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PREFACE

Medical imaging is one of the great revolutions in medicine. Traditionally, explo-
rative surgery had to be performed to look inside a patient’s body, even to perform a
diagnosis. Slightly more than a century ago, x-rays were discovered. With it came the
ability to look inside the body without surgery. X-ray imaging was rapidly adopted
in medical centers worldwide. A new medical subject area was created—radiology.
For decades, the radiologist had a basic set of tools, the x-ray tube, a fluoroscope, a
film cassette with an image intensifier screen, and a light box. For decades, progress
was incremental. X-ray tubes were improved, film and intensifier were made more
sensitive, radiation exposure was reduced, and contrast agents were introduced and
improved. It took a second, independent revolution to propel biomedical imaging to
today’s level: the invention of the programmable computer and its subsequent minia-
turization. The availability of powerful digital data processing hardware and newly
developed image processing methods paved the way for new imaging modalities:
computed tomography, magnetic resonance imaging, ultrasound imaging, and func-
tional imaging. These new imaging modalities had in common that computer-based
data processing was required for image formation. Medical imaging experienced a
second wave of rapid progress near the end of the twentieth century when tomography
methods were developed and improved. Tomography means imaging by sections, and
the origin of the word lies in the Greek � ó�o� for “to cut” and ���́�� for “to write.”
With the availability of imaging modalities that produced three-dimensional recon-
structions of a patient’s body came the need for computerized image processing and
computerized image visualization. The expertise of the radiologist in interpreting an
image played–and still plays—a major role, but more and more tasks could be given
to the computer, and the interpretation of computer-processed images became eas-
ier, more objective, and more accurate. Concurrently, scientists became interested in

ix
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programming computers with the “intelligence” to interpret and understand images.
At the same time that computed tomography and magnetic resonance imaging were
being invented, new computer methods for image analysis were being introduced.

The long-term vision is computer-aided radiology. Generalized to nonmedical
fields, we could call it computer-aided image interpretation. After the first major
wave of innovation in the 1970s to 1980s, computer algorithms for image interpreta-
tion have become more sophisticated and more complex. New mathematical methods
emerged, such as, for example, the wavelet transform and set characterization by the
fractal dimension, and were rapidly translated into advanced image analysis methods.
Numerical methods that model physical processes—for example, differential equa-
tions for diffusion or motion—were applied to image processing tasks as diverse as
noise reduction and segmentation. Artificial intelligence models are being used for
computer analysis of high-dimensional feature vectors with the purpose of classify-
ing the underlying pixels. Yet the philosopher’s stone of image processing has not
been discovered: to make a computer interpret an image with the same flexibility and
immunity against artifacts as those of a human observer.

Although this book is well suited as a textbook for graduate-level image processing
classes in the computer sciences and engineering fields, it is intended primarily
as a reference book. The individual chapters are widely independent of the other
chapters, with the exception of Chapters 2 and 3, which provide the foundation of
basic image processing operations. The book is a comprehensive hands-on reference
of topical image processing methods. Hands-on in this context indicates that not
only are the theory, mathematical foundation, and basic description of an image
processing operator provided, but performance features, advantages, and limitations
are also discussed. Furthermore, key algorithms are provided in pseudocode to assist
in implementation. The book aims at making advanced image processing operators
accessible to those readers that have a basic familiarity with image processing. As
such, the book can be seen as a toolbox in which each tool comes with a complete
instruction manual. It is useful for readers who use the tools, because it helps them
understand how the tools work. It is also useful for readers who make the tools, as it
helps them design and optimize tools for their specific needs. And it is intended as a
stepping-stone for those members of the imaging community who are reaching out
to develop the next generation of tools.

The application focus of this book is biomedical. However, the same image pro-
cessing and analysis principles also apply in many other fields. In the environmental
and geological sciences, oceanography, soil sciences, forensic sciences, and anthro-
pology, image analysis plays an important role. Satellite imagery and astrophotogra-
phy, for example, pose the same image processing challenges as those of a magnetic
resonance scan: the need to reduce noise, to emphasize the details of interest, and
to make the important objects in the image accessible for subjective evaluation or
objective measurement.
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1
IMAGE ANALYSIS: A PERSPECTIVE

The history of biomedical imaging is comparatively short. In 1895, Wilhelm Conrad
Röntgen discovered a new type of radiation, which he called the x-ray. The discovery
caused a revolution in medicine, because for the first time it became possible to
see inside the human body without surgery. Use of x-rays in medical centers spread
rapidly, but despite their vast popularity, little progress was made for over half a
century. Soon after the discovery of x-rays, materials were discovered that exhib-
ited visible-light fluorescence when illuminated by x-rays. With such materials, the
quantum efficiency of film-based x-ray imaging could be improved and the exposure
of patients to radiation thus reduced. Contrast agents were introduced around 1906
to allow imaging of some soft tissues (namely, intestines), which show low x-ray
contrast. For about six decades, x-ray tubes, film, and x-ray intensifying materials
were improved incrementally, but no fundamental innovation was made.

After World War II, the next important development in biomedical imaging finally
arrived—ultrasound imaging. The medical technology was derived from military
technology: namely, sonar (sound navigation and ranging), which makes use of
sound propagation in water. Applying the same principles to patients, sound echos
made visible on oscilloscope-like cathode ray screens allowed views into a patient’s
body without the use of ionizing radiation. The mere simplicity of creating sound
waves and amplifying reflected sound made it possible to generate images with
analog electronics—in the early stages with vacuum tubes. Electronic x-ray image
intensifiers were a concurrent development. X-ray image intensifiers are electronic
devices that are based on a conversion layer that emits electrons upon x-ray exposure.

Advanced Biomedical Image Analysis, By Mark A. Haidekker
Copyright C© 2011 John Wiley & Sons, Inc.
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These electrons are collected and amplified, then directed on a luminescent phosphor.
Here, the image is formed with visible light and can be picked up by a video camera.
Electronic intensifiers made it possible to further reduce patient exposure to x-rays
and speed up the imaging process to a point where real-time imaging became pos-
sible. At this time, video cameras could be used to record x-ray images and display
them instantly on video screens. Interventional radiology and image-guided surgery
became possible.

The next major steps in biomedical imaging required an independent develop-
ment: the evolution of digital electronics and the microprocessor. Milestones were
the invention of the transistor (1948),1 the integrated circuit as a prerequisite for minia-
turization (1959), and the first single-chip microprocessor (1971).20 Related to these
inventions was the first integrated-circuit random-access memory (RAM; 1970).62

Although the microprocessor itself was built on the principle of the programmable
computer devised by Conrad Zuse in 1936, the miniaturization was instrumental in
accumulating both computing power and memory in a reasonable space. Early digital
computers used core memory, which got its name from small ferrite rings (cores) that
could store 1 bit of information because of their magnetic remanence. Core mem-
ory was already a considerable achievement, with densities of up to 100 bits/cm2.
Early RAM chips held 10 times the memory capacity on the same chip surface area.
In addition, integrated-circuit RAM did away with one disadvantage of core mem-
ory: the fact that a core memory read operation destroyed the information in the
ferrite rings. Consequently, read and write operations with integrated-circuit RAM
were many times faster. For four decades, integration density, and with it both mem-
ory storage density and processing power, has grown exponentially, a phenomenon
known as Moore’s law. Today’s memory chips easily hold 1 trillion bits per square
centimeter.*

The evolution of digital electronic circuits and computers had a direct impact on
computer imaging. Image processing is memory-intensive and requires a high degree
of computational effort. With the growing availability of computers, methods were
developed to process images digitally. Many fundamental operators15,18,24,32,36,43,64,72

were developed in the 1960s and 1970s. Most of these algorithms are in common use
today, although memory restrictions at that time prevented widespread use. A medical
image of moderate resolution (e.g., 256×256 pixels) posed a serious challenge for a
mainframe computer with 4096 words of core memory, but today’s central processing
units (CPUs) would effortlessly fit the same image in their built-in fast cache memory
without even having to access the computer’s main memory. A convolution of the
256×256-pixel image with a 3×3 kernel requires almost 600,000 multiplications and
the same number of additions. Computers in the 1970s were capable of executing
on the order of 100,000 to 500,000 instructions per second (multiplication usually
requires multiple instructions), and the convolution above would have cost several

*Today’s most dense memory chips pose one challenge reminiscent of the information loss in core memory:
Since the information is stored as a charge in a capacitor, which tends to leak and discharge slowly, the
information needs to be read and rewritten several thousand times per second, a process known as memory
refresh.
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seconds of CPU time. On today’s computers, the same convolution operation would
be completed within a few milliseconds.

The availability of early mainframe computers and minicomputers for data pro-
cessing enabled new revolutionary imaging modalities. In 1917, mathematician
J. Radon stipulated that a manifold can be represented (transformed) by an infi-
nite number of line integrals.60 Almost 50 years later, when mainframe computers
became widely accessible, A. M. Cormack developed an algorithm based on Radon’s
idea,13,14 which in turn helped G. Hounsfield develop the computed tomography (CT)
scanner.37 Cormack and Hounsfield shared a Nobel prize in 1979 for development of
the CT scanner. In fact, CT was a completely new type of imaging modality because
it requires computed data processing for image formation: The x-ray projections
collected during a CT scan need to be reconstructed to yield a cross-sectional im-
age, and the reconstruction step takes place with the help of a computer.42 Other
imaging modalities, such as single-photon emission computed tomography (SPECT)
and magnetic resonance imaging (MRI) also require the assistance of a computer for
image formation.

Another important development in biomedical imaging resulted from the use of
radioactively labeled markers. One such example is indium pentetreotide, a com-
pound that acts as an analog for somatostatin and tends to accumulate in neuroen-
docrine tumors of the brain.69 Indium pentetreotide can be labeled with radioactive
111In, a gamma emitter. Another example is fluorodeoxyglucose, a glucose analog.
Fluorodeoxyglucose accumulates at sites of high metabolic activity. When fluo-
rodeoxyglucose is labeled with 18F, it becomes a positron emitter. Radiation emission
becomes stronger near active sites where the radiolabeled markers accumulate, and
with suitable devices, tomographic images of the concentration of the radioactive
compounds can be gathered. The use of positron emitters that create gamma rays as
a consequence of electron–positron annihilation events was proposed in 195178 and
eventually led to positron emission tomography (PET).6 With radiolabeled physiolog-
ically active compounds (radiopharmaceuticals), it became possible to obtain images
of physiological processes. These imaging methods not only improved the diagnosis
of carcinomas, but also helped in our understanding of physiological processes, most
notably brain activity. Functional imaging has become a key tool in medical diagnosis
and research.

Subsequent research and development aimed at the improvement of image quality
(e.g., improvement of resolution, better contrast, less noise). Current trends also
include an increase in three-dimensional images and the involvement of computers in
image processing and image analysis. A detailed overview of current trends is given
in section 1.3.

1.1. MAIN BIOMEDICAL IMAGING MODALITIES

A number of fundamentally different methods of obtaining images from tissue,
called imaging modalities, emerged during the historical development of biomedical
imaging, and the information that these modalities provide differs among modalities.
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It is outside our scope here to provide a detailed description of the physical and
engineering foundations of the modalities, but a short overview is provided for
completeness.

X-ray Imaging X-ray imaging is a projection method. The patient is illuminated by
x-rays, high-energy photons that penetrate the body. Some of the x-rays are absorbed
in the tissue. X-rays predominantly follow a straight path. The absorption process
can be described by the Lambert–Beer law:

ln I (x,y) = ln I0 −
∫

s
�(�r ) d�r (1.1)

where I is the x-ray intensity that passes through a patient’s body, I0 the incident
x-ray intensity, �(�r ) the x-ray absorption coefficient at any spatial location �r , and the
integration takes place along a straight line s, which intersects with the x-ray film
at (x,y). At this location, the film is blackened by the x-rays, and the more x-rays
that pass through the body, the higher the optical density of the film. At the end of
this process, the film contains a two-dimensional distribution of optical density that
relates to the tissue distribution inside the patient. If path s passes through bone, for
example, the optical density at the end of that path is lower than that of a neighboring
path, s′, that traverses only soft tissue. In the case of film-based x-ray imaging, the
film needs to be digitized with a film scanner to obtain a digital image. Filmless x-ray
imaging with a digital detector is becoming more common.

Computed Tomography Computed tomography (CT) is an x-ray-based imaging
method used to obtain a two- or three-dimensional map of absorbers inside the
imaged object. The principle behind CT is to collect many projections, following
equation (1.1), at various angles � relative to the imaged object. One projection
consists of measured attenuation values along parallel beams that are displaced a
distance t from the center of rotation. When the incident beam intensity is known,
the line integral along s can be represented by the computed attenuation p at detector
position t and angle �. Let us assume that the Fourier transform of the absorption map
�(x,y) is M(u,v) = F {�(x,y)}, where the symbol F denotes the Fourier transform
and u and v are the axes of the frequency-domain coordinate system (a detailed
explanation is provided in Chapter 3). It can be shown that the one-dimensional
Fourier transform of the projection with respect to t, F{p(t,�)}, is identical to a
one-dimensional cross section of the Fourier transform of the absorber map M(u,v)
subtending an angle � with the u-axis. This relationship is known as the Fourier slice
theorem. In CT, the projections p(t,�) are obtained during the scanning process, but the
absorption map �(x,y) is unknown. The purpose of the scanning process is therefore
to obtain many projection scans p(t,�), to perform a Fourier transform, and to enter
them at the angle � into a placeholder M(u,v), thereby filling as many elements of
M(u,v) as possible. The cross-sectional slice �(x,y) is then obtained by computing
the inverse Fourier transform of M(u,v). Other reconstruction methods also exist
(a comprehensive overview of CT reconstruction techniques is presented by Kak and
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Slaney42), as well as reconstruction algorithms for beams that are not parallel but
fan- or cone-shaped. To obtain projections at different angles, a CT scanner contains
an x-ray source and a detector array mounted on opposite sides of a large ring (the
gantry). The patient is placed in the center of the ring and the source-detector system
rotates around the patient, collecting projections. The patient can be moved in the
axial direction on a patient tray. The patient tray not only allows patient positioning
but also the acquisition of three-dimensional images.

Magnetic Resonance Imaging Magnetic resonance imaging (MRI) is another
modality that requires the use of a computer for image formation. In a strong mag-
netic field, protons orient their spins along the magnetic field. The magnetic moments
are not perfectly aligned, but rather, precess around the external field lines with an
angular frequency that is proportional to the external field. The precession frequency
is known as the Larmor frequency. With an externally introduced radio-frequency
(RF) signal in resonance, that is, at the Larmor frequency, the orientation of the
electron spins can be manipulated, but after cessation of the RF signal, the spins
return to their original position. During this process, the spins emit a weak RF signal
(echo) that can be picked up by an antenna. The time is takes for the spins to return to
their original position depends on the tissue. Magnetic gradients allow us to change
the precession frequency and precession phase angle along the spatial axes, and the
spatial origin of a RF echo component can be reconstructed by Fourier analysis of the
signal. In fact, the task of any MRI pulse sequence (i.e., the sequence of RF signals
that manipulates spin precession) is to fill a frequency-domain placeholder, called a
k-space matrix, with data. Inverse Fourier transform of the k-space matrix yields the
cross-sectional image. Depending on the pulse sequence, different information can be
obtained from the tissue. Three tissue constants are the relaxation times T1 and T2 and
the proton density (water content). These tissue constants can vary strongly between
different types of soft tissue, and for this reason, MRI provides excellent tissue–
tissue contrast.

Ultrasound Imaging Ultrasound imaging makes use of the physics of sound propa-
gation in tissue. Sound waves propagate at a certain, tissue-dependent velocity. At the
interface between two tissues, some of the sound is reflected, and the sound echo can
be picked up by a receiver. The round-trip time of the echo can be translated into the
depth of the echo source because the speed of sound is known. An A-mode scan (the
echo strength as a function of depth) is obtained by emitting a short burst of sound
into the tissue and recording the echos for a short period of time. Sound generation
and recording are carried out by transducers made of a piezoelectric material, that
is, crystals that deform under the influence of an electric field and that generate an
electrostatic field when deformed. An A-mode scan can be represented as a thin line
on a screen where the intensity depends on the echo strength. By directing the inci-
dent sound wave in different directions, a B-mode scan can be obtained. A B-mode
scan consists of several parallel or fan-shaped A-mode scans. It is also possible to
record A-mode scans as a function of time, which is referred to as an M-mode (motion
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mode). Although ultrasound imaging could be performed with purely analog circuits,
today’s ultrasound devices use digital signal and image processing. One disadvantage
of ultrasound imaging is its widely qualitative nature, although size measurements
are possible with moderate accuracy. However, ultrasound can quantitatively measure
motion (notably, blood flow) through the Doppler effect.

Single-Photon Emission Computed Tomography (SPECT) SPECT is analogous
to CT but uses a radiation source internal to a patient rather than the external x-ray
generator used in CT. The radiation source is usually a radiopharmaceutical that
emits gamma rays. External cameras obtain projections of the radiation strength
analogous to the projection p(t,�) in CT. Radiation is kept weak, and highly sensitive
cameras need to be used to capture as many radioactive events as possible. Since the
radioactive events are random processes, the image has a very high noise component.
Therefore, SPECT image reconstruction methods are optimized for noisy images.
Furthermore, the resolution is much lower than that of CT. However, SPECT allows
us to image the accumulation of radioactive tracers at physiologically active sites.
Whereas CT provides information about the structure of tissue, SPECT provides
information about function and physiological activity.

Positron Emission Tomography (PET) Like SPECT, PET uses radiolabeled mark-
ers to image physiological activity. Whereas SPECT uses primarily gamma emitters,
the radiolabeled compounds in PET are positron emitters (such as 18F, 15O, 124I, and
89Zr). The positron (i.e., antimatter electron) collides with an electron a short distance
from its emission site. In this annihilation event, two high-energy gamma photons
are emitted in opposite directions. These photon pairs are captured in a detector ring.
The occurrence of photon pairs is critical for PET imaging, because the time-of-flight
difference, together with the location of the registering detectors, allows us to de-
termine the exact location of the annihilation event in the scanned slice. Moreover,
spontaneous background events can be excluded; only coincident gamma pairs are
recorded. A sufficient number of recorded events create an image of spatially resolved
physiological activity. Like SPECT images, PET images have low spatial resolution
and low signal-to-noise ratio.

Visible-Light Imaging Visible-light imaging with conventional digital cameras or
specialized scanning elements also play an important role in biomedical imaging. Of-
ten, visible-light imaging is found in conjunction with microscopy. A large number
of techniques provide information about the imaged object, such as a cell layer or
tissue sample. Tissue can be stained (histology) or labeled fluorescently. Fluorescent
markers can provide physiological information on the microscopic level in a com-
plementary fashion to SPECT and PET, which provide physiological information
on a macroscopic level. Confocal microscopy allows us to obtain three-dimensional
volumetric images.
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1.2. BIOMEDICAL IMAGE ANALYSIS

Biomedical image analysis is a highly interdisciplinary field, being at the interface
of computer sciences, physics, medicine, biology, and engineering. Fundamentally,
biomedical image analysis is the application of image processing techniques to bi-
ological or medical problems. However, in biomedical image analysis, a number of
other fields play an important role:

� Anatomy. Knowledge of shape, structure, and proximity to other anatomical
objects can help identify features in images and determine abnormalities.

� Physiology. Physiology plays a role in functional imaging, where functional
imaging should be defined very broadly, ranging from blood flow imaged with
Doppler ultrasound to cell physiology imaged with microscopy and fluorescent
probes. The term functional imaging is often used for modern methods to image
physiological processes by means of functional MRI, PET, or SPECT.

� Physics of the imaging modality. Depending on the imaging modality, the image
values represent fundamentally different properties of the imaged object. Ex-
amples include x-ray attenuation in CT, optical light scattering and absorption
in microscopy and optical coherence tomography (OCT), and magnetic spin
relaxation time constants in MRI.

� Instrumentation. Even within the same modality, images of the same object can
be markedly different. One example is x-ray imaging and CT, where the anode
voltage and the introduction of beam-hardening filters influence the apparent
x-ray density, whereas beam collimation determines the amount of haze and blur
in the image. Another example is the exposure time and source brightness in
optical modalities (microscopy, OCT), which may produce contrast in different
regions of the object. In addition, every imaging instrument introduces some
amount of noise.

� Medical application. The medical application in diagnosis or intervention pro-
vides the foundation and motivation for biomedical image analysis. The selec-
tion of an imaging modality and of possible image processing steps depends on
many medical factors, such as the suspected disease or the type of tissue to be
imaged.

In addition, several fields of computer science exist on top of image processing
that play a role in biomedical image analysis, most notably artificial intelligence and
computer modeling. Artificial intelligence approaches find their ways into biomed-
ical image analysis in the form of fuzzy logic,2,26,48 evolutionary computing,9,73

computer learning,44,59 and artificial neural networks.28,79,82 Computer models play
a key role in advanced segmentation techniques and in the description of time-course
dynamics.35,50,70

Biomedical image analysis consists of four distinct stages, where each stage is
generally a prerequisite for the next stage, but at any stage the chain can end to
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allow a human observer to make a decision or record results. These stages are image
acquisition, image enhancement and restoration, image segmentation, and image
quantification.

1.2.1. Image Acquisition

The first stage is to gather information about the object, such as a suspect tissue in a
patient. In the context of an image, the information is spatially resolved. This means
that the image is a map of one or more tissue properties on the nodes of a discrete
rectangular grid. The grid nodes coincide with integer coordinates, and the image
value on an integer coordinate is termed a pixel (picture element) or voxel (volume
element) in three-dimensional images. The image values are stored in finite memory;
therefore, the image values themselves are also discrete. In many cases, image values
are limited to integer values. Noninteger values can be used as image values if a
floating-point representation for a pixel is used, but floating-point values have limited
precision as well.

The image values themselves generally have physical meaning. To name a few
examples, photography and microscopy provide image values that are proportional to
light intensity. Computed tomography provides image values that are proportional to
local x-ray absorption. In magnetic resonance imaging, the image values can represent
a variety of tissue properties, depending on the acquisition sequence, such as local
echo decay times or proton density.

The goal of the image acquisition stage is to obtain contrast. To use x-ray imaging
as an example, let us assume a patient with a suspected clavicular hairline fracture.
X-rays passing through the clavicle are strongly attenuated, and film optical density is
low. X-rays along neighboring paths that lead though soft tissue are less attenuated,
and the optical density at corresponding locations of the film is higher. Contrast
between bone and surrounding soft tissue is generally high. Some x-rays will pass
though the fracture, where there is less bone to pass through, and the corresponding
areas of the x-ray film show a slightly higher optical density—they appear darker. In
this example it is crucial that the contrast created by x-rays passing through the intact
clavicle and through the fracture is high enough to become discernible. This task is
made more difficult by the inhomogeneity of other tissue regions that are traversed
by the x-rays and cause unwanted contrast. Unwanted contrast can be classified as
noise in the broader sense (in a stricter sense, noise is a random deviation of a pixel
value from an idealized value), and distinguishing between contrast related to the
suspected disease—in this case the clavicular fracture—and contrast related to other
contrast sources leads immediately to the notion of the signal-to-noise ratio. Signal
refers to information (i.e., contrast) related to the feature of interest, whereas noise
refers to information not related to the feature of interest.

The human eye is extremely good at identifying meaningful contrast, even in
situations with poor signal-to-noise ratios. Human vision allows instant recognition
of spatial relationships and makes it possible to notice subtle variations in density
and to filter the feature from the noise. A trained radiologist will have no difficulty in
identifying the subtle shadow caused by a hairline fracture, a microscopic region of
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lower optical density in a mammogram, or a slight deviation from the normal shape
of a ventricle, to name a few examples. However, these tasks may pose a considerable
challenge for a computer. This is where the next steps of the image processing chain
come into play.

1.2.2. Image Enhancement

Image enhancement can serve two purposes: to improve the visibility of features to
allow a human observer (radiologist) to make a more accurate diagnosis or better
extract information, or to prepare the image for the next processing steps. The most
common image enhancement operators are:

� Pixel value remapping. This includes linear or nonlinear contrast enhancement,
histogram stretching, and histogram equalization.

� Filtering. Filters amplify or attenuate specific characteristics of an image, and
filters make use of the pixel neighborhood. Filters that operate on a limited pixel
neighborhood (often based on the discrete convolution operation) are referred
to as spatial-domain filters. Other filters use a specific transform, such as the
Fourier transform, which describes the image information in terms of periodic
components (frequency-domain filters). To name a few examples, filters can be
used to sharpen edges or smooth an image, to suppress periodic artifacts, or to
remove an inhomogeneous background intensity distribution.

A specific form of image enhancement is image restoration, a specific filtering
technique where a degradation process is assumed to be known. Under this assump-
tion, the image acquisition process is modeled as the acquisition of an idealized, unde-
graded image that cannot be accessed, followed by the degradation process. A restora-
tion filter is a filter designed to reverse the degradation process in such a manner that
some error metric (such as the mean-squared error) is minimized between the ideal-
ized unknown image and the restored image. The restored image is the degraded image
subjected to the restoration filter. Since the idealized image is not accessible, the de-
sign of restoration filters often involves computer simulations or computer modeling.

Whether for enhancement or restoration, filter design is a critical step in image
processing. Typically, the degradation process introduces two components: blur and
noise. In some cases, such as microscopy, inhomogeneous illumination may also play
a role. Illumination may change over time, or motion artifacts may be introduced.
Unfortunately, filters often require balancing of design criteria. Filters to counteract
blurring and filters for local contrast enhancement tend to amplify the noise compo-
nent and therefore reduce the signal-to-noise ratio. Conversely, noise-reducing filters
negatively affect edges and detail texture: Whereas these filters increase the signal-
to-noise ratio, image details may get blurred and lost. Moreover, filter design goals
depend on the next steps of the image processing chain. To enhance an image for a
human observer, the noise component plays a less critical role, because the human
eye can recognize details despite noise. On the other hand, automated processing
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such as segmentation requires that the image contains as little noise as possible even
at the expense of some edge and texture detail.

1.2.3. Image Segmentation

Image segmentation is the step where an object of interest in the image is separated
from the background. Background in this definition may include other objects. To
perform image segmentation successfully, the object of interest must be distinguish-
able from background in some way: for example, by a difference in image intensity,
by a delineating boundary, or by a difference in texture. Sometimes, a priori knowl-
edge such as a known shape can help in the segmentation process. The goal of this
process can be either a mask or an outline. A mask is an image where one pixel value
(usually, 1) corresponds to an object pixel, while another pixel value (usually, 0) cor-
responds to background. An outline can be a parametric curve or a set of curves, such
as a polygonal approximation of an object’s shape. There seems to be almost no limit
to the complexity of segmentation approaches, and there is certainly a trend toward
more complex segmentation methods being more application-specific. An overview
of the most popular segmentation methods follows.

Intensity-Based Segmentation When the intensity of the object of interest differs
sufficiently from the intensity of the background, an intensity threshold value can
be found to separate the object from its background. Most often, an object is a
more or less convex shape, and pixel connectivity rules can be used to improve
the segmentation results. Intensity-based segmentation methods that make use of
connectivity are region growing and hysteresis thresholding. Intensity thresholds can
be either global (for the entire image) or locally adaptive. To some extent, intensity-
based thresholding methods can be applied to images where the object texture (i.e.,
the local pixel intensity distribution) differs from background, because the image can
be filtered to convert texture features into image intensity values. The latter is a good
example of how image filtering can be used in preparation for image segmentation.

Edge-Based Segmentation Sometimes, objects are delineated by an intensity gra-
dient rather than by a consistent intensity difference throughout the object. In such
a case, a local contrast filter (edge detector) can be used to create an image where
the outline of the object has a higher intensity than the background. Intensity-based
thresholding then isolates the edge. Images containing the edge of the object are pre-
requisites for parametric segmentation methods such as boundary tracking and active
contours. Parametric shapes (i.e., lines, circles, ellipses, or polygonal approximations
of a shape) can also be extracted from the edge image using the Hough transform.

Region-Based Segmentation Some segmentation approaches make more exten-
sive use of local similarity metrics. Regions may be similar with respect to inten-
sity or texture. In fact, a feature vector can be extracted for each pixel that con-
tains diverse elements, including intensity, local intensity variations, or directional
variations. Similarity could be defined as the Euclidean distance between feature
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vectors. Unsupervised region-based methods are region splitting and region merg-
ing or region growing. Region splitting starts with the entire image as one region
and subdivides the image recursively into squares with dissimilar regions, whereas
region growing starts at the pixel level and joins similar regions. The two methods
can be combined to form split-merge segmentation, where splitting and merging
alternate.

Clustering If feature pixels are already separated from the background, clustering
is a method to group the feature pixels into clusters. Assignment of individual pixels
to clusters can be based on the Euclidean distance to the cluster center or on other
similarity metrics. Most widely used are the k-means clustering method, where each
pixel is assigned to exactly one cluster and fuzzy c-means clustering, where cluster
membership is continuous (fuzzy) and to some degree, each pixel belongs to multiple
clusters.

Neural Networks In medical imaging, a widely used approach is to train artificial
neural networks with feature vectors that have been manually assigned to classes.
Once a neural network has been trained, it can then segment similar images in
an unsupervised manner. Although unsupervised segmentation is desirable, some
manual interaction can greatly facilitate the segmentation task. Examples of limited
manual interaction are the placement of seed points for region growing, and crude
object delineation for active contour models and live-wire techniques.

If the segmentation result is a binary mask, some postprocessing may improve
the segmentation result. Examples of postprocessing steps are removal of isolated
pixels or small clusters, morphological thinning and extraction of a single pixel-
wide skeleton, morphological operations to reduce boundary irregularities, filling of
interior holes or gaps, and the separation of clusters with weak connectivity.

1.2.4. Image Quantification

Similar to the way that a radiologist uses an image to assess the degree of a disease
for a diagnosis, image quantification encompasses methods to classify objects or to
measure the properties of an object. Image quantification requires that the object
be segmented. The goal of image quantification is either to classify an object (e.g.,
as diseased or healthy) or to extract a continuous descriptor (e.g., tumor size or
progression). The advantage of computerized image quantification is its objectivity
and speed.

Examples of continuous variables include the measurement of intensity, density,
size, or position. As an example, bone mineral density is a crucial determinant of bone
strength, and people (especially women) lose bone mineral with age, a condition that
may lead to osteoporosis. X-ray imaging techniques (quantitative CT and dual-energy
x-ray absorptiometry) are particularly suited to measuring bone mineral density.29 The
degree of osteoporosis and with it the risk of a patient to suffer spontaneous fractures is
often determined by comparing bone density to an age-matched distribution.25 Today,
this measurement is usually highly automated, with unsupervised segmentation of
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the bone examined (e.g., vertebrae or the calcaneus) and subsequent determination
of the bone mineral density, measured in milligrams of calcium hydroxyapatite per
milliliter of bone, from the x-ray attenuation.

Examples of classification include healthy/diseased or healthy tissue/benign
lesion/malignant lesion. A typical example is the classification of suspicious masses
in mammograms as benign or malignant. This classification can be based on the
shape of the segmented lesion61 or on the texture.67 To illuminate the classification
process, let us look at texture analysis, a process that is representative of a large num-
ber of similar approaches to classifying lesions in x-ray mammograms. Sahiner et al.
propose segmenting the lesion and extracting its outline, then transforming a narrow
band of pixels perpendicular to the outline onto a rectangular region where descrip-
tive metrics can be extracted from the texture.67 In their study a total of 41 scalar
values were extracted from each image using methods based on the co-occurrence
matrix and run-length analysis. The 41 values formed a descriptive feature vector,
and a classification scheme based on computer learning (Fischer’s linear discriminant
classifier45) was used by radiologists to produce a malignancy rating from 1 to 10.10

The generation of high-dimensional feature vectors and the use of artificial intelli-
gence methods to obtain a relatively simple decision from the feature vector is very
widespread in image quantification.

1.3. CURRENT TRENDS IN BIOMEDICAL IMAGING

Once computers started to play an instrumental role in image formation in modalities
such as CT and MRI, the next step was indeed a small one: to use the same computers
for image enhancement. Operations such as contrast enhancement, sharpening, and
noise reduction became integrated functions in the imaging software. A solid body
of image processing operations has been developed over the last 30 years, and many
of them provide the foundation for today’s advanced image processing and analysis
operations. A continuous long-term goal, however, remains: to use computers to aid
a radiologist in diagnosing a disease. Much progress toward this goal has been made.
As mentioned above, established computer-aided imaging methods to determine
bone density and therefore indicate the degree of osteoporosis are in clinical use.
CT scans can be used to find colon polyps and help diagnose colon cancer. Optical
coherence tomography has rapidly been established in ophthalmology to diagnose
retinal diseases. Yet there are many more areas where increasing computing power
combined with more elaborate computational methods hold some promise of helping
a radiologist with the diagnosis, but the trained observer proves to be superior to
computerized image analysis. An example is computerized mammography, where a
lot of progress has been made but no single method has entered mainstream medical
practice. With the vision of computer-aided radiology, where computers provide
an objective analysis of images and assume tedious parts of the image evaluation,
advanced biomedical image analysis is—and will remain for a long time—an area of
intense research activity.
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Progress in image analysis is aided by a dramatic increase in the memory and pro-
cessing power of today’s computers. Personal computers with several gigabytes of
memory are common, and hard disks have reached beyond the terabyte limit. Storing
and processing a three-dimensional image of 512 × 512 × 512 bytes is possible with
almost any off-the-shelf personal computer. This processing power benefits not only
computerized image analysis but also image acquisition. Volumetric imaging modal-
ities generate images of unsurpassed resolution, contrast, and signal-to-noise ratio.
Acquisition speed has also improved, giving rise to real-time imaging that allows
motion measurements, for example, of the heart muscle.54,89

As the availability of tomographic scanners increases, multimodality imaging
becomes more popular. Clinicians and researchers aim to obtain as much information
on the tissue under examination as possible. Predominantly, one imaging modality
that provides a high-resolution image of the tissue or organ (normally, CT or MRI) is
combined with a functional imaging modality, such as PET.51 Multimodality imaging
is particularly popular in cancer diagnosis and treatment, because it is possible to place
a radioactive label on tumor-specific antibodies. PET, and to a lesser extent, SPECT,
are used to image antibody uptake by the tumor, whereas the exact localization of
the tumor is found by combining the PET or SPECT image with MRI or CT (see
pertinent reviews33,41,53,55). Multimodality imaging produces two or more images
generally with different resolution and probably with different patient positioning
between images. The different images need to be matched spatially, a process called
image registration. Dual-modality imaging devices are available (e.g., a combined
PET/CT scanner), but software registration is most often used, and new registration
techniques are an active field of research.71

Another recent field of study is that of optical imaging techniques, more specif-
ically tomographic imaging with visible or near-infrared light. A prerequisite for
this development was the introduction of new light sources (specifically, lasers) and
new mathematical models to describe photon propagation in diffusive tissues.12,23

Unlike x-ray and CT imaging, visible light does not travel along a straight path
in tissue because of the high scattering coefficient of tissue and because of tissue
regions with different refractive index. Optical coherence tomography (OCT)39 is
often considered the optical equivalent of ultrasound imaging because the image is
composed of A-mode scans. OCT has a low penetration depth of a few millimeters,
but it provides good spatial resolution. Optical coherence tomography has found
wide application in dermatology and ophthalmology (see reviews22,38,63,68,84), but
its poor signal/noise ratio calls for advanced image enhancement methods. Optical
transillumination tomography, the optical equivalent of CT, faces major challenges
because of refractive index changes along the light rays. Progress has been made
to use optical transillumination tomography to image bone and soft tissues,74,87 but
spatial resolution and contrast remain limited. Attempts have been made to cor-
rect the refractive index mismatch in software30 and to reject scattered photons,11,34

but major improvements are needed before this modality enters medical practice.
The third major optical tomography method is diffuse optical tomography.27 Its
main challenge is the mathematical modeling of light-wave propagation, which is a
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prerequisite for image reconstruction.16 Presently, diffuse optical tomography re-
quires crucial improvements in spatial resolution and signal-to-noise ratio before it
becomes applicable in biomedical imaging. These challenges notwithstanding, op-
tical imaging methods enjoy strong research efforts because they promise fast and
radiation-free image acquisition with relatively inexpensive instrumentation.

A special focus of imaging and image analysis is the brain. Brain imaging studies
have been driven in part by the availability of MRI, which does not expose study
subjects to ionizing radiation, and in part by functional imaging techniques, which
make it possible to localize areas of brain activity.40,83 Another important subject
is the development of anatomical brain atlases, which allow mapping of images
with high interindividual variability onto known anatomical models.3,56 Although
our understanding of the brain is still rudimentary, biomedical imaging has helped
enormously to find the loci of brain activity, to understand cognitive functions, and
to link images to disease (see pertinent articles and reviews5,7,46,52,66).

On the general image processing side, new methods and operators of higher
complexity also tend to be more application- and modality-specific. Three recent
articles highlight the challenges: Masutani et al.50 review image modalities and
image processing methods specifically for the diagnosis and treatment of liver
diseases; Hangartner31 demonstrates how a key step in segmentation—threshold
selection—affects the quantitative determination of density and geometry in CT im-
ages; and Sinha and Sinha70 present MRI-based imaging techniques for breast lesions.
All three examples have in common the fact that the methods and conclusions cannot
readily be translated into other modalities or applications. The main reason for this
very common phenomenon is the inability of computers to understand an image in the
same way that a human observer does. A computer typically examines a limited pixel
neighborhood and attempts to work its way up toward more global image features.
Conversely, a human observer examines the entire scene and discovers features in the
scene in a top-down approach. The problem of image understanding, allowing com-
puters to recognize parts of an image similar to the way that a human observer does,
has been approached with algorithms that involve learning8 and, more recently, with
a top-down analysis of statistical properties of the scene layout57 and with imitation
of the human visual system through genetic algorithms.88 Image understanding is not
limited to biomedical imaging but also affects related fields of computer vision and
robotics and is therefore another area of intensive research.

Related to image understanding is the problem of image segmentation. Meaning-
ful unsupervised image segmentation requires certain image understanding by the
computer. The scope of most image segmentation algorithms is limited to special
cases (e.g., where the object of interest differs in intensity from the background). The
main reason is the extreme variability of medical images, which makes it difficult
to provide a consistent definition of successful segmentation. Learning algorithms,
artificial neural networks, and rule-based systems are examples of state-of-the art
approaches to segmentation.17,90 More recently, new methods to compare segmen-
tation algorithms objectively have been proposed,81 and a database with benchmark
segmentation problems has been created.49 These examples illuminate the present
search for a more unified segmentation paradigm.
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The development of new filters is another area of research. Early spatial- and
frequency-domain filters used fixed filter parameters. Subsequently, filter parameters
became dependent on the local properties of the image. These filters are called
adaptive filters. Many recently developed filters are tuned toward specific modalities,
with examples such as a noise filter for charge-coupled-device (CCD) cameras,21

an adaptive filter to remove noise in color images,47 a speckle reduction filter for
optical coherence tomography,58 or a fuzzy filter for the measurement of blood flow
in phase-contrast MRI.76 Novel filters are highly sought after because a good filter can
often make possible an otherwise impossible segmentation and quantification task.

A final example for emerging areas in image processing is the use of image
data for modeling. The use of finite-element models to predict bone strength80 is
a particularly good example because CT image values depend strongly on mineral
content, and it is hypothesized that bone strength and mineral content are strongly
related. However, those models need further improvement before they become use-
ful in clinical practice.4 Image-based computational fluid dynamics can be used to
compute blood flow and wall shear stress in arteries that are frequently affected by
arteriosclerosis.86 One recent example is a study by Sui et al.75 in which MR images
of the carotid artery were used to calculate wall shear stress. Experiments with cell
culture indicate that shear stress gradients enhance cell proliferation and therefore
contribute to arteriosclerosis,85 and image-based flow simulations are a suitable tool
to further elucidate the disease and perhaps aid in the prediction and early diagnosis
of arteriosclerosis.77

1.4. ABOUT THIS BOOK

The overall aim of this book is to provide the reader with a comprehensive reference
and self-study guide that covers advanced techniques of quantitative image analysis
with a focus on biomedical applications. The book addresses researchers, profes-
sionals, teachers, and students in all areas related to imaging. Ideally, the reader has
some prior basic knowledge of image processing. Any reader who has an interest
or involvement in imaging may use this book for a conceptual understanding of the
subject, and to use equipment and software more efficiently. The reader will gain an
overview of advanced image analysis techniques that were recently established or are
still in active research, and the book illuminates the inner workings of image process-
ing software, which often comes with such imaging devices as scientific cameras,
microscopes, CT scanners, and optical coherence tomography devices. Furthermore,
readers will gain the ability to understand and use the algorithms in a meaningful way
and the ability to design their own algorithms based on understanding gained from
this book. Readers with programming experience in C, C++, Python, Java, Matlab,
or other languages can use this book to implement and refine custom algorithms for
advanced image processing and unsupervised analysis. A survey of software pro-
grams for image analysis and image visualization is provided in Chapter 14, and the
focus is placed on free software such as ImageJ and OpenDX, which the reader can
freely download and put to immediate use.
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Each chapter provides the mathematical background for an image processing op-
erator with the purpose of explaining how it works. We then proceed to applications
and limitations and to their realization in software. For key algorithms, a pseudocode
implementation is provided. The pseudocode can be translated readily into many
programming languages and is also well suited to explain the “inner workings” of an
image processing operator. In addition, each chapter includes application examples
in the biomedical field. Although the application focus is biomedical, the methods
described are not restricted to the biomedical field. Some areas in which advanced im-
age analysis plays a key role are satellite imaging, oceanography, environmental and
geological sciences, soil sciences, anthropology, forensic sciences, and astronomy.

It was mentioned that a basic understanding of image processing is beneficial for
readers of this book. Several books are available that provide such a basic under-
standing. Two notable examples are an image processing handbook by Russ65 and
a medical imaging book by Dougherty.19 The main strength of the first book de-
rives from the numerous examples from various imaging-related fields, and the main
strength of the second book is its combined coverage of medical imaging modalities
and medical image processing.

In the present book, the topics follow the outline given in Section 1.2. Chapter 2
provides an overview of established and fundamental image processing operators
and can be used to review the main topics of basic image processing. In Chapter 3
we introduce the Fourier transform and image filtering in the frequency domain. The
subject of Chapter 3 is fundamental and established, yet its extremely widespread use
and importance warrants detailed coverage in a separate chapter. There is considerable
overlap between Chapters 2 and 3 and the two book examples mentioned above.

In Chapter 4 we introduce the wavelet transform and explain filters that use
the wavelet transform. Unlike the Fourier transform, the wavelet transform retains
spatial information and gives rise to new and very powerful image filters. Since the
introduction of the wavelet transform, wavelet-based filters have rapidly found their
way into mainstream image processing. In Chapter 5 we explain the concepts and
examples of adaptive filters. Spatial-domain filters were introduced in Chapter 2,
but conventional filters have fixed parameters. Adaptive filters adjust their filter
parameters to local image properties and can achieve a superior balance between
noise removal and detail preservation.

Chapters 6 and 7 present two different approaches to segmentation: active contours
and the Hough transform. Active contours (the two-dimensional versions are referred
to as “snakes”) are physical models of energy functionals that use image features
as an external energy term. An active contour behaves like a rubber band that snaps
onto prominent image features such as edges. Active contours are generally used as
supervised segmentation methods that yield a parametric representation of a shape.
The Hough transform (Chapter 7) is a popular method used to find parametric shapes
in images, such as lines, circles, or ellipses. The strength of the Hough transform is
that the shape does not need to be complete, and the transform can be used to find
the shape even if the image is strongly corrupted by noise.

Chapters 8, 9, and 10 present advanced techniques for image quantification. In
Chapter 8 we explain methods for texture analysis and texture quantification. Texture
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refers to local gray-scale variations in an image, and texture information can be
used for feature extraction, segmentation, and for quantitative analysis that is, for
example, related to a diagnosis. Analogously, in Chapter 9 we explain methods used
to describe and classify the shape of segmented objects. Texture and shape analysis
are very powerful tools for extracting image information in an unsupervised manner.
In many images, structures exhibit some apparent self-similarity; that is, a shape
or texture repeats itself on smaller scales. Self-similarity is related to the fractal
dimension, and fractal methods have been used widely to quantify medical images.
In Chapter 10 we provide an introduction, overview, and in-depth analysis of fractal
methods for shape and texture quantification.

Chapters 11 and 12 are more focused on special biomedical problems. In Chap-
ter 11 we explain the principles of image registration, that is, methods used to match
the exact resolution and spatial position of two images that were taken with differ-
ent modalities or with the same modality when a patient shifted. As multimodality
imaging grows even more popular, image registration gains in importance. Image
compression, storage, and transportation are covered in Chapter 12. Medical imaging
produces an exponentially increasing volume of data through a growing number of
medical procedures and higher resolution. With archiving required and telemedicine
evolving, approaches to handling increasing data volumes are introduced in Chap-
ter 12.

Chapter 13 covers image visualization, an important step in preparing an image
for analysis by a human observer. The image can be two- or three-dimensional,
or it can be a time-course sequence. Depending on the application, brightness and
contrast manipulation, false coloring, and three-dimensional rendering can emphasize
important aspects of an image and facilitate the analysis task of a human observer.

Chapter 14 provides a link to the practical application of topics covered in the book.
A number of software programs for image processing, analysis, and visualization are
presented briefly. Two popular packages, ImageJ and OpenDX, are covered in more
detail, as is Crystal Image, the author’s software on the accompanying DVD. This
software was used to create most of the examples in this book and to test the algorithms
covered in the book. Most of the software in Chapter 14 is free and can be downloaded
and put to use immediately.

With these elements, the book provides a solid and in-depth foundation toward un-
derstanding advanced image analysis techniques and developing new image analysis
operators.

REFERENCES

1. Bardeen J, Brattain WH. The transistor, a semi-conductor triode. Phys Rev 1948;
74(2):230–231.

2. Bezdek JC, Hall LO, Clark MC, Goldgof DB, Clarke LP. Medical image analysis with
fuzzy models. Stat Methods Med Res 1997; 6(3):191–214.

3. Bohm C, Greitz T, Thurfjell L. The role of anatomic information in quantifying functional
neuroimaging data. J Neural Transm Suppl 1992; 37:67–78.



P1: OTA/XYZ P2: ABC
c01 JWBS035-Haidekker August 26, 2010 7:56 Printer Name: Yet to Come

18 IMAGE ANALYSIS: A PERSPECTIVE

4. Bonnick SL. Noninvasive assessments of bone strength. Curr Opin Endocrinol Diabetes
Obes 2007; 14(6):451–457.

5. Brown GG, Eyler LT. Methodological and conceptual issues in functional magnetic res-
onance imaging: applications to schizophrenia research. Annu Rev Clin Psychol 2006;
2:51–81.

6. Brownell GH, Burnham CA. MGH positron camera. In: Freedman GS, editor. Tomographic
Imaging in Nuclear Medicine. New York: Society for Nuclear Medicine, 1972; 154–164.

7. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural
and functional systems. Nat Rev Neurosci 2009; 10(3):186–198.

8. Caelli T, Bischof WF. Machine learning paradigms for pattern recognition and image
understanding. Spat Vis 1996; 10(1):87–103.

9. Cagnoni S, Bergenti F, Mordonini M, Adorni G. Evolving binary classifiers through
parallel computation of multiple fitness cases. IEEE Trans Syst Man Cybern B 2005;
35(3):548–555.

10. Chan HP, Sahiner B, Helvie MA, Petrick N, Roubidoux MA, Wilson TE, Adler DD,
Paramagul C, Newman JS, Sanjay-Gopal S. Improvement of radiologists’ characterization
of mammographic masses by using computer-aided diagnosis: an ROC study. Radiology
1999; 212(3):817–827.

11. Chen K, Perelman LT, Zhang Q, Dasari RR, Feld MS. Optical computed tomography in a
turbid medium using early arriving photons. J Biomed Opt 2000; 5(2):144–154.

12. Colak SB, Papaioannou DG, ’t Hooft GW, van der Mark MB, Schomberg H, Paasschens
JCJ, Melissen JBM, van Asten NAAJ. Tomographic image reconstruction from optical
projections in light-diffusing media. Appl Opt 1997; 36(1):180–213.

13. Cormack AM. Representation of a function by its line integrals, with some radiological
applications I. J Appl Phys 1963; 34(9):2722–2727.

14. Cormack AM. Representation of a function by its line integrals, with some radiological
applications II. J Appl Phys 1964; 35(10):2908–2913.

15. Danielson GC, Lanczos C. Some improvements in practical Fourier analysis and their
applications to x-ray scattering from liquids. J Franklin Inst 1942; 233:365–380.

16. Dehghani H, Srinivasan S, Pogue BW, Gibson A. Numerical modelling and image recon-
struction in diffuse optical tomography. Philos Trans A 2009; 367(1900):3073–3093.

17. Dhawan AP. Medical Image Analysis. Piscataway, NJ: IEEE Press, 2003.

18. Dijkstra EW. A note on two problems in connection with graphs. Numer Math 1959;
1:269–271.

19. Dougherty G. Digital Image Processing for Medical Applications. Cambridge, UK: Cam-
bridge University Press, 2009.

20. Faggin F, Hoff ME, Mazor S, Shima M. The history of the 4004. IEEE Micro 1996;
16(6):10–20.

21. Faraji H, MacLean WJ. CCD noise removal in digital images. IEEE Trans Image Process
2006; 15(9):2676–2685.

22. Farkas DL, Becker D. Applications of spectral imaging: detection and analysis of human
melanoma and its precursors. Pigment Cell Res 2001; 14(1):2–8.

23. Franceschini MA, Moesta KT, Fantini S, Gaida G, Gratton E, Jess H, Mantulin WW, Seeber
M, Schlag PM, Kaschke M. Frequency-domain techniques enhance optical mammography:
initial clinical results. Proc Natl Acad Sci U S A 1997; 94(12):6468–6473.



P1: OTA/XYZ P2: ABC
c01 JWBS035-Haidekker August 26, 2010 7:56 Printer Name: Yet to Come

REFERENCES 19

24. Galloway MM. Texture analysis using gray level run lengths. Comput Graph Image Process
1975; 4:172–179.

25. Genant HK, Ettinger B, Harris ST, Block JE, Steiger P. Radiology in osteoporosis. In:
Riggs BL, Melton J, editors. Osteoporosis: Etiology, Diagnosis, and Management. New
York: Raven, 1988:221–249.

26. Ghosh A, Shankar BU, Meher SK. A novel approach to neuro-fuzzy classification. Neural
Netw 2009; 22(1):100–109.

27. Gibson A, Dehghani H. Diffuse optical imaging. Philos Trans A 2009; 367(1900):
3055–3072.

28. Gil J, Wu HS. Applications of image analysis to anatomic pathology: realities and promises.
Cancer Invest 2003; 21(6):950–959.

29. Guglielmi G, Gluer CC, Majumdar S, Blunt BA, Genant HK. Current methods and ad-
vances in bone densitometry. Eur Radiol 1995; 5(2):129–139.

30. Haidekker MA. Optical transillumination tomography with tolerance against refraction
mismatch. Comput Methods Programs Biomed 2005; 80(3):225–235.

31. Hangartner TN. Thresholding technique for accurate analysis of density and geometry in
QCT, pQCT and microCT images. J Musculoskel Neuronal Interact 2007; 7(1):9–16.

32. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE
Trans Syst Man Cybern 1973; 3(6):610–621.

33. Hay R, Cao B, Tsarfaty I, Tsarfaty G, Resau J, Woude GV. Grappling with metastatic risk:
bringing molecular imaging of Met expression toward clinical use. J Cell Biochem Suppl
2002; 39:184–193.

34. Hebden JC, Arridge SR, Delpy DT. Optical imaging in medicine: I. Experimental tech-
niques. Phys Med Biol 1997; 42(5):825–840.

35. Hedrick TL. Software techniques for two- and three-dimensional kinematic measurements
of biological and biomimetic systems. Bioinspir Biomim 2008; 3(3):34001.

36. Hough PVC. Method and means for recognizing complex patterns. US patent 3,069,654.
1962.

37. Hounsfield GN. Computerized transverse axial scanning (tomography): 1. Description of
system. Br J Radiol 1973; 46(552):1016–1022.

38. Hrynchak P, Simpson T. Optical coherence tomography: an introduction to the technique
and its use. Optom Vis Sci 2000; 77(7):347–356.

39. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR,
Flotte T, Gregory K, Puliafito CA. Optical coherence tomography. Science 1991;
254(5035):1178–1181.

40. Jezzard P, Buxton RB. The clinical potential of functional magnetic resonance imaging.
J Magn Reson Imaging 2006; 23(6):787–793.

41. Jones MJ, Koeneman KS. Local-regional prostate cancer. Urol Oncol 2008;
26(5):516–521.

42. Kak AC, Slaney M. Principles of Computerized Tomographic Imaging. New York: IEEE
Press, 1988. Electronic edition, 1999.

43. Kirsch R. Computer determination of the constituent structure of biological images. Com-
put Biomed Res 1971; 4:315–328.

44. Klenk JA. Characteristics and value of machine learning for imaging in high content
screening. Methods Mol Biol 2007; 356:83–94.



P1: OTA/XYZ P2: ABC
c01 JWBS035-Haidekker August 26, 2010 7:56 Printer Name: Yet to Come

20 IMAGE ANALYSIS: A PERSPECTIVE

45. Lachenbruch PA. Discriminant Analysis. New York: Hafner, 1975.

46. Liu PK, Mandeville JB, Guangping D, Jenkins BG, Kim YR, Liu CH. Transcription MRI:
a new view of the living brain. Neuroscientist 2008; 14(5):503–520.

47. Ma Z, Wu HR, Feng D. Partition-based vector filtering technique for suppression of noise
in digital color images. IEEE Trans Image Process 2006; 15(8):2324–2342.

48. Marengo E, Robotti E, Antonucci F, Cecconi D, Campostrini N, Righetti PG. Numerical
approaches for quantitative analysis of two-dimensional maps: a review of commercial
software and home-made systems. Proteomics 2005; 5(3):654–666.

49. Martin D, Fowlkes C, Tal D, Malik J. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics.
Proc 8th Intl Conf Comput Vis 2001; 2: 416–423.

50. Masutani Y, Uozumi K, Akahane M, Ohtomo K. Liver CT image processing: a short
introduction of the technical elements. Eur J Radiol 2006; 58(2):246–251.

51. Mawlawi O, Townsend DW. Multimodality imaging: an update on PET/CT technology.
Eur J Nucl Med Mol Imaging 2009; 36 (Suppl 1):S15–S29.

52. May A, Matharu M. New insights into migraine: application of functional and structural
imaging. Curr Opin Neurol 2007; 20(3):306–309.

53. Mironov S, Akin O, Pandit-Taskar N, Hann LE. Ovarian cancer. Radiol Clin North Am
2007; 45(1):149–166.

54. Moore CC, McVeigh ER, Zerhouni EA. Quantitative tagged magnetic resonance imaging
of the normal human left ventricle. Top Magn Reson Imaging 2000; 11(6):359–371.

55. Niu G, Cai W, Chen X. Molecular imaging of human epidermal growth factor receptor 2
(HER-2) expression. Front Biosci 2008; 13:790–805.

56. Nowinski WL. The cerefy brain atlases: continuous enhancement of the electronic
talairach-tournoux brain atlas. Neuroinformatics 2005; 3(4):293–300.

57. Oliva A, Torralba A. Building the gist of a scene: the role of global image features in
recognition. Prog Brain Res 2006; 155:23–36.

58. Ozcan A, Bilenca A, Desjardins AE, Bouma BE, Tearney GJ. Speckle reduction in
optical coherence tomography images using digital filtering. J Opt Soc Am A 2007;
24(7):1901–1910.

59. Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial
overview. Neuroimage 2009; 45 (1 Suppl):S199–S209.

60. Radon J. On the determination of functions through line integrals along certain manifolds.
Berlin, Saxon Acad Sci 1917; 29:262–279.

61. Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim OA. Measures of acutance and
shape for classification of breast tumors. IEEE Trans Med Imaging 1997; 16(6):799–810.

62. Regitz W, Karp J. A three transistor-cell, 1024-bit, 500 NS MOS RAM. Proc IEEE Conf
ISSCC 1970; 8: 42–43.

63. Ripandelli G, Coppe AM, Capaldo A, Stirpe M. Optical coherence tomography. Semin
Ophthalmol 1998; 13(4):199–202.

64. Roberts LG. Machine perception of three-dimensional solids. In: Tippet JT, editor. Op-
tical and Electro-optical Information Processing. Cambridge, MA: MIT Press, 1965:
159–197.

65. Russ JC. The Image Processing Handbook, 5th ed. Boca Raton, FL: Taylor & Francis,
2006.



P1: OTA/XYZ P2: ABC
c01 JWBS035-Haidekker August 26, 2010 7:56 Printer Name: Yet to Come

REFERENCES 21

66. Rykhlevskaia E, Gratton G, Fabiani M. Combining structural and functional neuroimag-
ing data for studying brain connectivity: a review. Psychophysiology 2008; 45(2):
173–187.

67. Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM. Computerized characterization
of masses on mammograms: the rubber band straightening transform and texture analysis.
Med Phys 1998; 25(4):516–526.
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2
SURVEY OF FUNDAMENTAL IMAGE
PROCESSING OPERATORS

Many image processing operators covered in this book are based on, or derived from,
more fundamental image processing operators that are in wide use. A survey of these
operators is presented in this chapter to create a foundation on which subsequent
chapters build.

For the purpose of this book, the image is a matrix of spatially discrete image val-
ues. The matrix may be two- or three-dimensional. Higher dimensions are possible,
but images of more than four dimensions are rarely found. Three-dimensional im-
ages may be either volumetric images or time sequences of two-dimensional images
(stacks). Four-dimensional images are generally time sequences of three-dimensional
images. Depending on the modality, the matrix elements may be arranged on an
isotropic grid (i.e., the distance to neighbors is the same in all directions) or anisotrop-
ically. In volumetric image modalities such as computed tomography and magnetic
resonance imaging, the distance to the axial neighbors is often much larger than
the distance to the neighbors in the main image plane. Although the image values
are known only on the discrete coordinates, images are generally represented as if the
image values extend halfway to the nearest neighbor. When images are displayed, the
image values are represented on a gray scale or in color shades. Image representation
is covered in more detail in Chapter 13.

Since computer memory is limited, the image values themselves are also discrete.
It is very common to allocate 8 bits for one image element (termed a pixel, or in
volumetric images, a voxel). Eight bits allow for 28 = 256 discrete values in any
pixel. In-between values are rounded to the nearest allowable 8-bit value. Sometimes,
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image modalities provide a higher bit depth. Some digital cameras provide 10 or
12 bits/pixel. Most computed tomography devices provide 12 bits/pixel. High-quality
scanners used to digitize x-ray film provide up to 16 bits/pixel. Some image process-
ing operations yield fractional values, and floating-point storage for the pixel value is
useful (although few image processing software support floating-point data). How-
ever, even floating-point values have limited precision, and rounding errors need to
be taken into account.

The image formation process also introduces errors, with the consequence that the
pixel value deviates from an ideal but inaccessible image value. Often, it is sufficient
to consider Gaussian blurring and additive noise to model the image formation errors.
A certain degree of blurring can be assumed when a small feature in the object (an
idealized point source) is represented by a broader intensity peak in an image. An
exaggerated example would be the digital photograph of a back-illuminated pinhole
with an out-of-focus lens. The two-dimensional intensity function that is the image
of an idealized point source, called a point-spread function, provides information on
the level of detail that an image modality can provide. Moreover, the sensor elements
and subsequent amplifiers introduce some noise. Often, this noise is sufficiently well
described as an independent deviation of each pixel value from an idealized (but
inaccessible) value by a small random displacement �, whereby the displacements
have zero mean and a Gaussian distribution (additive Gaussian noise). In addition, the
rounding of the (usually analog) measured value to an integer image value introduces
digitization noise.

2.1. STATISTICAL IMAGE DESCRIPTION

When each pixel value is regarded as an independent random process, the overall
probability that a pixel assumes a specific intensity value can be computed. A first-
order histogram is a representation of the intensity counts or probability values. In
the simplest case, the number of pixels with an image value of I are counted and
the counts are displayed over the image value I. Alternatively, the counts divided
by the total number of pixels provide the probability histogram. In some cases it
is impractical to provide individual probabilities for each possible image value. For
example, in an image with 12-bit resolution, 4096 values are possible, with an average
probability of only 0.24%. In such a case, individual values are grouped in bins, and
each bin has a range of, for example, eight consecutive image values. In this example,
the first bin contains the cumulative probability for values 0 through 7, the second
contains the cumulative probability for values 8 through 15, and so on. The details of
histogram computation are given in Algorithm 2.1.

The example histogram shown in Figure 2.1 illustrates the image value distribution
of the image region (without background) of an ultrasound image of the pancreas.
The image values (abscissa) relate to image gray values, as indicated by the gray-
scale gradient underneath the abscissa. Several properties of the image can be obtained
from the histogram. Special histogram values are the image’s minimum and maximum
intensity values, the median value (which divides the area under the histogram into
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// Part 1: Determine image minimum and maximum values and bin size
nbins=256; // Specify number of bins
imin=IM(0,0); imax=imin; // initial values
for (y=0 while y�ymax increment y=y+1)

for (x=0 while x�xmax increment x=x+1)
if (imin>IM(x,y)) then imin=IM(x,y);
if (imax�IM(x,y)) then imax=IM(x,y);

endfor;
endfor;
delta = nbins/(imax-imin); // delta = size of one bin

allocate histx[nbins], histy[nbins],
histc[nbins]; // Create space for

histogram tables

// Part 2: Sum up image values to get histogram

for (y=0 while y�ymax increment y=y+1)
for (x=0 while x�xmax increment x=x+1)

bin = (IM(x,y)-imin)*delta;
if ((bin>=0) and (bin�nbins)) then // Ensure that we don’t

have a runaway bin number
histy[bin] = histy[bin]+1; // Increment that bin

endif;
endfor;

endfor;

// Part 3: Normalize histogram and compute the bin center in histx
// and also compute the cumulative histogram in histc

cumul=0;
for (i=0 while i�nbins increment i=i+1)

histy[i] = histy[i] / (xmax*ymax); // normalization
cumul = cumul+histy[i];
histc[i] = cumul; // cumulative histogram
histx[i] = imin + (i+0.5)*delta; // bin center

endfor;

Algorithm 2.1 Computation of an image histogram. The input image IM(x,y)
with size xmax and ymax is not restricted to 8 bits and may have arbitrary values.
Therefore, a number of bins, nbins, must be specified. The output is a table with
the x values (bin center values) in histx and the y values (probabilities) in histy.
A cumulative histogram is computed in histc.
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FIGURE 2.1 Example of a histogram. Shown is the gray-value distribution of an ultrasound
image of the pancreas of a healthy volunteer (inset). Underneath the abscissa is a gray-value
gradient that relates the image value to the gray shade. Two prominent values exist in a
histogram: the median value, which splits the area under the histogram into two equal parts,
and the mode value, the image value with the highest incidence. In addition, the mean value
is indicated, but the mean value is not obvious from the histogram. The solid, monotonically
increasing line (right y-axis) represents the cumulative histogram (i.e., the area under the
histogram).

two equal parts), the mode value (the peak value of the histogram), and information
on how the image values are distributed: for example, in a Gaussian or hyperbolic
shape. In this example, the histogram is not Gaussian in shape but, rather, is skewed
to the right. Two additional important values are the mean value � and the standard
deviation �:

µ = 1

N

Imax∑
i=0

ini �2 = 1

N

Imax∑
i=0

(i − µ)2ni (2.1)

where i indicates intensity values ranging from 0 to Imax and ni is the number of pixels
with the intensity value i. With N being the total number of pixels, the value of ni/N is
the probability of intensity i. The mean intensity � coincides with the median value
only in perfectly symmetric histograms. The standard deviation provides information
about the intensity spread. Particularly in digital photography (and related image
sources such as light microscopy), the histogram provides instant information about
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the quality of the exposure. Images with low contrast have narrow histograms. Broad
histograms indicate images with good contrast because they make good use of the
image value range available. Figure 2.1 also shows the cumulative histogram Nc(I),
defined as

Nc(I ) =
I∑

i=0

ni (2.2)

The function Nc(I) increases monotonically with I. A histogram with broadly dis-
tributed values shows a cumulative histogram with a homogeneous slope, while
histograms with narrow regions of high probability have few sections with a steep
slope and wide regions with almost zero slope, as is the case toward the high-intensity
values in Figure 2.1.

We mentioned in Chapter 1 that image values often have physical relevance
depending on the medical image modality. An example can be seen in Figure 2.2.
Shown is the histogram of image values in a computed tomography slice of the
chest. The image values are calibrated in Hounsfield units (HU), a metric for x-ray
absorption relative to water as defined by

I (HU) = 1000 · µ − µwater

µwater
(2.3)

where I is the image value in Hounsfield units, � the corresponding x-ray absorption
coefficient, and �water the x-ray absorption coefficient of water. Under this definition,

FIGURE 2.2 Sample histogram of a CT slice of the chest (inset). The image values are given
in Hounsfield units (HU), and a gray-scale gradient below the abscissa relates image values to
gray tones. The peak closest to −1000 HU represents the lung interior, which is mostly air.
The two peaks around 0 HU represent adipose and muscular tissue.
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water has 0 HU and air has −1000 HU. Since most of the image area covers air
(outside the patient, inside the lungs), the most prominent peak is near −1000 HU,
and its slight shift toward higher values is caused by the lung tissue. The other two
peaks are related to adipose tissue and muscle tissue, respectively. Adipose tissue
ranges from about −30 to −200 HU, and muscle tissue lies between 50 and 150
HU. Bone has high HU values, ranging typically from 300 to 1000 HU, but not
enough bone is present in the image to cause a noticeable histogram peak. The bins
of the histogram in Figure 2.2 are 22 HU wide, and a total of 90 bins are displayed. A
histogram such as the example in Figure 2.2 is called multimodal, because each entity
(i.e., air, tissues) has its own distinct histogram mode. In such a case, suitable threshold
values can be determined to separate the features by image intensity. Intensity-based
thresholding is covered in Section 2.4.

2.2. BRIGHTNESS AND CONTRAST MANIPULATION

Software for viewing images often makes it possible to manipulate brightness and
contrast. The displayed image values are remapped by applying a linear or nonlinear
function f in a manner that

I ′(x,y) = f

(
I (x,y) − Imin

Imax − Imin

)
Dmax (2.4)

where I(x,y) is the original image value, I′(x,y) the remapped image value, and Imin

and Imax the smallest and largest intensity values in the histogram, respectively. The
argument of f is the image value, normalized to the range 0 to 1, and f would
typically return values in the same range. Dmax is the maximum allowable image
value in the display unit. Most display units (such as computer monitors and printers)
allow the value to range from 0 (black) to 255 (white), and consequently, Dmax =
255. In medical imaging, the contrast or brightness function is often referred to as a
window or center. These functions are frequently used for visualization purposes and
do not change the actual image values. A closer look at manual contrast enhancement
functions is provided in Section 13.1.

Image contrast can also be enhanced permanently. In this case the original image
value is replaced by the remapped value computed by Equation (2.4). In the simplest
case of contrast enhancement, a narrow histogram can be broadened by histogram
stretching, a technique whereby image values are remapped according to the equation

I ′(x,y) = I (x,y) − Imin

Imax − Imin
M (2.5)

where M determines contrast. If M coincides with Dmax in Equation (2.4), no contrast
enhancement takes place. If M becomes larger than Dmax, the histogram becomes
stretched and its center contrast is amplified. With this amplification, some image
values may fall outside the permissible value range and need to be clamped (satura-
tion). Due to the discrete nature of the image values, the remapped histogram will be
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sparse, with many values that do not occur in the remapped image. Although contrast
is enhanced, no information is gained.

A related remapping operation creates a histogram with approximately equal
probabilities for all values; this operation is defined as

I ′ =
I∑

i=0

P(i) (2.6)

where the intensity I gets remapped to the new intensity I′ and P(i) is the histogram
probability of intensity i. The remapping function defined in Equation (2.6) is de-
signed to provide the most uniform slope possible in the cumulative histogram with
the given image value distribution. An implementation for the histogram equalization
operation is given in Algorithm 2.2.

// Part 1: Set up a translation table
allocate xlat[nbins]; // image value translation table
for (i=0 while i�nbins increment i=i+1)

xlat[i] = histc[i]*(imax-imin)+imin;
endfor;

// Part 2: Run over the entire image and translate image values. Interpolate between bins.

for (y=0 while y�ymax increment y=y+1)
for (x=0 while x�xmax increment x=x+1)

buf = IM(x,y); // Extract image value to manipulate
bin = int((buf - imin)*delta); // the bin number (integer)
t = (buf - (bin/delta+imin))*delta; // for interpolation, 0 ≤ t � 1
buf = (1-t)*xlat[bin]+t*xlat[bin+1]; // replacement value
IM(x,y) = buf; // Actually replace the image

endfor; value
endfor;
delete (xlat); // translation table no longer needed

Algorithm 2.2 Histogram equalization as an example of image value remapping
[Equation (2.6)]. This algorithm relies on the computation of histc, the cumulative
histogram, as well as imin, imax, delta, and nbins in Algorithm 2.1. The input
image IM(x,y), with size xmax and ymax, is the same as for Algorithm 2.1, and its
values get modified by the histogram equalization process. Note that the final value
of buf needs to be rounded if IM(x,y) has integer discretization.

2.3. IMAGE ENHANCEMENT AND RESTORATION

Image enhancement and restoration use similar operators but are driven by differ-
ent goals. Image restoration is a process specifically designed to counteract known
image degradation: for example, to improve the overall point-spread function of an
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image. Image enhancement is a user-driven process to meet specific image quality
criteria: for example, noise reduction, sharpening, or edge enhancement. Operators
for image enhancement and restoration are called filters. Two different types of filters
exist: spatial-domain filters, which are generally based on convolution operations,
and frequency-domain filters, which apply a defined frequency-response function.
Frequency-domain filters are covered in more detail in Section 3.2; in this section we
focus on convolution-based filters. The one-dimensional convolution of a function
f (t) with another function, g(t), often referred to as the kernel, is defined as

( f � g)(t) =
∫ ∞

−∞
f (τ)g(τ − t) dτ (2.7)

where the symbol � indicates the convolution operation. The integral in Equation
(2.7) needs to be evaluated for all possible values of t. It can be seen from the equation
that f and g are shifted against each other for different values of t. The center of the
function g is always where t = � , and the center of f is always where � = 0. The
convolution operation becomes more intuitive in the discrete form, particularly when
a kernel with finite support (−m to +m) is assumed:

( f � g)k =
k+m∑

i=k−m

fi gi−k (2.8)

Let us assume two kernel examples, with m = 1 in both cases. For kernel g1, the
element at index −1 is 0.25, the element at index 0 is 0.5, and the element at index 1 is
0.25. Kernel g2 contains the elements −1, 0, and 1 at index −1, 0, and 1, respectively.
With m = 1, the summation takes place for i = k − 1, k, and k + 1. In this special
case, the convolution in Equation (2.8) becomes the summation

( f � g1)k = 0.25 fk−1 + 0.5 fk + 0.25 fk+1

( f � g2)k = − fk−1 + fk+1 (2.9)

The first example, with kernel g1, is a moving-window weighted average; the kth
element of the convolution result is computed from the weighted average of the kth
element of the original time series and its two neighbors. The second example, with
kernel g2, turns out to be a central-difference formulation that computes the first
derivative except for a scaling factor.

In two dimensions, the convolution equation extends to

( f � g)x,y =
y+m∑

j=y−m

x+m∑
i=x−m

I (i, j)g(i − x, j − y) (2.10)

where I(x,y) is the original image convolved with a two-dimensional kernel g that
has (2m + 1)2 elements. Depending on the kernel, convolution operations can be
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used, for example, to reduce noise, to sharpen the image, or to extract edges. Most
often, the kernel g is quadratic and symmetric, so that the convolution becomes
rotation-independent. The moving-average kernel, introduced in one dimension above
[Equation (2.9)], can be extended to two dimensions and becomes

G(x,y) = 1

16

⎡
⎣ 1 2 1

2 4 2
1 2 1

⎤
⎦ (2.11)

This kernel is a rough approximation of a Gaussian function with a standard deviation
� = 1.2, restricted to a 3 × 3 support and represented by integer elements. Note that
the kernel is normalized so that the sum of its elements is unity. This normalization
is necessary to conserve the amplitude of the image convolved with this kernel.
Another consideration is the behavior of the convolution at the edges of the image.
When a 3 × 3 kernel is used, the computation of the first and last image rows
and columns requires that we access image values outside the image range (e.g., at
x = −1 and y = −1). Since image data at these coordinates generally are not available,
edge behavior needs to be defined. Four different methods are commonly used. In the
first method, all values outside the image area can simply be assumed to be zero. This
zero-padding method, although very simple to implement, has the disadvantage that it
tends to create a discontinuity at the image edge. This discontinuity would negatively
affect smoothing filters or edge detectors. Alternatively, a second method continues
the closest edge value. Under this assumption, for example, I(x,y) = I(0,y) for all
x � 0. This edge definition is frequently implemented, as it has minimal negative
effects on convolution filters. The third alternative is a mirror definition; that is, in the
example of the left boundary, I(x,y) = I(−x,y) for all x � 0. This boundary definition
replicates the texture irregularity (e.g., frequency components, noise) of the pixels
near the boundary. In most cases it behaves in a manner very similar to the second
definition. A fourth definition “tiles” the image, that is, I(x,y) = I(x + N, y) for all
−N � x � 0, where N is the number of pixels in the x-direction. This edge definition
is not commonly used except in some cases where the periodicity assumption that
underlies the Fourier transform plays an important role. The main disadvantage of the
fourth definition is the possible occurrence of discontinuities at the boundary, very
much like the zero-padding method.

The kernel in Equation (2.11) is commonly used for weak noise reduction and
moderate blurring, and the convolution with this kernel is often referred to as a
smoothing operation. Stronger smoothing is possible with different kernel values to
approximate Gaussian functions with larger standard deviations. When staying within
the 3 × 3 confines of commonly used kernels, the extreme case would consist of a
kernel with G(x,y) = 1 for all x,y inside the 3 × 3 support and a normalization factor
of 1

9 . Although this “box kernel” has a stronger smoothing action than the kernel
in Equation (2.11), its frequency response shows undesirable characteristics. The
convolution theorem (see Section 3.2) stipulates that a convolution of two functions
corresponds to multiplication of the Fourier transforms of these functions. As can
be seen in Figure 2.3, the box kernel with its abrupt transition from 1 to 0 has a
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FIGURE 2.3 Frequency responses of the Gaussian and the box smoothing kernel. While
the box kernel shows a steeper drop-off near low spatial frequencies (� = 0), it completely
suppresses certain frequencies and allows higher frequencies to pass again. The Gaussian
kernel has less smoothing action, but it does not show undesirable behavior in the stopband.

steeper transition from the low frequencies H(�) = 1 (those that are allowed to pass,
the passband) to higher frequencies (those that are stopped, the stopband). However,
after the box kernel reaches zero and fully suppresses the associated spatial frequency,
even higher frequencies are allowed to pass again, albeit attenuated. The Gaussian
kernel does not exhibit this behavior. The frequency response drops monotonically
toward higher frequencies, although it drops off slower than the box kernel, and
therefore its filtering action is weaker. To avoid the undesirable frequency response
of the box kernel, yet provide a stronger filter with a steeper transition from the
passband to the stopband, a larger kernel size is necessary to allow a smooth drop-off
of the kernel values while allowing a large standard deviation. A suggested Gaussian
approximation with a kernel size of 5 × 5 computed from a Gaussian function with
a standard deviation of � = 1.7 is

G(x,y) = 1

164

⎡
⎢⎢⎢⎢⎣

1 3 5 3 1
3 10 14 10 3
5 14 20 14 5
3 10 14 10 3
1 3 5 3 1

⎤
⎥⎥⎥⎥⎦ (2.12)

The smoothing action of a convolution with the kernel in Equation (2.12) is stronger
than a convolution with the kernel in Equation (2.11). This conclusion can be reached
by a different consideration. If the kernel in Equation (2.11) is applied twice, the
linearity of the convolution operation allows the identity

(I � g) � g = I � (g � g) (2.13)
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The kernel in Equation (2.11) convolved with itself leads to a 5 × 5 kernel somewhat
similar to the 5 × 5 kernel in Equation (2.12). Even larger smoothing kernels can
be designed in the same manner. However, computational effort for the convolution
increases with the square of the kernel size, specifically with N2m2, where the image
is of size N × N and the kernel is of size m × m. Although the convolution can be
implemented with fast integer operations, filtering in the frequency domain becomes
more efficient when kernel sizes grow very large.

The operation complementary to smoothing is usually referred to as sharpening.
A physical motivation for the design of a sharpening kernel was given by Russ,22

who suggested that blurring can be modeled as a diffusion process that follows the
partial differential equation

∂ I

∂t
= k� I (2.14)

where � is the Laplacian operator and k is the diffusion constant. In its time-discrete
form, Equation (2.14) becomes In+1 = In + �k � In , where � is the time step from
iteration n to n + 1. An approximate reversal of the diffusion process in time would be
In−1 = In − �k � In , where the Laplacian of the blurred image gets subtracted from
the image. The Laplacian operator, or second-derivative operator, can be discretized
by finite differences. One-dimensional kernels of [−1 1 0] and [0 −1 1] realize dis-
crete asymmetrical differences. The difference of the first-order differences becomes
[1 −2 1]. In two dimensions, the Laplacian operator is often approximated by ker-
nel L4 or L8:

L4(x,y) =
⎡
⎣ 0 1 0

1 −4 1
0 1 0

⎤
⎦ L8(x,y) =

⎡
⎣ 1 1 1

1 −8 1
1 1 1

⎤
⎦ (2.15)

To enhance a blurred image, its convolution with the Laplacian kernel gets subtracted
from the image (I ′ = I − k I � L8), and because of the linearity of the convolution,
the operation can be combined into a single convolution with the sharpening kernel
S defined for k = 1:

S(x,y) =
⎡
⎣−1 −1 −1

−1 9 −1
−1 −1 −1

⎤
⎦ (2.16)

In some software packages (NIH Image and ImageJ), the convolution with S in
Equation (2.16) is termed “sharpen more,” and the regular sharpening operation uses
a kernel with weaker action where k = 0.25:

S(x,y) = 1

4

⎡
⎣−1 −1 −1

−1 12 −1
−1 −1 −1

⎤
⎦ (2.17)
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A convolution with a sharpening kernel has a highpass character; that is, high spatial
frequencies get amplified. Small image detail and edges contain high-frequency
components. Therefore, edges become more prominent after a sharpening operation.
In addition, noise gets amplified.

Two more convolution-based filters with a highpass character are unsharp masking
and DoG operators. Unsharp masking is an operation to remove inhomogeneous
background from the image. The image is convolved with a very large Gaussian kernel
so that ideally all detail information is removed by blurring. The blurred image is then
subtracted form the original image. The difference-of-Gaussian (DoG) operator is
closely related to the Laplacian operator. Again, larger kernel sizes are used. The DoG
kernel is a Gaussian function with lower peak value and larger standard deviation
subtracted from another Gaussian function that has a smaller standard deviation and
a larger peak value.

The noise-amplifying property of highpass filters is even more pronounced with
the Laplacian kernel L in Equation (2.15). For this reason, a convolution with L rarely
yields satisfactory results. However, Gaussian smoothing (for noise reduction) and
computation of the second derivative with the Laplacian operator can be combined
into a commonly used edge detection method, the Laplacian-of-Gaussian (or LoG)
operator. An image first gets convolved with a large Gaussian kernel, and the result
is convolved with the Laplacian. With the linearity of the convolution operation,
the Gaussian and Laplacian kernels can be joined into a precomputed LoG kernel.
Because a strong smoothing action is desired, LoG kernels are usually large. The
principle of the LoG-based edge detector is demonstrated in Figure 2.4. It is fun-
damental to have strong blurring to create a soft transition instead of a sharp edge.
This does not only suppress noise. The second derivative of the blurred edge crosses

FIGURE 2.4 Edge detection with the Laplacian-of-Gaussian (LoG) operator. A discontinu-
ity (edge) is blurred by a convolution with a Gaussian kernel. The second derivative of the
blurred edge crosses through zero exactly at the position of the edge.
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lx=int(kx/2); ly=int(ky/2); // kernel offset values
allocate IM2[xmax,ymax]; // Prepare space for output image
w=0; // Prepare kernel weight
for (y=0 while y�ky increment y=y+1)

for (x=0 while x�kx increment x=x+1)
w = w+K(x,y);

endfor;
endfor;

// Run over the entire image. For each pixel, compute neighborhood sum with kernel.

for (y=0 while y�ymax increment y=y+1)
for (x=0 while x�xmax increment x=x+1)

// This is the inner summation loop that realizes Equation (2.10)

sum=0;
for (y1=y-ly while y1�=y+ly increment y1=y1+1)

for (x1=x-lx while x1�=x+lx increment x1=x1+1)
x2=x1; y2=y1;
if (x1�0) then // edge handling for x
x2=0;

elseif (x1>=xmax) then
x2=xmax-1;

endif;
if (y1�0) then // edge handling for y
y2=0;

elseif (y1>=ymax) then
y2=ymax-1;

endif;
sum = sum + IM(x2,y2)*K(x1-x+lx,y1-y+ly);

endfor;
endfor;

// Store the convolution result (weighted sum) for this pixel

IM2(x,y) = sum/w;

endfor;
endfor;

Algorithm 2.3 Convolution of an image IM(x,y) with a kernel K(x,y). The
image size is xmax and ymax. The kernel size is kx and ky, both of which need to
be odd-valued integers. A convolution cannot be performed in-place. Therefore, the
result is stored in IM2(x,y). At the image edges, the image is assumed to continue
its edge value indefinitely. The kernel does not need to be normalized; this is handled
with the variable w. The kernel K(x,y) needs to be filled with values in advance:
for example, from Equation (2.11) or (2.15).
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through zero at the location of the edge, and a wider (less steep) transition allows for
easier detection of the zero-valued edge points. An example of how a convolution of
an image with an arbitrary kernel can be implemented is shown in Algorithm 2.3.

Edge enhancement and edge detection are very important operations in image pro-
cessing. Many edge detection operators were devised early in the age of computerized
image processing, and most build on finite differences. In all cases, special provisions
are taken to ensure that edges are enhanced irrespective of their orientation. One of the
earliest edge detectors is Roberts’ cross,21 a finite-difference operator that computes
two gradients, G1 and G2, in perpendicular directions by using forward differences:

G1(x,y) = √
I (x + 1, y + 1) − √

I (x,y)

G2(x,y) = √
I (x + 1, y) − √

I (x, y + 1)
(2.18)

The square roots in Equation (2.18) are intended to approximate a gamma-style
contrast enhancement for the darker tones.21 The two gradient pixels were then
combined with the final gradient G(x,y) =

√
G1(x,y)2 + G2(x,y)2. Since the com-

putation of a square root was a very computationally expensive operation, alternative
formulations used the maximum of the absolute values of G1 and G2 or the sum
of the absolute values of G1 and G2. These formulations made Roberts’ cross de-
pendent on the orientation of the edge. Furthermore, this operator is very sensitive
to noise, and the use of discrete differences with a single-pixel distance shifted the
edge by one-half a pixel. By using central differences, the pixel shift is eliminated
and the noise sensitivity is somewhat reduced, because the central difference is the
average of the forward and backward differences, as can be demonstrated in one
dimension as:

f (t + � t) − f (t − � t)

2� t
= 1

2

[
f (t + � t) − f (t)

� t
+ f (t) − f (t − � t)

� t

]
(2.19)

The use of central differences leads directly to the Sobel, Prewitt, compass, and
Kirsch operators, which are related. Prewitt19 and Sobel24 proposed averaging neigh-
boring values perpendicular to the direction of the central difference and suggested
a convolution with the gradient detector kernels GX and GY to obtain convolution
results with emphasized edges of horizontal and vertical orientation, respectively:

G X (x,y) =
⎡
⎣−1 −a −1

0 0 0
1 a 1

⎤
⎦ GY (x,y) =

⎡
⎣ −1 0 1

−a 0 a
−1 0 1

⎤
⎦ (2.20)

where a = 1 for the Prewitt operator and a = 2 for the Sobel operator. For edge
enhancement, the original image is convolved with GX and GY separately to yield an
image IX, where horizontally oriented edges are enhanced, and an image IY, where
vertically oriented edges are enhanced. The final gradient image G(x,y) is computed
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through G(x,y) =
√

IX (x,y)2 + IY (x,y)2. To compute the exact edge magnitude, a
normalization factor for GX and GY of 1

6 for the Prewitt operator and 1
8 for the Sobel

operator is needed, but in practical implementations, this factor is rarely found.
Each Sobel kernel can be interpreted as a rough approximation of the first deriva-

tive of a Gaussian function in one direction. GX is a derivative kernel that detects
discontinuities in the vertical direction (i.e., horizontal edges), and GY is a derivative
that detects discontinuities in the horizontal direction. Analogous to the Gaussian
kernel [Equations (2.11) and (2.12)], larger kernel sizes for edge detection are pos-
sible. For example, the partial derivative of the two-dimensional Gaussian function
g(x,y) toward x,

∂g(x,y)

∂x
= −2x

�2
exp

(
− x2 + y2

�2

)
(2.21)

can be used to obtain a 7 × 7 kernel that approximates the values for Equation (2.21)
with � = 2:

∂g(x,y)

∂x
≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 0 −3 −2 −1
3 6 7 0 −7 −6 −3
6 14 15 0 −15 −14 −6
8 18 20 0 −20 −18 −8
6 14 15 0 −15 −14 −6
3 6 7 0 −7 −6 −3
1 2 3 0 −3 −2 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.22)

Such a kernel combines the derivative operation with a smoothing operation and
therefore reduces noise in the final edge image. The corresponding partial derivative
toward y (to detect horizontal edges) is obtained by rotating the matrix in Equa-
tion (2.22) by 90◦. The combination of smoothing and derivative operations can
again be explained by the linearity of the convolution operation. Analogous to
Equation (2.13), the derivative operator can be moved in front of the convolution
operation,

I (x,y) � ∂g(x,y)

∂x
= ∂

∂x
[I (x,y) � g(x,y)] (2.23)

which indicates that the convolution of an image I with the partial first deriva-
tive of a Gaussian function is identical to computing the first derivative of the
same image I convolved (smoothed) with the original Gaussian function. Extend-
ing this consideration to the second derivative leads to the Laplacian-of-Gaussian
operator.

The Kirsch operator14 and the related compass operator make use of the same
principle as the Sobel operator, but instead of combining two perpendicular directions,
the Kirsch and compass operators have eight kernels, K1 through K8, to define all
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eight possible edge directions in a 3 × 3 neighborhood. The compass operator uses
the same kernel structure as the Sobel operator. The first four kernels are:

K1(x,y) =
⎡
⎣−1 −2 −1

0 0 0
1 2 1

⎤
⎦ K2(x,y) =

⎡
⎣−2 −1 0

−1 0 1
0 1 2

⎤
⎦

K3(x,y) =
⎡
⎣−1 0 1

−2 0 2
−1 0 1

⎤
⎦ K4(x,y) =

⎡
⎣ 0 1 2

−1 0 1
−2 −1 0

⎤
⎦

(2.24)

Each of the kernels has its elements rotated 45◦ from the preceding one, and the
next four kernels have the opposite sign: K5 = −K1, K6 = −K2, K7 = −K3, and
K8 = −K4. In a similar manner, the Kirsch operator14 makes use of a different
definition of kernels K1 through K4:

K1(x,y) =
⎡
⎣ 5 5 5

−3 0 −3
−3 −3 −3

⎤
⎦ K2(x,y) =

⎡
⎣ 5 5 −3

5 0 −3
−3 −3 −3

⎤
⎦

K3(x,y) =
⎡
⎣ 5 −3 −3

5 0 −3
5 −3 −3

⎤
⎦ K4(x,y) =

⎡
⎣−3 −3 −3

5 0 −3
5 5 −3

⎤
⎦

(2.25)

The idea behind the Kirsch and compass operators is to avoid the computationally
expensive square-root computation by accepting a larger number of convolutions,
which is faster overall when integer arithtmetic is used. For each pixel, eight convo-
lution values are computed (only four by actual convolution and four by sign change),
and the maximum of the eight values is taken as the new image value.

A comprehensive approach to edge detection was developed by Canny,2 who
combined Gaussian smoothing, finite-difference edge detection, and nonmaximum
suppression into his edge detection algorithm. Nonmaximum suppression is a com-
ponent of the algorithm that removes pixels from the set of edge points when they
either fall below a certain, selectable threshold value, or when the gradient magnitude
in perpendicular directions is similar, or when a neighborhood pixel has the same
edge direction but a higher edge magnitude. As a consequence, the edges are thinned.
Finally, Canny proposed the use of hysteresis thresholding, which makes use of local
connectedness (see Section 2.4) and removes isolated sets of low and intermediate
edge magnitude. This comprehensive approach is comparatively costly in terms of
computational effort, and Canny has suggested several efficiency improvements for
the convolution, difference, and nonmaximum suppression stages.3 In addition, De-
riche developed a recursive filter implementation6 that advertises itself for use in fast
integer-based implementations and for implementations in hardware filters or digital
signal processors.

Another comprehensive approach for edge detection was proposed by Frei and
Chen.7 By convolving the image with nine different kernels that form an orthogonal
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system, each pixel is assigned a nine-dimensional feature vector. The nine convolution
kernels are:

F0(x,y) = 1

3

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦ F1(x,y) = 1

2
√

2

⎡
⎣ 1

√
2 1

0 0 0
−1

√
2 −1

⎤
⎦

F2(x,y) = 1

2
√

2

⎡
⎣ 1 0 −1√

2 0 −√
2

1 0 −1

⎤
⎦ F3(x,y) = 1

2
√

2

⎡
⎣

√
2 −1 0

−1 0 1
0 1 −√

2

⎤
⎦

F4(x,y) = 1

2
√

2

⎡
⎣ 0 −1

√
2

1 0 −1
−√

2 1 0

⎤
⎦ F5(x,y) = 1

2

⎡
⎣ 0 1 0

−1 0 −1
0 1 0

⎤
⎦

F6(x,y) = 1

2

⎡
⎣−1 0 1

0 0 0
1 0 −1

⎤
⎦ F7(x,y) = 1

6

⎡
⎣ 1 −2 1

−2 4 −2
1 −2 1

⎤
⎦

F8(x,y) = 1

6

⎡
⎣−2 1 −2

1 4 1
−2 1 −2

⎤
⎦

(2.26)

It can be seen that kernels F1 and F2 are typical edge detector kernels for horizontal
and vertical edges. Kernels F3 and F4 are designed to amplify ripples, and together
with F1 and F2 they comprise the edge space. Kernels F5 and F6 are sensitive to lines
of single-pixel width and diagonal or horizontal/vertical orientation. Finally, kernels
F7 and F8 are approximations of discrete Laplacian functions. The four-dimensional
subspace created by convolution kernels F5 through F8 is called the line space. Let
�B = [b0, b1, . . . , b8] be the feature vector for one pixel of the image, where the
components b0 through b8 have been generated by convolution of the image with
kernels F0 through F8. The vector can be projected into edge space or line space:

cos �E =
√√√√ ∑4

i=1 b2
i∑8

k=0 b2
k

cos �L =
√√√√∑8

i=5 b2
i∑8

k=0 b2
k

(2.27)

where �E is the projection angle into edge space and �L is the projection angle into
line space. A low projection angle �E indicates a high probability that the associated
pixel is part of an edge. Conversely, a projection angle of �E close to 90◦ indicates
a low probability of the pixel being part of an edge. For lines, �L carries similar
information. The projection of additional subspaces is possible in a similar manner.
For example, Frei and Chen demonstrated the effects of the projection of “ripple
space” and “Laplacian space,”7 but these projections are used infrequently.

In addition to the edge magnitude, direction-dependent filter masks can provide the
edge direction. In the case of the Kirsch and compass kernels, the kernel that produces
the highest convolved pixel value determines the edge direction: If convolution with
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FIGURE 2.5 Eight possible edge orientations that can be detected with the compass operator
[Equation (2.24)]. White indicates a higher image value than black, and the edge direction is
defined so that the higher value is to the right of the direction arrow.

K1 in Equation (2.24) produces the highest pixel value, the edge is horizontal; for K2

it is diagonal (southwest to northeast), for K3 it is vertical, and for K4 it is diagonal
northwest to southeast. K5 to K8 act in a similar manner, but the side of the higher
image value is mirrored. Figure 2.5 illustrates the eight possible directions that can be
detected with the compass operator in Equation (2.24). The Sobel and Prewitt opera-
tors provide edge directions as well. In this case, the arctangent function can be used:

	(x,y) = atan2

(
Iy(x,y)

Ix (x,y)

)
(2.28)

where atan2 is the four-quadrant arctangent function as implemented in many
programming languages, and Ix and Iy are the intermediate convolution results of the
image with GX and GY as defined in Equation (2.20). When using Equation (2.28),
the edge direction is continuous, as opposed to the eight discrete directions obtained
from the Kirsch and compass operators.

Images that underwent edge enhancement usually need additional processing steps
to extract clean edges. Any edge enhancement operation is highly noise-sensitive,
and image noise may produce many pixels of high magnitude that are not part of an
actual edge. These processing steps may include histogram analysis and thresholding
to retain only the most prominent edges, morphological operators (such as elimination
of isolated pixels or median-axis thinning), or feature detection such as straight-line
fitting as proposed by Roberts21 or the Hough transform (Chapter 7).

In the context of image enhancement, the median filter needs to be introduced.
The median filter is a powerful nonlinear noise-reduction filter for noise that is not
Gaussian. Convolution with a Gaussian kernel (smoothing operation) is most suitable
for reducing additive noise with a Gaussian distribution and—more important—zero
mean value. Other types of noise, particularly salt-and-pepper noise (also called shot
noise, i.e., each pixel has a certain probability of being either black or white), cannot
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be filtered well with Gaussian filters because extreme values of salt-and-pepper noise
get “smeared” over the neighborhood. A median filter is ideally suitable to remove
runaway values. A median filter acts on a n × n neighborhood but is not convolution-
based. Rather, all image values in the neighborhood are sorted ascendingly, and the
central pixel is replaced by the median value of the neighborhood pixels. Intuitively,
the median filter replaces the central pixel by a value that is more typical for the
neighborhood (namely, the median value) and thus eliminates pixels with runaway
intensities. Since a median filter has a very high probability of changing the value
of the central pixel, attenuated versions exist where the value of the center pixel is
repeated k times in the sorted list for median determination.15 Such a center-weighted
median filter has a higher probability of not changing the pixel value. A more in-depth
analysis of the median filter and variations that adapt to local image properties to
better preserve the image values is given in Section 5.1. The effect of the conventional
median filter and center-weighted median filter on salt-and-pepper noise is compared
with Gaussian blurring in Figure 2.6.

The effects of various convolution-based filters are shown in Figures 2.7 and 2.8.
In Figure 2.7, various lowpass and highpass operations are demonstrated, and in
Figure 2.8, edge detection by the Sobel and compass operators with color-coded edge
direction, edge detection with the LoG operator, and edge and line detection with the
Frei–Chen operator are shown.

FIGURE 2.6 Effect of median filtering on salt-and-pepper noise. (A) An image spoiled with
5% salt-and-pepper noise where each pixel has a 2.5% probability of containing either a black
or a white noise pixel. Gaussian blurring (B) is unsuitable for noise reduction because the
extreme values are merely blurred over the neighborhood. The median filter almost completely
eliminates the salt-and-pepper noise (C), but it also attenuates texture on homogeneous regions
(compare to Figure 2.7A). A center-weighted median filter is less effective in removing a
strong noise component but has better texture-preserving properties.
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FIGURE 2.7 Demonstration of some convolution filters. The original image A is a CT slice
of the chest and is 500 × 350 pixels in size. Image B was convolved with a Gaussian kernel
with � = 2.1 in a 13 × 13 neighborhood. Images C and D show the effect of sharpening: In
image C the weaker sharpening mask of Equation (2.17) was used, and in image D, Equation
(2.16) was applied. Image E is the result of a convolution with the Laplacian mask in Equation
(2.15). Finally, image F demonstrates the effect of the DoG operator where the original
image, convolved with a Gaussian kernel with � = 4, was subtracted from the original image
convolved with a Gaussian kernel with � = 1.6. The result closely resembles the LoG operator
(Figure 2.8C).

2.4. INTENSITY-BASED SEGMENTATION (THRESHOLDING)

The purpose of segmentation is to separate one or more regions of interest in an image
from regions that do not contain relevant information. Regions that do not contain
relevant information are called background. Depending on the image, segmentation
can be a very complex process, and a comprehensive overview of the most relevant
segmentation techniques could fill an entire book. For our purposes in this chapter, an
overview of simple intensity-based techniques is given. The underlying assumption
is that pixels belonging to the features of interest occupy a different value range
than that of background pixels. Without loss of generality, all examples in this
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FIGURE 2.8 Demonstration of some edge detection operators. The original image is the CT
slice in Figure 2.7A. Images A and B show the results of the Sobel and compass edge detectors
with color-coded edge directions. Whereas the edge magnitude is very similar, the discrete
nature of the edge directions in the compass operator becomes clearly visible. In image C the
LoG operator with � = 3.0 was applied, and zero crossings (edge locations) are marked in
red. An apparent double edge appears at the steepest edges. Image D shows a color-coded
version of the Frei–Chen operator. Red hues indicate high values (low projection angles) in
edge space, with some similarity to the Sobel and compass operators. Blue–green hues indicate
high values in line space, most prominent in the vascular structure and the thin traces of the
ribs. (See insert for color representation of the figure.)

chapter assume that background pixels have lower values than feature pixels. If
we assume further that the distribution of feature pixels and background pixels is
approximately Gaussian, a characteristic intensity distribution with two peaks in the
histogram emerges (Figure 2.9). Such a distribution is called bimodal because there
are two mode values: one for the background and one for the feature. Intensities are
normally spread around the modal values because of the additive noise and intensity
inhomogeneities of the features. The simplest approach for segmentation would be
the selection of a suitable intensity threshold, as indicated in Figure 2.9. All pixels
with a value higher than the threshold value are classified as feature pixels, and all
pixels with a lower value are classified as background pixels. Most commonly, a new
image is created by using

IT (x,y) =
{

1 for I (x,y) ≥ T
0 for I (x,y) � T

(2.29)

where I(x,y) are the original image pixels and IT (x,y) is the thresholded image. Since
IT contains only two values (1 for foreground pixels and 0 for background pixels),
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FIGURE 2.9 Bimodal histogram. In this example, background pixels are generally darker
than feature pixels. However, the intensities spread because of noise and intensity inhomo-
geneities. Intensity-based separation can be carried out with a suitable threshold, but some
pixels are misclassified.

it is called a binary image. It can serve as a mask because each location (x,y) of the
original image has a value of 1 in the mask if this is a feature pixel.

In many cases, some feature pixels will have intensity values below the threshold
value, and some background pixels will lie above the threshold value because of
image inhomogeneities and additive noise. With pure intensity-based thresholding,
these pixels cannot be classified correctly (misclassified pixels in Figure 2.9). Two
questions need to be answered. First, is there any way to determine the optimum
threshold value automatically, and second, what steps can be taken to decrease the
number of misclassified pixels?

2.4.1. Automated Threshold-Finding Methods

A number of methods exist to find the valley between the two modal peaks in a
histogram, and three representative examples are introduced: the isodata method20

(also called the iterative thresholding method), Otsu’s method,17 and the entropy
maximization method.13 Iterative thresholding is arguably the easiest method to
implement, and Otsu’s method is one of the most widely used methods. Both methods,
and other methods not described here, work under the assumption of a bimodal
histogram with a well-defined valley; in practice, different thresholding methods find
very similar values in ideal cases but may vary when the assumptions are not met.
All methods will provide a threshold value when acting on a single-modal histogram,
but the resulting threshold value may not be useful.

For iterative thresholding, an initial threshold Tk = 0 must be specified, and a good
choice is the mean gray value of the image. Ridler and Calvard20 originally proposed
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using rectangular regions at the four corners of the image as background and the rest
of the image as foreground, but the final threshold is independent of the initial choice,
and almost any convenient initial threshold may be used. For the iterative process,
the image is then partitioned into a set of pixels S1 with values below the threshold
Tk of the current iteration and a set of pixels S2 with values above or equal to Tk.
Next, the mean gray values �1 and �2 of the pixel sets S1 and S2 are computed, and a
new threshold, Tk + 1, is computed as (�1 + �2)/2. The partitioning is now repeated
with the new threshold value until the iteration converges with |Tk − Tk+1| � �. The
convergence criterion � may be a suitable small value: for example, 0.5 for integer-
valued images.

Otsu’s method assumes a Gaussian distribution of the image values around both
modes, and the goal of Otsu’s strategy is to maximize the between-group variance
�2

B , that is, to choose a threshold that maximizes the variance between feature and
background pixels. Otsu showed that this maximization also minimizes the combined
variance within feature and background classes. Let nI be the number of pixels with
image value I and N the total number of pixels. The probability of image value I is
then PI = nI/N. If we consider a threshold T that divides the image into the pixel
sets S1 (below the threshold) and S2 (above or equal to the threshold), the cumulative
probabilities P1 and P2 of the sets S1 and S2 are defined as

P1(T ) =
T −1∑
i=0

Pi P2(T ) =
Imax∑
i=T

Pi (2.30)

The first and second statistical moments are the mean values and within-class vari-
ances for the two classes S1 and S2:

�1(T ) =
T −1∑
i=0

iPi

P1
�2(T ) =

Imax∑
i=T

iPi

P2

�2
1 (T ) =

T −1∑
i=0

(i − �1)2 Pi

P1
�2

2 (T ) =
Imax∑
i=T

(i − �2)2 Pi

P2
(2.31)

Furthermore, the mean value and variance of the entire image can be obtained through
the equation

�t =
Imax∑
i=0

iPi �2
t =

Imax∑
i=0

(i − �t )
2 Pi (2.32)

With these definitions, the combined within-class variance can be computed as

�2
W (T ) = P1(T )�2

1 (T ) + P2(T )�2
2 (T ) (2.33)
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and the between-class variance �2
B can be defined by

�2
B(T ) = P1(T )[�1(T ) − �t ]

2 + P2(T )[�2(T ) − �t ]
2

= P1(T )P2(T )[�1(T ) − �2(T )]2 (2.34)

All values �1, �2, P1, and P2, and consequently, �2
W and �2

B , are functions of the
threshold T . Otsu proposed a threshold function 
(T) defined as 
(T) = �2

B/�2
t , which

can be used as a measure of the goodness of the threshold value T ,17 and the optimum
threshold can be found by performing an exhaustive search of all possible T’s for the
value of T that maximizes 
(T). Since �2

t is a constant, it is possible to search for a
value of T that maximizes �2

B instead. Furthermore, since �2
W + �2

B = �2
t , Equation

(2.34) can be skipped completely and a value of T that minimizes �2
W can be searched

instead. All of these variations lead to the same value of T .
Methodically similar is a method to maximize combined entropy. Following the

definitions in Equation (2.30), the entropies H1 and H2 of the background and fore-
ground sets S1 and S2 are defined by

H1(T ) = −
T −1∑
i=0

Pi log2 Pi H2(T ) = −
Imax∑
i=T

Pi log2 Pi (2.35)

The optimum threshold can be found by searching exhaustively for a threshold T that
maximizes the combined entropy H (T ) = H1(T ) + H2(T ).13

The second question concerns the number of misclassified pixels (Figure 2.9). The
application of noise-reduction filters has the potential to narrow the pixel distributions.
Here is where Gaussian blurring comes into play, which from a purely visual per-
spective seems counterintuitive. The application of a median filter or center-weighted
median filter to remove extreme values, followed by Gaussian blurring, is a suitable
preparation for intensity-based thresholding. The background peak distribution can
be narrowed by applying unsharp masking or a homomorphic highpass filter (see
Section 3.2) to remove background inhomogeneities. Furthermore, intensity-based
thresholding can be improved by making use of connectedness. This gives rise to
techniques such as region growing and hysteresis thresholding.

2.4.2. Thresholding with Multiple Thresholds

In cases where a feature with intermediate image values needs to be separated from
a darker background and brighter features, the histogram would show three modes.
The intermediate mode can be separated with two thresholds T1 and T2, where T1 �
T2. The image with the thresholded feature is then converted into a binary mask:

IT (x,y) =
⎧⎨
⎩

0 for I (x,y) � T1

1 for T1 ≤ I (x,y) ≤ T2

0 for I (x,y) � T2

(2.36)
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Some methods to find an optimum threshold automatically, most notably Otsu’s
method,17 can readily be extended to provide multiple thresholds. Equations (2.30)
and (2.31) would be extended to reflect n classes and n − 1 thresholds [in Equation
(2.36), n = 3], and the within-class variance to be minimized becomes

�2
W =

n∑
i=1

Pi �
2
i (2.37)

With multiple thresholds, computational efficiency is reduced, as a (n − 1)-
dimensional space needs to be searched exhaustively for the combination of thresh-
olds that minimizes �2

W . Furthermore, the search for multiple thresholds becomes less
stable with increasing n and less credible thresholds. For the most common cases,
n = 2 and n = 3, the method remains robust.

2.4.3. Region Growing

Normally, a feature is characterized not only by similar intensities but also by the
proximity of the pixels. In Figure 2.7, for example, the lung region is surrounded by
tissue with higher intensity values. Outside the patient’s body is air with intensity
values similar to those of the lung. Unless the connectivity of the lung region is
taken into account, intensity-based thresholding cannot separate the lung region from
the air outside the patient. Two adjacent feature pixels are considered connected
and therefore considered belonging to the same region. Two possible definitions
of connectedness exist: 4-connectedness, where only neighbors to the north, west,
east, or south are considered to be connected and diagonal pixels are not connected,
and 8-connectedness, where all eight neighbors of a pixel, including the diagonal
neighbors, are considered to be connected. For connected regions, region growing is
a suitable segmentation method that is almost unsupervised. Region growing requires
a threshold criterion and one or more seed points. Seed points may be provided
interactively or may be special points determined by local criteria (local maxima)
or geometry. The four (or eight) neighbor pixels of each seed point are examined,
and each neighbor pixel that meets the threshold criterion is added to the feature
set and in turn becomes a seed point. This algorithm lends itself to an elegant
recursive implementation called floodfilling, but for large areas, particularly for a
three-dimensional version of the algorithm, the allowable software stack memory
size may be exceeded. In this case, it is necessary to scan the entire image iteratively
and add neighbor pixels to the feature set until no more pixels are added between
iterations. An example implementation of the region-growing algorithm is provided
in Algorithm 2.4. This example assumes 8-connectivity and implements a simple
threshold condition where all pixel candidates for region growing need to exceed a
specified threshold value. This threshold condition can easily be extended to include
multiple thresholds or even additional conditions such as a range of the local variance.
A demonstration of the effect of region growing is given in Figure 2.10. Both lungs
and the air region that surrounds the patient are separated by tissue with higher CT
values. Therefore, the lungs and the surrounding air are not connected and can readily
be separated by region growing.
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iteration=0;

repeat

grown=0;

for (y=0 while y�ymax-1 increment y=y+1)

for (x=0 while x�xmax-1 increment x=x+1)

x1=x; y1=y;

dx=-1; dy=-1;

if ((iteration AND 1)==1) then // odd iteration number
x1=xmax-x-1; y1=ymax-y-1;

dx=1; dy=1;

endif;

if (IM(x1,y1) � T) then // threshold condition. Is this pixel a candidate?
if ( (MASK(x1+dx,y1)�0) // Check connectivity to region

or (MASK(x1,y1+dy)�0)

or (MASK(x1+dx,y1+dy)�0) then

MASK(x1,y1)=1; // Add to feature in mask
grown=grown+1; // Count the grown pixel

endif;

endif;

endfor;

endfor;

until (grown==0); // End region growing if no more pixels have been added

Algorithm 2.4 Region growing. Two images need to be provided: IM(x,y) as
the image to be segmented, and MASK(x,y), which initially contains zero-valued
pixels with the exception of the seed points, where the pixels have a value of 1.
Region growing starts from these seed points for regions with image values above
a threshold T, and the output is stored in MASK(x,y). Both images have the size
xmax and ymax. Alternating the search direction between iterations accelerates the
region-growing process considerably.

FIGURE 2.10 Demonstration of the difference between intensity-based thresholding (A)
and region growing (B). Intensity-based thresholding does not make use of the connectedness
of the region, and the air region outside the patient is incorrectly classified as belonging to
the feature (white-striped area in A). Conversely, region growing that started with a seed point
inside the right lung limits the feature to pixels connected to the seed pixel (horizontally striped
region in B). A similar operation with the seed point inside the left lung then region-grows the
entire left lung (vertically striped region in B).
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2.4.4. Hysteresis Thresholding

Hysteresis thresholding is closely related to region growing. For hysteresis threshold-
ing, two threshold values, T1 and T2, need to be defined where T1 � T2. Each pixel
with I(x,y) ≥ T1 is selected as a seed point, and from each seed point, region growing
is performed with the constraint that I(x,y) ≥ T2. In other words, hysteresis threshold-
ing extracts connected regions where all image values are brighter than T2 but which
must contain at least one pixel brighter than T1. The hysteresis is the difference T1 −
T2. The effect of hysteresis thresholding is demonstrated in Figure 2.11 on a sample
image from the Visible Human data set. Figure 2.11A shows the luminance channel
of a photograph of the abdominal section where the goal was the segmentation of the
adipose tissue of the torso only. Adipose tissue has the highest luminance value, but
conventional thresholding (T = 152) leaves some adipose tissue from the extremities
in the image, and several small pixel clusters within the muscle tissue are also clas-
sified as feature pixels (Figure 2.11B). With hysteresis thresholding (T1 = 224 and
T2 = 152), only regions connected to the brightest pixels, which lie inside the torso,
remain (Figure 2.11C). A similar result can be obtained by region growing with a
pixel inside the torso as a seed pixel, but hysteresis thresholding acts in an unsuper-
vised manner. Hysteresis thresholding can be implemented very easily. Algorithm
2.5, in combination with Algorithm 2.4, performs hysteresis thresholding by creating
a mask of seed pixels from the higher threshold value T1. This step is followed im-
mediately by Algorithm 2.4, which uses the variables created by Algorithm 2.5 and
performs region growing from all initial seed pixels.

FIGURE 2.11 Comparison of conventional and hysteresis thresholding. Image A shows the
luminance channel of a slice from the Visible Human data set. The brightest regions are adipose
tissue. Conventional thresholding (B) classifies all adipose tissue, including tissue in the arms
and some small clusters in the muscles, as feature pixels, whereas hysteresis thresholding (C)
makes use of the connectedness constraint and accepts only adipose tissue from the torso as a
feature.
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allocate MASK[xmax,ymax]; // Reserve space for the mask
T1 = 250; // some suitable value for the high threshold
T2 = 128; // some suitable value for the low threshold

for (y=0 while y�ymax increment y=y+1)
for (x=0 while x�xmax increment x=x+1)

if (IM(x,y) � T1) then
MASK(x,y)=1;

else
MASK(x,y)=0;

endif;
endfor;

endfor;

T = T2; // in preparation for Algorithm 2.4
// Append Algorithm 2.4 right here

Algorithm 2.5 Hysteresis thresholding. The input image is IM(x,y) with size
xmax and ymax. This algorithm prepares the initial seed pixels in MASK(x,y) by
simple thresholding with T1. It is followed immediately by Algorithm 2.4 for the
region-growing process where T = T2.

2.5. MULTIDIMENSIONAL THRESHOLDING

The idea of thresholding can be extended to encompass multiple criteria. For example,
color images contain different information in the various color channels. Gray-scale
images contain additional information in the local neighborhood of each pixel: for
example, the local standard deviation or the local contrast. For each pixel, multi-
ple criteria can be defined to determine whether they belong to a feature or to the
background. Figure 2.12 demonstrates a difficult segmentation situation where mul-
tidimensional thresholding may help. A histology section of a rat aorta taken under
phase-contrast microscopy is shown in Figure 2.12A and one taken under fluorescent
microscopy is shown in Figure 2.12B. Before histology, the lumen of the ex vivo
aorta was filled with a green fluorescent dye that stains cell membranes10; therefore,
the inner part of the aorta wall is more strongly fluorescent than the outer part (Figure
2.12B). Based on pure intensity thresholds, the aorta wall cannot be segmented from
the lumen in Figure 2.12A because the intensities are very similar (mean image value
in lumen, 85; mean value of wall, 89).

Nonetheless, the aorta wall and the lumen can be separated, because the standard
deviations are very different (�lumen = 19 and �wall = 38). A suitable filter would be
the local variance or the range operator, followed by strong Gaussian blurring. The
local variance operator replaces each pixel by the variance of the pixel values inside
an n × n neighborhood. The range operator replaces a pixel by the difference between
maximum and minimum value in an n × n neighborhood. By using the result of this
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FIGURE 2.12 Example of difficult intensity-based segmentation. A phase-contrast mi-
croscopy image of a histology section of the rat aorta is shown (A). Image values between the
blood vessel wall and the aorta are very similar, but the standard deviation (irregularity) of
the wall, where individual cells become visible, is higher. Furthermore, the inner side of the
vessel wall was stained fluorescently and can be identified easily in a fluorescent microscopy
image (B).

filter for red colors and the fluorescent image for green, and by using Figure 2.12A for
the luminance information, a composite image can be created (Figure 2.13A) where
strong green or blue colors indicate the inner wall, red and orange hues indicate the
outer wall, and darker areas indicate the lumen. A thresholding strategy can be seen
in Figure 2.13B, which shows a two-dimensional histogram: the pixel counts of the
filtered version of Figure 2.12A in one dimension combined with Figure 2.12B in the
other dimension.

The two-dimensional histogram reveals a very prominent peak where the local
variance operator has low values (the homogeneous area of the lumen) and where
at the same time there is no fluorescence. Low fluorescence, in combination with
high local variance (the cell layer of the outer aorta wall), creates the peaks labeled
“ow” in Figure 2.13B. Finally, a comparatively small number of pixels have high
fluorescence in Figure 2.12B in combination with some irregularity in Figure 2.12A.
This combination creates a third peak (“iw”), which indicates the inner wall, in
Figure 2.13B.

Higher-dimensional feature vectors can be devised. In Chapter 8 we describe how
local pixel behavior (texture) can be quantified. Often, it is sufficient to separate
the pixel classes with simple rectangular or elliptical thresholds (e.g., a square from
0,0 to 60,60 in Figure 2.13B can separate the lumen pixels). However, unsupervised
methods exist to assign the points in a multidimensional histogram to classes: k-means
clustering and fuzzy c-means clustering. For both clustering methods, it is necessary
to know the number of clusters K in advance. In the context of segmentation, K is
identical to the number of classes into which the image is to be subdivided. The
examples of Figures 2.12 and 2.13 have three classes (bk, iw, and ow); therefore,
K = 3 in this example. The goal of k-means clustering is to assign each relevant
point Pi = (xi,yi) (e.g., each nonzero point in the histogram) to one cluster in such
a manner that the sum of the squared distances of each point to its assigned cluster
centroid Cc = (xc,yc) is minimized. In the general case, the points and centroids
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FIGURE 2.13 Multichannel thresholding. The upper image shows a composite created from
Figure 2.12A (luminance), Figure 2.12B (green–blue hues), and the local range operator applied
to Figure 2.12A (red–orange hues). A two-dimensional histogram of the last two images (B)
shows peaks for the lumen (bk), the outer wall (ow) with high local irregularity but low
fluorescence, and the inner wall (iw) with intermediate irregularity and high fluorescence. (See
insert for color representation of the figure.)

are n-dimensional, and the distance metric Di,c between point Pi and centroid Cc is
usually the Euclidean distance. K-means clustering requires the following steps:

Step 1. Initialize all centroids Cc for 1 ≤ c ≤ K. Often, local maxima or random initial
locations are used. Alternatively, centroids may be placed manually.

Step 2. Populate a N × K assignment matrix U, where N is the number of points to
be assigned and U(i,c) contains the value 1 when point Pi is assigned to cluster
Cc, and the value 0 otherwise. The cluster assignment is determined for each point
Pi by computing its distance to all cluster centroids Cc and choosing the centroid
with the smallest distance. Each point can only be assigned to one cluster.

Step 3. Recompute the centroid locations by using the equation

Cc =
∑N

i=1
U(i, c)Pi∑N

i=1
U(i, c)

for 1 ≤ c ≤ K (2.38)



P1: OTA/XYZ P2: ABC
c02 JWBS035-Haidekker August 26, 2010 7:41 Printer Name: Yet to Come

MULTIDIMENSIONAL THRESHOLDING 53

Step 4. Repeat steps 2 and 3 until the clustering process has converged. Convergence
is achieved when either the matrix U does not change between two iterations, or
the centroids move less than a predetermined distance �.

For a multidimensional histogram, the cluster assignment of all locations in the
histogram needs to be translated back into the original image. Each location of
Pi corresponds to a vector of values in the various channels of the original image
(irregularity and fluorescence in the examples of Figures 2.12 and 2.13). In the
simplest form, each pixel of the original image channels would be examined: Its
associated feature vector is used to look up the assigned cluster in the matrix U, and
the cluster number is the new image value of the segmented image.

Fuzzy c-means clustering follows a similar principle, but the membership of a
point Pi in cluster Cc is continuous; that is, the values in the membership matrix
U may assume any value between 0 and 1, and each point Pi is to some degree a
member of all clusters. The membership function can be very flexible, but a suitable
membership function is D−1

i,c , the reciprocal of the Euclidean distance between point
Pi and centroid Cc under the assumption that neighboring pixels have the distance 1.
Fuzzy c-means clustering follows the same algorithm as k-means clustering. The
distinction is that the matrix U in step 2 is computed through the membership function
rather than by determining the shortest distance. The final cluster assignment for Pi

takes place after the algorithm has converged by choosing the cluster c for which
U(i,c) has the highest value.

Finally, region splitting and merging deserve to be mentioned as unsupervised
segmentation methods. From the pixel feature vector, a similarity measure can be
defined. For example, when two feature vectors have a Euclidean distance below
�, they are considered similar and the associated pixels are considered to belong to
the same class (i.e., feature). Connected pixels of the same class form a region. The
following conditions hold true for all regions: (1) regions are composed of connected
pixels; (2) pixels may belong to one region only, that is, regions are nonoverlapping;
and (3) all regions, joined together, fill the original image. Region splitting is a top-
down segmentation approach where the image is originally considered to be one
region. If pixels within the region fail the similarity criterion, the region is split into
four equal-sized rectangular subregions. Each subregion is recursively analyzed and
split in the same manner until all pixels within individual regions meet the similarity
criterion and splitting is no longer possible. The disadvantage of region splitting is
its tendency to produce distinctly rectangular regions, which can be perceived as an
unnatural segmentation of the image.

Region merging is the complementary bottom-up approach. Adjacent pixels are
joined to form regions if they meet the similarity criterion. Iteratively, the regions
formed in such a manner are joined if they meet the similarity criterion until no more
regions can be joined. Frequently, region splitting and merging are combined into the
split-merge approach, where one iteration of splitting is followed by one iteration of
merging until no more splitting or merging is possible. The segmentation results of
the split-merge segmentation tend to follow much more the natural object outlines in
the image than the region-split segmentation alone.
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2.6. IMAGE CALCULATIONS

Image calculations, sometimes termed image math, refer to arithmetic or logic op-
erations on a pixel-by-pixel basis. Image values can either be manipulated with the
same constant value for all pixels or with the values of corresponding pixels in a
second image. Any mathematical expression is possible, and some operations are
very useful in practical applications. One example of addition and subtraction are CT
images. CT image values can typically range from −1000 HU (e.g., air) to +3000
HU (e.g., contrast agents, metal objects). To improve compatibility, negative numbers
are often avoided by adding an offset of 1024 (210) to the image values. Therefore,
the image values of the stored image now range from +24 to +4095 (212 − 1), and
the image values can be stored in an unsigned 12-bit integer field. Compatibility
with image processing software that can only handle 8-bit values can be achieved
by dropping the least significant 4 bits of the 12-bit integer value. This operation
corresponds to a division by 24 = 16 and the resulting value range is now 0 to 255.
Other image analysis software that can handle higher bit depths would read the CT
image and subtract the offset of 1024 to restore the original values in Hounsfield
units. This type of pixel manipulation can be described in its most general form by

I ′(x,y) = f (I (x,y), C) (2.39)

where f describes the operation (i.e., addition, subtraction, multiplication, etc.) and
C is a constant value. The function f is performed independently on all pixels of
the image. Without explicitly defining the operation as image math, Equation (2.5)
(histogram stretching) is a linear pixel-by-pixel operation that can serve as an ex-
ample for the model in Equation (2.39). The function f may also be nonlinear. For
example, gamma correction can be applied to enhance contrast in dark image re-
gions. Frequently, output devices (e.g., video screens; even more so, printers) tend to
reduce contrast in dark regions. Light output (or, in the case of printed paper, light
reflectance) L can be modeled as the normalized image value raised to the power of
a constant � such that L(x,y) = I(x,y)� , where I(x,y) is the image value normalized
to the range 0 to 1. � typically lies between 1 and 2. The suitable correction is to
raise the value of each pixel to the power of 1/� before displaying or printing the
image. The effect of this operation is shown in Figure 2.14. An even stronger contrast
adjustment is to compute the logarithm of each pixel value and to rescale the results
to fit the display range (usually, 0 to 255). A logarithmic display function is often
chosen to visualize extreme image value ranges such as those obtained through the
Fourier transform. In this case it must be ensured that image values of zero or negative
values do not occur. To display the magnitude of the Fourier transform (no negative
values), an offset of 1 can be added to the image and the function f in Equation (2.39)
becomes log(I + 1). In cases where negative values exist, a suitable offset can be
added, or negative values are clamped to 1 through thresholding.

The general equation to perform an operation on two images, I1 and I2, is

I ′(x,y) = f (I1(x,y), I2(x,y)) (2.40)



P1: OTA/XYZ P2: ABC
c02 JWBS035-Haidekker August 26, 2010 7:41 Printer Name: Yet to Come

IMAGE CALCULATIONS 55

FIGURE 2.14 Gamma correction. A linear gradient with image values from 0 to 255 in steps
of 4 (A) after contrast correction with � = 1.5 (B) and � = 2.0 (C).

