obesity.” He then proposed in  La presse medicale  the existence of 
sexual dimorphism as a determining factor for two different patterns of fat distribu-
tion in obese patients (Vague  1947  ) . He classifi ed these two patterns of obesity as 
android (or upper-body) vs. gynoid (or lower-body) obesity using the brachio-femoral 
adipo-muscular ratio, which was based on ratios of skinfolds and circumferences of 
the arms and thighs. In 1956, he reported that a high brachio-femoral adipo-muscu-
lar ratio in obese individuals (android obesity) was associated with an increased risk 
of type 2 diabetes, atherosclerosis, and gout, whereas gynoid obesity was not (Vague 
 1956  ) . Three decades later, a new classifi cation was made based on the calculated 
ratio between the waist circumference (WC) (measured midway between the lowest 
rib and the iliac crest) and the hip circumference (measured at the level of the great 
trochanters with the legs together) (Kissebah et al.  1982 ; Bjorntorp  1987  ) . In a 
12-year longitudinal study, Larson et al. reported that abdominal obesity, deter-
mined by a high waist–hip ratio (WHR), was associated with an increased risk of 
myocardial infarction, stroke, and premature death, whereas no association was 
found when indices of generalized obesity, such as body mass index (BMI), were 
used (Larsson et al.  1984  ) . Interestingly, in this study, individuals with a low BMI 
but high WHR exhibited the highest risk of developing myocardial infarction and 
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premature death, indicating the deleterious consequences of “pure” abdominal fat 
accumulation (Larsson et al.  1984  ) . 

 Since that time, an impressive number of studies have recognized that abdominal 
obesity, assessed by WHR or simply WC, is associated with adverse health risks, 
including insulin resistance, type 2 diabetes mellitus, dyslipidemia, hypertension, 
atherosclerosis, hepatic steatosis, cholesterol gallstones, several cancers (esophagus, 
pancreas, colorectum, breast, endometrium, cervix, and kidney), and overall mortality    
(Carey et al.  1997 ; Wang et al.  2005 ; Zhang et al.  2008 ; Baik et al.  2000 ; Pischon et al. 
 2008 ; Seidell  2010  ) . The most common cutoffs used for WC are 102 cm for men and 
88 cm for women, while those for WHR are 0.95 for men and 0.80 for women. 
However, concerns have been raised about using the same upper limits of these indi-
cators in all ethnic groups. Strong evidence has been presented that lower WC cutoffs 
should be used for Asians (85 and 80 cm for men and women, respectively) for assess-
ment of diabetes and hypertension risk, whereas the normal limits for WHR may be 
similar. In addition, the use of specifi c cutoffs for African–American, Hispanic, and 
Middle Eastern populations has been recommended (Lear et al.  2010  ) . 

 Fat distribution is determined by multiple factors in addition to ethnicity. Gonadal 
steroids have been shown to affect adipose tissue mass and distribution in humans. 
For example, a decrease in intra-abdominal adipose tissue and increase in subcutane-
ous adipose tissue mass are observed in men that have been treated with testosterone. 
Interestingly, this adipose tissue redistribution has been shown to be associated with 
increased insulin sensitivity (Mayes and Watson  2004  ) . In addition, while premeno-
pausal women often have increased amounts of subcutaneous WAT (Lear et al.  2010 ; 
Loomba-Albrecht and Styne  2009 ; Wells  2007  ) , postmenopausal women are prone 
to increases in intra-abdominal fat (Turgeon et al.  2006  ) , and this is attenuated by 
hormone replacement therapy (Mayes and Watson  2004  ) . In ovariectomized mice, 
adipose tissue mass and adipocyte size increase in both subcutaneous and perigo-
nadal depots, and this has been associated with impaired glucose uptake and insulin 
sensitivity (Macotela et al.  2009  ) . In male mice, castration has no effect on fat mass 
in either depots (Macotela et al.  2009  ) . 

 In addition, genetics play an important role in both obesity and distribution of 
WAT. Twin and population studies have revealed that both BMI and WHR are heri-
table traits, with genetics accounting for 30–70% of the variability (Nelson et al. 
 2000  ) . Such genetic control of body fat distribution is most evident in Hottentot/
Khoisan women, who have a marked accumulation of fat in the buttocks (steatopy-
gia) (Krut and Singer  1963  ) . Striking differences in WAT distribution can also be 
observed in individuals with heritable forms of partial lipodystrophy (Agarwal and 
Garg  2006  ) . For example, in congenital generalized lipodystrophy (Berardinelli-
Seip Syndrome), adipose tissue is almost completely absent from subcutaneous 
depots, intra-abdominal depots, intra-thoracic region, and bone marrow. However, 
these individuals still have a relatively normal amount of adipose tissue in the buccal 
region, palms, soles, and other areas. By contrast, individuals with familial partial 
lipodystrophy of the Dunnigan type have a marked loss of subcutaneous adipose 
tissue in the extremities and trunk, but no loss of visceral, neck, or facial adipose 
tissue. These partial lipodystrophies, which are the result of mutations in different 
genes, indicate the developmental heterogeneity of the different adipose depots.  
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    4.4.3   Causes for the Deleterious Impact of Abdominal Obesity 

 Several theories have been proposed to explain the link between intra-abdominal/
visceral adipose tissue and the increased risk for metabolic complications, such as 
insulin resistance, glucose intolerance, and dyslipidemia. Historically, the “Portal 
circulation Theory” has been the most actively discussed. In this theory, it has been 
noted that intra-abdominal/visceral adipose tissue drains into the portal vein, 
allowing preferential access of FFA to the liver (Bjorntorp  1990  ) . This high level of 
FFA could stimulate hepatic gluconeogenesis and reduce hepatic insulin sensitivity 
by decreasing the number of insulin receptors and altering intracellular insulin sig-
naling through activation of protein kinase C and other pathways. This theory was 
also supported by the fact that intra-abdominal adipose depots possess higher lipoly-
tic rates than subcutaneous adipose tissue, and therefore release more FFA directly 
into the portal vein to feed the liver. Indeed, it is now well-established that in 
humans, intra-abdominal adipose tissue depots show a signifi cantly greater lipolytic 
activity when stimulated by catecholamines than subcutaneous adipose depots. This 
difference is due primarily to the presence of a higher level of lipolytic  b -adrenergic 
receptors and a much lower level of anti-lipolytic  a  

2
 -adrenergic receptors on the 

surface of adipocytes from intra-abdominal adipose depots compared to those from 
subcutaneous depots. 

 This theory of FFA being released in the portal vein as the major mechanism to 
explain the association between intra-abdominal fat accumulation and metabolic 
disorders has been subject to challenge. One major argument against the theory is 
that any adipose depot with a high continuous rate of FFA release should ultimately 
disappear, and presumably the metabolic disorders associated with it would also 
disappear. However, in reality the converse is true. Thus, as central obesity devel-
ops, fat accumulation in intra-abdominal adipose depot tends to increase rather than 
disappear and the metabolic disorders worsen rather than improve. One possibility 
to explain the increase in intra-abdominal WAT as obesity develops would be the 
presence of a high FFA turnover such that at certain times of the day, e.g., postpran-
dially, there would be high triglyceride accumulation, whereas during periods of 
fasting or stress, this would be followed by episodes of high lipolysis. Interestingly, 
in healthy individuals, intra-abdominal WAT has a 30% higher FFA uptake rate per 
gram of tissue than abdominal subcutaneous WAT (Hannukainen et al.  2010  ) . 
However, when tissue FFA uptake per gram of fat is multiplied by the total tissue 
mass, total FFA uptake is almost 1.5 times higher in abdominal subcutaneous WAT 
than in visceral WAT, indicating that subcutaneous rather than visceral fat storage 
plays a more direct role in systemic FFA availability (Hannukainen et al.  2010  ) . 
In addition, measurement of FFA in the portal vein has been found to be very close 
to those in arterial plasma (Hagenfeldt et al.  1972 ; Bjorkman et al.  1990 ; Blackard 
et al.  1993  ) . Finally, it appears that in central obesity, the higher level of FFAs deliv-
ered to the liver originate from upper-body, non-splanchnic adipose depots (proba-
bly the subcutaneous abdominal depot), but not a visceral depot (Guo et al.  1999  ) . 

 In addition to FFAs, adipokines and cytokines, such as interleukin-1, IL-6, TNF a , 
resistin, and others, which have been associated with reduced insulin sensitivity, are 
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also potential mediators for the portal mechanism of insulin resistance (Lafontan 
and Girard  2008 ; Girard and Lafontan  2008  ) . These cytokines, whose secretion 
from adipose tissue is increased in obese individuals, are produced at higher levels 
from intra-abdominal than subcutaneous adipose depots. From this observation, a 
cell biological theory has emerged based on the concept that fat cells in different 
depots possess different intrinsic properties, and possibly have a different developmental 
origin, causing them to be more or less associated with metabolic alterations. This 
hypothesis is supported by the fact that at a molecular level, signifi cant differences 
in expression of hundreds of genes have been reported between distinct adipose tissue 
depots in both rodents and humans, and these depot-specifi c variations in gene 
expression appear to be intrinsic (Gesta et al.  2007  ) . Therefore, although there is no 
doubt that the anatomical location of intra-abdominal adipose depots draining into 
the portal circulation plays a critical role, the intrinsic properties of these depots are 
also one of the causes for the association between central obesity and metabolic 
disorders.   

    4.5   Adipogenic Lineage of Different WAT Depots 

 Intrinsic property differences between adipocytes from various WAT depots have 
recently lead to theories about the existence of different adipogenic lineages that are 
responsible for the development of the various WAT depots. Indeed, substantial 
evidence supporting the theory that different white adipose depots may be derived 
from distinct precursors exists (Vohl et al.  2004 ; Cantile et al.  2003 ; Gesta et al. 
 2006 ; Tchkonia et al.  2007  ) . In rodents, the different WAT depots appear after birth. 
The fi rst depots to develop are the intra-abdominal perigonadal and the anterior and 
posterior subcutaneous, while the intra-abdominal mesenteric, retroperitoneal, and 
perirenal usually develop later. In humans, although the development of subcutane-
ous and intra-abdominal WAT starts during early to mid-gestation, at birth, newborn 
babies have greater amounts of subcutaneous than intra-abdominal WAT. In healthy 
newborns, only 10% of the total WAT mass is intra-abdominal, whereas 90% is 
subcutaneous, with 70% being non-abdominal subcutaneous WAT (Modi et al. 
 2009  ) . In addition, several intrinsic properties have been observed in cells taken 
from different WAT. Thus, cloned human preadipocytes from subcutaneous adipose 
tissue exhibit a greater ability to differentiate and accumulate lipids in culture than 
those from mesenteric or omental adipose depots. These differences are associated 
with differences in expression of C/EBP a , PPAR g , and many other adipocyte-
related genes (Tchkonia et al.  2002  ) . Furthermore, these inter-depot differences have 
been shown to be conserved after multiple generations of cell replication in culture 
(Tchkonia et al.  2006  ) . Similarly, intrinsic variations in gene expression have been 
observed in adipocyte and preadipocyte fractions taken from different intra-abdom-
inal and subcutaneous adipose tissue depots in mice (Gesta et al.  2006  ) . In addition, 
Wu et al. have shown that administration of monoclonal antibodies raised against 
adipocyte plasma membranes in chick embryos signifi cantly reduces abdominal 
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adipose tissue weight without affecting femoral or pectoral fat depots (Wu et al.  2000  ) , 
suggesting that the adipocytes in these depots have different membrane protein anti-
gens. Together, these observations indicate that the adipogenic lineage for the devel-
opment of WAT differs from one depot to another (Fig.  4.3 )   .  

 Recent gene expression profi ling approaches have provided insights into the 
molecular mechanisms involved in the early development and patterning of the dif-
ferent adipose depots. Thus, using this approach, several fundamental developmental 

  Fig. 4.3    Hypothetical scheme of the adipogenic lineage of the different WAT depots. Under the 
infl uence of developmental and patterning genes including  Shox2 ,  En1 ,  Tbx15 ,  HoxC9 ,  HoxC8 , 
and  HoxA5 , mesenchymal stem cells or a pool of common white preadipocyte precursors give rise 
to different specialized white preadipocytes which will form the various WAT depots. The adipo-
cytes in these depots have specialized functions which are at least in part, therefore, cell autono-
mous. Thus, WAT depots develop as separate mini-organs with different functions and a specifi c 
developmental signature       
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genes have been found to be differentially expressed between intra-abdominal and 
subcutaneous adipose depots in both humans and mice (Vohl et al.  2004 ; Cantile 
et al.  2003 ; Gesta et al.  2006 ; Tchkonia et al.  2007  ) . Among those genes, intra-
abdominal WAT of rodents expressed higher levels of several members of the 
homeobox gene family HOX, including  HoxA5 ,  HoxA4 ,  HoxC8 , as well as other 
developmental genes including , Glypican 4  ( Gpc4 ) and  nuclear receptor subfamily 
2 group F member 1  ( Nr2f1  also known as Coup-TF1). Conversely, subcutaneous 
WAT has been shown to express higher levels of other members of the HOX family, 
including  HoxA10 ,  HoxC9 , and the developmental genes  Twist1  (twist homolog 1), 
 Tbx15  (T-box15),  Shox2  (Short stature homeobox 2),  En1  (Engrailed 1), and  Sfpr2  
(Secreted frizzled-related protein 2). Interestingly, a recent study in mice demon-
strated that this profi le of expression is not simply dichotomized between intra-
abdominal and subcutaneous WAT depots, as these developmental genes have 
specifi c patterns of expression when one compares multiple depots throughout the 
body (Yamamoto et al.  2010  ) . 

 The precise role played by these developmental genes in adipose tissue is still 
unclear; however, in humans,  HoxA5 ,  Gpc4 , and  Tbx15  expression has been shown 
to be highly correlated with both obesity (measured by BMI) and fat distribution 
(measured by WHR) (Gesta et al.  2006  ) . The most striking correlations were 
observed with  Tbx15 , for which in visceral adipose tissue, a robust exponential 
negative relationship is observed, with  Tbx15  expression exhibiting a marked 
decrease as BMI progressed from normal to overweight or obese levels. In addition, 
a strong exponential negative relationship between  Tbx15  expression and WHR in 
this tissue has been found, with markedly lower levels of expression observed when 
WHR is above 1.05 in males and above 0.95 in females. In contrast,  Tbx15  expres-
sion in subcutaneous adipose tissue shows a modest, but signifi cant positive correla-
tion with both BMI and WHR in subcutaneous adipose tissue of both males and 
females (Gesta et al.  2006  ) . Recently, a study in human subjects has also reported 
differential expression of  Tbx15  between subcutaneous (gluteal) and visceral (omen-
tal) fat depots. In this study, the authors performed a meta-analysis of genome-wide 
association studies and observed a single nucleotide polymorphism in the  Tbx15  
allele to be strongly associated with WHR in men and women (Heid et al.  2010  ) . 
Interestingly, another recent study has reported that overexpression of  Tbx15  in 
murine preadipocytes impairs adipocyte differentiation and mitochondrial mass and 
respiration, suggesting that differential expression of  Tbx15  between WAT depots 
plays an important role in controlling both adipocyte development and function that 
may contribute to the risk of diabetes and metabolic disease (Gesta et al.  2011  ) .  

    4.6   Is There a Good Fat: An Alternative View 

 The anatomical location and biological intrinsic properties of intra-abdominal 
omental and mesenteric WAT both appear to be responsible for their deleterious 
effects on health. Consistent with this notion, removal of WAT from these depots 
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should therefore be suffi cient to improve metabolic dysfunction associated with 
central obesity. The impact of surgical removal of omental WAT (omentectomy) on 
several metabolic parameters has been tested in humans, however, with mixed 
results. Thorne et al. observed that omentectomy leads to an improvement in glu-
cose tolerance and insulin sensitivity in individuals undergoing adjustable gastric 
banding. However, in addition to these metabolic improvements, these subjects lost 
more weight than the group of individuals with adjustable gastric banding alone, 
complicating conclusions regarding the specifi c effects of omentectomy (Thorne 
et al.  2002  ) . Two other studies have reported that omentectomy in addition to a 
Roux-en-Y gastric bypass procedure in humans exerted no benefi cial effects on 
various metabolic parameters (plasma glucose, plasma insulin, plasma adiponectin, 
plasma C-reactive protein, lipid profi le, blood pressure and glucose tolerance) 
(Csendes et al.  2009 ; Herrera et al.  2010  ) . However, these studies are also limited, 
since weight loss induced by Roux-en-Y gastric bypass surgery could have masked 
any potential therapeutic effects of the omentectomy (Klein  2010  ) . 

 Several experiments employing WAT transplantation in mice have provided 
further insights. Indeed, a recent study demonstrated that transplantation of intra-
abdominal WAT into the mesentery (conferring a portal venous drainage) leads to 
the development of glucose intolerance and hepatic insulin resistance, whereas 
transplantation of intra-abdominal WAT into the parietal peritoneum (conferring a 
caval/systemic venous drainage) has no effect (Rytka et al.  2011  ) . These deleterious 
effects of portally drained intra-abdominal transplantation appeared to be mediated 
by the production of IL-6, as these effects are abolished when transplants are derived 
from IL-6 knockout mice. Several studies involving the transplantation of subcuta-
neous WAT into the visceral cavity have provided some novel perspectives. Indeed, 
in contrast to intra-abdominal WAT, transplantation of subcutaneous WAT leads to 
a decrease in total adipose tissue mass, improved glucose tolerance, and improved 
whole body and hepatic insulin sensitivity (Tran et al.  2008 ; Hocking et al.  2008  ) . 
These results strongly suggest that the nature of the WAT rather than the anatomical 
location per se appears to have a major infl uence on whole body metabolic homeo-
stasis. Although the mechanisms mediating these benefi cial effects remain unknown 
it seems likely that one or more factors are secreted specifi cally from subcutaneous 
adipose tissue which can act on nearby tissues, such as the liver, to improve insulin 
sensitivity. Whether these interesting fi ndings can be extrapolated to humans 
remains to be determined.  

    4.7   Conclusions 

 WAT is a complex heterogeneous organ with multiple compartments (e.g., intra-
abdominal WAT, subcutaneous WAT) and with multiple functions (e.g., metabolic 
and endocrine). Recent advances in the understanding of these heterogeneities 
have led to the conclusion that the different WAT depots should be considered as 
separate mini-organs which most likely arise from different developmental lineages 
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and have different metabolic functions. These intrinsic differences have clearly 
shown that intra-abdominal and subcutaneous WAT have diametrical consequences 
on the risk of developing metabolic complications during obesity. The discovery of 
molecular mediators of these effects, together with a better characterization of the 
different developmental lineages of the various WAT depots, will be the next chal-
lenge in the development of new therapeutics to fi ght obesity and its adverse 
complications.      
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  Abstract   Although obesity is an important determinant of metabolic disease, 
specifi c accumulation of visceral fat is strongly and independently associated with 
important metabolic alterations such as insulin resistance, hypertension, and 
dyslipidemia. A marked sex dimorphism and large interindividual variations are 
observed in fat distribution, and excess accumulation of visceral fat is a strong 
predictor of cardiometabolic risk in both sexes. However, adipose tissue cellularity 
and function are distinctly related to obesity in women and men. Women are more 
likely to store lipids in lower body fat compartments through adipocyte hyperplasia, 
while visceral adipose tissue depots of men are more prone to manage incoming 
lipids through adipocyte hypertrophy. Proneness to adipocyte hypertrophy appears 
as a critical determinant of sex-related and depot-related differences in lipid metab-
olism and may contribute to the chronic, low-grade infl ammation observed in 
abdominally obese individuals. Regarding the hormonal etiology of abdominal obe-
sity, adipose tissue exposure to active androgens is known to inhibit adipogenesis 
and lipogenesis. Estrogens have important central effects on energy balance, but 
may also directly modulate central fat accumulation through direct effects on adi-
pose tissue metabolism. Moreover, a relatively high adipose tissue glucocorticoid 
reactivation by 11 b -hydroxysteroid dehydrogenase type 1 appears to promote 
specifi c accumulation of visceral fat and to alter adipocyte function in humans. 
Interventions targeting visceral fat accumulation such as moderate weight loss are 
known to exert benefi cial effects on cardiometabolic disease risk.  

  Keywords   Abdominal obesity  •  Visceral fat  •  Omental  •  Subcutaneous  •  Adipocyte 
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    5.1   Introduction 

 Epidemiological data have now shown that worldwide obesity rates have steadily 
increased over the 1980s and 1990s (Flegal et al.  1998,   2002 ; Katzmarzyk and 
Mason  2006 ; Kuczmarski et al.  1994 ; Seidell and Flegal  1997  ) . Although several 
studies seem to show that obesity rates have now entered a period of relative stabil-
ity, with smaller increases in adults and also possibly in children (Basu  2010 ; Flegal 
et al.  2010 ; Han et al.  2010 ; Rokholm et al.  2010 ; Schneider et al.  2010  ) , the preva-
lence of obesity remains elevated in many countries and still represents a major 
issue from the scientifi c and clinical standpoints (Flegal et al.  2010 ; US Department 
of Health and Human Services and Carmona RHM  2003  ) . 

 High obesity rates are expected to result in elevated prevalence of many chronic 
diseases and adverse events including premature death, musculoskeletal problems, 
and metabolic complications (Katzmarzyk  2002  ) , the latter which includes type 2 
diabetes, dyslipidemic states, and alterations in several cardiovascular disease risk 
factors (Bray  1985 ; Després  1991 ; Després  1994a ; Ford  1999 ; Garrison et al.  1987 ; 
Kissebah et al.  1989 ; NIH Consensus Conference  1985 ; Sims and Berchtold  1982  ) . 
Among the metabolic disorders closely related to obesity, projected worldwide 
increases in the incidence of type 2 diabetes are of considerable concern (Ekoe et al. 
 2001 ; Flegal et al.  2002 ; Shaw et al.  2010  ) . 

 The susceptibility to develop type 2 diabetes and cardiovascular disease in rela-
tion to excess body weight is highly variable among overweight and obese individu-
als. Some appear to be relatively protected from the development of medical 
problems in relation to their excess body fatness, even in the obese range (Andres 
 1980 ; Brochu et al.  2001 ; Primeau et al.  2010 ; Sims  1982 ). One of the critical deter-
minants of disease in overweight or obese individuals of both sexes is the presence 
of a central pattern of fat distribution, more specifi cally, of large fat stores within 
intra-abdominal anatomical structures such as the mesentery and greater omentum 
(Arner  1995 ; Després et al.  1990 ; Wajchenberg  2000  ) . This phenotype, which is 
also termed visceral obesity, has now clearly emerged as one of the most prevalent 
manifestation of the metabolic syndrome and represents an essential feature of the 
current obesity epidemic (Despres and Lemieux  2006  ) . This chapter will review 
studies which have documented sex differences in body fat distribution, and how 
depot-specifi c characteristics of abdominal adipose tissues in human males and 
females relate to cardiometabolic disease risk.  

    5.2   Sex Differences in Body Composition and Fat Distribution 

 Over the course of childhood, weight gain is slightly higher in boys than girls. Lean 
mass appears to be relatively similar in both sexes, although boys weigh slightly more 
before puberty. Total body fat mass is also comparable between boys and girls before 
the age of 7. After adrenarche, girls accumulate fat mass more rapidly and eventu-
ally reach slightly higher values than boys (Veldhuis et al.  2005 ; Wells  2007  ) . 
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Hence,  differences in body composition can be observed, but are relatively small in 
magnitude before puberty. 

 Between ages 10 and 20 years, boys accumulate approximately twice the amount 
of lean mass compared to girls (33 vs. 16 kg respectively) (Van Loan  1996  ) . 
Conversely, total fat mass increases proportionately more in girls (Van Loan  1996  ) . 
As a result, adult women have signifi cantly higher fat mass values and relatively 
lower lean mass compared to men (Siervogel et al.  2003 ; Wells  2007  ) . Average 
percent body fat mass values range 10–15% for men and 20–30% in women in 
healthy subjects, although values can obviously reach higher levels in various popu-
lations (Van Loan  1996 ; Wells  2007  ) . With aging, women tend to have a slightly 
higher propensity to gain fat mass than men (Wells  2007  ) . This may be attributable 
to hormonal changes of the menopause, although the impact of such changes 
remains controversial and diffi cult to demonstrate consistently (Crawford et al. 
 2000 ; Keller et al.  2010 ; Lovejoy et al.  2008  ) . Available studies rather show that the 
impact of menopause may manifest more specifi cally on abdominal fat accumula-
tion (Guthrie et al.  2003,   2004 ; Keller et al.  2010 ; Lovejoy et al.  2008  ) . 

 The sex dimorphism in body fat distribution becomes apparent at puberty. The 
amount of fat that accumulates at the abdominal level can be estimated using imag-
ing techniques such as computed tomography (CT) and magnetic resonance imaging 
(Kvist et al.  1987 ; Ross et al.  1992 ; Sjöström et al.  1986  ) . These studies have shown 
that despite having higher percent body fat masses than men, women generally have 
signifi cantly lower visceral adipose tissue accumulations. Cross-sectional data from 
the Quebec Family Study (Hajamor et al.  2003  )  and the Heritage Family study 
(Desmeules et al.  2003  )  enabled us to examine this sex dimorphism in the adult 
Caucasian population. For example, in a Quebec Family Study subsample of 203 
men and 219 women that were on average 40 years old, the sex dimorphism in body 
composition was readily apparent with 32% fat in women vs. 23% in men. 
Conversely, body fat-free mass weighed 61 kg in men vs. 46 kg in women. Despite 
such highly signifi cant differences, men had a 37% higher visceral adipose tissue 
area compared to women. Conversely, abdominal subcutaneous adipose tissue area 
was 50% higher in women (Hajamor et al.  2003  ) . Very similar differences can be 
observed in other Caucasian populations (Desmeules et al.  2003 ; Lear et al.  2007a  ) . 
Other ethnicities also generally show this pattern of sex differences, although there 
are marked ethnicity-related disparities in total adiposity and the propensity to store 
visceral fat. In African American individuals (Després et al.  2000  ) , a lower propor-
tion of visceral fat is observed for any given total body fat mass value, suggesting a 
reduced susceptibility to visceral obesity in this population. The opposite is true for 
other ethnic groups such as the South East Asians and Canadian Aboriginals (Lear 
et al.  2007a,   b ; Sniderman et al.  2007  ) . 

 A most striking feature is the very large interindividual variability in visceral 
adipose tissue area in both men and women. Despite a generally lower visceral 
adipose tissue accumulation in women, relatively important and physiologically 
signifi cant visceral fat accumulations can still be observed in this sex, even in the 
normal body mass index (BMI) range. As mentioned, convincing evidence is now 
available supporting the notion that not only in men but also in women, abdominal, 
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visceral obesity is closely associated with a cluster of metabolic abnormalities 
including dyslipidemia, insulin resistance, as well as a chronic, low-grade infl am-
matory state (Després  1993,   1994b ; Despres and Lemieux  2006 ; Lemieux and 
Despres  1994  ) . The following sections will review the metabolic alterations related 
to visceral obesity and describe the potential link between adipose tissue character-
istics and disease development.  

    5.3   Linking Body Fat Distribution to Disease Risk 

 In both men and women, visceral adipose tissue accumulation has been positively 
associated with fasting insulin and C-peptide levels, as well as with the insulin 
response to an oral glucose challenge (Després et al.  1989 ; Pouliot et al.  1992  ) . 
These associations appear to be independent from concomitant variations in total 
body fat mass (Lemieux and Despres  1994 ; Wajchenberg  2000  ) . The negative cor-
relation between CT-measured visceral fat accumulation and glucose disposal 
assessed using the hyperinsulinemic-euglycemic clamp technique is also a well-
established phenomenon (Bonora et al.  1992 ; Brochu et al.  2000 ; DeNino et al. 
 2001 ; Dvorak et al.  1999 ; Goodpaster et al.  1997 ; Rendell et al.  2001 ; Sites et al. 
 2000 ; Wilson et al.  1987  ) . In addition, prospective studies have shown that visceral 
obesity is associated with an increased risk of developing type 2 diabetes (Bergstrom 
et al.  1990 ; Boyko et al.  2000  ) . The dyslipidemic state of visceral obesity includes 
increased serum levels of triglycerides and apolipoprotein B (Despres and Lemieux 
 2006 ; Lemieux et al.  2000  ) . These alterations are associated with low high-density 
lipoprotein (HDL)-cholesterol concentrations and a higher proportion of small, 
dense low-density lipoprotein (LDL) particles (Despres and Lemieux  2006 ; Lemieux 
et al.  2000  ) . Additionally, visceral obesity is associated with endothelial dysfunc-
tion, elevated blood pressure, low-grade, chronic infl ammation, and prothrombotic 
defects (Couillard et al.  2005 ; Juhan-Vague and Alessi  1999  ) . 

 Interestingly, sex differences in visceral adipose tissue accumulation account for 
an important portion of the well-known difference in cardiometabolic risk factors 
between men and women. For example, sex differences in glucose tolerance or 
plasma lipid and lipoprotein levels, including concentrations of apolipoprotein B 
and triglycerides were largely eliminated by statistical control for visceral adipose 
tissue accumulation (Lemieux et al.  1994  ) . Similar studies have been performed on 
the contribution of body fat distribution patterns to sex differences in other markers 
such as the presence of small, dense LDL particles, HDL particle size, and circulat-
ing infl ammatory markers (Cartier et al.  2008,   2009,   2010 ; Lemieux et al.  2002 ; 
Pascot et al.  2001,   2002  ) . Consistent with the multifactorial etiology of the altera-
tions found in the metabolic syndrome, a portion of the sex differences in some of 
these markers remained after statistical control for visceral fat accumulation. 
However, it can be concluded that visceral adipose tissue accumulation, along with 
other hormonal and genetic factors, is a signifi cant contributor to sex-related differ-
ences in several metabolic parameters. The predominant association of excess 
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visceral fat accumulation with metabolic disease appears to emerge not only from 
the anatomic localization of this depot, but also from the intrinsic physiological and 
metabolic nature of each abdominal adipose tissue compartment. These characteris-
tics are reviewed next. 

    5.3.1   Adipose Tissue Morphology 

 The size of each fat compartment results from the integration of adipocyte number 
and cell size. Important interindividual variation is noted in these parameters. 
However, for study purposes, two distinct adipose tissue phenotypes have often 
been recognized in the human population: (1) individuals with fewer but larger fat 
cells are characterized by adipocyte hypertrophy and (2) individuals with an 
increased number of small fat cells are characterized by adipocyte hyperplasia 
(Arner et al.  2010 ; Hoffstedt et al.  2010  ) . In women and men, both adipose tissue 
phenotypes are observed at various adiposity levels across the range of BMI values 
(Arner et al.  2010 ; Hoffstedt et al.  2010  ) . Susceptibility to adipocyte hypertrophy 
may generate large adipocytes even in non obese individuals (Arner et al.  2010 ; 
Tchoukalova et al.  2008  ) . In contrast, some severely obese women and men are 
characterized by small adipocytes (Arner et al.  2010 ; Tchoukalova et al.  2008  ) . 

 In general, adipocytes from all anatomical locations and in both sexes increase in 
size along with adiposity level, but reach a plateau in massively obese subjects 
(Arner et al.  2010 ; Boivin et al.  2007 ; Hoffstedt et al.  2010 ; Mundi et al.  2010 ; 
Tchernof et al.  2006 ; Tchoukalova et al.  2008 ; Weyer et al.  2000  )  (Fig.  5.1 ). This 
plateau suggests that the presence of large adipocytes triggers the generation of new 

  Fig. 5.1    Adipocyte size in subcutaneous and omental adipose tissue of women and men. Mean 
adipocyte diameter of subcutaneous and omental adipose tissue according to BMI in women 
(n = 207) and men (n = 54) undergoing abdominal elective surgery or biliopancreatic diversion. 
Women were 47.7 ± 5.5 years old (range: 30–68.3 years) with a mean BMI of 28.5 ± 8.8 kg/m 2  
(range: 17.6–70.5 kg/m 2 ). Men were 44.3 ± 9.6 years old (range: 22.6–61.2 years) with a mean 
BMI of 47.3 ± 13.1 kg/m 2  (range: 24.6–69.9 kg/m 2 ). Adapted from Veilleux et al. (Veilleux et al. 
 2011 with permission  )  and Boivin et al. (Boivin et al.  2007  )        
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adipocytes to store excess dietary fat in severely obese individuals. Accordingly, 
adipocyte number is positively associated with adiposity measures, and adipose 
tissue cell populations appear to regenerate constantly during adulthood (Spalding 
et al.  2008  ) . Early-onset obesity, as opposed to short-term weight gain, has been 
suggested as an important predictor of hyperplasia in obese adults. This notion is 
supported by the fact that individuals characterized by hyperplasic or hypertrophic 
adipocytes may be uniquely distinguished by the age of obesity onset (Salans et al. 
 1973  ) . Indeed, a more pronounced and earlier elevation in cell number is observed 
in adipose tissue of children who had become obese before adulthood (Jaenicke and 
Waffenschmidt  1979  ) . In adulthood, low generation rates of new adipocytes are 
associated with adipose tissue hypertrophy, whereas high generation rates are asso-
ciated with adipose tissue hyperplasia in middle-age women and men (Arner et al. 
 2010  ) . Failure to increase adipocyte generation during long-term weight gain in 
adulthood could favor the development of hypertrophic adipose cells. We may also 
assume that short-term changes in energy homeostasis are more strongly refl ected 
in adipose tissue cell size than adipocyte number.  

 Sex and anatomical localization have been shown to be important determinants 
of mean adipose tissue cellularity (Boivin et al.  2007 ; Fried and Kral  1987 ; Salans 
et al.  1973 ; Tchernof et al.  2006  ) . The absolute number of adipocytes and cell sizes 
are distinctly related to obesity in adipose tissues of women and men. More adipo-
cytes are found in the lower body adipose tissue compartments (i.e., gluteal and 
femoral) of obese women than of lean women (Tchoukalova et al.  2008  ) . Lower 
body adipocytes of obese men have been shown to be larger, but there is no report 
of adipocyte hyperplasia in obese men compared to lean men (Tchoukalova et al. 
 2008  ) . These results indirectly suggest that during weight gain, lower body adipose 
tissue tends to expand mainly through hyperplasia in women, but through hypertro-
phy in men (Tchoukalova et al.  2008  ) . Accordingly, lower body subcutaneous 
adipocytes of women tend to be larger than those of men with the same fat mass 
while no sex difference is observed in abdominal subcutaneous adipocyte size (Fried 
and Kral  1987 ; Mundi et al.  2010 ; Tchoukalova et al.  2008,   2010  ) . Sex differences 
in visceral adipocyte size and number have not yet been systematically studied. We 
know that lean to moderately obese men tend to have larger omental adipocytes than 
women (Fried and Kral  1987  )  (Fig.  5.1 ). Conversely, studies tend to demonstrate 
that omental and subcutaneous adipocytes of massively obese women reach a higher 
maximal cell diameter value (approximately 130  m m) compared to massively obese 
men (approximately 120  m m) (Spalding et al.  2008  )  (Fig.  5.1 ). Moreover, maximal 
adipocyte size of both the abdominal subcutaneous and omental fat depots in women 
is reached at higher BMI values compared to men (Spalding et al.  2008  )  (Fig.  5.1 ). 
A strong correlation is observed between abdominal subcutaneous adipocyte size 
and total body fat mass in lean to moderately obese individuals of both sexes, sug-
gesting that the contribution of adipocyte hypertrophy to adipose tissue expansion 
may be similar in men and women (Tchoukalova et al.  2008  ) . As a consequence, 
part of the higher subcutaneous fat mass values observed in women compared to 
men may be attributable to increased adipocyte number (Tchoukalova et al.  2008  ) . 
Accordingly, a higher adipocyte number is already observed in subcutaneous 
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adipose tissue of adolescent girls suggesting sustained adipose tissue hyperplasia in 
young girls compared to boys (Chumlea et al.  1981  ) . In adult women, expression of 
genes involved in preadipocyte differentiation is relatively higher in subcutaneous 
than in visceral adipose tissue (Drolet et al.  2008  ) . Moreover, only subcutaneous 
expression of these genes tracked with adiposity measures, suggesting that in 
women, expansion of the subcutaneous adipose tissue depot relies more heavily on 
adipocyte hyperplasia than the visceral adipose tissue compartment, which may be 
predominantly hypertrophic (Drolet et al.  2008  ) . 

 Regional differences in adipose tissue cellularity are also sex-specifi c in humans. 
In women, omental adipocytes are 20–30% smaller than abdominal subcutaneous 
adipocytes for much of the spectrum of adiposity values (Boivin et al.  2007 ; Fried 
and Kral  1987 ; Ostman et al.  1979 ; Rebuffe-Scrive et al.  1990 ; Reynisdottir et al. 
 1997 ; Tchernof et al.  2006  )  (Fig.  5.1 ). In fact, omental and abdominal subcutane-
ous adipocytes tend to reach a similar size at very elevated BMI values (>60 kg/m 2 ) 
(Boivin et al.  2007 ; Ostman et al.  1979 ; Rebuffe-Scrive et al.  1990 ; Reynisdottir 
et al.  1997 ; Tchernof et al.  2006  ) . Even in severely obese subjects, only a few indi-
viduals have omental adipocytes as large as their abdominal subcutaneous counter-
parts (Tchernof et al.  2006  ) . Women also tend to have larger adipocytes in the 
lower body subcutaneous regions compared to the abdominal subcutaneous sites 
(Fried and Kral  1987 ; Tchoukalova et al.  2010  ) . Mesenteric adipocytes are similar 
in size to those of abdominal subcutaneous fat (Fried and Kral  1987  ) . Interestingly, 
as women reach menopause, depot differences in adipocyte size seem to be attenu-
ated since the size of omental, but not of subcutaneous adipocytes, is increased 
(Tchernof et al.  2004  ) . The presence of larger omental adipocytes along with 
increased visceral fat accumulation in postmenopausal women suggests that ovar-
ian hormone defi ciency may affect adipocyte hypertrophy in this depot (Tchernof 
et al.  2004  ) . 

 In men, adipocytes of the visceral and abdominal subcutaneous fat compartments 
have similar sizes across the range of adiposity values (Boivin et al.  2007 ; Edens 
et al.  1993 ; Fried et al.  1993 ; Fried and Kral  1987 ; Marin et al.  1992c ; Rebuffe-
Scrive et al.  1990  ) . Although differences are minimal, abdominal subcutaneous 
adipocytes appear to be slightly larger than omental adipocytes in men with a BMI 
lower than 40 kg/m 2 . The opposite is observed in men with higher BMIs (Boivin 
et al.  2007 ; Edens et al.  1993 ; Fried et al.  1993 ; Fried and Kral  1987 ; Hoffstedt et al. 
 1997  ) . This suggests that visceral adipocytes become larger than abdominal subcu-
taneous adipocytes in men, as opposed to women, who display larger subcutane-
ous adipocytes throughout the adiposity continuum. While omental and subcutaneous 
adipocyte cellularity is highly similar in men, adipocytes from the mesenteric com-
partment are those with the highest mean size. These cells are at least 30% larger 
than those of all other fat compartments (Fried and Kral  1987  ) . Taken together, 
these observations may suggest that depot-specifi c differences in adipose tissue 
cellularity refl ect the propensity of premenopausal women to store more lipids in 
lower body compartments through adipocyte hyperplasia, while intra-abdominal 
adipose tissue depots of men (and postmenopausal women) are more prone to 
manage incoming lipids through adipocyte hypertrophy.  
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    5.3.2   Adipose Tissue Metabolism and Cardiometabolic 
Risk Factors 

 The association between increased adipocyte size and metabolic alterations is now 
well established (Arner et al.  2010 ; Bjorntorp et al.  1971 ; Ledoux et al.  2009 ; 
Lundgren et al.  2007 ; Weyer et al.  2000  ) . Recent studies demonstrated that fat cell 
size is a critical determinant of adipose tissue function, independent of obesity itself 
(Arner et al.  2010 ; Bjorntorp et al.  1971 ; Hoffstedt et al.  2010 ; Ledoux et al.  2009 ; 
Lundgren et al.  2007 ; Weyer et al.  2000  ) . Subcutaneous adipocyte size is related to 
measures of insulin resistance in both women and men (Arner et al.  2010 ; Hoffstedt 
et al.  2010 ; Ledoux et al.  2009 ; Lundgren et al.  2007 ; Weyer et al.  2000  ) . In addition 
to cross-sectional analyses using whole body insulin resistance, two prospective 
studies showed that subcutaneous adipocyte hypertrophy is an independent risk 
factor for developing type 2 diabetes independent of adiposity and body fat distribu-
tion (Lonn et al.  2010 ; Weyer et al.  2000  ) . A detailed characterization of subcutane-
ous adipocyte morphology revealed that adipose tissue hypertrophy, rather than 
absolute adipocyte size, is associated with higher fasting insulin levels and homeo-
static model assessment of insulin resistance index independent of body fat mass 
(Arner et al.  2010  ) . However, further adjustment for body fat distribution demon-
strates that visceral fat accumulation is an important confounding factor in the rela-
tion between adipocyte morphology and insulin resistance (Veilleux et al.  2011  ) . 
Previous observations of an association between fat cell size and hyperinsulinaemia 
or peripheral insulin resistance may therefore arise from differences in abdominal 
fat distribution rather than subcutaneous adipose tissue cellularity per se. In contrast 
to other studies, Ledoux et al. found that omental, but not subcutaneous adipocyte 
size is associated with alterations in glucose and insulin homeostasis (Ledoux et al. 
 2009  ) . On the other hand, mean adipocyte size of the visceral fat compartment 
has been associated with lipid profi le alterations. Visceral, but not subcutaneous 
adipocyte hypertrophy is associated with increased plasma and very-low-density 
lipoprotein (VLDL)-triglyceride levels as well as with a higher total cholesterol to 
HDL-cholesterol ratio (Hoffstedt et al.  2010  ) . Moreover, visceral adipose tissue 
cellularity is a predictor of hypertriglyceridemia independent of body composition 
and fat distribution in women (Veilleux et al.  2011  ) . Aside from alterations in whole 
body glucose homeostasis and the lipid profi le, adipocyte sizes in both visceral and 
abdominal subcutaneous adipose tissues have also been associated with hyperten-
sion (Ledoux et al.  2009  ) . 

 Associations of fat cell size with alterations in glucose and lipid homeostasis as 
well as with other cardiometabolic risk factors may emerge from adverse changes in 
the metabolic function of enlarged adipocytes. Cell size-related differences have 
been reported for lipolysis, insulin sensitivity, and adipokine secretion (Bjorntorp 
and Sjostrom  1972 ; Farnier et al.  2003 ; Franck et al.  2007 ; Jernas et al.  2006 ; Skurk 
et al.  2007 ; Zinder and Shapiro  1971  ) . Most of these studies have separated mature 
adipocyte fractions according to cell size and directly compared large adipocytes to 
small adipocytes from the same individual (Bjorntorp and Sjostrom  1972 ; Farnier 
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et al.  2003 ; Franck et al.  2007 ; Jernas et al.  2006 ; Skurk et al.  2007 ; Zinder and 
Shapiro  1971  ) . In this context, the independent impact of adipocyte size on cell 
metabolism can be studied without the confounding effect of overall adiposity and 
body fat distribution of the adipose tissue donor. While large adipocytes have higher 
protein level of the glucose transporter GLUT4 (Farnier et al.  2003  ) , Frank et al. 
observed that insulin-induced GLUT4 translocation to plasma membrane was 
blunted in large adipocytes compared to small ones (Franck et al.  2007  ) . Lipid 
uptake and lipid synthesis by mature adipocytes are also associated with cell size 
as suggested by higher in vitro lipoprotein lipase (LPL) and fatty acid synthase 
activities in large compared to small adipocyte populations (Farnier et al.  2003  ) . 
Alterations in the maximal lipolytic capacity have also been observed in large 
adipocytes (Farnier et al.  2003  ) . Finally, Skurk et al. have shown that adipocyte size 
is an important determinant of adipokine mRNA expression and in vitro secretion 
(Skurk et al.  2007  ) . They observed higher leptin, interleukin-6 (IL-6), IL-8, mono-
cyte chemoattractant protein-1, and granulocyte colony-stimulating factor, but lower 
IL-10 secretion, in large compared to small adipocytes (Farnier et al.  2003 ; Skurk 
et al.  2007  ) . Thus, the adipokine secretory pattern of large adipocytes is shifted 
toward a proinfl ammatory profi le. 

 Overall, available studies clearly suggest that cell size is an important determi-
nant of adipocyte function independent of body composition and fat distribution. 
Adipose tissue is composed of mature adipocytes with wide size distributions, and 
a shift toward a higher mean adipocyte size may strongly infl uence the overall meta-
bolic function of a given adipose tissue depot. As demonstrated below, this factor 
alone likely contributes in large part to sex-related differences in cardiometabolic 
disease risk. 

 Triglyceride-rich lipoprotein hydrolysis catalyzed by LPL and adipocyte-mediated 
triglyceride synthesis are major determinants of the fatty acid fl ux and subsequent 
triglyceride storage in adipose tissue. These processes seem to be tightly associated 
with adipocyte size (Edens et al.  1993 ; Farnier et al.  2003  ) . In women, gluteal, thigh, 
abdominal subcutaneous, and visceral adipose tissue LPL activities have been posi-
tively associated with fat cells size in the corresponding depot (Votruba and Jensen 
 2007  ) . Similarly, LPL activity increases along with adipocyte size in thigh, abdomi-
nal subcutaneous and visceral adipose tissue of men (Edens et al.  1993 ; Votruba and 
Jensen  2007  ) . Studies including both sexes failed to observe differences between 
visceral and abdominal subcutaneous LPL activity (Fried et al.  1993 ; Panarotto 
et al.  2000  ) . However, regional differences in LPL activity were observed in those 
examining sexes separately (Boivin et al.  2007 ; Marin et al.  1992a ; Mauriege et al. 
 1995 ; Rebuffe-Scrive et al.  1989 ; Tchernof et al.  2006  ) . Although these differences 
are partly explained by regional variations in cell size, adipose tissue depots of 
women and men also appear to have intrinsic differences in LPL activity. Indeed, 
higher LPL activity in subcutaneous than visceral adipose tissue is observed in 
women compared to men (Mauriege et al.  1995 ; Rebuffe-Scrive et al.  1989 ; Tchernof 
et al.  2006  ) . Such fi ndings are not surprising given that subcutaneous adipocytes are 
generally larger than visceral adipocytes in this sex. In men, adipose tissue LPL 
activity has been shown to be higher in visceral adipose tissue than subcutaneous 
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adipose tissue (Boivin et al.  2007 ; Marin et al.  1992a ; Rebuffe-Scrive et al.  1989  ) , 
which contrasts with the similar adipocyte size in these fat compartments (Boivin 
et al.  2007 ; Edens et al.  1993 ; Fried et al.  1993 ; Fried and Kral  1987 ; Marin et al. 
 1992a ; Rebuffe-Scrive et al.  1990  ) . Thus, sex-specifi c differences in LPL activity 
likely refl ect the propensity of each adipose tissue depot to accumulate lipids in 
women and men. 

 Direct evidence on regional variations in lipid accumulation in vivo is limited. 
However, the use of test meals with fatty acid tracers combined with adipose tissue 
sampling provided valuable information. In women, meal-derived fatty acid storage 
increased in proportion to the mass of lower body subcutaneous adipose tissue, 
whereas no association was observed between relative lipid uptake in abdominal 
subcutaneous fat and adiposity (Koutsari et al.  2008  ) . With increasing adiposity, a 
preservation of the relative capacity to store fatty acids in adipose tissue from the 
thigh and femoral regions, but not from abdominal fat compartments, may promote 
the development of the gynoid fat partitioning phenotype in women. Conversely, the 
capacity of abdominal subcutaneous adipose tissue to assimilate fatty acids is higher 
compared to that of the femoral depot in men (Shadid et al.  2007  ) . Moreover, a 
signifi cant proportion of fatty acid uptake occurs in visceral adipose tissues of men 
during the postprandial period (Marin et al.  1996 ; Nguyen et al.  1996 ; Romanski 
et al.  2000  ) . Indirect measurements of visceral adipose tissue lipid uptake revealed 
that this depot contributes more signifi cantly to remove fatty acids from the circula-
tion in men than in women (Nguyen et al.  1996 ; Romanski et al.  2000  ) . These results 
are consistent with the fact that men have approximately twice the amount of 
visceral fat compared to women with similar overall adiposity values (Lemieux 
et al.  1994  ) . 

 In addition to LPL activity and triglyceride storage, adipose tissue blood fl ow 
during the postprandial period is suggested as an important determinant of sex- and 
depot-related differences in lipid accumulation (Romanski et al.  2000  ) . Indeed, 
increased blood fl ow is observed in lower body adipose tissue following meal 
ingestion in women, but not in men (Romanski et al.  2000  ) . Consistent with these 
observations, triglyceride synthesis from glucose is lower in omental compared to 
abdominal subcutaneous adipose tissue in women (Edens et al.  1993 ; Maslowska 
et al.  1993  ) , but is similar in both fat depots in men (Edens et al.  1993  ) . These fi nd-
ings indicate that different mechanisms may be involved in the regulation of lipid 
accumulation in different fat compartments, which may consequently alter body fat 
distribution (Votruba and Jensen  2007  ) . 

 Net lipid accumulation in a given fat depot refl ects the balance between triglyc-
eride synthesis and the rates of lipolysis at that site. As previously stated, fat cell 
size is a major determinant of lipolytic responsiveness. Analyses of mature adipo-
cyte populations separated according to cell size have shown that larger adipo-
cytes have higher basal and stimulated lipolytic rates (Farnier et al.  2003  ) . Lower 
basal lipolysis in omental compared to abdominal subcutaneous adipose tissue of 
women is consistent with the observation that adipocytes are smaller in the former 
than in the latter depot (Edens et al.  1993 ; Lundgren et al.  2008 ; Reynisdottir et al. 
 1997 ; Richelsen et al.  1991 ; Tchernof et al.  2006  ) . In normal-weight to morbidly 
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obese men, no difference in lipolysis is observed between omental and abdominal 
subcutaneous adipocytes, consistent with a similar cell size in both depots (Boivin 
et al.  2007 ; Lundgren et al.  2008  ) . In both subcutaneous and visceral adipose tis-
sue, basal lipolysis is positively correlated with mean adipocyte size, confi rming 
again the strong impact of fat cell size on lipolytic rates. 

 Yet, subcutaneous and visceral adipose tissues display different intrinsic respon-
siveness to lipolytic regulators. Indeed, lipolysis in omental adipocytes is more 
responsive to  b -adrenergic agonist stimulation compared to that of abdominal sub-
cutaneous adipocytes (Edens et al.  1993 ; Reynisdottir et al.  1997 ; Richelsen et al. 
 1991 ; Tchernof et al.  2006  ) , while it is less sensitive to insulin suppression (Bolinder 
et al.  1983 ; Mauriege et al.  1995 ; Meek et al.  1999 ; Zierath et al.  1998  )  in both 
sexes. Regarding lower body fat stores, lipolysis of these depots is almost com-
pletely blunted at high doses of insulin while visceral adipose tissue lipolysis is only 
suppressed by half in these conditions (Meek et al.  1999  ) . Regional differences have 
also been found in basal and insulin-stimulated glucose uptake. Basal and insulin-
stimulated glucose uptake rates are higher in omental than in subcutaneous adipo-
cytes (Lundgren et al.  2004 ; Marette et al.  1997 ; Stolic et al.  2002 ; Westergren et al. 
 2005  ) . However, while visceral adipocytes are resistant to the anti-lipolytic effect of 
insulin compared to subcutaneous adipocytes (Mauriege et al.  1995 ; Zierath et al. 
 1998  ) , no obvious difference in glucose uptake sensitivity to insulin has been 
observed (Lundgren et al.  2004 ; Marette et al.  1997 ; Stolic et al.  2002 ; Westergren 
et al.  2005  ) . These results suggest that insulin action could be differentially altered 
in each fat compartment of individuals with visceral obesity and would only weakly 
relate to regional differences in adipocyte size. Expression of insulin signaling genes 
in both adipose tissue compartments also shows an apparent dissociation between 
insulin effects on lipolysis and glucose uptake. While data remain inconsistent, 
insulin receptor substrate-1 (IRS-1) protein levels seem to be higher in subcutane-
ous adipose tissue than omental adipose tissue of normal-weight subjects (Bashan 
et al.  2007 ; Lundgren et al.  2004 ; MacLaren et al.  2008 ; Veilleux et al.  2009a ; 
Zierath et al.  1998  ) . Visceral adipose tissue accumulation is associated with a 
reduced IRS-1 protein level in subcutaneous, but not omental adipose tissue 
(Veilleux et al.  2009a  ) . Moreover, omental adipose tissue GLUT4 protein content is 
higher compared to subcutaneous adipose tissue (Marette et al.  1997 ; Veilleux et al. 
 2009a  ) . GLUT4 expression in both adipose tissue depots is reduced in abdominally 
obese individuals, but the decrease in omental GLUT4 expression seems steeper 
(Garvey et al.  1992 ; Veilleux et al.  2009a  ) . Reduced subcutaneous and omental 
GLUT4 expression in abdominally obese individuals indirectly suggests lower glu-
cose uptake in both adipose tissue depots. On the other hand, relatively low omental 
IRS-1 expression is consistent with reduced sensitivity of lipolysis and glucose 
uptake to insulin in omental fat of abdominally obese individuals (Stolic et al.  2002 ; 
Veilleux et al.  2009a  ) . 

 Abundant studies by the Jensen group have now shown that whole body subcutane-
ous adipose tissue is the major source of circulating free fatty acids (FFA), as it con-
tributes to more than 85% of systemic FFA release in various clinical conditions (Basu 
et al.  2001 ; Guo et al.  1999 ; Jensen  1995 ; Martin and Jensen  1991 ; Nielsen et al.  2004  ) . 
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In lean women and men, as little as 5–10% of FFA released in the portal vein are 
predicted to originate from visceral adipose tissue lipolysis (Nielsen et al.  2004  ) . 
Since excess visceral fat accumulation is associated with increased positive lipoly-
tic stimulation and insulin resistance, FFA released by this highly responsive tissue is 
likely to be increased in such condition. As expected, visceral adipose tissue lipol-
ysis increased with visceral fat mass, so that in visceral obese women and men, this 
tissue contributed to nearly 50% of portal vein FFA release (Nielsen et al.  2004  ) . 
Consistent with these fi ndings, visceral adipose tissue was the main correlate of 
elevated postprandial VLDL-triglyceride release in insulin-resistant individuals 
(Couillard et al.  1998 ; Hodson et al.  2007  ) . Increased local FFA fl ux in the portal 
vein may, in consequence, contribute to alter liver function (Nielsen et al.  2004  ) . In 
absolute values, men have more visceral fat and higher lipolytic activity than 
women, so that more FFA is released into the portal vein by visceral adipose tis-
sues of men (Nielsen et al.  2004  ) . This difference may contribute to increase 
cardiovascular disease risk in men compared to women (Boivin et al.  2007 ; 
Tchernof et al.  2006  ) . In women, during menopause, increased lipid accumulation 
and enlargement of adipocytes in the visceral fat compartment is associated with 
higher lipolytic rates (Tchernof et al.  2004  ) . Proportional increases of FFA released 
in the portal vein could also contribute to cardiometabolic risk in postmenopausal 
women (Carr  2003  ) . 

 Overall, available studies on adipocyte morphology suggest that adipocyte size 
appears to be an important determinant of sex-related and depot-related differences 
in lipid metabolism. Adipocyte metabolism in men favors a relatively more effi cient 
accumulation of lipids in the visceral fat compartments. On the other hand, the pro-
portion of FFA released from visceral adipose tissues increases with visceral obesity, 
through the combination of a larger visceral adipocyte size as well as increased rela-
tive lipolytic responsiveness to positive lipolytic stimuli and reduced inhibition by 
insulin specifi cally in visceral adipose tissue. Accordingly, in vivo experiments 
demonstrated that while visceral adipose tissue lipolysis accounts for a small pro-
portion of whole body FFA release, the contribution of this depot increases up to 
approximately 50% along with visceral fat accumulation (Nielsen et al.  2004  ) .  

    5.3.3   Adipose Tissue Cytokine Release 

 In addition to its lipid storage function, adipose tissue is known to produce a num-
ber of cytokines, also termed adipokines, as well as many other factors involved in 
the regulation of several biological processes (Ahima and Flier  2000 ; Mohamed-
Ali and Coppack  1998 ; Trayhurn and Wood  2005  ) . Adipokines are mainly secreted 
by adipocytes or preadipocytes, but also, especially in obesity, by macrophages 
invading the tissue (Ferrante  2007 ; Neels and Olefsky  2006 ; Trayhurn and Wood 
 2005  ) . Chronic, low-grade infl ammation caused by altered adipokine secretion may 
alter glucose and lipid metabolism and contribute to the altered cardiometabolic 
risk of individuals with visceral obesity (Ferrante  2007 ; Trayhurn and Wood  2005  ) . 
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Mean adipocyte size and localization of fat as well as sex have been suggested as 
key determinants of infl ammation and cytokine secretion (Drolet et al.  2009 ; Good 
et al.  2006 ; He et al.  2003 ; Hube and Hauner  1999 ; Skurk et al.  2007  ) . 

 Circulating levels of adiponectin, an adipocyte-derived adipokine with insulin 
sensitizing and anti-infl ammatory properties, are inversely associated with visceral 
obesity (Whitehead et al.  2006  ) . Adiponectin secretion by omental adipocytes is 
markedly reduced in visceral obese women, suggesting that this tissue is an important 
determinant of serum adiponectin levels in abdominally obese women (Drolet et al. 
 2009 ; Motoshima et al.  2002  ) . There is a clear sex difference in adiponectin, with 
serum concentrations that are approximately 50% higher in women compared to men 
(Laughlin et al.  2006,   2007  ) . Sex hormones are possibly involved in this difference, 
since the testosterone-to-estrogen ratio is positively related to serum adiponectin 
levels (Laughlin et al.  2006  ) . However, expression and secretion of adiponectin in 
adipocytes are unaffected by sex steroid treatments suggesting that other mechanisms 
may explain this difference, including metabolic clearance, serum factors modulating 
adiponectin availability, or sex-related differences in adipose tissue accumulation and 
distribution per se (Blouin et al.  2010 ; Horenburg et al.  2008  ) . In recent experiments 
(Drolet et al.  2009  ) , we have examined adiponectin release by purifi ed mature adipo-
cyte suspensions from the omental and subcutaneous fat depots in women. We found 
that compared to subcutaneous adipocyte adiponectin release, omental adipocyte adi-
ponectin release is reduced to a greater extent in visceral obese women and better 
predicts obesity-associated metabolic abnormalities (Drolet et al.  2009  ) . Thus, 
reduced visceral fat adiponectin release may be an important contributor to hypoadi-
ponectinemia in visceral obese individuals. 

 Leptin, a foremost adipocyte-secreted adipokine, plays a key role in the regula-
tion energy intake and energy expenditure (Sinha and Caro  1998  ) . Serum leptin 
concentrations are strongly associated with body fat mass (Sinha and Caro  1998  ) . 
Leptin expression and secretion are also higher in subcutaneous than visceral adipo-
cytes (van Harmelen et al.  2002  ) . Subcutaneous adipocyte size is positively corre-
lated with plasma levels of leptin independent of adiposity (Lundgren et al.  2007  ) . 
Thus, increased leptin levels in obese individuals are likely due to a combination of 
increased subcutaneous fat accumulation through hypertrophy and higher secretion 
rates (Lundgren et al.  2007 ; van Harmelen et al.  2002  ) . A marked sex dimorphism 
has been reported for serum leptin levels. Independent of adiposity and body fat 
distribution, women have approximately three fold higher leptin levels than men 
(Laughlin et al.  2007  ) . In both women and men, the testosterone-to-estrogen ratio is 
inversely related to leptin (Laughlin et al.  2007  ) . In addition, testosterone decreases 
the expression of leptin in mature adipocytes from both sexes (Horenburg et al. 
 2008  ) . A direct action of estrogen on leptin expression is also possible (Machinal-
Quelin et al.  2002  ) . 

 In addition to these adipokines, adipose tissues secrete other factors involved in 
the regulation of metabolic pathways. Abdominally, obese individuals display an 
altered expression and/or secretion pattern of some key proinfl ammatory adipokines 
such as tumor necrosis factor-alpha, plasminogen activator inhibitor -1, and IL-6 
which can alter lipolysis, insulin sensitivity, and fi brinolysis (Gnacinska et al.  2009  ) . 
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Moreover, macrophage infi ltration in adipose tissue of obese individuals could be a 
major source of proinfl ammatory adipokines (Weisberg et al.  2003  ) . The chronic 
low-grade infl ammation triggered by visceral adiposity may contribute to metabolic 
alterations observed in abdominally obese individuals, and subsequently to the 
increased risk of developing type 2 diabetes and cardiovascular disease.   

    5.4   Hormonal Determinants of Body Fat Distribution 

 We still know little about the etiological factors leading to preferential deposition of 
visceral fat in the presence of excess energy intake. The marked sex dimorphism 
clearly suggests that sex hormones play a key role in the regulation of body fat 
distribution. The involvement of sex hormones is further confi rmed in transsexuals 
who have been treated with sex hormones. Female-to-male transsexuals receiving 
intramuscular testosterone present a shift in body fat distribution from the gynoid to 
android pattern over the course of a few months to 3 years (Elbers et al.  1997,   1999, 
  2003  ) . Conversely, treatment with estrogens in male-to-female transsexuals signifi -
cantly increases fat deposition in all subcutaneous fat depots while having a small 
effect on the size of the visceral fat compartment (Elbers et al.  1997,   1999,   2003  ) . 
As a result, male-to-female hormone treatments have benefi cial effects on the 
cardiometabolic risk profi le, whereas high testosterone doses in women have a 
detrimental effect (Elbers et al.  2003  ) . These results suggest that the prevailing 
hormonal milieu may be an important determinant of body fat distribution in both 
women and men. The following section will address the role of steroid hormones in 
sex-specifi c adiposity patterns. A summary of steroid action on adipose tissue 
metabolism is included in Tables  5.1 – 5.3 .    

    5.4.1   Androgens 

 In men, low circulating levels of endogenous androgens are associated with abdomi-
nal/visceral obesity assessed by waist circumference or CT (Gapstur et al.  2002 ; 
Khaw and Barrett-Connor  1992 ; Nielsen et al.  2007 ; Pasquali et al.  1991 ; Phillips 
et al.  2003 ; Seidell et al.  1990a  ) . Methodological limitations in the measurement of 
free testosterone make it diffi cult to detect an association between body fat distribu-
tion and free androgen levels (Rosner et al.  2007 ; Vermeulen et al.  1999  ) . On the 
other hand, plasma concentrations of sex hormone-binding globulin (SHBG), a 
determinant of testosterone bioavailability, are negatively associated with abdominal 
obesity in both men and women (Couillard et al.  2000 ; Gapstur et al.  2002 ; Garaulet 
et al.  2000 ; Khaw and Barrett-Connor  1992 ; Pasquali et al.  1991 ; Phillips et al.  2003 ; 
Tchernof et al.  1995 ; Tsai et al.  2004  ) . Individuals with elevated plasma SHBG and tes-
tosterone levels are also generally characterized by a lower number of metabolic 
syndrome features (Blouin et al.  2005b ; Hajamor et al.  2003 ; Laaksonen et al.  2003 ; 
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Phillips et al.  2003  ) . Circulating levels of dehydroepiandrosterone (DHEA), a 
precursor of active steroids in peripheral tissues, are also negatively associated 
with visceral obesity in some studies (Couillard et al.  2000 ; Pritchard et al.  1998 ; 
Tchernof et al.  1995 ; reviewed in Tchernof and Labrie  2004  ) . 

 The presence of steroid hormones in adipose tissue has been known for a long 
time (reviewed in Belanger et al.  2002  ) . Omental adipose tissue levels of testoster-
one and dihydrotestosterone (DHT) were negatively associated with waist circum-
ference in a sample of obese men (Belanger et al.  2006  ) . Moreover, in the same 
study, androstenedione, testosterone, and DHT levels were positively associated 
with adipocyte lipolytic responsiveness to catecholamine stimulation, and this asso-
ciation was more pronounced in omental than in subcutaneous adipose tissue 
(Belanger et al.  2006  ) . Accordingly, basal lipolysis in female-to-male transsexuals 
under testosterone treatment increased in abdominal but not in gluteal adipose 
tissue (Elbers et al.  1999  ) . 

 As opposed to androgen treatments in female-to-male transsexuals, supplemen-
tation with physiological doses of testosterone in men with initially low endoge-
nous levels generally leads to a decrease in visceral fat accumulation (Blouin et al. 
 2010 ; Woodhouse et al.  2004  ) . Androgen supplementation also leads to increased 
insulin sensitivity (Boyanov et al.  2003 ; Marin et al.  1992c  ) , while having neutral 
effects on the lipid profi le (Gruenewald and Matsumoto  2003  ) . Hence, within the 
physiological range, higher testosterone concentrations are associated with a 
favorable metabolic profi le, either when considering endogenous levels or follow-
ing physiological replacement in men with low baseline testosterone concentra-
tions (Blouin et al.  2005b,   2008 ; Hajamor et al.  2003 ; Laaksonen et al.  2003 ; 
Phillips et al.  2003  ) . 

 In women, based on the common observation of abdominal obesity in patients 
with the polycystic ovary syndrome (PCOS), investigators have often concluded 
that hyperandrogenism in women leads to abdominal obesity and hyperinsulinemia 
(Dunaif  1997  ) . Recent advances in our understanding of PCOS reveal that the link 
between hyperandrogenism and abdominal obesity may be more complex than ini-
tially thought. For example, a recent study showed that once differences in BMI are 
taken into account, there is no regional difference in patterns of fat distribution 
between PCOS cases and control women, putting into question what had been con-
sidered as common knowledge in PCOS (Barber et al.  2008  ) . Moreover, fi ndings 
that insulin sensitizing treatments improve the ovarian and androgenic component 
of PCOS also led to a reconsideration of the basic causal relationship implying high 
androgens as the direct cause of visceral obesity in these patients (Dunaif  1997  ) . 
Finally, in vitro experiments show that androgen treatment of abdominal adipo-
cytes or adipose tissue explants does not lead to increased adipogenesis or higher 
uptake of lipids as assessed by LPL activity (Blouin et al.  2010  ) . In fact, androgens 
had the opposite effect as they inhibited these indirect measures of fat storage, even 
at high doses (Blouin et al.  2010  ) . On the other hand, an increasing body of evi-
dence seems to suggest that prenatal androgenization of the fetus may be an impor-
tant etiologic factor for PCOS and related metabolic alterations (reviewed in (Xita 
and Tsatsoulis  2006  ) ). 
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 Association studies on circulating androgens and body fat distribution are also 
equivocal. In some studies including non-PCOS women (Evans et al.  1988 ; Pedersen 
et al.  1995 ; Seidell et al.  1990b  ) , visceral fat accumulation is associated with high 
total or free plasma testosterone levels. Others have found negative associations 
between plasma testosterone levels and visceral fat accumulation (Armellini et al. 
 1994 ; De Pergola et al.  1994 ; Turcato et al.  1997  ) , while some failed to observe any 
correlation (Ivandic et al.  2002 ; Kaye et al.  1991  ) . As mentioned, low plasma SHBG 
levels have been consistently associated with abdominal obesity and the metabolic 
syndrome in both sexes (De Pergola et al.  1994 ; Hajamor et al.  2003 ; Ivandic et al. 
 2002 ; Tchernof et al.  1999 ; Tchernof and Labrie  2004  ) . However, as opposed to 
men, DHEA concentrations are not associated with body fat distribution in 
women (Tchernof and Labrie  2004  ) . Although the clinical impact of androgen sup-
plementation in women is not well characterized from the metabolic standpoint, one 
study reported an anti-adiposity effect of DHT administration (Gruber et al.  1998  ) . 

 Several studies have focused on androgenic action on adipose tissue function. 
Since treatment duration and concentration are important determinants of hormone 
action, data on androgen activity remain slightly discordant. Consistent with the 
known inhibitory effect of androgens on lipid accumulation, testosterone reduces 
adipose tissue LPL activity in abdominal (Marin et al.  1996  ) , but not in femoral 
subcutaneous adipose tissue depot (Marin et al.  1996 ; Rebuffe-Scrive et al.  1991  ) . 
Testosterone supplementation also enhances norepinephrine-stimulated lipolysis in 
abdominal, but not in femoral subcutaneous adipose tissue (Rebuffe-Scrive et al. 
 1991  ) . In vitro studies support the notion that catecholamine-stimulated lipolysis is 
enhanced by androgens in a dose-dependent and depot-specifi c manner (Anderson 
et al.  2002 ; Xu et al.  1991  ) . Androgenic effects on preadipocyte proliferation appear 
to be relatively negligible (Anderson et al.  2002 ; Dieudonne et al.  2000 ; Monjo 
et al.  2005  ) , but testosterone and DHT are important inhibitors of in vitro and in vivo 
preadipocyte differentiation (Blouin et al.  2010 ; Dieudonne et al.  2000 ; Gupta et al. 
 2008 ; Lacasa et al.  1997 ; Singh et al.  2006 ; Tchernof and Labrie  2004  ) . In most 
instances, androgen responsiveness is found to be more pronounced in visceral than 
subcutaneous adipose tissue (Dieudonne et al.  2000 ; Joyner et al.  2002 ; Lacasa et al. 
 1997 ; Rodriguez-Cuenca et al.  2005  ) , although these fi ndings are not unanimous 
(Blouin et al.  2010  ) . 

 The notion of a specifi c and direct genomic action of androgens on body fat dis-
tribution is reinforced by observations of signifi cant androgen receptor expression 
and binding in both preadipocytes and mature adipocytes (Dieudonne et al.  1998 ; 
Miller et al.  1990 ; Pedersen et al.  1996  ) . Androgen receptor expression in adipose 
tissue is similar between women and men (Dieudonne et al.  1998 ; Joyner et al. 
 2002  ) . However, adipose tissue androgen receptor expression is higher in omental 
compared to subcutaneous adipose tissue in both sexes (Dieudonne et al.  1998 ; 
Joyner et al.  2002 ; Miller et al.  1990 ; Rodriguez-Cuenca et al.  2005  ) . Recently, 
increased androgen receptor expression was reported following induction of preadi-
pocyte differentiation (Blouin et al.  2009 ; Dieudonne et al.  1998 ; Veilleux et al. 
 2009a  ) . However, lower androgen receptor expression in mature adipocytes than 
preadipocytes has also been reported, particularly in visceral adipose tissue 
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(Dieudonne et al.  1998  ) . These observations suggest that mature adipocytes may be 
less responsive to androgen stimulation compared to preadipocytes. The study of 
androgen receptor knock-out mice supports an important role for androgens and its 
receptor in the modulation of body fat accumulation (Sato et al.  2003  ) . These mice 
display a late-onset visceral obesity phenotype triggered by decreased energy 
expenditure and defective lipolysis (Fan et al.  2005  ) . 