Most commonly, the function f represents addition, subtraction, multiplication, or
division. It is also assumed that I1 and I2 have the same size, although zero padding
or tiling is possible in special cases. In addition, the same operation can be performed
on an image stack for all stacked slices z:

I ′(x,y,z) = f (I1(x,y,z), I2(x,y)) (2.41)

Each of the four operations has typical applications in biomedical imaging. Image
addition could be used for noise reduction. For example, N identical images can be ac-
quired with a modality that has a strong noise component (such as magnetic resonance
imaging or optical coherence tomography). By adding those N images and dividing
the resulting value by N, the pixel-by-pixel average is computed, and additive Gaus-
sian noise is reduced by a factor of

√
N . An example is given in Figure 2.15. Contrast

is approximately 28 (in arbitrary OCT units), and the standard deviation is 5.6 (Fig-
ure 2.15A) and 1.46 (Figure 2.15B). The ratio of these two values can be used as a
simplified metric of the signal/noise ratio (SNR) and results in SNR values of 5 and
20, respectively. This is an improvement in the SNR by a factor of 4, consistent with
20 averaged slices and

√
20 = 4.5. Note that further noise reduction is possible by re-

moving shot noise (median filter) before averaging the slices. The combined operation
(median filtering of each individual slice followed by averaging) yields an SNR of 31.

Image subtraction and division are often used to remove an inhomogeneous back-
ground. Several examples are provided in Section 5.3. Subtraction needs to be used
when the background is caused by an inhomogeneous bias (e.g., a bias field in
magnetic resonance images), and division is a suitable operation for multiplica-
tive inhomogeneities, such as inhomogeneous illumination. Consider, for example,
visible-light illumination L(x,y) that is brighter in the center than toward the edges of
the image. A photograph is taken from a reflective object with a reflectance R(x,y).
The object is described by the reflectance, but the photograph contains the multi-
plicative image I (x,y) = R(x,y)L(x,y). If L(x,y) is known (e.g., by photographing
a homogeneously gray surface under the same illumination), R(x,y) can be recovered
from I(x,y) by dividing I(x,y) by L(x,y). Care must be taken when the image is divided
by a second image with a large range of image values. First, a division-by-zero value
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FIGURE 2.15 Example of image addition. Image A is an optical coherence tomography
scan of an apple to a depth of approximately 0.5 mm. The white scale bar indicates 200 �m.
The thin white layer is the apple’s skin. Underneath is the actual plant tissue with a dark
intermediate layer representing the transition of the skin into the tissue. The OCT slice exhibits
considerable noise. Both Gaussian noise and shot noise (black pixels) exist. Image B was
created by acquiring 20 successive slices of the same region and adding them. After addition,
the values were rescaled to fit the range 0 to 255. Noise is markedly reduced and details become
better visible. Further noise reduction could be achieved by applying a median filter operation
on each individual slice before addition. (Courtesy of Jinjun Xia.)

needs to be avoided. This can be achieved by adding an offset to the denominator im-
age. Similar considerations apply when the image in the denominator contains small
values. One example for the division of two images is deconvolution in the frequency
domain (see Section 3.2.3). Image subtraction is a popular method used to remove
an inhomogeneous background when the illumination (or background) function is
unknown. A semianalytical method for background removal is to model the back-
ground image B(x,y) as a biparabolic plane or the section of a sphere, respectively:

B(x,y) = a0 + a1x + a2 y + a3x2 + a4 y2 + a5xy (2.42)

B(x,y) =
√

a0 + a1x + a2 y + a3x2 + a4 y2 + a5 (2.43)

The unknown parameters a0 through a5 can be found by fitting the background
function to the image. For this purpose, the image is divided into equal square tiles.
When the features protrude as brighter objects from a dark background and the tile size
is larger than the feature size, an assumption can be made that the darkest pixel in each
tile is a background pixel. In each tile i, the darkest pixel Bi (xi,yi) can be found, and the
unknown parameters a0 through a5 are determined by nonlinear least-squares fitting.
Finally, the background image B(x,y) is subtracted from the image pixel by pixel.
Alternatively, the background function can be found by extremely strong blurring
of the image (e.g., by convolution with a large Gaussian kernel or by application of
a Fourier lowpass filter). This background function can then be subtracted directly
from the image. This operation was introduced in Section 2.3 as unsharp masking.

Subtraction and division are used when the normalized difference between two
images I1 and I2 needs to be computed. The normalized difference image with pixel
values in percent is given by

D(x,y) = 100 · I1(x,y) − I2(x,y)

I1(x,y)
(2.44)
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Multiplication of images is a useful tool in masking. The thresholding operation
as defined, for example, in Equation (2.29) provides a binary mask where feature
pixels are represented by the value 1 and background pixels by the value 0. When
the original image is multiplied with the mask pixel by pixel, all background pixels
are assigned the value 0, while the feature pixels retain their original value. This
combined operation, known as hard thresholding, can be described as

IT (x,y) =
{

I (x,y) for I (x,y) ≥ T
0 for I (x,y) � T

(2.45)

The additional subtraction of the threshold value T (to be precise, the pixel-by-pixel
subtraction of the mask multiplied by T) leads to an equation for soft thresholding:

IT (x,y) =
{

I (x,y) − T for I (x,y) � T
0 for I (x,y) ≤ T

(2.46)

In both hard and soft thresholded images, further analysis can take place while
zero-valued pixels are ignored. If image measurements (e.g., pixel count, image
value average, histogram) are limited to nonzero values, the measurements reflect
the masked features only. Another example where image multiplication plays a key
role is image filtering in the frequency domain (Section 3.2). A filter function is the
equivalent of an image in frequency space, described by its transfer function H(u,v).
The coordinates u and v are spatial frequencies and are treated in the same manner
as the spatial coordinates x and y. The main difference is the widely used convention
that the origin of the (x,y) coordinate system coincides with the top left corner of an
image, while the origin of the (u,v) coordinate system coincides with the center of the
image. The Fourier transform of an image has low-frequency components (intensity
gradients that continue over the entire image) near the origin, and high-frequency
components (e.g., abrupt changes, texture, noise) toward higher values of |u| and |v|
closer to the edge of the frequency-domain image. A highpass filter is a filter that
attenuates values near the center of the (u,v) coordinate system, with values of H(u,v)
� 1 for small |u| and |v| and values of H(u,v) ≈ 1 for large |u| and |v|. Conversely, a
lowpass filter has values of H(u,v) ≈ 1 for small |u| and |v| and values of H(u,v) �
1 for large |u| and |v|. The filter consists of three steps: computation of the Fourier
transform, pixel-by-pixel multiplication of the transformed image F(u,v) with the
filter H(u,v), and the inverse Fourier transform of the result.

For all image math operations, the image value range needs to be observed. Image
math operations may lead to negative values, to values that are larger than the range of
the original image (e.g., multiplication or addition of many images), or to very small
values [e.g., division, most prominently in Equation (2.44)]. In image processing
software that holds a limited value range (e.g., 8-bit images), the range may be
exceeded or rounding errors may cause loss of detail. In many cases the image values
are either rescaled after the operation to fit the full range or are clamped (e.g., pixels
that exceed 255 in an 8-bit image are kept at 255). If this behavior is not acceptable,
the result of the operation needs to be stored in a different format, for example, as a
floating-point value for each pixel.
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2.7. BINARY IMAGE PROCESSING

The segmentation results discussed in this chapter generally lead to binary images,
considered to be masks for the segmented features. The information contained in the
image values is lost, but the spatial relationship between the mask and the features
is retained. Both mask and masked image can be subjected to an analysis of texture
(Chapter 8) or shape (Chapter 9). Some additional processing of the segmented
images is possible to further improve the segmentation results. These steps could be
referred to as postsegmentation processing and include binary noise reduction and
shape modification.

2.7.1. Morphological Image Processing

One important group of operators are called morphological operators. The concept of
morphology is a comprehensive subject,23 and for our purposes in this chapter, basic
morphological operators are introduced more in the spirit of providing the necessary
tools in a versatile toolbox than in the sense of introducing the concepts of morphol-
ogy. The two basic operators are the erosion (thinning) and dilation (thickening) of
shapes. A general form of the erosion and dilation operators, defined as vector addi-
tions of elements from the image and a pixel mask (called the structuring element)
exist.12 However, the most common implementation of the erosion and dilation is
to replace the central pixel by the minimum or maximum of its neighborhood, re-
spectively. The neighborhood may either be the 4-neighborhood, which includes the
horizontal and vertical neighbors, or the 8-neighborhood, which also includes the four
diagonal neighbors. Under this definition, erosion and dilation are rank filters related
to the median filter that was discussed in Section 2.2 and are defined for gray-scale
images. However, erosion and dilation applied to gray-scale images are not intuitive
and are rarely used. In binary images, the definition of erosion and dilation above
reduces to two simple rules: If a white (foreground) pixel touches a black (back-
ground) neighbor, it turns itself into a background pixel under the erosion operation.
Conversely, if a black (background) pixel touches a white (foreground) neighbor, it
becomes a foreground pixel under the dilation operation. Each application of the ero-
sion operation therefore removes a single-pixel-wide strip from the boundary of any
feature and thins the feature in the process. Furthermore, individual pixels and small
pixel groups (e.g., noise) are removed from the image completely. Conversely, each
application of the dilation operation adds one single-pixel-wide strip to the boundary
of the feature, thickening the feature in the process. Small holes inside the feature and
along the boundary get filled in the process. Erosion and dilation are complementary;
that is, an erosion acting on white pixels is the same as a dilation acting on the black
pixels, and vice versa.

When operating on binary images, the median filter can be seen as a majority filter.
If the majority of the neighborhood pixels are white, the central pixel itself becomes
white, and if the majority of the neighborhood pixels are black, the central pixel
turns black. Therefore, the median filter acts as a noise filter on binary images, where
noise removal not only includes the removal of isolated white pixels and the filling
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of isolated black pixels (holes) in a feature, but also the smoothing of the boundary.
Contrary to erosion and dilation, the rank filter leaves the boundary shape widely
unchanged.

A possible implementation of the erosion and dilation operators is shown in
Algorithm 2.6. Because of their similarity, both are implemented in the same operator,
and a flag determines which operation is performed. Algorithm 2.6 contains the
general form for gray-value images, but can be used without modification for binary
masks. Algorithm 2.6 is designed to consider an 8-neighborhood.

Derived from erosion and dilation are the opening and closing operators. Opening
is a single erosion followed by a single dilation, and closing is a single dilation
followed by a single erosion. The opening operation removes individual white pixels
or small pixel groups, and it separates weakly connected structures, for example, two
parts of a feature that are connected by only a single pixel. The closing operation

allocate IM2[xmax,ymax]; // Reserve space for the output image

erode=1; // Set erode=1 for erosion or erode=0 for dilation

for (y=0 while y�ymax increment y=y+1)

for (x=0 while x�xmax increment x=x+1)

// Start inner loop to examine pixel neighborhood and determine min and max values

min = IM(x,y); max=min;

for (y1=y-1 while y1�=y+1 increment y1=y1+1)

for (x1=x-1 while x1�=x+1 increment x1=x1+1)

if ((x1�=0) and (y1�=0) and (x1�xmax) and (y1�ymax)) then

if (min�IM(x1,y1)) then min=IM(x1,y1); endif;

if (max�IM(x1,y1)) then max=IM(x1,y1); endif;

endif;

endfor;

endfor;

// Here, we know the minimum and maximum of the neighborhood

// Use them according to the erode flag

if (erode==0) then

IM2(x,y) = max; // Dilate

else

IM2(x,y) = min; // Erode

endif;

endfor;

endfor;

Algorithm 2.6 Erosion and dilation operators. The input image is IM with size
xmax and ymax. The algorithm stores the result in IM2. Depending on the value
of the variable erode, this algorithm can perform either morphological erosion or
morphological dilation.
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FIGURE 2.16 Cell nuclei made visible with the fluorescent DNA marker DAPI in an epi-
fluorescent image.

fills small interior holes and strengthens weak connections. Both operations smooth
the outlines and thus simplify the shapes, whereby the size of the shape is changed
only minimally. An example is given in Figures 2.16 and 2.17. Figure 2.16 shows
an epifluorescent image of cell nuclei stained with DAPI, a fluorescent marker that
specifically targets DNA. The image was thresholded (Figure 2.17A) and several
morphological operators were applied (Figure 2.17B and C). In all cases, two itera-
tions of the operator were applied to make the effect more visible. Whereas the effect
of the erosion and dilation is plainly visible, opening and closing have a more subtle
effect. The smoothing of the shape boundary can be seen clearly.

Outlining is one possible application of this class of operators, in combination with
image math. The outline is created by subtracting the original image from its dilated
version. A thicker and more symmetric outline with respect to the shape boundary
can be obtained by subtracting the eroded version of the image from the dilated
version. In this case, the outline is 2 pixels wide. Figure 2.18 shows an example of
outlining where the mask (Figure 2.17A) was dilated twice and subtracted from the
undilated mask. The outlines were then superimposed over the original gray-scale
image. The image outlined shows clearly which cells were included in the hysteresis
threshold scheme. Outlining can therefore serve as a visualization tool. Labeling of
gray-scale images with text is another example where an operation similar to outlining
is helpful. Images with strong local variations of the gray values make superimposed
labels difficult to read. To improve readability, the letters (assumed to be white) can
be dilated several times. The original letters are then subtracted from the dilated
letters, creating a black label over a white background that surrounds the letters. This
combination, superimposed over the image, shows high contrast and is easy to read.

In the context of processing binary masks, two more operators are important:
skeletonization and watershed segmentation. Skeletonization refers to iterative ero-
sion with two additional constraints: A pixel may not be deleted in the erosion process
if it is an endpoint or if its removal would break a feature in two.26 Skeletonization acts
best on long, thin objects and extracts their medial axis, which can be thought of as
the central ridge. Skeletonization is a fundamental operation for shape classification
and is discussed in detail in Section 9.6.
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FIGURE 2.17 Examples of morphological operators. Hysteresis thresholding of Figure 2.16
leads to the binary mask (A). The individual operations are thinning by erosion (B, left of the
dividing line), thickening by dilation (B, right of the line), opening (C, left of the line), and
closing (C, right of the line).

FIGURE 2.18 Outlining by computing the difference between the original mask and the
dilated mask. In this example, the outline is superimposed over the unthresholded gray-scale
image.
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2.7.2. Watershed Segmentation

Watershed segmentation (often incorrectly termed the watershed transform—it is not
a transform because no inverse transform to restore the original image exists) is a
method to separate in a binary mask two convex shapes that partly overlap. The cells
in Figure 2.16 contain typical examples. It can be seen that in the top left region of
Figure 2.17A that a group of two cells and another group of three cells have not been
separated by thresholding. Postprocessing of the binary mask with the watershed
operator can separate those connected features. The watershed operator relies on
iterative erosion and iterative dilation, both with certain constraints. If the mask is
iteratively eroded, starting with the ring of pixels closest to the background, it is
possible to label these rings with an image value identical to the erosion iteration
number and to construct an auxiliary image from the eroded points labeled in such a
manner. This auxiliary image is a gray-scale image, and the image values get higher
with increasing distance of the pixels from the background. In fact, the image value
is approximately the Euclidean distance of the pixel to the nearest background pixel
and is therefore called the Euclidean distance map. Continuing with the iterative
erosions, shapes like the cells mentioned above eventually get separated. The erosion
process needs to be constrained such that isolated pixels (i.e., pixels surrounded by
eight background neighbors in each and any erosion iteration) may not be eroded.
These pixels coincide with local maxima in the Euclidean distance map and are called
ultimate eroded points, because further constrained erosions do not change the image
of ultimate eroded points. The iterative erosion process ends when only ultimate
eroded points are left over. For convenience, the ultimate eroded points can now be
numbered consecutively. The ultimate eroded points are now iteratively dilated. Each
dilation process, according to its definition, adds a ring of pixels with the same image
value as that of the originating ultimate eroded point. Dilations are constrained as
well, with two constraints: First, no pixel that was a background pixel in the original
mask may be added to the set (i.e., dilation is constrained to the original mask), and
second, no pixel may be added to the set if it connects a feature to another feature
with a different image value. In this way, merging of two features that grow from
different ultimate eroded points is prevented, which is the key purpose of watershed
segmentation. The relationship between the Euclidean distance map, ultimate eroded
points, and watershed-segmented image is shown in Figure 2.19. Figure 2.19A is a
surface rendering of the Euclidean distance map where the elevation of each pixel
corresponds to its distance to the background. The peaks of the hills (i.e., points with
the greatest distance to the background) coincide with the ultimate eroded points, each
of which is the seed point for iterative dilation. The constrained iterative dilation leads
eventually to Figure 2.19B, where each ultimate eroded point is now contained in a
separate feature that is separated (black lines) from features grown from neighboring
ultimate eroded points.

Watershed segmentation can be influenced by the definition of a local maximum
in the Euclidean distance map. To improve the segmentation, we need to employ an
alternative algorithm to generate the ultimate eroded points, which is not based on
iterative erosion. Rather, the Euclidean distance of each feature pixel to the nearest
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FIGURE 2.19 Watershed segmentation of the binary mask in Figure 2.17C. The first step
is the creation of the Euclidean distance map (A), shown here as a three-dimensional surface
rendering. Higher elevations indicate a larger distance to background, and the slopes of the hills
are 45◦. The peaks of the hills coincide with the ultimate eroded points. A typical example
is highlighted (circle). It appears as a single feature in the mask, but the original image
(Figure 2.16) clearly shows this to be two different cells. Correspondingly, the Euclidean
distance map exhibits two local peaks. Iterative dilation from the ultimate eroded points with
the constraint that no two different features may become connected leads to the segmented
image (B), where thin black (background) lines separate regions that contain its individual
ultimate eroded point.

background pixel is determined by an exhaustive search. The Euclidean distance map
generated in this fashion can now be subjected to Gaussian smoothing to suppress
small local maxima (i.e., noise). Further a priori knowledge may be included by
defining the area in which a maximum needs to be unique to be recognized as a
local maximum. With these two options, the final size of the segmented features, and
therefore the sensitivity of the watershed segmentation, can be influenced.

2.8. BIOMEDICAL EXAMPLES

In this chapter, basic tools for a complete image analysis chain are introduced. These
include, in order, image preprocessing (image enhancement or restoration, usually
by filtering), image segmentation, some postsegmentation enhancement, and finally,
quantitative analysis. One very typical example was presented by de Reuille et al.,5

who acquired confocal sections of the shoot apical meristem in Arabidopsis thaliana.
The meristem is plant tissue consisting of undifferentiated cells and is found in areas of
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the plant where growth takes place. Image contrast was gained by fluorescent labeling
of the cell membranes. Confocal sections form z-stacks, two-dimensional images of
thin sections that can be stacked to form a three-dimensional volume image. In this
study, preprocessing consisted of Gaussian blurring to smooth images, in particular to
reduce the impact of isolated bright or dark dots (it should be noted that isolated bright
or dark dots can better be removed by median filtering). Subsequently, a threshold
was applied to remove all the pixels with an image value of less than 10. This step
was followed by linear histogram stretching. The segmentation step posed a challenge
because the tissue area contained dark regions that were similar to the background
outside the tissue region. To overcome this challenge, the segmentation process
involved a combination of intensity-based thresholding followed by morphological
closing (to fill the smaller dark regions inside the tissue region), which was then
followed by watershed segmentation. With the fluorescently labeled cell walls now
segmented, further analysis of cell geometry and topology (see Chapter 9) was
possible, and plant development over time was quantitatively analyzed.

Related methods were used for image preprocessing and segmentation of electron
microscopy images of collagen fibrils in the presence or absence of gold nanoparti-
cles.9 The preprocessing steps were four iterations of the median filter followed by
unsharp masking to remove background inhomogeneities. A binary mask was cre-
ated by applying a threshold that was determined in an unsupervised manner by using
Otsu’s method. Postprocessing of the mask was required to remove the nanoparticles,
which was performed by identifying and removing connected regions with fewer
than 150 pixels. Finally, morphological closing was applied to remove small inte-
rior holes or fissures. The steps that led to the final mask are shown in Figure 2.20.
The resulting mask was now suitable for quantitative analysis using shape analysis
methods (Chapter 9): namely, run-length analysis and topological analysis.

An example of an area in which image math becomes important is in the processing
of microscope images to determine fluorescence anisotropy. In one example,8 fluo-
rescent microscope images were used to map calmodulin binding over the projected
cell area. A fluorescent calmodulin analog was imaged, and polarized microscope
images were taken. Fluorescence anisotropy is based on the principle that some
fluorescent molecules can be excited only in a specific polarization plane, and the
fluorescent emission occurs in the same plane if the molecule is immobile. However,
if the molecule can rotate during the excited lifetime, the fluorescence emission is
randomized, and the degree of randomization is based on the rotational freedom.
The degree of randomization can be determined from two images: one polarized
parallel to the excitation polarization plane and one polarized perpendicular to it.
Let those two images be designated I‖ and I⊥, respectively. When the rotational
freedom is low, most emission is still parallel to the original excitation plane, and
I‖ is high. Conversely, when the polarization is randomized with high rotational
freedom, I‖ and I⊥ are about equally high. Polarization anisotropy can be defined
through16

R(x,y) = I‖(x,y)/I⊥(x,y) − 1

I‖(x,y)/I⊥(x,y) + 2
(2.47)
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FIGURE 2.20 Preprocessing and segmentation of collagen fibrils in the presence of gold
nanoparticles. (A) is the original electron-microscope image. The fibrils are the long gray
features, and the nanoparticles are the small black dots. After denoising (median filter) and
background removal, (B) is obtained. The application of a hard threshold [Equation (2.45)]
with Otsu’s method leads to image (C). A final mask (D) is created by removing all features
that are smaller than 150 pixels. (From ref. 9.)

where R(x,y) is the spatially resolved anisotropy. When the rotational mobility is low,
the ratio of I‖ to I⊥ assumes a very large value and R approaches unity. Conversely,
when rotational mobility is high, the ratio I‖ over I⊥ is close to unity, and R is close to
zero. When the fluorescent calmodulin interacts with myosin II light chain kinase,8

its rotational mobility is reduced and R is elevated. By computing R on a pixel-by-
pixel basis using Equation (2.47) from microscope images of the cell, the locations
of elevated calmodulin binding can be mapped.

To measure the water content (more precisely, the polarity of the environment) of
a cell membrane, the fluorescent probe Laurdan is used. In a polar environment, the
fluorescent emission of Laurdan experiences a red shift. Two fluorescent images can
be taken, IB at the maximum emission of Laurdan in a nonpolar environment (440 nm)
and IR at the maximum emission in a polar environment (490 nm). A ratiometric value
of polarity, known as general polarization GP,18 can be computed by

GP(x,y) = IB(x,y) − IR(x,y)

IB(x,y) + IR(x,y)
(2.48)

Recently, the GP value was applied by Zhu et al.27 to examine the influence of
reactive oxygen species on the cell membrane, a process hypothesized to be linked to
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FIGURE 2.21 Steps to compute the general polarization of Laurdan. One of the two unpro-
cessed images (IR) is shown (A); after application of the smoothing operation, noise is reduced
(inset in A, delimited by gray lines). After denoising and addition of IR and IB, a cell area mask
(B) can be generated by thresholding with Otsu’s method. The final GP value [Equation (2.48)]
is computed only inside the cell area, while the background is kept at zero. Since the GP image
contains negative values, histogram stretching to the printable value range of 0 to 255 causes
the zero-valued background to be gray, with negative values being darker and positive values
being lighter (C). (From ref. 27.)

cell damage and aging. To compute the GP map over the cell area, the two fluorescent
images IB and IR were obtained. Equation (2.48) contains a division, which is a
noise-sensitive operation. For this reason, both images first underwent Gaussian
blurring; then the denominator was computed. Otsu’s threshold method was used to
create a mask of the cell area. The final GP value was computed only within regions
identified as cell regions, and the background was kept at zero. The individual
steps are shown in Figure 2.21. The final map underwent histogram stretching to be
printable, and negative values (dominant IR), which indicate regions of low polarity,
are printed in dark shades and positive values (dominant IB, high polarity) are printed
in lighter shades. The main advantage of ratiometric methods is the normalization.
The GP value, for example, is independent of the overall exposure. For this reason,
ratiometric methods are particularly well suited for quantitative image analysis.

The lung was used repeatedly as an example in this chapter. In fact, an image
analysis chain similar to the examples used in this chapter was presented by Chen
et al.4 CT slices of the lung were first filtered for noise removal, followed by a flood-
filling process of the tissues surrounding the lung. Flood filling is functionally similar
to region growing. The resulting mask was further enhanced by erosion. Results were
similar to those shown in Figure 2.10.

Another example where the filtering techniques described in this chapter play
a key role is in the analysis of angiograms of the retina.25 The purpose is to detect
aneurysms in the blood vessels of the retina, and contrast enhancement was performed
with fluorescein. Fluorescein leads to a bright fluorescence of the blood vessels over
the darker background of the surrounding tissue. Illumination inhomogeneities were
first removed by dividing by a “flood image”, that is, an image that reflects the
illumination brightness. This operation was followed by unsharp masking to enhance
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the contrast of thin blood vessels. Bright pixels were then extracted using a top-hat
filter,1 a morphological segmentation method that compares the brightest values in
two concentric neighborhoods. If the brightest pixel in the smaller neighborhood is
brighter by a threshold T than the brightest pixel in the larger neighborhood, the
pixel is retained; otherwise, it is set to zero. In this formulation, the top-hat filter
isolates local maxima. Those were eroded further to retain ultimate eroded points,
which were used as seed points in the original fluorescent image for a region-growing
process. In the final result, only small isolated and circular features, the suspected
microaneurysms, were left in the image for visual inspection.

As a final example, a method is summarized to extract the steps of an aluminum
step wedge from an x-ray image for the purpose of densitometry calibration.11 The
purpose of using the step wedge was to eliminate fluctuations of film exposure and
aging of film developer in quantitative x-ray images of mouse bones. A logarith-
mic curve fit of the film density over the aluminum thickness yielded the apparent
x-ray attenuation coefficient for aluminum, which can then be compared with known
attenuation coefficients. In addition, any density could be calibrated in equivalent
units of aluminum thickness. A key element for the segmentation of the wedge steps
was edge detection, because the edges from one step to the next could be used to
delimit the flat areas of the step. Since the scanned x-ray image was very noisy, the
edge detector (in this case, the Sobel operator) was preceded by a median filter and
followed by a one-dimensional Gaussian smoothing filter that blurred the image in the
horizontal direction only. The intensity average, computed line by line, made it pos-
sible to reliably identify a sufficient number of edges (Figure 2.22). The area between
the edges was averaged and used to represent density under the corresponding step.

FIGURE 2.22 Segmentation of the steps of an aluminum step wedge in an x-ray projection
image (A). The segmentation process makes use of the horizontal orientation of the steps. A
median filter was used before the application of the Sobel operator for noise reduction, and the
edge image was further filtered by convolving with a one-dimensional smoothing filter (B).
Averaging of the intensity values line by line causes strong maxima at the edge locations (C),
which can be used to detect edges. In this case, any maximum that exceeded the gray line (C)
was recognized as an edge, and the algorithm allowed reliably to detect seven or eight steps.
[(A) From ref. 11.]
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3
IMAGE PROCESSING IN THE
FREQUENCY DOMAIN

In previous chapters the image was introduced as a spatial arrangement of discrete
values: image values that represent a physical metric. Neighboring pixels relate
to each other in a defined spatial relationship. The human eye is very adept at
recognizing spatial relationships, such as repeat patterns, irregularities (noise), edges,
or contiguous features. For image processing software, this task is more difficult,
because the analysis of large neighborhoods is usually very time consuming. In
Section 2.3, filters were introduced that modified an image in a specific manner: for
example, by enhancing discontinuities (sharpening) or attenuating detail (blurring).
These filters act differently on different spatial frequencies. The term spatial frequency
refers to the rate of change of the image values. An intensity trend that continues
over most of the image consists of low spatial frequencies; conversely, an edge (a
rapid change of intensity over a few pixels) contains high-frequency components.
The frequency domain is a different representation of the same image data where
the strength of periodic components (such as a pattern that repeats every 20 pixels)
is extracted. The Fourier transform is a tool that converts the image with spatially
arranged data into the same data arranged by periodicity, and thus, frequency. Any
transform is characterized by the existence of an inverse transform that allows us to
restore the original arrangement of the data. By using the Fourier transform, image
data can be presented in a way that makes a number of image manipulations easier
(or possible, in the first place): Images can be manipulated or filtered in the frequency
domain. With the inverse Fourier transform, the filtered image is restored to its
original spatial arrangement.

Advanced Biomedical Image Analysis, By Mark A. Haidekker
Copyright C© 2011 John Wiley & Sons, Inc.

70



P1: OTA/XYZ P2: ABC
c03 JWBS035-Haidekker August 26, 2010 7:42 Printer Name: Yet to Come

THE FOURIER TRANSFORM 71

3.1. THE FOURIER TRANSFORM

French mathematician Joseph Fourier found that any 2�-periodic signal f (t) can be
represented by an infinite sum of sine and cosine terms according to

f (t) = a0 +
∞∑

k=1

ak cos kt + bk sin kt (3.1)

where ak and bk are called the Fourier coefficients. The term 2�-periodic indicates
that the signal repeats after integer multiples of 2�, that is, f (t) = f (t + 2�n),
where n is an integer number. The periodicity is a consequence of the sine and cosine
terms in Equation (3.1) and will become a fundamental assumption in the Fourier
analysis of signals and images. The cosine and sine functions in Equation (3.1) form
an orthogonal basis, since their inner product is zero:

∫ �

−�

sin t cos t dt = 0 (3.2)

When a signal f (t) is given, the coefficients ak and bk can be determined using Fourier
analysis of the signal f (t):

ak = 1

�

∫ �

−�

f (t) cos kt dt

bk = 1

�

∫ �

−�

f (t) sin kt dt

(3.3)

Equation (3.3) needs to be evaluated for k = 0, 1, 2, . . . , ∞ to obtain the infinite
number of coefficients that are needed to exactly represent the signal f (t). The spe-
cial case k = 0 yields b0 ≡ 0, and a0 represents the mean value of the signal over
one period. In practice, a limited number of coefficients is sufficient to represent
f (t) with satisfactory accuracy. The coefficients ak and bk identify the contribution
of the kth harmonic oscillation to the overall signal. The kth harmonic signifies
an oscillation with k times the frequency of the base oscillation (i.e., the oscilla-
tion with a period of 2�). For this reason, Equation (3.3) is also called harmonic
analysis.

Consider the piecewise linear, periodic oscillations in Figure 3.1A (square wave)
and Figure 3.1C (triangular wave). The triangular wave closely approximates a sine
wave (gray curve in Figure 3.1A). The sine wave has only one nonzero coefficient,
b1 = 1, as can be seen in Equation (3.1). Since both the square wave and the triangular
wave can be described analytically, the integrals in Equation (3.3) can be solved to
obtain the Fourier coefficients ak and bk. The average of the signal over one period
is zero, and a0 = 0 follows immediately. In fact, all ak are zero because of the func-
tion’s symmetries. Furthermore, solving the second integral in Equation (3.3) yields



P1: OTA/XYZ P2: ABC
c03 JWBS035-Haidekker August 26, 2010 7:42 Printer Name: Yet to Come

72 IMAGE PROCESSING IN THE FREQUENCY DOMAIN

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

t/ π

f(
t)

0 2 4 6 8 10 12
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

k

C D

A B

-0.5 0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

1.5

t/ π

f(
t)

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k

F
ou

rie
r 

co
ef

fic
ie

nt
s 

b k
F

ou
rie

r 
co

ef
fic

ie
nt

s 
b k

FIGURE 3.1 Fourier analysis of two periodic functions. A square function (A) and a trian-
gular function (C) are shown next to a sine wave (gray curve in A and C). Solving the integrals
in Equation (3.3) yields ak = 0 for all k in both cases as a consequence of the symmetry. The
bk are plotted in B for the square wave and in D for the triangular function. It can be seen that
the Fourier coefficients of the triangular function drop off more rapidly for higher k than those
of the square wave, because the triangular function is more closely related to the sine wave
than is the square wave.

bk = 0 for all even values of k and nonzero coefficients bk, as described for a square
wave and a triangular wave, respectively:

bk = 4

�k
k = 1, 3, 5, . . . (3.4)

bk = 8

(�k)2
(−1)(k−1)/2 k = 1, 3, 5, . . . (3.5)

Reconstruction of a signal from the Fourier coefficients is demonstrated in Fig-
ure 3.2. The individual harmonic oscillations for k = 1, 3, and 5 are shown in
Figure 3.2A and C. According to Equation (3.1), the individual oscillations have
integer multiples of the frequency and an amplitude decreasing with the reciprocal of
the frequency. The summation of the oscillations (Figure 3.2B) shows convergence
toward the final shape of the square-wave function. The harmonic coefficients of
the triangle wave drop off more rapidly [according to Equation (3.5) with k2], and
convergence is much faster, as can be seen in Figure 3.2D.
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FIGURE 3.2 Fourier synthesis of the square-wave and triangular functions. The individual
harmonic contributions (A and C, respectively), when added up, converge toward the original
function as shown in B and D, respectively. For k → ∞, the functions in Figure 3.1A and
C emerge. Because the harmonic coefficients drop off toward higher frequencies faster in the
triangular wave than in the square wave, the triangular function is better approximated with a
lower number of coefficients.

The examples above show the transform of a continuous function into discrete
Fourier coefficients. To apply the Fourier transform on discretely sampled signals
and images, a discrete Fourier transform needs to be defined where the integration is
replaced by a summation over the discrete samples of the signal. The one-dimensional
discrete Fourier transform and the inverse transform are defined, respectively, by

Fr = 1

N

n−1∑
k=0

fk exp

(
−2� j

rk

N

)

fk =
N−1∑
r=0

Fr exp

(
2� j

rk

N

) (3.6)

where the Fr are the complex Fourier coefficients of the signal fk = f (tk) that is
sampled at discrete time points tk = k � t. Equation (3.6) makes use of the Euler
relationship ( j is the imaginary unit)

exp( j�) := e j� = cos � + j sin � (3.7)
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and is therefore closely related to the discrete summation in Equation (3.1), with
its orthogonal sine and cosine base. To obtain all possible Fourier coefficients, the
summation in Equation (3.6) needs to be evaluated for r = 0,1, . . . , N−1, where N
is the number of data points in the time series.

Implicitly, periodic behavior of the time series fk is assumed; that is, fk = fk+m N ,
where m may be any integer number. Due to the periodicity of the complex exponen-
tial, the same periodicity applies to the Fourier coefficients Fr: namely, Fr = Fr+m N .
In fact, the Fourier coefficients are commonly interpreted such that the indices r = 0,
1, 2, . . . , N/2 − 1 are considered coefficients for positive frequencies, and the indices
r = N − 1, N − 2, . . . , N/2 are considered negative frequencies and are shifted by
subtracting N from r. The coefficient F0, similar to a0 in Equation (3.1), is the average
value of the signal. F0 is always real-valued. The indices r of the Fourier transform
can be calibrated to relate to actual frequencies. When the signal has the period
T = N � t, the base frequency is 1/T . Therefore, the frequency of the coefficient Fr

for r = ±1 is ±1/T , and the frequency of each coefficient Fr is r/T . The highest
possible frequency that the discrete Fourier transform provides is N/2T or 1/2� t, in
agreement with the Nyquist sampling theorem.

The same considerations apply to images. One horizontal line of pixels provides
discrete values fk, sampled with a constant spatial sampling interval � x. Analogous to
the time series, the indices r of the Fourier transform represent the spatial frequency
ur = r/(M� x). By convention, frequencies in the horizontal direction are given
the index u, and frequencies in the vertical direction are given the index v. The
two-dimensional Fourier transform of a two-dimensional image is computed by first
computing the horizontal one-dimensional Fourier transform line by line, followed
by the column-by-column Fourier transform of the horizontal Fourier transforms:

F(u,v) = 1

MN

N−1∑
y=0

[
exp

(
−2� j

vy

N

) M−1∑
x=0

I (x,y) exp
(
−2� j

ux

M

)]
(3.8)

The second summation term represents the horizontal Fourier transform, and the first
summation represents the vertical Fourier transform. Since the first exponential term
is constant with respect to the second summation, the two exponential terms can
be joined, leading to the most commonly used definition for the two-dimensional
discrete Fourier transform:

F(u,v) = 1

MN

M−1∑
y=0

N−1∑
x=0

I (x,y) exp
[
−2� j

(ux

M
+ vy

N

)]
(3.9)

In Equations (3.8) and (3.9), I(x,y) are the image values, M and N are the image size
(number of pixels) in the horizontal and vertical directions, respectively, and F(u,v)
is the Fourier transform. Notably, the Fourier transform can be seen as an image with
the same dimensions as the input image I, albeit with complex pixel values. Like
the one-dimensional Fourier transform, those values of u that are larger than M/2
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FIGURE 3.3 Two-dimensional Fourier transform. The spatial-domain image (A) contains
periodic sinusoidal intensity variations; the image size is 512 × 512 pixels. Along the y-axis
there are eight full waves, and along the x-axis, 32. Its Fourier transform (B, inverted with
dark dots representing peak values for better visualization) shows five peaks. The central peak
represents the image average. The two peak pairs along the u and v axes are the positive and
negative frequency of the sinusoidal intensity variations along the x and y axes, respectively, of
the original image. The spatial frequency along the x-axis is higher than that along the y-axis;
correspondingly, the peaks on the u-axis are at higher u values (farther away from the origin)
than are the peaks on the v-axis.

and those values of v that are larger than N/2 are converted to negative frequencies
by subtracting M and N, respectively. The result is an image F(u,v) with the origin
(u = 0, v = 0) in the center, as illustrated in Figure 3.3. The value at the origin,
F(0,0), contains the image average as can be seen from Equation (3.9). A single row
of pixels parallel to the x-axis would represent a sine wave with 32 full periods over
M = 512 pixels or one period over 16 pixels. A one-dimensional Fourier transform
of the single row would have three peaks: a peak in the center at u = 0 (the average
value) and two symmetrical peaks 32 pixels right and left of the origin.

If the pixel size is known, the peak location translates into a spatial frequency. If
we assume that this image has pixels of size 0.2 × 0.2 mm, one period along the
x-axis is 3.2 mm. The highest spatial frequency (at u = 256) is 2.5 mm−1 and the
spatial frequency at u = 32 is 2.5 mm−1 · 32/256, or 0.3125 mm−1, the reciprocal of
3.2 mm. Correspondingly, each column in Figure 3.3A shows sinusoidal oscillations
of 64 pixels, or 12.8 mm along the y-axis. The peaks on the v-axis can be expected at
v = ±8, which corresponds to 2.5 mm−1 · 8/256 or 0.078125 mm−1, the reciprocal
of 12.8 mm. The farther away a pixel in the Fourier transform is from the origin, the
higher its associated spatial frequency. In fact, all points with the same distance from
the origin (i.e., on concentric circles) have the same spatial frequency. Therefore, any
point (u,v) in the frequency-domain plane has the spatial frequency �:

� =
√

u2 + v2 (3.10)

Since the Fourier transform is generally complex-valued, the visual representation
is difficult. Most frequently, the magnitude of the frequency components |F(u,v)| is
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FIGURE 3.4 Demonstration of Fourier-based filtering. After removal of the peaks on the
u-axis in Figure 3.3B and inverse Fourier transform, only the oscillations along the y-axis
remain.

displayed and the phase information omitted. Furthermore, the dynamic range of the
values of F(u,v) is huge, and often contrast is improved by displaying |F(u,v)| on
a logarithmic scale, remapped to the displayable range from 0 to 255. Many times,
the power spectrum, |F(u,v)|,2 is displayed. The power spectrum is a concept that
originates in electrical engineering and relates to the distribution of the power of a
signal over the frequency.

The basic idea behind Fourier-domain filters can be derived from the following
experiment: If the two outer peaks on the u-axis in Figure 3.3B are removed, only
the oscillation along the y-axis should remain. The experimental proof is given
in Figure 3.4. The image in Figure 3.3A was Fourier-transformed, and the two
symmetrical peaks on the u-axis were removed manually. After performing the inverse
Fourier transform, only the oscillations along the y-axis remain. Filtering methods in
the frequency domain and their applications are discussed in Section 3.2.

Abrupt changes of image intensity, such as lines or edges, have many frequency
components. The Fourier transform of a step (such as the transition from 1 to 0)
exhibits a broad spectrum with a (sin �)/� characteristic. If the intensity change
is more gradual, its frequency components drop off more rapidly toward higher fre-
quencies. Figure 3.5 demonstrates this effect. The Fourier transform of a white square
(i.e., a step change of intensity in both the x and y directions) shows predominantly
frequency components along the u and v axes (Figure 3.5A and B). A more gradual
transition from black to white as in Figure 3.5C exhibits a much more rapid decay of
the frequency components toward higher frequencies (Figure 3.5D). In the extreme,
the gradual intensity change is sinusoidal (Figure 3.3A) and associated with a very
narrow frequency peak. Notably, the Fourier transform of random pixel data (noise)
also has a broad frequency spectrum. In other words, the spectral power of noise is
spread over the entire frequency spectrum.
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FIGURE 3.5 Frequency spectrum of abrupt intensity changes. A white square (step intensity
changes in the x and y directions, A) has frequency components widely distributed along the u
and v axes (B; shown is the logarithmic magnitude for better visualization). The more gradual,
Gaussian-shaped transition (C) has frequency components that taper off much more rapidly
toward higher frequencies (D).

FIGURE 3.6 If an image is rotated, such as the white square from Figure 3.5A that is rotated
clockwise by 30◦ in image A, its Fourier spectrum is that of the original image, but also rotated
by the same angle (B).
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If an image is rotated by a certain angle, the frequency spectrum of the rotated
image is identical to the frequency spectrum of the original image but also rotated
by the same angle (Figure 3.6). This is a consequence of the linearity of the Fourier
transform, one of its most fundamental properties. In this context, linearity means
that (1) a scaled image has a Fourier transform scaled by the same value, and (2) the
Fourier transform of two images, added together pixel by pixel, is identical to the
addition of the Fourier transforms of the individual images:

F {aI (x,y)} = aF {I (x,y)}
F {I1(x,y) + I2(x,y)} = F {I1(x,y)} + F {I1(x,y)} (3.11)

where F denotes the Fourier transform; I, I1, and I2 are images; and a is a scalar.
The Fourier transform exhibits a number of symmetry properties. Generally, these

are more important in one-dimensional data sets than in images, since images rarely
exhibit relevant symmetries. If the original data are real valued, an even function
[f (t) = f (−t)] produces a real-valued, even Fourier transform, whereas an odd function
([f (t) = −f (−t)]) produces an imaginary, odd Fourier transform. Any asymmetrical
function yields a complex Fourier transform. However, the Fourier transform always
exhibits Hermitian symmetry, that is, F(�) = F*(−�), where F* is the complex
conjugate of F. In two dimensions, the Hermitian symmetry can be expressed as
F(u,v) = F*(−u,−v).

Fast Fourier Transform The discrete Fourier transform (DFT) in Equation (3.9)
can be implemented in a straightforward manner. Because of the double summation
needed for every point of F(u,v), the computational effort increases with the fourth
power of the image size, specifically M2N2, if the image is M × N pixels in size.
The extreme popularity of the Fourier transform can be explained primarily by the
development of the fast Fourier transform (FFT). In one dimension the FFT reduces
the computational effort from N2 for the conventional discrete Fourier transform to
N log2N for the FFT. To illustrate the efficiency gain, assume that a two-dimensional
fast Fourier transform of a 1024 × 1024 pixel image takes 5 seconds on a personal
computer. The conventional discrete Fourier transform would take 14 hours for the
same image. It is easy to imagine how important this efficiency gain was in the early
days of the digital computer, when computing power was only a fraction of what
today’s computers are capable of. This was the time when Danielson and Lanczos8

created an artful recursive implementation of the DFT using the symmetries of
the complex exponentials. The Danielson–Lanczos approach was refined further by
Cooley and Tukey,7 and the Cooley–Tukey algorithm is the basis of almost all FFT
implementations today. The history of the discovery of fast Fourier algorithms is
quite interesting, and a review paper by Cooley et al.6 provides a historical outline.
Additional aspects, particularly the impact of the FFT on research and science, as
well as some speculation into future developments, are presented by Rockmore.27
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To understand the FFT, one needs to recognize that the summation in Equation
(3.6) can be split in odd and even halves:

N−1∑
k=0

fk exp

(
−2� j

rk

N

)
=

N/2−1∑
k=0

f2k exp

(
−2� j

2rk

N

)

+
N/2−1∑

k=0

f2k+1 exp

(
−2� j

r (2k + 1)

N

)
(3.12)

In the second summation term, a constant phase factor of exp(−2� jr/N ) appears,
and the definition of a phase shift WN = exp(−2� j/N ) allows us to simplify Equa-
tion (3.12):

· · · =
N/2−1∑

k=0

f2k W rk
N/2 + W r

N

N/2−1∑
k=0

f2k+1W rk
N/2 (3.13)

It can be seen from Equation (3.13) that the N-point DFT reduces to two N/2-
point DFTs. The symmetry of the phase shifts comes into play when the number of
summations for r is reduced from N to N/2 by using the following two equations for
the lower and upper halves of the DFT:

Fr =
N/2−1∑

k=0

f2k W rk
N/2 + W r

N

N/2−1∑
k=0

f2k+1W rk
N/2

Fr+N/2 =
N/2−1∑

k=0

f2k W rk
N/2 − W r

N

N/2−1∑
k=0

f2k+1W rk
N/2

(3.14)

The upper and lower half-DFTs are identical, with the exception of the sign of the
phase shift. This reduction of a N-point DFT into two N/2-point DFTs and some
multiplications and additions is illustrated in the signal-flow graph in Figure 3.7.

In the same fashion, the two DFTs of N/2 points can be subdivided into four
DFTs of N/4 points, and so on, until only two-point DFT operations remain. These
operations are called butterfly operations and constitute the fundamental operation
of the FFT. The phase shift W r

N is often called a twiddle factor, and this factor differs
only in the sign between the lower and upper halves of Equation (3.14). The final
step in achieving the Cooley–Tukey FFT is to recognize that the butterfly operation
can be applied to adjoining data points if the data are rearranged in a specific manner:
namely, input data elements i and j are exchanged where j, interpreted as a binary
value, has the mirrored bit pattern of i. This two-step process of first rearranging the
data and then performing the recursive butterfly operations is given in Algorithm 3.1.
Most notably, the FFT is not an approximation of the DFT but, rather, provides
identical data. The major disadvantage of the split-by-two approach is the restriction
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FIGURE 3.7 Reduction of an eight-point DFT into two four-point DFTs with eight subse-
quent multiplications and additions following Equation (3.14). Multiplication with the twiddle
factors occurs along the diagonal lines. By using the same scheme, the four-point DFTs can be
subdivided into two-point DFTs. The two-point DFT is the most fundamental operation and
cannot be subdivided further.

of the FFT to data lengths N to powers of 2. If N is not a power of 2, the sequence
needs to be padded with zeros to the next power of 2, which may offset some of the
computational advantage (e.g., a 640 × 480 pixel image needs to be padded to form
a 1024 × 512 pixel image for FFT).

The implementation of the FFT in Algorithm 3.1 is straightforward, although sim-
ple complex arithmetic needs to be provided with the FFT function. Some languages
(e.g., FORTRAN) provide complex arithmetic. In C, a structure can be defined that
contains two double-precision elements for the real and imaginary parts, respectively;
simple complex arithmetic functions with two parameters that return the sum, dif-
ference, and product of the parameters need to be defined. In C++, the operators
+, −, and * can be overloaded. A very efficient implementation of the FFT function
that does not rely on external complex arithmetic is provided in Numerical Recipes
in C.23 In the same book, multidimensional FFT implementations are presented.
Multidimensional FFTs can be made more efficient by using the symmetry of the
exponential phase terms. Additional efficiency gains can be achieved when the input
data are real-valued rather than complex-valued, which is almost always the case in
image processing. Since many efficient implementations of the FFT exist, Algorithm
3.1 is provided for reference only. It is, of course, educational to implement the code
in Algorithm 3.1 and monitor how the bit-reversal part and the Danielson–Lanczos
algorithm operate.

One of the most advantageous options for performing an FFT is to use available
FFT libraries. A freely available library can be accessed at http://www.fftw.org,11

where fftw is an acronym for the “Fastest Fourier Transform in the West.” Those
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// Part 1: Bit-reversal reordering of the data: i and j are bit-mirrored
j=0;
for (i=0 while i�N-1 increment i=i+1)

if (i�j) then
swap (data[i], data[j]); // Swap the bit-mirrored positions

endif;
k=N/2;
while ((k�=j) and (k�=1)) do // Prepare the bit mirrored j for the

next i
j = j-k;
k = k/2;

endwhile;
j = j+k;

endfor;

// Part 2: Danielson–Lanczos recursive multiplication
k = 1;
while (k�N) do // k is doubled every iteration, so this loop runs log2 N times

theta = �/k; // angle increment for this recursion level
v = complex (-2*sin(0.5*theta)̂ 2, -sin(theta));
w = complex (1, 0); // w is the actual twiddle factor

for (m=1 while m�=k increment m=m+1) do
for (i=m-1 while i�N increment i=i+2*k) do

j=i+k;
c = w ⊗ data[j]; // These three lines constitute

the butterfly operation
data[j] = data[i] � c;
data[i] = data[i] ⊕ c;

endfor;
w = w ⊗ v ⊕ w;

endfor;
k = k*2;

endwhile;

Algorithm 3.1 Fast Fourier transform in one dimension. This function depends on
a complex input array data with N elements (0 to N − 1), where N must be a
power of 2. The FFT function needs an external function swap that exchanges the
two arguments. The variables v, w, and c are complex numbers. Furthermore,
the symbols ⊗, ⊕, and � denote complex multiplication, addition, and subtraction,
respectively. The Fourier transform takes place within the data array, and the output
needs to be normalized, that is, all elements of data divided by N. The inverse
Fourier transform is almost identical except that theta in part 2 has a negative sign,
and no normalization takes place.
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familiar with the fftw library have little reason to doubt the veracity of the developer’s
claim. Not only does the fftw library contain several different algorithms optimized
for different types of data in one or multiple dimensions, but a measurement function
exists that determines the optimum algorithm for a given situation. Whereas the initial
performance measurement constitutes computational overhead, the overall gain for
the repeated use of the same FFT is considerable. For single FFT where the overhead is
not justified, fftw estimates the optimum algorithm without additional computational
effort. Another advantage of the fftw library is that input data are not restricted to
power-of-2 sizes. Rather, fftw is capable of computing the FFT of arbitrary-sized
data sets. Furthermore, fftw provides functions for real-valued input and contains
code for the discrete sine and cosine transforms and the fast Hartley transform
(see Section 3.3). With these capabilities, fftw is arguably the library of choice
for most applications that call for discrete Fourier transforms and related integral
transforms.

3.2. FOURIER-BASED FILTERING

In Section 3.1, the possibility of using the Fourier transform to remove periodic com-
ponents from images was introduced briefly. However, frequency-domain filtering is
far more comprehensive. The foundation of frequency-domain filtering is the convo-
lution theorem, which stipulates that a convolution in the spatial domain corresponds
to a multiplication in the Fourier domain. Computational effort of a convolution
increases with K2N2 on N × N images and K × K kernels. With the fast Fourier
transform, computational expense is reduced to 2 N log2 N and N × N additional
multiplications. On large images and large convolution kernels, Fourier filtering is
considerably faster. Furthermore, due to the defined spatial frequencies, the action
of the Fourier-domain filter can be dramatically better adjusted than that of convo-
lution filters (which often are merely approximations of filter functions in a small
neighborhood, such as a 3 × 3 kernel). A Fourier-domain filtering process includes
three steps: computation of the Fourier transform of the image; multiplication with
the filter function and computation of the inverse Fourier transform (Figure 3.8). A
fourth and optional step, windowing, is discussed later in the chapter.

Two of the most commonly used filter types are lowpass filters (where the higher
frequencies are attenuated) and highpass filters (where the low-frequency compo-
nents are attenuated). Lowpass filters have noise-attenuating properties and blur the
image. Lowpass filtering is associated with a loss of detail and with softening of
sharp transitions. Highpass filtering enhances edges and may be used to remove
inhomogeneous background components. Highpass filters also tend to increase the
noise component. Bandpass filters and notch filters are used less frequently in image
processing. A bandpass filter emphasizes specific periodic components, whereas a
notch filter suppresses periodic components. The band of frequencies that are not
attenuated is called the passband, and the band of frequencies that are attenuated is
called the stopband. The frequency at which the transition between passband and
stopband takes place is the cutoff frequency.
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FIGURE 3.8 Filtering in the frequency domain. Instead of filtering the image in the spatial
domain by convolving the image with the filter kernel, the image can be transformed into
frequency space by using the FFT (indicated by the symbol F ). The Fourier transform of
the image is then multiplied by the filter function (also called the transfer function, i.e., the
Fourier transform of the convolution kernel), and the resulting frequency-space filtered image
is subjected to the inverse Fourier transform (F−1). Although this “detour” into the frequency
domain may appear to be additional effort, the overall computational expense is dramatically
less than for a convolution with large kernel sizes.

Filters are usually designed to act equally on all spatial frequencies, making
them rotationally symmetrical [see Equation (3.10)]. Furthermore, filter functions
are designed to achieve a smooth transition between frequency components that are
allowed to pass and those that are blocked. Steep transitions cause an artifact known
as ringing. For this reason, a filter function such as a lowpass filter with a frequency
response H(�),

H (�) =
{

1 for � ≤ �0

0 for � � �0
(3.15)

with the cutoff frequency �0 is not advantageous and not normally used.

3.2.1. Lowpass Filters

Lowpass filters are used primarily for noise reduction. They remove image detail
and blur the image. Lowpass filters are often applied in preparation for segmentation
to reduce the influence of noise. In the spatial domain, blurring is often performed
by a convolution with an approximated Gaussian kernel. Interestingly, the Fourier
transform of a Gaussian function is again a Gaussian function. Therefore, a popular
lowpass filter is a filter with Gaussian-shaped frequency response

H (�) = A

�
√

2�
exp

(
− �2

2�2

)
(3.16)

where � = √
u1 + v2 is the spatial frequency, A is the overall gain, and � is the width

(steepness).
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An alternative implementation uses

H (�) = A

�
√

2�
exp

[
−clamp(� − �0)2

2�2

]
(3.17)

where the function clamp(x) is 0 for x � 0 and x for x ≥ 0. With the help of the clamp
function, the passband frequencies are extended such that all frequency components
below �0, the cutoff frequency, remain unchanged.

Another frequently used lowpass filter function is the Butterworth filter. Its filter
function has the steepest possible transition between passband and stopband without
passband ripples (ringing). Its frequency response is

H (�) = A

1 + C (�/�0)2n (3.18)

where A is the overall gain, �0 the cutoff frequency, C an asymmetry factor, and n
the order.

Selection of the filter and the filter parameters is often empirical. Examples of
the action of the filters are shown in Figure 3.9. Whereas similarly adjusted lowpass
filters with Gaussian and Butterworth characteristics (Figure 3.9B and C) are visually
similar, the edges are blurred less strongly with the Butterworth filter. The effect of
a steep transition (ripples or ringing, seen as periodical oscillations near edges) is
demonstrated in Figure 3.9D where a Butterworth filter of order n = 25 was used.

3.2.2. Highpass Filters

In general, highpass filters HHP(�) can be obtained from lowpass filters HLP(�)
through

HHP(�) = 1 − HLP(�) (3.19)

provided that the passband gain is normalized to unity. In the example of the But-
terworth lowpass filter [Equation (3.18)] application of Equation (3.19) leads to the
complementary Butterworth highpass filter,

H (�) = A

1 + (1/C) (�0/�)2n
(3.20)

The choice of a relatively steep filter with a low cutoff frequency provides a filter
that partly removes an inhomogeneous background (an image component with a very
low frequency), while a higher cutoff frequency leads to a distinctly edge-enhancing
filter, similar to convolution-based edge detectors. Specifically for the removal of an
inhomogeneous background, the filter

H (�) = A + 1

1 + exp[−s(� − �0)]
(3.21)
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FIGURE 3.9 Effect of Fourier-domain lowpass filters. The original image is a high-contrast
version of the Shepp–Logan head phantom with additive Gaussian noise and a gradual back-
ground gradient (A). A Gaussian lowpass filter with � = 30 pixel−1 [B; left half: Equa-
tion (3.16), right half: Equation (3.17) with �0 = 20 pixel−1] reduces noise but also causes
some degradation of the edges (blurring). A second-order Butterworth filter [Equation (3.18),
�0 = 66 pixel−1, C = 1] produces a similar effect (C). If the transition from the passband
to the stopband is very steep, for example, by using a high-order Butterworth filter (D, same
parameters as C except that n = 25), edges are accompanied by spatial oscillations (“ringing”).

is more suitable. In this filter, s is the steepness, �0 the cutoff frequency, and A an
offset that can be used to adjust the strength of the filter. After application of the filter
in Equation (3.21), the value range needs to be normalized if A �= 0. Examples of the
application of these filters are shown in Figure 3.10.

Very frequently, the filter in Equation (3.21) is applied in a multiplicative manner.
In this case, the filter is known as a homomorphic filter. The underlying assumption
is inhomogeneous illumination, where the image values I(x,y) are the product of
nonuniform illumination intensity I0(x,y) and the reflectance (or transmittance) of the
imaged object, O(x,y). In logarithmic form, the product becomes a sum, log I (x,y) =
log I0(x,y) + log O(x,y). The illumination intensity function I0(x,y) is assumed to
have only low-frequency components. When the log-transformed data log I (x,y) are
filtered with the filter in Equation (3.21), the low-frequency additive component log
I0(x,y) is strongly attenuated, and only the object component remains. By raising the
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FIGURE 3.10 Highpass filtering of the phantom in Figure 3.9A. A Butterworth filter with
low cutoff frequency (�0 = 2 pixel−1, C = 1, n = 1, A = 1) partly removes the background
inhomogeneity, but it also introduces a new region of reduced intensity around the edge (A).
With a higher cutoff frequency (�0 = 25 pixel−1), the filter assumes a strong edge-enhancing
characteristic, particularly when the absolute values are taken (B). The filter in Equation (3.21)
(�0 = 20, A = 2, s = 0.5) effectively removes the background inhomogeneity (C) while
exhibiting less of the reduced-intensity area around the phantom than does the Butterworth
highpass in part A.

filtered log-transformed image to the power of 10, the original image is restored with
the multiplicative background inhomogeneity removed.

3.2.3. Wiener Filters

Frequency-domain filters play an important role in image restoration. Any imaging
device has a certain point-spread function (PSF), that is, the image function of
an idealized point source. For an optical system, the PSF could be measured by
acquiring the image of a back-illuminated pinhole. For a CT system, the PSF could
be determined by imaging a thin axial wire. Most frequently, the PSF has a Gaussian
shape. If the point-spread function g(x,y) of an imaging device is known, any image
I(x,y) obtained by this device can be seen as the convolution of an idealized image
I′(x,y) with g(x,y). Let G(u,v) = F{g(x,y)} be the Fourier transform of g(x,y); then
degradation by the PSF can be described in the frequency domain by

F {I (x,y)} = F {I ′(x,y)}G(u,v) (3.22)

The idealized but inaccessible image I′(x,y) can therefore be restored by deconvolu-
tion, that is, division by the PSF in the frequency domain, described by

I ′(x,y) = F−1

{
F {I (x,y)}

G(u,v)

}
(3.23)

The problem with this approach is that the point-spread function G(u,v) has a low-
pass character, which means that the values of G(u,v) become very small for large
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u and v. Since the measured image data I(x,y) usually contain noise, the Fourier
transform of I(x,y) also contains noise. This noise component is broadly distributed
and a considerable amount of noise exists in the Fourier transform of the image for
large u and v, where the division by small values of G(u,v) causes a massive noise
amplification. Therefore, if an image is degraded by a lowpass point-spread function
and additive noise, it is not possible to reconstruct the undegraded image. However,
a filter function can be designed that provides an optimum estimate that minimizes
the squared distance between I and I′. This best-estimate filter is called a Wiener
filter. Often, the noise component can be measured or estimated, for example, by
analyzing a flat region of the image. A common model is additive noise, where each
pixel contains a noise component �(x,y) with zero mean and a standard deviation of
�. It can be shown that the best-estimate filter is the function W(u,v):

W (u,v) = G∗(u,v)

|G(u,v)|2 + |N (u,v)|2/|I (u,v)|2 (3.24)

where G*(u,v) is the conjugate complex of the frequency-domain PSF, N(u,v) is
the estimated Fourier spectrum of the noise, and I(u,v) is the Fourier spectrum
of the original image and approximately similar to the Fourier spectrum of the
degraded image, provided that the degradation is minor. To obtain the best-estimate
approximation of the ideal image, the degraded image needs to be multiplied in the
Fourier domain with W(u,v), and Wiener filtering becomes the process

I ′(x,y) ≈ F−1{F {I (x,y)}W (u,v)} (3.25)

Sometimes the Wiener filter is implemented with an adjustable parameter k:

W (u,v) = G∗(u,v)

|G(u,v)|2 + k
(3.26)

In this case, k can be adjusted manually to provide an acceptable approximation
of the restored image. The main effect of the real-valued scalar k is to prevent the
filter function 1/G(u,v) from assuming very large values for large u and v and thus
amplifying the noise component. The effect of the Wiener filter and the choice of k
are illustrated in Figure 3.11.

3.2.4. Cross-Correlation and Autocorrelation

Cross-correlation is a method for template matching. A template, g(x,y), is slid over
the image I(x,y) and overlapping pixels are summed up. This is, in fact, equivalent to
a convolution operation

C(x,y) =
∑N−1

j=0

∑M−1
i=0 I (i,j)g(x + i, y + j)[∑N−1

j=0

∑M−1
i=0 I (i,j)2

∑N−1
j=0

∑M−1
i=0 g(i,j)2

]1/2 (3.27)
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FIGURE 3.11 Frequency response of a Wiener filter as defined in Equation (3.26). Assume
that the degradation function G(�) is a Gaussian function (light gray line); then its reciprocal
(dashed line) assumes very large values at moderate to high spatial frequencies. Multiplication
of a degraded image by the reciprocal would strongly amplify noise. Instead, a Wiener filter
can be used to attenuate very high frequencies. The frequency response of the filter in Equation
(3.26) is shown for three different choices of k.

The template g(x,y) and similar shapes can be found at peak locations of C(x,y). By
using the convolution theorem, the convolution in Equation (3.27) can be written as
a multiplication in the frequency domain:

C(x,y) = F−1{F {I (x,y)}G∗(u,v)} (3.28)

where G*(u,v) is the conjugate complex of the Fourier transform of g(x,y). The
autocorrelation is the cross-correlation of the image with itself, and Equation (3.28)
applies in the same manner.

3.2.5. Filter Implementation and Windowing

For the implementation of symmetrical lowpass and highpass filters, a filter function
can be provided that returns H(�) for any given �. To filter an image with this filter
function, the image needs to be subjected to a FFT, and the FFT image data need to be
rearranged so that the zero-frequency element F(0,0) is in the center. In a loop over
all pixels (u,v) of the FFT image, the frequency response is obtained by computing
� as the Euclidean distance of (u,v) from the center and calling the filter function to
obtain H for this frequency. Both the real and imaginary parts of the FFT values are
then multiplied by H. Once all pixels are processed, the resulting filtered FFT image
is subjected to the inverse Fourier transform. Since the result of the inverse FFT is
usually complex-valued, the imaginary component can be discarded (it should contain
values very close to zero, anyway) and the resulting spatial-domain real-valued pixel
values rounded to fit the original image depth.
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FIGURE 3.12 Discontinuities at the edges of images that are assumed to be periodic. The
example shows a magnified section of an x-ray image of bovine bone. The Fourier transform
assumes that images are 2�-periodic, that is, infinitely tiled, as illustrated in part A. This
creates discontinuities at the image edges with associated high-frequency components. By
multiplying the image by a window function, the image values at the edges are attenuated and
a forced continuity at the edges is created (B).

An important consideration for the implementation of Fourier-domain filters, even
for the estimation of spectral components, is the assumed periodicity of the image.
In Section 3.1 the Fourier transform was introduced under the assumption that any
signal is 2�-periodic, and any image consequently is 2�-periodic in both directions.
It was also explained that edges create high-frequency components. Discontinuities
between image values at the left and right border and at the upper and lower border
also count as discontinuities, as can be seen in Figure 3.12. These discontinuities
create additional high-frequency components in the Fourier transform. To prevent
these high-frequency components, it is recommended that the image be multiplied by
a window function in the spatial domain, a process called apodization. The window
function attenuates image values toward the edges and therefore reduces the dis-
continuity (Figure 3.12B). After filtering and inverse Fourier transform, the original
image values are restored by dividing the filtered image by the window function.

A window function has its own frequency response. For this reason, smooth
window functions are preferred that contribute only minimally to the frequency
spectrum. One example window function is

w(x, y) =
[

a − b cos

(
2�

x

M + 1

)] [
a − b cos

(
2�

y

N + 1

)]
(3.29)

where M and N are the image dimensions in the x and y directions, respectively. With
the choice of a = 0.5 and b = 0.5, this window is known as the Hann window, and
with a = 0.54 and b = 0.46, the window function becomes the Hamming window.
The Hamming window is one specific form of raised cosine window where the
window values do not drop to zero at the edges. This is important for recovery
of the image values after the inverse Fourier transform, because edge pixels where
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w(x,y) drops to zero cannot be recovered by dividing by w(x,y). Other windows of
linear (Bartlett window), parabolic (Welch window), or Gaussian shape exist. In
the practical application the exact choice of the window function will not have a
measurable impact on the filtered image as long as the window function approaches
zero smoothly toward the edges of the image.

The summary of these steps is presented in Algorithm 3.2. The algorithm relies
on two external functions, FFT and IFFT, which perform the forward and inverse
Fourier transforms, respectively, in the image IM and its real and imaginary parts of
the Fourier transform, IFR and IFI.

set a=1.0; c=1.0; n=2; omg0=25; // Specify Butterworth filter parameters [Equation (3.18)]

allocate (IFR(M,N), IFI(M,N)); // Create space for the Fourier transform

// Part 1: Apply a window function (Hamming window), then Fourier-transform the image

for (y=0 while y�N-1 increment y=y+1)

for (x=0 while x�M-1 increment x=x+1)

w=(0.54-0.46*cos(2*�*x/(M+1))*(0.54-0.46*cos(2*�*y/(N+1));

IM(x,y) = IM(x,y)*w;

endfor;

endfor;

call FFT (IM, IFR, IFI, M, N); // the forward Fourier transform

// Part 2: Apply the filter function in the frequency domain. Note that IFR and IFI are M × N images.

for (v=0 while v�N-1 increment v=v+1)

for (u=0 while u�M-1 increment u=u+1)

omega=sqrt(sqr(u-N/2)+sqr(v-M/2)); // frequency of (u,v)

H = a/(1+c*power((omega/omg0), 2*n)); // Butterworth lowpass

IFR(u,v) = IFR(u,v)*H; // Multiply both real and . . .

IFI(u,v) = IFI(u,v)*H; // . . . imaginary components by H

endfor;

endfor;

// Part 3: Inverse Fourier-transform followed by reversal of the window function

call IFFT (IFR, IFI, IM, M, N); // the inverse Fourier transform

for (y=0 while y�N-1 increment y=y+1)

for (x=0 while x�M-1 increment x=x+1)

w=(0.54-0.46*cos(2*�*x/(M+1))*(0.54-0.46*cos(2*�*y/(N+1));

IM(x,y) = IM(x,y)/w;

endfor;

endfor;

delete (IFR(M,N), IFI(M,N)); // free space used for the Fourier transform

Algorithm 3.2 Fourier-based filtering using the example of a Butterworth lowpass
filter. This algorithm relies on external functions to perform the Fourier transform.
FFT transforms image IM and generates the real part IFR and the imaginary part
IFI of the Fourier transform. The inverse transform function IFFT takes IFR and
IFI and returns IM. This algorithm demonstrates how a window function is applied
in the spatial domain and how a filter function is applied in the frequency domain.
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3.3. OTHER INTEGRAL TRANSFORMS: THE DISCRETE COSINE
TRANSFORM AND THE HARTLEY TRANSFORM

Other integral transforms exist that have properties similar to those of the Fourier
transform but are real-valued. Most notably, these are the discrete cosine transform26

and the discrete Hartley transform.4,16 For both of them, a fast recursive formulation
similar to the FFT exists.5 Like the Fourier transform, both transforms decompose the
image into its frequency components. The discrete cosine transform finds widespread
use in lossy image compression (see Section 12.3), and the discrete Hartley transform
is sometimes used as a real-valued substitute for the Fourier transform in frequency-
domain filter operations. In fact, some image processing programs, such as NIH
Image and ImageJ, really compute the discrete Hartley transform, although the menu
indicates the Fourier transform. The advantage of the Hartley transform is that it
does not require dealing with complex numbers. However, both the discrete cosine
transform and the discrete Hartley transform have fundamentally different periodicity
and symmetry properties than those of the Fourier transform. Consequently, some
theorems, including the convolution theorem, are different from, and notably more
complex than, the equivalent theorems of the Fourier transform. In addition, patent
restrictions that were held up until 1995 may have hampered a more widespread
adoption of the fast Hartley transform.

The two-dimensional discrete cosine transform and its inverse transform are given,
respectively, by∗

C(u,v) = s(u)s(v)√
MN

M−1∑
x=0

N−1∑
y=0

I (x,y) cos

[
�

2

u(2x + 1)

M

]
cos

[
�

2

v(2y + 1)

N

]
(3.30)

I (x,y) = 1√
MN

M−1∑
u=0

N−1∑
v=0

S(u)S(v)C(u,v) cos

[
�

2

u(2x + 1)

M

]
cos

[
�

2

v(2y + 1)

N

]

(3.31)

where the scaling factor s(k) assumes the values s(0) = √
2 and s(k) = 2 for all

other k. Whereas the Fourier transform assumes 2�-periodicity of the input signal,
the discrete cosine transform assumes the input data to be only one-half of the 2�
period. The other half is mirrored. Consider the one-dimensional input sequence
to be x0, x1, . . . , xN−1; then the sequence is assumed to continue with x−1 = x0,
x−2 = x1, . . . to the left, and xN = xN−1, xN+1 = xN−2, . . . to the right. This behavior is
identical to a discrete Fourier transform when the input data are real-valued with even
symmetry and all even-indexed elements are zero. Furthermore, the discrete cosine
transform does not yield negative frequency components as the Fourier transform
does. For this reason, the origin with zero frequency cannot be shifted into the center
as shown in Figure 3.3. Rather, the M × N data points of the discrete cosine transform

∗In fact, four different definitions of the DCT, often called DCI-I through DCT-IV, are defined by the
symmetry conditions. These behave in a similar manner. In this chapter we use DCT-II as the most
widespread form of DCT in image processing.



P1: OTA/XYZ P2: ABC
c03 JWBS035-Haidekker August 26, 2010 7:42 Printer Name: Yet to Come

92 IMAGE PROCESSING IN THE FREQUENCY DOMAIN

represent the positive part of the spectrum only. To achieve a spectrum similar to the
one obtained from the Fourier transform, the M × N point spectrum needs to be
mirrored along the u-axis, then the new spectrum mirrored again along the v-axis,
leading to a 2M × 2N spectrum. This mirroring process generates four zero-frequency
points and is therefore rarely performed. However, even the one-quadrant spectrum of
positive frequencies provides the ability to design filters based on the discrete cosine
transform.

The discrete Hartley transform is more closely related to the Fourier transform
than the discrete cosine transform. In fact, Hartley envisioned his integral transform
as a real-valued replacement of the Fourier transform for real-valued data.3 Whereas
the Fourier transform uses the harmonic complex oscillation as its basis function, the
Hartley transform uses the cas function. The term cas is an acronym for cosine and
sine, and the cas function is defined as

cas t = cos t + sin t =
√

2 cos
(

t − �

4

)
(3.32)

The one-dimensional discrete Hartley transform is given by

H (�) = 1

N

N−1∑
i=0

fi cas

(
2�

�i

N

)
(3.33)

The discrete Hartley transform is its own inverse; in other words, the inverse Hartley
transform is identical to the forward Hartley transform. In Equation (3.38) the inverse
transform is obtained by exchanging I(x,y) and H(u,v) and performing the summation
over u and v. The Fourier and Hartley transforms are closely related. The Hartley
transform can be computed from the real and imaginary components of the Fourier
transform through the equation3

H (�) = Re{F(�)} − Im{F(�)} (3.34)

and the Fourier transform can be obtained by splitting the Hartley transform into its
even and odd components, which then constitute the real and imaginary parts of the
Fourier transform4:

F(�) = H (�) + H (N − �)

2
− j

H (�) − H (N − �)

2
(3.35)

Similar to the Fourier transform, the signal is assumed to be periodic, and its Hartley
transform is also periodic in the sense of H (k) = H (k + m N ), where N is the length
of the data set and m is an integer number. The discrete Hartley transform yields the
transform components for negative frequencies in the upper half of the transformed
data. For this reason, the shift H (−k) = H (N − k) is usually performed to move the
zero-frequency point into the center of the data stream or, in the two-dimensional case,
into the center of the image. The magnitude of the Hartley transform |H(u,v)| and the
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magnitude of the Fourier transform |F(u,v)| are very similar in appearance. Frequency-
domain filtering is possible with the Hartley transform, but the convolution theorem
differs from that of the Fourier transform. If two signals g1 and g2 are convolved into
a signal g, the convolution theorem for the discrete Hartley transform requires that we
split one of the transforms into its even and odd components such that G1 = H{g1}
is the Hartley transform of g1, G1e is the even part of G1 with G1e(�) = 1

2 [G1 (�) +
G1(N − �)], and G1o is the odd part of G1 with G1o(�) = 1

2 [G1 (�) − G1(N − �)], in
analogy to Equation (3.35). With these definitions, the Hartley transform G = H{g}
of the convolved signal can be computed through4

G(�) = G1(�)G2e(�) + G1(−�)G2o(�) (3.36)

When one of the functions (e.g., a Gaussian filter kernel) is even, G2o(�) = 0 follows,
and the second summation term in the convolution theorem [Equation (3.36)] can be
dropped.

In two dimensions, additional considerations arise, as there are two possible ex-
tensions of the one-dimensional discrete Hartley transform34 with mutually exclusive
properties. The following equation describes a two-dimensional Hartley transform
that maintains the relationship between the Fourier and Hartley transform in Equa-
tions (3.34) and (3.35):

H (u,v) = 1√
MN

M−1∑
x=0

N−1∑
y=0

I (x,y) cas
[
2�

(ux

M
+ vy

N

)]
(3.37)

The normalization factor M−1N−1 can either be applied in the forward Hartley trans-
form as proposed by Bracewell,4 in the inverse Hartley transform as proposed by
Watson and Poirson,34 or in both the forward and inverse transform, as in Equation
(3.37) with the advantage that the Hartley transform is still its inverse under this
definition. The following equation defines a separable discrete Hartley transform34

that is separable in analogy to the Fourier transform [Equation (3.8)]:

H (u,v) = 1√
MN

M−1∑
x=0

N−1∑
y=0

I (x,y) cas
(

2�
ux

M

)
cas

(
2�

vy

N

)
(3.38)

The separable Hartley transform in Equation (3.38) was proposed by Bracewell as
the two-dimensional extension of the one-dimensional discrete Hartley transform.3

However, the separable discrete Hartley transform no longer obeys the relationship to
the Fourier transform in Equations (3.34) and (3.35). This implies that the convolution
theorem, Equation (3.36), is not valid in two dimensions under Equation (3.38).
Instead, Watson and Poirson derived the modified convolution theorem34

G(u,v) = G1e(u,v)G2e(u,v) − G1o(u,−v)G2o(u,−v)
+ G1e(u,−v)G2o (u,v) + G1o(u,v)G2e(u,−v)

(3.39)
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where the indices e and o indicate the even (cosine) part and the odd (sine) part of
the discrete Hartley transform, respectively.

To view and examine a frequency spectrum, the discrete Hartley transform is an
attractive alternative to the Fourier transform, since the transform is real-valued and
no imaginary component or phase component needs to be considered. For the same
reasons, the memory requirement is lower, and the actual transform is faster, since
the cas function can be computed with a single trigonometric operation, where two
such operations are needed for the complex exponential of the Fourier transform.
However, when the Hartley transform is used for image filtering, the complexity of
the convolution theorem offsets some of that advantage.

3.4. BIOMEDICAL EXAMPLES

Image processing in the Fourier domain is a fundamental tool not only in the process of
manipulating and enhancing images but also in image formation. Most computerized
imaging modalities rely on the Fourier transform at some point of the image formation
process. The following examples of computed tomography and magnetic resonance
image formation highlight the importance of the Fourier transform in biomedical
imaging.

In 1917, J. Radon presented his work “On the determination of functions through
line integrals along certain manifolds.”24 X-ray attenuation through inhomogeneous
media can be described by

I = I0 exp

(
−

∫
s

	(�r)d�r
)

(3.40)

where I0 is the incident x-ray intensity, I the x-ray intensity after the x-rays passed
through the object, 	(�r ) the x-ray absorption at location �r , and integration takes place
along a straight path s through the object. The argument of the exponential function is
a line integral in the sense of Radon’s work, and a set of line integrals along parallel
paths that completely covers the object describes an x-ray projection. The set of
projections at different angles are referred to as the Radon transform. Radon showed
that this is indeed a transform, as an inverse transform exists which allows to recover
the original object from the Radon transform. A relationship exists between the Radon
and Fourier transforms called the Fourier slice theorem. It stipulates that the Fourier
transform of a parallel projection of an image 	(x,y), taken at an angle 
, gives a one-
dimensional slice of the two-dimensional Fourier transform of 	(x,y), subtending an
angle 
 with the u-axis.18 The Fourier slice theorem is illustrated in Figure 3.13.

On the basis of the Fourier slice theorem, image reconstruction in computed
tomography becomes possible by first collecting one-dimensional projections at
many angles. Their one-dimensional Fourier transforms are then entered into a two-
dimensional frequency-domain matrix spaceholder. Since it is practically impossible
to fill all matrix elements of the frequency-domain matrix, missing elements need to
be interpolated. Once the matrix is completely filled and interpolated, the object is
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FIGURE 3.13 The Fourier slice theorem relates the one-dimensional Fourier transform of a
projection to a slice through the two-dimensional Fourier transform of the object along a line
through the origin at the same angle as the projection.

obtained by two-dimensional inverse fast Fourier transform of the matrix. An alterna-
tive approach for CT reconstruction is filtered backprojection. In the backprojection
process, the projection is distributed over the image along the line of projection, and
the contributions of the projections at different angles are added up. It can be shown
that the point-spread function of the backprojection process is a 1/r function such that
a point source blurs into an image with an intensity that drops off with the reciprocal
of the distance r to the point center. A suitable filter to correct for the 1/r point-
spread function has a frequency response of H(�) = |�|,15 and a convolution-based
filter kernel to achieve this frequency response was proposed by Ramachandran and
Lakshminarayanan.25 The filtered backprojection thus becomes a two-step process,
where the projection is first convolved with the Ramachandran–Lakshminarayanan
kernel and then backprojected over the image space for reconstruction. Since the
Fourier transform of this kernel is proportional to |�|, its frequency-domain imple-
mentation is much more efficient, and the first step of the filtered backprojection be-
comes a frequency-domain filtering step where the projection is Fourier-transformed,
the transform multiplied with |�|, and the result subjected to the inverse Fourier trans-
form. This operation has a close relationship to computation of the first derivative:

F

{
d f (t)

dt

}
= j�F { f (t)} (3.41)

Consequently, it has a strong noise-amplifying effect. Shepp and Logan28 therefore
suggested a different filter with a frequency response H(�):

H (�/N ) =
∣∣∣∣ 1

�
sin

��

2N

∣∣∣∣ (3.42)

which has a lower amplification of high spatial frequencies than that of the
Ramachandran–Lakshminarayanan filter. This behavior can be seen in Figure 3.14.
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FIGURE 3.14 Frequency responses of the filters used in the filtered backprojection for
computed tomography reconstruction. The dashed line represents the filter by Ramachandran
and Lakshminarayanan, and the solid line represents the filter by Shepp and Logan. The
Shepp–Logan filter exhibits less amplification of the higher frequencies, which reduces image
noise at the expense of some sharpness.

As a result, the Shepp-Logan filter will cause the reconstructed images to have a
lower noise component at the expense of some edge sharpness. Reconstruction in
Fourier space and filters for reconstruction are presented in a review paper by Zubal
and Wisniewski.36

The Fourier transform is of similar importance in the reconstruction of magnetic
resonance images. Hydrogen protons possess a magnetic moment. In a strong external
magnetic field, the magnetic moments assume an orientation parallel and antiparallel
to the magnetic field with a small net magnetization in favor of the parallel orientation.
In addition, the magnetic moment shows a small precession with an angular frequency
(Larmor frequency) � = �B0, where B0 is the external magnetic field and � is the
gyromagnetic ratio, which is a material constant. In a typical clinical scanner with
B0 = 1.5 T, the precession frequency is f = �/2� = 63.87 MHz. A radio-frequency
pulse can be used to expand the precession cone and to bring the precessing moments
into coherence. Once the radio-frequency pulse stops, precession coherence is lost,
and the precession cone narrows as the magnetic moments return to their original
orientation parallel to B0. In the process, the protons emit a decaying radio-frequency
signal with their precession frequency that is received by a suitable antenna. To ob-
tain an image, the radio-frequency signal needs to be encoded in three dimensions.
Encoding is performed by three orthogonal magnetic gradients that are superimposed
over the main magnetic field B0. These gradients change the precession frequency
along the axis of the gradient. Analysis of the frequency components by means of the
Fourier transform allows spatial separation of the signal components. More precisely,
the first gradient is applied in the axial (z) direction during radio-frequency injection.
This ensures that precession coherence is achieved in only a thin slice of the tissue.
Upon echo acquisition, only this slice contributes to the radio-frequency signal. Be-
tween radio-frequency injection and echo acquisition, a brief gradient along the x-axis
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FIGURE 3.15 Filling of the k-space matrix in MRI. The frequency encode gradient (FEG)
causes different precession frequencies along the y-axis, and Fourier analysis of one single
echo signal allows us to fill one line of pixels in the k-space matrix (gray shaded box). The
phase encode gradient (PEG) is a gradient along the x-axis that is applied briefly before echo
acquisition. Phase encode gradients of different strength can be seen as vectors that position
the echo line parallel to the v-axis. Repeated echos, taken with different PEG strengths, are
used to fill the k-space matrix line by line. The inverse Fourier transform of the filled k-space
matrix yields the cross-sectional image.

[Bx, called the phase-encode gradient (PEG)] creates a position-dependent phase shift
of the precessing moments along the x-axis. During acquisition, the third gradient is
applied, which modulates the precession frequencies along the y-axis [By, called the
frequency-encode gradient (FEG)]. Phase shift and echo frequency are orthogonal
and can be seen as a point in a two-dimensional frequency-domain matrix called
the k-space matrix. Each echo acquisition fills one line parallel to the u-axis of the
k-space matrix, and application of the x gradient determines the position of this line
on the v-axis. The k-space matrix is filled with repeated acquisitions. An inverse
Fourier transform yields the cross-sectional image (Figure 3.15).

Ultrasound imaging is not as fundamentally dependent on the Fourier transform
as are CT and MRI, but spectral analysis of the echo signals is a key step in Doppler
ultrasound to determine flow velocity. In one example, high transducer frequen-
cies and harmonic analysis in combination with contrast agents provide high-quality
images of the liver.33 Since one of the primary advantages of ultrasound imag-
ing is its near-real-time data acquisition, fast execution of the Fourier transform is
particularly important. One option to accelerate the FFT further is the implementa-
tion in hardware. Hu et al.17 propose a field-programmable gate array (FPGA). An
FPGA consists of semiconductor circuits which allow the realization of flexibly pro-
grammable sequential logic operations, somewhat analogous to a graphics processor
chip, which can be tuned to execute a very limited instruction set at very high speed.
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The flexibility of FPGA programming allows us to implement a complete image pro-
cessing chain (i.e., data collection, demodulation, Fourier transform) in one single
chip with an execution time of less than 50 	s per spectrum.17 A frequently used
alternative to accelerate the FFT is to use fast integer arithmetic operations instead
of the slower floating-point operations.29,35

In image processing, Fourier filtering is often an essential step that has, in the
overall scheme, little visibility. Optical imaging methods—optical coherence tomog-
raphy and scattering confocal imaging—were compared to determine their ability
to measure the thickness and homogeneity of tissue-engineered sheets.19 In a one-
dimensional axial confocal scan, the flask–tissue interface and the tissue–media
interface appear as prominent intensity peaks. However, the scan contains noise. A
robust method to detect the peaks is the removal of both the noise component and
some of the high-frequency detail of the scan itself with a strong Butterworth lowpass
filter [Equation (3.18)]. In a scan of approximately 3000 data points, a second-order
Butterworth filter with �0 = 10 pixels−1 was used, followed by baseline removal.
A sample scan before and after filtering can be seen in Figure 3.16. The same filter
could be implemented with a convolution operation, but strong blurring requires a
large convolution kernel, and Fourier-domain filtering is more efficient in this case.
After filtering, robust peak detection can easily be implemented by finding any pixels
whose n neighbors on both sides have a lower intensity.

Image restoration, that is, the application of a filter that reverses a known or
partially known image degradation process, almost always calls for filtering in the
frequency domain. Most predominantly, the Wiener filter is used. Out of a very
large body of literature, three typical examples of Wiener filter application should
be considered. Araki and Nashimoto used near-infrared light and a CCD camera to
obtain projections from a human forearm.1 Tissue is highly scattering; a point source
such as a laser illuminating soft tissue creates a circular area where scattered light
reemerges at the surface and the light intensity in this area has a Gaussian profile.

FIGURE 3.16 Noise and detail removal with a Butterworth lowpass. The filtered signal
allows more accurate determination of the intensity peaks.
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This Gaussian profile can be interpreted as the point-spread function, and Araki and
Nashimoto corrected the image degradation by Wiener filtering. A second application
is Wiener-filter-based denoising. Special radiochromic film (EBT film) exists which
shows an almost linear increase in optical density with radiation exposure. For a
computerized analysis of radiation exposure, EBT film is frequently digitized with a
scanner. Ferreira et al. examined the influence of various scan parameters and image
enhancement steps on the dose reported.10 One step was the application of a Wiener
filter for noise reduction, and the finding of this study was that the Wiener filter did
not significantly change the calibration curve but reduced calibration uncertainty.
The third example involves high-magnetic-strength MR scanners. In strong magnetic
fields of 3 T and more, inhomogeneities of the radio-frequency field cause image
nonuniformities. Hadjidemetriou et a.l13 developed a spatially adaptive Wiener filter
that restored the local cooccurrence statistics of the MR image. In this case, the
highpass characteristic of the Wiener filter was used to eliminate low-frequency
inhomogeneities. A less typical application of a Wiener filter was presented by
Thurman and Fienup.31 It was mentioned that the digitization process limits the
frequency components to one-half of the sampling rate (or sampling distance). If
the signal contains higher-frequency components, these get mirrored into the low-
frequency part of the spectrum and therefore distort the spectrum, a process called
aliasing. Thurman and Fienup present the mathematical framework to eliminate the
spectral component introduced by aliasing through use of a Wiener filter. Finally,
Galatsanos et al. propose an algorithm to optimize a Wiener filter if the point-spread
function of the degrading imaging system is known only partially,12 and Bonmassar
et al. present a Wiener filter-based method to eliminate motion blur.2

The fast Hartley transform, although not as mainstream as the fast Fourier trans-
form, has been used in medical imaging as well. Its main use is as a real-valued
substitute for the complex-valued Fourier transform. For example, Paik and Fox used
the fast Hartley transform as a direct substitute for the Fourier transform to study
spectra of liver ultrasound images.22 A more general review paper by Oberholzer
et al. features the Hartley transform as the method of choice for frequency-domain
filtering.21 Villasenor shows that the discrete cosine transform, used universally in
image compression, may not be the optimum choice in special cases.32 These spe-
cial cases include magnetic resonance imaging and positron emission tomography,
which are characterized by a circular region of high frequencies where the transform
coefficients are very close to zero. Instead of performing a tiled discrete cosine trans-
form and setting high-frequency coefficients to zero (quantization; see Section 12.3),
Villasenor proposes the global application of the FFT or FHT and global quantization
by exploiting the fact that most high-frequency coefficients are close to zero, thus
minimizing quality loss and local discontinuities. These low-valued high-frequency
coefficients may also be the reason why Shyam Sunder et al. found image compression
with the DHT superior in terms of image quality to DCT-based image compression
in brain MR images with high bit depths,30 while the DCT remained superior in other
cases, such as angiography images.

The Fourier transform is not only useful for filtering. The coefficients of the
Fourier transform can provide quantitative information about images, both in one
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and multiple dimensions, as will be shown in two examples. In one example, the
micromotion of the cell membrane was examined using the light-scattering properties
of the cell membrane of cultured cells.14 By applying a refinement over a method
described earlier,20 the intensity fluctuations over time of light scattered from a low-
incident-angle laser beam were subjected to the Fourier transform and its frequency
components were analyzed. These fluctuations exhibit a relatively low dominant
frequency of 0.14 Hz, but both peak frequency and overall amplitude are lowered
significantly when the cells are treated with paraformaldehyde, a toxin that cross-
links the proteins in the membrane and therefore makes the membrane more rigid.
In the second example, spectral properties were found to be related to the perception
of images.9 Observer ratings of aesthetic appeal and discomfort of artistic images
were compared to the frequency-domain spectra of the image’s luminance. Images
often show a strong decay of the amplitude of the frequency components at higher
frequencies. Images perceived as “uncomfortable” have unnaturally strong spectral
components at spatial frequencies to which the visual system is most sensitive, a fact
that the artists apparently exploited.

The Fourier transform is a relevant image processing operation in several chapters
in this book. In Section 5.2, some adaptive frequency-domain filtering techniques are
explained in detail. In Section 10.4, frequency-domain methods to determine fractal
or self-similar properties in images are explored, and frequency-domain texture clas-
sification (Section 8.3) and shape classification methods (Section 9.5) are presented.
Finally, in Section 12.3, the discrete cosine transform is introduced as a fundamental
operation in image compression.
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4
THE WAVELET TRANSFORM AND
WAVELET-BASED FILTERING

The wavelet transform belongs to the class of integral transforms, such as the Fourier
transform. Whereas the Fourier transform uses sine and cosine functions as basis
functions, the wavelet transform uses special functions with finite support, termed
wavelets. The most fundamental difference between wavelets and the Fourier trans-
form is the scalability of wavelets. Whereas the Fourier transform allows us to an-
alyze the frequency components only globally, shifting and scaling operations used
in the wavelet transform allow us to analyze local properties of a signal or image.
The wavelet transform is therefore useful in analyzing signals and images with large
discontinuities and nonperiodic signals (the Fourier transform assumes all signals
to be periodic). The wavelet transform gives rise to powerful and flexible filters, to
the analysis of images at different scales (multiscale analysis), and to lossy image
compression methods.

To understand the wavelet transform, let us recall the definition of convolution
(Section 2.3) of a time function f (t) with a kernel g(t):

( f � g)(� ) =
∫ ∞

−∞
f (t)g(t − � )dt (4.1)

The integral in Equation (4.1) needs to be evaluated for all possible values of � . If
the kernel has finite support [e.g., g(t) is completely zero for all t � −T and for all
t � T], the integration boundaries may be finite, too. In this example, integration
would take place from � − T to T − � . For each value of � for which Equation (4.1) is
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evaluated, the integral returns one scalar value. Let us call this value W(� ). Also, let
us choose a wavelet function � (t) for the kernel g(t). Wavelet functions are a specific
class of functions that are explained below. With these definitions, Equation (4.1) can
be rewritten as

W (� ){ f } =
∫ ∞

−∞
f (t) �(t − � )dt (4.2)

We can read Equation (4.2) as computing one convolution value W(� ) of the function
to be transformed, f , by evaluating the integral in Equation (4.2) at the value � , which
causes the wavelet to be centered on f (� ). Now let us introduce another parameter, s,
which allows us to stretch (s � 1) or compress (0 � s � 1) the wavelet function. We
now have two selectable parameters, � and s, and Equation (4.2) extends into

W (s, � ){ f } =
∫ ∞

−∞
f (t) �

(
t − �

s

)
dt (4.3)

With Equation (4.3) we transform f (t) into a two-dimensional space (s,� ). The pa-
rameter � selects the focus where the wavelet function is centered on f (t), and the
parameter s determines the sharpness of the focus, since for small s, only small
sections of f are included in the integration, and for large s, longer sections of f
are included in the integration. With an additional normalization factor, we arrive at
the definition of the one-dimensional, continuous wavelet transform W(s,� ){f} of a
function f (t):

W (s, � ){ f } = 1

c�
|s|−1/2

∫ ∞

−∞
f (t) �

(
t − �

s

)
dt (4.4)

where � (t) is the wavelet function, s and � are the scaling and shift parameters,
respectively, and c� is defined as

c� = 2�

∫ ∞

−∞

|�(�)|2
|�| d� (4.5)

with �(�) being the Fourier transform of � (t). For a function � (t) to be a wavelet,
it is necessary that c� be finite (i.e., 0 � c� � ∞) and that the mean value of � (t)
vanishes [i.e., �(0) = 0]. Furthermore, � (t) must have finite support, that is, beyond
a certain value of � (t) = 0 for t � −t1 and for t � t2 (0 ≤ t1, t2 � ∞). The simplest
example of a wavelet function is the Haar wavelet (Figure 4.1), defined by

� (t) =
⎧⎨
⎩

1 for 0 ≤ t � 0.5
−1 for 0.5 ≤ t � 1

0 otherwise
(4.6)
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The wavelet properties, namely, the zero mean value and the finite support (0 to 1),
can be seen immediately. The finite value for c� can be proven by computing the
Fourier transform of the Haar wavelet and applying Equation (4.5). For the Haar
wavelet, c� = 2 · ln 2. Intuitively, application of the Haar wavelet in the wavelet trans-
form [Equation (4.4)] can be interpreted as the computation of the finite difference of
two range averages: from 0 to 0.5 and from 0.5 to 1. This intuitive interpretation of
the wavelet transform as the computation of a weighted finite difference will become
important when we introduce the bandpass and lowpass components of the wavelet
analysis filter.

In wavelet analysis, the unscaled wavelet � (t) is referred to as the mother wavelet,
and the scaled and translated wavelets � s,� (t) that are obtained from the mother
wavelet,

� s,� (t) = 1√
s

�

(
t − �

s

)
(4.7)

are called the wavelet basis. From the wavelet properties described above, it can
be concluded that the mother wavelet has a frequency spectrum that exhibits band-
passlike characteristics, rapidly dropping off toward � = 0 and gradually dropping
off toward high frequencies (Figure 4.1B). Translation in time (parameter � ) only
changes the phase of the Fourier transform, but changing the scale s changes the
bandwidth of the Fourier transform in the opposite direction:

F { f (t)} = F(�) → F { f (st)} = 1

|s| F
(�

s

)
(4.8)

With suitable scaling steps (e.g., doubling s for each wavelet), the wavelet basis acts
like a bandpass filter bank, each expanded wavelet providing a lower (and compressed)
frequency band.
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FIGURE 4.1 The Haar wavelet (A) and the magnitude of its Fourier transform (B).
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4.1. ONE-DIMENSIONAL DISCRETE WAVELET TRANSFORM

For applications in signal and image processing, that is, applications on discrete
data, a discrete wavelet transform must exist. For a discrete wavelet transform it is
not necessary to translate and scale the mother wavelet continuously. Rather, it is
possible to rewrite Equation (4.7) to reflect discrete translation and scaling steps j
and k:

� j,k(t) = 1√
s j

�

(
t − k�s j

s j

)
(4.9)

where s and � are now constant scaling and translating increments. Typically, s = 2
and � = 1 are chosen in discrete wavelet implementations. The localization of discrete
wavelets as a function of the scaling and translating parameters j and k is shown in
Figure 4.2, where each circle represents the location of one wavelet. Figure 4.2 not
only shows the doubling of the scale with increasing j, but also the doubling of the
time step size at larger scales.

The discrete wavelet transform is realized by using the principles of subband cod-
ing. The discrete convolution of the signal with a wavelet function can be interpreted
as bandpass filtering of a signal x(k) with discrete filter coefficients g(r) according to

y(k) =
∞∑

r=−∞
g(r )x(r − k) (4.10)

Equation (4.10) represents the discrete convolution, which was introduced in Sec-
tion 2.3. The discrete filter coefficients g(r) are related to the wavelet function �
and are responsible for the matching frequency behavior between the discrete filter
[Equation (4.10)] and the continuous filter [Equation (4.4)]. In the context of digital
signal processing, the filter coefficients g(r) constitute the impulse response function
of the filter, and a filter with a finite number of filter coefficients is referred to as a

FIGURE 4.2 Localization of discrete wavelets as a function of the translation parameter k
and the scaling parameter j.
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finite impulse response filter. To complete the subband coding filter, a function �s,� (t)
needs to be defined that is complementary to � s,� (t), and filtering of the signal f(t)
with the function �s,� (t) leads to a lowpass filtered output. In the same manner that
the discrete wavelet filter uses the filter coefficients g(r), the discrete filter with the
filter function �s,� (t) uses the filter coefficients h(r). The two sets of filter coefficients
g(r) and h(r) are related as

g(L − n − 1) = (−1)nh(n) (4.11)

where L is the total number of filter coefficients and n runs from 0 to L − 1. The
function �(t) is called a scaling function, and the name is derived from a special
property, namely, that �(t) obeys the scaling equation:

�(t) =
√

2
∑
k	Z

hk�(2t − k) (4.12)

In addition, being a lowpass filter, any scaling function �(t) cannot have a vanishing
zeroth moment; more specifically,

∫ ∞

−∞
�(t)dt = 1 (4.13)

which is contrary to the requirement for a wavelet function � (t). The frequency
response 
(�) of the finite impulse response filter defined by the filter coefficients
h(k) is


(�) =
∞∑

k=−∞
h(k)e− j�k (4.14)

where 
(0) �= 0 for a lowpass filter. While each wavelet function–scaling function
pair � (t) and �(t) have discrete filter coefficients, g(k) and h(k), respectively, the
relationship between the continuous functions and the discrete filter coefficients is not
trivial. The derivation of the equations that lead to the design of the filter parameters
h(k) goes beyond the scope of this book. A detailed description of the mathematical
foundations and necessary steps to design wavelets and to derive the filter coefficients
h(k) can be found in the book by Burrus et al.4 Instead, the filter parameters h(k)
for several widely used wavelets are provided in Table 4.1. Note that g(k) can be
computed from h(k) using Equation (4.11). The simplest case is the Haar wavelet
with the wavelet parameters g(0) = 1/

√
2 and g(1) =−1/

√
2 . It can be seen that

the scaling filter is characterized by h(0) = h(1) = 1/
√

2 . This is a simple averaging
lowpass filter, whereas the wavelet filter is a first-order finite-difference filter. Ingrid
Daubechies has pioneered the wavelet transform,9,10 and the Daubechies series of
filter coefficients is listed for filter orders 2 through 10 in her book Ten Lectures on
Wavelets.10 The filter functions of higher-order filters are more regular, smoother, and
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TABLE 4.1 Filter Parameters for Several Widely Used Wavelets

Wavelet Order N Vanishing Moments Parameters hk

Haar 1 1 h0 = 1/
√

2; h1 = 1/
√

2

Daubechies-4 2 2 h0 = (1 + √
3)/(4

√
2)

h1 = (3 + √
3)/(4

√
2)

h2 = (3 − √
3)/(4

√
2)

h3 = (1 − √
3)/(4

√
2)

Daubechies-8 4 4 h0 = 0.2303778133089
h1 = 0.71484657055292
h2 = 0.63088076792986
h3 = −0.02798376941686
h4 = −0.18703481171909
h5 = 0.03084138183556
h6 = 0.03288301166689
h7 = −0.01059740178507

Coiflet-6 2 2 h0 = −0.07273261951285
h1 = 0.33789766245781
h2 = 0.85257202021226
h3 = 0.38486484686420
h4 = −0.07273261951285
h5 = −0.01565572813546

Coiflet-12 4 4 h0 = 0.016387336463
h1 = −0.041464936781
h2 = −0.067372554722
h3 = 0.386110066823
h4 = 0.812723635449
h5 = 0.417005184423
h6 = −0.076488599078
h7 = −0.059434418646
h8 = 0.023680171946
h9 = 0.005611434819
h10 = −0.001823208870
h11 = −0.000720549446

more often differentiable, as can be seen in Figure 4.3. This smoothness is represented
by the number of vanishing moments of the wavelet. The kth moment �k of a wavelet
is defined as

�k =
∫ ∞

−∞
t k� (t)dt (4.15)

and vanishing moments are moments where �k = 0 for k = 0, 1, 2, . . .. For example,
the Haar wavelet has only one vanishing moment, �0 = 0, which is the minimum
requirement for a wavelet, as stated initially. A smooth wavelet has a smooth fre-
quency response, which is generally a desired property.
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FIGURE 4.3 Some wavelets (black) and their corresponding scaling functions (gray) of the
Daubechies family.

At this point we have assembled all necessary tools to realize the discrete wavelet
transform. The key elements are the discrete convolutions [Equation (4.10)] with
finite impulse response filters characterized by the filter coefficients g(k) and h(k).
With the scaling constant s = 2, the bandwidth of the filtered signal is half of the
bandwidth of the original signal. For this reason, the Nyquist sampling theorem is
still satisfied if the number of discrete samples in the filter output is reduced by a factor
of 2 (by omitting every other sample). This step is called subsampling by a factor of
2. The elements of one subband filter stage are shown in Figure 4.4. Each subband
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Wavelet filter (highpass)

Scaling filter (lowpass)

g(k)

λj (k)

λj+1 (k)

γj+1 (k)

h(k) 2

2

FIGURE 4.4 Sketch of one subband filter stage. The input signal �j (k) is convolved with the
highpass filter function g(k) to provide the high-detail content  j+1 (k) and with the lowpass
filter function h(k) to provide the low-detail content �j+1 (k). The latter can be used as input to
the next filter stage. The operations labeled with ↓2 indicate subsampling by a factor of 2.

filter splits the signal into a lowpass and a complementary highpass component (both
subsampled by 2). This filter pair in Figure 4.4 is known as a quadrature mirror filter
pair in digital signal processing.

The wavelet filter bank can be implemented using a recursive scheme. Since
the subsampled signal has twice the sampling interval of the input signal, a scaling
factor s = 2 is inherent. Consequently, the lowpass-filtered component can be used as
the input to the next (identical) filter stage, and multiple subband filter stages can be
chained recursively to form a multiscale analysis filter, as shown in Figure 4.5. The
output values of such a filter bank are called the wavelet coefficients of the signal f(k).

γ1 (k) γ2 (k) γ3 (k) γ4 (k) λ4 (k)

λ0 (k) = f(k)

Subband
Filter

Subband
Filter

Subband
Filter

Subband
Filter

λ1 (k) λ2 (k) λ3 (k)

FIGURE 4.5 Multiscale analysis wavelet filter composed of four identical subband filter
stages (shown in Figure 4.4). The lowpass output of each filter stage is used as input signal
to the next filter stage. The wavelet filter outputs  1(k),  2(k),  3(k), and  4(k) contain
successively less detail, and each signal has half the number of points of the preceding signal.
The filter chain is ended by adding to the outputs the lowpass signal �4(k), as the component
with the lowest detail.
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The two components of the subband filter (Figure 4.4) are described as

� j+1(k) =
N−1∑
m=0

h(m − 2k)� j (m) (4.16)

 j+1(k) =
N−1∑
m=0

g(m − 2k) j (m)

Each sequence of output coefficients, �j+1 and  j+1, contains half the number of data
values of the input sequence �j. The pyramidal decomposition scheme as laid out in
Figure 4.5 with the subband filter in Equation (4.16) is explained in more detail in
Figure 4.6. Starting with the initial signal (sequence of values f k), the subband filter
is applied. The result is an interleaved sequence of scaling and wavelet coefficients.
These need to be rearranged (operation R) to separate the scaling coefficients from the
wavelet coefficients. Only the scaling coefficients from one filter stage are propagated
to the next filter stage, followed in turn by rearrangement. From stage to stage,
therefore, a shorter sequence of wavelet coefficients with less detail is provided,
indicated by a darker shade of gray. Each sequence of lower detail has half the
length of the higher-detail sequence. For this reason, the input sequence must have a
power-of-2 length.

The discrete wavelet transform is indeed a transform in the sense that it al-
lows the exact reconstruction of the original data from the filter output. Equation

γ0

γ0 γ0

γ′0

γ′0 γ′0

γ′1 γ′1 γ′1

γ′′1

γ1

γ1 γ1γ2

γ2 γ2

γ3 γ3 γ3

γ0

γ1

γ2

γ3

γ0

γ1

γ2

γ3

λ0f0

f1

f2

f3

f4

f5

f6

f7

R

R

λ0 λ′0 λ′0 λ′′0

λ′1

λ′1λ1

λ1

λ2

λ2

λ3

λ3

FIGURE 4.6 Schematic representation of the pyramidal decomposition scheme performed
by the filter in Figure 4.5 in the example of the Haar wavelet (arrows). Data pairs of the initial
data sequence f k are subjected to the filter in Equation (4.16), resulting in pairs of scaling
and wavelet coefficients, �k and  k. Rearranging the coefficients (R) provides the scaling
coefficients �k followed by the wavelet coefficients  k. In the next step, the reduced number
of scaling coefficients is again subjected to the subband filter and rearranged. After each filter
step, a new sequence of coefficients with less detail (darker gray shade) is available.
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(4.17) describes the reconstruction process in an manner analogous to Equation
(4.16), that is, by using the recursive scheme in reverse. By reversing the signal flow
through the filter in Figure 4.4, the lowpass and highpass components of each stage,
�j+1(k) and  j+1(k), respectively, are combined until the original signal is restored
for j = 0:

� j (k) =
N−1∑
m=0

h(2k − m)� j+1(m) +
N−1∑
m=0

g(2k − m)� j+1(m) (4.17)

4.2. TWO-DIMENSIONAL DISCRETE WAVELET TRANSFORM

Up to this point, we have covered the one-dimensional discrete wavelet transform.
In image processing, a multidimensional wavelet transform is desired. Fortunately,
the wavelet transform is a linear operation. Therefore, analogous to the Fourier trans-
form, the two-dimensional wavelet transform can be performed by first computing
the row-by-row one-dimensional wavelet transform in the horizontal direction, fol-
lowed by the column-by-column one-dimensional wavelet transform in the vertical
direction. This principle can be extended toward any number of dimensions. As a
consequence of the decomposition scheme, however, each subband filter generates
four image regions with half of the side length. By convention, the image regions
are arranged as depicted in Figure 4.7, and regions with reduced detail in either the
x or y direction (L/L, L/H, H/L) are subdivided further in the subsequent filter stage
(dashed lines).

L/L

L/H H/H

H/L

FIGURE 4.7 Output of a two-dimensional subband decomposition stage. The image is
subdivided into four regions: a region with high detail (H/H), a region with high detail in the
x-direction (H/L) but low detail in the y-direction, a region with high detail in the y-direction
(L/H), and a fourth region with low detail (L/L).
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FIGURE 4.8 Example of the pyramidal decomposition of an image. The original image
(A) is a noisy MR slice of the abdomen. The first-stage decomposition is shown in (B),
where a subdivision into the four regions shown in Figure 4.7 has taken place. In subsequent
decomposition steps (C), all regions except region H/H are subdivided further. Note that for
visualization purposes, regions H/L, H/H, and L/H have been contrast-enhanced and white
divider lines have been added.

Figure 4.8 shows two steps in the decomposition of a medical image, in this ex-
ample a MRI slice of the abdomen with artificially added Gaussian noise. In the first
decomposition step, the image is subdivided into four regions as described in Figure
4.7. In the next subdivision step, regions H/L and L/H are subdivided into two regions,
and region L/L is subdivided into four. Further subdivisions of region L/L are possi-
ble in subsequent decomposition steps. From this image, the potential of the wavelet
decomposition for filtering purposes becomes clear. Region H/H contains predom-
inantly noise, whereas region L/L appears to contain the major parts of the image
information. Wavelet-based filter functions are covered in Section 4.3. In addition, the
wavelet transform gives rise to lossy image compression: It would appear as if region
L/L in Figure 4.8B represents the original image quite well, although it contains only
one-fourth of the image area. In fact, wavelet image compression is now being used
widely. Wavelet-based image compression is covered in detail in Section 12.3.

Computer Implementation of the Two-Dimensional Wavelet Transform We now
focus on implementation of the discrete wavelet transform. For this purpose, an
algorithmic representation of Equations (4.16) and (4.17) needs to be formulated.
A suitable approach is to implement a one-dimensional subband coding filter and
use this filter for higher-level decomposition functions. The convolution described in
Equation (4.16) can be viewed as a matrix multiplication of the data vector x with a
convolution matrix A, resulting in the output data vector y, where x corresponds to
�(m) in Equation (4.16) and y corresponds to the vector containing the next stage’s
�(k) and  (k):

y = Ax (4.18)
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The matrix A contains, in alternating rows, the parameters of the scaling and
wavelet filters:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 g1 g2 g3 · · · gl−1 0 0 · · · 0
h0 h1 h2 h3 · · · hl−1 0 0 · · · 0
0 0 g0 g1 g2 g3 · · ·
0 0 h0 h1 h2 h3 · · ·
0 0 0 0 g0 g1 g2 g3 · · ·
0 0 0 0 h0 h1 h2 h3 · · ·
· · ·
0 0 0 0 · · · g0 g1 g2 g3 · · · gl−1

0 0 0 0 · · · h0 h1 h2 h3 · · · hl−1

· · ·
g2 g3 · · · gl−1 0 0 0 0 · · · g0 g1

h2 h3 · · · hl−1 0 0 0 0 · · · h0 h1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.19)

Note that the matrix coefficients start to wrap around in the last lines, depending
on the number of wavelet parameters. A possible implementation is provided in
Algorithm 4.1. By using two different indices for input and output data, it becomes

set s=N/2; // Start index of the gamma coefficients in output array
allocate ydata[N]; // Provide memory for the output data vector

for (i=0 while i�N increment i=i+1) do // loop over input data
ydata[i]=0; // Reset summation accumulators

endfor;

j=0; // Index into output data array
for (i=0 while i�N increment i=i+2) do // loop over input data

for (k=0 while k�L increment k=k+1) do // convolution loop
didx = (i+k) mod N; // index into input data with wraparound
ydata[j] = ydata[i] + G[k]*xdata[didx]; // scaling filter contribution
ydata[j+s] = ydata[i+s] + H[k]*xdata[didx];// wavelet filter contribution

endfor;

j=j+1; // Update position in output array
endfor;

Algorithm 4.1 Wavelet subband filter. Pseudocode for one stage of the subband
decomposition filter described in Equation (4.16). The input data vector is stored in
xdata[], and the output will be returned in ydata[]. The length of both data
vectors is N. It is assumed that the wavelet filter parameters G[k] and the scale
filter parameters H[k] are provided prior to using this algorithm. The number of
parameters is L. For this algorithm, N must be an even number.
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possible to perform the convolution step and the rearrangement step (see Figure 4.6)
in the same loop, and the output vector will contain the �(k) in the lower half and
the  (k) in the upper half. From Algorithm 4.1 it is straightforward to derive the
subband decoding filter that performs one step of the inverse wavelet transform.
Algorithm 4.2 performs one such step according to Equation (4.17). The input data
vector must be organized like the output vector of Algorithm 4.1: that is, the �(k)
reside in the lower half and the  (k) reside in the upper half. The output vector is one
contiguous data vector. Algorithms 4.1 and 4.2 build on a table of filter coefficients.
Since the parameters g(k) and h(k) are mutually dependent on each other through
Equation (4.11), it is generally sufficient to store one set of filter coefficients (usually,
the scale filter coefficients) and precede the wavelet transform by a preparatory step,
Algorithm 4.3, to populate both filter coefficient arrays.

At this point, these algorithms can be combined to form a pyramidal wavelet
decomposition and reconstruction. We begin by providing a one-dimensional de-
composition, because it helps us to understand the two-dimensional decomposition.
In Algorithm 4.4, a one-dimensional discrete wavelet transform is performed build-
ing on Algorithm 4.3, here referred to as dwt prep, and Algorithm 4.1, referred
to as dwt decompose. With Algorithm 4.4 performing a full one-dimensional

set s=N/2; // Start index of the gamma coefficients in intput array

for (i=0 while i�N increment i=i+1) do // loop over input data
ydata[i]=0; // Reset summation accumulators

endfor;

j=0; // Index into output data array
for (i=0 while i�N increment i=i+2) do // loop over input data

for (k=0 while k�L increment k=k+1) do // convolution loop
didx = (i+k) mod N; // index into output data with

wraparound
ydata[didx] = ydata[didx] + H[k]*xdata[j]; // scale filter contribution
ydata[didx] = ydata[didx] + G[k]*xdata[j+s]; // wavelet filter

contribution
endfor;

j=j+1; // Update position in input array
endfor;

Algorithm 4.2 Wavelet reconstruction subband filter. Pseudocode for one stage of
the subband reconstruction filter described in Equation (4.17). The input data vector
is stored in xdata[] and must contain the �(k) in the lower half and the  (k) in the
upper half. The output will be returned inydata[]. The length of both data vectors is
N. It is assumed that the wavelet filter parameters G[k] and the scale filter parameters
H[k] are provided to this algorithm in a fashion identical to Algorithm 4.1, with the
number of parameters being L. For this algorithm, N must be an even number. The
calling function is responsible for providing the ydata array.
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set L=4; // Daubechies-4 has four parameters
allocate G[L], H[L]; // Provide memory for parameters G and H

H[0] = 0.482962913144534; // These can be obtained from the literature
H[1] = 0.836516303737808; // In some cases, these are the solutions of

closed terms such as
H[2] = 0.836516303737808; // (1 +/− cos(PI/3) +/− sin(PI/3))/(2*sqrt(2))
H[3] = -0.12940952255126;

// Now calculate the highpass filter form the lowpass filter above

set sgn = -1; // This becomes (−1)ˆk, the alternating sign
for (k=0 while k�L increment k=k+1)

G[L-1-k]=sgn*H[k];
sgn = -sgn;

endfor;

Algorithm 4.3 Wavelet filter preparation. Pseudocode for the preparation of the
filter parameter arrays G[k] and H[k] for one specific example, the Daubechies-4
wavelet (see Table 4.1). This algorithm computes the wavelet filter parameters g(k)
from the scale filter parameters h(k) and sets the filter length L that is required by
Algorithms 4.1 and 4.2.

pyramidal decomposition, it is now possible to extend the wavelet transform toward
two-dimensional data (i.e., images). Since the discrete wavelet transform is a linear
operation, a two-dimensional discrete wavelet transform can be implemented as a
one-dimensional wavelet transform in the x-direction followed by a one-dimensional
wavelet transform in the y-direction. This strategy is reflected in Algorithm 4.5, which
builds on the one-dimensional wavelet transform in Algorithm 4.4, here referred to
as dwt 1d. When implementing Algorithms 4.4 and 4.5, care should be taken that
dwt prep, the preparation of the filter parameters, is executed only once, that is, in
Algorithm 4.5 and not in Algorithm 4.4.

Algorithms 4.1 through 4.5 combined perform a two-dimensional wavelet trans-
form on an image with a freely selectable wavelet and a selectable number of decom-
position levels. The inverse wavelet transform is implemented in a straightforward
manner by substituting the call to the wavelet decomposition (dwt decompose,
Algorithm 4.1) by a call to Algorithm 4.2.

4.3. WAVELET-BASED FILTERING

We discussed the decomposition of a signal (or image) into a lowpass- and
highpass-filtered component. Wavelet-based filters can be envisioned as algorithms
where wavelet decomposition takes place, followed by an attenuation of either the
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call dwt prep; // Algorithm 4.3, prepare L, H[k], and G[k]
allocate ydata[N]; // Provide memory for the output data vector

i=N; level=0;

// Outer decomposition loop. Drop out when there are fewer than four points to decompose
// or a preset number of decompositions has been reached.

while ((i�=4) and (level�maxlevel)) do

call dwt decompose (xdata, ydata, i); // one lvl decomp. of xdata into
ydata,
// only the first i points
(Algorithm 4.1)

i = i/2; // Next decomposition limited to
lower half,

level=level+1; // we proceed from fine to
coarse detail

for (j=0 while j�N increment j=j+1) // Finally, copy ydata back into xdata
xdata[j] = ydata[j]; // for the next iteration

endfor;

endwhile;

delete (ydata); // Discard the ydata array

Algorithm 4.4 Discrete wavelet transform. Pseudocode to perform a one-
dimensional wavelet transform on the input data array xdata[] with a total length
of N elements. The output vector is also in xdata[]. With the variable maxlevel,
the number of decomposition steps can be restricted.

lowpass-filtered component or the highpass-filtered component. An inverse wavelet
transform then restores the filtered image. The underlying principle can be seen in
Figure 4.8. The H/H area of the decomposed image contains mostly noise, whereas the
L/L area contains most of the lower-detail image information. A smoothing or noise-
reducing filter would attenuate the wavelet coefficients at higher scales (i.e., wavelet
coefficients containing image detail). Sharpening filters or background removal filters
would attenuate the lowpass-filtered wavelet coefficients at a high level of decompo-
sition, in analogy to lowpass filtering in the Fourier domain. Although some work has
been done in detrending signals by using the wavelet transform, wavelet-based back-
ground removal has not entered the mainstream of image processing. In fact, the most
widely used wavelet-based filtering technique is the noise-reducing filter analogous
to the Fourier-domain lowpass filter. Contrary to the Fourier lowpass filter, however,
wavelet-based noise-reduction filters do not blur the image edges significantly. The
removal of noise from images using wavelet techniques is far superior to that using
Fourier techniques, and the term denoising has become common in conjunction with
wavelet filtering techniques to indicate almost complete noise removal, as opposed
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allocate IM DWT(xmax,ymax); // Prepare output image
call dwt prep; // Algorithm 4.3, prepare L, H[k], and G[k]
allocate xdata[N]; // Provide memory for the 1D data vector, first in the

X direction
set maxlevel=5; // May restrict the number of decomposition levels

// or use a very large number to allow full decomposition

for (y=0 while y�ymax increment y=y+1) // Run over all rows of the image

for (x=0 while x�xmax increment x=x+1) // Copy the image row into xdata
xdata[x] = IM(x,y); // in preparation for the 1D DWT

endfor;

call dwt 1d (xdata,xmax); // Perform the 1D DWT

for (x=0 while x�xmax increment x=x+1) // Copy the row-transformed
data into the output

IM DWT(x,y) = xdata[x]; // image which is used as placeholder

endfor;

endfor; // Row-by-row transform finished

delete (xdata); // Discard the old xdata array because the y dimension may
be different

allocate xdata[ymax]; // and obtain memory for the column transform

for (x=0 while x�xmax increment x=x+1) // Run over all columns of the image

for (y=0 while y�ymax increment y=y+1) // Copy the row-transformed
data into xdata

xdata[y] = IM DWT(x,y); // in preparation for the orthogonal
1D DWT

endfor;

call dwt 1d (xdata,ymax); // Perform the 1D DWT on the
column data

for (y=0 while y�ymax increment y=y+1) // Copy the final transformed
data into ...

IM DWT(x,y) = xdata[y]; // ... output image as final result
endfor;

endfor; // column-by-column transform finished

delete (xdata); // Discard the old xdata array

Algorithm 4.5 Discrete wavelet transform in two dimensions. Pseudocode to per-
form a two-dimensional wavelet transform on the input image IM(x,y). It is as-
sumed that the image dimensions xmax and ymax are powers of 2. The data are
stored in the output image IM DWT(x,y) with the same dimensions as IM(x,y)
and which, upon exit, holds the discrete wavelet transform of IM.
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to noise attenuation or noise reduction performed using Fourier techniques with
lowpass filters or convolution filters.

4.3.1. Wavelet-Based Denoising

Denoising filters involve more complex operations than simply eliminating the
wavelet coefficients in the H/H area before reconstruction. The effect is demon-
strated in Figure 4.9, where high-frequency areas L/H, H/L, and H/H of the first-level
decomposition were set to zero before reconstruction. The noise is hardly attenuated,
but resembles more closely the output of a Gaussian convolution filter.

A robust method of wavelet-based denoising was proposed by Donoho.12,13 Here,
the wavelet coefficients are subjected to a hard or soft threshold as shown in Fig-
ure 4.10. This operation is termed wavelet coefficient shrinking. The result of applying
a wavelet shrinking filter to the image in Figure 4.9A is shown in Figure 4.11. It can
be seen that noise suppression is considerably stronger than in Figure 4.9B, whereas
edge blurring, associated with a Gaussian blurring operation (Figure 4.9C), is less
pronounced. As a generalization, hard thresholding leads to a smaller mean-squared
error between the ideal noise-free image and the noisy image, whereas soft thresh-
olding has a lower tendency to cause spurious oscillations in the reconstructed image.
These oscillations may be related to Gibbs phenomena7 and can be suppressed by the
following averaging technique: Multiple denoising operations are performed where
the original image is cyclically shifted by one or multiple pixels for each wavelet
denoising operation. After reconstruction, the image is shifted back in the same
manner. Since those oscillations occur where image discontinuities and wavelet dis-
continuities coincide, the average of the images filtered by the shift–denoise–unshift
operation will exhibit attenuated oscillations.

Donoho and Johnstone propose � = √
2 log n as a universal threshold,13 but the

optimum global threshold � depends on the noise component, more specifically the

FIGURE 4.9 A first approach at attenuating noise in an image using the wavelet transform.
The original image in Figure 4.8, a MRI slice with artificially added Gaussian noise (A),
was decomposed as shown in Figure 4.8B, and the L/H, H/L, and H/H regions set to zero
before reconstruction (B). The resulting image shows a considerable noise component, but on
a coarser scale, very similar to the result of Gaussian blurring (C).
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FIGURE 4.10 Thresholding schemes for wavelet coefficient shrinking. With a hard thresh-
old, every wavelet coefficient  is either clamped to zero if  falls below the threshold (hard
thresholding) or all coefficients are set to zero if  ≤ � and all coefficients with  > � are
reduced by the threshold � (soft thresholding).

noise standard deviation �. If � is known, the following equation provides a better
threshold value:

� = ��
√

2 log n (4.20)

Here n is the total number of wavelet coefficients, � the standard deviation of the
noise component, and � an empirical constant that determines filter strength. The
effect of the threshold on the filtered image quality can be seen in Figure 4.12, which
shows the root-mean-squared error (RMSE) of the wavelet filter output image and

FIGURE 4.11 Denoising of the image in Figure 4.9A using the Donoho algorithm. Soft
thresholding (A) leaves some visible noise, especially in the background region. Hard thresh-
olding, although having approximately the same root-mean-squared error (B), shows less
residual noise but some oscillation artifacts. These oscillations are emphasized in image C,
which is the difference between filtered image B and the original, noise-free image. Image C
has been slightly contrast-enhanced for better visualization.
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FIGURE 4.12 Root-mean-squared error (RMSE) between the denoised image and the orig-
inal, noise-free image as a function of the threshold. The dashed lines indicate, from top to
bottom, the RMSE of the unfiltered image, the RMSE of the image filtered with a median filter,
and the image filtered by Gaussian blurring.

the original noise-free image. It can be seen that the selection of a suitable threshold
value has a major influence on the filtered image. A low threshold value reduces the
efficacy of the filter, and a significant noise component is left in the image. High
threshold values lead to the removal of image detail and cause block artifacts in
the reconstruction. For comparison, the RMSE values of a Gaussian blurring filter
and a median filter are shown. Although both median filter and Gaussian blurring
yield good RMSE values, the perceived quality of the wavelet-filtered image is
superior because it retains its edge information. The choice of wavelet function for
decomposition and reconstruction also has an influence on the filter efficacy. The
example in Figure 4.12 was created by using the Daubechies-4 wavelet. With the
Haar wavelet and soft thresholding, the minimum RMSE is 5.44, compared to 5.1
when using the Daubechies-4 wavelet. An even smoother wavelet, the Daubechies-12
wavelet, reduces the RMSE to 4.88, whereas no further reduction is seen with the
Daubechies-20 wavelet. The influence of the wavelet choice on the reconstructed
image can be seen in Figure 4.13. With the Haar wavelet, the reconstruction appears
to have square patches, which are particularly visible in the liver area. With both
Daubechies wavelets, the tissue seems to blur into the background (stronger with the
Daubechies-20 wavelet).

Many wavelet denoising approaches are based on the wavelet shrinkage filter
developed by Donoho and Johnstone.12,13 The statistical modeling of the wavelet
coefficients is an important step toward automated determination of the optimum
shrinkage threshold.27 Donoho and Johnstone13 suggested using the median absolute
wavelet coefficient, divided by 0.6745, as an estimator for the noise variance:

�̂ = median | (k)|
0.6745

(4.21)
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FIGURE 4.13 Influence of the wavelet choice on the reconstructed, denoised image. In all
cases, a gamma contrast-enhancement function has been applied to make the background
texture more visible. Image A was reconstructed using the Haar wavelet, for image B the
Daubechies-12 wavelet was used, and for image C the Daubechies-20 wavelet was used.

This estimate can be used for � in Equation (4.20). This approximation is valid
only if the noise component is zero-mean, Gaussian, uncorrelated, additive noise. In
other words, each wavelet coefficient  (k) is a superposition of the “clean” wavelet
coefficient  0 (k) from the idealized, noise-free image and a contribution 	(k) from
additive Gaussian white noise, that is,  (k) =  0 (k) + 	(k).

Another proposed model23 that leads to a spatially adaptive filter also assumes that
the wavelet coefficients contain an additive zero-mean, Gaussian-distributed random
component but with a high local correlation and known global standard deviation
�N . In this case, an estimate for  0 (k) can be given that uses a local minimum
mean-squared-error method:

̂0(k) = �2(k)

�2(k) + �2
n

 (k) (4.22)

The local variance �2(k) can be estimated by using

�2(k) = N

4�

⎡
⎣

√√√√1 + 8�

N 2

∑
j	�

 2( j) − 1

⎤
⎦ − �2

n (4.23)

under the assumption that the wavelet coefficients are distributed with an exponential
probability function:

P(�2) ∝ �e−��2
(4.24)

In Equation (4.23), the local neighborhood around pixel k is � (e.g., a n × n square
neighborhood) and contains N elements. The exponent � can be determined by
computing the histogram of local variances for the wavelet coefficients and by fitting
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the function in Equation (4.24) to the histogram. In the actual denoising process, each
highpass coefficient  (k) is replaced by the estimated noise-free coefficient ̂0(k), and
the resulting wavelet coefficient image is subjected to the inverse wavelet transform.

Yet another technique used to find an optimum threshold for wavelet shrinkage
is the generalized cross-validation (GCV) technique.17 Generalized cross-validation
entails finding a threshold � so that the GCV estimator, G(� ), is minimized in the
equation

G(� ) = Nl
∑Nl−1

i=0 [l(i) − ̂l(i)]2

T 2
l

(4.25)

where the l(i) are the original highpass wavelet coefficients at decomposition level
l, the ̂l(i) are the wavelet coefficents after application of threshold � , Nl is the total
number of wavelet coefficients at decomposition level l, and Tl is the number of
wavelet coefficients that have been set to zero as a consequence of the thresholding
process. It is important that hard thresholding be used for the computation of the ̂l(i)
and G(� ). Once the value for � that minimizes G(� ) has been found, the ̂l(i) are used
to reconstruct the image through the inverse wavelet transform. The estimator G(� )
is computed for, and applied to, each decomposition level independently.

The denoising performance of the three unsupervised threshold functions de-
scribed above can be seen in Figure 4.14. The example is again based on the noisy
MR slice in Figure 4.9A and a three-level decomposition using the Daubechies-12
wavelet. From Figure 4.14 it can be seen that the universal threshold underestimates
the noise component in strongly noise-affected images. Multiplying the universal
threshold with the estimated standard deviation, obtained through Equation (4.21),
gives a very high threshold that is optimal with respect to RMSE and coincides
with the threshold in Figure 4.12, where the hard-threshold minimum RMSE was
found. The histogram shows a deviation from the Gaussian shape and therefore
indicates that image information was removed in the filtering process. Also, the re-
construction shows block artifacts (compare to Figure 4.11B). The filter used for
Figure 4.14D differs from Figure 4.14B and C insofar as individual threshold val-
ues were determined for each decomposition level. The optimization of the GCV
[Equation (4.25)] is performed for each decomposition level. Applying an optimized
threshold for each decomposition level provides noise removal close to the actual
added noise component with no visible image structures removed.

The GCV algorithm is not difficult to implement. Although more efficient
minimum-search methods exist, a simple brute-force approach provides a suitable
starting point. A suggested implementation of GCV-based denoising is presented in
Algorithm 4.6. This algorithm performs an in-place wavelet shrinkage on the wavelet-
transformed image W(x,y), and uses the function thresh(coeff,t) to perform
hard thresholding on a coefficient coeff with threshold t. This function compares
the absolute of coeff with t and returns the value of coeff if |coeff|>t and
zero otherwise. Also, a reasonable upper bound for the threshold, uthresh, needs
to be specified. In the simplest case, this variable may be set to the largest wavelet
coefficient in the input image.
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FIGURE 4.14 Comparison of the denoising efficacy of three automated threshold-finding
algorithms with conventional Gaussian blurring. Shown is the noise component removed from
Figure 4.9A, that is, difference between image 4.9A and the filtered image. The insets show
the gray-value histograms of the various images. In image A, conventional Gaussian blurring
was applied. The difference image clearly shows the noise removed in most areas, but it also
contains image information: namely, the edges that get blurred in the smoothing process. Image
B was produced using Donoho’s universal threshold � = √

2 log n, image C used a threshold
based on an estimate of � through Equations (4.20) and (4.21), and image D was produced
using general cross-validation, Equation (4.25). In the latter case, the noise component is
almost identical to the artificially added noise, and no structural elements can be seen in the
difference image.

4.3.2. Wavelet-Based Highpass Filtering

The complementary operation to wavelet-based lowpass filtering is wavelet-based
highpass filtering, a process analogous to highpass filtering in the frequency domain.
To create a wavelet-based highpass filter, the wavelet coefficients of the lowest detail
level, that is, the lowpass output of the last subband stage (the �k), need to be
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x1=xm; y1=ym; // Start with the full-sized image

for (lvl=1 while lvl�=L increment lvl=lvl+1) // outer loop over decomp

x2=x1/2; y2=y1/2; // lower right corner of next decomp area

// Part 1: Brute-force method to find gcv-minimizing threshold
// Go over all possible thresholds from 0 to uthresh in small steps
// and compute GCV(t). Determine the smallest GCV(t) and store in
// gcvmin and optthresh. The latter is the threshold we will use
// for wavelet shrinking at this level.

gcvmin=1e20; optthresh=0;
for (t=0 while t�uthresh increment t=t+uthresh/200)

gcv=0.0; cnt=0;
for (y=0 while y�ym increment y=y+1)

for (x=0 while x�xm increment x=x+1)
if (x>=x2 or y>=y2) then // Exclude L/L area

a = hthresh(W(x,y), t);
gcv = gcv+(a-W(x,y))ˆ2; // numerator of Eq. (4.25)
if (a==0) then

cnt = cnt+1; // denominator of Eq. (4.25)
endif;

endif;
endfor;

endfor;
if (cnt�0) then

gcv=gcv/(cnt*cnt); // actual GCV sans constant multiplier
if (gcv�gcvmin) then // Store the minimum

gcvmin=gcv;
optthresh=t;

endif;
endif;

endfor;

// At this time, we have the optimum threshold optthresh for level lvl
// Proceed to shrinking the wavelet coefficients

Algorithm 4.6 GCV-based denoising. Pseudocode to perform wavelet shrinking
with a separate threshold per decomposition level determined through minimization
of GCV. The algorithm expects a wavelet-transformed input image W(x,y) with
multiple levels of decomposition, arranged as shown in Figure 4.8. The size of
W(x,y) is xm and ym, both powers of 2. The number of decomposition levels is L.
This algorithm relies on a function hthresh for hard thresholding. Wavelet coefficient
shrinking takes place in W(x,y), and upon termination of this algorithm, W may
be subjected to the inverse wavelet transform to restore the denoised image. (The
algorithm is continued on the next page.)
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// Part 2:
// Run over L/H, H/H, and H/L areas of this decomposition level
// and perform wavelet shrinking by hard thresholding

for (y=0 while y�ym increment y=y+1)
for (x=0 while x�xm increment x=x+1)

if (x�=x2 or y�=y2) then // Exclude L/L area
W(x,y) = hthresh(W(x,y), t); // actual wavelet shrinking

endif;
endfor;

endfor;

// Done for this level, now prepare for next decomposition level

x1=x2; y1=y2; // dyadic reduction of outer rectangle

endfor; // finished for all decomposition levels

Algorithm 4.6 GCV-based denoising (continued). This part performs the actual
wavelet shrinking.

attenuated. Although this process is rarely found in image processing, it is conceptu-
ally easy to implement. Setting the L/L coefficients of the lowest detail decomposition
to zero, or shrinking them strongly, effectively removes background trends, but it
also causes block artifacts upon reconstruction. In analogy to the threshold functions
shown in Figure 4.10, a soft attenuation of the lowpass coefficients �k can be achieved
with a saturation function (Figure 4.15) that attenuates the lowpass coefficients �k if
they exceed a certain threshold � . Such a saturation function can be described as

�′
k =

{
�k for �k ≤ �

� + �k − �

k
for �k � �

(4.26)
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FIGURE 4.15 Saturation function to attenuate high-level lowpass subband coefficients.
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FIGURE 4.16 Comparison of convolution-based and wavelet-based sharpening. Image A is a
cross-sectional CT image of a lumbar vertebra. Convolution-based sharpening (B) enhances the
texture of the image, but it also strongly amplifies noise on the pixel level. With wavelet-based
sharpening (C), perceived sharpness (texture enhancement) is comparable to convolution-based
sharpening, but pixel noise (additive Gaussian noise) is not amplified.

where k is the attenuation factor for high-valued coefficients. The sharpening oper-
ation involves three steps: wavelet decomposition of the original image, application
of the saturation function to the L/L coefficients of the lowest decomposition level,
and wavelet reconstruction. The result is comparable to a sharpening operation (see
Section 2.3), but it does not amplify additive noise on the pixel level. This effect can
be explained with the frequency response of the filters. The sharpening operation is
based on the Laplacian filter, which emphasizes frequency components proportional
to the square of their spatial frequency. Therefore, noise on the pixel level is most
strongly amplified. Conversely, wavelet sharpening can be seen as wavelet shrink-
ing at the lowest frequency level. As a consequence, no noise amplification takes
place. An example is shown in Figure 4.16, where the saturation operation has been
applied to the L/L region of a three-level decomposition with the Daubechies-12
wavelet.

In a similar manner, very effective removal of background inhomogeneities is
possible (background flattening). The conventional method is unsharp masking, that
is, the subtraction of a strongly blurred version of the image from the original image.
Depending on the window size, unsharp masking is affected adversely by strong
edges. If the same operation, unsharp masking, is performed on the L/L region
of the lowest decomposition level, image detail is not affected. The wavelet-based
unsharp masking operation therefore involves three steps: wavelet decomposition of
the original image, application of an unsharp masking operation to the L/L coefficients
of the lowest decomposition level, and wavelet reconstruction. The result of this
operation is shown in Figure 4.17. For this filter, the image was decomposed over
three levels with the Daubechies-12 wavelet. Unsharp masking was performed on
the lowest level, a square of 64 × 64 pixels in size, with a 32-pixel circular mask.
Wavelet-based filtering removes the inhomogeneous background more effectively,
while the background texture is retained and no burned-out regions appear.
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FIGURE 4.17 Comparison of conventional unsharp masking and unsharp masking on the
lowest level of wavelet decomposition. The original image is the CT cross section in Figure 4.16.
Image A shows the result of unsharp masking, and image B shows the result of a wavelet-
based operation, where only the lowest decomposition level was subjected to unsharp masking.
Both images were subjected to gamma contrast enhancement to make the background texture
more visible. Conventional unsharp masking shows loss of texture detail and large burned-out
regions, whereas wavelet-based background removal shows a much more detailed texture.

4.4. COMPARISON OF FREQUENCY-DOMAIN
ANALYSIS TO WAVELET ANALYSIS

Both the Fourier transform and the wavelet transform provide linear decompositions
of a signal f (t) into coefficients ak such that

f (t) =
∞∑

k=−∞
ak�k(t) (4.27)

and � k(t) are the basis functions. In the case of the Fourier transform, the � k(t) are
complex oscillations exp(−2� jk�t). These oscillations are continuous from −∞ �
t � ∞, which implies that the function f (t) is a 2�-periodic signal that stretches
from −∞ to ∞. The wavelet transform, on the other hand, uses basis functions with
compact support. Furthermore, the wavelet transform relies on a two-dimensional set
of coefficients aj,k, so that

f (t) =
∑

k

∑
j

a j,k� j,k(t) (4.28)

and the set of basis functions � j,k(t) reflects the scaled and shifted mother wavelet. As
a consequence of the compact support of the wavelets, f (t) itself may be nonperiodic
or have compact support itself. The assumption of a periodic f (t) is often violated
in the discrete Fourier transform and leads to techniques such as multiplication with
a window function to eliminate the discontinuity between the start and the end of a
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discretely sampled signal or image. These considerations do not apply to the wavelet
transform.

The most crucial difference between the Fourier transform and the wavelet trans-
form is the latter’s ability to retain spatial information. A Fourier-transformed image
contains the summed-up contributions of all image areas toward a spatial frequency
irrespective of their location. A wavelet-transformed image, on the other hand, sep-
arates the image by frequency bands while it retains the spatial information in each
band. For this reason, nonlinear and adaptive filter techniques can be designed that
would not be possible with the Fourier transform. Examples of nonlinear techniques
are the filter functions shown in Figures 4.10 and 4.15. Examples of adaptive filters
include a locally variable threshold in Figure 4.10, determined from the local noise
variance. Furthermore, wavelet-based filters can include a priori spatial knowledge:
for example, a restriction to segmented areas of the image.

A second fundamental difference between the Fourier transform and the wavelet
transform is the ability of the wavelet transform to control the level of detail with
the scaling variable, s in Equation (4.4). The Fourier transform, in comparison (see
Figure 4.18), merely provides the global contribution of the frequency components
toward the signal. The Fourier transform can be restricted in time, leading to the
windowed Fourier transform, but as the window size decreases, less information
about high frequencies will be provided. Whereas the Fourier transform is restricted
to periodic sinusoidal oscillations, the wavelet transform allows the flexibility of
choice of a suitable wavelet basis function for optimized smoothness and frequency
response of the filter bank.

Another important property of the wavelet transform cannot readily be quanti-
fied. The application of filters to multiple scales retains self-similar properties. Many
objects have some self-similar properties that are perceived as natural. Therefore,
the results of wavelet-based filters often appear more natural than those of Fourier-
or convolution-based filters. The most prominent example is wavelet-based image

FIGURE 4.18 Comparison of the Fourier transform to the wavelet transform. The Fourier
transform of a signal (A) provides the global frequency components without respect to their
location in time. A windowed Fourier transform (B) allows some localization with respect
to time, but as the windows become smaller in time, so does their ability to provide high-
frequency information. The wavelet transform (C), by merit of the scalability of the basis
functions, provides localized high-frequency information.
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TABLE 4.2 Comparison of the Wavelet Transform to the Fourier Transform

Fourier Transform Wavelet Transform

Linear, separable in n dimensions. Linear, separable in n dimensions.
Basis functions with infinite support require

assumption of periodicity.
Basis functions with finite support.

Because of the assumed periodicity,
discontinuities at the edges need to be
suppressed (windowing).

No assumption of periodicity; therefore, no
windowing is needed.

Fixed basis functions (sin, cos). Flexible basis functions; can be optimized
for a specific application.

Basis functions are computationally
expensive.

Dyadic wavelet transform is faster than FFT
because only multiplications and
additions are needed.

Complete loss of spatial information. Spatial information is retained on all levels.
No multiscale decomposition possible. Allows multiscale decomposition and

multiscale analysis.
Filters may only use frequency information. Filters can use spatial information to

establish adaptive filter schemes, locally
variable thresholds, or use a priori shape
information.

compression. Lossy image compression implies that the original image cannot be
reconstructed—a price to be paid for very high compression rates. A very common
method of lossy compression is based on the discrete cosine transform (Section 3.3),
whereby small square areas of the image are transformed and high-frequency co-
efficients are discarded. This compression method leads to typical block artifacts.
Wavelet-based compression does not show these artifacts, and the perceived image
quality of images highly compressed with a wavelet algorithm is much higher than
that of images compressed with the discrete cosine transform. The advantages of
wavelet-based compression are so high that this new compression method became
part of the JPEG-2000 standard. Wavelet-based image compression is covered in
detail in Section 12.3. The key differences between the Fourier transform and the
wavelet transform, with its implication on filters, are summarized in Table 4.2.

4.5. BIOMEDICAL EXAMPLES

The importance of the wavelet transform for biomedical image processing was
realized almost immediately after the key concepts became widely known. Two
reviews18,20 cover most of the fundamental concepts and applications. In addition,
the application of wavelets in medical imaging has led to development of powerful
wavelet toolboxes that can be downloaded freely from the Web. A list of some wavelet
software applications is provided in Section 14.6.
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The most dominant application is arguably wavelet-based denoising. Noise is an
inescapable component of medical images, since noise is introduced in several steps
of signal acquisition and image formation. A good example is magnetic resonance
imaging, where very small signals (the magnetic echos of spinning protons) need to
be amplified by large factors. Many fast MRI acquisition sequences gain acquisition
speed at the expense of the signal/noise ratio (SNR). For this reason, the availability
of detail-preserving noise-reduction schemes are crucial to optimizing MR image
quality. A comprehensive survey of different wavelet-based denoising algorithms in
MR images was conducted by Wink and Roerdink33 together with a comparison to
Gaussian blurring. Gaussian blurring is capable of improving the SNR by 10 to 15 dB
in images with very low SNR. However, when the SNR of the original image exceeds
15 to 20 dB (i.e., has a relatively low noise component), Gaussian blurring does
not provide further improvement of SNR. Most wavelet denoising schemes, on the
other hand, show consistent improvement of the SNR by 15 to 20 dB even in images
with a low initial noise component. Noise is particularly prevalent in MR images
with small voxel sizes: for example, in high-resolution MR microscopy images. For
those cases, a wavelet denoising scheme was introduced by Ghugre et al.15 The
three-dimensional algorithm is based on hard thresholding and averaging of multiple
shifted transforms following the translation-invariant denoising method by Coifman
and Donoho.7 These shifts are particularly important, since Ghugre et al. subdivide the
three-dimensional MRI volume into smaller 64 × 64 × 64 voxel blocks and denoise
each block individually. Without the shift-average operation, the subdivision of the
volume would cause blocking effects. Three-dimensional denoising outperformed
corresponding two-dimensional methods both in mean-squared-error metrics and in
subjective perception. Finally, in the special case of magnetic resonance images,
the denoising process can be applied to both the real and imaginary parts of the
spatial image.25,36 The k-space matrix was reconstructed through an inverse Fourier
transform, resulting in a real and an imaginary spatial image. Soft-threshold wavelet
shrinking with the threshold determined by generalized cross-validation [Equation
(4.25)] was applied on both real and imaginary parts before computation of the spatial
magnitude image, which was the final reconstruction step.

Plain x-ray imaging is much less susceptible to noise than is MRI. Yet some appli-
cations, predominantly mammography, require particularly low noise with excellent
preservation of detail. The ability of wavelet-based methods to achieve these goals
has been examined. Scharcanski and Jung30 presented an x-ray denoising technique
based on wavelet shrinkage (hard thresholding) as the second step in a two-step pro-
cess. The first step is local contrast enhancement. The standard deviation of x-ray
noise component increases with image intensity, and a contrast enhancement func-
tion was designed that acts similar to local histogram equalization but depends on the
local noise component. Wavelet shrinkage was optimized under the assumption of a
Gaussian distribution of the noise component, but a Laplacian distribution of noise-
free wavelet coefficients. The end effect of local contrast enhancement and subsequent
wavelet denoising is a mammography image where local features, such as microcal-
cifications, are strongly contrast enhanced and visually more dominant than in either
the original image, the image subjected to local histogram equalization, or the image
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subjected to noise-dependent contrast enhancement only. A similar idea of a two-step
approach involving local contrast enhancement and adaptive denoising was followed
by Sakellaropoulos et al.29 In this study, a nondecimating wavelet transform (i.e., a
wavelet transform that does not downsample the lowpass-filtered component) was
used, and the wavelet coefficients were denoised by soft thresholding followed by
applying nonlinear gain at each scale for adaptive contrast enhancement.

Ultrasound imaging is another biomedical imaging modality where noise is dom-
inant and leads to poor image quality. Usually, skilled medical personnel are needed
to interpret ultrasound images. Suitable image processing methods have been de-
veloped to improve image quality and help interpret the images. To remove noise
and noise-related ultrasound speckles, wavelet-based methods have been developed.
Contrary to MR and x-ray images, ultrasound speckle noise is frequently interpreted
as multiplicative noise [i.e., the A-mode signal f (z) consists of the echo intensity e(z)
as a function of depth z and noise n such that f (z) = e(z)n]. Consequently, taking the
logarithm of f (z) converts multiplicative noise into additive noise. A straightforward
approach, such as proposed by Gupta et al.,16 would be to convert the ultrasound
image to its log-transformed form, perform a wavelet decomposition, use a soft-
thresholding wavelet shrinkage for denoising, reconstruct the image through an in-
verse wavelet transform, and restore the denoised intensity values through a pixelwise
exponential function. This idea can be taken even further when the wavelet-based
denoising filter is built into the ultrasound machine at an early stage of the image
formation process. Such a filter would act on the RF signal prior to demodulation.
A wavelet filter that acts either on the RF signal before demodulation or on the
actual image data was proposed by Michailovich and Tannenbaum.22 However, this
study indicated that the model of uncorrelated, Gaussian, multiplicative noise was
overly simplified. In fact, Michailovich and Tannenbaum demonstrate a high auto-
correlation of the noise component, depending on its position in the B-mode scan.
By using a nonlinear filter, they propose to decorrelate the noise, after which soft
thresholding can be applied on the logarithmic data. A completely different approach
was taken by Yue et al.,35 who combined wavelet decomposition with a nonlinear
anisotropic diffusion filter (see Section 5.1). In this special case, wavelet decomposi-
tion of the image took place over three levels, and all wavelet coefficients except the
lowest-detail region were subjected individually to anisotropic diffusion. Since the
wavelet transform is a powerful method of separating signal and noise, the anisotropic
diffusion filter can preserve edges even better than the same filter applied on the
original image.

Single-photon emission computed tomography (SPECT) and positron emission
tomography (PET) are modalities that rely on radioactive decay of radiopharmaceu-
ticals. The decay is a random event, and with the required low doses of radioactive
material, the signal is composed of a few integrated events. In other words, the image
is made of noise. One model for this type of noise is the Poisson model, where the stan-
dard deviation is proportional to the signal intensity. For visualization purposes, the
SPECT or PET signal is frequently severely blurred, false-colored, and superimposed
over a higher-resolution MR or CT image. Wavelet-based denoising is a promising
approach to improving SPECT and PET image quality. For example, Bronnikov3
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suggested the use of a wavelet shrinkage filter in low-count cone-beam computed
tomography, which is related to SPECT in its high Poisson noise content. For PET
images, a three-dimensional extension of the wavelet denoising technique based on a
threshold found through general cross-validation was proposed by Charnigo et al.,6

who describe a multidimensional wavelet decomposition strategy that is applied to
small nonoverlapping cubes (subspaces) of the original three-dimensional PET im-
age. To find a suitable threshold for wavelet coefficient shrinking, Stein’s unbiased
risk estimator (SURE)11,31 was proposed, but with an adjustable parameter to ei-
ther oversmooth or undersmooth [similar to the parameter � in Equation (4.20)].
Charnigo et al. point out that undersmoothing (i.e., selecting a weaker than optimal
filter) in medical images is preferable to oversmoothing. The efficacy of different
denoising protocols in PET time-course images of the heart was analyzed by Lin
et al.,21 who propose a wavelet decomposition scheme that does not include subsam-
pling. The resulting redundancy led to shift invariance of the wavelet filter. Some of
the denoising protocols proposed allowed more accurate determination of myocaridal
perfusion and better differentiating between normal and underperfused regions. Sim-
ilar conclusions were found in a study by Su and et al.32 on simulated PET images and
small-animal PET images. Wavelet filtering improved nonlinear least-squares model
fitting of time-course models to the data, particularly in images with high noise levels
when compared to conventional smoothing filters.

Neither light microscopic nor electron microscopic images are typically known
as being extremely noisy. However, there are conditions under which the signal-to-
noise ratio is very low, particularly when imaging weak fluorescent signals or reducing
exposure to reduce photobleaching. For this type of image, Moss et al.24 developed
a wavelet-based size filter that emphasizes structures of a specified size and made
use of the property of the wavelet transform to provide the strength of correlation
of the data with the wavelet.24 This particular filter makes use of the continuous
wavelet transform [Equation (4.4)] rather than the fast dyadic wavelet transform.
Furthermore, Moss et al. propose designing a wavelet transform in three dimensions
that uses separability to improve computational efficiency and symmetry to provide
rotation invariance. In a different study, Boutet de Monvel et al.2 present wavelet-
based improvements to the deconvolution of confocal microscope images. They noted
that the deconvolution process affects image detail differently depending on its size:
namely, that small image features are more sensitive than large features to noise or
mismatches of the optical point-spread function. Furthermore, the iterative nature of
the deconvolution process exacerbates this effect. It was found that a wavelet-based
denoising step introduced between the deconvolution iterations strongly improves
the image quality of the final reconstructed images.

Optical coherence tomography (OCT) is a more recent imaging modality where
light-scattering properties of tissue provide contrast. Broadband laser light (i.e., laser
light with a short coherent length) is directed onto the tissue through an interferometer.
Laser light that is scattered back from the tissue into the optical system provides a
signal only from within the short coherent section. The coherent section and thus the
axial resolution is several micrometers deep. Scanning the coherent section in the
axial direction provides the optical equivalent of an ultrasound A-mode scan. Most
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OCT devices generate a two-dimensional cross section analogous to the B-mode scan
of an ultrasound device. Similar to ultrasound, OCT images are strongly affected by
noise, particularly additive Gaussian noise and multiplicative noise. Gargesha et al.14

show that conventional filtering techniques (median filtering, Wiener filtering) and
wavelet-based filtering with orthogonal wavelets do not sufficiently reduce noise
while retaining structural information. The filter scheme proposed by Gargesha et al.
is based on an idea by Kovesi19 to perform denoising in the Fourier domain, shrinking
only the magnitude coefficients and leaving the phase information unchanged. The
improvement by Gargesha et al. consists of adaptively optimizing the filter parameters
and using nonlinear diffusion to reduce noise at different scales.

Whereas wavelets are clearly most popular in image denoising, other areas benefit
from the wavelet transform as well. To give two particularly interesting examples,
the wavelet transform can be used in the image formation process of computed to-
mography images, and wavelet-based interpolation provides a higher interpolated
image quality than do conventional schemes. In computed tomography, reconstruc-
tion is based on the Fourier slice theorem. Peyrin et al.26 showed that tomographic
reconstruction from projections is possible with the wavelet transform. Based on
Peyrin et al.26 approach, Bonnet et al.1 suggest a wavelet-based modification of the
Feldkamp algorithm for the reconstruction of three-dimensional cone-beam tomog-
raphy data. Another interesting application of the wavelet transform is the reconstruc-
tion of tomographic images from a low number of projections that cover a limited
angle.28 The main challenge with reduced-angle backprojection lies in its inability
to reconstruct reliably edges perpendicular to an x-ray beam. Therefore, disconti-
nuities that are not tangential to any of the projections in the limited angle range
will be represented poorly in the reconstructed image. The wavelet reconstruction by
Rantala et al.28 is based on modeling the statistical properties of the projection data
and iterative optimization of a maximum a posteriori estimate.

Image interpolation can be envisioned as adding a new highest-detail scale, as
shown in Figure 4.19. Decomposition of the original image provides the gray shaded
decomposition levels. A new level is added for reconstruction, which has twice the
side length of the original image. This level is shown in white in Figure 4.19 and la-
beled L/H*, H/L*, and H/H*. If the entire image is reconstructed (including the white
areas), the image resolution will have doubled. The main task of the image interpo-
lation technique is to find suitable information for the new (white) areas that provide
the new interpolated image detail. Carey et al.5 presented an interpolation method
that enhances the edge information by measuring the decay of wavelet transform co-
efficients across scales and preserves the underlying regularity by extrapolating into
the new subband (H/L*, L/H*, and H/H*) to be used in image resynthesis. By using
the information that exists on multiple scales, the soft interpolated edges associated
with linear and cubic interpolation schemes can be avoided. A different approach is
taken by Woo et al.,34 who use the statistical distribution of wavelet coefficients in
two subbands of the original image (light gray in Figure 4.19) to estimate a probable
distribution in the new extrapolated subband. The new subbands are then filled with
random variables that have this distribution.
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H/L*

L/H* H/H*

FIGURE 4.19 Principle of image interpolation. The gray shaded areas are the wavelet de-
composition of the original image, and suitable information needs to be found for the white
area.

Finally, a recent publication by Daszykowski et al.8 gives an interesting example of
a complete image processing chain (in this case the analysis of electrophoresis images)
that includes wavelet denoising as one processing step. The image processing chain
begins with digitally scanned images of electrophoresis gels. A spline-based function
fit is used for removal of background inhomogeneities, followed by wavelet shrinking
for denoising. After the denoising steps, geometrical distortions are removed and
the image is binarized by Otsu’s threshold. The features are finally separated by
means of the watershed transform, and the blots are classified by using different
statistical models. This publication describes a highly automated start-to-end image
processing chain.
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5
ADAPTIVE FILTERING

Conventional (nonadaptive) filters were introduced in Section 2.3. These are oper-
ators that act equally on all areas of an image. Conversely, adaptive filters change
their behavior with the properties of the local neighborhood of the image to be fil-
tered. One example of an adaptive filter is local contrast enhancement by histogram
equalization. Histogram equalization is a process by which the image’s gray values
are modified so that the cumulative histogram follows a straight line as closely as
possible (Section 2.2). Linear histogram equalization is based on a mapping function
of any image intensity I to a new intensity I ′:

I ′ =

∫ I

Imin

P(i) di

∫ Imax

Imin

P(i) di

(5.1)

For each pixel with intensity I, the area under the histogram from the lowest intensity
Imin to the pixel intensity I is computed and normalized by the total histogram area.
This is the new intensity I ′. For images with integer elements (e.g., unsigned bytes
with a value range from 0 to 255), Equation (5.1) simplifies to

I ′ = 1

N

I∑
i=0

N (i) (5.2)

Advanced Biomedical Image Analysis, By Mark A. Haidekker
Copyright C© 2011 John Wiley & Sons, Inc.

138



P1: OTA/XYZ P2: ABC
c05 JWBS035-Haidekker August 26, 2010 7:58 Printer Name: Yet to Come

ADAPTIVE NOISE REDUCTION 139

where N is the total number of pixels and N(i) is the histogram value at intensity i
(i.e., the number of pixels of intensity i). For global histogram equalization, the total
number of pixels N and the histogram N(i) refer to the entire image. For a locally
adaptive variation of this process, either a neighborhood of size m × m or a circular
neighborhood of radius r of each pixel is selected, and N and N(i) are restricted
to this neighborhood. The locally restricted histogram equalization process adapts
to the statistical properties of the neighborhood region, and its exact action depends
on the neighborhood rather than on the entire image.

The effect of locally adaptive contrast enhancement is demonstrated in Figure 5.1.
A scanning electron microscope (SEM) image of grown collagen fibers exhibits a
histogram with few bright values—the cumulative probability reaches values close
to unity at relatively low gray levels. Histogram stretching (global, nonadaptive
histogram equalization) leads to a more uniform gray value distribution, but many gray
levels are missing, as evidenced by the gaps in the histogram, predominantly in the
center region. The enhanced image does not make use of the value range available and
does not have more unique gray levels than the unprocessed image. Locally adaptive
contrast enhancement operating on an area of about 1/100 of the image area expands
contrast within the local area. Gray values are now distributed uniformly. Strong
noise amplification can be seen in the dark gaps between the collagen fibers. When
local histogram equalization is performed in regions with a very narrow gray-value
distribution, noise (a significant source of contrast in flat regions) is strongly amplified.

The size of the neighborhood is variable and depends on the size of the features and
the size of the noise clusters. Generally, it is possible to construct adaptive methods by
subdividing an image into smaller subimages and applying a global operator on the
subimage. However, such a process would lead to unacceptable boundaries between
the subimages. For this reason, adaptive methods use sliding (or moving) windows
centered on the pixel under observation. The shape of the neighborhood also influ-
ences the result. Although a square neighborhood is easier to implement, a circular
neighborhood shows less directionality. In a square neighborhood, more diagonal pix-
els influence the result than horizontal or vertical pixels. The treatment of image edges
also needs to be considered. Most commonly, four different methods of edge handling
are implemented: (1) pixels outside the image area are considered to have zero value,
(2) pixels outside the image area retain the nearest edge value, (3) the image is tiled, or
(4) the image is mirrored. In the context of adaptive methods, avoiding discontinuities
at the edge is of critical importance, and the second and fourth methods are acceptable.

Locally adaptive algorithms can be used for noise reduction, intensity-based seg-
mentation, and shape classification. Most locally adaptive algorithms are based on
the statistical properties of the neighborhood, but more advanced filters may employ
artificial intelligence methods such as fuzzy logic and neural networks.

5.1. ADAPTIVE NOISE REDUCTION

Noise reduction is one of the most important image processing steps, particularly
in biomedical image processing. Noise is broadly distributed over the frequency
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FIGURE 5.1 Global and locally adaptive histogram equalization. Image A shows a scanning
electron microscope (SEM) image of grown collagen fibers. The histogram reveals an emphasis
on dark shades with few bright image values. Global histogram equalization (B) enhances the
contrast by brightening mid-gray pixels, but the histogram shows that the available value range
is not fully used. Locally adaptive histogram equalization (C) leads to optimized contrast in
each region. The neighborhood size in image C is indicated by a black rectangle near the
bottom left corner.

spectrum of the image. The conventional approach to reducing noise is the applica-
tion of a blurring filter (e.g., Gaussian smoothing or lowpass filtering in the frequency
domain). Unfortunately, degradation of high-frequency components—edges and tex-
ture details—is an inevitable consequence of the blurring process. For this reason,
many methods and algorithms have been developed that act more strongly in flat
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1
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FIGURE 5.2 Pixel neighborhood definition for the Kuwahara filter in the example of a
5 × 5 neighborhood. The central pixel is replaced by the average value of the six pixels in the
region (1 to 4) that has the lowest variance.

image regions than near edges. Generally, adaptive noise reduction results in non-
linear filters and filters that are defined only algorithmically. A good example for a
nonlinear, edge-preserving noise reduction is the Kuwahara filter, although it is not
an adaptive filter. The Kuwahara filter can be explained by the definition of four
neighborhood areas of the central pixel (dark gray) in Figure 5.2. Four adjacent,
nonoverlapping regions of the local window are examined and the central pixel value
is replaced by the mean value of the pixels in the region with the lowest variance. The
window size (in this example, 5 × 5, which leads to four six-pixel regions) can be
freely selected. The averaging operation, in combination with choosing the lowest-
variance quadrant, is responsible for noise reduction. If an edge runs through the
window, the Kuwahara filter generally picks a region that does not contain the edge,
because the edge causes a high variance where it intersects one of the four regions.
The Kuwahara filter illustrates the basic idea behind edge-preserving noise-reduction
filters, but superior adaptive filters have been developed.

5.1.1. Adaptive Minimum Mean-Squared-Error Filter

A simple and widely used locally adaptive noise reduction filter is the minimum
mean-squared-error filter. It is based on variable-strength blurring to balance a strong
filter action in flat regions with a weaker filter action in the presence of edges. If we
assume that the noise component of the image is known and has an overall variance
�2

N , we can intuitively demand that a locally adaptive filter acts strongest wherever it
finds a local variance �2

loc close to the global noise variance �2
N . In the presence of

edges or other image features, the local variance can be expected to be higher than
�2

N , and the adaptive filter reduces the strength of its blurring action. In its simplest
implementation, the minimum mean-squared-error filter can be described by20

I ′(x,y) = I (x,y) − �2
N

�2
loc(x,y)

[I (x,y) − Ī (x,y)] (5.3)

where any pixel value I (x,y) is substituted for by a new value I ′(x,y) that depends
on the original intensity value, the local variance �2

loc [computed inside an M × M
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square neighborhood with l = M/2 − 1, as defined in Equation (5.4)], the global
noise variance �2

N , and the mean intensity value Ī (x,y) in the neighborhood:

�2
loc(x,y) = 1

(M2 − 1)

⎧⎪⎨
⎪⎩

x+l∑
i=x−l

y+l∑
j=y−l

I (i,j)2 − 1

M2

⎡
⎣ x+l∑

i=x−l

y+l∑
j=y−l

I (i,j)

⎤
⎦

2
⎫⎪⎬
⎪⎭

(5.4)

Equation (5.4) is a one-pass equation that allows us to compute the local mean value
and the local variance in the same loop over the square region by summing up the
image values and the squared image values. It can be seen from Equation (5.3)
that in areas of low local variance (�2

loc ≈ �2
N ) the new image value is close to the

local average value, whereas in areas with high local variance (�2
loc � �2

N ), the filter
does not strongly modify the original intensity value. For practical application of the
minimum mean-squared-error filter, the global variance can be approximated by the
smallest local variance encountered:

�2
N = min

x,y
�2

loc (5.5)

This assumption implies that areas with low image contrast exist and that the noise
variance is the same in all regions of the image. An example is shown in Figure 5.3,
where a CT image of the lung is subjected to a conventional Gaussian blurring filter
and a local adaptive filter following Equation (5.3). The difference image (panel C)
shows the noise removed, but it also shows dark areas along edges, indicating that
the filtered image does not differ from the original image in those regions. A possible
implementation is shown in Algorithm 5.1.

The filter described in Algorithm 5.1 is weaker than the smoothing filter that is used
to compute Ī (x,y) in Equation (5.3). With the practical implementation described here,
the minimum variance that is used for �2

N may result in a very small value, making
the overall effect of the filter even weaker. One possibility is to use a histogram-
based approach to determine �2

N : for example, computing the histogram of VARIMG
in Algorithm 5.1 and choosing �2

N from the 5% or 10% quantile of the histogram.
With this more refined method, the choice of �2

N becomes more robust against image
anomalies that violate the assumption of homogeneously distributed noise. Further
improvements in the algorithm are possible by implementing a circular neighborhood.
Also, the averaged image intensity Ī could be computed more advantageously by
using a Gaussian rather than a box kernel.

The major disadvantage of this adaptive filter is the poor noise reduction near
edges, which is a component of the filter design. Nonetheless, modification of this
filter for improved noise reduction near edges is possible.32 An edge detector can be
used to determine if an edge exists in the local neighborhood: for example, by applica-
tion of the Sobel operator or Canny edge detector with subsequent thresholding. If an
edge exists, the local window can be split into two regions under the assumption that
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FIGURE 5.3 Application of a locally adaptive noise removal filter to a CT image of the lung,
which contains a strong component of pseudostructure (A). The filtered image (B) shows good
smoothing in homogeneous areas (lung, aorta), while the edges are retained. This is illustrated
further in image C, the absolute difference of the original and filtered image, in other words,
the component removed from image A by filtering. Dark regions in image C represent regions
where the adaptive filter did not change the image. Most prominently, the lung contour can
be seen as a dark line. Image D shows the application of conventional Gaussian blurring to
image A. Although the noise largely been removed, the edges have deteriorated, and detail
inside the lung has been lost.

the edge is straight. Computation of the local variance is then restricted to that side of
the edge where the central pixel is located. Alternatively, the filter can be applied iter-
atively with an update of �2

N after each iteration. Since �2
N is reduced after each filter

pass, the iterative application of the adaptive minimum mean-square filter converges.

5.1.2. Adaptive Bilateral Filter

Using a different formulation, the adaptive bilateral filter by Zhang and Allebach42

also reduces noise while preserving edges. The adaptive bilateral filter is based on the
convolution of the noisy image with two Gaussian kernels, one of which is adaptive.
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set ngh=5; // Choose a suitable neighborhood size

set n = SQR(2*ngh+1); // number of pixels in square neighborhood

set minvar = 1e+9; // some arbitrary high value for minimum variance

allocate AVGIMG(xmax, ymax); // Allocate “image” for local average

allocate VARIMG(xmax, ymax); // Allocate “image” for local variance

// Pass 1: Determine local average (=smoothed image), local variance, and minimum variance

for (y=0 while y�ymax increment y=y+1) do

for (x=0 while x�xmax increment x=x+1) do

sx=0; sxx=0; // Reset accumulators for sum of x and sum of xˆ2

for (y1=y-ngh while y�=y+ngh increment y=y+1) do

for (x1=x-ngh while x�=x+ngh increment x=x+1) do

x2=x1;

if (x2�0) then x2=0; else if (x2�=xmax) then x2=xmax-1;

y2=y1;

if (y2�0) then y2=0; else if (y2�=ymax) then y2=ymax-1;

sx = sx + IM(x2,y2); // Accumulate sum of x

sxx = sxx + SQR(IM(x2,y2)); // Accumulate sum of x squared

endfor

endfor

AVGIMG(x,y) = sx/n; // local average

var = (sxx - sx*sx/n)/(n*(n-1)); // local variance

if (var�0 and minvar � var) then

minvar=var; // minimum variance only if variance defined

endif;

VARIMG(x,y)=var; // Store local variance

endfor;

endfor;

// Pass 2: Compute filtered image

for (y=0 while y�ym increment y=y+1) do

for (x=0 while x�xm increment x=x+1) do

g = minvar / VARIMG(x,y); // ratio of global/local variance

if (g�1) then g=1; // force 0 �= g �= 1

filt = IM(x,y)-g*(IM(x,y)-AVGIMG(x,y)); // This is the local adaptive filter step

IMF(x,y) = filt; // Store result

endfor;

endfor;

delete (VARIMG); delete (AVGIMG);

Algorithm 5.1 Adaptive minimum mean-square filter. The input image isIM(x,y),
and it is assumed that reading IM outside its defined area (0 to xmax-1 and 0 to
ymax-1) returns defined values. The algorithm performs two passes. In the first pass,
the local average, local variance, and the minimum variance are determined, and
in the second pass, the actual filtering takes place, resulting in the filtered image
IMF(x,y).
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The general filter equation is a convolution of the degraded (noisy) image I(x,y) with
a kernel h(x,y,m,n) to obtain enhanced image I′ through

I ′(x,y) = 1

r (x,y)

x+l∑
m=x−l

y+l∑
n=y−l

h(x,y,m,n)I (m,n) (5.6)

where 2l − 1 is the square neighborhood size. The kernel h is computed through

h(x,y,m,n) = exp

[
− (x − m)2 + (y − n)2

2�2
d

]
exp

[
− [I (x,y) − I (m,n) − � (x,y)]2

2�2
r

]

(5.7)

and the normalization factor r(x,y) through

r (x,y) =
x+l∑

m=x−l

y+l∑
n=y−l

h(x,y, m,n) (5.8)

The convolution kernel contains two exponential terms that describe two Gaussian
functions. The first exponential term is a two-dimensional Gaussian function with
the standard deviation �2

d , and the second exponential term represents a Gaussian
function of the image gradient. These exponential terms are referred to as the domain
and range filters, respectively, and their combination was given the name bilateral
filter. With a very large value of �r, the bilateral filter degenerates into a conventional
Gaussian blurring filter with a standard deviation of �d . In the presence of edges,
the second term causes a directional distortion of the Gaussian kernel: The kernel
elongates along the edge, and averaging occurs predominantly along the edge and less
strongly perpendicular to the edge. This behavior is the basis for the edge-preserving
properties of the bilateral filter. �r is a variable parameter, which can be used to
control the width of the filter. With large values of �r, the range filter will assign
approximately equal weights for each pixel in the window, and the filter behaves
predominantly like a Gaussian blurring filter. With small values for �r, the range
filter dominates the bilateral filter and the adaptive behavior is more pronounced.

The final parameter, � (x,y), is responsible for the adaptive behavior. If � (x,y) = 0,
the filter is nonadaptive and corresponds to the conventional bilateral filter proposed
by Tomasi and Manduchi.37 To obtain adaptive properties, including sharpening of
the edges, the maximum (Imax), mean (Imean), and minimum (Imin) values of the pixel
neighborhood need to be determined. The difference between any given pixel I(x,y)
and the neighborhood mean value Imean can be defined as � (x,y) = I(x,y) − Imean. The
behavior of the filter near edges is now determined by three preferred choices of � (x,y):

1. Shifting the image values in the neighborhood window toward Imean by choosing
� (x,y) = − � (x,y) causes edges to blur, and the filter has an overall smoothing
character.
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2. Shifting the image values in the neighborhood window away from Imean

by choosing � (x,y) = +� (x,y) causes noise reduction combined with edge
sharpening.

3. Separating the image values and shifting them toward Imax and Imin by choosing
� (x,y) according to the following equation depending on the sign of � (x,y)
causes a drastic sharpening effect with a strong steepening of the edges:

� (x,y) =
⎧⎨
⎩

Imax − I (x,y) for � (x,y) � 0
Imin − I (x,y) for � (x,y) � 0
0 for � (x,y) = 0

(5.9)

The adaptive bilateral filter is best demonstrated by using a synthetic test image.
Figure 5.4A shows some geometrical structures that were blurred and spoiled with
additive Gaussian noise (� = 10) (Figure 5.4B). Figure 4.4C demonstrates the effect
of the conventional bilateral filter (l = 9, �d = 2, and �r = 20), which strongly reduces
noise while not blurring the edges further. The adaptive bilateral filter, on the other
hand, restores some of the edge sharpness (Figure 5.4D). With multiple applications of
the adaptive bilateral filter, image restoration can be improved further (Figure 5.4E).

FIGURE 5.4 Demonstration of the operation of the adaptive bilateral filter. A test image (B)
was created from a synthetic image (A) by performing Gaussian blur and adding Gaussian noise
with a standard deviation of 10. The nonadaptive, conventional bilateral filter (� = 0) already
shows good noise suppression while retaining edge contrast (C). Application of the adaptive
bilateral filter [� (x,y) = +� (x,y)] leads to image D, with similarly good noise suppression
but an additional restoration of edge sharpness. Image E was created with two successive
applications of the adaptive bilateral filter. Images F and G illustrate the composition of the
kernel h: the white rectangle in image B indicates the position of the two kernels. Image F is
the nonadaptive domain filter kernel, and image G is the adaptive bilateral kernel. It can be
seen that the kernel contains zero values on one side of the edge, averaging only values on that
side of the edge where the central pixel lies.
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Figure 4.4F and G illustrate the kernel h. This kernel is computed at the location of
the white rectangle in Figure 5.4B, and Figure 5.4F shows the Gaussian domain filter
kernel, which is nonadaptive. The combination of the range and domain kernels h is
shown in Figure 5.4G. It can be seen that the kernel becomes asymmetric along the
edge as a consequence of the range filter: Pixels across an edge lose their influence on
the kernel; therefore, the averaging takes place on pixels along one side of an edge.

A disadvantage of the adaptive bilateral filter is the empirical nature of the optimum
values for �d and �r, and one of the main disadvantages is that the value of � , used
to compute offset � in the range filter, is highly noise-dependent. Furthermore, the
optimum choice of the parameters �d and �r are dependent on the gray-value range
of the image. To optimize this filter, some experimentation is therefore needed. Even
more advantageous is the use of a training set to optimize the filter parameters.42

5.1.3. Anisotropic Diffusion Lowpass Filter

Perona and Malik introduced a very powerful adaptive filter that operates by numer-
ically simulating anisotropic diffusion.28 Image intensity values can be thought of
as local concentrations caught inside the pixel. If pixel boundaries are thought of as
semipermeable, the pixel intensity would diffuse over time into neighboring pixels
of lower intensity (i.e., follow the negative gradient). This process is most dominant
wherever high contrast exists between neighboring pixels, and the diffusion process
would end after infinite time with all contrast removed. This type of diffusion follows
the partial differential equation

∂ I (x,y,t)

∂t
= c� I (x,y,t) (5.10)

where I(x,y,t) is the image intensity, c is the diffusion constant, and � indicates
the Laplacian operator. Equation (5.10) describes an isotropic diffusion process that
leads to Gaussian blurring. The key to anisotropic diffusion is to introduce a locally
adaptive diffusion constant c(x,y,t) which changes the diffusion equation to

∂ I (x,y,t)

∂t
=div(c(x,y,t) ∇ I (x,y,t)) = c(x,y,t) � I (x,y,t) + ∇c(x,y,t) ∇ I (x,y,t)

(5.11)

where ∇ indicates the gradient operator and div indicates the divergence operator.
This diffusion constant needs to be chosen as a function of the local gradient28 with
a function g that is monotonically falling and normalized to g(0) = 1. An example of
a suitable function g is

g(∇ I (x,y)) = 1

1 + |∇ I/K |2 (5.12)

By using g as a function of the local gradient, the diffusion speed g(∇I) · ∇I becomes
low at high local gradients (i.e., edges) and finds a maximum at—or, depending on
the function g, near—the value of the constant K. The function g in Equation (5.12)
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FIGURE 5.5 Graphical representation of the function g(∇I) in Equation (5.12) and the
diffusion speed g(∇I)·∇I.

and the diffusion speed g(∇I) · ∇I is shown qualitatively in Figure 5.5. The most
interesting property of anisotropic diffusion, the enhancement of high-contrast edges,
is related to the negative slope of the diffusion speed at high gradients.28 Despite the
comparatively complex theory behind the anisotropic diffusion filter, a numerical
approximation of the diffusion equation, and therefore its computer implementation,
are surprisingly simple. Let us discretize the intensity gradient into the intensity
difference of a pixel to its four neighbors:

(∇ I )N (x,y) = I (x,y − 1) − I (x,y)
(∇ I )S(x,y) = I (x,y + 1) − I (x,y)
(∇ I )E (x,y) = I (x + 1, y) − I (x,y)
(∇ I )W (x,y) = I (x − 1, y) − I (x,y)

(5.13)

Then the four directional components of the diffusion constant can be computed:

cN (x,y) = g((∇ I )N (x,y))

cS(x,y) = g((∇ I )S(x,y)) (5.14)

cE (x,y) = g((∇ I )E (x,y))

cW (x,y) = g((∇ I )W (x,y))

Finally, the partial derivative toward time in Equation (5.11) can be discretized with
an iterative time-stepping loop where one step advances the diffusion by the time � t:

I (t + � t) = I (t) + � t [cN (∇ I )N + cS(∇ I )S + cW (∇ I )W + cE (∇ I )E ]|∀x,y (5.15)

If a function g is defined [Equation (5.12), termed diffusion g in the computer
implementation] that returns a floating-point value g from the floating-point param-
eters grad i and k, we arrive at the implementation described in Algorithm 5.2.
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set deltat=0.2; // Choose a suitably small time step size

set k = 100; // Choose a diffusion strength parameter K

allocate ITEMP(xmax, ymax); // Allocate temporary storage for diffusion result

for (y=0 while y�ymax increment y=y+1) do

for (x=0 while x�xmax increment x=x+1) do

// Compute the four intensity gradients. Note boundary condition: the off-image intensity is zero.

in=0; is=0; iw=0; ie=0;

if (x�0) then iw = IM(x-1,y) - IM(x,y);

if (x�xmax-1) then ie = IM(x+1,y) - IM(x,y);

if (y�0) then in = IM(x,y-1) - IM(x,y);

if (y�ymax-1) then is = IM(x,y+1) - IM(x,y);

// Compute the anisotropic diffusion constant from given function g

// Boundary condition: no diffusion off-image

cn = 0; cw = 0; ce = 0; cs = 0;

if (x�0) then cw = diffusion g (iw, k);

if (x�xmax-1) then ce = diffusion g (ie, k);

if (y�0) then cn = diffusion g (in, k);

if (y�ymax-1) then cs = diffusion g (is, k);

// Perform one time step in the iterative diffusion process

ITEMP(x,y) = IM(x,y) - deltat * ( cn*in + cs*is + ce*ie + cw*iw );

endfor

endfor

// Finally, copy ITEMP into IM to simulate in-place filtering

for (y=0 while y�ym increment y=y+1) do

for (x=0 while x�xm increment x=x+1) do

IM(x,y) = ITEMP(x,y);

endfor;

endfor;

delete (ITEMP);

Algorithm 5.2 Anisotropic diffusion lowpass filter. Each execution of this algorithm
performs one time step according to Equation (5.15). The input image is IM(x,y),
and the diffused image is stored temporarily in ITEMP(x,y). Afterward, ITEMP
is copied into IM so the diffusion is applied to the input image. This process needs to
be repeated several times to achieve sufficient noise reduction.
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The parameter K, which determines the strength of the filter by determining where
the negative diffusion gradient starts, and the number of iterations strongly determine
the outcome of the filter. An optimum value of K and the optimum number of iterations
are normally determined experimentally, although K can be made dependent on the
noise component of the image,28 for example, by computing a histogram of the
image gradient magnitude at each time step and selecting K to be the 90% quantile of
the histogram. The main advantage of computing K in dependency of the noise
component is the fact that one less parameter is arbitrarily chosen. Furthermore,
as the noise component is reduced at higher iterations, K diminishes, and the filter
strength diminishes as well. As a consequence, the number of iterations becomes less
critical in determining the outcome. The automated selection of K is a major step
toward an unsupervised anisotropic diffusion filter. The influence of the parameter K
and the number of iterations are demonstrated in Figure 5.6.

A further option to fine-tune the filter is the choice of the function g. An alter-
native choice, the function g(∇ I ) = exp(−∇ I 2/K 2), exhibits a steeper drop-off at
higher gradients and therefore preserves smaller detail than the function given in
Equation (5.12). Finally, an improvement in the directional behavior can be achieved
by including the diagonal neighbors in the diffusion equation.

FIGURE 5.6 Application of the anisotropic diffusion lowpass filter on the CT slice in Figure
5.3A. For the top row (A, B, C), the parameter K was set to 50 and the diffusion process was
iterated 20, 50, and 100 times, respectively. In the bottom row (D, E, F), K was set to 100 and
the diffusion process was iterated 20, 50, and 100 times, respectively. At a high number of
iterations, the edge-preserving property of the filter becomes particularly apparent.
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FIGURE 5.7 Application of anisotropic diffusion to denoise an image. The original image
(A) consists of several areas of different gray values (range 0 to 255) with step transitions
and superimposed Gaussian noise with � = 40. Repeated application of strong Gaussian
blurring leads eventually to image B, where noise is widely smoothed, but the transitions are
blurred, too. As a consequence, the application of an edge detector (Sobel operator) on image
B yields fairly broad edges with considerable background texture (C). Anisotropic diffusion
(10 iterations, K = 50 followed by 300 iterations, K = 12) not only removes the noise
component completely but also preserves the step edges (D). The application of an edge
detector on image D results in sharp edges that are only minimally distorted (E).

An example of the application of anisotropic diffusion in noise removal is shown
in Figure 5.7, where conventional nonadaptive Gaussian blurring is compared with
anisotropic diffusion. With extremely noisy images, such as Figure 5.7A, a suitable
denoising approach needs to be determined experimentally. In this example, two
stages of anisotropic diffusion were applied. For the first stage, K = 50 was selected
but only 10 iterations were executed. This value of K is large enough to blur the
boundary of the dark rectangle, but blurring is limited because of the low number of
iterations. However, with the large value of K, the initial diffusion step considerably
reduced the noise component. In the second step, a smaller value for K was chosen
(K = 12), which prevented blurring of the lowest-contrast edge, and with the high
number of iterations, the remaining noise was removed almost completely.

5.1.4. Adaptive Median Filters

Although averaging filters are effective for removing Gaussian noise, the median
filter is more suitable for shot noise (also known as salt-and-pepper noise or impulse
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noise). Shot noise is characterized by pixels that assume the maximum or minimum
image value with a certain probability. Images affected by shot noise typically occur
when individual pixels are not covered in the image formation or reconstruction
process. For comparison, additive noise affects every pixel by displacing its value by
a random offset �. An image degraded by Gaussian noise can be modeled as

g(x,y) = f (x,y) + �(x,y) (5.16)

where g(x,y) is the degraded image, f (x,y) is the ideal image, and �(x,y) is the
Gaussian noise component with zero mean and an image-specific standard deviation.

On the other hand, shot noise affects pixels only with a probability p, but an
affected pixel will either assume the image’s maximum or minimum value. In 8-bit
images, these pixels would be black [g(x,y) = 0] or white [g(x,y) = 255]. The
degradation process can be modeled as

g(x,y) =
{

f (x,y) with probability 1 − p
n(x,y) with probability p

(5.17)

where n(x,y) is either black, or white, or a combination of black and white pixels with
a different probability p2 for a black pixel. Therefore, an image that is affected by
shot noise contains a number of white and black pixels.

A conventional, nonadaptive median filter sorts the values of a n × n neighbor-
hood (most often a 3 × 3 neighborhood) and replaces each image value by the
median of its neighborhood, thus eliminating runaway values such as black or white
pixels. A locally adaptive median filter has been proposed38 in which the neighbor-
hood is expanded as long as the median value is typical for its neighborhood. More
specifically, for each pixel, a starting neighborhood of n × n is set: for example 3
× 3. For this neighborhood, the minimum, median, and maximum intensities (Imin,
Imed, and Imax, respectively) are determined and the condition Imin � Imed � Imax is
tested. If this condition is not satisfied, usually with either Imin = Imed or Imed = Imax

(thus indicating that a likely runaway value exists in the neighborhood), the neigh-
borhood is expanded. If a predetermined maximum neighborhood size is reached,
the pixel remains unaffected; otherwise, the process is repeated. If, on the other
hand, the condition Imin � Imed � Imax is satisfied, another test is performed; that is,
Imin � I(x,y) � Imax. If this condition tests true, the central pixel I(x,y) is unlikely
to be impulse noise, and the pixel remains unaffected. Otherwise, the central pixel
I(x,y) is probably impulse noise and gets replaced by Imed. For large neighborhood
sizes, the adaptive median filter retains edges and details better than a conventional
median filter.

The center-weighted median filter (CWMF) was proposed by Ko and Lee18 as a
weaker median filter with better edge-preserving properties than those of the con-
ventional median filter. This attenuated median filter differs from the conventional
median filter inasmuch as the neighborhood table, from which the median value is
determined, is extended by w − 1 values and the central pixel value is repeated w
times. An example is given in Figure 5.8. Depending on the value of w, the CWMF is
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FIGURE 5.8 Center-weighted median filter (CWMF). Shown is a sample neighborhood
(left) and the nine neighborhood values sorted ascendingly (right, top). The median value of
the neighborhood is 36. The CWMF extends the neighborhood list by repeating the central
value w = 4 times (right, bottom). In this example, the central pixel value and the median value
coincide. The CWMF is less aggressive than the conventional median filter.

less likely to replace a pixel by the neighborhood median value than by the conven-
tional median filter. For this reason, the CWMF preserves edges, corners, and lines
better than the conventional median filter does at the expense of lower filtering power.
A locally adaptive combination of the CWMF and the median filter was proposed by
Chen et al.11 and termed the tristate median filter, because the filter either replaces a
pixel by the output of the median filter or by the output of the CWM filter, or leaves
the pixel unchanged, depending on the local neighborhood properties.

More specifically, for each pixel f (x,y), the median filter output f med(x,y) and the
CWMF output f CWMF(x,y) are determined. A threshold value T is provided for the
decision mechanism, and the final filtered image value g(x,y) is determined through

g(x,y) =
⎧⎨
⎩

f (x,y) for T ≥ d1

f CWMF(x,y) for d2 ≤ T � d1

f med(x,y) for T � d2

(5.18)

where d1 = | f (x,y) − f med(x,y)| and d2 = | f (x,y) − f CWMF(x,y)|. The threshold
value T determines the strength of the filter. Setting T = 0 leads to the conventional
median filter. A very large threshold value leaves the image unmodified. Threshold
values in between yield the adaptive behavior, and a smaller threshold leads to a
stronger filter action. The choice of a suitable threshold value needs to be determined
experimentally, ideally with a training set of images where the mean-squared error
(or any other distance) is minimized.

The idea of adaptive median filters can be taken further to allow for a correction
step between two successive applications of a median filter. The principle behind the
correction of a median filter step lies in the filter’s possible types of error: A median
filter can either miss a corrupted pixel, correct a noncorrupted pixel, or replace a pixel
by a new value that has a larger distance to the (unknown) uncorrupted pixel than the
original corrupted pixel. This third type of error, referred to as overcorrection error,
is minimized by the filter proposed by Xu et al.41 The first step of this two-stage
filter is the application of a conventional median filter, a CWM filter, or any other
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adaptive rank filter such as the adaptive median filters described in previous sections.
In preparation of the corrective step, a binary image is created, which contains white
pixels (1’s) where the original image and the median-filtered image differ, and which
contains black pixels (0’s) where they don’t. Let us denote the input image I, the
median filter output F, and the black-and-white image that indicates pixels that were
replaced by the median filter D. To identify those pixels of D that have probably
been overcorrected, an adaptive processor is proposed that creates another image E,
which is a subset of D and contains 1’s only for those pixels that are identified as
overcorrected. The adaptive processor operates row by row and processes one row of
D as follows:

Step 1. Choose two parameters a and b that determine the filter action.

Step 2. Count the probability of white pixels in all rows n. Denote this probability
w(n). w(n) is therefore a column vector, and the mean and standard deviation of
w(n), denoted �(w) and �(w), can be computed.

Step 3. Compute two threshold values �= a�(w) and 	 = �(w) − b�(w). In addition,
copy the first median-filtered image F into G.

Step 4. For each row n, execute steps 5, 6, and 7 only if w(n) � �(w) + �.

Step 5. For row n, determine the number K of pixels probably overcorrected using
K = w(n) − �(w) + b�(w) = w(n) − 	.

Step 6. In row n, compute the error vector e as the element-by-element squared
difference of row n in I and F.

Step 7. Find the K smallest values in e and revert the action of the median filter for
the corresponding elements in G (i.e., replace the corresponding elements in G by
the original elements from I).

Step 8. After all rows have been processed, compute E as the binarized difference
image between F and G in the same manner as D was computed from F and I. In
this way, E contains 1’s on all positions where the action of the first median filter
was reverted.

In the second stage of this filter, G is subjected to a conditional median filter step:
A pixel in G may be changed as a result of the median filter only if the corresponding
element of E is zero (in other words, if the pixel was not reverted by the adaptive
processor). The output of the conditional median filter step G is the output of the
entire adaptive filter.

The filter algorithm can further be simplified if the reversal of overcorrected
pixels takes place directly in D and D serves as decision mechanism whether to use
pixels from I or F in the final filtered image. In this case, E and G are no longer
needed. Although the filter as proposed by Xu et al.41 preserves some detail over the
nonadaptive median filter, its line-by-line processing sequence makes the filter action
highly orientation-dependent. Furthermore, the optimum parameters a and b are not
intuitively easy to find. The filter could be improved by examining the median filter
correction statistics in a square local neighborhood rather than in a horizontal line.
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5.2. ADAPTIVE FILTERS IN THE FREQUENCY DOMAIN:
ADAPTIVE WIENER FILTERS

Frequency-domain filtering was introduced in Chapter 3. One particularly important
filter is the Wiener filter which finds its main application in image restoration (Section
3.2.3). Let us recall the general equation of the Wiener filter in the frequency domain:

W (u,v) = H*(u,v)

|H (u,v)|2 + S�(u,v)/S f (u,v)
(5.19)

Here, H(u,v) is the Fourier transform of the point-spread function of the degradation
process h(x,y) and H*(u,v) is its complex conjugate. S�(u,v) is the power spectrum
(i.e., the squared magnitude of the Fourier transform) of the noise, and Sf(u,v) is the
power spectrum of the ideal image f (x,y). A special case exists where blurring with the
point-spread function is negligible [i.e., H(u,v) ≈ 1] and Equation (5.19) simplifies to

W (u,v) = S f (u,v)

S f (u,v) + S�(u,v)
(5.20)

Conversely, if the noise component is negligible, the filter in Equation (5.19) simply
becomes the reciprocal of the point-spread function, W (u,v) = 1/H (u,v). However,
dividing the degraded image by the degradation function in the frequency domain
is impractical because the degradation function H(u,v) generally has lowpass char-
acteristics (i.e., the magnitude drops off toward higher frequencies). Therefore, its
reciprocal, W(u,v), assumes very large magnitudes at higher frequencies. This may
lead to high frequencies of the degraded image, G(u,v), being divided by very small
numbers or even by zero. Since noise has a broadband spectrum, the contribution
of S�(u,v) to the denominator of Equations (5.19) and (5.20) prevents W(u,v) from
assuming very large values at high frequencies. In fact, a higher noise component
reduces the high-frequency magnitude of W(u,v), therefore giving the filter a more
lowpass character. Conversely, if the noise component is small in Equation (5.19), the
blurring term H(u,v) dominates and the filter assumes more highpass characteristics.
In most practical cases, the power spectrum Sf (u,v) is unknown, and the spectrum of
the noise component S�(u,v) is also unknown. Most frequently, the power spectrum
ratio S�(u,v)/Sf(u,v) is therefore replaced by a constant k and the Wiener filter
simplifies to

W (u,v) = H*(u,v)

|H (u,v)|2 + k
= 1

H (u,v)

|H (u,v)|2
|H (u,v)|2 + k

(5.21)

The constant k is determined experimentally for each case. A large value of k,
necessary when a large noise component is present, configures the filter to act more
as a lowpass, while a small value of k, allowable in images with low noise component,
configures the filter as a highpass (see Figure 3.11). Two adaptive variations of this
filter are possible, a frequency-adaptive form where k becomes a function of
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frequency, K(u,v), and a spatially adaptive form where k becomes locally dependent
as k(x,y).

If the statistical properties of the noise are spatially variable, S�(u,v) in Equation
(5.20) becomes a function of the spatial coordinate (x,y). In the simplified form
[Equation (5.21)], the constant k would become spatially dependent and the noise-
reducing Wiener filter can be formulated as

W (u,v) = S f (u,v)

S f (u,v) + �2
n (x,y)

(5.22)

where �2
N (x,y) is the local variance of the noise component. The application of this

spatially adaptive Wiener filter is computationally extremely expensive, because the
inverse Fourier transform has to be performed for each pixel. It can be shown, however,
that the adaptive minimum mean-square filter in Equation (5.3) is a very efficient
spatial-domain implementation of the adaptive Wiener filter in Equation (5.22).40

This example explains the main challenge for the design of adaptive frequency-
domain filters. Since spatial information is lost in the frequency domain, local prop-
erties can only be considered with a separate inverse transform for each region of the
image where the statistical properties differ. Such a filter is computationally ineffi-
cient. However, there are alternative approaches. Abramatic and Silverman1 proposed
a parametric Wiener filter,

W (u,v) = S f (u,v)

S f (u,v) + 
�2
n (u,v)

(5.23)

where 
 is a function to be optimized according to specific criteria. A nonadaptive ver-
sion of this filter is obtained by minimization of the difference between the idealized,
noise-free image and the restored image (Backus–Gilbert approach3). It can be seen
that with 
 → 0, the filter becomes the identity filter (a desired behavior near edges),
whereas for 
 → 1 the filter approaches the conventional Wiener filter in Equation
(5.22). The Backus–Gilbert approach still requires 
 to be a function of location,

 (x,y), with the associated inverse Fourier transform necessary for each pixel x,y.
Abramatic and Silverman propose to use a function for 
 (x,y) that falls monotoni-
cally from 1 to 0 as the local image gradient increases from 0 to ∞. Furthermore, it is
possible to consider directionality of the gradient (e.g., the four directions of the com-
pass operator) to formulate an anisotropic function 
 (x,y). The effect of such a filter
would be related to the adaptive bilateral filter in Equation (5.6). The main reason to
pursue a frequency-domain approach with a Wiener filter is the fact that the Wiener
filter is the optimum filter for known image and noise variance. If either is unknown,
an empirical approach such as the minimum mean-squared-error filter or the adaptive
bilateral filter will lead to satisfactory results with less computational effort.

Using the same basic idea, Guy17 recently proposed a Fourier-based approach to
minimize Poisson noise in scintigraphic images. Poisson noise is a special case of
multiplicative, intensity-dependent noise, where the standard deviation is approxi-
mately equal to the mean intensity value. The algorithm, termed Fourier block noise
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FIGURE 5.9 Fourier block noise reduction filter to remove Poisson noise. Shown is a
dopamine transporter imaging scan, that is, a SPECT scan with specific radiopharmaceuti-
cals, in one slice of the brain (A). Since the radiopharmaceutical itself is the source of the
events recorded to form an image, the signal is collected from random decay events. Therefore,
a higher signal is always associated with a larger noise component (Poisson noise). Gaussian
smoothing (B) blurs the image to an extent where details vanish and contrast becomes low. The
Fourier block noise reduction filter (C), applied with 4 × 4 blocks on a 128 × 128 pixel image,
smoothes noise while preserving details such as the ventricles. (From ref. 17, courtesy of
Dr. Matthew Guy.)

reduction, uses a moving-window Fourier filter. For each pixel, a square local window
is specified in which the local variance �2

loc(x,y) is computed in the spatial domain
[Equation (5.4)]. The local noise component, �2

N (x,y) can be estimated from the
Poisson model to be approximately equal to the local mean intensity. Now, the local
window is subjected to a Fourier-domain lowpass with variable cutoff frequency, and
the cutoff frequency is increased in repeated steps. After each step, the residual noise
of the filtered block, �2

R(x,y), is computed by using Equation (5.4), and the algorithm
halted when �2

R(x,y) ≤ �2
N (x,y) in the local neighborhood selected. With variable

step size for the cutoff frequency, an improvement in computational efficiency can
be achieved. One of the advantages of this filter is the application of the Fourier
transform to a local neighborhood, which increases overall computational efficiency
over the computation of the Fourier transform of the entire image for each pixel as
proposed in the adaptive Wiener filter implementations. The other advantage is the
optimized removal of the Poisson noise component without additional filter parame-
ters, which makes it suitable for unsupervised image processing. An example of the
filter applied to a SPECT image of the brain is given in Figure 5.9.

5.3. SEGMENTATION WITH LOCAL ADAPTIVE THRESHOLDS
AND RELATED METHODS

Thresholding is one of the most common segmentation methods. The underlying
assumption is that the feature (foreground) pixel brightness differs from the back-
ground pixel brightness. This behavior is usually evidenced by a bi- or multimodal
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histogram, where one peak represents the background and one (or more) peaks
represent the features (see Section 2.4). If the image is illuminated homogeneously,
the valley that separates the background peak from the other peaks is the ideal
threshold value for the segmentation. This assumption does not hold for images with
inhomogeneously illuminated background. More specifically, if the intensity differ-
ence between background and features is smaller than the intensity variations of the
background itself, thresholding fails. Consider the example in Figure 5.10, where sev-
eral features are present over a strongly inhomogeneous background with the highest
brightness in the center. No consistent segmentation threshold exists, because some
features are darker than the brightest part of the background. Yet the human eye can
easily identify the features. In many cases it is possible to flatten the background
by using conventional methods such as unsharp masking or homomorphic filtering.
However, when the features are relatively large, the filtering steps affect the features
by reducing the intensity of large homogeneous areas. Furthermore, to some extent,
filters used to remove the background have highpass characteristics and therefore
amplify noise (Figure 5.10C).

A related aspect is the efficacy of automated thresholding methods. It is possible to
use methods such as the isodata method33 or Otsu’s method27 to find the optimum
threshold in an image with a bimodal histogram. The application of filters can distort
the histograms to a point where automated thresholding methods no longer find the
optimum threshold. Figure 5.11 shows three histograms that correspond to the three
examples in Figure 5.10. In Figure 5.11A, the background and feature peaks are
clearly separable, and Otsu’s method reliably finds a suitable threshold (arrow).
Conversely, the strongly inhomogeneous background in Figure 5.10B causes the
broad background peak in Figure 5.11B, in which Otsu’s method can no longer
detect a meaningful threshold. Restricting the area in which histograms are analyzed
in Figure 5.10B again yields histograms with a clear valley between background and
feature peaks. In the example of Figure 5.11C, two different regions were analyzed,

FIGURE 5.10 Example images of several features over relatively homogeneous (A) and
strongly inhomogeneous (B) background. In example B, no global threshold can be found
to separate the features from the background (e.g., the large feature top left is darker than
the background in the center). Restoration by application of a highpass filter (C) affects the
features themselves by reducing the intensity of large homogeneous areas inside the features.
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FIGURE 5.11 Histograms corresponding to the three examples in Figure 5.10. Arrows
indicate the optimum threshold by Otsu’s method. In part C the gray and black histograms
represent two different regions.

and their different overall brightness is reflected by a local shift in Otsu’s threshold.
In the simplest implementation of a locally adaptive threshold, the histogram in a
window around each individual pixel is determined and subjected to a threshold
finding method (e.g., Otsu’s method), which determines whether the pixel is assigned
to the background or foreground. The local threshold can be recorded as a function
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FIGURE 5.12 Threshold map for the image in Figure 5.10B. The adaptation-dependent
increase in the threshold value in the image center can be seen clearly.

of the image location and examined independently. Figure 5.12 shows an example
for a threshold map which corresponds to Figure 5.10B. It shows clearly an increase
in the threshold toward the image center, caused by the increased local average,
and it shows that the threshold is approximately homogeneous over the features.
A threshold map does not need to be generated pixel by pixel as in the example of
Figure 5.12. Interpolation or least-squares methods can be used alternatively to create
smoother threshold maps. An example is shown in Figure 5.13, which corresponds
to Figure 5.12. To arrive at the smooth threshold map in Figure 5.13, the original
image (Figure 5.10B) was subdivided into 36 (6 × 6) tiles, and in each tile, the pixel

FIGURE 5.13 Threshold map created by performing a parabolic least-squares fit into the
local gray-value minima of 6 × 6 tiles into which the image was divided.
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with the minimum intensity was located. A parabolic intensity function, IB(x,y) =
a0 + a1x + a2 y + a3xy + a4x2 + a5 y2, was chosen and the unknown parameters
a0 through a5 were determined using a least-squares fit. This intensity function,
evaluated for each pixel, resulted in the threshold map in Figure 5.13. In the special
case of Figure 5.10B, the smooth threshold map with its fairly rigid parabolic function
is not able consistently to separate the features from the background, as opposed to
Figure 5.12. The type of map that shows superior performance needs to be determined
experimentally for each application. For example, Ball et al.4 subdivided digitized
mammography x-ray images into 16 × 16 nonoverlapping tiles and determined the
intensity mean and standard deviation for each. Through interpolation, matching
512 × 512 maps of the local threshold and the local standard deviation were created
and used as joint threshold maps. The use of threshold maps is functionally similar to
background flattening. It is either possible to use the threshold map in Figure 5.12, or
the image in Figure 5.12 can be subtracted from Figure 5.10B to allow a nonadaptive
threshold to be used.

The window size plays an important role, because it must be larger than the features
and it must be small enough to include large background inhomogeneities. Choosing
a window that is smaller than the features will misclassify feature pixels. Conversely,
a window that is too large would not only be affected by the inhomogeneous back-
ground but would also misclassify small features with relatively low contrast to the
background, especially if the small feature is located near a larger feature. These
requirements may conflict, and thus more advanced adaptive threshold segmentation
methods have been developed.

Local connectedness can become an important additional criterion for segmenta-
tion. A combination of adaptive thresholding and region growing is often referred to
as hysteresis thresholding (Section 2.4.4). The algorithm for hysteresis thresholding
is a two-pass process, where thresholding with a relatively high threshold value is
used to identify high-probability foreground pixels. In the second pass, the local
neighborhood of the initial pixels identified is region-grown with a lower threshold
value. By considering the neighborhoods of the initial seed pixels in a region-growing
fashion, local connectedness is observed. The hysteresis thresholding algorithm can
be combined with adaptive thresholds. It is possible to use an adaptive threshold map
for either the upper or lower threshold, or both.

Up to this point, a constant neighborhood size was assumed. However, the window
size may become adaptive as well. For example, an iterative variable-window adaptive
threshold algorithm was proposed by Bieniecki and Grabowski.7 For this multistep
segmentation, the image is pre-thresholded based on an initial global threshold, such
as the image mean or Otsu’s threshold. In this first pass, each pixel is therefore
classified as either foreground or background. The window size is initially set to
1 × 1 (a single pixel). Iteratively, the window size is doubled, and any background
pixel is reexamined based on local statistics, upon which it can be reclassified as a
feature pixel. The iteration ends at a predetermined window size or when no more
pixels have been reclassified. One example of local statistics as suggested by Bieniecki
and Grabowski7 is the Bernsen threshold,6 where the threshold is the mean of the
darkest and brightest pixels in the neighborhood. However, using single pixels for
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a decision, such as threshold selection, makes the algorithm sensitive to noise. One
possible alternative would be iterative threshold selection33 (see Section 2.4), which
considers all pixels in the current window. In addition, threshold selection comparable
to nonadaptive thresholds (e.g., image mean or Otsu’s threshold) would increase the
probability of classifying too many pixels as foreground pixels. Since the iterative
reclassification in this algorithm always increases the number of foreground pixels,
a higher initial threshold is desirable. These considerations would lead to a hybrid
algorithm combining adaptive window size, local iterative threshold selection, and
hysteresis thresholding.

The window size does not need to be adapted in a predetermined fashion. Instead,
the local window can be grown on the basis of the local gray-level distribution.
An example for an algorithm with variable local neighborhood size is presented as
one step to segment microscopic images of cells.23 The classification of a pixel as
belonging to a feature (cell) or to the background is based on the local application
of Otsu’s method. In this example, the size of the neighborhood is grown until the
neighborhood variance meets the global variance. Intuitively, it can be assumed that
the neighborhood has grown to meet adjoining different regions. From that neighbor-
hood, the histogram is computed, which serves as the local basis for Otsu’s method.

A related algorithm is multitolerance region growing.34 Multitolerance region
growing is an adaptive variant of region growing and allows a pixel I(x,y) to be added
to the existing region if it satisfies the condition

(1 + � )
Imax + Imin

2
≥ I (x,y) ≥ (1 − � )

Imax + Imin

2
(5.24)

where Imax and Imin are the maximum and minimum intensities in the region at the
present iteration, and � is a user-selectable value between 0 and 1. In its application
to detect microcalcifications in digitized mammograms,34 however, the parameter �
is not chosen by the user but rather is determined automatically by analyzing descrip-
tive parameters of the grown feature. A good choice of � is found when variations of
the feature classifiers over the region-growing process become very small. With the
underlying idea of using adaptive neighborhoods, Dhawan and Le Royer developed
a method of targeted contrast enhancement in x-ray mammographies to emphasize
specific features, including microcalcifications.13 The key step in the image pro-
cessing chain proposed is the computation of local contrast information based on
adaptive neighborhoods. For each pixel I(x,y), the first criterion for classifying the
neighboring pixels as “center” or “surround” (i.e., feature and background) is gray-
value similarity. Any neighborhood pixel I(x + � x, y + � y) is classified as center
if its intensity meets the condition I (x,y) − T ≤ I (x + � x, y + � y) ≤ I (x,y) + T ,
where T is a threshold value, in this study set to T = 3 in an 8-bit digitized image. Any
neighborhood pixel is classified as surround if it does not meet the intensity criterion
and is at the same time 8-connected to at least one center pixel. Note that pixels
outside the threshold window that are not 8-connected to the center count as unclas-
sified. At this time, a second adaptive criterion comes into play. Pixels are counted
in the outer row of the square region. For example, if the window is 5 × 5 pixels, the
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only pixels counted are those for which � x = ±2 or � y = ±2. The number of center
pixels as a percentage of the total pixels must drop below a percentage threshold,
which in this study was set at 40%. If this criterion is not met, the square window
surrounding the center coordinate (x,y) is grown by one pixel (e.g., from 3 × 3 to
5 × 5 to 7 × 7 . . .) and the classification as center or surround is repeated. Once the
percentage criterion is met, the local contrast C for pixel (x,y) can be computed as

C(x,y) = | Īc(x,y) − Īs(x,y)|
max[ Īc(x,y), Īs(x,y)]

(5.25)

where Īc and Īs are the mean intensity values of the pixels classified as center and
surround, respectively. Thus, a contrast image corresponding to the input image can
be created. The values of the contrast image lie between 0 and 1. A pixel-by-pixel
transform, C ′(x,y) = g(C(x,y)), serves to enhance the contrast. The function g is a
monotonically increasing function with g(0) = 0 and g(1) = 1. Dhawan and Le Royer
propose a piecewise exponential function, but it appears that functions related to the
gamma function g(c) = c1/
 with 
 � 1 are best suited for the purpose of contrast
enhancement. In the last step, each pixel of the original image is transformed based on

I ′(x, y) =

⎧⎪⎨
⎪⎩

Īs(x,y)

1 − C ′(x,y)
for Īc(x,y) ≥ Īs(x,y)

Īs(x,y)[1 − C ′(x,y)] for Īc(x,y) � Īs(x,y)

(5.26)

which results in a contrast-enhanced image enhanced by local adaptive contrast
criteria.

A fundamentally different idea for determining a locally adaptive threshold is the
use of diffusion, analogous to the anisotropic diffusion presented in Section 5.1. How-
ever, as the basis for thresholding, diffusion normal to image gradients was proposed
by Manay and Yezzi.22 Diffusion parallel to the edges smoothes noise but retains the
edges. Diffusion normal to the edge direction, on the other hand, blurs the edges, and
diffusion is strongest at the steepest gradients. The diffusion equation, introduced in
Equation (5.10), can be made anisotropic in a tangential sense and reduces to

∂ I

∂t
= I 2

x Ixx + 2Ix Iy Ixy + I 2
y Iyy

I 2
x + I 2

y

(5.27)

where I is the pixel intensity and the indices x and y indicate a partial derivative
toward one direction. Equation (5.27) was termed by the authors antigeometric
heat flow. The implementation of differential equation (5.27) is possible with the
discretization in time described by

I k+1(x,y) = I k(x,y) + � t I k
R(x,y) (5.28)
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which leads to the iteration step k + 1 by advancing the time-dependent intensity
at iteration k by � t. Here IR(x,y) is a term that contains the spatial derivatives and is
defined as

IR(x,y) = Ix (x,y)2 Ixx (x,y) + 2Ix (x,y)Iy(x,y)Ixy(x,y) + Iy(x,y)2 Iyy(x,y)

Ix (x,y)2 + Iy(x,y)2

(5.29)

where the partial derivatives may be implemented through central differences as
described by

Ix (x,y) = I (x + 1, y) − I (x − 1, y)
Iy(x,y) = I (x, y + 1) − I (x, y − 1)

Ixx (x,y) = I (x + 1, y) − 2I (x,y) + I (x − 1, y)
Iyy(x,y) = I (x, y + 1) − 2I (x,y) + I (x, y − 1)

Ixy(x,y) = I (x +1, y +1) + I (x −1, y −1) − I (x +1, y −1) − I (x −1, y +1)

4
(5.30)

In its simplest form, several time steps of the differential equation (5.28) are executed
and the difference, |I k+1 − I k |, is examined for any pixels that exceed a certain
threshold T . These pixels are classified as belonging to a segmented edge. Since heat
diffusion is a smoothing process, this form of edge detection is very robust against
noise. Furthermore, the diffusion is independent of the actual image intensity level and
is therefore implicitly adaptive to brightness. A simple extension is the application of
region growing to the resulting edge mask: Unclassified pixels are classified as white
(foreground) if they touch a white neighbor, and are classified as black (background) if
they touch a black neighbor. This region-growing classification is repeated iteratively
until all pixels are classified. For images with multiple regions, the classification
step after the antigeometric diffusion step can be refined further22 by applying a
split-merge approach where regions of similar gray-scale statistics are merged until
only a certain number of regions are left in the image or the squared error within the
regions becomes too high. Subsequently, the region with the highest squared error is
split again by using antigeometric diffusion on this specific region only, after which
the merge step is repeated. As outcome of this process, the squared error usually
converges, and the iterative application of merge and split steps can be stopped.

5.4. BIOMEDICAL EXAMPLES

Adaptive methods have been under development for many years and are finding their
way into biomedical image analysis. In most cases, adaptive filters constitute an inter-
mediate step in the image processing chain. For this reason, adaptive filtering is found
most frequently as a tool rather than as the research objective of a study. With the
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development of computers that have higher processing power, the algorithms available
become considerably more complex. An early example of adaptive contrast enhance-
ment is a study on the effect of local histogram equalization in CT images by Pitzer
et al.31 The focus of this study was not only the effect of local histogram equalization,
but primarily a computationally effective implementation suitable for the process-
ing power available at that time. Another early study demonstrated the superiority of
adaptive sharpening over nonadaptive unsharp masking in image enhancement for the
detection of lung nodules in chest x-ray images.12 The conventional unsharp mask-
ing step made use of two masks, where the image was convolved with box filters of
35 × 35 and 101 × 101 pixels window size, respectively. The resulting unsharp masks
were subtracted from the original image with weight factors of 0.5 and 1.0. This
method of unsharp masking is often referred to as the difference-of-Gaussian (DoG)
operator and the operation has a strong highpass character. In the adaptive variant,
the same convolution was used to obtain unsharp masks, but the weight factors were
allowed to vary from 0 to 0.5 and 0 to 1.0, respectively, depending on the radiolucency
of the local area. In dark regions of the digitized image (i.e., the radiolucent regions of
the lung), the weight factors were low, and consequently, the sharpening effect of the
filter was also low. The maximum effect of the filter was reached in the projections
of bone and probably in the nodule regions. In an ROC analysis, radiologists most
reliably identified the nodules in the adaptively filtered x-ray images, whereas there
was no difference in unfiltered and nonadaptively filtered images. The effect of the
two filters (nonadaptive unsharp masking and locally adaptive unsharp masking) is
demonstrated in Figure 5.14.

FIGURE 5.14 Effect of a locally adaptive unsharp masking filter on a scanned chest x-ray
image. The original image (A) shows a high dynamic range with low contrast in critical regions,
such as the lung region with the nodule (circled with a marker). Note also the two buttons in
the top part of the image. Nonadaptive DoG (B) overly increases local contrast in areas of high
radiolucency (i.e., the lung area), while the region of the spinal column retains low contrast.
The critical areas in the lung appear overly sharp, even partially burned out. The adaptive filter
that reduces its strength in areas of high radiolucency (C) balances contrast and, according to
the study, allows radiologists to detect lung nodules more reliably. (From ref. 12.)
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Another study where an adaptive filter was contrasted with an equivalent non-
adaptive filter was based on MR data that were affected by image bias.14 Image bias
is conventionally removed by homomorphic (i.e., multiplicative) highpass filtering.
In the new algorithm, a bias field model was generated iteratively by first generating
a threshold map, then by creating an unsharp mask of the tissue areas in the MR
image, and finally, by dividing the threshold map by the unsharp mask. The process
was repeated about five times, after which features such as blood vessels, were more
clearly visible than in homomorphic filtered images. Adaptive threshold masking also
leads to a more uniform histogram.

X-ray mammography continues to be a challenging area for image analysis, with
the goal to aid the radiologist in the detection of microcalcifications or suspicious
masses. Adaptive filtering steps are frequently employed. For example, an adap-
tive filter that emphasizes medium-contrast areas was the basis of density-weighted
contrast enhancement segmentation.30 With additional image processing steps,
namely, region growing of the objects found in the adaptive segmentation step and
subsequent morphological classification, a reliable detection of suspicious masses
with 97% true-positive detection and 35.5% false-positives was achieved.

A fundamentally different segmentation approach for the segmentation of micro-
calcifications was presented by Bankman et al.5 The hill-climbing algorithm presented
in this study is based on the fact that the edge of a microcalcification is a closed contour
around an area of higher intensity. This observation implies that a microcalcification
has one pixel with a local intensity maximum I(x0,y0), which can be found algo-
rithmically. To find the edges of the microcalcifications, pixel intensities are probed
along 16 straight lines at 0◦, 22.5◦, 45◦, . . . with respect to the horizontal, starting at
the local intensity maximum at x0,y0. For each line, a slope s(x,y) is defined through

s(x,y) = I (x0,y0) − I (x,y)√
(x − x0)2 + (y − y0)2

(5.31)

and the edge is defined as the highest slope value s(x,y) along the probing line
(Figure 5.15). With this method, 16 edge points can be found. In addition, the edge
direction is defined as the line perpendicular to the probing line. The actual hill climb-
ing takes place in the second part of the algorithm: Starting with the 16 edge pixels as
reference pixels, each pixel that is 8-connected to a reference pixel is added to the fea-
ture cluster (a) if it is an uphill pixel (i.e., its intensity is higher than the intensity of the
reference pixel) and if it lies on the local maximum side of a line that goes through the
reference pixel and is perpendicular to the line connecting the reference pixel to the lo-
cal maximum, or (b) if its intensity is lower than the intensity of the reference pixel and
the pixel is closer to the local maximum by the distance of one or more pixels, that is,

√
(x0 − xr )2 + (y0 − yr )2 ≥

√
(x0 − x)2 + (y0 − y)2 + 1 (5.32)

Pixels that are added to the cluster serve iteratively as reference pixels, and the
iteration stops when no more pixels are added to the cluster. The result is a
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FIGURE 5.15 Intensity and slope along one representative probing line. The probing line
starts at the local maximum (Euclidean distance 0), and pixel intensity drops off somewhat
monotonically with increasing distance. The slope shows a distinct maximum at the steepest
drop-off, approximately 35 pixels from the local maximum (arrow). This point on the probing
line is marked as an edge point.

pixel mask that defines the area of microcalcification. Thus, the hill-climbing
algorithm segments the microcalcification, but due to the definition of the slope in
Equation (5.31), it does so in an adaptive manner: Hill climbing is independent of
the local intensity, and it is also independent of local statistics. The hill-climbing
algorithm has no external parameters except the maximum length of the probing ray
and is therefore excellently suited for fully unsupervised segmentation.

An interesting filter in the context of the detection of suspicious breast masses
is the iris filter,19 which is based on the same idea of enhancing image areas to
which the gradient field converges: that is, uphill, when the image is interpreted as an
elevation landscape. To implement the iris filter, a number of probing lines of equal
length R start radially at an arbitrary pixel at x0,y0. For each pixel along these lines,
the convergence angle � is determined as the angle between the gradient direction
and the direction of the line. If the gradient exists (i.e., is nonzero), cos � therefore
indicates the degree of convergence, because cos � is close to unity when the gradient
points toward x0,y0 and close to zero when the gradient is perpendicular to the probing
line. The degree of convergence for a given point i on probing line k is defined as

Ci,k(x0,y0) =
∑Qi

Q=Q0
cos �[G(Qi ) � 0]

Q0 Qi
(5.33)

where the expression [G(Qi) � 0] assumes the value 1 if a gradient G at pixel Qi exists
(i.e., is nonzero) and 0 otherwise. For each probing line, the maximum convergence
Ck(x0,y0) is determined as the maximum of all Ci, k of a probing line k. The final
output value of the iris filter at x0,y0 is the average of all Ck(x0,y0). A variant of the



P1: OTA/XYZ P2: ABC
c05 JWBS035-Haidekker August 26, 2010 7:58 Printer Name: Yet to Come

168 ADAPTIVE FILTERING

iris filter was proposed by Varela et al.39 where the convergence determination on
each probing ray starts at a minimum distance Rmin from the central point x0,y0 rather
than at the center point itself, which reduces noise influence and therefore improves
the contrast of suspicious masses. The iris filter was followed by segmentation with a
histogram-dependent adaptive threshold and subsequent feature classification. Final
evaluation was done using a neural network. The iris filter is a powerful enhancement
function for convex shapes with increasing intensity toward the center. However, the
iris filter requires an additional segmentation step, as opposed to the hill-climbing
algorithm, which implicitly segments the area.

Ultrasound imaging is another modality where adaptive filters have been shown to
be a powerful tool in image enhancement. Ultrasound images are generally affected
by a random texture of relatively large scale, which has been described as intensity-
and location-dependent: The noise level increases with the overall signal intensity, and
lateral (but not axial) speckle size increases with depth.26 One example where a locally
adaptive minimum mean-square filter as introduced in Section 5.1 was used to reduce
variations within adjoining regions (blood region and myocardial region in the heart)
was presented by Nillesen et al.25 Noise reduction was performed with an adaptive
filter similar to the filter described in Equation (5.3) where the filter strength was
controlled locally by the degree of homogeneity, defined as �2/� (i.e., the intensity
variance divided by the mean intensity). Application of this filter strongly reduced
the echo level overlap between blood and myocardium, thus improving segmentation
results.

A different adaptive filter, adaptive lightening and darkening, was found to be a
core step in the segmentation of tissue affected by periventricular leukomalacia in
the neonatal brain.35 Once again, ultrasound noise speckles obscured the difference
between normal and diseased tissue. Adaptive lightening is defined as increasing
the intensity value of a pixel by 1 when the intensity of both pixels of a diagonally
opposite pixel pair are higher than the central pixel. In this context, there are four pixel
pairs (horizontal, vertical, and two diagonal neighbor pairs), but the horizontal pixel
pair is not considered, probably because of the anisotropic nature of the speckles.
Conversely, adaptive darkening is defined as decreasing the intensity value by 1 when
both pixel intensities of the same pixel pairs are lower than the intensity of the central
pixel. Since diseased tissue is brighter (more echogenic) than healthy tissue, bright-
ening is applied to image areas above a certain threshold, and darkening is applied
to areas below a different and lower threshold. In the transition zone in between the
thresholds, weaker darkening is applied. The result of this filter is a form of texture
smoothing, but in a directed manner. Within-region contrast is reduced, while at the
same time the overall intensity of diseased tissue is raised and the overall intensity of
healthy tissue is lowered. Final segmentation took place by means of active contours.

With the goal of providing the radiologist with a subjectively adjustable speckle
suppression filter, Thakur and Anand36 proposed a filter termed the gray-level co-
occurrence matrix-based adaptive speckle filter. The idea is based on region growing,
where region growth and region smoothing are based on second-order statistical pa-
rameters: the local mean intensity � and the local intensity variance �2. The noise
variance is assumed to scale with the intensity (i.e., �2 ∝ �). This assumption allows
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use of the ratio �2/� as a measure of homogeneity. The co-occurrence matrix pro-
vides several texture descriptors, such as the local contrast and the inverse difference
moment9 (see Section 8.2). The adaptive speckle filter is based on these texture pa-
rameters, where, starting from a square window, the region is shrunk and areas of high
contrast and low inverse difference moment (i.e., probably containing discontinuities)
are excluded from the subsequent region-growing step. In the next step, regions are
grown along homogeneous areas with low contrast and high inverse difference mo-
ment, and these regions are smoothed using mean-value computation. Depending on
various filter settings, the ultrasound image can be freed almost completely of speckle
noise while the contrast of critical regions is preserved.

Various other methods of adaptive filtering exist in different contexts. For exam-
ple, an improved thresholding algorithm for three-dimentional micro-CT images of
trabecular bone has been presented.8 In this approach, the core of the segmentation
was performed using a three-dimentional Sobel operator on a smoothed version of
the original image volume. A hysteresis threshold provided an edge map. A local
threshold map was formed to include or exclude specific edge voxels to provide a
smooth edge contour. Examples for the application of the anisotropic diffusion fil-
ter (Section 5.1) were given in a review article.43 In this study, the superiority of
the anisotropic diffusion filter as a processing step in the segmentation of the brain
cortex surface in MR images was shown. Finally, active contours (“snakes”; see
Chapter 6) are frequently employed to parametrize the contour of a feature. Even the
snake algorithm can be made adaptive by employing a local modified trimmed mean
noise-reduction step in the vicinity of a snake vertex. In addition, for the specific
application of snakes in ultrasound images, where edges have a relatively low slope,
the gradient force usually employed is replaced by a ramp integration force to steer
the snake toward the edge.10

Adaptive filters have become part of the fundamental image processing toolbox.
A selection of adaptive filtering, image enhancement, and segmentation algorithms
was presented in this chapter. As computers become more powerful, more com-
plex adaptive image processing algorithms are likely to be developed. In the future,
adaptive filtering will probably be combined more and more often with other tech-
niques. Examples include frequency-domain adaptive filters,21 the combination of
wavelet decomposition with adaptive thresholding for ultrasound speckle reduction,16

or adaptive wavelet filtering techniques for speckle reduction in optical coherence
tomography images.2 Finally, the combination of adaptive filters with artificial in-
telligence methods is a subject of active research.29 There are three major artifi-
cial intelligence techniques that are suitable to improving adaptive filtering: fuzzy
logic, neural networks, and evolutionary computation. With fuzzy logic, a more
human-vision-based approach to characterizing image areas as dark or bright, as
having an edge or being smooth, or to characterize properties of different textures
is possible. One recent example is the combination of the adaptive median filter
with fuzzy logic to reduce heavy shot noise in MR images.15 Neural networks are
frequently employed when a closed-form description of classifiers is not possible.
A training image set is used to train the network, and the network is then to some
extent capable of applying the learned criteria to new images. With evolutionary
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computation, optimization problems (such as image enhancement) can be performed
using genetic algorithms. One recent example is a genetic algorithm attempt at ultra-
sound speckle reduction.24 Genetic algorithms are search algorithms with a variable
parameter space and a fitness function. The parameter space (the “genetic represen-
tation”) can be randomly mutated and its effect on the fitness function observed. The
simulation of evolutionary processes can be highly detailed with mutation, selection,
breeding, crossover inheritance, and other phenomena.
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6
DEFORMABLE MODELS
AND ACTIVE CONTOURS

In simple terms, two-dimensional deformable models (two-dimensional closed-
contour deformable models are also called snakes) can be thought of as the numerical
modeling of rubber bands subjected to image-dependent external forces. Deformable
models are used in image processing to delineate and segment features interactively.
The most interesting property of deformable models is their closed shape, even if
image features are disturbed by noise. The outline of an artery in an ultrasound
image, for example, may be composed of a series of disjoint ellipse segments after
gradient computation and thresholding. An active contour, locking onto the gradient,
will form a closed contour, thus allowing easy quantification, such as diameter and
area computation. Another key feature is the ability of a deformable contour to adapt
when the underlying image changes. In the analysis of time-varying image sequences
(e.g., the beating heart or blood vessels dilating with blood pressure), active contours
can be used for rapid determination of time-dependent parameters.

Active contours exist in two and three dimensions. A two-dimensional active
contour can be compared with a rubber band that tends to contract on its own but
locks onto image features as if slipped over an irregular, prismatic object. A three-
dimensional active contour is an elastic balloon that encloses a surface and gets drawn
to the surface contour. Imagine a thick rubber band such as an O-ring. Normally, it
assumes a circular shape of a certain diameter. If stretched or bent (compressed)
and then released again, it returns to its original shape. Two forces in equilibrium,
the stretching and bending force, control this behavior. Let us first imagine that
the rubber band is composed of a large number of infinitesimal springs that are
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connected in sequence at nodes. Each node can move freely. The nodes are at rest in
a force equilibrium between the spring forces of the springs at each side. If the spring
constants are the same over the length of the rubber band, the nodes try to position
themselves at an equal distance. Furthermore, the application of an external force
to stretch the rubber band introduces energy. Let us denote the path s of the rubber
band in a two-dimensional case as s(p) = (sx (p), sy(p)) such that p = 0 marks the
start and p = 1 marks the end of the path, irrespective of its length. In this case, the
first derivative of the path, ∂s/∂p, is proportional to the length and, through Hooke’s
law, to the stretching force of each spring element. We can formulate an expres-
sion akin to a potential energy term that describes the energy needed to stretch the
rubber band:

Estretch =
∫ 1

0
�(p)

∣∣∣∣ ∂s

∂p

∣∣∣∣
2

dp (6.1)

The constant �, which may be variable over the length p of the rubber band, is
analogous to Hooke’s constant in springs. Integration takes place over all infinitesimal
spring elements, that is, in our definition from p = 0 to p = 1. The idealized rubber
band, under the influence of stretching forces only and without external forces, would
contract to a point.

In a similar manner, the springs can be bent, and a force needs to be applied to bend
the springs, which would otherwise have a natural tendency to relax into a straight
shape. Furthermore, the stiffness against bending causes the rubber band not to have
kinks and sharp edges. The bending force is proportional to the second derivative of
the path, ∂2s/∂p2. Similar to Equation (6.1), we can formulate a bending energy:

Ebend =
∫ 1

0
�(p)

∣∣∣∣ ∂
2s

∂p2

∣∣∣∣
2

dp (6.2)

Here the constant � represents the stiffness against bending. The idealized rubber
band, under the influence of bending forces only and without external forces, would
relax to a straight line. The stretching and bending energies are called internal
energies,

Eint = Estretch + Ebend (6.3)

In its natural state, the rubber band would try to minimize the internal energies. If
the rubber band is an O-ring, that is, s(0) = s(1), the two energies come in conflict:
To minimize the stretching energy, the O-ring wants to contract. In this process the
radius becomes smaller and its curvature increases. Therefore, the bending energy
increases. Depending on � and �, there exists a radius where the sum of the two
energies becomes minimal, and this is the equilibrium radius of the O-ring in the
absence of external forces. The implicit regularity constraints force the O-ring into a
circular shape.
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If an external force is applied (e.g., somebody takes the O-ring and pinches it),
its shape would get distorted, to some extent yielding to the externally applied force.
As the rubber band or snake moves to assume its final shape, the energy sum E of
internal and external forces is minimized:

E = Eext + Eint = Eext +
∫ 1

0
�(p)

∣∣∣∣ ∂s

∂p

∣∣∣∣
2

+ �(p)

∣∣∣∣ ∂
2s

∂p2

∣∣∣∣
2

dp → min (6.4)

External image-dependent forces need to be applied to steer the snake toward the
image feature of interest. If we envision the image as an elevation landscape where the
image value corresponds to height, the rubber band has a location-specific potential
energy. Under its own weight and the influence of gravity, the rubber band would try
to slide down the image slopes until held back by stretching forces. In the extreme
case, we can envision the rubber band gliding down a canyon and snapping tight
along the canyon bottom.

How can we create such a canyon? Image features are usually characterized by
their edges, and the most straightforward approach is to use the image gradient, with
a negative sign, as a steering force. Total snake energy is lowered when the snake
descends along the negative gradient. Therefore, the external energy component could
be formulated as

Eext = −G(x,y) � ∇ I (x,y) (6.5)

where ∇ is the gradient operator and G(x,y) is a Gaussian kernel. The convolution �
of the gradient image with a Gaussian smoothing function is important not only to
reduce noise, but also to blur and therefore broaden the edge gradients. This increases
the capture range of the snake (Figure 6.1). Other formulations for the external energy
and additional external energy terms exist and are discussed later in this chapter.

To explain further how a snake gets attracted to an image feature, let us consider
synthetic image where a square feature exists embedded in a noisy background
(Figure 6.2A). As sketched in Figure 6.1, the steep edges are spread by a Gaussian
blurring step (Figure 6.2B) before an edge detector (Sobel operator) provides a
potential energy field that is maximal at the feature edges (Figure 6.2C). To be

FIGURE 6.1 Sketch of an image edge (A) causing an external energy. The edge is shown
in cross section (A). After Gaussian blurring (B) the edge is spread out. Its negative gradient
(C) forms a canyon that attracts the snake by gravity. If the snake is near enough to the canyon
walls, a strong external force exists (gray arrow) that pulls the snake toward the canyon bottom
to lower its potential energy. Outside the canyon, however, the snake experiences no external
forces (thin dashed arrow).
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FIGURE 6.2 Synthetic test image to demonstrate how a snake is attracted to a feature.
The feature of interest is a white square in a noisy background (A). Blurring is necessary to
increase the width of significant edges (B). Edge enhancement (Sobel operator) provides the
image gradient with high values, representing the feature edges (C).

consistent with the notion of minimizing the snake’s total energy, the gradient needs
to be inverted. The feature edges become a potential energy minimum, a deep canyon
into which the snake can slip to minimize its potential energy (Figure 6.3).

Whereas the minimization of the internal energy forces the snake to assume a
smooth shape, inclusion of the external energy term forces the snake to lock onto
image features even if they are not smooth (Figure 6.4). The balance of internal and
external forces, controlled by � and �, determines the final shape and therefore the
extent to which the snake follows an irregular shape or to which it takes a shortcut,
even if the shortcut does not represent the gradient maximum. A medical example for
this behavior in a closed deformable contour model (snake) is shown in Figure 6.5.

For a practical computer implementation, two additional steps are necessary. First,
a solution needs to be found for the problem in Equation (6.4), and second, the
continuous equations, including Equations (6.4) and (6.5), need to be discretized. A
balance-of-forces approach to solving the minimization problem in Equation (6.4)

FIGURE 6.3 Three-dimensional surface rendering of the negative gradient in Figure 6.2C.
This image visualizes the potential energy field of the image. The steep edges of the feature
create an energy valley into which the snake can slip, thus minimizing its total energy.



P1: OTA/XYZ P2: ABC
c06 JWBS035-Haidekker August 27, 2010 11:10 Printer Name: Yet to Come

DEFORMABLE MODELS AND ACTIVE CONTOURS 177

A

C

E F

D

B

FIGURE 6.4 Convergence of a snake around a feature (Figure 6.2). Starting with a user-
selected initial placement (A), the snake starts to contract while most vertices are too far away
from the edge to experience its energy (B). While the snake continues to contract in subsequent
iterations (C, D), some vertices experience the energy-minimum canyon depicted in Figure 6.3
and lock onto the edge. In image E, most vertices are captured in the energy-minimum canyon,
and after a few more iterations, the snake reaches its final shape (F). The internal bending
forces are responsible for the snake to “cut corners.”

leads to the following equation,7 which models the time-dependent motion of the
snake contour s(p):

∂s

∂t
− �

∂2s

∂p2
+ �

∂4s

∂p4
+ ∂Eext

∂p
= 0 (6.6)

When a force equilibrium is reached, the snake motion stops and the term ∂s/∂t
vanishes. Equation (6.6) then simplifies to the solution given by Kass et al.16:

−�
∂2s

∂p2
+ �

∂4s

∂p4
+ ∂Eext

∂p
= 0 (6.7)

In the discrete form, the snake is a polygon with N vertices si, and the path p becomes
the vertex index i with 0 ≤ i � N. It is sometimes helpful to add another vertex sN
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FIGURE 6.5 Application of a deformable contour for the segmentation of the ventricular
space in an MR image slice of the brain (A). The snake tends primarily to follow the external
energies, which are represented by the magnitude in the gradient image (inset B). Note that the
snake uses a weak gradient ridge to take a “shortcut” on the right-hand side, where the bending
energy would get very high. This behavior can be controlled with the parameter �. Image C
shows the slice after the application of a smoothing filter with the snake superimposed. (See
insert for color representation of the figure.)

with the constraint s0 = sN. Equation (6.7) can now be discretized by using finite
differences, which leads to a discrete balance-of-forces formulation:

�i (si − si−1) − �i+1(si+1 − si ) + �i−1(si−2 − 2si−1 + si )
− 2�i (si−1 − 2si + si+1) + �i+1(si − 2si+1 + si+2) + Fi = 0

(6.8)

Here Fi is the external force term at each node i:

Fi = ∇Eext (6.9)

which can also be discretized in each dimension through central differences. Equation
(6.8) is a general representation of n-dimensional active contours for nonconstant
terms � and �. In the two-dimensional case, si becomes (xi,yi) and Fi becomes

Fi =

⎛
⎜⎜⎝

E(xi+1) − E(xi−1)

2� x
E(yi+1) − E(yi−1)

2� y

⎞
⎟⎟⎠ (6.10)

According to Kass et al.,16 the set of equations (6.8) for all N vertex points of the
snake leads to a matrix representation that can be solved in discrete time steps. A very
efficient solution to the discretized problem in (6.8) is the “greedy snake” algorithm,
which is covered in the next section.

Alternatively, a one time-discrete step [Equation (6.6)] can be taken by using a
first-order Euler approximation:

sk+1 = sk + � t

(
�

∂2s

∂p2
− �

∂4s

∂p4
− ∂Eext

∂p

)
(6.11)



P1: OTA/XYZ P2: ABC
c06 JWBS035-Haidekker August 27, 2010 11:10 Printer Name: Yet to Come

DEFORMABLE MODELS AND ACTIVE CONTOURS 179

Modeling the snake through the time-dependent balance-of-forces approach allows
us to include mass and friction terms, thus giving the snake a more intuitive physical
meaning, particularly when using the snake to segment time-variable shapes. By
adding mass and friction terms, Equation (6.7) generalizes to

m
∂2s

∂t2
+ D

∂s

∂t
− �

∂2s

∂p2
+ �

∂4s

∂p4
+ ∂Eext

∂p
= 0 (6.12)

with m representing the mass of the snake and D its friction or damping. Moreover, the
balance-of-forces approach allows us to consider additional external forces. Examples
include ballooning forces,7 which allow the user to inflate or deflate the snake, and
springs, repulsors, and attractors, which make it possible to impose local forces on
the snake. These elements are normally controlled by user interaction and help steer
the snake toward the desired edge. This feature is particularly helpful when multiple
local energy minima exist, onto which the snake would arbitrarily lock without user
interaction. The presence of multiple minima can be seen clearly in Figure 6.5B,
where the outer boundary of the corpus callosum provides a less intense, yet still
dominant edge for the snake to snap onto.

While several related approaches to deformable models exist—for example, ge-
ometric deformable models that use closed-term functions to describe curves6,19 or
a curve description that uses finite elements9—this chapter focuses on the paramet-
ric models introduced above because of their relatively simple implementation and
widespread use in biomedical imaging.

There are two main uses for snakes. First, the snake contour can be used to
segment an object. Second, the snake vertices serve as parametrization of the fea-
ture segmented. One important representation is the Fourier parametrization of the
snake.27 The snake contour s(p) along a path parameter p can be described by a set
of orthonormal coefficients following

s(p) =
[

x(p)

y(p)

]
=
[

a0

c0

]
+

∞∑
k=1

[
ak bk

ck dk

][
cos 2�kp

sin 2�kp

]
(6.13)

The Fourier coefficients can be computed from snake vertices xi and yi through

a0 = 1

N

N−1∑
i=0

xi

ak = 1

N

N−1∑
i=0

xi cos 2�ik k � 0

bk = 1

N

N−1∑
i=0

xi sin 2�ik

(6.14)

with b0 = 0 and the coefficients ck and dk computed with the same equations but
using yi instead of xi. The coefficients a0 and c0 are the x- and y-coordinates of the
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snake centroid, and the coefficients a1 through d1 provide information on the size
and orientation of the shape. Higher-order coefficients provide information on shape
irregularities at different scales. The Fourier coefficients facilitate shape identification
with shape templates and comparison of shapes by means of the cross-correlation
function. The use of Fourier descriptors to describe a shape is covered in more detail
in Section 9.5.

6.1. TWO-DIMENSIONAL ACTIVE CONTOURS (SNAKES)

6.1.1. Greedy Snake Algorithm

Probably the most widely used implementation of a snake is the greedy snake algo-
rithm introduced by Williams and Shah.34 Some investigators noted stability problems
with the original numerical implementation by Kass et al.16 and presented alternative
approaches to improve numerical stability and to reduce the tendency of snake ver-
tices to cluster around strong edges.1,7,34 Williams and Shah devised a particularly
attractive implementation, which is not based on the time-dependent representation
of the snake forces [Equation (6.6)] but, rather, uses the energy formulation [Equa-
tion (6.4)] directly.

In the numerical model, a snake is represented by N + 1 vertices (sometimes
called snaxels for snake pixels) vk = (xk, yk), 0 ≤ k ≤ N. Furthermore, the additional
condition v0 = vN turns the snake into a closed contour. The internal energies
[Equations (6.1) and (6.2)] can be discretized by finite differences. One possible
representation of the stretching energy is

Estretch =
N∑

i=1

|vi − vi−1|2 =
N∑

i=1

[
(xi − xi−1)2 + (yi − yi−1)2] (6.15)

However, this representation tends strongly to shrink the curve and creates the ten-
dency for the vertices to cluster together. A better approach is the computation of
a continuity energy that assumes its minimum when the vertices are most evenly
spaced, as described by

Econtin =
N∑

i=1

(
D̄ −|vi −vi−1|

)2 =
N∑

i=1

[
D̄ −

√
(xi − xi−1)2 + (yi − yi−1)2

]2
(6.16)

D̄ = 1

N

N∑
i=1

|vi − vi−1| = 1

N

N∑
i=1

√
(xi − xi−1)2 + (yi − yi−1)2 (6.17)

Equation (6.17) describes the average distance between adjoining vertices, and Equa-
tion (6.16) computes the total continuity energy as the total squared deviation from
the average distance. Therefore, the continuity energy creates a tendency for the
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snake to space its vertices evenly. This is of importance, because the next energy
term, the curvature energy, relies on evenly spaced vertices. The curvature energy
can be described through

Ecurv =
N−1∑
i=0

[
xi − xi−1√

(xi − xi−1)2 + (yi − yi−1)2
− xi+1 − xi√

(xi+1 − xi )2 + (yi+1 − yi )2

]2

+
[

yi − yi−1√
(xi − xi−1)2 + (yi − yi−1)2

− yi+1 − yi√
(xi+1 − xi )2 + (yi+1 − yi )2

]2

(6.18)

In this formulation, the curvature is the second derivative of the curve implemented
with finite differences that are normalized by the distance between correspond-
ing vertices. Other formulations exist, such as the nonnormalized version of Equ-
ation (6.18),

Ecurv =
N−1∑
i=0

|vi−1 − 2vi + vi+1|2

=
N−1∑
i=0

[
(xi+1 − 2xi + xi−1)2 + (yi+1 − 2yi + yi−1)2

]
(6.19)

but they may have numerical disadvantages such as not being rotationally invariant.
The image energy is represented by the smoothed gradient [Equation (6.5)], where

the gradient image IG (x,y) is precomputed as demonstrated in Figure 6.2 by applying
a gradient operator (such as the Sobel operator) preceded or followed by Gaussian
smoothing. The corresponding discrete energy term is therefore

Eext = −
N−1∑
i=0

IG(xi , yi ) (6.20)

and the total snake energy may be obtained by adding the continuity, curvature,
and external energy terms in Equations (6.17), (6.18), and (6.20). The crucial el-
ement of the greedy snake algorithm is the iterative search for energy minima in
the neighborhood of each vertex. For this purpose, the energy terms are not added
yet. For each vertex i in succession, the energy components in Equations (6.17),
(6.18), and (6.20) are computed separately for each pixel j of a m × m neighbor-
hood of the vertex. Each individual energy matrix is then normalized to fall into the
range 0 to 1:

E ′
j = E j − Emin

Emax − Emin
(6.21)
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where Emax and Emin are the highest and lowest values of the corresponding energy
in the m × m neighborhood matrix. A weighted sum of all normalized energies is
computed,

E0 = m2

min
j=1

(
�i E ′

cont, j + �i E ′
curv, j + �i E ′

ext, j

)
(6.22)

and the neighborhood position with the minimum energy E0 is determined. The
vertex is moved immediately to the pixel associated with the lowest energy. The next
vertex is examined and displaced in the same fashion until all vertices have been
examined and displaced once in each iteration. The exception is vertex v0, which is
examined and displaced twice. The reason for processing v0 twice is the asymmetric
behavior of the algorithm with respect to the curvature where vertex vi − 1 has already
been displaced, whereas vi + 1 has not. The algorithm stops after a preset number
of iterations or after the snake converges (i.e., no displacement takes place over one
full iteration). The search process for one vertex is illustrated in Figure 6.6. The
neighborhood in this example is m = 3, and all energy terms in the neighborhood are
computed individually before the weighted sum is computed through Equation (6.22).
In the example of Figure 6.6, the energy minimum E0 is assumed to be found below
and to the left of the pixel, leading to a displacement of (−1,1).

The weight parameters �, �, and � can be made adaptive. In this case, each
vertex is assigned one individual value �i, �i, and � i. Initially, all weight values are
initialized to the same value. Williams and Shah propose using �i = �i = 1.0 for all
i, and � i = 1.2 for all I, and adapting � during the iterative process. In each iteration,
� is set to 0 for any vertex i that meets two conditions34: (1) the curvature exceeds
a predetermined threshold value (i.e., the curve strongly bends at this vertex), and
(2) the gradient magnitude must exceed a predetermined gradient threshold (i.e., a
strong edge exists at the position of this vertex).

A disadvantage of the Williams–Shah algorithm is the local normalization of the
image forces [Equation (6.21)]. As in local histogram equalization, this step tends to
amplify small local gradients and noise. For this reason, a normalization threshold

∆x = -1 0 +1

∆y = -1

0

1

vi

vi-1
vi+1E0

FIGURE 6.6 Search neighborhood of size 3 × 3 for the minimum energy for vertex vi. In
this example, the minimum sum of energies is found at the pixel below and to the left of the
current vertex position, and the vertex is therefore displaced by (−1,1).
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is proposed34 whereby the denominator in Equation (6.21) cannot drop below ap-
proximately 2% of the gradient image’s dynamic range. Despite this threshold, local
gradients have an unproportionally high influence on the snake.

Variations of the greedy snake algorithm exist. For example, the tendency to
contract a snake that uses Equation (6.15) for the first-order internal energy can be
useful. The initial shape of such a snake would be user-selected to be larger than the
image feature of interest, and the snake would shrink until it locks onto the edges
of the feature. The continuity term is still necessary to maintain equidistant vertices.
The greedy algorithm by Williams and Shah has the tendency to move the entire
snake by the same displacement as the first vertex, v0, in homogeneous regions.
Also, the curvature energy term creates an additional tendency of the snake to
shrink, since the curvature energy is lowest when the vertex is displaced toward the
center of the snake. Finally, the greedy algorithm by Williams and Shah reacts in an
unpredictable manner if parameters �, �, and � are adjusted interactively during the
iteration. A more robust approach is described in Algorithm 6.1. For this algorithm,
it is assumed that a function to calculate the total snake energy exists:

Esnake =
N−1∑
i=0

[�Estretch(vi ) + �Ecurv(vi ) + � Eext(vi ) + �Econt(vi )] (6.23)

The function would require the gradient image and the snake vertex coordinates as
parameters to be able to compute the energies. In Algorithm 6.1, this function would
be supplied as compute energy (sx,sy,GRIM), where sx and sy are the arrays
containing the vertex coordinates and GRIM is the gradient image, computed through
Equation (6.5). The algorithm further differs from the Williams and Shah algorithm,
because it computes all displacements beforehand on the undisplaced snake. Only
after all displacements are known are they applied to the snake.