 Local androgen synthesis and inactivation are now believed to be important 
determinants of androgen action in adipose tissue (Blouin et al.  2010 ; McIntosh 
et al.  1999  ) . The aldo-keto reductase 1C (AKR1C) enzymes may contribute to adi-
pose tissue androgen metabolism as they are the most highly expressed steroido-
genic enzymes in adipose tissue of both women and men (Blouin et al.  2005a, 
  2006  ) . These enzymes have varying proportions of 20 a -, 3 a -, and 17 b -hydroxys-
teroid dehydrogenase (HSD) activities (Zhang et al.  2000  ) . In the context of andro-
genic action, the most interesting member of this family is AKR1C2 since it 
possesses a strong 3 a -reductase activity. Thus, AKR1C2 has the ability to inacti-
vate DHT into its inactive metabolite 5 a -androstane-3 a ,17 b -diol (3 a -diol) (Zhang 
et al.  2000  ) . Expression of AKR1C2 and 3 a -HSD activity is higher in subcutaneous 
compared to visceral adipose tissue in both women and men (Blanchette et al.  2005 ; 
Blouin et al.  2003,   2005b,   2006  ) . In both sexes, AKR1C enzyme expression and 
androgen inactivation rates of visceral adipose tissue are positively correlated with 
measures of obesity including BMI, fat cell size, and visceral adipose tissue area 
assessed by CT (Blanchette et al.  2005 ; Blouin et al.  2003,   2005a,   2006 ; Wake et al. 
 2007  ) . Preadipocyte differentiation is a strong stimulator of AKR1C2 expression, 
so that mature adipocytes show dramatically higher DHT inactivation rates than 
preadipocytes (Blouin et al.  2009  ) . This increase is believed to occur early in the 
preadipocyte differentiation process as the result of glucocorticoid stimulation 
(Blouin et al.  2009  ) . Increased androgen inactivation by AKRIC2 may lead to 
reduced local exposure of fat cells to active androgens. This may remove part of the 
inhibitory effect of this hormone on adipocyte differentiation and modulate fat 
accumulation in each fat depot. Future studies may eventually establish the contri-
bution of this mechanism to body fat distribution patterns in humans.  

    5.4.2   Estrogens 

 Estrogens are involved in female sexual development and the reproductive cycle 
(Mattsson and Olsson  2007  ) . In premenopausal women, estrogens are produced 
mainly in ovaries. However, in both women and men, estrogens are also generated 
through aromatization of androgens, locally, in several tissues, especially fat and mus-
cle (Mattsson and Olsson  2007  ) . This estrogen source is especially important in men 
and postmenopausal women (Labrie et al.  2003  ) . The parallel sex dimorphisms in 
estrogen levels and body fat distribution as well as transsexual studies have highlighted 
the possibility that this hormone is involved in regional fat deposition. Moreover, as 
mentioned, reduced estrogen levels after menopause have been associated with 
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increased adiposity and visceral fat accumulation (Gambacciani et al.  1997 ; Guthrie 
et al.  2003,   2004 ; Keller et al.  2010 ; Lovejoy et al.  2008 ; Ryan et al.  2002  ) . 

 While important central effects of estrogens have been described on energy bal-
ance (Brown and Clegg  2010 ; Richard  1986  ) , other studies have reported direct 
estrogen action on adipose tissue metabolism (D’Eon et al.  2005  ) . In vivo, exoge-
nous estradiol administration decreases LPL activity in the lower body adipose tis-
sue of premenopausal women (Price et al.  1998  ) , but the opposite effect is observed 
in postmenopausal women (Rebuffe-Scrive et al.  1987  ) . Hormone supplementation 
in estrogen-defi cient postmenopausal women signifi cantly decreased adipose tissue 
FFA release by 10–20% (Jensen et al.  1994  ) . Other studies have reported no altera-
tion of basal and catecholamine-stimulated lipolysis by estrogens in subcutaneous 
adipose tissue (Rebuffe-Scrive et al.  1987 ; Tchernof et al.  2004  ) . However, higher 
LPL and basal lipolysis are observed in visceral adipose tissue samples of ovarian 
hormone-defi cient women (Tchernof et al.  2004  ) . In vitro, high concentrations of 
estradiol decreased LPL and increased hormone-sensitive lipase expression in sub-
cutaneous mature adipocytes (Palin et al.  2003  ) . The opposite is observed at low 
estrogen doses, suggesting that estrogens may have a biphasic action on adipose 
tissue lipogenic and lipolytic capacity (Palin et al.  2003  ) . Studies have also reported 
that estrogens stimulate preadipocyte proliferation. This effect is greater in preadi-
pocytes from women compared to preadipocytes from men, and responsiveness to 
estrogens is different in subcutaneous vs. visceral preadipocytes (Anderson et al. 
 2001 ; Dieudonne et al.  2000  ) . 

 Direct action of estrogens in adipose tissue is supported by the presence of both 
receptor isoforms: namely estrogen receptors  a  and  b  (Crandall et al.  1998 ; 
Dieudonne et al.  2004  ) . Sex- and depot-related differences in estrogen receptor 
levels have been reported but remain unclear (Blouin et al.  2009 ; Dieudonne et al. 
 2004 ; Pedersen et al.  1991 ; Watson et al.  1993  ) . Interestingly, deletion of the estro-
gen receptor  a  in male and female mice is associated with increased adiposity inde-
pendent of food intake (Heine et al.  2000  ) . Polymorphisms in the estrogen receptor 
 a  and  b  genes are associated with slightly higher body fat mass and visceral fat 
accumulation compared to women with the normal genotype (Goulart et al.  2009 ; 
Nilsson et al.  2007 ; Okura et al.  2003  ) . 

 Several studies reported that P450 aromatase, which generates estradiol from 
testosterone, is expressed in adipose tissue (Blouin et al.  2009 ; Cleland et al.  1983 ; 
Mackenzie et al.  2008  ) . Aromatase mRNA expression and activity are increased 
during adipogenesis and are positively associated with adiposity in humans (Blouin 
et al.  2009 ; Wake et al.  2007  ) . Involvement of this enzyme in body fat distribution 
is also suggested by the fact that aromatase-knockout mice display progressive 
visceral adipose tissue accumulation (Jones et al.  2000  ) . In addition to increased 
estrogen levels, aromatase activity may provide another inactivation pathway for 
androgens in adipose tissue. However, it is important to note that most of the 
effects of testosterone on adipose tissue function have been repeated using the non-
aromatizable androgen DHT (Blouin et al.  2010 ; Gupta et al.  2008  ) . The indepen-
dent impact of estrogens and the involvement of androgen aromatization in human 
fat distribution patterns remain to be clearly established.  
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    5.4.3   Glucocorticoids 

 In addition to their involvement in the immune system, glucocorticoids regulate 
energy homeostasis especially under conditions of stress (Putignano et al.  2004  ) . 
This hormone promotes hepatic glucose output as well as protein and lipid catabo-
lism in muscle and adipose tissue (Putignano et al.  2004  ) . Moreover, several studies 
underline the role of glucocorticoids in long-term adipose tissue adaptation (Gregoire 
et al.  1991 ; Hauner et al.  1989  ) . Active glucocorticoids can alter adipose tissue mass 
and distribution (Bujalska et al.  1999 ; Michailidou et al.  2007  )  by impeding cellular 
proliferation and promoting differentiation of preadipocytes to lipid-storing, mature 
adipocytes (Gregoire et al.  1991 ; Hauner et al.  1989  ) . 

 Excessive circulating glucocorticoid concentrations, as observed in Cushing’s 
syndrome, create a pathologic phenotype of abdominal obesity, dyslipidemia, insu-
lin resistance, and hypertension (Peeke and Chrousos  1995  ) . In most cases, cortisol 
hypersecretion is pituitary dependent (Cushing’s disease) and involves the hypo-
thalamo-pituitary-adrenal (HPA) axis (Beaulieu and Kelly  1990  ) . While individuals 
with idiopathic abdominal obesity share several of the morphologic and metabolic 
alterations observed in Cushing’s syndrome, alterations in the sensitivity and drive 
of the HPA axis have been shown to be much more subtle (Duclos et al.  2001 ; Marin 
et al.  1992a ; Pasquali and Vicennati  2000  ) . Moreover, common abdominal obese 
patients have circulating glucocorticoid levels that are similar to those of normal-
weight individuals (Peeke and Chrousos  1995 ; Westerbacka et al.  2003  ) . Studies on 
urinary glucocorticoid metabolites reported increased metabolite excretion in obese 
compared to lean women and men. More specifi cally, these studies pointed toward 
enhanced glucocorticoid metabolism through 11 b -reductase and 5 a -reductase 
activities in abdominally obese individuals. These observations, combined with 
unaltered circulating glucocorticoid levels, support the hypothesis of an increased 
peripheral cortisol metabolism in abdominally obese compared to lean individuals 
(Andrew et al.  1998 ; Seckl et al.  2004 ; Westerbacka et al.  2003  ) . 

 Increased local cortisol synthesis in adipose tissue, without marked central HPA 
axis alterations, is now clearly recognized as an important etiologic factor of non-
Cushing abdominal obesity (Masuzaki et al.  2001 ; Seckl and Walker  2001  ) . 
Conversion of inactive cortisone to active cortisol (11 b -oxoreductase activity) is 
catalyzed by type 1 11 b HSD. In vitro, inactivation of cortisol to cortisone (11 b -des-
hydrogenase activity) may be catalyzed either by the type 1 or type 2 11 b -HSD 
isoforms. However, 11 b -oxoreductase activity is predominant for 11 b -HSD1 
in vivo. Thus, in adipose tissue, 11 b -HSD1 is primarily a glucocorticoid-activating 
enzyme, while 11 b -HSD2 activity protects cells from active glucocorticoid expo-
sure (Bujalska et al.  1997 ; Engeli et al.  2004 ; Lee et al.  2008  ) . 

 Local production of glucocorticoids by adipose tissue 11 b -HSD1 has been 
clearly linked to the development of abdominal obesity in animal models (Kotelevtsev 
et al.  1997 ; Masuzaki and Flier  2003  ) . 11-HSD1 knock-out mice show attenuated 
hyperglycemia provoked by stress and by diet-induced obesity (Kotelevtsev et al. 
 1997  ) . Conversely, modest overexpression of the 11 b -HSD1 gene in adipose tissue 
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is suffi cient to induce specifi c fat accumulation in the visceral fat compartments in 
mice. These experiments show that increased 11 b -HSD1 expression is a direct 
cause of metabolic alterations such as dyslipidemia and insulin resistance, espe-
cially when mice are fed with a high-fat diet (Masuzaki and Flier  2003  ) . This phe-
notype is also accompanied by increased adipocyte size especially in the visceral fat 
compartment, as well as increased FFA release (Masuzaki and Flier  2003  ) . Authors 
of this elegant study concluded that excessive local cortisol production by 11 b -HSD1 
is a common molecular etiology for visceral obesity and the metabolic syndrome in 
rodents. 

 Only a few studies directly examined peripheral cortisol homeostasis and 
11 b -HSD1 expression in the context of human abdominal obesity. In vivo, one 
study reported low rates of glucocorticoid uptake and release by adipose tissue 
(Hughes et al.  2010  ) . Thus, reduced exposure of adipose tissue to rapid circadian 
changes in circulating glucocorticoids reinforces the possible intracrine or paracrine 
impact of local cortisol generation (Hughes et al.  2010  ) . Expression levels and 
in vitro activity of 11 b -HSD1 are generally higher in visceral compared to subcuta-
neous adipose tissue (Bujalska et al.  1999 ; Michailidou et al.  2007 ; Veilleux et al. 
 2009b,   2010  ) , although some studies which examined only mRNA expression, 
failed to observe regional differences (Desbriere et al.  2006 ; Paulsen et al.  2007 ; 
Tomlinson et al.  2002 ; Veilleux et al.  2010  ) . 11 b -HSD1 expression measures in 
human adipose tissue have been mainly performed in females, but higher 11 b -HSD1 
expression levels in both omental and subcutaneous adipose tissue were observed in 
men compared to women (Paulsen et al.  2007  ) . Activity and mRNA abundance of 
the enzyme in whole adipose tissue samples are increased in obese compared to lean 
women and men (Desbriere et al.  2006 ; Kannisto et al.  2004 ; Lee et al.  2008 ; 
Lindsay et al.  2003 ; Michailidou et al.  2007 ; Paulsen et al.  2007 ; Veilleux et al. 
 2009b,   2010  ) . The existence of positive correlations between 11 b -HSD1 expression 
in subcutaneous adipose tissue and adiposity measures is clearly established 
(Desbriere et al.  2006 ; Kannisto et al.  2004 ; Lee et al.  2008 ; Lindsay et al.  2003 ; 
Paulsen et al.  2007 ; Rask et al.  2002 ; Veilleux et al.  2009b,   2010  ) . A few studies 
which had access to human visceral adipose tissue show that 11 b -HSD1 expression 
in visceral adipose tissue is positively associated with overall adiposity (Desbriere 
et al.  2006 ; Lee et al.  2008 ; Michailidou et al.  2007 ; Paulsen et al.  2007 ; Veilleux 
et al.  2009b,   2010  ) . However, body fat distribution measures are more closely 
related to 11 b -HSD1 expression and oxoreductase activity in visceral adipose tissue 
than the same measures subcutaneous adipose tissue (Michailidou et al.  2007 ; 
Veilleux et al.  2009b,   2010  ) . As suggested by animal studies, relatively elevated 
11 b -HSD1 oxoreductase activity in visceral compared to subcutaneous adipose 
tissue is associated with increased visceral fat accumulation as well as with con-
comitant metabolic alterations, independent of overall obesity levels (Veilleux et al. 
 2009b,   2010  ) . 

 Other genes may also be involved in the regulation of local adipose tissue corti-
sol levels in obese individuals. Expression of 11 b -HSD2 is detected in the stroma-
vascular cell fraction of adipose tissue (Engeli et al.  2004 ; Lee et al.  2008  ) . 
Expression of 11 b -HSD2 in subcutaneous adipose tissue was negatively associated 
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with BMI in one study (Engeli et al.  2004  ) , but the physiological impact of this 
association on local concentrations of active glucocorticoids is lessened by the very 
low 11 b -HSD2 expression levels observed both in subcutaneous and omental adi-
pose tissue (Engeli et al.  2004 ; Hernandez-Morante et al.  2009 ; Veilleux et al.  2010  ) . 
Recent reports also indentifi ed another key player for local adipose tissue glucocor-
ticoid reactivation, namely hexose-6-phosphate dehydrogenase (H6PDH) (Bujalska 
et al.  2005 ; Rogoff et al.  2007  ) . H6PDH colocalizes and interacts with 11 b -HSD1 
by generating the nicotinamide adenine dinucleotide phosphate cofactor needed for 
cortisone-oxoreductase activity (Zhang et al.  2009  ) . However, visceral adipose 
tissue H6PDH expression levels are negatively associated with adiposity (Veilleux 
et al.  2010  ) . Moreover, preadipocyte expression of the gene encoding this enzyme 
is reduced in obese individuals, although adipogenesis strongly induces its expres-
sion (Bujalska et al.  2005  ) . While genetic studies in mice support a role for H6PDH 
activity in adipose tissue glucocorticoid exposure in mice (Bujalska et al.  2008b  ) , its 
involvement in human body fat distribution is slightly less apparent based on current 
literature. Finally, glucocorticoid signal transduction in fat cells is mediated by glu-
cocorticoid receptor  a  (GR a ) in human adipose tissue (Boullu-Ciocca et al.  2003  ) . 
Expression levels of this receptor are higher in omental than subcutaneous adipose 
tissue in most studies (Boullu-Ciocca et al.  2003 ; Bujalska et al.  2007 ; Hernandez-
Morante et al.  2009 ; Michailidou et al.  2007 ; Veilleux et al.  2010  ) . Associations 
between GR a  mRNA expression and adiposity measures are reported in the litera-
ture but remain inconsistent (Boullu-Ciocca et al.  2003 ; Michailidou et al.  2007 ; 
Veilleux et al.  2010  ) . These associations indirectly suggest that adipose tissue glu-
cocorticoid action is reduced in obese individuals (Boullu-Ciocca et al.  2003  ) . 
Insuffi cient data on the role of 11 b -HSD2, H6PDH, and GR a  limits our ability to 
reach fi rm conclusions on their involvement in obesity and body fat distribution 
patterns. However, the lack of a clear demonstration of their involvement reinforces 
the hypothesis that visceral 11 b -HSD1 expression may be the main determinant of 
local active glucocorticoid levels and a major etiological factor for human abdominal-
visceral obesity.   

    5.5   Clinical Implications 

 As demonstrated in this chapter, excess accumulation of adipose tissue within the 
abdominal cavity is a critical determinant of the metabolic abnormalities of obesity. 
Consistent with this notion, weight loss therapy leading to a reduction in visceral 
adipose tissue mass has been shown to be associated with improvements in several 
cardiometabolic risk factors (Brochu et al.  2003 ; Despres and Lamarche  1993 ; 
Heilbronn et al.  2001 ; Kreisberg and Oberman  2003 ; Tchernof et al.  2002  ) . In keeping 
with the high responsiveness of visceral adipocytes to positive lipolytic stimuli, a 
review of weight loss studies suggested that the visceral adipose tissue compartment 
may be preferentially mobilized in response to a negative energy balance in both 
sexes (Smith and Zachwieja  1999  ) . Thus, it appears that interventions producing a 
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modest weight loss could lead to proportionally higher and clinically signifi cant 
mobilization of visceral adipose tissue, which may in turn contribute to alleviate 
some of the abnormalities leading to type 2 diabetes and cardiovascular disease. 

 Regarding the hormonal factors that contribute to visceral obesity, it seems that 
the correction of the relative androgen defi ciency in men and ovarian hormone 
(estrogen) defi ciency in women leads to improvement of the metabolic profi le, at 
least partly through modulation of body fat distribution. However, substitutive 
hormonal treatments obviously need to be considered in the context of their effects 
or side-effects on other systems. For example, female hormone replacement therapy 
has been seriously reconsidered or even abandoned by many women following data 
indicating that the oral combination of equine estrogens an a progestin causes a 26% 
increase in the incidence of breast cancer at 5.2 years of follow-up with a negative 
impact on cardiovascular events (Rossouw et al.  2002  ) . On the other hand, the link 
between androgen replacement and favorable body composition/fat distribution 
changes is increasingly recognized in hypogonadal, aging males (Bhasin et al. 
 2006  ) . Further studies are required to determine whether other androgen replace-
ment modes such as DHEA, for example, could be suitable for metabolic improve-
ments in men or women (Labrie et al.  2003 ; Labrie  2007  ) . Inhibitors of local cortisol 
generation by 11 b HSD1 are currently considered as a potentially important avenue 
for future drug development (Bujalska et al.  2008a ; Gathercole and Stewart  2010  ) . 
In a recent study (Rosenstock et al.  2010  ) , addition of one these inhibitors 
(INCB13739) to metformin therapy in patients with inadequate glycemic control 
was effi cacious and well-tolerated, showing for the fi rst time, that decreasing local 
cortisol exposure through 11 b HSD1 inhibition improves hyperglycemia over 12 
weeks in patients with type 2 diabetes (Rosenstock et al.  2010  ) . Thus, inhibition of 
local cortisol generation may offer a new potential approach to control abdominal 
obesity-related alterations and cardiometabolic risk factors in type 2 diabetes.  

    5.6   Conclusion 

 The sex difference in body composition and fat distribution observed in humans 
transcends culture and time (Hoyenga and Hoyenga  1982  ) . As we reviewed in this 
chapter, this sex dimorphism, along with specifi c characteristics of each fat com-
partment contributes to explain an important portion of the cardiometabolic risk 
associated with obesity. Evolutionary theories put forth to explain this dimorphism 
involve sexual selection and reproductive roles. Women would have evolved to 
maximize reproductive success through parental investment (gestation and breast-
feeding) (Trivers  1972  ) . The presence of larger, more stable body fat reserves in 
women is consistent with these reproductive roles, which are very demanding from 
the energetic standpoint. On the other hand, men would have evolved to maximize 
reproductive success through better motor performance and reproductive roles such 
as searching, fi ghting, and competing for mates (Dixson et al.  2005 ; Miller  1998 ; 
Trivers  1972  ) . The presence of central, visceral fat depots which have a minor 
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impact on the center of gravity (Pond  1992  )  and which are mobilized quickly in 
response to catecholamines is consistent with such activities. These characteristics 
apparently co-evolved in males and females both as courtship traits (e.g., breasts 
and buttocks in females, upper body mass in males) and indicators of nutritional/
reproductive status, in a context where males compete for females, who in turn 
select mates among the males that they attract (Miller  1998  ) . Hence, the fat distribu-
tion dimorphism, which is unique to the human species (Pond  1992  ) , appears as an 
extremely potent example of how interactions of sex- and gender-related traits 
through evolution may actually contribute to shape organic form.      
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  Abstract   Adipose tissue has been under focus in the last decades, and pivotal 
concepts have emerged from the studies of its complex biology. White adipose 
tissue is composed of mature adipocytes, precursors (preadipocytes), endothelial 
cells, macrophages, and other immune cells. The phenotype, amount, and biology 
of each adipose tissue component are profoundly altered in human obesity. Low-
grade infl ammation both at the local and systemic levels characterizes obesity and 
appears to have a key role in mediating the consequence of increased adipose tissue 
mass on metabolic and vascular comorbidities. Among the different cell types con-
tributing to infl ammation, this chapter focuses on the mechanisms and consequences 
of macrophage accumulation in obese adipose tissue. While differences probably 
exist between rodent models and human cases, macrophage cells have a very com-
plex phenotype able to change with weight modifi cation. It is not fully established 
whether macrophages exert a rather benefi cial or deleterious role in the adipose 
tissue. In any case, the presence of these cells modifi es the biology of adipose spe-
cialized cells such as preadipocytes and adipocytes. This chapter reviews the current 
knowledge regarding the contribution of monocytes/macrophages in development 
and maintenance of obesity and related complications both in mouse and human 
situations.  
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    6.1   Introduction 

 Infl ammation is a physiological response aiming at defending the organism against 
injurious stimuli and initiating the healing process in order to restore tissue homeo-
stasis. A typical acute infl ammatory response involves triggering molecules, also 
known as inducers, which are recognized by cellular sensors, leading to increased 
production of a large panel of mediators acting on target tissues. Infl ammatory 
response ends with a highly regulated process known as resolution of infl ammation 
allowing transition to the homeostatic state. When this resolution phase cannot 
occur for any reason, a chronic infl ammatory state ensues (Medzhitov  2008  ) . For 
a decade now, obesity is seen as an infl ammatory disease characterized by low-
grade chronic infl ammatory state. Obesity associates with increased circulating 
concentrations of infl ammatory cytokines and acute-phase proteins and decreased 
concentrations of molecules, such as adiponectin, with anti-infl ammatory proper-
ties. Also, local up-regulation in genes encoding infl ammatory proteins has been 
described in enlarged adipose tissue associated with a marked accumulation of 
macrophages in the adipose tissue (Yudkin et al.  1999 ; Weisberg et al.  2003 ; Curat 
et al.  2004  ) . 

 As mentioned by Hotamisligil et al., chronic infl ammation can lead to vicious 
cycles as it intrinsically connects infl ammation to the pathological process it accom-
panies (Hotamisligil  2006  ) . To understand the deleterious consequences of chronic 
infl ammation in obesity, we need to get deeper insights into the contributing cellular 
and molecular mechanisms. Particular attention is given to obesity-associated 
immune response that may infl uence local and systemic biology. Although many 
types of infl ammatory cells, such as neutrophils (Nijhuis et al.  2009  ) , mast cells 
(Liu et al.  2009  ) , and lymphocytes (Nishimura et al.  2009  )  might be involved in 
white adipose tissue infl ammation, this review specifi cally focuses on the contribu-
tion of monocytes and macrophages.  

    6.2   Adipose Tissue Infl ammation: A Myriad of Actors 
But the “Egg or Chicken” Question Remains Unanswered 

 Among others, a still unanswered question is what triggers infl ammation and 
immune cells accumulation in the adipose tissue. Several actors and signaling path-
ways have been proposed to explain the pathogenesis of infl ammatory cell accumu-
lation. Adipocytes themselves have been put into the scene since they are able to 
produce various mediators, including cytokines, chemokines, and adipocyte-
specifi c molecules known as adipokines. One hallmark of obesity is adipocyte 
hypertrophy (i.e., increased adipocyte volume). These hypertrophied cells are prone 
to secrete large quantities of infl ammatory cytokines (Skurk et al.  2007  ) . Markers 
associated with increase adipocyte size have been recognized as, for example, serum 
amyloid A (SAA). It has been suggested that this acute phase protein could participate 
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into local dialogue between adipocyte and infl ammatory cells. In vitro, SAA 
contributes to local infl ammation, adipocyte lipolysis, and to the regulation of 
adipocytes cholesterol effl ux (Yang et al.  2006 ; Poitou et al.  2009  ) . Adipocyte 
hypertrophy can also lead to necrosis-like adipocyte death. Cell contents are released 
in the extracellular space where they trigger infl ammatory responses from neigh-
boring cells, especially macrophages typically surrounding moribund adipocytes 
(Cinti et al.  2005  ) . Thus, adipocyte hypertrophy and its related perturbed biology 
could be directly involved in the development of chronic low-grade infl ammatory 
state by secreting proinfl ammatory molecules and/or liberating intracellular compo-
nents after death. 

 Nutrition derived factors can contribute to the stimulation of local infl ammation. 
Among them, fatty acids are able to bind and activate toll-like receptor-4 (TLR4) in 
adipocytes and macrophages. The capacity of fatty acids to induce infl ammatory 
signaling in adipose tissue is blunted with the deletion of TLR4 in mouse models 
(Shi et al.  2006 ; Davis et al.  2008  ) . Fatty acids released from hypertrophied adipo-
cytes could also serve as a naturally occurring ligand for TLR4 to promote infl am-
mation. Endotoxemia, i.e., increased circulating concentration of lipopolysaccharide 
(LPS) originating from intestinal microbiota, could represent another triggering 
factor of proinfl ammatory cytokines when it binds to TLR4 at the surface of innate 
immune cells (Cani et al.  2007  ) . Finally, hypoxia is able to induce proinfl ammatory 
gene expression in adipocytes and macrophages and may represent an additional 
mechanism for chronic infl ammation in obesity (Ye  2009  ) . This list is certainly not 
complete, as shown by the recent identifi cation of reticulum endoplasmic stress as a 
critical mechanism underlying obesity-induced infl ammatory responses (Hummasti 
and Hotamisligil  2010  ) . 

 While the overall mechanisms inducing infl ammatory cell accumulation 
remain to be fully deciphered, there is probably no unifi ed theory. Obesity-
related infl ammation is likely to be explained by complex overlapping and com-
plementary infl ammatory signaling pathways (Table  6.1 ). Presumably, obesity 
could be termed as “sterile” infl ammation, since no pathogen or pathogen-derived 
molecules have been yet clearly identifi ed. However, potential antigenic reac-
tions, for, e.g., against circulating LPS or fatty acids, cannot be excluded so far 
(Chen and Nunez  2010  ) . Whatever the initiating mechanisms, infl ammation defi -
nitely leads to a vicious cycle where macrophages and adipocytes organize a 
paracrine loop. Paracrine dialogs play in turn the role of inducers and sensors 
aggravating and auto-maintaining infl ammatory changes in adipose tissue 
(Suganami et al.  2005  ) .  

 It is now recognized that infl ammatory cells are present in expanded adipose 
tissue. Both cells of the innate and the adaptive immune system have been described 
in obese animal models and human patients. Monocytes and macrophages are part 
of the innate immune system and represent a large proportion of the stroma-vascular 
fraction, i.e., the non adipocyte fraction in adipose tissue. In 2003, accumulation of 
adipose tissue macrophages in both human and diet-induced obese (DIO) mice was 
described and found to be directly proportional to measures of adiposity (Weisberg 
et al.  2003 ; Xu et al.  2003  ) .  
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    6.3   Accumulation of Macrophages in Adipose Tissue 
in Obesity 

 Macrophages provide the immediate defense against foreign pathogens and coordinate 
leukocyte infi ltration. They contribute to the balance between antigen availability 
and clearance through phagocytosis and subsequent degradation of microbes, senes-
cent, or apoptotic cells. Their role is essential in triggering, instructing, and termi-
nating the adaptive immune response. Macrophages collaborate with T and B cells, 
through both cell–cell interactions via their major histocompatibility complex II and 
fl uid-phase-mediated mechanisms mostly based on the release of cytokines and 
chemokines. Macrophages derived from the differentiation of circulating mono-
cytes after extravasation through the endothelium of a blood vessel within tissue 
where they undergo local activation. At sites of infection or wound healing for 
example, intense recruitment of monocytes and precursors from bone-marrow pools 
results in the accumulation of tissue macrophages (Gordon and Taylor  2005  ) . 

    6.3.1   Monocytes Traffi cking and Phenotypes 

 Circulating monocytes are released from the bone marrow as non-differentiated 
cells and circulate in the blood for 1–3 days. Monocytes are known to display 
heterogeneous phenotypes characterized by different markers as shown in Fig.  6.1 . 
The specifi c surface marker for human monocyte population is membranous CD14 
(mCD14). Thanks to fl ow cytometry analysis, subgroups of monocytes have been 
defi ned based on the level of expression of mCD14. The additional separation of 
monocytes is defi ned by the surface marker CD16 antigen, also known as the FC 
receptor  g III. Based on these markers, two subsets of circulating monocytes have 
been identifi ed. The main monocyte population in humans is CD14 hi CD16 −  subset 

Peripheral blood

Inflamed tissue 

Resident monocytes  
(10-15% of monocytes) 

CD14+CD16+ in humans 
7/4low/Ly-6Clow in mice 
 CCR2-CCR5+CX3CR1high

 

(80% of monocytes)

 CD14highCD16- in humans 

7/4high
 /Ly-6Chigh

 in mice 

 CCR2+CCR5lowCX3CR1low

Tissue-resident 
macrophages  

Macrophages: 
pathogen clearance 
and wound healing  

Normal tissue 

Target tissues Bone marrow 

Adipose 
tissue 

Precursor
Cells

 
 

  Fig. 6.1    Traffi cking of monocytes from bone marrow to peripheral blood and target tissue. Under 
steady-state conditions, resident monocytes enter the tissues to replenish the pool of tissue-resident 
macrophages. Infl ammatory monocytes immigrate into infl amed tissue and differentiate into so-
called newly recruited macrophages       
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(corresponding to antigens 7/4 hi /Ly-6C hi  in mouse). These cells are considered as 
the infl ammatory monocytes recruited to infl amed areas. A second subset has been 
proposed to be a resident cell population in tissues recruited independently of 
infl ammatory stimuli (e.g., alveolar or splenic macrophages, Kupffer cells, etc.). 
These cells are CD14 + CD16 +  (corresponding to antigens 7/4 low /Ly-6C low  in mouse) 
and show a macrophage-like phenotype with enhanced antigen-presenting capaci-
ties and higher endothelial affi nity as reviewed in Pandzic Jaksic et al.  (  2010  ) . These 
CD14 + CD16 +  cells appear to be potent producers of proinfl ammatory cytokines. 
Their increase was noted in infl ammatory disorders such as sepsis, HIV infection, 
or atherosclerosis (Ziegler-Heitbrock  2007  ) . Of note, a third population has been 
recently identifi ed as CD14dim CD16+, so-called “patrolling” monocytes that could 
be implicated in local surveillance of damaged or infected tissues. It is currently 
unknown whether or not they infi ltrate the adipose tissue (Cros et al.  2010  ) . Several 
studies described a signifi cant rise in overall CD14 +  circulating monocytes but also 
in the CD14 + CD16 +  subset in human obesity (Cottam et al.  2002 ; Rogacev et al. 
 2010  ) . In 2004, Ghanim et al. described monocytes from obese patients as being in 
a proinfl ammatory state with increased transcription of proinfl ammatory genes reg-
ulated by nuclear factor-kappa B, including tumor necrosis factor-alpha (TNF- a ), 
and interleukin-6 (IL-6) (Ghanim et al.  2004  ) . Thus, preferential traffi cking of 
CD14 + CD16 +  monocytes subset in addition to the usual infl ammatory CD14 hi CD16 −  
monocyte accumulation may contribute to signifi cant recruitment of macrophages 
in obese adipose tissue. Monocytes recruitment is typically directed by chemokines 
that attract cells through activation of their cognate receptor. The different mono-
cyte subsets appear to display different chemokine-receptor expression profi les that 
directly mediate their distinctive recruitment properties. For example, in human, the 
classical CD14 hi CD16 −  monocytes express high amounts of CCR2, low levels of 
CCR5 (the receptor of CCL3), and medium amounts of CX3CR1 (the receptor of 
fractalkine). On the contrary, CD16 +  subset is CCR2 negative but displays high 
levels of CX3CR1 and CCR5 receptors (Ziegler-Heitbrock  2007  ) .   

    6.3.2   Mediators of Monocytes Recruitment 

 The mechanism of monocyte diapedesis in the adipose tissue has not been clearly 
defi ned, but it presumably involved the secretion of chemotactic molecules or 
chemokines, known to be overexpressed in mice and human adipose tissue depots. 
These chemokines are thought to be derived from cells of the stromal vascular frac-
tion, although their secretion from adipocytes has also been reported (Dahlman 
et al.  2005  ) . 

 Mice models gave the opportunity to study different chemoattractant molecules 
that mediate monocytes mobilization from the bone marrow and recruitment into 
the adipose tissue. Westcott et al. have identifi ed the galactose-type C type lectin 1 
(Mgl1) as being critical for the survival and migration of 7/4 hi /Ly-6C hi  monocytes, 
the population classically recruited to sites of infl ammation (Westcott et al.  2009  ) . 
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Animals defi cient in Mgl1 are protected from macrophage accumulation in fat due 
to a reduction in circulating levels of these 7/4 hi /Ly-6C hi  proinfl ammatory monocyte 
subsets. CCR2, the receptor for Monocytes Chemotactic Protein-1 (MCP-1/CCL2), 
has also been implicated in the mobilization of cells from the bone marrow to the 
peripheral circulation. Tsou et al. showed that CCR2 −/−  mice have a marked decrease 
in blood 7/4 hi /Ly-6C hi  monocytes, although the bone marrow contained normal or 
increased numbers of monocyte progenitors, suggesting a defect in mobilization 
rather than monocyte differentiation impairment (Tsou et al.  2007  ) . Accordingly, 
transgenic obese mice defi cient for CCR2 on bone marrow cells displayed reduced 
number of macrophages in adipose tissue (Ito et al.  2008  ) . A number of studies 
further showed that the CCR2/MCP-1 system plays a crucial role in macrophages 
accumulation in the obese adipose tissue. MCP-1 gene and protein are up-regulated 
in white adipose tissue of DIO mice with the highest level found in mesenteric 
depots (Yu et al.  2006  ) . In vitro migration assay showed that mesenteric adipose 
tissue-conditioned medium-induced macrophage migration and proinfl ammatory 
activation, which were inhibited upon MCP-1 neutralization. Transgenic mice over-
expressing MCP-1 in adipose tissue displayed higher macrophage accumulation in 
adipose tissue (Kamei et al.  2006 ; Kanda et al.  2006  ) , while disruption of MCP-1 
gene by a homozygous knock-out model or the expression of a dominant-negative 
mutant reduced macrophage accumulation (Kanda et al.  2006  ) . Similarly, genetic 
defi ciency or pharmacological inhibition of CCR2 reduced the macrophage content 
and infl ammatory profi le of adipose tissue (Weisberg et al.  2006  ) . Yet, contradictory 
results do exist, and the physiopathological relevance of the MCP-1/CCR2 duo is 
still discussed (Chen et al.  2005 ; Inouye et al.  2007 ; Kirk et al.  2008  ) . 

 Another CC motif chemokine, CCL5, also known as RANTES (Regulated on 
Activation Normal T cells Expressed and Secreted) has recently been studied for its 
emerging role in regulating the recruitment of infl ammatory cells in adipose tissue. 
RANTES is expressed in mouse adipose depots and increased in obesity, along with 
elevated level of its receptor CCR5 (Wu et al.  2007  ) . Studies conducted in humans 
also showed statistical association between CCL5 expression and macrophage accu-
mulation in adipose tissue. In vitro, cellular studies using human primary cells have 
demonstrated the contribution of CCL5 in mediating monocyte/macrophage adhe-
sion and transmigration though endothelial barrier (Keophiphath et al.  2010  ) . CCL3, 
also commonly referred to macrophage infl ammatory protein-1 a  (MIP-1 a ), and its 
potential receptors CCR1 and CCR5 show a signifi cant increase in gene and protein 
expressions in genetically and DIO obese mice (Xu et al.  2003  ) . 

 Surprisingly, however, MIP-1 a -defi cient (MIP-1 a  −/− ) mice were not protected 
from macrophage accumulation in adipose tissue (Surmi et al.  2010  ) . MIP-1 a  defi -
ciency was associated with a relative decrease in RANTES and MIP-1 b  expression. 
The absence of infl ammatory improvement in this model suggests that the function 
of these chemokines can be compensated by other factors that promote macrophage 
accumulation (Surmi et al.  2010  ) . The chemokine (CXC motif) ligand 14 (CXCL14) 
and its receptor CXCR2 are also known to be involved in macrophage attraction. 
They were found to be up-regulated in white adipose tissue of obese mice. Besides, 
CXCL14-defi cient mice have impaired macrophages accumulation in adipose tissue 
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(Nara et al.  2007  ) . There is no doubt that involvement of new chemoattractant 
molecules will be enlightened in future studies. However, these chemokines appear 
to have redundant functions such that the sole alteration of one chemokine or one 
receptor may have only minor effects on macrophages accumulation. Further studies 
should give insights into the mechanisms by which these chemokines work together 
to promote macrophage infi ltration in the adipose tissue. Human studies have con-
fi rmed the increase in gene and protein expression of a variety of chemokines and 
associated receptors in obese adipose tissue. Indeed, MCP-1, MCP-2 (CCL7), 
MCP-3, MIP-1 a , RANTES along with CCR1, CCR2, CCR3, and CCR3 were up-
regulated in obese compared to lean subjects (Huber et al.  2008  ) . As shown for 
MCP-1 and RANTES, these factors are preferentially secreted by non-fat cells in 
the adipose tissue (reviewed in Fain  2010  ) . Strikingly, these molecules positively 
correlated with monocyte/macrophage markers such as CD14 and CD68 expressed 
in adipose tissue (Bruun et al.  2005  ) . Human studies showed that most of these 
chemokines and associated receptors were overexpressed in omental adipose tissue 
compared to subcutaneous adipose tissue of obese patients, in line with macrophage 
content that was found to be higher in omental adipose depots (Cancello et al.  2006  )  
(Tordjman et al.  2009  ) .  

    6.3.3   From Monocytes to Tissue Macrophages 

 Tissue infi ltration of blood monocytes is complex and involves steps including the 
activation and transmigration of monocytes through the endothelium as illustrated 
in Fig.  6.2 . The vascular endothelium serves as a barrier to monocyte traffi cking and 
as a sentinel to instruct their adhesion and transmigration. Classically, the extravasa-
tion of monocytes consists of fi ve steps starting with the accumulation of circulating 
monocytes on the luminal surface of the endothelium. Monocytes undergo transient 
rolling interactions mediated by selectin cell adhesion molecules such as E-selectin 
or CD62L (step 1). This facilitates the sensing of and the responses to chemokines 
presented on the surface on the endothelium (step 2). This phenomenon triggers 
high-affi nity interaction of monocyte integrin receptors (e.g., lymphocyte function-
associated antigen 1, macrophage 1 antigen, and very late antigen 4   ) with their 
endothelial ligands (e.g., intercellular adhesion molecule – ICAM -1 and 2 – and 
vascular cell adhesion protein – VCAM-1) resulting in monocyte immobilization 
(step 3). Subsequently, monocytes undergo actin-dependent spreading, polarization 
and integrin-dependent lateral migration on the luminal surface of the endothelium 
(step 4). This activity allows monocytes to seek for permissive sites enabling the 
penetration of the endothelial barrier. Then, the monocyte formally breaches and 
transmigrates across the endothelium (step 5), a process referred as diapedesis. 
Until recently, only one basic pathway for diapedesis was widely recognized, the 
paracellular route, in which leukocytes and endothelium cooperate to locally disas-
semble the interendothelial junctions to open a paracellular gap for cell transmigra-
tion. Recent studies have shown that a second pathway termed as transcellular route 
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exists and consists in monocytes passing directly through individual endothelial 
cells via the formation of a transcellular pore (Kamei and Carman  2010  ) .  

 Obesity is characterized by the increased production of many adhesion mole-
cules (i.e., P-selectin, E-selection, ICAM, VCAM). This supports the fact that 
increased fat mass is associated with a systemic endothelial activation that increased 
overall monocytes diapedesis. However, the precise mechanisms of extravasation 
across adipose tissue endothelial cells are not known. Curat et al. noted that mature 
human adipocytes released soluble factors that directly increase the diapedesis of 
human blood monocytes across a layer of adipose tissue-derived capillary endothe-
lial cells in a transwell migration assay. This effect was actually reproduced with 
human recombinant leptin alone but at supraphysiological doses. Adipocyte-
conditioned media could also directly induce the up-regulation of platelet/endothe-
lial cell adhesion molecule-1 and ICAM-1 from endothelial cells (Curat et al.  2004  ) . 

  Fig. 6.2    Distinct phenotypes of tissue macrophages, depending of the microenvironment pro-
duced by surrounding cell cytokine release. Each macrophage subgroup is associated with typical 
secretory responses and functional characteristics (adapted from Mosser and Edwards  2008  ) .  APC  
antigen presenting cell;  T reg  regulatory T cell       
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In a subsequent study, endothelial cells were found to be in a more marked 
proinfl ammatory state in visceral than in subcutaneous human adipose tissue 
(Villaret et al.  2010 ), suggesting a role in regional differences in macrophage 
accumulation (Cancello et al.  2006 ; Tordjman et al.  2009  ) .   

    6.4   Macrophages in Adipose Tissue 

    6.4.1   Macrophage Plasticity 

 Macrophages are well known to be versatile cells that can adopt specialized func-
tions at particular tissue locations. They adapt themselves and actively respond to 
the local microenvironment (Gordon and Taylor  2005  ) . Their amazing plasticity is 
refl ected by the different phenotypes they can display (Fig.  6.3 ). In line with the 
current understanding of monocyte heterogeneity and in an effort to mimic the T 
cells Th1/Th2 nomenclature, a M1/M2 macrophage activation classifi cation was 
created where M1/M2 are the extreme of a continuum of functional states (Gordon 
 2003  ) . Stimulation of macrophage with Th1 cytokines such as interferon-gamma 
alone or in concert with cytokines (e.g., TNF- a  and Granulocyte Macrophage-
Colony Stimulating Factor) and bacterial stimuli (e.g., LPS) promotes maturation of 
“classically” activated M1 macrophages. These cells are characterized by high 
secretion of IL-12 and IL-23, high production of toxic intermediates (e.g., reactive 
oxygen species, nitric oxides [NOs]), and high capacity to present antigens. In contrast, 
various signals (e.g., IL-4, Il-13, glucocorticoids, adiponectin…) induce distinct M2 
functions able to tune infl ammatory responses and to promote angiogenesis, tissue 
remodeling, and repair (Gordon and Taylor  2005 ; Ohashi et al.  2010  ) . However, the 
M2 term was used in a loose and confusing way. Martinez et al.  (  2008  )  thus pro-
posed three forms in the M2 nomenclature: M2a, induced by IL4 or IL13 and 
involved in killing or encapsulation of parasites; M2b, induced by exposure of 
immune complexes and involved in immunoregulation; and M2c, induced by IL-10 
and glucocorticoids and preferentially implicated in matrix deposition and tissue 
remodeling. In the mean time, a new foundation for macrophages classifi cation was 
recommended based on their functions: host defense (close to a M1 phenotype with 
microbicidal activity), wound healing (promoted by IL-4 from Th2 cells), and 
immune regulation (preferentially induced by IL-10 from regulatory T cells) 
(Mosser and Edwards  2008  ) .   

    6.4.2   Complex Phenotype of Adipose Tissue Macrophages: 
Mouse Studies 

 The presence of macrophages in obese adipose tissue have been described in 2003 
(Xu et al.  2003 ; Weisberg et al.  2003  ) . The authors described transcript expression 
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profi les of adipose tissue and found that infl ammation and macrophage-specifi c 
genes were dramatically up-regulated in mouse models of diet-induced and genetic 
obesity. Body mass and adipocyte sizes appeared to be strong predictors of the per-
centage of the F4/80 and CD68 expressing macrophages in the adipose tissue. 
Macrophage contents were estimated to range from less than 10% of total cell nuclei 
count in lean mice to over 50% in extremely obese leptin-defi cient mice (Weisberg 
et al.  2003  ) . In the obese adipose tissue, aggregates of F4/80 positive cells were 
described surrounding a single adipocyte. These clusters contained many oil-red 
O-staining vesicles, indicating intracytoplasmic lipid accumulation, consistent with 
phagocytic activities of macrophages (Xu et al.  2003  ) . 

 Following these pioneer studies, the next challenge was to determine the pheno-
type that macrophages acquire during the setting of obesity, using membranous and 
intracellular markers considered specifi c hallmarks of M1- or M2-polarized mac-
rophages (Table  6.2 ). In 2007, Lumeng et al. demonstrated that obesity induces a 
phenotypic switch in macrophages from an anti-infl ammatory M2-polarized state to 

  Fig. 6.3    Monocyte recruitment in the adipose tissue. Upon obesity, adipose tissue macrophages 
together with hypertrophic adipocytes, preadipocytes, and probably other immune cells produce a 
panel of chemokines, proinfl ammatory cytokines, and metabolites that participate into monocyte 
recruitment. Endothelium activation causes endothelial cells to produce various cellular adhesion 
molecules. Though a rolling/adhesion process, monocytes slow down and eventually bind tightly 
to the endothelium until they transmigrate into the adipose tissue.  Double arrows  suppose that cells 
are both producers and targets of the associated chemokines and cytokines       
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a proinfl ammatory M1 state (Lumeng et al.  2007a,   b  )    . They identifi ed a population 
of proinfl ammatory cells expressing F4/80 +  and the integrin CD11c +  recruited in the 
adipose tissue of DIO mice. These cells preferentially secreted IL-6 and inducible 
NO synthase. CD11c −  macrophages of lean mice, called resident macrophages, 
expressed a majority of anti-infl ammatory factors such as IL-10 and Arg1. The 
authors then explored whether M1 macrophages were newly recruited or resulted 
from repolarization of M2 resident cells. Using pulse PKH26 labeling, a dye stain-
ing effi ciently macrophages but not monocytes, they purifi ed and compared gene 
expression profi les between recruited and resident macrophages, demonstrating that 
recruited macrophages displayed infl ammatory properties and increased accumula-
tion of lipids. The proportion of resident macrophages expressing the M2a marker 
macrophage MGL1 remained stable with obesity, while newly recruited M1 proin-
fl ammatory macrophages expressing CD11c but not MGL1 rapidly accumulate in 
adipose tissue (Lumeng et al.  2008  ) . Another study in DIO mice showed that obesity 
associated with an increase in both M1 (CD11c + CD206 − ) and M2 (CD11c − CD206 + ) 
macrophages, although the ratio M1/M2 macrophages was switched towards M1 
macrophages (Fujisaka et al.  2009  ) . These studies suggest that obesity is associated 
with accumulation of proinfl ammatory M1 macrophages in the adipose tissue, 
which occurs in parallel to the maintenance or slight increase in the number of M2 
anti-infl ammatory resident macrophages that are believed to help maintaining tissue 
homoeostasis.  

 Surprisingly, in mice defi cient in the M2 marker MGL1, the traffi cking of M2 
macrophages was normal, while the number of M1 macrophages drastically 
decreased in adipose tissue (Westcott et al.  2009  ) . MGL1 is known to bind to Lewis 
X, a protein specifi cally expressed in obese mice adipose tissue, with highest con-
centrations in crown-like structures. It was therefore suggested that MGL1/Lewis X 
interactions provide a mean for the circulating MGL1 + 7/4 high  monocytes precursors 
of M1 macrophages to traffi c to crown-like structures (Westcott et al.  2009  ) . This 
study raised the hypothesis that monocytes subsets have specifi c fates and are com-
mitted to differentiate into M1 or M2 macrophages, independently of the local 
microenvironment (Geissmann et al.  2010  ) . 

 The “M1/M2 paradigm” fi tting with the DIO mice model presented by Lumeng 
et al.  (  2007a,   b  )  might be more complex than initially proposed. Shaul et al. demon-
strated that a high fat diet (HFD) did not elicit classical M1 polarization mac-
rophages, but rather a mixed M1/M2-like pattern of gene expression (Shaul et al. 
 2010  ) . Three cell populations were identifi ed: MGL1 + CD11c −  (M2a cells), 
MGL1 − CD11c +  (M1 cells), and a new MGL1 med /CD11c +  population with an inter-
mediate phenotype. When the HFD was prolonged, macrophages exhibited global 
changes in gene expression with an up-regulation of M2 markers and a down-regulation 
of M1 markers. Besides, the MGL1 med /CD11c +  subgroup showed adipogenic and 
angiogenic properties (Shaul et al.  2010  ) . Using a 20-week course of HFD feeding 
in mice, Strissel et al. demonstrated that frequency of adipocyte death along with 
adipocyte size increased until peaking at week 16 where it coincided with maximum 
expression of CD11c and proinfl ammatory genes (Strissel et al.  2007  ) . By week 20, 
adipocyte number was restored with a state of hyperplasia, corresponding to reduced 
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adipocyte death and down-regulation of CD11c. Thus, adipocyte death in adipose 
tissue is a progressive event that is temporally linked to macrophage recruitment and 
to their phenotype switch from M2 to M1 macrophages. Eventually a return to 
M2-like polarization seems to occur under extended HFD course, potentially cor-
responding to an adaptive response to restore adipose tissue homeostasis.  

    6.4.3   Adipose Tissue Macrophage Phenotypes: Human Studies 

 Several groups have addressed the question of adipose tissue macrophages pheno-
type in human adipose tissue. Flow cytometry analysis showed the existence of a 
CD14 + CD206 +  double positive population of macrophages correlated with subjects’ 
BMI. Besides being CD206 positive, these macrophages expressed the hemoglobin 
scavengor receptor CD163 and integrin heterodimer  a V b 5 and produced anti-
infl ammatory cytokines (IL-10 and IL1-RA), which are all hallmarks of M2-like 
macrophage phenotype. Nevertheless, these cells also produce large amounts of 
proinfl ammatory molecules such as TNF- a , IL-1b, IL-6, MCP-1, and MIP-1 a  sug-
gesting a M1-like polarization. Thus, adipose tissue macrophages show a particular 
M2-like surface marker expression while they are able to produce amounts of proin-
fl ammatory cytokines (Zeyda et al.  2007  ) . These results were confi rmed by Bourlier 
et al., who also observed that human CD14 + CD206 +  adipose tissue macrophages 
expressed both M1 (TNF- a , IL8, MCP-1, COX-2) and M2 (IL-10, TGF-B) markers 
(Bourlier et al.  2008  ) . In an immunohistochemistry-designed study, obese adipose 
tissue was shown to contain more CD40 +  cells, another protein marker of M1 
macrophages, than lean adipose tissue. There was also more CD40 +  stained cells in 
visceral depots compared to subcutaneous depots. Meanwhile, the number of 
CD206 and CD163 positive cells were unchanged with severe obesity (Aron-
Wisnewsky et al.  2009  ) . In another human study combining immunohistochemistry, 
immunofl uorescence, and fl ow cytometry, adipose tissue macrophages were defi ned 
as resident CD206 + CD11c −  macrophages in the parenchyma and as crown aggre-
gated cells with high expression of CD11c and low expression of CD206 
(CD11c + CD206 low ). Further characterization of these cells showed high expression 
of the antigen-presenting molecules CD1c and HLA-DR, of the T-cell costimula-
tory molecule CD86, and high levels of proinfl ammatory mediators (IL-8 and MIP-
1 a ). Confi rming these observations, a recent publication showed that macrophages 
in crown-like structures immunoreacted with CD86 and CD40 with low staining for 
CD206. Meanwhile, interstitial macrophages stained strongly for CD206 but 
slightly for CD86. They also specifi cally stained for the lymphocyte activation 
molecule (SLAM or CD150), a marker of M2c macrophage subclass known to be 
involved in wound healing. The count of adipose tissue macrophages was performed 
and nearly 60% of noncrown macrophages stained for both CD86 and CD206 in 
lean subjects while obese patients tend to have more CD206 positive macrophages, 
suggesting a shift from a mix M1/M2 to a more M2-oriented phenotype with the 
worsening of obesity (Spencer et al.  2010  ) . 
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 In conclusion, observations in humans suggest that the macrophages accumulating 
in the adipose tissue have a complex phenotype. Overlapping M1/M2 macrophage 
phenotypes may be the consequences of the incapacity to study separately the resi-
dent and infl ammatory cell subsets in human adipose tissue. Also, it is possible that 
using the simplifi ed macrophage M1/M2 nomenclature, if useful, cannot be adapted 
to the development of human adipose tissue known to be an ongoing dynamic pro-
cess. Whether the mixed M1/M2 macrophage phenotypes described in obese 
human adipose tissue could be partly explained by a repolarization of resident M2 
cells in M1-like macrophages is currently not known. Such a phenotypic switch has 
been proposed during the course of atherosclerotic lesions development in mice 
(Khallou-Laschet et al.  2010  ) . In that way, newly recruitment of M1 macrophages 
as described in PKH26 mice experiment might not be entirely relevant in human 
obesity.  

    6.4.4   Do Macrophages Limit Obesity Development in Human? 

 As described above, potential inducers that trigger macrophage accumulation in 
adipose tissue are numerous but once macrophages are established, their pheno-
type and functional role remains unclear. A pending question is whether mac-
rophage accumulation in obese adipose tissue could have some benefi cial purposes. 
One of the discussed hypotheses is that M1-like macrophages infi ltrate adipose 
tissue to limit the expansion of adipocytes. This can be illustrated by the CCR2 
knock-out mice model. These mice show decreased macrophage content and less 
systemic infl ammation but increased fat pad weight (Lumeng et al.  2007a,   b  ) . In 
culture experiments, human preadipocytes exhibit impaired adipogenesis and 
increased extracellular matrix deposition when cultured with conditioned media 
from LPS-activated monocytes-derived macrophages or adipose tissue isolated 
macrophages (Keophiphath et al.  2009  ) . Hence, inhibition of adipogenesis com-
bined with a profi brotic phenotype of preadipocytes strengthens the hypothesis 
that proinfl ammatory macrophages aim at limiting adipocyte hypertrophy. 
Nevertheless, another suggested scenario would be that macrophages serve to 
positively support adipose tissue growth and angiogenesis by secreting proangio-
genic factors such as platelet-derived growth factor (Pang et al.  2008  ) . Mirroring 
the situation in cancer, M2-polarized macrophages might be responsible for this 
effect (Sica et al.  2008  ) . Finally, the main function of macrophages is to phagocyte 
necrotic debris from dead adipocytes and especially to metabolize fatty acids, 
preventing lipotoxicity. A recent study showed that increasing macrophage lipid 
storage capacity by overexpressing the enzyme diacylglycerol acyltransferase 1 in 
both macrophages and adipocytes protected the mice from macrophage accumula-
tion and activation in adipose tissue (Koliwad et al.  2010  ) . Thus, macrophages 
could very likely be the cells that ensure adipose tissue homeostasis and remodel-
ing throughout obesity.   
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    6.5   Adipose Tissue Infl ammation and Obesity-Associated 
Complications 

 It is well-established that obesity is associated with a myriad of metabolic and car-
diovascular complications. Currently, clinical studies and experimental evidences 
suggest a link between macrophage infi ltration and insulin resistance, cardiovascu-
lar risk, and hepatic alterations (Fig.  6.4 ).  

  Fig. 6.4    Potential relationship between adipose tissue infi ltrated macrophages and obesity comor-
bidities. Insulin resistance is a dependent factor implicated in the link between adipose tissue 
macrophages and non-alcoholic liver disease. The relative contribution of omental vs. subcutane-
ous infl ammation might be distinct depending on the comorbidity.  Dotted arrows  indicate lack of 
clinical and experimental evidence for the relationship.  H&E  hemotoxylin and eosin staining. 
Cross section of carotid artery by magnetic resonance imaging taken from Skilton et al.  (  2011  )        
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    6.5.1   Insulin Resistance 

 The central involvement of the visceral adipose tissue in metabolic and cardiovascular 
diseases is well known (Hotamisligil  2006  ) . Obese adipose tissue is a major source 
of infl ammatory mediators that are linked to insulin resistance, such as TNF- a  and 
proinfl ammatory cytokines (IL-6, IL-1 b ) that are released by both adipocytes and 
macrophages (Scherer  2006  ) . TNF- a  and IL-6 are known to promote lipolysis and 
to increase systemic free fatty acids, which then contribute to an increase in hepatic 
glucose production (Hotamisligil et al.  1995  ) . Several cytokines and chemokines 
produced by infl amed adipose tissue activate intracellular pathways that promote 
the development of insulin resistance and Type 2 diabetes (Shoelson et al.  2006  ) . In 
animal models, a role for adipose tissue macrophages in inducing systemic insulin 
resistance has been demonstrated through diet-induced, genetic, or pharmacological 
manipulations of macrophage numbers in adipose tissue (Xu et al.  2003 ; Weisberg 
et al.  2003,   2006 ; Kanda et al.  2006 ; Kamei et al.  2006  ) . In these studies, accumula-
tion of macrophages in adipose tissue was consistently associated with alteration of 
glucose homeostasis. However, in humans, the pathological consequences of mac-
rophage infi ltration in adipose tissue are more diffi cult to prove. Clinical studies 
have shown an inverse correlation between the expression of the macrophage marker 
CD68 in subcutaneous fat and whole body insulin sensitivity (Di Gregorio et al. 
 2005 ; Makkonen et al.  2007  ) . It has been also shown that preferential macrophage 
infi ltration into visceral adipose tissue was mainly observed in a subgroup of sub-
jects with impaired glucose homeostasis (Harman-Boehm et al.  2007  ) . Recently, 
obese subjects with more crown-like structures of macrophages in subcutaneous 
adipose tissue were shown to be more insulin resistant than those without such cells 
aggregates (Apovian et al.  2008  ) . However, observations in morbid obesity do not 
support such a relationship, since no correlation was found between adipose tissue 
macrophages and blood-derived parameters of insulin resistance (Cancello et al. 
 2005 ; Tordjman et al.  2009  ) . Additionally, an overfeeding challenge rapidly installed 
an insulin-resistant state in healthy subjects, despite no signifi cant change in mac-
rophage accumulation in the adipose tissue (Tam et al.  2010  ) .  

    6.5.2   Cardiovascular Diseases 

 Proinfl ammatory factors and/or adipokines produced by adipose tissue are thought 
to play a role to increase cardiovascular risks, although only a few supporting exper-
imental or clinical evidences are currently available. This hypothesis has been tested 
in mice defi cient for CD14, a co-receptor of toll-like receptor 2 and 4. When sub-
mitted to a HFD, these mice show reduced macrophages accumulation in the adipose 
tissue, associated with improvement of glucose homeostasis and reduction of blood 
pressure (Roncon-Albuquerque et al.  2008  ) . Other studies support the implication 
of adipokines such as leptin, adiponectin, resistin, or visfatin (Ahima and Osei 
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 2008  ) . Indeed, adiponectin plays a crucial role in vascular homeostasis, in part by 
counteracting the negative effect of TNF- a  in aortic endothelial cells (Matsuda et al. 
 2002 ; Kobashi et al.  2005 ; Andersson et al.  2008  )  or by inhibiting the formation of 
foam cells (Yokota et al.  2000  ) . Since adiponectin production by adipose tissue is 
decreased in obesity, its protective effects are thought to be reduced in obese sub-
jects. In healthy human, infusion of free fatty acids was used to mimic elevated 
blood lipidemia (Kishore et al.  2010  ) . This challenge was shown to induce the 
expression of PAI-1, a well-established promoter of blood coagulation, in adipose 
tissue macrophages in association with TNF- a  and IL-6. Finally, since MCP-1 is 
both involved in macrophage recruitment in adipose tissue and in the promotion of 
atherosclerosis, this chemokine has been proposed as a potential therapeutic target 
to reduce cardiovascular risk in human obesity (Ohman and Eitzman  2009  ) .  

    6.5.3   Non-Alcoholic Fatty Liver Disease 

 Non-alcoholic fatty liver disease (NAFLD) is a frequent complication of human 
obesity (Utzschneider and Kahn  2006 ; Westerbacka et al.  2004  ) . The relationship 
between adipose tissue secreted products and hepatic damage has been recently 
evaluated in humans. In a population of severely obese patients, neither leptin nor 
TNF- a  circulating levels were signifi cantly associated with the severity of hepatic 
lesions. However, patients with signifi cant hepatic fi broinfl ammation had reduced 
adiponectin levels (Cancello et al.  2006  ) . A similar association of low serum adi-
ponectin with worsening grades of hepatic necroinfl ammation has been reported in 
different populations (Marra et al.  2005 ; Hui et al.  2004 ; Musso et al.  2005  ) . 

 The link between adipose tissue macrophages and NAFLD in human obesity is 
poorly understood. A study addressed this point by focusing on non-alcoholic liver 
pathology. In a large group of morbidly obese subjects, visceral adipose tissue 
macrophages accumulation was associated with the severity of hepatic fi broinfl am-
matory lesions. No association was found with the number of macrophages in sub-
cutaneous adipose tissue, thus suggesting a specifi c link between visceral macrophages 
and liver damage (Cancello et al.  2006  ) . Insulin resistance contributes to the patho-
logical mechanisms leading to hepatic steatosis, infl ammation and fi brosis. Taking 
into account the glycemic status, Tordjman et al. further showed that accumulation 
of macrophages in omental adipose tissue is insuffi cient alone to promote liver 
steatosis, although it contributes to its aggravation in conjunction with insulin resis-
tance. By contrast, the severity of fi broinfl ammation associated with higher numbers 
of macrophages in omental adipose tissue, irrespective of the degree of insulin resis-
tance. This suggests that obesity-driven macrophage accumulation specifi cally in 
this adipose depot is an independent determinant of liver fi brosis and infl ammatory 
damages (Tordjman et al.  2009  ) . These observations support recent fi ndings in 
humans showing that the amount of visceral fat can associate with liver infl amma-
tion and fi brosis independent of insulin resistance (Van der Poorten et al.  2007  ) . 
The actual factors (proinfl ammatory cytokines, free fatty acids, adipokines) conveying 
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the infl ammatory signals from omental adipose tissue to the liver must be identifi ed. 
Increased IL-6 concentrations measured in the portal vein of obese subjects suggests 
a role for this proinfl ammatory cytokine in promoting liver damage in obesity 
(Fontana et al.  2007  ) .   

    6.6   Adipose Tissue Remodeling and Infl ammation 

 Components of the extra cellular matrix (ECM) are particularly crucial for main-
taining structural integrity of adipocytes. To accommodate the changes induced by 
increased adipocyte size in obesity, remodeling of the ECM occurs by degradation 
of the existing ECM and production of new ECM components. Implication of pro-
teases such as metalloproteases (MMPs) or disintegrin and metalloproteinases with 
thrombospondin motifs in these processes are not fully deciphered. Other proteins 
might be involved, including SPARC, a collagen-binding matricellular protein 
initially found to be increased in the adipose tissue of obese mice (Tartare-Deckert 
et al.  2001  )  and in humans (Kos et al.  2009  ) . The consequences of ECM modifi ca-
tion in normal and pathological growth of adipose tissue have been mostly investi-
gated in mice. Gene invalidation of the pericellular collagenase MT1-matrix 
metalloproteinase (MT1-MMP) leads to the formation of a rigid network of colla-
gen fi brils, which compromises adipocyte differentiation and lipid accumulation 
(Chun et al.  2006  ) . In genetically obese mice, various types of collagen are overex-
pressed in the adipose tissue. The predominantly expressed collagens are types I, 
IV, and VI, the latter being the most abundantly expressed (Halberg et al.  2009  ) . In 
this context, the authors generated collagen VI-null obese mice, showing that this 
manipulation resulted in increased adipose tissue mass, due to uninhibited expan-
sion of individual adipocytes. Interestingly, a similar phenotype of increased adipose 
cell size was reported in SPARC-null mice (Bradshaw et al.  2003  ) . Thus, accumula-
tion of ECM in adipose tissue might contribute to a failure to expand adipose tissue 
mass to accommodate excess caloric intake. Subsequently, this causes fi brosis and 
increases infl ammatory stress in adipose tissue (Halberg et al.  2009  ) . However, 
another study in DIO mice suggests that infl ammation and collagen deposition 
occur concomitantly in the adipose tissue (Strissel et al.  2007  ) , leaving unresolved 
the kinetic of events involved in the structural and infl ammatory alterations of 
adipose tissue in obesity. 

 In humans, adipose tissue remodeling and fi brosis are poorly documented. In 
2008, Henegar et al. showed for the fi rst time that major changes in the expression 
of a subset of genes encoding ECM components occur in adipose tissue of obese 
subjects and in response to weight loss (Henegar et al.  2008  ) . As a follow-up of 
these observations, picrosirius labeling of adipose tissue slides revealed that amount 
of fi brosis in subcutaneous adipose tissue was increased in obesity, along with 
increased infl ammatory state. More recently, Pasarica et al. reported that type VI 
collagen gene expression was elevated in moderately obese subjects, and that obese 
subjects with high collagen VI display increased adipose tissue infl ammation and 
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increased visceral adipose tissue mass (Pasarica et al.  2009  ) . In morbid obese 
individuals, the presence of different patterns of fibrous depots and detailed 
collagen fi bers organization in the adipose tissue was reported (Divoux et al. 
 2010  ) . Macrophages of both M1 and M2 phenotype and mast cells were the main 
immune cells found in fi brotic areas, where T lymphocytes were less frequent. 
Fibrosis is typically considered a fi broproliferative disorder with the uncon-
trolled production of ECM components by fi broblasts activated by an infl ammatory 
microenvironment. Recent studies suggest that adiponectin exerts antifi brotic effects 
partly by reducing profi brotic TGF- b  signaling in experimental models of liver or 
cardiac fi brosis (Kamada et al.  2003 ; Fujita et al.  2008  ) . Thus, reduced adiponectin 
production could contribute to promote fi brosis deposition in adipose tissue. The 
pathophysiological relevance of fi brosis in the adipose tissue, which might differ 
between fat depots, is yet to be explored in detail.  

    6.7   Adipose Tissue Infl ammation and Weight Loss 

    6.7.1   Moderate Weight Loss 

 Moderate weight loss induced by caloric restriction improves insulin sensitivity 
and other complications associated with obesity (Wing et al.  1987 ; Tuomilehto 
et al.  2001  ) . Diet-induced obesity is associated with a reduction of systemic infl am-
mation and specifi c metabolic adaptations, suggesting an interaction between nutri-
tion, the immune system and metabolism (Heilbronn et al.  2006 ; You and Nicklas 
 2006  ) . Interactions between adipose tissue macrophages and weight loss after 
caloric restriction have been investigated using large-scale transcriptomic analyses. 
In 2004, Clement et al. observed that weight loss induced by a very-low-calorie 
diet decreases the expression of infl ammatory markers in white adipose tissue of 
obese subjects and leads to the concomitant increased expression of molecules 
with anti-infl ammatory properties (Clement et al.  2004  ) . In another clinical study, 
transcriptomic analysis of subcutaneous adipose tissue following a specifi c dietary 
intervention program revealed that infl ammatory pathways and macrophages mark-
ers were unchanged or up-regulated during energy restriction and down-regulated 
during weight stabilization (Capel et al.  2009  ) . In a third study, adipose tissue mac-
rophages number was unchanged during short-term caloric restriction but substan-
tially decreased after a 6-month period of weight maintenance, without detectable 
change in macrophage phenotype (Kovacikova et al.  2011  ) . These observations in 
humans indicate that improvement of adipose tissue infl ammation following caloric 
restriction is a complex phenomenon, partly independent of body weight reduction. 
Kosteli et al. addressed this question in a model of DIO mice submitted to caloric 
restriction. They showed that macrophage recruitment to adipose tissue initially 
increased following caloric restriction and then declines (Kosteli et al.  2010  ) . The 
early increase in macrophages accumulation was not associated with a concomitant 
rise in infl ammatory gene expression. A series of experimental studies therefore 
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indicated that these macrophages phagocytose excess lipids without causing 
infl ammation, thereby contributing to restore local and systemic lipid homeostasis 
during the initial phases of caloric restriction.  

    6.7.2   Drastic Weight Loss Induced by Bariatric Surgery 

 Bariatric surgery is the most effective treatment to combat morbid obesity and 
deleterious metabolic complications (Sjostrom et al.  2004 ; Dixon et al.  2008  ) . It is 
well-established that weight loss induced by bariatric surgery improves infl amma-
tory status in obesity (Cottam et al.  2004 ; Esposito et al.  2003  ) . In 2005, Cancello 
et al. reported that weight loss is associated with major modifi cations of infi ltrating 
macrophages in subcutaneous adipose tissue. They show that fat mass reduction 
was associated with decreased numbers of adipose tissue macrophages and reduc-
tion of crown-like structures. After weight loss, remaining macrophages stained 
positive for the anti-infl ammatory cytokine IL10. The expression of chemoattrac-
tant genes (MCP-1, colony-stimulating factor-3, and plasminogen activator uroki-
nase receptor) was reduced after weight loss (Cancello et al.  2005  ) . These pioneering 
observations suggested a switch from a proinfl ammatory M1 phenotype towards an 
M2 macrophage polarization in response to weight loss. This point was reevaluated 
in an immunochemistry-based human study, where the authors showed that the M1/
M2 balance, estimated by the ratio of CD40 + /CD206 +  macrophages in subcutaneous 
adipose tissue, decreased after weight reduction (Aron-Wisnewsky et al.  2009  ) . 
Gastric by-pass induced weight loss improves an individual’s metabolic and infl am-
matory profi le (Buchwald et al.  2004  ) . While factors derived from M1 proinfl am-
matory macrophage induce insulin resistance and infl ammation in preadipocytes 
and/or adipocytes (Suganami et al.  2005 ; Lacasa et al.  2007  ) , it is tempting to specu-
late that amelioration of the M1/M2 balance towards a less proinfl ammatory state 
after weight loss contributes to the amelioration of metabolic condition.   

    6.8   Conclusion 

 Adipose tissue infl ammation and macrophage infi ltration are well-established 
features of obesity with different stages of severity and only partial reversion with 
weight loss (Fig.  6.5 ). The whole spectrum of instigators and physiopathological 
consequences of this infl ammation is yet to be defi ned. Actually, it remains to be 
fully established whether macrophages exert a rather benefi cial or deleterious role 
in the adipose tissue. In lean conditions, M2-like macrophages may contribute to 
maintain adipose tissue homeostasis. Obesity, which is associated with different 
stresses such as nutrient excess or adipocyte hypertrophy, could be considered an 
illustration of “para-infl ammation” according to the defi nition given by Medzhitov 
 (  2008  ) . Para-infl ammation refers to an adaptive response induced by tissue stress or 
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malfunction that is intermediate between basal and infl ammatory states. In this 
context, intense recruitment of macrophages (both M1 and M2) into adipose tissue 
might be part of adaptive mechanisms aimed at restoring tissue functionality and 
homeostasis. Thus, whether or not adipose tissue infl ammation could be a suitable 
therapeutic target in obesity remains an open question.       
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  Abstract   Adipose tissue growth occurs in the body at specifi c sites called adipose 
tissue depots. These fats depots form from the accumulation of adipocytes, the pre-
dominant cells of adipose tissue that are fi lled with triglycerides. Lately, adipose 
tissue is considered much more than an energy storage site. It is a source of hor-
mones, growth factors, cytokines, and signaling molecules that regulate body 
metabolism. Furthermore, adipose tissue growth occurs through increases in size 
and number of adipocytes, which in turn is determined by a balance of lipolysis, 
lipogenesis, and adipocyte proliferation. Recently, a life cycle for adipocytes is 
acknowledged, which includes proliferation, growth arrest, clonal expansion, termi-
nal differentiation, and apoptosis. Several factors affect adipocytes in their life 
cycle, and in the current chapter, major factors that infl uence the adipocyte life cycle 
are categorized into adipokines, transcription factors, hormonal factors, and nutri-
tional and environmental factors. Studying these factors that infl uence and target 
different stages of the adipocyte life cycle might prove benefi cial in understanding 
the physiological and pathophysiological mechanisms underlying adipose tissue 
development.  
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    7.1   Background 

 The overall regulation of adipose tissue mass involves complex interactions between 
endocrine, paracrine, and autocrine systems. While body weight and fat distribution 
were once considered to be genetically determined to a signifi cant extent (Stunkard 
et al.  1986  ) , recent evidence suggest that hypothalamic centers play a major role in 
modulating adipose tissue mass by controlling food intake, metabolic rate, and 
activity in a coordinated manner (Prins and O’Rahilly  1997  ) . The hypothalamic 
nuclei integrate peripheral signals, such as adiposity and caloric intake, to regulate 
important pathways within the central nervous system to control food intake. Thus, 
the hypothalamus acts as a “key controller” of food intake and energy homeostasis. 

 It is interesting to note that either excess fat in the body, as in case of obesity, or 
subnormal amounts of adipose tissue, as in the case of anorexia nervosa, contribute 
considerably to harmful metabolic consequences and represent signifi cant medical 
and socioeconomic burdens in the world today. The research on understanding the 
pathophysiology of adipose tissue has been expanding lately, and adipose tissue is 
now recognized as an endocrine organ that is biologically active and dynamic in 
addition to its long-established role as a passive reservoir for energy storage. 

 Adipose tissue is of two types: white adipose tissue (WAT) and brown adipose 
tissue (BAT). While the development of WAT is well studied with regards to adipo-
cyte biochemistry, very little is known about the ontogeny of BAT. Histologically, 
the number and size of mitochondria are much greater in BAT, compared to WAT 
indicating its primary role in energy dissipation. It should be noted that the func-
tions of BAT and WAT are opposite, in that WAT mainly acts as an energy storing 
tissue while BAT is a thermogenic tissue. Rodents have a distinct BAT organ located 
in the interscapular region. However, in humans, it surrounds the heart and great 
vessels only in newborns and tends to disappear as humans mature. Lately, the 
research interest in brown fat has considerably increased due to the fi nding that 
humans retain metabolically active BAT depots postnatally and by stimulating 
brown adipogenesis it is possible to combat human obesity (Fruhbeck et al.  2009  ) . 

 WAT can be broadly categorized into subcutaneous and visceral adipose tissues. 
Subcutaneous adipose tissue is located underneath the skin and also contributes to 
the physical functions including temperature regulation and thermal isolation. This 
type of adipose tissue is the main characteristic of the distinct body compositions of 
human males and females. Visceral adipose tissue occupies the body cavity sur-
rounding the internal organs. As lipid is mobilized from visceral adipose depots, it 
is released directly into the portal circulation, which has been suggested as a contrib-
uting factor in cardiovascular disease (Smith et al.  2001  ) . While there is a consensus 
that visceral fat has a strong association with cardiovascular risk factors, studies 
indicate that subcutaneous adipose tissue also has strong correlation with insulin 
sensitivity like visceral fat (Goodpaster et al.  1997  ) . In the current chapter, the term 
adipose tissue will be used synonymously with WAT, unless otherwise specifi ed. 

 Body fat distribution has been linked with several metabolic disorders. Usually, 
a predominant upper body fat distribution with increased visceral fat is associated 
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with an abnormal metabolic profi le (Bjorntorp  1991  ) . On the other hand, it is 
recognized that increasing amounts of lower body fat, which includes gluteal and 
leg depots, is associated with a reduced risk of metabolic complications (Snijder 
et al.  2004  ) . In addition to these sites, muscle and bone marrow are important sites 
for adipocyte accumulation especially in an aging adult. Bone marrow adipocytes 
act as negative regulators for hematopoietic environment, and enhanced adipo-
genesis is observed in bone marrow with aging and in individuals with osteoporo-
sis (Justesen et al.  2001  ) . Similarly, fat cells infi ltrate into muscle tissue with 
aging directly contributing to development of sarcopenia. Furthermore, fat accu-
mulation in skeletal muscle adversely infl uences plasma insulin and lipid metabo-
lism (Ryan and Nicklas  1999  ) . 

 WAT secretes a variety of bioactive peptides, known as adipokines, which act 
both locally (autocrine/paracrine) and centrally (endocrine) (Kershaw and Flier 
 2004  ) . It also expresses several receptors that mediate effects by responding to 
central and peripheral signals. A number of these adipokines and receptors signifi -
cantly contribute to adipocyte growth and development. First, we will discuss the 
adipocyte life cycle, and in the second half of the chapter, the major adipokines and 
receptors, enzymes, environmental factors, and other exogenous factors like phy-
tochemicals that affect adipocyte growth and development will be reviewed.  

    7.2   The Adipocyte Life Cycle 

 The metabolic properties of an adipocyte depend on its position within its own life 
cycle and the position within the life cycle of the organism. Although it is well 
established that the adipose tissue mass is determined by a balance of lipolysis, 
lipogenesis, adipocyte proliferation, and death (apoptosis), the metabolic conse-
quences of obesity depend on whether expansion of adipose tissue is achieved pri-
marily by an increase in adipocyte number or adipocyte size (Smith et al.  2006  ) . 

 The adipocyte life cycle starts with differentiation of adipocytes from either 
committed embryonic stem cells or mesenchymal stem cells (MSCs) and includes a 
growth phase followed by growth arrest, clonal expansion, and a complex sequence 
of changes in gene expression leading to storage of lipid and fi nally cell death 
(Gregoire  2001  )  (Fig.  7.1 ). Adipocytes differentiated both  in vitro  and  in vivo  have 
many similarities. Furthermore, the subcutaneous injection of preadipose cells in 
nude mice resulted in the development of mature fat pads that are histologically 
identical to WAT (Green and Kehinde  1979  ) . Nevertheless, primary cells, which are 
diploid, refl ect the  in vivo  milieu better than the aneuploid cell lines, and moreover, 
primary cells can be derived from fat pads obtained from various depots. Since 
depot-related molecular and biochemical differences have been observed in fat 
pads, primary cells hold an advantage over cell lines in this aspect (Gregoire et al. 
 1998  ) . In contrast, primary cells include a heterogeneous population of stromal vas-
cular preadipocytes, while cell lines are usually a uniform population of preadipo-
cytes, making the differentiation process uniform and consistent. 
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 The morphological studies performed on several species including humans reveal 
that WAT formation begins before birth (Slavin  1979 ; Poissonnet et al.  1983  ) . It is 
well accepted that adipocytes are derived from MSCs, which have the potential to 
differentiate into myoblasts, chondroblasts, osteoblasts, or adipocytes. In bone 
marrow, an inverse relationship exists between osteogenic and adipogenic differen-
tiation of the MSCs, and studies have suggested that MSCs are by default pro-
grammed to differentiate into adipocytes (Kirkland et al.  2002  ) . Thus, the presence 
of appropriate growth factors likely determines the developmental pathway being 
activated in the bone marrow, which is a major source of MSCs. Given that adipo-
cytes secrete several adipokines and cytokines that inhibit osteoblastic activity 
(Maurin et al.  2000  ) , once a certain level of bone marrow adiposity is reached, 
conditions may promote further adipogenesis at the expense of osteogenesis. 

  Fig. 7.1    Adipocyte life cycle. Mesenchymal stem cells are the precursors of preadipocytes. Once 
preadipocytes are triggered to mature, they proliferate and undergo growth arrest followed by a 
round of cell division known as clonal expansion and commitment to differentiation. Committed 
cells subsequently differentiate into mature adipocytes. This is accompanied by a dramatic increase 
in expression of adipocyte-specifi c genes. Mature adipocytes can continue storing lipid when 
energy intake exceeds output, and they can mobilize lipid through lipolysis when energy output 
exceeds input. Mature adipocytes can also undergo apoptotic cell death under certain conditions. 
Several adipokines, hormones, enzymes, nutritional, and environmental factors infl uence adipo-
cyte life cycle contributing to overall adipose tissue growth and development       
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In this regard, it is interesting to note that compounds regulating lipid metabolism 
may also have a signifi cant effect on bone formation in ovariectomized (Garrett 
et al.  2001  ) , estrogen-defi cient rats (Oxlund and Andreassen  2004  ) , and in post-
menopausal women (Lupattelli et al.  2004  ) . There is also evidence that an embry-
onic stem cell precursor that has the capacity to differentiate into the mesodermal 
cell types like chondrocytes, osteoblasts, and myocytes may give rise to adipocyte 
lineage as well (Konieczny and Emerson  1984  ) . However, the molecular events 
leading to the commitment of the embryonic stem cell precursor to the adipocyte 
lineage are not well characterized.  

    7.2.1   Growth Phase 

 During the growth phase, preadipocytes, both  in vitro  and  in vivo , morphologically 
resemble fi broblasts. Preadipocyte factor 1 (pref-1), a preadipocyte secreted factor, 
serves as a marker for preadipocytes and is extinguished during adipocyte differen-
tiation (Wang et al.  2006  ) . The morphological modifi cations in preadipocytes are 
usually accompanied by changes in the extracellular matrix (ECM) and cytoskeletal 
components. A decrease in actin and tubulin expression is an early event in adipo-
cyte differentiation that primarily contributes to morphological changes. These 
changes promote the expression of critical adipogenic transcription factors, includ-
ing CCAAT/enhancer binding protein  a  (C/EBP a ) and peroxisome proliferator-
activated receptor- g  (PPAR g ), which is a key factor for regulating adipogenesis. The 
change in cell shape is primarily mediated by the degradation of stromal ECM by 
plasminogen cascade, and plasminogen defi ciencies cause an inhibition of adipo-
cyte differentiation (Gregoire  2001  ) .   

    7.2.2   Growth Arrest 

 Committed preadipocytes have to withdraw from the cell cycle before undergoing 
adipose conversion. Thus, growth arrest is required for adipocyte differentiation of 
preadipose cell lines and primary preadipocytes, which is normally believed to be 
achieved by contact inhibition. However, recent reports suggest that cell–cell contact 
per se is not a critical factor, and cells plated even at low density can differentiate 
into adipocytes. C/EBP a  and PPAR g  are involved in the preadipocyte growth arrest 
that is required for adipocyte differentiation (Umek et al.  1991  ) . Several changes at 
the gene expression level take place during the preadipocyte to adipocyte transition 
phase. Other molecular markers like sterol regulatory element binding protein-1c 
(SREBP-1c), adipocyte determination and differentiation factor 1 (ADD1), and 
GATA binding transcription factors, GATA-2 and -3, play important roles in the 
molecular control of the preadipocyte–adipocyte transition (Gregoire et al.  1998 ; 
Gregoire  2001  )   
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    7.2.3   Clonal Expansion 

 Complex changes in gene expression patterns occur during clonal expansion. As 
preadipocytes enter into S phase, C/EBP a  plays a vital role by functioning as a 
transcriptional activator of adipocyte genes (Lane et al.  1999  ) . Notably, over 2,000 
genes are associated with the acquisition of adipocyte phenotype, over 100 of 
which are not yet characterized (Guo and Liao  2000  ) . During the mitotic clonal 
expansion, preadipocytes undergo one round of DNA replication, in order to 
differentiate into adipocytes. However, under  in vitro  conditions, primary preadi-
pocytes derived from human adipose tissue do not require cell division to enter the 
differentiation process as these cells undergo critical cell divisions  in vivo  
(Entenmann and Hauner  1996  ) .  

    7.2.4   Commitment to Differentiation 

 Before entering the pathway of adipocyte differentiation, the preadipocytes must be 
committed to the adipocyte lineage. The committed cells always require inducers or 
some stimulus to initiate the cascade of biochemical events that lead to adipocyte 
differentiation. Although C/EBP a  promotes withdrawal from the cell cycle during 
commitment, C/EBP a  alone is not suffi cient to promote differentiation in the 
absence of other inducing agents (Sadowski et al.  1992  ) .  In vitro  differentiation is 
normally induced by supplementing the cell culture media with dexamethasone, 
1-methyl-3-isobutylxanthin (IBMX), and insulin. Addition of these agents modu-
lates both the mRNA and protein levels of more than 100 adipocyte-specifi c tran-
scription factors. These rapidly induced proteins promote the terminal differentiation 
of adipocytes (Sadowski et al.  1992  ) . A dramatic decrease in pref-1 expression, 
which is abundant in preadipocytes and is not detectable in mature adipocytes, also 
accompanies adipocyte differentiation.  

    7.2.5   Terminal Differentiation 

 During the terminal phase of differentiation, activation of the transcriptional 
cascade leads to increased activity, protein, and mRNA levels for enzymes involved 
in triacylglycerol synthesis and degradation including ATP citrate lyase, malic 
enzyme, acetyl-CoA carboxylase, stearoyl-CoA desaturase (SCD1), glycerol-3-
phosphate dehydrogenase (GPDH), fatty acid synthase (FAS), and glyceraldehyde-
3-phosphate dehydrogenase (Spiegelman et al.  1983  ) . Adipocytes markedly increase 
de novo lipogenesis and acquire sensitivity to insulin in addition to increasing 
glucose transporters and insulin receptor numbers. Other adipose tissue-specifi c 
proteins like ap2, an adipocyte-specifi c fatty acid binding protein (FABP), fatty acid 
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translocase/cluster of differentiation 36    (CD36), a putative fatty acid transporter, 
and perilipin, a lipid droplet-associated protein, are also synthesized during this 
phase. Synthesis of adipocyte-secreted products including leptin, adipsin, resistin, 
and other cytokines also begins during the late phase of differentiation (Gregoire 
et al.  1998  ) .  

    7.2.6   Dedifferentiation 

 A hallmark for terminal differentiation of adipocytes is not clearly defi ned. There is 
evidence that the partially differentiated human preadipocytes could still undergo 
cell division leading to dedifferentiation. The dedifferentiated adipocytes look like 
fi broblasts, with long and spindle-shaped cytoplasmic extensions. Tumor necrosis 
factor- a  (TNF a ) promotes dedifferentiation in 3T3-L1 mature adipocytes or primary 
human adipocytes, resulting in loss of lipids and morphological changes. It should 
be noted that although preadipocytes and TNF a -treated adipocytes share many 
characteristics in terms of cell morphology and gene expression, pref-1 expression 
levels are not restored by TNF a , and thus, preadipocytes are likely to be different 
from dedifferentiated cells (Gregoire et al.  1998  ) .  

    7.2.7   Apoptosis 

 Mature adipocytes after terminal differentiation undergo apoptosis (Rayalam 
et al.  2008a  ) . Apoptosis, also called “programmed cell death,” is a self-directed-
cellular “suicide” and is different from other types of cell death. Cell shrinkage, 
chromatin condensation, cellular budding, and rapid phagocytosis by macrophages 
or adjacent cells are the typical events of apoptosis that occur in fi xed sequence 
(Hacker  2000  ) . The process of apoptosis involves a cascade of molecular events, 
and two apoptotic pathways are identifi ed to date, the extrinsic, or death receptor 
pathway, and the intrinsic, or mitochondrial pathway (Igney and Krammer  2002  ) . 
The extrinsic pathway is triggered by the binding of an extracellular ligand to a 
death receptor which belongs to TNF receptor gene superfamily (Locksley et al. 
 2001  ) . Apoptosis through the intrinsic pathway is not mediated by receptors but 
the signals produced in the cell lead to mitochondrial events, ultimately leading to 
DNA fragmentation and condensation of peripheral nuclear chromatin (Joza et al. 
 2001  ) . Recent fi ndings however suggest that, apart from induction of apoptosis in 
mature adipocytes, it is possible to selectively eliminate either preadipocytes or 
maturing preadipocytes by treating 3T3-L1 cells with certain phytochemicals 
(Rayalam et al.  2008a  ) . 

 It should be noted that in contrast to necrosis, apoptosis is executed in a precise 
manner without generating infl ammation. In obese mice, necrosis of adipocytes is 
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seen with formation of “crown-like structures” characterized by dead adipocytes 
surrounded by macrophages (Murano et al.  2008  ) . Conditions like hypoxia or 
increased production and release of certain chemikines by adipocytes have been 
implicated in the cause of necrosis (Pang et al.  2008  ) . While necrotic cell death is 
often associated with tissue damage resulting in infl ammatory response, apoptosis 
leads to apoptotic bodies which are rapidly recognized and phagocytized by either 
macrophages or adjacent epithelial cells causing no infl ammatory response.  

    7.2.8   Lipolysis 

 Lipolysis is defi ned as a process in which triacylglycerides, a major source of 
energy reserve in adipocytes, are hydrolyzed to generate fatty acids and glycerol. 
Mature adipocytes undergo lipolysis in an orderly manner with lipolytic enzymes 
acting sequentially at each step, during which triacylglycerol is hydrolyzed to 
form diacylglycerol, and then monoacylglycerol, with the liberation of fatty 
acids and glycerol (Duncan et al.  2007  ) . Obesity is associated with an increase in 
basal rates of lipolysis, contributing to the development of insulin resistance. 
Alterations in lipolysis are frequently associated with obesity, including an 
increase in basal rates of lipolysis that may contribute to the development of 
insulin resistance, as well as an impaired responsiveness to stimulated lipolysis 
(Large et al.  1999  ) . Hormone-sensitive lipase was once believed to control the 
process of lipolysis, but recent studies suggest the interplay of several novel adi-
pose tissue lipases and lipid droplet-associated proteins in triacylglycerol hydro-
lysis (Duncan et al.  2007  ) .   

    7.3   Factors Infl uencing the Adipocyte Life Cycle 

 It is well established that adipose tissue is a complex and highly active metabolic 
and endocrine organ (Ahima and Flier  2000  ) . In addition to adipocytes, adipose 
tissue contains connective tissue matrix, nerve tissue, stromal vascular cells, 
erythrocytes, endothelial cells, macrophages, and other immune cells (Frayn et al. 
 2003  ) . While most of the bioactive proteins are secreted from adipocytes, several 
secreted proteins are derived from the non-adipocyte fraction of the adipose tissue 
as well. 

 The factors that infl uence adipocyte growth and development are divided into 
four categories in this chapter: (1) proteins secreted by adipose tissue that have 
metabolic effects on distant cells or tissues, (2) transcription factors, (3) enzymes 
involved in the metabolism of lipids, (4) hormonal factors, and (5) environmental 
and nutritional factors (Table  7.1 ). 
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   Table 7.1    Summary of factors infl uencing adipocyte life cycle   

 Effect on adipocyte life cycle  References 

 Adipokines 
 Leptin  Reduced lipid accumulation in maturing 

3T3-L1 adipocytes and induced adipocyte 
apoptosis and lipolysis  in vivo  

 Ambati et al.  (  2007  )  and 
Della-Fera et al.  (  2001  )  

 Adiponectin  Reduced circulating free fatty acid levels and 
increased insulin sensitivity in obese mice 

 Fruebis et al.  (  2001  )  

 TNF a   Inhibited adipocyte differentiation and 
intracellular lipid accumulation 

 Xing et al.  (  1997  )  

 IL-6  Inhibited adipogenesis and lipoprotein lipase 
activity  in vitro  and increased free fatty 
acid concentrations  in vivo  

 Greenberg et al.  (  1992  )  and 
Fernandez-Real and 
Ricart  (  2003  )  

 Visfatin  Facilitated adipocyte differentiation  Sethi and Vidal-Puig  (  2005  )  
 Resistin  Plays a role in obesity-related insulin 

resistance and in adipocyte differentiation 
 Banerjee and Lazar  (  2003  )  

 Receptors and transcription factors 
 PPARs  PPAR g , master regulator of adipogenesis. 

Synthetic ligands for PPAR g  are potent 
inducers of adipocyte differentiation 

 Spiegelman et al.  (  1993  ) , 
Morrison and Farmer 
 (  2000  ) , and Viswakarma 
et al.  (  2010  )  

 C/EBPs  Ectopic expression of C/EBP a  or C/EBP b -
induced adipogenesis  in vitro  and mouse 
models with deletion of C/EBP genes 
resulted in severe abnormalities in fat 

 Morrison and Farmer 
 (  2000  ) , Lefterova and 
Lazar  (  2009  ) , and White 
and Stephens  (  2010  )  

 SREBP-1   In vitro  studies support a role in adipogenesis, 
while  in vivo  studies suggest that SREBPs 
are not required for adipose tissue 
expansion of adipose tissue 

 Kim et al.  (  1998  ) , Morrison 
and Farmer  (  2000  ) , 
and White and Stephens 
 (  2010  )  

 STATs  Promoted adipogenesis  in vitro   Teglund et al.  (  1998  )  and 
White and Stephens 
 (  2010  )  

 Enzymes and transporters 
 11 b HSD1  Increased lipid accumulation and visceral 

adiposity 
 Stewart and Tomlinson 

 (  2002  )  
 FAS  Key enzyme in de novo lipogenesis and catalyzes 

the synthesis of saturated fatty acids 
 Schmid et al.  (  2005  )  

 LPL  Is required for effi cient fatty acid uptake 
and storage 

 Wang and Eckel  (  2009  )  

 aP2  A marker of terminal cell differentiation  Spiegelman et al.  (  1983  )  
and Shen et al.  (  1999  )  

 GLUT-4  Is needed for optimal glucose metabolism  Fernyhough et al.  (  2007  )  

 Hormones 
 Insulin  Plays a central role in the regulation of 

adipocyte metabolism and presence of the 
insulin receptor is required for adipocyte 
differentiation 

 Rosen and Spiegelman 
 (  2000  )  and Accili 
and Taylor  (  1991  )  

(continued)
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    7.3.1   Adipokines 

 Well-studied adipokines that infl uence adipocyte growth through both central and 
peripheral mechanisms include leptin, adiponectin, TNF a , interleukin-6 (IL-6), 
visfatin, and resistin. A majority of these adipokines are implicated in insulin sensi-
tivity and appetite regulation (Fig.  7.2 ). 

    7.3.1.1   Leptin 

 Leptin was originally discovered as the missing protein in the genetically obese ob/
ob mouse (Halaas et al.  1995  )  and later was widely recognized for its ability to regu-
late adipose tissue mass by infl uencing food intake and energy expenditure. It is a 
16-kDa polypeptide containing 167 amino acids. Leptin expression and secretion in 
turn are regulated by several factors including insulin, glucocorticoids, TNF a , 
estrogens, and C/EBP a  and decreased by  b 3-adrenergic activity, androgens, free 
fatty acids, growth hormone (GH), and PPAR g  agonists (Margetic et al.  2002  ) . 

 Effect on adipocyte life cycle  References 

 GH  Stimulates lipolysis in mature adipocytes and 
primary preadipocytes while promotes 
adipogenesis in preadipocyte cell lines 

 Etherton  (  2000  )  and Kawai 
et al.  (  2007  )  

 IGF-1  Implicated in the regulation of adipocyte dif-
ferentiation and lipid accumulation  in vitro  

 Kloting et al.  (  2008  )  

 Glucocorticoids  Used to induce optimal differentiation of 
preadipocytes in culture 

 Gregoire  (  2001  )  

 Nutritional factors 
 Fatty acids  Dietary polyunsaturated fatty acids decreased 

lipid droplet size both  in vitro  and  in vivo  
 Madsen et al.  (  2005  )  

 Vitamins  Vitamins C, A, E, and D decreased adipocyte 
proliferation and inhibited lipid 
accumulation 

 Campion et al.  (  2006  ) , 
Viroonudomphol et al. 
 (  2003  ) , Bonet et al. 
 (  2003  ) , and Kong 
and Li  (  2006  )  

 Phytochemicals  Several phytochemicals like genistein, 
resveratrol, quercetin, xanthohumol, 
and guggulsterone decreased adipocyte 
proliferation and inhibited lipid 
accumulation  in vitro  

 Yang et al.  (  2007,   2008  ) , 
Park et al.  (  2008,   2009  ) , 
and Rayalam et al. 
 (  2008b  )  

 Environmental factors 
 BPA  Induced differentiation and stimulated lipid 

accumulation in 3T3-L1 adipocytes 
 Kidani et al.  (  2010  )  

 TBT  Promotes adipocyte differentiation and 
adipogenesis both  in vitro  and  in vivo  
via PPAR g  

 Inadera and Shimomura 
 (  2005  )  

Table 7.1 (continued)
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Leptin’s effects are mediated through its receptors, which are members of the 
cytokine receptor class I superfamily and are expressed in both the central nervous 
system and periphery. These receptors orchestrate complex metabolic changes in a 
number of organs and tissues, altering nutrient fl ux to favor lipid mobilization over 
lipid storage (Baile et al.  2000  ) . The effects of leptin on energy homeostasis are well 
documented, and recent studies suggest that leptin can also decrease adiposity by 
triggering apoptosis and lipolysis in adipocytes (Qian et al.  1998 ; Della-Fera et al. 
 2001  ) . Adipose tissue from rats given cerebral ventricular injections of leptin 
demonstrated features of apoptosis, including internucleosomal fragmentation of 
genomic DNA, elevated levels of DNA strand breaks, reduction in total DNA 
content, and cellular volume (Qian et al.  1998  ) . 

 The mechanisms of leptin-induced adipose tissue apoptosis are not fully under-
stood. Although most of the leptin’s effects on adipocyte apoptosis and lipolysis are 
believed to be centrally mediated by stimulation of the sympathetic nervous system, 
the possibility that leptin can act directly on adipocytes to induce apoptosis has not 
been thoroughly investigated, although leptin did not directly stimulate apoptosis in 

  Fig. 7.2    An overview of major factors infl uencing adipocyte differentiation and adiposity. While 
PPAR g  is considered a master regulator of adipogenesis, it negatively regulates bone formation in 
bone marrow. In contrast, vitamin D and Wnt/ b -catenin promote bone formation at the expense of 
adipogenesis. Transcription factors like C/EBPs promote the adipocyte differentiation. Adipokines 
leptin and adiponectin act as both endocrine and paracrine hormones and negatively regulate adi-
pogenesis, while the effect of infl ammatory cytokines (TNF- a  and IL-6) on adipose tissue growth 
is not clear. Glucocorticoids like dexamethasone promote adipogenesis  in vitro  and increase vis-
ceral adiposity  in vivo        
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3T3-L1 adipocytes  in vitro  (Ambati et al.  2007  ) . Nevertheless, leptin signifi cantly 
reduced lipid accumulation and GPDH activity in maturing 3T3-L1 preadipocytes, 
indicating that leptin may not act directly to induce adipocyte apoptosis, but can act 
directly to inhibit maturation of preadipocytes (Ambati et al.  2007  ) . Further, leptin 
can act to regulate the lipid storage characteristics and potential thermogenic func-
tions of fat even before birth (Yuen et al.  2003  ) .  

    7.3.1.2   Adiponectin 

 Adiponectin is an approximately 30-kDa polypeptide specifi cally expressed in 
differentiated adipocytes, and its expression is higher in subcutaneous than visceral 
adipose tissue (Fain et al.  2004  ) . Adiponectin receptors are G-protein coupled recep-
tors and are primarily expressed in muscle and liver. Accordingly, adiponectin has 
also been shown to augment lipid oxidation in skeletal muscle and to reduce hepatic 
glucose production in liver. Likewise, a close correlation exists between reduced 
plasma levels of adiponectin and obesity, insulin resistance, and cardiovascular dis-
ease. Before the onset of obesity, plasma adiponectin levels decline and administra-
tion of adiponectin improves insulin sensitivity, suggesting that hypoadiponectinemia 
might be a contributing factor for obesity (Hotta et al.  2001  ) . Furthermore, admin-
istration of adiponectin to obese mice reduces circulating free fatty acid levels by 
enhanced skeletal muscle fat oxidation and enhances insulin sensitivity (Fruebis 
et al.  2001  ) . In addition, lack of adiponectin induces glucose intolerance and insulin 
resistance and increases serum unsaturated fatty acids without a signifi cant effect on 
food intake or body weight (Maeda et al.  2002  ) . 

 Although cellular mechanisms regulating adiponectin are not completely under-
stood, it is believed that most of adiponectin’s effects are mediated via increased 
phosphorylation of the insulin receptor, activation of 5 ¢  adenosine monophosphate-
activated protein kinase (AMPK), and modulation of the nuclear factor  k B pathway 
(Chandran et al.  2003  ) . Recently, adiponectin receptors were shown to be expressed 
in adipocytes, and overexpressing adiponectin in adipocytes leads to the downregu-
lation or desensitization of receptors as a result of negative feedback effects and to 
lipid accumulation in adiponectin overexpressing cells. Thus, the regulation of 
adipocyte metabolism and adipose tissue mass  in vivo  by adiponectin may be due in 
part to its actions as an autocrine or paracrine factor (Fu et al.  2005  ) .  

    7.3.1.3   TNF a  

 TNF a  is a 26-kDa transmembrane protein with pleiotropic effects on cellular 
proliferation and differentiation. TNF a  exerts its effects by binding as a trimer to 
type I or type II TNF a  receptors (also called CD120a and CD120b respectively), 
which belong to TNF receptor super family that includes Fas receptor, CD40, CD27, 
osteoprotegerin, and receptor activator of nuclear factor kappa B   . Both TNF a  and 
its receptors are expressed in adipocytes, and like adiponectin, the expression levels 
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of TNF a  are greater in subcutaneous compared with visceral adipose tissue (Fain 
et al.  2004  ) . 

 Adipose tissue expression of TNF a  is increased in obese rodents and humans, 
and plasma levels of TNF a  have been positively correlated with obesity and insulin 
resistance. Accordingly, TNF a  has been implicated in the pathogenesis of obesity 
and metabolic syndrome. Furthermore, chronic exposure to TNF a  inhibits adipo-
cyte differentiation and intracellular lipid accumulation and induces insulin resis-
tance (Xing et al.  1997  ) . One possible mechanism by which TNF a  indirectly impairs 
insulin signaling is by increasing serum-free fatty acids. While treatment with solu-
ble TNF receptors improves insulin sensitivity in rodents, insulin resistance in 
humans is unaltered (Ruan and Lodish  2003  ) . 

 Potential mechanisms through which TNF a  acts have been investigated by sev-
eral groups. Adipocytes treated with TNF a  fail to express adipocyte-specifi c genes 
leading to diminished lipid accumulation. Regardless, expression of Pref-1, a pread-
ipocyte marker, is not altered by TNF a  and rather decreases in a manner indistin-
guishable from that of cells not treated with TNF a . On the contrary, a signifi cant 
decrease in the expression of PPAR g  expression was observed with TNF a  treatment 
(Xing et al.  1997  ) . Also, in adipose tissue, TNF a  represses genes involved in uptake 
and storage of unsaturated fatty acids and glucose and changes expression of several 
adipocyte-secreted factors including adiponectin and IL-6 (Ruan et al.  2002  ) . Thus, 
TNF a  affects multiple metabolic processes and is responsible for a diverse range of 
signaling events within adipocytes.  

    7.3.1.4   IL-6 

 IL-6 is a 22–27 kDa immune-modulating adipokine associated with obesity and 
insulin resistance. Both circulating and adipose tissue IL-6 levels are positively 
correlated with obesity and insulin resistance (Fernandez-Real and Ricart  2003  ) . 
The receptor for IL-6 is homologous to that for leptin, and like IL-6, its receptor is 
also expressed by both adipocytes and adipose tissue matrix. One third of total 
circulating concentrations of IL-6 originate from adipose tissue. While the isolated 
adipocytes contribute to only 10% of IL-6 secretion, the stromal vascular cellular 
fraction, including stromal preadipocytes, is a major source for IL-6. Thus, in con-
trast to adiponectin and TNF a , expression and secretion of IL-6 is two to three 
times greater in visceral relative to subcutaneous adipose tissue (Fain et al.  2004  ) . 

  In vitro , IL-6 inhibited adipogenesis and lipoprotein lipase (LPL) activity 
(Greenberg et al.  1992  ) . In addition, induction of differentiation in human preadipo-
cytes markedly reduced IL-6 mRNA levels (Wang et al.  2005  ) .  In vivo , IL-6 infu-
sion led to increased free fatty acid concentrations and fasting triglycerides 
(Fernandez-Real and Ricart  2003  ) . These peripheral effects of IL-6 confi rm a causal 
role for IL-6 in obesity and insulin resistance. On the contrary, the central effects of 
IL-6 are quite complex. Intracerebroventricular administration, but not intraperito-
neal administration, of IL-6 in rats resulted in enhanced energy expenditure leading 
to weight loss. Since IL-6 is expressed in both adipose tissue and hypothalamic 
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nuclei, the authors concluded that IL-6 acting centrally, but not peripherally, exerts 
anti-obesity effects in rodents (Wallenius et al.  2002  ) . Thus, IL-6 has different 
effects on lipid metabolism and energy homeostasis in the periphery and in the 
central nervous system.  

    7.3.1.5   Visfatin 

 Visfatin (pre-B-cell colony-enhancing factor, PBEF) is a novel adipokine that is 
preferentially produced in the intra-abdominal adipose tissue of obese mice and 
humans and has insulin-mimetic actions (Fukuhara et al.  2005  ) . It is interesting to 
note that adipokines that promote insulin resistance like TNF  a  and IL-6 regulate 
the expression of visfatin (Ognjanovic et al.  2001  ) . Plasma visfatin concentrations 
correlate with intra-abdominal fat mass but not with subcutaneous fat mass and/or 
type 2 diabetes mellitus in humans. Visfatin acts by binding to the insulin receptor 
at a site distinct from insulin and exerts hypoglycemic effect by reducing glucose 
release and stimulating glucose utilization in peripheral tissues (Beltowski  2006  ) . 
Owing to these effects, visfatin is considered to possess both endocrine and para-
crine effects. In the visceral adipose tissue, visfatin facilitates the differentiation of 
the adipose tissue through its pro-adipogenic and lipogenic actions (Sethi and Vidal-
Puig  2005  ) . In porcine preadipocytes, visfatin upregulated LPL expression facilitat-
ing lipid uptake and increased the gene expression of FAS in differentiated adipocytes 
to enhance lipogenic activity. In addition, the overexpression of visfatin in a preadi-
pocyte cell line facilitated its differentiation to mature adipocytes and promoted the 
accumulation of fat through the activation of glucose transport and lipogenesis 
(Sethi and Vidal-Puig  2005  ) . Thus, as an endocrine hormone, visfatin modulates 
insulin sensitivity in peripheral tissues, and as an autocrine/paracrine hormone, it 
promotes adipocyte proliferation and fat deposition in visceral adipose tissue (Sethi 
and Vidal-Puig  2005  ) .  

    7.3.1.6   Resistin 

 Resistin, also known as adipocyte secreted factor and “found in infl ammatory zone 
3,” is a recently described protein whose expression is adipocyte specifi c and down-
regulation by thiazoladinediones in rodents (Banerjee and Lazar  2003  ) . Resistin 
expression is 15-fold greater in visceral compared with subcutaneous adipose tissue. 
The function of resistin is not well understood, but there is evidence that it plays a 
role in obesity-related insulin resistance as well as in adipocyte differentiation 
(Banerjee and Lazar  2003  ) . The expression of the resistin gene is promoted by 
C/EBP a  binding, which leads to the recruitment of transcriptional coactivators 
in murine adipocytes (Hartman et al.  2002  ) . It should be remembered, however, 
that human resistin shares only 64% homology with murine resistin and is expressed 
at very low levels in adipocytes (Banerjee and Lazar  2003  ) . Hence, studies in 
humans have failed to provide a link between resistin expression in adipose tissue 
or circulating resistin levels and adiposity or insulin resistance. Recent clinical studies, 
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however, demonstrated that resistin was more strongly associated with infl ammatory 
and fi brinolytic markers than with obesity or insulin resistance, and suggested that 
the associations of resistin with insulin resistance and metabolic syndrome could be 
due to resistin’s effects on infl ammatory markers like plasminogen activator inhibitor 
1 (PAI-1) levels (Qi et al.  2008  ) .  

    7.3.1.7   Plasminogen Activator Inhibitor 

 PAI-1 is the primary physiological inhibitor of fi brinolysis by inhibiting tissue-type 
plasminogen activation  in vivo . It is expressed by many cell types within adipose 
tissue including adipocytes, and its expression and secretion are greater in visceral 
relative to subcutaneous adipose tissue (Fain et al.  2004  ) . Fully differentiated 3T3-
L1 adipocytes in culture produce signifi cant levels of PAI-1 mRNA and protein. 
 In vivo , plasma PAI-1 activity is approximately fi vefold higher in obese mice than 
in their lean counterparts, and in humans, PAI-1 levels are drastically upregulated in 
obesity associated with glucose intolerance, insulin resistance, hyperinsulinemia, 
and type 2 diabetes mellitus (Loskutoff and Samad  1998  ) . Studies indicate that the 
increased levels of TNF a  in the adipose tissues in obesity act through an autocrine 
manner to stimulate PAI-1 biosynthesis by the adipocyte and other cells in the 
adipose tissue (Loskutoff and Samad  1998  ) .   

    7.3.2   Receptors and Transcription Factors 

 In addition to adipokines that act both locally and centrally, adipocytes also express 
several receptors to respond to afferent signals from periphery and central nervous 
system. Moreover, the structural and functional changes associated with adipocyte 
growth and differentiation involve changes in the expression levels of several 
hundred proteins. A complex network of transcription factors, together with specifi c 
transcriptional coactivators and corepressors, respond to afferent stimuli in the 
process of controlling the conversion of progenitor mesenchymal cells into fully 
functional adipocytes. Most of these changes occur at the level of gene expression 
through a series of molecular events involving several receptors and transcription 
factor families. Major adipocyte-specifi c factors that play a regulatory role in the 
process of adipogenesis are peroxisome proliferator-activated receptors, C/EBP 
binding proteins, sterol regulatory element binding protein (SREBP) -1c, and signal 
transducers and activators of transcription (STATs). 

    7.3.2.1   Peroxisome Proliferator-Activated Receptors 

 These are nuclear hormone receptors, which play a central role in the control of 
adipocyte gene expression and differentiation. The ligand–receptor interactions 
modulate the transcriptional regulation of adipogenesis. PPAR a , PPAR g , and PPAR d  
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are the three known receptors in this family, and they exhibit diverse functions, 
despite the fact that they all bind to the same response elements. PPAR g  is expressed 
predominantly in adipose tissue, and its expression is induced very early in the adi-
pocyte differentiation process as discussed in the earlier sections. PPAR a  is 
expressed in liver, kidney, small intestine, heart, and skeletal muscle, and plays a 
prominent role in regulating lipid catabolism. On the other hand, PPAR d  is ubiqui-
tously expressed with relatively higher levels found in brain, adipose tissue, and 
skin. Activation of PPAR d  also induces expression of genes required for fatty acid 
oxidation and energy dissipation in skeletal muscle and adipose tissue (Braissant 
et al.  1996 ; Brun and Spiegelman  1997  ) . 

 PPAR g  is considered the master regulator of adipogenesis. Compelling evidence 
from both  in vitro  and  in vivo  studies supports this fact. Thiazolidinediones, the 
potent inducers of adipocyte differentiation, are high affi nity synthetic ligands for 
PPAR g . Also, ectopic expression of PPAR g  in multiple cell lines under adipogenic 
conditions caused enhanced induction of adipocyte differentiation, suggesting that 
PPAR g  is an essential regulator for adipocyte differentiation and promotes lipid storage 
in mature adipocytes (Barak et al.  1999  ) . Recently, 15-deoxy-Δ 12,14 -prostaglandin 
J2, a derivative of prostaglandin J2, has also been identifi ed as a naturally occurring 
ligand for PPAR g  (Forman et al.  1995  ) . While even a slight activation of transcrip-
tional activity with these natural and synthetic compounds leads to robust adipocyte 
differentiation in cells expressing PPAR g , PPAR a  expressing cells require signifi -
cant activation. On the contrary, adipocyte cells expressing PPAR d  did not differen-
tiate, even when treated with strong activators of PPAR d  (Brun et al.  1996  ) . 

 PPARs exist as heterodimers in the nucleus with retinoid X receptor- a  bound to 
DNA with corepressor molecules, nuclear receptor corepressor, and silencing medi-
ator of retinoid and thyroid hormone receptor. Upon activation with specifi c ligands, 
PPARs undergo conformational changes, dissociate with corepressor molecules, 
and recruit transcription cofactors that increase the gene transcription (Spiegelman 
et al.  1993 ; Morrison and Farmer  2000 ; Viswakarma et al.  2010  ) .  

    7.3.2.2   CCAAT/Enhancer-Binding Proteins 

 C/EBPs were the fi rst transcription factors shown to play a critical role in adipocyte 
differentiation. These proteins belong to a highly conserved family of leucine zipper 
transcription factors, which function through homo- and heterodimeric complexes 
with C/EBP family members. Although six members have been identifi ed in this 
family, only C/EBP a , C/EBP b , and C/EBP d  have been studied extensively for 
their roles in regulating adipogenesis. Ectopic expression of C/EBP a  or C/EBP b  
induces adipogenesis in nonprogenitor fi broblasts, and mouse models with deletion 
of C/EBP genes resulted in severe abnormalities in fat. While whole body ablation of 
C/EBP a  leads to reduced WAT in adult mice, it should be noted that C/EBPs  b  and 
 d  are responsible for inducing C/EBP a  expression. Of note, ectopic PPAR g  expression 
stimulated adipogenesis in C/EBP a -defi cient murine fi broblasts suggesting that 
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C/EBP a  is dispensable in adipocytes. Furthermore, combined loss of C/EBP a  and 
- b  dramatically reduces the expression of many genes, including FABP, adiponectin, 
and hormone sensitive lipase. Collectively, these data demonstrate a substantial role 
for all the three C/EBPs in the transcriptional activation of adipocyte-specifi c 
genes during the development of adipocyte differentiation,  in vitro  and  in vivo  
(reviewed in Morrison and Farmer  2000 ; Lefterova and Lazar  2009 ; White and 
Stephens  2010  ) .  

    7.3.2.3   Sterol Regulatory Element Binding Proteins (SREBPs) 

 SREBPs are basic helix-loop-helix transcription factors that are expressed in adipo-
cytes and regulated during adipogenesis. Initially SREBP was called ADD1 for 
adipocyte differentiation and determination. The SREBP family consists of three 
proteins, designated SREBP-1a, -1c, and -2. Regulation of fatty acid biosynthesis is 
mediated primarily by SREBP-1a and -1c, and SREBP-2 is relatively selective and 
mediates transcriptional activation of cholesterol biosynthetic genes.  In vivo , adi-
pose tissue expresses predominantly SREBP-1c over other forms of SREBP, and 
ectopic expression of SREBP-1c enhances adipocyte gene expression in nonpro-
genitor murine fi broblasts under adipogenic conditions. However, expression of 
SREBP-1c alone is only capable of inducing adipogenesis to a limited extent, and 
additional studies suggest that SREBP-1c contributes to the production of PPAR g  
ligands, thereby facilitating the action of PPAR g . Collectively,  in vitro  studies sup-
port a role for SREBP-1 in adipogenesis, while  in vivo  studies suggest that SREBPs 
are not required for the production or expansion of adipose tissue (Kim et al.  1998 ; 
Morrison and Farmer  2000 ; White and Stephens  2010  ) .  

    7.3.2.4   Wnt and  b -Catenin 

 Wnts comprise a family of highly conserved secreted glycoproteins that act in a 
paracrine or autocrine manner by binding cell-surface receptors. The canonical Wnt 
signaling cascades activate the transcriptional regulator  b -catenin. In the absence of 
Wnts,  b -catenin undergoes proteosomal degradation. However, when Wnts bind to 
Frizzled receptors and low density lipoprotein receptor-related protein co-receptors, 
degradation complex that drives  b -catenin degradation is inactivated, resulting in 
the translocation of  b -catenin to the nucleus where it binds to other transcription 
factors to activate Wnt target genes (Cadigan and Nusse  1997 ; Miller et al.  1999  ) . 

 Wnt pathway activation in 3T3-L1 preadipocytes caused impaired differentia-
tion, while inhibition of  b -catenin activity caused enhanced adipogenesis in 
preadipocytes. Furthermore, a reciprocal relationship exists between Wnt signal-
ing and C/EBP b  or PPAR g , as activation of these factors led to a substantial 
reduction in  b -catenin levels. Wnt signaling has been implicated in regulating MSC 
maintenance, proliferation, fate determination, and preadipocyte differentiation. 
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Thus, Wnt/ b -catenin signaling acts as a molecular switch that when activated, 
represses adipogenesis (Ross et al.  2000 ; Moldes et al.  2003  ) .  

    7.3.2.5   Signal Transducers and Activators of Transcription (STATs) 

 STATs comprise a family of cytoplasmic proteins that are activated by and mediate 
gene expression in response to extracellular stimuli that target mainly cytokine 
receptors. Ligand-mediated dimerization of the receptor results in phosphorylation 
of tyrosine residues on STATs causing their translocation to the nucleus to mediate 
specifi c gene expression. Induction of differentiation in murine and human preadi-
pocytes causes upregulation of STATs 1, 5A, and 5B. 

 Further, STATs 5A and 5B are coordinately regulated by both PPAR g  and C/
EBP a  in differentiating 3T3-L1 cells under a variety of conditions. Ectopic expres-
sion of STAT5A confers adipogenesis in 3T3-L1 preadipocytes and transgenic dele-
tion of STATs 5A and 5B in mice resulted in signifi cantly reduced fat pad sizes 
compared to wild-type mice. Taken together, these studies demonstrate that STAT 
proteins play a signifi cant role in adipogenesis (Teglund et al.  1998 ; White and 
Stephens  2010  ) .  

    7.3.2.6   Kruppel-Like Factors (KLFs) 

 Kruppel-like factors (KLFs) are DNA binding transcriptional regulators that play 
diverse roles in cell proliferation, differentiation, and development in mammals. 
Recent studies indicate that KLFs also have important roles in adipogenesis. KLF4 
transactivates the C/EBP b  promoter and is now considered to be among the initia-
tors of the adipogenic program. One protein in the KLF family, KLF15, conferred 
adipogenesis in non-precursor cells and resulted in the induction of PPAR g  expres-
sion. In addition to promoting lipid accumulation, KLF15 also increases the 
expression of glucose transporter type 4 (GLUT4). Interestingly, KLF proteins that 
have been implicated in adipogenesis can either promote or impair the process and 
have different expression patterns. While KLFs 4, 15, and 6 favor adipogenesis, 
other members of the KLF family exhibited negative effects on adipogenesis. 
Although there is enough evidence that KLFs play an essential role in adipogene-
sis, the cross talk between these transcription factors with PPAR g  and C/EBP a  
needs further investigation to fully elucidate the roles of KLFs in adipocyte dif-
ferentiation (Mori et al.  2005 ; Lefterova and Lazar  2009  ) .   

    7.3.3   Enzymes and Transporters 

 A number of enzymes are involved in lipid metabolism and indirectly infl uence the 
growth and development of adipose tissue. 
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    7.3.3.1   11 b -Hydroxysteroid Dehydrogenase 

 11 b -Hydroxysteroid dehydrogenase type 1 and 2 (11 b HSD1 and 2) are involved in 
the conversion of cortisone to cortisol. 11 b HSD1 is highly expressed in adipose 
tissue, and overexpression of the enzyme and increased cortisol levels resulted in 
lipid accumulation and an increase in visceral adiposity (Stewart and Tomlinson 
 2002  ) . Further, pharmacological inhibition of 11 b HSD1 in humans increases insu-
lin sensitivity, suggesting a potential therapeutic role for 11 b HSD1 inhibition in the 
treatment of obesity and insulin resistance (Walker et al.  1995  ) .  

    7.3.3.2   Acyl Coenzyme A: Diacylglycerol Acyltransferase 1 (DGAT1) 

 Diacylglycerol acyltransferase 1 (DGAT1) acts as a key enzyme in the synthesis of 
triglycerides, the main form of excess calorie storage in fat. DGAT1 is a microsomal 
enzyme with high expression in WAT, and overexpression causes increased triglyc-
eride levels. The mRNA and protein levels of DGAT1 markedly increase after 
induction of differentiation in 3T3-L1 adipocytes in parallel with DGAT activity. 
DGAT1-defi cient mice are resistant to diet-induced obesity due to increased energy 
expenditure, while overexpression of DGAT1 in adipose tissue results in increased 
adiposity but is not accompanied by loss of insulin sensitivity. It may be relevant 
that in 3T3-L1 adipocytes, overexpression of DGAT1 results in increased secretion 
of TNF a  which is known to interfere with insulin signaling (Yu et al.  2002  ) .  

    7.3.3.3   Aromatase and 17 b HSD 

 Enzymes cytochrome P450-dependent aromatase and 17 b HSD are highly expressed 
in adipose tissue stromal cells and preadipocytes. While aromatase mediates the 
conversion of androgens to estrogens, 17 b HSD mediates the conversion of weak 
androgens/estrogens to their more potent counterparts. The ratio of 17 b HSD to aro-
matase is positively correlated with central adiposity, implicating increased local 
androgen production in visceral adipose tissue. Moreover, targeted deletion of 
aromatase in mice and naturally occurring mutations in aromatase in humans 
caused increased visceral adiposity, dyslipidemia, and insulin resistance (Meseguer 
et al.  2002  ) .  

    7.3.3.4   Fatty Acid Synthase (FAS) 

 FAS is the key enzyme in de novo lipogenesis and catalyzes the synthesis of satu-
rated fatty acids, predominately palmitate, from acetyl-CoA and malonyl-CoA 
precursors. FAS is expressed at high levels in adipose tissue, liver, and lung. Since 
exogenous saturated fatty acids are abundantly available through diet in humans, 
FAS is considered an enzyme of minor importance. However, recently, central 
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effects of FAS on inhibition of food intake were revealed, indicating that FAS is not 
only involved in providing metabolic substrates, but also plays a role in satiety 
signaling. In addition, the substrates provided for triacylglycerol synthesis by FAS 
upregulation during differentiation of preadipocytes maintain the signaling for the 
differentiation process to complete, and an inhibition of FAS activity results in inhi-
bition of preadipocyte differentiation and possibly reduction of adipose tissue 
(Schmid et al.  2005  ) .  

    7.3.3.5   Lipoprotein Lipase (LPL) 

 LPL is one of the fi rst genes induced during the process of adipocyte differentiation. 
LPL is a multifunctional enzyme and is expressed at high levels in adipose tissue 
and muscle. It is a rate-limiting enzyme that hydrolyzes triglyceride-rich lipopro-
teins to generate fatty acids for uptake in peripheral tissues. During adipocyte dif-
ferentiation, insulin has a major effect on both LPL expression and activity by 
increasing its gene transcription, affecting posttranscriptional and posttranslational 
mechanisms. LPL activity has also been reported to increase as a function of fat cell 
size. Studies using 3T3-L1 adipocytes further establish that adipocyte-derived LPL 
is required for effi cient fatty acid uptake and storage (Wang and Eckel  2009  ) .  

    7.3.3.6   Fatty Acid Binding Proteins (FABPs) 

 FABPs belong to a family of low-molecular-weight cytoplasmic proteins involved in 
intracellular transport and metabolism of fatty acids (Storch and Thumser  2000  ) . 
Adipocyte FABP, also called FABP4 or aP2, is the predominant FABP and is expressed 
in much higher levels compared to other forms of FABPs in adipocytes. aP2 protein 
is implicated in aiding the transport of hormone-sensitive lipase to the lipid droplet. 
aP2 expression is believed to be involved in upholding the balance between lipogen-
esis and lipolysis in differentiating preadipocytes. Most importantly, the expression 
of aP2 is highly regulated during adipocyte differentiation and is regarded as a marker 
of terminal cell differentiation (Spiegelman et al.  1983 ; Shen et al.  1999  ) .  

    7.3.3.7   Glucose Transporter Type 4 (GLUT4) 

 Glucose transport occurs relatively late in the differentiation program after the 
expression of PPAR g  and C/EBPs and involves a family of integral membrane 
proteins called glucose transporters. Of all the members of this family, GLUT4, a 
high affi nity glucose transporter, is highly expressed in adipose tissue and muscle 
(Pessin et al.  1999  ) . In the basal state 2–5% of GLUT4 protein is at the plasma 
membrane and remainder is localized to intracellular compartments. In response to 
insulin stimulation, about 50% of the protein is upregulated and localized in plasma 
membrane. The expression of GLUT4 is greatly increased during differentiation of 
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the preadipocytes, and both PPAR g  and C/EBP a  upregulate GLUT4 expression. 
PPAR g  also directly modulates insulin-signaling pathway for GLUT4 to function 
within the cell. GLUT4 expression, or the expression of other metabolic markers, is 
needed for optimal glucose metabolism in monogastric animals, but may be depot 
dependent in some species like ruminants. Thus, GLUT4 expression is needed for 
optimal glucose metabolism (Fernyhough et al.  2007  ) .   

    7.3.4   Hormones 

 Adipose tissue growth and development are controlled by a complex cross talk 
between central, hormonal, environmental, and nutritional stimuli. Studies regard-
ing the endocrine regulation of adipose tissue development  in vivo  are not extensive. 
On the other hand, numerous studies have been reported on the hormonal regulation 
of adipogenesis at cellular and molecular levels  in vitro . Clearly, the hormonal regu-
lation is intricately required for adipose tissue development. 

    7.3.4.1   Insulin 

 Insulin is the most important hormonal factor infl uencing adipogenesis and lipo-
genesis. Effi cient differentiation of adipocytes  in vitro  requires insulin. Insulin 
further increases the percentage of cells that differentiate and also increases the 
amount of lipid accumulation in each fat cell (Girard  1994  ) . Insulin promotes 
lipogenesis by increasing the uptake of glucose in the adipocyte via recruitment of 
glucose transporters to the plasma membrane, as well as by activating lipogenic 
enzymes. The effects of insulin in adipocytes are achieved by the binding of insulin 
to the insulin receptor and thus activating it via tyrosine phosphorylation (Lane 
et al.  1990  ) . 

 The presence of the insulin receptor is required for adipocyte differentiation 
(Accili and Taylor  1991  ) . Inhibition of phosphatidyl inositol 3-kinase has been 
shown to block insulin-induced differentiation of 3T3-L1 preadipocytes. Insulin 
also plays a central role in the regulation of adipocyte metabolism, by acting as a 
potent inhibitor of lipolysis. It is interesting to note that although preadipocytes 
express few insulin receptors, the effects of insulin on differentiation have been 
shown to occur through cross-activation of the insulin-like growth factor 1 (IGF-1) 
receptor (Rosen and Spiegelman  2000  ) . 

 Hyperinsulinemia, induced either by administration of exogenous insulin or an 
increase in the production of endogenous insulin, is associated with signifi cant 
weight gain and is a characteristic feature of obesity. Several molecules like TNF a , 
leptin, and resistin interfere with insulin signaling both  in vitro  and  in vivo  and 
antagonize its effects at multiple levels in adipocytes. Conversely, some adipokines 
like adiponectin and omentin act as insulin-sensitizing agents by promoting insulin-
stimulated glucose uptake (Karastergiou and Mohamed-Ali  2010  ) .  



216 S. Rayalam and C.A. Baile

    7.3.4.2   Growth Hormone (GH) 

 Another hormone that has an important infl uence on adipocyte development and 
lipogenesis is GH. There are disparities in the effects of GH on adipogenesis and 
lipogenesis,  in vivo  and  in vitro . GH affects both proliferation and differentiation 
of preadipocytes, although this varies between clonal cell lines and preadipocyte 
cultures. While GH stimulates lipolysis in mature adipocytes and primary preadi-
pocytes, it promotes adipogenesis in preadipocyte cell lines. In contrast, GH 
inhibits lipogenesis by decreasing insulin sensitivity leading to downregulation 
of FAS  in vivo .  In vitro  effects of GH on stimulating adipogenesis are mediated 
via GH-STAT 5A/5B signaling pathway in cooperation with C/EBPs and PPAR g , 
and the effect of GH on promoting lipolysis  in vitro  in mature adipocytes is 
through inhibition of LPL. Some effects of GH are indirectly mediated through 
the GH-mediated secretion of IGF-1 within adipose tissue (Etherton  2000 ; Kawai 
et al.  2007  ) .  

    7.3.4.3   Insulin-Like Growth Factor 1 (IGF-1) 

 Initially, IGF-1 was considered a hepatic derived factor produced in response to GH; 
however, it was subsequently found that IGF-1 is locally produced by several other 
tissues, and adipose tissue is a major source. Importantly, GH is the main regulator 
of IGF-I mRNA expression in adipose tissue. Both IGF-1 and its receptor, IGF-1 
receptor (IGF-1R), have been implicated in the regulation of adipocyte differentia-
tion and lipid accumulation  in vitro . In 3T3-L1 cells and human MSC, activation of 
IGF-1R, either by IGF-1 or insulin, leads to the modulation of several signal trans-
duction pathways, including Akt, which stimulates cell growth and lipogenesis. Yet, 
recent fi ndings indicate that IGF-1R signaling in adipocytes is not crucial for the 
development and differentiation of adipose tissue  in vivo  (Kloting et al.  2008  ) .  

    7.3.4.4   Thyroid Hormones 

 Thyroid hormones regulate the expression of several adipocyte-specifi c genes and 
markers of differentiation like those involved in adipogenesis, lipogenesis, and 
lipolysis. In rodents, hypothyroidism induces a transient hypoplasia, whereas 
hyperthyroidism induces a transient hyperplasia of retroperitoneal and epididyma1 
fat tissues. Triiodothyronine (T3) regulates the expression of PPAR g  through specifi c 
thyroid response elements. The availability of T3 in turn depends on deiodinases 
D1, D2, and D3, and of these, D2 plays an important role in adipocyte differentia-
tion. Cross talk between ligand-activated thyroid hormone receptors and other 
nuclear hormone receptors like PPAR g , liver X receptor alpha, and farnesoid X 
receptor (TR) is suggested to infl uence the diverse effects on adipocyte differentia-
tion and lipid metabolism (Levacher et al.  1984 ; Sasaki et al.  2006  ) .  
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    7.3.4.5   Glucocorticoids and Sex Steroids 

 Glucocorticoids are used to induce optimal differentiation of preadipocytes in cul-
ture. Dexamethasone is the most commonly used glucocorticoid  in vitro , which acts 
through the activation of its receptor, glucocorticoid receptor. Dexamethasone and 
its receptor infl uence the expression of transcription factors, PPAR g  and C/EBP d , 
and further, dexamethasone reduces the expression of pref-1, which is a negative 
regulator of adipogenesis (Smas et al.  1999  ) . In humans, elevated circulating gluco-
corticoids, as in the case of Cushing’s syndrome, lead to visceral obesity. 

 Although obvious differences in body fat distribution can be seen between males 
and females, the role played by sex hormones in adipogenesis is poorly understood. 
Estrogens modulate adipogenesis by increasing preadipocyte replication, without 
infl uencing the differentiation process. On the contrary, progesterone stimulates 
terminal differentiation in preadipose cell lines. Androgens block conversion of 
preadipocytes to mature adipocytes by decreasing the activity of glycerol-3 phos-
phate dehydrogenase. These actions are mediated by specifi c intracellular receptors, 
and both pre- and mature adipocytes in humans and rodents express estrogen and 
androgen receptors (Dieudonne et al.  2000  ) .   

    7.3.5   Nutritional Factors 

 Food components with benefi cial effects on decreasing adiposity have attracted 
increased attention lately. The dietary agents discussed below affect the adipocyte 
life cycle and lipogenesis by either inhibiting adipocyte specifi c transcription factors 
or by inhibiting key enzymes responsible for lipid synthesis. Furthermore, these 
compounds might act by enhancing lipid oxidation or by preventing free fatty acids 
from entering adipocytes. 

    7.3.5.1   Fatty Acids 

 Both natural and nonmetabolized long chain fatty acids per se behave as hormones 
and regulate the expression of various lipid-related genes in adipocytes at a 
transcriptional level. Long-chain, saturated, and polyunsaturated fatty acids have 
been shown to regulate transcription factors, such as C/EBPs, PPARs, and other 
adipose-specifi c genes, very early in adipocyte development. These effects not only 
affect adipocyte size, but also fat cell number. In particular, there is evidence that the 
fatty acids in fi sh oil, such as docosahexaenoic acid (DHA) and eicosapentaenoic 
acid (EPA), decrease preadipocyte proliferation in cell lines and reduce adiposity in 
rodents. These two omega-3 fatty acids have by far received the most attention, and 
EPA and DHA are also extensively studied for other health benefi ts. 

  In vitro  and  in vivo  studies show that DHA inhibits mitotic clonal expansion, 
decreases GPDH activity, and reduces body fat in rodents (Buckley and Howe  2009  ) . 
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It is noteworthy that the lipid droplets in cells induced to differentiate in the presence 
of polyunsaturated fatty acids like DHA and EPA are smaller in size than the lipid 
droplets formed in the presence of saturated fatty acids and monounsaturated fatty 
acids. Thus, dietary polyunsaturated fatty acids decrease lipid droplet size both 
 in vitro  and  in vivo  (Madsen et al.  2005  ) . 

 Another fatty acid, t10,c12 conjugated linoleic acid (CLA) has pronounced effect 
on inhibiting adipocyte differentiation and inducing adipocyte apoptosis and 
decreasing body fat (Wang and Jones  2004  ) . The isomers of CLA are also ligands 
for PPAR indicating that the effects of CLA on adipose development and gene 
expression might be due in part to its binding with PPAR.  

    7.3.5.2   Vitamins 

 Blood levels of antioxidants like vitamins E, C, and A have been found to be lower 
in obese people, and consuming multivitamin supplements reduced body weight 
and adiposity in obese individuals (Li et al.  2010  ) . Ascorbic acid decreased total 
weight gain and adipose depots by downregulating genes involved in adipogenesis 
and adipocyte differentiation (Campion et al.  2006  ) . Likewise, supplementation of 
vitamin E and selenium reduced insulin resistance in obese rats and in humans, and 
 in vitro  vitamin E suppresses adipocyte differentiation to exert anti-adipogenic 
effects (Viroonudomphol et al.  2003  ) . 

 Vitamin A is mainly known for its involvement in vision, but it also plays an impor-
tant role in regulating adiposity. The anti-adipogenic effects of vitamin A are exerted 
by blocking C/EBP b -mediated induction of downstream genes, notably PPAR g , pre-
venting entry of the preadipocytes into the growth-arrested phase and interacts with 
activators of PPAR g  through retinoic acid receptors (Bonet et al.  2003  ) . 

 Vitamin D status is strongly associated with variation in subcutaneous and vis-
ceral adiposity (Cheng et al.  2010  ) . In 3T3-L1 adipocytes, vitamin D markedly sup-
pressed the expression of PPAR g  and C/EBP b , antagonized PPAR g  activity, and 
stabilized the inhibitory vitamin D receptor protein leading to decreased lipid accu-
mulation and apoptosis induction (Kong and Li  2006  )  (Fig.  7.3 ).   

    7.3.5.3   Phytochemicals 

 A number of phytochemicals have been investigated for their effects on adipocyte 
life cycle. Flavonoids like green tea, genistein, quercetin, and xanthohumol have 
been studied  in vitro  using either 3T3-L1 cells or human adipocytes and  in vivo  
using rodent animal models and human clinical studies. Epigallocatechin-3-gallate 
decreased lipid accumulation and the expression of PPAR g , and C/EBP a  in matur-
ing 3T3-L1 adipocytes and in mature adipocytes induced apoptosis (Lin et al.  2005  ) . 
Likewise, genistein, a soy isofl avone, inhibited adipocyte proliferation, differentia-
tion, adipogenesis, and induced apoptosis in 3T3-L1 adipocytes and in rodents (Kim 
et al.  2006  ) . The inhibitory effects of genistein on adipogenesis are believed to 
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involve both PPAR g -dependent and -independent pathways. Several studies show 
that genistein binds to PPARs and induces transcriptional activities. Furthermore, 
genistein may inhibit multiple signaling molecules including p38 and JAK/STAT 
signaling pathways through tyrosine phosphorylation (Dang  2009  ) . Recent studies 
on xanthohumol, a fl avonoid found in beer hops, indicate that this compound is 
more potent than genistein in inhibiting adipogenesis and inducing apoptosis and 
lipolysis in murine adipocytes (Rayalam et al.  2009  ) . 

 One of the most investigated phytochemicals that is thought to be responsible for 
the benefi cial effect of moderate wine consumption is the resveratrol. In 3T3-L1 
preadipocytes, resveratrol decreased viability, lipid accumulation, and the expres-
sion of PPAR g , C/EBP a , HSL, LPL, and FAS genes (Rayalam et al.  2008b  ) . Further, 
in rodents, resveratrol decreased body weight, body fat content, and adipose tissues 
mass (Lagouge et al.  2006  ) . 

 Curcumin, a phenolic acid which is a popular spice in Asia, has been studied 
extensively for its anti-infl ammatory and anti-carcinogenic effects. More recently, 

  Fig. 7.3    Effects of vitamin D and phytochemicals on adipocyte biochemistry. Vitamin D binds to 
its nuclear receptor, gets translocated into nucleus, and binds to its responsive element. Likewise, 
certain phytoestrogens like genistein and quercetin bind to ER b  with high affi nity and get translo-
cated into nucleus. Both vitamin D and phytoestrogens cause changes in gene expression leading 
to a decrease in adipogenesis. Since majority of phytochemicals like genistein, resveratrol, and 
curcumin have multiple targets, they exert their anti-adipogenic effects by activating enzymes like 
AMPK and SIRT-1. Further, resveratrol also activated UCP1 expression in mitochondria causing 
increased energy expenditure and mitochondrial biogenesis.  AMPK  adenosine monophosphate 
kinase;  ER  estrogen receptor;  HRE  hormone response element;  NRF-1  nuclear respiratory factor 
1;  PGC-1 a   peroxisome proliferator-activated receptor  g  coactivator-1 alpha;  RSV  resveratrol; 
 SIRT-1  sirtuin 1;  UCP1  uncoupling protein 1;  VD  vitamin D;  VDR  vitamin D receptor; 
 VDRE  vitamin D responsive element       
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curcumin has also been demonstrated to possess potent anti-adipogenic effects. 
Especially in 3T3-L1 preadipocytes, curcumin decreased proliferation and lipid 
accumulation but did not affect the expression of PPAR g  and C/EBP a . In mature 
adipocytes, curcumin activated AMPK and caused fatty acid oxidation and also 
induced apoptosis. Further, in rodents fed a high-fat diet, curcumin reduced body 
weight gain and adipose tissue mass (Ejaz et al.  2009  )  (Fig.  7.3 ).   

    7.3.6   Environmental Pollutants 

 Since the molecular mechanisms underlying the development of obesity are not 
completely understood, recently, scientifi c attention has been drawn to the potential 
contributions of environmental pollutants that act as endocrine disrupting chemicals 
(EDCs) in the pathogenesis of metabolic diseases. 

    7.3.6.1   Bisphenol A (BPA) 

 Bisphenol A (BPA) is used commercially in products containing polycarbonate 
plastics such as food and water containers, and BPA is also present in microgram 
quantities in the liquid of preserved food in cans (Brotons et al.  1995  ) . Thus, BPA is 
present ubiquitously in the environment and is ingested by humans routinely. BPA 
is considered an EDC because of its estrogenic actions. 

 Studies indicate that BPA is associated with induction of obesity, and serum BPA 
levels are higher in obese individuals compared to their non-obese counter parts 
(Takeuchi et al.  2004  ) .  In vitro , BPA induced differentiation and stimulated lipid 
accumulation in 3T3-L1 adipocytes through the downregulation of Akt signaling 
pathway and inhibition of adiponectin (Kidani et al.  2010  ) . 

 Other EDCs, namely dicyclohexyl phthalate, endrin, and tolylfl uanid, also stim-
ulated adipogenesis in 3T3-L1 adipocytes. One recent study showed that these 
EDCs along with BPA signifi cantly stimulated the glucocorticoid receptor without 
signifi cant activation of the PPAR g . Interestingly, these compounds did not induce 
adipogenesis when preadipocytes were treated with compounds alone. However, 
the EDCs promote adipocyte differentiation by synergizing with agents present in 
the differentiation cocktail like either dexamethasone or insulin. Thus, it is possible 
that the pro-adipogenic effects of EDCs are mediated through the activation of the 
glucocorticoid receptor (Sargis et al.  2010  ) .  

    7.3.6.2   Tributyltin (TBT) 

 Tributyltin (TBT) is an organotin compound used worldwide in agriculture and 
industry as biocide. Recently, it was shown that chronic and repeated exposure 
to this compound could lead to obesity and hepatic steatosis (Zuo et al.  2011  ) . 
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In 3T3-L1 adipocytes, TBT induced morphological changes accompanied by the 
expression of adipocyte differentiation marker and enhanced lipid accumulation 
when supplemented with dexamethasone and insulin. Moreover, TBT acts as a 
ligand for PPAR g  and promotes adipocyte differentiation and adipogenesis both 
 in vitro  and  in vivo  via PPAR g  (Inadera and Shimomura  2005  )    .     

    7.4   Conclusions 

 Adipose tissue growth involves an increase in adipocyte size and number. The cel-
lular and molecular mechanisms that infl uence the adipocyte life cycle have been 
extensively studied. Adipocytes are derived from MSC, which have the potential to 
differentiate into myoblasts, chondroblasts, osteoblasts, or adipocytes. The life cycle 
of adipocytes includes alteration of cell shape and growth arrest, clonal expansion, 
and a complex sequence of changes in gene expression leading to terminal differen-
tiation accompanied with the storage of lipid and fi nally apoptosis. Growth and 
differentiation of adipocytes are controlled by various hormones, enzymes, tran-
scription factors, and growth factors. It is likely that the multitude of diverse regula-
tory signals and factors converge at a few classic signal transduction pathways 
leading to a synergistic enhancement in adipogenesis and lipogenesis or synergic 
increase in lipolysis or adipocyte apoptosis. Understanding the adipocyte life cycle 
and how the various molecules affect the adipocyte life cycle, which in turn regulate 
adiposity and energy balance, in physiological situations may lead to the develop-
ment of novel therapeutic approaches to obesity.      
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  Abstract   Gene products and metabolic pathways comprising and controlling 
adipose tissues are traced from their invertebrate origins through lower vertebrates 
to mammals and birds. Many functions of the mammalian liver and pancreas take 
place in adipose-like tissues in lower animals. Mammalian white adipose tissue is 
split into numerous depots, many with site-specifi c properties adapted to paracrine 
interactions, insulation, or structural roles. Paracrine provision of lipids to the 
immune system with fatty acid sorting optimizes cellular nutrition even during fast-
ing or on defi cient or imbalanced diets, averts competition with other tissues and 
utilizes scarce resources effi ciently. Non-shivering thermogenesis occurs in avian 
muscles and in mammalian brown adipose tissue, recently as well as metabolic 
regulation and lipid storage shown to be developmentally related to muscle, not 
white adipose tissue. The biochemical mechanisms of thermogenesis evolved sepa-
rately in birds and mammals utilizing several gene families, including uncoupling 
proteins, present in lower vertebrates. Mammalian thermogenic tissue lost contrac-
tile functions and expanded its lipid storage capacity, probably to improve function 
at hibernation temperatures, thus generating confusing resemblances to white adi-
pose tissue. As well as storage and endocrine functions, adipose tissues’ capacities 
for paracrine interactions, fatty acid sorting and thermogenesis are important in the 
evolution of mammalian heterothermy, lactation and predominance as herbivores 
able to thrive on indigestible, poor quality, nutritionally imbalanced diets. Some 
mammals tolerate high levels of obesity without metabolic impairment, but humans 
and other apes are not so adapted.  

  Keywords   Comparative  •  Lower vertebrates  •  Mammals  •  Birds  •  Paracrine inter-
actions  •  Immune system  •  Fatty acids  •  Hibernation  •  Diet-induced thermogenesis  
•  Herbivory  •  Lactation      
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    8.1   Introduction 

 Advances in developmental biology and evolutionary theory are elucidating the 
origins and evolution of tissues and cell types, complementing the long-established 
discipline of comparative anatomy, functionality and adaptation. Both white and 
brown adipose tissues have been largely omitted from studies of the genetic and 
developmental bases of comparative anatomy during the past 30 years because they 
appear too variable, too closely linked to diet and body condition to reveal any general 
principles determining their site-specifi c properties and anatomical distribution or 
phylogenetic relationships to “lean” tissues. Recent recognition of white adipose 
tissue’s endocrine roles, its value as a source of stem cells and in reconstructive 
surgery as well as lipid storage have revived interest in its origins and evolution. 