Further modifications and improvements are possible. The energy formulation
allows for easy implementation of additional constraint energies. Ballooning forces
could be represented in Equation (6.15) with a variable weight factor that can assume
positive and negative values. If the weight factor is positive, the energy diminishes
as the snake shrinks in overall length, thus inducing a tendency to deflate the snake
contour. Conversely, if the weight factor is negative, the energy increases as the snake
shrinks in overall length and therefore exerts an inflating force. In Algorithm 6.1, this
feature can be implemented simply by allowing � to assume negative values as well
as positive. In addition, repulsor and attractor points can be placed interactively to
help steer the snake. If Q attractors and R repulsors exist with the coordinates xa,k, ya,k

and xr,k, yr,k, respectively, the constraint energy computed in the following equation
can be added to the total energy term [Equation (6.23)]:

Econst = 	1

Q−1∑
k=0

{
N−1∑
i=0

[
(xa,k − xi )

2 + (ya,k − yi )
2]n
}

+ 	2

R−1∑
k=0

{
N−1∑
i=0

1[
(xr,k − xi )2 + (yr,k − yi )2

]n
} (6.24)
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set ngh=1; // Choose a suitable neighborhood size
set m = SQR(2*ngh+1); // number of pixels in square neighborhood
set alpha=1, beta=1, gamma=1.2, delta=1; // weight parameters
set N = 50; // number of snake vertices
allocate sx[N]; // Allocate N vertices with x...
allocate sy[N]; // ... and y
allocate dx[N]; // We also need storage for the displacements with x...
allocate dy[N]; // ...and y
allocate e field[m]; // energies in vertex neighborhood
allocate GRIM(xmax,ymax); // the GRadient IMage

// Prepare the gradient image by convolution

GRIM = convolve (Gauss(xmax,ymax), sobel(im,xmax,ymax));

// Iterations: Repeat snake algorithm while at least one vertex is displaced
itercnt=0;
do

for (i=0 while i�N increment i=i+1) do // Examine all vertices by test-displacing them
x0 = sx[i]; y0 = sy[i]; // Save present vertex position
k=0;
for (y=-ngh while y�=ngh increment y=y+1) do

for (x=-ngh while x�=ngh increment x=x+1) do
sx[i]=x0+x; sy[i]=y0+y; // test-displacement
e field[k] = compute energy (sx,sy,GRIM);
k = k+1;

endfor;
endfor;

E0 = e field[0]; k=0;
for (y=-ngh while y�=ngh increment y=y+1) do // Search the

for (x=-ngh while x�=ngh increment x=x+1) do // neighborhood
if (E0 � e field[k]) then

E0 = e field[k];
deltax=x; deltay=y; // displacement

endif
k = k+1;

endfor;
endfor;
dx[i]=deltax; dy[i]=deltay; // Store displacement until all vertices examined

endfor; // done examining all vertices

movement=0;
for (i=0 while i�N increment i=i+1) do // Now displace the vertices

if ( (dx[i]!=0) and (dy[i]!=0)) then
sx[i] = sx[i]+dx[i];
sy[i] = sy[i]+dy[I];
movement = movement+1;

endif;
endfor;
itercnt = itercnt+1;

while ((itercnt�100) and (movement�0));

delete sx; delete sy;
delete dx; delete dy;
delete e field;
delete GRIM;

Algorithm 6.1 Modified greedy snake algorithm. In this algorithm, the neighbor-
hoods for all vertices are examined before any vertex is displaced. Only after all dis-
placements are known are the displacements applied and the iterations are repeated
until convergence is achieved or until a preset number of iterations is exceeded. At
the end, the algorithm contains the new shape of the snake in the arrays sx and sy.
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FIGURE 6.7 The snake is pulled into the high-bending zone by two attractors (green dots).
(See insert for color representation of the figure.)

where the first summation term represents the forces of the Q attractors on each
of the N vertex points (with weight factor 	1), and the second summation term
represents the forces of the R repulsors on each of the N vertex points (with weight
factor 	2). The exponent n may be used to choose a decay of the attractor and
repulsor forces with 1/r or 1/r2 decay, respectively. Care should be taken with the
repulsor terms when a repulsor is in close proximity to a vertex. In this case, the
repulsive force may grow exceedingly high. For this reason, the summation terms
of the repulsors are often capped: for example, not to exceed unity. The resulting
profile gives it a volcanolike top, which is the reason that repulsors are often termed
volcanoes.16 It is possible to provide individual strength terms for each attractor
and repulsor. However, each user-selectable parameter makes the algorithm more
complex to control with increased user interaction and therefore creates a more
subjective interpretation of the image. The application of attractors is demonstrated
in Figure 6.7, where the snake in Figure 6.5B is helped to reach the narrow area
of high bending energy with two closely spaced attractors, placed interactively by
the user.

Increasing the search neighborhood of each vertex allows the greedy snake to
“see” edges from a larger distance at the expense of computational efficiency. One
possibility of increasing computational efficiency is to use rectangular neighborhoods
with the dominant length perpendicular to the snake path. In addition, a larger amount
of blurring broadens the edges and therefore increases the capture range. However,
more blurring also removes details. A solution for this dilemma is multilevel blurring.
The snake starts its search on a severely blurred image and switches to a less blurred
gradient image upon convergence. Multilevel blurring may be a powerful strategy
with modest additional computational effort, because the levels of blurring can be
computed iteratively before applying the snake algorithm.

6.1.2. Balance-of-Forces Approach

The formulation of the balance-of-forces equation of a snake [Equation (6.6)] will
be referred to as the force implementation, as opposed to the greedy or energy
implementation based on Equation (6.4). The central governing equation for one
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iteration is Equation (6.11). The discrete velocity of the snake contour (related to the
steepness of the negative force gradient) can be described by

v(t) = �
∂2s

∂p2
− �

∂4s

∂p4
− ∂Eext

∂p
(6.25)

where v(t) has two components in the two-dimensional case. The internal forces can
be approximated through central differences [Equation (6.26) for the x-direction and
an analogous equation for the y-direction]:

∂2x

∂p2

∣∣∣∣
i

≈ xi−1 − 2xi + xi+1

∂4x

∂p4

∣∣∣∣
i

≈ xi−2 − 4xi−1 + 6xi − 4xi+1 + xi+2

(6.26)

The external force is represented simply by the central difference of the gradient
image. The weighted sum of external and internal forces, multiplied by a small � t,
constitutes the displacement of the vertex. The displacement may be a floating-point
number, and a displacement generally does not move a vertex from one grid point
to another, making interpolation necessary. Yet this algorithm can be made very
efficient. The factors in Equation (6.26), combined with either constant or adaptive
� and �, are

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�i−1

−(�i + 2�i−1 + 2�i )

�i + �i+1 + �i−1 + 4�i + �i+1

−(�i+1 + 2�i + 2�i+1)

�i+1

(6.27)

It can be seen that the factors can be arranged for all vertices in matrix form, yielding
a pentadiagonal matrix A, which for nonadaptive � and � is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c d e 0 0 · · · 0 0 0 a b
b c d e 0 · · · 0 0 0 0 a
a b c d e · · · 0 0 0 0 0
0 a b c d · · · 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 · · · a b c d e
e 0 0 0 0 · · · 0 a b c d
d e 0 0 0 · · · 0 0 a b c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.28)

with the coefficients derived from Equation (6.27) as a = e = �, b = d = −� − 4�,
and c = 2� + 6�. This matrix needs to be combined with the parameter � , added to
each element of the main diagonal (effectively using c = 2� + 6� + � ), and inverted
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to yield A−1
� . Let X and Y be the vectors of the snake’s x and y coordinates and Fx

and Fy the external force field. Then the snake position can be iterated from step k to
step k + 1 through

Xk+1 = A−1
� (� Xk + 
 Fx )

Y k+1 = A−1
� (�Y k + 
 Fy)

(6.29)

Note that the computation of the matrix A−1
� can be done beforehand if �, �, and �

are constant, so that the matrix inversion does not enter the iterative loop. The new
parameter 
 may be used to fine-tune the balance of image forces, although generally
it is possible to choose 
 = 1. The two directional gradients of the image energy may
be precomputed as well. Therefore, each iteration takes little computational effort.

On the other hand, the force formulation tends to be numerically unstable. The
second-order term is responsible for the shrinking of the snake. The fourth-order
term that represents the bending rigidity is extremely noise-sensitive and tends to
cause time-variable ripples in the snake. In practice, the performance of the snake
does not deteriorate if � = 0. Another critical issue is the choice of the time step 
 .
Small 
 cause more stable behavior but slower convergence. Large 
 may cause a
vertex to overshoot the edge and either start oscillations or a vertex getting attracted
by a neighboring edge. The choice of a suitable set of parameters is much more
critical in the force formulation than in the greedy snake formulation. This critical
behavior of the force formulation is possibly one reason for the popularity of the
greedy snake algorithm. Nonetheless, the force formulation is necessary for snakes
that simulate physical behavior, that is, snakes with defined mass and friction, and
snakes that are subjected to spring forces as additional constraint forces. However,
careful implementation of the numerical methods becomes very important.

6.1.3. Gradient Vector Flow

In the context of the greedy snake algorithm, multilevel blurring was mentioned as
one method to increase the capture range of the snake. Another powerful method to
increase the capture range and to provide an external force field that stabilizes the
behavior of the snake is to diffuse the edge image. Xu and Prince35 propose a gradient
vector flow field, computed from the edge image through

∂u

∂t
= �∇2u −

(
u − d f

dx

)
(∇ f )2

∂v

∂t
= �∇2v −

(
v − d f

dy

)
(∇ f )2

(6.30)

where u and v are the forces in the x and y directions, respectively, f is the edge image,
obtained, for example, by applying the Sobel operator, and � is a normalization
factor that determines the amount of smoothing. Equation (6.30) can be discretized
by using the convolution-based discrete Laplacian operator (Section 2.3) for ∇2u
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and ∇2v, first-order central differences to obtain df /dx and df /dy, and the squared
result of the Sobel operator applied on f to obtain (∇f )2. By using a first-order Euler
approximation, u and v can be computed iteratively with a time step � t:

uk+1 = uk + � t

[
�∇2uk −

(
uk − d f

dx

)
(∇ f )2

]

vk+1 = vk + � t

[
�∇2vk −

(
vk − d f

dy

)
(∇ f )2

] (6.31)

The gradient fields (∇f )2, df /dx, and df /dy can be computed outside the iteration
loop. The gradient vector flow field can be computed before the application of the
snake algorithm and used directly for the forces fx and fy in Equation (6.29). Assume
that two convolution-based operators, acting on an image I(x,y), Laplace(I) and
Sobel(I), are available. A variant, NSobel(I), computes the edge image but
ensures that all values are normalized to lie in the range 0 to 1. Furthermore, the
directional differences diff x (I) and diff y (I) are defined as pointwise
central differences

diffx (x,y) = I (x + 1, y) − I (x − 1, y)

2
(6.32)

diff y(x,y) = I (x, y + 1) − I (x, y − 1)

2
(6.33)

With these prerequisites, the gradient vector flow can be computed using Algo-
rithm 6.2.

Algorithm 6.2 shows slow convergence, and a large number of iterations need to
be performed to provide a reasonable spread of the edges. More efficient implemen-
tations are possible, primarily by using multigrid techniques. On a 256 × 256 image,
Algorithm 6.2 takes on the order of tens of seconds to converge. Even with an efficient
implementation, several seconds of computation time are required. Numerical stabil-
ity depends critically on the selection of a small enough � t, which in turn depends
on �. If the grid space is assumed to be unity, � t should be smaller than 1/4�.35 In
practical applications, even smaller values were necessary to prevent diverging be-
havior, and the condition � t � 0.2513/(� + 0.1774) was determined experimentally.
Therefore, � t should be selected to be a safe margin less than 0.2513/(� + 0.1774)
in the range 0.1 ≤ � ≤ 0.4. Convergence can easily be monitored by displaying 	
over the progression of the time-stepping loop. Furthermore, it is critically impor-
tant that the edge image be normalized to the value range of 0 to 1; otherwise, the
algorithm will not converge.

Figures 6.8 and 6.9 demonstrate the superior capture range of the gradient vector
field compared with a blurred edge image. It can be seen in Figure 6.8B that almost the
entire interior of the feature has nonzero forces, whereas the interior of a conventional
blurred edge image [Equation (6.5)] does not exhibit any forces in most of the interior
space (Figure 6.9B). This behavior has two consequences. In a regular gradient image,
the snake is placed outside the feature and shrinks until it locks onto the edge. When
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set mu=0.2; // Regularization parameter; higher mu, more smoothing.
set deltat=0.5; // Time step size; large values cause instable behavior
set iter=500; // number of time-stepping iterations
allocate GRIM(xmax,ymax); // the GRadient of the primary IMage
allocate FX(xmax,ymax); // the image of directional derivatives in x
allocate FY(xmax,ymax); // the image of directional derivatives in y
allocate FSQR(xmax,ymax); // the image of nondirectional squared derivatives
allocate TMPX(xmax,ymax); // temporary storage for the U increment
allocate TMPY(xmax,ymax); // temporary storage for the V increment
allocate U(xmax,ymax); // output: force field in x-direction
allocate V(xmax,ymax); // output: force field in y-direction

// Prepare the gradients of the gradient image
GRIM = NSobel(IM,xmax,ymax); // edge image, normalized to range 0...1
FSQR = SQR(Sobel(GRIM,xmax,ymax)); // pixel-by-pixel squared
FX = diff x (GRIM,xmax,ymax); // directional derivative in x
FY = diff y (GRIM,xmax,ymax); // directional derivative in y
U = FX; V = FY; // initialization of U and V

// Iterations: Repeat the diffusion time step sufficiently often to spread the edges

for (i=0 while i�iter increment i++)

TMPX = Laplace(U);

TMPY = Laplace(V);

for (y=0 while y�ymax increment y=y+1)

for (x=0 while x�xmax increment x=x+1)

TMPX(x,y) = mu*TMPX(x,y) - (U(x,y) - FX(x,y))*FSQR(x,y);

TMPY(x,y) = mu*TMPY(x,y) - (V(x,y) - FY(x,y))*FSQR(x,y);

endfor;

endfor;

epsilon = MAX(TMPX,TMPY); // largest value of the increments
for (y=0 while y�ymax increment y=y+1)

for (x=0 while x�xmax increment x=x+1)

U(x,y) = U(x,y) +deltat*TMPX(x,y) ;

V(x,y) = V(x,y) +deltat*TMPX(x,y) ;

endfor;

endfor;

endfor; // Done iterating - U and V are ready

delete (GRIM, FX, FY, FSQR, TMPX, TMPY);

Algorithm 6.2 Gradient vector flow. This algorithm computes the gradient vector
flow field of an input image. The input image isIM(x,y) and is subjected to the Sobel
operator immediately to obtain the edge image. From the edge image, the directional
and nondirectional gradients FX, FY, and FSQR are computed. A temporary image
per direction is needed to hold the Laplacian images (TMPX and TMPY). The output
of the algorithm are the forces U and V. Instead of stepping through the specified
number of iterations, the variable epsilon may be used as a criterion of convergence
and iteration stopped once epsilon drops below a predetermined threshold.
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FIGURE 6.8 Gradient vector flow used as the external image force for snakes. In part A, a
simple image feature with concave regions is presented. Part B shows the magnitude of the
gradient vector flow field with the forces superimposed as small arrows. Parts C and D are
gray-scale representations of the forces acting in the x and y directions, respectively (U and V
in Algorithm 6.2), where medium gray represents no force, dark shades represent forces in the
negative direction (left and up, respectively), and light shades represent forces in the positive
direction (right and down, respectively).

exposed to the gradient vector flow forces, the initial snake size is widely irrelevant35

because forces exist in most of the image area that pull the snake toward the edge.
Even a small snake placed inside the shape will be exposed to forces that expand it
until it reaches the edge. Furthermore, a snake exposed to gradient vector flow forces
is much more likely to follow a concave shape than a snake exposed to a simple
gradient, because a snake that tries to stretch across the concave section with gradient
vector flow is exposed to forces that pull it inside the concave region.

Although gradient vector flow is most commonly used in conjunction with the
force formulation, it is possible to implement gradient vector flow forces in a greedy
algorithm as well. In this case, the force vectors can be used to fill an n × n neigh-
borhood with energy values that represent the external energy in the greedy search
algorithm (Figure 6.10). The gradient vector flow imposes a force F on vertex vi of
the snake. Each of the eight neighborhood pixels is connected to the vertex through
a pixel vector p.
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FIGURE 6.9 Conventional computation of the gradient field for the snake algorithm using
Equation (6.5). (A) shows the edge image of Figure 6.8A, blurred twice by a Gaussian kernel
with � = 1.6 and a 11 × 11 neighborhood. In (B), the gradient forces are shown by magnitude
(gray shade) and in vector form (arrows). The capture range (i.e., the area surrounding the edge
in which the forces are nonzero) is considerably smaller than the gradient vector flow forces
in Figure 6.8B.

The corresponding energy at the pixel with displacement � x and � y can therefore
be computed through

Ek(� x,� y) = − |F| |pk | cos( − �k) (6.34)

where the index k covers all eight neighbor pixels, and the displacement (� x,� y) that
minimizes the energy of the vertex in its neighborhood is chosen.

Δx = -1 0 +1

Δy = -1

0

+1

vi

E1,-1

F

P

Φ

ϕ

FIGURE 6.10 The search neighborhood of a greedy snake vertex can be filled with energy
values based on gradient vector flow by multiplying the force vector F by the potential pixel
displacement vector p.
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6.1.4. Topologically Adaptive Snakes

An extension of the snake model was presented by McInerney and Terzopoulos.21 Up
to this point, snakes were assumed to be the topological equivalent of a circle. This
restrictive assumption can be overcome if a snake is allowed to split or if two intersect-
ing snakes are allowed to merge. McInerney and Terzopoulos propose projecting the
snake onto a simplicial cell decomposition of the image surface. In two-dimensional
space, this decomposition can be realized by subdividing the plane into equal squares,
then subdividing each square into two triangles (Freudenthal triangularization), as
shown in Figure 6.11. In the presence of a single snake, each triangle will therefore
be either inside or outside the snake, or it will intersect the snake. Triangles that
intersect the snake can be thought of as boundary cells, and the boundary cells ap-
proximate the snake contour. By using cells as a shape approximation, a snake can
either be found to be self-intersecting or two snakes can be found to share a series
of consecutive cells. In these cases, the single snake is split or the two snakes are
merged, respectively. This process implies that the snake implementation needs the
ability to handle multiple snakes and to allocate and delete snakes dynamically.

Figure 6.12 demonstrates the evolution of a topology-adaptive snake. The object
is a CT cross section of a spine phantom, of which the edge image is shown in
Figure 6.11. Initially, two snakes that have been placed near the vertebral processes
start to expand, seeking the edges (part A). The two snakes intersect below the spinal
canal and merge. The resulting single snake self-intersects and splits off a small snake
that encloses the spinal canal (part B). The major snake expands along the vertebral
cortex until it self-intersects near the apex of the vertebra and splits off a third snake
that encloses the vertebral spongiosa (part C).

FIGURE 6.11 Edge image of a CT slice of a spine phantom with a grid of triangular cells
superimposed.
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FIGURE 6.12 Evolution of topology-adaptive snakes along the edges of a CT image of a
spine phantom. (A) Two snakes start expanding and seeking the phantom edges. The snakes
will intersect below the spinal channel and merge. (B) Above the spinal channel, the snake
self-intersects and splits off a snake enclosing the spinal canal. (C) The dominant snake self-
intersects again near the apex of the vertebra and splits off a third snake that encloses the
spongy bone area, resulting in a total of three snakes.

6.2. THREE-DIMENSIONAL ACTIVE CONTOURS

The snake, a one-dimensional curve that encloses a two-dimensional image fea-
ture, was discussed in the previous sections. The governing equations can easily
be extended to three dimensions. For example, the balance of forces described in
Equation (6.7) would be discretized through finite differences in the x, y, and z di-
rections. The external force (image force) would be represented by a gradient in
three directions, broadened by three-dimensional Gaussian blur or three-dimensional
gradient vector flow. The vertices (which now are allowed to move in three spatial
directions toward their energy minimum) constitute a closed surface that surrounds a
three-dimensional image feature, much like a balloon that contracts and shrink-wraps
the object. An example of this process is shown in Figure 6.13, where a balloonlike
active surface is dragged toward the edge of the object and shrink-wraps around it,
closely following the brain gyri and sulci in the last iteration.

Specialized formulations, such as greedy formulation, ballooning forces, and gra-
dient vector flow, can also readily be adapted for three dimensions. However, the
added dimension drastically increases computation time. In addition, interactive ini-
tial placement of the shape becomes more difficult. One alternative is the placement
of a series of snakes, slice by slice, around the object. The individual snakes can then
be joined to form a closed surface and be subjected to the iterative minimization of
the snake energy.

A detailed formulation of a three-dimensional active surface, termed a three-
dimensional active net, was provided by Takanashi et al.30 A mesh, initially rectan-
gular, is discretized into vertices v(p,q) = (x(p,q), y(p,q), z(p,q)). Here p and q are
parameters of the surface with 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. Index variables i and j can be
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FIGURE 6.13 Surface rendering of a human brain from MR data (A) after segmentation of
the brain and deepening of the sulci by thresholding. A balloon-line active surface is shown
step by step to shrink around the segmented brain and follow the gradient forces into the sulci
(B–F). Particularly in image F, the active surface can be seen to take some “shortcuts” to
minimize its bending energy. (See insert for color representation of the figure.)

used to enumerate the vertices. For a mesh with (n + 1) m vertices, we can therefore
write

v(p,q) = v(ik, jl) = (xi j ,yi j ,zi j ) 0 ≤ i ≤ n, 0 ≤ j ≤ m − 1

k = 1

n
l = 1

m − 1

(6.35)

Each vertex with the exception of the boundary vertices is connected with four
neighboring vertices. To enclose a convex, three-dimensional shape, the mesh is now
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deformed into an ellipsoid in two steps. First, a tube surface is created when matching
vertices along the left and right borders are connected with the boundary condition
v(n, jl) = v(0, jl). Additional mesh connections are created between diagonally
opposing vertices by duplicating the mesh outside the range 0 ≤ i ≤ n and with the
additional boundary condition

v(r,−s) = v(r̄ , s)

v(r, m + s) = v(r̄ , m − s)

r̄ =
{

r + nk/2 if (r + nk/2) ≤ m
r − nk/2 if (r + nk/2) � m

(6.36)

where n is required to be an even number. In the second step, the cylinder is distorted
to form an ellipsoid, and the vertices of the upper and lower end rings of the tube
collapse into a single vertex. The resulting mesh is a three-dimensional network
rather than a balloon. Energy minimization takes place analogously to the snake
through

Enet =
n∑

i=0

m−1∑
j=0

Eint [v(i, j)] + Eimage [v(i, j)] + Econst [v(i, j)] (6.37)

Eint is the sum of the stretching energy (computed through the first derivative
toward the two index variables) and the bending energy (computed through the
second derivative toward the two index variables). Econst is the energy contribu-
tion from constraints such as attractors and repulsors. Since this energy depends
strongly on the user interface, Econst = 0 can be assumed in most cases. The im-
age energy, Eimage, is the absolute image intensity in this formulation as opposed
to the gradient magnitude in the snake formulations. In the numerical implemen-
tation, the minimization of Enet gives rise to three independent Euler–Lagrange
differential equations that cover the partial derivatives of all three spatial comp-
onents:
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∂p2
+ ∂2x
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(6.38)

�, �, and � are user-selectable weight factors with a function analogous to
the snake [Equation (6.23)]. Equation (6.38) can readily be discretized with finite
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differences. For the x component of Equation (6.38), the following finite differences
can be applied:

∂2x

∂p2
= xi−1, j − 2xi,j + xi+1, j

k2

∂2x

∂q2
= xi−1, j − 2xi,j + xi+1, j

l2

∂2x

∂p4
= xi−2, j − 4xi−1, j + 6xi j − 4xi+1, j + xi+2, j

k4

∂4x

∂p2∂q2
= xi−1, j−1 −2xi,j−1 + xi+1, j−1 − 2xi−1, j + 4xi,j −2xi+1, j + xi−1, j+1 − 2xi,j+1 + xi+1, j+1

k2l2

∂4x

∂q4
= xi,j−2 − 4xi,j−1 + 6xi,j − 4xi,j+1 + xi,j+2

l4

(6.39)

Equation (6.39) lists one spatial component only; the partial derivatives of the y and
z components can be obtained in an analogous manner. For the gradient of the image
energies, the finite difference scheme

∂ Eimage

∂x
= |I (x + 1, y, z) − I (x − 1, y, z)| (6.40)

or a Sobel-like difference operator may be used. Again, the image derivatives toward
the spatial directions y and z are similar. The vertex coordinates (x,y,z) are not
necessarily integer coordinates, so it will generally be required to perform some form
of interpolation to obtain the image values I. By substituting Equations (6.39) and
(6.40) into Equation (6.38) and moving the image energy term to the right-hand
side, the system of Equations (6.38) for each vertex can be written in matrix form,
analogous to Equation (6.25) and its discretization. The matrix system assumes the
form

Ax = (D + E + F)x = b (6.41)

A contains the discretization elements and the weight factors � and �, b contains the
image energy terms, and x contains the vector of vertices. A can be decomposed into
the diagonal elements D, the lower left triangle matrix E, and the upper right trian-
gle matrix F. With this decomposition, an iterative time-stepping scheme becomes
possible:

� T +1 = D−1
[
b − (E + F)xT

]
xT +1 = xT + �(� T +1 − xT )

(6.42)

Application of Equation (6.42) advances the position vector x from time step T to
time step T + 1. The additional parameter � improves convergence behavior through
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underrelaxation and should be chosen to be � � 1. Like snakes, the active net tends
to lock onto local minima, so the final convergence result will depend on the initial
placement of the ellipse and on the choice of the weight parameters �, �, and � .

Because of the high computational complexity, several modified approaches have
been introduced. For example, Cohen and Cohen8 suggested the use of finite-element
modeling to reach the energy minimum in shorter time. Bro-Nielsen proposed a
model of active cubes.4 The term active cubes points at the fundamental difference
between a three-dimensional active surface and the active cubes model: The active
cube model simulates a filled solid. Active cubes combine ideas from snakes and
active nets. Energy minimization is performed, where the total energy consists of the
internal energy (bending and stretching energy) and the external energy. Contrary to
the principle used in snakes, but similar to the active nets,30 direct image intensity data
are used for the external forces instead of a gradient, and the cubes deform toward
highest image intensities. Active cubes are well suited to simulate and parametrize
elastic deformation (e.g., knee bending or jaw movement).

6.3. LIVE-WIRE TECHNIQUES

The live wire is a highly interactive segmentation technique, aimed at aiding the user
delineate an object boundary. The user selects a start point on the boundary. As the
user hovers over the image with the mouse, the live wire tries to connect both points
with an energy-minimizing path. The live wire tends to snap onto image edges. If the
user is satisfied with the live-wire selection, the endpoint under consideration can be
fixed and becomes the start point for the next segment. A live wire can be used to
parametrize a path (e.g., a sulcus in a brain tomography image) or a closed contour.
In the latter case it is possible to convert the live wire into a snake and continue with
a snake algorithm for further processing.

In the context of live wires, the energy function is referred to as the cost function.
The principle of minimizing an energy or cost functional are the same. Apart from
the higher level of user interaction, there are two more differences between live
wires and snakes. First, the live wire is a path between start and end vertices with
a global cost minimum. This is a consequence of the second difference, that is, the
formulation of a live wire as a graph. Cost functions have even more parameters and
user-definable features than the energy functions of a snake, therefore, a training step
generally precedes the actual segmentation. The training step automatically adjusts
numerous parameters to minimize the cost function for the specific type of edge
to be segmented. An example is given in Figure 6.14, where a live wire was used
to segment features in a chest CT image. First, the live wire was trained to detect
the relatively low-contrast edge of the vertebral cortex (part A). The associated cost
function (part C) shows low-cost values (dark shades) predominantly in the vertebral
region and in regions of similar contrast. When trained for the high-contrast edge of
the lung (B), the cost function looks different (D). In this case, edges of very high
contrast show the lowest cost (darkest shades). When the live wire is trained for the
lung edge, the vertebral edge actually repels the live wire. The ability to get trained
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FIGURE 6.14 Examples of live wires (white curves beginning with a circle and ending
in an arrow) following the cortex of a vertebra (A) and the lung boundary (C) in chest CT
images. Images B and D show the corresponding cost functions after training, where dark
shades indicate low-cost pixel boundaries, and light shades indicate high-cost boundaries.
Interpreted as valleys, the low-cost boundaries attract the live wire, which tries to follow the
lowest-cost path.

for a specific type of edge contrast and width combined with the flexibility to set an
arbitrary number of waypoints (intermediate end vertices that become the start vertex
of a new segment) make the live wire a very flexible interactive tool for boundary
delineating and segmentation.

The live-wire model was introduced by Falcāo et al.12 The key to this model is the
interpretation of each boundary between two pixels of an image as a graph arc and
each corner of a pixel as a graph node. This configuration is sketched in Figure 6.15,
which shows one pixel and its four nodes, which are shared with the neighboring
pixels. Two nodes are labeled A and B, and a boundary exists that connects A and
B. The boundary is actually a vector, and the boundaries A → B and B → A are not
identical. Every boundary (i.e., each arc of the graph) gets assigned a set of features
that will later be used to compute the cost. The process takes place in two steps.
First, a cost image (Figure 6.14C and D) is computed that stores the cost for each
boundary. This cost image may later be modified by the training process. Second,
from the user-selected start pixel P(x,y), the optimum path is computed for each pixel
in the image, resulting in two two-dimensional arrays, the cumulative cost for the
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A B

PIXEL

FIGURE 6.15 Interpretation of the image as a graph. Each pixel corner is a node (circle),
and each pixel boundary that connects two nodes is a directed arc.

optimum path from the start pixel to each pixel in the image, and a two-dimensional
array of directions indicating the immediate neighbor along the optimum path. The
algorithm to obtain the arrays that contain the optimum path is explained below.

With the mouse hovering over any arbitrary pixel, the shortest path to the start
pixel P(x,y) can be found extremely fast by following the negative directions in the
two-dimensional array of directions. This path can be displayed in real time, thus
providing the main interactive element: The user can observe—in real time—where
the active contour lies with respect to the image features and can add control points
if necessary.

To understand the live wire algorithm and many related algorithms, two issues
need to be considered: how to relate image features to cost, and how efficiently to
find the lowest-cost path between two pixels of the image. To relate image features
to cost, Falcāo et al. proposed simultaneous use of eight feature functions12 that are
related to either image intensity or image gradients. Assume a directed boundary b
between pixels p and q, where p lies on the left side of b and q on the right side.
Feature functions f 1 and f 2 are simply the image intensity values of pixels p and
q, respectively. Feature function f 3 is the magnitude of the difference between f 1

and f 2 (i.e., the absolute value of the gradient across the boundary b). Assuming the
neighborhood definitions of the boundary b in Figure 6.16, feature functions f 4, f 5,
and f 6 emerge as slightly different formulations of local gradients:

f4 = |I (r ) + I (p) + I (t) − I (s) − I (q) − I (u)|
3

f5 = |0.25I (r ) + 0.5I (p) + 0.25I (t) − 0.25I (s) − 0.5I (q) − 0.25I (u)|

f6 = |I (p) − I (s)| + |I (r ) − I (q)| + |I (p) − I (u)| + |I (t) − I (q)|
4

(6.43)
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FIGURE 6.16 Definition of the pixel neighborhood of a boundary b.

Whereas f 3 through f 6 are scalar values, f 7 is an oriented magnitude, defined as +f 6 if
the direction of the gradient remains consistent with respect to the boundary direction
and −f 6 otherwise. An alternative and maybe more intuitive formulation would be
the definition of f 5 without the magnitude function, that is,

f7 = 0.25I (r ) + 0.5I (p) + 0.25I (t) − 0.25I (s) − 0.5I (q) − 0.25I (u) (6.44)

The idea behind feature function f 7 is to force the live wire to stay on the same
side of a slope. For example, if the gradient is positive (when walking along the
boundary in the direction of the arrow, image values go uphill from left to right), the
cost associated with f 7 is low. If the direction of the gradient changes, and the hill
(positive gradient) is on the left side, the cost will go up.

Finally, feature function f 8 is the projected distance from a previously accepted
live wire in a different image slice or in a previous image frame. Function f 8 exists
only if (1) the user analyzes a stack of images (either a three-dimensional image or
a sequence of images evolving over time), (2) the evolution of the feature between
successive slices is small, and (3) one initial slice has already been segmented.

The values of the feature functions are now converted to costs by means of cost
functions, also called feature transforms. Six feature transforms, c1(f ) through c6(f )
have been proposed,12 and the final cost of a boundary b, c(b), is the weighted sum
of all six cost functions, in its most general form,

c(b) =
∑6

i=1

∑8

j=1
wi j ci ( f j (b))

∑6

i=1

∑8

j=1
wi j

(6.45)
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Equation (6.45) reflects the notion that any feature function can be used with any
feature transform. The weight factors wij make it possible to emphasize one feature
function over others.

The individual feature transforms are defined by the following mapping func-
tions. Mapping function c1 linearly maps the interval [l1,h1] of the feature value
to the interval [0,1]. Values of f above h1 are clamped to 1, and values below
l1 are clamped to 0. The inverse linear mapping function c2 can be defined as
c2 = 1 − c1. It is possible, however, to use a different interval [l2,h2]. Mapping
function c3 is a Gaussian function with the constant mean value f 0 and the stan-
dard deviation �. Mapping function c4 is an inverted Gaussian function, for example
c4 = 1 − c3, where mean and standard deviation may differ from c3. Finally, map-
ping functions c5 and c6 are clamped hyperbolic functions with c6 = 1 − c5 and c5

defined as

c5( f ) =

⎧⎪⎨
⎪⎩

1 for f ≤ l3 + a2/2

(a2/2)( f − l3) for l3 + a2/2 ≤ f ≤ h3

0 for f � h3

(6.46)

Again, c5 and c6 do not necessarily use the same threshold values l3 and h3. Here a is
a variable parameter that represents the focus of the hyperbola from its asymptotes,
l3 is the distance of the vertical asymptote from the origin, and h3 is the upper cutoff
value. Each pair of mapping functions provides a different emphasis. The Gaussian
functions c3 and c4 provide high and low costs, respectively, for values near the center
of the interval. The hyperbolic functions c5 and c6 provide a strong cost emphasis for
the extrema of the interval.

The flexibility introduced with eight feature functions and six mapping func-
tions is impractical, with each mapping function providing at least two variable
parameters. Imagine a user interface where each parameter is represented by a
user-modifiable slider. In the extreme case, this user interface would present the
user with 14 parameters for the individual feature transforms and 48 weight pa-
rameters. In practical implementations, only a few combinations of feature func-
tions, mapping functions, and their respective parameters will be used. Furthermore,
some parameters can be assigned or refined through the training process, which is
described below.

The next step in the live wire implementation is the algorithm to determine the
lowest-cost path from the start pixel P(x,y) to each pixel of the image. The problem
of finding the shortest path in a graph has been given much attention in the literature,
and in conjunction with live wire implementations, Dijkstra’s algorithm11 is most
frequently used. Most fundamental to the optimum path search algorithm is the
property of optimum subpaths. If an optimum path from node P to node Q goes over
node S, the path from P to S must also be the optimum path. Taken to the pixel level,
the path from the starting point P(x,y) to any arbitrary endpoint Q(x,y) in the image
plane consists of hops along the lowest-cost arc out of four possible choices from one
pixel vertex to the next.
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Dijkstra’s algorithm can be implemented with the following steps after it is pro-
vided with a starting vertex P.

Step 1. Create a data structure that contains, for each vertex v of the image, a cumu-
lative cost cc(v), a direction for the optimum path to the immediate predecessor
vertex, and a flag that indicates the processing status of vertex v. The direction
may assume the values (U, W, N, E, S), where U stands for undefined. The flag
may assume three values, (U, V, Q), where U stands for unprocessed, V stands for
visited, and Q stands for queued.

Step 2. Initialization: All cumulative cost values in the data structure are set to infinity
(a very high value) except the cumulative cost associated with the starting vertex,
which is set to zero. All status flags are set to U (unprocessed). All directions
associated with the vertices are set to U (undefined).

Step 3. Begin iteration: For vertex P, set its status flag to Q (queued).

Step 4. Iteration: As long as there are queued vertices, repeat steps 5 through 8.

Step 5. From all vertices that are queued, pick the one with the lowest associated
cumulative cost. This is now vertex vi. Change the status flag of vi from Q to V.

Step 6. Examine all four neighbors of vi: Perform steps 7 and 8 for each of the four
neighbors provided that its associated flag has the value U. The neighbor under
consideration is v j .

Step 7. Compute a temporary cost cT = cc(vi) + cost(vj → vi), which is the cumula-
tive cost of vertex vi plus the cost of reaching vi from vj.

Step 8. If cT � cc(vj), (a) update the cost cc(vj) = cT and set the direction of vj to
point to vi, and (b) set the status flag of vj to Q.

Step 9. The iteration ends when no vertices are flagged with a Q (i.e., the queue is
empty).

At the end of Dijkstra’s algorithm, a cost structure exists for each pixel in the
image. The cost functions described earlier come into play in step 7, where the cost
of one arc (represented by the function cost vj → vi) is added to the cumulative
cost of an existing path. There are modifications of the algorithm above which make
use of ordered lists to reduce the time needed to search for the queued vertex with the
lowest cumulative cost. The algorithm described above is a good starting point and
is sufficiently efficient for most applications, considering that the algorithm is only
executed every time a new starting point is selected. Once the algorithm has finished,
the lowest-cost path from any arbitrary point in the plane to the start point P is found
simply by following the directions stored with each vertex. This is an extremely fast
process which allows updating the path in real time.

Another variation of the algorithm uses the pixel centers rather than the corners as
nodes. In essence, this moves the grid by 1

2 pixel in each direction and uses an arc that
goes from pixel center to pixel center. Here the feature functions need to be adjusted
to reflect the fact that an arc no longer coincides with a pixel boundary. Using the
definitions in Figure 6.17, feature functions f 1 and f 2 could be represented by the
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FIGURE 6.17 Definition of a pixel neighborhood for a center-to-center arc.

averaged intensities in pixels r and s, and t and u, respectively. Feature functions
f 3, f 4, and f 5 are now identical and are the magnitude of the difference between
f 1 and f 2. Feature function f 6 now becomes the average of the absolute difference
between the intensities of r and u, and t and s, respectively, but it is doubtful whether
this feature function would cause a measurably different behavior of the live wire
from f 3. Finally, feature function f 6 is the simple difference between f 1 and f 2,
so that the gradient direction can be considered. With the function f 8 unchanged,
the number of feature functions is now reduced to five. This variation reduces the
level of complexity at the expense of some of the ability to follow extremely thin
structures.

The last aspect of the live wire technique to be considered is the training process.
Ideally, training is based on a set of user-selected points that represent typical feature
properties. Once a segment of the live wire is established and the user is satisfied with
the behavior of the live wire, the system may be retrained to include a larger number
of points, and ideally, also directions. Unfortunately, for the large number of freely
selectable parameters, no straightforward training scheme exists. For a single image
feature and a single cost function, a least-squares approach to determine suitable
parameters from several user-selected points may be used, but the complexity of this
approach increases unacceptably with additional feature and cost functions. Arguably
the most important mapping functions are the Gaussian mapping functions, because
they can be trained to minimize the cost for any gradient strength. An example was
given in Figure 6.14, where the bone–tissue interface shows a lower gradient than the
lung–tissue interface. In regard to the Gaussian mapping function, the cost minimum
(the mean of the inverted Gaussian function c4) would match the gradient strength.
If the boundary is very homogeneous, a small standard deviation may be chosen. In
fact, the live wire shows very good detection of features with intermediate contrast
when only the Gaussian mapping function is used and the following training steps
are taken.
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Step 1. The user selects four to eight points along one representative boundary. For
each point, the values of feature function f 3 are collected, and their mean and
standard deviation is computed. These values are used as initial trained values f 0

and � for mapping function c4.

Step 2. Based on the values of step 1, a live wire is drawn. Once the user accepts the
course of the live wire, mean and standard deviation for feature function f 3 for all
pixels along the present live wire are computed and used as new values for f 0 and �.

Step 3. Optionally, the user may, in a separate training step, select a number of points
that do not represent the boundary. For these points the minimum and maximum
values are computed and used as threshold values in the hyperbolic cost functions
c5 and c6. By adding contributions from these cost functions, points that are an
unlikely part of the contour sought make the path more expensive and therefore
repel the live wire.

An alternative feature mapping technique was proposed by Marx and Brown.20

Here, two equally weighted inverse Gaussian mapping functions (c4) are used in
conjunction with feature functions f 1 and f 2. During the training step, values for f 1

and f 2 are sampled, and the mean and standard deviation values are used as values
f 0 and � in the Gaussian mapping functions. Clearly, the effort to experiment with
several different combinations of feature functions and mapping functions pays off
when an optimum combination for a specific application is found.

The specific feature function f 8 was mentioned briefly. This function may be used
when advancing frame by frame in an image sequence or when using the live wire to
move through a three-dimensional image stack. Feature function f 8 makes the path
more expensive when it deviates more strongly from the path chosen in the previous
frame or slice. A more advanced technique was proposed by Marx and Brown.20 For
progression through image slices or successive image frames, the closed-contour live
wire is converted into a snake. For this purpose, snake vertices are sampled along
the live wire with a curvature-dependent density. The snake is allowed to converge
on the next slice and gets converted back into a live wire by performing a training
run along the snake contour. A related technique for the progression from slice to
slice was presented by Salah et al.24 In this variant, the live wire control points (the
start points of the segments) are reexamined upon progression to the next slice. To
advance to the next slice, the local neighborhood of the control points is examined
for the cost minimum according to the cost function selected, and the control points
are then moved to the new minimum. This method that can be implemented with an
unsupervised algorithm. After moving the control points, the live wire searches the
optimum path between the control points by using conventional methods. The live
wire concept can also be extended into three-dimensional by a different technique,
proposed by Hamarneh et al.14 The basic idea is to use seed points in different slices
to create orthogonal live wires. Points along the mesh of live wires generated by this
method can be sorted to generate meaningful additional (and automatically generated
live wires) that eventually provide the contour of the three-dimensional object being
segmented.
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Live wires are designed to find the globally optimal path. However, it is possible
to combine the path cost term with an internal cost term, analogous to the internal
energy of a snake.15 The inclusion of an internal energy term requires extension of
Dijkstra’s optimum path search algorithm to three dimensions. With the well-known
weight parameters � and � for stretching and curvature, the modified live wire, termed
a G-wire, tends to follow a smoother path and can be prevented from digressing to
neighboring similar features.

6.4. BIOMEDICAL EXAMPLES

The primary use of active contours in biomedical imaging is user-guided segmenta-
tion. Active contour models help improving accuracy and repeatability of the seg-
mentation results.2 In addition, user-guided segmentation techniques such as snakes
and active contours speed up the segmentation process, since the user specifies only
a few points instead of tracing the entire contour.

After their inception, snakes were almost instantly used in medical image segmen-
tation and registration. Examples include the contour extraction and segmentation of
neuronal dendrites in electron micrographs,5 the extraction of brain structures from
MR images,3,29 or the detection of blood–wall interfaces in CT, MR, and ultrasound
images.26 In most cases, application of the active contour model is one step in a
sequence of image processing steps. The live-wire technique is used in a similar
manner. Examples of studies that use medical images include the determination of
the thickness of femoral cartilage in MR images of osteoarthritic patients,28 the de-
termination of cartilage volume in MR images,13 and the segmentation of the left
heart ventricle in electron-beam CT images.31

One interesting extension is the inclusion of image texture in the energy function.18

In this example, texture is represented by the local variance. Therefore, the image
becomes two-valued with an intensity and a local variance value assigned to each
pixel. The rate of change, to be used in the potential energy function is then determined
from both values. A boundary that attracts the snake may therefore be an intensity
transition or a transition of the local variance. According to Lorigo et al.,18 the two-
valued method was more stable and less prone to leaking the contour into adjacent
areas than was a conventional intensity-based snake.

Another example of using image information beyond the intensity gradient is a
study where coronary arteries were segmented in three-dimensional CT images.36

In this study, the crucial preprocessing step was the computation of a maximum a
posteriori (MAP) estimation of the probability of each pixel belonging to a class
of either blood, myocardium, or lung. The generation of a MAP image yielded a
presegmented image where blood and myocardium areas already belonged to different
classes. Active contours were used to separate the coronary arteries from other
blood-filled regions, such as the aorta or heart chambers. The presegmentation step
allowed the active contour algorithm to perform particularly robust final segmentation
and subsequent three-dimensional reconstruction of the coronary arteries from two-
dimensional active contours.
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FIGURE 6.18 External forces to obtain a parametric representation of brain sulci. The initial
active contour is pulled into the sulcus by a normal force F1 that acts on every point of the
active contour (left). A second force, F2, is responsible for keeping the active contour centered
within the sulcus as contour deformation into the sulcus takes place. Force F2 is computed
by determining the center of mass of the brain surface inside a small circle around any point
of the active contour. Two examples are shown (right): a case (a) where the contour is almost
centered and F2 is close to zero, and a hypothetical case (b) where a point outside the sulcus is
pulled back inside by a force caused by the mass of the outer cortical surface lying to the left
of the point. (From ref. 32.)

An area where active contours are widely used is segmentation and mapping of
the brain and brain structures. A three-dimensional active contour model introduced
by Vaillant and Davatzikos32 uses two forces to pull an elastic balloon model into
the sulci (the valleys) of the brain surface. The forces are illustrated in Figure 6.18.
A force F1, acting normal to the active contour, pulls the elastic surface into the
sulcus, while a force F2, determined from the center of mass in a circle around each
point of the contour, ensures that the active contour remains centered with respect to
the sulcus. Such a model can be used for the registration of brain images10 and to
generate projections of the sulcal depth and shape, because the force acting on each
point can be projected back on the initial contour.

Fourier descriptors have also been useful in the segmentation of MRI brain fea-
tures,29 in this case the segmentation of the corpus callosum. Through a training
process, a mean model of the corpus callosum shape was obtained. Biological vari-
ation was analyzed by performing a principal component analysis of the covariance
matrix of the Fourier coefficients, and it was found that the variance becomes very
small after the twelfth eigenvector. Consequently, a flexible model was built from
the first 12 eigenmodes. After training, two steps were applied to segment the corpus
callosum: First, the Hough transform, together with a small set of dominant modes,
was used to find the initial optimum placement of the mean model. Second, elastic
deformation, restricted by the eigenmodes selected, was allowed to determine the
ideal contour of the individual corpus callosum. In an extension, the two-dimensional
model was extended into three-dimensional Fourier models.
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An interesting application for two-dimensional active contours is the improve-
ment in the three-dimensional surface representation of volumetric image features.
Most frequently, biomedical images (primarily, CT and MRI) are acquired with
an anisotropic voxel size; that is, the slice thickness in the z (axial)-direction is
much larger than the in-plane resolution. A typical example would be a CT image
with 0.2 × 0.2 mm pixel size in each slice with a slice thickness of 2 mm. Three-
dimensional reconstructions from such a data set do not look smooth, but jagged,
showing the steps in the z-direction. An example is shown in Figure 6.19, where a seg-
mented lung obtained from a three-dimensional CT image was rendered. Resolution
in the axial direction is about sixfold lower than in-plane resolution. Accordingly, the
three-dimensional surface rendered shows steps and jagged regions. After interpola-
tion, the resulting surface has a smoother appearance and allows better identification
of image details. To obtain an interpolated surface from two-dimensional snakes,
the object is first segmented in each slice by using a conventional snake algorithm.
It is possible to progress from slice to slice by using the snake from the previous
slice as initialization shape, because differences between slices are generally small.
In the next step, new contours are created by interpolating between corresponding
vertices of the existing snakes in the axial direction (Figure 6.20). With very low
computational effort, a smooth surface can be obtained.

FIGURE 6.19 Demonstration of interpolation with active contours. Three-dimensional ren-
derings such as the segmented lung in this example show jaggedness and steps because of the
anisotropic voxel size of most CT and MRI images. Once a parametrized contour is obtained, it
is straightforward to create new vertices by interpolation between slices. The resulting surface
rendering (B) is smoother and allows better focus on the details.
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FIGURE 6.20 Creating new contours through interpolation between slices. In each slice, a
snake (dark lines) is defined by its vertices (black circles). New vertices can be created by
interpolating in the axial direction (gray circles) and by using these vertices to generate new
contours (gray lines).

A similar method has been proposed by Raya and Udupa,22 where an additional
step is introduced: The segmented contour is converted into a gray-scale distance
map with positive values inside the contour and negative values outside the con-
tour. These gray-value slices are then interpolated and converted to binary by de-
tection of zero crossings. A combination of the live-wire technique with this type
of gray-scale interpolation has been used by Schenk et al.25 for the semiautomatic
segmentation and three-dimensional reconstruction of the liver in CT images. A
different approach was pursued by Leventon and Gibson.17 In this approach, two
orthogonal scans are segmented by using surface nets, and the nets are linked and
relaxed. The resulting surface is considerably smoother than the surface of one single
data set.

Because of its closeness to physical models, it is possible to use active contours and
active surfaces for the simulation of material elasticity. For example, Bro-Nielsen4

used elastic active cubes to simulate soft tissue deformation caused by movement of
the jaw. Roth et al.23 used a finite-element approach to simulate changes of facial
features under planned cosmetic surgery to be used as a tool for preoperative planning.
One step further ahead, deformable models can be integrated into a neurosurgery
simulation system33 capable of simulating the tissue reaction to cutting, pulling, and
prodding. A further enhancement of the experiment was achieved through three-
dimensional binocular vision and force feedback.

The basic mathematical foundation and computer implementation of deformable
models are well established and in widespread use. Nonetheless, the field of de-
formable models is very extensive and under active research. Three-dimensional
active surfaces are of particular interest in the biomedical community for the shape
analysis of three-dimensional objects with practical applications in image registration
and the relationship between shape and disease.



P1: OTA/XYZ P2: ABC
c06 JWBS035-Haidekker August 27, 2010 11:10 Printer Name: Yet to Come

REFERENCES 209

REFERENCES

1. Amini AA, Tehrani S, Weymouth TE. Using dynamic programming for minimizing the
energy of active contours in the presence of hard constraints. Proc 2nd Int Conf Comput
Vis 1988; 95–99.

2. Ashton EA, Molinelli L, Totterman S, Parker KJ, VirtualScopics LLC, Rochester NY.
Evaluation of reproducibility for manual and semi-automated feature extraction in CT and
MR images. Proc Int Conf Image Process 2002.

3. Atkins MS, Mackiewich BT. Fully automatic segmentation of the brain in MRI. IEEE
Trans Med Imaging 1998; 17(1):98–107.

4. Bro-Nielsen M. Modelling Elasticity in Solids Using Active Cubes: Application to Simu-
lated Operations. Lecture Notes in Computer Science. New York: Springer-Verlag, 1995:
535.

5. Carlbom I, Terzopoulos D, Harris KM. Computer-assisted registration, segmentation, and
3 D reconstruction from images of neuronal tissue sections. IEEE Trans Med Imaging
1994; 13(2):351–363.
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7
THE HOUGH TRANSFORM

The Hough transform is a tool to detect and quantify shape primitives in images,
particularly in the presence of noise. The Hough transform is a robust tool to extract
features (such as straight edges, circles, or ellipses, but also primitives defined by
polygons) from images and describe them parametrically. The Hough transform
is generally used as one step in a processing chain. First, the image needs to be
segmented such that the edge of the shape of interest becomes a prominent feature.
Following segmentation, the Hough transform serves as a filter for primitives. With
the Hough transform, geometric primitives can be detected and separated from image
noise. Implicitly, the primitives can be quantified (e.g., circle radius and position).
The strength of the Hough transform to find, extract, and quantify shapes lies in the
ability to identify those shapes and features even if the outline is broken, incomplete,
or corrupted by noise in the thresholded image.

The original Hough transform, developed by Paul Hough in 1962,10 was designed
to identify straight lines in images. In 1972 the Hough transform was refined by R.
Duda and P. Hart,4 who introduced the line representation in polar coordinates and
proposed an extension toward ellipses. A further milestone was the generalization by
D. H. Ballard,2 who not only presented a generalization for analytic curves but also
proposed the use of shape templates (see also Merlin and Faber15 for an alternative
generalization).

The idea behind the Hough transform is to transform the shape of interest into its
parameter space. For example, a line in a Cartesian (x,y) coordinate system can be
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described by the equation

y = mx + n (7.1)

with the constants m (the slope of the line) and n (the y intercept). Each line is
uniquely characterized by the pair of constants m and n. Therefore, any line can be
represented by a point in a coordinate system of m and n. Conversely, any point (x,y)
is associated with a set of values for m and n that satisfy Equation (7.1), which can
be rewritten as

m = y

x
− 1

x
n (7.2)

which, for constant x and y, is another line equation in a (m,n) coordinate system.
Therefore, each point (x,y) is represented by a line in (m,n)-space. It can be seen from
Equation (7.2) that the line equation (7.1) is unsuitable, since values in (m,n)-space
become undefined for vertical lines. In the next section, a different line equation will
be presented, but the principle of the Hough transform can best be explained with the
basic equation (7.1).

When a set of points (yk,xk) that lie on a line described by y = Mx + N is
transformed into (m,n)-space (called Hough space or parameter space), each point is
represented by a line in Hough space:

m = yk

xk
− 1

xk
n (7.3)

All lines meet in one point (M,N), as shown in Figure 7.1. To extract the feature
(in this section, the line), a second step is necessary. In Figure 7.1, only six points of
the gray line are examined. Each point is now transformed into Hough space, and the
traces of the resulting lines are accumulated. Starting with an empty image matrix
(i.e., all elements are zero) in Hough space, the lines that correspond to each point

y

x

m

n

M

N

FIGURE 7.1 Principle of the Hough transform. Individual points in (x,y)-space are repre-
sented by lines in Hough space. If all points lie on a line y = Mx + N , all lines in Hough
space will meet at point (M,N).
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are traced, and the image values along the trace are incremented by 1. This process is
often described as the point (yk,xk) casting a vote in Hough space, and the process of
accumulating votes is common to all varieties of Hough transforms. In the process, the
Hough-space pixel at (M,N) is incremented for each line and therefore accumulates
the most votes. Peak detection would now provide a single point, (M,N), and the
reconstructed equation for the line is y = Mx + N .

7.1. DETECTING LINES AND EDGES WITH THE HOUGH TRANSFORM

To use the Hough transform to extract lines, the equation of a line must be rewritten
to prevent undefined values that occur in Equation (7.2) for vertical lines. Instead of
using slope and intercept, a line can be described by its distance to the origin, � , and
its angle with the x-axis, � (Figure 7.2). With these two parameters, the line is now
described by

x cos � + y sin � = � (7.4)

� and � are related to m and n through

m = −cos �

sin �

n = �

sin �

(7.5)

The corresponding Hough space is two-dimensional, with coordinates � and �. Fol-
lowing the same idea as in Equation (7.3), we can ask what type of trace an arbitrary
point (yk,xk) would create in a coordinate system of � and �. For this purpose we as-
sume x and y to be constant: namely, (xk,yk) for the kth point in any set. We then insert

FIGURE 7.2 Definition of a straight line in polar coordinates [Equation (7.4)]. � is the angle
of the line with the horizontal axis, and � is the minimum distance to the origin.
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(xk,yk) in Equation (7.4), combine the terms with �, and solve for � . The resulting
equation describes a sine function:

� =
√

x2
k + y2

k · sin (� + �) (7.6)

where tan � = xk/yk . The sine function is always centered on � = 0, and its amplitude
and phase shift are identical to the location of the point (yk,xk) in polar coordinates
with an additional 90◦ phase shift.∗

For the accumulating step, an arbitrary angular increment � � with �j = j� � is
chosen, and for each point of interest (yk,xk) the corresponding set of values � (�j) is
computed using Equation (7.4). Since Hough space is discrete, the pixel at (� , �j)
in Hough space is increased for the kth point at each angle � (0 ≤ � � 180◦). Each
point therefore produces a sinusoidal trace in Hough space following Equation (7.6).
The restriction of � to angles below 180◦ is possible because of the symmetry of
Equation (7.4). In the terminology of the Hough transform, the point (yk,xk) casts j
votes for all angles �j in Hough space. An example is given in Figure 7.3. First, an
edge detector extracts the edges of the features (Figure 7.3B). For the actual Hough
transform seen in Figure 7.3C, each white pixel from the edge is selected and Equation
(7.4) is applied 180 times with � increasing from 0◦ to 179◦ at 1◦ intervals. The Hough
transform image is therefore 180 pixels high, and each row corresponds to the angle
� in degrees. The points where multiple sinusoidal traces meet are brighter than other
points. Once the votes for all points (yk,xk) have been accumulated in Hough space,
a peak-finding algorithm or simple thresholding determines the pairs (� , �) with the
highest number of votes, and each of these pairs defines a straight line in Cartesian
space. In the case of Figure 7.3C, the brightest pixel is found at the coordinates
� = 21 and � = 29◦. Application of Equation (7.5) yields the values m = 0.55 and
n = 43 for the equation of the line representing the edge.

The following example illustrates the advantages and challenges of the Hough line
transform. Figure 7.4 shows an x-ray image of a mouse bone together with its edge
image. The edge image was created by applying the Sobel operator, thresholding,
and then superimposing the edge over the Sobel image. As a consequence, the actual
edges are visible as white lines in the Sobel image. These white lines are composed
of the pixels that cast a vote in the Hough transform.

The Hough transform of the edges in Figure 7.4B is shown in Figure 7.5. Two
areas of high votes (two local maxima) become evident. The left local maximum is
well defined, whereas the right maximum is more spread out along a curve. These
areas of local intensity maximum correspond to the upper and lower edges of the
bone, respectively. Since the upper edge follows more closely a straight line, its
local maximum in the Hough transform is more focused. Conversely, the lower edge
is curved. Therefore, its corresponding local maximum is less focused and spread

∗The line Hough transform is closely related to the Radon transform in computed tomography. The
sinogram, the collection of all projections of an object (see Figure 3.13), has the same shape as the line
Hough transform because each x-ray absorbing point of the object at (yk ,xk) creates a sinusoidal trace that
is described by Equation (7.6) in the sinogram—hence its name.
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FIGURE 7.3 Example image to demonstrate the Hough transform. Image A contains a
feature with a dominant diagonal edge. In the first step, the edge is extracted by an edge
detector such as the Sobel operator (B). Each point of image B that lies above a threshold (i.e.,
is considered as belonging to the edge) is allowed to cast a vote for all angles �, and each
point contributes votes along a sinusoidal curve in (� , �) space (C). The traces meet in a single
point, and the coordinates � and � coincide with the distance from the origin and the angle
with the x-axis of the edge in image B. Image C was contrast-enhanced with a gamma function
to improve visibility of the nonmaxima traces.

FIGURE 7.4 X-ray image of a mouse femoral bone (A) and the edges detected (B). Image
B shows the edges as white lines and line segments superimposed over the Sobel image.
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FIGURE 7.5 Hough transform of the edges in Figure 7.4B. Two areas with local intensity
maxima (arrows) become evident. These areas correspond to the upper and lower edge of the
bone. The image has been contrast-enhanced with a gamma function to improve the visibility
of the traces.

over multiple values of � and �. To identify the likely edge candidates, a local
maximum filter needs to be applied next. In this example the filter found two pixels
with an equal number of votes for the right local maximum (the lower, curved edge).
Consequently, the inverse Hough transform contains two closely aligned lines for the
lower edge. The inverse Hough transform superimposed over the original x-ray image
is shown in Figure 7.6. It can be seen that the straight lines generated by the inverse
Hough transform follow the bone outline very closely. The remarkable advantage of
the Hough transform is its ability to detect dominant lines even in the presence of
noise. Noise is amplified by the edge detection operation (Sobel operator). As a
consequence, edges may be fragmented, and fragments of other edges remain in the
image. This is particularly clearly visible in Figure 7.4B, where the knee joint (top
right) contributes numerous pixels above the threshold (i.e., pixels that cast votes in
the Hough transform).

FIGURE 7.6 The inverse Hough transform of the local maxima in Figure 7.5 superimposed
on the original x-ray image. The local maximum for the lower edge was ambiguous (two pixels
of an identical number of votes), and two closely aligned lines emerge.
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One disadvantage of the line Hough transform is that the lines are defined by
two parameters only and therefore extend over the entire image. Additional steps are
necessary to trim the lines. Examples include limiting the lines by the thresholded
version of the original shape, and limiting the lines to a region of interest or by
analyzing intersections of multiple lines. Moreover, the examples in Figures 7.5 and
7.6 demonstrate that local maxima can be ambiguous and the line extraction relies
strongly on a robust local maximum filter.

The basic algorithm for the line Hough transform is presented in Algorithm 7.1.
Each nonzero pixel of the input image is allowed to cast a vote for all possible angles
� over the full 180◦ angle range. For reasons of symmetry, the angles from 180◦

to 360◦ duplicate the votes from 0◦ to 180◦, and computational efficiency can be
increased by restricting the angles to 0◦ to 180◦.

set deltatheta=10; // Choose a suitable � �
set hysize=180/deltatheta; // Hough image Y size
set hxsize = max(xm,ym)*1.4142; // Hough image X size
allocate IH(hxsize,hysize); // Allocate output image

for (y=0 while y�hysize increment y=y+1) do
for (x=0 while x�hxsize increment x=x+1) do

IH(x,y) = 0; // Clear the accumulator to zero
endfor;

endfor;

for (y=0 while y�ym increment y=y+1) do // double loop over the image
for (x=0 while x�xm increment x=x+1) do

if (IM(x,y) � 0) then // consider only nonzero pixels
x1 = x-xm/2;
y1 = y-ym/2; // Coordinate transform: image

center is origin

// Each nonzero pixel is allowed to cast votes over the full range of angles
for (theta=0 while (theta�180) increment

theta=theta+deltatheta)
rho = x1*cos(theta) + y1*sin(theta); // Compute rho
x2 = rho+hxsize/2; // coordinate transform for IH
IH(x2,theta) = IH(x2,theta) + 1; // Accumulate vote

endfor;
endif;

endfor;
endfor;

Algorithm 7.1 Hough transform for lines. The input image IM (size: xm, ym) is
assumed to be thresholded, and each nonzero pixel is allowed to cast votes for angles
theta from 0 to 180◦ with the angular increment of deltatheta. The output image
IH contains the accumulated votes with values of � along the x-axis and values of �
along the y-axis. A typical output image is shown in Figure 7.5.
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Further improvement in the line detection process using the Hough transform is
possible when the direction of the edge is known.17 Further reduction of the angle
range is possible by combining the Hough transform with the edge detector. The
Sobel operator, for example, convolves the original image with two matrices, Gx

and Gy [Equation (2.20)], to emphasize horizontal and vertical edges, respectively.
The convolved images are combined on a pixel-by-pixel basis to provide the edge
magnitude. The two convolved intermediate images contain additional information:
If the pixel value computed by convolution with Gx is larger than the one obtained
by convolution with Gy, the edge is horizontal (more precisely, between −45◦ and
+45◦ from the x-axis), and the range of values for � where the pixel casts a vote
can be restricted to the range 45◦ to −45◦. In the opposite case (convolution with
Gy creates a larger pixel value than convolution with Gx), the range for � can be
restricted to the range 45◦ to 135◦. The votes for each pixel can therefore deviate only
by up to ±45◦ from the dominant edge direction. Further refinement is possible when
the compass or Kirsch edge-detection operators are used (Figure 2.5). To emphasize
edges with compass or Kirsch operators, four convolutions are performed, and the
largest pixel value of the four convolution operations is taken as the edge value.
In addition, the edge orientation is horizontal (−22◦ ≤ � ≤ 22◦), upward diagonal
(23◦ ≤ � ≤ 67◦), vertical (68◦ ≤ � ≤ 112◦), and downward diagonal (113◦ ≤ � ≤
157◦ or −23◦ ≤ � ≤ −68◦) when the maximum pixel value results from convolution
with K1, K2, K3, and K4 [Equation (2.24)], respectively. The vote of each pixel is
therefore limited to an angular horizontal band of 45◦ width in the Hough transform.
Figure 7.7 shows the Hough transform of the edge image in Figure 7.4B with the
limitation of the angle range. The main difference in Figure 7.5 is the restriction that
pixels from the knee region are not allowed to cast votes into the horizontal band
(68◦ ≤ � ≤ 112◦).

There are two advantages of the use of restricted ranges for �. First, the absence
of pixel traces from nondominant edges in the band containing dominant edges
reduces the number of local maxima. Dominant edges are therefore easier to find and

FIGURE 7.7 Hough transform of the edges in Figure 7.4B with angular restriction to ±22◦

from the edge orientation. The angular restriction divides the image into four horizontal
sections, and pixels are not allowed to cast votes into sections that differ by more than ±22.5◦

from their main edge orientation.
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isolate. Second, for each pixel only one-fourth of the original angle range needs to
be computed. Provided that edge detection was required in both cases and that edge
detection and Hough transform can be combined into one operation, computational
efficiency increases markedly.

7.2. DETECTION OF CIRCLES AND ELLIPSES WITH
THE HOUGH TRANSFORM

Many shapes in medical images can be approximated by circles or ellipses. The
principal idea of the Hough transform, the accumulation of votes in parameter space,
can be applied to both circles and ellipses, since both shapes can be described
analytically. A circle is described by three parameters: radius r and the two center
coordinates, xc and yc:

r2 = (x − xc)2 + (y − yc)2 (7.7)

Therefore, the Hough space for circles is three-dimensional. The projection of an
individual pixel (xk,yk) into Hough space is a cone: If the pixel coordinates x and y
in Equation (7.7) are assumed to be fixed with x = xk and y = yk, Equation (7.7) is
satisfied by an infinite set of concentric circles with center (xk,yk). The radius of the
circles increases as the circles are translated along the r-axis (Figure 7.8). If a number
of pixels that lie on a circle in image space are projected into Hough space, the ensuing
cones meet at the point (xc,yc,r). Accumulating votes along the cones (analogous to
the sinusoidal traces in the line transform) will therefore yield a maximum at (xc,yc,r)
that can be used to reconstruct the circle.

FIGURE 7.8 A pixel is projected as a cone in Hough space since a cone satisfies Equation
(7.7) for increasing r. The cone tip rests at (xk,yk) for r = 0. The light gray plane is located at
r = 50, and its intersection with the cone is therefore a circle of radius 50.
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FIGURE 7.9 Detection of the pupil and iris with the Hough transform: (A) the original eye
photo and (B) the edge image obtained by filtering, edge detection, and thresholding. (C) One
plane in Hough space. In this plane (r = 60), the cones from the pupil pixels intersect and
form a local maximum (arrow). The inverse Hough transform of this local maximum leads to
the smaller circle in (D). Although the smaller circle represents the pupil very well, the larger
iris circle is affected by various conflicting edges caused, for example, by the eyelids. As a
result, the circle is smaller than the actual iris. [(A) From http://en.wikipedia.org/wiki/Image:
Eye iris.jpg.]

The circle Hough transform is frequently used to quickly determine the pupil
diameter of the eye. An example is shown in Figure 7.9. In this example, isolation of
the pupil and iris will be attempted. Whereas the pupil is well defined, the iris is partly
occluded by the eyelids. In preparation of the Hough transform, image filtering and
edge detection are necessary. Since edge detection increases the noise component,
the image was first blurred by using a Gaussian convolution filter. Application of the
Sobel edge detector was followed by manual thresholding. The resulting edge image
is shown in Figure 7.9B. The pupil is represented by an almost perfect ring, while
the iris caused multiple edges. Each pixel in Figure 7.9B is projected as a cone in
Hough space. One plane in Hough space, similar to the plane in Figure 7.8, is shown
in Figure 7.9C. In this plane at r = 60, the cones from the pupil pixels intersect and
add up to a clear local maximum (indicated by an arrow). Multiple local maxima
can be found at larger r values, because there are many edges related to the iris.
The eyelids contribute additional edges. Therefore, several significant local maxima
exist at large values of r in Hough space. It is not trivial to isolate the meaningful
maxima, and a simple maximum-finding algorithm as used to generate Figure 7.9
does not necessarily find the pixel that best represents the iris circle. The two local
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maxima that represent pupil and iris were finally subjected to the inverse Hough
transform and yielded two circles. The two circles, superimposed over the original
image of the eye, are shown in Figure 7.9D. In this case, the edge at the left side
of the iris (Figure 7.9A) where light is refracted and causes a dark rim is most
dominant, and the maximum-finding algorithm picked a pixel that represents a circle
that is too small. More sophisticated algorithms and the use of a priori knowledge,
such as the approximate radius, strongly improve the results obtained from Hough
transform-based methods.

An additional validation method would be the comparison of the reconstructed
circles to the original edge image. Image values from the edge image can be averaged
along the reconstructed circles and the average values thresholded to eliminate false
positives. Furthermore, if the gradient information from the edge detection step is
available, the circle detection algorithm can be further improved by using the first
derivative of the circle.2 Consider the parametric form of the circle,

x(�) = r cos �
y(�) = r sin �

(7.8)

where � is the angle of the line connecting the circle’s center with a point (x,y) on
the circle. From Equation (7.8), the gradient follows:

dx

dy
= − sin �

cos �
= − tan � (7.9)

Here 	 = 90◦ − � is the angle of the circle’s tangent. If the angle 	 is available, the
additional constraint reduces each circle of the cone to two points, and the point (x,y)
with known gradient angle 	 is represented by two slanted lines in Hough space.
In practice, however, a larger angular range needs to be considered because of the
discrete nature of the edge detectors. With the Sobel edge detector and the compass
edge detector, the angle range can be reduced to 90◦ and 45◦, respectively. Each
point of the circle therefore casts votes over a cone segment rather than a full cone
in Hough space. The addition of edge information is computationally more efficient
and reduces the number of local maxima in Hough space, thus making the isolation
of meaningful circles easier.

The ellipse needs five parameters to fully describe its position, shape, and rotation.
Most frequently, the equation of an ellipse that is oriented parallel to the x-axis is
found:

(x − xc)2

a2
+ (y − yc)2

b2
= 1 (7.10)

Here a and b are the long and short semiaxes, respectively, and xc and yc the center
coordinates. However, ellipses found in images may have any orientation; therefore,
a rotation of the coordinate system at an angle � must be considered. The general
ellipse equation assumes either the stable polynomial form of Equation (7.11) with
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the eccentricity e = b/a and the coefficients given in Equation (7.12)12 or the polar
form given in Equation (7.13) with the coefficients r and � defined in Equation (7.14).

x2 + y2 − U (x2 − y2) − 2V xy − Rx − Sy − T = 0 (7.11)

e = b

a

U = 1 − e2

1 + e2
cos 2�

V = 1 − e2

1 + e2
sin 2�

R = 2xc(1 − U ) − 2ycV

S = 2yc(1 − U ) − 2xcV

T = 2a2b2

a2 + b2
− xc R

2
− yc S

2

(7.12)

r2 cos (� − �)

a2
+ r2 sin (� − �)

b2
= 1 (7.13)

r2 =
√

(x − xc)2 + (y − yc)2

tan � = x − xc

y − yc

(7.14)

The parameter space is now five-dimensional with the parameters xc, yc, a, b, and
�. This not only puts a heavy load on memory use and computational effort, but
the accumulated votes will start to spread out in this high-dimensional space and
become sparse. It becomes more difficult to detect meaningful local maxima in high-
dimensional spaces with sparse votes. Generally, a straightforward approach as seen
in the line and circle transforms is no longer possible, and more efficient algorithms
are needed.

One early proposal19 involved the detection of majority votes for the ellipse
center only, followed by a search for pixel clusters in the image that satisfied the
ellipse equation. With multipass techniques, the five-dimensional space was broken
down into low-dimensional subspaces: for example, into one two-dimensional space
for (xc,yc), another two-dimensional space for (a,b) and finally, a one-dimensional
space for the orientation �.16 Breaking down the voting process into subspaces, like
spreading out the votes into the five-dimensional parameter space, decreases the
robustness of the algorithm.

Alternatively, it is possible to reduce the high-dimensional space by providing a
one-dimensional space for each parameter. For the ellipse, five independent accumu-
lators would receive the votes for the parameters xc, yc, a, b, and � independently. Each
accumulator provides one or more majority votes for its respective parameter. The
main advantage of this technique, apart from the memory efficiency, is the increased
robustness achieved by concentrating the votes. On the other hand, the solutions are
not unique. If each accumulator provides exactly one maximum, the shape is uniquely
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defined. However, if each accumulator provides multiple maxima, all shapes that are
a possible combination of the maxima are shape candidates. If two ellipses exist in
the image, for example, there will be two maxima in each accumulator. By combining
these parameters, 32 ellipses can be identified as possible solutions. A subsequent
validation step can identify the true shapes out of the candidate pool.

A more advanced approach was presented by Yip et al.22 Under inclusion of the
gradient direction, point pairs on opposite sides of the ellipse are sought. These
point pairs have the same tangent direction and are connected by a line through
the center of the ellipse. Provided that they are members of the ellipse outline,
two of these point pairs are sufficient to compute all five parameters of the ellipse
candidate. The accumulation can therefore be reduced to accumulating the x and y
coordinates of the two point pairs, and ellipse candidates can be extracted from the
histogram of the two-dimensional accumulator array. Similar approaches of reducing
the dimensionality by using edge information and well-designed transformations
were introduced by other groups.1,18,20 These advanced algorithms for extracting
ellipse parameters are valid for circles as well, since the circle is a special case of the
ellipse with a = b = r in Equation (7.10).

7.3. GENERALIZED HOUGH TRANSFORM

The idea of the Hough transform, the accumulation of votes, can be extended to
detect arbitrary (i.e., nonanalytical) shapes.2 For this purpose, the shape template is
decomposed into straight edge sections. In the extreme case, each edge pixel may
represent one edge section. An arbitrary reference point is chosen. A frequent choice
is the centroid of the shape. Next, a vector from the center of each edge section to
the reference point is computed and its length and its angle to the edge direction are
stored in a table. This table is generally referred to as the R-table.

Generation of an R-table and the voting process are illustrated in Figure 7.10. For
a simple sample shape such as the polygon in Figure 7.10, the reference point can
be placed near the polygon’s center. Each edge is connected to the reference point,
resulting in a R-table that contains the vectors v1 through v5.

v1

v2

v2

v3

v5

v4

A B

FIGURE 7.10 Generation of the R-table (A) and voting process for one edge of the shape
(B). To generate the R-table, each edge is connected with the reference point, and each of the
resulting vectors v1 through v5 is entered in the table. For the voting process (B), each edge is
displaced successively by all vectors and a vote for the endpoint coordinates of each vector is
cast. At the end of vector v2, votes from the other edges accumulate.
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FIGURE 7.11 Ultrasound image of a gallbladder. The inset shows the approximate outline,
composed of small line segments. A reference point r is defined, and the lines (four of 14 lines
shown) connecting each edge segment with the reference point are entered in the R-table.

When a shape is analyzed, each edge is displaced by all vectors in the R-table in
sequence. In the example in Figure 7.10B, this process yields four points for each
edge. At each of these points, the accumulator array is incremented. If the shape
indeed matches the template, a majority vote (for the polygon in Figure 7.10, five
votes) is found in the center, and the location of the square is known.

The generalized Hough transform is illustrated further in a more complex example
in Figure 7.11. The example shows an ultrasound image of a gallbladder together
with a line segment approximation of its shape. An arbitrary reference point r is
chosen, and each line segment is connected to point r. In this example, the shape is
approximated by 14 line segments, and 14 vectors would be entered into the R-table.

If a shape exists in the image that matches the template, its reference point would
be reached from any edge point by displacing that point by one of the vectors in the R-
table. This notion leads to the algorithm to accumulate the votes. A two-dimensional
array (the Hough transform image) needs to be provided. Furthermore, an edge image
needs to be provided where each candidate edge is identified: In the simplest case,
each edge is represented by a pixel or a vertex with known x and y coordinates.
Consistent with the notation in previous sections, these would correspond to the
points (xk,yk). Now each edge point or vertex is displaced successively by all of the
vectors in the template’s R-table. The coordinate of the endpoint of the displacement
is incremented by one; thus, votes are accumulated. If a shape matching the template
exists in the image, a majority vote will be found at the coordinate of the reference
point in the Hough transform image. The shape can now be reconstructed by using
the R-table again: Each vector in the R-table is now inverted and points away from
the reference point that was found. At the end of each vector is one edge segment
of the shape template.

From Figure 7.12 it becomes clear that an exact template match is hardly ever
found in medical images. In such a case, the votes do not accumulate in one pixel
of the accumulator array but rather in a blurred region near the ideal reference point,
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FIGURE 7.12 Ultrasound image of Figure 7.11 after segmentation of the gallbladder with
the outline of the segmented shape superimposed over the image. The segmentation makes use
of the nonechogenic property of the gallfluid. Region growing from an arbitrary point inside
the gallbladder area with a low threshold fills the gallbladder area, and the outline is obtained
by applying the Sobel operator.

and strategies must be devised to identify the majority vote. The simplest strategy
is to introduce binning (i.e., the combination of adjoining pixels). The votes would
now fall into a single bin rather than be spread out over neighboring pixels, and
the bin containing a local maximum can be identified. However, binning implies a
trade-off between detection reliability (needs large bins) and exact localization (needs
small bins). Furthermore, selecting bins that are too large may introduce incorrect
detection in any of these ways: detection of false-positive maxima, detection of a
local vote maximum for shapes that only approximate the template, or the joining
of the maxima from closely spaced matching shapes. Clustering techniques, such as
k-means clustering, may provide a suitable alternative to assign spread-out votes to
one cluster. The centroid of a majority cluster would then be used to identify presence
and location of a template-matching shape.

Extensions of the algorithm make it possible to account for shapes that are rotated
and scaled with respect to the template. First the R-table is extended by the template’s
edge direction (angle �1) and the relative orientation of the displacement vector (the
angle between the edge direction and the displacement vector � �). Second, in the
shape under examination, the absolute angle �2 of each edge point is determined.
For each edge point and for each displacement vector in the R-table, the vector
needs to be rotated by �2 − �1 prior to displacing the edge for the vote. Rotating
the vector aligns it with the overall rotation of the shape relative to the orientation
of the template. To obtain the overall rotation angle of the shape under examination
(provided that a majority vote indicated its existence), each individual rotation angle
can be recorded and averaged. In the generalized Hough transform, the edge rotation
range obtained by the Sobel or compass operators is not sufficiently accurate to
account for shape rotation. Rather, it is necessary to follow the contour of the edge
detected and determine the edge direction from neighboring points.
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To account for different sizes of the shape (a different scale), the parameter space
can be extended to include a scale dimension s. The accumulator array is now three-
dimensional (x,y,s), and the voting process is repeated with different values of s, with
each displacement vector being multiplied by s before displacing the edge. Along the
s-axis, the votes converge to the appropriate scale of the shape under examination.

7.4. RANDOMIZED HOUGH TRANSFORM

The inherent disadvantages of the Hough transform, that is, large memory space
use and the challenge of finding meaningful local maxima in Hough space, led to
a different approach to curve parametrization: the randomized Hough transform.21

Strictly, the randomized Hough transform is not a transform since the original space
cannot be fully reconstructed, due to the stochastic nature of the randomized Hough
transform. The randomized Hough transform has in common with the standard Hough
transform the principle of using a parameter space and the notion of accumulating
votes. The difference is the selection of groups of pixels in a random fashion.

Let us introduce the randomized Hough transform by using the line for simplicity.
The starting point is an edge image that has been thresholded. Therefore, a pixel is
either set (edge) or not set (background). Assuming the line described in Equation
(7.1) by its parameters m and n, any two edge pixels (x1,y1) and (x2,y2) lie on a line
that can be calculated by solving the linear equation system for m and n:

y1 = mx1 + n
y2 = mx2 + n

(7.15)

A similar approach can be used to obtain � and � in the polar form of Equation (7.4).
For the randomized Hough transform, pixel pairs with (x1,y1) �= (x2,y2) are selected
randomly and the corresponding point in parameter space [either (m,n) or (� ,�)] is
incremented by 1, thus accomplishing the accumulation step. Any pixel pair must be
selected only once, but individual pixels may be part of more than one pair. If there
is a dominant line in the image, the probability of incrementing the corresponding
accumulator in Hough space is higher than the accumulators for random lines defined
by arbitrary pixel pairs. Through the detection of local maxima, dominant lines can
be isolated and transformed into regular space using the conventional inverse Hough
transform.

The straightforward approach of solving an equation system with n parameters
using n randomly selected points is only possible in special cases, such as any shape
that is described by a linear equation in parameter space:

z0 + a1z1 + a2z2 + · · · + anzn = 0 (7.16)

where a1 through an are the parameters (coordinates in Hough space) and z0 through
zn are functions of x and y. For n randomly chosen edge points (xk,yk), a linear
equation system based on Equation (7.16) yields the parameters a1 through an. A
notable exception is the circle, which can be solved from equation (7.7) in two
steps.21 Three points that lie on the circle are needed to solve Equation (7.7) for the
unknown parameters xc,yc, and r. The idea behind the first step is to compute the
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midperpendicular [Equation (7.17)] of the line segment between two pairs of points.
The midperpendiculars meet in the center of the circle. For example, the point pairs
i = 1, j = 2 and i = 2, j = 3 could be chosen, leading to

yc − yi + y j

2
= yi − y j

xi − x j

(
xc − xi + x j

2

)
(7.17)

which can be solved for xc and yc. In the second step, any of the three points can be
used to obtain r from Equation (7.7).

One additional consideration is the stop condition for the selection of random
point groups. It is possible to limit the number of iterations combined with a limit on
the highest number of votes in a cell. The random selection of pixel groups and the
accumulation of votes in parameter space can be stopped, for example, if either 1000
or more point groups have been processed or 50 or more votes have accumulated in
one single cell.

The most important advantage of the randomized Hough transform over the
conventional Hough transform is the option to organize votes in a dynamic data
structure rather than using the n-dimensional Hough space. By further following the
example of the line transform, let us assume that the parameters (m,n) are stored as a
two-dimensional searchable list, which at the start of the process is empty. Whenever
a pixel pair yields a parameter pair (m,n), the list is searched if any element k exists
for which

√
(m − mk)2 + (n − nk)2 ≤ 
 (7.18)

If so, the vote counter of the kth element is increased by 1. Otherwise, a new element
with the new parameter pair (m,n) is created with a vote number of 1. The new dis-
tance threshold, 
, can be used to balance resolution and memory requirement. If the
pixels in the edge image are sparse, a large 
 allows us to accumulate a larger number
of votes with an effect similar to binning in the conventional Hough transform.

Algorithm 7.2 suggests how to implement the randomized Hough transform for
the circle. Analogous to the conventional Hough transform, Algorithm 7.2 makes use
of a three-dimensional parameter space for voting instead of using a linked list. List
management involves some complexity, and the principle is easier to demonstrate
by using regular parameter space. For the conversion to linked lists, freely available
libraries advertise themselves.

For nonlinear shapes, such as the ellipse, the approach needs to be adapted. No
straightforward linear scheme exists to extract the five ellipse parameters from five
randomly selected points. In this case, a statistical approach may prove beneficial.
By sampling more than five points, the ellipse parameters can be extracted using the
least-squares method.6 In this case, and in the case of any other higher-dimensional
Hough space, the superiority of linked lists to store the accumulated votes becomes
obvious. In addition, image preprocessing becomes highly important. Whereas the
iterative Hough transform is robust against incomplete shapes, the presence of noise
may confound the maxima found in the Hough transform. Since the Hough transform
implies the application of an edge detector step, noise suppression is a key step in
image preprocessing.
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set rmax=50; // Choose a suitable maximum radius
set dcnt=0; // counter for the number of random point triplets processed
set vmax=0; // Reset the highest vote count memory
allocate IH(xh, yh, rmax); // Allocate output image

for (y=0 while y�yhsize increment y=y+1) do
for (x=0 while x�xhsize increment x=x+1) do

for (r=0 while r�rmax increment r=r+1) do
IH(x,y,r) = 0; // Clear the accumulator to zero

endfor;
endfor;

endfor;

while ((dcnt�5000) and (vmax�50)) do
repeat // Make sure we don’t pick the same point twice

repeat
x1=random(1)*xm; y1=random(1)*ym;

until IM(x1,y1)>0; // Select a nonzero pixel
repeat

x2=random(1)*xm; y2=random(1)*ym;
until IM(x2,y2)>0; // Select another nonzero pixel
repeat

x3=random(1)*xm; y3=random(1)*ym;
until IM(x3,y3)>0; // Select the third nonzero pixel

until ( ((x1!=x2) or (y1!=y2)) and
((x1!=x3) or (y1!=y3)) and
((x2!=x3) or (y2!=y3)) );

a1=(y2-y1)/2; b1=(y2-y1)/(x2-x1); c1=(x2-x1)/2; // Start computation
// of xc,yc

a2=(y3-y1)/2; b2=(y3-y1)/(x3-x1); c2=(x3-x1)/2;
xc = (a1-a2+b2*c2-b1*c1)/(b2-b1); // center coordinate xc
yc = (b1*b2*(c2-c1)+a1*b2-a2*b1)/(b2-b1); // center coordinate yc
r = sqrt( sqr(x1-xc) + sqr(y1-yc)); // radius

if (r�rmax) then IH(xc,yc,r)=IH(xc,yc,r)+1; // Accumulate vote
if (vmax � IH(xc,yc,r)) then vmax = IH(xc,yc,r); // Maximum votes

// accumulated?
endwhile;

Algorithm 7.2 Randomized Hough transform for circles. The input image IM (size:
xm, ym) is assumed to be thresholded, and each nonzero pixel represents an edge
pixel. This algorithm represents the conventional form with a three-dimensional
parameter space for the accumulation of votes. The output image, IH, contains the
accumulated votes. To make the code simpler, the condition that any group of 3 pixels
may be selected only once is not considered.
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A new technique with superior immunity against image noise has been presented
by Lu et al.14 The idea behind this technique, termed iterative randomized Hough
transform (IRHT), is repeatedly to perform shape detection with the randomized
Hough transform, followed by a reduction of the region of interest to more narrowly
enclose the most probable location of the shape. With each iteration, sections of
the image (containing only noise) are excluded, and the remaining votes define the
actual shape better with each vote. A demonstration of the principle can be seen in
Figure 7.13, and the algorithm is described in Algorithm 7.3.

FIGURE 7.13 Application of the IRHT in the quantitative determination of the size of a fetal
head. The starting point is an ultrasound image (A), which shows the strongly echogenic parts
of the skull. After segmentation and skeletonization (B), an initial octagonal region of interest
is placed around the likely candidate (dashed line). Iterative application of the randomized
Hough transform allows to reduce the region of interest out of which votes are taken (C), and
less noise is included from each iteration to the next. The algorithm converges (D) when the
region of interest changes only minimally between iterations. In general, the region of interest
aligns with the main axes of the ellipse and is only slightly larger than the ellipse. In part D
the parametrized ellipse is shown superimposed over the edge image, and it can be seen that
the broken shape (B) is completed.
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Set ROI to image size
set k=200 // number of sets of 5 pixels in RHT
set kf=2500 // number of polls before failure
set invalid=0; converged=0; // exit conditions

Allocate memory for five independent accumulators

repeat
i=0; j=0;
repeat

randomly select 5 segmented pixels from inside ROI
i=i+1
find ellipse parameters from these 5 pixels: successful?

successful when:
1) Solution for Equation 7.11 exists
2) Ellipse lies within image area
3) Ellipse center lies within ROI

if (successful) then
increase the scores in the accumulators
j=j+1; i=0;

else
if (i>kf) then

invalid=1; // Give up after kf tries
endif

endif
until (invalid or j>k) // Iterate until k samples processed

if (not invalid) then
find maximum value in each accumulator
determine ellipse from accumulator maxima
new ROI = (slightly larger than bounding box of ellipse)
if (new ROI == ROI) then converged=1;
ROI = new ROI;

endif

until (converged or invalid)

Algorithm 7.3 Pseudocode for the computation of the iterative randomized Hough
transform for ellipses. The input image IM (size: xm, ym) is assumed to be thresh-
olded, and each nonzero pixel represents an edge pixel. This code assumes that only
one ellipse exists and takes the single maxima of separated accumulators to determine
the ellipse parameters. Due to the complexity of the algorithm and possible variations
in the ellipse representation, the pseudocode is kept more general.
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Algorithm 7.3 assumes that only one ellipse exists in the image and that for
this special case it is possible to separate the Hough space into five individual one-
dimensional accumulators, one for each parameter of the ellipse. Maximum detection
takes place for each accumulator separately, and the ellipse is determined from the
location of these five maxima. The algorithm is strongly dependent on the ellipse
equation used. The randomized Hough transform can generally be solved only if
the curve equation is linear with respect to the parameters. Therefore, the ellipse
representation in Equation (7.11) is ideally suited. A variation of this algorithm
would involve the random selection of more than five pixels and the determination
of the ellipse parameters by using a least-squares approach.

Multiple ellipses can be detected with the IRHT as well. If multiple ellipses are
expected in an image, the IRHT can be applied repeatedly. After each detection of
one ellipse, the set of pixels that belong to the detected ellipse is subtracted form the
image and the IRHT repeated. This iterative process is stopped after no valid ellipses
have been found. Users implementing this algorithm should be aware that an image
with pure noise generally identifies an apparent ellipse, centered with respect to the
image and angled 45◦ or 135◦.14

7.5. BIOMEDICAL EXAMPLES

Although development of the Hough transform is driven primarily by computer vision
applications, the Hough transform is frequently used in biomedical image analysis.
Medical images pose additional challenges to image analysis, primarily noise and
natural shape variation. For this reason, most medical applications of the Hough
transform include additional image processing steps or variations of the established
Hough transform algorithms. For example, the Hough line transform has been used
in the detection of the Cobb angle of scoliosis in spinal radiographs.24 In digitized
radiographs, the most severely tilted vertebrae were identified and outlined manually
(Figure 7.14). Images were denoised by using anisotropic diffusion, a step that
emphasized the actual vertebral edges in the subsequent edge detection process. The
edges of vertebrae are not exact straight lines, and the conventional Hough transform
would detect multiple lines at each edge. In this study, a variation of the Hough
transform termed the fuzzy Hough transform8 was used, where closely spaced lines
contributed to the accumulator more or less depending on the distance from the
ideal detected line. In this implementation, the accumulator was convolved along
the � -axis with a Gaussian blurring function. With this step, closely spaced local
maxima were eliminated and a single line emerged. Furthermore, it was necessary
to apply a priori knowledge of vertebral geometry: approximately parallel endplates
and approximately perpendicular sides, which led to individual accumulator maxima.
These maxima had to follow certain distance constraints in Hough space before they
were used to compute the exact tilt angle of the vertebra.

In a different study, ultrasound imaging was used to determine the orientation
of muscle fibers.25 The basis for the automated detection of fiber orientation was
once again the line Hough transform. Similar to the scoliosis study, the conventional
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FIGURE 7.14 Definition of Cobb’s angle. From a central vertebra that is not tilted, the
vertebrae with the largest tilt above and below are found. Cobb’s angle � is the angle at
which these two vertebrae are tilted toward each other, usually found with the help of two
perpendicular auxiliary lines.

Hough transform detected multiple closely spaced lines. The key improvement in this
study over the conventional Hough transform was a re-voting mechanism. Iteratively,
the most dominant line was determined in Hough space and returned as a valid line.
Subsequently, all pixels in the edge image along this line were removed and the Hough
transform repeated. By removing pixels along the dominant line, the votes for closely
spaced lines were also removed. This algorithm is demonstrated in Figure 7.15.

Ultrasound images are a particular challenge due to the inherent noise. The rou-
tine measurement of fetal head size, instrumental in determining fetal growth and
maturity, relies almost exclusively on ultrasound imaging. As shown in one example
in Figure 7.13, the skull outline is an approximate ellipse with missing segments. For
this reason, the ellipse Hough transform appears to be a very attractive approach. In
three published studies13,14,23 images were prepared by edge detection followed by
thresholding and skeletonization. Parametrization of the ellipse was then performed
using the IRHT.

Another good example where the Hough transform provides an accurate
parametrization of the shape is the pupil of the eye. Applications include tracking
of the eye movement and quantitative measurement of the pupillary reflex. Unlike
ultrasound imaging, images of the eye are obtained with either a regular camera or
a video camera. Consequently, the images are characterized by a lower noise com-
ponent and higher resolution and contrast. Furthermore, segmentation is a relatively
straightforward process, because the dark or even black interior of the pupil can be
segmented with threshold-based methods. On the other hand, any illumination may
introduce areas of bright specular reflection. These areas may lead to incomplete
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FIGURE 7.15 Iterative Hough transform with re-voting mechanism. The example image
(A) is a shape with shot noise superimposed. (B) shows the gradient image after thresholding
and skeletonization. The straight lines are distorted, and multiple closely spaced local maxima
appear in the Hough transform, evidenced by multiple, almost-identical lines in the inverse
Hough transform (C). For the iterative Hough transform with re-voting, one dominant line (or
as shown in image D, two lines with identically high votes) is extracted. This line is subtracted
from the edge image (B), leading to the new edge image (E). If image E is subjected to the
Hough transform, the local maxima that led to the lines in image D no longer appear, and a
different line will be the dominant line of the next iteration. As can be seen in image F, the
iterative Hough transform with re-voting becomes more robust.

circles, indentations, or other shape distortions in the segmented pupil area. The
IRHT has been shown to reconstruct the pupil ellipse accurately in the presence of
areas with specular reflection.13 Noninvasive shape determination of the nucleus of
the human lens was performed in images acquired with a Scheimpflug camera, a
camera where the lens plane is not parallel to the detector plane. Such a camera is
capable of acquiring a focused image of the entire corneal area. The outline of the
lens nucleus was approximated by connected parabolic curve segments. This method
made it possible to quantitatively analyze the nucleus volume, cross-sectional area,
curvature, and thickness as a response to accommodation stimuli.9

An other area in which the Hough transform plays an important role is in the
determination of the elasticity of the carotid artery in ultrasound motion images.7

In this study, a combination of line and circle Hough transforms made it possi-
ble to extract the diameter of the carotid artery in a sequence of images. A virtual
robot for automated endoscopy of the cochlear spiral in micro-CT images was pre-
sented.5 A complex sensing and steering system guides the software robot through the
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three-dimensional cochlear image. A cylinder Hough transform is used to estimate
the cochlear radius at the robot’s position. Finally, the accumulation approach that is
the basis of the Hough transform has been used in the registration of images.3,11
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8
TEXTURE ANALYSIS

Each image feature contains three major elements of information. For each feature,
this is the average image value (e.g., intensity, exposure, density), the shape, and any
systematic local variation of the image values. This local variation is called texture.
Some examples that can be found in the UIUC texture database1,26 are shown in
Figure 8.1. The textures differ in character. From top to bottom, increased regularity
can be observed. The top two textures have a high degree of randomness and some
self-similar properties. The middle two textures are more homogeneous in their
feature size, but with irregular distribution, whereas the bottom two of the textures
show spatial regularities. In medical images, texture carries important information as
well. While some of the texture is caused by image noise, image texture often carries
information from the tissue being imaged. An example is shown in Figure 8.2: an
abdominal ultrasound image showing the inferior vena cava and a section of the liver.
For the human eye, the texture difference between the liver and the surrounding tissue
is easily detected despite the dominant ultrasound noise. Many textures are composed
of a repeated pattern of texture elements (often referred to as texels). Such a texture
(e.g., the knit texture in Figure 8.1) would be described completely by the texel’s size
and orientation. In medical images, periodically arranged texels are the exception.
Medical images would best be described as a random arrangement of clusters of
different intensity and size.

Texture analysis can serve three primary purposes. First, texture analysis may
help classify pixels or image features and therefore assign them to a specific re-
gion or object. Second, the classification of regions or pixels by their texture
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FIGURE 8.1 Some common texture samples.1,26 From top left to bottom right, the images
show tree bark (A), polished granite (B), glass (C), carpet (D), corduroy (E), and knit (F). From
top to bottom, the textures become more regular. (From refs. 1 and 26.)

FIGURE 8.2 Ultrasound image of the inferior vena cava (dark region in the lower third of
the image). A section of the liver, enclosed by white dots for easy identification, shows a
texture different from that of the surrounding tissue.



P1: OTA/XYZ P2: ABC
c08 JWBS035-Haidekker August 26, 2010 8:3 Printer Name: Yet to Come

238 TEXTURE ANALYSIS

can aid segmentation. Regions with approximately identical or overlapping inten-
sity values, for example, can potentially be separated by the texture properties.
Two-dimensional thresholding with intensity and texture as orthogonal criteria is
even more powerful for segmentation and pixel classification. Third, texture anal-
ysis may help differentiate between normal and diseased states by their texture in
medical images.

Texture analysis is a multistep process. The first step is usually an enhancement
step to emphasize the texture and reduce the influence of unwanted processes. The
enhancement step includes noise reduction, background removal, and possibly, histo-
gram equalization. The presence of noise may create a pseudotexture that has the po-
tential to dominate and confound texture classification. Background inhomogeneities
may affect any intensity-based operations, such as thresholding, and they may also
confound some texture metrics. Some texture metrics are more robust against back-
ground inhomogeneities. These include first-order statistics, the co-occurrence ma-
trix, Law’s texture energy, and the autocorrelation function. Conversely, the run-length
method is sensitive to background inhomogeneities, and a highpass filtering step or
local histogram equalization is recommended. In the next step, regions of interest need
to be delineated over which quantitative texture features will be computed unless the
computation of texture features occurs in a local neighborhood on a pixel-by-pixel
basis. In the next step the actual classification takes place. Each pixel or region gets
assigned to one or several quantitative texture feature metrics. To provide one exam-
ple of a pixel metric, the local variance in a 7 × 7 neighborhood can be computed
for each pixel. A pixel embedded in a rough texture would then have a higher local
variance value assigned to it than would a pixel embedded in a smooth region. A
second example would be a local anisotropy metric, where a pixel embedded in a
directional texture would get a value different from that of a pixel embedded in a
isotropic texture. Depending on the goal, it may be necessary to collect multiple
texture feature metrics to fully classify a pixel or region. The final step in this process
is evaluation of the information collected in the classification step. Usually, this final
step involves determining a category into which the pixel or region belongs. Within a
defined region, its texture can be categorized as healthy or diseased. Alternatively, the
classification information may be used to segment regions, for example, to separate
the liver region in Figure 8.2 from the surrounding tissue. The complexity of this
last step can vary greatly from value-based thresholding or multidimensional thresh-
olding to Bayesian classification, clustering, and even artificial-intelligence-based
methods such as artificial neural networks. In this chapter, key methods to extract
texture features from textured image regions, that is, to assign different numerical
values to different types of texture, are presented.

8.1. STATISTICAL TEXTURE CLASSIFICATION

The intensity distribution of pixels in an image or a region of an image is characterized
in the intensity histogram. The number of pixels is plotted as a function of their
intensity, providing a discrete function n(I). For the purpose of texture classification,
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the histogram needs to be normalized so that

1

N

Imax∑
I=Imin

n(I ) = 1 (8.1)

with the factor N being the total number of pixels. The normalized values P(I) =
n(I)/N are the probabilities of a pixel intensity or intensity range. On the basis of this
value, we define the moments of the histogram:

�k =
Imax∑

I=Imin

I kP(I ) (8.2)

The first moment, �1, is the image intensity average. The higher moments can be
expressed as the k-th moment about the mean by subtracting the average image value
�1. The moments about the mean are referred to as central moments of the histogram,

Mk = 1

Sk

Imax∑
I=Imin

(I − �1)k P(I ) (8.3)

where the normalization factor sk is 1 for k = 2, and �k for k = 3 and k = 4, with the
standard deviation � = √

M2. Under this definition, the first central moment M1 is
always zero. The central moments for k = 2, 3, and 4 are known as variance, skew,
and kurtosis. The second moment, the variance, is related to the intensity spread.
A high variation in image values is associated with a high variance, and vice versa.
Therefore, the variance contains information about the image contrast. The third
moment, the skew, is related to the asymmetry of the intensity distribution. A perfect
Gaussian distribution has a skew of zero. A positive skew indicates a longer tail to
the right of the histogram, and a negative skew indicates a longer tail to the left of the
histogram. In other words, when the mean value lies to the right of the mode value (the
mode value is the intensity value with the highest probability), the histogram has a
positive skew, and vice versa. In fact, skew is closely related to the difference between
the mean and the mode. The fourth moment, the kurtosis, provides information about
the accumulation of the values around the mean value. A histogram with positive
kurtosis has a higher probability of values being distributed near the mean value
than does a normally distributed histogram, and little of the variance is caused by
infrequent extreme deviations. A negative kurtosis indicates a histogram that has
more pronounced tails than does a normally distributed histogram, and indicates a
higher probability of extreme intensity values than that for a normally distributed
histogram.

Table 8.1 lists the statistical moments of the images shown in Figure 8.1. All
images except the corduroy texture show a mean value around 128, which is the
mean gray value in an evenly distributed 8-bit image. Glass and granite have a fairly
narrow distribution (small variance) that is immediately evident in the glass image.
The granite image exhibits mostly average gray areas with a few dark and bright
spots. The high intensity variance in the corduroy image is caused by a clear bimodal
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TABLE 8.1 Statistical Moments for the Images in Figure 8.1

Texture �1 (Mean) M2 (Variance) M3 (Skew) M4 (Kurtosis)

Bark 146 1979 −0.489 0.114
Granite 119 1669 −0.03 −0.26
Glass 120 1949 0.166 −0.11
Carpet 110 2254 0.263 −0.413
Corduroy 84 3551 0.585 −0.855
Knit 130 2328 −0.163 −0.508

distribution stemming from the ridges and valleys. This distribution is also reflected
in the large positive skew (long tail caused by the second mode drawing the mean
value to the right of the first mode) and the large negative kurtosis, which indicates
a distribution dominated by extreme values. The largest negative kurtosis is found in
the corduroy texture, as a consequence of the two modes.

Two more histogram-related metrics can be defined, the energy E and the entropy
H. The energy [Equation (8.4)] assumes its maximum value close to 1 only if the
image has a very narrow histogram, dominated by a single value. Broader intensity
variations [and therefore lower individual P(I) values] cause the energy to decrease.
The entropy [Equation (8.5)] is a measure of information content and is in a qualitative
manner inversely related to the energy. A predominantly random distribution has a
high entropy. Highly correlated or uniform distributions have a low entropy.

E =
Imax∑

I=Imin

P2(I ) (8.4)

H = −
Imax∑

I=Imin

P(I ) log2 P(I ) (8.5)

Table 8.2 lists the energy and entropy values for the textures in Figure 8.1. The
overall variation of the values between textures is low, with the exception of the glass
texture, which has a high energy and low entropy. This indicates a fairly uniform
distribution of the intensity values in the glass texture.

TABLE 8.2 Statistical Energy and Entropy
Values for the Images in Figure 8.1

Texture Energy Entropy

Bark 0.019 6.01
Granite 0.018 5.99
Glass 0.029 5.54
Carpet 0.016 6.15
Corduroy 0.018 6.13
Knit 0.017 6.14
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It is possible to compute the statistical description values locally, that is, in a
small moving window around the central pixel. In this way an image can be filtered
to represent, for example, the local variance. Application of a local mean filter
corresponds to a convolution-based lowpass (blurring) filter. Most notably, the local
variance can be computed in a square window of side length 2l + 1 using

�2(x,y) = 1

N

⎧⎪⎨
⎪⎩

x+l∑
i=x−l

y+l∑
j=y−l

I 2(i,j) − 1

N

⎡
⎣ x+l∑

i=x−l

y+l∑
j=y−l

I (i,j)

⎤
⎦

2
⎫⎪⎬
⎪⎭ (8.6)

where the I(i,j) are the image intensity values in a window centered on x,y and N
is the number of pixels in the local window, N = (2l + 1).2 The effect of the local
variance filter can be seen in Figure 8.3, where part A shows four square patches of
Gaussian noise inside a uniformly filled area. The local image mean is 127, and the
noise standard deviations increase from left to right, top to bottom (� = 8, 16, 32,
and 48, respectively). The 7 × 7 local variance filter reveals the standard deviation,
and the noisy areas in Figure 8.3B are considerably smoothed. The noisy areas have
mostly nonoverlapping values in the filtered image and could be segmented with dual
thresholds or hysteresis thresholding.

A local variance filter is applicable only when the texture elements are smaller
than the local window size. In the example of Figure 8.3, the noise affects the
image on the pixel level. In Figure 8.1 and in the ultrasound image (Figure 8.2),
the texture elements are relatively large, which has a negative impact on the local
variance filter and requires the use of a larger window. Algorithm 8.1 computes
the local variance of a gray-scale image. If the expression (sxx-sx*sx/cnt)/cnt were
replaced by sqrt((sxx-sx*sx/cnt)/cnt), the resulting image would contain the local
standard deviation, and if it were replaced by cnt*(sxx/(sx*sx)-1), the resulting image

FIGURE 8.3 Application of a local variance filter. Image A contains four square areas of
Gaussian noise. The uniform image value is 127, as is the mean value of the noisy areas. The
standard deviation is, from top left to bottom right, 8, 16, 32, and 48. The intensity values of the
filtered image (B) reflect the standard deviation. In addition, image B is somewhat smoothed.
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set L=3; // Choose a suitable neighborhood size
allocate IMV(xmax,ymax); // Allocate output image

for (y=0 while y�ym increment y=y+1) do // double loop over the image
for (x=0 while x�xm increment x=x+1) do

sx=0; sxx=0; cnt=0; // Clear accumulators
for (j=y-L while j�=y+L increment j=j+1) do // double loop over

for (i=x-L while i�x+L increment i=i+1) do // the local neighborhood
if ((i>=0) and (j>=0) and (i�xm) and (j�ym)) // Maintain img edges

sx = sx+IM(i,j);
sxx = sxx+IM(i,j)*IM(i,j);
cnt=cnt+1;

endif;
endfor;

endfor;

IMV(x,y) = (sxx-sx*sx/cnt)/cnt; // local variance
endfor;

endfor;

Algorithm 8.1 Local variance filter. This filter returns the local variance of input
image IM(x,y) of size xmax, ymax in the local neighborhood of size 2L+1. The
output image is IMV(x,y).

would contain the local coefficient of variation. Using equations analogous to Equa-
tion (8.6), adaptations of Algorithm 8.1 to compute local skew [Equation (8.7)] and
local kurtosis [Equation (8.8)] can easily be implemented.

skew(x,y) = 1

N�3
loc(x,y)

⎧⎨
⎩

x+l∑
i=x−l

y+l∑
j=y−l

[
I (i,j) − I (x,y)

]3

⎫⎬
⎭ (8.7)

kurtosis(x,y) = 1

N�3
loc(x,y)

⎧⎨
⎩

x+l∑
i=x−l

y+l∑
j=y−l

[
I (i,j) − I (x,y)

]4

⎫⎬
⎭ − 3 (8.8)

In Equations (8.7) and (8.8), �loc (x,y) denotes the local standard deviation at coordi-
nate x,y, and I (x,y) denotes the local mean value.

8.2. TEXTURE CLASSIFICATION WITH LOCAL
NEIGHBORHOOD METHODS

8.2.1. Texture Classification Based on the Co-occurrence Matrix

Many texture classification operations require computation of the co-occurrence ma-
trix. These methods were pioneered in 1973 by Haralick et al.,15,16 who formulated
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14 texture metrics that build on the co-occurrence matrix. The gray-scale co-
occurrence matrix C�

d (i,j) is a two-dimensional histogram of gray values i and j
where C�

d (i,j) specifies the probability that a pixel with gray level j is located at a
distance d and direction � from a pixel with gray level i. Therefore, the co-occurrence
matrix of an image with 256 gray levels has the size of 256 × 256 elements. The ele-
ment C(0,1) of a co-occurrence matrix with d = 1 and � = 0 contains the probability
that the right neighbor of a pixel with value 0 (i = 0) is a pixel with value 1 (j = 1).
The diagonal elements of a co-occurrence matrix contain the probabilities that two
neighbors have the same gray value. For the choice of d = 1, four directions of � are
possible: 0◦, 45◦, 90◦, and 135◦.

Uncorrelated pixels have a broad co-occurrence matrix. Conversely, a coarse
texture with respect to the displacement vector d tends to have a narrow distribution
along the diagonal. Such a distribution indicates that the probability of having a
pixel with a similar intensity value in its neighborhood is very high. This behavior
is demonstrated in Figure 8.4. The co-occurrence matrix of uncorrelated noise with
a box probability distribution is very broad, indicating that the neighborhood of
any value pair i, j is equally probable. The co-occurrence matrix of Gaussian noise
strongly reflects the isotropic Gaussian distribution. Finally, Perlin noise can be
interpreted as a coarse texture with highly correlated pixels: The probability of
neighboring pixels having the same or nearly the same intensity value is much higher
than the probability of pixel pairs with strongly differing intensities. Consequently,
the co-occurrence matrix shows values of high probability clustered around the
diagonal. Figure 8.5 shows several examples of co-occurrence matrices corresponding
to the texture examples in Figure 8.1. A longer displacement vector (d = 4) was
chosen, and pairs of co-occurrence matrices with perpendicular displacements are
shown (� = 0◦ and � = 90◦). The co-occurrence matrices of the bark texture show
a slightly skewed distribution, which is widely direction-independent and, being
narrower than the distribution in Figure 8.4F, shows a higher degree of correlation than
the knit texture. Corduroy, with its highly anisotropic texture, shows very different co-
occurrence matrices with 0◦ and 90◦ displacement vectors. In fact, the distinct shape
seen in Figure 8.5D indicates a repeating pattern: a high probability of a bright pixel
followed by a dark one, and vice versa. The knit texture shows a broad but anisotropic
distribution.

Haralick et al.15,16 have defined 14 global metrics to classify the texture by
quantitatively describing the shape of the co-occurrence matrix. Many of these
metrics are mutually dependent, and only some key metrics will be introduced here.
Let P(i,j) describe the compound probability of a pixel pair at displacement d and
displacement direction �; then some of the feature metrics can be described by the
equations in Table 8.3.

The average values in the i and j directions can be computed as

�i = ∑
i

∑
j

iP(i,j)

� j = ∑
j

∑
i

jP(i,j)
(8.18)
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FIGURE 8.4 Co-occurrence matrices for different types of noise (d = 1, � = 0). From top
to bottom, uncorrelated, equally distributed noise (A) has a very broad co-occurrence matrix
(B); Gaussian noise (C) has a symmetrical co-occurrence matrix (D) that reflects the Gaussian
distribution; Perlin noise (E) represents a coarse texture, where the co-occurrence matrix (F)
is widely limited to the diagonal.

and the corresponding standard deviations �i and �j required to compute the contrast
can be computed as

�i = ∑
i

∑
j

(i − �i )2 P(i,j)

�j = ∑
j

∑
i

( j − � j )2 P(i,j)
(8.19)
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FIGURE 8.5 Co-occurrence matrices for the bark, corduroy, and knit textures in Figure 8.1.
In all cases, d = 4 pixels. From top to bottom, the co-occurrence matrix for the bark texture
at � = 0◦ (A) and � = 90◦ (B), for the corduroy texture at � = 0◦ (C) and � = 90◦ (D), and
for the knit texture at � = 0◦ (E) and � = 90◦ (F) are shown. All co-occurrence matrices have
been intensity-normalized for better visualization.

Numerical examples for the sample textures in this chapter (Figures 8.1, 8.2, and
8.4) are given in Table 8.4. The purpose of computing several different texture
classification metrics is to obtain a multidimensional texture vector. Although it is
sometimes possible that a single quantitative descriptor differentiates two textures
(e.g., the liver and muscle regions in the ultrasound image in Figure 8.2), more
often an image contains multiple textures with potentially overlapping values of
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TABLE 8.3 Haralick’s Texture Classification Metrics

Texture Feature Description Formula

Energy Defined in a manner
analogous to
Equation (8.4).

∑
i

∑
j

P2(i,j) (8.9)

Entropy Information content, defined
in a manner analogous to
Equation (8.5).

−
∑

i

∑
j

P(i,j) log2 P(i,j) (8.10)

Contrast Weighs probabilities by their
distance to the diagonal.

∑
i

∑
j

|i − j | P(i,j) (8.11)

Inertia An exaggeration of the
contrast metric, as it weighs
probabilities by the square
of the distance to the
diagonal.

∑
i

∑
j

(i − j)2 P(i,j) (8.12)

Correlation Increases in the presence of
large homogeneous regions.

∑
i

∑
j

i j P(i,j) − �i � j

�i �j
(8.13)

Texture
homogeneity

Weighs the probabilities by
proximity to the diagonal
and is therefore the
complement of contrast.

∑
i

∑
j

P(i,j)

1 + |i − j | (8.14)

Inverse
difference

Valid only for nondiagonal
elements i �= j . Closely
related to texture
homogeneity.

∑
i

∑
j

P(i,j)

|i − j | (8.15)

Inverse
difference
moment

The metric complementary to
inertia. Probabilities are
weighted by proximity to
the diagonal.

∑
i

∑
j

P(i,j)

1 + (i − j)2
(8.16)

Cluster
tendency

Probabilities are weighted by
their deviation from the
mean values.

∑
i

∑
j

(i − �i + j − � j )
2 P(i,j) (8.17)

some metrics. Multidimensional clustering techniques, that is, finding vectors that
are spatially related in the n-dimensional feature space, can be used to better dif-
ferentiate between different textures. One of the key challenges associated with
the texture classification metrics that build on the co-occurrence matrix is the de-
termination of a suitable displacement vector. Generally, some experimentation is
necessary. Ideally, a training set of images is available where the feature vector of
two tissues to be differentiated (e.g., tissue of interest and background or healthy
tissue and diseased tissue) can be computed as a function of d, and a value of
d is chosen where the distance between the feature vectors is maximal. In general,
a larger value of d broadens the co-occurrence matrix (Figure 8.6) and therefore
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TABLE 8.4 Examples of Texture Feature Metrics for Selected Textures Shown in
Figures 8.1, 8.2, and 8.4

Texturea Entropy Contrast Correlation Inverse Difference Inertia

White noise 15.2 85.0 0.002 0.041 10,866
Gaussian noise 14.6 55.6 0.0009 0.056 4,796
Perlin noise 10.9 1.7 0.999 0.521 4.73
Bark 13.7 29.2 0.63 0.095 1,449
Corduroy 13.3 19.2 0.90 0.15 746

� = 0◦ � = 90◦ 14.14 49.6 0.46 0.065 3,851
Knit 14.2 64.5 −0.27 0.043 5,933
Liver ultrasound

Liver region 11.4 11.2 0.78 0.2 216
Muscle region 11.39 8.9 0.89 0.23 142

aFor the noise textures, d = 1 and � = 0◦; for the textures in Figure 8.1, d = 1 and � = 0◦ unless
otherwise stated; for the textures in Figure 8.2, d = 2 and � = 0◦.

FIGURE 8.6 Changes in the co-occurrence matrix with the choice of the displacement vector
d. The underlying texture is the carpet texture in Figure 8.1, and the displacement vector was
d = 1 (A), d = 2 (B), d = 3 (C), and d = 4 (D), with � = 0 in all cases.



P1: OTA/XYZ P2: ABC
c08 JWBS035-Haidekker August 26, 2010 8:3 Printer Name: Yet to Come

248 TEXTURE ANALYSIS

FIGURE 8.7 Influence of the distance d on texture classifiers: in this example, contrast. For
� = 90◦, the strong periodicity of the corduroy texture can be seen. The knit texture exhibits
weaker periodicity.

increases entropy, contrast, and inertia and decreases energy, correlation, inverse
difference, and the clustering tendency.

With a small value for d, noise will dominate the co-occurrence matrix. Generally,
d should be chosen to match the size of a texture element. A good example is the
corduroy texture in Figure 8.1, where the ridges and valleys in the vertical direction
are about 10 pixels apart. Choosing d = 10 would therefore provide the largest
difference between a horizontal and a vertical displacement. Further increasing d
reduces this difference. This effect is demonstrated in Figure 8.7, where the contrast
as a function of displacement d with � = 90◦ is shown. A maximum contrast of
the corduroy texture is found at d = 12, which accurately measures the average
periodicity of the texture in the vertical direction. In contrast, the knit texture does
not exhibit a similarly strong periodicity, although relative maxima can be seen at
d = 5 and d = 15. The size of a knit texture element is therefore approximately
five pixels. For the description of the knit texture, d = 5 would therefore be a
good choice.

The second flexible parameter is the angle �. If anisotropic properties of the
texture are of no relevance and there is only weak anisotropy, an approach used
frequently is to compute the texture feature metrics over four angles (� = 0◦, 45◦,
90◦, and 135◦) and average the resulting four directional values to yield a single
value. With this approach, the feature vector becomes rotation-invariant. Alterna-
tively, the maximum or minimum value for the feature metric over all rotations
can be determined. This second approach emphasizes anisotropic properties more
strongly.

Examination of the feature vector as a function of � becomes important to examine
the anisotropic properties of the texture. For example, the maximum and minimum
value of the contrast c(�) for different values of � can be determined, and its ratio �
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is a metric for the contrast anisotropy.

� = max� c(�)

min� c(�)
(8.20)

If anisotropy is a characteristic attribute of a specific texture, it is reasonable to include
one or more anisotropy measures in the feature vector.

Like a histogram, the co-occurrence matrix can be computed within a restricted
region of interest. To compute the feature vector of the liver and muscle regions
in Figure 8.2, the region can be delineated (segmented) manually and subjected
to texture analysis. Furthermore, the computation of the co-occurrence matrix can
be restricted to a moving window around a cental pixel. In this case, a local feature
vector can be computed per pixel, resulting in an enhanced image where the individual
pixels can be classified (and segmented) by their feature vector. This is illustrated in
Figure 8.8, an image false-colored with the intensities of the clustering feature in the
red channel, the contrast feature in the green channel, and the inertia feature in the
blue channel. All local features were computed in a circle with a radius of 15 pixels.
To restore the original image detail, the image was converted from a red–green–blue
(RGB) composite image to the hue–saturation–value (HSV) model, and the value
channel was replaced by the original image in Figure 8.2. The resulting HSV image
with a modified value channel was again converted to the RGB model in Figure 8.8.
Different hues represent different feature vectors. The walls of the vena cava are
clearly visible in red. The liver region has a more bluish hue than the surrounding
muscle region, which is of a deeper green shade.

Pseudocode to compute the co-occurrence matrix is provided in Algorithm 8.2. The
resulting co-occurrence matrix (computed from an arbitrary Cartesian displacement
vector dx, dy) is a square matrix with dimensions determined by the number of bins.

FIGURE 8.8 Composite image of the ultrasound image in Figure 8.2. The red color channel
represents clustering, the green channel represents contrast, and the blue channel represents
inertia. (See insert for color representation of the figure.)
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set numbins=128; // Choose the number of discrete gray levels
set dx=4; // dx and dy determine the displacement (Cartesian)
set dy=0; // which can also be computed from d and � (polar)
delta = 256/numbins; // bin size for 256 gray values
gmax = numbins; // size of GLCM matrix
allocate GLCM(gmax,gmax); // Allocate GLCM output image
set cnt=0; // number of pixels counted

for (y=0 while y�gmax increment y=y+1) do // double loop over the glcm image
for (x=0 while x�gmax increment x=x+1) do

GLCM(x,y)=0; // Reset accumulators
endfor;

endfor;

for (y=0 while y�ym increment y=y+1) do // double loop over the input image
for (x=0 while x�xm increment x=x+1) do

x1=x+dy; y1=y+dy; // shifted coordinate
if ((x1≥0) and (y1≥0) and (x1�xmax) and (y1�ymax)) then

bin1 = IM(x,y)/delta;
bin2 = IM(x1,y1)/delta;
if ((bin1≥0) and (bin2≥0) and (bin1�gmax) and (bin2�gmax))then

GLCM(bin1,bin2) = GLCM(bin1,bin2)+1;
cnt=cnt+1;

endif;
endif;

endfor;
endfor;

for (y=0 while y�gmax increment y=y+1) do // Normalize GLCM to contain probabilities
for (x=0 while x�gmax increment x=x+1) do // and not counts

GLCM(x,y)=GLCM(x,y)/cnt;
endfor;

endfor;

Algorithm 8.2 Co-occurrence matrix. This algorithm computes the gray-level co-
occurrence matrix GLCM(x,y) from an input image IM(x,y). IM is assumed to
have 256 gray levels and has a size of xmax, ymax. Binning is possible (numbins),
and the number of bins determines the final size of GLCM.

Binning is reasonable when computing the co-occurrence matrix of small regions.
Four gray levels of an 8-bit gray-scale image, for example, could be combined in
one bin, and the co-occurrence matrix would reflect 64 gray levels only. The output
co-occurrence matrix is normalized to reflect the probability of a gray-scale pair,
P(i,j), rather than the number of gray-scale pairs n(i,j). The matrix will therefore
satisfy the condition

∑
i

∑
j

P(i,j) = 1 (8.21)

From the co-occurrence matrix, it is straightforward to compute the feature vector
defined by Equations (8.9) through (8.17) by substituting GLCM(i,j) for P(i,j).
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8.2.2. Laws’ Texture Energy Metrics

K. I. Laws proposed a different approach to texture classification25 by suggesting five
different one-dimensional convolution kernels:

L5 = [ 1 2 4 2 1]
E5 = [−1 −2 0 2 1]
S5 = [−1 0 2 0 −1]
R5 = [ 1 −4 6 −4 1]
W5 = [−1 2 0 −2 1]

(8.22)

Although the kernel size may be larger or smaller in different implementations, the
length 5 kernels are being used most commonly. L5 is a Gaussian-type blurring kernel
that provides the smoothed gray level (L) of the texture. E5 is a gradient kernel, related
to the Sobel and compass edge (E) detectors. S5 is derived from the Laplacian operator
and emphasizes spots (S). R5 emphasizes pixel-sized ripples (R), and W5 emphasizes
waves (W) that stretch over a few pixels. To obtain two-dimensional convolution
kernels, one of the one-dimensional kernels in Equation (8.22) is multiplied by the
transpose of another kernel. For example, LT

5 L5 yields the well-known 5 × 5 Gaussian
smoothing kernel. A second example is the combination kernel

LT
5 R5 =

⎡
⎢⎢⎢⎢⎣

1 −4 6 −4 1
2 −8 12 −8 2
4 −16 24 −16 4
2 −8 12 −8 2
1 −4 6 −4 1

⎤
⎥⎥⎥⎥⎦ (8.23)

which is sensitive toward ripples in the horizontal direction and smoothes the texture
in the vertical direction. By multiplying pairs of the one-dimensional kernels, a
theoretical combination of 25 convolution kernels KN is possible. Of these, only
LT

5 L5 has a nonzero sum of elements and requires normalization with a factor of
1/100. It is possible to obtain up to 25 “feature images” FN by convolving the image
I with each of the 25 combination kernels KN (1 ≤ N ≤ 25). The convolution step
should be preceded by background flattening (e.g., background removal by unsharp
masking or Fourier highpass filtering), and the convolved feature images should be
further processed by smoothing the absolute values of FN

25:

EN (x,y) = 1

(2l + 1)2

y+l∑
j=y−l

x+l∑
i=x−l

|FN (i,j)| (8.24)

The resulting EN are called energy maps. Each image pixel I(x,y) is now associated
with a vector of energies EN (x,y) that can be used to classify the pixel by means
of multidimensional thresholding, clustering techniques, grow-merge or split-merge
methods, or artificial intelligence methods such as neural networks.
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Since the energy maps are not rotation-independent [as can be seen in Equa-
tion (8.23)], additional features may be devised, for example, through the gen-
eration of horizontal and vertical ripple images RX and RY with the kernels
LT

5 R5 and RT
5 L5, followed by computing a compound ripple-emphasized image

R(x,y) =
√

R2
X (x,y) + R2

Y (x,y) in analogy to the Sobel edge detector. In addition,
directionality features may be computed by convolving the image with the kernels
LT

5 R5 and RT
5 L5, followed by computing a pixel-wise ratio RX (x,y)/RY (x,y). On

the other hand, not all 25 combinations of the one-dimensional kernels are practical.
A kernel obtained from W T

5 R5, for example, will produce an energy image that is
difficult to interpret. For this reason, only a limited number of kernels are used in
practice, and the feature vector per pixel usually has fewer than 10 elements.