 The comparative anatomy and histology of white adipose tissue were studied in 
detail (Hoggan and Hoggan  1879  )  40 years before brown “adipose tissue” received 
similar attention (Rasmussen  1922,   1923  ) . The similarities between the names of 
these tissues and their contrasting but apparently complementary contributions to 
obesity prompted biologists to emphasize their resemblances, an attitude that recent 
molecular and developmental fi ndings reveal to be misleading. 

 Meanwhile, obesity and adipose tissues, once almost synonymous, have drifted 
apart as the focus shifts to appetite control and inheritance. Of several recent attempts 
to account for the evolution of obesity in humans, some hardly mention current 
understanding of the organization and basic properties of adipose tissues (Power and 
Schulkin  2009  ) , while others recognize their central, distinctive roles in human 
appearance, social and sexual behavior, and metabolism (Wells  2006,   2010  ) . Obesity 
is unusual among human diseases in that very similar conditions are integral and 
essential components of the habits and life history of certain wild animals. Natural 
obesity, like pathological obesity, arises from “overeating,” periods in which animals 
become hyperphagic, in some cases aided by sedentary habits. However, in most 
wild animals, obesity is transient and controlled: hyperphagia and fat deposition are 
followed by periods of anorexia and/or intensive exercise, leading to weight loss. 
Adaptive obesity is never a direct cause of diabetes, cardiovascular disease, or repro-
ductive dysfunction. The study of natural obesity can reveal much about the “ideal” 
structure, composition and anatomical distribution of adipose tissue, the neural and 
endocrine control of blood composition, appetite and energy expenditure, and about 
the causal relationships between high levels of stored lipid and the adverse meta-
bolic changes that are so frequently associated with obesity in humans. 

 Comparative physiology and genomics during the past 20 years have demonstrated 
remarkable similarities in the relationships between diet, metabolic control, energy 
storage, and key life history parameters including longevity and fecundity (Fontana 
et al.  2010  ) . Concepts developed from the study of insects ( Sophophora , formerly 
 Drosophila ), nematode worms ( Caenorhabditis ) and other “lower” organisms have 
entered medical thinking (Blüher  2008  )  and the search for new drugs (Hofbauer and 
Huppertz  2002  ) . Therefore, it is appropriate to begin with an evolutionary and com-
parative perspective on the functions and structure of adipose tissues. 
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    8.1.1   Storage Tissues in Invertebrates 

 Most animal cells contain small quantities of triacylglycerols that serve as energy 
reserves. Many invertebrates, especially those that undergo diapause or metamor-
phosis, have specialized liver-like tissues involved in whole-body metabolic regula-
tion and energy storage. The most thoroughly studied is the insect “fat body.” This 
irregularly shaped, sometimes relatively large structure develops in the abdomen, an 
anatomical position that maximizes contact with the hemolymph and permits large 
changes in volume with minimal impact on other organs. Its most abundant cell 
type, called “adipocytes” by some authors, store glycogen and acylglycerols, releas-
ing the breakdown products in response to metabolic demand from other tissues 
(Arrese and Soulages  2010  ) . The basic mechanisms of fatty acid uptake and trans-
port, lipogenesis and lipolysis, are essentially similar in insect “adipocytes” and 
vertebrate white adipose tissue. 

 The insect fat body also secretes several peptide metabolic regulators (Slaidina 
et al.  2009  )  that, at least in drosophila (Arthropoda, Insecta, Diptera), function 
remarkably like insulin-like growth factors in vertebrates (Okamoto et al.  2009  ) . 
Neuropeptide Y belongs to an ancient family of peptides that mediate signals 
between storage cells and the nervous system in various invertebrates (de Jong-
Brink et al.  2001 ; McVeigh et al.  2005  ) . Genes coding for and regulating these 
messenger molecules and their receptors are among the many gene families that 
diversifi ed in early vertebrate evolution (Larsson et al.  2008  ) . Most of the signals 
and receptors shown to be regulators of appetite and energy storage in mammals are 
known in the sea squirt  Ciona  (Ascidia, Chordata), an invertebrate chordate (Kawada 
et al.  2010  ) . The appetite-suppressing hormone leptin itself seems to be specifi c to 
vertebrates, probably appearing early in the evolution of fi sh (Gorissen et al.  2009  ) , 
but insects have analogous peptides that signal peripheral energy stores to the 
nervous system (Al-Anzi et al.  2009  ) . 

 Insulin is another ancient signal molecule known in  Caenorhabditis elegans  
(Nematoda) (Michaelson et al.  2010  )  and in drosophila (DiAngelo and Birnbaum 
 2009  )  as well as all vertebrates. In lower vertebrates such as teleost fi sh, cells other 
than pancreatic  b  cells may be competent to secrete insulin (Roy et al.  2003  ) . This 
capacity has proved very diffi cult to induce in mammalian cells (Samson and Chan 
 2006  ) , though adipose stem cells are among the most promising (Kim et al.  2010  ) .   

    8.2   Vertebrate Adipose Tissues 

 Triacylglycerols spontaneously form homogeneous compartments in an aqueous 
environment. In most tissues that store substantial quantities (brown adipocytes, 
angiosperm seeds, etc.), the lipids form droplets a few microns in diameter, or 
around 1–10 fL (10 −14 –10 −15  L) in volume (Cinti  2007  ) . Extending the interface 
between triacylglycerols and lipolytic enzymes may facilitate rapid mobilization of 
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the lipid stores that support abrupt transitions between dormancy and vigorous 
activity. Single large lipid droplets, usually 0.1–1 nL (10 −8 –10 −9  L) in volume, are a 
special feature of vertebrate white adipocytes. The unusual arrangement is mediated 
by adipose-specifi c protein 27 (FSP27) (known in humans as cell death-inducing 
DFF45-like effector C (CIDEC)) that promotes lipid uptake and coalescence of 
droplets while reducing the maximum rate of lipolysis (Puri et al.  2007  ) . Experimental 
reduction of CIDEC in isolated adipocytes increases lipolysis (Ito et al.  2010  ) . The 
protein probably functions in conjunction with perilipin forming the interface 
between lipids and proteins (Brasaemle et al.  2000 ; Shen et al.  2009  ) . FSP27/CIDEC 
is unique to vertebrates though structurally similar proteins are found in several 
invertebrate groups (Wu et al.  2008  ) . 

 From a comparative perspective, these fi ndings suggest that white adipose tissue 
evolved as a readily deposited, slowly mobilized lipid store suitable both for taking 
up circulating fatty acids following large, rich meals and for supporting prolonged 
fasts with low rates of energy expenditure. The evolution of jaws equipped early 
gnathostome vertebrates as top predators that probably ate relatively large, nutrient-
dense prey irregularly and sometimes infrequently (Janvier  2009  ) . The special 
features of white adipose tissue compared to invertebrate storage tissues exemplify 
its role as protection for other tissues against lipotoxicity due to excessive lipid 
accumulation as well as long-term storage (Unger  2002 ; Unger and Scherer  2010  ) . 
White adipocytes may be among the novel cell types to appear during early vertebrate 
evolution, alongside advances in the immune system such as mast cells (Crivellato 
and Ribatti  2010  ) . 

    8.2.1   Lower Vertebrates 

 Many extant fi sh, especially the primitive groups, store large quantities of triacylg-
lycerols in the liver and/or skeletal muscle, with sporadic occurrence of adipose 
tissue. Almost all adipokines known from mammals have been identifi ed in bony 
fi sh (Nishio et al.  2008 ; Murashita et al.  2009 ; Ronnestad et al.  2010  ) . Rainbow 
trout ( Oncorhynchus mykiss ) migrate long distances, fuelled almost entirely by fatty 
acids that are stored in adipose tissue and transported to muscles by extremely effi -
cient lipoproteins (Weber  2009  ) . Under the highly artifi cial conditions of fi sh farms, 
salmon adipocytes display some of the pathological changes known in obese mam-
mals (Todorcevic et al.  2010  ) , but there are no reports of similar effects in wild fi sh. 
Transgenic manipulation of the zebra fi sh ( Danio rerio ) has developed a teleost 
model of obesity that is remarkably similar to the mouse (Song and Cone  2007 ; 
Holtta-Vuori et al.  2010  ) . Messenger molecules with some resemblance to mam-
malian leptin can be detected in this fi sh, of which one may have some involvement 
in energy metabolism (Gorissen et al.  2009  ) , but in a related teleost, its main source 
is the liver, not adipocytes (Huising et al.  2006  ) . 

 Most adult amphibians hibernate (or aestivate) for long periods supported by 
fat accumulated during (often brief) periods of food abundance. Much of the 
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triacylglycerols are stored in paired fat bodies that are loosely suspended in the 
abdomen, much like those of insects, and in some species, in and under the thin, 
distensible skin (Wygoda  1987  ) . In these sites, expansion and shrinkage of the 
storage tissue avoid distorting adjacent organs. 

 Blood pressure is higher in reptiles, and their body shape is more constrained by 
tougher, less distensible skin so adipose tissue is more compact and its anatomical 
arrangement is more varied. Most snakes and lizards have a few large depots but in 
chelonians (tortoises and turtles), adipose tissue is partitioned into numerous small 
depots that superfi cially resemble those of mammals (Pond and Mattacks  1984 ; 
Davenport et al.  2009  ) , an arrangement that may maximize storage capacity while 
minimizing distortion of contiguous tissues. Adipose tissue triacylglycerols are 
particularly important for provisioning yolk-rich eggs (Warner et al.  2008  )  so female 
reptiles are often fatter than conspecifi c males just before the breeding season. Very 
low rates of energy expenditure interspersed with brief periods of much higher 
metabolic rate are fundamental strategies in nearly all extant reptiles (Secor and 
Diamond  1997,   1999  ) . They fatten readily and can withstand and recover com-
pletely from very prolonged fasts (McCue  2010  ) . Nutritionally imbalanced diets 
seem to be the main cause of pathology arising from severe obesity in captive 
reptiles (Frye  1981  ) .   

    8.3   White Adipose Tissue in Mammals and Birds 

 The embryonic development of mammalian white adipocytes has been elucidated 
(Gesta et al.  2007 ; Rodeheffer et al.  2008 ; Poulos et al.  2010  )  and its structure and 
properties are fully described in other chapters and need not be discussed here. 

 White adipose tissue comprises >0.5 to 50% of the live body mass of free-ranging 
wild mammals, with an average of about 7% (Pond and Mattacks  1985b  ) . Tissue 
from wild species generally contains less lipid and more protein, especially colla-
gen, than homologous samples from people and laboratory and domesticated live-
stock (Pond and Mattacks  1989  ) . Regardless of fatness, the white adipose tissue of 
large species is composed of fewer, relatively larger adipocytes than that of smaller 
species of similar dietary habits in both mammals (Pond and Mattacks  1985b  )  and 
birds (Pond and Mattacks  1985c  ) . The topic has not been thoroughly investigated in 
reptiles or any other lower vertebrates. In this respect, adipocytes resemble neurons 
and contrast with most other cell types in mammals (Savage et al.  2007  ) . Lipid 
droplet volume, the principal determinant of adipocyte size, is itself related to lipol-
ysis (Ito et al.  2010  ) . By controlling the rates of mobilization of stored fatty acids 
and clearance of excess energy absorbed from the diet, white adipocytes are central 
to metabolic rate during feasting as well as fasting. This scaling of adipocyte volume 
to body size may refl ect the complex and recently very controversial relationship 
between body mass and basal metabolic rate (Kolokotrones et al.  2010  ) . 

 Comparative biology shows that some functions of the liver in lower vertebrates 
take place in adipose tissue in mammals. Leptin was fi rst described as a secretion 
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from mammalian adipose tissue, the archetypal adipokine (Caro et al.  1996  ) . 
Adipose tissue is its main source in all extant mammals including the most primitive 
(Doyon et al.  2001  ) . Very similar molecules that regulate appetite and energy 
metabolism are known in all the major classes of vertebrates (Dridi et al.  2004  ) . 
Although adipose tissue is present, sometimes in substantial quantities, the liver is 
the main source of leptin in teleost fi sh (Huising et al.  2006  )  and in birds (Taouis 
et al.  2001  ) . As well as its central role in lipid storage and metabolism, mammalian 
adipose tissue also participates in amino acid metabolism, particularly that of the 
non-protein, energy-supplying amino acid, glutamine (Curthoys and Watford  1995 ; 
Kowalski et al.  1997  ) . Site-specifi c differences in glutamine synthesis and turnover 
suggest depot specialization comparable to that of fatty acid uptake and release 
(Digby  1998  ) . Comparative data are too sparse to establish how many other hepatic 
functions have been “taken over” by adipose tissue in mammals.

Birds have white adipose tissue that closely resembles that of mammals; species 
with larger adult body size have fewer, larger adipocytes (relative to fatness) than 
smaller species, the tissue forms early in development and is consistently arranged 
in several discrete depots that merge only when greatly expanded (Pond and 
Mattacks  1985a  ) . White adipose tissue metabolism and its neural and endocrino-
logical controls are also impressively similar in both groups (Price et al.  2008  ).  

    8.3.1   Anatomical Distribution 

 White adipose tissue of mammals, and to a lesser extent that of birds, is partitioned 
into a few large and numerous small depots. The largest depots in mammals are 
found inside the abdomen and between the skin and superfi cial musculature. Intra-
abdominal depots include the mesentery and the omentum, a uniquely mammalian 
structure, and small quantities associated with the gonads. The epididymal depots 
are exceptionally large and easily dissected out in murid rodents (rats, mice and 
hamsters) and for this reason alone have been intensively studied. In other mam-
mals, the depots on the inner walls of the abdomen extending around the kidneys 
and into the pelvis are usually bigger. In all mammals, white adipose tissue is dis-
tributed to a common pattern, characterized by site-specifi c differences in relative 
adipocyte volume and various biochemical features (Pond  1992  ) . In pigs (Hausman 
et al.  2007 ; Klein et al.  2007  )  and humans (Ardilouze et al.  2004  ) , site-specifi c dif-
ferences can be identifi ed in layers of subcutaneous adipocytes, only some of which 
can be attributed to functional relationships to hair. 

 Many birds and mammals become transiently obese during migration, breeding, 
moulting, or before seasonal food shortages but most remain ambulatory and some 
perform prolonged, strenuous exercise. Some species of knot (small seabirds, 
Charadriiformes) carry relatively enormous fuel loads for long-distance migration by 
selective atrophy of non-essential organs and appropriate distribution of adipose tis-
sue (Piersma et al.  1999 ; Battley et al.  2000  ) . Measurements on such “adaptively 
obese” animals reveal surprisingly low, sometimes undetectable energetic costs of the 
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additional body mass, both in fl ight and perhaps even more surprisingly, in walking. 
For example, locomotion is unusually effi cient in camels, partly through replacement 
of some limb muscles by non-energy consuming tendons (Alexander et al.  1982  ) . 
Locomotory effi ciency is unimpaired by adipose tissue that reaches 32% body mass 
in Svalbard rock ptarmigans ( Lagopus muta hyperborea ) (Lees et al.  2010  ) . 

 Many large, naturally obese mammals occur in areas that are seasonally cold, 
giving rise to the long-standing and widely disseminated belief that superfi cial 
adipose tissue is an adaptation to thermal insulation. However, comparative data on 
the partitioning of white adipose tissue between superfi cial and internal depots in 
mammalian carnivores of similar body conformation but widely different sizes do 
not support this theory (Pond and Ramsay  1992  ) . The superfi cial depots are simply 
the most convenient repository for large quantities of lipid. Abdominal volume and 
body surface area decrease relative to body mass with increasing size, so superfi cial 
adipose tissue can be impressively thick in large, naturally obese mammals regard-
less of habits and habitats (Pond and Ramsay  1992  ) . 

 The metabolic rate of small mammals is high and during energetically demand-
ing activities such as lactation, dissipation of heat generated as a by-product of 
digestion and metabolism, not thermal insulation, is limiting (Król et al.  2007  ) . 
Additional superfi cial adipose tissue would exacerbate the problem. In experimen-
tally overfed mice, too much superfi cial adipose tissue decreases skin thickness 
and elasticity (Ezure and Amano  2010  ) . Such effects would be unlikely if subcuta-
neous adipose tissue naturally served as body insulation in their wild ancestors. 
The only exceptions are the three extant groups of marine mammals (Cetacea, 
Pinnipedia and Sirenia), in which hair reduction and effi cient control of blood fl ow 
through the superfi cial adipose tissue enable it to serve as adjustable thermal 
insulation.  

    8.3.2   Cellular Structure of Adipose Tissue 

 The total number of white adipocytes scales to (Body Mass) 0.75 , and they range in 
volume from 0.01 nL in bats and shrews, to up to 4 nL in well-fed baleen whales 
(Pond and Mattacks  1985b  ) . Carnivorous mammals and ruminants have about four 
times more white adipocytes than non-ruminant herbivores (whose energy metabo-
lism is based mainly on glucose) of the same  body mass but are not on average 
fatter, because the adipocytes are smaller. By coincidence, the adipocytes of rats and 
mice, small non-ruminant herbivores, are about the same size (0.1–1 nL) as those of 
humans, which are large omnivores on a high-fat diet. 

 Wild mammals that naturally become obese have up to fi ve times, usually only 
two to three times, more adipocytes than would be expected in comparable non-
obese species. Western adults have at least ten times more adipocytes in proportion 
to their body mass than would be expected from the comparison with wild mam-
mals. The limited information on other primates suggests that their adipocyte com-
plements can also become disproportionately large (Pond and Mattacks  1987 ; 
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Pereira and Pond  1995  ) . Thorough studies of wild mammals always reveal much 
inter-individual variation in the total number of adipocytes that cannot be attributed 
to age, sex, or any obvious feature of dietary history, particularly in carnivores (Pond 
et al.  1995  ) . The number of adipocytes does not seem to be a major determinant of 
the capacity for fattening even in naturally obese species. In these respects, humans 
(van Harmelen et al.  2003 ; Spalding et al.  2008  )  are similar to other mammals.  

    8.3.3   Structural Adipose Tissue 

 Some small depots are mainly or entirely structural, consisting of large quantities of 
extracellular material enclosing pockets of metabolically inert adipocytes. The fi rm, 
resilient tissue absorbs impact forces during locomotion and distributes weight in 
the feet, especially those of large terrestrial species such as elephants (Weissengruber 
et al.  2006  ) . The fetal development (Shaw et al.  2008  )  and adult functions (Theobald 
et al.  2006  )  of Kager’s fat pads in the human heel and around the Achilles have 
recently been studied in detail. As well as acting as shock absorbers, the adipose 
tissue protects blood vessels and facilitates movement (Theobald et al.  2006  ) . 
Several small structural depots help shape the face in humans (Kahn et al.  2000  ) , 
other primates and certain large birds (Pond  1998  ) . The buccal (Bichat’s) fat pads 
are particularly large in human and other higher primates where they contribute 
substantially to facial appearance. A recent review describes recent studies on their 
development, functional anatomy and surgery (Yousuf et al.  2010  ) . 

 The white adipose tissue in the orbit behind and around the eye is also primar-
ily structural (Wolfram-Gabel and Kahn  2002  )  but recent research has revealed 
it to be less metabolically inert and to have more in common with “typical” 
depots than had been supposed. Adipocyte volume differs consistently in differ-
ent parts of the orbit and the cell sizes of both samples scale to body mass in 
mammals ranging in size from whales to voles (Pond and Mattacks  1986  )  as in 
the more abundant metabolically active depots (Pond and Mattacks  1985b  ) . In 
adult guinea pigs, total adipocyte complement in the intra-orbital depots corre-
lates with that of the rest of the adipose mass, with corresponding differences in 
mean volume that enable the depot to occupy a constant space (Mattacks and 
Pond  1985  ) . Lymph vessels permeate the tissue in certain chronic infl ammatory 
conditions of the eye (Fogt et al.  2004  )  in which infl ammatory cytokines and 
prostaglandins can be detected (Schäffl er et al.  2006  ) . Infi ltration of immune 
cells and the formation of additional adipocytes in the intra-orbital depots are 
characteristic of Graves’ ophthalmopathy (Heufelder  2001 ; Schäffl er and Büchler 
 2007  ) . Most innate and acquired lipodystrophies involve facial and intra-orbital 
depots (Garg  2000  ) . The recent increase in the use of such material, both whole 
tissue and the stem cells derived from it, for reconstructive and cosmetic surgery 
has reinvigorated the study of previously neglected tissues (Clauser et al.  2008 ; 
Stillaert et al.  2010  ) .   
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    8.4   Brown Adipose Tissue 

 Brown adipose tissue (though not non-shivering thermogenesis) is unique to 
mammals (Cannon and Nedergaard  2004  ) . As their names imply, brown and white 
adipose tissues were believed to closely similar, alternative versions of the same 
tissue. Their triacylglycerols are concentrated enough to form droplets that are 
clearly visible in intact tissues but are dissolved away completely by histological 
reagents, leaving blank spaces in preserved, sectioned tissue. The apparent simi-
larity of their neural and endocrinological controls also suggests a common origin. 
Many depots are mixtures of brown and white adipocytes, and the two types of 
cell seem to be interconvertible (Cinti  2007  ) , possibly under the infl uence of 
endocannabinoids (Perwitz et al.  2010  ) . The principal differences between them 
are that white adipocytes release almost all of their lipolytic products for use by 
other tissues while brown adipocytes are net consumers of fatty acids (and glyc-
erol and glucose). On a weight-for-weight basis, white adipocytes contain few 
mitochondria and are metabolically sluggish while brown adipocytes can achieve 
among the highest known rates of substrate oxidation in their numerous mito-
chondria (Cannon and Nedergaard  2004  ) . 

 The pattern of gene transcription in stem cells differentiating into brown adipo-
cytes resembles that of muscle more closely than that of white adipocytes (Timmons 
et al.  2007  ) . Brown adipocyte precursors can be detected in skeletal muscle (Crisan 
et al.  2008  )  and muscle-specifi c microRNAs can be found in such cells in tissue 
culture (Walden et al.  2009  ) . Both muscle and brown adipose tissue have numerous 
mitochondria, rich blood perfusion, and high capacity for uptake and oxidation of 
fatty acids, some of which may be stored as triacylglycerols in small droplets. In a 
further similarity to adipose tissue, skeletal muscle is now believed to secrete “myo-
kines” especially when strenuously active (Pedersen  2011  ) . The resemblances 
between brown and white adipose tissue arose convergently, and long-established 
histological methods emphasize their similarities more than their contrasts. 

    8.4.1   Thermogenesis 

 Various tissues and metabolic pathways contribute to whole-body metabolic rate 
and facultative thermogenesis in lower vertebrates, many of them with common 
endocrine control (Silva  2006  ) . Metabolic depression in temperate-zone frogs hiber-
nating in ice-covered ponds is mediated by changes to ATP synthase and other mito-
chondrial components in skeletal muscles (Boutilier and St Pierre  2002  ) . Proteins 
resembling mammalian uncoupling proteins (UCPs) are also expressed in a reptile 
(the common green lizard,  Lacerta vivipara ) (Rey et al.  2008  )  and a teleost fi sh 
(Jastroch et al.  2005  ) , where their main function is probably removing toxic-free 
radicals from mitochondria, and thus are particularly important in highly active 
aerobic muscle. 
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 The internal body temperature of almost all adult birds is slightly higher than that 
of euthermic mammals (Schleucher  2004  )  and in both groups, endothermy uses 
energy at 5–10 times the rates measured in ectotherms of similar body mass (Hulbert 
and Else  2000  ) . Many birds, including some very small species, live in polar cli-
mates and/or swim in very cold water and, although feather insulation is as good or 
better than that provided by hair, endogenous thermogenesis is likely during sleep 
and other periods of inactivity. Many nestling birds, and adults of a few species, 
become torpid at night or during periods of fasting and rewarm themselves with a 
mixture of shivering and non-shivering thermogenesis (Schleucher  2004 ; Geiser 
 2008  ) . However, in spite of much wishful thinking and fruitless searching (Oliphant 
 1983 ; Saarela et al.  1989  ) , brown adipose tissue cannot be demonstrated in birds 
(Mezentseva et al.  2008  ) . Nonetheless, birds do have an UCP that is structurally 
similar to UCP1, the key component of thermogenesis in mammalian brown adi-
pose tissue (Raimbault et al.  2001 ; Emre et al.  2007  ) . 

 In birds, mitochondria are uncoupled by membrane protein, adenine nucleotide 
translocase not UCP, increased Na + /K + -ATPase activity on the plasma membrane 
makes a major contribution and the principal thermogenic tissue is muscle, not 
adipose tissue (Walter and Seebacher  2009  ) . Thus, the current hypothesis is that 
UCP is an ancient protein that in mammals evolved to the new role of thermogenesis 
by uncoupling the mitochondrial respiratory chain (Hughes and Criscuolo  2008  ) . 
Facultative thermogenesis became so important that the contractile components 
disappeared, though the very small, rapidly mobilizable lipid droplets remained; 
ATP synthesis was much reduced though mitochondria became numerous, thus 
forming brown adipose tissue of myogenic origin (Timmons et al.  2007 ; Mezentseva 
et al.  2008  ) . Muscle-derived tissue is the primary source of non-shivering thermo-
genesis as well as shivering in mammals, as it is in birds. Both inherited this funda-
mental role for muscle from their reptilian ancestors. The mammalian tissue’s 
confusing resemblances to white adipose tissue arise from its specialization to ther-
mogenesis fuelled by locally stored lipids at the expense of contractility. 

 This evolutionary perspective on recent molecular and developmental fi ndings 
reveals the name “brown adipose tissue,” chosen after careful consideration of a wide 
range of evidence from wild animals as well as humans (Rasmussen  1923  ) , to be inap-
propriate leading to decades of the mistaken belief in its close resemblance to white 
adipose tissue. A new name, perhaps “thermogenic tissue”, would clarify the situation.   

    8.5   Paracrine Interactions with Adipose Tissue 

 Functional interpretation of the anatomy of brown adipose tissue has long been well 
established: it warms essential organs by direct conduction into contiguous tissues 
and by convection via the blood (Heaton  1972 ; Rothwell and Stock  1984 ; Cannon 
and Nedergaard  2004  ) . However, interpretation of the anatomy of the many minor 
depots of white adipose tissue that are intimately associated with the vasculature, 
skeletal and cardiac muscle, skin and the immune system has lagged far behind. 
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 The concept of “paracrine” was originally, and largely still is, associated with 
control systems rather than cellular nutrition (Grossman  1979  ) , refl ecting the 
emphasis on informational mechanisms that has prevailed since the 1960s. Evidence 
for “paracrine” interactions between mature adipocytes and other tissues was 
presented in the mid-1990s (Pond and Mattacks  1995,   1998  ) , but the universality of 
the mechanism for adipose tissue was not recognized until the late 1990s (Trayhurn 
and Beattie  2001  ) . 

 Until the 1990s, physiological studies of white adipocytes concentrated heavily 
on the large depots, especially epididymal and perirenal, which provide enough 
“pure” adipose tissue for most biochemical analyses. Adipocytes in the small and 
large depots are histologically similar, so were assumed to be physiologically and 
functionally similar as well. Doubts raised by the observation that lymph nodes (in 
neonatal guinea pigs) are fi rmly attached to the surrounding adipose tissue were 
ignored (Gyllensten  1950  ) . The anatomical arrangement attracted little interest until 
site-specifi c properties indicating paracrine interactions between minor adipose 
depots and contiguous tissues were demonstrated, fi rst in perinodal adipose tissue 
about lymph nodes (Pond and Mattacks  1995  ) , then in “adventitious” perivascular 
tissue around blood (Löhn et al.  2002  )  and lymph (Dixon  2010  )  vessels. 

    8.5.1   The Immune System 

 The involvement of adipose tissue in immune function has become widely recog-
nized during the past decade (Pond and Mattacks  1995 ; Zhou and Song  2004 ; 
Caspar-Bauguil et al.  2009  ) . Other chapters address the exchange of signal mole-
cules, especially adipokines (Fantuzzi and Mazzone  2007 ; Caspar-Bauguil et al. 
 2009  )  and the role of macrophages in infl ammation of adipose tissue in obesity 
(Qatanani et al.  2009 ; Gustafson  2010  ) . This section concerns functional, non-
pathological relationships between adipose tissue and immune structures. 

 The mammalian immune system is more elaborate than that of reptiles at all levels 
from gross anatomy to molecular diversity. Mammalian lymphoid organs are more 
numerous and elaborate, and involve more genes, proteins and cell types than those 
of other vertebrates, and many components are effi ciently deployed only in associa-
tion with membranes of appropriate composition (Zapata and Amemiya  2000  ) . 
Although anatomically complex lymph nodes widely distributed throughout the body 
were described long ago as a characteristic feature of eutherian (placental) mammals, 
immunologist and lymphologists have only recently recognized the importance of 
their relationship to adipose tissue (Harvey et al.  2005 ; Harvey  2008  ) . 

 Comparative studies show that an association between the immune system and 
adipose tissue evolved early in mammalian evolution (Pond  2003b  ) . In the echidna 
( Tachyglossus ), a primitive protherian mammal that lays large eggs (but feeds its 
nestlings on secreted milk), tiny lymph nodules embedded in fatty tissue are present 
throughout the chest, neck and pelvic regions (Diener and Ealey  1965  ) . The larger, 
more complex lymph nodes of Metatheria (marsupials) are surrounded by adipose 
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tissue in adult kangaroos (Old and Deane  2001  ) . Although the authors do not mention 
adipose tissue, their images of developing lymph nodes in another small metathe-
rian, the quokka ( Setonix brachyurus ), reveal adipocytes surrounding lymphoid 
tissue by the age of 2 weeks (Ashman and Papadimitriou  1975  ) . 

 Lymph nodes in birds are smaller, simpler and less abundant than those of 
mammals, but are nonetheless associated with adipose tissue: “The simplest [lymph 
nodes in birds] represent non-encapsulated lymphoid infi ltrates embedded in the fat 
tissue” (Zapata and Amemiya  2000  ) . In the more complex lymph nodes of domestic 
chickens, lymphoid cells are intimately associated with adipocytes in various ways 
(Oláh and Glick  1983  ) . Thus, a close association between lymphoid and adipose 
tissues seems to be a fundamental feature of endothermic vertebrates.  

    8.5.2   Perinodal Adipose Tissue Around Lymph Nodes 

 Apart from slightly smaller volume and more extracellular material, perinodal adi-
pocytes are anatomically indistinguishable from those elsewhere in the same indi-
vidual and are identifi ed only by biochemical properties (Pond and Mattacks  1995 ; 
Pond  2005  ) . All such properties are most pronounced in adipose tissue nearest to 
lymph nodes and diminish with distance from them. Perinodal adipose tissue is 
arbitrarily defi ned as within a radius of 10 mm around a lymph node. Many, possi-
bly most, of the fatty acids incorporated into lipids in lymph node lymphoid cells 
that are newly formed in response to immune stimulation are derived from triacylg-
lycerols in perinodal adipocytes (Pond and Mattacks  2003  ) . The basal rate of lipoly-
sis in perinodal adipocytes is slightly lower than that of other adipocytes but 
signifi cant increases can be detected within an hour of an experimentally elicited 
immune response (Pond and Mattacks  1998  ) . Increased release of fatty acids from 
perinodal adipocytes around the lymph node(s) draining the site of the immune 
stimulus reaches a maximum after about 6 h and then wanes, disappearing totally 
after about 24 h. However, the effect can be prolonged, possibly indefi nitely, and 
elicited in adipocytes situated further from the lymph node, by repeated immune 
stimulation (Pond and Mattacks  2002  ) . 

 The appearance of more receptors for tumor necrosis factor- a  on perinodal 
adipocytes follows a similar time course in response to mild immune stimulation 
(MacQueen and Pond  1998  ) . Perinodal adipocytes respond much more strongly 
than those not anatomically contiguous to lymphoid structures to tumor necrosis 
factor- a , interleukin-4 and interleukin-6 and probably other cytokines (Mattacks 
and Pond  1999  ) . These signal molecules may mediate the paracrine interactions 
between adipocytes and the lymphoid cells that they supply. The adipocytes in 
depots containing lymph nodes, especially perinodal adipocytes, seem to be partially 
emancipated from supporting energy supplies for more remote tissue. Although 
such adipocytes respond in vitro more strongly to maximal noradrenalin, in vivo 
they contribute less lipolytic products to the circulation during fasting than those in 
depots containing few or no lymphoid structures (Mattacks and Pond  1999  ) . 
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 The popliteal perinodal adipose tissue is most frequently studied only because 
these depots are easily accessible and the pair (one or a small group of nodes in 
compact depots in each hind leg) facilitates experimental design. The responses of 
perinodal adipocytes in different depots are qualitatively similar but differ quantita-
tively. The largest and most sustained responses are consistently found in the mes-
entery and omentum of rodents (Pond and Mattacks  2002 ; Mattacks et al.  2004b ; 
Sadler et al.  2005  ) , and probably also in humans, in which the patterns of site-spe-
cifi c differences in adipocyte triacylglycerol composition (the property most easily 
measured in preserved samples) are similar (Westcott et al.  2005  ) . Many of site-
specifi c differences in gene expression in murine mesenteric adipose tissue com-
pared to epididymal or inguinal (Caesar et al.  2010  )  can be explained as adaptations 
to interactions with lymphoid cells within or emanating from lymph nodes. Human 
visceral depots include more blood vessels especially in obesity and are more sus-
ceptible to infl ammation than superfi cial adipose tissue (Villaret et al.  2010  ) .  

    8.5.3   Dendritic Cells 

 Dendritic cells interact with adjacent adipocytes. Those extracted from the adipose 
tissue stimulate lipolysis, while those from adjacent lymph nodes inhibit the pro-
cess, though the effects are strong only in perinodal and milky spot-rich samples 
and minimal in the adipocytes extracted from adipose sites more than 10 mm from 
lymph nodes (Mattacks et al.  2005  ) . Inducing mild infl ammation by injection of 
lipopolysaccharide amplifi es these effects, suggesting that they are integral to 
immune responses. Switching from anti-lipolytic to pro-lipolytic secretions seems 
to be among the transformations that dendritic cells undergo as they migrate from 
the lymph nodes through the adjacent adipose tissue, and thus should be considered 
as part of the maturation process (Mattacks et al.  2005  ) . The fatty acid compositions 
of lipids in intercalated dendritic cells closely resemble those of adjacent adipocytes 
(Mattacks et al.  2004b  ) . Site-specifi c differences and experimental changes of the 
dietary lipids alter the fatty acid composition of both types of cells, but the similari-
ties between cells that were contiguous in vivo remain. The simplest explanation for 
this resemblance is that maturing dendritic cells acquire fatty acids (and perhaps 
other precursors) from adjacent adipocytes, rather than from remote sources via the 
blood or lymph, as was previously assumed (Mattacks et al.  2004b  ) . Structural 
lipids are the most easily traced, but those used for the production of signal mole-
cules or ATP are probably of similar origin. 

 In all normal monogastric mammals that have been investigated, the triacylglyc-
erols of adipocytes near to lymph nodes are disproportionately rich in polyunsatu-
rated fatty acids, including the specifi c precursors of eicosanoid and docosanoid 
signal molecules that are integral to lymphoid cell function (Mattacks and Pond 
 1997 ; Pond  2003a  ) . These differences in composition presumably arise by selective 
uptake and/or release of fatty acids that differ in chain length and degree of unsatu-
ration (Raclot  2003  ) . The site-specifi c differences in adipocyte-derived fatty acids 
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thus conferred on intercalated dendritic cells add another source of structural, and 
perhaps also functional, diversity to these cells that hitherto have been classifi ed by 
genes activated and proteins synthesized (Gehring et al.  2008  ) . 

 In rats fed unaltered or sunfl ower oil-supplemented diets, prolonged experimen-
tal infl ammation alters the composition of fatty acids in lipids of perinodal adipose 
tissue, and hence that of fatty acids incorporated into permeating dendritic cells 
(Mattacks et al.  2004b  ) . However, the fatty acid composition of phospholipids in 
such dendritic cells from unstimulated and immune-stimulated rats whose diet over 
the previous 6 weeks has been supplemented with fi sh oils is indistinguishable 
from those of immune-stimulated rats eating standard diets and hardly changes 
under experimental infl ammation. These data imply that diets enriched with fi sh oil 
create membrane compositions in dendritic cells that are ideal for supporting the 
immune response, thus eliminating the need for further adaptation in response to 
immune stimulation. Over a period of several weeks, the ratio of  n -6/ n -3 fatty acids 
in triacylglycerols in the perinodal adipose tissue surrounding the locally infl amed 
lymph node also changes, partially correcting the composition imposed by dietary 
imbalances (Mattacks et al.  2004b  ) . This mechanism may be among the ways that 
perinodal adipocytes minimize the impact of fl uctuations in dietary lipids on whole-
body immune function and may be physiologically important, especially during 
fasting and hibernation (Pond  2009  ) . 

 The involvement of perinodal adipocytes in immune responses not only begins 
within minutes but can persist for months. In a rat experiment to explore recovery 
from simulated low-level chronic infl ammation, the numbers of dendritic cells 
recovered from the locally stimulated lymph node and its perinodal adipose tissue 
were found to rise at least tenfold within 4 weeks of local subcutaneous injection of 
20  m g of lipopolysaccharide three times a week and remained high for as long as 
this regime was applied (Sadler et al.  2005  ) . Dendritic cell numbers were still 
signifi cantly above baseline 12 weeks after termination of the regime of simulated 
low-level chronic infl ammation. These effects were observed in node-associated 
adipose tissue remote from the site of stimulation as well as that adjacent to it with 
parts of the mesentery and omentum being among the most responsive. The mesen-
teric lymph nodes and their contents atrophy in mice made obese by a high-fat diet, 
apparently poisoned by high concentrations of fatty acids and lipoproteins (Kim 
et al.  2008  ) . These fi ndings have implications for slow, deleterious changes in both 
the immune system and adipose tissue induced by chronic stress and prolonged 
infl ammation.  

    8.5.4   Adipose Tissue in Normal Immune Function 

 Figure  8.1  summarizes known properties of perinodal adipose tissue relevant to its 
paracrine interactions with the immune system. Many immunologically important 
fatty acids are dietary essentials, and hence can be limiting, especially during 
anorexia associated with major infl ammatory diseases (Johnson  2002  ) . By ensuring 
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that the immune system has priority access to essential lipids, this mechanism 
complements sickness-induced anorexia, an ancient mechanism that has been dem-
onstrated in arthropods (Adamo et al.  2010  )  and lower vertebrates as well as in 
mammals (Johnson  2002 ; Straub et al.  2010  ) .  

 Without effective lipid management, key precursors may not be available when 
and where they are needed and could be squandered by increased oxidation of lipids 
during anorexia. By releasing appropriate fatty acids to lymphoid cells when and 
where they are required, the perinodal adipose tissue promotes effi cient utilization 
of essential fatty acids and partially emancipates immune function from fl uctuations 
in the abundance and composition of dietary lipids (Pond  2003b  ) . In rats, the selec-
tive accumulation of polyunsaturated fatty acids that generates the  n -6/ n -3 ratio 
appropriate for lymphoid cells is quite slow and can probably be overwhelmed by 
prolonged dietary defi ciencies or excesses. Nothing is known about the extent to 
which the effi ciency and robustness of these mechanisms differ between individuals 
or between species, thus making their immune systems more, or less, susceptible to 
impairment by dietary imbalance or insuffi ciency. 

 Paracrine control of lipolysis by lymphoid cells reduces competition with other 
tissues for specifi c, essential lipids, thus enabling fever and other energetically 
expensive defenses against pathogens to take place simultaneously with prolifera-
tion, maturation and activation of lymphoid cells and with functions such as lacta-
tion and exercise, even during anorexia or starvation (Pond  2007  ) . Under some 
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circumstances, notably prolonged anorexia nervosa, immune function remains 
surprisingly effi cient in spite of massive reduction in adipose tissue mass (Nova 
et al.  2002  ) , less fever in response to infection (Birmingham et al.  2003  )  and altered 
plasma cytokines (Brichard et al.  2003  ) . As long as local interactions between adi-
pose and lymphoid tissues are unimpaired, the mammalian immune system can 
probably function over a wide range of body compositions. Obvious cachexia with 
extensive muscle depletion occurs about the same time as perinodal adipose tissue 
disappears. Defi ciencies in its capacity for preferential support of immune function, 
rather than reduction in whole-body energy supplies per se, may be the mechanism 
by which nutritional “stress” impairs immune function. 

 Paracrine supply from specialized adipocytes to the immune system ensures 
supplies while minimizing lipid traffi c in blood and its associated actions on metab-
olism and appetite and risk of damage to blood vessels. The concept is a special case 
of the hypothesis proposed by Unger  (  2003 ; Unger and Scherer  2010  ) : adipocytes 
store fuel reserves safely, protect other tissues from fl uctuations in the quantity and 
quality of dietary lipids, and ensure that their clients are appropriately supplied. 
Although more diffi cult to demonstrate experimentally, adipocytes may supply 
other nutrients to lymphoid cells. Glutamine is a likely candidate in view of its 
importance in nutrition of the immune system (Ardawi and Newsholme  1985  )  and 
metabolism within adipocytes (Digby  1998  ) . 

 Paracrine interactions with adipocytes may also account for some features of the 
anatomy of lymph vessels and nodes (Gyllensten  1950 ; Pond  1996 ; Harvey et al. 
 2005  ) . The branching of fi ne lymphatics near nodes would slow the passage of 
lymph and bring a greater surface area of vessels into contact with adipocytes, thus 
facilitating the exchange of signals, nutrients and metabolites. Adipocytes special-
ized to interact with adjacent immune cells have been demonstrated in a variety of 
monogastric mammals but seem to be absent or at least to have very different prop-
erties in ruminants (Pond  2003a  ) . Ungulates pass much more globulins and other 
components of passive immunity to neonates in the colostrum than most other 
mammals (Langer  2009  ) . The functional and phylogenetic relationships between 
this habit and the unusual perinodal adipose tissue may prove interesting. 

 A notable feature of naturally lean mammals (other than ruminants) is the reten-
tion of a small amount of perinodal adipose tissue around major lymph nodes, prob-
ably because prolonged fasting does not raise lipolysis in perinodal adipocytes as 
much as in adipocytes not anatomically associated with lymphoid tissue (Mattacks 
and Pond  1999  ) . Lymphoid-associated adipose tissue also regenerates sooner. After 
experimental lipectomy of the epididymal fat pads of adult rats, compensatory 
regrowth of adipose tissue is signifi cant 16 weeks later in the node-containing mes-
enteric and inguinal depots, but not in perirenal (Hausman et al.  2004  ) . All these 
site-specifi c properties are consistent with the indispensible paracrine support of 
immune function by specialized adipocytes. 

 The importance of membrane lipids to prompt, effi cient immune responses 
(Heller et al.  2003 ; Serhan et al.  2008  )  and the local interactions hypothesis (Knight 
 2008  )  are becoming more widely accepted among immunologists but have been 
criticized by Schäffl er et al.  (  2006  )  for lack of evidence that “perinodal adipocytes 



2438 Evolution

and derived adipokines can directly influence the lymph node function in a 
paracrine manner during local infl ammatory processes.” This comment misses 
the point common to most nutritional defi ciencies and therapies. In providing 
appropriate membrane composition and precursors, perinodal adipocytes may 
equip lymph node lymphoid cells to respond appropriately and promptly to other 
signals, rather than themselves generating short-term signals that can be easily 
measured in the laboratory. Although ill-defi ned, slow changing and diffi cult to 
quantify, nutrition may be as important to well co-ordinated and regulated immune 
responses as the transiently acting adipokines. 

 With the rise of lipidomics (Ivanova et al.  2004 ; Quehenberger et al.  2008  )  and 
better understanding of the roles of dietary lipids in immune function (Enke et al. 
 2008  ) , the contribution of adipocytes to lymphoid cell diversity and function merits 
further investigation. Reports of translocation of lipid from adipocytes to human 
tumor cells in culture (Gazi et al.  2007  )  should prompt further study of paracrine 
mechanisms.  

    8.5.5   Human Perinodal Adipose Tissue 

 Increased incorporation of  n -3 polyunsaturated fatty acids into complex lipids 
usually suppresses infl ammatory markers both in vitro and in chronic infl ammatory 
diseases (Calder  2007  ) . However, blood-borne mononuclear cells from Crohn’s 
disease patients contain more, not less,  n -3 polyunsaturated fatty acids than those of 
the controls, and are defi cient in arachidonic acid (Trebble et al.  2004  ) . The site-
specifi c differences in fatty acid composition of lipids in the mesenteric adipose 
tissue expected from animal studies (Pond  2003a  )  are absent from patients with 
Crohn’s disease, though they were found in similar samples from the controls 
(Westcott et al.  2005  ) . The composition of lymphoid cells in mesenteric lymph 
nodes resembles that of the adjacent perinodal adipose tissue in the controls, but not 
in the Crohn’s diseased patients, which suggests that their adipocytes are not sup-
plying fatty acids to cells in the adjacent lymph nodes. In the sample studied, the 
lymph node lymphoid cells from the Crohn’s disease patients contained only 23% 
as much of the eicosanoid precursor arachidonic acid (C20:4 n -6) as the controls. Its 
major fatty acid precursor, linoleic acid, and linolenic and docosahexaenoic acids, 
the precursors of docosanoids, were also signifi cantly depleted. Insuffi ciencies in 
the synthesis of eicosanoid and docosanoid signal molecules may contribute to the 
inappropriate infl ammation characteristic of Crohn’s disease and to its anomalous 
responses to anti-infl ammatory drugs (Gassull et al.  2002 ; Trebble et al.  2004  ) . 

 “Fat wrapping” is local hypertrophy of mesenteric adipose tissue around the 
infl amed intestine, although nearly all patients undergoing laparotomies for Crohn’s 
disease are lean following prolonged disruption to appetite, digestion and absorp-
tion (Westcott et al.  2005  ) . In rats, prolonged infl ammation causes maturation of 
additional adipocytes and hence permanent enlargement in adipose tissue in the 
lymph tissue-rich intra-abdominal depots (Mattacks et al.  2003 ; Sadler et al.  2005  ) . 
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The anomalous growth of adipose tissue in Crohn’s disease may be induced by 
signals arising from adjacent immune cells unable to access enough of the fatty 
acids that they need. General defects in perinodal adipose tissue leading to impaired 
immune function could explain the association between the bowel disorders and 
other chronic diseases such as arthritis, eczema and rhinitis (Book et al.  2003  ) . 

 Human immunodefi ciency virus (HIV)-associated lipodystrophy is another 
chronic disease in which prolonged infl ammation causes site-specifi c adipocyte 
hyperplasia and hence permanent enlargement of certain adipose depots, espe-
cially those that incorporate infected lymphoid cells. HIV proliferates as an intra-
cellular parasite in lymphoid cells, particularly dendritic cells (Lehmann et al. 
 2010  ) . Mesenteric lymph nodes are important reservoirs of quiescent HIV 
(Estaquier and Hurtrel  2008  ) . Comparisons between node-containing depots show 
that paracrine interactions between perinodal adipocytes and dendritic cells are 
strongest in those around the numerous mesenteric lymph nodes and omental 
lymphoid tissue (Mattacks et al.  2004a,   2005 ; Sadler et al.  2005  ) . Perinodal and 
omental adipocytes may proliferate (i.e. the depots enlarge) as part of their response 
to “garbled messages” emanating from HIV-infected dendritic cells (and other 
lymphoid cells including macrophages). Current hypotheses attribute lipodystro-
phy to a form of premature aging (Caron-Debarle et al.  2010  )  but irreversible 
hypertrophy induced by prolonged paracrine interactions between parasitized lym-
phoid cells and adipocytes specialized to support immune function can explain the 
manifestation of the syndrome in drug-naïve as well as treated patients.  

    8.5.6   Paracrine Interactions with Muscle 

 The history and current understanding of the roles of lipolytic products as fuels for 
skeletal muscle have recently been well summarized by Frayn  (  2010  ) . Metabolic 
processes within adipocytes, such as intracellular re-esterifi cation, as well as those 
in adipose tissue regulate levels in the circulation. In humans, mobilization of local 
sources of lipid fuels within the muscle itself can make a substantial contribution. 
Intra- and inter-muscular adipose tissue and intramyocellular lipids are generally 
more conspicuous in large mammals and in muscles adapted to very frequent, 
sustained use, suggesting that these fi ndings may apply generally to large species. 
Intramuscular adipocytes have distinctive site-specifi c properties (Gardan et al. 
 2006  ) , though in early investigations, some were confused with features arising 
from proximity to lymph nodes embedded in small peripheral depots near skeletal 
muscle (Pond et al.  1984 ; Mattacks et al.  1987 ; Pond and Mattacks  1991  ) . 

 Intramuscular lipids increase in athletes trained for sustained exercise and seem 
to be more quickly metabolized (van Loon and Goodpaster  2006  ) . Paradoxically, 
intramuscular lipids increase in the leg muscles of healthy young people after a few 
weeks of experimental inactivity (Manini et al.  2007  ) , and many reports link their 
presence to insulin resistance (Machann et al.  2004  ) . Muscle satellite cells, stem 
cells essential to muscle repair and plasticity, can acquire features of adipocytes that 
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could explain the enormous increase in such adipose tissue in humans (Vettor et al. 
 2009  )  and domestic mammals bred and raise for meat (Hocquette et al.  2010  ) .  

    8.5.7   Cardiac Adipocytes 

 Until the 1990s, the adipose tissue in the human heart and pericardium was dismissed 
as pathological, irrelevant to normal function (James et al.  1982 ; Szczepaniak et al. 
 2007  )  but has recently been studied intensively (Sacks and Fain  2007  ) . Both epicar-
dial and pericardial adipose tissue are found in most lean, healthy wild mammals, 
especially large species (Marchington et al.  1989  ) . As in humans (Sacks and Fain 
 2007  ) , epicardial adipocytes are not bounded by fascia and always adhere tightly to 
the myocardium. In species that naturally become obese, no correlation between the 
masses of these depots and those elsewhere in the body is found (Pond et al.  1992, 
  1993,   1995  ) , and the much more thorough studies of humans reveal surprisingly 
weak associations (Rabkin  2007  ) . 

 The dimensions and properties of epicardial and pericardial adipose tissue in 
humans can be quantifi ed by modern scanners (Iacobellis et al.  2006,   2008a,   b ; 
Iacobellis and Sharma  2007  )  and are intensively studied as indicators of cardiovas-
cular disease (Iacobellis and Sharma  2007 ; McLean and Stillman  2009  ) . Long-term 
HIV infection induces hypertrophy of lipids and adipocytes associated with limb 
muscles (Albu et al.  2007  )  and the heart (Iacobellis et al.  2007 ; Lo et al.  2010  ) , as 
well as the major intra-abdominal depots. Chronic infl ammation is unlikely to be an 
important mechanism in these changes; expression of genes for interleukins and 
other indicators of infl ammation are lower in epicardial adipose tissue than subster-
nal, subcutaneous, or omental depots (Fain et al.  2010  ) . 

 Epicardial and pericardial adipose tissue are minimal in murid rodents so can 
only be studied experimentally in guinea pigs or larger animals or in vitro 
(Marchington and Pond  1990 ; Swifka et al.  2008  ) . Preliminary studies reveal site-
specifi c properties consistent with the hypothesis that these small depots are spe-
cialized to protect the heart from toxic levels of fatty acids by uptake and esterifi cation, 
as well as to supply the cardiac muscle with fuel (Marchington and Pond  1990  ) . The 
range of adipokines secreted from these specialized depots (Iacobellis and Barbaro 
 2008  )  and the fi nding that isolated rat heart muscle exports excess fatty acids in vivo 
(Park et al.  2004  )  are consistent with this concept. Gene expression in epicardial 
adipose tissue has features in common with that of the omentum (Fain et al.  2008  ) , 
but since all such tissue samples came from people undergoing bariatric or open-
heart surgery, these fi ndings cannot be assumed to represent normality. These stud-
ies together are consistent with the hypothesis of paracrine interactions between 
cardiac muscle and adipose tissue (Chaowalit and Lopez-Jimenez  2008 ; Iacobellis 
and Barbaro  2008  ) . Analysis of the huge data set compiled from the Framington 
heart study concludes that adverse paracrine interactions with cardiac adipose tissue 
may contribute more than systemic obesity to the risk of cardiovascular disease 
(Fox et al.  2009  ) . Possible mechanisms of such local exchange of nutrients and 
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signals have been proposed (Sacks and Fain  2007  ) , but their roles in normal cardiac 
function remain to be thoroughly elucidated. 

 Another form of local interaction is thermogenesis in cardiac and other thoracic 
adipose tissue that warms the heart after hypothermia. Brown adipose tissue is 
clearly visible in these depots in neonates and hibernators (Nedergaard et al.  1986 ; 
Cannon and Nedergaard  2008  )  and has recently been detected in some adult humans 
(Cypess et al.  2009  ) . The mRNA for the mitochondrial uncoupling protein (UCP1) 
is detectable in epicardial adipose tissue of Americans undergoing cardiac bypass 
surgery and is more abundant in younger subjects (Sacks et al.  2009  ) . It will be 
interesting to know whether people who are frequently exposed to cold for long 
periods have increased thermogenic capacity of epicardial adipose tissue. A pre-
liminary study that did not include cardiac depots identifi ed photoperiod as stronger 
than climate in determining brown adipose tissue activity (Au-Yong et al.  2009  ) .  

    8.5.8   Perivascular Adipose Tissue 

 Twenty years ago, the study of neurohumoral activity of perivascular adipose tissue 
around rat aorta was prompted by the observation that “virtually every blood vessel 
in the (human) body is surrounded to some degree by adipose tissue” (Soltis and 
Cassis  1991  ) . Like the epicardial adipocytes and those around lymph vessels, 
perivascular adipocytes are not separated by a fascia from the underlying tissue 
(Ouwens et al.  2010  ) , an anatomical arrangement that facilitates paracrine interac-
tions (Rajsheker et al.  2010  ) . These specialized white adipocytes are now known to 
receive and secrete a wide range of signals (Rajsheker et al.  2010  )  and to contribute 
to paracrine control of vascular smooth muscle (Verlohren et al.  2004  ) , immune 
processes (Wehner and Baldwin  2010  )  and tissue repair (Takaoka et al.  2010  ) . As 
with so many physiological functions of adipocytes, these interactions are also 
implicated in various human pathologies, including atherosclerosis, blood pressure 
abnormalities and type II diabetes (Henrichot et al.  2005 ; Lee et al.  2009 ; Ouwens 
et al.  2010  ) . 

 The gene products mediating the relationship between lymph vessels and    adja-
cent adipocytes have recently been identifi ed (Harvey et al.  2005  ) . Chronic infl am-
mation and induced genetic defects in lymph vessel growth can stimulate adipose 
tissue formation in quantities amounting to obesity (Harvey  2008  ) , but the role of 
such mechanisms in normal mammals remains unclear.   

    8.6   The Specifi city of Fatty Acids 

 Since leptin was discovered in the early 1990s, the secretion and reception of adipokines 
have been center stage in adipose tissue research, emphasizing its similarities to 
other tissues of the immune and endocrine systems (Fantuzzi and Mazzone  2007 ; 
Galic et al.  2010  ) . Nonetheless, recent improvements in equipment and techniques for 
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separating, characterizing and quantifying lipids have greatly advanced understanding 
of adipose tissue’s specialized roles in the sequestration, sorting and selective manage-
ment of fatty acids and triacylglycerols. 

    8.6.1   Structural Lipids 

 All living cells are bounded by fatty membranes and most can oxidize fatty acids 
or their derivatives. After many years focussed on heritable information and pro-
tein synthesis, lipid membranes as barriers and in cell proliferation are now well 
recognized as central to the evolution of cellular life (Szostak et al.  2001 ; Stano and 
Luisi  2010  ) . 

 Plants and algae synthesize fatty acids from primary photosynthetic products as 
and when they need them, but animals obtain most of theirs from food. In verte-
brates, most fatty acids are derived from the diet, with only minor metabolic modi-
fi cations. For most animals, most of the time, de novo synthesis contributes only a 
little, the main exceptions being those that fatten rapidly on a low-fat diet, often 
prior to reproduction, migration, diapause, hibernation or other prolonged fast. 

 Membrane fl uidity is closely linked to the cells’ capacity to support channels and 
receptors and to deform during movement. Failures in these processes are the prin-
cipal mechanism of death during hypothermia in mammals such as humans that 
cannot hibernate (Boutilier  2001  ) . Temperature modulation of membrane fl uidity is 
determined mainly by fatty acid composition of the phospholipids, though the exact 
relationships are complex (Hayward et al.  2007  ) . Several essentially similar mecha-
nisms that adjust the fatty acid composition of membrane lipids to temperature are 
found in microbes, plants and animals (Guschina and Harwood  2006  ) . Heterothermic 
animals most clearly demonstrate the relationships of dietary lipids and their meta-
bolic modifi cations and anatomical organization to physiological capacities. For 
example, the diurnal desert iguana,  Dipsosaurus dorsalis , can tolerate a wide range 
of body temperatures (<5 to >40°C); feeding experiments demonstrate that the fatty 
acid composition of dietary lipids determines the temperature at which the lizards 
choose to rest (Simandle et al.  2001  ) . The effects develop over several weeks and 
presumably involve alterations in the fatty acid composition of lipid membranes, 
though the neural mechanisms involved are unknown. 

 Structural lipids are also becoming more important in biomedical sciences. The 
fatty acid composition of membrane lipids has been implicated as a determinant of 
natural longevity (Hulbert  2008  ) , and dietary fats correlate with depression and 
other psychiatric conditions (Horrobin  2001  )  and long-term cognitive impairment 
among elderly humans (Solfrizzi et al.  2010  ) . 

 Although it is generally assumed that some, perhaps many, of the fatty acids 
in an animal’s structural lipids have been components of its own or its mother’s 
storage lipids, traffi cking between neutral lipids and phospholipids has been little 
studied. An exception is the demonstration of the resemblance between the com-
positions of fatty acids in newly formed lymphoid cells and the triacylglycerols 
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in contiguous adipocytes (see Fig.  8.1 ), suggesting that specialized adipocytes 
supply fatty acids to adjacent immune cells (Pond and Mattacks  2003 ; Mattacks 
et al.  2004b ; Pond  2009  ) .   

    8.6.2   Storage Lipids as Fuels 

 As well as providing fatty acids appropriate to structural lipids in various kinds of 
cells operating under various physiological conditions, the composition of triacylg-
lycerols is important to their role as energy stores during strenuous exercise, immune 
responses and thermogenesis. Biomechanical and metabolic studies show that 
human running is not very effi cient compared to that of animals adapted to fast 
long-distance travel (Alexander  2004  ) . However, exercise physiologists recognize 
that comparative studies can offer tips on improving athletic performance. 

 Long-distance migration in birds, especially small species, is among the most 
metabolic demanding of all activities, fuelled almost entirely by fast, sustained mobi-
lization of storage lipids (Weber  2009  ) . Sandpipers ( Calidris pusilla ) demonstrated 
selective incorporation of dietary fatty acids into structural or storage lipids and evi-
dence for adaptive desaturation that maximizes energy density and effi cient mobiliza-
tion of the storage lipids during prolonged fl ight (Maillet and Weber  2006  ) . However, 
studies of another species of sandpiper ( Philomachus pugnax ) produced no evidence 
for similar selectivity of fatty acids mobilized during shivering elicited by prolonged 
exposure to cold (Vaillancourt and Weber  2007  ) . This comparison suggests that active 
lipid management entails some physiological cost: the process is essential prepara-
tion for migration (Weber  2009  )  which requires precise coordination between mus-
cles during fl ight but is dispensable for shivering, a more chaotic activity. 

 Similar investigations on mammals have not yet been performed.  

    8.6.3   Fatty Acid Sorting 

 In mammals including humans, selective deployment and transport of fatty acids 
begin as dietary lipids are absorbed from the gut (Hodson et al.  2009 ; Hodson and 
Fielding  2010  ) . Both brown and white adipose tissue can harbor triacylglycerols 
of a wide range of compositions and various lipid-soluble substances, including 
potentially toxic contaminants and metabolic waste products. As well as storing 
and mobilizing metabolically useful lipids and glutamine, adipose tissue is a 
repository for such unexcretable end-products, especially in elderly. The capacity 
of rat adipocytes for selective release or retention of fatty acids that differ in chain 
length and degree of saturation was identifi ed less than 20 years ago (Raclot and 
Groscolas  1993  ) . The process has been demonstrated in several mammals includ-
ing humans, and the cellular mechanisms are now well understood (Raclot  2003  ) . 
Fatty acids released from adipocytes into the circulation contain more highly 
unsaturated fatty acids and fewer long-chain saturated and monounsaturated 
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fatty acids than the triacylglycerols from which they are derived. Raclot  (  2003  )  
concludes that “the observation that the molecular structure of fatty acids seems to 
govern their release does not support the idea of a particular demand of the body 
for specifi c fatty acids.” Comparative studies in a broader context reveal this con-
clusion to be unduly pessimistic. When supplemented by fatty acid synthesis and 
modifi cation, dietary choice and selective intake, these mechanisms contribute to 
lipid deployment and storage appropriate to temperature and other conditions, as 
described in Sect.  8.5 .  

    8.6.4   Fatty Acid Sorting in Non-Mammalian Vertebrates 

 This important biochemical mechanism has been little studied in other vertebrates. 
Experimental starvation of diamondback rattlesnakes (anatomically advanced, 
physiologically versatile snakes) kept at temperatures at which they would normally 
feed found some evidence for selective retention of essential polyunsaturated fatty 
acids in whole-body homogenates (McCue  2007  ) . Studies of egg formation and 
embryonic development in the viviparous lizard  Pseudemoia entrecasteauxii  also 
reveal some capacity for fatty acid sorting in reptiles (Speake et al.  1999  ) . However, 
the process is much more specifi c and effi cient in birds (Speake and Thompson 
 1999  ) . Avian embryos oxidize mostly carbohydrate in the early stages of develop-
ment, later switching to lipids. In domestic chickens, the cells lining the embryonic 
gut start “eating” droplets of yolk around the 12th day of incubation and pass its 
lipids into the blood as lipoproteins. At the same time, mature white adipocytes 
appear (early compared with mammalian fetuses) and take up the yolk-derived lip-
ids. The adipocytes and the lipoproteins manage the embryo’s irreplaceable lipid 
provisions, incorporating appropriate fatty acids into structural lipids while others 
are oxidized (Speake et al.  1998  ) . For example, most polyunsaturated fatty acids in 
yolk lipoproteins in king penguin eggs are preferentially incorporated into structural 
lipids in the brain and eyes while the more abundant saturates are used in energy 
production (Groscolas et al.  2003  ) . This capacity for fatty acid sorting is one of the 
major advances of avian embryos over their reptilian ancestors and is essential to the 
growth and maturation of the large complex brain and eyes (Speake and Thompson 
 1999  ) . For example, only 0.24% of the key neural polyunsaturate, docosahexaenoic 
acid (22:6 n -3), in the egg yolk of water pythons ends up in the structural lipids of the 
hatchlings’ brains compared to nearly 20% in bird embryos (Speake et al.  2003  ) . 

 The avian capacity for fatty acid sorting may be retained into adult life, contrib-
uting to selective incorporation of certain polyunsaturated fatty acids into adipocyte 
triacylglycerols and muscle membranes during the fattening period that precedes 
long-distance migration, thereby improving the effi ciency of prolonged, strenuous 
exercise (Maillet and Weber  2006 ; Weber  2009  ) . The fact that fatty acid sorting by 
adipose tissue has been investigated thoroughly only recently, more than 100 years 
after its role as a lipid repository was recognized, refl ects scientifi c concepts and 
instrumentation, not biological functions and their evolution.   
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    8.7   Adipose Tissues for Mammalian Habits and Habitats 

 Several distinctive features of mammalian adipose tissues are described above: 
distributed anatomical arrangement, site-specifi c properties, fatty acid sorting, 
participation in multiple signaling pathways, and paracrine as well as endocrine 
interactions. These properties can be related to some of the most fundamental fea-
tures of mammals: herbivory, variable often high body temperature, lactation, allo-
metric growth and sociality. 

    8.7.1   Diet 

 Most extant reptiles are snakes, the great majority of which prey on other vertebrates 
that they eat whole and within minutes of death (i.e. before rancidity and putrefac-
tion impair its nutritional quality). Thus the chemical composition of the prey is as 
close as it could be to that of the predator. All crocodiles and most large lizards are 
also predators on other vertebrates and they eat at least some of it very fresh. Such 
prey may be intermittently available and demanding to obtain but they are nutrition-
ally almost ideal, a single meal supplying a “balanced diet.” Large herbivorous rep-
tiles became extinct at the end of the Mesozoic and failed to re-establish themselves 
in the face of competition from mammals and birds. The only reptilian herbivores to 
survive into the modern era are the tortoises and the adult stages of a few tropical 
lizards (the juveniles eat small prey, as do the chicks of most herbivorous birds). 

 Flight and climbing enable birds to access a varied diet of highly nutritious, 
energy-dense foods that may be widely dispersed. In all extant species, the teeth are 
entirely replaced by a beak, digestion is quick and water requirements usually low. 

 In contrast, the great majority of mammals are and have been throughout the 
Tertiary specialist consumers of fruit, seeds, grasses and other vegetation, abundant 
but nutritionally imbalanced foods that can be successfully exploited with good 
teeth, effi cient digestion and means of detoxifying plant anti-herbivory compounds. 
Many have highly specialized dentition and/or digestion and restricted ranges so at 
least at certain seasons, their diets are more homogeneous than those of similar-
sized birds. From a nutritional point of view, such diets are far from ideal, often low 
in minerals and essential amino and fatty acids, though effi cient chewing and diges-
tion greatly improve absorption (Langer  2002  ) . Small mammals, particularly the 
large ubiquitous groups such as rodents and bats (Chiroptera), owe their abundance 
and diversity to the ability to breed prolifi cally on monotonous, nutrient-poor diets. 
Eating more of poor quality but abundant forage to obtain these components gener-
ates too much energy, which may be stored in white adipocytes or dissipated by 
diet-induced thermogenesis (Cannon and Nedergaard  2004  ) . In other words, 
“burning off” excess energy can help correct nutritional imbalances in monotonous 
or barely adequate diets, distilling out scarce nutrients including amino acids, essen-
tial fatty acids, vitamins and minerals from energy-rich but nutrient-poor foods. 

 The principal mediator of such facultative thermogenesis is probably mitochon-
drial uncoupling, but especially in large mammals that have little brown adipose 
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tissue, other “futile” metabolic cycles in muscle or liver (Dulloo et al.  2004 ; Wijers 
et al.  2009  )  and thermogenic processes demonstrated in subcutaneous white adipose 
tissue of UCP1-knock-outs (Meyer et al.  2010  )  may contribute. Such processes may 
underlie the fi nding that lipodystrophic but not “healthy normal” humans also respond 
to excess fat intake by substantially increasing their total daily energy expenditure 
(Savage et al.  2005  ) . Those familiar only with lab animals and people on modern 
refi ned diets fail to recognize the central role of such processes (Kozak  2010  ) . 

 The presence of brown adipose tissue in superfi cial depots on the back and neck 
of adults, including humans (Nedergaard et al.  2007  ) , is also consistent with heat 
dissipation. The neonatal anatomy, mostly internal depots in the abdomen and 
thorax, works best for heat retention, as required for rewarming after birth, hiberna-
tion and torpor. Diet-induced thermogenesis was among the fi rst roles of brown 
adipose tissue to be investigated in adults (Stirling and Stock  1968 ; Rothwell and 
Stock  1979  ) , but proved less convenient than cold exposure for studying the cellular 
and molecular mechanisms in laboratory rodents (Cannon and Nedergaard  2004 ; 
Xue et al.  2009  ) . Spectacular physiological feats such as rewarming of adult mam-
mals following hibernation and tiny neonates achieving euthermy attracted more 
thorough investigation, leading to the notion that these functions may be the original 
roles of brown adipose tissue. This conclusion overlooks the importance of adjust-
ing metabolism to diet and digestion in conferring many of the ecological advan-
tages of mammals over reptiles and birds. 

 The capacity to deal with imbalanced or nutrient-poor diets may be transferred to 
offspring, probably through epigenetic mechanisms, as “fetal programming” (Barker 
 2002 ; Mostyn and Symonds  2009 ; Symonds et al.  2009  ) . Brown as well as white 
adipose tissues are particularly susceptible to such maternal infl uences (Symonds 
et al.  2003  ) .  

    8.7.2   Heterothermy 

 Endothermy has long been regarded as the principal physiological advance of mam-
mals over ancestral mammal-like reptiles. Although core body temperature is main-
tained very precisely during euthermic periods, heterothermy is highly controlled 
and many biochemical processes are thermogenic (Silva  2006  ) . Recent accounts of 
the evolution of endothermy recognize a role for more abundant and leakier mito-
chondria (Kemp  2006  ) , but not of the adipose tissues that manage the physiologi-
cally risky process of thermogenesis (normal body is perilously close to dangerous 
hyperthermia) as well as hold and dispense the fuel. 

 Mammalian hibernation entails prolonged fasting with the additional physiologi-
cal challenges of deep hypothermia and rewarming by thermogenesis. Selective gene 
activation in various tissues and dedicated neural pathways set the minimum body 
temperature and trigger entry into and emergence from daily torpor and prolonged 
hibernation (Andrews  2007  ) . During hypothermia, lipids are almost the sole source 
of metabolic energy (Carey et al.  2003  ) . Metabolism during fasting and thermogen-
esis closely resembles that of exercise (Newsholme and Leech  2010  ) . At maximum, 
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thermogenesis can be among the most energy demanding of all biological activities 
and thus requires rapid mobilization, transport and oxidation of lipids. 

 Although mammals can oxidize almost all animal-derived (and most plant-
derived) fatty acids when euthermic, effi cient hibernation depends upon appropriate 
fatty acid composition of storage lipids. Experimental feeding of captive mammals 
and observations on diet selection in free-ranging specimens show that some 
hibernators can achieve low body temperatures, and hence minimal energy expenditure, 
only if they have access to adequate quantities of lipids containing low melting-point 
fatty acids (Dark  2005 ; Frank et al.  2008  ) . The functional bases of this relationship 
are not fully explored but optimizing membrane fl uidity and lipid transport in cold, 
slow-moving blood are among the possibilities. 

 Such experiments demonstrate the importance of different fatty acids for various 
aspects of metabolic well-being. While diet selection is the principal mechanism by 
which blood-borne lipids acquire compositions appropriate to the tissues’ requirements, 
the adipose tissues can help. During the fattening period preceding hibernation, the 
adipose tissue of Alpine marmots ( Marmota marmota ), a strictly herbivorous rodent, 
selectively retains unsaturated fatty acids (Cochet et al.  1999  ) . The echidna ( Tachyglossus 
aculeatus ), one of the most primitive extant mammals, also selectively utilizes 
monounsaturated fatty acids during prolonged hibernation (Falkenstein et al.  2001  ) . 
Fatty acid sorting ensures that saturates are oxidized while the body is euthermic, 
reserving the lower melting-point fatty acids to support metabolism at low temperature. 
The capacity partially emancipates mammals from the necessity of ingesting a diet 
containing a large proportion of monounsaturated and polyunsaturated fatty acids just 
before hibernation and thus extends the range of foods that hibernators can exploit. 

 Immune responses to pathogens acquired during or just before hibernation are fully 
effective only after arousal and rewarming (Prendergast et al.  2002  ) . The slow transport 
of nutrients in the blood and lymph that delay immune responses at low temperatures 
would be alleviated by paracrine provision of lipids described above (Sect.  8.5 ). 

 Thus, fatty acid sorting in adipose tissue, even if slow and only partially effi cient, 
enables mammals to adapt to ecological fl uctuations and species to diversify into new 
niches. Many students of physiological evolution believed that “constitutional eury-
thermy” was the norm for primitive Mesozoic mammals, i.e. torpor and hibernation 
are very ancient habits (Grigg et al.  2004  ) . If so, more effi cient fatty acid sorting and 
paracrine provision may be early and fundamental properties of mammalian white 
adipose tissue, and indeed do occur in protherians (Falkenstein et al.  2001  ) . Hibernation 
implies both controlled cooling and active warming; shivering and activation of brown 
adipose tissue, both fuelled by lipolytic products released from white adipose tissue, 
are the main mechanisms of additional thermogenesis in mammals.  

    8.7.3   Lactation 

 Birds are endothermic and most provision their young, mostly by gathering appro-
priate foods but a few, notably pigeons and doves, produce “crop-milk,” a mixture 
of deciduous tissue and secretions from the upper digestive tract. Thus comparisons 
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between these two advanced groups can reveal something of the origins and 
physiological relationships of these traits (Farmer  2003  ) , both predicated on proper-
ties of mammalian adipose tissues. 

 Comparative anatomists and physiologists have long emphasized that lactation 
is an ancient and fundamental habit of mammals (Pond  1977 ; Farmer  2000  ) , a 
conclusion now confi rmed by genomics (Lefevre et al.  2010  ) . Lactation enables 
mammals to breed effi ciently on any diet that can support the adults (in contrast, 
the diets required by hatchling birds and reptiles are usually very different from 
those of the parents, especially in large species) and to support offspring through 
periods of food shortage (Pond  1977 ; Dall and Boyd  2004  ) . Reliable supplies of 
nutritionally balanced milk support rapid post-natal growth and remove the need 
for diet-induced thermogenesis, thus releasing brown adipose tissue in suckling 
mammals for cooling-induced thermogenesis. By transferring the physiological 
demands of obtaining and digesting food from neonates to mother, functionality of 
some systems, notably the teeth, can be postponed until the body has grown large 
enough to support them. Figure  8.2  summarizes the causal relationships of these 
apparently disparate features and habits to brown and white adipose tissues. 

White
Adipose Tissue

Faster growth, 
more allometry

Specialised 
opposable 

teeth

Euthermy Lactation

Hibernation
& torpor

Faster, more 
thorough 
digestion

Herbivory
Infants 

weaned onto 
adult diet

Brown 
Adipose Tissue

Dissipate 
excess 
energy

Fatty acid 
sorting

Facultative
non-shivering 
thermogenesis

Exploit seasonal 
& transient 

food supplies

Paracrine 
control of 
adipocytes

Reproduction 
anywhere that 

adults live

Anatomically 
distributed

Site-
specific 

properties

Altricial 
neonates

Colonize new 
habitats 

efficiently 

Exploit 
imbalanced 

diets

Combine fever 
& local immune 

responses

Support 
heterothermic 

metabolism

Microbe-
assisted 
digestion 

Maternal care 
promotes 
sociality

Infant nutrition 
emancipated from 

local foods

Heterothermy

Non-seasonal
breeding

Suitable for
domestication

Support high 
metabolic rate

Store much 
lipid safely 

Prolonged 
strenuous 
exercise

Increased 
metabolic scope

Specialized 
feeding

Rapid 
speciation 

Elaborate
behaviour

Exploit tough, 
low-nutrient 
or toxic foods 

  Fig. 8.2    Summary of the contributions of brown and white adipose tissues to the evolution of 
mammalian structure, habits and reproductive strategy       
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 Milk synthesis and secretion have long been recognized as energetically 
demanding processes, especially for small mammals that have large litters and/or 
nutrient-poor diets (Langer  2003  ) . The mother’s gut, liver and pancreas enlarge 
during lactation to meet the additional metabolic requirements but the composi-
tion of the food does not usually change: the mother just needs more of her usual 
foods, thus permitting the evolution of specializations of teeth, digestion and metab-
olism to particular diets and largely eliminating the need for seasonal migration to 
habitats that can support breeding. Energy and nutrients from body stores and 
greatly increased food intake contribute to milk synthesis but competing metabolic 
demands including some immune processes may be compromised (McClellan et al. 
 2008 ; Speakman  2008  )  and human mothers experience extreme tiredness. 

 The fi nding that shaving mice increases milk secretion suggests that the capacity 
to dissipate metabolic heat, not nutrient availability, is limiting, at least for small 
mammals (Król et al.  2007  ) . The capacity to support such high metabolic rate and to 
tolerate high body temperature, at least transiently during lactation, must have 
evolved alongside the evolution of mammary glands, secretory mechanisms and 
milk proteins. Genomic data on the latter show that lactation evolved very early in 
mammalian ancestry and that genes, proteins and cellular processes derived from the 
immune system make a major contribution (Goldman  2002 ; McClellan et al.  2008  ) . 
Milk may have been as important to protection from pathogens (many of them 
derived from the nest and/or the parents) as to nutrition, as it is modern eutherian 
mammals (Langer  2008,   2009  ) . In both cases, adipose tissue is strongly implicated. 

 Many wild mammals fatten during pregnancy with the stored nutrients support-
ing milk synthesis. Mammals that eat little or nothing during lactation become 
massively obese before parturition: for example, polar bears give birth to up to four 
relatively very small offspring in inland dens and suckle them for several months 
without eating or drinking until the young are mature enough to accompany the 
mother to the coast where she has access to her normal diet of seals (Ramsay and 
Stirling  1988  ) . Somehow, females adapted to such reproductive strategies avoid the 
complications of pregnancy and parturition found in obese women (Davis and Olson 
 2009  ) . Thus, metabolic adaptations enabling storage of large quantities of lipid 
during pregnancy can evolve among wild mammals, but are weak or absent in women, 
suggesting that humans are adapted to support pregnancy and lactation mainly from 
current diet. Recent reports that the gluteo-femoral depots (always more extensive 
in women of reproductive age) extract fatty acids from the circulation slightly more 
slowly than other subcutaneous adipose tissue may be an adaptation to long-term, 
more metabolically inert lipid storage (McQuaid et al.  2010  ) . Nonetheless, lactation 
for a substantial period has clear benefi ts for women’s lipid metabolism and body 
composition after giving birth (Stuebe and Rich-Edwards  2009  ) . The observation 
that obese women breast-feed less competently than comparable women of normal 
body composition (Kitsantas and Pawloski  2010  )  is also consistent with the conclu-
sion that from an evolutionary point of view, obesity during human breeding is an 
aberration not an adaptation. 

 Metatherian and eutherian mammals produce very small, almost yolk-free eggs, 
and the fetus is supplied entirely by the mother after development begins. Nutrient 
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uptake is continuously regulated by the placenta and by the fetal tissues. During 
gestation, glucose is the main energy source, and most fatty acids are incorporated 
into cell structures, but immediately after birth, the roles reverse. Birth also triggers 
major changes in the immune system that adapt the neonate to symbiotic and patho-
genic microbes, not least those from their own parents (Calder et al.  2006  ) . In con-
trast to lower vertebrates and birds, the development of adipocytes is delayed until 
shortly before birth. Even the exceptionally large quantities of white adipose tissue 
in neonatal humans do not form until the last trimester of gestation (Kuzawa  1998  ) . 
Lack of involvement in fetal metabolism may have enabled the specialization of 
adipose tissues to perinatal thermogenesis and paracrine interactions.  

    8.7.4   Primates 

 Despite its obvious relevance to human adipose tissue, surprisingly little research 
has been done on primates. Sexual dimorphism in the distribution of adipose 
tissue, such as conspicuous fatty cheeks in mature male orang-utans, contributes 
to the signaling of age and social status in most apes (Caillaud et al.  2008  ) , though 
is not more extensive in macaque monkeys and lemurs than would be expected 
from differences in body size (Pond and Mattacks  1987 ; Pereira and Pond  1995  ) . 
The small but conspicuous depots on the face and head are species-specifi c and 
are presumably composed of adipocytes arising from the neural crest, another 
example of its plasticity (Billon et al.  2007  ) . 

 Humans have more white adipose tissue, especially superfi cial adipose tissue, 
than other mammals from late gestation onwards (Kuzawa  1998  ) . Even non-obese 
western adults have about ten times as many white adipocytes as would be expected 
in a wild mammal of similar size and diet (Pond and Mattacks  1985b  ) . Although 
similar in general organization and relative thickness to that of other (furred) pri-
mates, human superfi cial adipose tissue is unusually extensive and supports various 
skin functions (Klein et al.  2007  ) . The unusual thinness of human skin may contrib-
ute to the tendency of adipose tissue to form, sometimes in substantial quantities, 
on limbs with impaired lymph drainage (Brorson et al.  2008  )  and perhaps some 
forms of generalized obesity (Harvey  2008  ) . When and why these conditions 
evolved and their relationship to hairlessness and sexual dimorphism in body shape 
have been much discussed, but no widely accepted theory has emerged (Pond  1998 ; 
Wells  2010  ) . 

 The energetic cost of reproduction is lower in primates than in other advanced 
eutherians (such as rodents and ungulates) and is particularly low in humans 
(Dufour and Sauther  2002 ; Prentice et al.  2005  ) . These contrasts are large com-
pared to the small differences between individuals that can be attributed to body 
conformation and nutrition (Prentice  2005  ) . Using evidence from anthropology, 
reproductive biology and diet, Wells  (  2010  )  concluded that in the great apes, 
encephalization (disproportionately large brain) and omnivory are among the char-
acteristics closely associated with increased adiposity. More than half of the dry 
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weight of the brain is lipid, a high proportion of which contains long-chain fatty 
acids derived from dietary essentials. Hence, the metabolic bases of both these 
features require effi cient digestion and internal distribution of dietary and synthe-
sized lipid. 

 More than 30 years ago, the greater average fatness of humans and their suscepti-
bility to obesity have been attributed to the belief that until very recently, food supplies 
were irregular and unpredictable (Wells  2006  ) . The food supplies of other long-lived, 
slow-maturing apes also have these properties. Measurements made on healthy young 
adult orang-utans ( Pongo ) in a large, semi-natural enclosure in Iowa reveal the lowest 
daily energy expenditure ever recorded from a higher primate (Pontzer et al.  2010  ) . 
Their idiosyncratic locomotion through dense forest is unusually effi cient (Thorpe 
et al.  2007  ) . This ape, which evolved under selective pressures similar to those acting 
on the ancestors of modern humans and chimpanzees (Enard et al.  2010  ) , has 
responded to unreliable food supplies by improving mechanical and metabolic effi -
ciency and breeding slowly. Captive specimens are prone to obesity, but there is insuf-
fi cient information to determine the nature and extent of natural energy reserves. 

 The human diet has probably been as diverse as it is throughout the modern 
world for much hominid evolution (Bellisari  2008  ) . Such adaptability contributes 
greatly to effi cient colonization of new habitats (Wells and Stock  2007  ) . Wrangham 
has suggested that cooking evolved earlier among the ancestors of modern people 
than previously believed (Wrangham  2009  ) . The impact of cooking and other forms 
of manual food processing on dental morphology and digestion are widely accepted. 
Their contribution to human energetics, including obesity and thermogenic capac-
ity, merits thorough study. 

 The only large-scale, long-term study of spontaneous obesity in large primates is 
that of macaque monkeys ( Macaca mulatta ) “ranched” in large enclosures in USA. The 
resemblances to human populations are striking: not all apparently similar monkeys on 
similar diets gain weight, and of those that become obviously obese, not all develop 
metabolic complications (Schwartz et al.  1993 ; Wells  2009  ) . Large bears, Svalbard 
reindeer and other mammals too big to hibernate and not subject to heavy predation 
deal with similar fl uctuations in food intake by both long periods of low energy expen-
diture and by impressive levels of obesity, at least for part of the year. Their total adipo-
cyte complements are only two to three times larger than those of related lean species 
(Pond  1998  ) , and there is no evidence that they suffer from the complications of patho-
logical obesity found in modern people and in many apes and large monkeys in captiv-
ity. These and other evolutionary and comparative points are among the most persuasive 
evidence that humans are not naturally and adaptively obese.   

    8.8   Conclusions 

 Mammalian adipose tissues are physiologically more diverse, have more complex 
anatomical relations to non-adipose tissues and make a wider range of fundamental 
contributions to activities at all stages of the life cycle than those of lower vertebrates. 
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Partitioning white adipose into numerous depots, many with site-specifi c properties, 
is a fundamental feature of mammals. The anatomy is closely integrated with para-
crine interactions that, by averting competition between tissues, enable adipose 
tissue to support the specifi c requirements of many physiological processes 
simultaneously during hypothermia as well as euthermia. Depots that support 
lymphoid tissues demonstrate capacities for selective uptake and/or retention of 
certain fatty acids thus directing scarce essentials to where they are most needed. 
Early-developing adipocytes in avian embryos also sort fatty acids, ensuring that the 
limited lipid resources in the yolk are effi ciently partitioned between oxidation and 
structural roles (especially in the nervous and immune systems). Diet-induced 
thermogenesis enables mammals to dissipate excess energy taken in to obtain scarce 
proteins, vitamins and minerals. These fundamental metabolic roles of adipose tissue 
may have appeared early in the evolution of mammals as adaptations to effi cient 
digestion and utilization of poorer quality diets and rapid colonization of new habi-
tats. Several interspecifi c comparisons indicate that human obesity is not adaptive.      
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  Abstract   The stability of body weight and fat composition depends on several 
components such as food intake, nutrient-associated turnover, thermogenesis, and 
physical activity. These elements underlie complex interrelated feedback mecha-
nisms, which are affected by personal genetic traits. A number of investigations 
have evidence that not all calories count equal and that some specifi c biofactors 
occurring in foods may affect energy effi ciency and fat deposition. Thus, the role of 
protein and specifi c amino acids, the glycemic load of different carbohydrates and 
foods, the type of fat, as well as the involvement of some food components with 
bioactive functions affecting the energy equation are being ascertained, since they 
can infl uence body composition and adiposity. 

 Indeed, moderately high protein intake, carbohydrate with low glycemic index,  n -3 
fatty acids, calcium, and some thermogenic substances and antioxidants have been 
found to possibly contribute to reduce the body fat content. Many of these fi ndings 
have been supported not only through epidemiological studies, but also by animal and 
cell investigations as well as through controlled nutritional interventions in humans. 

 A better understanding of the putative involved mechanisms in the effects of 
individual fatty acids such as conjugated linoleic acid,    eicosapentaenoic acid, and 
   docosahexaenoic acid in body composition maintenance, as well as the identifi ca-
tion of new bioactive compounds affecting lipid turnover and energy metabolism 
will open the way for a better control and management of fat deposition in different 
stages of the life cycle, since some of them are able to control relevant metabolic 
pathways at the molecular level.  
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    9.1   Introduction 

 Obesity is a growing health burden in developed countries and transition countries 
(McAllister et al.  2009  ) . Moreover, obesity is associated to several chronic morbidi-
ties, including Type 2 diabetes, dyslipidaemia, and hypertension, which are major 
components of the metabolic syndrome (MetS) (Bruce and Byrne  2009  ) . Obesity, 
defi ned as abnormal or excessive fat mass accumulation, is a complex disease, 
caused by an interaction of a myriad of genetic, dietary, lifestyle, and environmental 
factors. A substantial body of evidence suggest that body composition is not only a 
matter of the amount of calories ingested, but that the macronutrient distribution and 
micronutrient content and other dietary factors within the diet are critical contribu-
tors to fat mass and body weight regulation. 

 Several studies have suggested the importance of white adipose tissue (WAT) 
metabolism and WAT-derived factors in the development of obesity and systemic 
insulin resistance, being a key event in the pathophysiology of the MetS (   Sethi 
and Vidal-Puig  2007  ) . In fact, during the last two decades, it has been demon-
strated that WAT is an important secretory organ, which produces a number of 
molecules that putatively play critical roles in fuel homeostasis and contributes to 
maintain metabolic control. These bioactive molecules, generally termed “adi-
pokines” are involved in the physiological regulation of fat storage, adipogenesis, 
energy metabolism, food intake, and also play an important role in metabolic 
disorders (   Scherer  2006  ) . Indeed, the development of obesity and accompanying 
comorbidities is associated with an altered function of the adipocytes, especially 
concerning the synthesis and secretion of adipokines (Hajer et al.  2008 ; Galic 
et al.  2010  ) . 

 The present chapter reviews the scientifi c evidence for the effects of several 
dietary factors on fat mass and body weight regulation (Fig.  9.1 ), as well as on spe-
cifi c features of the MetS in humans. Moreover, the ability of dietary fat and specifi c 
fatty acids as well as of other bioactive food components to regulate the adipocyte 
metabolism and secretory functions is also considered.   

    9.2   Macronutrient Distribution and Energy Density 
as Determinants of Fat Mass and Body Composition 

 In many diets designed to reduce body weight and fat mass by restricting the energy 
content, the macronutrient distribution of energy was commonly set at 15% protein, 
<30% lipids, and 50–55% carbohydrates. Although this recommendation seemed to 
be effective for decreasing energy density, lowering and promoting weight and fat 
loss in the short term, the low achieved levels of satiety are associated with a low 
dietary adherence over longer periods (Abete et al.  2010  ) . Thus, several nutritional 
strategies for producing weight loss and reducing the adipose tissue have been 
investigated (Table  9.1 ).  
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    9.2.1   Energy from Fat 

 The percentage of energy from fat in diets has been widely thought to be an impor-
tant determinant of body fat, and several arguments support the hypothesis that a 
high percentage of energy from fat in the diet may lead to greater body fat: (1) 
dietary fat is the most energy-dense macronutrient in the diet, (2) fats give fl avor and 
palatability to foods, which could increase their consumption, (3) fat produces a 
lower thermogenic effect than carbohydrate and thus may be utilized more effi -
ciently, and (4) fat has a relatively low satiety value. However, overweight rates 
have continue to increase despite of decreasing intakes of fat in many countries, 
which suggests that factors other than dietary fat may play a role in the increasing 
prevalence of obesity (   Willett  1998  ) . Thus, in the Nurses’ Health Study, an 8-year 
follow-up of 41,518 women, the results showed that, overall, percent of calories 
from fat had only a weak positive association with weight gain. However, the 
percentage of calories from animal, saturated, and  trans  fat had stronger associa-
tions, while monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) 
were not associated (Field et al.  2007  ) . Equally, data from 89,432 men and women 
from 6 cohorts of the EPIC (European Prospective Investigation into Cancer and 
Nutrition) study were analyzed to assess the association between baseline fat intake 
(amount and type of total, saturated, PUFA, and MUFA fats) and annual weight 

  Fig. 9.1    Dietary determinants of fat mass and body composition.  SFA  saturated fatty acids;  MUFA  
monounsaturated fatty acids;  PUFA  polyunsaturated fatty acids;  GI  glycemic index;  GL  glycemic 
load       

 



274 M.A. Zulet et al.

   Ta
bl

e 
9.

1  
  In

te
rv

en
tio

n 
st

ud
ie

s 
ev

al
ua

tin
g 

th
e 

ro
le

 o
f 

di
et

ar
y 

de
te

rm
in

an
ts

 o
n 

fa
t m

as
s 

an
d 

bo
dy

 c
om

po
si

tio
n      

 D
ie

ta
ry

 d
et

er
m

in
an

t 
 Su

bj
ec

ts
/p

er
io

d 
 Fi

nd
in

gs
 

 R
ef

er
en

ce
 

 M
ac

ro
nu

tr
ie

nt
 d

is
tr

ib
ut

io
n 

 A
tk

in
s 

 30
%

 P
ro

te
in

/6
5%

 L
ip

id
s/

5%
 C

H
O

 
 Z

on
e 

 30
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

40
%

 C
H

O
 

 L
E

A
R

N
 

 15
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

55
%

 C
H

O
 

 O
rn

is
h 

 V
er

y-
hi

gh
-C

H
O

 

  n  
=

 7
7–

79
 p

er
 g

ro
up

 w
om

en
, B

M
I:

 
27

–4
0 

kg
/m

 2  , 
1 

ye
ar

 o
f 

in
te

rv
en

tio
n 

 W
ei

gh
t l

os
s 

w
as

 g
re

at
er

 in
 th

e 
A

tk
in

s 
di

et
 

gr
ou

p 
co

m
pa

re
d 

w
ith

 th
e 

ot
he

r 
di

et
 

gr
ou

ps
 a

t 1
2 

m
on

th
s 

 G
ar

dn
er

 e
t a

l. 
 (  2

00
7  )

  

 W
ei

gh
t l

os
s 

 A
tk

in
s,

 −
4.

7 
kg

 
 Z

on
e,

 −
1.

6 
kg

 
 L

E
A

R
N

, −
2.

6 
kg

 
 O

rn
is

h,
 −

2.
2 

kg
 

 C
on

ve
nt

io
na

l 
  n  

= 
13

0 
m

en
/w

om
en

, B
M

I:
 3

2.
6 

± 
0.

8 
kg

/
m

 2  , 
4 

m
on

th
s 

w
ei

gh
t l

os
s 

an
d 

8 
m

on
th

s 
w

ei
gh

t m
ai

nt
en

an
ce

 

 A
t 4

 m
on

th
s,

 p
ro

te
in

 g
ro

up
 h

ad
 lo

st
 2

2%
 

m
or

e 
fa

t m
as

s 
th

an
 th

e 
C

H
O

 b
ut

 w
ei

gh
t 

lo
ss

 d
id

 n
ot

 d
if

fe
r 

be
tw

ee
n 

gr
ou

ps
 

 L
ay

m
an

 e
t a

l. 
 (  2

00
9  )

  
 15

%
 P

ro
te

in
/3

0%
 L

ip
id

s/
55

%
 C

H
O

 
 E

ne
rg

y 
re

st
ri

ct
io

n 
(−

50
0 

kc
al

/d
ay

) 
 M

od
er

at
e 

Pr
ot

ei
n 

 A
t 1

2 
m

on
th

s,
 p

ro
te

in
 g

ro
up

 h
ad

 g
re

at
er

 
im

pr
ov

em
en

t i
n 

bo
dy

 c
om

po
si

tio
n;

 
ho

w
ev

er
, w

ei
gh

t l
os

s 
di

d 
no

t d
if

fe
r 

be
tw

ee
n 

gr
ou

ps
 

 30
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

40
%

 C
H

O
 

 E
ne

rg
y 

re
st

ri
ct

io
n 

(−
50

0 
kc

al
/d

ay
) 

 C
on

ve
nt

io
na

l 
  n  

=
 1

9 
m

en
, B

M
I:

 3
4 

±
 2

 k
g/

m
 2  , 

8 
w

ee
ks

 
 M

od
er

at
e-

pr
ot

ei
n 

di
et

 p
ro

du
ce

d 
a 

gr
ea

te
r 

w
ei

gh
t l

os
s 

(−
8.

3 
±

 1
.2

%
 v

s.
 −

5.
5 

±
 2

.5
%

) 
th

an
 th

e 
co

nt
ro

l d
ie

t 

 A
be

te
 e

t a
l. 

(    2
00

9a
,   b

  )  
 15

%
 P

ro
te

in
/3

0%
 L

ip
id

s/
55

%
 C

H
O

 
 E

ne
rg

y 
re

st
ri

ct
io

n 
(−

30
%

) 
 M

od
er

at
e 

Pr
ot

ei
n 

 30
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

40
%

 C
H

O
 

 E
ne

rg
y 

re
st

ri
ct

io
n 

(−
30

%
) 



2759 Diet and Body Composition

 L
ow

-f
at

 d
ie

t 
  n  

=
 7

71
, B

M
I 

 ³ 3
0 

kg
/m

 2  , 
10

 w
ee

ks
 

 T
he

 lo
w

-f
at

 d
ie

t p
ro

du
ce

d 
si

m
ila

r 
m

ea
n 

w
ei

gh
t l

os
s 

as
 th

e 
hi

gh
-f

at
 d

ie
t, 

bu
t 

re
su

lte
d 

in
 m

or
e 

su
bj

ec
ts

 lo
si

ng
 >

10
%

 o
f 

in
iti

al
 b

od
y 

w
ei

gh
t a

nd
 f

ew
er

 d
ro

po
ut

s 

 Pe
te

rs
en

 e
t a

l. 
 (  2

00
6  )

 , 
N

U
G

E
N

O
B

 
st

ud
y 

 15
%

 P
ro

te
in

/2
0–

25
%

 L
ip

id
s/

60
–6

5%
 

C
H

O
 

 E
ne

rg
y 

re
st

ri
ct

io
n 

(−
60

0 
kc

al
/d

ay
) 

 H
ig

h-
fa

t d
ie

t 
 15

%
 P

ro
te

in
/4

0–
45

%
 L

ip
id

s/
40

–5
5%

 
C

H
O

 
 E

ne
rg

y 
re

st
ri

ct
io

n 
(−

60
0 

kc
al

/d
ay

) 

 P
ro

te
in

 a
nd

 g
ly

ce
m

ic
 in

de
x 

(G
I)

 
 1 

of
 5

 a
d 

lib
itu

m
 d

ie
ts

 
 L

ow
 p

ro
te

in
/L

ow
 G

I 
 L

ow
 p

ro
te

in
/H

ig
h 

G
I 

 H
ig

h 
pr

ot
ei

n/
L

ow
 G

I 
 H

ig
h 

pr
ot

ei
n/

H
ig

h 
G

I 
 C

on
tr

ol
 d

ie
t 

 A
ll 

di
et

s 
w

er
e 

lo
w

 in
 f

at
 (

25
–3

0%
 o

f 
en

er
gy

) 
w

hi
le

 p
ro

te
in

 c
on

te
nt

 w
as

 
10

–1
5%

 e
ne

rg
y 

in
 th

e 
L

P 
an

d 
23

–2
8%

 in
 th

e 
H

P 
gr

ou
ps

 

 n=
77

3 
ov

er
w

ei
gh

t a
du

lts
 f

ro
m

 e
ig

ht
 

E
ur

op
ea

n 
co

un
tr

ie
s,

 2
6 

w
ee

ks

 n  
=

 8
27

 c
hi

ld
re

n 
bo

ys
/g

ir
ls

, 5
–1

8 
ye

ar
s,

 
6 

m
on

th
s 

 A
 m

od
es

t i
nc

re
as

e 
in

 p
ro

te
in

 c
on

te
nt

 a
nd

 a
 

m
od

es
t r

ed
uc

tio
n 

in
 th

e 
gl

yc
em

ic
 in

de
x 

le
d 

to
 a

n 
im

pr
ov

em
en

t i
n 

m
ai

nt
en

an
ce

 o
f 

w
ei

gh
t l

os
s

N
ei

th
er

 G
I 

no
r 

pr
ot

ei
n 

ha
d 

an
 is

ol
at

ed
 e

ff
ec

t 
on

 b
od

y 
co

m
po

si
tio

n 

    L
ar

se
n 

et
 a

l. 
 (  2

01
0  )

 

Pa
pa

da
ki

 e
t a

l. 
 (  2

01
0  )

 , 
D

IO
G

E
N

E
S 

st
ud

y 
 L

P/
H

G
I 

co
m

bi
na

tio
n 

in
cr

ea
se

d 
bo

dy
 f

at
, 

w
he

re
as

 th
e 

H
P/

L
G

I 
co

m
bi

na
tio

n 
w

as
 

pr
ot

ec
tiv

e 
ag

ai
ns

t o
be

si
ty

 in
 th

is
 s

am
pl

e 
of

 c
hi

ld
re

n 
 H

ig
he

r 
G

I 
  n  

=
 3

2 
m

en
/w

om
en

, B
M

I:
 

32
.5

 ±
 4

.3
 k

g/
m

 2  , 
8 

w
ee

ks
 

 L
ow

er
 G

I 
di

et
 s

ho
w

ed
 a

 s
ig

ni
fi c

an
tly

 h
ig

he
r 

w
ei

gh
t l

os
s 

th
an

 th
ei

r 
co

un
te

rp
ar

ts
 

(−
5.

3 
±

 2
.6

%
 v

s.
 −

7.
5 

±
 2

.9
%

) 

 A
be

te
 e

t a
l. 

 (  2
00

8a
  )  

 15
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

55
%

 C
H

O
 

 L
ow

er
 G

I 
 1 

Y
ea

r 
af

te
r 

th
e 

nu
tr

iti
on

al
 in

te
rv

en
tio

n 
w

ei
gh

t r
eg

ai
n 

w
as

 o
nl

y 
st

at
is

tic
al

ly
 

si
gn

ifi 
ca

nt
 in

 th
e 

hi
gh

er
 G

I 
gr

ou
p 

 15
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

55
%

 C
H

O
 

(c
on

tin
ue

d)



276 M.A. Zulet et al.

Ta
bl

e 
9.

1 
(c

on
tin

ue
d)

 C
on

ju
ga

te
d 

lin
ol

ei
c 

ac
id

 (
C

L
A

) 
 Pl

ac
eb

o 
 O

liv
e 

oi
l 

 C
L

A
 g

ro
up

s 
 1.

7,
 3

.4
, 5

.1
, a

nd
 6

.8
 g

/d
ay

 
 50

%
c9

,t1
1-

50
%

t1
0,

c1
2 

  n  
=

 6
0 

m
en

/w
om

en
, B

M
I:

 2
5–

35
 k

g/
m

 2  , 
12

 w
ee

ks
 

 A
 s

ig
ni

fi c
an

tly
 h

ig
he

r 
re

du
ct

io
n 

in
 b

od
y 

fa
t 

m
as

s 
w

as
 f

ou
nd

 in
 th

e 
co

nj
ug

at
ed

 li
no

le
ic

 
ac

id
 g

ro
up

s 
co

m
pa

re
d 

w
ith

 th
e 

pl
ac

eb
o 

gr
ou

p 
( P

  =
 0

.0
3)

 

 B
la

nk
so

n 
et

 a
l. 

 (  2
00

0  )
  

 N
o 

ad
di

tio
na

l e
ff

ec
t o

n 
fa

t m
as

s 
w

as
 

ac
hi

ev
ed

 w
ith

 d
os

es
 >

3.
4 

g 
C

L
A

/d
ay

 
 N

o 
si

gn
ifi 

ca
nt

 d
if

fe
re

nc
es

 a
m

on
g 

th
e 

gr
ou

ps
 

w
er

e 
ob

se
rv

ed
 in

 le
an

 b
od

y 
m

as
s 

an
d 

bo
dy

 m
as

s 
in

de
x 

 Pl
ac

eb
o 

  n  
=

 6
2 

pr
ep

ub
er

ta
l c

hi
ld

re
n 

ag
ed

 6
–1

0 
m

al
es

/f
em

al
es

, B
M

I 
at

 o
r 

ab
ov

e 
th

e 
85

th
 p

er
ce

nt
ile

 (
ov

er
w

ei
gh

t o
r 

ob
es

e)
, 7

 ±
 0

.5
 m

on
th

s 

 T
he

 in
cr

ea
se

 in
 B

M
I 

an
d 

th
e 

pe
rc

en
ta

ge
 

ch
an

ge
 in

 b
od

y 
fa

t i
n 

th
e 

C
L

A
 g

ro
up

 
w

er
e 

sm
al

le
r 

th
an

 th
at

 in
 th

e 
pl

ac
eb

o 
gr

ou
p 

 R
ac

in
e 

et
 a

l. 
 (  2

01
0  )

  
 Su

nfl
 o

w
er

 o
il 

in
 c

ho
co

la
te

 m
ilk

 
 C

L
A

 g
ro

up
s 

 3 
g/

da
y 

of
 8

0%
 C

L
A

 
 50

%
c9

,t1
1-

50
%

t1
0,

c1
2 

 In
 c

ho
co

la
te

 m
ilk

 
 A

bd
om

in
al

 a
nd

 p
er

ip
he

ra
l f

at
 a

s 
a 

pe
rc

en
ta

ge
 

of
 to

ta
l b

od
y 

w
ei

gh
t d

ec
re

as
ed

 a
nd

 
di

ff
er

ed
 s

ig
ni

fi c
an

tly
 f

ro
m

 th
at

 in
 th

e 
pl

ac
eb

o 
gr

ou
p 

 D
ai

ry
 p

ro
du

ct
s 

 In
 a

dd
iti

on
 to

 th
ei

r 
us

ua
l d

ie
t: 

 W
ho

le
-f

at
 d

ai
ry

 s
up

pl
em

en
ta

tio
n 

 Fi
ve

 s
er

vi
ng

s 
pe

r 
da

y 
of

 w
ho

le
-f

at
 

m
ilk

/y
og

ur
t 

 L
ow

-f
at

 d
ai

ry
 s

up
pl

em
en

ta
tio

n 
 Fi

ve
 s

er
vi

ng
s 

pe
r 

da
y 

of
 lo

w
-f

at
 m

ilk
/

yo
gu

rt
 

  n  
=

 4
5 

m
en

/w
om

en
, B

M
I:

 2
3.

5 
±

 3
.6

 k
g/

m
 2  , 

N
or

m
ot

en
si

ve
, T

w
o 

8-
w

ee
k 

pe
ri

od
s 

w
ith

 a
 4

-w
ee

k 
w

as
ho

ut
 

pe
ri

od
 b

et
w

ee
n 

bo
th

 in
te

rv
en

tio
ns

 

 W
ei

gh
t d

id
 n

ot
 c

ha
ng

e 
si

gn
ifi 

ca
nt

ly
 a

ft
er

 th
e 

lo
w

-f
at

 d
ai

ry
 in

te
rv

en
tio

n 
 A

lo
ns

o 
et

 a
l. 

 (  2
00

9  )
  

 W
ho

le
-f

at
 d

ai
ry

 in
cr

ea
se

d 
w

ei
gh

t s
ig

ni
fi -

ca
nt

ly
 c

om
pa

re
d 

to
 lo

w
-f

at
 d

ai
ry

 (
1.

2 
kg

) 

D
ie

ta
ry

 d
et

er
m

in
an

t
Su

bj
ec

ts
/p

er
io

d
Fi

nd
in

gs
R

ef
er

en
ce



2779 Diet and Body Composition

 F
is

h 
 E

ne
rg

y-
re

st
ri

ct
ed

 d
ie

ts
 (

−
30

%
 e

ne
rg

y 
ex

pe
nd

itu
re

):
 

  n  
=

 3
24

 m
en

/w
om

en
, 

B
M

I 
27

.5
–3

2.
5 

kg
/m

 2  , 
8 

w
ee

ks
 

 In
 m

en
, t

he
 in

cl
us

io
n 

of
 e

ith
er

 le
an

 o
r 

fa
tty

 
fi s

h,
 o

r 
fi 

sh
 o

il 
as

 p
ar

t o
f 

an
 e

ne
rg

y-
re

st
ri

ct
ed

 d
ie

t r
es

ul
te

d 
in

 a
pp

ro
xi

m
at

el
y 

1 
kg

 m
or

e 
w

ei
gh

t l
os

s 
af

te
r 

4 
w

ee
ks

, t
ha

n 
di

d 
a 

si
m

ila
r 

di
et

 w
ith

ou
t s

ea
fo

od
 o

r 
su

pp
le

m
en

t o
f 

m
ar

in
e 

or
ig

in
 

 T
ho

rs
do

tti
r 

et
 a

l. 
 (  2

00
7  )

 , T
he

 
SE

A
FO

O
D

pl
us

 
Y

O
U

N
G

 s
tu

dy
 

 C
on

ve
nt

io
na

l 
 T

he
 d

ie
ts

 d
id

 n
ot

 d
if

fe
r 

in
 th

ei
r 

ef
fe

ct
 o

n 
w

ei
gh

t l
os

s 
in

 w
om

en
 

 Su
nfl

 o
w

er
 o

il 
ca

ps
ul

es
, n

o 
se

af
oo

d 
 T

he
 w

ei
gh

t l
os

s 
fr

om
 m

id
po

in
t t

o 
en

dp
oi

nt
 

w
as

 0
.4

5 
(0

.4
1–

0.
49

) 
tim

es
 th

e 
ob

se
rv

ed
 

w
ei

gh
t l

os
s 

fr
om

 b
as

el
in

e 
to

 m
id

po
in

t 
 L

ea
n 

fi s
h 

 3 
×

 1
50

 g
 p

or
tio

ns
 o

f 
co

d/
w

ee
k 

 Fa
tty

 fi 
sh

 
 3 

×
 1

50
 g

 p
or

tio
ns

 o
f 

sa
lm

on
/w

ee
k 

 Fi
sh

 o
il 

(D
H

A
/E

PA
 c

ap
su

le
s,

 n
o 

se
af

oo
d)

 
 L

eg
um

e 
 C

on
tr

ol
 

  n  
=

 3
2 

ob
es

e 
m

en
/w

om
en

, B
M

I:
 

32
.0

 ±
 5

.3
 k

g/
m

 2  , 
8 

w
ee

ks
 

 A
ll 

ob
es

e 
su

bj
ec

ts
 lo

st
 w

ei
gh

t, 
es

pe
ci

al
ly

 
th

os
e 

in
di

vi
du

al
s 

w
ho

 f
ol

lo
w

ed
 th

e 
le

gu
m

es
-e

nr
ic

he
d 

di
et

 a
s 

co
m

pa
re

d 
to

 th
e 

co
nt

ro
l (

−
7.

7 
±

 3
 v

s.
 −

5.
3 

±
 2

.7
%

; 
 P

  =
 0

.0
23

) 

 C
ru

je
ir

as
 e

t a
l. 

 (  2
00

7  )
  

 15
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

55
%

 C
H

O
; 

E
ne

rg
y-

re
st

ri
ct

ed
 d

ie
t (

−
30

%
 

en
er

gy
 e

xp
en

di
tu

re
) 

 L
eg

um
e 

(f
ou

r 
m

ea
ls

 p
er

 w
ee

k)
 

 15
%

 P
ro

te
in

/3
0%

 L
ip

id
s/

55
%

 C
H

O
; 

E
ne

rg
y-

re
st

ri
ct

ed
 d

ie
t (

−
30

%
 

en
er

gy
 e

xp
en

di
tu

re
) 

(c
on

tin
ue

d)



278 M.A. Zulet et al.

 F
ru

it
 

 L
ow

-f
ru

it 
di

et
 

  n  
=

 1
5 

w
om

en
, B

M
I:

 3
4.

9 
±

 2
.9

 k
g/

m
 2  , 

8 
w

ee
ks

 
 A

ll 
vo

lu
nt

ee
rs

 lo
st

 b
od

y 
w

ei
gh

t, 
w

hi
ch

 w
as

 
ac

co
m

pa
ni

ed
 b

y 
m

ar
ke

d 
de

cr
ea

se
s 

in
 B

M
I 

 C
ru

je
ir

as
 e

t a
l. 

 (  2
00

6  )
  

 5%
 E

ne
rg

y 
fr

om
 fr

uc
to

se
; 1

5%
 

Pr
ot

ei
n/

30
%

 L
ip

id
s/

55
%

 C
H

O
; 

en
er

gy
-r

es
tr

ic
te

d 
di

et
 (−

60
0 

kc
al

/d
ay

) 

 H
ig

h-
fr

ui
t d

ie
t 

 N
o 

di
ff

er
en

ce
s 

w
er

e 
ob

se
rv

ed
 b

et
w

ee
n 

di
et

s 
co

nc
er

ni
ng

 w
ei

gh
t l

os
s 

(l
ow

-f
ru

it 
di

et
 

−
6.

9 
±

 2
%

 v
s.

 h
ig

h-
fr

ui
t d

ie
t −

6.
6 

±
 2

%
) 

an
d 

bo
dy

 f
at

 r
ed

uc
tio

n 
(l

ow
-f

ru
it 

di
et

 
−

11
.7

 ±
 4

.8
%

 v
s.

 h
ig

h-
fr

ui
t d

ie
t 

−
13

.3
 ±

 6
.4

%
) 

 15
%

 E
ne

rg
y 

fr
om

 f
ru

ct
os

e;
 1

5%
 

Pr
ot

ei
n/

30
%

 L
ip

id
s/

55
%

 C
H

O
; 

en
er

gy
-r

es
tr

ic
te

d 
di

et
 (

−
60

0 
kc

al
/

da
y)

 

 Su
ga

r-
sw

ee
te

ne
d 

be
ve

ra
ge

s 
 A

ll 
di

et
s 

w
er

e 
ad

 li
bi

tu
m

 a
nd

 s
ug

ar
 

pr
ov

id
ed

 2
5%

 o
f 

en
er

gy
 

 Fr
uc

to
se

-s
w

ee
te

ne
d 

be
ve

ra
ge

 
 G

lu
co

se
-s

w
ee

te
ne

d 
be

ve
ra

ge
 

  n  
=

 1
5–

17
 m

en
/w

om
en

, 
B

M
I:

 2
7–

31
 k

g/
m

 2  , 
10

 w
ee

ks
 

 B
ot

h 
gr

ou
ps

 o
f 

su
bj

ec
ts

 e
xh

ib
ite

d 
si

gn
ifi 

ca
nt

 
in

cr
ea

se
s 

of
 b

od
y 

w
ei

gh
t, 

fa
t m

as
s,

 a
nd

 
w

ai
st

 c
ir

cu
m

fe
re

nc
e 

 St
an

ho
pe

 e
t a

l. 
 (  2

00
9  )

  

 Su
bc

ut
an

eo
us

 a
di

po
se

 ti
ss

ue
 (

SA
T

) 
vo

lu
m

e 
w

as
 s

ig
ni

fi c
an

tly
 in

cr
ea

se
d 

in
 s

ub
je

ct
s 

co
ns

um
in

g 
gl

uc
os

e 
 B

ot
h 

to
ta

l a
bd

om
in

al
 f

at
 a

nd
 v

is
ce

ra
l a

di
po

se
 

tis
su

e 
(V

A
T

) 
vo

lu
m

e 
w

er
e 

si
gn

ifi 
ca

nt
ly

 
in

cr
ea

se
d 

in
 s

ub
je

ct
s 

co
ns

um
in

g 
fr

uc
to

se
 

 M
ed

it
er

ra
ne

an
 d

ie
t 

 A
ll 

di
et

s 
w

er
e 

ad
 li

bi
tu

m
 

  n  
=

 1
,2

24
, s

ub
je

ct
s 

at
 h

ig
h 

ri
sk

 f
or

 
ca

rd
io

va
sc

ul
ar

 d
is

ea
se

, 1
 y

ea
r 

 1-
Y

ea
r 

pr
ev

al
en

ce
 o

f 
hi

gh
 w

ai
st

 c
ir

cu
m

fe
r-

en
ce

 w
as

 s
ig

ni
fi c

an
tly

 r
ed

uc
ed

 in
 th

e 
M

D
 +

 n
ut

s 
gr

ou
p 

co
m

pa
re

d 
w

ith
 th

e 
co

nt
ro

l g
ro

up
 

 B
es

-R
as

tr
ol

lo
 e

t a
l. 

 (  2
00

6b
  ) ,

 
PR

E
D

IM
E

D
 

st
ud

y 

 L
ow

-f
at

 d
ie

t 
 M

D
 +

 1
 L

/w
ee

k 
vi

rg
in

 o
liv

e 
oi

l 
 M

D
 +

 3
0 

g/
da

y 
m

ix
ed

 n
ut

s 
 N

o 
si

gn
ifi 

ca
nt

 1
-y

ea
r 

ch
an

ge
s 

in
 b

od
y 

w
ei

gh
t 

   B
M

I  
B

od
y 

m
as

s 
in

de
x;

  C
H

O
  c

ar
bo

hy
dr

at
es

;  H
P

  h
ig

h 
pr

ot
ei

n;
  H

G
I  

hi
gh

 g
ly

ce
m

ic
 in

de
x;

  L
P

  lo
w

 p
ro

te
in

;  L
G

I  
lo

w
 g

ly
ce

m
ic

 in
de

x;
  M

D
  M

ed
ite

rr
an

ea
n 

di
et

  

Ta
bl

e 
9.

1 
(c

on
tin

ue
d)

D
ie

ta
ry

 d
et

er
m

in
an

t
Su

bj
ec

ts
/p

er
io

d
Fi

nd
in

gs
R

ef
er

en
ce



2799 Diet and Body Composition

change. The results showed no signifi cant association between the amount or type 
of dietary fat and subsequent weight change in this large prospective study, which 
do not support the use of low-fat diets to prevent weight gain (Forouhi et al.  2009  ) . 
In this context, Melanson et al.  (  2009  )  have systematically reviewed the literature 
from 1993 to 2009 with respect to the relationship between dietary fat and fatty acid 
intake and body weight and composition, diabetes, and MetS. With regard to obe-
sity, they concluded that larger intervention studies suggest that lower dietary fat is 
associated with weight loss; however, the studies were not designed to specifi cally 
examine dietary fat and weight, and thus differences in intervention intensity make 
it impossible to draw defi nitive conclusions from these results. Moreover, in other 
studies, the usefulness of these results is limited by differences in other macronutri-
ents and high drop-out rates as well as due to the inclusion of additional lifestyle 
changes (Melanson et al.  2009  ) .  

    9.2.2   Low-Carbohydrate Diets 

 Low-carbohydrate diets have been thought as an alternative to a low-fat diet for 
producing weight loss and fat losses (Krieger et al.  2006  ) . Thus, Gardner et al. 
 (  2007  )  carried out a comparison of the four weight-loss diets representing a spec-
trum of low to high carbohydrate intake: Atkins (very low in carbohydrate), Zone 
(low in carbohydrate), LEARN Lifestyle, Exercise, Attitudes, Relationships, and 
Nutrition; low in fat, high in carbohydrate, based on national guidelines, and Ornish 
(very high in carbohydrate). In this review study, premenopausal overweight and 
obese women assigned to follow the Atkins diet, which had the lowest carbohydrate 
intake, lost more weight and experienced more favorable overall metabolic effects at 
12 months than women assigned to follow the Zone, Ornish, or LEARN diets 
(Gardner et al.  2007  ) . Additionally, several studies on short-term carbohydrate 
restriction have shown signifi cant improvements in lipid profi le and glycemic con-
trol, and greater weight loss or even in the absence of weight loss (Yancy et al.  2004 ; 
Feinman and Volek  2006 ; Nordmann et al.  2006  ) . In other investigation, long-term 
adherence (up to 22 months) to a carbohydrate-restricted diet, with less than 20% of 
energy intake coming from carbohydrates, appeared to be effective in obese people 
with type 2 diabetes, as evidenced by the absence of negative cardiovascular out-
comes (Nielsen and Joensson  2006  ) . Equally, the effect of long-term (>1 year) con-
sumption of a low-carbohydrate high-fat diet does not induce deleterious metabolic 
effects and does not increase the risk for cardiovascular disease as evidenced by 
maintenance of adequate glycemic control and relatively low values for conven-
tional cardiovascular risk factors (Grieb et al.  2008  ) . Recently, a low-carbohydrate 
diet based on the consumption of low-glycemic index (GI) vegetables with unre-
stricted consumption of fat and protein vs. a low-fat diet consisted of limited energy 
intake (1,200–1,800 kcal/day;  £ 30% calories from fat), both diets successfully 
achieved weight loss. Moreover, low-carbohydrate diet was associated with favor-
able changes in cardiovascular disease risk factors after 2 years (Foster et al.  2010  ) . 
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 However, limitations of these studies include that it could not be determined 
whether the benefi ts were attributable specifi cally to the low carbohydrate intake or 
are due to other aspects of the diet (e.g., high protein intake, specifi c dietary fat, 
satiety). Additional information is necessary about the impact of very low carbohy-
drate diets during weight maintenance due to some undesirable effects reported 
such as increased levels of ketone bodies, high losses of body water, headache, 
constipation, and lipid abnormalities (Abete et al.  2010  ) .  

    9.2.3   Moderate/High-Protein Diets and Rich in Leucine 

 Scientifi c literature suggest that an elevated protein intake plays a key role in weight 
loss and weight maintenance through: (1) increased satiety to a greater extent than 
carbohydrate and fat, (2) increased thermogenesis, it has been estimated to account 
for 5–10% of daily energy expenditure, much greater than that of carbohydrate and 
lipids, and (3) enhanced glycemic control, yet not fully elucidated (   Brehm and 
D’Alessio  2008 ; Westerterp-Plantenga et al.  2008  ) . Many favorable results have been 
published with respect to body weight loss after high-protein, low-carbohydrate, 
high-fat diets. In this sense, weight losses of 4.5–12.0 kg compared with 2.5–6.5 
after control diets in 2–6 months have been reported. Also, diets relatively high in 
protein but with normal carbohydrate content, body weight loss after 2–6 months 
ranged from 4.9 to 8.9 compared with 3.4 to 6.9 after control diets (   Veldhorst et al. 
 2010  ) . Overall, diets with increased protein and reduced carbohydrates are effective 
for weight loss, but the long-term effect on maintenance is yet to be investigated. 
Thus, a study in obese participants consuming moderate-protein (30%) or conven-
tional-protein (15%) energy-restricted diets was carried out to compare changes in 
body weight after short-term weight loss (4 months) followed by weight mainte-
nance (8 months). The moderate-protein diet was more effective for fat mass loss 
during initial weight loss, and this group showed greater body composition improve-
ment during long-term maintenance; however, total weight loss did not  differ 
between groups (Layman et al.  2009  ) . Moreover, it has been recently published that 
frequent chicken consumption, within a controlled diet with a moderately high con-
tent in protein (30% energy), produced a slight but statistically signifi cant weight 
reduction mainly due to the loss of fat mass, while fat-free mass remained unchanged 
during the 10 weeks of intervention as well as lipid, glucose, and selected infl amma-
tion and oxidative stress biomarkers (   Navas-Carretero et al.  2010  ) . 

 Actually, new molecular mechanisms have defi ned the benefi ts of protein as a 
meal threshold for the branched chain amino acid leucine, which has been charac-
terized as a unique signal regulator of muscle protein synthesis (Devkota and 
Layman  2010  ) . Thus, it has been published that higher protein diets rich in leucine 
are the key to stimulating protein synthesis in skeletal muscle and staving off muscle 
loss (Jitomir and Willoughby  2008  ) . However, current dietary guidelines present 
protein needs as a percentage of energy in proportion to carbohydrates and fats, but 
fail to recognize the importance of reaching the leucine threshold at each meal 
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(Layman  2009  ) . Devkota and Layman  (  2010  )  have proposed that humans need to 
consume at least 25–30 g of protein containing a minimum of 2.5 g leucine/meal to 
reach an anabolic response that protects metabolic active tissues during weight loss 
and increases loss of body fat. Moreover, the only way to reverse this catabolic state 
is to have a high-protein meal as early as possible; thus a balanced daily distribution 
of protein with increased intake at breakfast and lunch is recommended. Other 
amino acids could also have a role in energy homeostasis and body composition 
(Michishita et al.  2010 ;    Galloway et al.  2011  ) . 

 In summary, there is increased evidence supporting the benefi ts of higher protein 
diets. These benefi ts lie in protein’s ability to protect skeletal muscle during caloric 
restriction. The latest insight into protein research reveals that the bioactive compo-
nent of dietary protein is leucine. Overall, investigations in humans in relation to 
these fi ndings are necessary since maintaining healthy muscles during energy 
restriction is essential for maximizing fat loss and ultimately long-term energy 
expenditure. Key issues must be resolved regarding the long-term compliance and 
safety of chronic high-protein intake.  

    9.2.4   Portion Size and Energy Density 

 In addition to macronutrient distribution, properties of foods such as portion size 
and energy density (kcal/g) have robust effects on energy intake. Large portion size 
is often accompanied by a higher total energy content, and thus could contribute to 
weight gain and fat deposition (Rolls et al.  2006a  ) . Furthermore, energy-dense 
foods, usually high in fat and sugar but low in fi ber and water, tend to be less satiat-
ing and high palatable, which could stimulate overeating (Du and Feskens  2010  ) . 
Thus, reductions in both portion size and energy density can help to moderate energy 
intake without increased hunger (Ello-Martin et al.  2005 ; Rolls et al.  2006b  ) . In this 
context, it has been proposed that a good alternative may be to reduce dietary energy 
density by the addition of water-rich foods, which is associated with substantial 
weight loss even though participants eat greater amounts of food (Rolls  2010 ; Chang 
et al.  2010  ) . Thus, limiting portions of high energy-dense foods, would not only 
improve diet quality but could also lower energy intake. The effectiveness of this 
strategy will depend on altering the current food environment so that lower energy 
density choices are easily accessible, appealing, and affordable.   

    9.3   Type of Dietary Fat Intake and Adiposity 

 Several studies have demonstrated that the type of fat is more important than the 
amount consumed in terms of body weight and adiposity regulation (Willett  1998 ; 
Field et al.  2007 ; Soriguer et al.  2010  ) . Thus, incidence of obesity was lower in 
persons who consumed olive oil than those who consumed sunfl ower oil (Soriguer 
et al.  2009  ) . Interestingly, it has been proposed that, at any given level of dietary 
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fat intake (percentage fat calories), those whose diets have a relatively low ratio of 
saturate fatty acids to unsaturates will be leaner than those whose diets have a higher 
saturate/unsaturate ratio. Particularly, long-chain saturated fatty acids (SFAs), in 
excess, have a more negative impact on insulin sensitivity than do unsaturated fats, 
and these fi ndings are important since that insulin resistance is linked to obesity 
(McCarty  2010  ) . In relation to  trans -fatty acids, in a recent study, associations 
between adipose tissue levels of  trans -fatty acids as a marker for intake and  adiposity 
have been evaluated (Smit et al.  2010  ) . It has been also reported that  individual 
 trans -fatty isomers have divergent effects on adiposity. In this study, the main fi nd-
ing is the consistent adverse association between industrial 18:2t and all measures 
of adiposity analyzed (body mass index (BMI), waist circumference (WC), and 
skinfold thickness). Other prospective and intervention studies are  necessary to fur-
ther clarify this issue. Likewise, regardless of an association with adiposity, removal 
of partially hydrogenated oils from the diet is important in order to reduce metabolic 
complications (Smit et al.  2010  ) . On the other hand, it has been reported that the 
fatty acid composition in maternal diet and in breastmilk during lactation may be a 
factor in the development of childhood overweight later in life (Hatsu et al.  2008  ) . 
Mothers who consumed at least 4.5 g of  trans -fatty acids/day were 5.8 times more 
likely to have body fat greater than or equal to 30% than those consuming less, and 
their infants were over 2 times more likely to have body fat greater than or equal to 
24% (Anderson et al.  2010  ) . 

 However, MUFA and PUFA fat consumption have been associated with healthy 
effects on metabolic disorders. With respect to adiposity, it has been reported that an 
isocaloric MUFA-rich diet prevents central fat redistribution induced by a carbohy-
drate-rich diet in insulin-resistant subjects (Paniagua et al.  2007  ) . Also, in a ran-
domized crossover study in overweight men (28 days in each arm), substitution of 
dietary saturated with unsaturated fat, predominantly MUFA, produced a small, but 
signifi cant loss of body weight and fat mass from both trunk and limbs, without a 
signifi cant change in total energy or fat intake (40% of total energy). Sources of fat 
for the SFA-rich diet were milk, butter, cream, cheese, and fatty meat, while fat in 
the MUFA-rich diet was provided from olive oil, nuts, and avocados (Piers et al. 
 2003  ) . In addition, a moderate-fat diet rich in MUFA represents for some people a 
considerably more palatable alternative than the usual low-fat approaches for pro-
moting healthy eating and weight loss in the diabetics and obese individuals, thus 
making easier the adherence and the long-term compliance of participants (Martínez-
González and Bes-Rastrollo  2006  ) . Overall, the benefi cial effects of MUFAs are 
provided by the traditional Mediterranean food pattern and, specifi cally, by olive oil 
and most nuts, which are reviewed later in this chapter. Likewise, current trends lead 
to decreased consumption of food supplying high  trans  and SFA contents, while 
foods containing PUFA or MUFA tend to increase. 

 On the other hand, the consumption of  n -3 PUFA, eicosapentaenoate (EPA) and 
docosahexaenoic acid (DHA) has been linked to a reduced cardiovascular risk and to 
reduced fasting glucose levels, providing a protective effect against the development 
of type 2 diabetes (Krebs et al.  2006  ) . Moreover,  n -3 dietary fat intake has been 
shown to play an important role in the treatment of MetS (Robinson et al.  2007 ; 
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Jiménez-Gómez et al.  2010  ) . Actually, there is also continuing debate as to whether 
or not  n -3 PUFA contribute to weight loss and body composition modulation. In this 
context, the intake of  n -3 PUFA has evidenced to infl uence the fatty acid composi-
tion of membrane phospholipids, thus modulating several metabolic processes that 
take place in the adipocyte. Lipid management at the cellular level infl uences the 
degree of the development of disease and comorbidities in obesity. In this sense, 
higher plasma levels of total  n -3 PUFA have been associated with a healthier BMI, 
waist, and hip circumference (Micallef et al.  2009  ) . These fi ndings suggest that  n -3 
PUFA may play an important role in weight status and abdominal adiposity. In fact, 
a moderate dose of  n -3 PUFAs for 2 months reduced adiposity and atherogenic 
markers without a deterioration of insulin sensitivity in subjects with type 2 diabetes 
(Kabir et al.  2007  ) . In obese children, the plasma levels of long-chain PUFAs 
(LC-PUFAs) were associated with the degree of obesity (Scaglioni et al.  2006  ) . In 
addition, central obesity was positively associated with  n -6 PUFA and inversely 
associated with MUFA and  n -3 PUFA in adipose tissue samples obtained in an 
obese population from a Mediterranean area (Garaulet et al.  2001  ) . 

 In fact, taking together the results, fatty fi sh, fi sh oils, omega-3 fatty acid-rich 
foods, and omega-3 supplements could be included in weight loss and weight main-
tenance programs as well as be incorporated into the dietary habits of healthy 
subjects. Moreover, it has been published that omega-3 fatty acids may have benefi -
cial effects on satiety (Parra et al.  2008  ) . 

 In addition to the type of dietary fat, the effect of fatty acid chain length on body 
fat has been also studied. Thus, in contrast to the consumption of long-chain 
triacylglycerols (LCT), the intake of medium (MCT) has shown to reduce body 
weight, BMI, WC, body fat, and subcutaneous and visceral fat more greatly (Han 
et al.  2007 ; Xue et al.  2009 ; Zhang et al.  2010  ) . In this context, it has been concluded 
that substitution of MCT for LCT in a targeted energy balance diet may prevent 
long-term weight gain and improve body composition via increased energy 
expenditure and fat oxidation (St-Onge et al.  2003  ) . 

    9.3.1   Conjugated Linoleic Acid and Body Composition 

 The term conjugated linoleic acid (CLA) concerns a group of isomers of linoleic 
acid, which are characterized by having conjugated double bonds in several posi-
tions and conformations (Zulet et al.  2005  ) . CLA is found naturally in beef, lamb, 
and dairy products, but since CLA seems to have benefi cial effects on various 
health-related issues, many investigations have been conducted to elucidate the 
effects of dietary supplementation with CLA (Agueda et al.  2009 ; Kennedy et al. 
 2010  ) . Thus, some published results support a possible benefi cial role, producing a 
signifi cant reduction on body fat while maintaining or increasing the lean mass in 
humans adults (Blankson et al.  2000 ; Smedman and Vessby  2001 ; Gaullier et al. 
 2004,   2007 ; Watras et al.  2006 ; Syvertsen et al.  2007 ; Sneddon et al.  2008  ) . Recently, 
data has been published showing CLA’s effi cacy with regard to change in fat and 
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BMI in children. Thus, CLA supplementation decreased body fatness in children 
who were overweight or obese. However, long-term investigation of the safety and 
effi cacy of CLA supplementation in children has been recommended by authors 
(Racine et al.  2010  ) . 

 On the other hand, some studies have not found benefi cial effects with regards to 
body composition after the CLA supplement in adults (Zambell et al.  2000 ; Risérus 
et al.  2002 ;    Whigham et al.  2004 ; Desroches et al.  2005 ; Taylor et al.  2006 ; Steck 
et al.  2007 ; Norris et al.  2009 ; Venkatramanan et al.  2010 ; Sluijs et al.  2010  ) . With 
respect to the lean mass, some investigations indicate a signifi cant increase in fat-
free mass after the CLA supplementation (Kamphuis et al.  2003 ; Gaullier et al. 
 2004,   2007  ) , while in the majority of investigations, signifi cant effects have not 
been found (Blankson et al.  2000 ;    Mougios et al.  2001 ; Tricon et al.  2004 ; Gaullier 
et al.  2005a,   b ; Larsen et al.  2006 ;    Syvertsen et al.  2007 ; Steck et al.  2007  ) . 

 Also, the results remain contradictory, especially concerning the effect of CLA 
on weight. Gaullier et al.  (  2004  )  therefore observed a signifi cant difference in body 
weight after CLA supplementation for 12 months. In a subsequent study published 
in the same subjects, Gaullier et al.  (  2005b  )  found that weight loss of the fi rst 12 
months was maintained for the following year with CLA supplementation. Also, 
CLA supplementation among overweight adults signifi cantly reduced body fat over 
6 months and prevented weight gain during the holiday season (Watras et al.  2007  ) . 
By contrast, other authors found no weight loss in the subjects who were given this 
fatty acid (Tricon et al.  2004  ) . In fact, in the study by Kamphuis et al.  (  2003  ) , which 
measured the recovered weight after a low-calorie diet, there was a greater weight 
gain in the group receiving CLA, compared with the control group. Daily CLA 
supplementation (3.4 g) for 1 year did not prevent weight or fat mass regain in a 
healthy obese population (Larsen et al.  2006  ) . 

 In conclusion, the discrepancies in the results on the effect of CLA on body 
composition, may be related to several factors, including the doses used, adherence 
to treatment, type and/or proportion of isomers, duration of the study, methodology 
(anthropometry, hydrodensitometry, bioimpedance, DEXA, Infrared), physiopatha-
logical situations (normal weight, overweight, obese, diabetes, MetS, healthy), in 
addition to lifestyle (physical exercise or not), among others factors (Table  9.2 ).    

    9.4   Infl uence of Glycemic Index, Glycemic Load and Fiber 
on Body Fat and Composition 

 Various dietary factors seem to play a critical role in body weight regulation, among 
them GI, which is the area under the 2-h blood glucose response curve (AUC) after the 
ingestion of a fi xed amount of carbohydrates, and glycemic load (GL), which is the 
product of the GI × the amount of available consumed carbohydrate divided by 100. 
However, the results remain a subject of debate. The ARCA Project, a cross-sectional 
survey of 3,734 obese Italian children carried out in the southern Italy, evaluated the 
association between dietary GI, BMI, and body fat distribution in school children. 
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The results showed that GI was an independent determinant of both BMI and waist 
 z -scores. In particular, GI was the sole nutritional independent determinant of WC 
marker of abdominal obesity (   Barba et al.  2010  ) . Equally, associations among 
dietary glycemic index, glycemic load, and subsequent changes of weight and WC 
were investigated in fi ve European countries. However, data show that associations 
of GI and GL with subsequent changes of weight and WC were heterogeneous 
across centers (Du et al.  2009  ) . Another cross-sectional study on 8,195 Spanish 
adults showed that after adjusting for energy, GL was associated with reduced BMI 
in this Mediterranean population, while GI was not associated with BMI (Mendez 
et al.  2009  ) . In line with these studies, data from a total of 1,124 patients from Italy 
showed that GI and GL were inversely associated related to BMI, but no consistent 
associations were found with waist-to-hip ratio (Rossi et al.  2010  ) . Thus, possibly, 
the heterogeneity of carbohydrate type and intakes in various populations may in 
part explain these differences. 

 On the other hand, the intervention studies in humans focusing on GI or GL also 
show contradictory results and need more investigation. The comparison of high-
carbohydrate (55%) and high-protein (25%) diets varying GI content on weight loss 
and body composition was carried out in a total of 129 overweight or obese young 
adults during 12 weeks (McMillan-Price et al.  2006  ) . The fi ndings of this study show 
that a conventional diet of high carbohydrate/high GI was associated with the slow-
est rate of weight loss. Moreover, subjects instructed to follow a high-carbohydrate/
low-GI or a high-protein/high-GI diets were twice as likely to achieve weight loss of 
5% (McMillan-Price et al.  2006  ) . 

 Overall, data from clinical trials suggest that low-GI diets based on high amounts 
of fruits, vegetables, legumes, and whole grains are better than conventional diets 
for weight and fat loss (Abete et al.  2008a  ) . In this sense, patients who followed a 
low-GI diet based on legume intake during an 8-week energy-restricted period reg-
istered higher weight loss (7% of the initial body weight) than those included in a 
conventional diet (5% of the initial body weight), and the reduction in body weight 
was directly associated with fi ber intake. Interestingly, 1 year after the nutritional 
intervention, weight regain was only statistically signifi cant in the higher GI 
group. 

 Simultaneous to GI and GL, fi ber intake has been investigated with regard to obe-
sity. In fact, an energy-dense, low-fi ber, high-fat diet is associated with higher fat 
mass and greater odds of excess adiposity in childhood (Johnson et al.  2008  ) . The 
SUN project (Seguimiento Universidad de Navarra (University of Navarra Follow-up)) 
found that the inverse association between fruit/vegetable consumption and weight 
gain in the previous 5 years was more evident among those with a high intake of total 
fi ber (Bes-Rastrollo et al.  2006a  ) . Moreover, in this investigation the benefi t of total 
fi ber was more evident among those with a high consumption of fruits and vegeta-
bles. Furthermore, results of 48,631 men and women from fi ve countries participat-
ing in the EPIC study suggest that a diet with low GI and energy density may prevent 
visceral adiposity, defi ned as the prospective changes in the WC for a given BMI 
(WC(BMI)). Thus, men and women with higher energy density and GI diets showed 
signifi cant increases in their WC(BMI), compared to those with lower energy density 
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and GI. Among women, lower fi ber intake, higher GL, and higher alcohol consumption 
also predicted a higher DeltaWC(BMI) (Romaguera et al.  2010a,   b  ) . Moreover, a 
cross-sectional study of 3,931 Japanese women showed an independent negative 
association between dietary fi ber intake and BMI, while GI and GL showed an inde-
pendent positive association with BMI (Murakami et al.  2007  ) . 

 Additionally, it has been published that the type of fi ber may play different roles 
in body composition. Data from a prospective cohort study with 89,432 European 
participants support a benefi cial role of higher intake of dietary fi ber, especially 
cereal fi ber in prevention of body-weight and WC gain (Du et al.  2010  ) . Moreover, 
the inclusion of whole-grain ready-to-eat oat cereal (3 g/day oat beta-glucan), as 
part of a dietary program for weight loss, had favorable effects on fasting lipid levels 
and WC in adults with overweight and obesity more than a dietary program includ-
ing low-fi ber control foods (Maki et al.  2010  ) . In this context, public health profes-
sionals could drive their efforts towards the promotion of even healthier ready-to-eat 
cereals when issuing advice on weight management (Kosti et al.  2010  ) . However, a 
recent report focused on the effi cacy of dietary fi ber and supplements on weight loss 
in interventional studies shows that while a number of human trials have shown 
weight reduction with diets rich in dietary fi ber or dietary fi ber supplements, other 
studies failed to show any effect (Papathanasopoulos and Camilleri  2010  ) . 

 With regard to the effect of protein and GI on body composition, the European 
project DIOGENES (Diet, Obesity, and Genes) is the fi rst dietary study in which the 
effect of both protein and GI content in children from different European countries 
were examined (Saris and Harper  2005 ; Larsen et al.  2010  ) . A points-based system 
was used to manipulate dietary protein and carbohydrate (Moore et al.  2010  ) . This 
randomized dietary intervention study adds that neither GI nor protein had an iso-
lated effect on body composition. However, the low-protein/high-GI combination 
increased body fat, whereas the high-protein/low-GI combination was protective 
against childhood obesity. All diets were low in fat (25–30% of energy), while pro-
tein content was 10–15% energy in the low-protein and 23–28% in the high-protein 
groups (Papadaki et al.  2010  ) . 

 In conclusion, further research about the role of GI and GL and type of fi ber in 
the prevention and management of obesity is needed. However, overall data suggest 
that low-GI diets based on high amounts of fruits, vegetables, legumes, and whole 
grains are a good strategy to lose weight loss and improve body composition con-
cerning adiposity. Moreover, other aspects such as the effects on lipid and glucose 
metabolism should be considered in these investigations.  

    9.5   Antioxidants Intake as a Useful Strategy in the Regulation 
of Body Composition and Fat Depots 

 In recent years, several studies have hypothesized that obesity might be an 
infl ammatory disorder (Zulet et al.  2007 ; Tai and Ding  2010  ) . In addition, oxida-
tive stress has been suggested as a potential inductor of infl ammatory status and 
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susceptibility to obesity and related disorders (Pérez-Matute et al.  2009  ) . In this 
context, several studies have been conducted to assess the potential relationships 
between dietary antioxidant intake and infl ammation (Valdecantos et al.  2009  ) . 
A negative association between sialic acid and selenium intake, a recognized 
antioxidant trace element, has been reported in healthy young subjects, reinforc-
ing the view of selenium as a potential anti-infl ammatory nutrient (Zulet et al. 
 2009  ) . Moreover, in 100 health subjects circulating C3, an infl ammatory marker, 
showed a positive association with several adiposity markers such as BMI, WC, 
waist-to-height ratio, body fat mass, whereas nail selenium was a statistically 
signifi cant negative predictor of C3 concentrations (Puchau et al.  2009a  ) . 
Concerning vitamin C, plasma ascorbic acid was associated with fat distribution 
independent of BMI in 19,068 British men and women in the EPIC Norfolk 
cohort study (Canoy et al.  2005  ) . Later, in another cross-sectional trial including 
35 men and 83 women with BMI of 30.4 ± 0.6 kg/m 2 , plasma vitamin C was 
inversely related to BMI, percentage of body fat, and WC, particularly in women 
(Johnston et al.  2007  ) . Thus, it has been proposed that not only calories count in 
weight gain and body fat mass, but so does the antioxidant status (Campión et al. 
 2008  ) . Other antioxidants such as vitamin A intake were related, not only with 
the total antioxidant intake, but also with several anthropometrical (weight, BMI, 
WC, and waist-to-hip ratio) and biochemical measurements linked to MetS man-
ifestations and other features related to oxidative stress in healthy young adults 
(Zulet et al.  2008  ) . In a recent study carried out to assess the potential relation-
ships between the dietary total antioxidant capacity (TAC), as a measure of anti-
oxidant intake, and obesity-related features in children and adolescents, TAC 
showed positive associations with fi ber, folic acid, magnesium, and vitamins A, 
C, and E. In this investigation, BMI, standard deviation score of BMI, and total 
body fat were inversely associated with dietary TAC only in obese subjects 
(Puchau et al.  2010a  ) . In addition, potential associations have been observed 
among dietary TAC and several early MetS manifestations in healthy young 
adults (Puchau et al.  2010b  ) . Equally, energy density and other relevant nutri-
tional quality indexes were also inversely associated with dietary TAC (Puchau 
et al.  2009b  ) . 

 In summary, the role of oxidative stress and infl ammation in several chronic 
diseases is receiving increasing attention due to identifi ed links with chronic dis-
eases such as obesity. In this sense, antioxidant intake consumption has been sug-
gested to protect against oxidative damage and related infl ammatory complications. 
Thus, consumption of foods containing antioxidants, such as fruits, vegetables, 
green tea, nuts, olive oil, grapes, and the follow-up of a Mediterranean dietary 
pattern, etc., could be a useful strategy in the regulation of body composition and 
the maintenance of the fat depot, as well as in the improvement of metabolic diseases 
related to obesity. 

 The effects on adiposity, weight, and body composition of other foods containing 
antioxidants such as nuts, olive oil, fruits, vegetables, legumes, green tea, etc. 
(Crujeiras et al.  2006 ; Barbosa et al.  2008 ; Romaguera et al.  2009 ; Razquin et al. 
 2009  )  are currently under investigation.  



2899 Diet and Body Composition

    9.6   Specifi c Foods Consumption in Relation to Fat Mass 
and Body Composition 

    9.6.1   Nuts and Olive Oil 

 The SUN is a prospective cohort study designed to establish associations between 
diet and the occurrence of several diseases and chronic conditions including obesity. 
In this context, it has been found that a high amount of olive oil (a MUFA-rich 
source), consumption is not associated with higher weight gain or a signifi cantly 
higher risk of developing overweight or obesity in the context of the Mediterranean 
food pattern (Bes-Rastrollo et al.  2006b  ) . 