The advantage of Laws’ texture energies is their local nature. While methods based
on the histogram and the co-occurrence matrix may be restricted locally through
definition of a region of interest, the choice of a small region can restrict the number
of pixels to a level where they no longer represent the texture statistically. The local
nature is inherent in Laws’ texture energy maps. However, as with most texture
classification methods, the neighborhood size (in this case the size of the kernels)
makes the texture energies sensitive to scaling. Texture extraction, the definition of
a feature vector for a pixel or a region in the image, is therefore usually one step
in a three-process step: image preprocessing, texture extraction, and texture-based
segmentation.

8.2.3. Autocorrelation-Based Texture Classification

The autocorrelation function is the convolution of an image I(x,y) with a shifted
version of itself:

� (� x,� y) =
∑M−1

y=0

∑N−1
x=0 I (x,y)I (x + � x,y + � y)∑M−1

y=0

∑N−1
x=0 I (x,y)2

(8.25)

The autocorrelation function is point-symmetric around the origin [i.e., � (� x,� y) =
� (−� x, −� y]. Therefore, it is sufficient to compute the autocorrelation function for
only two quadrants. The maximum value of the autocorrelation function is always in
the origin where � (0,0) = 1. The autocorrelation function is suited particularly for the
detection of repeated patterns, but the broadness of the peak near the origin contains
information on the coarseness of the texture. Figure 8.9 shows the autocorrelation
functions of the sample textures in Figure 8.1. In each case, the center of the image
represents the origin of the autocorrelation function � (0,0), and � x increases from left
to right, whereas � y increases from top to bottom. The periodicity of the corduroy
and knit patterns becomes particularly obvious, but the glass texture exhibits two
local maxima close to the origin that also indicate a certain periodicity. The irregular
textures show a dominant cental peak only. However, the broadness of the central peak
conveys information on the coarseness of the texture. The broadest peak (indicating a
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FIGURE 8.9 Autocorrelation functions of the sample textures in Figure 8.1. From top left
to bottom right, the images show the autocorrelation images of tree bark (A), polished granite
(B), glass (C), carpet (D), corduroy (E), and knit (F). All autocorrelation functions have been
contrast-enhanced for better visual representation.

coarse texture) is associated with the bark texture, followed by the granite and carpet
textures.

It is difficult to extract single-quantity (scalar) metrics from the autocorrelation
image as shown in Figure 8.9, computed for the entire possible range of � x and � y.
A simple solution is the computation of scalar values for � (0,k), � (k,0), � (k,k), and
� (−k,k), where k is a parameter linearly related to the size of the texture. These four
values may be used as a feature vector. The average of these four values, �̄ (k), may
be used as a single metric or provide a different feature vector for increasing k. Also,
the ratio of perpendicular autocorrelation values, for example, � (0,k)/� (k,0), can be
used in a feature vector to represent the anisotropy.

Alternatively, higher-order autocorrelation functions can be defined.24 Equation
(8.25) describes a first-order autocorrelation function. A second-order autocorrelation
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function contains a second displaced term:

� (� x1, � y1, � x2, � y2)

=
∑M−1

y=0

∑N−1
x=0 I (x,y)I (x + � x1,y + � y1)I (x + � x2,y + � y2)∑M−1

y=0

∑N−1
x=0 I (x,y)3

(8.26)

If the displacement is restricted to a 3 × 3 neighborhood (i.e., � x ∈ {−1, 0, 1}
and � y ∈ {−1, 0, 1}), 20 different combinations of the two displacements � x1,� y1

and � x2, � y2 are possible. Together with the four possible first-order autocorrelation
values and the local neighborhood average intensity, a feature vector with 25 elements
emerges. Again, it is possible to combine different displacement sizes (i.e., � x ∈
{−k,0,k} and � y ∈ {−k,0,k}) to an even higher-order feature vector that contains
different scales. Toyoda and Hasegawa38 propose higher-order autocorrelation values
up to the eighth order, a computation that allows for a total 223 combinations of
displacements. For such high-order vectors, neural networks are commonly used for
further processing.24

Analysis of the central peak reveals information about the coarseness of the texture
and can also reveal possible self-similar properties. An additional possible texture
feature metric is the broadness of the central peak (expressed, for example, as full
width at half maximum, the width of the peak where it drops halfway from the highest
to the lowest value), or the decay of an exponential function fitted into � (r), where r
describes a straight line starting in the origin. In the example of Figure 8.9, the decay
constants are 0.001 (bark), 0.0015 (granite), and 0.0024 (carpet), providing a suitable
metric of the coarseness of the texture. Moreover, if the decay function � (r) follows
a power-law decay for small values of r [i.e., � (r) ∝ r−�], some fractal properties of
the texture can be assumed,20 and the value of �, determined by nonlinear regression,
quantifies the scaling behavior. In the examples above, a power-law curve fit into the
bark texture gives poor regression, and consequently, the bark texture would not be
considered to be fractal. However, power-law curve fits are possible with r2 ≥0.998
for both granite and carpet, providing values for � of 0.017 and 0.028, respectively.
Both textures can therefore be considered fractal with power-law scaling properties
in the autocorrelation function, and the value of � may be used to differentiate
the textures.

8.3. FREQUENCY-DOMAIN METHODS FOR
TEXTURE CLASSIFICATION

In the frequency domain, texture properties such as coarseness, graininess, or repeat-
ing patterns can be identified. Of primary interest is the spectrum’s magnitude or
the squared magnitude, (i.e., the power). Since the Fourier transform does not retain
spatial information, only global properties can be examined. To illustrate the relation-
ship between the visual appearance of a texture and its frequency-domain represen-
tation, Figure 8.10 shows the logarithmic magnitude of the Fourier transforms of the



P1: OTA/XYZ P2: ABC
c08 JWBS035-Haidekker August 26, 2010 8:3 Printer Name: Yet to Come

FREQUENCY-DOMAIN METHODS FOR TEXTURE CLASSIFICATION 255

FIGURE 8.10 Magnitude of the Fourier transform of the images in Figure 8.1. From top left
to bottom right, the images show the magnitude of the Fourier spectrum of the tree bark (A),
polished granite (B), glass (C), carpet (D), corduroy (E), and knit (F) images. Particularly in the
bottom row, the periodicity of the pattern becomes visible in the form of distinct multiple peaks.

textures in Figure 8.1. Directionality and periodicity can be particularly well seen
in the corduroy and knit examples (the bottom row). Irregular patterns can better be
characterized by the decay of the magnitude with increasing frequencies. Examples
are shown in Figure 8.11 for the bark, granite, and carpet textures. Frequencies have
been sampled along radial lines starting at the origin of the Fourier transform image
in 25◦ intervals from 0◦ to 175◦ and averaged. The averaging of Fourier transform
data along circles of constant frequency reduces both the noise component and the
effects of possibly anisotropic decays. If the texture is dominated by few large and
relatively homogeneous features (e.g., bark), low-frequency components dominate
the Fourier spectrum, and a rapid drop-off toward higher frequencies can be seen. A
robust intensity-invariant quantitative feature can be extracted by averaging several
samples at low frequencies and dividing this average by a similar average at higher
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FIGURE 8.11 Different magnitude decay behavior with higher frequencies. A texture that
is dominated by few, relatively homogeneous large areas (like the bark texture) has a large
magnitude at low frequencies and drops off rapidly toward higher frequencies. The granite and
carpet samples both show a more moderate decay of the magnitude at high frequencies, which
indicates a more irregular size distribution of the patterns.

frequencies. Very high frequencies should be avoided because those regions are usu-
ally dominated by noise. The average frequency from 5 to 10 per pixel, divided by the
average frequency from 40 to 45 per pixel, yields the ratios 9.8 (bark), 4.6 (granite),
and 3.5 (carpet). This value provides a measure of the dominance of large features
in relation to small features. Furthermore, self-similar properties of the texture can
easily be identified. If the magnitude A(	) decays with increasing frequency 	 in a
power-law fashion following the equation

A(	) ∝ 	−� (8.27)
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(i.e., the data points of magnitude over frequency in a double-logarithmic scale lie
on a straight line), self-similar behavior of the texture pattern exists, and the Hurst
exponent (H = �/2 − 1) and the fractal dimension (D = 2 − H) can be used to
quantify this behavior.

The relationship of the fractal dimension to frequency scaling behavior is explained
in detail in Section 10.4. In the example in Figure 8.10, the bark texture exhibits a
poor regression fit and cannot be considered to be self-similar. In the cases of carpet
and granite, � can be determined by linear regression of the log-transformed data with
r2 
 0.97, and the slope of the fit is 0.29 in both cases. Finding power-law scaling
behavior in the carpet and granite textures but not in the bark texture matches the
observation of similar scaling behavior in the autocorrelation function. However, the
scaling exponents differed strongly when computed with the autocorrelation function
but not with the frequency spectrum. Some experimentation is usually needed to
find suitable texture metrics that represent the texture and distinguish it from other
textures. This is one of the reasons why high-dimensional feature vectors are extracted
and analyzed.

In addition to averaging the magnitude decay over various angles, it is possible to
use orthogonal directions to obtain information on the texture anisotropy. The quantity
described above, that is, the magnitude at low frequencies divided by magnitude at
high frequencies, can be computed in different directions. This ratio R, computed over
various angles �, shows low variability in isotropic textures. Examples are the bark
and granite textures. Conversely, corduroy has a strong directional component and
would therefore show a large variability of R(�). Two possible quantitative metrics
are (a) the ratio of the largest to the smallest value of R(�), or (b) the coefficient
of variation of R(�). Very similar to the metrics obtained in the spatial domain, the
purpose of quantitatively describing multiple frequency-domain texture properties is
to obtain a feature vector that allows classification of the texture.

Although when applied globally, the Fourier transform loses all spatial informa-
tion, it is possible to subdivide the image into separate regions before performing the
Fourier transform. If the region of interest that contains the texture is known (e.g.,
after segmentation), it is possible to perform the Fourier transform on the bounding
box of the feature. Although it seems obvious to pad the image values outside the
region of interest with zeros, a possible abrupt intensity change from the feature to
the surrounding zero-valued region adds additional frequency components that need
to be accounted for. Alternatively, windowing functions as described in Section 3.2
can reduce those artifactual frequency components.

8.4. RUN LENGTHS

The run-length method13 to classify texture is very popular and widespread in the
analysis of biomedical images. A run is a sequence, in a straight scan direction,
of pixels with identical image value. The associated run length is the length of the
run, usually the number of pixels for the horizontal or vertical scan direction, or the
number of pixels multiplied by

√
2 for a diagonal direction. The notion of run lengths
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FIGURE 8.12 Test images for demonstration of the run-length method.

is related to the transmission of telefax data. Since black-and-white telefax pages
contain large areas of contiguous white, it is more efficient to transfer the information
“120 pixels of white” than actually transmitting 120 white pixels. In this example, 120
would be the length of a white run. On a black-and-white image, black and white runs
can be found, and their length distribution characterized in two histograms. Usually,
the image is scanned in four directions: 0◦, 45◦, 90◦, and 135◦. The remaining four
directions have identical histograms, due to symmetry.

Consider the test image in Figure 8.12. The pattern was generated using a cellular
automaton algorithm, where a square lattice was filled initially with black pixels
and where white pixels were randomly seeded with a probability P. Iteratively,
each pixel was set to white when the majority of pixels in its neighborhood (i.e.,
five or more pixels) were white, and set to black otherwise. Iterations are stopped
when the pattern converges. The seeding density was P = 42% in Figure 8.12A and
P = 48% in Figure 8.12B. Consequently, Figure 8.12A is dominated by longer black
runs compared to Figure 8.12B. The corresponding run-length histograms, scanned
in a horizontal direction, are shown in Figure 8.13.

The most obvious difference is the distribution of black runs in Figure 8.12A that
is indicated by the broad distribution of the histogram in Figure 8.13A (black line),
as opposed to the narrower distribution of black runs in Figure 8.12B (gray line in
Figure 8.13A). The distribution of white runs (histogram in Figure 8.13B) is not
fundamentally different between the two images in Figure 8.12A and B, although it
becomes evident that a larger overall number of white runs exists in Figure 8.12B.
If scalar values are needed to describe the texture, the histograms can be further
quantified by using the moments of the histogram or by fitting a nonlinear function
into the histogram.

The notion of run lengths can be extended to gray-scale images. In gray-scale
images, a run extends over pixels with the same gray value. Since this metric is
strongly affected by noise and minor intensity fluctuations, it is necessary to quantize
the gray-scale values. A run would now be defined as a contiguous sequence of
pixels in the scan direction, with pixel intensities falling inside a certain range. If
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FIGURE 8.13 Run-length histograms for the test images in Figure 8.12: (A) the black runs;
(B) the white runs.

an image has 256 gray levels, it could, for example, be quantized into 16 gray-scale
bins, ranging in intensity from 0 to 15, 16 to 31, 32 to 47, . . . , 239 to 255. The
optimum bin size depends on the gray-scale variation of the texture. Suitable texture
preprocessing (contrast enhancement, background flattening, histogram equalization,
and noise reduction) can strongly improve the representation of a specific texture by
run lengths. In the case of gray-scale images, the run-length histogram for each scan
direction becomes two-dimensional, with one axis being the run length, and the other
axis the gray value or gray-value bin. The probability of a specific run length is
therefore P(g,l), where g is the gray-value bin and l is the length. If the histogram has
been normalized, then

G−1∑
g=0

L∑
l=1

P(g,l) = 1 (8.28)

where G is the number of gray-scale bins (the number of bins into which the image
has been quantized) and L is the longest run. From the two-dimensional run-length
histogram, a feature vector containing seven scalar descriptive values can be extracted.
These are commonly known as SRE (short-run emphasis), LRE (long-run emphasis),
HGRE (high gray-level emphasis), LGRE (low gray-level emphasis), RLNU (run
length nonuniformity), GLNU (gray-level nonuniformity), and RPC (run percentage).
In addition, pairwise combinations of short- and long-run emphasis with low and
high gray-level emphasis result in the combined values of SRLGE (short-run, low
gray-level emphasis), SRHGE (short-run, high gray-level emphasis), LRLGE (long-
run, low gray-level emphasis), and LRHGE (long-run, high gray-level emphasis).
Equations to compute these quantitative metrics are listed in Table 8.5.

As with all other texture extraction methods, the texture is associated with a
multidimensional feature vector suitable for multidimensional thresholding or clus-
tering. Each of the 11 metrics will generally be different for the four directions. The
additional information may be used to determine texture anisotropy. For example,
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TABLE 8.5 Definition of Run-Length Metrics

Description Equation

Short-run emphasis. This metric increases
when short runs dominate, for example,
in fine-grained textures.

SRE =
G−1∑
g=0

L∑
l=1

P(g,l)

l2
(8.29)

Long-run emphasis. This metric increases
when long runs dominate, for example,
in textures with large homogeneous
areas or coarse textures.

LRE =
G−1∑
g=0

L∑
l=1

P(g,l)l2 (8.30)

Low gray-level emphasis. Emphasis is
orthogonal to SRE, and the metric
increases when the texture is dominated
by many runs of low gray value.

LGRE =
G−1∑
g=0

L∑
l=1

P(g,l)

(g + 1)2
(8.31)

High gray-level emphasis. Emphasis is
orthogonal to LRE, and the metric
increases when the texture is dominated
by many runs of high gray value.

HGRE =
G−1∑
g=0

L∑
l=1

P(g,l)(g + 1)2 (8.32)

Gray-level nonuniformity. This metric
increases when gray-level outliers
dominate the histogram.

GLNU =
L∑

l=1

⎡
⎣G−1∑

g=0

P(g,l)

⎤
⎦

2

(8.33)

Run-length nonuniformity. This metric
increases when few run-length outliers
dominate the histogram.

RLNU =
G−1∑
g=0

[
L∑

l=1

P(g,l)

]2

(8.34)

Run percentage. This metric provides
information on the overall homogeneity
of the histogram and is maximal when
all runs are of unity length irrespective
of the gray level.

RPC =
G−1∑
g=0

L∑
l=1

1

P(g,l)l
(8.35)

Short run, low gray-level emphasis. This is a
diagonal metric that combines SRE and
LGRE. The metric increases when the
texture is dominated by many short
runs of low gray value.

SRLGE =
G−1∑
g=0

L∑
l=1

P(g,l)

l2(g + 1)2
(8.36)

Long run, high gray-level emphasis. This is
the complementary metric to SRLGE
and increases with a combination of
long, high-gray value runs.

LRHGE =
G−1∑
g=0

L∑
l=1

P(g,l)l2(g + 1)2 (8.37)

Short-run, high gray-level emphasis. This
metric is orthogonal to SRLGE and
LRHGE and increases when the texture
is dominated by short runs with high
intensity levels.

SRHGE =
G−1∑
g=0

L∑
l=1

P(g,l)(g + 1)2

l2
(8.38)

Long-run, low gray-level emphasis.
Complementary to SRHGE, it increases
when the texture is dominated by long
runs that have low gray levels.

LRLGE =
G−1∑
g=0

L∑
l=1

P(g,l)l2

(g + 1)2
(8.39)
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FIGURE 8.14 Run-length histograms of some of the textures in Figure 8.1: (A) corduroy
at 0◦ scan angle, (B) corduroy at 90◦ scan angle, (C) glass, (D) carpet, (E) bark, and (F) knit,
C–F at 0◦ scan angle. The histograms have been contrast-enhanced and false-colored for better
visual representation. Black represents zero; blue low values; green, intermediate values; and
red, high values. Each histogram shows increasing gray values (16 bins) from top to bottom
and increasing run lengths (32 bins) from left to right. (See insert for color representation of
the figure.)

in a striated texture (such as the corduroy texture), long runs will be found with a
scan direction parallel to the striation, and short runs will dominate the scan direction
perpendicular to the striation. In the corduroy example, a higher value for LRE can
be expected in the 0◦ scan direction compared to the 90◦ scan direction.

Gray-scale run-length histograms of some of the textures in Figure 8.1 are shown
in Figure 8.14, and some key run-length metrics are given in Table 8.6. It can be
seen that the textures are dominated by short runs (large values for SRE). Increased
gray-level bins, background flattening, and smoothing would increase the run lengths.
The strong anisotropy of the corduroy texture can also be seen. In the vertical direction,

TABLE 8.6 Run-Length Metrics for the Run-Length Histograms Shown in Figure 8.14

Description SRE LRE LGRE HGRE GLNU RLNU

Corduroy
0◦ scan direction 535 0.037 25.5 0.36 0.15 0.35

90◦ scan direction 3093 0.016 72.0 0.85 1.26 8.50
Glass 1184 0.015 11.2 0.60 0.47 1.30
Carpet 1030 0.017 13.3 0.50 0.35 1.00
Bark 703 0.020 7.11 0.61 0.27 0.54
Knit 2961 0.0091 14.6 1.19 1.86 7.76
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short runs dominate and the vertical SRE is almost six times larger than the horizontal
SRE, while the horizontal LRE is more than two times larger than the vertical LRE.
In addition, the two nonuniformity metrics are much higher in the vertical than in the
horizontal direction. The knit texture has values similar to those of corduroy in the
vertical direction, but like all other textures, it is more isotropic than corduroy. Bark,
carpet, and glass have intermediate values, with bark showing a higher tendency
toward longer runs and more uniformity, while glass has shorter runs and more
nonuniformity. Each of the rows of Table 8.6 can be seen as a six-dimensional feature
vector (i.e., a signature that is specific for the texture).

A suggested algorithm to compute the gray-scale run-length histogram can be
found in Algorithm 8.3. This algorithm example scans along horizontal scan lines,

set gmax=256; // Choose the number of discrete gray levels in image
set gbins=16; // number of gray bins
maxrl = xm; // maximum possible run length index; changes with direction
allocate RL(gbins,maxrl+1); // Allocate RL output image (the actual 2D histogram)

for (y=0 while y�gbins increment y=y+1) do // double loop over the output image
for (x=0 while x�=maxrl increment x=x+1) do

RL(x,y)=0; // Reset accumulators
endfor;

endfor;
runcnt=0; // total number of runs (for normalization)

for (y=0 while y�ym increment y=y+1) do // loop: start point for scan line
boundary=1; // Discard boundary runs
x=0; runlength=0;
pbin = gbins*IM(x,y)/gmax; // Initialize first run
while (x�xm) do // horizontal run to right image edge

gbin = gbins*IM(x,y)/gmax; // this pixel’s gray bin
if (gbin=pbin) then // same gray level, same run

runlength = runlength+1; // Update length of this run
else // change of gray level, must store run

if (boundary=0) then // Discard runs starting at image edge
RL(pbin,runlength)=RL(pbin,runlength)+1;
runcnt=runcnt+1;

endif;
boundary=0;

endif;
x=x+1; // next pixel in scan line

endwhile;
endfor;

Algorithm 8.3 Run-length histogram for gray-scale images. This algorithm scans
along horizontal scanlines. The input image IM(x,y) is a two-dimensional image of
sizexm andym and withgmax gray levels. The algorithm produces a two-dimensional
histogram RL(g,l), where g corresponds to the gray level and l corresponds to
the run length. The variable runcnt contains the total number of runs and can be
used to normalize RL to conform to Equation (8.28). The algorithms for 45◦, 90◦,
and 135◦ are very similar.
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and each scan line starts at a pixel along the left image edge. To compute the run-
length histograms along 45◦, 90◦, and 135◦ scan lines, similar functions need to be
implemented that differ from Algorithm 8.3 in three aspects. First, the maximum
possible run length must be assigned to maxrl. Second, the scan lines start at each
pixel of the left and top image edges for 45◦, at the top image edge for 90◦, and at
the top and right image edges for 135◦. Third, the while loop needs to be adapted
for each scan direction. The algorithm is designed to discard any runs that touch
the image edges. Furthermore, the algorithm computes a variable, runcnt, that
contains the total number of runs counted. By dividing each element of the output
matrix RL by runcnt, the histogram is converted from counts to probabilities. After
this normalization, RL conforms to Equation (8.28) and contains the probability of
a specific run. This step is required to use RL in the computations of the metrics in
Equations (9.29) through (9.39). The implementation of the summations in Equations
(9.29) through (9.39) is straightforward by creating a double loop over all elements
of RL and adding up the individual elements of RL, weighted with the appropriate
factors and powers.

8.5. OTHER CLASSIFICATION METHODS

In Section 8.3, the loss of spatial information in the Fourier transform was discussed.
It is possible to retain some spatial information by applying the windowed Fourier
transform, that is, to subdivide the image into smaller square tiles and perform
an individual Fourier transform on each of these tiles. When a Gaussian weighing
function is applied to each of the tiles prior to the actual Fourier transform, the
resulting filter becomes similar to a Gabor filter. More precisely, a Gabor filter with
a filter function h(x,y) is a complex sinusoid modulated by a Gaussian function as
defined by

h(x,y) = g(x,y) exp [−2� j(Ux + Vy)]

g(x,y) = i

2��2
exp

(
− x2 + y2

2�2

)
(8.40)

where U and V scale the sinusoids (U and V are also the center coordinates of the
filter in the Fourier domain) and � is the width of the filter. It can be shown that the
frequency response H(u,v) of the filter h(x,y) is a real-valued, orientation-selective
bandpass,

H (u,v) = exp
{−2�2�2 [

(u − U )2 + (v − V )2]} (8.41)

with the pass frequency (U,V) and a bandwidth determined by �. Equation (8.40)
describes a symmetrical filter, and implementations with different bandwidths in the x
and y directions are possible. With its three parameters, U, V and �, a Gabor filter can
be tuned to emphasize specific texture features and sizes when the image is convolved
with the filter. For this reason, texture analysis is often performed with a Gabor



P1: OTA/XYZ P2: ABC
c08 JWBS035-Haidekker August 26, 2010 8:3 Printer Name: Yet to Come

264 TEXTURE ANALYSIS

filter bank that contains multiple rotated and scaled Gabor filters.39 Accordingly,
the output of the filter bank contains multiple images, each image being the result
of the convolution of the original image with one Gabor filter. For the purpose of
texture segmentation, only the magnitude of the elements of the convolved images
are considered, and each convolved image may again be convolved with a Gaussian
blurring function to improve segmentation results.41 The kth output image mk (x,y)
of the filter bank can therefore be described as

mk(x,y) = g(x,y,�s) ⊗ |hk(x,y) ⊗ I (x,y)| (8.42)

where I(x,y) is the input image, hk (x,y) the kth Gabor filter, and g(x,y,�s) a Gaussian
function with standard deviation �s. The k pixels at the same spatial coordinate can
be thought of as the feature vector of the corresponding pixel of the input image. The
feature space can be further optimized by a suitable filter design.9,41

Gabor filters are particularly suitable for textures with periodic patterns, but are
not preferred for random textures. Markov random field models are more suitable to
analyze irregular or noisy images.2 It is possible to synthesize (and therefore model)
a texture by using Markov random fields.11 A Markov random field is a graph where
the nodes represent discrete variables (in this context, image values) and the edges
are probability functions that determine the node values. A Markov random field
evolves in discrete time steps, where a node value is modified from one step to the
next, depending on the original node value (and in higher-order Markov models on
earlier values), the value of its neighbors, and the probability functions. By adapting
the probability functions, it is possible to “teach” a Markov random field to produce
(i.e., model) a specific output image, such as a specific texture. Texture can therefore
approximated by Markov random field models, and the differences between the
models used to classify texture.5

A multiscale approach to texture analysis is possible by using the wavelet decom-
position. In its simplest form, a n-element feature vector can be composed from the
histogram energy at each decomposition level.37 Alternatively, texture classification
can be performed by neighborhood methods as described in Section 8.2, for example,
by applying Laws’ energy measures.29 Starting at the lowest scale and moving to
finer scales, more and more pixels can be classified building on the coarser scales.
This approach was shown to lead to an unsupervised segmentation algorithm for
images with multiple textures.29 In a different approach, the wavelet decomposition
was used to obtain statistical and co-occurrence signatures from several scales.40

Finally, color may be used to obtain additional texture information. Color is rarely
used in medical imaging, because most modalities produce gray-scale images. Some
examples where color information is available include light microscopy, fluorescent
microscopy, and histology. Different color bands may carry different texture informa-
tion, and additional feature vector components can be gained from analyzing the red,
green, and blue components separately, by analyzing the color itself (e.g., by trans-
forming the color image into hue-saturation-value space and examining the scalar hue
component), or by converting the color image into a gray-scale image by using princi-
pal component analysis (Karhunen–Loève transform) and thus maximizing contrast.
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8.6. BIOMEDICAL EXAMPLES

In medical images, texture is generated by the inhomogeneities of the tissue being
imaged and by the imaging system itself. Most imaging systems (e.g., CT, MRI,
ultrasound) are incapable of mapping the actual tissue microstructure onto the image.
Rather, the tissue microstructure is first subjected to a contrast function and then
convolved with the point-spread function of the system. The imaging system generally
adds noise to the image, which may appear as pseudotexture that is generally unrelated
to the underlying tissue. Finally, the imaging system may perform postprocessing
steps that can have various effects on the image texture, including intensity remapping,
blurring, or detail enhancement (see, e.g., Figure 10.25). Finally, depending on the
imaging system, different scales may be imaged. A micro-CT device, for example,
is capable of revealing details on a smaller scale than a clinical MR imaging device.
The level of detail in ultrasound images depends strongly on the frequency and the
type of probe used. In all cases, the image formation process has a fundamental
influence on image texture. Therefore, a universal approach at texture analysis is not
possible. Even within the same modality, feature vectors for the same tissue may
be substantially different, depending on instrument settings and imaging conditions.
An example of how first-order statistics and co-occurrence matrix features differ
between modalities is given by Chung and Logeswaran.8 In this study, images from
the liver in healthy patients and patients with either fatty liver disease or a liver cyst
were examined. Texture features were computed on the basis of first-order statistics
and the co-occurrence matrix. Figure 8.15 demonstrates the differences between the
modalities in one specific case, the correlation based on the co-occurrence matrix
[Equation (8.13)]. Although the correlation is a normalized feature metric, both the

FIGURE 8.15 Intermodality comparison of healthy and diseased liver textures based on the
correlation feature between CT and MRI8. Shown are the minimum to maximum ranges of
47–52 cases. (From ref. 8.)
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ranges and the absolute values differ strongly between the modalities. It is notable,
however, that there is no overlap between the values of healthy and diseased cases
within one modality. In this special example, a single feature would be sufficient to
differentiate the healthy cases from the two diseased cases.

A more comprehensive overview of the performance of different classification
schemes in ultrasonic liver images was given by Wu et al.42 In this example, ul-
trasound images from patients affected by liver cirrhosis and by a hepatoma were
compared with healthy patients. Texture features based on the co-occurrence matrix
and on Law’s texture energies were used in this study. In addition, Wu et al. extended
these concepts toward a multiresolution feature extraction which reveals self-similar
properties. The actual feature classification was performed by using Bayesian classi-
fication. In this study, longer feature vectors showed better classification than shorter
feature vectors, and the three-level multifractal feature scheme performed best in
regard to classification. Similar techniques have been applied by Lupşor et al.30 to
validate the concept of a virtual liver biopsy, a noninvasive substitute for a liver
biopsy by ultrasound imaging and image analysis. In this study, patients with dif-
ferent progression of fibrosis and cirrhosis as a consequence of hepatitis C were
examined. Texture features were again computed from the co-occurrence matrix and
first-order statistics, and additional features were computed from a special version of
local gray-level box-counting43 and a gray-level difference matrix. Overall, the fea-
ture vector contained 166 elements. The study demonstrated that in different stages
of fibrosis and cirrhosis, different elements of the feature vector become relevant
for differentiating between stages of the disease. The study emphasizes the need to
closely analyze the contribution of the individual elements of the feature vector to
differentiate between textures (and their associated disease level).

In an attempt to reduce the number of elements in the feature vector, Smutek
et al.36 examined the ability of 129 feature metrics and low-dimensional combinations
of these metrics to distinguish between patients with a chronic inflammation of the
thyroid gland and healthy patients on the basis of ultrasound images. Texture feature
metrics were based on the gray-level co-occurrence matrix, and for classification, a
minimum distance classifier was used. A training set of images was used to provide
the spatial cluster information from healthy and diseased patients. After training,
several regions were examined in the ultrasound images of the test image set, and a
decision (healthy/diseased) was obtained for each region. The final decision was then
based on a majority vote. Smutek et al. identified five feature metrics that were most
relevant for differentiation between healthy and diseased cases.

These examples show the main shortcoming of texture analysis methods: namely,
their relative inflexibility when used in closely related medical applications. A train-
ing set of images allows us to develop a texture analysis chain with good sensitivity
and specificity for one specific disease, one specific modality, one specific instrument,
and even one specific set of instrument parameters. Any deviation from the imag-
ing modality or imaging parameters will invalidate the training. This shortcoming
remains an unsolved problem. Although methods to extract texture features are well
established, the texture classification is application-critical. For many applications,
neural networks have been suggested to improve classification accuracy.
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FIGURE 8.16 Artificial neural network. The basic building block is a simulated neuron (A).
The neuron creates a weighted sum of its n input values vi and modifies this sum with an
activation function f . A neural network (B) is composed of several layers of neurons, whereby
each output of one layer is connected with all neurons of the next layer. In this example, a
neural network with one hidden layer is shown. In this case, the input values are fed into the
hidden-layer neurons with the first set of weight factors, wij (1). The output of the hidden layer
is fed into the output layer with the second set of weight factors, wij (2). In each of the square
symbols, the summation takes place. Circles represent activation functions.

Figure 8.16 is a sketch of an artificial neural network. The neurons in neural
networks are modeled by processing functions that map K input signals vk onto one
single internal output x by weighted summation,

x = f

(
K∑

K=1

wkvk

)
(8.43)

where wk are individual weight factors and f is the neuron’s activation function. Each
neuron maintains its own weight vector wk. A common activation function is given by

f (x) = 1

1 + e−x
(8.44)

A different activation function is given by

f (x) =
{

1 for x ≥ T
0 for x � T

(8.45)

which produces a binary output as opposed to the continuous output in Equa-
tion (8.44).
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Neural networks most often have several layers. A vector of n input values is fed
into the input layer of neurons. Its outputs are fed into a hidden layer of neurons
with the first set of weight factors wij (1) as shown in Figure 8.16. The outputs of
the hidden layer are finally fed into the output layer with the second set of weight
factors wij (2). The outputs of the output layer are the values on which a decision
is made. Any neural network must be trained. One commonly used training process
is called backpropagation. For a training set of images, the desired output of the
network is assumed to be known. The network’s weight factors are initialized to
some arbitrary value, and for each training image, the network output and its error
E (i.e., the difference to the desired output) are computed. Variations of the weight
factors of the output layer neurons cause variations in the error E, and the partial
derivative of E toward the individual weight factors is used to update each weight
factor.35 After updating the output layer, the hidden layer is updated in a similar
fashion. After the weight factors have been computed by backpropagation training,
the network is expected to provide similar output values for similar input data. The
popularity of neural networks lies in the fact that the weight factors do not need to
have any physical meaning, and that arbitrary decisions can be trained into such a
network. In one example,19 abnormality detection in colonoscopic images was based
on four co-occurrence matrix features that were analyzed by a neural network similar
to the one described above. In the case of the study by Karkanis et al.,19 the activation
function in Equation (8.44) was used. In this specific example, the feature vector
was processed by 16 input neurons (the first layer). The output of the first-layer
neurons was fed into a hidden layer (second layer) with 21 neurons and processed
in a similar manner. Finally, the outputs of the hidden layer were fed into an output
layer consisting of two neurons. The decision (diseased versus healthy) was based on
the signals from the two output neurons.

An alternative to neural networks for texture classification was proposed by Chen
et al.6 The study examines the malignancy of breast lesions in ultrasound images, and
texture extraction was based on the normalized autocorrelation matrix of the image.
The autocorrelation [Equation (8.25)] was computed for autocorrelation distances
between 0 and 4, providing a total of 24 feature quantities, since the autocorrelation
� (0,0) = 1. By training, reference vectors were obtained for each element of the map,
and the weight factors of each map element, such as neurons [Equation (8.43)], were
updated iteratively with the training images. Unlike a neural network, however, the
self-organizing map determines the element (or neuron) with the smallest distance to
the reference vector and uses this single neuron for the decision.

Neural networks are one classification method emerging from the area of arti-
ficial intelligence.33 Another intensely studied artificial intelligence method is the
genetic algorithm. Genetic algorithms simulate a population of classifiers, including
inheritance of mutated genes to subsequent generations of classifiers, with simulated
selection of the fittest individuals. In the context of texture classification, the genes
of the population are mapping algorithms of texture feature metrics to diagnostic
outcomes. In one example31 a feature vector was extracted from shape and texture cri-
teria of digitized x-ray mammograms. The texture features were based on Haralick’s
definitions. The simulated population maps the feature vector to a diagnostic outcome,
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whereby each gene is a weight factor in the summation of the feature vector elements.
By simulating breeding, mutation, cross-breeding, and selection of the fittest indi-
viduals, optimized genes (i.e., weight vectors) emerge. For the fitness function, a
simulated individual’s ability to predict the correct outcome can be used. Genetic al-
gorithms have certain aspects in common with neural networks. The training period
of a neural network corresponds to the genetic evolution (mutation and selection)
of the genetic algorithm. In both cases, the algorithm extrapolates from the training
set of images to the test set, and it is expected that similar textures cause a similar
response or prediction. Finally, in both cases, the individual weight factors (in both
the neurons and the genes) do not necessarily represent any meaningful values that
could be related to tangible texture properties.

A different approach to classifying texture was proposed by Petrosian et al.34

for digitized x-ray images of potentially malign breast tissue. Once again, features
were extracted from the co-occurrence matrix. The three features evaluated (sum
average, correlation, and energy) were used as input for a decision tree. In a three-
value decision tree, the three input features, F1, F2, and F3 and several threshold
values, T1, T2a and T2b, T3a through T3d (Figure 8.17) were used to obtain decision
outcomes. There are eight possible outcomes (decisions), D1 through D8, to be
mapped to the diagnosis (malignant or normal).

Similar to neural networks, a training process is required to map decisions D1
through D8 to a diagnosis and to determine suitable thresholds. Training was per-
formed by searching the entire threshold space for the optimum combination of
thresholds. Although this method appears to be less efficient than training of a neural
network, its one advantage over neural networks is that supervised training can be
applied; that is, threshold values may be selected according to prior knowledge and
may relate to texture features in an intuitive, meaningful way.

FIGURE 8.17 Three-value decision tree. The features F1, F2, and F3 are compared with
seven thresholds T1 through T3d, depending on the path through the tree. The eight possible
outcomes need to be mapped to the diagnosis, and the thresholds need to be determined
(“trained”) for optimum specificity and sensitivity.
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Yet another classification approach was used by Pereira et al.32 to determine the
feasibility to distinguish between malign masses, microcalcifications, and healthy
cases of digitized x-ray mammograms. Texture analysis was performed by applying
the Haralick operators of the co-occurrence matrix. In addition, the energies EL of
the second and third decomposition level of the wavelet transform as defined by

EL = 1

NL

NL−1∑
i=0

(�i,L )2 (8.46)

where � i, L are the wavelet coefficients of the Lth decomposition level and NL is the
number of wavelet coefficients at the Lth level, were used as texture feature metrics.
Classification was performed by using the k-nearest-neighbor (k-NN) method. The
k-NN method is a training-based clustering method. Training images are used to
create clusters of points (the endpoints of the vectors) in feature space. For each
test image, the Euclidean distance to the k nearest neighbors from the training set is
calculated. The unknown sample is assigned to the class (i.e., a training set cluster),
which contributes the most neighbors to the set of k nearest neighbors.

The influence of the imaging process and imaging instrumentation on the texture
was discussed. Several studies focus on examining this influence on texture classi-
fication. Kuo et al.23 used two ultrasound scanners to obtain B-mode images of the
breast. A decision tree was built from three co-occurrence matrix features: contrast,
co-variance, and dissimilarity. However, Kuo et al. implemented these features in a
different manner, obtaining the quantities directly from the image without computing
the co-occurrence matrix. In the special case of these three feature metrics, the direct
implementation is computationally very efficient. For classification, a decision tree
was used. One important conclusion of this study was the necessity to transform
the image data to match the resolution of different ultrasound scanners. A similar
question was examined in a MRI study by Collewet et al.10 An earlier multicenter
study in which foam samples and MRI27 were used showed that texture features are
not comparable between different scanners. Before extracting texture feature metrics
from MR images of cheese samples, Collewet et al. normalized the MR image in-
tensities to either have a matching maximum or mean value (multiplicative intensity
scaling), or have a matching histogram by performing a histogram transform. Various
texture features, including Haralick’s parameters, were extracted, and classification
was performed by using the nearest-neighbor method (k-NN with k = 1). Classi-
fication results were improved with the histogram normalization, and classification
became less dependent on MR acquisition protocols.

What is the physical meaning of texture feature metrics? Few studies exist that
relate image texture to actual histology. Huber et al.17 compared metrics derived
from the co-occurrence matrix to both the visual appearance of the ultrasound
B-mode scan and to histology sections of breast tumor tissue and found that the
visual perception of the images corresponded with some features, such as mean gra-
dient and contrast. The dissimilarity metric was identified by Chen et al.7 to correlate
well with the medical diagnosis in B-mode scans of cancerous tissue: stellate lesions,
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malignant tissue mixed with fibrous and cellular parts, and circumscribed carcinomas
were associated with low, intermediate, and high dissimilarity values. The authors
conclude that the cellular and fibrous content of the cancerous region, in combination
with the spatial distribution of breast masses, determine the value of the dissimilarity
feature. In a later study, the same research group found a strong negative correlation
(r2 = 0.88) of the dissimilarity measure with the percentage of fibrosis, and a simi-
larly strong but positive correlation (r2 = 0.86) of the same measure with the percent
cellular content in histology.

Up to this point, the co-occurrence matrix was predominantly used in the examples
to extract feature values. Other methods, including Fourier-domain methods and
the run-length method, enjoy considerable popularity. Fourier-domain analysis of
trabecular bone texture is the subject of a study by Gregory et al.14 Figure 8.18 shows
magnified and contrast-enhanced trabecular texture in a projection x-ray image of the
femur and its corresponding Fourier transform.

The preferred orientation of the trabeculae can be extracted from the Fourier
transform by various means. The magnitude ratio between a low and a high spatial
frequency can be computed for various angles, and the angle where the maximum
ratio occurs is the direction perpendicular to the preferred orientation angle. Figure
8.19 shows profiles of the magnitude of the Fourier transform parallel and perpen-
dicular to the white dashed line in Figure 8.18B. The corresponding ratios for spatial
frequencies of 5 per pixel and 25 per pixel are 7.6 for the parallel direction and 19.5 for
the perpendicular direction, indicating a markedly steeper drop-off of the magnitude
along the white dashed line (and therefore perpendicular to the preferred trabecular
orientation). If self-similar properties are suspected, a rose plot (see Section 10.4) can
provide the anisotropy and preferred direction. Gregory et al.14 used several methods
to extract features from three preferred profiles: the parallel profile, the perpendicular
profile, and the average profile averaged over all circles of equal spatial frequency.
Principal components analysis and fractal analysis provided quantitative measures.

FIGURE 8.18 Magnified section of an x-ray projection image of the femur showing the
texture of the trabeculae (A). The logarithmic magnitude of the Fourier transform (B) reveals
a preferred orientation about 22◦ from the horizontal direction, as shown by the dashed white
line. (From ref. 14, permission granted through the Creative Commons License.)
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FIGURE 8.19 Profiles of the log-transformed magnitude of the Fourier transform (Figure
8.18B) parallel and perpendicular to the white dashed line.

They found that values obtained by principal component analysis from the perpen-
dicular profile provided the best predictive value for patients with and without hip
fractures.

Brown and Frayne3 present several applications of the S-transform in texture
analysis. The S-transform is a localized Fourier transform, where a Gaussian mul-
tiplicative window is applied over each single pixel of the image, and a separate
Fourier transform is performed for each pixel, providing a complete two-dimensional
spectrum for each pixel. This spectrum can be reduced to a one-dimensional spectrum
by averaging the frequencies at all angles. The dot product with a reference spectrum
can provide a similarity metric. In some biomedical examples, Brown and Frayne
showed the ability of the S-transform technique to differentiate between tumor types
in MR images and the trabecular pattern in CT images of bone from normal and
osteoporotic patients.

The run-length method has achieved considerable popularity in the analysis of
cancellous bone and the diagnosis of osteoporosis. In radiography images, CT im-
ages and even MR images, it is possible to separate bone structure from other tissue
components by its density. Images can therefore easily be segmented into bone and
nonbone pixels, and a binary run-length analysis can be applied. If a clear segmenta-
tion of the trabecular area is possible in high-resolution images, geometric features
are typically computed, such as the mean trabecular width or the mean intratrabecular
space. For image modalities with a lower resolution or for projection x-ray imag-
ing, a similar analysis can be performed on gray-level images. A recent study by
Lespessailles et al.28 highlights the usability of texture parameters obtained from
the co-occurrence matrix, through fractal analysis, and through run-length analysis
in the diagnosis of osteoporosis. This study focused on relatively few parameters:
the short-run emphasis [Equation (8.29)], the co-occurrence energy [Equation (8.9)],
and a fractional Brownian motion model to obtain the Hurst exponent H (Sec-
tion 10.1). While the focus of the study by Lespessailles et al.28 was on assessing the
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reproducibility of the texture metrics, other studies found a strong correlation of
run-length parameters with histomorphometric values4,12 and a good predictive value
with high specificity for fracture risk.18

An interesting extension of the idea of co-occurrence matrices was presented
by Kovalev et al.21 To classify very subtle texture variations in MR images of the
human brain, any voxel of the three-dimensional image was considered to be car-
rying more information than its gray-level intensity. Kovalev et al. proposed to use
intensity, gradient magnitude, and gradient orientation as orthogonal elements of in-
formation carried by each voxel. Consequently, the co-occurrence matrix becomes
six-dimensional. Kovalev et al. have shown the ability of the extended texture analysis
method to differentiate between patients with Alzheimer’s disease and normal con-
trols,21 the ability to segment diffuse brain lesions,21 and to quantify brain asymmetry
in subjects of different ages and genders.22

As computers become more and more powerful, more sophisticated methods for
texture analysis emerge. In fact, texture transformations, such as the computation of
the co-occurrence matrix, can amplify subtle texture differences that even the human
eye would find difficult to detect. Texture analysis has become a key step in the
quantitative and unsupervised analysis of biomedical images.
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9
SHAPE ANALYSIS

Shape analysis of features and texture analysis of features are related operations
in image analysis. They allow us to distinguish between classes of features. Shape
analysis, however, assumes a binary image, that is, an image partitioned into pixels
that belong to a feature and pixels that do not belong to the feature. The goal of shape
analysis, similar to texture analysis, is to obtain one or more quantitative metrics that
characterize the shape.

Figure 9.1 shows an example where shape analysis and shape-based classification
plays an important role. Normal red blood cells show a round or elliptical shape in
the microscope image of a blood smear. Some diseases, such as sickle cell disease,
affect the shape. Figure 9.1 shows a collage of red blood cells that are predominantly
normal, but with some deformed cells. Each deformed cell type (spiculated, half-
moon, sickle) occurs twice in the image with a different size and a different rotation.
With few exceptions, shape analysis is expected to provide translation-, scaling-, and
rotation-invariant metrics. A spiculated cell, for example, should be identified as such
irrespective of its size, its position in the image, and its rotation. Consider, for exam-
ple, Figure 9.2, which shows three different shapes taken from Figure 9.1B rotated
and scaled. A human observer would place the shapes in each row in the same class:
from top to bottom, round, spiculated, and half-moon, growing in size and rotated
clockwise from left to right. Also note the extra protrusion in the leftmost spicu-
lated shape, which does not change the overall visual impression. A computerized
shape classifier would typically be expected to provide similar values for each row
of shapes.

Advanced Biomedical Image Analysis, By Mark A. Haidekker
Copyright C© 2011 John Wiley & Sons, Inc.
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FIGURE 9.1 Example of shape analysis and classification. Image A shows various red
blood cells (synthetically generated image) with three types of deformation. Each deformed
cell occurs twice in the image, with a different size and rotation. Image B is the segmented
(binarized) image, obtained through thresholding, and image C was obtained by quantifying
the irregularity of the shape and using a false-color representation of the shape metric. (See
insert for color representation of the figure.)

In many cases, several segmented features exist in a single image. A single feature
is a contiguous region of connected nonbackground pixels. It is possible to distinguish
between 4- and 8-connected neighborhoods. In a four-connected neighborhood, only
pixels touching a neighboring pixel at 0◦, 90◦, 180◦, or 270◦ are considered con-
nected. In an 8-neighborhood, the diagonal neighbors are also considered connected.

FIGURE 9.2 Three different shapes, magnified and rotated from left to right. Intuitively, the
shapes in each row would be considered the same.
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In a practical application, however, the definition of connectedness should not play a
key role, because the difference between connected and nonconnected features could
too easily depend on a single noise pixel. In fact, suitable preprocessing is important
in obtaining clear shape representation and separation of neighboring shapes. Prepro-
cessing steps would include filtering to suppress noise, suitable segmentation steps,
and additional filtering steps (such as morphological operators) after segmentation.

9.1. CLUSTER LABELING

Most image processing software contain functions to distinguish different features in
an image. These are often referred to as feature labeling, particle analysis, or cluster
analysis. The most widely applied and most efficient approach to label image features
is a two-pass process. The input image to this process is assumed to be strictly binary,
with the value 1 representing feature pixels and the value 0 representing background
pixels. A counter exists that starts at a value of 2. In the first pass, the image is
scanned from left to right and from top to bottom: If a nonzero pixel has a nonzero
neighbor to the left or above, it assumes the value of that neighbor; if the scan runs
across a nonzero pixel with background pixels to the left and above, it assumes the
value of the counter, and the counter is incremented. After the first pass finishes,
all features are now assigned different image values. However, some features may
contain more than one value (e.g., in U-shaped features). For this reason, a second
pass is required in which features that contain connected regions with different image
values are renumbered until each feature contains only pixels with one unique value.
The process of cluster labeling is illustrated in Figure 9.3. The example is a U-shaped
feature, and at the end of the first pass, connected subclusters with more than one
value exist. These cases where one feature contains ambiguous numbering need to
be resolved in a separate pass.

An alternative and potentially slightly less efficient algorithm can be devised that
labels the clusters in one pass. This algorithm scans the binary input image from left
to right and from top to bottom, similarly with a counter that starts at a value of 2.
Each time the scan encounters a pixel with the value of 1, a region-growing process
is initiated, and the fully grown region is filled with the value of the counter. The
counter is then incremented. The advantage of the second algorithm lies in its more
straightforward implementation. The process of feature labeling and the extraction of
three sample shape descriptors (aspect ratio, compactness, and irregularity, as defined
in Section 9.2) for each feature is outlined in Algorithms 9.1 and 9.2. Algorithm 9.2
builds on Algorithm 9.1. The input image needs to be thresholded and is assumed
to be strictly binary; that is, all background pixels have a pixel value of zero and all
feature pixels have a value of 1. Algorithm 9.2 detects unlabeled features, whereas
Algorithm 9.1 does the actual labeling of an individual feature by region growing
and the determination of its shape descriptors. In the process of region growing, each
feature’s centroid and boundary can be computed. The centroid is the average of all
feature pixel coordinates, and a boundary pixel is any pixel that touches a background
pixel. At the end of Algorithm 9.2, the tables for irregularity, compactness, aspect
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FIGURE 9.3 Cluster labeling with the two-pass method. The image is scanned from left
to right and from top to bottom with an inverted-L shape (pixels marked gray). If the corner
pixel of the inverted L reaches a new feature (indicated by the value 1), the algorithm begins
a new cluster and assigns to it a cluster number greater than 1 (A). The algorithm cannot see
that the pixel that was discovered in part B belongs to the same cluster, and both subgroups of
connected pixels are treated as separate clusters (C). This leads to an ambiguity in part D. The
ambiguity can be resolved by assigning one of the two possible values and merging connecting
subclusters in a separate pass.

ratio, and size can be used as lookup tables, or to relabel the clusters according to
their features. This algorithm was used to generate Figure 9.1C.

9.2. SPATIAL-DOMAIN SHAPE METRICS

Widely used metrics that describe the shape of a feature are the aspect ratio, the
compactness, and the irregularity. All three metrics use the boundary points. Let us
assume that a shape has K boundary points and define the distance of the kth boundary
point at an angle � from the x-axis as rk(�):

rk(�) =
√

(xk − xc)2 + (yk − yc)2 (9.1)

where the associated angle � follows

tan � = yk − yc

xk − xc
(9.2)
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IM(xs,ys)=val; // Mark the seed pixel
sx=0; sy=0; area=0; // to compute the centroid

repeat
labeled=0; // number of pixels relabeled per iteration
for (y=1 while y�ymax-1 increment y=y+1)

for (x=1 while x�xmax-1 increment x=x+1)
if (IM(x,y)=1) then // Examine unlabeled foreground pixel

if (IM(x+1,y)=val OR IM(x-1,y)=val
OR IM(x,y+1)=val OR IM(x,y-1)=val
OR IM(x-1,y-1)=val) OR IM(x-1,y+1)=val
OR IM(x+1,y-1)=val) OR IM(x+1,y+1)=val) then

IM(x,y)=val; // Relabel 8-connected pixel
labeled=labeled+1;
area=area+1;
sx=sx+x; sy=sy+y; // for the centroid

endif;
endif;

endfor;
endfor;

until (labeled=0); // Region-growing ends if no more pixels relabeled
xc=sx/area; yc=sy/area; // the centroid

rmin=xmax+ymax; rmax=0; // to determine minimum and maximum radius
sx=0; sxx=0;
for (y=1 while y�ymax-1 increment y=y+1)

for (x=1 while x�xmax-1 increment x=x+1)
if (IM(x,y)=val) then // Examine feature pixel

n=n+1; // total number of pixels for this feature
if (IM(x+1,y)=0 OR IM(x-1,y)=0 // boundary pixel?

OR IM(x,y+1)=0 OR IM(x,y-1)=0
OR IM(x-1,y-1)=0) OR IM(x-1,y+1)=0
OR IM(x+1,y-1)=0) OR IM(x+1,y+1)=0) then

C = C+1; // Count boundary pixels
r = sqrt((x-sx)ˆ2+(y-sy)ˆ2); // distance from centroid
if r�rmax then rmax=r; // Keep track of maximum radius...
if (r�rmin) then rmin=r; // ... and minimum radius
sx=sx+r; sxx=sxx+r*r; // for the irregularity

endif;
endif;

endfor;
endfor;
A = rmax/rmin; V=sqrt(sxx-sx*sx/C)/sx; C=C*C/area;

Algorithm 9.1 Cluster region growing. This algorithm fills a contiguous region in
the input image IM(x,y) with the value val. The seed points is given by xs and
ys and must be part of the feature. The input image is assumed to be strictly binary,
with values of 0 for background and 1 for the features. At the end of this algorithm,
one cluster has been relabeled to val, and the variables A, C, and V contain the shape
descriptors of aspect ratio, compactness, and irregularity, respectively.
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allocate aspect(); // Allocate feature metric tables
allocate compact();

allocate irreg();

allocate size();

allocate centx(); allocate centy();

val=1; //Initialize label value

for (y=1 while y�ymax-1 increment y=y+1)

for (x=1 while x�xmax-1 increment x=x+1)

if (IM(x,y)=1) then // Examine unlabeled foreground pixels only
xs=x; ys=y; val=val+1; // seed pixel and label value
label region; // Region-grow this feature (Algorithm 9.1)
centx(val)=xc; centy(val)=yc; // Store feature data for this cluster
aspect(val)=A;

compact(val)=C;

irreg(val)=V;

size(val)=area;

endif;

endfor;

endfor;

Algorithm 9.2 Cluster labeling. This algorithm builds on Algorithm 9.1, here re-
ferred to aslabel region, to relabel contiguous areas. The input imageIM(x,y)
of size xmax and ymax is assumed to be strictly binary. In the process of labeling
the clusters, tables are generated that contain centroid and shape information. At the
end of this algorithm, each contiguous region (i.e., feature) is labeled with the same
pixel value. At the end of this algorithm, each feature has a unique pixel value.

This representation allows us to unroll the perimeter and convert it into a one-
dimensional function r(�) or, alternatively, into a sequence rk, 0 ≤ r � K. An
example is given in Figure 9.4, where the segmented shape (Figure 9.4A) was unrolled
beginning at its topmost point and turning counterclockwise. The unrolled perimeter
is shown in Figure 9.4C.

The aspect ratio A is defined as the ratio of the radii of the circumscribed to the
inscribed circle, which corresponds to the ratio of the largest to the smallest rk:

A = max rk

min rk
(9.3)

The aspect ratio quantifies the eccentricity of a shape. A circle has an aspect ratio of 1.
If the shape is more oval or elliptical, or has protrusions, A increases. The aspect ratio
is translation-, rotation-, and scaling-invariant within the limits of the discrete pixel
resolution of the image. Since A is based on only two salient points, the maximum
and the minimum of the sequence of rk, the aspect ratio does not provide detailed
information about the shape. The teardrop-shaped red blood cell and the sickle cell
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FIGURE 9.4 Sample cluster to illustrate some spatial-domain shape metrics. The cluster is
shown in part A after a typical segmentation process with zero-valued background (black)
and highlighted perimeter (white). The thick dashed line indicates the bounding box, and the
diagonal dashed lines are the long and short axes of an ellipse that approximates the feature.
The centroid is indicated at the intersection of the long and short axes. In part B, a circle
with radius rmean is displayed. The circle has four intersections with the shape. Furthermore,
concave regions have been filled (striped regions) to obtain the convex hull. Part C shows the
unrolled radius, with the minimum, mean, and maximum distance of the perimeter from the
centroid.

may have the same aspect ratio, yet they belong to two fundamentally different shape
classes.

The compactness C of a shape is defined as the squared perimeter length normal-
ized by the area and can be approximated by

C = 1

N

[
K−1∑
k=0

√
(xk+1 − xk)2 + (yk+1 − yk)2

]2

(9.4)

where N is the number of pixels that belong to the feature (i.e., the area), xk and yk are
the pixel coordinates of the boundary points, and xK = x0, yK = y0 to provide a closed
contour. The most compact shape possible is the circle with a theoretical value of C =
4� ≈ 12.6. Since C cannot be smaller than approximately 12.6 under the definition
of Equation (9.4), different definitions of compactness can be found, for example,

C =
√

4�N∑K−1

k=0

√
(xk+1 − xk)2 + (yk+1 − yk)2

(9.5)

This alternative value is normalized to 1 for an ideal circular shape and, being the
inverse of the definition in Equation (9.4), tends toward zero for irregular shapes.
Due to the discrete nature of images, small circles can deviate from the theoretical
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value. The compactness is a metric of the deviation from a circular shape, and C [as
defined in Equation (9.4)] increases both with eccentricity of the shape and with the
irregularity of its outline. In other words, values of C may overlap between highly
elliptical shapes with a regular outline and round shapes with an irregular outline.
The irregularity of the outline can better be quantified by the coefficient of variation
V of the rk, which can be efficiently approximated with

V =

√∑K−1

k=0
r2

k − (1/K )

(∑K−1

k=0
rk

)2

∑K−1

k=0
rk

(9.6)

Aspect ratio, compactness, and irregularity are shape metrics that are rotation-, scale-,
and translation-invariant within the limits of pixel discretization. Each of the metrics,
however, can assume similar values for different shapes as demonstrated, for example,
in Figure 9.1, where the half-moon and the spicular cells have approximately the same
value for irregularity. A multidimensional feature vector may be used to better separate
groups of features with a similar shape. An example is given in Figure 9.5, where a
two-dimensional feature vector is composed for each shape with the irregularity and
compactness as elements. All normal (round) red blood cells can be found inside the
box at the lower left corner with C ≤ 13 and V ≤ 26. The distance between the cluster
centers of the spicularly shaped and half-moon-shaped cells has been increased in
two-dimensional space. Assignment of individual shapes to feature classes may be
performed automatically by clustering methods such as k-means clustering and fuzzy
c-means clustering (Section 2.5).

From the ordered set of boundary points r(�), additional shape descriptors can
be derived, but they are to some extent related to compactness, aspect ratio, and
irregularity. By fitting an ellipse function into the boundary, the orthogonal long
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FIGURE 9.5 Separation of features with different shapes by combining two metrics, irreg-
ularity and compactness.



P1: OTA/XYZ P2: ABC
c09 JWBS035-Haidekker August 26, 2010 7:47 Printer Name: Yet to Come

284 SHAPE ANALYSIS

and short axes can be determined (Figure 9.4A), and the ratio is referred to as the
elongation. With the same axes, the bounding rectangle can be defined and the extent
of the shape, that is, the ratio of shape area to the area of the bounding rectangle can
be determined. The bounding rectangle for this shape metric is aligned with the major
and minor axes in Figure 9.4A and does not normally coincide with the bounding
box shown in Figure 9.4A. Once the average radius is known, the number of zero
crossings of r(�) and the area ratio parameter can be computed. The number of zero
crossings is the number of times the shape crosses a circle with radius rmean and with
the same centroid as the shape (Figure 9.4B). This metric is related to the irregularity.
The area ratio parameter (ARP) is defined as

ARPp = 1

Nrmean

N−1∑
i=0

�rk − rmean�p (9.7)

where the operation �a� indicates a threshold at zero, that is, a for
a � 0 and 0 for a � 0. A higher value for p causes the area ratio parameter to
more strongly emphasize spicular outliers.

A number of descriptors are based on the convex hull of the shape. One method
of obtaining the convex hull involves probing the shape in a direction tangential to
the edge from every boundary pixel. If a straight line that starts at a boundary pixel
tangential to the edge intersects the shape elsewhere, this line bridges a concavity.
Two such lines are shown in Figure 9.4B, and the difference between the original
shape and the convex shape is highlighted. The convexity metric is the ratio of the
convex hull length to the actual perimeter length, and the solidity is the ratio of
the shape area to the convex area. A metric known as Feret’s diameter, defined as
the square root of the area multiplied by 4/�, is sometimes used,22 but neither this
metric nor the perimeter/area ratio11 is scale-invariant. Although these metrics seem
to aid in the diagnosis of—in these examples—microvascular shape and malignancy
of melanocytic skin lesions, the question of whether size plays a more important
role than shape arises immediately. In other publications,6,24 Feret’s minimum and
maximum diameters are defined as the minimum and maximum distance of two
parallel tangents to the shape outline. Again, this metric is not scale-invariant.

Gupta and Srinath14 suggested using statistical moments of shape boundaries.
Under the definition of the unrolled perimeter rk, the nth boundary moment mn is
defined by

mn = 1

N

N−1∑
i=0

rn
k (9.8)

and the nth central moment is defined by (n � 1)

Mn = 1

N

N−1∑
i=0

(rk − m1)n (9.9)
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The moments mn and Mn are not scale-invariant. To obtain scale-invariant descriptors,
the normalized moments m̄n and the normalized central moments M̄n are defined
through

m̄n = mn

Mn/2
2

=
(1/N )

∑N−1

i=0
rn

k[
(1/N )

∑N−1

i=0
(rk − m1)2

]n/2

M̄n = Mn

Mn/2
2

=
(1/N )

∑N−1

i=0
(rk − m1)n

[
(1/N )

∑N−1

i=0
(rk − m1)2

]n/2

(9.10)

Finally, Gupta and Srinath14 formulated a feature vector with the scale-, translation-,
and rotation-invariant elements F1, F2, and F3, computed from the four lowest-order
moments:

F1 =
√

M2

m1

F2 = M3

(M2)3/2

F3 = M4

(M2)2

(9.11)

9.3. STATISTICAL MOMENT INVARIANTS

In analogy to the boundary statistical moments defined in Equations (9.8) to (9.10)
and the statistical moments used to describe texture (see Section 8.1), statistical
moments can be defined to describe shape. Here the pixel value of the feature is
assumed to be unity, and intensity variations do not influence the shape moments.
Statistical moments are computed from all pixels of a feature, as opposed to the
metrics in the previous section, which are computed form the boundary points only.
The kth moment Mk is defined as

Mk = 1

NF

∑
y∈F

∑
x∈F

(x − xc)k(y − yc)k (9.12)

where x,y ∈ F indicates the x- and y-coordinates of all pixels that belong to feature
F. Furthermore, NF is the size (the number of pixels) of feature F, and xc and yc

are the centroid coordinates. By computing the moment Mk relative to the centroid,
the value of the moment becomes translation-invariant. The normalization by NF

makes the Mk scale-invariant. However, under the definition of Equation (9.12), the
statistical moments are generally not rotation-invariant. Also, it can be seen that
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M0 = 1 and M1 = 0 due to the normalization. Statistical moments tend to become
larger in more irregular shapes. A more general approach was introduced by Hu18

and later extended to invariance under general affine transformations by Flusser and
Suk.12 To obtain the moment invariants (i.e., metrics that are scale-, translation-, and
rotation-invariant), Equation (9.12) is generalized to allow different powers p,q ∈ N

for the two dimensions:

Mp,q =
∑
y∈F

∑
x∈F

(x − xC )p(y − yC )q (9.13)

Similar to M1 in Equation (9.12), M1, 0 = M0, 1 = M1, 1 = 0. Furthermore, M0,0 is the
area of the shape (the number of pixels). Therefore, scaling-invariant moments can
be computed by normalizing the moment by the area,

�p,q = Mp,q

M�
0,0

� =
[

p + q

2

]
+ 1

(9.14)

where p + q ≥ 2, and [·] denotes the truncation of the decimals (integer operation).
Hu18 has defined seven feature metrics, �1 through �7, that are rotation-invariant
and by merit of the �p,q, also translation- and scaling-invariant. �1 through �7 are
defined as

�1 = �2,0 + �0,2

�2 = (�2,0 − �0,2)2 + 4�2
1,1

�3 = (�3,0 − 3�1,2)2 + (3�2,1 − �0,3)2

�4 = (�3,0 + �1,2)2 + (�2,1 + �0,3)2

�5 = (�3,0 − 3�1,2)(�3,0 + �1,2)
[
(�3,0 + �1,2)2 − 3(�2,1 + �0,3)2

]
+(3�2,1 − �0,3)(�0,3 + �2,1)

[
3(�1,2 + �3,0)2 − (�2,1 + �0,3)2

]
�6 = (�2,0 − �0,2)

[
(�1,2 + �3,0)2 − (�2,1 + �0,3)2

]
+ 4�1,1(�3,0 + �1,2)(�0,3 + �2,1)

�7 = (3�2,1 − �0,3)(�1,2 + �3,0)
[
(�1,2 + �3,0)2 − 3(�2,1 + �0,3)2

]
+ (3�1,2 − �3,0)(�2,1 + �0,3)

[
3(�1,2 + �3,0)2 − (�2,1 + �0,3)2

]
(9.15)

Although the definitions in Equation (9.15) are most commonly used, �2 and �6 can
be simplified by using �1,1 = 0, which leads to33

�2 = (�2,0 − �0,2)2

�6 = (�2,0 − �0,2)
[
(�1,2 + �3,0)2 − (�2,1 + �0,3)2

] (9.16)

�1 through �7 form a feature vector that can be used to classify the shape.



P1: OTA/XYZ P2: ABC
c09 JWBS035-Haidekker August 26, 2010 7:47 Printer Name: Yet to Come

CHAIN CODES 287

Mertzios and Tsirikolias25 propose a different definition of the statistical moments.
This definition contains a normalization by the standard deviation. The centroid
coordinates xc and yc are defined

xc = 1

NF

∑
x∈F

x, yc = 1

NF

∑
y∈F

y (9.17)

where x,y ∈ F indicates the x- and y-coordinates of all pixels that belong to feature
F, and NF is the size (the number of pixels) of feature F. The standard deviation of
both coordinates, �x and �y can be computed with

�x =
√

1

NF

∑
x∈F

(x − xc)2

�y =
√

1

NF

∑
x∈F

(y−yc)2

(9.18)

The normalized central moments are then defined through

m p,q =
∑
y∈F

∑
x∈F

(
x − xc

�x

)p (
y − yc

�y

)q

(9.19)

According to Mertzios and Tsirikolias,25 the normalized moments defined in Equation
(9.19) appear to have a better classification performance than the moments as defined
in Equation (9.13) and are less sensitive to noise.

To implement the computation of moment invariants, Algorithms 9.1 and 9.2 can
be used. The second pass in Algorithm 9.1 (the second double loop) can be extended
by performing the summation of each pixel that belongs to the cluster according to
Equation (9.13). At the end of Algorithm 9.1, the invariants �1 through �7 according
to Equation (9.15) would be computed and finally stored in tables similar to size,
compactness, aspect ratio, and irregularity in Algorithm 9.2.

9.4. CHAIN CODES

The chain code of a shape outline is the sequence of directions from one discretized
boundary point to the next. In an example, starting at an arbitrary boundary point,
the nearest boundary point in counterclockwise direction could lie to the right (east),
followed by the next point northeast and the next point north, followed by another
point to the north, and so on. The chain code would be E–NE–N–N. By replacing the
compass directions by numbers as shown in Figure 9.6, the sequence of directions
becomes 6–7–0–0. To generate the chain code of a shape, the grid on which the
boundary points are discretized does not necessarily coincide with the image pixels.
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FIGURE 9.6 Enumeration of the possible directions from one grid point to its neighbor.

Rather, a coarser grid is generally desirable to avoid encoding small irregularities of
the shape boundary that may be a consequence of image noise or the segmentation
process. The example in Figure 9.7 shows the microscopic image of a fluorescently
stained chromatid. An 8 × 8 pixel grid is superimposed (indicated by + signs), and
part of the outline is indicated (thick white line starting at S). In this example, the
chain code would start with 6–7–6–7–7–0–0–7–0–0–0 · · ·.

Chain codes can be computed on an 8-neighborhood (as in the example of Fig-
ures 9.6 and 9.7) or on a 4-neighborhood. In that case, only the directions 0, 1, 2,
and 3 would exist. The shape needs to be thick enough that its boundary can be
circled unambiguously. If two parts of one feature are linked by a single diagonally

FIGURE 9.7 Generation of the chain code in an example image, a fluorescent microscope
image of a chromatid. The chain starts at the lowermost point (labeled “S”) and proceeds in a
counterclockwise direction. The discrete grid is 8 × 8 pixels.
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connected pixel, this pixel could be traversed diagonally or at a 90◦ angle. The re-
sulting chain code depends on this decision. Furthermore, the chain code depends
on the starting pixel. A suitable choice of a starting pixel, for example, the boundary
point with the largest distance to the centroid, is necessary (but not sufficient) to
provide a rotation-invariant shape description. In an 8-neighborhood, the chain code
varies with the rotational angle of the shape because the diagonal links are longer
than the horizontal and vertical links. Russ proposes to subdivide each link into a
sequence of smaller links, five for the horizontal and vertical links, and seven for
the diagonal links.34 The rationale is that 7/5 is a good approximation of

√
2 with

the consequence that each link, whether diagonal or horizontal/vertical, would have
approximately the same length. Under this definition, the first two links in Figure
9.7 would be represented by the sequence 6–6–6–6–6–7–7–7–7–7–7–7. Dhawan
describes an adaptive scheme to subdivide the shape boundary.10 Two vertices are
defined on the boundary. Although the initial vertices may be selected arbitrarily,
the initial vertices are often placed at the end of the long axis or at points with high
curvature. The maximum deviation of the line connecting the two vertices from the
shape boundary is now determined (Figure 9.8A). If the line deviates from the curve
more than a predetermined threshold distance ε, a new vertex is created at the maxi-
mum distance of the curve from the line, and the line is subdivided to touch the new
vertex (Figure 9.8B). This divide-and-conquer approach is repeated until the approx-
imation of the curve is satisfactory (i.e., each segment deviates less than 	 from the
curve). The original line can now be used in the opposite direction to approximate
the other half of the shape. At the end of this process, the shape is approximated
by a polygon with sides that are not necessarily at 0◦ and 45◦. In a last step, the

FIGURE 9.8 Approximation of a shape outline by line segments. The maximum distance of
a line segment from the curve is determined (A), and if it exceeds a threshold distance, a new
vertex is created and the line is split to touch the new vertex (B).
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sides are subdivided into links of the chain with a horizontal, vertical, or diagonal
direction and of equal length by means of a suitable algorithm, such as the Bresenham
algorithm.5

The idea of chain codes can now be improved further by considering the orienta-
tion differences between successive segments in a counterclockwise direction, that is,
the angle between two consecutive chain segments in increments of 45◦. If the differ-
ence is positive in counterclockwise direction, positive differences indicate a convex
section, and negative differences indicate a concave section of the shape boundary.
Furthermore, symmetries of the shape are represented by symmetric sections of the
differential chain code.

To extract quantitative metrics that describe the shape, the histogram of the dif-
ferential chain code can be considered. In the differential chain code histogram, a
strongly elongated shape would be dominated by the value zero. Irregular shapes
would have higher histogram values for larger angular changes. A method that pro-
vides even more information about the shape was presented by Iivarinen et al.19

Starting with the polygonal approximation of the shape, each segment of the polygon
is in turn used as a reference line. For all segments except the one used as a refer-
ence, the angle 
 to the reference line, its minimum and maximum distances, dmin

and dmax, respectively, are computed. A two-dimensional histogram of the distance
and the angle, termed a piecewise geometric histogram, is filled by incrementing all
histogram bins with angle 
 from the smallest to the largest distance, as demonstrated
in Figure 9.9. Like all multidimensional histograms, it requires a large number of
data to be meaningful. Iivarinen et al.19 chose a large bin size to limit the size of
the histogram to 8 × 8 bins, and a 16-element feature vector was extracted from the
conditional probabilities over each row and column.

FIGURE 9.9 Construction of a pairwise geometric histogram. One line of the polygon that
approximates the shape is selected as reference line (thick line). For each of the remaining
sides of the polygon, the angle 
 to the reference line (dashed line) and the minimum and
maximum distances (dotted lines) are computed. In the pairwise geometric histogram, all bins
for angle 
 and for all distance values between dmin and dmax are incremented.
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9.5. FOURIER DESCRIPTORS

The boundary contour of a shape is a cyclic function and can be subjected to the
Fourier transform. The Fourier coefficients contain information on the frequency-
domain behavior of the shape outline. Fourier descriptors were introduced by Zahn
and Roskies,42 and difference measures to compare the similarity of shapes were
proposed by Persoon and Fu.28 Several different but related formulations of the
Fourier transform of a boundary are possible. First, the distance of the boundary
pixels from the centroid is a cyclic sequence rk, introduced in Equation (9.1). The
Fourier coefficients cn and dn (0 ≤ n ≤ K/2) can be computed through the discrete
Fourier transform:

cn = 1

K

K−1∑
k=0

rk cos

(
−2�nk

K

)

dn = 1

K

K−1∑
k=0

rk sin

(
−2�nk

K

) (9.20)

By using the complex notation, the complex Fourier coefficients Cn = cn + jdn can
be computed through

Cn = 1

K

K−1∑
k=0

rk exp

(
−2� jnk

K

)
(9.21)

The coefficients of the discrete Fourier transform are periodic with a period of K
and Cn = Cn + zK , where z is any integer number, positive or negative. The Fourier
coefficients are translation-invariant by merit of the rk, but they are neither scaling-
nor rotation-invariant. It can be seen that c0 is the mean value of the sequence rk,
that is, the average radius of the shape. Since d0 = 0, a normalization by |C0| or c0

provides scaling invariance. We can therefore define scaling- and translation-invariant
coefficients � n for n � 0:

�n = Cn

|C0| (9.22)

The Fourier translation theorem states that a phase shift (corresponding to a rotation
of the shape by the angle 
) causes a multiplicative exponential term, exp(j
), in
the Fourier transform. This term does not change the magnitude of the Fourier
coefficients, and the magnitude of � n is therefore also rotation-invariant.

Alternatively, it is possible to interpret the coordinates of a boundary pixel as a
complex number, pk = xk + j yk , where the discrete Fourier transform now becomes

Gn = 1

K

K−1∑
k=0

pk exp

(
−2� jnk

K

)
(9.23)
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Although the principle of the Fourier transform as defined in Equations (9.22) and
(9.23) is the same, there are notable differences: The coefficients Cn describe the
frequency decomposition of the unrolled perimeter, interpreted as a time series.
Consequently, C0 is the radius of a circle that best represents the shape. In other
words, C0 contains the shape’s size information. In contrast, G0 contains the centroid
of the shape. G1 describes an ellipse that represents the shape, and G1 contains the
shape’s size information. Furthermore, the Gn are translation-invariant for n � 0.
When Equation (9.23) is used to obtain the Fourier coefficients, other normalizations
need to be used to obtain rotation-, scaling-, and translation-invariant metrics: for
example, the normalization proposed originally for handprint character recognition13:

�n = G1+nG1−n

G2
1

(9.24)

or the computation of one single shape factor F from all coefficients for the classifi-
cation of suspicious breast masses,32

F =
∑N/2

n=−N/2+1
|NFDn|/|n|

∑N/2

n=−N/2+1
|NFDn|

(9.25)

where the NFDn are normalized Fourier descriptors defined as

NFDn =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for n = 0

G(n)

G(1)
for 1 ≤ n ≤ N/2

G(n + N )

G(1)
for −N/2 + 1 ≤ n ≤ −1

(9.26)

In Figure 9.10, the significance of the Fourier coefficients is shown. A circular
shape with small deviations from the best-fit circle will have low values for all Fourier
coefficients in the same way that the Fourier transform of a time function f (t) that
is almost constant will have very low or no periodic coefficients. The presence of
noise produces a broadly distributed offset since noise is a signal with a wide spectral
bandwidth. An elliptical shape unrolls into a sinusoidal wave, where one period fits
the unrolled angle range from 0 to 2�; therefore, an ellipse would have a dominant
coefficient C1. Any variations of the outline with higher frequencies increase the
values of the higher-order coefficients.

A special aspect to be considered when using Fourier descriptors is the actual
tracing of the contour. Segmentation noise generally makes the contour irregular,
even if the underlying object is smooth. To obtain an ordered sequence of rk, it is
necessary to follow the contour to sample the coordinates of the boundary pixels. The
necessity of this process is contrary to other shape descriptors, such as compactness,
aspect ratio, and irregularity, where the set of rk does not need to be processed in
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FIGURE 9.10 Unrolled radius rk (�), 0 ≤ � � 2�, of the round (A), spicular (B), and half-
moon (C) shapes in Figure 9.2 with the corresponding Fourier coefficients C1 through C9. A
round shape with small high-frequency variations of the radius exhibits low, somewhat equally
distributed coefficients. Large variations, as in the spicular example, show a broad distribution
of coefficients, whereas large low-frequency variations (half-moon shape) are associated with
high values in the lower coefficients with a fast decay toward the higher coefficients.

any specific order. Two approaches to contour tracing are possible: curve fitting and
pixel-by-pixel boundary tracking.

It is possible to approximate the contour by fitting a parametric curve. One such
approach is to use deformable models and active contours (Chapter 6), or the fitting of
splines into the known boundary pixels. The Fourier decomposition itself [Equation
(9.23)] can be used to provide a parametric representation of the contour, since the
exact shape can be reconstructed from the inverse Fourier transform:

pk =
K−1∑
n=0

Gk · exp

(
2� jnk

K

)
(9.27)

Optimization methods can be used to find a set of Gn that minimizes the squared
distance from the boundary pixels of the shape to the nearest reconstructed point pk

from Equation (9.27). Although the curve-fitting approach may not exactly represent
the boundary pixel by pixel, it avoids the pitfalls of a pixel-based tracing algorithm.
Conversely, a pixel-by-pixel contour tracing algorithm is more accurate for describing
small shapes and is generally more computationally efficient.

Pixel-by-pixel boundary tracking is based on tracing a contour by moving from
one boundary pixel to a connected boundary pixel. In the ideal case, the boundary is
the topological equivalent of a circle, but in practical cases, this idealization hardly
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FIGURE 9.11 Ambiguous configurations of boundary pixels for tracing of a contour. Light
gray pixels are boundary pixels, and white pixels are marked by a simple contour-tracing
algorithm. In part A the algorithm misses a loop and takes a shortcut over an 8-connected
pixel, whereas in part B, a right turn is missed because the shape is only 2 pixels wide.

ever occurs. Frequently, ambiguous cases exist where the boundary exhibits short
branches or loops, or where the width of the shape is no more than one or two pixels.
Two such examples are shown in Figure 9.11. In these examples, boundary pixels
(light gray) are defined as pixels that are 8-connected with the background (black). A
contour-tracing algorithm can easily miss boundary pixels when the boundary forms
an 8-connected loop (Figure 9.11A) or when the shape is less than 3 pixels wide
(Figure 9.11B). To avoid unpredictable behavior and incomplete contour tracking, the
contour-tracking algorithm needs to keep track of pixels already visited. Furthermore,
the algorithm needs to consider ambiguous cases by following all possibilities of
ambiguity. In the case of Figure 9.11A, the algorithm needs to follow both the
4-connected loop and the 8-connected shortcut. To reconcile multiple paths, the
algorithm needs to be able to backtrack along already visited pixels in case it gets
stuck (such a case is unavoidable in Figure 9.11B, where the return path along the
narrow section is blocked by already visited pixels) and needs to realize when two
possible paths meet and decide which path is the more likely boundary path. Similar
algorithms are often used in artificial-intelligence projects to guide a robot through
a labyrinth.

A straightforward and robust algorithm for tracing a contour was presented by
Sonka et al.38 Assume that we have enumerated the directions similar to Figure 9.6,
but with direction zero being East. With two tables, xdisp and ydisp, it is possible
to revert the enumerated direction to a step offset. The algorithm assumes that xs
and ys point at the leftmost pixel of the topmost row of the feature, a pixel that can
typically be found by a scan from top to bottom and for each row, from left to right.
The algorithm, designed for an 8-connected boundary, is outlined in Algorithm 9.3.
It touches each boundary pixel and allows us to store them in an array (indexed by k)
for further processing, such as the Fourier transformation or chain code analysis. For
a 4-connected neighborhood, the initial direction in the fourth line would be 3 and
the displacement tables would be [1,0,−1,0] and [0,−1,0,1], respectively. Finally,
computation of the new direction would no longer distinguish between diagonal
and horizontal/vertical cases but would simply be updated as (dir+3) mod 4.



P1: OTA/XYZ P2: ABC
c09 JWBS035-Haidekker August 26, 2010 7:47 Printer Name: Yet to Come

TOPOLOGICAL ANALYSIS 295

allocate xdisp[8]=(1,1,0,-1,-1,-1,0,1); // Allocate tables to convert enumerated...

allocate ydisp[8]=(0,-1,-1,-1,0,1,1,1); // ...directions back into displacements

x=xs; y=ys; // Initialize search coordinates

dir=7; k=0; // initial direction and step count

repeat // Enter loop to follow closed contour

repeat // Search for next boundary pixel

if (dir AND 1) then // diagonal direction

dir = (dir+6) mod 8;

else // hor/vert direction

dir = (dir+7) mod 8;

endif;

xnew=x+xdisp[dir]; // Probe the new direction

ynew=y+ydisp[dir];

if (IM(xnew,ynew)!=0) then // valid boundary pixel found

x=xnew; y=ynew; // Take the step, also a condition...

endif; // ...to exit this loop

until ((x=xnew) and (y=ynew));

// Right here, we would record x and y as functions of k

k=k+1; // Count the number of steps

until ((k�2) and (abs(x-xs)�2) and (abs(y-ys)�2));

Algorithm 9.3 Contour tracing for an 8-connected boundary. The input image is
IM(x,y) and is assumed to be binary; that is, background pixels have a value of
zero and foreground pixels have a nonzero value. The start point is xs, ys and must
be the top left boundary pixel of the shape. At the end of the inner loop, the boundary
pixels x,y as a function of the sequence indexk are available for processing or storage.

Algorithm 9.3 does not produce a rotation-invariant sequence. To obtain a rotation-
invariant sequence, the algorithm may be followed by cyclical shifting of the boundary
pixel sequence so that the starting point is a special landmark point: for example, the
boundary pixel with the largest distance to the centroid.

9.6. TOPOLOGICAL ANALYSIS

Topology is a branch of mathematics that deals with the connectivity of shapes under
certain transformations. A shape is said to be topologically invariant even if it is
stretched and bent in rubber band fashion. A shape can be thought to be drawn on
a sheet of rubber, and the shape would remain the same in terms of topology if
the rubber sheet is stretched and distorted but not torn. A trail around a lake is the
topological equivalent of the letter O, but if a bridge crosses the lake in the middle,
thus connecting two sides of the trail, it becomes a topologically different shape,
now the equivalent of the letter B. For shape analysis, the description in terms of
topology is a description of connectivity. This notion leads to graph theory, where a
graph is defined as a set of nodes (or vertices) that are connected by edges. In two
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FIGURE 9.12 The seven bridges of Königsberg (only five of them exist today) and the
associated graph, where each island is a vertex and each bridge is an edge connecting two
vertices. The notion of island includes the right and left banks as idealized infinite islands.

dimensions, edges cannot cross each other, or they would create a new vertex (and
with it, a topologically different structure). The mathematician L. Euler proved in
1735 that there is no walk that crosses the seven bridges of Königsberg once and
only once (Figure 9.12). This proof initiated the field of topology. For the purpose of
the topological description of a shape, the shape and length of the edges (here, the
bridges) are not relevant. The graph in Figure 9.12 has four vertices (the two islands
and the right and left banks) and seven edges (the bridges). Furthermore, the graph
has four holes or loops. The Euler number e, also known as the Euler characteristic,
is defined as

e = v − n + l (9.28)

where v is the number of vertices, n the number of edges, and l the number of loops.
For the graph in Figure 9.12, e = 1. In any graphlike structure, the values of v, n, l, and
e are invariant with respect to rotation, scaling, and translation. Furthermore, they are
also invariant under affine transformations. These values are therefore particularly
suited to describe a meshlike structure.

For long branched or intertwined shapes, the underlying graph of vertices and
connections can be extracted through skeletonization, a thinning process that reduces
shapes to their medial axis. Mathematically, the medial axis can be defined as the set
of centers of inscribed disks of maximum diameter that touch the shape boundary
and are tangential to the boundary without intersecting it.9 A different but related
definition uses the Euclidean distance from a pixel to the nearest background pixel:
For each feature pixel, the distance to all background pixels is computed, and the
background pixel with the minimum distance is determined. If two background pixels
with the same minimum distance exist, the corresponding feature pixel belongs to
the medial axis.4 Probably the most widely used algorithm to compute a skeleton is
the iterative algorithm of Zhang and Suen,43 which, however, has the disadvantage of
being very noise-sensitive. The skeletonization process is shown in Figure 9.13, where
a fingerprint is thresholded to provide the binary image required for skeletonization
and then thinned using the Zhang–Suen algorithm. A magnified section is shown in
Figure 9.14. A vertex is any pixel where three or more edges are joined. Any edge
that connects two vertices is called a link, any edge that is connected to only one
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FIGURE 9.13 Example of a skeletonization process. A fingerprint (A, ridges are lighter than
valleys) is thresholded (B), and the features—white ridges—are thinned by skeletonization.

vertex is called a branch, and the other end of the branch is termed an endpoint. A
closed sequence of links and vertices is called a loop. The numbers of vertices, links,
branches, and loops are the topological invariants. They describe the connectivity
of the network independent of its position, scale, or rotation, and the metrics are
theoretically invariant under affine transformations. However, in practice, even minor
changes of the binary images can cause major changes in the network. An example is
given in Figure 9.15. The skeleton of a rectangle is a line (although under alternative
definitions the medial axis transform would contain four diagonal branches). If the
rectangle contains single black pixels, the skeleton loops around those pixels. In
addition, even the slightest irregularity in the outline of the rectangle would create
additional links. Although this behavior is topologically correct (the second rectangle
in Figure 9.15 contains three holes, albeit small ones, so the graph contains three
loops), it implies that even small changes in the preprocessing or segmentation step
may cause large changes in the topological invariants. This sensitivity needs to be
taken into account when a skeleton is being used for shape characterization.

FIGURE 9.14 Magnified section of the fingerprint skeleton in Figure 9.13.
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FIGURE 9.15 Skeletonization of a solid rectangle and a rectangle with some random pixels
in it.

The skeletonization algorithm by Zhang and Suen produces a skeleton by iterative
conditional erosion of the feature. A pixel may not be deleted in the erosion process if
it is an endpoint (i.e., it has fewer than two 8-connected neighbors) or if deleting this
pixel would split an 8-connected feature into two. Zhang and Suen listed a number
of neighborhood patterns that define a boundary pixel that may be eroded. The most
efficient implementation is to use fate tables, encoded neighborhood pixel patterns
that determine whether or not a pixel may be deleted. This is particularly convenient,
as each neighbor may be encoded with 1 bit of a byte, and eight neighbors allow for
28 = 256 possible neighborhood patterns (combinations). The neighborhood and its
associated code values are explained in Figure 9.16. The code values are powers of 2,

FIGURE 9.16 Definition of the neighborhood indices from 1 to 8, clockwise, and the asso-
ciated code values (in italics).
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and adding them together produces any value from zero to 255, depending on the bit
pattern. If the top and both horizontal neighbors, for example, are set (i.e., neighbors
numbered 1, 3, and 7), the resulting code would be 1 + 4 + 64 = 69. This index
can be used to look up instructions on how to handle the central pixel (the fate of the
pixel) in a table. The actual skeletonization is iterative; that is, any boundary points
get eroded, if permitted by the fate table, until no more points have been eroded. The
permissions are slightly different in alternating iterations, and the fate table reflects
this difference. If the fate table holds a zero for a specific bit pattern, the pixel cannot
be removed. If it holds a 1, the pixel may be removed in odd-numbered iterations; if
it holds a 2, the pixel may be removed in even-numbered iterations; if it holds a 3, the
pixel may be removed in any iteration. The sixty-ninth fate table entry, to stay with
the example above, is zero. If such a bit pattern occurs, the central pixel may not be
removed. The iterative skeletonization process that builds on this scheme is shown in
Algorithm 9.4. This algorithm was used to generate Figure 9.13C from Figure 9.13B.

From the skeleton, the connectivity metrics (i.e., the topological invariants) can
be determined, such as the number of nodes, links, branches, and loops. For this
purpose the skeleton needs to be analyzed, and the following steps can be applied to
obtain these metrics. In the first pass, the neighborhood connectivity of each pixel
can be analyzed. Any pixel with exactly one neighbor is an endpoint and marks the
start of a branch. A vertex is any pixel with more than two neighbors that do not
touch other neighbors. Isolated dots (pixels with no neighbors) are also possible, but
these are generally the consequence of noise. In the next pass over the image, the
endpoints can be iteratively eroded until a vertex or another endpoint is reached. As
a result, all branches are now marked. If, in this process, a pixel is eroded from two
sides, it indicates the presence of a loop. Alternatively, the number of loops l can
be found by subtracting the number of vertices from the number of links plus one.
Finally, the Euler number can be computed through Equation (9.28). After this pass,
the only structures remaining are isolated loops that have no vertices and one branch.
If these were to be counted as loops, they would also contribute one branch each.
In addition to these topological metrics, noninvariant metrics, such as the average
length of links, branches, and loops, can be computed. Any of these metrics can be
combined to provide a feature vector for shape description. In addition, it is possible
to further process the skeleton to gain additional descriptors. The skeleton can also
be examined for self-similar properties by estimating its box-counting or Minkowsky
dimension (see Section 10.2). If a skeleton is characterized by few dominant links,
their length and curvature may be examined.

The skeletonization algorithm of Zhang and Suen does not remove all four-
connected pixels, as demonstrated in Figure 9.17. If a strictly 8-connected skeleton is
required, an additional processing step needs to be added where 4-connected pixels
are identified and removed, as in Figure 9.17B. The sensitivity of the skeletonization
process toward noise and irregular shape outlines usually leads to numerous small
branches, such as the 2-pixel branch coming off the downward link at the right side of
Figure 9.17. The skeleton can be pruned to remove those branches. A simple pruning
step would involve iterative erosion of endpoints with a limited number of iterations
and under the constraint that erosion is strictly limited to branches (i.e., vertices and
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allocate F(xmax,ymax); // fate array
allocate fatetbl[256] = {

0,0,0,1,0,3,1,1,0,0,0,0,2,2,3,3,0,0,0,0,3,0,0,0,2,0,0,0,2,0,3,2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,2,0,2,0,3,0,0,0,3,0,3,2,
0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,
2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,2,0,2,0,
0,1,0,3,0,1,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,0,3,0,0,0,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,3,0,3,0,0,0,1,0,0,0,0,0,0,0,0,3,1,0,1,0,0,0,0,3,1,0,0,2,0,0,0

};

iter=0; // Count number of iterations
repeat

n=0; // Count number of pixels removed
for (y=1 while y�ymax-1 increment y=y+1) do // Go over the entire image

for (x=1 while x�xmax-1 increment x=x+1) do
F(x,y)=0;
if (IM(x,y)�0) then // Consider only foreground pixels

p=0; // Use p to prepare the bit code (entry into fatetbl, Figure 9.16)
if (IM(x,y-1) � 0) then p=p+1;
if (IM(x+1,y-1) � 0) then p=p+2;
if (IM(x+1,y) � 0) then p=p+4;
if (IM(x+1,y+1) � 0) then p=p+8;
if (IM(x,y+1) � 0) then p=p+16;
if (IM(x-1,y+1) � 0) then p=p+32;
if (IM(x-1,y) � 0) then p=p+64;
if (IM(x-1,y+1) � 0) then p=p+128;

if ( (fatetbl[p]=3) or
(fatetbl[p]=2 and (iter AND 1) = 0) or // even iteration
(fatetbl[p]=1 and (iter AND 1) = 1) then // odd iteration

F(x,y)=1; // Mark pixel for deletion
endif;

endif;
endfor;

endfor; // Done marking; now actually delete the pixels

for (y=1 while y�ymax-1 increment y=y+1) do // Go over the entire image again
for (x=1 while x�xmax-1 increment x=x+1) do

if (F(x,y)�0) then
IM(x,y)=0; // Actually delete pixels
n=n+1; // Count number of deleted pixels

endif;
endfor;

endfor;

iter=iter+1;
until (n=0); // Converged if no more pixels deleted
delete (F);

Algorithm 9.4 Skeletonization of a binary image. The input image is IM(x,y)
with size xmax and ymax and is assumed to be binary (a background pixel is zero,
any nonzero pixels are foreground pixels). The algorithm applies the rules in the fate
table repeatedly until no more pixels have been removed. Note that the AND operator
represents a bit-wise logical operation.
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FIGURE 9.17 The skeletonization process by Zhang and Suen leaves several 4-connected
pixels in the network (A). Those pixels need to be identified and removed in a separate step if
a strictly 8-connected skeleton is desired (B).

links cannot be eroded). At the end of this step, any branch that has fewer pixels than
the number of iterations is removed completely. To restore the original, but pruned,
skeleton, the erosion step is followed by iterative dilation of the endpoints under the
constraint that only pixels that belonged to the original skeleton can be added by
dilation. After this step, all branches that have not been pruned are restored to their
original lengths.

9.7. BIOMEDICAL EXAMPLES

The methods described in this chapter are widely used in the analysis of biomedical
images and computer-aided radiology. Even simple shape metrics that are obtained
relatively easily are helpful for diagnosis. Pohlmann et al.29 analyzed x-ray mammo-
grams and used several metrics, including roughness, compactness [Equation (9.4)],
circularity [inverse irregularity, Equation (9.6)], the boundary moments [a metric
related but not identical to Equation (9.10)], and the fractal dimension of the bound-
ary, to distinguish between benign and malignant lesions. ROC analysis showed the
boundary roughness metric to be most successful, followed by a metric of margin
fluctuation: The distance between the shape outline and a filtered outline (obtained,
for example, by lowpass-filtering the unrolled boundary in Figure 9.10A and by
restoring the shape from the smoothed outline function). Boundary moments and
fractal dimension showed approximately the same discriminatory power, followed
by irregularity and compactness. Pohlmann et al.29 also demonstrated that the spa-
tial resolution of the digitized x-ray images had a strong impact on the ROC curve.
A 0.2-mm pixel size lead to poor discrimination, and increasing the resolution to
0.05 mm significantly increased the area under the curve. Further increasing the
resolution to 0.012 mm did not significantly increase the area under the curve.

The influence of resolution on the classification of mammographic lesions was
also examined by Bruce and Kallergi,7 in addition to the influence of the segmentation
method. In this study, both spatial resolution and pixel discretization were changed,
and x-rays digitized at 0.22 mm resolution and 8 bits/pixel were compared with x-rays
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digitized at 0.18 mm resolution and 16 bits/pixel. Segmentation involved adaptive
thresholding, Markov random field classification of the pixels, and a binary decision
tree. Shape features included compactness, normalized mean deviation from the av-
erage radius [Equation (9.7)], and a roughness index. Furthermore, the sequence of
rk was decomposed using the wavelet transform and the energy at each decomposi-
tion level computed, leading to a 10-element feature vector. Although the wavelet-
based energy metric outperformed the other classification metrics, it was noted that
the lower-resolution decomposition provided better classification results with the
lower-resolution images, an unexpected result attributed to the design of the segmen-
tation process. This study concludes that any classification depends strongly on the
type of data set for which it was developed.

A detailed description of the image analysis steps to quantify morphological
changes in microscope images of cell lines can be found in a publication by Metzler
et al.26 Phase-contrast images were first subjected to a thresholding segmentation,
where both the window size and the threshold level were adaptive. The window
size was determined by background homogeneity, and the threshold was computed
by Otsu’s method within the window. A multiscale morphological opening filter,
acting on the binarized image, was responsible for separating the cells. Finally, the
compactness, here formulated similar to equation (9.5), characterized the shape.
Ethanol and toxic polymers were used to change the shape of fibroblasts, and the
compactness metric increased significantly with increased levels of exposure to toxic
substances, indicating a more circular shape after exposure.

Often, spatial-domain boundary descriptors and Fourier descriptors are used
jointly in the classification process. Shen et al.37 compared the shape’s compactness
[Equation (9.4)], statistical moments [Equation (9.13)], boundary moments [Equa-
tion (9.11)], and the Fourier-based form factor [Equation (9.25)] in their ability to
distinguish between different synthesized shapes and mammographic lesions. Mul-
tidimensional feature vectors proved to be the best classifiers, but the authors of this
study concluded that inclusion of different x-ray projections and additional param-
eters, such as size and texture, should be included in the mammographic analysis
system. In fact, shape and texture parameters are often combined for classification.
Kim et al.21 define a jag counter (jag points are points of high curvature along the
boundary) and combine the jag count with compactness and acutance to differentiate
benign and malignant masses in breast ultrasound images. Acutance is a measure of
the gradient strength normal to the shape boundary. For each boundary pixel j, a gra-
dient strength dj is computed by sampling Nj points normal to the contour in pixel j,

d j =
N j∑

i=1

f (i) − b(i)

2i
(9.29)

where the f (i) are pixels inside the tumor boundary and the b(i) are pixels outside the
boundary. The acutance A is computed by averaging the dj along the boundary:

A = 1

dmax

√√√√ 1

N

N−1∑
j=0

d2
j

N j
(9.30)
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Therefore, the acutance is a hybrid metric that, unlike all metrics introduced in this
chapter, includes intensity variations along the boundary. In this study, the jag count
showed the highest sensitivity and specificity, followed by acutance and compactness.

A similar approach was pursued by Rangayyan et al.32 Image analysis was per-
formed in x-ray mammograms with the goal of classifying the lesions. The feature
vector was composed of the acutance, compactness, the Fourier-domain form factor
[Equation (9.25)], and another hybrid metric, a modification of the statistical invari-
ants presented in Equation (9.13). Here, the invariants included intensity deviations
from the mean intensity Imean as defined by

m p,q =
∑
y∈F

∑
x∈F

(x − xc)p(y − yc)q |I (x,y) − Imean| (9.31)

In this study, compactness performed best among the single features, and a combina-
tion feature vector further improved the classification.

Adams et al.1 found that a combination of a compactness measure and a spatial
frequency analysis of the lesion boundary makes it possible to distinguish between
fibroadenomas, cysts, and carcinomas, but to allow statistical separation, three MR
sequences (T1 contrast, T2 contrast, and a fat-suppressing sequence) were needed.
More recently, Nie et al.27 combined shape features (including compactness and
radial-length entropy) with volume and gray-level metrics (entropy, homogeneity,
and sum average). A neural network was trained to classify the lesion and distinguish
between benign and malignant cases.

Fourier descriptors, apart from describing shape features, can be useful for various
image processing steps. Wang et al.39 suggested using Fourier coefficients to inter-
polate the contour of the prostrate gland in magnetic resonance images. Interpolation
was performed by zero padding, adding a number of higher-frequency coefficients
with complex-zero value. The inverse Fourier transform now has more sample points
along the contour. With this technique, contour points from coronal and axial MR
scans were joined, and a sufficient number of vertices on the three-dimensional con-
tour was provided for three-dimensional visualization and determination of centroid
and size. Lee et al.23 used Fourier coefficients to obtain a similarity measure between
outlines of vertebrae in x-ray projection images. In the x-ray image, the vertebral
contour was sampled manually, and an iterative curve evolution scheme was used
to reduce the number of sample points in their dependence on the local curvature.
Based on the remaining sample points, a polygonal interpolation was used to repre-
sent the shape. This polygon was then transformed into the Fourier domain, and the
root-mean-squared distance between the Fourier coefficients was used to compare
contours and provide a similarity metric. Such a similarity metric can also be useful
in image retrieval, where similar shapes may occur in different rotational positions
or may be scaled. Sánchez-Marı́n35 used Fourier descriptors to identify cell shapes
in segmented edge images of confluent cell layers. The performance of the Fourier
descriptors was compared to that of a curvature descriptor. Cell outlines were first
filtered to create a smoothed outline and then rotated so that the sequence rk begins



P1: OTA/XYZ P2: ABC
c09 JWBS035-Haidekker August 26, 2010 7:47 Printer Name: Yet to Come

304 SHAPE ANALYSIS

with the largest value of rk. In this way, a certain measure of rotation invariance was
achieved.

Chain codes have been used frequently to characterize shape features. Shelly
et al.36 introduced image processing steps to classify cell nuclei of Pap smear cells as
normal or abnormal and to identify extracervical cells. Light microscope images were
subjected to edge detection and erosion in preparation for computation of the chain
code. The chain code length (in fact, the boundary length) was used to distinguish
nuclei from other features in the image. Other features obtained from the chain code
were the minimum diameter, the maximum diameter, and the ellipticity. In the same
context, that is, images of Pap-stained cervical cells, Bengtsson et al.2 used chain
code metrics to detect overlapping cell nuclei. The difference chain code was used
primarily to identify pairs of concavities that indicate overlapping convex shapes: in
this case, overlapping nuclei. The concavities were then characterized with a number
of metrics, such as the spacing along the contour relative to the length of the contour
and the minimum distance of the concavities relative to the length of the contour.
A decision tree was used to identify the most relevant concavities and therefore to
reduce the false positives.

Chain codes were also used for the segmentation of the left ventricular boundaries
in cardiac ultrasound images. Zheng et al.44 presented an image processing chain that
started with adaptive median filtering for noise reduction and thresholded histogram
equalization for contrast enhancement. Edge detection was based on region growing
of the low-echogenic center of the ventricle in combination with a gradient threshold
to identify edge pixels. The resulting shape was lowpass-filtered, and a polynomial
interpolation provided a smoothed contour. Finally, the chain code was obtained and
used to determine roundness, area, and wall thickness frame by frame as a function
of time.

The skeleton of a shape is used when the features in the image are elongated
rather than convex and when the features form an interconnected network. A very
popular application of connectivity analysis through skeletonization is the analysis of
the trabecular network in spongy bone. Spongy bone is a complex three-dimensional
network of strutlike structures, the trabeculae. It is hypothesized that bone microar-
chitecture deteriorates with diseases such as osteoporosis. X-ray projection images,
micro-CT images, and high-resolution MR images provide a three-dimensional rep-
resentation of the trabecular network. An example is given in Figure 9.18, which
shows digitized x-ray images of bovine vertebral bone. Figure 9.18A and B show
approximately the same region of the same bone, but before the x-ray image in Fig-
ure 9.18B was taken, the bone was exposed to nitric acid for 30 min to simulate the
microarchitectural deterioration observed in osteoporosis.3 Since x-ray absorption
by bone minerals is high, simple thresholding is usually sufficient to separate bone
regions from background. Figure 9.18C and D show the thresholded region (gray) and
the skeleton (white) of the projected trabecular structure. Visual inspection reveals the
loss of structural detail and the loss of connectivity. Skeleton metrics further demon-
strate how the connectivity has been reduced by exposure to the acid: There are more
isolated elements (33 after acid exposure and 11 before acid exposure), fewer links
and holes (2240 links and 725 holes after acid exposure; 2853 links and 958 holes
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FIGURE 9.18 Microradiographs of a slice of bovine bone (A) and the same bone after
30 minutes of exposure to nitric acid (B). Both radiographs were thresholded at the same level
(gray areas in parts C and D), and the skeleton, dilated once for better visualization and pruned
to a minimum branch length of 10 pixels, superimposed. Although the changes caused by the
acid exposure are not easy to detect in the original radiographs, they are well represented by
the connectivity metrics of the skeleton.

before acid exposure), and fewer vertices (1516 vertices after exposure; 1896 vertices
before). Conversely, there is almost no change in scaling-dependent metrics such as
the average side length. Figure 9.18 also demonstrates the sensitivity of the skeleton
toward noise and minor variations in the shape outline. The lower right corner of
Figure 9.18D contains a relatively broad area of compact bone. Skeletonization leads
to artifactual diagonal loops. These do not occur in Figure 9.18C because the section
of compact bone touches the image border. The area outside the image is considered
to be background, and consequently, there exists a straight boundary.

In a comparative study15 where the relationship of topological metrics and other
shape and texture parameters to bone mineral density, age, and diagnosed vertebral
fractures were examined, topological parameters exhibited poor relationship with the
clinical condition of the patients. Typical texture metrics, such as the run length and
fractal dimension (see Chapters 8 and 10, respectively), showed better performance.
This study seemingly contradicts the successful measurement of topological param-
eters in x-ray images of bone biopsies8,17 and high-resolution magnetic resonance
images.40 The main difference between the studies is spatial resolution. It appears
that a meaningful application of topological analysis to trabecular bone requires a
high enough resolution to resolve individual trabeculae, whereas lower-resolution
methods such as computed tomography call for different classification approaches.15

Given high enough resolution, the topological parameters allow us to characterize
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the bone in several respects. Kabel et al.20 used slice-by-slice micrographs of human
bone biopsies with a spatial resolution of 25 �m to reconstruct the three-dimensional
network of trabeculae. The Euler number, normalized by the bone volume, was
compared with the elastic properties of the bone as determined by finite-element
simulations. A weak negative correlation was found between the normalized Euler
number (used as a metric of connectivity) and the elastic modulus. These results were
corroborated in a study by Yeni et al.,41 who examined micro-CT images of bone
biopsies and also found a weak negative correlation between the volume-adjusted
Euler number and the elastic modulus. A different notion of the Euler number was
introduced by Portero et al.30 and defined as the number of holes minus the number
of trabeculae connected around the holes. This modified Euler number was found to
correlate well with the elastic modulus of calcaneus specimens determined by actual
biomechanical strength tests.31

Connectivity was found to be a relevant parameter when a question arose as
to whether the presence of gold nanoparticles would influence the cross-linking
behavior of collagen fibrils.16 Figure 9.19 shows a representative scanning electron
microscopy image of collagen fibrils together with the thresholded and skeletonized
binary images. A higher level of cross-linking was related to more curved fibrils,
which under visual observation had more self-intersections. Correspondingly, the
skeleton showed a higher number of links and a shorter average length of the links.
The overall number of holes did not differ between the nanoparticles and the control

FIGURE 9.19 Scanning electron microscope image of collagen fibrils (A). After threshold
segmentation, the skeleton can be created (B), where the gray region is the thresholded fibril
region, and white lines represent the skeleton. Connectivity, represented by the number of edges
and the number of nodes, was higher in the presence of gold nanoparticles. The connectivity
reflected the tendency of the fibrils to curl and self-intersect when gold nanoparticles were
present.
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group, giving rise to a normalized metric of the number of branches relative to the
number of holes. In the presence of nanoparticles, this number was found to be
2.8 times larger than in the control group. This ratiometric number was found to
be an objective metric of the degree of fibril cross-linking that is independent of the
number of fibrils and the microscope magnification and field of view by merit of the
normalization.
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19. Iivarinen J, Peura M, Särelä J, Visa A. Comparison of combined shape descriptors for
irregular objects. Proc 8th Br Machine Vis Conf 1997; 2:430–439.

20. Kabel J, Odgaard A, van Rietbergen B, Huiskes R. Connectivity and the elastic properties
of cancellous bone. Bone 1999; 24(2):115–120.

21. Kim KG, Kim JH, Min BG. Classification of malignant and benign tumors using boundary
characteristics in breast ultrasonograms. J Digit Imaging 2002; 15(Suppl 1):224–227.

22. Korkolopoulou P, Konstantinidou AE, Kavantzas N, Patsouris E, Pavlopoulos PM,
Christodoulou P, Thomas-Tsagli E, Davaris P. Morphometric microvascular character-
istics predict prognosis in superficial and invasive bladder cancer. Virchows Arch 2001;
438(6):603–611.

23. Lee DJ, Antani S, Long LR. Similarity measurement using polygon curve representa-
tion and Fourier descriptors for shape-based vertebral image retrieval. Proc SPIE 2003;
5032:1283–1291.

24. Loferer-Krossbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass
by transmission electron microscopy and densitometric image analysis. Appl Environ
Microbiol 1998; 64(2):688–694.

25. Mertzios BG, Tsirikolias K. Statistical shape discrimination and clustering using an effi-
cient set of moments. Pattern Recogn Lett 1993; 14(6):517–522.

26. Metzler V, Bienert H, Lehmann T, Mottaghy K, Spitzer K. A novel method for quanti-
fying shape deformation applied to biocompatibility testing. ASAIO J 1999; 45(4):264–
271.

27. Nie K, Chen JH, Yu HJ, Chu Y, Nalcioglu O, Su MY. Quantitative analysis of lesion
morphology and texture features for diagnostic prediction in breast MRI. Acad Radiol
2008; 15(12):1513–1525.

28. Persoon E, Fu KS. Shape discrimination using Fourier descriptors. IEEE Trans Syst Man
Cybern B 1977; 7(3):170–179.

29. Pohlmann S, Powell KA, Obuchowski NA, Chilcote WA, Grundfest-Broniatowski S.
Quantitative classification of breast tumors in digitized mammograms. Med Phys 1996;
23(8):1337–1345.

30. Portero NR, Arlot ME, Roux JP, Duboeuf F, Chavassieux PM, Meunier PJ. Evalua-
tion and development of automatic two-dimensional measurements of histomorphometric
parameters reflecting trabecular bone connectivity: correlations with dual-energy x-ray
absorptiometry and quantitative ultrasound in human calcaneum. Calcif Tissue Int 2005;
77(4):195–204.

31. Portero-Muzy NR, Chavassieux PM, Mitton D, Duboeuf F, Delmas PD, Meunier PJ.
Euler(strut.cavity), a new histomorphometric parameter of connectivity reflects bone



P1: OTA/XYZ P2: ABC
c09 JWBS035-Haidekker August 26, 2010 7:47 Printer Name: Yet to Come

REFERENCES 309

strength and speed of sound in trabecular bone from human os calcis. Calcif Tissue
Int 2007; 81(2):92–98.

32. Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim OA. Measures of acutance and
shape for classification of breast tumors. IEEE Trans Med Imaging 1997; 16(6):799–810.

33. Reeves AP, Prokop RJ, Andrews SE, Kuhl FP. Three-dimensional shape analysis using mo-
ments and Fourier descriptors. IEEE Trans Pattern Anal Mach Intell 1988; 10(6):937–943.

34. Russ JC. The Image Processing Handbook, 5th ed. Boca Raton, FL: Taylor & Francis,
2006.

35. Sánchez-Marı́n FJ. Automatic recognition of biological shapes with and without represen-
tations of shape. Artif Intell Med 2000; 18(2):173–186.

36. Shelly D, Goggin D, Janson SD. Shape features for recognition of pap smear cells. Proc
SPIE 1996; 2823:224–235.

37. Shen L, Rangayyan RM, Desautels JL. Application of shape analysis to mammographic
calcifications. IEEE Trans Med Imaging 1994; 13(2):263–274.

38. Sonka M, Hlavac V, Boyle R. Image Processing, Analysis, and Machine Vision, 2nd ed.
Pacific Grove, CA: Brooks/Cole, 1998.

39. Wang PC, Lin KP, Lou SA, Lin HD, Chen TS. 3D MR image segmentation of prostate
gland using two scan planes and Fourier descriptor technique. Proc SPIE 1999; 3661:1047.

40. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ. Digital topological
analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural
implications of osteoporosis. J Bone Miner Res 2001; 16(8):1520–1531.

41. Yeni YN, Zelman EA, Divine GW, Kim DG, Fyhrie DP. Trabecular shear stress amplifi-
cation and variability in human vertebral cancellous bone: relationship with age, gender,
spine level and trabecular architecture. Bone 2008; 42(3):591–596.

42. Zahn CT, Roskies RZ. Fourier descriptors for plane closed curves. IEEE Trans Comput
1972; 21(3):269–281.

43. Zhang T, Suen C. A fast parallel algorithm for thinning digital patterns. Commun ACM
1984; 27:236–239.

44. Zheng Y, Du J, Qi L, Yu D. Echocardiographic visual processing and quantitative analysis.
In: Mu G, Jin G, Sincerbox GT, editors. International Conference on Holography and Opti-
cal Information Processing (ICHOIP ’96), Nanjing, China, Dec. 31, 1996; 2866(1):46–49.



P1: OTA/XYZ P2: ABC
c10 JWBS035-Haidekker August 26, 2010 7:47 Printer Name: Yet to Come

10
FRACTAL APPROACHES
TO IMAGE ANALYSIS

Many natural objects have irregular, seemingly complex shapes. Yet often those
complex shapes are assembled from simple structures. A good example is the fern
leaf shown in Figure 10.1. This seemingly complex structure is made from small
leaflets arranged left and right along a small stem. Many of these stems grow up
and down from a larger, somewhat horizontally oriented stem. These horizontal
stems, in turn, grow right and left from the main stem. At each level, the structure
is similar to the whole: One of the branches growing sideways off the main stem,
if turned by 90◦ and magnified, would look like the whole fern leaf, a phenomenon
called self-similarity. In the human body, a good example are the lungs, where the
descending trachea branches into the bronchial trees of the left and right lungs. Each
bronchial tree consists of repeatedly (iteratively) smaller bronchial tubes branching
off larger ones. The arterial and venous blood vessels, in the liver or kidney follow
a similar rule: A major supply blood vessel splits into smaller vessels, which in turn
split into even smaller vessels down to the level of the capillaries. The concept of
self-similarity is widespread in living systems. In many cases, as in the example of
the fern, a set of rules can be formulated that generates the complex object from its
primitive structural elements. As explained later in this chapter, this set of rules is
associated with a metric, the fractal dimension, which can be interpreted intuitively
as a metric of the complexity of the shape. Shapes and textures occurring in medical
images can be classified by using methods that estimate the fractal dimension, and
since the early 1990s, the use of fractal approaches has become a standard method in
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FIGURE 10.1 A seemingly complex structure such as a fern leaf is a complex arrangement
of simple structures.

quantitative image analysis. Despite its popularity, the use of the fractal dimension
to describe complexity in medical images depends on various factors. Depending on
the image modality, image processing steps, and the method to estimate the fractal
dimension, highly diverging results may be obtained. A thorough understanding of
mathematical fractals, the property of self-similarity, and image operators to estimate
fractal properties are needed.

10.1. SELF-SIMILARITY AND THE FRACTAL DIMENSION

A mathematical fractal is obtained by iterative application of the Hutchinson operator.
A Hutchinson operator, w, takes an arbitrary object and arranges several transformed
(usually reduced) copies of the object. In mathematical terms, application of the
Hutchinson operator can be described by

w(S) =
N⋃

i=1

wi (S) (10.1)

where S is a nonempty bounded set in the embedding Euclidean space Rn, wi describes
the process of the transformation (reduction and translation) of each copy, and

⋃
denotes the union of the subsets created by each of the N transformations. Repeated
iterative application of the Hutchinson operator, Sk+1 = w(Sk), will, after an infinite
number of iterations, lead to an attractor A:

A = lim
k→∞

Sk (10.2)
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W1

W2

W3

W4

FIGURE 10.2 Example of a Hutchinson operator that creates four copies of the original
object (a line of unit length), reduced in size to one-third and arranged in the manner depicted.

The attractor A is invariant under the specific Hutchinson operator used for its creation
[i.e., A = w(A)], and it is independent of the original set S. Let us examine one specific
example for a Hutchinson operator. This example operator takes an initial set, for
example, a line of unit length, and creates four copies, w1 through w4, each of length 1

3 .
w1 shifts its copy to the left, w4 shifts its copy to the right, and w2 and w3 shift and
rotate the copy (Figure 10.2).

Repeated application of this specific Hutchinson operator creates a more and
more jagged line (Figure 10.3). The attractor of this operation is called the Koch
curve (named after Swedish mathematician Helge von Koch, who introduced this
fractal object in 1904). It is interesting to observe that the Koch curve is infinitely
long. The Hutchinson operator that generates the Koch curve arranges four copies of
the original line (of unity length) that are reduced to one-third of its original size. The
total length of the line at the first iteration, k = 1, is therefore 4

3 . At the kth iteration,
the length is ( 4

3 )k, which goes toward infinity for k → ∞. Yet the curve is still bounded
by the same length in both the horizontal and vertical directions. Furthermore, the
Koch curve is self-similar; that is, any section of the curve, magnified, looks like the
whole curve.

FIGURE 10.3 Iterative steps to generate a Koch curve.
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FIGURE 10.4 Iterative steps to construct the Sierpinsky gasket. The Hutchinson operator
arranges three copies, which are reduced by a factor of 2, in a triangular pattern.

A different Hutchinson operator generates another well-known fractal, the Sierpin-
sky gasket. In this case, three copies, reduced by one-half, are arranged in a triangular
pattern. Figure 10.4 shows eight iterations toward the Sierpinsky gasket. Notably,
the attractor (the Sierpinsky gasket) is independent of the original set S, and in this
example, the iteration starts with a circle as the initial bounded set S to demonstrate
this property. If the original set has a total surface area of A, each of the reduced
copies has a surface area of A/4 because of the factor-of-2 reduction of each side.
Since three copies are arranged, the first iteration’s surface area is 3A/4. Analogous to
the length of the Koch curve, the surface area changes by a factor of ( 3

4 )k for the kth
iteration. Evidently, the area occupied by the Sierpinsky gasket vanishes for k → ∞.
Although this fractal is embedded in a plane (the Euclidean two-dimensional space),
one would intuitively not consider it a two-dimensional object because of its vanish-
ing surface area. Yet it is not one-dimensional. A more rigid mathematical approach
uses the scaling laws defined by the Hutchinson operator. In one-dimensional space,
a reduction of a line by a factor of s allows us to place s scaled lines side by side
within the same space. Similarly, in two-dimensional space, the reduction of a square
by a scale factor of s allows us to place s2 of the reduced objects within the same area,
and in three-dimensional space, s3 cubes can be placed within the same volume. The
construction rule of the Sierpinsky gasket allows us to place a = 3 objects, scaled by
s = 1

2 , in the same space, and for the Koch curve, a = 4 objects, scaled by s = 1
3 ,

may be placed in the same space. This relationship can be generalized with a power-
law rule:

a = 1

s D
(10.3)

Here D coincides with the Euclidean dimensions 1, 2, and 3 for lines, squares, and
cubes. For fractal objects, Equation (10.3) can be solved for D, and we arrive at the
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definition of the self-similarity dimension D:

D = log a

log(1/s)
(10.4)

where a is the number of copies arranged and s is the reduction factor. For the Koch
curve (a = 4 and s = 1

3 ), the self-similarity dimension is D = log 4/log 3 ≈ 1.26,
whereas the Sierpinsky gasket (a = 3, s = 1

2 ) has a self-similarity dimension of
D = log 3/log 2 ≈ 1.59. The dimensions are noninteger, leading to the term fractal.
The noninteger dimensions of the two example fractals are intuitively acceptable.
The Sierpinsky gasket, as identified before, is not really two-dimensional with its
vanishing area. It is clearly not a one-dimensional object, though. With a dimension
of approximately 1.59, it lies between Euclidean one- and two-dimensional objects.
The same is valid for the Koch curve, with an infinitely long line folded in two-
dimensional space. However, the Koch curve is more closely related (intuitively) to
a line; hence its dimension is closer to 1, whereas the dimension of the Sierpinsky
gasket is closer to 2.

Many natural objects have self-similar properties. The silhouette of a mountain
range or the shoreline of a lake, even erosion patterns in volcanic rock, appear
self-similar; that is, smaller sections, when enlarged, look like the whole. In nature,
however, there is an aspect of randomness involved. Therefore, natural self-similar
objects do not follow the strict rules applied for the construction of mathematical
fractals. The inclusion of a random element in the Hutchinson operator is known to
create naturelike shapes. In fact, artistic renderings of synthetic landscapes of strange
beauty make use of random-based fractal generators (see, e.g., the comprehensive
book on procedural techniques by Ebert et al.,19 which makes extensive use of fractal
methods). The principle of the process is demonstrated in Figure 10.5. The starting
shape is a hexagon. For the first iteration, each of the six sides is split in two and
the midpoint of each side is displaced by a random distance. At each iteration, the
number of sides doubles. After a sufficiently large number of iterations, this process
generates a shape resembling the coastline of an island. The key to creating a self-
similar, fractal-like shape is the scaling element. The random numbers that determine
the displacement must be multiplied (i.e., reduced) by a factor of 0.5kH at the kth

FIGURE 10.5 Iterative generation of the coastline of an island. The starting shape is a
hexagon. From one iteration to the next, each side is split in two and the midpoint (the new
vertex) is displaced a random distance. With each iteration, the coastline becomes more jagged
and irregular.
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FIGURE 10.6 Islands with coastlines generated by random walk to demonstrate the influence
of the Hurst exponent H. With a small Hurst exponent, the coastline appears more jagged. A
large Hurst exponent (close to 1) creates a relatively smooth curve.

iteration. H, the Hurst exponent, is a factor that determines the overall roughness of
the shape, with 0 � H � 1. Hurst exponents close to 1 generate relatively smooth
outlines, whereas Hurst exponents closer to 0 generate jagged and irregular outlines,
as demonstrated in Figure 10.6.

The same principle can be applied to obtaining three-dimensional landscapes. The
starting object is a flat shape such as a rectangle. The rectangle is then subdivided
into four triangles and each of the vertices is displaced by a random height. Each of
the triangles is again subdivided, and each new vertex is displaced in height. This
process is repeated iteratively several hundred times. A representative result of this
process is shown in Figures 10.7 and 10.8. The displacement map can be represented
in gray scale, resulting in a gray-scale image such as that shown in Figure 10.7A. A
suitable false-color mapping combined with contour lines creates the topographical
map in Figure 10.7B. Figure 10.8 is a three-dimensional rendering of the landscape
with several added features: The landscape is colored based on the elevation, a sea

FIGURE 10.7 Landscape generation using the iterative midpoint displacement technique. A
shows the random displacements as gray values (light gray areas have a higher elevation than
dark gray areas). With suitable false coloring and added contour lines, a topographical map is
created (B). (See insert for color representation of the figure.)
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FIGURE 10.8 Three-dimensional rendering of the topographical map shown in Figure 10.7,
with elevation-dependent colors, texture-mapped sea level, and texture-mapped sky added.
(See insert for color representation of the figure.)

level is defined (i.e., a threshold), and any gray value below the sea-level threshold
is rendered as submerged; the water surface has received a mapped texture, and the
sky is rendered with a mapped cloud texture.