 In addition, frequent nut consumption has been associated with a reduced risk of 
weight gain. Nuts are an integral part of the Mediterranean food pattern, which 
includes a substantial intake of fat (up to 35–40% of total energy intake). Particularly, 
nuts are high in unsaturated FA, especially oleic acid (MUFA) and linoleic acid 
(PUFA), which can vary their content according to types of nuts (Mattes and Dreher 
 2010  ) . In addition, nuts are a good source of plant protein (arginine), fi ber, copper 
and magnesium and also supply signifi cant amounts of tocopherols, squalene, and 
phytosterols that are relevant compounds of antioxidant properties. These results 
support the recommendation of nut consumption as an important component of a 
cardioprotective diet and also allay fears of possible weight gain (Bes-Rastrollo 
et al.  2007  ) . In the same way, the Nurses’ Health Study II found that the highest 
consumption of nuts was not associated with increased weight gain during follow-
up 8 in middle-aged healthy women. Instead, it was associated with a slightly lower 
risk of weight gain and obesity. The results of this study suggest that incorporating 
nuts into diets does not lead to greater weight gain and may help weight control 
(Bes-Rastrollo et al.  2009  ) . 

 Participants in the PREDIMED (Prevención con Dieta Mediterránea) study (a 
multicenter, three-arm, randomized clinical trial to determine the effi cacy of the 
MedDiet on the primary prevention of cardiovascular disease) were following a 
Mediterranean-style diet with high intake of virgin olive oil or high intake of nuts, 
or a conventional low-fat diet. Thus, a Mediterranean diet (MD), especially rich in 
virgin olive oil, was associated with higher levels of plasma antioxidant capacity. In 
addition, plasma TAC was related to a reduction in body weight after 3 years of 
intervention in a high cardiovascular risk population with a Mediterranean-style diet 
rich in virgin olive oil (Razquin et al.  2009  ) . Also, nut consumption was inversely 
associated with adiposity independent of other lifestyle variables. It was predicted 
that BMI and WC decreased by 0.78 kg/m 2  and 2.1 cm, respectively, for each serving 
of 30 g of nuts (Casas-Agustench et al.  2010  ) . In addition, olive oil and walnut 
breakfasts reduced the postprandial infl ammatory response in mononuclear cells 
compared with a butter breakfast in healthy men (Jiménez-Gómez et al.  2009  ) . 

 Taking into account these fi ndings, it is important to emphasize the recommendation 
of olive oil and nuts as a substitute for other energy-dense snacks that lack nutritional 
value to facilitate benefi cial changes in dietary habits (Bes-Rastrollo et al.  2007  ) .  
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    9.6.2   Fruits and Vegetables 

 Natural compounds highest in antioxidants are those coming from foods such as 
fruits, vegetables, legumes, olive oil, red wine, green tea, and some nuts. Thus, 
fruits and vegetables are usually included in dietary guidelines to combat obesity. 
They are fi ber rich, low in energy density, and high in vitamins, and contain a variety 
of compounds with antioxidant capacity in plasma (AOP), such as vitamins C and 
E, carotenoids, fl avonoids, and polyphenols, which may produce benefi cial actions 
(Barbosa et al.  2008 ; Badimon et al.  2010  ) . 

 In a recent study, subjects within the highest tertile of energy-adjusted fruit and 
vegetable consumption showed signifi cantly lower values of BMI, WC, systolic, 
and diastolic blood pressure, as compared with those of the lowest tertile, as well as 
lower mRNA expression in    peripheral blood mononuclear cells of some relevant 
proinfl ammatory markers (Hermsdorff et al.  2010  ) . Interestingly, fi ber and dietary 
TAC also were statistically higher in those individuals included in the highest tertile 
of fruit and vegetable consumption (Hermsdorff et al.  2010  ) . In another investiga-
tion, two hypocaloric diets with different fruit contents improved antioxidant 
 biomarkers related to lipid peroxidation in obese women, but no differences were 
observed between diets concerning weight loss and body fat reduction (Crujeiras 
et al.  2006  ) . In addition, dietary energy density can be reduced by increasing intake 
of water-rich foods such as vegetables and fruits. Their high-water content allows 
individuals to eat satisfying portions of food while decreasing energy intake 
(Rolls  2009  ) .  

    9.6.3   Green Tea 

 Several trials have evaluated the effect of green tea on body weight and weight 
maintenance among obese subjects. A systematic review and meta-analysis includ-
ing 15 studies ( n  = 1,243 patients) has been recently published and describes that the 
administration of green tea catechins with caffeine is associated with statistically 
signifi cant reductions in BMI, body weight, and WC; however, the clinical signifi -
cance of these reductions is modest at best (Phung et al.  2010  ) . Since green tea 
(epigallocatechin gallate (EGCG) + caffeine) and protein were shown to improve 
body weight maintenance after weight loss, a study analyzed the effect of a green 
tea–caffeine mixture added to a high-protein diet on weight maintenance after body 
weight loss in moderately obese subjects. The results showed that the green tea–
caffeine mixture, as well as the high-protein diet, improved weight maintenance 
independently, while a possible synergistic effect failed to appear (Hursel and 
Westerterp-Plantenga  2009  ) . In this way, a novel green tea meal replacement for-
mula produced more weight loss and had a greater reduced total body fat mass than 
control group (Tsai et al.  2009  ) . Otherwise, patients with type 2 diabetes receiving 
catechin-rich beverage for 12 weeks reduced WC greater than control group. 
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Moreover, adiponectin, which is negatively correlated with visceral adiposity, 
increased signifi cantly only in the catechin group (Nagao et al.  2009  ) . Thus, tools 
for obesity management including catechin-rich beverages have been proposed as 
strategies to improve body fat and composition (Westerterp-Plantenga  2010  ) .  

    9.6.4   Dairy Products 

 From an experimental perspective, current evidence supporting the role of dairy in 
weight loss is rather confl icting. In a young nonhypertensive population, dietary 
supplementation with whole-fat dairy products, compared to low-fat dairy, was 
associated with weight gain (Alonso et al.  2009  ) . On the other hand, a longitudinal 
study in 53 preschool children observed that higher intakes of calcium and dairy 
products were correlated with a lower total body fat (Carruth and Skinner  2001  ) . 
Similarly, cohorts of 12,829 children (9–14 years old) were studied to determine the 
association between milk, calcium, dairy fat, and weight gain. Results suggested 
that children with a milk consumption of greater than three glasses per day were 
more likely to gain weight. As weight gain is the result of excess caloric intake, the 
authors hypothesized that this weight gain effect was the result of the additional 
energy associated with intake of large quantities of milk rather than the dairy product 
per se (Berkey et al.  2005  ) . However, Zemel et al.  (  2008  )  have reported that indi-
viduals consuming at least three servings of dairy products per day had greater fat 
oxidation and were able to consume signifi cantly more energy without greater 
weight gain in comparison to individuals consuming minimal amounts ( £ 1 serve/
day) during periods of weight maintenance. Thus, recommended levels of dairy 
products may be used during weight maintenance without contributing to weight 
gain compared to diets low in dairy products (Zemel  2004 ;    Zemel et al.  2008  ) . 

 Calcium is often identifi ed as one of the key components that may explain 
observed effects of dairy products on health (Christensen et al.  2009  ) . It was sug-
gested that the prevalence of obesity (or weight gain) in women could be reduced by 
60–80% by the simple stratagem of ensuring population-wide calcium intakes at the 
currently recommended levels (Heaney  2003  ) . Nevertheless, supplementation with 
dietary calcium (1,500 mg/day) for 2 years had no statistically or clinically signifi -
cant effects on weight in overweight and obese adults (Yanovski et al.  2009  ) . In 
young overweight children, it has been suggested that in addition to lifestyle 
changes, an isocaloric dairy-rich diet (>800 mg calcium/day) may be a well-accepted 
regimen and can be a safe and practical strategy for weight control (Kelishadi et al. 
 2009  ) . In contrast, other intervention studies have demonstrated greater weight loss 
in obese adults when consuming diets high in dairy products providing 1,200–
1,300 mg calcium from dairy products in comparison to calcium supplementation 
alone (800 mg calcium) (Zemel et al.  2004  ) . This fi nding suggests that the observed 
dairy product-mediated effects are the likely result of a complex matrix of nutrients 
and bioactive components contained within the whole dairy food in addition to 
calcium. 
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 Recently, current knowledge on dairy food consumption and obesity-related 
chronic illness have been reviewed, and it has been proposed that future research 
might discriminate between types of dairy foods and focus on the synergy provided 
by the food matrix, rather than simply the component parts of the food (Warensjo 
et al.  2010  ) . Moreover, not all dairy foods appear to be the same, and their effects 
may be different for different stages of metabolic dysfunction. Additionally, a dairy-
supplemented diet produced signifi cant and substantial suppression of the oxidative 
stress and infl ammatory biomarkers associated with overweight and obesity (Zemel 
et al.  2010  ) .  

    9.6.5   Sugar-Sweetened Soft Drinks and Water 

 Sugar-sweetened soft drinks (SSD) are a special target of many obesity-prevention 
strategies (Malik et al.  2006  ) . However, the inconsistencies of defi nition, design, 
statistical treatment, and interpretation make it diffi cult to draw defi nitive conclu-
sions as to whether sugar-sweetened beverages are signifi cantly implicated in weight 
gain. In this context, a systematic review re-examined the evidence from epidemio-
logical studies and interventions, up to July 2008 and identifi ed 44 original studies 
(23 cross-sectional, 17 prospective, and 4 intervention) in adults and children, as 
well as 6 reviews (Gibson  2008  ) . Most studies suggested that the effect of SSD is 
small except in susceptible individuals or at high levels of intake. Of the three long-
term (>6 months) interventions, one reported a decrease in obesity prevalence but 
no change in mean BMI, and two found a signifi cant impact only among children 
already overweight at baseline. Of the six reviews, two concluded that the evidence 
was strong, one that an association was probable, while three described it as incon-
clusive, equivocal, or near zero (Gibson  2008  ) . 

 However, sweetened beverage intake at age 5 years, but not milk or fruit juice 
intake, was positively associated with adiposity from age 5 to 15 years. Thus, greater 
consumption of sweetened beverages at age 5 years ( ³ 2 servings/day) was associ-
ated with a higher percentage body fat, WC, and weight status from age 5 to 15 
years (Fiorito et al.  2009  ) . In addition, other authors indicate that a greater con-
sumption of SSB is associated with weight gain and obesity and although more 
research is needed, suffi cient evidence exists for public health strategies to discour-
age consumption of sugary drinks as part of a healthy lifestyle (Fiorito et al.  2009  ) . 
Because beverages are less satiating than solid foods, consumption of energy-con-
taining beverages may increase energy intake and lead to weight gain. Likewise, 
energy provided by beverages should be compensated by reduced consumption of 
other foods in the diet (Dennis et al.  2009  ) . Newer evidence from clinical and 
epidemiological studies suggests that there may be risks associated with sugar con-
sumption beyond weight gain, dental caries, and nutritional defi ciencies, and that 
dietary guidelines for sugar consumption need to be reevaluated. In view of these 
considerations, the American Heart Association recommends reductions in the 
intake of added sugars. A prudent upper limit of intake is half of the discretionary 
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calorie allowance, which for most American women is no more than 100 cal/day 
and for most American men is no more than 150 cal/day from added sugars (Johnson 
et al.  2009  ) . 

 With regard to the type of sugar intake, a recent investigation has reported that 
both subjects consuming glucose-sweetened beverages and those consuming fruc-
tose-sweetened beverages exhibited signifi cant increases of body weight and fat 
mass (Stanhope et al.  2009  ) . Moreover, visceral adipose tissue (VAT) was signifi -
cantly increased only in subjects consuming fructose, while increased adipose 
deposition in subjects consuming glucose was mainly distributed in subcutaneous 
adipose tissue (SAT). In this investigation, the authors concluded that consumption 
of 25% of energy requirements from fructose for 10 weeks results in increased 
visceral adiposity and lipids and decreases insulin sensitivity in older, overweight, 
and obese men and women (Stanhope et al.  2009  ) . Actually, dose–response studies 
investigating the metabolic effects of prolonged consumption of fructose by itself 
and in combination with glucose, in both normal weight and overweight/obese 
subjects, are needed (Stanhope and Havel  2010  ) . 

 On the other hand, fi ndings from clinical trials, along with those from epidemio-
logic and intervention studies, suggest that water has a potentially important role to 
play in reducing energy intake, and consequently in obesity prevention. One of the 
most consistent sets of fi ndings was related to adults drinking sugar-sweetened 
beverages vs. water before a single meal. In these comparisons, total energy intakes 
were 7.8% higher when SSBs were consumed (Daniels and Popkin  2010  ) . With 
respect to energy intake, consuming 500 mL water prior to each main meal leads to 
greater weight loss than a hypocaloric diet alone in middle-aged and older adults. 
This may be due in part to an acute reduction in meal energy intake following water 
ingestion (Dennis et al.  2010  ) . 

 Taking together, there are promising results for promoting water as a replacement 
beverage. However, longer-term randomized controlled trials and more interven-
tions with strong compliance-monitoring designs are needed to fully understand the 
benefi ts of drinking water as a replacement for a range of caloric and non-nutritive 
beverages. Future research that examines beverage habits and weight should address 
factors such as portion sizes, lifestyle, dieting behaviors, etc., is warranted.   

    9.7   Dietary Patterns Including Specifi c Foods and Body 
Composition 

    9.7.1   Mediterranean Diet 

 The traditional MD, as studied in the 1950s–1960s in the South of Europe, is char-
acterized by moderate energy intake, low animal fat, high olive oil, high cereals, 
high legumes, nuts and vegetables, and regular and moderate wine (Hermsdorff 
et al.  2009  ) . Moreover, numerous epidemiological studies have supported the 
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concept that adherence to the traditional MD is benefi cial for health and particularly 
protects against cardiovascular disease (Lairon  2007 ; Sotos-Prieto et al.  2010  ) . 
More recent evidence indicates that MD has a favorable effect on type 2 diabetes 
and adiposity. However, the benefi cial impact of the traditional MD on adiposity is 
still under debate (Babio et al.  2009  ) . 

 In relation to adiposity, data of different studies suggest that adherence to the 
MD is inversely associated with BMI and obesity e.g., in Spanish men and women 
(Schröder et al.  2004  ) . Equally, a MD with low consumption of liquid sweets and 
refi ned cereals was negatively associated with adiposity in adults from rural Lebanon 
(Issa et al.  2010  ) . 

 In the EPIC-PANACEA project (European Prospective Investigation into Cancer 
and Nutrition-Physical Activity, Nutrition, Alcohol Consumption, Cessation of 
Smoking, Eating Out of Home, and Obesity), the association between the degree of 
adherence to the modifi ed-Mediterranean Diet Score and BMI or WC was studied 
in a total of 497,308 individuals from 10 European countries. Despite the observed 
heterogeneity among regions, results of this study suggest that adherence to a modi-
fi ed MD, high in foods of vegetable origin and unsaturated fatty acids, is associated 
with lower abdominal adiposity measured by WC in European men and women 
(Romaguera et al.  2009  ) . Further investigations within the EPIC-PANACEA study 
show that individuals with a high adherence to the MD are 10% less likely to develop 
overweight or obesity than those individuals with a low adherence. The authors 
concluded that the low meat content of the MD seemed to account for most of its 
positive effect against weight gain since an increase in meat intake of 250 g/day 
(e.g., one steak at approximately 450 kcal) would lead to a 2-kg higher weight gain 
after 5 years. Positive associations were observed for red meat, poultry, and pro-
cessed meat (Vergnaud et al.  2010  ) . Overall, data shows that promoting the MD as 
a model of healthy eating may help to prevent weight gain and the development of 
obesity (Romaguera et al.  2010a,   b  ) . 

 In addition, several components of MD have been inversely related with BMI or 
WC. Among numerous foodstuffs characterizing the MD, virgin olive oil has been 
shown to display benefi cial effects on a wide range of risk factors. In this chapter, the 
main dietary components of MD with infl uence on body composition are discussed. 

 In conclusion, the MD is a healthy eating pattern with protective effects on 
chronic diseases, such as obesity and associated disorders, possibly because it is 
negatively associated with BMI and visceral adiposity. Moreover, there is growing 
evidence suggesting that the MD could serve as an anti-infl ammatory and antioxi-
dant dietary pattern, which may be useful in the development of dietary approaches 
for dietary counseling and the prevention of obesity.  

    9.7.2   Fish-Based Energy-Restricted Diet 

 Kunesová et al.  (  2006  )  reported signifi cantly greater losses in BMI and hip circum-
ference in obese women following 3 weeks of a very low-calorie diet supplemented 
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with  n -3 PUFA vs. placebo. Also, three servings a week of fatty fi sh included in an 
energy-restricted diet appears to be a valid strategy for specifi cally improving insulin 
sensitivity and leptin levels in obese subjects, which could involve a better body 
weight regulation after a nutritional intervention period (Abete et al.  2008b  ) . 

 The SEAFOODplus-YOUNG project is a randomized controlled trial of energy-
restricted diet varying in fi sh and fi sh oil content and followed for 8 weeks. Subjects 
(324 participants, 20–40 years of age, BMI 27.5–32.5 kg/m 2 , from Iceland, Spain, 
and Ireland) were randomized to one of four energy-restricted diets (−30% relative 
to estimated requirements): salmon (150 g 3 times/week, resulting in a daily con-
sumption of 2.1 g of omega-3 LC-PUFAs), cod (150 g 3 times/week, 0.3 g of 
omega-3 LC-PUFAs/day), fi sh oil capsules (1.3 g of omega-3 LC-PUFAs/day), or 
control (sunfl ower oil capsules, no seafood). The important fi nding of the current 
study is that in young, overweight men, the inclusion of either lean or fatty fi sh, or 
fi sh oil as part of an energy-restricted diet resulted in approximately 1 kg more 
weight loss after 4 weeks, than did a similar diet without seafood or supplement of 
marine origin. Therefore, the addition of seafood to a nutritionally balanced energy-
restricted diet may boost weight loss (Thorsdottir et al.  2007  ) . Later, it has been 
published that fatty seafood, particularly salmon intake exerted positive additional 
benefi ts on insulin resistance, diastolic blood pressure and infl ammatory markers, 
leading to greater benefi ts than those achieved with a weight loss intervention alone 
in overweight and obese European young adults (Ramel et al.  2008,   2010a,   b  ) . 
Moreover, consumption of fatty seafood can modulate fasting insulin, ghrelin, and 
leptin during an 8-week intervention, and these effects are partly gender specifi c and 
partly explained by weight loss (Ramel et al.  2009a,   b  ) . 

 Additionally, the inclusion of lean fi sh to an energy-restricted diet for 8-weeks 
resulted in signifi cantly more weight loss than an isocaloric diet without seafood in 
young overweight or obese individuals. Overall, there was on average 1.7 kg signifi -
cantly more weight loss among subjects consuming 150 g cod 5 times a week com-
pared to the control group receiving no seafood as well as signifi cant reductions in 
BMI and WC (Ramel et al.  2009b  ) . 

 Thus, the results of these investigations show that following an energy-restricted 
diet containing lean or fatty fi sh or fi sh oil supplements result in more benefi cial 
effects on adiposity and associated metabolic disorders than an isocaloric energy-
restricted diet without marine food, which may be a useful strategy to lose weight 
and manage adiposity.  

    9.7.3   Legume-Based Energy-Restricted Diet 

 It is evident that the inclusion of fruits, vegetables, and legumes increases the con-
sumption of fi ber, antioxidants, low glycemic index carbohydrates, and minerals that 
produce a crucial effect on body composition. Thus, legumes are foods containing 
important nutritional and functional factors that may play a crucial role in health 
maintenance and disease treatment, such as vegetable protein, fi ber, oligosaccharides, 
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phytochemicals, minerals (e.g., potassium), and other bioactive compounds, such as 
saponins and polyphenols (Duranti  2006  ) . 

 In this context, nutritional intervention studies including three or more legume 
servings per week have found not only weight loss improvements, but also impor-
tant benefi ts in the infl ammatory and antioxidant status of participants as well as 
improvement of some metabolic features. Thus, an 8-week energy restriction (−30% 
energy expenditure) study in obese subjects that included legume consumption (four 
servings per week) showed that those patients following the legume diet lost more 
weight and additionally showed a reduction in lipid peroxidation and total choles-
terol as compared to a control hypocaloric diet (Crujeiras et al.  2007  ) . Similarly, it 
has been published that the specifi c consumption of legumes within a hypocaloric 
diet could activate mitochondrial oxidation, which could involve additional benefi ts 
to those associated with the weight reduction (Abete et al.  2009a  ) . Additionally, the 
consumption of legumes (four servings per week) within a hypocaloric diet resulted 
in a specifi c reduction in proinfl ammatory markers, such as CRP and C3 and a clini-
cally signifi cant improvement of some metabolic features (lipid profi le and BP) in 
overweight/obese subjects, which were in some cases independent from weight loss 
(Hermsdorff et al.  2011  ) . In this way, a trial was conducted to determine the associa-
tion of consuming beans on nutrient intakes and physiological parameters using the 
National Health and Examination Survey 1999–2002. The results showed that those 
consuming beans had a lower body weight and a smaller waist size relative to non-
consumers. Additionally, consumers of beans had a 23% reduced risk of increased 
waist and a 22% reduced risk of being obese. Also, baked bean consumption was 
associated with a lower systolic blood pressure (Papanikolaou and Fulgoni  2008  ) . 

 In fact, the inclusion of legumes in a fat lowering program appears important 
since a number of data support additional benefi ts to weight loss of legume con-
sumption. This outcome could be attributed to the dietary quality, lower fat, higher 
bioactive compounds intake, higher vegetable protein supply, lower GI, as well as 
higher satiety favoring dietary compliance.  

    9.7.4   Vegetarian Diets/Plant-Based Diet 

 A vegetarian diet is defi ned as one that does not include meat (including fowl) or 
seafood, or products containing those foods (Craig et al.  2009  ) . Epidemiological 
studies indicate that vegetarian diets are associated with a lower BMI and a lower 
prevalence of obesity in adults and children. A meta-analysis in 2001 of 36 stud-
ies in women and 24 studies in men using references from Messina and Messina’s 
publication “The dietician’s guide to vegetarian diets,” showed no marked differ-
ences in height between vegetarians and nonvegetarians; however, vegetarians 
had signifi cantly lower weight (−7.7 kg for men and −3.3 kg for women;  P  < 0.0001 
and  P  = 0.007, respectively) and a two-point lower BMI (Sabaté and Wien  2010  ) . 
Similarly, compared with nonvegetarians, vegetarian children are leaner, and 
their BMI difference becomes greater during adolescence. Thus, 215 adolescents 
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consuming predominantly vegetarian foods showed signifi cantly better scores on 
markers of cardiovascular health, including, BMI, WC, cholesterol/high density 
lipoprotein ratio, and low density lipoprotein. Adolescents consuming nuts more 
than once per week, also showed lower scores for BMI and serum glucose irre-
spective of their vegetarian status (Grant et al.  2008  ) . Recently, a dietary pattern 
characterized by a high intake of dark-green and deep-yellow vegetables was 
related to low fat mass and high bone mass, while high processed-meat intake 
was related to high bone mass and high fried-food intake to high fat mass in 
young children. Thus, beginning at preschool age, diets rich in dark-green and 
deep-yellow vegetables and low in fried foods may lead to healthy fat and bone 
mass accrual in young children (Wosje et al.  2010  ) . 

 Thus, traditional messages to reduce calories and fat are important, and follow-up 
of well-planned vegetarian diets can assist individuals to maintain weight and 
improve the body composition, due to several factors, such as lower caloric density, 
the avoidance of foods containing SFA, as well as higher variety of components with 
healthy benefi ts as complex carbohydrate, fi ber, antioxidants, PUFA fat-to-saturated 
fat ratio, water content, among others (Grant et al.  2008 ; Tanumihardjo et al.  2009  ) . 
Moreover, well-planned vegetarian diets may be appropriate for individuals during 
all stages of the life cycle, including pregnancy, lactation, infancy, childhood, and 
adolescence, and for athletes (Craig et al.  2009  ) .  

    9.7.5   Eating Away, Fast Food, and Snacking 

 Eating away from home and particularly fast food consumption have been shown to 
contribute to weight gain. Increased geographic access to fast food outlets and other 
restaurants may contribute to higher levels of obesity, especially in individuals who 
rely largely on the local environment for their food purchases. Car owners show 
higher BMIs than non-car owners. However, individuals who do not own cars and 
reside in areas with a high concentration of fast food outlets have higher BMIs than 
non-car owners who live in areas with no fast food outlets. Higher restaurant density 
is associated with higher BMI among local residents. The local fast food environ-
ment has a stronger association with BMI for local residents who do not have access 
to cars (Inagami et al.  2009  ) . In this sense, public health efforts to limit access to fast 
food among nearby residents could have benefi cial effects on child obesity since 
students who resided within one-tenth or one-quarter of a mile from a fast food 
restaurant had signifi cantly higher values of BMI (Mellor et al.  2011  ) . Additionally, 
students with fast-food restaurants near (within 1½ mile of their schools): (1) con-
sumed fewer servings of fruits and vegetables, (2) consumed more servings of soda, 
and (3) were more likely to be overweight or obese than youths whose schools were 
not near fast-food restaurants (Davis and Carpenter  2009  ) . In the EPIC study, energy 
intake at restaurants was higher than intake at work in southern Europe, whereas in 
northern Europe, eating at work appeared to contribute more to the mean daily 
intake than eating at restaurants. Cross-sectionally, eating at restaurants was found 
to be positively associated with BMI only among men (Naska et al.  2011  ) . 
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 In summary, exposure to poor-quality food and nutritional environments has 
important effects on adolescent eating patterns and overweight. Policy interventions 
limiting the proximity of fast-food restaurants to schools could help reduce adoles-
cent overweightness. In addition, snacking is also considered an important factor in 
the development of obesity (Sánchez-Villegas et al.  2002  ) . Thus, the results of SUN 
study support the hypothesis that self-reported between-meal snacking can be a 
potential risk factor for obesity (Bes-Rastrollo et al.  2010  ) .   

    9.8   Regulation of Adipose Tissue Functions by Dietary Factors 

 Taking together, the studies reported and discussed previously strongly support the 
proposal that dietary factors are important determinants of adiposity and associated 
metabolic disorders. Many investigations during the last decades have focused on 
the study of the mechanisms underlying the benefi cial effects of bioactive food on 
obesity and the MetS. Thus, the anti-obesity effects of some dietary nutrients and 
non-nutrient factors have been related to its ability to reduce food intake (Becskei 
et al.  2009  ) . Furthermore, metabolic key organs including adipose tissue, liver, 
intestine, and skeletal muscle have been also shown to be targets of nutrients and 
bioactive food components. For example, green tea, green tea catechins, and EGCG 
have demonstrated in cell culture and animal models of obesity to reduce lipogen-
esis, fat mass, body weight, fat absorption, plasma levels of triglycerides, free fatty 
acids, cholesterol, glucose, insulin, and leptin, as well as to increase beta-oxidation 
and thermogenesis (Wolfram et al.  2006  ) . 

 Recently, it has been described that the health effects of food compounds are 
related mostly to specifi c interactions on molecular level, such as the regulation of 
gene expression by modulating the activity of transcription factors. In this context, 
several studies support that the ability of  n -3 PUFA supplements in treating hyper-
triglyceridemia (Goldberg and Sabharwal  2008  )  could be associated to reduce lipo-
genic enzyme expression (Pérez-Echarri et al.  2009a  ) , probably via down-regulation 
of sterol regulatory element binding protein 1c (Howell et al.  2009  ) . In this section, 
we will focus in reviewing the regulation of WAT metabolism and secretory func-
tion by some bioactive food components. 

 Inhibition of adipocyte differentiation represents a key strategy to reduce fat 
mass. In this context, it has been proposed that the omega-3 DHA may exert its anti-
obesity effect by inhibiting differentiation to adipocytes (Kim et al.  2006  ) . Lipoic 
acid, a very important micronutrient with antioxidant and anti-obesity properties 
(Prieto-Hontoria et al.  2009 ; Shay et al.  2009  ) , also inhibits adipocyte differentia-
tion by down-regulating pro-adipogenic transcription factors (Cho et al.  2003  ) . The 
green tea polyphenol EGCG is also able to reduce adipocyte differentiation in 3T3-
L1 adipocytes (Lin et al.  2005  ) . 

 Targeting apoptosis in adipose tissue has been also proposed as an approach for 
reducing adiposity. In this way, several studies have demonstrated the ability of different 
nutrients and bioactive food components to induce apoptosis in fat cells including DHA, 
CLA, and EGCG (Lin et al.  2005 ; Kim et al.  2006 ; Fischer-Posovszky et al.  2007  ) . 
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 Stimulation of lipolysis has been suggested to underlie the anti-obesity actions of 
some dietary components, including CLA and EPA. However, some controversial 
results have been described. Thus, while some authors observed that  trans -10, cis -12 
CLA increases adipocyte lipolysis (Chung et al.  2005  ) , others suggest that the body 
fat-lowering effect of CLA is not due to this process (Simón et al.  2005  ) . Concerning 
EPA, Lee et al.  (  2008  )  suggested that EPA increases lipolysis through upregulation 
of the lipolytic gene expression in 3T3-L1 adipocytes. However, other studies have 
shown that EPA directly inhibits tumor necrosis factor-induced lipolysis (Price and 
Tisdale  1998 ; Lorente-Cebrián et al.  2007  ) . 

 Adenine monophosphate-activated protein kinase (AMPK) is an important reg-
ulator of energy metabolism. In WAT, AMPK activation inhibits fatty acid synthe-
sis and lipolysis, whilst promoting free fatty acid oxidation (Hardie  2008  ) . 
Regarding the regulation of AMPK by nutrients, it has been recently demonstrated 
that EPA strongly stimulates AMPK phosphorylation in 3T3-L1 adipocytes 
(Lorente-Cebrián et al.  2009  ) . Moreover, two additional trials have described the 
ability of  n -3 PUFAs to activate AMPK in vivo (González-Périz et al.  2009 ; 
Kopecky et al.  2009  ) . Also,  n -3 PUFAs have been shown to upregulate mitochon-
drial biogenesis and induce beta-oxidation in white fat in mice, associated with a 
threefold stimulation of the expression of genes encoding regulatory factors for 
mitochondrial biogenesis and oxidative metabolism such as peroxisome proliferator-
activated receptor gamma coactivator 1-alpha and nuclear respiratory factor-1 
(Flachs et al.  2005  ) . CLA also activates AMPK and reduces adiposity in mice 
adipocytes (Jiang et al.  2009  ) . Moreover, the combination of relatively low doses 
of lipoic acid and acetyl- l -carnitine improves mitochondrial function in 3T3-L1 
murine adipocytes (Shen et al.  2008  ) . 

 Nutrients and dietary factors have also been demonstrated to regulate the produc-
tion of bioactive adipokines (including leptin, adiponectin, and visfatin) that directly 
regulate body composition, energy metabolism, and insulin sensitivity (Moreno-
Aliaga et al.  2010  ) . Leptin is an adipokine involved in the regulation of food intake, 
energy expenditure, body fat storage, and insulin signaling (Marti et al.  1999  ) . It has 
been shown that meals high in fructose caused lower leptin concentrations than 
meals containing the same amount of glucose (Teff et al.  2004  ) . Moreover, several 
studies from different laboratories have evidenced the ability of dietary  n -3 PUFA 
to modulate leptin gene expression and secretion both in vitro and in vivo (Pérez-
Matute et al.  2005 ,     2007a,   b,   c  ) . Thus, in vitro studies with EPA showed the ability 
of this fatty acid to stimulate in a dose-dependent manner leptin mRNA expression 
and leptin secretion in 3T3-L1 cells (Murata et al.  2000  )  and in primary rat adipo-
cytes (Pérez-Matute et al.  2005  ) . In contrast, an inhibition of leptin secretion has 
been described after treatment of cultured adipocytes with arachidonic acid, linoleic 
acid, and CLA (Pérez-Matute et al.  2003,   2007a,   b  ) . 

 In opposition to leptin, adiponectin concentrations are decreased in obesity and 
weight loss leads to an increase in adiponectin circulating level (Bruun et al.  2003  ) . 
Moreover, circulating levels of adiponectin have been positively associated with 
whole-body insulin sensitivity (Yamauchi et al.  2001  ) . Several assays have sug-
gested that the insulin-sensitizing properties of dietary fi sh oils could be related to 
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their ability to increase circulating levels of adiponectin both in rodents (Flachs 
et al.  2006 ; Neschen et al.  2006 ; González-Périz et al.  2009  )  and humans (Itoh et al. 
 2007  ) . In contrast, several studies have observed that CLA decreases adiponectin 
production in mice (Ohashi et al.  2004 ; Poirier et al.  2005  ) , an effect opposite to 
what would be expected with a reduction in fat mass. In fact, a direct inhibitory 
effect of CLA on the ability of adipocytes to produce this adipokine has been 
reported (Pérez-Matute et al.  2007a,   b,   c  ) . However, other researchers have 
described an increase, or no changes, in adiponectin levels after the supplementa-
tion of the diet with CLA, in rodents and humans, respectively (Noto et al.  2007 ; 
Norris et al.  2009  ) . Other trials have described that the administration of green tea 
extract leads to a marked increase in the level of adiponectin and high-density 
lipoprotein-cholesterol, together with a signifi cant reduction in low-density lipo-
protein-cholesterol and triglyceride in obese women (Hsu et al.  2008  ) . 

 Visfatin and apelin are two adipokines recently identifi ed (Beltowski  2006  ) . 
Confl icting results have been described regarding the role played by visfatin in 
obesity, insulin resistance, and infl ammation. Several studies have demonstrated the 
ability of dietary fatty acids to regulate the production of this adipokine. Thus, EPA 
has been shown to stimulate visfatin gene expression both in vitro (Lorente-Cebrián 
et al.  2009  )  and in vivo (Pérez-Echarri et al.  2009b  ) . However, palmitate and oleate 
have been shown to down-regulate visfatin gene expression in 3T3-L1 adipocytes, .  
which was mentioned as a potential mechanism to directly induce insulin resistance 
by oleate and palmitate in vitro (Wen et al.  2006  ) . Concerning apelin, previous studies 
have shown that it can restore glucose tolerance in obese and insulin-resistant mice 
(Dray et al.  2008  ) . Recently, it has been described that EPA upregulates apelin 
secretion and gene expression in 3T3-L1 adipocytes (Lorente-Cebrián et al.  2010  ) . 
Moreover, dietary supplementation with EPA increased apelin gene expression, and 
a negative relationship between HOMA index with visceral apelin mRNA and 
serum apelin:total WAT ratio was observed in lean and overweight (cafeteria diet-
fed) rats (Pérez-Echarri et al.  2009b  ) . 

 Low-grade infl ammation has been identifi ed as a key factor in the development of 
MetS features affecting obese subjects. In obesity, the expanding adipose tissue 
makes a substantial contribution to the development of obesity-linked infl ammation 
via dysregulated secretion of proinfl ammatory cytokines, chemokines, and adipok-
ines and the reduction of anti-infl ammatory adipokines (Moreno-Aliaga et al.  2005a  ) . 
Several studies have clearly demonstrated that dietary factors modulate the proin-
fl ammatory state linked to obesity. Treatment of obese subjects with  n -3 PUFA in a 
clinical setting reduced circulating levels of both proinfl ammatory cytokines and 
acute phase proteins (White and Marette  2006  ) . Moreover,  n -3 PUFA have been 
shown to ameliorate infl ammation within the adipose tissue of obese rats (Pérez-
Matute et al.  2007a,   b,   c  ) . The benefi cial actions of  n -3 PUFA were initially believed 
to be mediated by a decrease in the production of classic infl ammatory mediators 
such as arachidonic acid-derived eicosanoids and infl ammatory cytokines. However, 
in recent years,  n -3 PUFA have been demonstrated to serve as substrates for the con-
version to a novel series of lipid mediators designated resolvins and protectins, which 
have been proposed to mediate the protective and benefi cial anti-infl ammatory 
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actions underlying the effects of  n -3 PUFA (Serhan et al.  2002 ; González-Périz and 
Clària  2010  ) . In fact, a recent study in  ob/ob  mice showed that increased intake of  n -3 
PUFA not only inhibited the formation of eicosanoids derived from the  n -6 PUFA 
arachidonic acid, but also increased the generation of protective  n -3 PUFA-derived 
lipid mediators (protectins and resolvins), which mimicked the insulin-sensitizing 
and antisteatotic effects exerted by  n -3 PUFA (González-Périz et al.  2009  ) . 

 In summary, there is strong evidence that both diet-derived nutrients as well as 
non-nutritional factors can regulate both WAT metabolism and the secretion of key 
bioactive adipokines involved in the regulation of food intake, body composition, as 
well as glucose and lipid metabolism (Fig.  9.2 ).   

    9.9   Clinical Implications and Future Directions for Research 

 Body composition determinants are complex with a multifactorial origin, which in 
many cases appear as a polygenic condition affected by diverse environmental factors. 
Nutrition is considered to have the most important lifelong environmental modifi able 
impact on human health. However, it is well known that dietary factors can affect 

  Fig. 9.2    Potential mechanism involved in the regulation of white adipose tissue (WAT) biology 
and function by nutrients and other dietary bioactive molecules       
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differently depending on individual genetic background. In fact, not all individuals 
habitually eating a high-fat diet are obese; some have a similar BMI to low-fat con-
sumers despite the consumption of substantially more fat and energy (Mercer  2001 ; 
Marrades et al.  2007  ) . Moreover, individual genetic make-up has been shown to 
determine differential responses to weight loss interventions, and reliable predictors 
of successful slimming are poorly understood. Therefore, achieving effective weight 
and fat mass loss must take into account many environmental, behavioral, and genetic 
infl uences (Moreno-Aliaga et al.  2005b  ) . 

 During the last years, the development of Nutritional genomics, a science study-
ing the relationship between human genome, nutrition, and health, is contributing to 
understand how diet and genomes interact. Nowadays, Nutritional genomics has the 
challenge to answer the following different questions:

    1.    How an individual’s genetic make-up predisposes for dietary susceptibility to 
obesity or infl uences the response to weight-loss interventions. In this context, 
Nutrigenetics has revealed insights into obesity susceptibility and can help dif-
ferentiate responders from nonresponders in dietary interventions, but the pre-
dictive power of single-nucleotide polymorphisms in disease susceptibility genes 
has so far been limited in terms of helping to foresee a health trajectory (Kussmann 
et al.  2010 ; Marti et al.  2010  ) .  

    2.    How nutrition infl uences the expression of the genes, proteins, and metabolites. 
Thus, Nutrigenomics focuses in the study of the effect of nutrients on health through 
altering genome, proteome, metabolome, and the resulting changes in physiology. 
Therefore, Nutrigenomics builds on the developments of three omics disciplines 
transcriptomics, proteomics, and metabolomics (Corthésy-Theulaz et al.  2005  ) .  

    3.    How epigenetic factors infl uences inter-individual differences in obesity suscep-
tibility. Epigenetics studies the heritable changes in gene expression that do not 
involve changes to the underlying DNA sequence. These processes include DNA 
methylation, covalent histone modifi cations, chromatin folding, and, more 
recently described, the regulatory action of miRNAs and polycomb group com-
plexes (Campión et al.  2009  ) . Epigenetic mechanisms are established during pre-
natal and early postnatal development and function throughout life to maintain 
the diverse gene expression patterns of different cell types within complex organ-
isms. Several studies have provided strong evidences that dietary factors during 
development can induce permanent alterations in epigenetic gene regulation, and 
epigenetic dysregulation can contribute to increased fat mass. However, our pres-
ent understanding of how diet infl uences on epigenetic processes remains rudi-
mentary (McAllister et al.  2009  ) .  

    4.    The integration of Nutrigenetics/Nutrigenomics and Epigenetics is a prerequisite 
for developing nutritional systems biology, which will constitute a powerful 
approach to unravel the complex interaction between food components and diet 
with cells, organs, and the whole body (Daniel et al.  2008  ) .     

 Finally, the major challenge will be in translating Nutrigenetic/Nutrigenomic/
Epigenetics research into dietary guidelines, leading to healthier foods and person-
alized nutrition (Fig.  9.3 ). Indeed, personalized nutrition based on nutrigenomics 
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and epigenomics tools will facilitate the prescription of customized dietary patterns 
to manage adipose tissue biology as well as to reduce excessive adiposity in obese 
subjects and maintain fat stores in lean individuals (van Ommen  2007  ) . The role of 
the macronutrient content and distribution as well as some specifi c nutrients such as 
amino acids, fatty acids, fi ber, and bioactive compounds should be further investi-
gated in relation not only to fuel supply but also to an energy effi ciency perspective, 
with emphasis on fat mass deposition, and body composition.       
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  Abstract   Despite a relatively high heritability, the search for obesity-susceptibility 
genes has been challenging. While over the past 15 years, candidate gene studies 
and genome-wide linkage studies were able to identify only a handful of genetic 
variants convincingly associated with obesity-related traits, the genome-wide asso-
ciation approach has truly revolutionised gene discovery for many common 
diseases and traits, including obesity. In less than 4 years time, large-scale genome-
wide association studies for body mass index, waist-to-hip ratio and extreme obesity 
have identifi ed at least 50 obesity-susceptibility loci, most of which had not previ-
ously been linked to body weight regulation. Although the combined contribution 
of these genetic loci to the variation in obesity risk at the population level is small 
and their predictive value is low, it is anticipated that the recently identifi ed loci will 
shed new light on the complex physiology that governs the regulation of energy bal-
ance and fat distribution. The expectation is that the genetic loci will point towards 
novel causal pathways and, subsequently, to the identifi cation of therapeutic targets 
within these pathways. This new knowledge could eventually lead to the develop-
ment of agents for more effective preventive and therapeutic interventions. While 
the rapid progress in gene discovery has raised hopes towards the development of 
genetic risk profi les to guide individual weight management, the current evidence 
suggests that the available genetic data is not suffi cient for such personalised 
implementations.  
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    10.1   Introduction 

 The prevalence of obesity and overweight continues to increase steadily worldwide, 
causing not only serious personal health problems but also imposing a substantial 
economic burden on societies (World Health Organisation  2006  ) . Between 1960 and 
1980, 30% of adults in the U.S. were overweight and 10% were obese. Current esti-
mates, however, show that the prevalence has more than doubled over the past three 
decades; i.e. almost 70% of adults in the U.S. were found to be overweight of whom 
nearly half are obese (Flegal et al.  1998 , Flegal et al.  2010  ) . Other Western countries 
have witnessed similar sharp increases and although obesity and overweight preva-
lences have always been somewhat lower, they follow closely behind those reported 
for the U.S. population (International Association for the Study of Obesity  2010  ) . Of 
concern is that obesity is no longer confi ned to Western societies and a substantial 
increase in its prevalence has been observed worldwide (Popkin  2008  ) . 

 It has been well-established that rapid globalisation of the westernised lifestyle 
is fuelling this growing obesity epidemic. Yet, not everyone in the present-day 
obesogenic environment becomes obese, and intensive efforts to reduce weight by 
those who are obese have typically variable success. These observations suggest 
that lifestyle factors are not the only culprit in the recent obesity epidemic and high-
light the multifactorial nature of the condition. Indeed, obesity arises through the 
joint actions of multiple genetic and environmental factors. More specifi cally, the 
obesogenic environment increases the risk of obesity, but more so in those who 
are genetically susceptible. 

 After providing evidence for a genetic contribution to obesity-susceptibility, this 
chapter reviews the recent advances made in the fi eld of common obesity genetics 
with a focus on the genetic loci that were established by large-scale candidate gene 
and genome-wide studies. The substantial progress made by genome-wide associa-
tion studies in particular warrants specifi c attention. Therefore, the chronological 
sequence of discoveries, their impact for public health and clinical practice, their 
potential to unravel the underlying pathophysiology, and the ways ahead to fi nd 
more obesity-susceptibility loci are being discussed.  

    10.2   Evidence for a Genetic Contribution 
to Obesity-Susceptibility  

    10.2.1   Evidence from Descriptive Epidemiological Studies 

 Descriptive epidemiological studies based on families and migrants provided the 
fi rst evidence of a genetic contribution to obesity-susceptibility. Such studies rely 
on the relatedness between family members or between members of the same ethnic 
group to estimate the role of genes to a disease or trait. However, as members of the 
same family or of the same ethnic group not only share a genetic background but 
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also a similar environment, inferences on the genetic contribution are only suggestive; 
i.e. the infl uence of a genetic component can often not be distinguished from that 
of the shared environmental component. 

 Family studies calculate the familial risk, represented by the lambda coeffi cient 
(   l    

R
 ) or the standardised relative risk ratio, which compares the recurrence of a 

disease between family members (with various degrees of relatedness), with the risk 
of the disease in the general population. Estimates of    l    

R
  based on body mass index 

(BMI) data from twin and family studies suggest that the risk of obesity is 1.5–5 
times higher for an individual with a family history of obesity compared to the risk 
in the population at large (Allison et al.  1996 ; Ziegler et al.  1997 ; Lee et al.  1997 ; 
Katzmarzyk et al.  1999  ) . This familial risk is higher when the degree of relatedness 
with the obese relative is greater; i.e.    l    

R
  varies between 1.4 and 2.5 when an indi-

vidual has an obese sibling, whereas    l    
R
  ranges from 2.12 to 5.24 if the obese sibling 

was a monozygotic twin (Ziegler et al.  1997  ) . Familial risk of obesity doubles if the 
related individual is extremely obese (BMI   ³   45 kg/m 2 ) (Lee et al.  1997  ) . Data from 
the Canada Fitness Survey showed that the increased familial risk of obesity was not 
only due to a shared genetic background, but also due to shared non-genetic factors 
as the risk of obesity was also increased, yet to a lesser extent, between (unrelated) 
spouses (Katzmarzyk et al.  1999  ) . 

 In migrant studies, the disease risk of migrants is compared to that of the native-
born population of the country to which they migrated and also to that of the popula-
tion in their countries of origin. If the migrants’ disease risk remains similar to that of 
the population in their country of origin, it suggests that a shared genetic background 
predominates potential environmental infl uences, while the opposite is inferred when 
the migrants’ disease risk becomes similar to that of the native-born population of the 
country to which they migrated. In a paper that reviewed the health of migrants in the 
U.S., foreign-born individuals had a lower body mass and were less likely to be over-
weight or obese than U.S.-born individuals upon arrival (Cunningham et al.  2008  ) . 
However, the foreign-born individuals tended to catch up with U.S. born individuals 
the more time they spent in the U.S., and after spending a decade in the U.S., the aver-
age BMI of foreign-born and native-born individuals was the same (Cunningham 
et al.  2008  ) . These studies suggest that (the American) lifestyle increases the risk of 
obesity, irrespective of genetic difference between foreign-born and U.S.-born indi-
viduals. Yet, a classic example of how ethnic origin determines obesity-susceptibility 
is that of the Pima Indians. Pima Indians are American Indians living in central and 
southern Arizona (U.S.) and in Sonora (Mexico). The Pima Indians in Arizona live in 
the same “obesogenic” environment as the white Americans of European descent, yet 
their prevalence of obesity is twice as high (69%) than that of white Americans (33%) 
suggesting that Pima Indians are more genetically susceptible to obesity (Knowler 
et al.  1991  ) . Of interest is that Pima Indians living in the “restrictive” environment of 
the remote Mexican Sierra Madre Mountains in Sonora have a much lower prevalence 
of obesity (13%) despite sharing the same genetic background as the Pima Indians 
in Arizona (Ravussin et al.  1994  ) . This observation suggests interaction between 
genetic-susceptibility and lifestyle; i.e. Pima Indians have an increased susceptibility 
to obesity, but only when they live in an “obesogenic” environment. 



320 R.J.F. Loos

 While descriptive epidemiological studies have been useful in providing suggestive 
evidence for a genetic contribution to obesity-susceptibility, they do not allow 
quantifying how much genes and environment explain of the variation in obesity 
risk, which is what heritability studies aim to do. 

    10.2.2   Evidence from Heritability Studies 

 Heritability studies have shown that genetic factors contribute typically between 
40% and 70% to the inter-individual variation in common obesity (Maes et al. 
 1997  ) . However, estimates as low as 5% and as high as 90% have been reported. 
This wide range in heritability estimates is in part due to study design, with twin 
studies (heritability =  h  2  = 40–90%) often reporting higher estimates than family 
( h  2  = 20–50%) or adoption ( h  2  = 20–60%) studies (Maes et al.  1997  ) . Also, the statisti-
cal “modelling” of hypotheses is believed to contribute to the variation in heritabil-
ity estimates; e.g. whether or not a “shared environmental” contribution is presumed 
to be present, or whether interactions between genes and between genes and envi-
ronments are assumed. 

 Furthermore, heritability estimates are population specifi c, which could explain 
another part of the wide range in estimates reported. For example, the heritability of 
obesity estimated in a population with little variation in environmental factors (e.g. 
convent, prison and during war times) will likely be higher than for a population that 
has a large variety in lifestyles (e.g. present-day westernised countries). Longitudinal 
twin studies have suggested that the heritability of obesity-susceptibility increases 
throughout childhood and adolescence until the onset of adulthood, after which the 
genetic contribution decreases again (Korkeila et al.  1991 ; Haworth et al.  2008 ; 
Lajunen et al.  2009 ; Silventoinen et al.  2009  ) . 

 Taken together, the wide range suggests that heritability estimates for obesity-
susceptibility should be interpreted with caution, accounting for the population for 
which the estimation was made and for the study design that was used. Nevertheless, 
as most reported estimates tend to lie within the 40–70% range, a search for obesity-
susceptibility genes seems warranted.   

    10.3   Approaches to Identify Obesity-Susceptibility Genes 

 Scientists have been searching for obesity-susceptibility genes since the mid-1990s. 
Early success in the fi eld was largely confi ned to monogenic obesity, which is typically 
severe and has often an early onset. Several mutations that segregate in families or that 
occur de novo have been found to cause major disruptions in the function of genes in 
which they are located. These genes often encode ligands and receptors implicated in 
the leptin-melanocortin pathways that are critical in the regulation of body weight 
through controlling energy sensing, food intake and appetite (O’Rahilly  2009  ) . 
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 While the study of monogenic obesity has already led to valuable insights into 
biological pathways that lead to weight gain, the mutations are rare, affecting only 
a fraction of the population. The search for (common) genetic variation that contrib-
utes to common forms of obesity, ubiquitous in the general population, has proven 
to be more challenging. The fact that common obesity is a multifactorial condition 
with no simple pattern of (Mendelian) inheritance, caused by many genetics variants 
that each have only a small effect, that interact with each other and with environ-
mental factors, will no doubt have contributed to the limited success of many 
gene-discovery efforts. 

 In their search for common obesity-susceptibility loci, genetic epidemiologists 
have applied two main approaches; i.e. the hypothesis-driven approach by using 
candidate gene studies, and the hypothesis-generating approach by using genome-
wide screening studies (Box  10.1 ). The developments in the fi eld have been largely 
technology driven; i.e. progress in genotyping technology has not only facilitated 
the development of catalogues with detailed insights in human genetic variation 
(such as the Human Genome Project (Human Genome Sequencing Consortium 
 2004  ) , The International HapMap (The International HapMap Consortium  2007  ) , 
The 1000 Genomes (Sudmant et al.  2010  ) , but they have also increased the speed, 
amount and resolution with which samples can be genotyped. These technological 
developments have increased the pace of discoveries over time, particularly since 
the advent of genome-wide association studies, which has led to the identifi cation 
of many loci robustly associated with common diseases and traits, including obesity 
(Hindorff et al.  2010  ) . Here, the contribution of the main gene-discovery approaches 
to the fi eld of common obesity is being reviewed.   

   Box 10.1 Genetic Epidemiological Approaches to Identify Genes 

 Genetic epidemiologists have relied mainly on candidate gene and genome-
wide screening approaches to identify genetic variants associated with (com-
mon) diseases or traits in the general population. 

 The candidate gene approach 
 The candidate gene approach is a  hypothesis-driven  approach and relies on 
the current understanding of the biology and pathophysiology that underlies 
the susceptibility to obesity. Genes for which there is evidence for a role in the 
regulation of the energy balance in animal models or in extreme/monogenic 
forms of obesity are tested for association with obesity-related traits at the 
population level. Candidate gene studies have been performed since the early 
1990s; i.e. as soon as technology allowed genotyping at a population level. 

 The genome-wide screening approach 
 The genome-wide screening approach is a  hypothesis-generating  method that, 
through screening genetic variation across the whole genome, aims to identify 
new, unanticipated genetic variants associated with a disease or trait of interest.
As this approach is not constraint by the boundaries of an a priori hypothesis, 

(continued)
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Box 10.1 (continued)

it is expected that the newly indentifi ed genetic loci were not previously presumed 
to be implicated in the disease or trait, and therefore, will provide insights into 
new pathways and biology that underlie obesity-susceptibility. The genome-wide 
screening approach has been implemented in linkage and association studies. 

  Genome-wide linkage studies  – Genome-wide linkage studies rely on the relat-
edness of study participants and test whether certain chromosomal regions co-
segregate with a disease or trait across generations. A genome-wide linkage 
scan requires 400–600 highly polymorphic markers, genotyped at 10-cm inter-
vals. The linkage method relies on the recombination between parental chro-
mosomes during meiosis and the subsequent transmission of these “recombined” 
chromosomes to the offspring. As there is a “natural” limitation to the number 
of chromosomal crossovers that occur between parental genomes during meio-
sis, the resolution of genome-wide linkage scans is typically low, and increas-
ing the number of markers to more than 600 will not improve the resolution. 
Because of the rather low resolution, genome-wide linkage studies will iden-
tify broad intervals that harbour many genes. Therefore, a linkage “peak” will 
often require follow-up genotyping to fi ne-map the region and to pinpoint the 
gene(s) that underlie(s) the linkage signal. The genome-wide linkage approach 
has been available since the mid-1990s, thanks to progress in genotyping tech-
nology and publicly available databases that catalogue the highly polymorphic 
markers. While this approach has been effective in identifying genetic loci for 
rare diseases, with a simple (Mendelian) pattern of inheritance and a strong 
(mono-)genetic infl uence, it has been less successful in identifying genetic loci 
for common multifactorial diseases and traits. 

  Genome-wide association studies  – Genome-wide association studies screen 
the whole genome at much higher resolution than genome-wide linkage studies 
and are thus able to better narrow down the associated locus. Genome-wide 
association does not rely on familial relatedness and can therefore achieve larger 
sample sizes than typical family-based studies. A key feature of genome-wide 
association studies is the robust study design; i.e. they consist of a discovery 
stage, which is the actual genome-wide association, and a follow-up stage. 
Single nucleotide polymorphisms (SNPs) that show signifi cant association in 
the discovery stage are taken forward to the follow-up stage to confi rm (or 
refute) the association observed in the discovery stage. Associations are con-
sidered signifi cant if  P -values reach a signifi cance threshold of <5 × 10 −8 . 
Genome-wide association studies typically examine the association of a trait or 
disease with ~2.5 million SNPs across the genome. Although its resolution is 
much higher than that of genome-wide linkage studies, the identifi cation of the 
“causal” gene or variant often remains a major challenge. A catalogue of loci 
identifi ed at the genome-wide signifi cance level can be found at   www.genome.
gov/GWAStudies    . Substantial advances in high-throughput genotyping tech-
nology and a detailed knowledge of the human genetic architecture have enabled 
genome-wide association studies that have been available since 2005.  
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    10.4   Candidate Gene Studies 

 Candidate gene studies are hypothesis driven and rely on the current understanding 
of the biology that underlies obesity-susceptibility (Box  10.1 ). In the past two 
decades, hundreds of genes have been proposed to be candidate genes for obesity 
and obesity-related traits (Rankinen et al.  2006  ) . Their candidacy is based on their 
role in the regulation of energy homeostasis observed in animal studies or because 
mutations in the respective genes lead to extreme and early-onset obesity in humans. 
At the start, in the mid-1990s, genotyping was expensive and tedious, and informa-
tion on the genetic architecture of the human genome was rather scarce, such that 
candidate gene studies would examine only one or a few genetic variants in a 
particular candidate gene. Over time, candidate genes studies became more 
comprehensive as decreasing genotyping costs, and the availability of catalogues of 
genetic variation (such as dbSNP and the International HapMap) allowed a more 
systematic examination all common variation in the genes of interest. 

 The most commonly examined genetic variants tested for association in candi-
date gene studies are single nucleotide polymorphisms (SNPs). SNPs are the most 
basic and abundant type of genetic variation and are evenly spread throughout the 
human genome. Recent results of the 1000 Genomes projects estimated that 
there are at least 15 millions SNPs across populations (Sudmant et al.  2010  ) . SNPs 
are bi-allelic – one copy is inherited from each parent – such that an individual can 
be homozygous for the major allele (e.g. A/A), heterozygous (A/a) or homozygous 
for the minor allele (a/a). A candidate gene study examines whether either of the 
two alleles is associated with an increased risk of obesity (dichotomous) or with 
higher levels of an obesity-related trait (continuous; e.g. BMI) (Fig.  10.1 ).  

 Despite the large number of candidate gene studies, most of which had valid 
hypotheses for a given gene to be implicated in obesity-susceptibility, so far, few 
candidate genes have been shown to be consistently associated with common 
obesity or related traits in the general population. The main reasons for the limited 
success of the candidate gene approach are that (1) sample sizes studied are often 
too small ( n  < 1,000) and thus insuffi ciently powered to identify the small to modest 
effects that are expected for common obesity, that (2) the genetic variation of the 
gene of interest was not surveyed comprehensively and that (3) the candidacy was 
based on limited biological insights. 

 In recent years, however, an increasing number of candidate gene studies have 
tested for associations in larger populations ( n  > 5,000), and more often, the initiative 
has been taken to perform meta-analyses of all available published (and unpub-
lished) data. Such large-scale studies have greater statistical power that is needed to 
confi rm or refute associations. 

 Tables  10.1  and  10.2  summarise the results of large-scale ( n  > 5,000) association 
studies and meta-analyses, respectively. Robust associations have been observed for 
non-synonymous variants in the melanocortin 4 receptor ( MC4R ),   b  -adrenergic 
receptor 3 (ADRB3), prohormone convertase 1/3 ( PCSK1 ), brain-derived neu-
rotrophic factor (BDNF), melanotonin receptor type 1 B ( MTNR1B ) genes and for a 
functional variant near the lactase ( LCT  ) gene.   



324 R.J.F. Loos

  The melanocortin 4 receptor (MC4R)  –  MC4R  has a strong biological candidacy. 
 MC4R  is predominantly expressed in the brain and plays a key role in the regulation 
of food intake and energy homeostasis (Huszar et al.  1997 ; Fan et al.  1997  ) . Up to 
6% of individuals with severe, early-onset obesity carry pathogenic mutations in 
 MC4R , making  MC4R  defi ciency the commonest form of monogenic obesity 
(Farooqi et al.  2003 ; Vaisse et al.  2000  ) . Patients with  MC4R  defi ciency exhibit 
hyperphagia, increased fat and lean mass, greater bone mineral density and acceler-
ated linear growth (Farooqi et al.  2003  ) . 

  Fig. 10.1    Example of association between a bi-allelic single nucleotide polymorphism (A/a) and 
body mass index (BMI) (panel a) or obesity risk (panel b), assuming an additive effect of the 
a-allele. This example shows that each additional a-allele increases BMI and risk of obesity       
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 While the role of  MC4R  mutations in the development of extreme and early-onset 
obesity has been well-established for several years, convincing evidence that also 
common genetic variation in  MC4R  contributes to common obesity-susceptibility 
has only recently started to emerge. The two most common  MC4R  variants, V103I 
and I251L, each result in a non-synonymous change with potential functional 
implications (Xiang et al.  2006  ) . Numerous, typically small, studies examined these 
two  MC4R  variants, but none found signifi cant association with obesity-related 
traits, apart from one sizeable population-based study that observed a signifi cant 
protective effect of the 103I-allele (frequency: 2–3% of the population) on obesity 
risk (Heid et al.  2005  )  (Table  10.1 ). Since 2004, four consecutive meta-analyses, 
each including a growing number of association studies, confi rmed that 103I-allele 
carriers have a 20% lower risk of obesity than V103V homozygotes (Geller et al. 
 2004 ; Young et al.  2007 ; Stutzmann et al.  2007 ; Wang et al.  2010  )  (Table  10.2 ). In 
addition, a meta-analysis of data on the I251L  MC4R  variant provided strong 
evidence for a protective effect with a nearly 50% reduced risk of obesity for carriers 
of the 251 L-allele (frequency: 1–2%) (Stutzmann et al.  2007  )  (Table  10.2 ). It should 
be noted that both meta-analyses are based mainly (for V103I) or exclusively (for 
I251L) on data from case–control studies for (extreme) obesity, which may result in 
effect sizes that are somewhat infl ated than if data had been obtained from population-
based cohorts. 

    b  -adrenergic receptor 3 (ADRB3)  –  ADRB3  is an obvious candidate gene for  obesity 
as it is part of the adrenergic system, which is known to play a key role in energy 
metabolism.  ADRB3  is primarily expressed in adipose tissue where it is involved the 
regulation of lipolysis and thermogenesis through activation of the sympathetic ner-
vous system (Lafontan and Berlan  1993 ; Enocksson et al.  1995  ) . So far, no muta-
tions in  ADRB3  have been reported to be associated with monogenic obesity. 
However, in 1995, a common variant that leads to the replacement of tryptophan by 
arginine (Trp64Arg) in the receptor protein was identifi ed through restriction 
enzyme and sequence analyses (Walston et al.  1995  ) . This variant was found to be 
associated with the onset of type 2 diabetes, insulin resistance and weight gain in 
Pima Indian (Walston et al.  1995  ) , French (Clement et al.  1995  )  and Finnish popula-
tions (Widen et al.  1995  ) . Following these fi rst reports in 1995, more than 100 stud-
ies have been published on the association between the Arg64Trp variant and 
obesity-related traits, but results have been inconsistent. Even the results of three 
consecutive meta-analyses on the association with BMI were inconclusive 
(Table  10.2 ). The fi rst meta-analysis combined data from 36 populations published 
before June 1997 including a total of 7,399 individuals and found no evidence of 
association between the Arg64Trp and BMI (Allison et al.  1998  ) . The absence of 
heterogeneity suggested that the results were not affected by ethnicity or diabetes 
status (Allison et al.  1998  ) . The second meta-analysis included data from an addi-
tional eight studies ( n  

total
  = 9,236) and, in contrast to the fi rst meta-analysis, the 

Arg64-allele carriers were found to have a signifi cantly higher BMI (+0.30 kg/m 2 ) 
compared to Trp64Trp homozygotes. Similar to the fi rst meta-analysis, there was no 
evidence for effect heterogeneity by ethnicity. The third meta-analysis included data 
of Japanese only ( n  = 6,582) and confi rmed that carriers of the Arg64-allele had a 
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signifi cantly higher BMI (+26 kg/m 2 ) than Trp64Trp homozygotes (Kurokawa et al. 
 2001  ) . The most recent meta-analysis was more than four times larger than any of 
the three previous meta-analyses, including data of 44,833 individuals from 97 pop-
ulations (Kurokawa et al.  2008  ) . Signifi cant association between the Arg64Trp vari-
ant and BMI was observed in East Asians only, with Arg64-allele carriers having a 
0.31 kg/m 2  higher BMI compared to the Arg64Arg homozygotes, whereas no asso-
ciations were observed in Caucasians (Kurokawa et al.  2008  ) . Of interest is that the 
Arg64-allele is also more frequent in East Asians (frequency: ~18%) than in 
Europeans (~7.5%), suggesting that this variant is more important in East Asians. 
The functional effect of the Trp64Arg polymorphism on the expression and activity 
of  ADBR3  remains unclear. In vitro experiments in rodent and human cell lines 
found that the Arg64-variant reduces the ability to stimulate adenyl cyclase activity 
compared with the Trp64-variant (Pietri-Rouxel  1997 ; Kimura et al.  2000  ) . 
Furthermore, lipolysis in human adipocytes was lower in cells with the Arg64-
variant compared with cells with the Trp64-variant (Umekawa et al.  1999  ) . However, 
others did not observe in vitro functional effects of the Arg64Trp variant (Urhammer 
et al.  2000  ) . 

  Prohormone convertase 1/3 (PCSK1)  – The  PCSK1  gene is another strong can-
didate for obesity as it encodes an enzyme, expressed in neuroendocrine cells, that 
converts prohormones into functional key hormones that are involved in the regula-
tion of central and peripheral energy metabolism. Mutations in  PCSK1  lead to a 
PC1/3 defi ciency, resulting in a syndrome characterised by extreme childhood obe-
sity (Jackson et al.  1997 ; Farooqi et al.  2007 ; Jackson et al.  2003  ) . A recent large-
scale study provided evidence that also common variants in  PCSK1  might be 
associated with risk of obesity (Benzinou et al.  2008  ) . After sequencing  PCSK1  
coding regions in a small sample of obese individuals, nine variants that captured 
the common genetic variation in  PCSK1  were genotyped in 13,659 individuals of 
European ancestry. Two non-synonymous variants, N221D (rs6232) and the Q665E-
S690T pair (tagged by rs6235), were consistently associated with obesity in adults 
and children (Table  10.1 ). Each additional minor allele (frequency: 4–7%) of the 
N221D variant increased the risk of obesity by 1.34-fold, while each additional 
minor allele (frequency: 25–30%) of the Q665E-S690T pair increased the risk by 
1.22-fold. However, a subsequent population-based study, including 20,249 indi-
viduals of white European origin, could not convincingly confi rm the previously 
observed associations with obesity-related traits (Kilpelainen et al.,  2009  ) . In this 
study, the association between the N221D variant and obesity reached a magnitude 
(OR   ³   1.24) similar to that observed in the fi rst study, and the association with BMI 
(+0.25 kg/m 2 /allele) reached nominal signifi cance, but only in the younger age 
group (<59 years) (Kilpelainen et al.  2009  ) . A weak ( P  = 0.03) but directionally 
consistent association with BMI was also observed for N221D (no data available for 
Q665E-S690T) in a genome-wide association study of BMI (Willer et al.  2009  ) . 
The population-based study by Kilpelainen et al.  (  2009  )  found no evidence of asso-
ciation between the Q665E-S690T pair and any of the examined obesity-related 
traits (Kilpelainen et al.  2009  ) . The inconsistency in results reported by Benzinou 
et al.  (  2008  )  and Kilpelainen et al.  (  2009  )  may in part be explained by differences in 
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age of the study participants. Benzinou et al.  (  2008  )  included three case–control 
cohorts of children, whereas Kilpelainen et al.  (  2009  )  studied individuals between 
40 and 49 years of age. Furthermore, a high number of the obese cases studied by 
Benzinou et al.  (  2008  )  were class III obese (BMI   ³   40 kg/m 2 ), whereas only 4% of 
the obese participants of the study by Kilpelainen et al.  (  2009  )  had such a high BMI. 
This would suggest that the  PCSK1  variants might be associated with a more 
extreme and earlier onset for of obesity. Functional characterisation of these two 
variants suggested a modest deleterious effect of the N221D variant, but no func-
tional role for the Q665E-S690T was observed (Benzinou et al.,  2008  ) . 

  Brain-derived neurotrophic factor (BDNF) – BDNF  is believed to act primarily in 
the hypothalamus, downstream of the leptin–proopiomelanocortin signalling path-
way (Unger et al.  2007 ; Wang et al.  2007 ; Xu et al.  2003  ) .  BDNF  has been mainly 
studied for its presumed role in the regulation of development, stress response, sur-
vival and mood disorders. However, evidence for a role of  BDNF  in the regulation 
of energy homeostasis comes from animal studies as well as from a case report. 
 BDNF  mutant mice show a reduced expression of the gene in the hypothalamus; 
they are hyperphagic, obese and hyperactive (Kernie et al.  2000 ; Fox and Byerly 
 2004 ; Rios et al.  2001  ) . While no mutations in humans have been described, a 
de novo chromosomal inversion at chr11p, a region encompassing  BDNF , was 
detected in an 8-year-old girl who was hyperphagic, severely obese and hyperactive 
(Gray et al.,  2006  ) . Furthermore, in patients with the Wilms tumor, aniridia, genito-
urinary anomalies, and mental retardation syndrome, those with  BDNF  haploinsuf-
fi ciency had a higher BMI and all had developed obesity in childhood (Han et al. 
 2008  ) . The  BDNF  polymorphism most commonly studied in association studies is 
the non-synonymous Val66Met (rs6265) variant (Met66-allele frequency: ~20%). 
The replacement of valine by methionine at codon 66 appears to result in an 
impaired intracellular traffi cking and reduced activity-dependent secretion of 
BDNF in hippocampal neurons (Chen et al.  2004  ) . The Met-allele has also been 
associated with poorer episodic memory and abnormal hippocampal activation 
using functional magnetic resonance imaging (Egan et al.  2003  ) . While several small 
studies found no evidence of association, a recent large-scale study, including 10,109 
women, reported that Met66Met homozygotes had a signifi cantly lower BMI 
(−0.76 kg/m 2 ) than Val66-allele carriers (Shugart et al.  2009  )  (Table  10.1 ). A recent 
large-scale genome-wide association study reported highly signifi cant associations 
between variants in the locus that harbours the Val66Met and BMI, confi rming 
 BDNF  a common obesity-susceptibility gene (Speliotes et al.  2010  ) . 

  Melanotonin receptor type 1 B (MTNR1B)  – Genome-wide association studies pre-
viously identifi ed common variants in the  MTNR1B  gene to be unequivocally asso-
ciated with fasting glucose and risk of type 2 diabetes (Bouatia-Naji et al.  2009 ; 
Prokopenko et al.  2009  ) , most likely through an effect on beta cells (Lyssenko et al. 
 2009  ) . Because melatonin is involved in the regulation of circadian rhythms 
(Claustrat et al.  2005  ) , which contribute to metabolic disorders when disturbed 
(Scheer et al.  2009  ) , it has been speculated that variation in the  MTNR1B  (which 
encodes the MT2-receptor) could contribute to obesity-susceptibility (Andersson 
et al.  2010  ) . While there is no evidence for the previously identifi ed glucose-associated 
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 MTNR1B  variants to be associated with BMI (Speliotes et al.  2010  ) , a large-scale 
candidate gene study examined whether rare non-synonymous variants in  MTNR1B  
are associated with risk of diabetes and obesity (Andersson et al.  2010  )  (Table  10.1 ). 
By sequencing  MTNR1B  in 200 individuals, six non-synonymous variants were 
identifi ed that were subsequently genotyped in a large sample of individuals of 
European descent. Four variants had a minor allele frequency of <1%, whereas the 
Lys243Arg (frequency 3.3%) and Gly64Glu (9.2%) were more frequent. While 
none of the variants contributed to the risk of type 2 diabetes, each additional Glu24-
allele of the Gly24Glu polymorphism was associated with a 20% increased risk of 
obesity, and with increased BMI (+0.50 kg/m 2 ) and waist circumference (+1.2 cm) 
in a population-based sample of 10,610 individuals (Andersson et al.  2010  ) . 
Counterintuitively, the Glu24-allele was also associated with decreased fasting 
glucose levels. Functional characterisation analyses demonstrated that the Glu24-allele 
decreased the constitutive signalling activity of MT2-receptor, but not its potency or 
effi cacy (Andersson et al.  2010  ) . The Gly24Glu (rs8192552) variant has not been 
tested for association in genome-wide association studies, as it was not available on the 
HapMap release that is used for imputation (see below). Replication of these fi ndings 
in other large-scale cohorts will be needed to further confi rm these observations. No 
association with obesity-related traits was reported for the Lys243Arg variant. 