These considerations pave the way for the analysis of medical images using
fractal analysis tools. In a prominent example, the shape of lesions found in x-ray
mammography images has been linked to their degree of malignancy.59,64 Irregular,
particularly spicular, outlines indicate malignancy, whereas a more regular outline
indicates a benign process (Figure 10.9). A strong relationship of the lesion outlines
to the islands in Figure 10.6 is evident.

FIGURE 10.9 Abnormal masses in x-ray mammographies. (A) shows a circular, benign
mass with regular outlines; (B) shows a spiculated mass with its irregular outlines. Irregular
boundaries often indicate malignancy.
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FIGURE 10.10 Similarity of the pattern of segmented trabecular bone (C) and a fractal
generator that iteratively uses a neighborhood majority rule to set or reset a pixel (A). A
small section of trabecular bone has been thresholded and magnified, and juxtaposed with an
enlarged section of the fractal structure to demonstrate similarity (B).

A second image example for potential fractal properties are x-ray or CT images
of trabecular bone. The fractal nature of trabecular bone has been subject to intense
discussion (see e.g., references 12, 24, 42, and 48), but a number of studies that
relate deterioration of trabecular bone to a change in fractal dimension are presented
in Section 10.6. Let us consider an algorithmic process to create a fractal structure
with a random element. On a square lattice filled with black pixels, white pixels are
randomly seeded with a probability of about 50%. Next, we analyze each pixel and
count the number of white pixels in a 3 × 3 neighborhood. If the majority of the
pixels (i.e., five or more out of nine) are white, the central pixel will become white at
the end of the analysis run. Otherwise (i.e., if the majority of the pixels is black), the
central pixel will also be turned black. This run is now repeated iteratively until the
pattern converges. A typical pattern that would result from this process is shown in
Figure 10.10A. The pattern of segmented trabecular bone (Figure 10.10C) appears
strikingly similar, as demonstrated in the magnified sections in Figure 10.10B.

Since natural objects with self-similar properties contain random elements, no
construction rule exists to compute the fractal dimension analogous to the self-
similarity dimension that we used on the Sierpinsky gasket and the Koch curve. It
will therefore be necessary to investigate estimators of the fractal dimension, that is,
numerical methods to assess self-similar properties in arbitrary images. The common
principle of all estimators is to find the scaling rule (i.e., the power law) by taking
iterative measurements at different scales. The principle can be demonstrated using
the compass dimension. The length of a rugged outline is measured with different
compass settings. As the compass settings become smaller, more detail is measured.
A well-known example is the question of the length of the coastline of Great Britain.51

A compass can be used to determine the approximate, coastline length. In the example
shown in Figure 10.11, a compass setting of 120 km leads to a polygon with 24 sides,
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FIGURE 10.11 Determining the length of the coastline of England with different compass
settings.

corresponding to 2880 km. With a 60-km compass setting, the compass can follow
more details of the coast, and the new polygon has 56 sides and one incomplete side,
corresponding to approximately 3390 km. In fact, with each smaller setting of the
compass, more detail is captured, and the apparent length of the coastline increases.
If we assume self-similar properties, we can expect the data pairs of compass setting
s and measured length l to follow the power law described by

l = 1

s D
(10.5)

In Equation (10.5), D is the estimate of the fractal dimension. A similar power law
was introduced in Equation (10.3). D can be determined by taking the logarithm of
Equation (10.5) and thus obtaining the equation of a straight line that has the slope
D and goes through the origin:

log lk = −D log sk (10.6)

where lk and sk are the data pairs of compass setting s and the resulting length
l for a number of different compass settings. D can now be determined by linear
regression.
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FIGURE 10.12 Determination of the box-counting dimension. The image is subdivided into
squares of size s, and the number of squares that contain at least one pixel of the feature (in
this case, the coast of England) is counted. Scaling properties are determined by repeating this
process with different box sizes.

10.2. ESTIMATION TECHNIQUES FOR THE FRACTAL
DIMENSION IN BINARY IMAGES

10.2.1. Box-Counting Dimension

The box-counting algorithm is arguably the most widely used method to estimate the
fractal dimension. The reason for its popularity lies in its simple computer imple-
mentation and its wide applicability to features with or without self-similarity. Fur-
thermore, the box-counting algorithm can be carried out in two or three dimensions.
To compute the box-counting dimension, the image is subdivided into equal-sized
squares of side length s. Under the assumption of a binary image [background of
value zero, image object(s) of nonzero value], all boxes that contain at least one
nonzero pixel are counted. Then the box size s is increased by a certain factor, usually
doubled (Figure 10.12). The resulting data pairs of box size sk and counted boxes
nk are then log-transformed, and the box-counting dimension DB is determined by
linear regression:

log nk = −DB log sk (10.7)

Pseudocode that performs a box-counting measurement as described above is
provided in Algorithm 10.1. The algorithm expects a binary image and returns a
table of box sizes log sk and corresponding box counts log nk. Linear regression into
these data pairs yields the box-counting dimension DB . To provide a few examples,
let us examine the Sierpinski gasket (Figure 10.4), with known exact self-similarity
dimension, and the coastline (Figure 10.12), a random fractal with no known self-
similarity dimension. Table 10.1 shows the box-counting results.
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TABLE 10.1 Box-Counting Results for the Sierpinski Gasket and the Coastline

Number of Boxes Counted
Log (Number of Boxes

Counted)

Box Size s Gasket Coastline Log (1/s) Gasket Coastline

1 26,244 12,336 0 4.419 4.091
2 8,748 5,922 −0.301 3.942 3.772
4 2,916 2,595 −0.602 3.465 3.414
8 972 1,132 −0.903 2.988 3.054

16 324 470 −1.204 2.511 2.672
32 108 193 −1.505 2.033 2.286
64 36 80 −1.806 1.556 1.903
Regression slope (= box-counting dimension DB) 1.585 1.220

r2 = 1.000 r2 = 0.9991

set s=1; // initial (smallest) box size
set iterations=5; // Choose scaling range
set itercnt=0; set k=0;
allocate lnb[5], ls[5];

while (itercnt � iterations) do // main loop over the box sizes
n=0;
for (y=0 while y�ym increment y=y+s) do // double loop over the image

for (x=0 while x�xm increment x=x+s) do

// Double loop over each box to determine if a pixel is set

set flag=0;
for (y1=y while (y1�min(ym,y+s) and not flag) increment y=y+1)

for (x1=x while (x1�min(xm,x+s) and not flag) increment x=x+1)
if (IM(x1,y1)>0) then flag=1;

endfor;
endfor;
if (flag>0) then n=n+1; // at least one pixel set; count this box

endfor;
endfor;
if (n=0) then // avoid log(0), rather omit the data point

ls[k]=LOG(s); // Store size and box count data . . .

lnb [k]=LOG(n); // . . . in double-log form for later regression
k=k+1;

endif;
itercnt = itercnt+1;
s=s*2; // Double the scale, i.e., the box size

endwhile;

Algorithm 10.1 Box-counting dimension. The input image IM(x,y) is assumed
to have the pixel dimensions xm and ym. A value of zero indicates a background
pixel. The output are two corresponding tables of log box size ls() and log number
of boxes Lnb(). The box-counting dimension DB is computed by linear regression
and is the slope of the regression line into lnb over ls.
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FIGURE 10.13 Graphical representation of the data in Table 10.1. The slope of the fitted data
represents the box-counting dimension DB. In this example, the quality of the fit is extremely
high, with r2 close to unity.

The graphical representation of the data in Table 10.1, shown in Figure 10.13,
indicates a very good fit of a straight line in the log-log plot. It is crucial to verify the
goodness of this fit, since several factors can affect the box-counting results. Most
important, scaling limits exist: Box sizes smaller than the pixel size (theoretically
possible through interpolation) will not yield reasonable results. At the other end of
the scale, the data points will no longer fit the straight line either. If we superimpose
four boxes over the Sierpinsky gasket (Figure 10.4), all four boxes will be counted.
However, by merit of the construction rule, we know that the box count should be
three. When the scale is reduced by a factor of 2 (a total of 16 boxes), 12 boxes
would be counted where the construction rule allows for only 9. Only when the box
size is much smaller than the object itself do the counts match the values predicted
theoretically. The scaling rule fails in a manner similar to the coastline example. If
we continue the box-counting process toward larger boxes, with the coastline as the
object, a deviation can be observed as the data points follow a lower slope. A similar
example is the fractal structure in Figure 10.10A. When the box size becomes larger
than 8 (with a total image size of 512), all boxes are counted. For box sizes of 1, 2,
4, and 8, the resulting dimension is DB = 1.6, whereas a box-counting measurement
that starts with a box size larger than 8 yields DB = 2.00, which is the Euclidean
dimension of a plane. With unsuitably large box sizes, almost any value between 1.6
and 2 can be obtained.

In medical images, box counting at the pixel level will be confounded by the
presence of noise. Gaussian noise contributes to the box-counting result on small
scales. However, the r2 value of the linear regression may still be close to 1.00 and
does not necessarily give an indication of a result confounded by noise. It is therefore
important to examine closely at what scales self-similar properties can be expected
and to select the box size range accordingly. Different modalities (e.g., a CT image
and an x-ray image) of the same object may produce different dimension results,
often as a result of different resolution. Even different exposure rates (e.g., x-ray
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images) may result in different values for DB. For this reason, many studies compare
only groups with image acquisition parameters that are as consistent as possible.

The positioning of the box origins relative to the image features has a strong
influence on the results as well. The example of the Sierpinsky gasket in Table 10.1
shows a perfect match with the self-similarity dimension only if the fractal object
is aligned perfectly with the boxes. Shifting box origins relative to the features may
produce biased values for DB that may be either too large or too small. The presence
of multiple features (as in Figure 10.10A) may also lead to questionable results. Each
feature may have its own self-similarity property, whereas the box-counting method
yields only a single value. This value may not be characteristic for the structure
analyzed. In this case it might be preferable to analyze each feature separately or to
analyze the local scaling behavior and to examine the composition (histogram) of
local dimensions of an image. This behavior is analyzed in more detail in Section 10.5.

10.2.2. Minkowsky Dimension

The Minkowsky dimension algorithm, also known as the capacitor dimension, uses
morphological dilations to estimate scaling properties. The algorithm starts with the
outline of the feature or image to be measured. Each pixel is then expanded into
a filled circle of radius r, where r increases with each iteration. Some pixels of
an expanded circle overlap with pixels belonging to neighboring circles. The total
number of pixels gained (overlapping pixels are only counted once) is determined as
a function of the dilation radius r, resulting in data pairs of np (the number of pixels)
over r. The scaling law for the pixel gain is

n p = r H (10.8)

where H is the Hurst exponent. In two-dimensional space, the fractal dimension D is
related to the Hurst exponent H through

D = 2 − H (10.9)

In the computer implementation, the initial feature outline is subjected to morpho-
logical dilation repeatedly and iteratively. For each dilation, the corresponding radius
is identical to the iteration number (i.e., rk = k), and the pixels gained for iteration
k, that is, np, k, can be determined by counting the total pixels of the original image,
subtracted from the dilated image. For the data pairs rk and np, k obtained from several
dilations, the Hurst exponent H and the fractal dimension D can now be determined
by linear regression of the log-transformed data:

log n p,k = H log rk = H log k (10.10)

Pseudocode for a sample implementation of the Minkowsky dimension is shown
in Algorithm 10.2. A few examples illustrate the process further. Individual dots,
subjected to iterative dilations, expand to squares of 9, 25, 49, . . . total pixels. After
one iteration (k = 2), the dilation operator has expanded the dots from 1 to 9 (by
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np = 8) pixels. This is the first data pair, (2,8). Subsequent iterations yield data
pairs of (3,17), (4,32), (5,49), and so on. A linear fit into the log-transformed data
yields a slope of H ≈ 2 and therefore a dimension of D = 0, which coincides with
the Euclidean dimension of the dot: namely, zero. A straight line would dilate into
a “sausage” of thickness 2r. Its area would be approximately 2r l, where l is the
length of the line. The area scales with an exponent of H = 1, giving the correct
Euclidean dimension of 1 for the line. An example of a jagged line is presented in
Figure 10.14. As an additional example, we apply the Minkowsky algorithm to the
coastline of England (Figure 10.11). Over a large number of dilations, H = 0.74 is
obtained, resulting in a Minkowsky dimension DM = 1.26. This value is in acceptable
agreement with the dimension DB = 1.22 obtained through box counting.

The Minkowsky dimension method is less sensitive than the box-counting method
to the placement of features. However, the Minkowsky dimension algorithm fails
for filled two-dimensional shapes. Since the dilation process can only grow outward
from the shape, the pixel gain is similar to the gain obtained with a one-dimensional

set k=0; set intercnt=0;
set iterations=5;
allocate logrd[5], loga[5];
allocate IM2(xm,ym); // the dilated image

while (itercnt � iterations) do // main loop over iterative dilations
IM2 = IM; // Copy IM into IM2
dilate (IM2); // and dilate the copy (defined external to

this function)

set cnt=0;
for (y=0 while y�ym increment y=y+1) do // double loop over the image

for (x=0 while x�xm increment x=x+1) do // to count dilated pixels
If (IM(x,y) != IM2(x,y) ) then cnt=cnt+1;

endfor;
endfor;

if (cnt>0) then // avoid log(0), rather omit the data point
logrd[k]=LOG(itercnt+1); // Store size and pixel count data . . .

loga [k]=LOG(cnt); // . . . in double-log form for later regression
k = k+1;

endif;
itercnt = itercnt+1;
IM = IM2; // Prepare dilated image for next iteration

endwhile;

Algorithm 10.2 Minkowsky dimension. Similar to the box-counting method, the
input image IM(x,y) is assumed to have the pixel dimensions xm and ym. A
value of zero indicates a background pixel. This function depends on morphological
dilation, to be defined elsewhere. The output consists of two corresponding tables
of log dilation radius logrd() and log dilated area loga(). The Minkowsky
dimension DM is computed by linear regression. H is the slope of the regression line
into loga over logrd, and DM = 2 − H.
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FIGURE 10.14 Iterative dilation of a jagged line to determine the Minkowsky dimension.
Shown are the original line (A) and the difference image after 10 (B) and 24 (C) dilations. It
can be seen that a larger dilation radius causes filling of the jagged parts, so that the sensitivity
to detail is diminished after several dilations. This property defines the ability of the method
to determine scaling behavior.

shape (outline). In the coastline example, a dimension DM = 1.26 would be obtained
irrespective of whether the shape of England is filled or the outline is used. Conversely,
the box-counting method would yield a dimension of 1.83 for the filled shape as
opposed to 1.22 for the outline.

10.2.3. Mass Dimension

The mass dimension, sometimes referred to as the sandbox dimension, is typically
used on shapes with a clear center point, such as circular shapes or shapes with some
level of rotational symmetry. Good examples are growth or aggregation processes
that lead to dendritic structures growing out from an initial center point.21 Examples
include neuronal patterns22 and structures found in melting carbohydrates.60 These
structures bear a strong similarity to structures generated with a computer simulation,
introduced by Witten and Sander.71 This type of simulated structure has been well
explored, and it is known that they exhibit a fractal dimension of 1.7 over a wide
scaling range with the mass dimension being the most suitable algorithm to use to
estimate their fractal dimension.33,50,54 In fact, both the box-counting method and the
Minkowsky method underestimate the dimension and yield values for D closer to 1.5.

Starting with this central point, the number of pixels of the feature inside a circle
with radius r is determined. Then the radius is increased and the number of enclosed
pixels is determined again. The result is a series of data pairs of counted pixels,
np, as a function of the radius r. If the object underneath the expanding circle has
self-similar properties, the number of pixels obeys a power-law scaling function:

n p = r D (10.11)

In Equation (10.11), D is the mass dimension and is determined in a fashion iden-
tical to the box-counting method by log-transforming Equation (10.11) and fitting a
regression line into the data pairs of log np and log r. The slope of this line is D.

Figure 10.15 shows the use of circles of increasing radius to count enclosed
particles. The corresponding plot of the particle count as a function of the circle
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FIGURE 10.15 Determining the mass dimension of a simulated aggregation cluster. The
mass (nonbackground pixels) of the aggregate inside the circles of increasing radius is counted,
and the slope of the mass over the radius is determined on a double-logarithmic scale. (See
insert for color representation of the figure.)

radius is shown in Figure 10.16. Similar to all other fractal estimation methods, the
mass dimension is sensitive to the choice of scales. As can be seen in Figure 10.16,
the power-law relationship between particle count and circle size fails when the circle
size reaches the aggregate size.

FIGURE 10.16 Number of particles enclosed in a circle plotted as a function of the circle
diameter. This example shows the scaling limits particularly well. Whereas the particle count
inside small circles (up to a radius of approximately 150 pixels) follows a power law with an
exponent D of 1.74, the power law fails with large diameters once almost all of the aggregate
is enclosed.
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Unlike the Minkowsky method, the mass dimension is very sensitive against
translations. A different choice of the circle’s center point may lead to highly different
dimension values. At the same time, this property can be construed as an advantage,
because it allows us to analyze a structure’s local properties. In fact, a mass dimension
can be computed for each feature in a segmented image, or even for each pixel. In the
second case, local fractal dimensions give rise to the concept of multifractals. These
properties are examined more closely in Section 10.5.

Algorithm 10.3 explains how the mass dimension is computed for a single feature
in the image. Variations exist where square regions are examined instead of circular
regions, and the radius step may either be exponential as in Algorithm 10.3 or linear.
These variations will not provide fundamentally different results.

set k=0;
set iterations=5;
set itercnt=0;
set radius=10; // initial radius
allocate logrd(5), logm(5);

set xc=xm/2; set yc=ym/2; // center of image

while (itercnt � iterations) do // main loop over iterative dilations
mass=0;
for (y=yc-rad while y�=yc+rad increment y=y+1)

for (x=xc-rad while x�=xc+rad increment x=x+1)
if (SQR(x-xc)+SQR(y+yc) � SQR(rad)) then // tests circle

if (IM(x,y)�0) mass=mass+1;
endif;

endfor;
endfor;

if (mass�0) then // precaution: avoid log(0); rather, omit data point
logrd[k] = log(radius);
logm[k] = log(mass);
k=k+1;

endif;

itercnt=itercnt+1;
radius = radius*1.4; // exponential increase of radius

endwhile;

Algorithm 10.3 Mass dimension. Similar to the box-counting method, the input
image IM(x,y) is assumed to have the pixel dimensions xm and ym. A value of
zero indicates a background pixel. For the mass dimension, a suitable choice of the
circle center (xc,yc) is crucial. In this example, the feature to be examined is
assumed to be centered with respect to the whole image.
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10.3. ESTIMATION TECHNIQUES FOR THE FRACTAL DIMENSION
IN GRAY-SCALE IMAGES

In Section 10.2, estimation methods for the fractal dimension were introduced that
work on sets. To obtain a set, the image must be segmented, that is, divided into
the feature (set) and background. The notion of fractal dimension can be extended to
gray-scale images. In this case, additional information from the image (the gray-value
information) is retained. Whereas binary images allow quantitative analysis of the
shape of a feature, the methods that operate on gray-scale images focus more on the
texture. As demonstrated in Figure 10.8, the gray value (the image value) of a pixel
can be interpreted as elevation. The image can be thought of as a mountainscape,
with white pixels being the points with the highest elevation and dark regions being
the valleys. In this interpretation, the image becomes a surface embedded in three-
dimensional space, much as a jagged line (such as the Koch curve) is embedded in
two-dimensional space. Correspondingly, the resulting value of the fractal dimension
can be expected to lie between two and three.

10.3.1. Blanket Dimension

The most widely applied estimator of the fractal dimension in gray-scale images is a
variation of the box-counting dimension often referred to as the blanket dimension.
The surface of the landscape is tightly covered with a blanket, and the surface area is
computed. Each pixel forms a triangle with two adjoining pixels. Since each pixel has
an elevation, the area of each triangle is different. The sum of all triangular areas is the
total surface area. In the next iterative step, four adjoining pixels are averaged to form
a single pixel. The averaged image now has twice the base length of the triangles.
Since the averaging process has a smoothing effect, the averaged surface is less
jagged. Therefore, an irregular surface will have a smaller total area of the triangles
than that of the original image, although the size of the individual triangles has
increased. This process is illustrated in Figures 10.17 and 10.18. Figure 10.17 shows
a cross-sectional CT image of segmented trabecular bone and the corresponding three-
dimensional landscape representation. In Figure 10.18, neighboring pixels have been
averaged to form larger blocks of size 1 (original resolution), 2, 4, and 8. The resulting
surface becomes less jagged with a larger block size, and the surface area decreases
correspondingly. Analogous to Equation (10.7), the scaling law of the binary box-
counting dimension, the surface area A will relate to the box size s through a scaling
law with noninteger exponent H:

log Ak = −H log sk (10.12)

The surface dimension Ds related to H through Ds = 2 − H [Equation (10.9)].
The slope H is obtained through linear regression of the log-transformed data

pairs, the surface area Ak, and the corresponding size of the averaging box sk, for
each averaging step k. The log-transformed data pairs corresponding to the surface
plots in Figure 10.18 and the regression line are shown in Figure 10.19. It can be seen
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FIGURE 10.17 Elevation landscape representation of the segmented spongy area of a ver-
tebral CT image. The left panel shows one cross-sectional CT slice through the vertebra with
the spongy area highlighted. The right image is the corresponding elevation map. The white
arrow indicates the view direction. (See insert for color representation of the figure.)

FIGURE 10.18 Four steps in the process of calculating the blanket dimension. Starting
with the top left image, the landscape is drawn with one pixel per box (s = 1), whereas in
subsequent iterations 4 pixels (s = 2), 16 pixels (s = 4), and 64 pixels (s = 8) are averaged. As
a consequence, the elevation landscape becomes less jagged and the surface area decreases.
(See insert for color representation of the figure.)
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FIGURE 10.19 Double-logarithmic plot of the surface area as a function of the averaged
box size, corresponding to s = 1 through s = 4 in Figure 10.18. The slope of the fitted line is
−0.22, corresponding to a blanket dimension of 2.22. The line shows a poor fit, revealing that
the surface area does not scale with the same factor at small box sizes.

that the scaling law does not hold over the box sizes analyzed. The scaling behavior
needs to be examined properly. Several factors may account for a change of the slope
over different scales. The presence of noise in medical images introduces its own
contribution to the apparent dimension at small scales, because noise exists at the
pixel level. Normally, noise would increase the apparent fractal dimension at very
small scales. Conversely, if the resolution is higher than the image details, a reduction
in the apparent fractal dimension at small scales is seen. Figure 10.19 is an example of
this behavior. The loss of self-similarity at small scales could ideally be demonstrated
using interpolated images. Because interpolation does not provide new information,
the fractal dimension would be smaller at the interpolated scales. A careful choice
of the scales at which the image is analyzed is essential for accurate estimation of
the fractal dimension. Segmented objects with a jagged outline may contribute an
additional element of self-similarity, because the outline itself influences the surface
area calculation. An advanced algorithm used to compute the blanket dimension
would therefore exclude any boxes that are not filled completely with pixels belonging
to the feature.

Two principles are available for use in computing blanket dimensions. One prin-
ciple uses the tessellation of the surface into triangles of increasing projected size s.
This is the principle applied in Figure 10.18 and Algorithm 10.4. Similar results are
obtained when the pixels are interpreted as elongated cuboids with a projected size
in the xy-plane of s × s pixels and a height corresponding to the image value. The
surface area of the sides is limited by the height of the neighboring pixels. Similar
to Algorithm 10.4, the total surface area is computed and the scaling properties with
increasing cuboid size are determined. This notion is often termed the Manhattan
dimension because of the resemblance of the pixel cuboids to Manhattan skyscrapers.
Note that Algorithm 10.4 requires the definition of a function to compute the area of
a triangle given by its three vertices (triangle area). If the vertex coordinates
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set s=1;
set iterations=5; // Choose the scaling range
set itercnt=0;
allocate lnA[iterations], ls[iterations];
allocate IM2(xm,ym); // A scaled-down version of the image
set n=0;

while (itercnt � iterations) do // main loop over the box sizes
n=0;
sarea=0;
for (y=0 while y�ym-1 increment y=y+2) do // double loop over the image

for (x=0 while x�xm-1 increment x=x+2) do
a1=triangle area (0,0,IM(x,y), s,0,IM(x+1,y), 0,s,IM(x,y+1));
a2=triangle area (s,s,IM(x,y), s,0,IM(x+1,y), 0,s,IM(x,y+1));
sarea = sarea+a1+a2; // add to total surface area
area=area+s;
// Now create a scaled-down, averaged version of the image
IM2(x/2,y/2)=0.25*(IM(x,y)+IM(x+1,y)+IM(x,y+1)+IM(x+1,y+1));

endfor;
endfor;
IM=IM2; // Copy the scaled-down image to the main location
if (sarea � 0) then

ls[n]=LOG(area); // Store log size data . . .

lnA [n]=LOG(sarea); // . . . and log surface area for regression
n=n+1;

endif;
itercnt = itercnt+1;
s = s*2; // new scale factor
xm=xm/2; ym=ym/2; // new scaled-down image dimensions

endwhile;

Algorithm 10.4 Blanket dimension. In this basic version, the input image IM(x,y)
with the pixel dimensions xm and ym is assumed to be completely filled by the
feature, so that the feature boundary cannot introduce multifractal elements. The
output consists of two corresponding tables of log box size ls() and log surface
area lnA(). The blanket dimension Ds is computed by linear regression. With H
being the slope of the regression line into lnA over ls, the dimension Ds = 2−H.
This algorithm relies on a formula to compute the area of a triangle, given by its three
vertices (triangle area).

are designated xi, yi, and zi with 1 ≤ i ≤ 3 (and passed to the function in this order),
the area A can be computed:

a =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

b =
√

(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2

c =
√

(x2 − x3)2 + (y2 − y3)2 + (z2 − z3)2 (10.13)

s = 0.5(a + b + c)

A = s(s − a)(s − b)(s − c)
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10.3.2. Gray-Scale Generalization of the Minkowsky and Mass Dimensions

The definition of the morphological dilation, which is the basis for the Minkowsky
dimension, allows its application on gray-scale images. In gray-scale dilation, the
center pixel is replaced by the maximum value of its 3 × 3 neighborhood. To
determine the scaling behavior, the image mean value is calculated and recalculated
after iterative dilations. The image mean value increases with each dilation, but
the increase is less pronounced because of the loss of detail associated with each
dilation. If a scaling behavior analogous to Equation (10.10) can be observed, with
the exception that the number of pixels np, k is now substituted by the image mean
value, the measured exponent H can be used to compute the gray-scale Minkowsky
dimension through DM = 2−H. In an analogous definition of the mass enclosed by a
circle of radius r, the number of pixels in Equation (10.11) needs to be substituted by
the sum of the image intensity values. Algorithms 10.2 and 10.3 can be generalized
to operate on gray-scale images with minimal changes. One advantage of generalized
algorithms is elimination of the segmentation step. However, the gray-scale versions
of algorithms report self-similar properties of the texture, whereas the binary versions
report self-similar properties of the shape of the feature. Therefore, each of the two
versions has specific applications.

10.4. FRACTAL DIMENSION IN THE FREQUENCY DOMAIN

The Fourier transform and its properties were discussed in Chapter 3. Of particular
importance is the property of edges, boundaries, and irregularities in general to cor-
respond to broadband frequency components. The underlying principle that allows
a definition of a fractal dimension in the frequency domain is the question: How
fast does the amplitude of the signal or image drop off toward higher frequencies?
Intuitively, the frequency transform of an image with smooth features would show
a steeper drop-off toward higher frequencies than would an image with many dis-
continuities and irregular features. Once again, the analysis of random processes
lends itself to a rigid definition of the fractal dimension in the frequency domain.
If the source of a random process produces values that are completely independent
of each other, the random sequence is referred to as white noise. White noise has
uniform local properties (i.e., its mean and standard deviation within a local window
are widely independent of the window location). More important, white noise has a
broadband frequency spectrum. In other words, each frequency has the same prob-
ability of occuring over the frequency range observed. In many random processes,
however, consecutive samples are not completely independent. Rather, a trend can be
observed that an increased value from one sample to the next is followed by a higher
probability of additional value increases, an effect called persistence. The source is
said to have a memory.

The origins of the analysis of the fractal dimension in the frequency domain lie
in the analysis of random time series. H. E. Hurst observed water levels of the river
Nile and found long-term dependencies (i.e., persistence). Moreover, Hurst found
that the range of the water level scales with the duration of observation.28 If the range
R is defined as the difference between the highest level Lmax(� ) and the lowest level
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Lmin(� ) in an observational period of length � and � is the standard deviation of the
river levels during the period � , then the range shows a power-law dependency on the
length of the observational period:

R

�
∝ � H (10.14)

This scaling behavior of discrete time samples was found in many other areas, such as
in financial data52 and biology. One biomedical example is the potassium channel in
pancreatic �-cells, where the opening and closing of the channels has been found to
exhibit self-similar properties.41 Moreover, the opening and closing of the channels
have been found to exhibit memory effects, where an opening of the channel is
followed by a higher probability of the channel opening again.38 A scaling behavior
as described in Equation (10.14) generally pertains to random events with a certain
long-term memory. Such a series of events has been approximated with the model
of fractional Brownian noise. For completely uncorrelated noise (white noise), H =
0.5, whereas persistence in the random time series yields H � 0.5 and antipersistence
yields H �0.5. A time series with persistence appears smoother. Equation (10.14) can
be used to estimate the Hurst exponent from sampled data. Figure 10.20 demonstrates
this process.

With a growing observational window, the window is more likely to contain
extreme values, and the range R can be expected to grow. In the time domain, the
scaling factor is estimated by rescaled range analysis. The time series of total length
T is subdivided into n = T/� observational windows of length � . For each window,
the rescaled range (minimum to maximum normalized by the standard deviation
in that window) is determined and averaged. Iteratively, a new, longer � is chosen
and the average rescaled range is determined again. From a number of ranges Ri

0 50 100 150 200 250 300
-0.2

-0.1

0.0

0.1

0.2

FIGURE 10.20 Random time series and two observational windows. A larger window (dark
shade) has a higher probability of containing local extremes; therefore, the range (difference
between highest and lowest value) is likely to be higher than in the shorter window (light
shade).
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FIGURE 10.21 Uncorrelated Gaussian noise (A) and persistent noise of zero mean and
matching standard deviation (B). Persistent noise exhibits large-scale, low-frequency trends
and additional trends on smaller time scales and smaller amplitudes.

(� i) obtained at different window lengths � i, the scaling exponent H is obtained
by nonlinear regression. The Hurst exponent is related to the fractal dimension by
D = 2−H. This relationship is based on the scaling behavior of the amplitude of
the Brownian time series and may not be valid for all time series. However, this
relationship has been widely used and may be considered to be established.

Figure 10.21 shows two random time series of matching mean and standard
deviation. Persistent noise (Figure 10.21B) exhibits trends on all time scales, and self-
similar behavior can be expected. Conversely, uncorrelated Gaussian noise (Figure
10.21A) does not obey a scaling law. We have already quantified persistence by means
of the Hurst exponent, which characterizes scaling behavior in the time domain. Low-
frequency trends and scaling behavior can also be seen in the frequency domain: As
opposed to broadband white noise, low frequencies dominate for persistent noise.
More precisely, a time series that exhibits scaling behavior as described in Equation
(10.14) also follows the frequency-domain scaling behavior described by,

A(�) ∝ �−|�| (10.15)

where A is the amplitude of the frequency spectrum and � the frequency. The negative
sign in the exponent indicates an amplitude decay with higher frequencies. The scaling
exponent, �, is related to the Hurst H exponent through

� = DE − 2H (10.16)

where DE is the Euclidean dimension on which the signal is built (i.e., 1 for a time
series and 2 for a two-dimensional image). The scaling exponent � in Equation
(10.15) can be determined by fitting a regression line into the log-transformed data
points of the spectral magnitude over the frequency as shown in Figure 10.22.
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FIGURE 10.22 Magnitude of the frequency spectra of the signals in Figure 10.21. Uncor-
related Gaussian noise (A) shows no significant decay of the magnitude at higher frequencies
(regression line: slope not significantly different from zero), whereas persistent noise (B) shows
power-law scaling with decreasing amplitude at higher frequencies. The slope is � = 0.52
(p � 0.0001) which is in excellent agreement with the Hurst exponent of H = 0.75 determined
for the corresponding series in Figure 10.21.

There are some special cases of �. Uncorrelated noise exhibits no frequency de-
pendency of the spectral magnitude, and the slope � is not significantly different from
zero. From Equation (10.16) follows H = 0.5, that is, the Hurst exponent associated
with uncorrelated (white) noise. If the magnitude decays inversely proportional to
the frequency (� = −1), the noise is referred to as 1/f noise or pink noise. An
even steeper decay, 1/f 2 (� = −2), is obtained from data series that originate from
Brownian motion or random walks and is termed brown or red noise.

Similar to the estimators of the fractal dimension, the regression to determine �
needs to be restricted to frequencies in which self-similar behavior can be expected.
The presence of measurement noise can lead to apparent multifractal behavior where
the magnitude at high frequencies decays with a different slope than the magnitude at
low frequencies. A lowpass filter (such as Gaussian blurring) applied to white noise
may lead to a spectrum that resembles pink noise, but it would not originate from a
process with inherent scaling behavior.

The considerations described above can easily be extended to images. However,
images may exhibit different spectral behavior, depending on the angle at which
the spectrum is examined. Circles around the origin of a Fourier transform image
connect locations of equal frequency, because the frequency � increases with the
Euclidean distance from the origin (i.e., � = √

u2 + v2). As seen in Figure 10.23,
spectra sampled along the u-axis and along a diagonal line starting at the origin look
different and exhibit a different scaling exponent �. Multifractal behavior of Fourier
transform images is therefore very common. In an extreme example, features with
straight edges parallel to the y-axis and rugged edges along the x-axis would exhibit
scaling behavior along the u-axis but not along the v-axis. Because of this complex
behavior, the most common use of fractal analysis of Fourier transform images is
to identify anisotropic fractal behavior. For this purpose, the scaling exponent � is



P1: OTA/XYZ P2: ABC
c10 JWBS035-Haidekker August 26, 2010 7:47 Printer Name: Yet to Come

FRACTAL DIMENSION IN THE FREQUENCY DOMAIN 335

FIGURE 10.23 Frequency spectra observed at different angles in the Fourier transform of
an image. Along the u-axis (gray data in the log-log plot), the frequency drops off faster than
along a diagonal line of angle � (black data in the log-log plot).

computed along one-dimensional spectra subtending various angles � with the u-
axis. The resulting function �(�) can be displayed in the form of a rose plot. The
information provided by a rose plot can be shown using two sample textures that
were introduced in Chapter 8 (see the carpet and corduroy textures in Figures 8.10
and 10.28). Their fractal rose plots are shown in Figure 10.24. The average slope � is
1.29 for the carpet texture and 1.14 for the corduroy texture. However, the anisotropy,
defined as the maximum value of � divided by the minimum value of �, is markedly
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FIGURE 10.24 The slope of the double-logarithmic frequency decay of two textures from
Chapter 8 (carpet, A, and corduroy, B, also shown in Figure 10.28), displayed as a function of
the angle in form of a rose plot. The slopes (and therefore the Hurst exponents) are somewhat
similar, but the corduroy texture (right) shows a higher anisotropy than the carpet texture,
because the original texture has a stronger directional preference. The anisotropy angle of 120◦

also matches the directional preference of the texture in Figure 10.28.
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FIGURE 10.25 CT reconstructions of the thoracic region using different reconstruction
kernels: (A) standard kernel, (B) bone kernel, (C) lung kernel. The reconstruction kernels
emphasize different levels of detail, but they also create a pseudotexture with apparent fractal
properties.

higher for the corduroy texture, indicating a higher directional preference. In addition,
the angle of the anisotropy (the orientation of the idealized oval) of approximately
120◦ matches the orientation of the texture. The rose plot is therefore a convenient
method to use for the quantitative determination of the anisotropic behavior of textures
with self-similar properties. In addition to the average slope �, anisotropy magnitude,
and angle, the intercept of the fit may be used to measure anisotropic behavior of the
image intensity itself.

Figure 10.25 shows cross-sectional CT images of the thoracic region, that make
possible easy identification of lungs, vertebra, and aorta. Corresponding rose plots
are shown in Figure 10.26. The three panels show reconstructions performed with
different reconstruction kernels: the standard kernel, the bone kernel, and the lung
kernel. The purpose of these kernels (i.e., filters applied during reconstruction) is to
emphasize specific details in the region of interest.
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FIGURE 10.26 Rose plots of the frequency decay behavior of the CT reconstructions in
Figure 10.25. The rose plots indicate strongly differing apparent self-similar behavior among
the three CT images.
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Although the reconstruction was performed using the same raw data, apparent
fractal properties are markedly different. The texture that causes the apparent self-
similar properties is a CT artifact. This can best be observed in the region of the
aorta, where homogeneous blood flow should correspond to a homogeneous gray
area in the reconstruction. In actual reconstructions, however, the aorta cross sec-
tion is inhomogeneous, and the inhomogeneity depends on the reconstruction kernel.
A linear regression into log-transformed data, in this case the logarithmic spectral
amplitude over the logarithmic frequency, will often lead to a reasonable approxima-
tion of a straight line, but a thorough discussion of the origins of possible self-similar
properties is needed in all cases.

10.5. LOCAL HÖLDER EXPONENT

The Hurst exponent H describing scaling behavior in random processes was intro-
duced in Section 10.4. H can also be determined as a local property when a single
window of variable length � remains centered on the observational point in time t0. In
this case, H is referred to as the local Hölder exponent as opposed to the Hurst expo-
nent, which applies to a global property. The rescaled range analysis yields one value
of the Hölder exponent for each observational point in time and therefore provides a
time series H(t).

In images, time corresponds to the Euclidean distance between pixels. It is there-
fore possible to determine local scaling properties in binary and gray-scale images by
analyzing the image values in expanding circles centered on the point for which the
scaling property is to be determined. For this purpose, the gray-scale mass dimension
is calculated for each pixel of the original image for a small region around the pixel.
The scaling range (the range of radii for which the enclosed sum of image values is
computed) varies with the total image size and the size of the features of interest, but
typical radii range from 2 to 15 pixels. The algorithm to determine the local mass
dimension is very similar to Algorithm 10.3, with the difference that the main loop
of Algorithm 10.3 is embedded in another double loop over all of the image’s pixels,
and instead of using the central pixel (xc, yc), each individual pixel, addressed by
the outer double loop, is used as the center for the mass dimension computation.

The effect of the local Hölder operator is demonstrated in Figure 10.27. The
test image (Figure 10.27A) consists of four square patches of fractional Brownian
noise (from left to right and top to bottom with H = 0.2, H = 0.4, H = 0.6, H =
0.8) over a background of white noise, with all areas having the same mean value
and standard deviation. The local Hölder operator (Figure 10.27B) reveals the local
scaling behavior. The areas with a high value of H can be identified clearly. An image
(generally, any object) with regions that exhibit different scaling behavior is called
multifractal and can be examined further by analyzing the histogram (the probability
distribution) of the Hölder exponents.

Use of the Hölder operator with binary images provides information on the scal-
ing behavior of the shape outlines. When applied to gray-scale images, the Hölder
operator provides information on the scaling behavior of the texture. Whereas the
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FIGURE 10.27 Demonstration of the effect of the local Hölder operator. Image A shows
four patches of fractional Brownian noise over a background of Gaussian (white) noise. Image
B shows the result after the application of the Hölder operator. Brighter areas indicate a higher
exponent H.

analysis of time series is established, application of the Hölder operator requires spe-
cial considerations that result from the nature of two-dimensional images. Strictly, the
Hurst and Hölder exponents are defined only for random processes with long-term
persistence. Therefore, the Hölder operator is best suited for analysis of the noise
content of images. Furthermore, the numerical range of the exponents obtained from
the Hölder operator can exceed the theoretical range of 0 � H � 1. It is easy to con-
struct cases where the central pixel lies in a dark image region and is surrounded by
successively brighter areas as the Euclidean distance from the central point increases.
In Figure 10.27B, values of up to 2.6 exist. This would translate into negative and
thus invalid fractal dimensions. Finally, the two-dimensional nature of the expanding
circles influences the measured mass as it averages more and more pixels with ex-
panding radius. The larger circles contain enough pixels to eliminate many details by
averaging. In the extreme case, the averaging behavior causes the scaling properties
to degenerate to those of a flat surface. An unsuitable situation that fits this description
can be recognized because the log-transformed data points of the mass m(r) and its
corresponding radius r no longer lie on a straight line. A linear fit would yield a poor
correlation coefficient. It is therefore advisable to compute the correlation coefficient
for each fit and reject any pixel with a poor correlation coefficient. Rejection criteria
should be made strict, such as acceptance only of pixels with r2 � 0.8. Furthermore,
when analyzing the noise content of biomedical images, only few steps with small
radii should be made to reduce the influence of large-area averaging.

To provide one example of texture analysis with the Hölder operator, Figure 10.28
shows two examples from the UIUC texture database1 (see also Chapter 8) with
their associated histograms of the Hölder exponent distribution. Preprocessing of the
images is important. The influence of noise needs to be minimized by using noise
reduction and filtering steps, and contrast should be maximized and standardized: for
example, by local histogram equalization.
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FIGURE 10.28 Comparison of the distribution of local Hölder exponents in images of two
different textures: carpet (A) and corduroy (B) (see Chapter 8). The corresponding histograms
of the local Hölder exponent are shown in parts C and D, respectively. The local Hölder
operator may serve as an image-enhancement operator, and histogram analysis (described in
Section 8.1) can be applied to obtain quantitative descriptors of the texture.

Different notions for the estimation of local Hölder exponents are possible. The
rescaled range analysis can be applied directly to images. In this case, the minimum
and maximum values (and therefore the range) are determined as a function of the
circle radius. Equation (10.14) applies directly, whereby the radius r is used instead
of the time window � . A particularly efficient algorithm was proposed by Russ61

in which an octagonal neighborhood with a total of 37 pixels is defined. For each
of these pixels, the Euclidean distance to the central pixel is known (Figure 10.29).
Based on this neighborhood definition, each pixel that surrounds the central pixel in
a 7 × 7 box is labeled with a Euclidean distance to the central pixel, and a table is
built that contains the distance and their associated ranges. The table contains seven
rows (1,

√
2, 2, . . . ,

√
10) and two columns. The first column holds the distance.

The second column is filled with the neighborhood range by considering larger and
larger distances from row to row. Consequently, the first row contains the range
of the four pixels labeled “1” in Figure 10.29. The second row contains the range
of the previous four pixels and the four pixels labeled “

√
2,” and so on. Once the

table is filled, nonlinear regression yields the exponent H in Equation (10.14). The
neighborhood range can be extended arbitrarily by extending the size of the octagon.
However, local rescaled range analysis, similar to the local mass dimension, does not
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FIGURE 10.29 Octagonal neighborhood and the associated Euclidean distances to the cen-
tral pixel (shaded).

necessarily yield valid values for the Hölder exponent. Consider the neighborhood
given in Table 10.2 as an example. If the bold pixel is chosen as the central pixel, the
range increases almost linearly with the Euclidean distance. However, if the central
pixel to the right is chosen, the last three steps do not show an increase of the range.
Although the regression would still output a value for H and a reasonable correlation
coefficient, the scaling behavior has changed for the last three entries of the table
(Figure 10.30), and it is debatable whether the resulting Hölder exponent should be
accepted as valid.

10.6. BIOMEDICAL EXAMPLES

Power-law scaling behavior is widespread in nature on almost all scales.6 It is there-
fore not surprising that power-law scaling behavior can be found in many biomedical

TABLE 10.2 Sample Octagonal Neighborhood with
Discrete Image Intensity Values

207 203 185 222

218 237 228 205 191 227

200 225 235 223 205 201 205 209

188 198 207 198 191 201 227 211

190 134 190 178 176 190 222 205

97 120 137 125 147 163

80 121 125 171
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FIGURE 10.30 Nonlinear regression of the range data determined from Table 10.2. A good
fit is found with the bold pixel (198) as the central pixel, whereas the neighborhood to the
right (central pixel value 191) shows no scaling for the largest three distances (gray regression
lines).

areas, including self-similarity properties of tumors, blood vessels, and neuronal
trees.16 The detection of scaling properties and self-similarity in biomedical images
is considered mainstream in image analysis. In two areas, fractal methods for the
description of structural properties are particularly popular and widespread: the anal-
ysis of trabecular bone in osteoporosis, and the analysis of lung structure in relation
to pulmonary function.

Self-Similarity and Trabecular Bone The complex three-dimensional structure of
trabecular bone attracted the interest of numerous groups of investigators (see, e.g.,
Link et al.42 for a review) who examined changes of scaling properties associated
with osteoporosis, a disease that is associated with loss of gross bone density but
also with reduced trabecular connectivity. In microscopic images of biopsies, this
process can be observed, but individual trabeculae show a smooth shape and there-
fore nonfractal behavior.12 This observation is consistent with considerations that any
image feature exhibits self-similar properties only within certain scales. At larger,
nonmicroscopic, scales, however, self-similar properties were reported irrespective
of the imaging modality, and the observation of a lower fractal dimension in bone
affected by osteoporosis is highly consistent between research groups and studies.
Lumbar vertebrae or the calcaneus were excised and radiographed.7 It is possible
to observe trabecular degeneration subjectively by visual examination of the radio-
graphed texture.3 Such an example is shown in Figure 10.31. The differences in
trabecular architecture are immediately obvious under visual inspection, but unsu-
pervised texture analysis is not straightforward. For example, the blanket dimension
of the segmented trabecular region shows only minimal differences (1.96 vs. 1.92).
However, the application of a weak highpass filter to remove inhomogeneous back-
ground and to emphasize the trabeculae, followed by a suitable threshold operation
(such as Otsu’s method), allows determination of the box-counting and Minkowsky
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FIGURE 10.31 Radiographic images of slices of postmortem excised lumbar vertebrae from
patients without (A) and with severe (B) osteoporosis. (Adapted from ref. 25.)

dimensions. Here the dimension values are markedly different. The box-counting
method yields dimension values of 1.87 versus 1.52, and the Minkowsky dimension
is 1.73 versus 1.26.

In vivo imaging methods such as projection x-ray imaging, CT, and MRI usually
provide a much lower spatial resolution than that of direct x-ray imaging, as shown in
Figure 10.31. Furthermore, the image formation process corresponds to a convolution
with the point-spread function of the imaging system (usually, a function with lowpass
characteristics), and the image contains added noise and possibly pseudotexture
(see Figure 10.25). In the case of x-ray projection imaging, the imaged structure
is a two-dimensional projection of a three-dimensional network. This limits the
application of fractal methods to a comparison of the trabecular texture between
patients who are imaged with exactly the same modality, and makes it difficult to
compare fractal dimension values between different study groups. One difficulty
arises from the question of a suitable binarization threshold.26 Although it can be
argued that image features above certain Hounsfield units in CT are likely to be related
to bone, the imaging function and partial-volume effects will lead to voxels that are
reconstructed from bone but have a lower Hounsfield number than is typically seen
for bone. In projection x-ray imaging, the threshold depends strongly on the image
exposure. Suitable fractal analysis of the texture would therefore have to include
image values that typically are not associated with bone. The blanket dimension, for
example, can be applied to images without the need for thresholding.

It is possible to perform a simple verification that the dimension values are not
the result of differences in image intensity or exposure: If the image intensity values
are subjected to linear pixel remapping with the function I ′(x, y) = a · I (x, y) + b,
where a is a linear scaling parameter and b is an intensity offset, and the new image
with intensities I′ is subjected to the same fractal dimension analysis, the resulting
dimension value should be independent of the choice of a and b as long as a � 0.26

Tests such as this linear pixel remapping test are important in verifying that the slope
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values really reflect self-similar behavior rather than scaling or intensity changes
hidden in the image processing chain.

These cautionary remarks notwithstanding, the analysis of fractal properties in
trabecular bone has been remarkably successful. Lynch et al. developed a dilation
method related to the Minkowsky dimension to determine the fractal signature of
trabeulcar bone in projection x-ray images of the knee44,45 and related the dimension
to osteoarthritis. The results of this study were later corroborated by Podsiadlo et al.57

Weinstein and Majumdar used contour tracing to segment trabeculae in projection
x-ray images of bone biopsies69 and cross-sectional CT images49 and consistently
found a lower fractal dimension in cases affected by osteoporosis or with lower
vertebral fracture load. Caldwell et al.9 showed that the mass dimension of the tra-
becular structure in projection images was related to fracture load. X-ray imaging,
performed routinely in dental examinations, may also help in detecting periodonti-
tis as shown by Updike and Nowzari.66 This study showed reduced complexity of
the trabecular pattern, as evidenced by a lower box-counting dimension in patients
with periodontitis. Despite the lower resolution and lowpass image transfer function
of computed tomography, CT images can also be used to quantify trabecular struc-
ture.15,17,18 Although magnetic resonance imaging is not typically used to image bone,
MRI sequences can be designed to obtain high-resolution images of the trabecular
structure,10,32,67 for example, by making use of the low proton density in bone (low
water content) or of susceptibility variations that alter T∗

2. Several studies indicate that
an estimate of the fractal dimension is a meaningful parameter to estimate changes
in bone microarchitecture.4,27,42,47

However, care must be taken in the design of fractal-based image analysis methods.
Some examples include consideration of the limits of resolution,12,56 the presence of
image noise, variability of interactive components in the image analysis method,68 or
the presence of other tissue components.11 With a carefully designed study, however,
estimates of the fractal dimension are useful metrics in assessing the complexity of
trabecular bone microarchitecture, as evidenced in a study by Berry et al.4 In this
study, trabecular bone was radiographed during exposure to nitric acid, a procedure
designed to erode the trabeculae and therefore simulate the processes associated with
osteoporosis. It was found that nitric acid exposure led to a significant reduction in
the box-counting dimension.

Fractal Dimension in Pulmonary Structures Fractal properties of anatomical
structures in the lung were discovered early53 and continue to be the subject of
research investigations. Fractal properties of lung tissues were found on different
scales. Anderson et al.2 found that the radial distribution of the cross-sectional area
of bronchial capillaries was fractal. Kamiya and Takahashi31 examined the frac-
tal dimension of the three-dimensional vascular tree using microscopic images and
used these fractal properties to quantify various hydrodynamic parameters, such as
branch flow rate, mean flow velocity, wall shear rate and stress, internal pressure, and
circumferential tension. In lung casts, a relationship between the degree of asthma
and the fractal dimension was found.5 Experienced radiologists can diagnose lung
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disorders in projection x-ray images of the chest. Although automated image analysis
of chest x-ray images is difficult, the fractal dimension was suggested as one metric to
diagnose lung interstitial abnormalities.36,37 Considering the three-dimensional char-
acter of lung structures, computed tomography and magnetic resonance imaging are
preferable imaging modalities. Computed tomography provides three-dimensional
images that allow the quantitative determination of lung degeneration.46 Lung emphy-
sema is a degenerative disease associated with biomechanical changes and degenera-
tion of the lung tissues, including loss of elasticity of the lung tissue, degeneration of
alveolar structures, and destruction of capillaries feeding the alveoli. Perfusion stud-
ies were performed using single-photon emission computed tomography (SPECT),
and a dimension metric computed from the area inside gray-scale isocontour lines
was found to be larger in patients with further developed emphysema.55 However,
these and similar findings were criticized by Chung and Huang13 as being more rep-
resentative of the total perfused area rather than changes in the scaling behavior of
self-similar structures. Nonetheless, it is likely that CT images of the thoracic region,
together with fractal analysis operators, can be used to determine the progress of
emphysema. Figure 10.32 shows two examples of CT images of the lung with the
vascular tree clearly visible. The healthy case shows a dense, branching vascular tree,
whereas the emphysemic case exhibits a less complex vascular structure dominated
by thinner and more linear blood vessels.

Although this type of structure can be well quantified with fractal methods, more
studies would be needed to determine the optimum image processing path. As shown
in Figure 10.32, the vascular tree can readily be isolated and its fractal dimension
measured. In this special case, the box-counting dimension would yield a value of
1.59 for the healthy case and 1.56 for the diseased case. The Minkowsky dimension
yields similar values of 1.60 and 1.56, respectively. The mass dimension shows
larger differences in these two examples: 2.36 versus 1.88. Whether these values are
representative of the state of the disease and significant in a statistical sense would
have to be determined in a larger study. Furthermore, a potential fallacy arises from

FIGURE 10.32 Computed tomography images of the thoracic region (maximum intensity
projections) showing prominently the vascular structure inside the lungs. The blood vessels
are fairly dense and intricately branched in the healthy case (A), whereas the emphysemic case
(B) shows reduced complexity in the vascular structure.
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the sensitivity of fractal methods toward the area fraction occupied by the feature.
This potential pitfall can be avoided by using the structure’s skeleton.43

Fractal Properties in the Brain Fractal properties were also found in structures
inside the brain, from the neuronal scale58,70 to the macroscopic scale.8,14,23,65 Aging
is associated with a loss of structural complexity, which has been quantified using the
fractal dimension by Kedzia et al.35 A similar reduction in the fractal dimension (loss
of complexity) was associated with multiple sclerosis,20 determined by measuring
the fractal dimension of the segmented white matter. In healthy subjects, the brain
hemispheres are asymmetric. This asymmetry was quantified by Lee et al.,40 who seg-
mented the brain surface in MR images and determined the box-counting dimension
of the skeleton of the brain surface. The fractal dimension was significantly higher
in the right hemisphere than in the left hemisphere, but no differences were found
with age and gender. This study indicates that the fractal dimension may be used to
quantify structural complexity in the brain surface. Im et al.29 suggest the possibility
that an elevated complexity, determined by measuring the fractal dimension of the
brain surface, is correlated with education and the intelligence quotient. Schizophre-
nia is also hypothesized to be associated with structural changes in the brain . Sandu
et al.63 found that the boundary between white and gray matter shows a higher
fractal dimension (as determined by the box-counting and Minkowsky methods)
in patients with schizophrenia than in healthy controls. Furthermore, two example
studies demonstrate the fractal nature of cerebral blood flow. In the fetal brain, the
group of Rybaczuk and Kedzia introduced a fractal model for the fetal blood vessel
architecture62 and used this method to demonstrate a rapid increase of the dimension
from 1.26 to over 1.5 during the second trimester,34 thereby indicating that in this
period a major functional development of the brain takes place. A study by Kalmanti
and Maris30 shows that the complexity increases further during adolescence, with
predominant remodeling taking place in the left hemisphere, whereas remodeling
in the right hemisphere takes place into adulthood. By using SPECT, Kuikka and
Hartikainen39 determined the heterogeneity of blood flow in the brain using an un-
derlying fractal Brownian noise model. In this study, a fractal dimension of 1.16 was
found in healthy subjects, compared to 1.04 in patients with frontal lobe dementia. In
this model, a value of 1.0 would indicate completely homogeneous blood flow, and
the study shows that dementia is associated with a loss of complexity.
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11
IMAGE REGISTRATION

When the same object is imaged with different modalities, or when the same object
is rescanned, it may be desirable to match the exact spatial position of the features
between the images. In some cases the resolution between modalities is not matched,
or one image may be spatially distorted. The steps needed to spatially superimpose
the images are called image registration. One example is the registration of magnetic
resonance imaging (MRI) and nuclear imaging modalities, such as positron emission
tomography (PET) or single-photon emission computed tomography (SPECT). Both
PET and SPECT have a very low spatial resolution. MRI provides anatomical details
by merit of its high spatial resolution and tissue contrast. Therefore, SPECT or PET
images are often superimposed over an MRI scan to allow better visualization of the
active sites. For an accurate match of the corresponding sites in both scans, the PET
or SPECT image needs to be rescaled to match the resolution of the MR image, and
translated and rotated to match the spatial locations between the images. It is possible
to combine several modalities in one gantry to form hybrid imaging systems.7,32

However, multimodality devices only provide registered images for a single exam.
For repeated exams and intrasubject matching, software registration is still needed.

Registration may take place in two or three dimensions. Unlike in other chapters,
where the two-dimensional case was presented because the three-dimensional case
is a straightforward generalization, image registration will here be illuminated in
three dimensions with a highlight on the two-dimensional special case whenever
appropriate. Because of the high complexity of registration algorithms, this chapter
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does not present algorithms in pseudocode. Rather, algorithms are explained in step-
by-step fashion.

The goal of registration is to match homologous areas between two or more images.
For this purpose, two different models can be used: rigid-body models and elastic
models. To register two images under the rigid-body model, spatial transformations
are applied to rotate, translate, and scale one image. The head is a good example
of where the rigid-body model is applicable, because the head bones prevent any
major deformation. Additional transformations that would fall into this category are
the shear and perspective transforms. Rigid-body transforms are usually sufficient to
correct mismatches caused by patient repositioning and by differences in resolution
between modalities.

Elastic models and nonlinear transformations are required when the linear trans-
formations above are not sufficient to correct positioning mismatches. Three typical
examples of nonlinear effects that require nonlinear transformations are imperfec-
tions and artifacts in the imaging system, distortion of soft tissues, and intersubject
variability. The latter usually produces the most complex requirements for a nonlinear
transformation to match homologous points.

Imaging systems may cause nonlinear mapping distortions. For example, field
inhomogeneities in a magnetic resonance scanner may cause nonlinear distortions in
all three dimensions. A single inhomogeneous gradient coil will cause a nonlinear
distortion in one spatial direction. MR scanners are usually carefully adjusted with
shim magnets to compensate for any field inhomogeneities. If measurable spatial
distortions remain, a mapping function needs to be determined experimentally and
applied to each image scanned. PET is another modality that can exhibit spatial
distortions because of detector alignment issues, differences in detector dead time,
and differences in detector quantum efficiency.

Soft tissues are subject to deformation. Gravity plays a role when a patient is
repositioned. Even more predominant are motion artifacts. Examples are breathing
motion, heartbeat, and blood flow. Motion artifacts are either quasistatic or dynamic.
A patient can hold his or her breath more or less deeply, causing different levels
of deformation of chest and abdomen. Nonlinear transformations are capable of
correcting this artifact. Heartbeat and blood flow are in many cases faster than the
imaging process. This leads to specific distortions, such as motion blur in CT images
and ghosting in MR images. This type of artifact can no longer be corrected by linear
or nonlinear transformations.

Intersubject variability plays the most important role in the analysis of brain
structure. Many research groups attempt to find a correlation between brain structure
and function. Frequently, the task arises to register the brain images of different people
or the image from a person to some representative shape, such as an atlas model. This
type of registration is highly nonlinear with a high variability and presents one of the
most challenging tasks in image registration.

To automate the registration process, it is necessary to define a quality function
that provides a quantitative metric as to how well the two bodies match. In the
simplest case, the surface contour or fiducial markers are brought to congruence. In
more complex cases, shape- or intensity-based quality functions need to be defined.
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FIGURE 11.1 Schematic representation of the registration process. The image from modal-
ity or patient A undergoes a transformation to match the reference, that is, modality or patient
B. After transformation, A and B are compared and a strategy to optimize the match between
the images is applied. On the basis of this strategy, new transformation parameters are com-
puted and applied. The process may be repeated iteratively. Once the registration process has
converged, both images may be fused, that is, superimposed for visualization.

A general schematic of the registration process is shown in Figure 11.1. Usually, one
image serves as the reference and the other image (often called the floating image)
undergoes a transformation to match the reference image. The quality function is
applied to determine how well the two images match, and a strategy to improve the
match is developed. With the strategy, a new set of transformation parameters is
generated, and the registration process is repeated iteratively.

11.1. LINEAR SPATIAL TRANSFORMATIONS

Let us consider a head scan performed with magnetic resonance as an example.
If a patient is scanned repeatedly, the head may be positioned differently for each
scan; that is, it may be rotated and translated. Any translation can be decomposed
into orthogonal translations along the three principal axes, and any rotation can be
similarly decomposed into rotations around the three principal axes. To describe
translation and rotation, six parameters are therefore necessary, and the symbols � x,
� y, and � z will be used for translation, and �x, �y, and �z for the rotation around the
x, y, and z axes, respectively. Translation and rotation are the fundamental operations
in the rigid-body model. Linear spatial transforms can be represented elegantly by
matrix operations.

The translation operation is a special case in the context of linear transformations
in two respects. First, the translation is not a linear operation in the strict definition
of a linear operator O applied to an operand p such that q = O(p). If O is linear, the
superposition rule and the scaling rule with a scalar a, respectively, must hold:

O(p + p′) = O(p) + O(p′) (11.1)

O(ap) = aO(p) (11.2)
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Although the translation operation follows the superposition rule, it violates the
scaling rule. Strictly, the translation operation is not a linear operation. However,
most frequently the translation operation is listed among the linear operations in the
context of registration, and in this chapter we also follow this convention. Second,
the translation operation is additive, whereas matrix multiplications do not have
a suitable additive element. The matrix representation of the translation operation
therefore requires the introduction of a fourth dimension in which the addition can be
modeled in multiplicative form. To allow chaining of operations, all transformation
matrices, not only the matrix for translation, are 4 × 4 matrices for transformations
in three-dimensional space. The translation of a point P = [x y z] to a point Q =
[x′ y′ z′] can be described by

x ′ = x + � x ; y′ = y + � y; z′ = z + � z (11.3)

The same operation can be formulated in matrix form as Q = P·T in

[
x ′ y′ z′ 1

] = [x y z 1]

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

� x � y � z 1

⎤
⎥⎥⎦ (11.4)

where T is the 4 × 4 translation matrix. It is necessary to add a fourth element to P
and Q such that P = [x y z 1] and Q = [x′ y′ z′ 1]. The fourth element of P with
value 1 allows the last row of T to become an additive component.

The rotation operation is most conveniently split into three separate operations:
rotations around the x-axis, y-axis, and z-axis, respectively:

[
x ′ y′ z′ 1

] = [x y z 1]

⎡
⎢⎢⎣

cos �x sin �x 0 0
− sin �x cos �x 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (11.5)

[
x ′ y′ z′ 1

] = [x y z 1]

⎡
⎢⎢⎣

cos �y 0 − sin �y 0
0 1 0 0

sin �y 0 cos �y 0
0 0 0 1

⎤
⎥⎥⎦ (11.6)

[
x ′ y′ z′ 1

] = [x y z 1]

⎡
⎢⎢⎣

1 0 0 0
0 cos �z sin �z 0
0 − sin �z cos �z 0
0 0 0 1

⎤
⎥⎥⎦ (11.7)

The three rotation matrices are designated Rx, Ry, and Rz, respectively.
A scaling operation is also included in the rigid-body model. The scaling operation

could, for example, account for different spatial resolution settings of the imaging
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device. Nonistoropic scaling is fully described by three parameters: sx, sy, and sz.
The scaling operation is described by Q = P · S, with S being the scaling matrix
according to:

[
x ′ y′ z′ 1

] = [x y z 1]

⎡
⎢⎢⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤
⎥⎥⎦ (11.8)

In two dimensions, any point has three elements, P = [x, y, 1], and the scaling,
translation, and rotation matrices simplify to S, T, and R (note that only one rotation
operation is possible, rotation around the axis normal to the image surface):

S =
⎡
⎣ sx 0 0

0 sy 0
0 0 1

⎤
⎦ ; T =

⎡
⎣ 1 0 0

0 1 0
� x � y 1

⎤
⎦ ; R =

⎡
⎣ cos � sin � 0

− sin � cos � 0
0 0 1

⎤
⎦

(11.9)

All matrix operations take place with respect to some arbitrarily defined origin. For
convenience, either an image corner or the image center may be chosen. The order
of the matrix operations is relevant, and the operations are generally not commuta-
tive. The operations Q = P·R·T and Q = P·T·R lead to different values of Q, as
demonstrated by the two-dimensional example

R · T =
⎡
⎣ cos � sin � 0

− sin � cos � 0
� x � y 1

⎤
⎦ ; T · R =

⎡
⎣ cos � sin � 0

− sin � cos � 0
� x ′ � y′ 1

⎤
⎦

(11.10)

where � x′ = � x cos � − � y sin � and � y′ = � y sin � + � y cos �.
In three dimensions, the rigid-body model is fully described by nine parameters

(three each for translation, rotation, and scaling). The rigid-body model maintains an-
gles between arbitrary lines. If two lines in the image intersect at angle �, they will still
intersect at angle � after the transformation. Linear distortions (shear and perspective
transformations) can be introduced to form an extended rigid-body model. Linear
distortions can be formulated as matrix operations by using off-diagonal elements.
Linear distortions no longer maintain the angles. After the shear transformation,
parallel lines will remain parallel. A set of transformations that includes rotation,
translation, scaling, and shear is called affine transformation. In the most general
case, that is, a set of linear transformations that includes all of the above transforma-
tions and the perspective transformation, even parallel lines will no longer be parallel
after transformation; rather, parallel lines will converge toward a single point after a
perspective transformation. The universal description of the shear operation in three
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dimensions requires six additional parameters. The shear matrices H are defined in

Hx =

⎡
⎢⎢⎣

1 hyx hzx 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ; Hy =

⎡
⎢⎢⎣

1 0 0 0
hxy 1 hzy 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ;

Hz =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

hxz hyz 1 0
0 0 0 1

⎤
⎥⎥⎦ (11.11)

In two dimensions, only two parameters hx and hy are needed, and the shear matrix
H becomes

H =
⎡
⎣ 1 hy 0

hx 1 0
0 0 1

⎤
⎦ (11.12)

The perspective transformation is controlled by three perspective parameters, px, py,
and pz. The perspective transformation cannot be implemented in a purely multiplica-
tive form and requires the introduction of an auxiliary variable q. The perspective
transformation with the matrix P is defined as

[
qx ′ qy′ qz′ q

] = [x y z 1]

⎡
⎢⎢⎣

1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 1

⎤
⎥⎥⎦ (11.13)

and the resulting point Q is scaled by the variable q. Its elements therefore require
division by q to obtain the final value of Q.

Multiple transformations can be combined into one matrix, as shown in Equation
(11.10), and the general linear transformation model can be described as one single
matrix M, where all elements are transformation parameters with the exception of
the lower-right element, which is always unity. The general linear transformation
requires 18 independent parameters in three dimensions and eight parameters in two
dimensions. An optimum set of these parameters needs to be found either by manual
interaction or by optimization strategies that make use of a registration quality metric
(Section 11.3).

11.2. NONLINEAR TRANSFORMATIONS

When the constraint of linearity no longer applies, an infinite number of possible
transformations are available. Nonlinear transformations become important when
field distortions of an MR scanner need to be compensated or when body motion
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(breathing, heartbeat, tissue deformation) needs to be compensated. Under nonlinear
transformations, subregions of the image can be subjected to different distortions.
There are two types of nonlinear transformations: First, there are transformations
where parametric interpolation or approximation functions are applied to distort the
image. Second, there are transformations that are obtained from physical models,
such as elastic deformation, diffusion, or viscous flow. This set of transformations
provides a vector field that describes the displacements down to the pixel level.

In the simplest case, a nonlinear transformation may be performed by a global
higher-order polynomial, such as the parabolic model in

[
x ′ y′ z′] =

⎡
⎣ e00 e01 e02 e03 e04 e05 e06 e07 e08 e09

e10 e11 e12 e13 e14 e15 e16 e17 e18 e19

e20 e21 e22 e23 e24 e25 e26 e27 e28 e29

⎤
⎦

· [1 x y z xy xz yz x2 y2 z2]T
(11.14)

Polynomial distortions typically occur in inhomogeneous fields (MR) or in insuf-
ficiently corrected lens systems. Some are known as pincushion distortion, barrel
distortion, or lens distortion. An example is the pincushion distortion shown in Fig-
ure 11.2. One of the main challenges of registration by nonlinear transformations can
be seen in Equation (11.14). A very large number of parameters exist that need to be
optimized. With such a large number of parameters, any search strategy employed to
find a global optimum may find multiple local optima of similar quality. For this rea-
son, high-dimensional optimum searches tend to be unstable and strongly dependent
on the quality metric.

Instead of global nonlinear transformations, functions can be applied piecewise
and locally. The simplest example is called block matching. For block-matching reg-
istration, the image is subdivided into rectangular blocks and each is subjected to a
separate affine or rigid-body spatial transformation. This model is often combined

FIGURE 11.2 Pincushion distortion (A) is one example of a spatial distortion that can be
corrected (B) with a polynomial transformation similar to Equation (11.14).
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with intensity similarity metrics to obtain the registration quality information. Block
matching has two disadvantages: First, the distortion between adjoining blocks is not
necessarily continuous, and some regularization is needed to eliminate discontinuities
(one method is lowpass filtering of the overall displacement field). Second, a lower
limit of the block size is quickly reached when the number of voxels in each block be-
comes too low to provide sufficient information to drive the registration quality metric.

Two popular methods are the transformations using thin-plate splines19 and B-
splines. The displacement function to displace a point p to p′ for thin-plate splines is

p′ = Ap + B + I
N∑

i=1

Fi
[
(x − xi )

2 + (y − yi )
2 + (z − zi )

2 + d2
]

(11.15)

where A and B describe a rigid-body transformation, I is the identity matrix, and the
Fi are coefficients determined by solving the equation system set up by all landmark
points pi. In contrast to thin-plate splines, B-splines have local support. This is a
desirable property, because any B-spline affects the transformation only locally, and
the influence of outliers is locally restricted. A B-spline-based transformation can be
defined in analogy to Equation (11.15) as

p′ = Ap + B + Tlocal (11.16)

where Tlocal is the local B-spline-based transformation defined as follows. Over the
object is superimposed a mesh with X� by Y� by Z� equidistant control points �i,j,k.
The indices i, j, and k and the arguments of the spline function u, v, and w are defined as

i = ⌊
x/X�

⌋ − 1; j = ⌊
y/Y�

⌋ − 1; k = ⌊
z/Z�

⌋ − 1

u = 1 + x/X� − i ; v = 1 + y/Y� − j ; w = 1 + z/Z� − k
(11.17)

That is, i, j, and k are the integer components of the coordinates of a point P = (x, y, z),
and u, v, and w are the corresponding decimal parts. With the basis functions of a
cubic B-spline defined as

B0(t) = (1 − t)3

6

B1(t) = 3t3 − 6t2 + 4

6

B2(t) = −3t3 − 3t2 + 3t + 1

6

B3(t) = t3

6

(11.18)

the local component Tlocal of the transformation can now be defined:

Tlocal(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)�i+l, j+m,k+n (11.19)
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A complete registration algorithm requires the spatial transformation, a similarity
metric, and a strategy to optimize the registration (see Figure 11.1). Rueckert et al.36

propose an algorithmic approach that is based on the joint image entropy as a similarity
metric:

Csim = H (I1) + H (I2)

H (I2, I2)
(11.20)

where the entropies H(I1 ) and H(I2) are computed from the histograms of images I1

and I2, respectively, and the joint entropy is computed from the joint histogram (cf.
co-occurrence matrix). The algorithm consists of the following steps:

Step 1. Set Tlocal = 0. Find the optimum rigid-body transformation matrices A and B
in Equation (11.16) by maximizing the joint entropy in Equation (11.20). This step
can be done using either an exhaustive search or a multidimensional optimization
strategy.

Step 2. Compute the initial mesh of equidistant control points �i, j, k at the coarsest
resolution level.

Step 3. Repeat steps 4 to 8 while the control point mesh is larger than the lowest
resolution:

Step 4. Repeat steps 5 to 7 for each control point.

Step 5. At the control point, determine the gradient of the similarity metric Csim

toward the nonrigid local transformation Tlocal.

Step 6. Displace the control point by a small distance � in the direction of the gradient.

Step 7. Recompute the gradient for the displaced control point and repeat steps 5 to
7 until the gradient falls below a preselected threshold. Steps 5 to 7 minimize the
overall gradient for each iteration.

Step 8. Interpolate new control points between the existing control points, thus in-
creasing the resolution of the control point mesh.

This example demonstrates two strategies frequently employed in nonrigid, nonlin-
ear transformations. First, initial conditions are often found with the help of rigid-body
transformations. A nonlinear, nonrigid transformation often starts with a rigid-body
component to find an approximation of the final solution. Second, the nonrigid part
proceeds from a coarse to a fine scale. Because of the high number of freedoms at the
highest detail level, the optimization follows a multigrid approach, where an initial
optimization of a similarity metric is performed on a coarse grid. This grid is then
successively refined, followed by a new optimization process at the new resolution,
until the desired finest resolution is reached.

At the extreme end of nonlinear registration models is the physical modeling of
deformation processes, predominantly elastic deformation and viscous fluid flow.
Elastic deformation modeling actually allows us to use parameters with physi-
cal relevance, such as the elasticity and deformability of soft tissue. One possible
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approach to modeling elastic deformation is to compute the external force F acting
on an infinitesimal particle of the object (in the discrete approximation, a pixel or a
subvolume) through

F(�r , t) = m
∂2�r
∂t

+ D
∂�r
∂t

+ �
∂� (�r )

∂�r (11.21)

where m is the mass of the particle, D is the damping constant, �(�r ) represents
the elastic deformation energy, and � is a proportionality constant for the elastic
deformation component. In equilibrium, the force F is balanced by a force term
that is obtained from a similarity metric and drives the registration. Alternatively,
elasticity can be modeled using the Navier–Lamé partial differential equation for
linearly elastic materials:

�∇2u (�r ) + (�+�)∇ (divu (�r)) + f (�r ) = 0 (11.22)

where u(�r ) is the displacement vector at location �r , � and � are the Lamé constants,
and f (�r) is the external force that is imposed on the system by the similarity metric.19

A large number of algorithmic approaches to solving elastic models exist. Key numer-
ical methods are presented in detail by Modersitzki.29 In addition, finite-difference2

and finite-element17 approaches have been employed.
Solving the Navier–Lamé equation assumes small displacements. A limitation

of the elastic approach is therefore the restriction to images that need only small
deformations to register. If large deformations are necessary, deformation can be
achieved by modeling viscoelastic fluid flow. Viscous fluid flow can be described by
the Navier–Stokes–Duhem equation:

�∇2v (�r ) + (� + �)∇ (divv (�r )) + f (�r ) = �
∂v( �r )

∂t
+ ∇ P (11.23)

where � is the specific density, v(�r ) the fluid velocity, and P the pressure. If flow is
assumed to be sufficiently slow, the flow term on the right-hand side becomes very
small and Equation (11.23) simplifies to

�∇2v (�r) + (� + �)∇ (divv (�r)) + f (�r ) = ∇ p (11.24)

Under the assumption of a homogeneous hydrostatic pressure, ∇P becomes very
small, and the Navier–Stokes equation of a compressible fluid emerges:

�∇2v (�r ) + (� + �)∇ (divv (�r )) + f (�r ) = 0 (11.25)

This equation has the same structure as Equation (11.22), and similar solution ap-
proaches can be taken.29

A complete algorithm that includes fluid flow deformation as one step for image
registration with major displacements was introduced by Christensen et al.11 The main
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goal was to provide a stable method for intersubject registration of neuroanatomical
structures. In the first step, manually aided and landmark-based rigid-body transfor-
mations are applied to produce an approximate global match. This step is followed
by fluid-elastic deformation, that is, numerically solving the nonlinear partial differ-
ential equations describing the fluid deformation model. The cost function that drives
registration is the squared image value mismatch between the floating image and the
reference image. From the cost function, the driving force in Equation (11.25) can
be computed as the gradient-emphasized absolute difference between the deformed
floating image A and the reference image B,

f (�r ) ∝ − |A(�r − � �r ) − B (�r )| ∇ A (�r − � �r ) (11.26)

where the gradient ∇A is responsible for providing the direction of the deforming
force.

Special consideration is given to numerical stability: By monitoring the determi-
nant of the Jacobian of the transformation, deformation fields can be avoided where
the displacement fields become singular. In such a case, the deformed image is re-
gridded by interpolation and the process is restarted. The main disadvantage of this
process is the computational complexity. To reduce this complexity, Bro-Nielsen and
Gramkow10 described an approach where the solution of a set of differential equations
can be approximated by a convolution filter, which resulted in an order-of-magnitude
speed improvement.

11.3. REGISTRATION QUALITY METRICS

In Section 11.2, the importance of the registration quality metric was highlighted as
the force that drives the registration process. Registration quality can be determined
globally (for rigid-body transformations and for an overall assessment) and locally
(for nonlinear deformation models). A number of methods have been developed to
determine if two images are registered, among them the use of fiducial markers and
landmark points, registering of the segmented object surface, two-dimensional gray-
scale histograms, and a chamfer matching technique. The purpose of registration
quality metrics is to provide an optimizing algorithm with guidance as to where to
find the optimum. Suitable registration quality metrics are therefore one- or multidi-
mensional functions that reach a global extremum when the two images are optimally
registered.

11.3.1. Fiducial Markers

Fiducial markers are small objects of high image contrast that can be attached to
the skin, provided with a solid casing, a stereotactic frame, or in extreme cases even
screwed into the bone. The advantage of fiducial markers is the possibility to deter-
mine their location automatedly and the relatively straightforward implementation of
registration quality metrics. The disadvantage of fiducial markers attached to the skin
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FIGURE 11.3 Matched, but unregistered slices from the Visible Human data set. (A) shows
a T1-weighted MR slice of the head, and (B) shows the corresponding CT slice. The images are
mismatched in position, rotational orientation, and scale. Anatomy-based homologous fiducial
markers (red in the MR image and green in the CT image) have been placed manually. (See
insert for color representation of the figure.)

is the possibility that skin deformation displaces the markers between acquisitions.
Usually, fiducial markers are used in conjunction with rigid-body transformations to
register images. An example in two dimensions is presented in Figure 11.3, which
shows matching MR (A) and CT (B) head slices from the Visible Human data set.
Anatomy-based fiducial markers have been placed manually. The images show a
registration mismatch in terms of rotation, position, and scale.

A simple procedure to register two images on the basis of fiducial markers can
be devised that provides acceptable results in two dimensions. The procedure is
described by the following three steps:

Step 1. Find the centroids of the fiducial markers Pc and Qc by averaging the co-
ordinates of the fiducial markers Pi and Qi. Translate the floating image so that
Qc = Pc.

Step 2. Determine the angles of the lines connecting the fiducial markers with the
centroid, 	i for the reference image and �i for the floating image, and rotate the
floating image by �̄ − 	̄, where is �̄ the average of the �i , and 	̄ is the average of
the 	i.

Step 3. The average ratio of the lines that connect the fiducial markers to their centroids
provides the isotropic scaling factor s.

The steps in the registration process are illustrated in Figure 11.4, where the MR
image (Figure 11.4A) is the floating image and the CT image (Figure 11.4B) is the
reference image. The centroid of the fiducial markers is determined and brought to
match with a translation operation (Figure 11.4A and B). With a suitable scaling and
rotation operation, the fiducial markers are brought in close proximity (Figure 11.4C).
The fused and false-colored images (Figure 11.4D) show the images in registration.
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FIGURE 11.4 Registration process based on fiducial markers. First, the centroid of the
markers is determined (green lines in A and B). Next, the centroids are brought in congruence
with a translation operation. The angles of the green lines provide the necessary rotation angle,
and the length ratio provides the scaling factor. After the transformation, the MR image (C)
matches the CT image (B) in terms of position, rotation, and scale. It can be seen that the
green lines, which connect the fiducial markers with the centroid, have the same length and
orientation in (B) and (C). The images are then fused (D), with the MR image having a red
tint and the CT image having a blue tint. A minor mismatch can still be seen; this mismatch
cannot be corrected with rigid-body transformations. (See insert for color representation of
the figure.)

More advanced solutions to the registration problem in three dimensions normally
involve a least-squares approach, such as the solutions presented by Schönemann
and Carroll38 and Arun et al.1 Seven parameters (three translations, three rotations,
and one isotropic scaling operation) are possible and combined in the transformation
matrix M. A set of k homologous fiducial markers is available, defining the sets of
points P = {P1, P2, . . . , Pk} in the reference image and Q = {Q1, Q2, . . . , Qk} in
the floating image. The transformation with M gives rise to the set of equations

Pi = MQi + �i (11.27)
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where 1 ≤ i ≤ k and �i accounts for both the registration error and possible random
influences, such as the shift of a fiducial marker between acquisitions. The registration
strategy is to find a transformation matrix M such that the squared error E (i.e., the
sum of �2

i ) is minimized:

E =
k∑

i=1

(Pi − MQi )
2 → min (11.28)

In the definition of the registration error E [Equation (11.28)], a weight factor wi

can be introduced for each landmark point to account for a variable confidence in
that specific landmark point. In this more general case, Equation (11.28) would be
rewritten as

E =
k∑

i=1

[wi (pi − MQi )]
2 → min (11.29)

The transformation matrix M can be found by finding, in this order, the rotation
matrix R, the scaling matrix S, and the translation matrix T. The algorithm is based
on the Procrustes problem,18 which implies that a solution for Equation (11.29) exists
if M is a matrix of rigid-body transformations. The following three steps describe the
algorithm:

Step 1: Find the rotation matrix.

(1a) Define the centroids of the fiducial markers Pc = (xpc, ypc, zpc) for the reference
image and Qc = (xqc, yqc, zqc) for the floating image through

Pc =
∑k

i=1 wi Pi∑N
k=1 wi

Qc =
∑k

i=1 wi Qi∑N
k=1 wi

(11.30)

and the central positions of the fiducial markers (i.e., the positions P̄i and Q̄i

relative to the centroid) through

P̄i = Pi − Pc Q̄i = Qi − Qc (11.31)

(1b) Compute the covariance matrix C through

C =
k∑

i=1

w2
i

(
P̄i Q̄T

i

)
(11.32)
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(1c) A singular value decomposition yields the unitary matrices U and V with the
matrix of singular values 


C = U 
 VT (11.33)

A method for singular value decomposition can be found in Numerical Recipes
in C.35

(1d) The rotation matrix R can now be computed:

R = V

⎡
⎣ 1 0 0

0 1 0
0 0 det(VU)

⎤
⎦ UT (11.34)

Step 2. Determine the isotropic scaling matrix S with sx = sy = sz:

S =
∑k

i=1 w2
i

(
RP̄i

)
Q̄i∑k

i=1 w2
i

(
RP̄i

)
P̄i

(11.35)

Step 3. Determine the translation vector T from the centroids Pc and Qc by using

T = Qc − SRPc (11.36)

The matrix operations for this algorithm differ slightly from the matrix operations
laid out in Section 11.1 as the matrices S and R are 3 × 3 matrices for a three-
dimensional operation, and the translation operation is performed in an additive
manner with the vector T . The points Pi can now be registered with the points Qi of
the reference image through

P ′
i = SRPi + T (11.37)

At this point, it is efficient to extend the matrices S and R to 4 × 4 matrices and
convert the vector T into a translation matrix T as in Equation (11.4), because now
the final transformation matrix M = TSR can be determined, and the transformation
of each pixel can be performed with a single matrix operation.

The quality of the registration (measured by the squared error E) depends strongly
on the number and placement of the fiducial markers. As with any statistical mea-
surement, a larger number of samples (in this case, a larger number of markers)
reduce the overall error caused by random displacement (placement inaccuracy and
between-acquisition displacements). Some fine-tuning of the registration is possible
by varying the weight factors wi to reduce the influence of markers that show a
stronger misregistration than other markers. Ambiguous results are possible if the
markers are placed in a regular fashion: for example, if all markers are co-planar or
if the markers are spaced regularly.
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11.3.2. Anatomical Markers

The advantage of fiducial markers is the possibility of using automated segmentation
to obtain the locations of the markers in an unsupervised fashion. However, fiducial
markers must be placed before the study, and it is generally not possible to remove and
reattach the markers between studies. Instead of external fiducial markers, anatom-
ical landmarks can be used. Anatomical landmarks are unambiguously identifiable
anatomical structures, such as bifurcations of blood vessels, the eyeballs, the cochlea,
or points with high curvature on bones. The advantage of using anatomical landmarks
is the ability to identify them poststudy, but generally the registration error is larger
than with fiducial markers, and usually the anatomical landmark points are extracted
manually. The strategy to minimize the registration error is the same, however, and
the algorithm to determine the transformation matrix M is the same as for fiducial
markers. Recently, strategies have been developed to extract landmark points in a
more automated fashion. Two tangential circles, perpendicular to each other, can be
inscribed to any convex point of a surface. Those points where the inscribed cir-
cles have minimal radius (corresponding to maximal curvature) are extremal points
and can be used as landmark points.30 Alternatively, extremal points on the surface
can be found by varying the segmentation threshold.41 If the feature-to-background
transition is relatively smooth, the thresholded surface can be displaced outward by
decreasing the segmentation threshold. Crest lines on the surface can be defined as
lines with maximal curvature perpendicular to the line. As the threshold is decreased,
the crest lines move outward, and multiple crest lines form another surface that is
perpendicular to the object surface. A second crest surface, perpendicular to both the
object surface and the first crest surface, can be obtained in the same manner. The
intersection of the two crest surfaces with the object surface at one specific threshold
defines an extremal point that can be used as a landmark point.41

11.3.3. Surface and Volume Matching

If a three-dimensional volume has a well-defined surface, registration can be per-
formed with surface- and volume-matching techniques. For the registration of MR
and PET images, Dhawan et al.15 proposed a method to register the volume based on
their principal axes. Principal axes (such as the major and minor axes of an ellipse)
are perpendicular, and a procedure exists to find them (principal axis theorem). If
two shapes can be approximated by an ellipsoid, a good degree of registration can be
achieved if the respective principal axes are brought in congruence. If the centroid of
the shape (i.e., a set of pixels belonging to a three-dimensional region �) is known as
Pc = (xc,yc,zc), then the principal axes of the shape are the eigenvectors of the inertia
matrix I,

I =
⎡
⎣ Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

⎤
⎦ (11.38)
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with the components

Ixx = ∑
�

[
(y − yc)2 + (z − zc)2

]

Iyy = ∑
�

[
(x − xc)2 + (z − zc)2

]

Izz = ∑
�

[
(x − xc)2 + (y − yc)2

]

Ixy = Iyx = ∑
�

[(x − xc)(y − yc)]

Ixz = Izx = ∑
�

[
(x − xc)2(z − zc)

]

Iyz = Izy = ∑
�

[(y − yc)(z − zc)]

(11.39)

Here the summation takes place over all pixels that belong to the region �. Let E be
the normalized eigenvector matrix and R the rotation matrix with R = Rx · Ry · Rz ;
then the identity

R = E =
⎡
⎣ e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤
⎦ (11.40)

yields the rotation angles �x, �y, �z through15

�y = sin−1 e31

�x = sin−1

(
− e21

cos �y

)

�z = sin−1

(
− e32

cos �y

) (11.41)

By rotating the volume � by �x, �y, and �z, the principal axes are now aligned to
coincide with the x, y, and z axes. The same operation can be done with the second
volume; and with a translation operation along the difference between the centroids,
the centroids can be brought to congruence. Finally, an isotropic scaling matrix S
with s = sx = sy = sz can be determined by computing the cube root of the ratio of
volumes.

The method of principal axes registration was further refined by Dhawan et al.15

into an iterative procedure that has the advantage of being able to register partial
volumes. The IPAR (iterative principal axes registration) procedure is applicable
whenever a field of view (e.g., from a PET scanner) covers the reference volume
only partially. The idea behind the IPAR algorithm is to apply a field of view to the
reference image. This field of view is iteratively refined until it matches the field of
view of the PET image, registering both images in the process.

To match two surfaces, Pelizzari et al.33 proposed a method described as fitting
a hat to a head. Here, the head is used in a analogy to the object’s surface in the



P1: OTA/XYZ P2: ABC
c11 JWBS035-Haidekker August 26, 2010 8:5 Printer Name: Yet to Come

REGISTRATION QUALITY METRICS 367

reference image, and the hat is an analogy of the object’s surface in the floating
image. The reference surface is created by outlining the object in each slice. There-
fore, the head analogy is a stack of convex contours that approximate the closed
three-dimensional surface of the reference object. Conversely, the hat analogy is
created from the surface of the floating image as a set of independent points on the
surface. Rather than representing the object’s outline by a closed contour (as in the
head), the floating object is represented by individual points along the contour and
their centroid. For each of these points Pi, a line extends from the centroid through
Pi, and the intersection of that point with the head (the reference surface), Qi, is
computed. For this purpose, the ray-tracing algorithm by Siddon40 is proposed. The
task now is to find a transformation M so that the registration error E, as defined in
Equation (11.28), is minimized. Pelizzari et al.33 do not explain their optimization ap-
proach, but rather hint at an exhaustive search of the parameter space, aided by some
manual intervention during the parameter search. However, systematic optimiza-
tion methods for multidimensional problems have become available, most notably
Powell’s multidimensional minimization method.34 The Powell method performs an
iterative series of one-dimensional optimizations, moving from the optimum of one
parameter along a perpendicular (or conjugate) direction to find the optimum solution
for the next parameter. This process is repeated for each parameter in turn before the
algorithm returns to the first parameter. The algorithm converges when the difference
of the error E between two iterations falls below a preset threshold. An excellent
explanation with sample computer code for an implementation of Powell’s method
can be found in Numerical Recipes in C.35 The combination of the head-and-hat
method with the Powell optimization was proposed by Levin et al.25

Another popular algorithm for the optimization of a registration metric is the
simplex algorithm. Like Powell’s method, the simplex method is a multidimensional
optimum finder, but the actual algorithm differs fundamentally from Powell’s algo-
rithm. Rather, the Simplex can be thought of as a creature that has N + 1 feet in
a space of N independent parameters.35 To initialize the algorithm, one of the Sim-
plex’s feet is placed at the location of an initial guess; the other feet may be placed
a certain distance � away from the initial guess. Thus, in two dimensions, the feet
form a triangle, and in three dimensions, a tetrahedron, and � is some length scale
that also needs to be estimated initially. Let us assume that the Simplex wants to
climb downhill in its N-dimensional space to find a minimum that is considered the
optimum. The simplex algorithm lets the Simplex find its least optimally placed foot
(i.e., the highest-placed foot) and move it to a better position, ideally by reflecting
it at the N-dimensional hyperplane spanned by the better-placed feet. This reflec-
tion step is designed to maintain the volume of the Simplex and avoid degeneration
(i.e., moving of all feet into the same location). Whenever possible, the Simplex is
allowed to take larger steps, thus expanding its volume. However, once the Simplex
reaches a valley floor, the algorithm lets the Simplex contract. The simplex algorithm
is considered converged if the Simplex volume drops below a predefined threshold
(i.e., its feet are within a certain range of each other). Like the Powell algorithm, the
simplex algorithm may get caught in a local minimum. For this reason, the simplex
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algorithm can be used at different resolutions to enhance its chances of finding the
global optimum. Bernon et al.5 compared Powell’s method and the simplex method
in conjunction with chamfer matching and found that the downhill simplex method
provided better registration results.

11.3.4. Chamfer Matching

Chamfer matching is a surface-based registration method. Chamfer matching was
introduced by Barrow et al.,4 and its performance in multimodality registration
was examined by Jiang et al.23 Chamfer matching is based on a cost function
that uses the Euclidean distance of each object voxel from the nearest surface
voxel. The distance transform is applied only to the reference image, and instead
of using the computationally expensive Euclidean distance map, the chamfer 3/4/5
transform8 produces an adequate cost image. For the purpose of computing the
cost image, the reference image A needs to be segmented, and all surface pix-
els are initially set to zero, whereas both the background pixels and interior pix-
els are initially set to unknown. Both background pixels and interior pixels are
scanned along all three dimensions (x is fastest, z is slowest), thereby setting
each unknown pixel to the minimum of its forward-diagonal elements according to
the formula

I (x,y,z) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I (x + 1, y − 1, z − 1) + 5 I (x + 1, y, z − 1) + 4
I (x + 1, y + 1, z − 1) + 5 I (x, y + 1, z − 1) + 4

I (x + 1, y − 1, z) + 4 I (x + 1, y, z) + 3
I (x + 1, y + 1, z) + 4 I (x, y + 1, z) + 3

I (x + 1, y − 1, z + 1) + 5 I (x + 1, y, z + 1) + 4
I (x + 1, y + 1, z + 1) + 5 I (x, y + 1, z + 1) + 4

I (x, y, z + 1) + 3 I (x, y, z)

(11.42)

In a second pass, following the opposite direction (x is fastest, but from right to left, y
from bottom to top, and z is slowest, from back to front), the pixels are set according
to the modified formula

I (x,y,z) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I (x − 1, y + 1, z − 1) + 5 I (x − 1, y, z − 1) + 4
I (x − 1, y − 1, z − 1) + 5 I (x, y − 1, z − 1) + 4

I (x − 1, y + 1, z) + 4 I (x − 1, y, z) + 3
I (x − 1, y − 1, z) + 4 I (x, y − 1, z) + 3

I (x − 1, y + 1, z + 1) + 5 I (x − 1, y, z + 1) + 4
I (x − 1, y − 1, z + 1) + 5 I (x, y − 1, z + 1) + 4

I (x, y, z − 1) + 3 I (x, y, z)

(11.43)

The two passes are repeated until no unknown pixels are left. As a consequence, the
image value of interior and background pixels increases with their distance from the
surface. To compute the cost of a transform M, the root mean square of all cost values
of the distance-transformed image A is determined for all transformed pixels of the
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surface of the reference image B. If the set of surface pixels of the floating image B
is � and the corresponding set of pixels transformed into A-space is M�, the total
cost C for transform M is defined by23

C(M) =
⎡
⎣ 1

N

∑
pi �M�

min
{
t2, I 2

A(Mpi )
}
⎤
⎦

1/2

(11.44)

where the pi are the surface pixels from surface �, N the number of these surface
pixels, and t a threshold value introduced to reduce the influence of outlier points
in either image. The parameter space of M can be scanned exhaustively to find
the global minimum of C. To improve computational efficiency, a multiresolution
approach is recommended. Further refinement of the transformed position of the
floating image is possible by gradually reducing the threshold t. Furthermore, in-
terpolation of the cost function in the reference image allows for positioning with
subpixel accuracy. One advantage of chamfer matching is its computational efficiency.
The cost function can be computed beforehand and remains unchanged during the
matching process. The computation of the cost function involves the summation over
surface voxels only, which generally are substantially fewer than the voxels in a
filled volume. A multigrid approach and the separation of parameter space further
improves efficiency. A demonstration of the chamfer-matching process in given in
Figure 11.5.

FIGURE 11.5 Example of a chamfer-matching process. The reference image (A) is the MR
slice of the Visible Human head with its outline emphasized as a white line. The distance map
is created from that outline, with intensity values increasing with their distance from the outline
(B). Also seen in image B is the outline of the floating image, the corresponding CT slice. The
CT slice has a mismatch of scale, translation, and rotation. Therefore, the average pixel value
of distance map pixels underneath the white outline of the floating image is relatively high
(B). In image C a search of the parameter space has provided improved scaling, rotation, and
translation parameters. The average pixel value of distance map pixels underneath the white
outline of the floating image is lowered as the images approach registration.
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11.3.5. Intensity-Based Matching

Intensity-based methods build on the assumption that homologous regions of the
images to be registered have similar intensities. This assumption gives rise to using
the co-occurrence matrix as a registration quality metric. Unlike the co-occurrence
matrix definition used in Section 8.2 that uses the same image with a displacement,
the gray-level co-occurrence matrix used for image registration obtains the gray-
value counts from two images. If both images have 256 gray levels, the co-occurrence
matrix has a size of 256 × 256 pixels. Two identical images, perfectly registered,
have nonzero values only along the diagonal of their co-occurrence matrix, whereas
images that are not registered have a wider dispersion of nonzero values.

Intensity-based matching is well suited to register images of the same modality,
because the physical basis of image intensity is the same. Registration of different
modalities is not straightforward. A CT image will have high intensity values for
bone, whereas bone has very low values in MRI. One possibility to adjust the image
values in this special case is to subject the CT image to a triangular intensity lookup
table. Such a lookup table ensures that soft tissue, originally midlevel gray in CT, is
assigned the highest image values, and bone, originally the tissue with the highest
image values in CT, matches the low image values of bone in MRI. An example is
shown in Figure 11.6, where a CT image (B) was subjected to a suitable lookup table
(C) to better match the corresponding MR image (A).

The gray-level co-occurrence matrix for the images in Figures 11.6A and C is
shown in Figure 11.7. In the unregistered case, Figure 11.7A, a relatively wide
dispersion of nonzero values can be seen. In particular, high values near the left or
top borders of the co-occurrence matrix indicate a mismatch, where a large number of
feature pixels in one image coincide with background pixels in the other image. When
the images are registered, the co-occurrence matrix is less dispersed (Figure 11.7B).

FIGURE 11.6 Intensity-based registration of MR images (A) with CT images (B). CT image
values have a different physical meaning than MR image values. Bone, for example is bright
in CT and dark in MR. A triangular lookup table converts midlevel gray values into high-level
values, and high-level gray values (bone) into low values. This lookup table creates a remapped
CT image (C) with an approximation of the MR intensity distribution.
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FIGURE 11.7 Gray-level co-occurrence matrix for the MR image in Figure 11.6A and the
CT image in Figure 11.6C. Image A shows an unregistered case with a translation and scale
mismatch, and image B shows the co-occurrence matrix of the registered images.

Some of Haralick’s feature metrics (see Section 8.2) can be used to quantify the
quality of the registration process. Particularly suitable are the texture features that
weigh the matrix elements by their distance from the diagonal, such as contrast,
inertia, and inverse difference. The inverse difference moment of the co-occurrence
matrix in Figure 11.7A is 29, whereas the inverse difference moment of the matrix in
Figure 11.7B is 1029. The normalized inertia of the matrix in Figure 11.7A is 159,
whereas the same metric for the matrix in Figure 11.7B is 21. Another frequently
employed similarity metric is the joint entropy that was introduced in Equation
(11.20). Two representative metrics, the correlation and inertia, are presented in
Figure 11.8 as a function of horizontal and vertical translation and of rotation. A
clear minimum of the inertia, and a corresponding maximum of the correlation, can
be seen when the images are in registration. By using a suitable similarity metric, a
multidimensional minimum search can be performed analogous to the error minimum
in the head-and-hat surface matching method.

11.4. INTERPOLATION METHODS FOR IMAGE REGISTRATION

The transformation matrix M used to register two images generally requires access
to image elements at noninteger coordinates. To transform an image, it is convenient
to invert the translation matrix:

P ′
i = M Pi � Pi = M−1 P ′

i (11.45)

The reason to invert the matrix M is the more straightforward implementation of
the transformation. In a triple loop over all integer coordinates x, y, and z of the
transformed image (i.e., each point P ′

i ), the coordinate Pi in the nontransformed
image is computed through Equation (11.45) with M.−1 In the general case, the
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FIGURE 11.8 Determination of the quality of registration by gray-level correlation metrics.
Shown are the correlation (solid line) and the inertia (dashed line) of the co-occurrence matrix
of the MR and CT images in Figure 11.6. The CT image was scaled up by 33% beforehand to
match the size of the MR image. All three rigid-body transformations [horizontal translation
(A), vertical translation (B), and rotation (C)] show a clear optimum when the images are in
registration. Correlation shows a global maximum, and inertia shows a corresponding global
minimum. Multidimensional search strategies can be employed to find the optimum points
automatically.
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resulting point Pi contains noninteger elements. An image can be assumed to be
composed of pixel-sized tiles or cubes of constant gray value. Under this assumption,
the image value at any point in space is known: namely, the image value of its nearest
integer neighbor, a scheme called nearest-neighbor interpolation. Although it is
computationally efficient, nearest-neighbor interpolation results are prone to noise
and blocking artifacts. Particularly with repeated interpolation, the nearest-neighbor
principle shows poor results. For purposes of interpolation, the image values are
therefore assumed to be known only on integer coordinates, and some interpolation
scheme provides estimates of the image value on noninteger coordinates. Linear
interpolation provides a smooth transition of the gray value from one vertex to the
next. Linear interpolation is arguably the most frequently used interpolation scheme in
pixel-based image editing programs and many image processing software packages.
Linear interpolation assumes that the image value changes linearly from one pixel to
the next. In one dimension, the interpolated function value f intp (t) at a noninteger
position of t can be obtained by

fintp(t) = a f (	t + 1
) + (1 − a) f (	t
) (11.46)

where 	·
 indicates the integer operation, and a = t − 	t
 is the decimal part of t. In
two dimensions, four neighbors are needed, and with the definition of a = x − 	x

and b = y − 	y
, the interpolation scheme to obtain the interpolated image value
Iintp (x,y) on noninteger coordinates x and y is a two-step process called bilinear
interpolation:

Ix1 = aI (	x + 1
 , 	y
) + (1 − a)I (	x
 , 	y
)
Ix2 = aI (	x + 1
 , 	y + 1
) + (1 − a)I (	x
 , 	y + 1
)
Iimtp(x, y) = bIx2 + (1 − b)Ix1

(11.47)

In three dimensions, the process is identical, except that eight neighboring image val-
ues on integer coordinates are used (vertices of a cube around the noninteger point),
and the interpolation uses four interpolations in x, two interpolations in y, and one
interpolation in z (trilinear interpolation).∗ Whereas linear interpolation is computa-
tionally very efficient, the image value planes that are spanned between adjoining
integer pixels are not differentiable over adjoining squares. Furthermore, linear in-
terpolation acts like a lowpass filter.31 More sophisticated interpolation methods are
recommended.

Cubic interpolation provides a differentiable hypersurface over adjoining squares
or cubes. For cubic interpolation, a third-order polynomial is fitted into four consec-
utive data points in one dimension. In analogy to the weight factor a in Equation
(11.46), four weight factors a0, a1, a2, and a3 are needed to obtain the interpolated
value from the four closest neighbors. The weight factors in one dimension or in the

∗It can be shown that the order of the interpolation steps does not matter. The sequence of interpolations
suggested (first in the x-direction, followed by the y-direction, finally followed by the z-direction) is chosen
arbitrarily and may be changed without affecting the result.
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x-direction can be computed through

a1(� ) = (−� 3 + 2� 2 − � )

a2(� ) = (2 − )� 3 − (3 − )� 2 + 1

a3(� ) = −(2 − )� 3 + (3 − 2)� 2 − �

a3(� ) = (� 3 − � 2)

(11.48)

where � is the fractional part of the noninteger coordinate x. A common choice of the
parameter  is  = 0.5. In one dimension (the x dimension), the interpolated value
IX,k is

IX,k =
4∑

i=1

ai (� )I (	x − 2 + i
 , yk) (11.49)

In one dimension, k is irrelevant. In two dimensions, Equation (11.49) needs to be
applied four times for 1 ≤ k ≤ 4 and y1 = 	y
 −1 to y4 = 	y
 + 2. Next, a second
set of weight factors a1 through a4 is computed through Equation (11.48) with
� = y − 	y
 and the final interpolated value is obtained with

Iintp(x,y) =
4∑

k=1

ak(� )IX,k (11.50)

In three dimensions, the interpolated point is in the center region of a cube with
4 × 4 × 4 vertices. The first step involves the computation of 16 vertices interpolated
in the x-direction, from which four vertices are interpolated in the y-direction, and
the final point determined by interpolation in the z-direction. It can be seen that
the computational effort for cubic interpolation is markedly higher than for linear
interpolation.

Following Shannon’s sampling theory, a signal f (t) can be reconstructed from
sampled values f k with a sinc interpolation function:

f (t) =
∞∑

k=−∞
fk sinc [�(t − k)] (11.51)

where sinc(t) = (sin t)/t . The sinc function has several desirable properties. It is unity
at the origin and vanishes for all integer arguments. Extending Equation (11.51) to
three dimensions, we obtain

f (x,y,z) =
∞∑

i=−∞

∞∑
j=−∞

∞∑
k=−∞

fi, j,k sinc [�(x − i)] sinc [�(y − j)]sinc [�(z − k)]

(11.52)
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where x, y, and z may be noninteger coordinates and i, j, and k are integer numbers
that define the sampling coordinates. One difficulty associated with the sinc interpo-
lation function is the infinite support. Theoretically, the summation takes place over
an infinite volume, although the image occupies only a finite volume. In practice, a
reasonable cutoff is chosen. However, this cutoff can still extend beyond the image
boundaries, in which case suitable boundary conditions need to be applied, such as
the mirror boundary condition, where, for example, I(x,y,z) = I(−x,y,z) when x � 0.
Although sinc-based interpolation methods have been proposed for signal and image
interpolation, particularly in combination with the Fourier transform,46 a sinc inter-
polator has a tendency to produce ringing, that is, high-frequency local oscillations.

It can be seen from Equation (11.51) that interpolation is actually a convolution
operation. In fact, the interpolation of a discrete set f k with an interpolation function
	(t) can be expressed as a convolution operation defined by

f (t) =
∞∑

k=−∞
fk	(k − t) (11.53)

If the interpolation function has finite support, the summation reduces to the range
of the support of 	, thus reducing computational complexity. Notably, even the
nearest-neighbor, linear, and cubic interpolation schemes can be expressed in terms
of Equation (11.53) when the following interpolation functions are used:

	NN(t) =
{

1 for |t | ≤ 0.5

0 otherwise

	lin(t) =
{

1 − |t | for |t | ≤ 1

0 otherwise

	cub(t) =

⎧⎪⎨
⎪⎩

(a + 2)|t |3 − (a + 3)|t |2 + 1 for |t | ≤ 1

a|t |3 − 5a|t |2 + 8a|t | − 4a for 1 � |t | ≤ 2

0 otherwise

(11.54)

In the cubic interpolation function, the parameter a � 0 determines the amount of
negative “overshoot” near ±1 and can be used to approximate the sinc function. By
inserting 	cub (t) from Equation (11.54) into Equation (11.53), the cubic interpolation
in Equation (11.48) emerges. Whereas a = −0.5 is most commonly used, a cubic
interpolation function with a =−0.75 closely approximates a windowed sinc function
with the Hamming window and K = 5:

	(t) =
⎧⎨
⎩

sinc t

[
 + (1 − ) cos

2�t

K − 1

]
for |t | �

K − 1

2
0 otherwise

(11.55)

where  = 0.54 defines the Hamming window and K is the support. The windowed
sinc function has been proposed as an alternative to Equation (11.51) to reduce ringing
artifacts. The interpolation functions in Equations (11.54) and (11.55) are illustrated in
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FIGURE 11.9 Some interpolation functions 	(t) as presented in Equations (11.54) and
(11.55): (A) the nearest-neighbor function (gray) and the linear interpolation function (black);
(B) the cubic interpolation function for the commonly used cases a = −0.5 (black) and a =
−0.75 (gray); and (C) the sinc function (gray) together with the windowed sinc function
[Equation (11.55)] for K = 5 (black). The sinc function is the only function with infinite
support.

Figure 11.9. From the figure it can be seen that the lower-order interpolation functions
have undesirable frequency responses. The nearest-neighbor function has a sinc-type
Fourier transform (conversely, the sinc interpolation function has an ideal boxlike fre-
quency response). A very detailed analysis of a number of interpolation functions was
performed by Thévenaz et al.42 and the authors provided an efficient implementation
in C for download on the Web at http://bigwww.epfl.ch/algorithms.html.

An alternative way to implement some transformations (i.e., the translation and
rotation transformations)16 is to use the properties of the Fourier transform (Chap-
ter 3). The three-dimensional discrete Fourier transform F of an image I(x,y,z) and
its inverse transform F−1 are defined by

F {I (x,y,z)} = 1
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(11.56)
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Although Equation (11.56) describes the discrete Fourier transform, all considera-
tions in this section also apply to the fast Fourier transform. For this reason, im-
plementations of rigid-body transforms in Fourier space are particularly efficient. A
transformation of the type P ′ = MP applied to all XYZ pixels of an image (thus the
transformation of the original image I into an image I′) can be formulated as a filter
F in the Fourier domain:

I ′(x,y,z) = F−1{F · F {I (x,y,z)}} (11.57)

The filter function F for a translation by � x, � y, and � z can be determined from
Equation (11.56) by substituting the translated coordinates. This is derived as follows
(note that the normalization 1/XYZ was omitted to simplify the equation):
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(11.58)

The resulting filter function is a frequency-dependent phase shift. A translation can
therefore be implemented by a Fourier transform of the original image I, followed by
a multiplication of each voxel at frequency (u,v,w) in Fourier space by the complex
filter function

F(u, v, w) = exp

[
−2� j

(
u� x

X
+ v� y

Y
+ w� z

Z

)]
(11.59)

followed by an inverse Fourier transform. Even with noninteger translation vectors,
no interpolation is needed. The Fourier transform of an image rotated by a rotation
matrix R is identical to the Fourier transform of the original image, rotated by R in the
frequency domain. For this reason, implementation of a rotation filter in the Fourier
domain is identical to the implementation in the spatial domain. However, the rotation
operation requires interpolation in frequency space. To avoid this interpolation, the
three-dimensional rotation matrix R can be represented by the product of four shear
matrices13 as introduced in

R = Hy,1 Hz Hx Hy,2 (11.60)

Since a shear operation adds a nonconstant term to the exponential expression in
Equation (11.56), a straightforward filter function as in Equation (11.38) is not
feasible. Instead, the shear operation corresponds to one-dimensional coordinate
shifts. Each one-dimensional row can be processed independently from all others,
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FIGURE 11.10 Comparison of the performance of various interpolation schemes. The orig-
inal image (A) is a variation of the Shepp–Logan head phantom with enhanced contrast and
some Gaussian noise added to a small region. Underneath is the result of repeated trans-
formations with nearest-neighbor interpolation. Images B and C are the result of the same
transformation sequence with linear and cubic interpolation, respectively. Underneath are the
differences to the original image A. Image D is the result of the transformations with the inter-
polation proposed by Thévenaz et al.42 and a fifth-order spline. The difference image illustrates
that this interpolation scheme causes the smallest deviations from the original image.

and the shear operation can be implemented as a sequence of one-dimensional Fourier
transforms in all three spatial directions, followed by application of the coordinate-
dependent shift filter for each transformed line. A similarly elegant solution for the
scaling operation does not exist. The scaling theorem stipulates that a dilation by
a factor a corresponds to a contraction along the frequency axis by a factor of a.
However, the scaling theorem is valid only for the continuous Fourier transform.

The importance of selecting a suitable interpolation method is demonstrated in
Figure 11.10. In this example, a variation of the Shepp–Logan head phantom with
enhanced contrast and added Gaussian noise in the right “ventricle” was subjected
to multiple transformations: scaling by 0.83 followed by scaling by 1.7, followed by
15 rotations by 24◦, followed by rescaling to its original size. Figure 11.10A shows
the original phantom before interpolation, and the result of the transformations using
nearest-neighbor interpolation underneath. Figure 11.10B and C show the result of
the transformations with the linear and cubic interpolation, respectively, and the
difference to the original image is shown underneath. Figure 11.10D was computed
by using the interpolation scheme proposed by Thévenaz et al.42 with a fifth-order
spline. Nearest-neighbor interpolation leads to a jagged appearance, while both linear
and cubic interpolation schemes cause a significant amount of blurring. The least
loss of detail can be seen in the spline interpolation scheme in Figure 11.10D.
However, some ringing and overshoot beyond the original image value range was
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observed. Relative to the linear interpolation scheme, nearest-neighbor interpolation
is 45% faster, cubic interpolation takes 44% more time, and spline interpolation
takes 144% more time. The root-mean-squared coefficient of variation (root-mean-
squared distance normalized by intensity average) between the transformed image
and the original image is 15.7% for the nearest-neighbor interpolation, 10.2% for
linear interpolation, 6.6% for cubic interpolation, and 5.1% for spline interpolation.
Cubic interpolation is often considered an acceptable balance between computational
effort and interpolation quality, but with more powerful computers, a shift toward
more sophisticated interpolation schemes can be expected.

11.5. BIOMEDICAL EXAMPLES

Registration falls into one of these categories:

� The same subject is scanned repeatedly with the same modality (intrasubject,
intramodality registration), for example, serial imaging or imaging at follow-up
exams.

� The same subject is scanned with different modalities (intrasubject, intermodal-
ity registration).

� Different subjects are registered to each other or to a representative (normal or
average) shape (intersubject registration).

The first type of registration can usually be covered with rigid-body transforma-
tions, particularly when the head was scanned. Fiducial markers may be helpful,
but surface- or landmark-based matching is generally sufficient to achieve subpixel
accuracy. The second type of registration poses its major challenge when there is a
different physical basis for image intensity. Matched resolution can be achieved by
scaling, and the optimum transformation is often determined with landmarks, fiducial
markers, or intensity correlation. In the latter case, an intensity transform is some-
times necessary, for example, to adjust CT tissue intensity values to MR intensities.
Depending on the device, the rigid-body model is often sufficient. The third type
of registration is most commonly applied to head scans, and the deviation from the
reference image is crucial. The key challenge in intersubject registration is to find a
suitable nonlinear deformation model and to steer the registration process to locally
optimal transformations. In this case, elastic deformation models or flow models are
sometimes combined with local intensity correlation metrics. A multigrid-approach
is often used to accelerate the computation and to achieve good registration results
when large deformation is needed.

A large number of review articles aimed at the medical profession can be found.
Hutton.20 give a brief but comprehensive overview of the methods used for registra-
tion and specific applications, particularly in nuclear medicine and with a focus on
the validation of the registration transformations. Little and Hawkes26 review intra-
subject registration for both the rigid-body model and nonrigid deformations with
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examples of CT-MR registration. Holden19 reviews state-of-the-art nonrigid trans-
formation models, including elastic and fluid flow transformations, and piecewise
transformations with basis functions (splines, functions with limited support, piece-
wise affine models, and models that are aided by the wavelet decomposition). Finally,
an overview and comparative evaluation of some interpolation methods is provided
by Parker et al.31

To study the motion of lumbar vertebrae under posture changes, McCane et al.28

used two-dimensional rigid-body transforms to quantify vertebral motion in projec-
tion x-ray images. The vertebrae were outlined in a semimanual fashion with an oper-
ator marking landmark points along the vertebral outline, and the final shape obtained
by spline interpolation through the landmark points. In this two-dimensional case,
the transformation consists of a translation (to match the shape centroids) followed
by a rotation. The optimum rotation angle was determined by four different methods:
the iterative closest-point algorithm,6 a method where 100 equally spaced points are
extracted from the spline-interpolated contour,14 and two related methods9 where ei-
ther ventral and dorsal corner points or ventral and dorsal midpoints of the shape
were used for registration. The lowest registration error was found when the iterative
closest-point algorithm was used, and registration had a mean angular error of 0.44◦.

Another example for two-dimensional registration, described briefly by Jan et al.22

registers autofluorescent and near-infrared images of the retina of the same subject.
The method is landmark-based. The landmarks were bifurcations of the retinal blood
vessels. To extract the landmarks, image preprocessing and segmentation were nec-
essary with the following steps: image denoising using an anisotropic diffusion filter,
correction of inhomogeneous illumination, histogram stretching for contrast enhance-
ment, and local application of Otsu’s thresholding method in a moving window to
segment the blood vessels. A skeletonization process of the blood vessels revealed
bifurcation points (nodes). These bifurcation points were used as landmark points,
and a distance metric was used to determine corresponding nodes (as opposed to
nodes that only showed up in one of the images). The iterative closest point method6

was used to determine the rotation angle of the rigid-body transformation. This fully
unsupervised method was developed to aid automated detection of several retinal
diseases, primarily glaucoma and macular degeneration.

Rigid-body registration is a technique often considered sufficient for intrasubject
and intermodality registration of brain images: for example, MR images and either
PET or SPECT images. Viergever et al.43 describe the two steps of spatial matching
(the actual registration step) and the subsequent visualization of the registered images.
Registration was based predominantly on the gray-scale co-occurrence matrix with
a multiscale registration process. Examples are provided on how a SPECT image
superimposed over the more detailed MR image can provide diagnostic information
on patients with a tumor and with Tourette syndrome. Visualization of the registered
images included both three-dimensional surface rendering and semiopaque volume
rendering, the latter giving a better impression of the spatial arrangement.

Another example of three-dimensional rigid-body registration is provided by
Livieratos et al.27 to optimize PET imaging of the lung. Although respiratory gat-
ing is generally possible, the delay between matching time points of respiration is
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associated with a loss of radioactive counts. To avoid the need for respiratory gat-
ing, Livieratos et al. suggested a method for motion correction. By first using gated
imaging, a parametric representation of respiratory motion was obtained. The motion
description was used as a basis for transformations to register the images. Validation
of the method was based on tracer distribution in a phantom and with patient data.

An unsupervised algorithm for intrasubject rigid-body registration of fMRI images
termed Autoalign was presented by Ciulla and Deek.12 The authors postulated that
three landmark points were sufficient to compute a rigid-body transformation. By
using a feature extraction method based on the two-dimensional gradient operator,
they extracted the nose and ears as the landmark points of choice. These three
landmark points were used to define the head coordinate system, which was brought to
congruence between images by means of three-dimensional translation and rotation.
Images were rescaled by linear interpolation. Although registration accuracy was
found to be comparable to other published algorithms, the strength of the Autoalign
algorithm is its simplicity and straightforward implementation.

A large-scale study was performed by West et al.45 to evaluate different methods
of retrospective registration applied at different medical centers. For the comparison,
the goal was intrasubject registration of CT, MR, and PET images of the head. To
establish a gold standard, fiducial markers were attached to the patients, but the traces
of the markers in the images were removed before the images were distributed to the
participating centers. With the large number of participating centers, a large number
of different algorithms were compared in this study. However, the study was restricted
to rigid-body transforms. Example registration strategies included surface matching,
intensity correlation, registration by means of virtual forces computed through a
potential energy field, Pellizari’s head-and-hat method,33 and chamfer matching. The
registration quality was evaluated using a metric of total registration error (TRE)
applied to anatomically relevant regions. Whereas there were no major differences
in the median TRE, the maximum TRE did vary substantially between different
centers. This study demonstrated that automated registration is a feasible technique,
but manual supervision is advisable to guard against failures of the registration
algorithm.

An elastic deformation-based method to register abdominal and thoracic CT im-
ages with PET images was presented by Shehkar et al.39 One interesting aspect of
this study is the formulation of the transformations using quaternions.44 Quaternions
are an extension of complex numbers with one scalar (real-valued) and three orthog-
onal imaginary components. Quaternions allow a particularly elegant formulation of
rotation operations. The registration algorithm was based on a coarse registration
through rigid-body transformations, followed by a hierarchical octree-based volume
subdivision. Subvolumes on all levels were also registered using the rigid-body model
with the transformation limited on each subvolume. The registration strategy used in
this study was the maximization of mutual information (i.e., entropy), a technique
based on voxel intensities. Finally, a global nonrigid mapping scheme was computed
from the voxel-level registration transformations by means of tricubic interpolation
of the voxel centers. The registration scheme was evaluated by expert radiologists.
Registration error was found to be comparable to the interexpert registration error.
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A particularly challenging registration task is the intrasubject registration of x-ray
mammograms. Although this registration task is a two-dimensional problem, the
inhomogeneous tissue composition allows for highly nonlinear and inhomogeneous
deformation. Since radiologists would use texture similarities to compare mammo-
grams visually, Sallam and Bowyer37 propose registration based on outline extraction,
removal of the pectoral muscle from the image, and a curve-matching algorithm based
on the assumption of local linear stretching. After a global linear matching step, homo-
logous points on the surface were determined by their curvature, and stretching was
calculated from the displacement. Surface elasticity constraints could now be imposed
on inner homologous feature points that were matched to determine a final warping
field. Registration accuracy was determined by calculating the co-occurrence matrix.

An important, although less obvious area where image registration plays a key role
is image-guided radiotherapy, in which the goal is to align the irradiation beams with
the target area to optimize irradiation of the treatment area (tumor) and minimize
irradiation of the surrounding tissues. Yue et al.47 presented a method to apply
rigid-body transformation techniques to move the therapy device in a manner to
compensate for variations in the position of the target. A comprehensive overview
of registration and data fusion techniques for radiation therapy, including diagnostic
imaging, treatment planning, and treatment delivery, is provided by Kessler24 and by
Balter and Kessler.3

Software for image registration, ready for immediate use, exists. A number of soft-
ware options are presented and discussed by Hutton and Braun.21 Of particular inter-
est is the free and open-source Insight Toolkit, (ITK), available at http://www.itk.org.
This project is sponsored primarily by the National Institutes of Health and the Na-
tional Science Foundation. ITK contains a large number of algorithms for image
registration, bias-field correction, filtering, and several algorithms for segmentation.
ITK is an excellent toolkit for anyone who needs to get image registration tasks done
without having the resources for major software development.
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12
IMAGE STORAGE, TRANSPORT,
AND COMPRESSION

Images require a sizable amount of memory. A 12-bit computed tomography slice
of 512 × 512 pixels requires 384 kilobytes (kB) of uncompressed storage. A three-
dimensional CT volume of 30 such slices requires about 10 megabytes (MB) of
memory. By today’s standards, this does not appear large. However, the Health
Insurance Portability and Accountability Act of 1996 (HIPAA) stipulates retention
of medical images for 10 years with the exception of mammograms (five years)
and pediatric records (21 years). Estimates are wide-ranging, but a typical clinical
center accumulates about 20 gigabytes (GB) per year for each hospital bed. With
easier access to medical imaging devices, higher resolution of medical images, new
modalities, and an increasing number of imaging procedures that are performed, no
steady state can be expected. Rather, the volume of medical images that need storage
grows by estimated 10 to 20% per year. A 10% annual increase in medical image
volume corresponds to doubling the volume every seven years. One large health
plan with about 377,000 patients was examined,25 and in a 10-year period, those
patients underwent almost 5 million diagnostic tests. In the period from 1997 to
2006, imaging with computed tomography (CT) doubled, from 81 examinations to
181 examinations, and imaging with magnetic resonance imaging (MRI) tripled, from
22 examinations to 72 examinations per 1000 patients. Digital imaging modalities,
such as CT and MRI, are not the only sources of digital images. Frequently, film
archives are digitized for computer archiving and computer image analysis.

Clearly, image compression (the reduction of the image storage size) would reduce
the burden on storage systems and on network bandwidth. There are two fundamental
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types of image compression: lossless compression and lossy compression. Lossless
compression is a compression scheme that allows the exact reconstruction of the orig-
inal data from compressed data. Typically, a lossless compression scheme can achieve
up to 50% reduction of the storage size, but the compression rates are much lower
in images with a large noise component. Conversely, lossy compression schemes do
not allow exact reconstruction of the original data. However, lossy compression rates
by far exceed those of lossless compression. When choosing a lossy compression
scheme, it is therefore crucial to find an acceptable balance between the compression
rate and the restored image quality. Similarly, film digitization requires finding a
balance between digitized resolution (both spatial resolution and the number of gray
levels) and image size.

The human eye is fairly insensitive to gray levels.28 About 20 different levels of
intensity can be distinguished in a small image region. Because the eye is able to
adapt to different levels of brightness, about 100 levels of intensity are reasonable in
a digital image. While 100 levels of intensity can be represented in 7 bits, the most
common choice is a resolution of 8 bits/pixel or 256 possible levels of intensity. The
number of discrete intensity levels is often called the depth of the image. Figure 12.1
demonstrates the effect of low image depths.

Although a depth of 8 bits is typical for MRI, ultrasound, and many instances of
digital photography, CT and digital x-ray images are usually stored with a higher
depth. Typically, a CT image is reconstructed at 12 bits/pixel, allowing us to distin-
guish 4096 different CT values. Most CT scanners provide image values calibrated
by x-ray attenuation of the tissue, given in Hounsfield units (HU). Hounsfield units
are x-ray density values normalized by the density of water:

ICT(x,y) = �(x,y) − �water

�water
· 1000 HU (12.1)

where �(x,y) is the tissue absorption coefficient at a spatial location x,y and ICT (x,y)
is the CT image value in Hounsfield units. Under this definition, water has a CT
value of 0 HU and air a value of −1000 HU. With 12 bits, it is possible to cover the
range from −1000 HU (air) to approximately 3000 HU (compact bone) in discrete
steps of 1 HU. Although the intensity differences of different types of soft tissue
are relatively small, this image depth allows reliable differentiation between tissues.
Many digital x-ray scanners also provide 12-bit depth. When x-ray films are digitized,
depths from 8 to 14 bits are typically used. X-ray mammography is one of the most
critical applications, and depths from 12 to 14 bits are common.10 Technically, even
higher bit depths are possible but would require acquisition elements with extremely
low noise (almost 100 dB for 16 bits). A higher depth allows the digital image to
contain more detail. Although the eye cannot distinguish subtle intensity differences,
it is possible to reveal them by applying contrast/brightness windows or lookup tables
in a digital imaging workstation.13

To display a CT image on a typical workstation, however, reduction of the image
depth to 8 bits/pixel (value range from 0 to 255) is necessary, and this reduction is
associated with a loss of detail. If the image value range is linearly compressed, gray
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FIGURE 12.1 Relevance of the image depth (number of bits per pixel). The original T1-
weighted MR image of a head is represented with 8 bits (A), allowing a total of 256 shades of
gray. Image B is represented by 6 bits/pixel (64 shades), and almost no difference to A can be
seen. Image C is reduced to 4 bits/pixel and image D to 3 bits/pixel (16 and 8 shades of gray,
respectively). In both images, false contouring and flat areas without contrast become obvious.

shades of less than 14 HU difference cannot be distinguished. It is possible, however,
to map a limited CT value range onto the 8-bit display range, and an example is given
in Figure 13.1. By using suitable mapping functions (referred to as window/center
functions), a contrast window can be devised that maps the interior of the lung
(−900 to −200 HU) to the value range from 0 to 255, resulting in higher contrast
in the lung but saturation of the soft tissue and bone regions. In the same example,
another contrast window is applied that maps soft tissue values (−200 to 200 HU)
to the value range from 0 to 255. This contrast allows good differentiation between
different types of soft tissue (e.g., the darker adipose layer and the lighter muscle
tissue), but no contrast is seen inside the lung and in the bone areas. Provided that
the CT image is stored at its full depth, the window/center mapping functions can be
applied when the image is viewed.

The spatial resolution of medical images varies greatly, particularly between
modalities. In some modalities (i.e., CT, PET, and SPECT), the in-plane resolution is
limited by the source-detector system. Typical CT pixel resolutions are between 0.1
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and 2 mm/pixel, and PET and SPECT devices have pixel sizes of about one order of
magnitude larger. Conversely, MRI and ultrasound imaging features variable pixel
sizes. The limiting factor in MR scanners is the ability of the signal acquisition system
to distinguish between different frequency components in a narrow frequency band.
Since it is relatively easy to manipulate the magnetic field gradients, the resulting
field of view is highly variable, and with a fixed reconstruction matrix, so is the final
pixel size. Ultrasound resolution is limited by ultrasound burst frequency and band-
width in the axial direction and by the probe focus in the lateral direction. Ultrasound
scanners allow easy manipulation of the scan angle and the scan depth, and the final
pixel size is highly variable and likely to be anisotropic. The pixel sizes may even
differ within the same image. Furthermore, different ultrasound transducers feature
different resolutions.

In the three-dimensional imaging modalities (primarily CT, MRI, SPECT, and
PET), the slice thickness varies greatly because it can easily be manipulated. Gener-
ally, the slice thickness is larger than the in-plane resolution, and three-dimensional
image voxels are anisotropic in the axial direction. Slice thickness varies from
1–2 mm (CT) to 5 mm (MRT) to several centimeters (PET and SPECT), to provide
typical examples.

In most cases, high-resolution instruments exist that acquire images at a much
higher spatial resolution than that of standard clinical scanners. Micro-CT devices
with a 5- to 50-�m in-plane pixel size exist, and micro-MRI devices can provide
in-plane pixel sizes of 100 �m or better. However, high resolution often comes at
the cost of a reduced field of view or a small device bore, and these specialized
instruments are restricted to ex vivo samples or small animals.

12.1. IMAGE ARCHIVING, DICOM, AND PACS

The digital imaging and communications in medicine (DICOM) standard describes
the medical image format, which allows distributing and viewing any type of med-
ical image, irrespective of its origin, modality, or analysis software. PACS (picture
archiving and communication system) refers to any computer system or network that
allows storage, archiving, retrieval, and transfer of medical images. PACS normally
(but not necessarily) uses the DICOM format to store images, to ensure compatibility
with other PACS systems and with possible PACS upgrades and replacements.

The main purpose of PACS is to integrate the various components that contribute
or analyze medical images, to integrate ancillary components (such as hospital in-
formation systems), and to allow the transfer of images within and between medical
centers. At the center of PACS is the storage and archive server, which not only
archives the images, but also runs a database for image retrieval. Connected image
modalities such as CT scanners or digital x-ray stations store images directly on
the archive server. Radiology workstations allow image retrieval, processing, and
visualization. A typical PACS configuration is shown in Figure 12.2.

The installation of PACS in a medical center is a major investment. Several centers
reported their experience with the planning and execution stage (see, e.g., references 4,
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FIGURE 12.2 Schematic of a typical PACS configuration. The central component is the
image server, which allows image storage and retrieval on a fast local disk system (short-term
storage), a larger, but slower long-term storage unit (e.g., tape storage), and generally also off-
site storage for backup purposes. Image acquisition stations (CT, MRI, digital radiography) can
store images directly on the server through the intranet. Radiology workstations are available
to retrieve, process, and view images. Patient information can be obtained through the hospital
or radiology information system (HIS/RIS), and communication with other centers is possible
through a wide-area network (WAN). More and more often, intercenter communication takes
place over the Internet, which requires a Web server.

5, 8, and 19). Smaller centers have reported the implementation of small-scale low-
cost PACS replacement systems.11,15 In fact, setting up a fault-tolerant server system
based on personal computer hardware is an attractive option for small centers and
study groups that do not have the revenue to justify a full-scale PACS. Hard-drive
capacity is rising faster than image volume, and fault-tolerant systems known as
redundant arrays of inexpensive disks (RAIDs) with terabyte capacity are available
at surprisingly low cost. Since the storage server is the most critical element, a double
level of redundancy (i.e., redundant servers with redundant disks) is an attractive
proposition to increase fault tolerance and decrease downtime due to component
failure.15 However, any custom solution would have to include precautions not only
against data loss but also against unauthorized access.

A prerequisite for the successful deployment of PACS is the availability of an
image format that can be read universally. The DICOM image format is such a format.
Contrary to most other image formats, DICOM allows us to store extensive metadata
together with the image data. In some respects, the principle behind the DICOM
format is similar to the tagged image file format (TIFF). The TIFF format specifies
a header that contains image metadata, such as image size, data type, representation,
and color model. The definition of TIFF tags is extensive, which is the main reason
why TIFF is one of the most flexible image formats available. DICOM follows a
similar principle, but the DICOM metadata block contains information not only about
the image itself but also about the patient, exam, modality, acquisition parameters,
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physician, and health center. The DICOM metadata is stored in the DICOM header, a
block of binary data that precedes the actual image data. The metadata are organized
as a sequence of information objects (tags), each of which is preceded by a unique
identifier (UID). The unique identifier consists of two 16-bit words that specify the
group and the element of the metadata. Following the unique identifier is a 2-byte
value representation (VR) that defines the data type of the metadata field, followed
by 2 bytes that define the length of the metadata field. While the complete list of
object definitions is extremely comprehensive (the 2008 DICOM object definition
list is almost 1100 pages long), only a few objects need to be retrieved to extract
the image data. A single-file DICOM image begins with 128 empty bytes (usually
zero-value bytes), followed by four ASCII characters: D, I, C, M. Any software that
is capable of reading DICOM images would therefore read the first 132 bytes of the
file and verify the presence of the string “DICM” in the 129th through 132rd byte.
Starting with the 133rd byte, metadata information is stored.

The first tags in the DICOM header normally pertain to the image itself. Such data
are contained in Group 0002. For example, UID 0002:0000 (Group 0002, Element
0000) is a field called MetaElementGroupLength. This field has the value representa-
tion UL (unsigned long, that is, an integer value of 32 bits depth that cannot become
negative), and the subsequent bytes are a binary number to represent the data (i.e.,
the value of MetaElementGroupLength). Important groups are 0008 (information
about the modality), 0010 (information about the patient), 0018 (information about
the imaging instrument settings), and 0028 (information about the image format). An
example for a DICOM header is given in Table 12.1.

The transfer syntax UID contains coded information about the metadata format
and the image format. The string in Table 12.1, “1.2.840.10008.1.2,” indicates un-
compressed data with high byte–first order (Intel order or “little-endian”) and implicit
value representation. The byte order is microprocessor-specific. Microprocessors of
the Intel series store integer values that need more than one byte such that the most
significant byte is stored first and the least significant byte last. Motorola-series mi-
croprocessors store multibyte values in reverse order (“big-endian”). A special tag,
Implicit VR; tells the DICOM reader software that the value representation (e.g.,
UL, CS, or US, as seen in Table 12.1) is not part of the metadata, and the DICOM
reader must use an internal VR table. A transfer string UID of “1.2.840.10008.1.2.x”
indicates explicit VR; that is, the VR is provided in the 2 bytes after the unique iden-
tifier. In this case, x may either be 1 (little-endian) or 2 (big-endian). A transfer string
UID of “1.2.840.10008.1.2.4.xx” indicates compressed data, namely JPEG compres-
sion (lossy or lossless, depending on the value of xx), and a transfer string UID of
“1.2.840.10008.1.2.5” indicates compression with the lossless run-length encoding
compression scheme.

A DICOM reader needs to be capable of reading all relevant tags and inter-
preting the raw image data accordingly. DICOM allows the storage of color data
in a variety of different color models, including RGB (red–green–blue), HSV
(hue–saturation–value), CMYK (cyan–magenta–yellow–black), or even palette col-
ors, where each image value is an entry into a color table. Color displays use the RGB
format, and it is necessary to identify the DICOM color model and convert it into
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TABLE 12.1 Sample DICOM Metadata Header

Unique
Identifier
Group:Element

Value
Representation Tag Data Content Comment

0002:0000 UL (unsigned
long)

MetaElement
GroupLength

0x00000084 (132) Length of the
DICOM preamble

0002:0001 OB (other byte) FileMeta
InfoVersion...

0002:0010 UI (unsigned
integer)

TransferSyntax
UID

1.2.840.10008.1.2 Description of data
format and
compression

0010:0010 PN (person
name)

Patient Name “Anonymous” ASCII string of the
name...

0028:0002 US (unsigned
short)

Samples per
pixel

1 Usually 1 for
monochrome or 3
for color

0028:0004 CS (code
string)

Photometric
interpretation

“MONO-
CHROME1”

Interpretation of pixel
value in terms of
brightness

0028:0008 IS (integer
string)

Number of
frames

16 Tells the number of
different frames
(images) in file

0028:0010 US Rows 256 Image height in pixels
0028:0011 US Columns 256 Image width in pixels

RGB. Furthermore, a DICOM image can also store the brightness and contrast set-
tings (window width and center with the unique identifiers 0028:1050 and 0028:1051,
respectively), in which case a gray-value translation similar to Figure 13.1 needs to
be applied.

Despite the complexity of the DICOM format, a number of free DICOM-capable
image viewers, image converters, and DICOM software libraries are available. A
selection of these are listed in Table 12.2.

12.2. LOSSLESS IMAGE COMPRESSION

A lossless data compression algorithm converts the original data into a transformed
data stream, which generally (but not necessarily) occupies less memory. An inverse
transform (decompression) is available that exactly restores the original data. There-
fore, the compression—decompression process is called lossless. A fundamental
concept of the compression transform is to create a code with a variable word length.
The data values with the highest probability are assigned to the shortest codes. As a
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TABLE 12.2 Selection of DICOM-Capable Software

Software
Package URL Commenta

dicom2 http://www.barre.nom.fr/
medical/dicom2/

Command-line program to convert
DICOM to various other formats
(L, W).

ezDICOM http://www.sph.sc.edu/comd
/rorden/ezdicom.html

Offers conversion of several
manufacturer-proprietary image
formats (L, W, S).

MRIcron http://www.sph.sc.edu/comd/
rorden/mricron/index.html

Image analysis software with a focus
on fMRI (L, W, M, S).

ImageMagick http://www.imagemagick.org/ Comprehensive suite of image
manipulation and processing
programs (L, W, M, S).

AMIDE http://amide.sourceforge.net/ Powerful tool for viewing, analyzing,
and registering three-dimensional
image data (L, S).

Medcon/
XMedcon

http://xmedcon.sourceforge.net/ Image conversion tool; Medcon is a
command-line tool and XMedcon
has a graphical interface (L, W, S).

ImageJ http://rsb.info.nih.gov/ij/ Popular comprehensive image
analysis program (see Chapter 14)
(L, W, M, S).

dicom2pgm http://sourceforge.net/projects/
cdmedicpacsweb/files/

Source code for a simple and
straightforward converter from
DICOM to PGM; a good starting
point for custom software (S).

Imebra C++
DICOM
library

http://puntoexe.com/content/
view/11/2/

DICOM3-compliant library for
custom software projects
(L, W, M, S).

Offis dcmtk http://dicom.offis.de/dcmtk.php.en DCMTK is a collection of C/C++
libraries and applications
implementing large parts of the
DICOM standard (L, W, M, S).

aThe letter symbols indicate the availability of Linux binaries (L), Windows binaries (W), Mac OS/X
binaries (M), and availability of the source code (S).

consequence, the entropy of the compressed data stream is increased. One of the first
widely adopted compression schemes was the Huffman coding scheme.

Consider Figure 12.1D, an image with eight discrete shades of gray. These shades
of gray or possible image values are called symbols in the terminology of signal
processing. A histogram reveals the probabilities of each gray level (Table 12.3).
Normally, 3 bits are required to represent the eight different image values. To generate
a Huffman code with variable-length symbol representation, the symbols need to be
arranged in a binary tree where the nodes at each level have approximately balanced
probabilities. Such a tree is displayed in Figure 12.3. The codes are generated by
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TABLE 12.3 Eight-Level Huffman Coding of the Image in Figure 12.1D

Gray Value Probability (%) Binary Code Huffman Code

0 59.1 000 0
1 11.7 001 100
2 13.7 010 101
3 11.9 011 110
4 2.3 100 11100
5 0.7 101 11101
6 0.3 110 11110
7 0.3 111 11111

traversing the tree from the root node to each symbol leaf, adding one bit at each link.
The resulting code is listed in the last column of Table 12.3.

The entropy E of the image in Figure 12.1D can be computed as

E = −
N−1∑
s=0

P(s) log2[P(s)] (12.2)

and was determined to be E = 1.79. The entropy provides the theoretical minimum
length of any code. In this example, the average symbol length cannot be lower
than 1.79 bits per symbol. The code in Table 12.3 has an average symbol length
of 1.89 bits. Compared with the uncompressed 3-bit representation, a compression
ratio of 37% was achieved. It should be noted that the tree example in Figure 12.3
is not optimal, and Huffman’s algorithm would create a more unbalanced tree with
marginally (0.05%) lower average symbol length. Based on the entropy of the data,

FIGURE 12.3 Binary tree to generate a Huffman code. The symbols form the leaves of the
tree, and each node level is created to have approximately the same probability at each level
(the probabilities of each node are shown in italic). The code is generated by walking along
the tree from the leftmost node to the leaf, adding a bit value 0 or 1 to the code, depending on
the direction (arrows). The binary code for the symbol “3” is therefore 1–1–0.
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a more efficient code is theoretically possible, but not with this compression scheme.
A Huffman tree can be generated with the following steps:

Step 1. Create one node (leaf) for each symbol and assign the symbol’s probability
to the node. Put all nodes into a pool (queue).

Step 2. While there is more than one node in the queue, perform steps 3 and 4:

Step 3. Remove from the queue the two nodes with the lowest probabilities.

Step 4. Link the two nodes (child nodes) to a new node and assign the sum probability
of the two child nodes to the new node. Place the new node into the queue.

Step 5. The remaining single node is the root node.

Table 12.3 now contains a code with variable bit length, and the image can be
stored as a sequence of the bit codes in the last column of Table 12.3. Instead of
512 kB, the image would now require 322 kB of storage space, plus storage of the
code table. Since is it not easy to work with compressed data, the image needs to
be decoded (i.e., decompressed) before use. For this purpose, an algorithm would
analyze the bit sequence of the coded image and replace each coded string of bits
with the binary number (third column of Table 12.3). After decompression, the image
is restored exactly.

When a few symbols are very dominant and occur with a high probability, the
Huffman code has a good compression ratio. Conversely, when the image values
are distributed almost equally (high entropy), the compression ratio is low. This is a
general rule that applies to all lossless compression schemes. In the worst case, it is
even possible that a coded image with a low compression ratio takes up more space
than the original image, because the decoding instructions (i.e., the code table) have
to be stored with the coded image. In the context of this chapter, compression rates
C are given as percentages according to

C = SU − SC

SU
· 100% (12.3)

where SC is the size of the compressed image and SU is the size of the uncompressed
image. Compression ratios in the form 1 : n relate to C through (1 − 1/n) · 100%. The
Huffman coding example above corresponds to 37% compression. When an image
is compressed to 10% of its original size, often referred to as a 1 : 10 compression
ratio, the compression according to Equation (12.3) is 90%. A 1 : 50 compression
ratio corresponds to 98% compression.

A different compression scheme is run-length encoding. The run-length method
was introduced as a method to characterize texture in Section 8.4. In the example
of an image with 8-bit depth, a run can be defined by two bytes: symbol and run
length. The process of generating a run-length code is demonstrated in Figure 12.4,
which shows one scan line (one horizontal pixel line) from an image with four gray
levels. By assigning the symbols A (white) through D (black) to the gray levels, the
run-length code is D1 A5 B2 C6 A5 D3 C1 B5, indicating one black pixel followed by
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FIGURE 12.4 Run-length encoding. This figure shows one scan line from an image with
four gray levels: A, B, C, and D. The run-length encoded image is D1 A5 B2 C6 A5 D3 C1 B5.

five white pixels, followed by two light gray pixels, and so on. The 28 original pixels
in the example are encoded in 16 bytes of run-length code, which corresponds to a
compression ratio of 43%. In this example, the length of a run is limited to 256 pixels,
because the length code is only one byte. If a run exceeds 256 bytes a new run is
started. For example, 384 consecutive white pixels can be stored as A256 A128.

Run-length encoding is a very popular method. The compression scheme of telefax
machines is based on run-length encoding with an additional Huffman coding stage.
A popular variation of run-length encoding is the Packbits scheme, found in TIFF
images. Packbits uses a control byte to represent runs up to 128 pixels in length.
Therefore, one bit (the sign bit) allows us to toggle between two modes, uncompressed
bytes and run. Assume that the control byte represents a signed value n. If n ≥ 0, the
next n + 1 bytes are uncompressed data. If n �0, the next byte is the value of a run and
needs to be repeated |n| + 1 times. The Packbits encoding scheme has an advantage
over pure run-length encoding when many runs of a single byte exist. If neighboring
pixels differ, pure run-length encoding requires 2 bytes for each pixel. Packbits needs
only one control byte for a sequence of differing pixels, and the overhead is therefore
generally lower than with pure run-length encoding.

In 1977, Ziv and Lempel34 introduced a different compression algorithm, often
referred to as LZ compression or sliding-window compression. LZ compression makes
use of the occurrence of repeated patterns. Such repeated patterns can typically be
found in plain text, where the patterns correspond to words. Instead of storing the
word “pattern” here (x), a data pair offset : length can be stored. At the position of
the (x) in the preceding sentence, this would be 15 : 7. This combination means the
following: From the current position (the x mark), go back 15 characters, including
spaces, and copy 7 bytes of data (namely the word “pattern” without the quotes) to
replace the (x). The repeat occurrence of the word is now encoded in 2 bytes. The
LZ family of compression algorithms is also called dictionary-based compression,
because the algorithm builds a dictionary of patterns that already occurred in the
data stream. The longer the algorithm can look into the past (i.e., the longer the
sliding window), the more efficient the algorithm becomes. In 1978, Ziv and Lempel
introduced an improved algorithm where the sliding window was also capable of
considering future (forward) data.35

The combination of the Lempel–Ziv dictionary-based algorithm and Huffman
encoding, known as DEFLATE, found widespread use in commonly available data
compression utilities such as pkzip, gzip, and in the portable network graphics (PNG)
image format. T. A. Welch improved the LZ compression algorithm further33 and
introduced the compression method known as LZW. The LZW encoding algorithm
creates a grow-as-you-go dictionary, which is stored as a separate table in the encoding
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stage. Initially, this dictionary is populated with binary codes for each possible
symbol. In the example of Figure 12.1D, eight symbols exist in the image. One
additional symbol is needed to represent the end of the data stream. Thus, nine initial
symbols require 4 bits per symbol, and seven more symbols can be encoded with the
same number of bits. As the encoding algorithm analyzes the data stream, longer and
longer symbols are entered into the dictionary: If the last n − 1 symbols (excluding
the current symbol) exist in the dictionary, a new word of n symbols (including
the current symbol) is entered into the dictionary and assigned a new bit code. If the
same n symbols occur again, they are referenced by the bit code. Returning to the
example in Figure 12.4, the dictionary initially consists of the symbols A, B, C, D,
and a stop symbol. When the second character is examined, the symbol D already
exists, and a new symbol E = DA is entered. At the third character, since both DA
and A exist, two new symbols, F = DAA and G = AA, are defined and added to the
dictionary. Thus, at the fifteenth character, the sequence AAAAA is a repeat of the
sequence starting at the second character and referenced with the appropriate single
code from the dictionary. The number of symbols will quickly exceed the number of
combinations allowed in the original bit representation of the initial dictionary. In this
example, five original symbols require 3 bits and allow for three additional symbols.
Once this number is exceeded, the LZW coder adds an additional bit. Therefore, the
LZW-coded data stream has a variable symbol length. Since the dictionary is not
transmitted with the data stream, the decoder needs to keep track of the dictionary. It
builds the dictionary from the encoded stream and preferentially tests the longer bit
code in ambiguous cases. In this way the decoder also keeps track of the increasing
symbol length in the coded stream. One major advantage of the LZW coding scheme
is the implicit nature of the dictionary. Whereas Huffman and LZ coding schemes
need to transmit the symbol tables, LZW does not have this type of overhead.

The image in Figure 12.1A, which contains a moderate amount of noise, can
be compressed by 44% with LZW and 45% with Packbits. For the image shown
in Figure 12.1C, where much of the image noise has disappeared because of the
low number of gray levels, LZW allows a compression rate of 86% while Packbits
compresses by 67%. It can be seen that the LZW algorithm is particularly effective
in images that have wide, homogeneous areas. This was the reason why the LZW
compression was chosen by CompuServe for the graphics interchange format (GIF),
one of the first widely used color graphics formats in Web pages.

The Joint Photographic Experts Group (JPEG) standard defines two lossless com-
pression standards that are less widely known than the lossy JPEG compression stan-
dards and the coding schemes described above. The first encoding scheme, named
JPEG-LS, is based on a compression scheme owned by Hewlett-Packard. The scheme
is called low-complexity, context-based image compression,31,32 or LOCO-I. The gen-
eral data flow in the compression algorithm is shown in Figure 12.5. It can be seen that
the JPEG-LS algorithm has considerable complexity. Two main compression modes
are available and activated, depending on image data: (1) run-length encoding, used
in flat image regions, and (2) entropy encoding, used in image regions with a nonzero
gradient. A flat-region discriminator (gradient image threshold) activates one of the
two encoding paths.
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FIGURE 12.5 Schematic of the JPEG-LS compression algorithm. Two compression meth-
ods are available: (1) run-length compression for flat regions, and (2) entropy-minimizing
compression in nonflat regions. A flat-region discriminator, driven by the image gradient, se-
lects which encoding scheme is active. To improve the entropy compression rate, the image data
are first subjected to a context-based model before compressed with an entropy-minimizing
scheme (Golomb coding). The idea behind context-based modeling is to use a deviation from a
predicted value. A predictor stage guesses an image value PK from the neighborhood of image
value IK. The difference EK = IK − PK is usually a small value, and the overall entropy of the
difference data stream EK is lower than that of IK. (From ref. 31.)

The context modeling stage deserves some explanation. Since the image is com-
pressed by scan lines, the 8-connected neighbors to the top and to the right of a pixel
are already known. The pixel configuration in the neighborhood of pixel x (corre-
sponding to the pixel intensity value IK in Figure 12.5) is shown in Figure 12.6. In
the first modeling step, a guess x̂ is made from the neighbors a, b, and c according to

x̂ =
⎧⎨
⎩

min (a,b) if c ≥ max (a,b)
max (a,b) if c ≤ min (a,b)
a + b − c otherwise

(12.4)

FIGURE 12.6 Pixel neighborhood configuration in the JPEG-LS algorithm.
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FIGURE 12.7 Prediction encoding for JPEG-LS compression. Image A shows the original
MR slice, and image B contains the prediction error EK, that is, the deviation of the predicted
value from the image value IK computed through Equation (12.4). The insets show the histogram
of the respective image. The histogram of the prediction error EK (i.e., the residuals) is zero-
symmetric with an exponential decay, which allows for excellent entropy encoding.

If x̂k is the predicted value, Ek = Ik − x̂K is the prediction error (the residual). The
transformation from IK to EK creates a set of pixels with an advantageous histogram,
as demonstrated in Figure 12.7. The histogram of the residuals is relatively narrow,
symmetric around zero, and the histogram values are decaying exponentially with the
intensity value (known as Laplacian distribution). Such a histogram is advantageous
because it allows for better entropy compression.

Because of outliers, the histogram of the residuals (see Figure 12.7B) tends to
deviate from the ideal Laplacian distribution. An adaptive predictor remaps those
outliers and optimizes the predicted values PK so that the residuals EK are optimal
with respect to one of several predefined Huffman codes. Therefore, a single param-
eter defines the Huffman table to be used for decompression. The adaptive prediction
(and therefore the modeling of the EK to fit the Laplacian probability density function)
is helped further by context modeling. The context is defined by quantized gradients
g1 = d − b, g2 = b − c, g3 = c − a with the neighborhood notation in Figure 12.6.
The actual entropy encoding makes use of the Golomb–Rice compression21 rather
than Huffman compression, because Golomb–Rice compression is optimal for expo-
nentially decaying probability density functions.

The JPEG-2000 standard defines one additional lossless compression method.
This method is based on wavelets. However, the lossless wavelet-based JPEG-2000
compression algorithm requires more computational effort than JPEG-LS and does
not necessarily provide better compression rates.23

Several of the lossless compression algorithms are or were subject to patent
restrictions. The patent for the LZW algorithm was held by the Unisys corpora-
tion, and at some point in the past, Web authors who used GIF images in Web
pages were at risk of lawsuits forcing them to pay license fees. Amid considerable
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controversy, Unisys decided to allow noncommercial use without a license fee,
and later allowed royalty-free use of the LZW decoder. Nonetheless, these patent
restrictions sparked development of the PNG format. Nonrestricted compression
schemes (such as DEFLATE or Packbits) enjoyed more widespread use than re-
stricted schemes. Although the Unisys patents expired in 2003 and 2004, thus making
GIF decoders and encoders free of patent restrictions, the alternative PNG format
still enjoys great popularity. The patent rights for the LOCO-I algorithm used in
JPEG-LS are held by Hewlett-Packard, but licenses can be obtained free from the
Hewlett-Packard Web site (http://www.hpl.hp.com/loco/).

12.3. LOSSY IMAGE COMPRESSION

Whereas lossless compression can achieve typical compression rates of 50% with
many files, lossless compression rates of medical images are generally even lower
because of the noise component. Lossy compression techniques lead to some im-
age degradation. High-frequency components are dropped, and compression rates
increase steeply with the amount of detail removed from the image. The idea of lossy
compression is based on the observation that the human eye does not necessarily
need the full spatial frequency range to discern features. As opposed to, for exam-
ple, computer program code or text files, where exact restoration of the datastream
is imperative, some loss of information in images is considered acceptable. Lossy
compression schemes allow us to choose a balance between compression rate and
decompressed image quality.

Lossy compression becomes particularly effective when image information com-
ponents can be selected for which the human eye is less sensitive. In color images,
the luminance (or intensity) information is perceived at much higher spatial frequen-
cies than the chrominance (color) information. This is demonstrated in Figure 12.8,
an example of the synthetic fractal landscape (Chapter 10). An adaptive anisotropic
diffusion filter causes blurring in most regions except near edges. The blurring effect
in Figure 12.8B is obvious. When the color information is blurred but the intensity
information is not (Figure 12.8C), the information loss is much less obvious, al-
though the difference image (Figure 12.8D) reveals that information loss takes place.
Since a blurred (lowpass-filtered) image contains less noise and more homogeneous
regions, entropy-maximizing compression is more effective. Instead of filtering all
color components to achieve a higher compression rate, it is possible to convert the
image space to (in this example) the hue-saturation-value model. In this model, the
intensity information is represented by the value channel. The hue and saturation
channels can be filtered readily, whereas the value channel remains unfiltered. The
reconstructed image shows only small differences to the original image.

There are several basic methods of lossy data compression. All of them have in
common that the image data are transformed in a manner that individual coefficients
of the transformed data may be dropped with a minimum effect on the image after
the inverse transform. Most commonly used is a compression standard defined by
the Joint Photographic Experts Group (JPEG), which is based on the discrete cosine
transform. The lossy JPEG encoding chain is sketched in Figure 12.9.
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FIGURE 12.8 Demonstration of the effect of selective image information loss. Image A,
subjected to an adaptive anisotropic diffusion lowpass filter, is strongly blurred (B). The loss
of detail at high spatial frequencies is obvious. Conversely, when only the color (hue and
saturation) information is blurred and the intensity information is left unaltered (C), almost no
differences to the original image are detectable. The difference between images A and C is
shown in image D. (See insert for color representation of the figure.)

FIGURE 12.9 Schematic representation of the encoding steps for JPEG lossy compression.
The shaded boxes represent the lossy part, and the white boxes represent the lossless part of
the compression scheme. The uncompressed image is first converted from its original color
model (such as RGB) to a luminance–chrominance model (YCbCr). Each channel is then
subjected to the discrete cosine transform (DCT). In the quantization step, a specified number
of DCT coefficients are set to zero. A special sampling scheme, zigzag sampling, creates long
runs of zeros which readily compress in a run-length encoding (RLE) stage. Finally, Huffman
encoding optimizes entropy and creates a small compressed image.
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JPEG compression acts on nonoverlapping blocks of 8 × 8 pixels. The first step
of JPEG compression is a conversion of the original color model to the YCbCr model
followed by subsampling of the chrominance components. The luminance component
(Y) remains at full resolution. The conversion of RGB to YCbCr is performed using
the matrix equation

⎡
⎣ Y

Cb
Cr

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.114

−0.169 −0.331 0.500
0.055 −0.419 −0.081

⎤
⎦ ·

⎡
⎣ R

G
B

⎤
⎦ (12.5)

Since this step is omitted in monochrome images, the initial block size is 16 × 16
pixels for compatibility. The luminance component is rounded to 8 bits and subdivided
into four blocks of 8 × 8 bytes. The chrominance components Cb and Cr are first
subsampled by averaging blocks of 2 × 2 neighboring pixels, then rounded to 8-bit
integers. Consequently, six blocks of 8 × 8 bytes have been created from the original
16 × 16 block of three bytes. This first step corresponds to a compression of 50%.

The next step of the compression is based on the discrete cosine transform,

D(u,v) =
N−1∑
y=0

N−1∑
x=0

[I (x,y) − 128] cos

[
�u

N

(
x + 1

2

)]
cos

[
�v

N

(
y + 1

2

)]

(12.6)

where I(x,y) are the image values from one of the 8 × 8 blocks (therefore, N = 8), and
D(u,v) are the 8 × 8 cosine transform coefficients. The subtraction of the constant
offset 128 is performed to reduce the image average [D(0,0)]. The coefficients are
rounded to signed integers and may temporarily exceed the 8-bit value range. Since
the cosine arguments are constant, they may be precomputed for a major speed gain,
and recursive schemes [fast cosine transform (FCT) in analogy to the FFT] are used.
The D(u,v) represent the frequency components of each 8 × 8 block. The actual
compression takes place by dividing each D(u,v) by a quantization coefficient Q(u,v)
from an 8 × 8 quantization table:

Q(u,v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.7)

Since the division D(u,v)/Q(u,v) is an integer operation, many of the resulting coeffi-
cients will be zero, while the remaining coefficients are small integer numbers. This
distribution of coefficients represents an ideal situation for run length and entropy
encoding.
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Commonly used values for the quantization table are given in Equation (12.7).29

Since the DCT coefficients are divided by the entries of the quantization and the
values increase toward higher-frequency components, the quantization process has
the function of a lowpass filter. Moreover, the DCT coefficients drop quickly toward
zero with higher frequencies. Therefore, the resulting quantized DCT coefficients are
zero predominantly in the lower right region below a diagonal. The quantization table
also determines the compression quality. For a lower quality (and therefore a higher
compression rate), larger values in the quantization table are chosen. Consequently,
more quantized DCT coefficients will be zero. More specifically, the quantization
table in Equation (12.7) defines the quality level q = 50. For higher qualities, each
component of the matrix can be multiplied by (100 − q)/50, and for lower qualities
the multiplication factor is 50/q. Furthermore, different quantization tables are used
for the luminance and chrominance components, allowing a higher compression rate
for the chrominance (color) information.

The final compression step is a step of run-length encoding followed by entropy
encoding of the quantized DCT coefficients. To generate long runs, the quantized
DCT coefficients are sampled along a zigzag line from the lowest to the highest
frequencies, as shown in Figure 12.10. The resulting data stream of 64 bytes length
has a high probability of a run of zeros towards the end. Run-length encoding of
such a stream is highly efficient. Finally, the run-length encoded data are Huffman-
encoded. The final JPEG-compressed image contains not only the compressed image
data but also the Huffman table and the quantization tables, because the decoder
cannot generate these automatically.

The decompression steps reverse the compression steps. First, the table of quan-
tized coefficients is restored by decoding the Huffman-coded data stream and ex-
panding the run-length encoded data into an 8 × 8 matrix, resulting in the table of
quantized coefficients. These are multiplied with the values from the quantization

FIGURE 12.10 Sampling direction for the discretized coefficients D(u,v)/Q(u,v). The pat-
tern in which the two-dimensional subimage data are converted to a one-dimensional vector
makes use of the high likelihood of having zero coefficients below one of the diagonals, thus
optimizing the run-length compressed stream.
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table and subjected to an inverse DCT. At this point, the reason for the data loss
becomes obvious, because those coefficients of the DCT that were set to zero due
to rounding remain zero during decompression. Generally, these are high-frequency
components, and the 8 × 8 block has lost detail information. If the compressed image
is a color image, the final step is the expansion of the chrominance components and
conversion to the RGB color model.

JPEG encoding achieves good compression rates as long as a relatively high
quality is chosen. Compression rates below about 90% show hardly any degradation.
Minor image degradation can be seen at compression rates from 90 to 95%. At even
higher compression rates, blocking artifacts become visible. These are a peculiarity
of JPEG compression and are a consequence of the subdivision of an image into
8 × 8 or 16 × 16 squares which are compressed independently.

Typical JPEG artifacts are shown in Figure 12.11. The original image allows
lossless TIFF compression with Packbits of 92%. With lossy JPEG compression, the

FIGURE 12.11 Demonstration of JPEG blocking artifacts. The original image is the
Shepp–Logan head phantom with some artificially added noise in the left ventricle. Shown are
decompressed images after 97.2% reduction (q = 25%, A), 98.4% reduction (q = 15%, B),
and 99% reduction (q = 5%, C). Below are the corresponding difference images of the original
image (D–F). With increasing compression rates, the outlines of the 8 × 8 blocks become more
and more visible, particularly near edges. The difference images make the lowpass character
of JPEG compression particularly visible, because they show strongly the noise component
and high values near edges. Lossless compression achieves about 92% compression rate with
this image.
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decompressed images show progressive degradation and the appearance of blocking
artifacts after compression with rates well above 95% (notice the very obvious blocks
near the “tumors” in the lower part of Figure 12.11C). The root-mean-square errors
[square root of Equation (12.9)] of the images in Figure 12.11 to the original image
are 6.0, 7.2, and 11.1, respectively. Due to the nature of DCT quantization, multiple
compression and decompression operations at the same quality level do not further
degrade the image.

The JPEG-typical blocking artifact becomes particularly predominant in pure
binary (black-on-white) images, where JPEG compression causes new black pix-
els to appear. Other compression schemes prove superior for this special case.
Such an example is the proprietary Cartesian Perceptual Compression method
(http://www.cartesianinc.com/Tech/) or the freely available DjVu scheme.2

The introduction of the wavelet transform and its rapidly growing use in image
processing applications provided a big advance in lossy compression. Wavelet-based
compression was adopted in the JPEG-2000 standard and proved vastly superior to
DCT compression at high compression rates. Wavelet-based JPEG-2000 compres-
sion17 follows the same general outline of the earlier JPEG compression (Figure 12.9).
However, the DCT step is replaced by a DWT step (discrete wavelet transform); the
quantization step and the subsequent coding steps differ fundamentally. In addition,
more consideration went into integer-only algorithms that do not cause rounding
errors.

JPEG-2000 compression begins with a color model conversion. Whereas the
YCbCr model [Equation (12.10)] is still valid within the JPEG-2000 standard, a
modified YUV model based on integer-only operations provides an alternative color
model transformation with minimal rounding errors (a maximum loss of 2 bits in the
computation of Y):

Y =
⌊

R + 2G + B

4

⌋

U = B − G
V = R − G

(12.8)

The chrominance components U and V are not downsampled, because it is more
straightforward to drop the finest level of the wavelet transform instead. The subdi-
vision of the image into blocks of n × n pixels, where n does not necessarily have
to be 8 or 16, is optional. This subdivision (tiling) is allowed to reduce memory
requirements if necessary, but larger tiles, up to the size of the image itself, reduce
the appearance of blocking artifacts.

The discrete wavelet transform is performed as described in Section 4.1. The
JPEG-2000 standard allows us to choose between two wavelets. Both are from the
Cohen–Daubechies–Feauveau family of wavelets. The first, defining a lowpass filter
with nine coefficients and a highpass filter with seven coefficients, often referenced
as CDF 9/7, is used for lossy compression. The second, using five coefficients for the
lowpass and three coefficients for the highpass, is known as LeGall 5/3 and is used
for lossless compression. The LeGall 5/3 wavelet filter uses integer coefficients and
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therefore avoids the rounding errors associated with floating-point coefficients. The
subsequent quantization step is similar to the JPEG quantization. Contrary to JPEG
quantization, only one value of Q for each wavelet subband is allowed. Dividing the
wavelet coefficients by the subband’s value for Q and rounding to the nearest integer
reduces the number of bits needed for each subband, and also sets small coefficients to
zero. This step is the actual compression step associated with data loss. The value of Q
determines the image quality after decompression. In the case of lossless JPEG-2000
compression, Q = 1 is chosen.

Subsequent entropy coding is performed by lossless arithmetic compression, a
scheme known as MQ coding,17 which is a specific form of context-based encoding
with prediction (see Figure 12.5). The final data stream is organized to allow access
to image subregions. The coding scheme called EBCOT (embedded block coding
with optimized truncation)27 is built around the idea of dividing each subband into
rectangular blocks of coefficients and performing the encoding independently on
each block. EBCOT allows limited random access to the bit stream.

Another feature of JPEG-2000 images is their ability to handle regions of interest.
It is possible to define regions of the image where lower degradation or even lossless
compression is applied. Particularly in the context of medical imaging, it is advan-
tageous to use a lower compression in diagnostically relevant regions. A digitized
x-ray mammogram, for example, could be compressed at a high rate, yet the region
where microcalcifications are suspected remains uncompressed.

Examples of JPEG-2000 compressed images are given in Figure 12.12. The images
are directly comparable to Figure 12.11 with similar compression rates. The block
artifacts that characterized JPEG compression are much less dominant in the JPEG-
2000 scheme, and the blurring occurs over a wider region. The root-mean-squared
errors are consistently lower with JPEG-2000 compression than with JPEG compres-
sion, with values of 3.95, 5.85, and 7.38 in Figure 12.12A, B, and C, respectively.

Several other lossy compression schemes exist, but none of them have received the
attention that JPEG-2000 received. Closely related to JPEG-2000 is the Progressive
Graphics File (PGF) file format.26 It uses the same basic principles as JPEG-2000,
that is, lossy compression based on the wavelet transform and quantization of the
wavelet coefficients. In contrast to JPEG-2000, PGF was optimized for speed. PGF
features a somewhat lower compression efficiency over JPEG-2000, but it compresses
and decompresses about five times faster. BTC or block truncation coding18 uses a
fundamentally different approach. The idea behind block truncation coding is the
observation that image values show only small local variations. For BTC, the image
is subdivided into small regions (typically 4 × 4 pixels), and for each block, the mean
and standard deviation are computed. Any pixel that is larger than the local mean is
represented by a “1”; all pixels below the mean are represented by a “0.” Therefore,
a 4 × 4 block can be coded in four bytes (mean, standard deviation, and 16 bits of
image data), and the compression rate is at least 75%. The disadvantage of BTC is
a severe loss of image information at relatively modest compression rates, and BTC
never achieved appreciable popularity.

Apparent self-similarity of image regions was used by Barnsley and Hurd in their
concept of fractal image compression.1 The idea behind fractal image compression is



P1: OTA/XYZ P2: ABC
c12 JWBS035-Haidekker August 26, 2010 7:50 Printer Name: Yet to Come

LOSSY IMAGE COMPRESSION 407

FIGURE 12.12 Demonstration of JPEG-2000 wavelet-based compression. The images are
comparable to Figure 12.11 and have similar compression rates. Shown are decompressed
images after 97.2% reduction (A), 98.4% reduction (B), and 99% reduction (C). Below are the
corresponding difference images to the original image (D–F). JPEG-2000 compression shows
less localized blurring and the absence of the 8 × 8 processing blocks seen in the JPEG DCT
compression scheme.

the observation that some regions of the image are similar to others, but possibly on a
different scale. In a general form, this representation was introduced as the Hutchinson
operator in Section 10.1. More specifically, the image is searched for regions that
can be described as the attractor of some iterative affine transformation. If this is the
case, the image region is fully described by the parameters of the transformation.
Fractal compression is patented, and details of the compression method are not
readily available. Fractal compression probably enjoys its greatest popularity as the
compression method of choice in the Microsoft Encarta encyclopedia. Notably, fractal
image compression gives rise to fractal interpolation, a method that provides a more
natural-based approach to zooming into an image.

Up to this point, still-image compression was discussed. Compression rates in
video sequences are generally much higher than in still images, because the difference
from one frame to the next is relatively small. It is therefore possible to predict the
next frame with high accuracy. Consequently, the residuals of each predicted frame
are small and can readily be compressed. The combination of within- and between-
frame compression gives rise to lossy compression rates of 99.9% and higher. The
most common standard is the MPEG (Moving Picture Experts Group) compression
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standard. It defines both audio and video coding. The video compression is based on
the DCT and builds to some extent on techniques introduced with the JPEG standard.

12.4. BIOMEDICAL EXAMPLES

Apart from the compression rate, the main concern that arises in biomedical imaging
is to what extent a lossy compression affects the efficacy of an image to support
a diagnosis. In other words, the optimum balance between storage and bandwidth
constraints on one side and image detail preservation on the other side needs to
be found. An objective measure of the difference between the original image I(x,y)
and the image degraded by compression and decompression C(x,y) can be given by
various methods. Popular metrics are the mean-squared error (MSE) and the peak
signal-to-noise ratio (PSNR):

MSE = 1

MN

M−1∑
x=0

N−1∑
y=0

[I (x,y) − C(x,y)]2 (12.9)

PSNR = 10 log10
I 2
max

MSE
(12.10)

In Equation (12.10), Imax is the maximum possible value for the bit depth: for example,
255 for an 8-bit image. The square root of the MSE value in Equation (12.9) is also
known as the root-mean-squared error (RMSE). Shiao et al.24 suggested two more
metrics. These are based on local windows rather than single pixels. The first is the
Q index,30 where a distance metric Q is calculated for each window:

Q = 4 cov (I ,C)�I �C(
�2

I + �2
C

) (
�2

I + �2
C

) (12.11)

where cov(I,C) indicates the covariance between images I and C inside the local
window, �I and �C the mean values of the windows in images I and C, and �I and
�C indicate the standard deviations of the values in the windows of I and C. Whereas
sliding and tiled windows provide a quality map Q(x,y), Wang and Bovic average the
Q-values over all windows to obtain a single metric for the entire image.30 The second
metric is the Moran peak ratio.7 The local Moran coefficient A is computed through

A = N
∑mn

j=1

∑mn
i=1 �(i, j)(Ii − �)(I j − �)

2(2mn − m − n)
∑mn

i=1(Ii − �)2
(12.12)

where m and n are the pixel width and height of the window, the delta function �(i,j)
assumes the value 1 for i = j and 0 otherwise, � is the average image gray value
inside the local window, and N = mn. Local values for A need to be computed for
both images I and C, and the histogram distributions of the Moran coefficients A(x,y)
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are compared between both images. The Moran peak ratio is defined as the ratio of
the highest peak values of the A-histograms of both images. Shiao et al.24 analyzed
the degradation of the images as measured with the Q index and Moran peak ratio
with increased compression ratio, and compared DCT-based JPEG compression to
wavelet-based JPEG-2000 compression. It was found that JPEG-2000 usually out-
performed JPEG compression. The study also highlighted the difference between the
application of windowed similarity metrics with sliding or tiled windows. Particu-
larly JPEG compression, itself window-based, caused unusual trends in the similarity
metrics at higher compression rates. A study that critically examines the usability of
objective metrics was presented by Fidler et al.12 In this study, CT images of the head
were examined. The difference between compressed–decompressed images and their
originals was quantified with the mean-squared-error metric. In addition, subjective
perception of the degradation of test patterns was included. Two compression modes
were compared, one with a constant quality factor and correspondingly constant
MSE, and one with a constant compression rate. The authors suggest that a compres-
sion rate target may produce unreliable results, depending on the image entropy, and
recommend using a variable compression rate with a targeted maximum MSE.

Neither MSE and PSNR nor windowed similarity metrics provide information
on how the compression has affected the diagnostic value of the image. This effect
can be shown in Figures 12.11 and 12.12, where the subtle “tumors” in the lower
part of the phantom become less visible in the JPEG-2000 compressed Figure 12.12,
although the RMSE is lower than in Figure 12.11. Whereas similarity metrics are
useful for obtaining an objective value of quality loss, the diagnostic value needs to
be assessed separately with the aid of diagnostic experts. An example are microcal-
cifications in digital x-ray mammograms. Microcalcifications are very small features
that easily get blurred by the lowpass character of all lossy compression schemes.
Chan et al.6 compared the diagnostic value of digitized mammograms compressed
with a pyramidal compression scheme and with a DCT-based compression scheme.
With similar diagnostic value (determined through ROC analysis), the DCT-based
compression provided higher compression rates, but 90% compression could not
be exceeded.

Similar studies exist for other modalities and other sites. Bramble et al.3 examined
the quality of compressed digitized x-ray images when used to determine subpe-
riosteal resorption of the phalanx. Image quality loss was simulated by quantization
of the Fourier coefficients, a technique related to, but different from, the quantization
of DCT coefficients. After Fourier transform, the Fourier coefficients were rounded
to the nearest integer with 8, 7, or 6 bits; and final compression was performed with
Huffman coding. The gold standard was the review by three radiologists, and com-
parisons were performed using the receiver operating characteristic (ROC). Average
compression ratios of 94% (8 bits), 96% (7 bits), and 99% (6 bits) were achieved,
but the ROC curve of the 6-bit compressed image differed significantly from the
12-bit image. For this task, therefore, a compression ratio of 96% was considered
acceptable, and 99% compression rate caused unacceptable image degradation.

Following the same idea, Cosman et al.9 examined the influence of compression
on the diagnostic accuracy of lung CT images. The focus of this study, however,
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was the development of suitable statistical methods for the observer-based analysis
of compression-based image degradation. CT images of the chest were examined for
the presence of nodules in the lung or the mediastinum. Three observers examined
uncompressed images at 12 bits per pixel and compressed images with compression
rates between 78 and 95%, that is, from 2.6 bits/pixel down to 0.57 bit/pixel. These
compression rates may differ from conventional JPEG compression, since the authors
used a predictive tree-structured vector quantization algorithm where a codebook
is generated by training with a representative image. Although such a compression
technique can provide better compression rates at the same level of image degradation,
the compression algorithm was never adopted as a standard and is therefore not readily
interchangeable between platforms.

A study that encompasses not only DCT- and wavelet-based compression but also
the much less popular fractal compression method was presented by Ricke et al.22 on
digital x-ray images of the thorax and of a phantom. Radiologists were tasked with
identifying abnormalities (lung nodules in the chest x-ray and detail texture in the
phantom), and ROC analysis was performed to examine the influence of the com-
pression method on diagnostic accuracy. For DCT-based JPEG compression, minor
degradation was noted at a compression rate of 95% and extensive loss of quality at
97.5%. For fractal compression, the same levels of degradation were observed at 97%
and 98.9%, and for wavelet compression at 98.8% and 99.1%. At similar compression
rates, diagnostic accuracy was similar for wavelet- and fractal-based compression but
markedly lower for DCT-based compression. However, at low compression ratios,
DCT-based compression proved superior.

In these studies, there appears to be a compression limit around 95% where image
degradation causes unpredictable results. Irrespective of the compression method,
image archiving systems should not approach this limit, although higher compression
rates appear technically feasible. In fact, on a recent consensus conference,16 much
lower compression rates were recommended: computed tomography at 80% for the
brain and 87.5% for all other CT images; 90% for digital radiography, 93% for digital
mammography, and 86% for MRI. These compression rates were found independent
of the compression method.

As digital images—even x-ray images—become more and more digital, the ques-
tion of the impact of digitization was raised.20 Despite very high spatial resolution
and a high image depth of 16 bits, this study revealed only a moderate match be-
tween diagnoses on film and on a digital workstation. However, there were only
three radiologists in this study, and the moderate match was attributed primarily to
one of the three radiologists. This finding may indicate that preferences, habits, or
training have an influence. Nonetheless, digital radiology workstations become pro-
gressively more popular, and they provide a number of advantages over plain film
x-ray. Examples include the ability to modify brightness and contrast, to zoom in,
and to perform measurements rapidly. For modern image modalities such as MRI
and CT, three-dimensional display and image fusion are possible. The choice of a
suitable workstation is critical, however, and some requirements for an “appropriate”
workstation have been reviewed by Krupinski and Kallergi.14
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13
IMAGE VISUALIZATION

Two alternatives exist at the end of an image analysis chain. The image may be
quantified; and one or a few numbers describe the features in the image. Or, the image
is viewed by an observer, and a subjective conclusion is drawn. Image visualization
techniques are methods to present the contents of an image in such a way that the
observer can extract from it the maximum of information. Image visualization can
be divided broadly into two different sections: the visualization of two-dimensional
data and the visualization of volumetric image data.

13.1. GRAY-SCALE IMAGE VISUALIZATION

The simplest possible case is a gray-scale image with byte-sized image values: that
is, image values in the range 0 to 255. Since most display units accept this range
of values, image data can, without further manipulation, be stored in the display
pixel buffer that is connected to the display. However, the results may not always
be satisfactory. First, a translation of an image value into screen brightness is not
always appropriate, and the physical meaning of the pixel value must be considered.
In most instances, the translation of higher image values into lighter shades of gray is
valid. Cameras and other light-intensity detectors accumulate the number of photons
and provide a voltage that is proportional to the number of photons collected during
exposure. This voltage is digitized, possibly scaled into the image value range, and
stored as image value. Most display units behave in the same way. A higher image
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value is translated into a higher luminescent value. A model in which higher image
values translate into lighter shades of gray is often referred to as min-is-black, which
indicates that the smallest image value corresponds to black and, by implication,
the largest image value is white. Conversely, the min-is-white model translates the
smallest value into white and the largest value into black. Most notably, the software
program NIH Image, predecessor of ImageJ, used this model. It is rooted in the
history of NIH image, which was originally designed to perform gel analysis. In a
gel, a dark blot means higher exposure (or higher concentration), hence the translation
of higher image values into darker shades of gray. Both models can be translated into
the other with I2 = Imax + Imin − I1, where Imax and Imin are the highest and lowest
image values, respectively, and I1 and I2 are the pixel-by-pixel image values of the
respective model.

In Section 2.1, some techniques to enhance contrast were introduced. For vi-
sualization purposes, the actual image data are not modified. Rather, image data
are translated in the display pixel buffer for display purposes only. One exam-
ple was the gamma function to enhance contrast in the dark regions of the im-
age. Another example that is very common in medical image modalities (e.g.,
built-in screens in ultrasound or CT devices) and in medical imaging software is
the contrast and brightness adjustment referred to as window/center. The window/
center function is a generalized linear translation of a brightness range from I1

to I2. For the purpose of this chapter we assume that a typical general-purpose
display unit accepts values from 0 to 255. The window/center function can be
described by

ID =

⎧⎪⎪⎨
⎪⎪⎩

255 for I � I2

255 · I − I1

I2 − I1
for I1 ≤ I ≤ I2

0 for I < I1

(13.1)

where ID is the display brightness value and I is the original image value. The
brightness range I1 to I2 can be computed from window and center values, w and
Ic, with I1 = Ic − w/2 and I2 = Ic + w/2. The definition in Equation (13.1) can be
modified to feature the window (intensity range) w = I2 − I1 and the center intensity
Ic = (I1 + I2)/2. The window/center function allows to expand contrast in an image
value range of interest, and it clamps the values above and below the window. This is
associated with a complete loss of contrast in the clamped value range. The effect of
the window/center function in Equation (13.1) is demonstrated in Figure 13.1: A CT
image of the chest with a wide image value range (−1000 HU to more than 1000 HU)
is remapped to the display value range (0 to 255) by using three different settings for w
and Ic optimized for the lung interior, the soft tissue, and overall contrast, respectively.
In addition to the window/center function, any of the contrast enhancement functions
described in Sections 2.1 and 2.2 can be applied. This includes histogram stretching,
histogram equalization, and nonlinear contrast enhancement functions, such as the
gamma function.
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FIGURE 13.1 Effect of the window/center contrast adjustment. CT images typically have a
wide range of image values, from −1000 (air) to more than +1000 (compact bone). The image
values need to be remapped to match the display value range from 0 to 255. The remapping
function in Equation (13.1) was used with different window and center values. A narrow
window (w = 300) combined with a center value near air (Ic = −850 HU) enhances contrast in
the lung tissue but leaves no contrast in soft tissue, some of the blood vessels, and bone (A). An
almost equally narrow window with a higher center (w = 500, Ic = 0) provides good contrast
in the soft tissue region, but the inside of the lung and the bone region have no contrast (B). A
wide contrast window (w = 1800) with a center similar to that in part B provides contrast in
all regions, but local contrast is low (C).

The question of contrast expansion arises whenever the image value range is
lower than the display value range. Examples are binary images that contain only
the values 0 and 1 and multithresholded images with few discrete values (e.g., 0 for
background and 1, 2, and 3 for three features, respectively). In most applications,
such an image would be displayed as almost-black on black with no discernible
contrast. Contrast expansion to 0 and 255 in the first example and to 0, 85, 170, and
255 in the second example provides images with optimum contrast. However, when
images are automatically contrast-expanded, the viewer loses the ability to compare
two images directly, because the images values may have been scaled by different
contrast functions.

Display devices with very steep contrast curves pose a different challenge. Exam-
ples are printers: With the exception of specialized halftone printers (photo printers),
a printing device produces a black-and-white image—ink or no ink. In such a case,
the image is either discretized into dots of variable size, or the printer prints a fine
raster of dots, where the probability of a dot being either black or white depends on
the gray value of the pixel. This process is called dithering. Although dithering plays
only a small role in biomedical imaging (medical centers often use high-quality film
printers for hard copies of biomedical images), it is mentioned here for completeness.
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13.2. COLOR REPRESENTATION OF GRAY-SCALE IMAGES

A very popular visualization method for gray-scale images is false coloring. The
human eye is much more sensitive toward different colors than toward different
shades of gray. To generate a false-colored image, mapping tables are needed that
map the image values of the gray-scale image to the components of a color image.

Color can be defined in a color model. A very common model is the RGB model
(red–green–blue), where a color shade is created by adding the three base components
red, green, and blue. Depending on the intensity of the individual component, a large
number of different hues and shades can be created. Computer monitors use the
additive RGB model. Typical computer monitors, either cathode-ray tube-based or
liquid-crystal-based, have closely spaced dots with the base colors for each pixel
(Figure 13.2). Since the pixel size is small, the eye cannot discern the individual
color components and perceives a color that corresponds to the sum of the three
components. A pixel, for example, where the green and red components are turned
on, while the blue component is turned off, appears as yellow. If each component can
be turned either on or off, 23 = 8 different colors can be produced. Most computer
monitors accept the intensity values of 0 to 255 for each base color, allowing a total
of 2563, or 16.7 million, colors.

The RGB model can be seen as a cube defined by a three-dimensional coordinate
system with the R, G, and B axes. The cube fills the space from 0 to 1 along each
axis, where 0 corresponds to a color component fully turned off and 1 corresponds

FIGURE 13.2 Demonstration of additive color generation. The images are magnified sec-
tions of photographs of a CRT screen (A) and a LCD screen (B), both displaying a color
gradient blue–green–red–green–blue. In each image, one pixel is delineated (white triangle
and square, respectively). Each pixel is approximately 0.25 mm in size. It can be seen that each
pixel is composed of three components: red, green, and blue. Note that the camera that was
used to take these photos has a high sensitivity for green, and the brightest green segments are
overexposed. (See insert for color representation of the figure.)
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to the color component at its maximum brightness. Each color is a point in this
three-dimensional space. Several other color models exist: for example, the HSV
(hue–saturation–value) model and the CMYK model (cyan–magenta–yellow–black)
model. The HSV model provides a different color interpretation. It is often repre-
sented by a cylinder. The top ring of the cylinder covers all possible colors at their
highest saturation (this range is often referred to as the color gamut), and each color
corresponds to an angle � in cylinder coordinates. By convention, red is placed at
0◦, 120◦ is green, and 240◦ is blue. Mixed colors exist at 60◦ (yellow), 180◦ (cyan),
and 300◦ (magenta). Any color is defined by a point in the HSV cylinder. The radial
distance from the central axis corresponds to the saturation S (i.e., the color purity),
and the elevation inside the cylinder is the brightness (i.e., the value V). The value is
often referred to as intensity I, and the color models HSV and HSI are synonymous. A
graphical representation of the RGB and HSV color models is shown in Figure 13.3.
A conversion from the RGB to the HSV model can be performed with

V = Cmax

S = 1 − Cmin

Cmax

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

60(G − B)

Cmax − Cmin
for Cmax = R

120 + 60(B − R)

Cmax − Cmin
for Cmax = G

240 + 60(R − G)

Cmax − Cmin
for Cmax = B

(13.2)

where Cmax is the highest value of the color components R, G, and B, and Cmin is the
lowest value of the color components.

The CMYK model is found predominantly in printers and chemical color pho-
tography, where color layers subtract colors from white light. Correspondingly, the
colors C, M, and Y can be obtained by subtracting R, G, and B from white. Since
any color where C = M = Y produces an approximation of gray, it can be subtracted
from the C, M, and Y components. Let K = 1 − Cmax in the definition of Equation
(13.2). In this case, the C, M, and Y components are computed with

⎡
⎣ C

M
Y

⎤
⎦ =

⎡
⎣ 1 − K

1 − K
1 − K

⎤
⎦ −

⎡
⎣ R

G
B

⎤
⎦ (13.3)

In the CMYK model, one of the color components is always zero, because it is
substituted by a K offset, which produces a better approximation of gray than the
C = M = Y mix.
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FIGURE 13.3 Graphical representations of the RGB and HSV color models. Each color
represents one point inside the RGB cube, and its position is determined by the value of
its R, G, and B components in Cartesian coordinates. Here, only the edges of the filled
cube are shown. The edges of the cube give an example of the color gradients with black
(k) and white (w) at diagonally opposite ends, and with the additive colors cyan (c), ma-
genta (m), and yellow (y) at off-axis corners. The HSV model uses a cylinder coordinate
system with the hue (H) as the angular component, the saturation (S) as the radial com-
ponent, and the value (V, also known as intensity or brightness) as the axial component.
The central axis of the cylinder covers the gray-value gradient from black to white. (HSV
pie from http://en.wikipedia.org/wiki/HSL and HSV.) (See insert for color representation of
the figure.)

The luminance–chrominance models are often used in image compression be-
cause the color component can be compressed more than the luminance component.
The YCbCr model was introduced in [Equation (12.5)]. The luminance component
Y ≈ 0.3R + 0.6G + 0.1B reflects approximately the sensitivity of the human eye to-
ward the individual color components. A number of similar definitions exist. One
example is the integer–YUV model in Equation (12.8). In the context of image visual-
ization, these color models play a minor role, with the exception of the Y (luminance)
component, which is useful for the conversion of color images to gray scale.

In the context of image compression (Section 12.3), the sensitivity of the human
eye toward color and gray shades was discussed. In any local area of an image, the eye
can distinguish approximately 20 shades of gray. The sensitivity of the eye toward
different colors is much higher. A popular method to make a gray-scale image more
accessible to the observer is false coloring, that is, a visualization method where each
gray value is converted to a unique color. Because of the large number of possible
colors, false-color schemes contain considerable redundancy, and a large number
of false-color schemes can be designed. Two examples can be readily constructed.
In both examples, the entire colors gamut (with the exception of magenta, which
is often considered an unpleasant color) is covered, whereby dark gray shades are
converted to blue, intermediate gray shades to green, and light shades to red. If the
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image intensity is denoted I and the image value range is 0 to 255, the first color
scheme translates I into the red, green, and blue color components zR, zG, zB through

zR =
{

0 for I � 128
1 + 2(I − 128) for I ≥ 128

zG =
{

2I for I � 128
1 + 2(255 − I ) for I ≥ 128

zB =
{

255 − 2I for I � 128
0 for I ≥ 128

(13.4)

The second example, often known as the rainbow scheme, extends the range where
a color component is maximized and follows

I � 64 64 ≤ I � 128 128 ≤ I � 192 I ≥ 192
zR : 255 511 − 4I 0 0
zG : 4I 255 255 1023 − 4I
zB : 0 0 4I − 512 255

(13.5)

where, for simplicity, the color components are provided in table form.
Both examples are very similar, but the color purity (saturation) is higher in

the second example, because it is derived from the HSV model with the S and V
components set to their maximum values and the H component linearly related to
image intensity. Both false-color schemes have about equal luminance for all hues
of color. Therefore, there are no dark color shades in any image that uses these two
color schemes. Although this is sometimes desirable (e.g., when annotations or black
contour lines need to be added), other color schemes are designed to assign dark color
shades to dark gray shades and bright or white color shades to light gray shades. One
example is a color scheme known as Fire in software packages such as NIH Image
and ImageJ. Low image values are translated into black and dark blue shades; as the
image values increase, the luminance increases while the hue changes over magenta
to red, then yellow, and eventually white. In analytical form, such a color scheme
can become quite complex and frequently is stored as a table [a lookup table (LUT)].
While rendering with lookup tables is very fast, the source image range is restricted
by the number of table entries unless the image values are scaled or interpolated
before the lookup table is applied. Typically, lookup tables have 256 entries for each
color (red, green, and blue).

Figure 13.4 shows a gray-scale image (in this example the cross section of a mouse
femur acquired with micro-CT) and three representations that were false-colored
with different lookup tables. It can be seen from the graphs of the lookup tables in
Figure 13.4 that the slopes of the individual color components are mostly greater
than 1. With steep slopes, apparent contrast can be gained by changing colors rapidly
between close image values. The Terra color scheme takes this idea to the extreme.
Whereas the Rainbow [Equation (13.5)] and Fire schemes use smooth gradients, the
Terra scheme uses steep transitions with plateaus in between. The consequence is the
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FIGURE 13.4 Gray-scale image of a micro-CT cross section of a mouse femur (A) and
three false-color representations (B–D). In (B), the color scheme called Rainbow [Equation
(13.5)] was applied, in (C) the color scheme called Fire, and in (D) a color scheme called
Terra. The graphs underneath the color images are the corresponding lookup tables (the x-
axis is the image gray value and the y-axis is the color component value). Whereas smooth
transitions were desired in images B and C, the Terra color scheme in image D introduces abrupt
transitions, which cause the appearance of contour bands. (See insert for color representation
of the figure.)

appearance of bands of equal color that lead to the formation of pseudocontours in
the image.

Another false-color scheme, used frequently in microscopy applications, changes
the darkest shades of gray to blue and the lightest shades to red. Ideally, this color
scheme is based on the histogram where all pixels below a certain percentile q (e.g.,
q �0.05) are turned blue and all pixels above the percentile 1 − q are turned red.
All other pixels retain their gray shades. In a simpler version, coloring is simply
determined by a threshold, for example, T = 0.05(Imax − Imin). Pixels are colored
blue when I � Imin + T and colored red when I � Imax − T , whereas all other pixels
retain their gray shades. The purpose of this color scheme is to more easily identify
under- and overexposed pixels and quickly adjust exposure settings. When large
image areas appear blue, for example, the technician increases exposure until the red
and blue areas are approximately balanced. This idea can be extended to highlight
thresholded regions with single and multiple thresholds when the thresholds are
adjusted manually. The displayed image corresponds to the original image where the
thresholded masks, appropriately colored, are superimposed over the image.

Another method of false coloring is to combine multiple (and related) gray-
scale images into one color image by assigning the gray-scale components to color
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channels. This visualization method has been used in various places in this book. In
Figure 2.8C, for example, the original image occupied the blue and green channels
(giving the original gray scale a cyan hue), whereas the zero crossings of the edge
detection operator were added in red (i.e., the contrasting color). In Figure 2.8D,
blue and green were used for the edge space and line space outputs of the Frei–Chen
operator. Since the line space output had a fairly low contrast, the blue component was
added in a nonlinear fashion to highlight the extreme values of the line space. In Figure
2.13A, the YCbCr model was used and the original histology section was assigned to
the Y channel, thereby defining the detail contrast. The Cb component was derived
from the fluorescent image and the Cr component from the local contrast (range
operator). The composite image highlights areas of high fluorescence in blue–green
hues and areas of high local contrast variance in red–orange hues. The advantage of
this color scheme is the ability to retain detail information in the Y channel, while
the chromaticity channels may contain blurred information with lower spatial detail.

False coloring is a complex topic, and often some experimentation is needed to
achieve the visualization goal. There is virtually no limit in the number of possible
color mapping schemes, but selection of an unsuitable color scheme may actually
make the data less understandable. The popular rainbow scheme, for example, exhibits
wide bands where the hue changes only minimally (most prominent in the cyan
band in Figure 13.4B). Perceived contrast may be reduced. To select or design an
appropriate color map, it is recommended that a visualization goal or strategy first
be defined.31 Moreover, the optimum color map also depends on the type of data:
for example, the dominant spatial frequencies. At low spatial frequencies, the eye is
more sensitive toward hue contrasts, and at high spatial frequencies, the eye is more
sensitive toward luminance (intensity) contrasts.31 This phenomenon is exploited in
color image compression (see Section 12.3), where the chrominance information
undergoes higher compression rates than the luminance information. According to
Bergman et al.,2 visualization goals fall broadly into three categories: isomorphic
representation, segmentation, and highlighting. Isomorphic representation is probably
the most common task. Suitable color maps follow the luminance of the original gray-
scale image, as in the example of the Fire lookup table (Figure 13.4C). In an image
with low spatial frequencies, the Rainbow color map would also be acceptable, the
advantage of the latter being that black annotations or contour lines could be added.

Segmentation color maps create a structure with pseudocontour bands. A typical
example is the Terra color map in Figure 13.4D. Depending on the spatial frequencies,
the number of different color bands can be kept variable. With higher spatial frequen-
cies, fewer color bands should be used. Color bands are not necessarily uniform but
can be adapted to the information. A broad background peak in the histogram can
be represented by a single band, and the feature is highlighted by several bands dis-
tributed over the intensity range of the feature of interest. Finally, highlighting-type
color maps are related to segmentation color maps, but they have very few bands. In
the simplest case, a highlighting color map consists of two bands of complementary
colors, and the appearance is much like that of a thresholded image. A different
highlighting color map can be thought of as consisting of two components: one iso-
morphic map, such as a color map that progresses smoothly from black over different
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shades of blue, then cyan and green to light green. The highlighted intensity range
would then be superimposed as a band of red.

13.3. CONTOUR LINES

Contour lines are known from topographical maps; they are lines that connect points
of equal elevation. Contour lines help us understand the shape of the terrain. Anal-
ogously, contour lines in medical images may be useful in visualizing the shape of
features. In gray-scale images, contour lines connect pixels of equal intensity value.
For this reason, the term isocontour line is frequently used in the context of images.
Usually, contour lines are generated for a number of intensity values, analogous to
the different elevation levels in a topographical map. Traditionally, contour lines are
represented by thin black lines. In dark regions of a gray-scale image, those contour
lines would become difficult to discern. Although it is possible to switch to white
contour lines in dark areas of a gray-scale image, most often contour lines are used
superimposed over a false-colored image, specifically with a false-color scheme of
high luminance such as the rainbow scheme in Equation (13.5). Isocontour lines can
readily be extracted from the image. Some authors propose to use the gradient im-
age,28 but multilevel thresholding appears to be a more straightforward approach. A
very fast isocontour line extraction algorithm could threshold the image at the differ-
ent isocontour levels and mark boundary points as contour line pixels. A more refined
approach takes into consideration the fact that the isocontour line generally passes
between two pixels. Consider Figure 13.5, where individual pixels are displayed and
the image values in the area between the pixels have been determined by interpola-
tion. By applying a threshold, all pixels can be classified as either above the threshold
(white) or below (black). The isocontour line will intersect any edge that is bounded
by one pixel above and one pixel below the threshold. In Figure 13.5, the isocontour
line is indicated as a white dashed line, and the intersection with the edges are marked
with an x. These intersections can be found by interpolation, and connecting these
intersections with straight lines leads to a polygonal approximation of the isocontour
line (the thick gray line in Figure 13.5). A simplified algorithm could mark each pixel
as a contour line pixel that (1) touches an intersecting edge and (2) lies below the
threshold. This approach guarantees 8-connectivity of the resulting isocontour line.
Isocontour lines are very sensitive to noise, and a noisy image can have highly irreg-
ular and widely meaningless isocontour lines. In this case, moderate blurring of the
image is recommended before isocontour line extraction. For low-resolution images
(such as 256 × 256 pixels or lower), resolution should be increased by interpolation.
As a consequence, isocontour lines appear thinner and less dominant.

13.4. SURFACE RENDERING

A very attractive visualization technique for two-dimensional gray-scale images is to
render them as a three-dimensional elevation landscape. Image values are interpreted
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FIGURE 13.5 Finding an isocontour line. Pixels can either lie above the isocontour threshold
(white circles) or below (black circles). Any edge that is bounded by one white and one black
circle intersects with the contour line. With interpolation, the actual isocontour line (white
dashed line) may be approximated by connecting the intersections of the isocontour line
with the edges, marked x. The resulting polygon (thick gray) is a good approximation of
the isocontour. A less refined approximation that does not need interpolation is generated by
marking one pixel of each intersecting edge (arrows).

as the landscape elevation, and the shape of a feature as well as the relative height of
different features can often be more easily appreciated in an elevation landscape than
in the original gray-scale or even false-color representation.

The surface rendering procedure consists of three key steps. First, the surface is
tesselated (subdivided) into triangles; second, the triangles are colored; and third, the
triangles are projected onto a view plane. The projection step can best be imagined by
considering an observer looking through a transparent window (which later coincides
with the computer screen) onto a landscape that stretches behind the window. Let the
observer be at location V in three-dimensional space. Each point of the landscape is
seen by the observer at V , which means that each point of the landscape is connected
with V by a straight line that intersects with the window. For the actual projection,
each of these lines is computed, and at the intersection point with the window, the
color of the corresponding point in the landscape is marked. For different projections,
equations can be derived that determine where a point P = (x, y, z) of the landscape
projects onto the window at Q = (xw, yw).29 One relatively straightforward example
is the isometric projection, where P and Q are related through the equation (see
Chapter 11 for a comprehensive overview of linear spatial transformations)

[xw yw 0 1] = [x y z 1] ·

⎡
⎢⎢⎣

− f cos � − f sin � 0 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ (13.6)
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Here � is the oblique angle of the projection and f is a parameter that determines
the stretching of the depth coordinate. Equation (13.6) assumes that the coordinate
system of the projection window has its origin at the bottom left corner and that the
depth axis is the x-axis, pointing at the observer. In this case, the base (the floor of
the landscape) is spanned by the x and y axes of the landscape, and the z-axis is the
elevation. This arrangement makes intuitive sense when the image is considered as an
image value (height z) as a two-dimensional function of x and y. Figure 13.6 explains
how projection equation (13.6) can be derived.

It can be seen from Figure 13.6 and Equation (13.6) that three vertices of a
triangle with arbitrary location and orientation in the landscape can be projected
onto the projection window, and the result will again be a triangle. The corners of
a rectangle (a quad, or, even more generally, any polygon) do not necessarily lie in
a plane, but those of a triangle always do, because three points in space define a
plane. The triangle is the preferred primitive because it is always planar. Any triangle
within the three-dimensional space of the landscape can therefore be unambiguously
projected onto the projection window by computing the projected two-dimensional
vertices and filling the projected triangle with the same color as that of the original
triangle.

To render (to project) a three-dimensional elevation landscape, it needs to be
divided into triangles. Each group of four adjoining pixels I(x, y), I(x + k, y), I(x + k,
y + k), and I(x + k, y) form two triangles. Integer values larger than 1 can be used
for k to reduce the resolution for faster rendering and to achieve some smoothing of
the rendered image. In the simplest case, each triangle is now assigned a uniform
color. The color is determined by three factors: the base color, the illumination,

FIGURE 13.6 Derivation of the isometric projection equation for the window coordinate
xw (A) and yw (B). The white rectangle symbolizes the projection window. The coordinate
system of the landscape (x,y,z) has the same origin as the window coordinate system (xw,yw).
Therefore, the z-axis and the yw-axis coincide; so do the y-axis and the xw-axis. The dashed
vertical line projects point P in three-dimensional space to the projection point P ′ in the xy
plane. From there it can be seen that the distance l equals x cos � in part A and x sin � in
part B. With the help of l, the transformation equations xw = y − x cos � and yw = z − x sin �
readily emerge. (From ref. 29.)
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and the orientation of the triangle with respect to the light source and the observer.
The simplest form of illumination is to render a triangle’s color without change,
that is, to assume a homogeneously distributed ambient illumination. However, this
results in a flat and unappealing representation. In many cases, a point light source is
placed at the same location as the observer, and light reflection from the surface is
modeled. A frequently employed method to determine the appearance of a surface
to the observer is the application of a comprehensive illumination model, known
as the simple illumination and reflection model (see Foley et al.9 for an overview).
The simple illumination and reflection model contains ambient light and multiple
light sources for illumination and models diffuse and specular reflection. Despite
its name, the simple illumination and reflection model is of appreciable complexity
and goes beyond the scope of this book. However, some of the basic concepts will
be introduced in simplified form. Let the observer’s viewpoint V be (xv,yv,zv). Each
triangle has a surface normal N = (xN ,yN ,zN), and diffuse light reflected from the
light source to the observer dims with the angle � between V and N. More precisely,
it can be described by

IS = I0 cos � = I0
NV

|N | · |V | (13.7)

where IS is the shading intensity and I0 is the light source intensity. For simplicity,
the normalization I0 = 1 can be chosen. The addition of specular reflection gives
the surface a metallic sheen and is modeled with a steep drop-off in intensity when
the observer’s position deviates from the angle at which the light from the source is
reflected. Specular intensity is additive, and the shading intensity of a surface with
diffuse and specular reflected light and ambient light can be computed with

IS = I0 + I1 cos � + I2 cosn � (13.8)

where I0 is the ambient light intensity, I1 and I2 determine the balance between diffuse
and specular light, and the exponent n determines how fast the specular intensity drops
off. A low value for n (typically between 2 and 5) would be suitable for the appearance
of dull plastic; higher n values (typically between 5 and 10) create the impression
of shiny plastic or varnished surfaces; and very high n values (above 10) create a
distinctly metallic or glassy impression.

The base color may now be selected by any of the methods described in Sec-
tion 13.1 or 13.2. In the simplest case, the base color for all triangles could be set
to white. Alternatively (and more frequently), a false-color scheme is applied. The
resulting base color, determined, for example, by consulting the lookup table for the
value at the average intensity of the three vertices, needs to be attenuated (i.e., multi-
plied) by IS. Therefore, triangles that face the observer are brightest, and light emitted
from triangles that are oriented at an angle to the observer are dimmer. Triangles that
are at 90◦ to the observer are infinitely thin, and no diffuse light is reflected to the
observer. If the angle exceeds 90◦, the triangle is not drawn in the projection. At
high levels of specular reflection, the visual impression can be improved further by
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desaturating the color for small � or by separating specular reflection and adding it
to the diffuse reflection with a white base color.

Finally, the sequence in which the triangles are drawn matters, because triangles
that are in the front of the scene occlude triangles in the back. A simple method to
resolve the problem of occluded faces is known as painter’s algorithm.8 The scene is
drawn from back to front, and triangles that are in the back of the scene are painted
over by triangles that are drawn later (hence “painter’s algorithm”) and consequently,
are removed from the projected image.

Additional flexibility can be gained by allowing the observer’s position to change
relative to the scene, and by creating a light source with a variable position. A
variable observer position would violate assumptions for the isometric projection, and
Equation (13.6) no longer holds. Rather, a more complex model of an axonometric
projection29

[xw yw 0 1] = [x y z 1] ·

⎡
⎢⎢⎣

− sin � − cos � cos � 0 0
cos � − cos � sin � 0 0
0 sin � 0 0
0 0 0 1

⎤
⎥⎥⎦ (13.9)

or perspective projection must be used. In Equation (13.9), � is the elevation (0◦ in
the zenith) and � is the azimuth of the observer (and therefore the projection window)
relative to the coordinate system of the scene. The added flexibility increases the
complexity of the calculations, particularly when flexible light sources are involved.
Fortunately, implementation of the projection is not necessary, since powerful three-
dimensional rendering libraries exist. The most notable library is OpenGL, derived
from Silicon Graphic’s Graphics Library (GL), which was eventually made avail-
able under the terms of an open-source license. OpenGL can be understood as a
software library that interfaces with the graphics hardware of the computer. Graphics
hardware includes the pixel buffer (where the projected pixels are stored for viewing)
but also any possible hardware components that perform mathematical operations.
As can be seen from Equations (13.6) and (13.9), a lot of vector and matrix multi-
plications are necessary to render a complex scene. Today’s computer graphics cards
come with the ability to perform thousands of these matrix operations simultaneously.
While the development of powerful graphics cards is driven by the high demands
placed on the rendering hardware by today’s computer games, any application that
uses three-dimensional rendering benefits from this development. OpenGL performs
most of the tedious functions of three-dimensional rendering, including rotation and
translation of the scene relative to the observer, placement of light sources and illumi-
nation of the scene (OpenGL handles the complete simple illumination and reflection
model), clipping of out-of-scene objects, hidden face removal, and eventually, the
projection and generation of a frame buffer (frame buffer is the specific term for
the viewable pixels inside the projection window). OpenGL can produce even more
realistic scenes than the model above by interpolating the shading of the triangles
(Gouraud shading instead of flat shading), as well as atmospheric effects such as fog.
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FIGURE 13.7 Examples of elevation landscape rendering. The source image (A) is the
Shepp–Logan head phantom, with some additive noise in the left ventricle. A scale bar was
placed to the right of the phantom. Rendering B was performed using the home-made isometric
view that served as this chapter’s example (Figure 13.6), and rendering C was performed with
OpenGL. The red cube in the top left corner of image C is the light source. Elevation landscape
rendering is particularly useful for recognizing shapes: From the original image, the intensity
function in the scale bar at the right image edge cannot readily be determined. In the landscape
renderings, however, the curved nature becomes obvious, and an anti-gamma function can be
recognized. (See insert for color representation of the figure.)

The input to OpenGL is a tesselated scene, that is, a massive amount of triangles or
quads with their associated colors and the position of the observer and light sources.

Figure 13.7 shows renderings of an elevation landscape. Shown is the Shepp–
Logan head phantom with some additive noise in the left ventricle. The image in
Figure 13.7B was created using the isometric view technique explained above [no-
tably with the projection of Equation (13.6) and Figure 13.6], whereas Figure 13.7C
was created using the OpenGL library. To illustrate the effect of illumination, the
light source was rendered as a red cube, and both diffuse and specular reflection
components were considered. Elevation landscape rendering is particularly useful
to recognize shapes. An intensity scale bar is provided at the right margin of the
original image. It is not easy to determine whether intensity increases linearly or in a
nonlinear fashion. From the landscape renderings, however, it is immediately visible
that it is an anti-gamma function that lowers contrast in the dark regions and enhances
contrast in the bright regions.

13.5. VOLUME VISUALIZATION

Many modern medical imaging modalities provide three-dimensional images, either
the intensity as a function of three spatial dimensions I(x,y,z) or the intensity as a
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function of two spatial dimensions and time, I(x,y,t). Accordingly, display systems
capable of projecting a three-dimensional image are under development.3 However,
this research area is still in its infancy, and it will take years until three-dimensional
displays become mainstream equipment in medical image visualization. Therefore,
the main challenge to display a three-dimensional data set on a two-dimensional
display device remains. Traditionally, volumetric imaging devices such as CT, MRI,
PET, SPECT, and three-dimensional ultrasound allowed to print the output image on
film on a slice-by slice basis, that is, a tiled array of images I(x,y) where each tile
represents one slice in z. The special treatment of the z-dimension continues with the
anisotropic voxel size; frequently, voxels are square in the xy-plane but have a larger
interslice distance � z. A clinical CT image, for example, could have an in-plane
resolution of 0.2 × 0.2 mm and a slice thickness of 2 mm. However, in true three-
dimensional rendering applications, no spatial dimension is different from the others
as a consequence of the projection principles that were introduced in the preceding
section. The visualization of three-dimensional images is fully based on the same
principles of projection that were used to project and display elevation landscapes, but
additional considerations come into play as the complexity of the three-dimensional
image is markedly higher than that of a two-dimensional image.

13.5.1. Maximum-Intensity Projection

The maximum-intensity projection (MIP) is a simple, yet effective way to create a
projection of a three-dimensional volume. A maximum-intensity projection along the
z-axis is generated with the equation

IMIP(x,y) = maxz I (x,y,z) (13.10)

where maxz symbolizes the maximum value of the image at one specific coordinate
x,y for all z slices. The maximum-intensity projection creates the impression of a
view through transparent parts of the volume onto the brightest elements of the
volume. The maximum-intensity projection is not limited to projections along the
z-axis. In fact, ray tracing can be applied to obtain the maximum-intensity value
along angled paths or even diverging paths to create the illusion of perspective. A
particularly elegant way of creating an illusion of a three-dimensional scene is to
compute multiple maximum-intensity projections around a pivot point. Let us use the
coordinate systems of the scene (i.e., the object to be projected) and the projection
window in Figure 13.6. Let us also assume that the pivot point is in the center of
the volume, and the viewpoint rotates along the azimuthal direction �; that is, all
projections occur parallel to the xy-plane. The maximum-intensity projection now
follows:

IMIP(xw,yw,�) = maxs I (x,y,z) (13.11)

where xw and yw are the coordinates of the projection window where yw = z, and
maxs symbolizes the maximum value along a path s(�), where s is described by the
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FIGURE 13.8 Maximum-intensity projections of a three-dimensional CT scan of a mouse
femur (see Figure 13.4). The center image (B) was created from a projection parallel to the
z-axis, while the other images were created by rotating the projection path by −18◦ (A) and
+18◦ (C) around the y-axis.

equation of a straight line,

s : x cos � + y sin � = xw (13.12)

In practice, each path could be described by a start point P1: x1, y2, z and an endpoint
P2: x2, y2, z where x1 and y1 lie on the projection plane outside the image volume,
and x2 and y2 lie on the other side of the image volume. The line connecting P1 and
P2 can be traversed efficiently by using the Bresenham algorithm and the maximum
value along that line determined. Once the projections IMIP (xw,yw) are computed for
all �, they can be displayed successively in a videolike fashion. Figure 13.8 shows
maximum-intensity projections of the mouse femur CT image (see Figure 13.4) at
three different angles (−18◦, 0◦, and +18◦) of rotation.

13.5.2. Volumetric Rendering of Apparently Solid Objects

If the outer surface of an object can be extracted by segmentation, the object sur-
face can be tessellated, placed in a scene, and rendered in a similar fashion as the
elevation landscape in Section 13.4. When the outer surface is a closed contour,
the object gives the appearance of a solid, opaque object. Two steps are necessary
to create a surface rendering: First, the object contour needs to be found, and sec-
ond, the surface that was obtained in the first step needs to be tessellated. After
the tessellation step, coloring, shading, and projecting the triangles are performed
exactly as described in Section 13.4. In many cases, the object of interest has a
different image intensity than that of the surrounding background. One example is
the mouse femur, introduced in Figure 13.4. If this is not the case, image processing
steps need to be taken to segment the object so that the object has a higher inten-
sity than background. Once this is achieved, a very popular algorithm, called the
marching cubes algorithm,18 performs both steps in one sweep over the data: It finds
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triangles that lie on an isosurface of the object and therefore tessellates the surface for
rendering.

The marching cubes algorithm can best be explained in two dimensions, in analogy
to the isocontour lines in Figure 13.5. In two dimensions, each square is bounded
by four pixels that lie either above or below the isocontour threshold. Therefore,
24 = 16 different configurations are possible. The isocontour line will intersect any
square where the four nodes belong to different classes. Furthermore, any edge that
connects nodes of different classes intersects the isocontour line. These intersections
can be found by interpolation, and connection of these intersections with straight
lines leads to a polygonal approximation of the isocontour line (thick gray line in
Figure 13.5). In three dimensions, the squares become cubes, and there exist 28 =
256 different configurations of node pixels. Also, an intersecting surface is found
rather than a line. The surfaces that emerge from the intersections of the isosurface
with the cube can have between three and six corners, and multiple surfaces can
intersect the cube. A total of 15 unique configurations exist, with the remainder
being rotated or mirrored configurations. Any surface with more than three corners
gets subdivided into triangles. At the end, the surface is approximated by triangles
where all corners of the triangles are found at intersection points of cube edges with
the isosurface. The triangles, more precisely the tessellated isosurface, is now ready
for rendering.

The marching cubes algorithm was further refined to improve efficiency,23,33 to
improve robustness and accuracy,17 to eliminate ambiguous configurations that exist
in the original algorithm,20,22,27 and to address topological consistency.26 However,
the basic principle remains the same.

An example of a three-dimensional surface rendering is shown in Figure 13.9. In
the CT image of the mouse femur introduced in Figure 13.4, the bone has a higher CT
value than the background. The marching cubes algorithm can therefore be supplied
with a threshold value that defines the isosurface. Note that the isosurface continues
inside the bone, where the bone marrow has a lower CT value than the compact
bone (Figure 13.4A). In Figure 13.4B it can be seen that the purely intensity-based
segmentation element of the marching cubes algorithm is not ideal in this example.
The femoral head shows signs of a threshold selection that was too high. In this case,
presegmentation with an adaptive threshold or a slice-by-slice application of Otsu’s
method would have yielded better results.

A scene may contain multiple objects. In medical images, these objects are often
related to each other: for example, different organs superimposed over the gen-
eral anatomy. Figure 13.10A shows such an example. The visualization goal was
to show the brain in its correct position inside the skull. The basis was a three-
dimensional MR image of the head. Two different segmentation steps were applied
to the image. First, the entire head was segmented and solidly filled. When the
scene is rendered, only the outer surface of the head is shown, since the solidly
filled head has no interior surface. Second, the brain was segmented with a mod-
ified region-growing process. Both head and brain were stored in separate images
for visualization and placed in the scene to be rendered independently, yet while
retaining their relative spatial orientation and position. To create Figure 13.10A,
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FIGURE 13.9 Three-dimensional renderings of the mouse femur CT image. Two different
rotations are shown: the first (A) coinciding approximately with the MIP in Figure 13.8B, and
the second (B) rotated to show the bone lengthwise. In part B, segmentation errors near the
femoral head can be seen.

a prismatic section was removed from the rear of the skull image. In this sec-
tion, the brain (which would normally be surrounded by the opaque skull) becomes
visible.

In Figure 13.10B, a different concept was used: transparency. Up to this point,
only solid, opaque objects were discussed. When rendering a scene, objects may be

FIGURE 13.10 Visualization of the brain inside the head. The brain and the head were
prepared as separate objects and placed in the scene for rendering. In image A, a section of the
head is removed in the head image, whereby the brain is exposed in the removed section. In
image B, a clip plane separates the upper section of the skull form the lower, and transparency
was used in the upper section. (See insert for color representation of the figure.)
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assigned a specific level of transparency in addition to the color. In color images,
the transparency channel is often represented as a fourth channel, in addition to red,
green, and blue. This channel is termed alpha by convention, and the color model
that includes the alpha channel is RGBA. Alpha may assume any value between
0 and 1, where 0 is completely transparent and 1 is completely opaque. When the
scene is rendered, any ray passing through an object with partial transparency gets
assigned a weighted sum of the transparent object’s color and the color of the object
that lies farther back in the scene. The process of using the alpha value could be
illustrated with the painter’s algorithm. Let us assume that from back to front, three
triangles (colored red, green, and blue) exist in the scene. The rearmost triangle has
an alpha value of 1, the middle triangle of 0.5, and the foremost triangle of 0.2. With
the painter’s algorithm, the rearmost triangle would be painted first in red. Next, the
middle triangle is painted. Wherever it occludes the red triangle, the colors are mixed:
100% red mixed with 100% green by using an alpha value of 0.5 becomes 50% red
and 50% green, a color that has a dark yellow tint. In those regions where the green
triangle occludes part of the (black) background, the color is 50% green. Let us write
those colors in vector format as [0.5, 0.5, 0] and [0, 0.5, 0], respectively. The blue
triangle is painted last. It adds a blue component, namely, 20% blue, and attenuates
the color of the occluded objects by 20%. The first color now becomes [0.4, 0.4, 0.2]
and the second color becomes [0, 0.4, 0.2]. This technique was used in Figure 13.10B,
where the head object was split into two objects (lower and upper part), and the upper
part was assigned a white color with an alpha value of 0.4. The brain was colored red
to provide more contrast. The upper part of the head now appears semitranslucent
and allows us to see the brain through it.

13.5.3. Volumetric Rendering with Transparency

A common technique to render solid objects is to use the gray-value information as
alpha. Dark sections of the image (e.g., the air surrounding the patient) would be
almost fully translucent, whereas bright objects, such as bone in a CT image, would
appear not only white, but also fully opaque. Regions with intermediate bright-
ness would appear like fog, partly obscuring the bright objects in the scene. In
some respects, this technique is related to the maximum-intensity projection. How-
ever, in contrast to the maximum-intensity projection, solid rendering interprets each
voxel as a solid cube with its unique color and transparency. Color can be added
to the entire scene or to individual objects in the scene with false-color schemes.
One example is the superposition of MR images with PET images in radionuclide
studies: Areas of high radionuclide activity appear bright in PET images and are
often vividly colored. Once PET and MR images are registered, the gray-scale MR
image can be superimposed over the PET image by placing both images in the scene.
Finally, the MR image is made partly translucent. The resulting rendered scene
allows the observer to conveniently identify the regions of high activity inside the
MR volume.
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13.6. INTERACTIVE THREE-DIMENSIONAL RENDERING
AND ANIMATION

As mentioned before, development of three-dimensional graphics is driven primar-
ily by computer games, which require faster and faster three-dimensional rendering
techniques. Volumetric medical image visualization benefits from this trend.15 In fact,
three-dimensional visualization evolves in two important directions: more sophisti-
cated and more realistic (photorealistic) rendering, and virtual reality. With today’s
powerful computer graphics hardware, it is possible to create a scene projection
within 0.01 to 0.1 s. It is therefore possible to display tens to hundreds of projec-
tions per second in a continuous sequence, thus creating the illusion of a movielike
animation. With a technique called double-buffering, seamless transitions from one
projection (in the context of animated movies, projections are called frames) to the
next is possible. Double-buffering means that one frame is displayed while the next
frame is rendered in the background. Once the new frame is completely rendered, it
is displayed, thereby replacing the old frame. Meanwhile, the next frame is prepared.
Two pixel buffers are necessary: One is displayed while the other is used for rendering
in the background; then the roles are exchanged. The time needed for rendering one
frame depends strongly on the number of triangles to be rendered and the rendering
quality (e.g., shading interpolation), but also on the graphics acceleration hardware
used. At frame rates above about 25 frames per second, the animation is perceived
of as smooth. Three-dimensional rendering becomes interactive when the viewer can
influence the scene by means of keyboard commands, mouse movements, or motions
with specialized pointer devices. Although the mouse is the most widely used de-
vice, specialized three-dimensional tracking devices exist that provide information
on six degrees of freedom (an example of its application is a virtual bronchoscopy
workstation11).

To provide interactive features, the render window needs to record and interpret
pointer or mouse movements. When the mouse is dragged (i.e., moved while a button
is pressed) horizontally over the projection window, for example, the scene can be
rotated around the z-axis (see Figure 13.6 for a definition of the coordinate system
of the scene). When the mouse is dragged vertically, the scene is rotated around the
y-axis. The projection window has only two dimensions, and rotation around the
x-axis needs a different definition. One possibility is to use the second mouse button
for the x-axis. Alternatively, and possibly more intuitively, the curvature of the mouse
trace can be used to allow x-axis rotation: If the mouse is dragged along a straight
line, the scene is rotated around the y- or z-axis, whereas if the mouse is dragged
in a circular motion, rotation takes place around the x-axis. Very often, the scene is
thought of as embedded in a sphere, and the mouse or pointer action moves, pushes,
or rotates the sphere. In this fashion, the dynamics of the mouse gesture can be used
to rotate the scene or to pan or zoom the projection. As an optional extension, inertia
can be modeled with the sphere. If inertia is enabled, the sphere would continue
rotating until another mouse gesture changes the spin. With rendering in real time,
the scene becomes animated.
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Animation becomes more general when the camera position can be controlled
relative to the scene. One of the challenges of this approach lies in the degrees
of freedom: Both camera position and direction—six degrees of freedom—need to
be manipulated such that the scene is rendered in a meaningful way. Frequently, the
software helps with this task by keeping the camera direction centered on the scene
or by keeping the camera direction tangential to the path. The camera movement can
now be manipulated interactively or with the help of the computer. The computer
could, for example, identify a cavity and keep the camera centered inside the cavity.
Such methods have been used in virtual colonoscopy, a biomedical example that is
covered in Section 13.7.

For any given scene, the camera can, alternatively, be programmed to follow
a fixed path. Many demonstration projects, for example, for the Visible Human
Project,1 make use of this technique. Interactive operation of the camera is needed
only while the path is being determined initially. The camera path can be discretized
by vertices and interpolated between vertices. For real-time animation, the camera
path is traversed at a predefined speed. Movies can now be generated by saving the
rendered frames at constant time intervals and converting the sequence of frames into
a movie.

13.7. BIOMEDICAL EXAMPLES

Visualization is a very complex topic which includes not only the computer science
aspects of image analysis but also the physiology of vision and the psychological
aspects of perception.37,38 In fact, a skillful visualization involves elements of art as
much as it involves elements of science. In the context of medical imaging, however,
there is a risk that information gets lost or distorted. Moreover, the complex com-
putational processes associated with visualization may contain errors and flaws, and
an incorrect rendering may in extreme cases lead to an incorrect diagnosis.8 Careful
planning, execution, and validation of the visualization is necessary. In fact, Thomp-
son et al.35 argue very strongly for a five-step process that begins with the formulation
of a visual model of the data, a “vision” with clearly defined visualization goals rather
than a trial-and-error approach that could lead to unsuitable data representation.

In addition to these aspects, data preprocessing may require considerable effort.
In one example, the author was asked to provide an animated three-dimensional
rendering of two major blood vessels (the aorta and the vena cava) from a CT
image of a primate. The rendering was intended to serve more artistic than scientific
purposes. The basis was a three-dimensional CT image of the primate, taken after
injection of contrast agent to enhance contrast of the blood vessels. Figure 13.11A
shows one CT slice. The two main challenges become immediately apparent. First,
the contrast agent was distributed unevenly in the vena cava and created a U-shaped
region of very high contrast. Second, the aorta did not contain any contrast agent at the
time of acquisition, and segmentation was difficult due to low contrast. Consequently,
the three-dimensional reconstruction provided by the built-in algorithms of the CT
scanner (Figure 13.11B) was deemed insufficiently clear.
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FIGURE 13.11 Visualization of the blood vessels in a three-dimensional data set of a pri-
mate. One representative CT slice is shown in part A. Whereas bone shows good contrast, the
aorta exhibits poor contrast with the surrounding tissue, and the vena cava contains unevenly
distributed contrast agent (U-shaped white region above the vertebra). A three-dimensional
reconstruction provided by the CT scanner’s built-in software was not considered to have
enough quality.

A visualization goal was formulated to have the two blood vessels (colored red
for the artery and blue for the vein) in spatial relationship to the spine, following
the basic idea of Figure 13.11B. The primary challenge was the segmentation of
the blood vessels. It was possible to segment the spine by intensity-based region
growing, but any intensity-based method was precluded in the vena cava because of
the low contrast and the presence of unevenly distributed contrast agent. However,
the U-shaped contrast agent section provided two pieces of information: the location
of the vein with an offset, and part of the inner wall: namely, from the outer curve
of the U. After segmentation of the contrast agent region, the shape was used to
complete a circle in each slice. The selection was validated by examining the Fourier
coefficients of the trace of the circle’s center through the CT slices, where high-
frequency components indicated discontinuities in the segmented aorta. By removing
the high-frequency coefficients, a smoothed trace was created and the vena cava
reconstructed from the circles. The same a priori knowledge of a circular contour
was used in the aorta, and by using a smoothed trace and the intensity gradient, the
aorta could be extracted. Near the bifurcation some manual intervention was required
because the shape deviated from the circle. Eventually, three segmented objects were
available: the spine, the aorta, and the vena cava. These were arranged in a scene and
rendered. Repositioning of the camera made it possible to provide 360 frames for a
full rotation, and the frames were combined into an animated movie. Three frames
are shown in Figure 13.12.

A rapidly evolving imaging technique that is discussed intensely in both the med-
ical literature and in popular articles is CT-based colonography (see Rockey30 for a
recent review). Conventional colonoscopy involves inserting a fiber-optic camera sys-
tem into the colon to diagnose polyps and colorectal cancer. CT-based colonography
provides cross-sectional images of the abdomen. Beforehand, the colon is cleaned
and gas-filled for optimum contrast. Images are normally evaluated on radiographic
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FIGURE 13.12 Three frames from the primate blood vessel animation. Aorta and vena cava
are boldly colored (red and blue, respectively), while the spine was assigned a color with
less saturation. Although some a priori knowledge was used for segmentation, the course of
the blood vessels and the unusual shape of the aorta are clearly visible. (See insert for color
representation of the figure.)

film on a slice-by-slice basis. With this method, large polyps can be detected with
similar sensitivity and specificity as those for conventional colonscopy, but sensitivity
diminishes somewhat with smaller polyps.24 Virtual colonoscopy is a new method
that relies strongly on three-dimensional visualization techniques.41 Because of the
high air/tissue contrast, the inner lumen of the colon is easily segmented and the cen-
terline of the lumen determined. The centerline can help guide the camera, and the
camera may be positioned and rotated by the radiologist to allow the optimum view of
suspicious areas. A computer-aided system to provide a panoramic view and to cover
as much of the inner surface as possible was proposed by Hassouna et al.10 under the
name virtual flyover. False coloring of the inner surface can be performed to provide
a better illusion of endoscopy. Alternatively, the wall may be colored depending on
its curvature: Long ridges or valleys are normal for the colon, but convex “bumps”
are suspicious and can be highlighted in a different color. Comprehensive systems
for shape-based classification of the colon wall are under development and promise
to further aid the radiologist in the detection of polyps and suspicious lesions.5,16

Visualization plays a key role in virtual reality, a comprehensive simulation en-
vironment that becomes more and more popular in medical education. An overview
of the early developments in medical application of virtual reality can be found in
a review paper by Chinnock.4 In the last 15 years, virtual reality has evolved into a
mainstram area of medical science. Examples include the virtual reality simulation
of robot-assisted colorectal surgery19 as a typical example of a training simulation
environment, the simulation of a virtual arm to study a patient’s response to simulated
parts of his own body,34 and the recent development of a virtual patient to train med-
ical students in routine doctor–patient interaction.7 In the last example, the virtual
reality environment has reached a point where speech recognition and scripted re-
sponses allow limited interaction between the medical student and the virtual patient.
An example of a virtual reality training environment is shown in Figure 13.13 in a
simulated ophthalmologist’s exam room.14 A large-size projection screen creates a
life-size simulation and enhances the feeling of immersion. With a three-dimensional
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FIGURE 13.13 Training of medical students with a virtual patient. The setting is an oph-
thalmologist’s office, and the patient can be asked to perform various tasks, such as telling the
number of fingers indicated, or following the hand with his eyes. In this simulation, the hand is
controlled by the medical student by means of a three-dimensional positioning device. Simple
clicks make it possible to extend a specific number of fingers. (Courtesy of Dr. Kyle Johnsen.)
(See insert for color representation of the figure.)

positioning device, the medical student can control the virtual arm that is displayed
inside the scene. The simulated patient can be asked to perform various tasks, such
as following the arm with his eyes or telling how many fingers are raised. Diseases
such as the inability of the patient to follow the hand with one eye can be simulated.
With a click, the virtual hand can be brought to hold an ophthalmoscope. Close up,
the ophthalmoscope can be seen to illuminate and magnify the virtual patient’s eye.

A number of excellent examples for visualization techniques can be found in con-
junction with the Visible Human Project.1 From the early stages of the Visible Human
Project, researchers started to develop segmentation and visualization techniques to
render the anatomy of the Visible Human. Müller et al.25 present a vision of the
operating room of the future, where the integration of images from multiple modal-
ities with image processing and visualization has the potential to improve diagnosis
and treatment. One example of a Visible Human visualization is the development of
an interactive brain atlas, a simulation and visualization tool that allows the user to
move through the slices of the brain and to create and render a three-dimensional
reconstruction of the brain.36 Two basic Web-based applications exist, a Web-based
interactive atlas21 and a Web-based interactive image server.12 Both focus on provid-
ing images from the Visible Human data set in an organized manner. The interactive
atlas comes with annotations and makes it possible to choose between corresponding
photographies, CT, and MR images. The image server makes use of interpolation
and allows cross-sectional images to be created along arbitrary virtual cutting planes.
Schiemann et al.32 present methods to segment organs from the Visible Human data
set and to perform realistic three-dimensional rendering. Ishimaru et al.13 developed
a virtual fly-through animation through the temporomandibular joint of the Visible
Human as one step in the direction of virtual arthroscopy. The fly-through technique
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has evolved beyond the Visible Human model and is now being applied to actual
patients with coronary fly-through visualizations,39,40 virtual laryngoscopy for tumor
detection in CT images,42 and virtual endoscopy for aneurysm surgery planning in
the head,6 to name a few examples from a large body of literature.

Visualization of medical image data marks one important endpoint of the image
analysis chain. Visualization techniques cover the entire range from false coloring
of gray-scale data to virtual reality. Software tools that help with visualization tasks
are presented in Chapter 14. Those tools provide comprehensive help but are limited
to fairly standard visualization tasks. Although software tools are flexible enough
to accommodate the most common visualization goals, advanced visualization goals
soon exceed the abilities of available software programs. Individual experimentation
and programming play an even more important role, with the introduction of artistic
elements. As such, visualization is clearly the subjective endpoint of the image
analysis chain, whereas quantification, as described for example in Chapters 8 through
10, is the objective endpoint. Both endpoints have their respective values in medical
imaging.
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14
IMAGE ANALYSIS AND
VISUALIZATION SOFTWARE

The purpose of this chapter is to introduce the design ideas behind several image
analysis software packages, as well as practical tips to getting started, so that the reader
can apply the topics of this book in practice. For this purpose, the software should be
readily and freely available, which leads to an introduction of the concepts of Free
Software in the following section. Two image analysis software packages are covered
in detail as representative examples. Because of the complexity of visualization tasks,
software for visualization is covered separately.

The focus of the software examples in this chapter lies on those that are released
under a Free Software license. Although there are literally hundreds of image anal-
ysis software programs available in the marketplace, Free Software has a distinct
advantage: It gives the user the right to view and modify the source code. Free Soft-
ware is rooted in a specific philosophy that distinguishes between free “as in beer,”
software for which no license fees are paid, and free “as in speech”, software that
comes with a number of specific freedoms, foremost among them the freedom to
obtain the source code. A comprehensive overview of one popular philosophy of
Free Software is presented by Stallman10: Free Software should be understood as a
matter of liberty and not price. The freedoms granted with Free Software are (1) the
freedom to run the program for any purpose and on as many computers as desired,
(2) the freedom to study how the program works and adapt it to your needs, (3) the
freedom to redistribute copies so that you can help other computer users, and (4) the
freedom to improve the program and release your improvements to the public. For
the second and fourth freedoms, access to the source code is a precondition. In the
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early days of the computer, access to the source code was taken for granted. Most
computer-controlled devices were delivered with complete program listings and even
controller microcode. In the late 1970s, the concept of closed-source software be-
gan taking hold, and since then software has been distributed predominantly in the
form of binaries, that is, precompiled machine code that is unreadable for humans.
Closed-source software became dominant because of the increasing number of soft-
ware patents, copyright claims, and trade secrets. However, software is different from
other patentable intellectual property. Software is generally not monolithic but rather,
can fall into several categories of protection.5 Most notably, there exists a dichotomy
between the source code and the compiled executable (binary) form. Initially, source
code was interpreted by the courts as a form of literary expression and protected as
such. However, there are many different ways to write code that produces the same
results when compiled and executed in binary form. Conversely, almost identical code
can produce vastly different results when executed on a computer. The courts have
responded to this dilemma by adopting a more stringent application of the protection
to the functional aspects of software.5 As one consequence, trivial functional steps
became patented. Examples include European patent EP 1,022,648, which deals with
the progress bar; U.S. Patent 4,398,249, which covers the natural order recalculation
of a spreadsheet; or U.S. Patent 6,935,954, which protects the notion of hallucinating
computer game characters. In the software patent dispute, the European Patent Office
even admits that patent law would allow protecting “activities which are so familiar
that their technical character tends to be overlooked, such as the act of writing using
pen and paper.”4 This trend of a growing number of disruptive trivial patents is aggra-
vated by the complexity of modern software programs, which may infringe on any
number of patents without the programmer even being aware of the infringement.
Free Software aims to prevent a collision with disruptive patents and maintain the
freedoms described above.

In a scientific setting, software with unpublished source code poses a serious
drawback, as many data processing steps (e.g., image analysis, statistical analysis)
cannot be reproduced by others. In fact, not even the users of closed-source software
can know how their software has processed the data. Bugs may remain undiscovered,
and unless software users take tedious steps of validating their software, incorrect
data may enter the scientific literature and remain undiscovered. There is a stark
contrast between the meticulous disclosure of the methods in scientific articles and
the black-box nature of the data processing and analysis components in the same
articles. For this reason, a strong case must be made in favor of Free Software in
scientific applications not only with respect to the liberties listed above, but also with
respect to transparency and reproducibility of scientific data.

As a consequence of restrictions involved with closed-source software, restric-
tive licenses, software patents, trade secrets, and copyright issues, a movement has
emerged that supports and develops Free Software. Such software is often developed
by a community of programmers who collaborate through the Internet, and the soft-
ware is also available for free download through the Internet. Open-source software
tends to come with a lot of features, because many developers contribute to it. In
addition, the software tends to have a high standard of quality because of the inherent



P1: OTA/XYZ P2: ABC
c14 JWBS035-Haidekker August 26, 2010 8:7 Printer Name: Yet to Come

IMAGE PROCESSING SOFTWARE: AN OVERVIEW 443

peer review of open-source software. Popular Free Software usually has a very active
community that helps with support, and most user questions are quickly resolved
in Internet forums or Wiki-style knowledge repositories. One famous example for
major community-developed software is the GNU/Linux operating system, which is
renowned for its numerous features and for its stability and reliability. Free Software
is often released under legally binding licenses that ensure the freedoms described
above but also ensure that Free Software remains free. The GNU general public
license (GPL) is one of the most widely used licenses, and the philosophy of the GPL
is described in the preamble of the license agreement. The full text is available on the
Web at http://www.gnu.org/licenses/gpl-3.0.html.

14.1. IMAGE PROCESSING SOFTWARE: AN OVERVIEW

For image processing a plethora of software programs exist. Numerous basic tasks can
be done with programs such as Adobe Photoshop or its Free Software equivalent, the
GNU image manipulation program (the GIMP, http://www.gimp.org). Among many
functions to manipulate individual pixels and to annotate images, the GIMP can per-
form several of the basic image processing tasks described in Chapter 2. Examples
are Gaussian blurring, noise filtering, speckle reduction, unsharp masking, sharp-
ening, edge detection, morphological dilation and erosion, contrast enhancement,
and false coloring. By using the gray-scale curve, manual thresholding is possible.
Furthermore, regions can be selected by shape, color, or intensity, and operations
can be restricted to the region selected. However, any image processing or analysis
task that goes beyond the basic operations becomes progressively difficult with basic
programs for pixel editing.

Camera manufacturers and manufacturers of imaging devices (e.g., microscopes)
usually provide image processing software with a number of image processing oper-
ators and quantitative functions. Sometimes, the software is included in the hardware
costs and the customer does not pay extra license fees. Often, however, the basic
package includes a crippled version of the software, and an extra license fee must
be paid to obtain the activation key to unlock the majority of the image processing
functions. As an alternative option, the buyer of the imaging device may consider
staying with the basic or crippled version that contains the necessary hardware drivers
and supplement the package with a high-level free image analysis package. In the fol-
lowing section we describe three possible realizations of image processing software:
menu-driven software, scripting languages, and visual image processing networks.

14.1.1. Menu-Driven Software

The most common type of image analysis program is menu-driven. The user is
presented with a small control window that contains the main menu. From the menu,
functions like opening an image file or applying an operator to a loaded image file can
be accessed. The main advantage of menu-based image processing software is the
low learning curve. Because of the menus, functions are easy to find even for users
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FIGURE 14.1 Main control window of ImageJ.

who are not familiar with the software. On the other hand, the repeated application
of a sequence of operations on different images quickly becomes tedious and prone
to mistakes. For this reason, most menu-based image processing programs offer
some sort of macro scripting language that allows automating complex tasks. The
scripting languages of menu-based software are predominantly an alternative way to
use the menu-based functions, but usually allow some flow control, such as loops and
conditional execution.

One representative example, ImageJ (Figure 14.1), is an image processing and
analysis package supported by the National Institutes of Health and is widely used in
scientific and medical research applications. Its functionality and ease of use makes
it suitable for entry-level and intermediate users. Moreover, ImageJ allows advanced
users to extend the capabilities with macro scripts or plugins. ImageJ has a long
development history. The predecessor version was known as NIH Image and written
exclusively for Mac OS in a specific Macintosh dialect of the Pascal programming
language. The original development goal was to create a tool for gel densitometry,
and some specialized functions still exist that give testimony to this history. The
restriction to Mac OS limited the use of NIH Image, and Scion Corp. ported the soft-
ware to Windows, translated it to the C/C++ language, and extended its functionality
to support their image acquisition boards. Scion Image is available free of charge but
without the source code. Around 1997, development of the Java-based ImageJ began.
ImageJ was intended to replace NIH Image and run on all major platforms, including
Linux, Mac OS, and Windows. Java was chosen as the programming language
because of its platform independency. After more than a decade of development with
contributions from many programmers, ImageJ has become a very mature and stable
software. The functionality of ImageJ can be extended by plugin modules, and more
than 400 user-provided plugins are linked from the ImageJ Web page. ImageJ comes
with comprehensive documentation, examples, and tutorials on the Web, and there
is a Wiki-style information and documentation portal.

14.1.2. Scripting Languages: Matlab Image Processing Toolbox, Octave,
Scilab, and IDL

Image processing functions can be built on top of high-level scripting languages such
as Matlab. Matlab is a widely used high-level programming language for mathe-
matical problems, most notably, numerical methods and matrix operations. Since an
image can be interpreted as a large matrix, the extension of a matrix algebra toolbox
by image processing functions is a natural step. Since Matlab is a high-level scripting
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language, the functions in the Matlab image processing toolbox are accessible through
commands similar to program statements. To use the image processing toolbox effec-
tively, basic understanding of software programming is necessary. Matlab supports
the construction of graphical user interfaces, and image processing applications can
be controlled by a graphical user interface, but a graphical user interface needs
to be programmed by the developer as well. GNU Octave (http://www.octave.org)
is a Free Software equivalent to Matlab, that has a compatible scripting interface.
At this time, the Octave image processing functions are not as comprehensive as
those offered by Matlab, but many basic operators are present, and Octave is be-
ing actively developed and extended. Scilab (http://www.scilab.org), a high-level
mathematical scripting language similar to Matlab, offers a lower level of compat-
ibility with Matlab than with Octave. However, several sophisticated extensions for
Scilab exist. For image processing and analysis, the Scilab Image Processing toolbox
(http://siptoolbox.sourceforge.net) provides numerous image processing functions
that are added to Scilab’s scripting language. Finally, the nonfree Interactive Data
Language (IDL) is a high-level scripting language for data and image analysis. Simi-
lar to Matlab’s image processing toolbox, basic programming knowledge is required
to develop image analysis applications. However, IDL offers a much larger number
of built-in functions, thus allowing faster development of advanced image analysis
applications. The main advantage of using a high-level scripting language for image
processing is the availability of common programming-language elements (e.g., high-
level operators and flow control with loops and conditions). The disadvantage is a rel-
atively steep learning curve for users unfamiliar with the underlying language. An ex-
ample for image processing steps driven by a script language is shown in Figure 14.2.
In this example, Octave was used. Matlab commands would look somewhat similar.

14.1.3. Image Processing Networks: Khoros and MeVis-Lab

Khoros and MeVis-Lab are examples of the graphical representation of an image
analysis chain that is developed and visualized as a connected network of operators.
This type of software offers a canvas, and the user can place image processing op-
erators on the canvas. Each operator has input and output tabs. The user can drag a
line from an output tab to an input tab of a different operator, thereby establishing
a sequence of image processing operations. This graphical approach allows rapid
development of an image processing chain, and the operation of the chain can be
grasped quickly, due to its graphical nature. A screenshot with sample image pro-
cessing network is shown in Figure 14.3. The advantage over the scripting approach
is the menu-driven selection and placement of operators. The advantage over the
conventional menu-based approach is the repeatability of the functions: The image
processing network can be reused with merely a different file name given to the input
operator. Khoros and MeVis-Lab are nonfree software. The Khoros license comes
with a developer kit that allows proficient programmers to extend the abilities of
Khoros. A restricted version of MeVis-Lab can be downloaded from its home page
(http://www.mevislab.de) free of charge, but the full version needs to be licensed. A
Free Software alternative is not known at this time.
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FIGURE 14.2 Image processing with a scripting language, in this example with Octave. The
screenshot shows QtOctave, a graphical environment for Octave, and two images that were
generated with a few commands. The commands can be seen in the QtOctave window and
perform the following steps: (1) load an image file and store in the variable im; (2) convolve
the image with a 5 × 5 matrix of 1/25 (box smoothing filter) and store the result in sm; (3)
compute the gradients in the x and y directions; (4) take the maximum of the gradients in the x
and y directions to approximate Sobel-like behavior; (5) display the smoothed image sm; (6)
and (7) display the gradient image D in a new window.

FIGURE 14.3 Sample screenshot from a graphical image processing network. This example
shows a network created in the MeVis-Lab software to visualize contour lines. Data flow in the
network runs somewhat counterintuitively from the bottom up, with the LoadImage operator in
the lower left corner and the SoExaminerViewer, a rendering module, in the topmost position.
To the right of the network, two display windows are open, one corresponding to the View2D
operator, and the other to the SoExaminerViewer.
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14.2. IMAGEJ

There are strong similarities between the functionality offered by various image
analysis programs. With the example of ImageJ, the scope of a typical image analysis
program is highlighted in this section. At the same time, we discuss briefly how to put
ImageJ to use. ImageJ can be downloaded from its home page, http://rsbweb.nih
.gov/ij/. From the same page, documentation and user-provided code can be accessed.
Java files are available for Linux (both 32- and 64-bit versions), Mac OS (both 32-bit
and 64-bit versions), and Windows. In all cases, installation is a straightforward
process that can be completed within a few minutes, aided by the fact that the binaries
are bundled with Java, and no extra Java installation is necessary. The executable file
(usually linked to the program start icon) is a simple script that starts Java and tells it
to execute the ImageJ Java binary (ij.jar), which in turn opens the main window
(Figure 14.1).

14.2.1. Image Files, Formats, and Types

An image can be opened in ImageJ from the FILE menu. In addition, the file menu
offers functions to create empty images or images with a gradient and to open a sample
image stored on the NIH server. ImageJ can open images in a number of commonly
used formats. Formats supported include GIF, BMP, PGM, and JPEG as well as the
DICOM medical image format and the FITS format (flexible image transport system),
used predominantly in astronomy. Of particular interest is the capability of ImageJ
to open stacks: Multiple images of the same size can be opened and assembled into a
stack, that is, a three-dimensional image I(x,y,z) or I(x,y,t). A stack opens in a single
window, and a scrollbar underneath the window allows us to browse through the
stack. Related functions are the conversion of multiple open images to a stack, and
vice versa. Another useful function is the import of raw data. Many image formats
are composed of a header followed by the image data. The header contains image
metainformation such as image size and bit depth, and the actual image data are a
sequence of bytes that need to be interpreted according to the metainformation. With
the raw format import function, the header can be skipped and the raw image data
accessed directly. The user needs to specify the image format (size, bit depth, data
type). This option works only for uncompressed image data.

Most image processing software supports gray-scale and color images with 8
bits per channel. Some software packages that are more quantitatively oriented also
allow gray-scale values with 16 bits per channel. These software packages are often
associated with high-end scientific cameras that support 10, 12, or 16 bits per pixel
or are associated with imaging devices (CT, MR) that have a higher depth than 8 bits
per pixel. In the example of ImageJ, 8- and 16-bit integers and 32-bit floating-point
image values are supported. Unlike ImageJ, some image processing software that
comes with imaging devices such as microscopes, cameras, or OCT devices provide
a function to view the image stream from the camera in real time. This function
facilitates focusing and exposure adjustment.
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14.2.2. Manual Image Editing and Annotation

Many image processing programs allow manipulating individual pixels or regions
of pixels. Some programs offer manual shearing and perspective distortions, and
some programs even allow general rigid-body transformations. Most often, rigid-
body transformations are either performed with a manually entered transformation
matrix or with the help of fiducial markers. These functions create the basis for
image registration. Most image processing programs also come with an annotation
module that allows us to draw simple elements such as arrows, lines, circles, ellipses,
or rectangles. In addition, labeling is possible. The annotation elements are usually
merged with the pixels of the image, and the original image information that was
overwritten by the annotation cannot be recovered. Exceptions are programs such
as the GIMP, which makes it possible to arrange the elements on different layers.
Until the layers are merged, the information remains separate and can be restored.
However, layered image formats are usually specific to the individual program, and
layer merging is necessary to export the image in a format that is universally readable.

In ImageJ, the EDIT menu allows access to some of these functions, and button
shortcuts allow fast access to region select and annotation functions. The IMAGE
menu of ImageJ contains additional functions to manipulate the image. This includes
functions to crop, expand, rotate, and rescale the image, to adjust contrast and color
balance, and to change the pixel depth (bytes per pixel). Also, color images can be
decomposed into a three-slice stack with either the red, green, and blue informa-
tion or the hue, saturation, and value (brightness) information in separate slices of
the stack.