  Lactase (LCT)  –  LCT  is expressed in intestinal epithelial cells and encodes the  LCT  
enzyme, which contributes to the digestion of the milk sugar lactose. Its enzymatic 
activity typically declines during childhood, such that 75% of adults worldwide 
develop  LCT  non-persistence (or lactose intolerance). However, there are marked 
regional differences, and the majority of northern and western Europeans, as well as 
some Middle Eastern, African and southern Asian populations, show  LCT  persis-
tence (lactose tolerance). The down-regulation of  LCT  activity during childhood has 
been linked to a variant (C/T 

−13910
 , rs4988235) in a  cis -regulatory element near  LCT  

(Enattah et al.  2002  ) . The T-allele has been associated with a disrupted down-regu-
lation, leading to  LCT  persistence in adulthood. While  LCT  might not seem the most 
obvious candidate gene in the context of obesity-susceptibility, a recent study 
hypothesised that because  LCT  non-persistence individuals have a more restricted 
diet compared to those with  LCT  persistence, this may affect their BMI (Kettunen 
et al.  2010  ) . In this study, the C/T 

−13910
  variant was genotyped in 31,720 individuals 

from four European populations. The prevalence of T-allele carriers (i.e. those with 
 LCT  persistence) varied across countries from 80% in Finnish populations to >90% 
in British and Dutch populations. Overall, the T-allele carriers had a signifi cantly 
higher BMI than the C/C homozygotes (Table  10.2 ). However, this association was 
more pronounced in Finnish populations, than in the other European populations 
combined (Kettunen et al.  2010  ) . The heterogeneity among populations of European 
descent, combined with the fact that the association is only observed under a dominant 
model of inheritance, might explain why recent genome-wide association studies 
did not report association for the  LCT  variants and BMI (Speliotes et al.  2010  ) . 

 While such large-scale and often comprehensive candidate gene studies have 
suffi cient power to identify small effects, they are also powered to refute associations. 
For example, for the Lys121Gln variant in  ENPP1,  four studies with each more 
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than 5,000 participants and a combined sample size of 27,781 individuals found no 
association between the Lys121Gln variant and obesity-related traits (Lyon et al. 
 2006 ; Weedon et al.  2006 ; Meyre et al.  2005 ; Grarup et al.  2006  )  (Table  10.1 ). Also 
for other genes, despite their sometimes strong biological candidacy, there was 
suffi cient data to refute association with obesity-related traits; these include the 
Ala54Thr variant in  fatty acid binding protein 2  (Zhao et al.  2010b  ) , seven variants 
in the  grehlin receptor  (Gjesing et al.  2010  ) , the -174 G > C variant near  interleukin 
6  (Huth et al.  2009 ; Qi et al.  2007  ) , four variants in  lipin 1  (Fawcett et al.  2008 ; 
Burgdorf et al.  2010  ) , two variants in  liver pyruvate kinase  and  nitric oxide synthase 
1 adaptor protein  (Andreasen et al.  2008a  ) , and the -759 C/T variant near the  sero-
tonin 5-HT-2 C receptor  (Vimaleswaran et al.  2010  )  (Tables  10.1  and  10.2 ). It should 
be noted that the strong evidence for absence of association pertains to the specifi c 
variants tested and does not rule out association for genetic variation elsewhere 
in the gene. 

 For other candidate genes that were examined in large-scale studies or in meta-
analyses (Tables  10.1  and  10.2 ), such as for variants in the  beta-adrenergic  receptor 2  
(Jalba et al.  2008  ) ,  Kruppel-like factor 7  (Zobel et al.  2009a  ) ,  lymphotoxin alpha  
(Hamid et al.  2005  ) ,  peptide YY  (Torekov et al.  2005  ) ,  peroxisome proliferator-
activated receptor gamma  (Tonjes et al.  2006  )  and for many of the other proposed 
candidate genes that have so far only been examined in small studies, the results are 
more ambiguous, and further follow-up is required to unambiguously prove or 
refute their role in obesity-susceptibility. 

 Taken together, despite 15 years of candidate gene efforts, this approach has only 
recently started to succeed. Large-scale studies and meta-analyses have identifi ed 
common variants, mostly non-synonymous and/or functional, in at least six candidate 
genes ( MC4R ,  ADRB3 ,  PCSK1 ,  BDNF ,  MTNR1B  and  LCT ) to be robustly associ-
ated with obesity-related traits. It is reassuring that also genome-wide association 
studies (see below) show either strong evidence (for  MC4R ,  BDNF ) or suggestive 
evidence (for  PCSK1 ) of association with BMI (Speliotes et al.  2010  ) . Association 
for variants in the other three genes could not be confi rmed by genome-wide asso-
ciation studies as the particular variant ( MTNR1B ), the dominant model ( LCT ) or 
the specifi c ethnic group ( ADRB3 ) was not examined.  

    10.5   Genome-Wide Linkage Studies 

 The genome-wide linkage approach is a hypothesis-generating method that aims to 
identify new, unanticipated genetic loci that co-segregate with a disease or trait of 
interest across generations (Box  10.1 ). Genome-wide linkage studies have a rather 
low resolution and typically identify broad intervals that require follow-up genotyping 
to pinpoint the genes that underlie the linkage signal. 

 Since the fi rst genome-wide linkage study on body fat percentage in Pima Indians 
was published in 1997 (Norman et al.  1997  ) , the number of chromosomal loci linked 
to obesity-related traits has grown exponentially. The last Human Obesity Gene 



336 R.J.F. Loos

map update, which summarised the literature up to October 2005, reported 253 loci 
from 61 genome-wide linkage scans, of which 15 loci have been replicated in at 
least three studies (Rankinen et al.  2006  ) . However, most of these replicated loci 
cover a large genomic region that harbours many genes, and, so far, none of these 
loci have been narrowed down suffi ciently to pinpoint the genes or variants that 
underlie the linkage signal. Furthermore, a meta-analysis of 37 genome-wide linkage 
studies with data on more than 31,000 individuals from 10,000 families of European 
origin could not locate a single obesity or BMI locus with convincing evidence, 
despite suffi cient power to identify loci with even small effects (Saunders et al. 
 2007  ) . This meta-analysis suggests that genome-wide linkage is not an effective 
approach for identifying genetic variants for common obesity.  

    10.6   Genome-Wide Association Studies 

 Similar to genome-wide linkage, genome-wide association is a hypothesis-generating 
approach that aims to identify new unanticipated loci for a disease or trait of interest 
(Box  10.1 ). 

 The genome-wide association approach has been enabled through major advances 
in high-throughput genotyping technology. These technological developments fi rst 
facilitated the rapid expansion of our understanding of the human genetic architec-
ture, which is being catalogued in publicly available “maps” (such as the Human 
Genome Project, the International HapMap and the 1000 Genomes project). 
Subsequently, these maps, in concert with the high-throughput genotyping technol-
ogy, have provided the methodological basis for the production of smartly designed 
arrays that allow the genotyping of more than one million genetic variants in a sin-
gle experiment. This change in genotyping capacity has dramatically increased the 
pace of discoveries for many common diseases and traits. Currently, genome-wide 
association studies have identifi ed more than 900 genetic loci for over 160 diseases 
and traits, including at least 50 loci for obesity-related traits (Hindorff et al.  2010  ) . 
The main reasons for its success are threefold; (1) the whole genome is being sur-
veyed at a high resolution, (2) association can be tested using unrelated individuals, 
who are easier to recruit than related individuals, such that sample sizes can be large 
and statistical power high and (3) the study design of genome-wide association 
studies is robust. 

    10.6.1   The Genome-Wide Association Study Design 

 Genome-wide association studies typically consist of a least two stages; a discovery 
stage and a replication stage. 

  The discovery stage  – The discovery stage comprises the actual genome-wide 
 association analysis. Hundreds of thousands of genetic variants, typically SNPs, are 
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being genotyped across the genome using high-density genotyping arrays. 
Genotyping can be done in population-based cohorts to test for association with a 
continuous trait (e.g. BMI, waist-to-hip ratio (WHR)) or in cases and controls to test 
for association with risk of a disease (e.g. obesity). Each SNP is subsequently tested 
for association with the trait or disease of interest in a similar way as association is 
tested in candidate gene studies (Fig.  10.1 ). 

 Studies with large sample sizes at the discovery stage tend to be more successful, 
in particular for common traits with moderate heritability, as they have greater 
statistical power to detect associations of SNPs with small effect sizes. The need for 
large sample sizes has led to the formation of international consortia that involve a 
growing number of studies of whom scientists have agreed to pool data to guarantee 
continued gene discovery. These consortia use genome-wide meta-analyses to 
combine summary statistics of a series of individual genome-wide association 
studies into one analysis. Because individual studies may have used different geno-
typing arrays, meta-analyses using genotyped data only would be limited to the 
subset of SNPs that is common to all arrays. Therefore, to make more effi cient use 
of the available data, a statistical method called  imputation  is being applied to the 
genotyped data. In brief, based on the observed haplotype structure of the geno-
typed SNPs in a study and based on that of a reference panel (e.g. the CEU HapMap 
population), the genotypes of ~2.5 million untyped HapMap SNPs are inferred for 
each of the individuals of the separate studies. Imputation of genotypes is now routinely 
done using one of the publicly available imputation software programs. As such, all 
studies in a consortium will have genotype data available on the same SNPs across 
the whole genome. Each study subsequently performs a genome-wide association 
analysis using the genotyped and imputed SNPs. Next, the summary statistics for 
the association of each SNP, of each of the individual genome-wide association 
studies, are meta-analysed to calculate the overall signifi cance of the associations. 
The results of such a genome-wide association (meta-)analysis are presented in a 
Manhattan plot, which shows the  P -values of the associations for the 2.5 million 
SNPs according to their position in the genome (Fig.  10.2 ).  

 Given that hundreds of thousands of tests are performed in a genome-wide association 
study, the chance of false positive fi ndings is very high. To account for multiple 
testing, the nominal  P -value to consider an association as signifi cant is very strin-
gent. A  P -value of <5 × 10 −8 , which corresponds to a 5% genome-wide type I error 
rate, has been recommended as the minimum signifi cance threshold to be reached 
after validation of the association in the replication stage (de Bakker et al.  2008  ) . 
Therefore, SNPs for which the association  P -values reach <10 −7  or <10 −6  at the dis-
covery stage are taken forward to the next stage with the expectation that, if the SNP 
is a true “hit”, the association will reach a  P -value of <5 × 10 −8  at the replication 
stage. It should be noted that associations for SNPs in the same locus often show 
similar signifi cance levels because they are in high linkage disequilibrium (i.e. highly 
correlated). All SNPs that are part of such a cluster represent the same association 
signal, such that typically only one of the SNPs is taken forward for replication. 

  The replication stage  – The SNPs that were taken forward from the discovery stage 
are tested for association in replication samples, which is a new series of samples 



338 R.J.F. Loos

that have the same study design as that used in the discovery stage. Ideally, the rep-
lication sample size is at least as large as the sample used at the discovery stage to 
provide the replication sample with suffi cient statistical power to identify the effects 
observed in the discovery stage. Eventually, the results of the discovery and replica-
tion stage are meta-analysed. SNPs for which the  P -values reach the critical thresh-
old of <5 × 10 −8  are considered “confi rmed loci” (“hits”), whereas the other SNPs, 
for which the association becomes less signifi cant after replication, were likely false 
positive fi ndings at the discovery stage. 

 While it has been recommended to use a nominal  P -value threshold of <5.0 × 10 −8 , 
which corresponds to a 5% genome-wide type I error rate, more liberal thresholds 
have been used by early genome-wide association studies. 

 Loci for which association is confi rmed at the replication stage are often further 
examined in a third stage to examine their functional implications, to assess their 
effects on related traits or to fi ne-map the locus to identify the causal variant or gene.  

    10.6.2   The Discovery of at Least 50 Obesity-Susceptibility Loci 

 Since the introduction of the genome-wide association approach in 2005, the obesity 
genetics fi eld has witness the discovery of at least 50 genetic loci that are unequivo-
cally associated with obesity-related traits (Table  10.3 , Fig.  10.3 ). Large-scale high-
density genome-wide association studies and meta-analyses have been performed 
for BMI, waist circumference, WHR and extreme and early-onset obesity. These 
have been performed predominantly in adults of white European descent. However, 
the past few years has seen a growing number of genome-wide association studies 
in populations of Asian and African origin.   

  Fig. 10.2    Manhattan plot of the association between genome-wide data and BMI in the meta-
analysis of the Genomic Investigation of Anthropometric Traits Consortium. The –log10  P -values 
for the association of each single nucleotide polymorphism with body mass index (BMI) are shown 
on the  y -axis. The single nucleotide polymorphisms (SNPs) are plotted on the  x -axis according to 
their chromosomal location. The SNPs that had previously been shown to associate with BMI are 
shown in blue (BMI) or green (weight and waist circumference). The SNPs that were taken forward 
from the discovery stage and that were replicated as new BMI hits are shown in red. Adapted from 
Speliotes et al.  (  2010  ) , with permission from Nature Publishing Group       
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  Fig. 10.3    Obesity-susceptibility loci discovered in four waves of genome-wide association  studies 
for body mass index (blue), three waves of genome-wide association studies for waist circumfer-
ence and waist-to-hip ratio (pink) and two waves of genome-wide association studies for extreme 
and early onset of obesity (green). Each Venn diagram represents the loci of one paper, except for 
papers that discovered only one locus, i.e. the fat mass and obesity associated gene (Frayling et al. 
 2007 ; Scuteri et al.  2007 ; Hinney et al.  2007  )  and the near-MC4R loci (Loos et al.  2008 ; Chambers 
et al.  2008  ) , for which no Venn diagram was drawn       

    10.6.2.1   Genome-Wide Association Studies for Body Mass Index 

 Most genome-wide association studies for obesity-related traits have been performed 
for BMI, which is an inexpensive and non-invasive measure of adiposity in adults 
and which is available in many studies. Four consecutive  waves  of large-scale high-
density genome-wide association (meta-)analyses, each characterised by a larger 
sample size and a growing number of discoveries, have so far identifi ed 32 loci 
robustly associated with BMI. 

  First wave of discoveries  – The fi rst wave took place in 2007 and comprised two 
independent genome-wide association studies that each identifi ed  FTO  (fat mass 
and obesity associated gene) as the fi rst gene of which genetic variation is incontro-
vertibly associated with common obesity and related adiposity traits (Table  10.3 , 
Fig.  10.3 ). 

 The fi rst study, a genome-wide association study for type 2 diabetes, identifi ed a 
cluster of SNPs in the fi rst intron of  FTO  to be highly signifi cantly associated with 
type 2 diabetes (Frayling et al.  2007  ) . After adjusting for BMI, the association with 
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type 2 diabetes was completely abolished, indicating that the  FTO -type 2 diabetes 
association was mediated through BMI. The  FTO  rs9939609 variant was taken forward 
for replication in 38,759 adults and children from 13 cohorts in which its association 
with BMI, obesity risk and other adiposity-related traits was unequivocally 
confi rmed. Within 6 weeks of the publication of the fi rst report, a second genome-
wide association study identifi ed the  FTO  locus to be associated with BMI (Scuteri 
et al.  2007  ) . In their discovery stage, including 4,741 Sardinians, variants in the 
 FTO  and  PFKP  (platelet-type phosphofructokinase) genes showed the most 
significant associations, but only those in  FTO  replicated in 1,496 European 
Americans and 839 Hispanic Americans. 

 While the study by Frayling et al.  (  2007  )  coincidentally identifi ed the  FTO  locus 
through a genome-wide association study of type 2 diabetes, the study by Scuteri 
et al.  (  2007  )  is considered to be the fi rst large-scale high-density genome-wide 
association study with BMI as the primary outcome. 

  Second wave of discoveries  – While the sample sizes of the fi rst genome-wide asso-
ciation studies were relatively small ( N  ~ 4,800), they were suffi ciently powered to 
harvest the  FTO  locus as the “low-hanging-fruit”. However, scientists soon rea-
lised that for  a second wave  of discoveries, collaborative efforts were required to 
increase the sample size and thus power of the study to identify more common 
variants with effects smaller than those observed for the  FTO  locus. As such, 
research groups from across Europe and the USA combined forces and formed the 
GIANT (Genomic Investigation of Anthropometric Traits) consortium to study 
the genetics of various anthropometric traits. In their fi rst meta-analysis, data of 
seven genome-wide association studies for BMI, including 16,876 individuals, were 
meta-analysed. Ten SNPs representing the ten most signifi cant loci ( P  < 10 −5 ) 
were taken forward for replication (Loos et al.  2008  ) . Despite quadrupling the 
discovery stage sample size compared to fi rst wave studies, only  FTO  and one new 
locus were unequivocally confi rmed in the replication stage (Table 10. 3 , Fig.  10.3 ). 
The newly identifi ed locus, represented by the rs17782313 -SNP, maps at ~188 kb 
downstream of  MC4R  and at ~300 kb upstream of  PMAIP1  (phorbol-12-myristate-
13-acetate-induced protein 1). 

 At the same time, a genome-wide association study in 2,684 Indian Asians identi-
fi ed a locus, represented by the rs129070134-SNP, at ~150 kb downstream of  MC4R . 
Association for this locus was confi rmed in 11,955 individuals of Indian Asian and 
European ancestry (Chambers et al.  2008  ) . Although the locus identifi ed by 
Chambers et al.  (  2008  )  maps 38 kb closer to the  MC4R  gene than the locus identifi ed 
by Loos et al.  (  2008  ) , both loci are part of the same cluster of genetic variants that 
are in high linkage disequilibrium ( r  2  > 0.75 in white Europeans), and they likely 
present the same association signal. The frequency of the BMI-increasing allele is 
signifi cantly higher in Indian Asians (36%) than in white Europeans (27%), which 
might in part explain why this locus could be identifi ed with a relatively small 
sample of Indian Asians in the discovery stage. 

 The identifi ed locus maps in a recombination interval between  MC4R  and 
 PMAIP1 , of which  MC4R  seems the best biological candidate given its role in the 
regulation of food intake (Huszar et al.  1997 ; Fan et al.  1997  ) . As described earlier, 
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rare coding mutations in  MC4R  result in monogenic forms of obesity (Farooqi et al. 
 2003  )  and common variants (V103I or I251L) are associated with a reduced risk of 
obesity in the general population (Young et al.  2007 ; Stutzmann et al.  2007 ; Wang 
et al.  2010  )  (Table  10.2 ). 

  Third wave of discoveries  – For  the third wave  of discoveries, the discovery stage 
sample size of the GIANT consortium was doubled to 32,387 adults of European 
ancestry from 15 cohorts (Willer et al.  2009  ) . A total of 35 SNPs, representing the 
most signifi cant independent loci, were taken forward for follow-up in an independent 
series of 59,082 individuals. The two previously established loci,  FTO  and  near-
MC4R,  were confi rmed as well as six new loci; i.e. near the neuronal growth regula-
tor-1 gene ( NEGR1 ), near the transmembrane protein 18 gene ( TMEM18) , in the 
SH2B adaptor protein-1 gene ( SH2B1) , near the potassium channel tetramerisation-
domain containin-15 gene ( KCTD15) , near the glucoseamine-6-phosphate deami-
nase-2 gene ( GNPDA2)  and in the mitochondrial carrier homologue-2 gene 
( MTCH2)  (Table 10. 3 , Fig.  10.3 ). 

 At the same time, the Icelandic company, deCODE genetics, performed a meta-
analysis of four genome-wide association studies for BMI, including 30,232 indi-
viduals of European descent and 1,160 African Americans (Thorleifsson et al. 
 2009  ) . A total of 43 of the most signifi cant SNPs ( P  < 10 −5 ) in 19 chromosomal 
regions were taken forward for replication in 5,586 Danish individuals and for 
further confi rmation in the discovery stage data of the GIANT consortium. Besides 
the  FTO  and near- MC4R  loci, eight additional loci reached genome-wide signifi -
cance (Table 10. 3 , Fig.  10.3 ). Of these, four loci (near  NEGR1 , near  TMEM18 , in 
 SH2B1 , near  KCTD15)  had also been identifi ed by the GIANT consortium, whereas 
four loci were new; i.e. in the SEC16 homologue-B gene, between the ets variant-5 
( ETV5)  and diacylglycerol kinase genes, in the  BDNF , and between the BCDIN3 
domain and the Fas apoptotic inhibitory molecule-2 genes ( FAIM2) . 

 At the end of this third wave of discoveries, a total of 12 genetic loci had been 
confi rmed to be convincingly associated with BMI. 

  Fourth wave of discoveries  – In the fourth wave of genome-wide association stud-
ies, the GIANT consortium increased its discovery stage further to 123,865 indi-
viduals, or almost four times larger than in the third stage (Speliotes et al.  2010  ) . A 
total of 42 SNPs, representing the 42 most signifi cant ( P  < 5 × 10 −6 ) loci of the 
genome-wide meta-analysis (Fig.  10.2 ), were taken forward for replication in a new 
series of 125,931 individuals of white European descent. All 12 BMI loci indenti-
fi ed in the previous waves of discoveries were confi rmed, two additional (TFAP2B, 
neurexin 3 (NRXN3)) loci had been identifi ed in earlier genome-wide association 
studies for waist circumference (see below), whereas 18 loci were novel (Table 
 10.3 , Fig.  10.3 ). 

 Taken together, four waves of large-scale high-density genome-wide association 
(meta) analyses have so far discovered 32 loci unambiguously associated with BMI, 
at least in adults of white European descent.  
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    10.6.2.2   Genome-Wide Association Studies for Waist 
Circumference and WHR 

 While BMI is a valid measure of overall adiposity in adults, it does not allow 
distinguishing between specifi c fat depots, some of which confer greater metabolic 
risk than others. More specifi cally, central adiposity has been proposed to be more 
strongly associated with metabolic and cardiovascular disease than BMI (Pischon 
et al.  2008  ) . To better understand the pathogenesis of fat distribution, genome-wide 
association studies have been performed to identify genetic loci for waist circum-
ference and WHR. 

  First wave of discoveries –  The fi rst two genome-wide association studies that 
focussed on central obesity both examined waist circumference as well as WHR as 
the main outcomes (Lindgren et al.  2009 ; Heard-Costa et al.  2009  )  (Table 10. 3 , Fig.  10.3 ). 
One of the studies was performed by the GIANT consortium and included data from 
38,580 individuals at the discovery stage. The 26 most signifi cant SNPs ( P  < 10 −5 ) 
for either waist or WHR loci were taken forward for replication in 70,689 indi-
viduals. While the  FTO  and the near- MC4R  loci had reached genome-wide signifi -
cance already at the discovery stage, two new loci (in  TFAP2B , and near the 
methionine sulfoxide reductase A gene ( MSRA )) were identifi ed to be associated 
with waist circumference, whereas one locus (near the lysophospholipase-like 1 
gene ( LYPLAL1 )) was replicated for WHR in women only. 

 The second genome-wide association for waist circumference was undertaken 
by the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) 
consortium and included 31,373 individuals at the discovery stage (Heard-Costa 
et al.  2009  ) . A total of 48 SNPs were taken forward to the next stage where the 
discovery stage data of the GIANT consortium were used as replication. Besides 
the  FTO  and near- MC4R  loci, one new locus in the NRXN3 was found to be highly 
signifi cantly associated with waist circumference (Table  10.3 , Fig.  10.3 ). 

 Taken together, these two genome-wide association studies confi rmed the  FTO  
and near- MC4R  loci as obesity-susceptibility loci and identifi ed three new loci asso-
ciated with waist circumference and one new locus with WHR in women. It should 
be pointed out, however, that the three loci for waist circumference ( TFAP2B , near-
 MSRA ,  NRXN3 ) were also associated with BMI, suggesting that these loci are most 
likely involved in overall adiposity and not specifi c to central fat deposition. Indeed, 
the loci in  TFAP2B  and  NRXN3  were also identifi ed in the fourth wave of discover-
ies for BMI (Speliotes et al.  2010  ) , whereas the locus near  MSRA  has been identifi ed 
to be associated with early-onset obesity (see below, Fig.  10.3 ) (Scherag et al.  2010  ) . 
The  LYPLAL1  locus is not associated with BMI, suggesting that this locus more 
specifi cally affects fat distribution, at least in women. 

  Second wave of discoveries –  In a second wave of discoveries, the GIANT and 
CHARGE consortium combined forces and further expanded their discovery stage 
to include 77,167 individuals (Table  10.3 ) (Heid et al.  2010  ) . In this study, the main 
outcome was WHR adjusted for BMI. The adjustment of WHR for BMI allows 
focussing more specially on fat distribution, rather than on overall obesity. SNPs 
representing the 32 most signifi cant loci were taken forward for replication in a new 
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series of 113,636 individuals. The  LYPLAL1  locus, which had been identifi ed in the 
fi rst wave of discoveries, was confi rmed. Furthermore, 13 new loci were found to 
show robust association with WHR adjusted for BMI (Fig.  10.3 ). While these 14 
loci reached genome-wide signifi cance in an analysis of men and women combined, 
secondary analyses showed that the effects of seven loci were signifi cantly more 
pronounced in women (Fig.  10.4b ). The fact that none of these 14 loci have been 
identifi ed in genome-wide association studies for BMI or early-onset obesity sug-
gests that they specifi cally affect fat distribution rather than overall adiposity.  

  Fig. 10.4    The per-allele effect size for each of the 32 genetic loci for body mass index (BMI) 
(Speliotes et al.  2010  )  (panel a) and 14 genetic loci for waist-to-hip ratio (WHR) (Heid et al.  2010  )  
(panel b). The BMI loci are ordered according to effect size, stratifi ed by wave of discovery 
(panel a). The WHR loci are sorted by overall effect size, but effects are shown for men and women 
separately (panel b) * Signifi cant difference in per-allele effect between men and women       
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 Taken together, while the loci identifi ed by genome-wide association analyses 
for waist circumference turned out to affect general adiposity rather than central 
obesity loci, the analyses for WHR adjusted for BMI identifi ed 14 loci that specifi -
cally infl uence fat deposition.  

    10.6.2.3   Genome-Wide Association Studies for Extreme 
and Early-Onset Obesity 

 Individuals with early-onset or morbid obesity may be enriched for variants that 
predispose to obesity in the general population. Therefore, genome-wide association 
studies for extreme obesity may have more statistical power to identify obesity-
susceptibility loci or they may identify loci different from those identifi ed for 
BMI of waist circumference. So far, there have been three waves of such studies 
(Table  10.3 , Fig.  10.3 ). 

  First wave of discoveries –  The fi rst genome-wide association study for risk of 
early-onset extreme obesity was relatively small, including 487 young extremely 
obese individuals and 442 healthy lean controls (Hinney et al.  2007  ) . Of the 15 most 
signifi cant SNPs that were taken forward for replication in 644 nuclear families 
with at least one obese offspring, only the SNPs in  FTO  were confi rmed to be asso-
ciated with extreme early-onset obesity (Table  10.3 ). 

  Second wave of discoveries –  A second genome-wide association study for early-
onset (before age 6 years) and morbid adult obesity (BMI   ³   40 kg/m 2 ) compared 
data of 1,380 cases and 1,416 controls (Meyre et al.  2009  ) . A total of 38 SNPs, 
representing the most signifi cant independent loci, were taken forward for genotyp-
ing in 14,186 adults and children to test for association with BMI and obesity risk. 
In addition to  FTO  and near- MC4R , three new loci were identifi ed; in Niemann-
Pick disease type C-1 gene ( NPC1 ), near the v-MAF musculoaponeurotic fi brosar-
coma oncogene homologue gene ( MAF ) and near the phosphotriesterase related 
( PTER ) (Table  10.3 , Fig.  10.3 ). 

  Third wave of discoveries –  The third genome-wide association study focussed on 
early-onset obesity only and combined the data from the fi rst two studies to include 
1,138 cases and 1,120 normal-weight controls (Scherag et al.  2010  ) . A total of 44 
SNPs were taken forward for replication with risk of obesity in case–control studies 
and with BMI in population-based studies. Besides the  FTO  and near- MC4R  loci, 
one additional locus was identifi ed near- MSRA , which had previously been identi-
fi ed through a genome-wide association study for waist circumference by the 
GIANT consortium (Table  10.3 , Fig.  10.3 ) (Lindgren et al.  2009  ) . 

 Taken together, three genome-wide association studies for early-onset and 
extreme obesity confi rm the  FTO  and near- MC4R  loci, as well as the near- MSRA  
locus, whereas the  NPC1 ,  MAF  and  PTER  were not previously established as 
obesity-susceptibly loci. Although the study by Meyre et al.  (  2009  )  and Scherag 
et al.  (  2010  )  confi rms that the identifi ed loci are also associated with BMI in 
population-based studies, they were not identifi ed in the largest genome-wide asso-
ciation study for BMI so far (Speliotes et al.  2010  ) . Furthermore, despite the fact 
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that the discovery stage of the Meyre et al.  (  2009  )  and Scherag et al.  (  2010  )  
overlapped in part, they were not able to replicate each other’s loci. This discrep-
ancy between studies and across traits may be due to heterogeneity of study designs, 
trait defi nitions or population-specifi c characteristics.  

    10.6.2.4   Genome-Wide Association Studies in Non-White Populations 

 The large-scale high-density genome-wide association studies described above 
were performed almost exclusively in populations of white European origin. Even 
the study by Chambers et al. ( 2008 ), of which the discovery stage comprised Indian 
Asians, used a sample of white Europeans at the replication stage to confi rm asso-
ciation of the near- MC4R  locus. However, a growing number of genome-wide asso-
ciation studies are being performed exclusively in populations of non-white origin. 
Because of difference in genetic architecture as well as difference in obesity- 
susceptibility, such genome-wide association studies may identify novel loci that 
are ethnic specifi c, but that may also play a role in obesity-susceptibility across dif-
ferent ethnicities. 

 The largest genome-wide association analysis in non-white individuals so far is 
the study in a Korean population-based cohort that includes 8,842 individuals in 
the discovery stage and 7,861 individuals in the replication stage (Cho et al.  2009  ) . 
Association was tested for eight metabolic and cardiovascular quantitative traits, 
including BMI and WHR. Of the two SNPs that were taken forward for BMI, only 
the SNP in  FTO  was confi rmed at the replication stage. Two SNPs were also taken 
forward for WHR, of which a SNP (rs2074356) located in an intron of C12orf51 
reached genome-wide signifi cance after replication. The function of the predicted 
transcript for C12orf51 is currently unknown. Of interest is that WHR-increasing 
allele of the C12orf51-SNP (rs2074356) has a frequency of 85% in Koreans, 
which is similar to the frequency seen for Han Chinese and Japanese (based on 
CHD and JPT HapMap data). However, this SNP is not polymorphic in popula-
tions of European or African descent (based on CEU and YRI HapMap data), 
suggesting that the C12orf51 locus might affect abdominal obesity specifi cally in 
East Asians. 

 A low-density genome-wide association study in Pima Indians identifi ed varia-
tion in the ataxin-2 binding protein 1 gene ( A2BP1 ) as an ethnic-specifi c obesity-
susceptibility locus (Ma et al.  2010  ) . In the genome-wide association analysis of 
body fat % in 413 non-diabetic Pima Indians, a SNP (rs10500331) in the  A2BP1  
gene showed the most signifi cant association. Replication analyses in a population-
based sample of 2,843 Pima Indians confi rmed association between the  A2BP1 -
SNP and BMI. The association for the  A2BP1  SNP with BMI seems specifi c to 
Pima Indians, as no association with BMI or obesity risk was seen in Old Order 
Amish, in French obese adults and children or in German obese children. 
Interestingly, other SNPs in the  A2BP1 -locus showed some evidence of association 
with early-onset obesity in French children, suggesting that the causal variant may 
be captured by different haplotypes in different ethnic groups or, alternatively, that 
multiple causal variants are implicated across ethnicities. Deep resequencing of this 
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locus might provide further insight in how genetic variation in  A2BP1  confers 
 obesity-susceptibility. The  A2BP1  is a promising biological candidate given that it 
is highly expressed in the hypothalamus, which is known to be involved in the cen-
tral regulation of food intake. Furthermore, mice defi cient of atxn, the protein that 
binds A2BP1, are obese (Kiehl et al.  2006 ; Lastres-Becker et al.  2008  ) . 

 The fi rst genome-wide association study in populations of African ancestry did 
not identify new, ethnic-specifi c loci for obesity-related traits (Kang et al.  2010  ) . 
This may be due to the limited power as the discovery stage included only 1,931 
individuals and the replication stage ~3,700 individuals. 

 Collaborative efforts that combine the ethnic-specifi c genome-wide association 
data in large-scale meta-analyses will be needed to continue the discovery of new 
obesity-susceptibility loci that are specifi c to certain populations.   

    10.6.3   Translation of New Discoveries 

 There is no doubt that the genome-wide association approach has been extremely 
successful in identifying new obesity-susceptibility loci. In less than 4 years, 50 
highly credible genetic loci have been identifi ed that are robustly associated with 
obesity-related traits. However, there has been little time to celebrate this success as 
these new discoveries soon raised questions about their clinical relevance for the 
general population and about their functional mechanisms through which they con-
fer obesity risk. A major challenge is translation of this new knowledge into public 
health and clinical practice. 

    10.6.3.1   Clinical Relevance of New Discoveries 

 The fl urry of discoveries has raised hopes towards a more personalised approach in 
obesity prevention and treatment. Some believe that the established obesity-
susceptibility variants will contribute to the development of genetic risk profi les 
that predict early in life who is at risk to become obese in later life. However, the 
estimated effect sizes of the established obesity-susceptibility loci, their explained 
variance and their predictive ability towards obesity suggest that there is currently 
not suffi cient evidence for such personalised implementations. 

    10.6.4   Effect Sizes, Risk and Prediction of Established Loci 
in Adults of white European Descent 

 As discovery of new loci is the primary aim, the signifi cance of association has been the 
main focus for most genome-wide association studies so far. Despite highly signifi cant 
associations and consistent and repeated replication, however, the effects of the estab-
lished obesity-susceptibility loci on BMI, WHR and obesity risk are small (Fig.  10.4 ). 
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  The BMI loci  – Of the 32 established loci for BMI, the fi rstly identifi ed obesity-
susceptibility gene,  FTO , has the largest, yet small, effect on obesity-susceptibility. 
According to the large-scales genome-wide association studies discussed above 
(Speliotes et al.  2010  ) , each risk-allele increases BMI by 0.26–0.66 kg.m −2 , which 
is equivalent to 750–1,900 kg in body weight for a person of 1.70 m tall. The risk of 
obesity increases by 1.20–1.32 odds for each additional risk-allele. The  FTO  locus 
was easily identifi ed by genome-wide association studies with modest sample sizes 
because of its relatively large effect size and high prevalence of the BMI-increasing 
allele (46%) in individuals of white European descent (Frayling et al.  2007 ; Scuteri 
et al.,  2007 ; Hinney et al.,  2007  ) . 

 The identifi cation of the near- MC4R  locus in the second wave of discoveries 
required much larger samples as not only its effect size on BMI was much smaller 
(0.20–0.32 kg.m −2 /allele) than that of the  FTO  locus, but also the prevalence of the 
BMI-increasing allele was substantially lower (27% in white Europeans). Each 
additional risk-allele increased the BMI by 0.19–0.32 kg.m −2  (or 550–925 g in body 
weight for a 1.70 m-tall person) and the risk of obesity by 1.11–1.15 odds. 

 The effect sizes of the ten loci identifi ed in the third wave of discoveries range 
from as low as 0.06 up to 0.31 kg.m −2  per risk-allele for BMI (or 170–896 g for a 
1.70 m-tall person) and from 1.02 to 1.19 odds for risk of obesity. The frequency of 
the BMI-increasing allele ranges from 25% to 85% in white Europeans. Despite 
the fact that the effect size of the near- TMEM18  locus is larger than that of the 
 near- MC4R , it could only be identifi ed in the third wave of discoveries because its 
minor allele frequency (15%) is much lower than that of the near- MC4R  locus and 
therefore a larger sample (and thus more statistical power) was needed for the 
 near- TMEM18  discovery. 

 The sample size of the discovery stage of the fourth wave of genome-wide 
association studies was almost four times larger than that of the third wave. This 
provided more statistical power to not only identify loci with smaller effects, but 
also loci with a lower minor allele frequency compared to the third wave of dis-
coveries. The BMI-increasing alleles of the loci identifi ed in the fourth wave of 
discoveries ranged from 0.06 to 0.19 kg.m −2  per risk-allele for BMI (or 170–550 g 
for a 1.70 m-tall person) and from 1.02 to 1.10 odds for risk of obesity. The fre-
quency of the BMI-increasing allele ranges from 4% to 87% in white Europeans. 

 Figure  10.4  (panel a) shows the average effect sizes per BMI-increasing allele of 
the 32 BMI loci, expressed as increase in body weight (for a 1.70 m-tall person), 
derived from the largest genome-wide association study for BMI, including nearly 
250,000 individuals (Speliotes et al.  2010  ) . This study also estimated how much 
each of the individual loci as well as all 32 loci combined contribute to inter- 
individual phenotypic variation in BMI. The  FTO  locus, which has the largest effect 
size of all 32 established BMI loci and which has a rather high minor allele fre-
quency, explained the most the phenotypic variation in BMI, which was a mere 
0.34% (Speliotes et al.  2010  ) . The explained variance of the other BMI loci was 
even less than half that of the  FTO  locus, ranging from 0.1% to 0.15%. Together, the 
32 BMI loci explained 1.45% of the phenotypic variation in BMI or 2–4% of genetic 
variation based on an estimated heritability of 40–70% (Speliotes et al.  2010  ) . 
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 In an analysis of 8,120 individuals of the population-based ARIC-study, the 
combined effect of the 32 SNPs representing all BMI loci was estimated, by con-
structing a genetic-susceptibility score, which sums the number of BMI-increasing 
alleles an individual inherited (Speliotes et al.  2010  ) . Each additional BMI-increasing 
allele in the genetic-susceptibility score was found to increase BMI by 0.17 kg.m −2  
(or 490 g increase in body weight for a 1.70 m-tall person). The difference in aver-
age BMI between individuals with a high genetic-susceptibility score (having   ³  38 
BMI-increasing alleles, 1.5 of the population) and those with a low genetic- 
susceptibility (having   £  21 BMI-increasing alleles, 2.2% of the population) score 
amounted to 2.73 kg.m −2  (or 7.88 kg in body weight for a 1.70 m-tall person). 
While this difference in body weight due to genetic variation is substantial, it should 
be noted that it compares only the 2.2% most susceptible to the 1.5% least suscep-
tible of the total population studied. In view of using genetic profi les to predict 
whether a newborn is at risk of becoming an obese adult, this study also examined 
whether the genetic-susceptibility score could be used as a genetic test and found 
that it has a very low predictive value (i.e. the area under the Receiver Operating 
Characteristic curve was 0.574) (Speliotes et al.,  2010  ) . In fact, the answer to a 
simple question on family history of obesity has a better predictive value than the 
genetic-susceptibility score (Whitaker et al.  1997  ) . 

 Thus, despite overwhelming signifi cances and repeated replications, the 
explained variance and predictive value of the currently identified obesity-sus-
ceptibility loci is too low to be used for genetic profi ling and personalised man-
agement of obesity. 

  The WHR loci  – The average effect sizes of the 14 WHR loci as reported in the latest 
large-scale genome-wide association study including more than 190,000 individu-
als are shown in Fig.  10.4 (panel b) (Heid et al.  2010  ) . As WHR was adjusted for 
BMI in the genome-wide association analyses, the 14 identifi ed loci increase WHR 
but not BMI and can therefore be considered as fat distribution loci rather than gen-
eral adiposity loci. The standardised effect sizes of the 14 WHR loci are of a similar 
magnitude as those of the BMI loci. The 14 WHR loci combined explain 1.03% of 
the inter-individual variation of WHR (Heid et al.  2010  ) . Of interest is that the 14 
loci were identifi ed in a genome-wide association analyses of men and women com-
bined, but secondary analyses showed that seven of the 14 loci show sex-specifi c 
effects (Fig.  10.4 , panel b). More specifi cally, the effect was always more pro-
nounced in women than in men, such that the explained variance in women only 
was 1.34%, whereas 0.46% in men only. 

  The early-onset and extreme obesity loci –  The effect sizes of the four early-onset 
and extreme obesity loci seemed in general more pronounced (OR ~1.20 to ~1.40) 
than of those discovered through genome-wide association studies of BMI (Meyre 
et al.  2009 ; Scherag et al.  2010  ) . This may be due to the fact that the effect sizes 
were derived from case–control studies and not from population-based studies. Of 
interest is that the effect of the early-onset and extreme obesity loci on BMI in a 
population-based study of French adults showed effect sizes similar to those 
observed for the 32 BMI loci (Meyre et al.  2009  ) .  
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    10.6.5   Impact of Established Loci in Adults of Non-White Origin 

 With the exception of the near- MC4R  locus, all 50 obesity-susceptibility loci have 
been identifi ed by examining populations of predominantly white European descent 
at the discovery stage. Following the publication of genome-wide association 
studies, a growing number of studies have examined whether any of these obesity-
susceptibility loci also affect individuals of non-white origin. Examining genetic 
associations across different ethnicities is not only informative towards confi rming 
the role of the respective loci in other populations. They can also contribute to the 
fi ne-mapping of the locus to identify the causal variant by taking advantage of 
the known differences in the genetic architecture between ethnicities. 

 The  FTO  locus has so far received most attention. Many replication efforts in 
East Asian populations have provided convincing evidence that genetic variation in 
 FTO  infl uences BMI and obesity risk in Chinese, Japanese, Korean and Filipino 
populations (Hotta et al.  2008 ; Cha et al.  2008 ; Chang et al.  2008 ; Tan et al.  2008 ; 
Omori et al.  2008 ; Ng et al.  2008 ; Al-Attar et al.  2008 ; Tabara et al.  2009 ; Cheung 
et al.  2010 ; Liu et al.  2010b,   2010c ; Ng et al.  2010 ; Han et al.  2010 ; Shi et al.  2010 ; 
Croteau-Chonka et al.  2011  ) . The magnitude of the effect on BMI and obesity risk 
is similar to that observed for European populations. As the frequency of the BMI-
increasing allele in East Asians (frequency ~20%) is less than half that of white 
Europeans (frequency ~45%), the overall contribution of the  FTO  locus to obesity-
susceptibility will be smaller. The two studies that so far have examined the associa-
tion of  FTO  variants in South Asians (frequency ~30%) reported a weak effect on 
BMI (Yajnik et al.  2009 ; Sanghera et al.  2008  ) . Interestingly, both reported an effect 
of  FTO ’s BMI-increasing allele on risk of type 2 diabetes risk, which is independent 
of its effect on BMI or obesity risk (Yajnik et al.  2009 ; Sanghera et al.  2008  ) . The 
evidence of association between the  FTO  locus and BMI or obesity risk in African 
(Hennig et al.  2009 ; Adeyemo et al.  2010  )  or African Americans populations 
(Scuteri et al.  2007 ; Grant et al.  2008 ; Thorleifsson et al.  2009 ; Bressler et al.  2010 ; 
Wing et al.  2010 ; Bollepalli et al.  2010 ; Adeyemo et al.  2010 ; Liu et al.  2010b  )  has 
been rather inconsistent, which could be due to the small sample size of some stud-
ies or heterogeneity between African-ancestry populations. However, a recent large-
scale and comprehensive study that included data of 10,819 individuals of 
African-ancestry and African American populations provided convincing evidence 
of association between genetic variation in the  FTO  locus and BMI, with effect sizes 
similar to or somewhat smaller than those observed in individuals of white European 
descent (Hassanein et al.  2010  ) . By taking advantage of the population-specifi c 
genetic architecture, which tends to be less tight in African-ancestry populations, 
Hassanein et al.  (  2010  )  were also able to fi ne-map the  FTO  locus and narrow down 
the number of potentially causal variants. 

 The locus near  MC4R  was fi rst identifi ed in two genome-wide association stud-
ies of which one study included Indian Asians only at the discovery stage (Chambers 
et al.  2008  ) . A study in Asian Sikhs confi rmed association between the near- MC4R  
locus and BMI and waist circumference (Been et al.  2009  ) . The effect sizes reported 
in this study, which had a type 2 diabetes case–control design, were twofold larger 
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than those observed in the initial genome-wide association study of Indian Asians 
(Chambers et al.  2008  ) , which found similar effect sizes to those seen for white 
Europeans. As the BMI-increasing allele frequency in Indian Asians (36–40%) is 
higher than in white Europeans (~27%) and as the effect sizes in Indian Asians seem 
at least as large as in white Europeans, the contribution of the near- MC4R  locus to 
obesity-susceptibility is likely larger in Indian Asians. The frequency of the BMI-
increasing allele in individuals of Filipino (~12%), Chinese (~19%), Japanese 
(~24%) and Korean (25%) origin is somewhat lower than in white Europeans. Two 
genome-wide association analyses of population-based cohorts, including 8,842 
Koreans and 1,792 Filipino women respectively, both independently confi rmed 
association between the near- MC4R  locus and BMI with effect sizes similar to those 
observed in white Europeans (Cho et al.  2009 ; Croteau-Chonka et al.  2011  ) . A pop-
ulation-based study of 2,806 middle-aged to elderly Japanese observed a direction-
ally consistent trend but the association did not reach signifi cance ( P  = 0.12) (Tabara 
et al.  2009  ) . Case–control analyses in Chinese from Shanghai ( n  = 5,030) (Shi et al. 
 2010  )  and Hong Kong ( n  = 1,170) (Cheung et al.  2010  )  and in Japanese ( n  = 2,865) 
(Hotta et al.  2009  )  also found signifi cant association between the near- MC4R  locus 
and increased risk of obesity. However, a large study of 6,681 Chinese adults from 
Hong Kong, mainly type 2 diabetes cases (Ng et al.  2010  ) , and a study of 1,228 
overweight Japanese individuals (Hotta et al.  2010  )  found no evidence of associa-
tion between the near- MC4R  locus and BMI, which could be due to the case-only 
study design. Two genome-wide association analyses in populations of African 
ancestry also found signifi cant association between the variants in the near- MC4R  
locus and BMI (Kang et al.  2010 ; Thorleifsson et al.  2009  ) . The frequency of the 
BMI increasing allele (frequency = 16–20%) in the African-ancestry population 
was lower, while effect sizes tended to be similar or even somewhat larger than 
in white Europeans. 

 A number of other obesity-susceptibility loci have been tested for association in 
Chinese from Shanghai (Shi et al.  2010  )  and Hong Kong (Cheung et al.  2010 ; Ng 
et al.  2010  ) , in Japanese (Hotta et al.  2009 ; Hotta et al.  2010  ) , in Filipinos (Croteau-
Chonka et al.  2011  )  and in individuals of African-ancestry (Kang et al.  2010 ; 
Thorleifsson et al.  2009  ) . These studies have so far focussed analyses on the BMI 
loci identifi ed by Willer et al.  (  2009  )  and Thorleifsson et al.  (  2009  )  and on loci for 
extreme and early-onset obesity identifi ed by Meyre et al.  (  2009  ) . As these loci 
were identifi ed in genome-wide association studies of which the discovery stage 
included more than 30,000 individuals of white European origin and as their effect 
sizes are typically lower than those of the  FTO  and near- MC4R  locus (Fig.  10.4 ), 
replicating these associations in populations of other ethnicity will likely require 
large sample sizes to provide suffi cient statistical power. It is therefore no surprise 
that currently the association results observed for each of the loci are inconsistent 
across the East Asian and African-ancestry population. Larger sample sizes or meta-
analyses of available data will be needed to convincingly confi rm or refute the role 
of these loci in obesity-susceptibility in non-white populations. 

 No data is available on the association of the more recently identifi ed BMI and 
WHR loci in population of different ethnicity (Speliotes et al.  2010 ; Heid et al.  2010  ) .  
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    10.6.6   Impact of Established Loci in Childhood and Adolescence 

 So far, most obesity-susceptibility loci have been identifi ed through genome-wide 
association studies of adults. Several follow-up studies have examined whether 
these loci affect BMI and obesity risk already during childhood and adolescence, 
which may provide insight in the aetiology of obesity through the life course. 

 The evidence that the  FTO  locus infl uences obesity-susceptibility early in life is 
convincing and was already observed by Frayling et al.  2007 . Many studies follow-
ing the initial observation further confi rmed association with BMI or risk of obesity 
during childhood and adolescence (Haworth et al.  2008 ; Hakanen et al.  2009 ; Cecil 
et al.  2008 ; Zhao et al.  2010a ; Liu et al.  2010b ; Grant et al.  2008 ; Cauchi et al.  2009 ; 
Rzehak et al.  2010 ; Hardy et al.  2010 ; Liem et al.  2010  ) , including in Chinese (Wu 
et al.  2010 ; Ng et al.  2010 ; Fang et al.  2010 ; Xi et al.  2010  ) , and African American 
populations (Grant et al.  2008 ; Liu et al.  2010b ; Bollepalli et al.  2010  ) . A meta-
analysis that included data of nearly 13,000 children and adolescents found that the 
effect of  FTO  on BMI was of a similar magnitude as the effect observed in adults 
(den Hoed et al.  2010  ) . One study found that the  FTO  locus was associated with 
increased weight and ponderal index already at the age of two weeks (Lopez-
Bermejo et al.  2008  ) . Others, however, could not confi rm an effect on BMI before 
the age of 1 year (Jaddoe et al.  2007 ; Rzehak et al.  2010 ; Hardy et al.  2010  ) . Studies 
with longitudinal data found that the infl uence of the  FTO  locus increases during 
childhood and adolescence (Cauchi et al.  2009 ; Rzehak et al.  2010 ; Frayling et al. 
 2007  ) , with one life course study showing that it reaches its largest impact at around 
the age of 20 years, followed by a subsequent weakening of the effect throughout 
adulthood (Hardy et al.  2010  ) . 

 Also the near- MC4R  locus has been found to be associated in children and ado-
lescents of white European (Loos et al.  2008 ; Cauchi et al.  2009 ; Liu et al.  2010a ; 
Zhao et al.  2009 ; Liem et al.  2010 ; Grant et al.  2009  )  and Chinese origin (Wu et al. 
 2010  ) . However, no association was observed in African American children (Grant 
et al.  2009  ) . In individuals of white European descent, the effect on BMI in child-
hood and adolescence is similar to that observed in adults (den Hoed et al.  2010  ) . 
Similar to  FTO , the effect of the near- MC4R  locus on BMI seems to increase with 
age from childhood through adolescence (Cauchi et al.  2009 ; Loos et al.  2008  ) , 
reaching its largest infl uence at age 20, after which it weakens again through adult 
life (Hardy et al.  2010  ) . 

 Of the loci identifi ed in the third wave of genome-wide association studies, 
signifi cant associations with BMI were observed for the near- TMEM18 , near-
 GNPDA2 , near- NEGR1 , near- SEC16 , near- FAIM2 ,  BDNF  and near- KCTD15  loci in 
a meta-analysis including nearly 13,000 children and adolescents of white European 
descent (den Hoed et al.  2010  ) . For these loci, effects in childhood and adolescence 
were largely of the same magnitude to those observed in adulthood (den Hoed et al. 
 2010  ) . In this meta-analysis, no association was observed for the near- ETV5 , 
 MTCH2  and  SH2B1  loci (den Hoed et al.  2010  ) . A study in Chinese children found 
association with BMI and obesity risk for the near- FAIM2 ,  BDNF  and near- GNPDA2  
loci (Wu et al.  2010  ) . Of interest is that none of the BMI loci discovered in the fi rst 



35710 The Genetics of Adiposity

three waves of genome-wide association studies were found to be associated with 
birth weight (Kilpelainen et al.  2011  ) . 

 The genome-wide association meta-analysis for BMI that reported on the fourth 
wave of discoveries reported that all 32 BMI loci showed directionally consistent 
associations with either BMI or risk of obesity in children and adolescents (Speliotes 
et al.  2010  ) . Only few associations, however, reached signifi cance as the study in 
children and adolescents was insuffi ciently powered. Of the newly discovered loci, 
the associations for the near- RBJ ,  MAP2K5 ,  TNNI3K ,  SLC39A8 ,  CADM2 , near-
 PRKD1 , near- PTBP2 ,  MTIF3  and near- RPL27A  reached nominal signifi cance 
(Speliotes et al.  2010  ) . Additional large-scale studies will be needed to confi rm 
association for these loci in children and adolescents. 

 So far, no studies have reported on associations for the 14 loci identifi ed for 
WHR in children and adolescents.  

     10.6.7  Gene–Lifestyle Interaction 

 It is well-recognised that our westernised lifestyle, which promotes excessive calo-
rie intake and which discourages physical activity, is the major culprit of the obesity 
epidemic. Yet, not every individual that is exposed to this obesogenic environment 
becomes obese. It seems that the individuals’ response to this environment depends 
on their genetic-susceptibility to become obese. Indeed, environmental and genetic 
factors do not act strictly independently or just additively, but they interact with 
each other in their causeway to disease. This intricate interplay between genes and 
environment is also often metaphorically described as “Genes load the gun, but the 
environment pulls the trigger”. The fi rst evidence of gene–lifestyle interaction on 
risk of obesity and weight gain was provided by the observations in migrants (e.g. 
Pima Indians described above) and by controlled overfeeding and energy restriction 
intervention studies with monozygotic twins (Bouchard et al.  1990 ; Bouchard et al. 
 1994 ; Hainer et al.  2000  ) . The discovery of loci robustly associated with obesity-
susceptibility has increased the interest in examining gene–lifestyle interaction at a 
“genetic” level; i.e. whether lifestyle can attenuate or exacerbate the strength of 
association between a genetic locus and obesity-susceptibility. 

 Most gene–lifestyle interaction studies have so far focussed on how the effect of 
the  FTO  locus on BMI is attenuated by physical activity. An increasing number of 
studies have reported signifi cant interaction between the  FTO  locus and physical 
activity on BMI (Andreasen et al.  2008b ; Rampersaud et al.  2008 ; Vimaleswaran 
et al.  2009 ; Cauchi et al.  2009 ; Sonestedt et al.  2009 ; Ahmad et al.  2010  ) . In these 
studies, the BMI-increasing effect of the  FTO locus  was more pronounced in seden-
tary individuals compared to physically active individuals, suggesting that the 
genetic-susceptibility towards obesity induced by  FTO  can be overcome, at least in 
part, by adopting a physically active lifestyle. One large-scale ( n  = 15,925) and thus 
well-powered population-based study did not observe such an effect attenuation of 
the  FTO –BMI association by physical activity (Jonsson et al.  2009  ) . The reasons for 
the discrepant observation are unclear, but the relatively small main effects of  FTO  
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and physical activity on BMI and the higher than average physical activity levels 
observed in this population may explain the absence of interaction. Gene–environment 
interaction studies require large sample sizes to provide suffi cient power (Luan et al. 
 2001 ; Wong et al.  2003  ) , which might explain why the results of studies with small 
sample sizes have been less consistent. 

 The other more recently identifi ed obesity-susceptibility loci have been exam-
ined for interactions with lifestyle factors in only a few studies. Three reasonably 
large studies found no evidence for an effect attenuation of the near- MC4R  locus on 
BMI by physical activity (Zobel et al.  2009b ; Cauchi et al.  2009 ; Li et al.  2010a  ) . 

 In a large-scale population-based study, including more than 20,000 white British 
men and women, the interaction with daily physical activity was examined for each 
of the 12 obesity-susceptibility loci identifi ed in the fi rst three waves of genome-wide 
association studies for BMI (Li et al.  2010a  ) . Interactions with physical activity were 
signifi cant for the near- TMEM18  and  MTCH2  loci and suggestive for the  SH2B1  
locus; the BMI-increasing effect for each of these three loci was more pronounced 
in sedentary individuals than in physically active individuals (Li et al.  2010a  ) . This 
study also examined the cumulative effect of the 12 loci by calculating a genetic-
susceptibility score which summed the BMI-increasing alleles across the 12 loci. 
Each additional BMI-increasing allele was associated with 0.154 kg.m −2  (or 445 g 
for 1.70 m tall person) increase in BMI. Most importantly, the increase in BMI was 
signifi cantly more pronounced in sedentary individuals (0.205 kg.m −2  or 592 g per 
allele) than in physically active individuals (0.131 kg.m −2  or 379 g per allele) 
(Fig.  10.5 ) (Li et al.  2010a  ) . Similar interaction effects were observed between 
the genetic-susceptibility score and physical activity for the risk of obesity. While 
the main observations were made in cross-sectional analyses, longitudinal analyses 
confi rmed the interaction between the score and physical activity for weight gain. 
Taken together, this study shows that the genetic predisposition to obesity can be 
reduced by ~40% by having a physically active lifestyle (Li et al.  2010a  ) . These 
fi ndings hold an important public health message as they challenge the determinis-
tic view of the genetic predisposition to obesity, showing that even the most geneti-
cally predisposed individuals will benefi t from adopting a healthy lifestyle.    

    10.6.7.1   Implications Towards the Etiology of Obesity 

 It is anticipated that the newly identifi ed genetic loci will shed light on the complex 
physiology governing the regulation of energy balance and fat distribution. The 
expectation is that the genetic loci will point towards novel causal pathways and, 
subsequently, to the identifi cation of therapeutic targets within these pathways. 
These could eventually lead to the development of agents for more effective preven-
tive and therapeutic interventions. It should be noted that even loci with small effects 
can offer important new translational opportunities through the identifi cation of 
novel modifi able pathways. 

 The physiological mechanisms that link the established genetic loci to weight 
gain and increased obesity risk are not yet well understood. So far, the fi rstly discov-
ered locus,  FTO , has been studied most extensively in human and animal studies. 
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  The FTO locus  –  FTO  is a member of the non-heme dioxygenase superfamily and 
was found early on to have demethylase activity (Gerken et al.  2007 ; Sanchez-Pulido 
and Andrade-Navarro  2007  ) . This function, however, did not provide immediate 
insight in the physiological mechanisms by which  FTO  confers increased risk of 
obesity. Studies in rodents indicated that  FTO  expression is ubiquitous, including in 
the brain, particularly in the hypothalamic nuclei that are involved in the regulation 
of energy homeostasis, and its expression is dependent on the energy state (Gerken 
et al.  2007 ; Stratigopoulos et al.  2008 ; Fredriksson et al.  2008  ) . Mice that carry one 
or two extra copies of the gene display increased  FTO  expression in all tissues, 
including white adipose tissue, hypothalamus and particularly in muscle (Church 
et al.  2010  ) . These mice also show increased energy intake and  adiposity (Church 
et al.  2010  ) . Studies in humans have supported a central neuronal role for  FTO  as the 
BMI-increasing allele was found to be associated with increased appetite and energy 
intake, and reduced satiety (Timpson et al.  2008 ; Cecil et al.  2008 ; Wardle et al. 
 2008a,   2008b ; Haupt et al.  2008 ; Speakman et al.  2008 ; Sonestedt et al.  2009  ) . 

  Fig. 10.5    Association between the genetic predisposition score (sum of body mass index (BMI)-
increasing alleles from 12 BMI loci) with BMI in all individuals (solid black line), in sedentary 
individuals (dashed grey line) and in physically active individuals (solid grey line). Adapted from 
Li et al. ( 2010a )       
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 However, the neuronal hypothesis was challenged as two studies in mice showed 
that loss of  FTO  function, either by complete gene-knockout (Fischer et al.  2009  )  or 
by a single point mutation (Church et al.  2009  ) , results in reduced total weight and 
adipose tissue. The complete loss of  FTO  in mice led to a signifi cant reduction in 
adipose tissue and lean body mass, as well as increased energy expenditure and 
systemic sympathetic activation (Fischer et al.  2009  ) . Interestingly, spontaneous 
locomotor activity was decreased, while relative food intake was increased. Mice 
homozygous for a mutation in  FTO  display reduced fat mass, as well as increased 
energy expenditure without changes in food intake or energy expenditure (Church 
et al.  2009  ) . These studies suggest that  FTO  may have a peripheral role, infl uencing 
body composition through control of energy expenditure (Fischer et al.  2009  ) . 
A peripheral role for  FTO  was also proposed by a study in healthy women showing 
that carriers of the risk-allele had reduced lipolytic activity, independent of BMI 
(Wahlen et al.  2007  ) . Other studies in humans, however, could not confi rm associa-
tion with resting or physical activity energy expenditure (Hakanen et al.  2009 ; 
Wardle et al.  2008a ; Rampersaud et al.  2008 ; Berentzen et al.  2008 ; Cecil et al. 
 2008 ; Haupt et al.  2009 ; Goossens et al.  2009 ; Do et al.  2008  ) . 

 A study in mice with systemic  FTO  overexpression suggests that  FTO  implicates 
both peripheral and central physiology to confer increased obesity risk (Church 
et al.  2010  ) . Fasted mice that overexpress  FTO  had lower circulating leptin levels 
than control mice (Church et al.  2010  ) . These observations suggest that systemic 
overexpression of  FTO  affects leptin expression or secretion from adipose tissue, 
which in turn affects the central nervous system-mediated control of food intake. 
However, when  FTO  is only overexpressed in the arcuate nucleus, energy intake 
was decreased (Tung et al.  2010  ) . Adding to the complexity is the observation that 
the  rpgrip1l  gene, which lies in opposite orientation to  FTO , has a similar hypotha-
lamic expression pattern as  FTO  (Stratigopoulos et al.  2008  ) . RPGRIP1L is a com-
ponent of the basal body of the primary cilium which has been suggested to be 
involved in syndromic obesity (Baker and Beales  2009  ) . The expression of both 
genes is co-regulated by CUX1 from within the fi rst intron of  FTO  (Stratigopoulos 
et al.  2011  ) . Therefore, the function of both genes may be affected in individuals 
carrying the BMI-increasing allele. It is not completely clear yet which of these two 
genes (or both) are functionally relevant. 

  The near-MC4R locus –  The near- MC4R  locus, identifi ed in the second wave of 
genome-wide association studies for BMI, is located at 188 kb downstream of 
 MC4R,  which is an obvious candidate gene given its role in monogenic early-onset 
obesity. While  MC4R  is the gene nearest to the association signal and the pheno-
typic associations are consistent with effects mediated through  MC4R  function, it 
has not yet been fi rmly established whether this locus indeed affects  MC4R  function 
or whether it affects obesity through other pathways. 

  Loci identifi ed in the second and third wave of genome-wide association studies for 
BMI  – For most of the loci discovered during the third and fourth wave of genome-
wide association studies for BMI, the physiological role in relation to obesity risk is 
not or poorly understood (Willer et al.  2009 ; Thorleifsson et al.  2009 ; Meyre et al. 
 2009 ; Speliotes et al.  2010  ) . Many of the loci harbour multiple genes, sometimes 
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located within a recombination interval with high linkage disequilibrium, which ham-
pers pinpointing the causal variant. For other loci, BMI-associated SNPs are located 
far away from the nearest gene, suggesting that the locus may contain non-genic 
regulatory elements that remain to be revealed. Comprehensive resequencing and 
fi ne-mapping will be required to unambiguously identify the causal variants before 
physiologists can start exploring the functional relevance of the locus in relation to 
the risk of obesity, which will be key for translation into clinical practice. 

 At least, six loci contain genes with preliminary evidence of a link to obesity 
risk. For example, one locus harbours  SH2B1  which encodes a protein that is impli-
cated in leptin signalling (Ren et al.  2007  ) . Furthermore, Sh2b1-null mice are 
obese (Ren et al.  2007  ) . Although the  SH2B1  variant that shows the most signifi -
cant association is a non-synonymous SNP (Thr484Ala), it is in strong linkage 
disequilibrium with variants in at least fi ve neighbouring genes. Furthermore, this 
variant is associated with the expression of SH2B1 and that of three other genes in 
the locus (Speliotes et al.  2010  ) . Thus, it remains to be confi rmed whether the sig-
nal is indeed representing SH2B1 function or whether it is caused by any of the 
neighbouring genes. 

 Also, the  BDNF  locus has a strong prior candidacy, and one of the SNPs in this 
locus is the non-synonymous Val66Met SNP that, as discussed above, has previ-
ously been examined in candidate gene studies of eating behaviour and BMI 
(Table  10.1 ) (Shugart et al.  2009  ) . 

 Furthermore, the BMI-associated SNPs in the near- RBJ  locus are associated with 
the expression of at least two candidate genes,  ADCY3  and  POMC  (Speliotes et al. 
 2010  ) . The BMI-associated SNPs are in linkage disequilibrium with a non-synonymous 
variant in  ADCY3 .  ADCY3  is an adenylyl cyclase which expression is increased in 
lean diabetic rats (Abdel-Halim et al.  1998  ) . Moreover, liver adenylyl cyclase activity 
is increased in the membranes of male ob/ob mice in comparison to the lean control 
mice (Begin-Heick  1994  ) . The other candidate in this locus is  POMC  that is post-
transcriptionally processed to produce hormones in the hypothalamic–pituitary–
adrenal axis, such a-melanocyte-stimulating hormone (MSH), adrenocorticotropic 
hormone (ACTH) and   b  -endorphin, which are agonists of  MC4R . Mutations that 
inactivate  POMC  have been reported in several children, which are characterised by 
early-onset morbid obesity, hypocortisolism and alterations of skin and hair pigmen-
tation (Farooqi and O’Rahilly  2008  ) . 

 Also, the  QPCTL  locus harbours many genes, one of which is  GIPR , which 
encodes a receptor of gastric inhibitory polypeptide (GIP) (Speliotes et al.  2010  ) . 
GIP is an incretin hormone that mediates incremental insulin secretion in response to 
oral intake of glucose. Interestingly, the BMI-increasing allele of this locus was also 
associated with increased fasting glucose levels and lower 2-h glucose levels (Saxena 
et al.  2010  ) . The direction of the effect is opposite to what would be expected based 
on the correlation between obesity and glucose intolerance but is consistent with the 
suggested roles of GIPR in glucose and energy metabolism. Mice lacking  Gipr  are 
protected from diet-induced obesity (Miyawaki et al.  2002  ) . The association of the 
variant in this locus with BMI suggests that there may be a link between incretins, 
insulin secretion and body weight regulation in humans as well. 
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 The locus near  FLJ35779  contains a non-synonymous variant and harbours 
 HMG-CoA reductase , which encodes the rate-limiting enzyme for cholesterol syn-
thesis. It is furthermore a well-known drug target for cholesterol-lowering drugs 
like statins.  HMG-CoA reductase  has not previously been linked obesity risk. 

  TUB  is one of the genes located in the  RPL27A  locus and has been implicated in 
obesity in mice and human before. The  tub  gene is predominantly expressed in the 
hypothalamus and a loss-of-function mutation in  tub  results in the tubby mouse 
syndrome, which is characterised by late-onset obesity with insulin resistance, as 
well as neurosensory defects (Kleyn et al.  1996  ) . Several studies have reported asso-
ciation between genetic variation in  TUB  and obesity-related traits (Shiri-Sverdlov 
et al.  2006 ; van Vliet-Ostaptchouk et al.  2008 ; Snieder et al.  2008  ) . 

 Of interest is that several of the established BMI loci harbour genes that have 
previously been implicated in monogenic obesity, such as  MC4R ,  POMC ,  BDNF  
and  SH2B1 , and many locate near genes that are highly expressed in the brain and 
hypothalamus supporting a role for the nervous system in body weight control 
(Willer et al.  2009 ; Thorleifsson et al.  2009 ; Speliotes et al.  2010  ) . 

  Loci identifi ed in genome-wide association studies of WHR  – Several loci identifi ed 
for WHR contain genes that likely infl uence body fat distribution and that are 
involved in adipocyte metabolism (Heid et al.  2010  ) . This is in contrast to the BMI 
loci of which genes seem predominantly involved in the central regulation of energy 
homeostasis. One of the interesting candidates for WHR is  GRB14 , of which vari-
ants are also associated with triglyceride, high-density lipoprotein-cholesterol and 
insulin levels (Heid et al.  2010 ; Ridker et al.  2009  ) .  Grb14 -defi cient mice exhibit 
improved glucose homeostasis despite lower circulating insulin levels, as well as 
enhanced insulin signalling in liver and skeletal muscle (Cooney et al.  2004  ) . It 
remains to be examined whether the association with the various metabolic traits are 
mediated through an effect of  GRB14  on fat distribution or whether they act through 
independent mechanisms. 

 The locus near  ADAMTS9  was previously found to be associated with risk of type 
2 diabetes (Voight et al.  2010  )  and with insulin resistance in peripheral tissues 
(Boesgaard et al.  2009  ) . At the chromosome 6p12 locus, vascular endothelial growth 
factor A ( VEGFA)  is the most apparent biological candidate given the presumed role 
of  VEGFA  in adipogenesis (Nishimura et al.  2007  )  and evidence that serum levels of 
VEGFA are associated with obesity (Silha et al.  2005 ; Garcia de la Torre et al.  2008  ) . 

  Loci identifi ed in genome-wide association studies of extreme and early-onset obe-
sity  – Of interest is that apart from the  FTO  and near- MC4R  loci, none of the loci 
identifi ed for extreme and early-onset obesity overlap with those identifi ed for BMI 
(Fig.  10.4 ), suggesting that extreme obesity and BMI are, at least in part, different 
phenotypes that are caused by different genes, and thus potentially different physi-
ological pathways. 

 The locus the harbours  NPC1  represents the best candidate with. More than 200 
mutations in  NPC1  have been found to cause Niemann-Pick disease type C1, which 
is a lipid storage disease (Chang et al.  2005  ) . Although, the  Npc1 -null mice display 
late-onset weight loss and poor food intake (Xie et al.  1999  ) , mutations in  NPC1  
have so far not been found to cause monogenic obesity in humans.    
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    10.7   Future Directions 

 Despite the enormous success of genome-wide association studies, the established 
loci in combination explain only a fraction of the predicted heritability. Therefore, it 
has been speculated that more loci remain to be discovered and that the established 
loci may harbour low-frequency variants, not currently captured by the genome-wide 
genotyping arrays that have larger effects (Fig.  10.6 ). Various approaches have been 
proposed to identify more genetic loci and to pinpoint the causal variants.  

    10.7.1   Continued and Alternative Use of Genome-Wide 
Association studies 

    10.7.1.1   Increased Discovery by Effi cient Use of Available 
Genome-Wide Association Data 

 The statistical power of genome-wide association studies to identify new loci depends 
largely on the sample size at the discovery stage. The several waves of discoveries 

  Fig. 10.6    Relationship between effect size ( y -axis; OR) and allele frequency of the associated genetic 
variant. Genome-wide association studies are able to identify common loci (allele frequency  ³ 5%) 
that typically have small to modest effects (lower right-hand corner). Rare variants (mutations) with 
large effect are identifi ed for monogenic diseases (upper left-hand corner). There are likely very few 
complex traits caused by common variants with large effects (upper right-hand corner), and rare vari-
ants with small effects are very hard to identify, even with the latest sequencing technology (lower 
left-hand corner). Current gene-discovery studies aim to identify low-frequency variants with inter-
mediate effect (middle). Adapted from Manolio et al.  (  2009  )  and McCarthy et al.  (  2008  )        
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are an elegant example of how increased sample size results in more loci (Fig.  10.4 ). 
At the same time, it should be noted that the additional power not only allows iden-
tifying more loci, but also allows identifying loci with smaller effects. While these 
small-effect loci will not contribute much to explaining the missing heritability, their 
value lies in the fact that they may point towards new genes of unknown biology. 

 The most recent genome-wide association studies for BMI and WHR in the dis-
covery stage already include >120,000 and >77,000 individuals, respectively, and 
they seem to have reached their maximum. However, an alternative approach has 
been introduced with the Metabochip to make more effi cient use of the available 
data. The Metabochip is a customised array that contains ~200,000 carefully selected 
SNPs. Half of the SNPs on the Metabochip aim to fi ne-map the established loci of 
a variety of metabolic traits, including those of BMI and WHR. The other half of the 
Metabochip contains SNPs that have reached a respectable signifi cance level in the 
genome-wide association studies of various metabolic traits but that have not previ-
ously been taken forward for replication. These SNPs may need larger sample sizes 
for replication as they have even smaller effect sizes and/or are of low frequency 
than those of the previous waves of discoveries. 

 Taken together, by making use of the available data of the latest and largest 
genome-wide association studies, the Metabochip aims to fi ne-map established loci 
and identify new loci.  

    10.7.1.2   Studies in Populations of Different Ethnic Backgrounds 

 The vast majority of GWAS for obesity-related traits have been performed in popula-
tions of white European ancestry. As the genetic architecture, including the frequency 
of genetic variants and the correlation between them, and also the genetic effects may 
vary across ethnicities, the statistical power to identify new loci may vary across popu-
lations. Therefore, the study of ethnicities other than white European may provide new 
opportunities to discover additional obesity-susceptibility loci. This is elegantly illus-
trated by the genome-wide association study in Indian Asians, which needed only 
2,684 individuals at the discovery stage to identify the near- MC4R  locus (Chambers 
et al.  2008  ) , whereas the genome-wide association in white Europeans required 16,876 
individuals to fi nd the same locus (Loos et al.  2008  ) . The higher frequency of the risk-
allele in Indian Asians (36%) compared to white Europeans (27%) likely provided the 
former more power to identify this locus with a smaller sample size. 

 So far, few other genome-wide association studies for obesity-related traits in 
non-white individuals have been reported (Cho et al.  2009 ; Ma et al.  2010 ; Kang 
et al.  2010  ) . While most confi rm the  FTO  and also near- MC4R  locus, some have also 
identifi ed a few population-specifi c loci (Cho et al.  2009 ; Ma et al.  2010  ) . As discovery 
stage sample sizes of these studies have been modest, large-scale meta-analyses 
might increase the power to identify even more obesity-susceptibility loci. 

 Furthermore, because of the population-specifi c genetic architecture, comparison of 
effects in established loci across different ethnicities may contribute in fi ne-mapping 
the association signal. As such, the  FTO  locus was narrowed down by examining the 
effects in the  FTO  locus in an African-ancestry population (Hassanein et al.  2010  ) .  
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    10.7.1.3   Genome-Wide Association Studies in Children and Adolescents 

 Genome-wide association studies have predominantly been performed in adults. 
Genetic effects can vary over the life course, and sometimes they may be larger dur-
ing childhood than adulthood because of limited environmental infl uence (Hardy 
et al.  2010  ) . Therefore, performing genome-wide association studies in children and 
adolescents might be another avenue to reveal new obesity-susceptibility loci.  

    10.7.1.4   Studies of More Refi ne Traits of Obesity-Susceptibility 

 So far, most studies have used BMI and WHR as non-invasive and affordable proxy-
measures of adiposity and fat distribution, which are easy to collect in large samples. 
By using more refi ned measures of adiposity, such as body fat percentage, the power 
to detect new loci may increase. However, such measures are often more expensive 
and harder to obtain, and will be available in fewer cohorts. Whether the gain in 
power through improved measurement accuracy compensates for the loss in power 
due to smaller sample size remains to be determined.  

    10.7.1.5   Studies of Intermediate Traits of Obesity-Susceptibility 

 Weight gain is the result of a chronic imbalance between energy expenditure and 
energy intake. Therefore, genome-wide association studies of physical activity (i.e. 
energy expenditure) and dietary factors (i.e. energy intake) could reveal new obe-
sity-predisposing loci. 

 So far, only one genome-wide association study aimed to identify loci for 
 leisure-time exercise behaviour. The study included 1,644 Dutch and 978 American 
individuals that were interchangeably used as a both discovery and a replication 
cohort (De Moor et al.  2009  ) . Although a few loci were proposed to be associated 
with exercise behaviour, none of the loci reached genome-wide signifi cance. 

 The main challenge when studying intermediate traits such as physical activity 
and food intake is the measurement of these traits in an accurate and objective 
 manner. Most often questionnaires are used that differ across studies. This inaccu-
racy and heterogeneity of measurements will lower the power and hamper pooling 
of data for meta-analyses. Therefore, harmonisation of measures of lifestyle factors 
across studies will be essential to achieve a uniform phenotype that can be meta-
analysed across cohorts.  

    10.7.1.6   Genome-Wide Gene–Lifestyle Interaction Analyses 

 Thus far, gene-lifestyle interaction studies have focussed on the  FTO  locus 
(Andreasen et al.  2008b ; Rampersaud et al.  2008 ; Vimaleswaran et al.  2009  )  or a 
select series of established obesity-susceptibility loci (Li et al.  2010a  ) . However, it 
is hypothesised that a genome-wide screen of gene–lifestyle interactions may reveal 
new obesity-susceptibility that are environment sensitive, e.g. the effect of these loci 
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may be more pronounced in individuals who live an unhealthy lifestyle, while they 
may have no infl uence in individuals who live a healthy lifestyle. 

 Similar to genome-wide association studies of intermediate traits, described 
above, gene–environment interaction studies will require the harmonisation of 
lifestyle measures before data can be combined in meta-analyses large enough 
to detect interaction effects.   

    10.7.2   Identifi cation of Low-Frequency Variation 

 The risk-allele frequency of the 50 obesity-susceptibility loci ranges from 4% to 
94%, and their effects are small. It is unlikely that within this range of allele fre-
quencies, there are new loci to be identifi ed with larger effect sizes than those 
already observed, as one would expect that at least the most recent genome-wide 
association studies would have had suffi cient power to identify those. Furthermore, 
it is unlikely that loci will be identifi ed with a lower frequency than those currently 
observed, because the genome-wide genotyping arrays were design based on infor-
mation available from the HapMap, which aimed to capture common variants only. 
To identify rare to low-frequency variants, with potentially larger effects, several 
new approaches are currently ongoing. 

    10.7.2.1   Genome-Wide Association of Copy Number Variants 

 Copy number variants (CNVs) are genomic sequences of roughly 1 kb to 3 Mb in 
size that are deleted or duplicated in varying numbers and occur commonly in the 
human genome, but not as frequent as SNPs (Sudmant et al.  2010  ) . Although the 
extent to which CNVs might contribute to common disease has been debated 
(Conrad et al.  2010  ) , several lines of evidence suggest that they have a role in obesity-
susceptibility. 

 Two of SNPs of the 32 established BMI loci each tag a CNV; i.e. a 45-kb deletion 
near  NEGR1  (Willer et al.  2009  )  and a 21-kb deletion that lies 50 kb upstream of 
 GPRC5B  (Speliotes et al.  2010  ) . 

 Furthermore, several systematic genome-wide CNV association studies have 
further provided evidence for the involvement of small deletion and duplication in 
the risk of obesity. The fi rst two genome-wide CNV association studies found con-
vincing evidence for a rare, highly penetrant 593-kb deletion at chromosome 16p11.2 
to be associated with morbid obesity (BMI   ³   40 kg/m 2 ) (Bochukova et al.  2010 ; 
Walters et al.  2010  ) , which was further confi rmed in a large-scale population-based 
study (Bachmann-Gagescu et al.  2010  ) . This deletion encompasses  SH2B1  that was 
previously found to be associated with diet-induced obesity in sh2b-knockout mice, 
and common  SH2B1  variants have also been shown to be convincingly associated 
with BMI (Speliotes et al.  2010  ) . These fi ndings highlight the value of using a variety 
of strategies to increase our insights into the genetic architecture of human obesity.   
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    10.7.2.2   Implementation of the 1000 Genomes Data 

 The 1000 Genomes Project aims to catalogue all genetic variants, including low 
frequency variants (~1%) by sequencing populations of various ethnic background 
(Sudmant et al.  2010  ) . The pilot project already identifi ed more than 15 million 
SNPs and 22,000 CNVs across the human genome. The data of the 1000 Genomes 
project can contribute to the identifi cation of low-frequency variants in at least three 
ways. First, this new detailed information will lead to a new generation of genome-
wide genotyping array that more fully capture the genetic variation in humans, 
which in turn will allow detailed genome-wide association studies. Secondly, 
cohorts that have been genotyped with the previous generation genome-wide arrays 
could impute the data of the 1000 Genomes Project and redo their genome-wide 
association analyses with higher resolution. Thirdly, as the 1000 Genomes Project 
contains many previously unknown genetic variants, this new information can be 
used as the basis for fi ne-mapping of existing loci. 

    10.7.2.3   Deep-Sequencing Efforts 

 It is expected that the next-generation sequencing technology will take gene discov-
ery to the next level and will allow identifying the precise variant that contributes to 
disease. While sequencing is currently still expensive and labour intensive, many 
exome-sequencing projects as well as several whole-genome sequencing projects 
are ongoing. One such project that involves the search for genes for obesity is the 
UK10K project (  http://www.uk10k.org/    ) in which the genomes of 2,000 extremely 
obese children will be compared to that of a population-based sample of 4,000 indi-
viduals. This new approach is still in development and undergoes continuous 
changes as technologies improve and scientists explore the optimal depth of cover-
age, the most effi cient study design and the statistical tools needed to identify new 
loci with confi dence.   

    10.7.3   Follow-up of Existing Loci 

 Besides aiming to identify more susceptibility loci, follow-up of the established loci in 
molecular and physiological studies will be key to determine the mechanisms through 
which the loci confer obesity. A major challenge scientists are currently facing, before 
they can pass on loci to physiologists, is the pinpointing of the causal gene. 

 The approaches described above to identify new loci can often also be deployed 
to narrow down the number of potential causal variants. These include the use of 
1000 Genomes data or deep-sequencing of the region of interest in extreme cases 
and controls or in individuals of different ethnicity. It is only when the causal gene 
is identifi ed and its modes of action are fully understood that this knowledge can be 
translated into mainstream health care and clinical practice.   
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    10.8   Conclusion 

 Genome-wide association studies have revolutionised the search for genetic loci of 
common obesity. While over the past 15 years, candidate gene studies identifi ed a 
handful of genetic variants convincingly associated with obesity-related traits, the 
success of genome-wide association studies in terms of gene discovery has been 
enormous. In less than 4 years time, at least 50 obesity-susceptibility loci have been 
identifi ed, most of which have not previously been linked to body weight 
regulation. 

 Follow-up studies of each of these new loci are needed to identify the causal 
genes and variants and to subsequently elucidate the biological pathways through 
which these genes confer obesity risk. Physiological experiments have started to 
shed light on the fi rstly identifi ed obesity-susceptibility locus,  FTO , and it is 
expected that other loci will be examined in similar or greater detail. As translation 
of basic biomedical discoveries is demanding and takes a lot of effort and time 
(Contopoulos-Ioannidis et al.  2008  ) , it is too early to evaluate the success of genome-
wide association studies in terms of their contribution to mainstream health care. 

 The use of the obesity-susceptibility loci to develop personalised approaches to 
prevent or treat obesity seems to lie in a future further ahead of us. While, on aver-
age, individuals who inherited many obesity-susceptibility loci are more at risk to 
become obese than those who inherited fewer loci, the identifi ed loci do not have the 
ability to classify “at-risk” individuals with any confi dence. It remains questionable 
whether we will ever have suffi cient genetic data to support such personalised 
approaches to disease management. The major limitation is that the variants identi-
fi ed so far only explain only a fraction of the heritability, and that the Westernised 
lifestyle puts even those with a low genetic-susceptibility at risk of obesity. If genetic 
profi ling is to become applied in clinical practice, we will need to increase the pre-
dictive value of the genetic loci and assess their contribution in combination with 
well-known obesogenic lifestyle factors.      
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  Abstract   Whilst overweight and obesity result in signifi cant health problems in 
childhood and adulthood, their origins may lie in earlier life experiences from the 
nutritional environment of the periconceptional, in utero and postnatal periods. 
Epidemiological data from human populations, such as from the Dutch “Hunger 
Winter” studies, show that maternal undernutrition during different phases of preg-
nancy affects the long-term health of offspring. Importantly, in the context of con-
temporary populations, maternal overnutrition and obesity also infl uence offspring 
health and may induce long-term changes which predispose offspring to insulin 
resistance, obesity and metabolic syndrome in later life. Although changes in mater-
nal nutrition can alter foetal adiposity without overall changes in birthweight, obese 
mothers are more likely to have large gestational age babies, and these offspring are 
more likely to become overweight and obese in later life. In addition to the effects 
of the maternal nutritional environment, accelerated growth in the early postnatal 
period, particularly when preceded by foetal growth restriction, can be detrimental 
to long-term health and increase the risks of obesity and Type 2 diabetes, conse-
quences similar to those following rapid and early increases in BMI in childhood. 
Key pathways of foetal programming include those mediated through glucocorti-
coids, with their vital role in developmental regulation of adipose tissue, appetite 
regulation and energy homeostasis regulated by the hypothalamus, and the neuro-
hormones insulin and leptin infl uencing the actions of neuropeptides in the hypotha-
lamic nuclei. A better understanding of these processes may provide opportunities 
for the prevention of obesity and improved public health.  
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 Overweight and obesity are defi ned by abnormal or excessive fat accumulation which 
may impair health and obesity and have signifi cant repercussions on health, being 
related to various cardiovascular causes of mortality, cancer, Type 2 diabetes, muscu-
loskeletal disorders, work disability and sleep apnoea (Visscher and Seidell  2001  ) . 

 Obesity, once established, is infamously diffi cult to reverse and, therefore, the 
solution to obesity-related health problems may lie in its prevention. Traditionally, 
obesity has been thought to result from an imbalance of energy intake and expendi-
ture, resulting if the intake of energy exceeds its expenditure over a signifi cant 
period of time. It is intriguing to consider why energy balance occurs in some indi-
viduals despite the same obesogenic environmental conditions prevalent in the 
developed world which in others leads to obesity. 

 It can be hypothesised that the control of body weight and composition depends 
on an axis with interrelated, and possibly self-controlled, components of food intake, 
metabolic rate, body fat stores and physical activity. Whilst it is assumed that body 
weight is ultimately determined by the interaction of genetic, environmental and 
psychosocial factors acting through several physiological mediators of food intake 
and energy expenditure (Martinez  2000  ) , the debate over whether obesity is caused 
by over-eating, lack of physical activity or genetic predisposition remains. 

 Although the energy balance equation between food intake and energy expendi-
ture may appear deceptively simple, it seems that these variables have a much more 
complex relationship (Budge et al.  2005  ) . Moreover, recently there is increasing 
evidence that factors in the periconceptional period, in utero and in early neonatal 
life may determine later obesity. This may be mediated by their infl uence on food 
intake via appetite regulation, nutrient turnover and thermogenesis or by modula-
tion of fat deposition and adiposity. In this chapter, we will discuss the early deter-
minants of adiposity and the current insights into preconceptional, in utero and early 
life developmental factors which infl uence later obesity. We will discuss how the 
nutritional environment during the development of the organism impacts upon the 
physiology of appetite regulation, energy homeostasis, adipose tissue biology and 
the development of obesity. 

    11.1   The Theories of the Developmental Origins 
of Adult Diseases and the Link Between Development 
and Later Adiposity 

 Longstanding epidemiological evidence suggests that early life experiences have 
important implications for long-term health. In a Norwegian population, Forsdahl 
showed that signifi cant poverty in childhood and adolescence, followed by prosper-
ity, is a risk factor for arteriosclerotic heart disease (Forsdahl  1977  ) . Later, in 
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England and Wales, Barker and colleagues demonstrated that ischemic heart disease 
was strongly correlated with both neonatal and post-neonatal mortality and sug-
gested that poor nutrition in early life increases susceptibility to the effects of an 
affl uent diet (Barker and Osmond  1986  ) . They further postulated that coronary heart 
disease is associated with specifi c patterns of disproportionate foetal growth which 
result from foetal undernutrition between middle to late gestation (Barker et al. 
 1993  ) . It is recognised that there are critical windows in foetal development when 
the process is “plastic” i.e. during periods in which the foetus is undergoing rapid 
cell proliferation and is very susceptible to environmental infl uences (McCance and 
Widdowson  1974  ) . This plasticity provides organisms with the ability to change 
structure and function in response to environmental cues. Data from the Dutch 
“Hunger Winter” (the Famine of 1944–1945) exemplifi es this, documenting the 
various long-term outcomes from signifi cant maternal undernutrition during differ-
ent periods of gestation (Roseboom et al.  2001  ) . In those exposed to famine in early 
gestation, even though there was no effect on birth weight, there was an increased 
risk of later obesity (Ravelli et al.  1999  )  and metabolic diseases including a three-
fold increase in incidence of cardiovascular diseases (Roseboom et al.  2000b  ) . 

 Hales and Barker have proposed the “thrifty phenotype hypothesis” (Hales and 
Barker  2001  )  which postulates that poor foetal nutrition sets in a chain of responses 
which alters growth and permanently changes the structure and function of the 
offspring. They proposed that the poorly nourished mother essentially forecasts a 
poor nutritional environment into which the foetus will be born. Foetal adaptations 
enable it to survive in the adversity of poor nutrition. However, this becomes detri-
mental when the postnatal environment changes, with increased abundance of nutri-
ents leading to obesity. Furthermore, the concept of “programming”, introduced by 
Lucas, describes a more general process, whereby a stimulus or insult at a critical 
period of development has lasting or lifelong signifi cance (Lucas  1991  ) . Gluckman 
et al.  (  2005  )  defi ned predictive adaptive responses as a form of developmental 
plasticity which evolved as adaptive responses to environmental cues acting early in 
the life cycle. The advantages gained from these adaptations help the offspring 
survive if the environment remains similar. In these ways, contemporary concepts 
of the developmental origins of disease have been reached, namely that foetal 
growth is determined by interaction between foetal environment and foetal genome 
which, in turn, determines the risk of postnatal disease as well as the individual’s 
capacity to cope with the postnatal environment (Gluckman and Hanson  2004  ) . 

 The risk of obesity in later life may be determined by both extremes of early 
nutrition, the risk increasing with early life nutritional deprivation as well as with 
early life excess due to overnutrition. The Nurses’ Health Study in the United 
States showed an increase in body mass index (BMI) in midlife in those who 
weighed more than 10 lb at birth as well as in those who were born with low birth 
weight (Curhan et al.  1996  ) . Furthermore, increased maternal weight and decreased 
insulin sensitivity are correlated with foetal growth and, particularly, with increased 
fat mass at birth (Catalano et al.  1995  ) . In pregnancy, obese women, particularly 
when they also have Type 2 or gestational diabetes mellitus, make excess nutrients 
available to the foetus, leading to foetal macrosomia which, in turn, is linked to 
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adolescent and adult obesity. The U.K. Centre for Maternal and Child Enquires 
reported in 2010 that 5% of U.K. women who gave birth at  ³ 24 weeks of gestation 
had a BMI  ³ 35 (CMACE  2010  ) . The report also found that the perinatal mortality 
rate for singleton infants born to mothers with BMI  ³ 35 was almost double that of 
the general population and that their babies are at greater risk of being born large 
for gestational age and/or preterm. Not only were infants of obese mothers more 
likely to be born large for gestational age, this was amplifi ed when maternal obesity 
was accompanied by diabetes (CMACE  2010  ) . 

 Whilst being born large for gestational age presents an obstetric risk to infant and 
mother, the effects of maternal obesity on the infant persist beyond the newborn 
period. Maternal obesity prior to pregnancy predisposes offspring to insulin resis-
tance and infl ammation (Retnakaran et al.  2003  )  and increases the risk of over-
weight in adolescence. The associations between maternal obesity and overnutrition 
and between obesity and metabolic syndrome in the offspring have been described 
as the “developmental overnutrition hypothesis” (Armitage et al.  2008  )  which states 
that high maternal glucose, free fatty acid and amino acid concentrations result in 
permanent changes in appetite control, neuroendocrine functioning and/or energy 
metabolism in the developing foetus which cause obesity and other manifestations 
of metabolic syndrome in later life. In the face of the obesity epidemic, with increas-
ing prevalence of adolescent obesity and increasing incidence of Type 2 diabetes 
among young women, there is a vicious cycle of propagation of obesity by the 
effects of early overnutrition on the foetus and onwards through successive genera-
tions (Catalano  2003  ) .  

    11.2   Evidence from Animal Models 

 Data from epidemiological studies in human populations such as the British cohorts 
(Law et al.  1992 ; Sayer et al.  2004  )  and the “Dutch Hunger Winter” have provided 
invaluable evidence suggesting links between early life experiences and later obe-
sity. Although prospective investigations in human cohorts would be of enormous 
value, these are complex, expensive and confounded by the infl uences of uncontrol-
lable variables of genetic and environmental origin (Taylor and Poston  2007  ) . 
Randomised trials to elucidate the relative contributions of different factors and 
interventions such as sedentary behaviour and maternal nutrition and their modula-
tion by postnatal diet are not practically possible in human populations while in 
observational studies, the effects of the behaviours and other factors of interest are 
complicated by too many confounding variables. Well-defi ned experimental studies 
with the necessary controls can examine precise hypotheses in humans but are 
usually limited by small numbers and are often ethically impossible (Symonds et al. 
 2000  ) . The alternative is large observational studies without appropriate controls. In 
such situations, there are too many confounders and reliance on food diaries or food 
frequency questionnaires which are not adequately validated. Furthermore, indi-
viduals who are under- or over-eating make imprecise records, increasing the likeli-
hood of Type II errors (Symonds et al.  2000 ; Edington  1999  ) . 
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 The use of animal models is, therefore, essential if the relative contributions of 
maternal nutrition during foetal development, post-weaning nutrition and sedentary 
behaviour are to be explored. Animal studies also permit more detailed elucidation 
of the cellular changes which occur during the evolution of obesity and the changes 
induced by altered environments (Budge et al.  2005  ) . Several animal models have 
been used for this purpose, the most common being rodent and sheep models. Like 
the human, the sheep is a precocial species, carrying one or two foetuses born, at 
term, after a long gestation (Symonds et al.  2007  ) . However, they have a different 
pattern of placentation – sheep placentae are cotyledonary synepitheliochoria whilst 
humans have a discoid haemochorial placenta. Rats, on the other hand are litter 
bearing with immature offspring born after a short gestation. The rat placenta is 
more similar to human placenta, although placental differences have not been shown 
to have substantive modulating effects on nutritional programming. Responses to 
changes in maternal nutrition at different periods of foetal and early neonatal devel-
opment can also be better elucidated in the sheep as its diet can be manipulated to 
coincide with precise periods of foetal organogenesis which are comparable with 
those during human foetal development (Festing  2006  ) . Sheep are also comparable 
to humans in a variety of metabolic functions, including brown adipose tissue (BAT) 
physiology. Both sheep and humans are precocial thermoregulators. BAT is most 
abundant at the time of birth (Clarke et al.  1997a  )  which triggers non-shivering 
thermogenesis (Symonds et al.  2003  ) . On the contrary, rats are altricial species 
where there is postnatal maturation of uncoupling protein 1 (UCP1) abundance and 
the hypothalamo-pituitary axis. 

 Important long-term impacts also result from changes in organ growth rates, 
foetal metabolic rate and protein turnover which are similar in sheep and humans, 
but different in rodents. The hypothalamic-pituitary–adrenal axis, a major player in 
endocrine control of feeding and adipose tissue metabolism, has a similar maturity 
pattern in sheep and humans (Fowden et al.  1998  )  as does the central neural network 
for the regulation of appetite (Muhlhausler et al.  2004  ) . In rats, these developments 
occur in the early postnatal period and are dependent on the infl uence of a neonatal 
surge in leptin (Bouret et al.  2004  ) . These differences highlight important discrep-
ancies in the pattern of development in various animals. The neuroendocrine mech-
anisms which modulate appetite and energy homeostasis are largely developed in 
late gestation in both sheep and humans whilst substantial maturation occurs in the 
early postnatal period in rodent species. Therefore, sheep models may be a closer 
estimate of the “programming” effects of nutritional variations and possible inter-
ventions in human foetus and neonate.  

    11.3   The Programming of Adipose Tissue 

 Adipose tissue is present from very early in foetal development, but, for larger 
animals such as humans and sheep, the majority of adipose tissue deposition occurs 
in the last one-third of gestation (Clarke et al.  1997a  ) . Foetal adipose tissue exhibits 
characteristics of both brown and white adipose tissue, demonstrating an ontogenic 
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rise in the BAT specifi c UCP1 as well as leptin secretion, characteristic of white 
adipose tissue (Budge et al.  2003 ; Symonds et al.  2004  ) . It consists of a combination 
of multilocular and unilocular adipocytes (Yuen et al.  2003  ) . Birth results in a surge 
of UCP1 synthesis in precocial species such as sheep (Budge et al.  2003  ) , followed 
by a gradual loss of UCP1 to undetectable levels by 1 month of age (Clarke et al. 
 1997b  ) . Therefore, in precocial thermoregulators such as humans and sheep, brown 
fat is most abundant at birth and then disappears to undetectable levels in the 
postnatal period whilst, in altricial species such as rodents, maximal UCP1 concen-
trations occur in the postnatal period and functional brown fat is retained throughout 
life (Budge et al.  2003  ) . 

 In large animals, BAT is present mainly around the core organs such as in perire-
nal fat depots and constitutes only 2% of birth weight (Symonds and Lomax  1992  ) . 
Although BAT is primarily utilised for thermoregulation following the exposure to 
the extra-uterine environment, it also plays an important role in energy homeostasis 
(Symonds et al.  2003  ) . When stimulated, BAT produces up to 300 W/kg tissue of 
heat compared with 1–2 W/kg tissue by most other tissues (Power  1989  ) . In utero, 
adipose tissue growth is under marked nutritional constraints, unsurprisingly given 
that the metabolic demand for fat deposition is higher than that for protein deposi-
tion. Therefore, in the persistently hypoxic and hypoglycaemic foetal milieu, 
adipose tissue is kept fi rmly regulated (Symonds et al.  2003  ) . However, despite this, 
foetal adipose tissue is signifi cantly altered by changes in maternal nutrition during 
foetal development, and these changes have the potential to substantially increase 
the risk of offspring becoming obese in later life (Budge et al.  2005  ) . 

 At the beginning of the third trimester, only a small amount of adipose tissue is 
present and, at this stage, leptin and UCP1 appear in the foetus (Yuen et al.  1999 ; 
Budge et al.  2004 ; Casteilla et al.  1987  ) . Leptin synthetic capacity of foetal tissue 
then increases in late gestation (Yuen et al.  1999  ) . After appearing around mid-
gestation, UCP1 becomes more abundant in perirenal fat, gradually increasing to 
peak soon after birth (Budge et al.  2004  ) . This development of foetal adipose tissue 
in late gestation appears to be stimulated by an increase in sympathetic innervation, 
 b -adrenergic receptor density and plasma catecholamine concentrations which are 
likely to be the primary stimuli for the appearance of UCP1 (Symonds et al.  2003  ) . 
Endocrine adaptations also take part in this process of adipose tissue development. 
Increases in the abundance of prolactin receptors (PRLRs) and in plasma prolactin 
are seen along with rise in the metabolically active forms of thyroid hormones in the 
foetal adipose tissue (Symonds et al.  2003  ) . All these are implicated in upregulation 
of UCP1 gene expression. 

 Changes in maternal nutrition during various phases of foetal development can 
alter foetal adiposity as summarised in Fig.  11.1 . These responses may not always 
manifest as differences in foetal body or adipose tissue weight (Budge et al.  2003  ) . 
The timing of maternal nutritional manipulation is also critical. Maternal nutrient 
restriction during the time of placental growth does not affect adipose tissue growth 
initially, but the foetus subsequently deposits more adipose tissue with increased 
expression for insulin-like growth factor (IGF)-I and -II receptors (Gardner et al. 
 2005  ) . In comparison, although offspring of sheep which are nutrient restricted in 
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late gestation may be of similar body weight to those whose mothers were ade-
quately nourished during this period, they develop glucose intolerance, insulin 
resistance and more fat in young adulthood (Bispham et al.  2005  ) . Similarly, mater-
nal overnutrition also affects adipose tissue deposition and UCP1 expression. 
Increased maternal nutrition in the latter half of gestation results in heavier off-
spring with less BAT per kilogram of body weight. However, the BAT in these 
offspring is richer in UCP1 and has greater thermogenic activity (Budge et al.  2000  ) . 
Increased maternal nutrition is also associated with the emergence of a strong recip-
rocal relationship between UCP1 and leptin expression in foetal adipose tissue in 
late gestation (Muhlhausler et al.  2003  ) .  

    11.3.1   Role of Glucocorticoids in Programming Obesity 

 Adipose tissue is the only adult organ which is capable of almost unlimited growth. 
Glucocorticoids appear to play a vital role in regulation of adipose tissue during 

  Fig. 11.1    Effects of maternal nutrient restriction on the development of adipose tissue. Nutrient 
restriction at different phases of development alters the abundances of glucocorticoid receptors 
(GR), 11 b -hydroxy steroid dehydrogenases (11 b HSD), uncoupling protein (UCP) 2 and peroxi-
some proliferator-activated receptor (PPAR)  a  in foetal adipose tissue deposition       
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foetal development and in later life. They are essential for the terminal differentiation 
of adipocytes as seen by the expression of late markers such as glycerol-  3-phosphate 
dehydrogenase (G3PDH) activity and triacylglycerol accumulation which are indic-
ative of terminal differentiation in adipocytes (Gaillard et al.  1991  ) . Glucocorticoids 
also have an action in both the hypertrophic and hyperplastic growth of adipose tis-
sue and infl uence differentiation, metabolism and gene expression in these cells 
(Gaillard et al.  1991 ; Gnanalingham et al.  2005  ) . 

 The action of glucocorticoids on adipose tissue is mediated by glucocorticoid 
receptors (GR) and 11- b -hydroxysteroid dehydrogenase (11 b HSD) types 1 and 2. 
11 b HSD1 behaves predominantly as an 11-oxoreductase, utilising nicotinamide 
adenine dinucleotide phosphate (NADP) as a cofactor to catalyse the conversion of 
inactive cortisone to bioactive cortisol and as an intracellular amplifi er of glucocor-
ticoid excess to the GR (Bamberger et al.  1996 ; Budge et al.  2005  ) . The reverse 
action is catalysed by 11 b HSD2 which acts as a NAD-dependent dehydrogenase, 
catalysing the conversion of cortisol to inactive cortisone, a process which main-
tains the specifi city of the mineralocorticoid receptor for aldosterone (Stewart and 
Krozowski  1999 ; Budge et al.  2004  ) . Both GR and 11 b HSD1 expression increase 
with fat mass, whilst 11 b HSD2 expression decreases (Gnanalingham et al.  2005 ; 
Budge et al.  2005  ) . In sheep offspring, both GR and 11 b HSD1 mRNA abundance 
increase with postnatal age and are maximal at 6 month of age when they demon-
strate an inverse relationship with adipose tissue weight (Gnanalingham et al.  2005  ) . 
This appears to be exclusive to perirenal adipose tissue, which is the major fat store 
in the animal, suggesting a differential regulation of glucocorticoid action in adipose 
tissue and, hence, the possibility that it may be the pathophysiological mediator of 
later obesity (Gnanalingham et al.  2005  ) . In addition, 11 b HSD1 gene expression 
increases in adult women with central obesity (Engeli et al.  2004  ) . Further support 
for its role comes from transgenic mice where those that overexpress 11 b HSD1 in 
adipose tissue have increased corticosterone and develop visceral obesity and glu-
cose intolerance (Masuzaki et al.  2001  )  whilst those lacking 11 b HSD1 are resistant 
to obesity (Kotelevtsev et al.  1997  ) . 

 The environment of the foetus, particularly the maternal diet, has a strong infl u-
ence on glucocorticoid metabolism (Budge et al.  2005  ) , and this may be an impor-
tant pathway for regulation of foetal and later obesity. Maternal early to mid-gestation 
nutrient restriction in sheep increases the expression of GR, 11 b HSD1 and attenuates 
the expression of 11 b HSD2 in adrenal glands and kidney in the neonatal offspring 
even in the absence of changes in birth weight (Whorwood et al.  2001  ) . In perirenal 
tissue, such changes persist beyond the period of nutrient restriction, despite 
increased feed intake, suggesting that the gene expression changes have been pro-
grammed in the offspring (Whorwood et al.  2001  ) . Furthermore, an increase in glu-
cocorticoid action persists to at least 6 months of age (Gnanalingham et al.  2005  ) . 
Maternal nutrient restriction in sheep during the phase of maximal placental growth 
results in lower maternal plasma cortisol with an increase in foetal adipose tissue 
deposition near to term (Bispham et al.  2003  ) , whilst undernutrition in late gestation 
transiently increases maternal cortisol concentrations when combined with foetal 
surgery (Edwards and McMillen  2001  ) . In the offspring, early- to mid-gestational 
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nutrient restriction increased glucocorticoid action both near term and at 6 months 
of age, whilst it was decreased at both 1 and 30 days of postnatal age by late-gesta-
tional undernutrition (Gnanalingham et al.  2005  ) . As this does not correspond with 
the changes seen in maternal glucocorticoid concentrations, they are likely to refl ect 
alterations in the mitochondria (Gnanalingham et al.  2005  ) . These modifi cations in 
glucocorticoid sensitivity following maternal nutritional variations could be a 
pivotal adaptation leading to later obesity, fi tting with current theories of foetal 
programming of adult diseases (Budge et al.  2005  ) . These and other studies have 
illustrated the role of glucocorticoids and 11 b HSD in the regulation of adipose 
tissue, implicating this developmental pathway as a possible mechanism for later 
obesity.  

    11.3.2   Uncoupling Protein 2 in the Regulation of Obesity 

 Whilst UCP1 is specifi c to BAT, UCP2 is expressed more widely in adult human 
tissue and is upregulated in white fat in response to fat feeding (Fleury et al.  1997  ) . 
UCP2 has a role in the control of reactive oxygen species production, regulation of 
ATP synthesis and the regulation of fatty acid oxidation (Boss et al.  2000  )  and has 
been linked to hyperinsulinemia and obesity, suggesting a vital role in energy 
balance and body weight regulation (Fleury et al.  1997  ) . In adipose tissue, UCP2 
levels peak at 30 days of postnatal age and decline up to the age of 6 months 
(Gnanalingham et al.  2005  ) , and its expression is positively correlated with total and 
relative adipose tissue weight. This peak at 30 days of age may be a marker of tran-
sition from brown to white adipose tissue (Gnanalingham et al.  2005 ; Clarke et al. 
 1997b  ) . The changes in UCP2 expression with maternal nutrient restriction are 
similar to the effects on glucocorticoid action as its abundance increases with early- 
to mid-gestational nutrient restriction and decreases with late gestation nutrient 
restriction (Gnanalingham et al.  2005  ) . These changes in UCP2 expression are also 
implicated in the programming effects of maternal nutrition via UCP2 actions in the 
acquisition of white adipose tissue characteristics and the accumulation of mac-
rophages, which has been implicated in the development of visceral obesity 
(Gnanalingham et al.  2005 ; Weisberg et al.  2003  ) .  

    11.3.3   Peroxisome Proliferator-Activated Receptors 
in the Programming of Obesity 

 Peroxisome proliferator-activated receptors (PPAR) are ligand-activated transcrip-
tion factors which have three isotypes present in various tissues including adipose 
tissue (Grimaldi  2001  ) . Although PPAR- a  in the liver has a role in fatty acid oxida-
tion (Reddy and Hashimoto  2001  ) , in BAT, it does not appear to participate in adi-
pogenesis. In contrast, PPAR- g  is a master transcription factor of the adipocyte 
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lineage and is critical for adipogenesis (Grimaldi  2001  ) . PPAR- g  regulates adipose 
tissue mass through stimulation of lipoprotein lipase (LPL) and G3PDH and is 
involved in the regulation of adipokines such as leptin and adiponectin (Muhlhausler 
et al.  2007  ) . In response to maternal nutritional restriction between early- to mid-
gestation, PPAR- a  and UCP2 gene expression increases with adipose tissue mass, 
particularly when mothers are fed to requirements in the third trimester (Bispham 
et al.  2005  ) . As both PPAR- a  and UCP2 are characteristic of white adipose tissue, 
this might indicate the potential signifi cance of PPAR- a  in regulating early adipose 
tissue development, particularly in white adipocytes. PPAR- a  upregulates fatty acid 
oxidation and when accompanied by an increase in UCP2 (Bispham et al.  2005  )  can 
promote substrate availability to adipose tissue. As IGF-I and -II receptors are also 
upregulated in these circumstances (Bispham et al.  2003  ) , increasing the uptake of 
glucose, lipid deposition could be promoted. 

 Maternal overnutrition also impacts on foetal adiposity and its markers. Increased 
nutrient supply in late gestation results in an increase in the expression of PPAR- g , 
LPL, adiponectin and leptin expression in foetal perirenal adipose tissue, suggesting 
that elevated nutrient supply before birth may result in premature activation of the 
expression of genes which accelerate the transformation of adipose tissue from a 
neonatal thermogenic organ to an adult lipid storage organ, laying down the founda-
tions of obesity (Muhlhausler et al.  2007  ) . Periconceptional overnutrition followed 
by embryo transfer in sheep results in a signifi cant increase in total fat mass in 
female offspring, with the greatest impact on visceral fat depots, but does not alter 
the expression of PPAR- g , G3PDH, LPL or leptin (Rattanatray et al.  2010  ) .  

    11.3.4   Role of Prolactin 

 Prolactin has a role in foetal adipose tissue growth and maturation before birth when 
there is a rise in PRLR expression during the phase of rapid perirenal BAT deposition 
in sheep (Symonds et al.  1998  ) . In rats, PRLRs are widely expressed and increase in 
PRLR expression is seen in late gestation in a number of foetal tissues (Royster et al. 
 1995  ) . Administration of prolactin to pregnant rats increases UCP1 abundance in both 
foetus and newborn offspring, accelerating BAT maturation and enhancing its func-
tion, suggesting the role of prolactin in development of BAT (Budge et al.  2002  ) . 

 Both PRLR1 and PRLR2 levels peak between 90 and 125 days of gestation in 
sheep (Symonds et al.  1998  ) , a time when UCP1 is fi rst detected in BAT (Clarke 
et al.  1997c  ) . A reduction in foetal nutrition alone does not affect PRLR expres-
sion but hypoxia combined with foetal undernutrition (achieved by removal of 
endometrial caruncles before mating) downregulates PRLR1 gene expression 
(Symonds et al.  1998  ) . With an increase in maternal nutrition, foetal plasma pro-
lactin is raised (Stephenson et al.  2001  )  along with increase in the long isoform of 
PRLR in BAT (Budge et al.  2000  ) . Interestingly, in the same study, PRLR abun-
dance was not altered in hepatic tissue, a fi nding which indicates that prolactin has 
an adipose tissue-specifi c role at this stage of development (Stephenson et al.  2001  ) . 
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This specifi c relationship between PRLRs and adipose tissue development is also 
suggested by the effects of experimental placental restriction which signifi cantly 
reduces foetal plasma prolactin concentrations in late gestation without altering 
PRLR gene expression in the liver or kidney of the foetus (Phillips et al.  2001  ) .   

    11.4   Programming of Appetite Regulation 
and the Hypothalamus 

 The hypothalamus regulates feeding and energy balance (Bouret  2009  )  and is a site 
of action for the central regulatory effects of leptin on energy balance (Elmquist 
et al.  1999  ) . The arcuate nucleus of the hypothalamus (ARC) receives and integrates 
signals from peripheral hormones such as leptin and insulin and has a role in periph-
eral glucose homeostasis. 

 The central neurohormonal regulation of appetite is also controlled via the action 
of neuropeptides in hypothalamic nuclei (Fig.  11.2 ). The major appetite stimulators 
are neuropeptide Y (NPY) and agouti-related protein (AgRP), whilst the appetite 
inhibitory factors include pro-opiomelanocortin (POMC), a precursor of  a -mel-
anocyte-stimulating hormone ( a -MSH), and cocaine-and amphetamine-regulated 

  Fig. 11.2    Effects of maternal nutrition on appetite regulation. Decreased maternal nutrition 
increases the neuropeptide Y (NPY) action on hypothalamic nuclei (HN) whilst leptin acts as an 
appetite suppressant by inhibiting NPY neurons. Increased maternal nutrition reduces leptin recep-
tors in the HN. Increased glucose administration to the foetus (as in diabetic mothers) increases 
leptin concentrations and stimulates the action of cocaine and amphetamine related transcript 
(CART). Agouti-related protein (AgRP); pro-opiomelanocortin (POMC);  a -melanocyte-stimulat-
ing hormone ( a -MSH); leptin receptor (Ob-R)       
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transcript (McMillen et al.  2005  ) . NPY neurons are activated by signals from 
peripheral markers such as glucose, insulin and leptin. These neurons, in turn, proj-
ect onto other hypothalamic nuclei. Leptin concentrations increase with food intake, 
decreasing hypothalamic NPY expression, leading to suppression in appetite and 
hence reduced energy intake (Schwartz  2001  ) . AgRP is co-expressed with NPY 
and acts as an antagonist for hypothalamic melanocortin receptors. Derived from 
POMC,  a -MSH decreases food intake and its anorexigenic action is increased by 
leptin which upregulates POMC expression (Schwartz  2001  ) .  

 Animal studies have suggested that developmental programming of obesity may 
be due to the infl uence of the perinatal environment on the developing hypothala-
mus. This could lead to programming of energy balance “set points”. The effects of 
maternal nutritional modifi cations (both under- and overnutrition) may be mediated 
via time-critical infl uences which alter the expression and actions of specifi c neuro-
peptides involved in appetite regulation along with changes in the metabolic regula-
tion of energy homeostasis. 

 The hypothalami of altricial species, such as rodents, continue to develop until day 
20 of postnatal life (Grove et al.  2005  ) . The early neonatal period of precocial species, 
such as humans, may also be important as although hypothalamic circuits appear to 
develop in utero in primates (Grayson et al.  2006  ) , maturation may continue into early 
postnatal life. Therefore, the perinatal environment, including early neonatal nutri-
tion, can infl uence hypothalamic programming with implications for later obesity. 

 Insulin and leptin are the most important peripheral hormone signals of the 
central nervous system. In early life, leptin acts as a trophic agent and promotes the 
formation of metabolic pathways. Rodents have gradually increasing leptin concen-
trations during the fi rst week of life in parallel with the recruitment of non-shivering 
thermogenesis (Cottrell et al.  2009  ) , even though leptin does not regulate food 
intake during this period. This has been demonstrated in Lep ob /Lep ob  mice (mice 
lacking leptin), where administration of leptin does not affect food intake, oxygen 
consumption, body weight or adiposity until weaning (Proulx et al.  2002  ) . Instead 
of altering metabolism, neonatal leptin appears to be an important signal for the 
development of hypothalamic circuits controlling food intake and body weight 
(Bouret and Simerly  2006  ) . This postnatal leptin surge in rodents may originate in 
adipose tissue (Devaskar et al.  1997  ) , stomach (Oliver et al.  2002  )  or come from 
mother’s milk (Casabiell et al.  1997  ) . Animal data also indicate that this early criti-
cal period for the neurodevelopmental action of leptin seems to be restricted to the 
fi rst few weeks of life. The existence of a critical period for the developmental 
effects of leptin suggests that changes in leptin concentrations during key periods of 
hypothalamic development may induce long-lasting, and potentially irreversible, 
effects on metabolism (Bouret  2009  ) . 

 A role for leptin has been shown in the scenario of mismatched in utero and 
postnatal environments. In a mouse model in which offspring born to mothers with 
gestational undernutrition were fed a high-fat diet, there was pronounced weight 
gain and adiposity (Yura et al.  2005  ) . These offspring show a premature onset of the 
neonatal leptin surge compared to offspring of mothers fed a standard diet. The 
same authors further demonstrated that exogenous leptin administration to offspring 
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with normal in utero nutrition and a high fat postnatal diet also leads to accelerated 
weight gain (Yura et al.  2005  ) . Blockage of leptin action during the critical period 
of early life in rodents has long-term consequences by altering the capacity to 
respond to leptin during adulthood (Attig et al.  2008  ) , a pattern of long-term leptin 
insensitivity implicated in adult humans with obesity (Arch et al.  1998  ) . 
Administration of leptin to offspring of undernourished mothers reverses some of 
the programming effects of poor nutrition in utero (Vickers et al.  2005  ) . Neonatal 
rats given leptin during the critical neonatal period show limited neonatal weight 
gain, and in adulthood caloric intake, locomotor activity, body weight, fat mass and 
fasting plasma concentrations of glucose, insulin and leptin are all normalised. 

 Studies in sheep may be closer to humans as the appetite regulatory network 
develops before birth in both the species. NPY is present in the sheep hypothalamus 
prior to birth and foetal undernutrition and glucocorticoids increase NPY gene 
expression in the foetus (Warnes et al.  1998  ) . Glucose administration to foetal sheep 
(a surrogate for increased nutrient availability) increases expression of POMC 
(Muhlhausler et al.  2005  ) , whilst increased maternal nutrition in late pregnancy 
results in transiently higher relative milk intake, glucose concentration and relative 
subcutaneous fat mass in early postnatal life (Muhlhausler et al.  2006  ) . The off-
spring of the well-fed mothers (primarily singletons) have alterations in the expres-
sion of the long form of the leptin receptor ORBb in ARC such that there is an 
inverse relationship between ORBb expression and relative fat mass compared to 
controls (primarily twins). Increased adiposity is associated with reduced expres-
sion of leptin receptors in the ARC. This suggests that exposure to overnutrition in 
late pregnancy, or foetal number, can cause decreased sensitivity to the actions of 
leptin (Muhlhausler et al.  2006  ) . 

 Leptin has also been studied in humans. In pregnancies complicated by maternal 
diabetes, the foetus is hyperglycaemic and hyperinsulinaemic, and cord blood leptin 
concentrations are increased in parallel with infant adiposity (McMillen et al.  2005  ) . 
Adults with lower birth or infant weight have higher leptin concentrations than those 
of higher birth weight with similar degrees of obesity (Phillips et al.  1999  ) . If birth 
weight is taken as a marker of in utero nutrition, this may be a refl ection of the effects 
of in utero nutrient restriction on adipocyte metabolism and energy homeostasis 
mediated by serum leptin. BMI measured at 2 years of age, of infants with intrauter-
ine growth restriction (IUGR), remains signifi cantly lower than those born normal 
weight (Jaquet et al.  1999  ) . However, although serum leptin was low in IUGR infants 
at birth, it was raised when measured at 1 year of age compared with those of normal 
birth weight, and there was a loss of the regulatory effect of BMI and gender. This 
could be an adaptive leptin resistance to enable so called “catch-up” growth. 
Alternatively, such leptin resistance could be a marker for adipocyte dysfunction. 

 Leptin concentrations later in life can also be infl uenced by early neonatal nutrition. 
In preterm babies, dietary manipulation for an average of only 1 month markedly infl u-
ences leptin concentrations relative to fat mass up to 16 years later (Singhal et al.  2002  ) . 
Importantly, the consumption of human milk is associated with a lower leptin to fat 
mass ratio in comparison to nutrient-enriched preterm formula milk and may represent 
one possible mechanism of programming by early diet (Singhal et al.  2002  ) . 
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 Animal models and supportive human epidemiological data suggest a fundamen-
tal role for leptin in the development and maturation of hypothalamic feeding cir-
cuits for long-term energy balance. These can be modulated by both in utero and 
early neonatal nutrition, and a premature surge in leptin concentrations can alter 
weight regulation and energy homeostasis, indicating a time-critical role for leptin. 
However, although exogenous leptin administered to “programmed” animals can 
potentially reverse some of the effects, in human studies to date, leptin’s potential 
role as a therapeutic target has not proved to be the much awaited “magic bullet” for 
preventing obesity (Mantzoros and Flier  2000  ) . 

 Epidemiological, clinical and experimental results suggest that gestational dia-
betes or even slightly impaired glucose tolerance during pregnancy are important 
risk factors for the development of an increased risk of Type 2 and even Type 1 
diabetes in the offspring (Dorner and Plagemann  1994  )  implicating a potential role 
for insulin in hypothalamic programming. Both perinatal undernutrition and over-
nutrition can cause hyperinsulinism and lead to permanent dysregulation of the 
hypothalamus. Malformation of the ventromedial hypothalamic nucleus (Plagemann 
et al.  1999  ) , suppression of foetal brain NPY concentrations (Singh et al.  1997  )  and 
an increase in NPY-positive neurons in the ARC (Plagemann et al.  1998  )  (a possible 
marker of acquired hypothalamic insulin resistance) have all been shown in associa-
tion with alterations in perinatal insulin concentrations. 

 The effect of untreated maternal diabetes during pregnancy and its consequences 
for differentiation of hypothalamic nuclei and levels of orexigenic and anorexigenic 
neurons in the offspring has been demonstrated in an elaborate study on rats (Franke 
et al.  2005  ) . Exposure to a diabetic intrauterine environment and its prevention by 
treatment of maternal hyperglycaemia by islet transplantation during gestation have 
effects on neuronal organisation and expression of orexigenic and anorexigenic neu-
ropeptides in the ARC. There is increased immunopositivity of NPY and AgRP in 
offspring of mothers with untreated diabetes whilst immunopositivity is decreased 
for MSH. The change in MSH indicates that exposure to maternal diabetes can alter 
the processing of POMC to MSH which is an important anorexigenic pathway. 
Treatment of maternal diabetes by islet cell transplantation (which induces to normo-
glycaemia) reverses all these effects suggesting that perinatally acquired hypotha-
lamic neuropeptidergic responses are preventable by normalisation of gestational 
hyperglycaemia (Franke et al.  2005  ) . Animal studies indicate that insulin, particu-
larly foetal or neonatal hyperinsulinism, could induce permanent alterations in hypo-
thalamic organisation affecting energy homeostasis and metabolism throughout life. 

 In utero nutrition also affects feeding behaviour possibly via the programming of 
hypothalamic circuits. Offspring hyperphagia in IUGR rats born to nutrient-
restricted mothers occurs as a result of increased orexigenic hypothalamic signals 
and reduced anorexigenic physiologic responses (Desai et al.  2007  ) . Programming 
of central appetite regulation and glucose and lipid metabolism are also affected 
both by maternal obesity and postnatal overnutrition (Chen et al.  2008  ) . In rats, 
although maternal obesity does not alter the body or organ weight of newborn off-
spring, plasma leptin concentrations and hypothalamic NPY, POMC, melanocortin 
4 receptor, leptin receptor (Ob-Rb), signal transducer and activator of transcription 3, 
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suppressor of cytokine signalling 3 and mammalian target of rapamycin (mTOR) 
are all reduced (Morris and Chen  2009  ) . Subsequently, postnatal overnutrition leads 
to greater weight gain, reduced NPY, increased POMC expression and downregula-
tion of hypothalamic glucose transporter (GLUT) 4 and mTOR expression (factors 
involved in brain glucose sensing) (Chen et al.  2008  ) . Maternal and postnatal over-
nutrition also reduces muscle GLUT4 expression which may explain the resulting 
glucose intolerance (Chen et al.  2008  ) . This pattern of alterations in glucose handling 
and in regulators of appetite in response to maternal and postnatal overnutrition 
could be the foundation of leptin and insulin resistance associated with later obesity 
and highlights that amplifi ed effects occur when maternal obesity is combined with 
exposure of the offspring to an obesogenic environment.  

    11.5   Programming of Level of Physical Activity 

 Whether reduced physical activity or increased food intake driven by appetite is the 
primary driver for obesity remains an area of continued debate. In evolutionary 
terms, man was dependent on physical activity for procurement of food and genes 
evolved to regulate effi cient intake and utilisation of fuel stores to ensure survival in 
an environment of inconsistent food supply (Chakravarthy and Booth  2004  ) . In the 
current era, the continuous supply of food without any requirement for overt physi-
cal activity produces an imbalance in energy intake and expenditure and leads to 
weight gain. Nevertheless, few studies have analysed the programming effects of 
physical activity and its effects on later obesity. 

 When obese individuals lose weight or lean individuals gain weight, their move-
ments associated with routine life (nonexercise activity thermogenesis) is unchanged 
(Levine et al.  2005  ) , suggesting that they may be biologically determined. In rats, an 
adverse prenatal environment can lead to development of both abnormal eating and 
exercise behaviour. In this rat model, offspring of undernourished mothers were 
more sedentary in postnatal life than those born to mothers fed ad libitum and, 
although present in both genders, males were more inactive than females (Vickers 
et al.  2003  ) . Therefore, it appears that there may be some effect of the in utero envi-
ronment of the physical activity of offspring that contributes to obesity in later life.  

    11.6   Effects of Maternal Undernutrition 

 Maternal undernutrition can signifi cantly alter the physiology and metabolic course of 
the offspring. This has been classically demonstrated in humans exposed to the Dutch 
“Hunger Famine” cohort. Several animal studies have also explored the effects of 
maternal undernutrition. In a rat model, offspring whose mothers were randomly 
assigned to receive 30% of the ad libitum amount consumed by controls exhibited foetal 
growth retardation (Vickers et al.  2000  ) . Foetal undernutrition induces inappropriate 
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hyperphagia in adult life, and postnatal hypercaloric nutrition further amplifi es the 
abnormalities induced by foetal undernutrition (Vickers et al.  2000  ) . Although off-
spring of undernourished mothers have markedly increased fasting plasma leptin 
and insulin concentrations which should decrease appetite, exposure to a postnatal 
hypercaloric diet amplifi es the hyperphagia, suggesting an inappropriate response 
due to insulin and leptin resistance induced by early programming. However, it 
should be noted that these animals were severely nutrient restricted and the model 
may not be applicable to contemporary human situations. In another rat model 
where pregnant mothers fed half of the daily intake of controls during the last week 
of gestation until weaning, maternal undernutrition induced both short- and long-
term effects on the hypothalamo-pituitary-adrenal (HPA) axis (Vieau et al.  2007  ) . 
There was chronic hyperactivity of the HPA axis leading to high glucocorticoid 
levels in adulthood. Similarly, large animal studies also indicate that it is only when 
there is a very severe and prolonged reduction in maternal food intake that birth-
weight is consistently compromised (Williams et al.  2007  ) . 

 Behaviour and lifestyle choices which exacerbate obesity and associated condi-
tions may also have a prenatal origin. Rodent offspring of mothers who were under-
nourished in pregnancy are signifi cantly more sedentary in postnatal life than those 
born to ad libitum-fed mothers, independent of postnatal diet (Vickers et al.  2003  ) . 
Furthermore, this sedentary behaviour is exacerbated by postnatal hypercaloric 
nutrition. Such fi ndings imply that that “programmed” adults may be more resistant 
to public health policies and interventions aimed at increasing physical exercise and 
reducing food intake. 

    11.6.1   Effect of Undernutrition in Various Stages 
of Development 

 The Dutch Famine studies have also demonstrated that there are different conse-
quences of exposure to undernutrition in different trimesters of pregnancy (Roseboom 
et al.  2001  ) . These differential effects are not surprising in view of the chronological 
development and growth of foetal organ systems, with cardiovascular growth occur-
ring early in gestation, that of the kidney occurring in mid-gestation and adipose and 
muscle development occurring late in foetal development. Exposure to the Dutch 
Famine during early gestation had no effect upon birthweight. However, as adults, 
these offspring exhibited a more atherogenic lipid profi le (Roseboom et al.  2000a  )  
and increased risks of obesity (Ravelli et al.  1999  )  and metabolic diseases, including 
a threefold increased incidence of cardiovascular disease (Roseboom et al.  2000b  ) . 

 In animal models of maternal undernutrition, peri-implantation undernutrition in 
sheep (between 0 and 30 days of gestation, where term is around 145 days) does not 
affect birth weight or offspring growth to 1 year of age although barorefl ex sensitiv-
ity, which may be precursor of hypertension in later life (Gardner et al.  2004  ) , and the 
HPA axis are altered (Gardner et al.  2006  ) . When maternal nutrient restriction is tar-
geted at the period of maximal placental growth (i.e. 28–80 days gestation in sheep), 
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not only is placental growth altered (Dandrea et al.  2001  )  but maternal plasma 
cortisol, leptin, thyroxine and IGF-I are reduced without effects on birth weight, 
prolactin or glucose concentrations. Interestingly, maternal undernutrition in early–
mid gestation increases foetal adipose tissue deposition as measured near to term, a 
response that is independent of maternal food intake in late gestation (Bispham 
 2003 ). These maternal adaptations to undernutrition in pregnancy may act to reduce 
maternal requirements for nutrients, particularly glucose, therefore partitioning it to 
the foetus (Symonds et al.  2007  ) . Enhanced foetal fat stores achieved by promoting 
nutrient supply to the foetus will be benefi cial in the short term, promoting meta-
bolic adaptations at birth (especially when in utero nutrient restriction is “predict-
ing” poor nutrition availability after birth), but may set the foetus for excess fat 
deposition after birth if nutrients are no longer limited (Symonds et al.  2007  ) . 

 In both sheep and humans, foetal adipose tissue is primarily deposited during the 
fi nal third of gestation. Over this period, there is an increased abundance of circulat-
ing hormones within the foetal circulation which are important in regulating foetal 
adipose tissue development, and include IGF-I and leptin. The increases in their 
concentrations are determined by maternal nutrition between early to mid-gestation. 
Maternal nutrient restriction during this period results in increased expression of 
both the IGF-I and IGF-II receptors, in conjunction with enhanced adipose tissue 
deposition, irrespective of the level of maternal nutrition in late gestation (Symonds 
et al.  2004  ) . As these previously nutrient restricted foetuses have an increased abun-
dance of GLUT1 (Dandrea et al.  2001  ) , the enhanced responsiveness to IGF may 
promote the anabolic effects of glucose on foetal adipose tissue growth. Therefore, 
maternal nutrient restriction in mid-gestation results in enhanced foetal fat deposi-
tion in combination with enhanced IGF receptor abundance and glucose supply, 
which could exacerbate the deposition of fat following the restoration of the mater-
nal diet (Bispham et al.  2003 ; Symonds et al.  2004  ) . 

 For sheep, whilst nutrient restriction up to 110 days gestation promotes adipose 
tissue deposition, nutrient restriction in late gestation decreases it (Gopalakrishnan 
et al.  2001  )    . Adipose tissue deposition in offspring can also be reduced by manipu-
lating the maternal metabolic and hormonal environment by increasing food intake 
in late gestation (Symonds et al.  2003  ) . Indeed, late gestation appears to be the 
period when maternal nutrition restriction has the greatest effect on birth weight 
(Symonds et al.  2007  ) . These effects are similar to the fi ndings from the Dutch stud-
ies where exposure to famine in late gestation had the greatest effect upon foetal 
growth, with offspring at birth being lighter, shorter and thinner with small head 
circumferences (Roseboom et al.  2001  ) . 

 Sheep studies have demonstrated that although more fat is present at term when 
mothers are nutrient restricted during the period of maximal placental growth 
(Bispham et al.  2003  ) , the offspring of mothers who are nutrient restricted in late 
gestation go on to have greater adiposity as young adults, along with glucose intol-
erance and insulin resistance (Gardner et al.  2005  ) . This insulin resistance occurs in 
conjunction with altered glucose uptake in adipose tissue but not in skeletal muscle, 
and there is an increase in adipose tissue insulin receptors in nutrient-restricted off-
spring (Gardner et al.  2005  ) . There is also a reduction in GLUT4, the major insulin 
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responsive GLUT, in adipose tissue suggesting that impaired glucose tolerance is 
related to the ability of adipose tissue to take up glucose in an insulin-responsive 
manner with a reduction in its abundance closely associated with insulin resistance 
(Budge et al.  2005  ) . 

 In summary, animal studies support evidence from the Dutch “Hunger Winter” 
that specifi c periods of famine exposure may impact upon specifi c physiological 
control systems in adult life producing differential effects on regulation of adiposity 
(Budge et al.  2005  ) . These differential effects of maternal nutritional restriction on 
foetal adiposity suggest that intervention strategies aimed at these critical periods of 
development have the potential to reduce an individual’s predisposition to obesity in 
adult life (Symonds et al.  2004  ) .   

    11.7   Effects of Maternal Overnutrition 

 Starting with the Dutch “Hunger Winter”, many studies have focussed on studying 
the effects of maternal undernutrition on long-term outcomes for the foetus. 
However, the Western World and possibly, in very near future, developing nations 
(Yajnik  2004  )  are in the midst of an obesity epidemic. This results in more women 
being obese both at time of conception and throughout pregnancy. The infants of 
these obese women are nurtured in the same obesogenic environment as their 
parents, making them susceptible to postnatal excesses and amplifying effects of in 
utero overnutrition as summarised in Fig.  11.3 .  

 A study of pregnant women in nine US states showed a 69% increase in pre-
pregnancy obesity from 1993 to 2003 (Kim et al.  2007  ) . Studies in the UK also show 
a similar trend where the number of women who are obese at the start of the second 
trimester has increased to nearly 19 from 9% (Yu et al.  2006  ) . In addition to pre-
pregnancy obesity, weight gain during pregnancy can also be excessive. A study of 
pregnancy outcomes in obese women in Missouri found that 46% gained more than 
25 lb of weight during pregnancy (Kiel et al.  2007  )  and that all pregnancy complica-
tions studied were reduced when less weight was gained. With its huge implications 
for maternal and foetal outcomes (Catalano and Ehrenberg  2006  ) , maternal obesity 
is being increasingly recognised as a major public health issue. In addition to the 
ill-effects of obesity itself, high maternal weight is associated with a substantially 
higher risk of gestational diabetes mellitus (Chu et al.  2007  ) , exposing the foetus to 
further risks due to hyperglycaemia and hyperinsulinemia during development. 

 Maternal obesity has been reported to have varying infl uences on birth weight in 
animals. Whilst several studies have not established a link (Chen et al.  2008 ; Gorski 
et al.  2006 ; Caluwaerts et al.  2007 ; Shankar et al.  2008  ) , some have reported a 
decrease (Howie et al.  2009  ) . Studies in sheep showed no effect on birth weight 
when mothers were fed 160% of metabolisable energy requirements during preg-
nancy (Muhlhausler et al.  2006  ) . Other studies have demonstrated a decrease in 
birth weight both with increased maternal BMI at conception and with overnutrition 
during pregnancy (Wallace et al.  2010  ) . 
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 Mechanisms linking maternal and offspring obesity include high maternal 
glucose, free fatty acid and amino acid concentrations causing permanent pro-
gramming of energy homeostasis in the foetus (Armitage et al.  2008  ) . A maternal 
diet rich in energy, fat, sugar and salt during gestation and lactation in rats induces 
a preference for similar diet in offspring and increases their body weight (Bayol 
et al.  2007  ) . Offspring of obese mothers who are cross-fostered to lean mothers 
fed on a normal diet gain greater body weight and higher percentage of body fat 
when fed a high-fat diet (Shankar et al.  2008  ) . Effects of maternal obesity are 
also seen on body composition (Bayol et al.  2009  ) , infl ammatory markers (Yan 
et al.  2010  ) , insulin signalling and mitochondrial activity in muscles (Shelley 
et al.  2009  ) . 

 Some infl uence may be due the composition of the diet rather than the absolute 
calorie content. In rats, female offspring of mothers who are fed high-fat diets have 
raised blood pressure at 6 and 12 months of age (Khan et al.  2003  ) . This increase is 
seen with a saturated fat supplemented diet but not with increased maternal polyun-
saturated fatty acid intake (Armitage et al.  2004  ) . A high-fat diet in rats also affects 
glucose homeostasis with increased insulin: glucose ratio, higher glucose and trig-
lyceride levels and higher adiposity in the offspring (Guo and Jen  1995  ) . Rats fed a 
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diet rich in omega-6 fatty acids produce offspring with increased proportion of total 
body and abdominal fat with increase in hepatic triglyceride concentrations and 
hepatic insulin resistance (Buckley et al.  2005  ) . In contrast, other studies emphasise 
the effects of essential fatty acid defi ciency in the maternal diet on altered leptin 
expression and adiposity in the offspring (Korotkova et al.  2001  ) . Furthermore, 
prenatal and suckling exposure to a diet rich in animal fat results in insulin resis-
tance and pancreatic beta-cell dysfunction, preceded by altered mitochondrial gene 
expression (Taylor et al.  2005  ) . Maternal high carbohydrate diets may have a differ-
ent infl uence to high fat diets. Offspring of rats fed high-fat diet have greater appe-
tite stimulation in response to intraventricular-NPY injection (Kozak et al.  2000  ) . 
These studies suggest that the proportion and quality of fat and other macronutrients 
in maternal diet, rather than merely the total calorie intake, may be important for 
metabolic programming. 

 These animal studies support human observational data that maternal obesity 
and overnutrition can program the offspring for later obesity and glucose intoler-
ance. Furthermore, children of obese women are more likely to become overweight 
and develop insulin resistance later in life, if their mothers had diabetes during preg-
nancy (Taylor and Poston  2007  ) . Therefore, obesity and its related consequences 
may be a self-perpetuating problem passed through generations and progressively 
worsened by the facilitative obesogenic environment. 

 In humans, the increasing prevalence of maternal obesity and overweight 
(both pregravid weight and weight gain during pregnancy) have been implicated 
in the causation of the excess of large for gestation age (LGA) and macrosomic 
babies (Catalano and Ehrenberg  2006 ; CMACE  2010  ) . Each kilogram of mater-
nal weight gain during pregnancy signifi cantly increases birth weight except in 
mothers whose pre-pregnancy weight is more than 135% of ideal for height 
(Abrams and Laros  1986  ) . As the relationship between birthweight and adult 
BMI is U- or J-shaped (Curhan et al.  1996 ; Fall et al.  1995  ) , LGA infants are 
more likely to become obese as adults. The programmed individual may become 
obese by increasing the number of adipocytes and by producing pancreatic beta-
cell hyperplasia which results in hyperinsulinaemia, insulin-resistance and 
increased deposition of lipids in adipose tissue stores (Levin  2006  ) . High insulin 
levels seen in overnourished mothers (Taylor et al.  2005  )  along with alterations 
in leptin concentrations may impact on neuronal differentiation, synapse forma-
tion and maturation in the hypothalamus which may increase the body weight 
“set point” with increased appetite, reduced basal metabolic rate and altered 
energy balance resulting in the metabolic syndrome phenotype (Armitage et al. 
 2004  ) . Among low-income families in Ohio, maternal obesity in early pregnancy 
doubled the risk of obesity at 2–4 years of age (Whitaker  2004  ) . Maternal pre-
gravid weight and diabetes also increase the risk of obesity in adolescence 
(Catalano and Ehrenberg  2006  ) . With the substantially increased morbidity asso-
ciated with maternal obesity and the possible trans-generational cycle it per-
petuates, there is an imperative need to understand the mechanisms behind this 
programming effect and aim to establish successful obesity prevention 
strategies.  
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    11.8   Early Postnatal Growth and Adiposity Rebound 

 In the Avon longitudinal study in the UK, children who have intrauterine restraint of 
foetal growth have more so-called “catch-up” growth and go on to be fatter with 
more central fat distribution at 5 years of age compared with controls (Ong et al. 
 2000  ) . Such accelerated postnatal growth is also associated with raised blood pres-
sure (Huxley et al.  2000 ; Adair et al.  2009  )  and death from coronary heart disease 
(Eriksson et al.  1999  ) . In a Swedish cohort, the highest death rates from coronary 
heart disease occurred in boys who were thin at birth but who gained weight centiles 
in childhood such that they had an average or above average body mass from the age 
of 7 years (Eriksson et al.  1999  ) . 

 The programming effects of overfeeding immediately after foetal growth retarda-
tion have been studied in animal models. In rats, growth-retarded offspring of under-
nourished mothers recoup their weight when fed adequately (by reducing the litter 
size) during lactation (Bieswal et al.  2006  ) . After weaning, they continue to gain 
weight and become signifi cantly heavier than control animals. This weight difference 
is exaggerated if a high-calorie diet is provided to the previously growth-restricted 
animal, an effect more prominent if the gestational undernutrition is achieved with a 
low-calorie diet rather than with an isocaloric protein-restricted diet. 

 Male offspring of mice, who are undernourished during pregnancy, live longer if 
they are growth restricted during the suckling period. This slowing of postnatal 
growth also appears to protect against an obesity-inducing diet later on (Ozanne and 
Hales  2004  ) . Conversely, male mice which are poorly nourished in utero but cross-
fostered to normally fed dams exhibit rapid “catch-up” growth and die at a younger 
age. Life expectancy further reduces with subsequent consumption of a high-calorie 
and high-fat diet (Ozanne and Hales  2004  ) . 

 There is a link between in utero nutrient and growth restriction followed by 
accelerated postnatal growth and later emergence of insulin resistance, glucose 
intolerance and visceral obesity. Insulin receptors in the skeletal muscle of sheep are 
more abundant in response to growth restriction, an effect that persists in postnatal 
life (Muhlhausler et al.  2009  ) . When nutrition availability improves in postnatal life, 
this abundance of insulin receptors, along with upregulation of insulin signalling 
molecules (Muhlhausler et al.  2009  ) , results in accelerated growth of the previously 
growth-restricted animal (Morrison et al.  2010  ) . However, the increased insulin 
sensitivity changes into insulin resistance, a pattern recognisable as early as 1 year 
of age (Soto et al.  2003  ) . 

 Adiponectin, an adipokine, is paradoxically reduced in obese subjects (Arita 
et al.  1999  )  and appears to play a central role in development of Type 2 diabetes. 
A high concentration of adiponectin is associated with reduced relative risk of Type 
2 diabetes (Spranger et al.  2003  ) . Children who are born small for gestational age 
(SGA) have lower adiponectin concentrations compared with those who are short 
but of appropriate weight for gestational age and with those who are obese 
(Cianfarani et al.  2004  ) . Additionally, adiponectin is signifi cantly lower in SGA 
children whose height is appropriate for age, sex and genetic potential (as indicated 
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by mean parental height) when compared to those who are short (Cianfarani et al. 
 2004  ) , possibly signifying that accelerated postnatal growth increases the risk of 
obesity and Type 2 diabetes in later life. 

 Children who are born SGA continue to gain body fat and abdominal fat mass 
between 2 and 4 years of age despite having largely achieved height and weight 
similar to children born appropriate for gestation age by 2 years of age (Ibanez et al. 
 2006  ) . This is accompanied by increases in insulin resistance and IGF-I (Ibanez 
et al.  2006  ) . Total and abdominal fat mass is further increased between 4 and 6 years 
of age, and visceral fat is already present at 6 years of age (Ibanez et al.  2008  ) , even 
in non-obese children. 

 In the process of growth during childhood, BMI increases rapidly during the fi rst 
year of life followed by a decline. It reaches a minimum in early childhood and then 
starts to increase up to the end of growth. Adiposity rebound has been defi ned as the 
point of least BMI at which the sustained increase begins (Rolland-Cachera et al. 
 1984  ) . The difference in body composition during “adiposity rebound” has been 
shown to be due to alterations in body fat rather than changes in lean body mass, 
children who have early adiposity rebound gaining fat faster (Taylor et al.  2004  ) . 
The mean age of adiposity rebound was 5.5 years in a US retrospective cohort study 
(Whitaker et al.  1998  )  whilst a New Zealand cohort reported 6 years for boys and 
5.6 years for girls (Williams et al.  1999  ) . However, the timing of adiposity rebound 
may be an important factor for the development of obesity, refl ecting the changing 
BMI pattern of the individual. In obese subjects, adiposity rebound occurs around 3 
years of age (Rolland-Cachera et al.  1987  ) . An early adiposity rebound has been 
associated with Type 2 diabetes (Eriksson et al.  2003  ) , higher BMI in adolescence 
(Rolland-Cachera et al.  1984 ; Siervogel et al.  1991  ) , early adulthood (Prokopec and 
Bellisle  1993  )  and in later adult life (Whitaker et al.  1998  )  and suggests determi-
nants are established in early life (Rolland-Cachera et al.  2006  ) .  

    11.9   Conclusion 

 The high prevalence and health consequences of obesity require urgent preventative 
strategies. There is ample evidence to show that the origins of adiposity lie in early 
development, from the periconceptional period through to early childhood. An 
increasing understanding of these processes and their contribution to later obesity 
and its accompanying diseases may provide opportunities for long-term prevention 
and prove vital to improving public health.      
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