14.2.3. Global Image Manipulation and Filtering

The main functionality of ImageJ can be found under the menu items PROCESS
and ANALYZE. The PROCESS menu offers the typical image processing operators,
starting with SMOOTH (convolution with a 3 × 3 Gaussian kernel), SHARPEN (con-
volution with a sharpening kernel as described in Section 2.3), FIND EDGES (Sobel
operator), and contrast-enhancement functions. Two contrast-enhancement functions
are offered: histogram stretching with the option to stretch past the data value range
allowed (to achieve a user-selectable percentage of saturated pixels) and histogram
equalization. Histogram equalization is applicable only to integer-type images (8 and
16 bits/pixel) and is not implemented for floating-point and RGB images. A number
of spatial-domain filters are implemented, including a generalized convolution with a
user-editable kernel, a convolution with a Gaussian kernel of selectable standard de-
viation, unsharp masking, and local variance filters. Furthermore, several rank filters
are offered: maximum (gray-scale dilation), minimum (gray-scale erosion), median,
and mean filter. The mean filter differs from the median filter, as it replaces the central
pixel by the mean value of the neighborhood rather than the median value. The effect
is very similar. A number of image math functions are implemented: monadic opera-
tors (operations that act on one image) such as raising the image values to the power
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of a constant � , taking the exponential or logarithm of image values (note that log 0
is arbitrarily set to zero), and taking the reciprocal of the image values; and dyadic
operators (operations that need two equal-sized images) such as addition, subtraction,
multiplication, division, and bitwise logic operators. A MAKE BINARY function ex-
ists that applies Otsu’s threshold. Morphological operators that act on binary images
are erosion, dilation, opening, closing, outlining, filling of holes, skeletonization,
and watershed segmentation. Interestingly, ImageJ occasionally switches to a min-is-
white representation (it announces this by declaring its use of an inverting LUT), and
threshold-based segmentation may assign low image values to foreground and high
image values to background (yet keep binarized low image values black and high
image values white by merit of the inverting LUT). The sometimes confusing switch
from dark to white background is rooted in the history of NIH Image, which was
designed as a densitometry software. The PROCESS menu further offers the Fourier
transform and Fourier-based filters. The FFT function performs by default the fast
Hartley transform and returns one real-valued frequency-domain image. By selecting
specific options, the actual complex-valued Fourier transform can be computed. A
flexible Fourier-based bandpass filter is offered that can also serve as highpass and
lowpass filters, and, optionally, can remove periodic components parallel to the x and
y axes simply by setting to zero the values along the u and v axes. The resulting FFT
filter mask can be displayed, which is a helpful feature for debugging a FFT bandpass
filter. Also, a general FFT filter is possible where a second image serves as the filter
function. In practical experiments, the FFT filter functions failed when the source
image was an integer-type image, and conversion to 32 bits/pixel was necessary.

The PROCESS menu offers several additional functions, such as the artificial
addition of image noise (a function useful to study noise reduction filters), the overlay
of a shifted image to create a shadow effect, and finally, a background flattening
function. Background flattening is realized with the rolling ball algorithm,11 which
can best be described when the image is interpreted as an elevation landscape where
the background represents the highest elevation points. A sphere that rolls over the
landscape in scan lines touches the landscape at certain points, and the elevation
at those points is considered the local background. Pixels that have never been
touched by the ball (normally, feature pixels) are interpolated from nearby known
background pixels, and the resulting background image is finally subtracted from the
original image. This algorithm tends to produce blocklike artifacts in images where
the background is not clearly defined. In such a case, the FFT bandpass filter may be
a more suitable choice.

One of the problems of ImageJ becomes apparent at this point: When several
images are opened at the same time, the image on which an operator acts is not
always predictable. In practical use, it may be useful to have ImageJ open as few
images as possible (ideally, a single image) and, instead, run multiple instances of
ImageJ. Clearly, multiple images need to be opened when images need to be converted
to a stack, to a color image with R, G, and B channels, and when image math needs
to be performed. In all other cases, keeping only a single image window open avoids
ambiguity.
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14.2.4. Image Measurements

Image processing software most often allows us to obtain numerical values for
individual pixels and pixel values along a straight or curved line (intensity profile).
Most image processing software also makes it possible to zoom in on the image
to make individual pixels visible. Furthermore, programs allow us to examine the
histogram and obtain statistical information on the image value distribution. The
ANALYZEmenu in ImageJ contains operations to measure elements of an image, most
notably gray-value analysis and histograms. Gray-value measurement and histograms
can be restricted to a region of interest. With an option dialog, additional metrics can
be enabled, such as median, mode, standard deviation, and higher-order statistics
(skew, kurtosis). A versatile function exists for particle analysis. Particle analysis is
useful, for example, in counting cell colonies or characterizing fluorescently labeled
cells. Particle analysis requires a binarized (segmented) image. A summary with
feature count, size, area fraction, and average size is obtained together with a table
that lists for each feature the area, gray-value statistics, bounding box, centroid, and
several selectable shape parameters. From the detailed results table, a histogram of
size distributions (and other distributions, such as perimeter or circularity) can be
obtained. ImageJ offers the extraction of intensity profiles along straight lines and
rectangular selections. For rectangular selections, the profile tool displays the gray
value, averaged along vertical scan lines, as a function of the horizontal position.
Finally, ImageJ offers functions to calibrate size and optical density. Images can be
calibrated through the IMAGE PROPERTIES function, where the pixel size can be
entered. After calibration, all measurements use the calibration value. For the optical
density, a stair-step calibration phantom can be used, and the average gray value is
then related to known density in a calibration table. Additional built-in tools include
fractal box counting and a some of gel-specific analysis tools. These are very well-
developed functions and among the strongest features that make ImageJ suitable for
quantitative image analysis.

14.2.5. Visualization Tools

The most frequently offered visualization tools are linear and nonlinear gray-scale
enhancement, color lookup tables, and rendering of an image as three-dimensional
elevation landscape. The ImageJ IMAGE menu offers access to these functions.
ImageJ’s built-in viewer for three-dimensional elevation landscapes creates a fixed
view that is independent of hardware-acceleration features. ImageJ comes with a
large number of color lookup tables for false coloring. A convenient feature is a
function to inset a color scaling bar into an image.

14.2.6. Macro Scripting Language and Plugin Extensions

Two important components of an image analysis program determine its versatility
through automation and extensibility: a macro scripting language and the option to



P1: OTA/XYZ P2: ABC
c14 JWBS035-Haidekker August 26, 2010 8:7 Printer Name: Yet to Come

IMAGEJ 451

create extensions, called plugins in ImageJ. The macro language is usually some form
of high-level language, normally interpreted and not compiled, that defines sequences
of operations and offers some additional flow control (conditional execution, loops,
and function calls). Plugins are normally written in the same language as the software
itself, in this case Java, and the programmers are required to follow a specific format
to properly integrate the plugin with the main software.

The macro language of ImageJ is a mix of Pascal and C syntax elements combined
with custom elements. The Pascal-style elements are rooted in the history of ImageJ
because the macro language of NIH Image was highly Pascal-like. Apparently, the
macro language interpreter received a moderate overhaul when it was integrated in
ImageJ. Fortunately, a macro recorder exists that records image processing operations
as they are applied and allows editing of the resulting script. The macro language is
highly interactive, allowing us to create interactor elements (text boxes, input win-
dows, sliders, dialogs). As all programming languages, the ImageJ macro language
knows variables. Variables can contain numerical values, strings, or arrays—all at the
same time—since macro variables are not restricted to a single type. Images cannot
be accessed directly. All calls to image operators act on the active window, and an
image can be activated by its title. This strategy requires that all images be opened in
their respective windows for a macro to access them. The ImageJ macro language is
well documented (http://rsb.info.nih.gov/ij/developer/macro/macros.html) and easy
to use for anybody, even someone with minimal programming experience. To help
further with developing macros, a repository with more than 300 macro examples ex-
ists (http://rsb.info.nih.gov/ij/macros/). As such, the macro language is ideally suited
for simple automation of repetitive tasks. Yet the macro language is powerful enough
to allow the implementation of relatively complex analysis tasks, such as segmenta-
tion of small bones for x-ray densitometry.6 Since the macro language is interpreted,
however, macros execute comparatively slowly. For the implementation of complex
algorithms, the plugin architecture is better suited.

ImageJ plugins are compiled in Java code. Compilation means that the code is
translated into machine language for execution. Conversely, an interpreter (such as
the macro interpreter) reads a human-readable text file and parses the text for in-
structions. The parsing process is relatively slow, and inside nested loops the time
used for parsing can add up considerably. Compiled code does not have this disad-
vantage and runs more efficiently. In addition, plugins can be developed with the
full functionality of a programming language and are not restricted by the scope
limitations of the macro script language. On the other hand, writing a plugin re-
quires considerable programming experience, notably with the object-oriented Java
language. A book that covers the basic image processing with special consideration
of ImageJ as the processing tool was published recently.3 The book contains a de-
tailed tutorial on how to write ImageJ plugins, and the authors have also provided
a tutorial written by W. Bailer to create plugins. It is accessible on their Web site
(http://www.imagingbook.com/index.php?id=102). The plugin concept is fundamen-
tal to ImageJ, because most of the menu commands of the ImageJ package are written
as plugins. For this reason, parts of the ImageJ source code can be used as templates
to implement new plugins. Each plugin contains a number of components: a plugin



P1: OTA/XYZ P2: ABC
c14 JWBS035-Haidekker August 26, 2010 8:7 Printer Name: Yet to Come

452 IMAGE ANALYSIS AND VISUALIZATION SOFTWARE

class that implements the user interface for the plugin, a plugin filter class that con-
tains a variable to hold the image to work on and a setup method to initialize the
plugin filter, and an image processor class that performs the actual image processing
function. Each plugin must provide a certain minimum set of methods to work with
ImageJ. Detailed instructions on how to write an ImageJ plugin are beyond the scope
of this book. The interested reader is referred to the online documentation that is
listed in this section.

14.2.7. Additional Functions and Operations

Depending on the area of application, image processing software offers additional
functions, many of which are covered in this book. Whereas the basic functions listed
above are common to most image processing programs, the software packages differ
most in the implementation of advanced functionality. Often, a program evolved from
a specific task, and many operators related to this task are present. Other programs
perform modality-specific functions. For example, CT and MR scanner software
often offer sophisticated segmentation algorithms. Microscope software sometimes
offers particle tracking. Built-in software in medical imaging devices is programmed
to aid the radiologist in specific measurement tasks, such as determination of the
head size in the ultrasound image of an embryo, or the segmentation and subsequent
bone density measurement in vertebral regions of CT and DEXA (dual-energy x-ray
absorptiometry) to diagnose osteoporosis.

14.3. EXAMPLES OF IMAGE PROCESSING PROGRAMS

In this section, some comprehensive image processing and analysis tools and some
specialized visualization software tools are introduced. These software tools have
been selected as representative examples of Free Software and can be downloaded
from the maintainer’s Web sites. In all cases, the source code is available, and the user
can examine, expand, and modify the software. All examples belong in the category of
menu-driven image analysis software, as this is the category with the largest number of
representatives available. The examples have also been selected because they are un-
der active development. To complement the list below, two examples of nonfree image
processing programs, ANALYZE and e-Film, are given. Mayo Clinic’s very com-
prehensive image analysis tool ANALYZE (http://mayoresearch.mayo.edu/mayo/
research/robb lab/analyze.cfm) is available for a considerable license fee. The
license fee can be waived when a collaborative research proposal has been accepted
by the Biomedical Imaging Resource of Mayo Clinic. The lean DICOM viewer e-
Film (http://www.cedara.com/OEM Solutions/Products/eFilmLite/index.aspx) is of-
ten provided on a CD together with image data to enable viewing the study data
without having to resort to a full-featured image analysis program. The licensing
schemes of these nonfree programs provide an interesting contrast to the Free Soft-
ware philosophy.
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AMIDE (AMIDE’s A Medical Imaging Data Examiner) AMIDE is a specialized
software package for medical image analysis and visualization with a particular focus
on three-dimensional data sets, particularly the merging of multiple three-dimensional
volume data sets. AMIDE is capable of reading a number of different medical image
formats, including DICOM, ACR/NEMA, NIFTI, and Concorde PET data. AMIDE
has very powerful capabilities to define two- and three-dimensional regions of inter-
est, including freehand and isocontour regions. Multiple volume three-dimensional
sets can be brought to registration by means of fiducial markers and rigid-body trans-
formations. The fiducial markers need to be set manually for each data set. Data
sets can be blended or overlaid. AMIDE has strong visualization and rendering op-
tions, with transverse, coronal, and sagittal sectioning, volume rendering (full volume
with intensity-based transparency), and the generation of fly-through and time-series
movies that can be exported in movie file formats. On the other hand, AMIDE
has only very basic image processing and quantitative analysis capabilities. These
include nearest-neighbor and trilinear interpolation, anisotropic filtering (Gaussian
smoothing and median filters), thresholding, image math between data sets, three-
dimensional line profiles with Gaussian curve fit, and image statistics. AMIDE can
be obtained from http://amide.sourceforge.net and is available for Linux, Windows,
and Mac OS.

BioImage Suite The BioImage Suite (http://www.bioimagesuite.org), maintained
by Yale University, is a three- and four-dimensional image analysis tool for image
processing and visualization. Functions include basic image processing (such as stan-
dard image filtering, interpolation, rotation), voxel classification (histogram-based,
Markov random fields, exponential-fit methods), and deformable models (segmenta-
tion of different anatomical structures with snakelike deformable models). A particu-
lar focus lies on MR data analysis, fMRI, and image registration. Examples for unique
features are MR bias field correction, specialized rigid registration schemes, special-
ized measurement functions for diffusion-weighted MRI, and cardiac deformation
analysis. Plans have been announced to combine BioImage suite with Harvard’s
Slicer.

BioImageXD BioImageXD is a recent development that has a focus on microscope
images.7 BioImageXD has a strong rendering component, which is based primarily
on the Visualization Toolkit (VTK) described further below. Rendering functions in-
clude false coloring, rendering of three-dimensional stacks, and creation of animated
movies from two- and three- as well as four-dimensional data, that is, sequences of
volumetric images taken at different points in time. This software is also very flexi-
ble when it comes to reading proprietary microscope image files, such as the image
formats used by Zeiss, Olympus, and Leica. These formats include two-dimensional
images and three-dimensional stacks. BioImageXD is still under development, and
the image processing and analysis functions are not well developed at this time. How-
ever, for microscope image processing, BioImageXD offers several very attractive
functions that are difficult to find elsewhere. Most notably, the software features
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intensity correction for photobleaching and the analysis of fluorescence co-
localization. Furthermore, plans for new features include deconvolution of three-
dimensional image stacks, that is, the subtraction of blurred out-of-focus planes from
the in-focus plane. Once implemented, deconvolution imaging can produce very high
quality images from nonconfocal microscopes. BioImageXD is available in source
code, and binaries for Windows and Mac OS exist, whereas Linux support is only
rudimentary. BioImageXD can be accessed on the Web at http://www.bioimagexd.net.

CVIPTools (Computer Vision and Image Processing Laboratory Tools) The
CVIPTools are developed at the Computer Vision and Image Processing Labora-
tory of Southern Illinois University at Edwardsville. Its long development history
explains the unique four-layered internal structure of the software: The lowest layer
(presumably also the oldest layer) is composed of a number of library programs that
contain the actual image processing code. The next layer is a command-line layer
to control the library modules and to combine image processing steps into a script.
The third layer adds the functionality needed for a graphical user interface, and the
top layer is the graphical user interface itself. With the graphical user interface, the
CVIPTools become a cohesive, menu-oriented image processing and analysis pack-
age. The CVIPTools are possibly one of the most comprehensive software packages
available for image analysis. The CVIPTools cover the complete basic functionality
described in Chapters 2 through 4, with many enhancement and restoration filter
options in the spatial and frequency domains. For image segmentation, CVIPTools
provide numerous algorithms, such as histogram-based intensity thresholding, split-
and-merge segmentation, fuzzy c-means clustering, and the Hough transform. Partic-
ularly noteworthy are feature extraction functions by shape and texture (see Chapters
8 and 9). In addition, CVIPTools contain several advanced image compression algo-
rithms, including fractal and wavelet compression. In CVIPTools, many operators of
similar functionality are implemented. An example is that of edge detectors, where
CVIPTools features the Kirsch, pyramid, Sobel, Prewitt, Roberts, and Frei–Chen
operators. The user can study the effect of these functions and study their subtle dif-
ferences. A complementary book13 is available that covers the CVIPTools operators.
A CD-ROM accompanies the book, which contains CVIPTools binaries. Unfortu-
nately, binaries are provided for Windows only. Users of other operating systems
can download binaries from the CVIP Web page, http://www.ee.siue.edu/CVIPtools,
which also allows download of the source code. It appears that the available non-
Windows binaries are outdated and do not run on more recent operating system
versions. Knowledge of the compilation process and the files that control the pro-
cess (makefiles) is recommended for users who intend to compile the software. The
source code is fairly well documented and can serve educational purposes even if
not compiled.

IMAL (Image Measurement and Analysis Lab) IMAL is a comprehensive image
analysis package developed primarily by Thomas Nelson. It was developed originally
at the National Institutes of Health, where the software was known as TNImage.
Development continues at the Blanchette Rockfeller Neurosciences Institute at Johns
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Hopkins University. IMAL provides a very comprehensive suite of image processing
functions that cover most functions in Chapters 2 and 3. IMAL also provides a
number of convenient annotation and drawing functions. Furthermore, IMAL comes
with a number of measurement functions. These include length, area, size, and
angle, all of them with the option to calibrate the data. In addition, IMAL helps
with densitometry measurements (strip and spot densitometry): for example, in the
analysis of gels. The wavelet transform functions are a particular strength. In addition,
IMAL provides functions for fiducial marker-based image registration. IMAL is one
of the very few programs that uses higher bit depths than 8 bits/pixel when needed.
As such, IMAL is particularly suited for quantitative image analysis and may surpass
ImageJ in this respect, because ImageJ reduces images to 8 bits/pixel when opened,
even if higher image depths have been read. IMAL comes with a full user manual.
IMAL uses some UNIX-specific libraries, most notably Motif (a library for creating
graphical user interfaces) and is available for flavors of UNIX and Linux only.
Windows users may use one of the Unix emulators, such as Cygwin. For Macintosh
users, a similar solution with the emulator MI/X applies. The main Web page for
IMAL is http://www.brneurosci.org/imal.html. On this page, links make it possible
to download the source code or precompiled binaries, including static binaries (i.e.,
self-contained binaries that have all libraries built-in). Although static binaries can
be large, any problems with mismatched libraries are avoided, and the software runs
on a wide variety of operating systems.

Slicer Harvard’s Slicer software (http://www.slicer.org) is a software suite for
registration and visualization. Slicer allows slice by slice and three-dimensional
views, segmentation, false coloring, and overlay views in two and three dimensions.
Slicer offers some registration functions. A unique module is the FE-Mesh mod-
ule, which allows us to extract mesh information for finite-element models from
image data.

VisIt VisIt is an open-source visualization package developed at the Lawrence
Livermore National Laboratory. Unlike VTK (described below) and OpenDX (de-
scribed in Section 14.5), VisIt comes with a graphical user interface and allows
the user to control most visualization tasks from a menu. VisIt covers all functions
described in Chapter 13. In addition, VisIt can plot vector fields and has a special
module for rendering chemical molecules. VisIt is ideal for beginners because of its
ease of use, yet it contains powerful visualization functions that probably cover all
common visualization tasks. VisIt is available for Linux, Windows, and Mac OS and
can be downloaded from the maintainer’s Web page at https://wci.llnl.gov/codes/visit/
home.html.

VTK (Visualization Toolkit) The Visualization Toolkit (VTK) is a suite of libraries
for volume visualization. By itself, the toolkit provides the rendering functionality,
but it does not come with a user interface. It is necessary to describe the visualization
task in a programming language (either C++ or Tcl). Considerable effort is required
to master VTK, and the help of a book9 is recommended. VTK acts as a layer between



P1: OTA/XYZ P2: ABC
c14 JWBS035-Haidekker August 26, 2010 8:7 Printer Name: Yet to Come

456 IMAGE ANALYSIS AND VISUALIZATION SOFTWARE

the preprocessed and segmented volume data and the computer’s rendering software,
OpenGL. As such, it performs many of the tasks that were introduced briefly in
Sections 13.4 and 13.5. VTK is often combined with a parallel development, ITK
(the Insight Toolkit), which performs the image segmentation and classification. Both
programs have emerged from the Visible Human Project. The home page for VTK
is http://www.vtk.org and for ITK, http://www.itk.org. Because of the complexity
that VTK presents to the user, several third-party products have been developed that
provide a graphical user interface and contain implementations of the most important
visualization tasks. Examples include the VTK Designer by VCreate Logic and Amira
by Visage Imaging.

14.4. CRYSTAL IMAGE

Crystal Image was developed and written by the present author. As with many similar
software packages, initial software development was done to fill the need for a small
number of highly specialized algorithms. During the initial development stages of
Crystal Image in the year 2000, ImageJ was in its infancy, and NIH Image was not
a feasible alternative because it was restricted to Macintosh computers. Scion Image
was not open source and could therefore not be modified or extended. The decision
was made to start an image processing package from scratch. Furthermore, the de-
cision was made to use the Linux operating system for development because of the
availability of a multitude of development and debugging tools and the availability
of suitable libraries: GUI libraries (GTK, the Gimp Toolkit) and image display li-
braries (Imlib). Initial development efforts showed that software development would
be faster in this environment than under Windows with Visual C++, which was the
alternative at that time. Since then, Crystal Image has grown to become a compre-
hensive quantitative image analysis package that features most of the functionality
of ImageJ, including a macro language and plugin capability. The algorithms that
are provided throughout this book were implemented and tested in Crystal Image
before they were converted to pseudocode for publication. In this respect, Crystal
Image exceeds the functionality of ImageJ. However, Crystal Image still needs to be
considered a work in process. Development efforts were focused primarily on func-
tionality. For this reason, documentation is lacking, and Crystal Image does not have
an installer. Some initial design restrictions have not been removed. Most important,
at the time of inception the four image types that ImageJ supports were considered
sufficient: 8-bit, 16-bit, 24-bit color, and 32-bit floating-point. A slightly inconsis-
tent implementation of the color format makes it sometimes awkward to use, and a
later need for additional formats (48-bit color, 64-bit double-precision floating point)
could not be accommodated because that would necessitate changes throughout the
code base. Other restrictions, such as the inability to open more than one image at
a time, were later considered desirable and therefore kept (in this case to avoid the
ambiguity that occurs with ImageJ when multiple images are open). Despite these
development shortcomings, Crystal Image contains a number of powerful features
that other image analysis programs do not offer.
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Any image analysis package contains several core elements: a definition of an
image object (the actual image data supplemented by metainformation such as image
type and size), the ability to open image files in various formats, the ability to display
such an image, and the ability to save an image or modified image. Processing
and analysis functions build on this core functionality. Independently, code for a
GUI is maintained and linked to the core functionality. Similar to ImageJ, Crystal
Image opens a small menu window and displays the opened image in a separate
window. Also similar to ImageJ, Crystal Image organizes its functions into menu
items, and the menu controls the individual processing operators. In addition, Crystal
Image features a macro interpreter that controls the image processing operators in
an automated fashion. In the diagram of the Crystal Image internal structure shown
in Figure 14.4, it can be seen how the file operators, the image processing operators
(and by extension, the plugins), and the visualization tools interact with the main
image structure.

The menu control of Crystal Image is similar to that of ImageJ. The FILE and
PROCESS menus are comparable. The MEASURE menu corresponds to ImageJ’s
ANALYZEmenu. Functions under ImageJ’s EDITmenu in Crystal Image are divided
more stringently between functions that modify properties of an image (EDIT) and
functions for visualizing the image or aspects of the image (VIEW). Two menu
items exist that have no correspondence in ImageJ: SEGMENTATION and SPECIAL.

FIGURE 14.4 Internal structure of Crystal Image. Crystal image maintains one single image
structure on which to operate. The operators modify this image under the control of either menu
commands or the macro interpreter. An auxiliary (secondary) image with reduced functionality
exists to help some interactive tasks. Both primary and secondary images can be viewed, but
extensive visualization tools exist for the primary window only.
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Under the SEGMENTATION menu, several different segmentation methods have
been collected, including intensity-based region growing and hysteresis thresholding,
snakes (active contours), watershed segmentation, and clustering. The SPECIAL
menu contains several image processing operations that were included in earlier
development stages, such as small bone densitometry and analysis of different CT
images. Currently, the SPECIAL menu is the default location where plugins register
their functions.

For the file operations, Crystal Image uses the TIFF format predominantly. The
TIFF format is extremely flexible and allows reading and writing of all image
types (8 bits/pixel unsigned, 16 bits/pixel signed, 32 bits/pixel floating point, and
24 bits/pixel RGB color) either as two-dimensional slices or as a stack of slices
(three-dimensional images). In addition, Crystal Image can read any ImageMag-
ick format (GIF, PNG, BMP, and other pixel formats), but these default to 24-bit
RGB. Furthermore, a legacy image format specific for Crystal Image exists: the vsrt
(volume short) and vflt (volume float) formats. These formats are extensions of the
PBM (portable bitmap) format to 16 and 32 bits/pixel with an option to store three-
dimensional image data. The advantage of this format is the simple way to create an
import filter. Crystal Image can also import and export raw image formats and ASCII
data and export images in OpenDX native two- and three-dimensional formats. The
last function is a particularly interesting way to establish an easy and direct link to the
powerful OpenDX 3D visualization system. However, Crystal Image comes with a
its own flexible, yet easy-to-use visualization tools: Any image can be displayed with
modified brightness/contrast/gamma, false-colored, provided with isocontour lines,
and displayed as a three-dimensional elevation surface.

There is a large overlap between the operators that ImageJ and Crystal Image
provide. Furthermore, Crystal Image provides numerous advanced image analysis
operators that are presented throughout this book and that are not available in Im-
ageJ. Some highlights of Crystal Image operators covered in this book are multiple
functions for background removal, adaptive filters (local adaptive lowpass filter, tri-
state median filter, anisotropic diffusion filter, and the adaptive bilateral filter), several
fractal dimension operators (local Hoelder exponent and a number of estimators for
the global fractal dimension, such as the box-counting method, Minkowsky method,
mass dimension, blanket method, dispersion method, and the frequency-domain rose
plot), the measurement of run lengths, and a wavelet module that offers the wavelet
transform and wavelet-based denoising. Shape and texture analysis functions are
implemented, the latter based on the co-occurrence matrix.

Image math functions are implemented as well, but the restriction that only one
image can be opened at a time had to be overcome. For this purpose, the image
math menu offers a push function that stores the present image in the background
(a one-level stack) and then makes it possible to perform dyadic operations on the
currently opened image with the previously pushed image. A similar idea was used
to implement the undo function. Whereas ImageJ does not offer a consistent undo
function, Crystal Image offers an undo operation for every operation that changes
the main image. There are two user-selectable undo options: a fast one-level undo in
memory (single-level undo stack) and a 10-level undo, where the undo stack is kept
on the hard disk.
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The macro language built into Crystal Image differs fundamentally from ImageJ
and is directed more toward the scripting languages of Matlab and Octave. The
model language was BASIC (beginner’s all-purpose symbolic instruction code), and
the macro language has been nicknamed ImageBasic. The fundamental language
element is the assignment

a = f(b, c, d, . . .); (14.1)

where the variables a, b, c, d, . . . may be numerical values, strings, or images. In
many cases, f is an operator, b is the image to operate on, and c, d, . . . are parameters
for the operator. An example of such an expression is

i2 = hysteresis threshold (i1, t, t + 50); (14.2)

This is a statement that executes the hysteresis threshold operator with image i1 and
the lower and upper thresholds t and t+50, respectively. The result—the segmented
image—is stored in the variable i2. It can be seen that the arguments (in this example,
t+50) may be mathematical expressions. The input image itself may also be an
expression such as i1*mask (multiplication of two images) or img-offs (subtraction
of images). In addition, flow control statements are available: if-else, the for loop, the
while and repeat-until loops, and function calls, albeit without formal parameters. This
means that all variables are global. A particularly powerful feature is the foreach loop,
which allows execution of the loop for all files in a directory that matches a specified
file mask.

One additional mode exists, the immediate execution mode. In this mode, macro
commands can be entered and are executed interactively. This is a convenient method
of accessing macro functions and automating menu functions. Short loops are possi-
ble. In addition, the commands are logged and can be saved to a text file, where they
can be converted to a full macro with minimum effort.

An example macro that highlights some of the features and provides an example
of the syntax is given in Algorithm 14.1, which shows most of the elements of a
macro. Macro files are plain text files. Each macro starts with the keyword macro,
followed by the macro name. The macro name is the name of the menu item that is
added to the MACROS menu of Crystal Image. The new menu entry allows to activate
the macro. The symbol # indicates a comment. All text from a # symbol to the end
of the line is ignored by the macro interpreter. In the next two lines, two images are
loaded and stored in the variables a and b. In this example, a noise-free image and
a noisy image of the same object are loaded for comparison. The macro tests how
effectively the adaptive tristate median filter can remove the noise. In the first section,
the mean-squared distance between images a and b is computed; then the image b
is subjected to a conventional median filter (result stored in c), and the distance to
a is computed and printed. In the second half, the adaptive tristate median filter is
applied within a for loop that steps the threshold from 0 to 255 in increments of
5. The mean-squared distance is computed for each threshold and stored in an array.
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macro tsmf analysis:

a = load ("liver clean.tif"); # unspoiled original
b = load ("liver shotnoise.tif"); # with 10% shot noise
display (b); # Show b in main window

nerr = (a-b)/a; # normalized error per pixel
x = measure (nerr*nerr,0); # mean-squared error
print ("Mean-squared distance of the originals: ",x);
c = morph (b,"median",8); # the other extreme
nerr = (a-c)/a; # normalized error per pixel
x = measure (nerr*nerr,0); # mean-squared error
print ("Mean-squared distance to rank-filtered: ",x);

# Now examine the thresholds in the TSMF

dim (xydata[55,2]); # array storage

i=0;
for (T=0,255,5); # FOR loop from 0 to 255 in five increments

c = convolve (b,"TSM",T); # Apply the TSM filter
nerr = (a-c)/a; # normalized error per pixel
x = measure (nerr*nerr,0); # mean-squared error
print ("Threshold ",T," Mean-squared distance ",x);
xydata[i,0]=T;
xydata[i,1]=x; # Store the t-x pair for graphing
i = i+1;

endfor;

graph (i, xydata); # Display the data points x over t

endmacro;

Algorithm 14.1 Example of a Crystal Image macro. This example analyzes the
effect of the adaptive tristate median filter with various thresholds.

After the loop is finished, the distance values are plotted over the threshold values. A
screen shot of the macro run is shown in Figure 14.5.

Analogous to ImageJ, the option to create plugin code (called modules) exists.
Crystal Image modules need to be written in C, the native language of Crystal Im-
age. A given structure needs to be followed. Modules are compiled into dynamically
shared objects (DSOs) and loaded by Crystal Image upon startup. Module devel-
opment requires advanced knowledge of the C programming language. To facilitate
module development, a module template (file 0module.c) is provided that con-
tains the necessary module infrastructure and extensive comments to explain how a
module works.

Crystal Image can be run from the accompanying DVD in three forms, either from
the live DVD, by installing the kubuntu Linux operating system from the DVD, or
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FIGURE 14.5 Example of a Crystal Image macro run. The macro is loaded and started from
the macro menu in the control window (top left). Upon execution of the fourth line of Algorithm
14.1, the display window is opened. At the end of the macro run, the text window with the
output of the print statements (right) and the graph display windows are opened. Both the
values in the text window and the graph display show a mean-squared distance minimum at
a threshold of 15, but this minimum is markedly higher than the distance of 5.4 between the
median-filtered image and the original noisy image.

by compiling Crystal Image from the source code. In the latter case, a fully installed
Linux computer must exist. Alternatively, it should be possible to install Crystal
Image under Windows if an emulator such as Cygwin is installed (this is similar to
IMAL). Instructions are provided in Appendix A.

14.5. OpenDX

OpenDX is an extremely powerful data visualization program, and arguably, the
visualization tool with the best combination between user-friendly operation and
flexibility. The software, known as the Visualization Data Explorer (DX), was orig-
inally developed by IBM as a commercial visualization product. In 1999, IBM re-
leased DX under an open-source license to “attract the creativity of the world’s
developer community [and to send] a strong message to both the technical and busi-
ness community about IBM’s commitment to open and non-proprietary standards.”1

Development on OpenDX has continued since then, and OpenDX has become a
standard software in visualization. The OpenDX software, including source code,
documentation, and samples, can be downloaded freely from the OpenDX Web site,
http://www.opendx.org.

OpenDX is based on the principle of visual programming, similar to Khoros. A
visual program is developed by placing operators on a canvas and connecting them
with lines that represent data flow. A number of information elements need to be
collected to obtain an object that can be rendered. The most important information
elements are a data field (usually, an array of data) and color. The visual program
in Figure 14.6 shows how operators collect information, starting with a file name,
then the image itself. Additional operators add color, create the elevation landscape,
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FIGURE 14.6 Example of an OpenDX visual program. The input image (A) exists in native
DX format as created by Crystal Image. In the visual program (B), the String specifies the
file name, and Import operator converts the image into a field. With AutoColor, color is
being added to the nodes of the field. Rubbersheet creates the elevation map. Finally, the
Image operator renders the object (C). The ColorBar operator is responsible for adding the
color scale bar to image C, and the Describe operator describes the data object at the point
where it is connected. (See insert for color representation of the figure.)

and finally, render the image. In addition, a color scale bar is added, and an operator
was included that describes the data and provides helpful hints on how to render
the data.

The design of a visual program is not straightforward, and users new to OpenDX
might easily get confused by the number of operators available. Fortunately, OpenDX
offers an “autopilot” mode where a default visual program is generated that can cover
most standard visualization applications. With the IMPORT DATA function from
the initial menu, this automatic mode is invoked. A Data Prompter window opens in
which the data can be described. Once the data are described satisfactorily (format,
such as image file or scattered data file; array dimensions and value range; data
type), the click of a button creates a default visual program and renders the data. The
visual programs created in this mode are quite complex, because they distinguish
between two-dimensional scalar data (which are rendered as an elevation landscape),



P1: OTA/XYZ P2: ABC
c14 JWBS035-Haidekker August 26, 2010 8:7 Printer Name: Yet to Come

OpenDX 463

three-dimensional scalar data (which are segmented using an isosurface and rendered
as a three-dimensional object), and vector data (two or three dimensions, which are
rendered as an array of glyphs). The visual program depends strongly on the type
of input data. If the input data are an image, the visual program simply displays the
image in a two-dimensional display window. In the case of a spreadsheet format (four
columns: x, y, z, and value), a visual program is created that shows a cube in which
glyphs are placed that are proportional in size to their value. In all cases, the visual
program can be opened and examined, and this default visual program is helpful in
learning how to create a custom OpenDX visual program.

Figure 14.6 shows one sample visualization: a false-colored elevation landscape
rendering of a gray-scale image. Two more examples will provide a more general
idea of how a visual program is created in OpenDX. The first example is a three-
dimensional rendering of a segmented object such as the mouse femur used in Figure
13.8. In CT images, compact bone is easily segmented because of its high CT value.
Three-dimensional volume rendering is possible whenever the image values of the
object are distinct from the background image value (i.e., when segmentation by
thresholding with a global threshold is possible). If this prerequisite is not met, the
image needs to be thresholded by prior image processing. Once separation by image
values is possible, isosurface extraction becomes possible. In this case, the segmented
object is rendered as a solid represented by thin walls (i.e., its isosurface). The visual
program and two sample renderings are shown in Figure 14.7. The sample object
has two inhomogeneities. One is a section of reduced thickness which becomes
clearly visible. The second is a section of reduced image intensity. A high isosurface
value removes this section from the object and creates the impression of a split
object. By reducing opacity in the color module it can be demonstrated that the
rendered surface is indeed a thin wall. Furthermore, the first and last slices of the
three-dimensional image are all background, so that the tube wall appears closed.
Because of its surface-based rendering principle, OpenDX is not capable of rendering
solid objects constructed from semiopaque cubes. The closest approximation is the
rendering of a series of isosurfaces of the same object.

Another example visualizes a different data structure: a vector field. In such a case,
glyphs are used to visualize the direction and magnitude of the vector field. OpenDX
offers numerous glyphs, but the natural choice for the visualization of a vector field
are small arrows. The example in Figure 14.8 visualizes fluid flow in a flow chamber.
The flow velocity is represented by arrows, and the chamber geometry is merged with
the image as an isosurface. To have a nontransparent back and a transparent front
for the flow chamber, two images of the flow chamber outline were created, and the
second (opaque) flow chamber was clipped.

The capabilities of OpenDX go vastly beyond these examples. OpenDX contains
operators for mathematical operations, vector operations (such as divergence and
curl of a vector field), calculation of input statistics and histograms, and interactive
elements such as sliders and buttons. In addition, the visual programs may contain
loop elements, which can be used to create animations: for example, by moving the
camera with respect to the scene. OpenDX has a large number of import functions.
Raw data or ASCII data can be described with the help of a general file, which
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FIGURE 14.7 OpenDX visual program to render the isosurface of a three-dimensional
object as a solid. Similar to Figure 14.6, the Import operator is used to read the file, but in
this case the interactive FileSelector provides the file name string. The Isosurface
operator extracts the isosurface, and the image value is provided by the Scalar operator.
The Color operator adds color (in this case, 75% gray), and the Image operator renders the
object. In extension to Figure 14.6, an AutoCamera module is provided, which replaces the
built-in camera of the Image operator and provides additional flexibility. The Image operator
renders image B. Bandlike structures that result from the pixel discretization are visible. By
introducing a SimplifySurface operator between Isosurface and Color (not shown
in the example visual progam), the surface can be smoothed (C).

is a text file that contains the detailed description of the data. A general file is
created automatically when data have been described interactively with the import
function.

The examples and lists in this chapter are not exhaustive, but they provide an
idea of the capabilities of OpenDX. The examples also show that visual programs
may gain in complexity very rapidly. The best way to gain an understanding of
OpenDX visual programs is either to use a tutorial, such as the book OpenDX: Paths
to Visualization,12 or to peruse one of the many tutorial samples that are provided
with OpenDX.
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FIGURE 14.8 Visualization of a vector field. The visual program (A) is relatively complex
because it merges three components: the vector field itself, visualized with the AutoGlyphs
operator, and two scalar fields that contain the outline of the flow chamber, visualized as
isosurfaces. The lower isosurface (about one-third of the chamber) was made nontransparent,
whereas the upper part of the flow chamber was made semitransparent. (See insert for color
representation of the figure.)
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14.6. WAVELET-RELATED SOFTWARE

Numerous software packages for the wavelet transform and particularly for wavelet-
based denoising can be found on the Web for free download. Most frequently, these
software packages are collections of Matlab functions. Most of these functions will
also work with Octave (Section 14.1.2). The arguably most comprehensive collec-
tion of functions is WaveLAB by David Donoho, which contains Matlab functions
for orthogonal and biorthogonal wavelet transforms, translation-invariant wavelets,
interpolating wavelet transforms, cosine and wavelet packets, and various denois-
ing algorithms. The URL for WaveLAB is http://www-stat.stanford.edu/∼wavelab/.
Denoising algorithms presented by Portilla et al.8 can be found at http://www.io.
csic.es/PagsPers/JPortilla/denoise/software/index.htm. Shihua Cai and Keyong Li
have provided a collection of one- to three-dimensional wavelet transforms and
denoising algorithms at http://taco.poly.edu/WaveletSoftware/index.html.

Wavelet transform functions are also available in C, C++, and Java. For example,
Ian Kaplan provides several elementary functions in Java and C++, at http://www.
bearcave.com/software/java/wavelets/index.html. Source code for a wavelet-based
image compression package provided by Geoff Davis and written in C++ is avail-
able at http://www.geoffdavis.net/dartmouth/wavelet/wavelet.html. The digital signal
processing group at Rice University provides a one- and two-dimensional wavelet
processing toolbox at http://www-dsp.rice.edu/software/RWT/. Last but not least, an
Internet forum exists at http://www.wavelet.org, where anybody involved in the de-
sign and application of wavelet software can discuss problems and provide answers.

14.7. ALGORITHM IMPLEMENTATION

Advanced image analysis often needs custom algorithms or custom modifications
of existing algorithms. Existing image analysis programs offer many options with
their scripting or macro languages. However, specialized algorithms may quickly go
beyond the capabilities of these languages. In such a case it is best to implement the
algorithm in a general-purpose programming language, such as Java, C, C++, or one
of the many other languages that are available. Most algorithms that are provided
in this book cannot be implemented readily within the constraints of a scripting or
macro language. There are three general approaches to algorithm implementation
with general-purpose programming languages:

1. Extension of existing image analysis programs (e.g., ImageJ plugin or Crystal
Image module). In-depth knowledge of the inner workings of the host program
is required, but the host program may already contain numerous functions that
can be used by the algorithm.

2. Stand-alone processing utilities. These may be short and specific, and only
minimal overhead may be required to read the input file and write the output
file. Stand-alone utilities are often realized as command-line tools without a
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graphical user interface. Scripting programs (Matlab, Octave) would fit in this
category. With this option, goals may be achieved in the shortest time.

3. Integrated processing utilities, often with a graphical user interface (GUI). Al-
though the overhead for this solution increases strongly over that of the second
solution (GUI-based programs can easily reach and exceed an overhead of 50%
of the code to provide user interaction), the developers have the maximum flex-
ibility. In fact, the developers of BioImageXD state that it is often easier in the
long run to begin development from scratch. Crystal Image has been created
for the same reason.

Sometimes one development model may lead to another. An example is the
CVIPTools suite, which began as a collection of stand-alone image processing
tools and was later integrated into a cohesive graphical environment. Finally, it
is possible to use existing image processing libraries. One popular example is
the OpenCV library (http://opencv.willowgarage.com/wiki/, http://sourceforge.net/
projects/opencvlibrary/) with about 500 library functions for image processing and
computer vision. A book exists that introduces programming with OpenCV.2 Li-
braries such as OpenCV combine a moderate initial learning effort with the advantage
of flexible and efficient programming and make use of libraries that are generally
highly optimized. It depends on the developers and the goals, which is the most
suitable of the options listed. In this section we illuminate the fastest way to reach
a working algorithm: the stand-alone module, aided by an existing image analysis
program.

An image processing operator requires one or more image files as input, may
require parameters to control the action of the operator, and usually outputs an
image that is the result of the operation. In a stand-alone program, input and output
images are typically disk files. Ideally, the program would have the ability to read
and write image files. Image files contain the image data together with additional
information, such as width and height, and the pixel interpretation. Libraries exist
that help read and write an image, but the complexity of most image formats is
high, and the import filter (e.g., for TIFF or DICOM images) can gain appreciable
complexity. For the rapid development of a stand-alone algorithm, a raw format
has the advantage of being independent of image libraries. Raw formats contain the
image data without additional information, and the data can be represented either
as ASCII numbers or as binary data. Two simple functions can handle raw data
input and output, in the example of Algorithm 14.2 written in C. The functions are
restricted to a specific data interpretation: in this example, 32-bit/pixel floating-point
numbers.

The next step in the development process would be the creation of a program frame
that integrates multiple functions (including the read and write function in Algorithm
14.2) into an entity that can be executed on a computer. In C, a function called main
defines the entry point. The function main receives command-line arguments, and
three elegant macros can be used to read and interpret command-line arguments. A
possible realization of main is shown in Algorithm 14.3.
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int read raw (const char *fname, float *data, int x, int y, int z)
{

FILE *F; // input file handle
int elems;

data = malloc (x*y*z*sizeof (float)); // Allocate memory
if (!data) return -1; // Exit if operation

failed
F = fopen (fname, "rb"); // Open file for read
elems = fread (data, x*y*z, sizeof (float), F);
fclose (F);
if (elems!=x*y*z)

return -1; // size mismatch error
return 0; // success

}

int write raw (const char *fname, float *data, int x, int y, int z)
{

FILE *F; // output file handle
int elems;

F = fopen (fname, "wb"); // Open file for write
elems = fwrite (data, x*y*z, sizeof (float), F);
fclose (F);
if (elems!=x*y*z)

return -1; // size mismatch error
return 0; // success

}

Algorithm 14.2 Example of functions to read and write an image file in raw format.
The functions receive the parameters for the image extent in the x, y, and z directions
and a pointer to raw data storage in memory. Furthermore, the file name is given in
fname. While read raw makes sure that memory for the storage of image data
is available, write raw requires that data storage has been allocated properly: for
example, by read raw.

The only missing elements are some library definitions and the command-line
handler definitions. The program can be typed into a text editor, starting with the
following lines:

#include �stdio.h�
#include �stdlib.h�
#include �stdarg.h�
#include �string.h�

#define nextargi (--argc,atoi(*++argv))
#define nextargf (--argc,atof(*++argv))
#define nextargs (--argc,*++argv)
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int main (int argc, char **argv) // argv are the command-line
arguments

{
int imgx, imgy, imgz; // image dimensions
float *data; // image storage
float *target; // processed image storage
char infname[1024], outfname[1024]; // file names for input and

output
float p1, p2; // two parameters

if (argc�8) // Too few command-line
arguments?

{
printf ("Command-line usage:\n");
printf (" %s (inf)(outf)(x)(y)(z)(p1)(p2)\n",argv[0]);
printf (" (inf) is the input file name\n");
printf (" (outf) is the output file name\n");
printf (" (x), (y), (z) are the image dimensions\n");
printf (" (p1) and (p2) are parameters\n");
exit (0);

}

strcpy (infname,nextargs); // Read input file name
strcpy (outfname,nextargs); // Read output file name
imgx = nextargi; // Read image dimensions
imgy = nextargi; imgz = nextargi;
p1 = nextargf;
p2 = nextargf;

printf ("Reading image %s with dimensions %d, %d, %d\n",\
infname,imgx,imgy,imgz);

if (read raw (infname, data, imgx, imgy, imgz))
{

printf ("Error reading file\n"); exit (1);
}

target = malloc (imgx*imgy*imgz*sizeof (float));
if (!target) exit (1); // Memory allocation failed? Exit

immediately

// The call to the image processing function goes here
// We’ll just copy the data for now

memcpy (target, data, imgx*imgy*imgz*sizeof(float));

if (write raw (outfname, target, imgx, imgy, imgz))
{

printf ("Error writing file\n"); exit (1);
}

printf ("Program completed successfully\n");
exit (0);

}

Algorithm 14.3 The function main provides the frame for execution of a program.
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Next, the definitions for read raw and write raw are inserted, and finally, the
function main follows. The completed file, call it test.c, can now be compiled
(translated into machine language:

cc -Wall -g -o test test.c

where cc is the C compiler command with instructions to compile test.c into
an executable binary file test, showing detailed warnings (-Wall) and providing
debugging symbols (-g). The command

./test

should execute the new program, causing it to print a short message.
These instructions work for Linux and for the command-line terminal in Mac

OS. Windows users should install Cygwin. Alternatively, Windows users can use
Visual C++ and create a graphical user interface that acts as the equivalent of the
command-line arguments, but the complexity is considerably higher.

The file test.c and a suitable raw file (dot blot.raw) are provided on the
accompanying DVD. Running test with the command-line parameters

./test dot blot.raw output.raw 513 282 1 30 40

will create a new image, output.raw, that is the exact duplicate of the original
image. At this time, the parameters p1 and p2 with command-line values of 30 and
40, respectively, are not used.

To complete the example, we will now implement an algorithm from this book:
Algorithm 2.5 for hysteresis thresholding. Hysteresis thresholding requires two pa-
rameters, the lower and upper thresholds. We can use p1 and p2 as defined in Algo-
rithm 14.3. Hysteresis thresholding takes place in two steps: (1) thresholding with the
high threshold p2, and (2) region growing with the low threshold p1. To implement
these steps, let us copy the previous example, test.c to a new file, hthresh.c,
and modify the new file. First, remove the memcpy statement in Algorithm 14.3 and
replace the entire line by

threshold (data, &target, imgx, imgy, imgz, p2);

This new function,threshold, is explained in Algorithm 14.4, which demonstrates
how the pseudocode used in this book (in this case, Algorithm 2.5) translates into
an actual programming language. The handling of data arrays deserves particular
attention because it differs strongly between programming languages. In this case, a
linear C array is used and its elements addressed by resolving the three dimensions
into one linear address.
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void threshold (float *data, float **target, int xm, int ym, int zm, float T)
{

int x,y,z;

for (z=0; z�zm; z++)
for (y=0; y�ym; y++)

for (x=0; x�xm; x++)
{

if ( data[x+xm*(y+ym*z)] > T)
(*target)[x+xm*(y+ym*z)]=1;

else
(*target)[x+xm*(y+ym*z)]=0;

}
}

Algorithm 14.4 The first part of hysteresis thresholding, which creates the seed
points. This algorithm thresholds the image passed through data with T and returns
the result in target. This algorithm is the C implementation of Algorithm 2.5.

After inserting the function threshold and including a call to threshold in
main, it may be worth compiling the code and testing whether the first part of hys-
teresis thresholding works. In fact, testing small sections of code saves development
time in the long run, as bugs can be found more easily in small chunks of program
code. Once the small section of new code is tested and validated, the developer can
rely on it. After compiling it, the new code can be tested with

./hthresh dot blot.raw output.raw 513 282 1 65 100

In the stand-alone strategy of programming, the output data are not visible. Here
the help of image analysis programs comes in handy. In Crystal Image, the FILE-
>IMPORT function can be used to load the file output.raw by providing its
dimensions, 512, 282, and 1, in the import dialog box. In addition, the data type of
IEEE float gray scale needs to be selected. In ImageJ the File->Import->Raw
function works in an identical fashion. The image should show white blobs on a black
background.

At this point the region-growing part of the hysteresis thresholding operation is
still missing and needs to be added to the code. Region growing is presented in
pseudocode in Algorithm 2.4, and its translation into C is given in Algorithm 14.5.
There are two notable differences between Algorithms 2.4 and 14.5. Whereas most
of the algorithms in this book are designed for two-dimensional images, this example
handles hysteresis thresholding in three dimensions (e.g., confocal image stacks). In
three dimensions, connectivity can be defined by 6 or 26 neighbors. For simplicity,
the 6-neighborhood was chosen. Since the testing of the six neighbors within a triple
loop that spans all image pixels may lead to an unwieldy construct of if-statements
to prevent memory access outside the image bounds, the neighborhood testing was
moved into a separate function, has neighbor. One additional advantage of this
approach is easy extension toward a 26-neighborhood. To activate the new function,
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int has neighbor (float *target, int x, int y, int z, int xm, int ym, int zm)
{

if (target[x+xm*(y+ym*z)]>0) return 0;
if ( (x�0) && (target[x-1+xm*(y+ym*z)]>0) ) return 1;
if ( (x�xm-1) && (target[x+1+xm*(y+ym*z)]>0) ) return 1;
if ( (y�0) && (target[x+xm*(y-1+ym*z)]>0) ) return 1;
if ( (y�ym-1) && (target[x+xm*(y+1+ym*z)]>0) ) return 1;
if ( (z�0) && (target[x+xm*(y+ym*(z-1))]>0) ) return 1;
if ( (z�zm-1) && (target[x+xm*(y+ym*(z+1))]>0) ) return 1;
return 0;

}

void regiongrw (float *data, float **target, int xm, int ym, int zm, float T)
{

int x,y,z, iter, grown;

iter = 0;
do
{

grown=0; iter++;

for (z=0; z�zm; z++)
for (y=0; y�ym; y++)

for (x=0; x�xm; x++)
{

if ((data[x+xm*(y+ym*z)] � T)
&& has neighbor (*target, x,y,z,xm,ym,zm) )

{
(*target)[x+xm*(y+ym*z)]=1;
grown++;

}
}

printf ("Region growing: Iteration %d, %d points grown\n",iter,grown);
}
while (grown>0);

}

Algorithm 14.5 The second part of hysteresis thresholding, which performs region
growing with the lower threshold T. This algorithm needs the original data in data
and the seed points in target. It returns the result in target. This algorithm is
the C implementation of Algorithm 2.4.

it needs to be executed right after the thresholding part, and the following line needs
to be inserted after the threshold function in main:

regiongrw (data, &target, imgx, imgy, imgz, p1);

Once the two functions from Algorithm 14.5 are included in the file hthresh.c
and the file has been compiled, it can be tested again. The result should clearly
differ from the intermediate test, where only high-level thresholding was performed.
Figure 14.9 shows an example image run with the algorithm described in this section.

The code introduced above constitutes the lowest effort to program an algorithm
in a programming language. In other languages, such as C++, Java, or Python,
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FIGURE 14.9 Images for the hysteresis thresholding example. The original gray-scale image
A is an inverted image of gel blobs. Simple thresholding with T = 100 leads to binary image
B, and hysteresis thresholding with T1 = 60 and T2 = 100 yields image C.

the approach is similar. The code could easily be extended to read and write an
image format that includes the dimensions. Such a format is the PBM (portable
bitmap) format. The natural extension is to include more information with the image
structure. The definition of an image could, for example, contain the dimensions and
the bits per pixel. A suitable structure definition in C would be

typedef struct
{

void *data; // pointer to image data
int xmax, ymax, zmax; // image dimensions
unsigned char bpp; // Bits per pixel

}
IMAGE;

While function calls become easier with such a structure, the additional information
needs to be populated and maintained. In particular, if the algorithm allows more
than one data format, the complexity grows rapidly. As complexity grows, some
preliminary planning (i.e., software engineering) provides high payoffs in the long
run. It is important that the scope of the project be known in advance and that a balance
be found between fast implementation (for small projects with limited scope) and
initial planning (for long-term projects with larger scope). With the known scope of
the project, it is also important to weigh carefully the three options: integration into
an existing project (e.g., an ImageJ plugin), a quickly developed stand-alone utility,
or a more comprehensive package.
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IMAGE ANALYSIS WITH
CRYSTAL IMAGE

DISCLAIMER: CRYSTAL IMAGE COMES WITH ABSOLUTELY NO WAR-
RANTY.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN

Advanced Biomedical Image Analysis, By Mark A. Haidekker
Copyright C© 2011 John Wiley & Sons, Inc.

475



P1: OTA/XYZ P2: ABC
appA JWBS035-Haidekker August 26, 2010 8:8 Printer Name: Yet to Come

476 APPENDIX A

IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

Installation

Crystal Image can be run from the accompanying DVD in three forms.
First, the DVD can be booted live. In this case, the kubuntu-Linux operating system

runs independent from the hard disk and any operating system installed on the hard
drives. Crystal Image is temporarily available within the Live DVD desktop and can
be used instantly without modifications to the computer. When kubuntu is run from
the live DVD, it is relatively slow because of the access times of a DVD drive, which
are much longer than those of a hard drive. Once the computer is rebooted from its
hard disk, it returns to the original operating system.

Second, kubuntu Linux can be installed directly from the DVD. Kubuntu is one
of the ubuntu distributions maintained by Canonical Ltd. and is accessible through
the home pages www.ubuntu.com or www.kubuntu.org. When kubuntu is installed
from the DVD, the hard disk will be modified, and data may get lost. Ideally, kubuntu
should be installed on an empty hard drive. After installation, the computer runs a
full version of kubuntu with all its features and strengths, and the installation will
include a functional copy of Crystal Image.

The third option is to compile Crystal Image form the source code. In this case,
a fully installed Linux computer must exist. (Alternatively, it should be possible to
install Crystal Image under Windows if an emulator such as Cygwin is installed.)
This is the preferred solution for advanced users who wish to modify or extend the
source code. Users who prefer to install the software from the source code tree need
to compile the software. Compilation from source allows the software to be installed
on different systems, such as newer versions of GNU/Linux, and possibly under
Mac OS and Windows; in the latter case, an X window emulator such as Cygwin is
required. In addition, the complete development system (gcc, the GNU C compiler,
make, automake, and optionally the debugger gdb) needs to be installed. The Crystal
Image source code can be downloaded from http://haidekker.org/cimage/.

In preparation for compiling the source code, all required libraries and their
corresponding header files need to be installed. Your distribution should offer those
(free) libraries in their repositories. If any of these libraries is unavailable in binary
form, they need to be installed from source. Required libraries are:

1. libgtk2.0 and libgtk2.0-dev, the GTK library, version 1.2

2. imagemagick, an image conversion program (optional, but makes it possible to
access important image formats)

3. libgif4 and libgif4-dev, the library for the free version of the GIF image format

4. libtiff4 and libtiff4-dev, the library for the TIFF image format

5. fftw3 and fftw3-dev, the FFTW library version 3.0
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6. xserver-xorg-dev and libxmu-dev, X window development libraries needed

7. libgl1-mesa-dev and libglut-dev, libraries related to the OpenGL rendering sys-
tem. These are optional and required only for the three-dimensional elevation
landscape viewer

8. gtkglext-1.0 and gtkglext-1.0-dev, libraries that allow to render OppenGL
scenes in GTK programs. These are optional and required only for the three-
dimensional elevation landscape viewer

Once all libraries and the library header files (indicated by -dev) are installed,
Crystal Image can be compiled. In the Crystal Image base directory, type

./autogen.sh This configures the software for your system
make This compiles the entire package

In the subdirectory src, you should now find an executable file cimage, and in the
subdirectory modules should be several files that end with dso. Finally, the install
shell script needs to be executed with root privileges:

sudo ./install This installs the files in /usr/local/cimage

At this time, cimage can be started from a shell console, or a desktop shortcut can
be created. It is recommended that Crystal image be configured by activating the
FILE->SETTINGS menu. The following settings are available:

� Show file import info. If active, Crystal Image displays a text window with
messages related to the import of TIFF and DICOM files. This option is used to
debug import functions and is normally kept inactive.

� Preferred interpolation method. For any operation that needs interpolation, the
preferred interpolation method can be selected. The default is bilinear; a better
(and slower) choice is bicubic. The spline interpolation methods were devel-
oped by Thevenaz et al. (Thevenaz P, Blu T, Unser M. Interpolation revisited.
IEEE Trans Med Imaging 2000; 19:739–758) and the implementation should be
considered experimental. However, experiments have shown an extremely high
quality of iterative interpolation operations.

� Debug message level. If Crystal Image is run from a shell console, debug
messages can be printed. A higher number causes more detailed messages to be
printed. A good value is 1.

� Undo function. Crystal Image offers two undo stacks, a one-level undo in mem-
ory and a 10-level undo on hard disk. For operations on large images, storing
images onto the hard disk for undo may cause a noticeable delay.

� Temp path for undo. If the 10-level undo stack on hard disk is selected, a path
to a temporary directory needs to be provided. /tmp or /var/tmp is a good
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choice. This setting does not play a role for undo in memory or if undo is
disabled.

� Path to browser. The help files are provided in html format, and the help
function calls the browser entered in this field. For KDE users (kubuntu),
/usr/bin/konqueror is a good choice.

� Path to help files. This is the location where the help files can be found. In the
default installation, this is /usr/local/cimage/doc.

� Path to dso modules. This path points to user dso modules. Since Crystal Image
always loads modules found in/usr/local/cimage/dso, this field should
only be set for users who develop modules.

� Path+name of 3D viewer. This entry should point to the executablecimage sv,
which in the default installation is either /usr/local/cimage/bin/
cimage sv or /usr/local/bin/cimage sv. This viewer is activated
from the menu with VIEW->3D surface plot. If the executable is not
found, or if OpenGL is not installed, Crystal Image uses a built-in fallback
viewer.

Menu Functions

The FILE menu:

OPEN: Opens an image file in any of the supported formats. Built-in file formats
are TIFF, DICOM, PNM, VSRT, and VFLT. Other file formats are accessible
through libraries.

OPEN MULTIPLE: Opens multiple two-dimensional image files as a stack. All
files need to have the same data type and the same image size. Standard UNIX
wildcard characters (*, ?, []) can be used to select a useful file mask

IMPORT: Imports raw format and ASCII format files. The data type and image
dimensions of the file need to be known and entered in a dialog window.

3-CHANNEL-LOAD: Loads three images and assigns them to the color channels
R, G, and B. All images must have the same size. Images are rescaled to the
value range 0 to 255.

SAVE: Saves the main image. Save options include TIFF, raw, raw ASCII, VSRT,
and VFLT if applicable, PBM if applicable, and OpenDX native format. For
stacks, the number of slices can be restricted.

CLOSE: Closes the main image window and discards the image.

SETTINGS: The settings are explained above.

QUIT: Exit the software.

The EDIT menu:

UNDO: reverts the last operation. This option needs to be activated form the
SETTINGS menu. Undo can revert one single operation (undo in memory) or
up to 10 operations (undo on disk). Undo files are stored in TIFF format.
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TRIM IMAGE: Functions that affect the image values and metadata.

CROP: Makes it possible to crop the image. If a rectangular ROI was set, the
ROI will serve as a default cropping rectangle. Values may exceed the image
dimensions—in this case, the image canvas is enlarged.

ROTATE/ZOOM: Makes it possible to rotate the image by an arbitrary angle or to
rescale the image. In addition, new slices can be inserted between slices of a
stack.

IMAGE BINNING: Reduces the size of an image by a factor of 2, 3, or 4 by
square binning. This function averages the values inside the bin and therefore
reduces noise.

DATA TYPE: Makes it possible to change the image’s data type between 8-bit
(CHAR), signed 16-bit (SHORT), IEEE Float, and RGB. For color images,
model conversions to HSV and YCbCr are possible. Color images can be
separated into their color components (stack).

CLICK STACK: The image coordinates of up to five mouse clicks are stored and
can be edited (e.g., to obtain an exactly horizontal or vertical profile).

IMAGE VALUES: Makes it possible to modify the image values inside or outside
a region of interest. Image values can be set to zero, a specified value, or noise
can be added.

The VIEW menu:

MAGNIFIER: Opens a magnifier window that displays a magnified view of a 32 ×
32-pixel-wide area. The magnified region is determined by a mouse click.

3D SURFACE PLOT: Plots the current main image as a three-dimensional ele-
vation landscape. If the external viewer, cimage sv, is available (see instal-
lation), a number of OpenGL-related options such as lighting and perspective
are available. Otherwise, a less sophisticated built-in fallback viewer will be
used.

COLORMAPS: Opens the color map dialog to adjust brightness, contrast, and
gamma, and to add false coloring and contour lines for visualization.

MIP: Maximum intensity projection. Projects an image stack by collecting pixels
with maximum intensity parallel to the z-axis.

PROFILE: Draws an intensity profile. The function connects the last two clicked
points with a straight line (clicking on different slices in a stack is possible;
editing the points with EDIT>CLICKSTACK is also possible) and plots the
intensity values over the position in a graph display window.

LINE AVERAGE (X): Takes a rectangular ROI and averages the image values
along vertical scan lines, then plots the average values as a function of the
relative x position similar to the profile function.

LINE AVERAGE (Y): Takes a rectangular ROI and averages the image values
along horizontal scan lines, then plots the average values as a function of the
relative y position similar to the profile function.



P1: OTA/XYZ P2: ABC
appA JWBS035-Haidekker August 26, 2010 8:8 Printer Name: Yet to Come

480 APPENDIX A

Z CUT: If the image is a stack, this function displays a two-dimensional slice
where one dimension is the line connecting the two most recently clicked
points and the other dimension is z (the slice)

HISTOGRAM: Displays the histogram of the image, stack, or current ROI.

The PROCESS menu:

INVERT: Creates a negative of the image by subtracting all image values from
the highest image value.

BACKGROUND REMOVAL: Opens a dialog with background removal functions.
Available functions are moving window (unsharp masking with a square box
kernel of adjustable size), unsharp masking (unsharp masking with a Fourier-
based Gaussian lowpass filter of adjustable �), linear plane (least-squares fit
of a planar background function), and parabolic plane (least-squares fit of
a bi-parabolic background function). Background removal assumes that the
background is represented by low image values.

CLUSTER LABELING: Identifies connected features with nonzero value that
are separated by zero-valued background (requires prior image segmentation).
Features may be labeled by size, aspect ratio, compactness, or irregularity.
Optionally, tabular results may be displayed (Chapter 9.2).

THRESHOLD: Provides access to thresholding options (Chapter 2). Thresholding
functions are manual single-level threshold with binary, soft, or hard threshold
functions, interactive dual-level threshold selection with preview, and automatic
thresholding with a hard threshold function using iterative threshold finding or
Otsu’s method.

BINARY: Operators that operate on binary images (Chapter 2). Nonbinary im-
ages are interpreted as zero/nonzero. This menu gives access to morphological
operators (erode, median, dilate, close, open; with multiple iterations and alter-
nating 4/8 neighborhood), skeletonization (modified Zhang–Suen algorithm),
hole filling (making all zero-valued regions that are not connected with the
background nonzero), and feature centering (moving all features so that the
joint centroid is in the image center).

FFT: Makes it possible to perform forward and inverse FFT and DHT of a single
slice (Chapter 3). FFT creates a two-slice stack with real and imaginary parts.

FILTER: Provides access to spatial-domain filters, adaptive spatial-domain filters
(Chapter 5), and frequency-domain filters (Chapter 3).

EQUALIZE HISTOGRAM: Performs global or local histogram equalization
(Chapter 2). Note that local histogram equalization is not efficiently imple-
mented and takes several minutes, depending on image size.

HOUGH TRANSFORM: Creates Hough transforms of the current image slice
(Chapter 7). Currently, forward and inverse line and circle transforms are im-
plemented.
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IMAGE MATH: Allows pixel-by-pixel math operations on a single image or on
pairs of images. For operations on pairs of images, the first image needs to be
loaded and pushed on the stack, followed by loading the second image, before
the operation can be performed. Image pairs need to have the same x and y
dimensions. Stacks need to have the same z dimension unless one image is not
a stack, in which case the operation is repeated on a slice-by-slice basis.

The SEGMENTATION menu:

SNAKES: Several implementations of two-dimensional active contours (Chapter
6). This function creates a ROI rather than actually segmenting the image. The
snake implementations need to be considered experimental.

SPIDER OP: Segmentation of convex objects by polygonal approximation
(Haidekker MA, Andresen R, Evertsz CJ, Banzer D, Peitgen HO, Brit J Radiol
1997; 70:586–93). Samples image intensity along radial probing rays and uses
the maximum intensity or maximum gradient as nodes (i.e., intersections with
the object). Contains experimental specialized functions for vertebral density
analysis.

HYSTERESIS THRESHOLD: Segmentation by hysteresis thresholding (Chap-
ter 2).

WATERSHED: Watershed segmentation of overlapping convex objects. Requires a
binary segmented image. This function can also provide the Euclidean distance
map and the ultimate eroded points (Chapter 2). In presegmented gray-scale
images, the gray-scale information may be included for segmentation.

REGION GROWING: Two- and three-dimensional region-growing functions that
use the click stack as seed points (Chapter 2).

GROW MERGE: This is a modification of the region-growing algorithm where
multiple regions are grown from individual seed points. They merge if their
average value falls within a threshold range. This function has never been fully
tested and should be considered incomplete.

K-MEANS CLUSTERING: Implementation of the k-means clustering algorithm.

The MEASURE menu:

STATISTICS: Measures gray-value statistics inside the image or a ROI slice by
slice. In pre-thresholded images, this function optionally excludes zero-valued
pixels as background.

BOUNDARY LENGTH: Requires a presegmented image. Counts the number of
pixels that are 8-connected with the background.

CLUSTER MAXIMUM: Determines a threshold value which, when used to segment
the image, creates the maximum number of connected features.

FRACTAL DIMENSION: Implementation of various estimators of the fractal
dimension (Chapter 10).
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ROSE PLOT: Directional frequency decay (Chapters 8 and 10). This function
takes a gray-scale image and computes the FFT. In radial directions, a linear
function is fit into log magnitude over log frequency, and the slope (power law
of decay) is plotted as a function of the radial angle. The frequency range can be
limited. This function reveals self-similar properties in the frequency domain
if they exist in the image.

RUN LENGTHS: Computes a run-length histogram of a binary or gray-scale im-
age. Binning of gray levels and runs is possible. Produces a four-slice stack
with runs in the 0◦, 45◦, 90◦, and 135◦ directions.

The SPECIAL menu:

CT VERTEBRAL BONE: Functionally similar to the SPIDER OP.

CT VASCULAR GRAFTS: Functionally similar to the SPIDER OP.

WAVELETS: Provides the wavelet transform and wavelet-based noise filtering
(Chapter 4). This function is provided by a module and appears only if the dso
was loaded properly.

COOCCURRENCE MATRIX: Computes the co-occurrence matrix of an image
(Chapter 9). The displacement can be selected. This function is provided by a
module and appears only if the dso was loaded properly.

AUTOCORRELATION MATRIX: Computes the autocorrelation matrix of an im-
age in the spatial domain. This function is provided by a module and appears
only if the dso was loaded properly.

GENERATE: Offers different functions to create synthetic images and test images.
This function is provided by a module and appears only if the dso was loaded
properly.

The MACROS menu:

LOAD MACRO: Loads a text file with macro definitions, parses the macros, and
adds the macros to the MACROS menu. Loaded macros can now be activated
using this menu.

DELETE MACROS: Deletes all presently loaded macros.

IMMEDIATE EXECUTION: Opens a console for the immediate execution of
ImageBasic commands (Chapter 14).

The HELP menu:

CIMAGE HELP: Starts a browser (see the installation and setup instructions) and
displays the help index file.

ABOUT: Displays the software version.
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IMAGE INFO: Displays information about the presently loaded image (dimen-
sions, image values, image type, ROI).

SHOW PID: Adds the PID (process ID number) of the present Crystal Image
instance to display window titles. Useful to assign display and result windows
to each other when multiple instances of Crystal Image are running.

LICENSE: Displays license and warranty information.

Keyboard and Mouse Shortcuts in the Image Window

Once an image is open (the main image window), a number of mouse functions and
keyboard shortcuts are available. Note that the keyboard shortcuts are case-sensitive.
For example, a is the lowercase key, and A is the uppercase key (shift + a). Most
keyboard shortcuts are sensitive to where the crosshairs hover when the key is pressed.

Left-click Display the image value under the cross-hairs in the statusbar.
Left-drag Drag a rectangular ROI.
Middle-drag Move the ROI.
Right-click Remove ROI (or close polygonal ROI).
Shift-click Set a vertex for a polygonal ROI.
Arrow keys Move ROI by one pixel.
PgUP key Next slice in stack.
PgDN key Previous slice in stack.
a key “Select All” ROI over the entire image.
c and C keys Create a circular ROI and shrink/enlarge it.
e key Shortcut for Edit->Values.
F key If pressed above a cluster, returns Fourier shape descriptors of the

cluster.
f key Flood-fill an area. If used above the background, fills with the max-

imum image value; if used above the foreground, fills with zeros.
r and R keys Add/remove a snake repulsor (works only when a snake is active).
s and S keys Add/remove a snake attractor (works only when a snake is active).

Macros

The basic structure of a Crystal Image macro was introduced in Section 14.4 and an
example macro was given in Algorithm 14.1. Macros are written as plain ASCII text
files with a suitable text editor. For the popular kate text editor, part of the KDE
desktop environment, a definition for syntax highlighting (file cimage.xml) exists,
and its use is highly recommended because it gives instant feedback about the correct
syntax. Macros are case-insensitive. Spaces, tabs, and linefeeds are ignored in macro
files. Therefore, tabs and empty lines should be used for structuring and to improve
readability. Any text file may contain one or more macro definitions and zero or more
procedure definitions. A macro definition is enclosed by the keywords macro and
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endmacro, and a procedure definition is enclosed by the keywords procedure
and endproc. A mismatch between the keywords is detected in the parsing stage
and the macro file is rejected. A macro is entered into the MACRO menu, whereas
a procedure is not accessible outside the macro interpreter. A procedure acts like a
subroutine in BASIC. A procedure can be called from a macro, and control is returned
to the calling function when an endproc statement is reached. With the exception
of menu entry, a macro and a procedure behave in an identical manner.

Variables Variable names must start with a letter and may contain letters, digits,
and the underscore. Variable names must not contain keywords because the parser
extracts the keywords. For example, a variable bandnumber is not allowed because
it contains the keyword AND. Variables are typed and can contain integer values,
real values, text strings, or images. Variables do not need to be predefined, as they
are created upon first use. The type is assigned when a variable is created and
cannot be changed. If the result of an expression does not match the variable type,
a type mismatch error occurs. However, variables can be disposed of and created
with a different type. All variables are global and thus accessible in all macros and
procedures. Variables are deleted (and their allocated memory freed) after the macro
run finishes. In immediate-execution mode, variables are deleted after the immediate-
execution window is closed. The variable mainimage is predefined and contains
the image that is currently open and displayed. The variable mainimage must not
be used on the left-hand side of an expression.

Basic Operations The parser knows the most common arithmetic expressions, +,
−, *, and / for addition, subtraction, multiplication, and division; = is the assignment
operator when it follows a variable name at the beginning of an expression and the
equal operator inside an expression. Other Boolean operators are �� and != (not
equal), �= (less than or equal), �= (greater than or equal), � (less), � (greater than),
and the logical operators are AND (logical AND), OR (logical OR), and XOR (logi-
cal exclusive-or). The corresponding operators must have matching types, although
exceptions exist. The following table provides an overview of type-mixing results.

int real image string

int int reala imageb

real reala reala imageb

image imageb imageb imagec

string — — — stringa

aComparison operators are an exception since they always return an integer scalar. Logical operators are
not allowed.
bBoolean and logical operators cannot be combined when one operand has a floating-point type. Any
operation between an image and a scalar operand results in a floating-point type image.
cImage size must match. Boolean and logical operators cannot be used with floating-point type images.
Comparison operators cannot be used if both operators are images.
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The − (minus) sign may be used as a unary operator only with numbers (e.g., a
= -5 is an allowed expression) but is invalid with images. To change the sign of the
values of an image, it needs to be explicitly subtracted from zero: for example, inv
= 0-img. The + (plus) sign can never be used as a unary operator.

Arrays Crystal Image’s ImageBASIC knows one-, two-, and three-dimensional
arrays. Array indices are enclosed in brackets, [·]. Images can readily be addressed as
arrays, provided that the number of indices matches the dimension. It is not possible,
for example, to extract a slice from a stack by addressing the stack (three-dimensional
image) as a two-dimensional array. Any expression that includes array indices results
in a floating-point scalar. For example, the assignment e = img[120,5]; returns
the image element at coordinates x = 120 and y = 5 of the two-dimensional image
img and assigns it to the scalar floating-point variable e. If the image is a color
image, the luminance value is returned. If the image is three-dimensional, an error
occurs in this example. A one-dimensional array named user is predefined. Several
operations return multiple values in the user array. All other array variables must
be defined in advance with the dim function.

Flow Control The available structures for flow control are the for loop, foreach
loop, while loop, repeat/until loop, and if statement.

for (var=expr1, expr2 [,expr3]); statements; endfor;

executes a for-loop. The variable var may be integer- or real-valued. expr1 is the
expression that determines its initial value and expr2 its final value. The final value
is included; that is, the loop executes once when var reaches the final value. The
for loop executes at least once. expr3 determines the increment, and its use is
optional. The default increment is 1. Each for must have a matching endfor.

foreach (strvar, strexpr1 [,strexpr2]); statements; endfor;

executes a foreach loop. strexpr1 is a string expression that is used as a file mask.
strexpr2 specifies an optional working directory. The foreach loop executes once
for each file in the current working directory that matches the expression strexpr1,
and the matching file name is assigned to strvar. For example, a foreach loop
can be executed for each TIFF file in the current working directory: foreach (fn,
"*.tiff"); Each foreach must have a matching endfor.

while (expr); statements; endwhile;

executes a while loop. The statements enclosed between while and endwhile are
executed as long as expr evaluates as nonzero. If expr is evaluates as zero at the
beginning of the loop, the while loop does not execute the enclosed statements at all.
Each while must have a matching endwhile.

repeat; statements; until (expr);
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executes a repeat loop. The loop executes at least once and exits when expr evaluates
as nonzero. Each repeat must have a matching until.

if (expr); statements1; [else; statements2; ] endif;

allows the conditional execution of a macro program. If expr evaluates as true
(nonzero), the first block of statements is executed. If expr evaluates as false (zero),
the second block of statements is executed. Each if must have a matching endif,
but the else directive is optional.

Procedures
call: Executes a different macro or procedure as a subroutine.

Syntax: call (strexpr);
Parameter: Strexpr evaluates to the name of a macro or procedure as given in its

definition.
Example: call ("loadfile");

convert image: Converts an image to a different type.

Syntax: convert image (imgvar, strexpr, expr);
Parameters: imgvar contains the image to be converted; strexpr is the target type

and may be any of “float,” “char,” “short,” or “rgb,” expr is a Boolean
expression that directs whether to expand the value range to match
the target type.

Example: convert image (myimg, "float", 0);

dim: Dimensions (declares) array variables with floating-point elements.

Syntax: dim (varname[subscript] ,varname[subscript]...);
Parameters: One or more variables with the array size in brackets.
Example: dim (ary1[100], twodimary[64,64]);

display: Places an image into the program’s main image buffer for display.

Syntax: display (imgexpr [, strexpr]);
Parameter: Image expression for image to be displayed. The optional strexpr is

the window title.

dispose: Deletes a variable from the variable list and frees its memory if it is an image
or array.

Syntax: dispose (var [,var...]);
Parameter: Variable to dispose of.
Example: dispose (a,b,c);
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fillroi: Fills a region of interest with a specified value.

Syntax: fillroi (imgvar, expr1 [,expr2] );
Parameters: imgvar is the image variable on which to operate, and expr1 is the

value to fill the ROI with. If the image is a stack, all slices are
filled unless expr2 is given; in that case, only the slice numbered
by integer expr2 is filled.

Example: fillroi (img, 0);

graph: Plots x,y data stored in arrays.

Syntax: graph (intexpr, numarray1 [, numarray2] );
Parameters: intexpr specifies the number of data points. The arrays contain the data

to be plotted. If two arrays are given, both need to be one-dimensional;
the first contains the x data and the second contains the y data. If one
array is given, it must be two-dimensional. In that case, the first
subscript indexes the data points, and the second subscript determines
the data set; 0 = x-data; 1 = first y-data, etc. Thus, with a m × n array
it is possible to plot n − 1 curves with up to m data points.

Example: graph (100, xydata);
Notes: Intexpr must be less than m. All numarrays must be variable references.

Expressions are not allowed.

print: Prints data into the output window.

Syntax: print (expr, expr,... [,]);
Parameters: A list of string or numerical expressions that get evaluated and printed

in sequence. If the list ends with a comma, the final line feed is
suppressed.

Example: print ("Thresholding by", "auto threshold(img,0));

save: Saves an image to a file.

Syntax 1: save (imgexpr, "interactive");
Syntax 2: save (imgexpr, strexpr1, strexpr2 [, expr1

[,expr2 [,expr3]]]);
Parameters: Image expression or image variable that contains the image to be saved.

Strexpr1 is a string expression for the file name, strexpr2 is a string
expression for the file type (may be any of “tiff,” “vsrt,” “raw,” “pnm,”
“opendx”), expr1 is the start slice, expr2 is the end slice, and expr3
is the tiff compression.

Examples: save (thisimage, "output.tif," "tiff," 0,39,0);
save (myimage, "interactive");
save (astack, "output.dx", "opendx");

Notes: If the keyword “interactive” is used, the file save dialog is opened by
the macro, and the user must enter the file name interactively. If
imgexpr is an expression, the resulting image will always be a 32-
bpp floating-point image. Only if a variable name is provided will
the original image type be retained.
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setroi: Defines a region of interest.

Syntax: setroi ([expr,... ]);
Parameters: If the parameter list is empty, the ROI will be deleted. If the parameter

list contains exactly three values, they define a circular ROI with x,
y, and radius. If the parameter list contains four values, they define
a rectangular ROI. If the parameter list contains 2n values with 2n
≥ 6, the values define a polygonal ROI.

Note: The macro Display command may reset the ROI.

Functions Contrary to procedures, functions return a value and must be used in the
right-hand side of an assignment.

log, log10, exp, int, round, power: General-purpose math functions.

Syntax: log (expr) (example)
power (expr1, expr2)

Description: These functions return the natural logarithm, the base 10 logarithm,
the exponential, the next smallest integer, and the nearest integer of
the argument. Log, log10, and exp operate on images on a pixel-
by-pixel basis. Int and round require a floating-point argument and
return an integer. Power raises expr1 to the power of expr2. If expr1
is an image and expr2 is a scalar, each pixel of the image will be
raised to the power of expr2. The result is an image. If expr1 is a
scalar and expr2 an image, the result is also an image, and each
pixel of the result will contain expr1 raised to the power of the
corresponding pixel in expr2. This is the function that needs to be
used as opposite of log10 where expr1 is 10.

strlen, strnum, strpos, substring: String-related functions.

Description: Strlen returns the length of a string argument. Strnum converts a nu-
merical value into a string; its first argument is a string expression,
and the second (optional) argument is either the number of digits or
a C-style format string. strpos returns the position of the first string
in the second or a negative value if the first string does not occur
in the second. Substring requires three arguments, the first a string
and the next two integer values that indicate the start and end of the
substring.

auto threshold, otsu threshold: Determine an optimal threshold value.

Syntax: auto threshold (imgexpr, expr)
Return value: Floating-point number
Parameters: Image expression to determine ideal threshold for. Expr is the image

slice to perform the function on.
Example: bin = threshold (thisimage,

auto threshold(thisimage,0), "hard");
Notes: Auto threshold computes the iterative threshold for an image;

otsu threshold uses Otsu’s method. This function can be used
as a parameter in the threshold function.
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center: Center features so that their centroid coincides with the image center.

Syntax: center (imgexpr, mode [, expr2])
Return value: Image
Parameters: Imgexpr is the image that contains the features. Expr1 is a flag:

if expr1 is zero, the image is considered binary (zero/nonzero
pixels); if expr1 is nonzero, the centroid is weighted by the image
gray values; expr2 is the slice number. If it is omitted, the center
operation will be performed on all slices of an image stack.

Example: c = center (centerme, 1);

cluster2d, cluster3d: Perform cluster labeling.

Syntax: cluster2d (imgexpr, expr1, expr2, ..., expr6)
cluster3d (imgexpr, expr2,..., expr6)

Return value: Image
Parameters: imgexpr is the image to label. Expr1 is the slice number (only for two-

dimensional operation); expr2 is the threshold value; expr3 is the
minimum cluster size (all clusters below that size are considered
noise and deleted); expr4 limits the number of clusters to detect;
expr5 is the neighborhood connectivity (4 or 8); expr6 is the
labeling order (0: size, 1: compactness, 2: aspect, 3: irregularity).

Example: lbl = cluster2d (img, 0, 1, 3, 32767, 4, 0);
Note: The three-dimensional function cannot yet handle different labeling

orders, and expr6 is ignored.

convolve: Spatial-domain filters (the name “convolve” comes from a development
stage when this function provided only convolution-based filters).

Syntax: convolve (imgexpr, strexpr [, expr...] )
Return value: Image
Parameters: Image expression to perform the filtering on. Strexpr defines the filter

function, which is one of “smooth,” “sharpen,” “sharpen more,”
“laplace” for standard 3 × 3 kernels, “sobel” and “compass” for
the Sobel and compass edge detectors, “gauss” for generalized
Gaussian smoothing (expr is neighboorhood size 1...9); “LoG”
for Laplacian of Gauss second derivative (expr is neighboorhood
size 1...9); “locvar” for local variance (expr is neighboorhood
size 1...9); “locmax” to find local maxima (expr is neighboorhood
size 1...9), “AMMSE” is the adaptive lowpass or minimum mean-
squared-error filter (expr is neighboorhood size 1...9); “TSM” is
the adaptive three-state median filter (expr is a real-valued thresh-
old ), “ADLF” is the anisotropic diffusion lowpass filter [expr1 is
a real-valued threshold, expr2 is the number of iterations (int) ],
“KUWA” is the Kuwahara filter (expr is neighboorhood size 1...9).

Example: lapl = convolve (thisimage, "laplace");
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crop: Crops an image to the absolute coordinates (x1,y1) to (x2,y2).

Syntax: crop (imgexpr, expr1, expr2, expr3, expr4)
Return value: Image
Parameters: Image expression for the image to crop. Expr1 through expr4 are x1,

y1, x2, and y2, respectively.
Examples: smallimg = crop (myimg, 10,10,250,250);

dimension: Estimates a fractal dimension.

Syntax: dimension (imgexpr, strexpr, expr1, expr2,
expr3, expr4, expr5)

Return value: Real-valued number
Parameters: Image expression of a 2D image to obtain the dimension from.

Strexpr determines the estimator notion and may be any of
“boxcount,” “minkowsky,” “massdim,” “mahattan,” “dispersion.”
Expr1 is the slice number in a stack; expr2 and expr3 are the lower
and upper size range (their significance depends on the notion);
expr4 and expr5 are the lower and upper threshold, and expr5
is a flag that determines whether zero-valued pixels should be
considered.

Example: D = dimension (img, "minkowsky", 1, 7, 1,
255, 0);

Notes: Expr2 and expr3 are responsible for restricting the scale. With box
counting, expr2 is the minimum box size and expr3 is the maxi-
mum box size: for example: 2 to 64. The Minkowsky and Mass
dimensions are different. For Minkowsky, this is the dilation radius
to analyze (typical values, 1 and 5), and for the Mass dimension
this is the number of scale reductions. For example, 1 to 4 would
cover box sizes (squared) 4, 16, 64, and 256. Thresholds are ig-
nored in the mass dimension notion. Expr5 is ignored except in
the mass dimension computation.

fft, invfft: Compute the complex-valued FFT and inverse FFT of one slice of an
image.

Syntax: fft (imgexpr, expr1)
invfft (imgexpr)

Return value: Image
Parameters: Image expression for the image to transform. Expr1 is the slice in an

image stack or zero for a two-dimensional image.
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fourierfilt: Applies a frequency-domain filter

Syntax: fourierfilt (imgexpr, strexpr,
expr1,expr2,expr3,expr4, expr5)

Return value: Image
Parameters: Image expression to perform the filter operation on. Strexpr is the

filter function and can be any of “hhp” (homomorphic HP), “bhp”
(Butterworth highpass), “blp” (Butterworth lowpass), “glp” (Gaus-
sian lowpass), or “deriv” (first derivative).

Expr1 through expr4 are the filter parameters (real). Expr5 is a flag
whether to logarithmize data before filtering.

Example: newimg = fourierfilt (img, "hhp",
10.0,0.3,0.2,0,0);

freichen: Applies the Frei–Chen edge/line detector algorithm.

Syntax: freichen (imgexpr, strexpr)
Return value: Image
Parameters: Image expression to perform the convolution on. Strexpr is either

“edge” for the Frei–Chen edge space or “line” for the Frei–Chen
line space.

Example: fcedge = freichen (thisimage, "edge");

histeq: Performs local or global histogram equalization.

Syntax: histeq (imgexpr, expr1, expr2)
Return value: Image
Parameters: Performs histogram equalization of an image passed by imgexpr. A

histogram is computed with the number of bins given by expr1.
Expr2 is a flag that makes it possible to exclude zero-valued pixels
from being processed.

Example: eq = histeq (img, 256, 0);
Notes: This is a two-dimensional slice-by-slice operation. Local histogram

equalization is not yet implemented.

histogram: Returns histogram descriptors of an image.

Syntax: histogram (imgexpr, strexpr, expr1, expr2,
expr3)

Return value: Real-valued number
Parameters: Image expression to obtain histogram descriptors from. A string

expression that determines which value to compute; may be any of
“mean,” “median,” “mode,” “variance,” “skew,” “kurtosis”; expr1
determines the slice if imgexpr is a stack; expr2 determines the
number of bins to be used in histogram computation; expr3 is a flag
that determines whether zero-valued pixels should be considered.

Example: s= histogram (img, "mode", 0, 256, 0);
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hysteresis threshold: Performs hysteresis threshoding.

Syntax: hysteresis threshold (imgexpr, expr1, expr2)
Return value: Image
Parameters: Image expression to perform the thresholding on. Expr1 is the lower

threshold, expr2 is the upper threshold.
Example: bin = hysteresis threshold (thisimage, 45, 90);
Notes: Hysteresis threshold returns a binary image. On stacks, it performs

a two-dimensional operation slice by slice.

imginfo: Retrieves global information about an image.

Syntax: imginfo (imgvar, strexpr)
Return value: Real or integer numerical value
Parameters: Image expression to get data from. Strexpr determines what informa-

tion is returned. May be any of “xmax,” “ymax,” “zmax,” “minval,”
“maxval,” “meanval,” “type.”

Example: xmax = imginfo (thisimage, "xmax");
Notes: “meanval” computes the image mean value in a loop over all image

pixels and may be a time-consuming operation. “type” returns a
numerical value that needs to be translated into “char” (0), “short”
(1), “float” (3), and “rgb” (2).

imgtorgb: Joins three images into a RGB image, rescaling each image.

Syntax: imgtorgb (imgexpr1,imgexpr2,imgexpr3)
Return value: Image
Parameters: Imgexpr1,2,3 are the images that get assigned to the red, green,

and blue channels. An imgexpr that yields a color image will be
converted to gray scale.

Example: colrful = imgtorgb (redimg, greenimg, blueimg);

invert: Inverts the image values (subtracts each pixel from the image maximum)

Syntax: invert (imgexpr)
Return value: Image
Example: invimg = invert (img*mask);

kltransform: Performs the Karhunen–Loève transform on a RGB image and returns
the principal component.

Syntax: kltransform (imgvar, expr1)
Return value: Image
Parameters: imgvar must contain a RGB color image. Expr1 is a flag that makes

it possible to exclude black pixels with R = B = G = 0.
Example: pc = kltransform (rgbimg, 0);
Note: imgvar may contain a RGB stack. In that case, all slices will be

transformed and the result is also a stack. The result image is a
floating-point gray-scale image.
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load: Loads an image from a file.
Syntax: load (strexpr)
Parameter: String expression that results either in the keyword “interactive” (for

interactive file selection) or a file name.
Return value: Image

measure: Measures the average image intensity value in a region of interest.
Syntax: measure (imgexpr, expr1 [, expr2])
Return value: Real-valued number
Parameters: imgexpr is the source image. Expr1 is a flag that determines whether

zero-valued pixels should be considered; expr2 restricts the mea-
surement to a single slice.

Example: I = measure (img, 0);
Notes: The measure function determines the average, standard deviation,

and area of an image. If a ROI is specified, it will be honored.
The function returns the pixel average value and stores the same
value inuser[0]. Standard deviation can be found inuser[1],
and the number of counted pixels (i.e., the area) in user[2].
When the slice parameter expr2 is not given and the image is
a stack, all pixels in the stack within the ROI are considered.
The return values are different for RGB images, where the return
value is 0 and user[1] is undefined. user[2] still contains
the pixel count. user[3] through user[5] contain the average
intensities for R, G, and B, respectively, and user[6] through
user[8] contain the corresponding standard deviations. It is the
macro programmer’s responsibility to trap the RGB case.

morph: Performs morphological operators and rank filtering.
Syntax: morph (imgexpr, strexpr, expr1 [, expr2])
Return value: Image
Parameters: Image expression to perform the morphological operation on. Strexpr

is the morphological operator and may be any of “erode,” “dilate,”
“median,” “cwmf,” “patch,” and “bound erode.” Expr1 defines the
connectivity and must be either 4 or 8. If the fourth parameter
expr2 is given, only the specified slice will be filtered (three-
dimensional images only)

Example: s = morph (thisimage, "median", 8);

quantile: Computes the threshold value that divides the image histogram into q and
1 − q.
Syntax: quantile (imgexpr, expr1, expr2, expr3, expr4)
Return value: Real-valued number
Parameters: Image expression to compute the quantile from. Expr1 is the slice

in an image stack, expr2 is the quantile q given in percent, expr3
is the number of bins, and expr4 is a flag that determines whether
zero-valued pixels should be considered.

Example: t = quantile (myimg, 50, 1024, 1);
Note: For an 8-bit image, expr3 should be no more than 256.
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regiongrow: Performs region growing with multiple seed points and a dual
threshold.

Syntax: regiongrow (imgexpr, expr1, expr2, ver-
texlist)

Return value: Image
Parameters: imgexpr is the source image. Expr1 and expr2 are the lower and

upper threshold. Vertexlist is a sequence of 3k integer expressions
that define k seed points in the order x, y, z.

Example: w = regiongrow (oldimg, 100,150, 128,128,0);

remove bk: Background flattening filters.

Syntax: remove bk (imgexpr, strexpr, expr1, expr2)
Return value: Image
Parameters: Imgexpr is the image to remove background from. Strexpr deter-

mines the method and may be any of “movavg” (unsharp masking
with a moving-average window), “unsharp masking” (uses FFT
Gaussian blurring to create a background mask. The Gaussian
sigma is 400/expr1 for compatibility with the radius, that is, a
larger r means weaker filter action, “plane” (fits a linear plane
where the tiles have a size of expr1), and “parabolic” (fits a two-
dimensional parabolic function where the tiles have a size of
expr1). Expr2 is a flag that determines whether zero-valued pixels
should be considered.

Example: oneslice = remove bk (myimg, "movavg," 40,1);
Note: This function assumes that background pixels have lower values than

feature pixels.

resize: Resizes an image by interpolation or rebinning.

Syntax: resize (imgexpr, expr1 [, expr2])
Return value: Image
Parameters: Image expression for image to resize. If only expr1 is given, the

image is reduced by rebinning, and expr1 is the reduction factor
(allowed values 2, 3, and 4). If both expr1 and expr2 are given,
the image is interpolated to a new size of expr1 by expr2 pixels.

Example: new = resize (img, 1024, 1024);

rgbtostack: Converts a RGB image to a three-slice stack with the order R–G–B.

Syntax: rgbtostack (imgexpr)
Return value: Image
Parameter: Imgexpr must be a RGB image.
Example: stk = rgbtostack (myimg);
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roseplot: Fits a straight line into LOG(magnitude) over LOG(frequency) in the FFT
of an image and returns the slope over different radial angles.
Syntax: roseplot (imgexpr, expr1, expr2, expr3)
Return value: Real-valued number
Parameters: Image expression to compute the rose plot on. Expr2 determines the

number of points starting at the frequency expr1 into which to fit
the slope; expr3 determines the number of radial points and must
be less than 80.

Example: havg = roseplot (fft(img,0), 10, 64);
Notes: Imgexpr must contain a valid two-slice real/imaginary FFT image.

The function returns the average Hurst exponent H, which is
related to slope and dimension by s = 2H + 1 = 2D. In ad-
dition, the H is also returned in user[0] and the anisotropy
of H in user[1]. The individual values of H for all radial
directions specified in expr2 are returned in user[2] through
user[2+expr2-1].

rotate: Rotates an image clockwise.
Syntax: rotate (imgexpr, expr)
Parameters: Image expression for the image to rotate. Expr is the angle in degrees.

runlength: Computes the run-length histogram of a gray-scale image.
Syntax: runlength (imgexpr, expr1, expr2)
Return value: Image
Parameters: Image expression to compute the run-length histogram of. Expr1 is

the number of bins for the gray-scale axis; expr2 is the number of
bins for the run-length axis.

Example: rlhist = runlength(img, 16, 16);
Notes: A run is the number of consecutive pixels along a straight line that

fall into the same gray bin. The histogram is two-dimensional (y-
axis is the gray scale, x-axis is the run length), and the run count
is the image value. The image returned is a stack with four slices,
each corresponding to one run angle: 0◦, 45◦, 90◦, 135◦.

skeletonize: Computes the skeleton of a binary image.
Syntax: imgvar = skeletonize (imgexpr, expr1 [,expr2] )
Return value: Image
Parameter: Image expression to perform the skeletonization on. Expr1 is a

threshold value that can be used to segment gray-scale images
on-the-fly; expr2 is the slice number of a stack to skeletonize.

Example: s = skeletonize (thisimage,1);

substack: Returns one or more slices from a stack.
Syntax: substack (imgexpr, expr1, expr2)
Parameters: Imgexpr must be a stack. Substack extracts slices from expr1 to

expr2 (inclusive).
Example: oneslice = substack (myimg, 1,1);
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threshold: Performs thresholding on an image.

Syntax: threshold (imgexpr, strexpr [, expr])
Return value: Image
Parameters: Image expression to perform the thresholding on. Strexpr defines the

method and is one of “binary,” “soft,” “hard,” “otsu,” “iterative,”
“softsym,” or “hardsym.” If the method is “otsu” or “iterative,”
expr must not be provided, and the image returned is a strictly
binary image. For all other methods, expr is the threshold value,
“binary” creates a strictly binary image, “soft” and “hard” apply
soft and hard thresholding functions, respectively, and “softsym”
and “hardsym” perform symmetrical thresholding with signed
values.

Example: bin = threshold (thisimage, "binary", 115);

threshold2: Performs two-level thresholding on an image.

Syntax: threshold (imgexpr, expr1, expr2 [,expr3] )
Return value: Image
Parameters: Image expression to perform the thresholding on. Expr1 specifies

the lower threshold; expr2 specifies the upper threshold. If expr3
is provided, the function will be performed on only one slice.

Example: bin = threshold2 (thisimage, 128, 131);
Notes: Threshold2 is a threshold “bandpass” which sets to 0 all image areas

below expr1 or above expr2 and sets everything else to 1.

watershed: Performs a watershed segmentation an a binary image.

Syntax: watershed (imgexpr, expr1, expr2 [, strexpr])
Return value: Image
Parameters: Imgexpr is an image that contains a presegmented image. Expr1 is

the threshold value; expr2 is the slice number for an image stack;
strexpr is optional and may modify the returned image: if strexpr
is “uep,” the function returns the ultimate eroded points, and if
strexpr is “edm,” the function returns the Euclidean distance map.

Example: w = watershed (myimg, 1, 0, "edm");
Notes: Performs the watershed transform on one slice of the image imgexpr.

Note that a three-dimensional stack will be reduced to one single
slice, so a substack operation in a loop is needed to do a full
three-dimensional watershed transform. Before the operation, the
image is thresholded with expr1.
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SOFTWARE ON DVD

Apart from Crystal Image, the accompanying DVD comes with a number of software
programs that may be useful for image processing, image analysis, or even general-
purpose computing tasks. The most relevant programs are:

OpenDX Data explorer and visualization software. Covered in Section 14.5.
ImageJ Image analysis software maintained by the National Institutes of

Health. Covered in Section 14.2.
Labplot Universal data analysis, examination, and graphing tool.
CTsim Computed tomography simulation tool, useful for exploring the

principles of computed tomography image formation, and re-
construction.

Scilab Matlab-style matrix algebra package with a number of add-on pack-
ages, such as a visual linear systems package. Covered in Sec-
tion 14.1.2.

Octave Open-source substitute for Matlab. Covered in Section 14.1.2.
GIMP The GNU image manipulation program. This is a full-featured

open-source substitute for the Photoshop software.
Inkscape Vector-based graphics and illustration program.
OpenOffice Suite of office applications (word processor, spreadsheet, presen-

tation) that has a good degree of compatibility with Microsoft
files.

AMIDE Medical data explorer, covered in Section 14.3.
FMRIB Software

Library
Functional MRI software library of Oxford University’s FMRIB

group.
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1/f noise, 334

active contours, 16, 173
active cubes, 197
active net, 193, 197
acutance, 302
adaptive bilateral filter, 143, 146
adaptive filters, 15, 138
adaptive median filter, 152, 154
adaptive noise reduction, 139, 141
adaptive speckle filter, 168, 169
adaptive threshold, 159
adaptive Wiener filter, 99, 156
adaptive window size, 162
aggregation process, 324
aliasing, 99
Alzheimer’s disease, 273
ambient illumination, 425
AMIDE, 453
ANALYZE, 457
anatomical landmarks, 365
angiography, 99
animation, 433
anisotropic diffusion filter, 132, 147–148, 151, 169
anisotropic diffusion lowpass filter, see anisotropic

diffusion filter

anisotropy, 238
anti-geometric heat flow, 163
antipersistence, 332
apodization, 89
area ratio parameter, 284
artificial neural networks, 11, 14
aspect ratio, 278–283, 292
atmospheric effects, 426
attractor, 179, 183, 185
autoalign, 381
autocorrelation, 87–88, 132, 252–254, 257, 268
axonometric projection, 426
azimuth, 426, 428

B-splines, 357
background, 10

homomorphic filtering, 46, 85, 158, 166
inhomogeneous, 9, 55–56, 82–86, 127, 135, 158
removal (flattening), 56, 65, 117, 128, 458
rolling ball algorithm, 449
unsharp masking, 34, 46, 56, 128, 158, 165,

251, 443
background removal, 56, 65, 117, 128, 458
backpropagation, 286
ballooning forces, 179, 183
bandpass filter, 82, 105–106, 263, 449
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Bartlett window, 90
basis functions, 92, 128, 357
Bayesian classification, 238, 266
bending force, 174, 177–179
Bernsen threshold, 161
best-estimate filter, 87
between-class variance, 46
bilateral filter, 145, 146
binaries, 442, 447
binary image, 58, 154, 276, 296–297, 300, 306,

319, 337, 415, 449, 473
binary image processing, 58

closing operator, 59
dilation, 58, 59
erosion, 58–59, 61–62, 66, 298, 301
flood-filling, 66
hole filling, 249
opening, 59–61, 302, 332, 443, 449
outlining, 60, 61
particle analysis, 278, 450
skeletonization, 60, 229, 296

bins, 225, 250
BioImage Suite, 453
BioImageXD, 453, 454
blanket dimension, 327, 458
block truncation coding, 406
block-matching, 356
boundary delineating, 198
boundary moment, 284, 301–302
boundary points, 279
box kernel, 31
box-counting, 299, 319–322, 450, 458
box-counting dimension, 319
brain, 14, 206, 345

Alzheimer’s disease, 273
asymmetry, 273
corpus callosum, 179, 206
diffuse brain lesions, 273
fractal properties, 254

branch, 297
breast lesions, 14, 268, 273, 301
breast microcalcifications, 131, 162, 166, 270,

406, 409
brightness, 7, 28, 66, 387, 392, 410, 413–414, 417,

418, 448, 458
bronchial tree, 310
Brownian motion, 272
butterfly operation, 79
Butterworth filter, 84–86, 90, 98

C compiler, 470
calibration, 27, 67
calibration phantom, 67, 450
cancellous bone, 271, 272, 341–342

Canny edge detector, 142
canvas, 445
capacitor dimension, 322
capture range, 175
cardiac deformation analysis, 453
carotid artery, 15
cartilage, 205
cas function, 92, 94
CDF 9/7 wavelet filter, 405
cell

histology, 6
microscopy, 7–9
overlapping nuclei, 304
potassium channel, 332

cellular automaton, 258
center-weighted median filter, 41, 152
chain code, 287
chamfer 3/4/5 transform, 368
chamfer matching, 368
chrominance, 400–405, 418, 421
circles, 10, 211
circumscribed carcinomas, 271
cirrhosis, 266
clipping, 426
closed surface, 193
closing operator, 59
cluster analysis, 278
cluster labeling, 278
cluster tendency, 246
clustering, 11, 51, 52
CMYK model, 417
co-occurrence matrix, 99, 168, 238, 242, 243–250,

252, 264–266, 268–273, 358, 370–372,
380, 382

coarseness, 252, 254
coastline of Great Britain, 317
Cobb angle, 231
cochlea, 233, 234
coefficient of variation, 257
Cohen-Daubechies-Feauveau wavelets, 405
colonography, 435
colonoscopic images, 268
color cube, 418
color gamut, 417
color lookup tables, 450
color map

highlighting, 421
isomorphic, 421
segmentation, 421

color model, 416
CMYK model, 417
HSV model, 249, 417
luminance-chrominance models, 418
RGB model, 416
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RGBA model, 432
YCbCr model, 402, 405, 418

color scaling bar, 450
color scheme, 418–421, 450
compactness, 278–280, 282, 283, 301–303
compass dimension, 317
compass edge-detection operator, 36–41, 43, 50,

218, 221, 225, 251, 287
compression, see image compression
compression quality, 403
compression rate, 395
computed tomography (CT), 3–4, 23–24, 27, 94,

96, 133, 343–344
filtered backprojection, 95
Fourier slice theorem, 4, 94
Hounsfield units, 27, 387
pseudo-texture, 412
Ramachandran-Lakshminarayanan kernel,

95–96
Shepp-Logan kernel, 96
sinogram, 214

computer learning, 12
computer monitors, 28, 416
connectedness, 47
context modeling, 398
continuity energy, 180
contour, 16
contour lines, 422
contour tracing, 293
contrast, 1, 3, 7, 8, 27

enhancement, 12, 28, 128, 131–132, 139, 162,
166

histogram equalization, 9, 29, 131, 138, 165,
182, 238, 259, 304, 448

local variance, 50–51, 122, 141–142, 156–157,
205, 238, 241–242, 448

local intensity variation, 10
locally adaptive contrast enhancement,

139–140
contrast expansion, 415
contrast image, 163
convex hull, 284
convexity, 284
convolution, 2, 30, 103

convolution theorem, 82, 88, 91, 94
edge enhancement, 30, 36
finite-difference filter, 107
kernel, 30

box, 32
compass, 39
Gaussian, 32, 34, 37, 40, 42, 43, 45, 142,

175, 191
Kirsch, 36–40
Laplacian, 34

Prewitt, 36–37
Ramachandran-Lakshminarayanan 95–96
sharpen more, 33
sharpening, 12, 30, 33, 42, 70, 127, 145, 165,

448
Shepp-Logan, 85, 95–96
Smoothing, 31–32

convolution theorem, 31
coronary arteries, 205
corpus callosum, 179, 206
correlation, 87–88, 122, 132, 180, 238, 246–248,

252–254
cost function, 197
cost image, 198
crest lines, 365
crop, 448
cross-correlation, 87
Crystal Image, 456
Crystal Image macro, 460
Crystal Image modules, 460
cubic interpolation, 373
cumulative histogram, 26, 27
custom algorithms, 15, 466
cutoff frequency, 82
CVIPTools, 454
Cygwin, 455
cylinder Hough transform, 234

Daubechies coefficients, 108
decision tree, 270
deconvolution, 56, 86, 133, 454
DEFLATE compression, 396, 400
deformable models, 173, 179

active contours, 16, 173
active cubes, 197
active net, 193, 197
ballooning forces, 179, 183
bending force, 174
continuity energy, 180
cost function, 197
cost image, 198
elastic active cubes, 208
elastic deformation, 356, 358
elastic model, 351, 359
external force, 174, 186
G-wire, 205
greedy snake algorithm, 180
internal energies, 174
live wire, 197
local forces, 179
potential energy, 174
repulsors, 183, 185
rubber bands, 173
snake friction, 187
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deformable models (Continued )
snake mass, 187
snakes, 16, 180
springs, 173, 174
stretching force, 174
topology-adaptive snake, 192, 193

dendritic structures, 324
denoising, 117
densitometry, 67, 449
DICOM, 389
DICOM element, 391
DICOM group, 391
DICOM software, 392
dictionary-based compression, 396
differential chain code, 290
diffuse brain lesions, 273
diffuse reflection, 426
diffusion, 33, 132, 147–151, 189, 231, 356, 380,

400
diffusion constant, 33, 147
digital imaging and communications in medicine

(DICOM), 389
Dijkstra’s algorithm, 201, 202
dilation, 58, 59
dimension estimator, see fractal dimension

estimation
discrete cosine transform, 91, 92, 401–402
discrete filter coefficients, 106
discrete Fourier transform, 73
discrete Hartley transform, 91
discrete wavelet transform, 106, 111
dispersion method, 458
display pixel buffer, 413
dithering, 415
divide-and-conquer, 289
domain filter, 145
Doppler ultrasound, 7, 97
double-buffering, 433

e-Film, 452
eccentricity, 222, 281
edge detection, 34–40

Canny edge detector, 38, 142
compass operator, 36–41, 43, 50, 218, 221, 225,

251, 287
Kirsch operator, 36, 38–40, 218, 454
Laplacian-of-Gaussian, 34
Roberts’ cross, 36
Sobel operator, 36–38, 40, 41, 43, 67, 142, 151,

169, 175, 181, 184, 187–189, 214, 215,
216, 218, 220, 221, 251, 446, 448

edge direction, 38–40, 163, 218, 223, 225
edge enhancement, 30, 36

edges, see edge detection
elastic active cubes, 208
elastic deformation, 356, 358
elastic model, 351, 359
elevation landscape, 62, 167, 175, 315, 316, 327,

328, 422–427
ellipse, 211, 219–223, 227, 229–232, 282, 283,

292
ellipticity, 304
elongation, 284
embedded block coding with optimized truncation

(EBCOT), 406
emphysema, 344
endpoint, 197
energy (elastic deformation), 174–185, 191,

195–197, 359, 381
energy (shape and texture), 240, 246, 251–252,

268–269, 272, 302
energy maps, 251
enhancement, 9
entropy, 46, 240, 246, 393–395, 398, 400–403,

406, 409
entropy maximization method, 44
erosion, 58, 59
Euclidean dimension, 321, 333
Euclidean distance map, 62
Euler number, 296
evolutionary computation, 7, 169
exposure, 2, 27
external force, 174, 186
extremal points, 365
eye

glaucoma, 380
macular degeneration, 380
movement, 232
pupil, 220
pupillary reflex, 232
retina, 66, 380

false-coloring, 417–422
fast Fourier transform, 78
fast Hartley transform, 99
fate table, 298
fatty liver disease, 265
fault-tolerant server, 390
feature function, 200
feature labeling, see cluster labeling
feature transforms, 200
feature vector, 10–12, 39, 51, 53, 246–250, 254,

257, 259, 265–269, 283, 285, 290, 299,
302

Feret’s diameter, 284
fern leaf, 310
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fetal head size, 232
fibrosis, 266
fiducial markers, 360
filter

adaptive, 15–16, 122, 129–130, 138
bilateral filter, 143, 145–146, 156, 458
median filter, 40–41, 46, 55–56, 58, 64–65,

67, 121, 151–152, 458–459
minimum mean-squared error filter, 141
noise reduction, 12, 30, 31, 40, 46, 55–56,

58, 67, 119, 131, 139–141, 142
speckle filter, 168–169
Wiener filter, 86–87, 98–99, 134, 155–156

anisotropic diffusion filter, 132, 147–148, 151,
169

anti-geometric heat flow, 163
bandpass filter, 82, 449
best-estimate filter, 87
bilateral filter, 145, 146
Butterworth filter, 84
Canny edge detector, 142
center-weighted median filter, 41, 152
domain filter, 145
edge enhancement, 30, 36
Fourier-domain filters, see frequency-domain

filters
Frei and Chen operator, 39, 43, 421
frequency-adaptive Wiener filter, 155–156
frequency-domain filters, 82–87, 449
Gabor filter, 263
Gaussian filter, 93
homomorphic filtering, 158
Kirsch operator, 36
Kuwahara filter, 141
Laplacian operator, 33
Laplacian-of-Gaussian, 34
local adaptive lowpass filter, 458
local histogram equalization, 131, 139
lowpass filter, 41, 57
minimum mean-squared error filter, 141
notch filter, 82
range filter, 145
range operator, 50
rank filter, 58
second-derivative operator, 33
sharpen more, 33
sharpening, 33, 127
spatial-domain filters, 9, 30
top-hat filter, 67
tristate median filter, 153
wavelet-based filters, 16, 116, 129

filtered backprojection, 95
fingerprint, 296

finite-difference filter, 33–41, 107
finite-element model, 15, 197
first-order statistics, 26, 239, 265, 284–285. See

also statistical moments
FITS format, 447
flat shading, 426
floating image, 352
flood-filling, 66
fluorescence anisotropy, 64
fluorescence colocalization, 454
fluorodeoxyglucose, 3
fly-through animation, 437
Fourier analysis, 71
Fourier block noise reduction, 157
Fourier coefficients, 71, 74, 179
Fourier descriptors, 291, 292
Fourier slice theorem, 4, 94
Fourier transform, 9, 31, 71–74

butterfly operation, 79
coefficients, 180, 206, 291–292
convolution theorem, 31
cross-correlation, 87
cutoff frequency, 82
fast Fourier transform, 78
Fourier coefficients, 71, 74, 179
moving-window Fourier filter, 157
Nyquist sampling theorem, 74, 109
ringing, 83
windowing, 88–90

Fourier-based filters, 82–87, 449
fractal, 310
fractal dimension, 257, 311
fractal dimension estimation

blanket dimension, 327–328, 330, 341–342
box-counting dimension, 319
capacitor dimension, 322
compass dimension, 317
dispersion method, 458
frequency domain, 5, 9, 15, 30, 33, 56–57,

75–76, 82, 86, 88, 94–95
Hurst exponent, 257, 272, 315, 322, 331–332,

334–335, 337–338
Manhattan dimension, 329
mass dimension, 324, 331
sandbox dimension, 324

fractal dimension in the frequency domain, 331
fractal dimension operators, see fractal dimension

estimation
fractal image compression, 406–407
fractal properties, 254, 257, 266, 271, 272, 301,

305, 343
fractal signature, 343
fractional Brownian noise, 322, 337
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fracture risk, 273
Free Software, 441
Frei and Chen operator, 39, 43, 421
frequency domain, 70
frequency response, 88
frequency-adaptive Wiener filter, 155–156
frequency-domain filters, 82–87
Freudenthal triangularization, 192
Functional imaging, 7
fuzzy c-means clustering, 11, 51–53, 225, 283
fuzzy Hough transform, 321
fuzzy logic, 7, 169

G-wire, 205
Gabor filter, 263
gamma correction, 54
gamma function, 163, 414
Gaussian blurring, 31, 34, 46, 83, 119, 121, 124,

142, 145–147, 151, 175, 193, 231, 334
Gaussian filter, 93
Gaussian function, 34
Gaussian kernel, 32, 448
Gaussian noise, 24, 152, 243
gel analysis, 414
general polarization, 65
generalized cross-validation, 123
generalized Hough transform, 223–224, 286, 414,

448
genetic algorithms, 170
GIMP (GNU image manipulation program), 443
glaucoma, 380
global nonlinear transformations, 356
glyphs, 463
GNU General Public License, 443
GNU/Linux operating system, 443
Golomb-Rice compression, 399
Gouraud shading, 426
gradient magnitude, 38, 195
gradient orientation, 273
gradient vector flow, 187
graininess, 254
graph, 198, 201
graphics hardware, 426
graphics interchange format (GIF), 397
gray value analysis, 450
gray-level non-uniformity, 259
greedy snake algorithm, 180
GTK, the Gimp Toolkit, 456

Haar wavelet, 104
Hamming window, 89, 375
handprint character recognition, 292

Hann window, 89
hard thresholding, 57, 119
harmonic analysis, 71
harmonic oscillation, 71, 72
Health Insurance Portability and Accountability

Act, 386
heart

myocardium, 168, 205
ventricle, 304, 378

hepatitis, 266
hepatoma, 266
hidden face removal, 426
high gray-level emphasis, 259
highlighting colormap, 421
highpass filter, 34, 57, 112
hill-climbing algorithm, 156, 167
histogram, 24

bins, 28
contrast enhancement, 12
cumulative histogram, 26, 27
equalization, 9, 29, 131, 138, 140, 165, 414, 448
first-order statistics, 265–266
kurtosis, 239–240, 242, 450
mean value, 40, 45, 71, 104, 141–142, 145, 169,

201, 239–240, 270, 291
median value, 24, 26, 41, 152, 448
mode value, 26, 43, 239
piecewise geometric histogram, 290
skewness, 239
standard deviation, 26, 50–51, 55, 87, 120,

145–146
variance, 45–47, 51, 122, 129, 141, 144

histogram equalization, 29, 138, 140, 165
histogram stretching, 28
histology, 6, 50, 264
hole filling, 249
homologous areas, 351
homologous points, 382
homomorphic filter, 85, 158, 166
Hooke’s constant, 174
hospital information systems, 389
Hough space, 212
Hough transform, 211, 212

circle Hough transform, 233
cylinder Hough transform, 234
ellipse Hough transform, 219–223
fuzzy Hough transform, 231
generalized Hough Transform, 223
iterative Hough transform, 233
iterative randomized Hough transform, 229–230
line Hough transform, 213–219
R-table, 223
re-voting mechanism, 232
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Hounsfield units, 27, 387
HSI model, see HSV model
HSV model, 249, 417
Huffman coding, 393
Hurst exponent, 257, 315
Hutchinson operator, 311
hysteresis thresholding, 49, 470–473

image acquisition, 8
Image calculations, see image math
image compression, 99, 387

block truncation coding, 406
CDF 9/7 wavelet filter, 405
compression quality, 403
compression rate, 395
context modeling, 398
embedded block coding with optimized

truncation, 406
fractal image compression, 406
Golomb-Rice compression, 399
Huffman coding, 393
LeGall 5/3 wavelet filter, 405
LOCO-I compression, 397
lossless compression, 387
lossy compression, 387, 400
LZ compression, 396
LZW encoding, 396
Packbits encoding, 396
Q index, 408
quantization table, 402
video compression, 408

image depth, 88
image enhancement, 9
image feature, 16
image format

DICOM, 391
FITS, 447
graphics interchange format (GIF),

397
NIFTI, 453
portable network graphics (PNG), 396
progressive graphics file, 406
tagged image file format (TIFF), 390

image formation, 3, 24
image intensifiers, 1
image math, 54, 57, 448
image processing software, 15, 443–446
image processor class (ImageJ), 452
image quantification, 11
image registration, 13
image restoration, 29, 98
image segmentation, see segmentation
image sequence, 173

image stack, 454
ImageBasic, 459
ImageJ, 15, 393, 444, 447
ImageMagick, 393
IMAL, 454
impulse response function, 106
in-plane resolution, 207, 388
incomplete shapes, 227
indium pentetreotide, 3
inertia, 246
inhomogeneous background, 56
inhomogeneous illumination, 55, 85
Insight Toolkit, see ITK
intensity, 5, 10, 11, 14, 24, 26, 44, 67, 70, 86, 94,

98, 100, 138–139, 147
intensity profile, 450
inter-modality registration, 379
inter subject registration, 360, 379
Interactive Data Language, 445
internal energies, 174
interpolation, 134, 161, 196

B-splines, 357
cubic, 134, 373–374, 375–376, 378–379, 381
linear, 379, 381
sinc, 374–376
splines, 293, 357
wavelet-based, 134

intra modality registration, 368, 379
intra subject registration, 360, 379, 381
inverse difference, 246
inverse difference moment, 246
inverse Fourier transform, 70
iris filter, 167
irregularity, 53, 283
isodata method, 44, 158
isolated dots, 299
isometric projection, 423
isomorphic colormap, 421
isosurface, 430, 463
iterative closest-point algorithm, 380
iterative Hough transform, 227
iterative principal axes registration, 366
iterative randomized Hough transform, 299
iterative thresholding method, see isodata method
ITK (Insight Toolkit), 382

jag counter, 302
joint entropy, 358, 371
Joint Photographic Experts Group (JPEG), 397
JPEG artefacts, 397
JPEG-2000, 399
JPEG-2000 compression, 399, 405
JPEG-LS compression, 398
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k-means clustering, 11, 51–53, 225, 283
k-nearest-neighbor method, 270
k-space matrix, 5, 97
kernel, 30

box, 31–32, 142
compass, 36, 39
Gaussian, 32, 34, 37, 39, 42, 56, 83, 143, 145,

175, 191, 448
Kirsch, 38
Laplacian, 33–34
Prewitt, 36–37, 40, 454
Ramachandran-Lakshminarayanan, 96
sharpen more, 33
sharpening, 448
Shepp-Logan, 85, 96, 378, 404, 427
smoothing, 251

Khoros, 445
Kirsch operator, 36
Koch curve, 312
kubuntu (Linux), 460
kurtosis, 239
Kuwahara filter, 141

Laplacian distribution, 399
Laplacian operator, 33
Laplacian-of-Gaussian, 34
Larmor frequency, 5, 96
Laws’ Texture Energy Metrics, 251
layers, 268
LeGall 5/3 wavelet filter, 405
light reflection, 425
linear interpolation, 373
linear regression, 257, 319
linear transformations, 352
linearity, 32
link, 296
live wire, 197
liver

cirrhosis, 266
cyst, 265
fatty liver disease, 265
fibrosis, 266, 271
hepatitis, 266
hepatoma, 266
vena cava, 249

local adaptive lowpass filter, 142–151, 458
local forces, 179
local gradient, 147, 199
local histogram equalization, 131, 139
local Hoelder exponent, 340, 458
local maximum, 63, 216
local maximum filter, 216
local mean, 142, 168

local neighborhood, 122
local threshold, 159, 163
local variance, 50
local variance filter, 50, 241
local variation, 236
local windows, 408
locally adaptive contrast enhancement, 139
locally adaptive threshold, see local threshold
LOCO-I compression, 397
LoG, see Laplacian-of-Gaussian
log-log plot, 321
logical operator, 40
long run emphasis, 449
lossless compression, 387
lossless wavelet-based JPEG-2000 compression,

399
lossy compression, 387, 400
low gray level emphasis, 259
lowest-cost path, 202
lowpass filter, 41, 57
luminance, 49, 402, 418
luminance-chrominance models, 418
lung, 28, 66, 207

bronchial tree, 310
emphysema, 344
respiratory motion, 381

LZ compression, 396
LZW encoding, 396

macro scripting language, 444, 450–451, 457,
459–461

macular degeneration, 380
magnetic resonance imaging (MRI), 5

bias field correction, 55, 382, 453
k-space matrix, 5
Larmor frequency, 5
micro-MRI, 389

mammograms, see mammography
mammography, 12, 131, 161, 268, 270, 301–303,

316, 382, 386, 387, 406, 409
Manhattan dimension, 329
marching cubes algorithm, 429
margin fluctuation, 301
Markov random fields, 264
mask, 459
mass dimension, 324, 331
Matlab, 444
maximum-intensity projection, 428
mean filter, 241, 448
mean squared error, 9, 119, 120, 122, 131, 153,

303, 379, 405, 406, 408, 459–460
mean squared error filter, 141–144, 156, 168
mean value, 26, 45, 71, 239, 242, 291, 331, 408
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median filter, 40, 46
median value, 24, 26
melanocytic skin lesions, 284
memory, 13, 386, 392, 468–469
mesh, 193–195, 296, 357, 455
metadata, 391
MeVis-Lab, 445
micro-CT, 265
micro-MRI, 389
microcalcifications, 131, 162, 166, 270, 406,

409
microprocessor, 2
microscopy, 6, 50, 64, 133, 162, 264, 276, 288,

302, 304, 420, 453
microvascular shape, 284
midperpendicular, 227
midpoint displacement technique, 315
min-is-black, see photometric interpretation
min-is-white, see photometric interpretation
minimum mean-squared error filter, 141
Minkowsky dimension, 322, 324, 326
mode value, 26, 239
Moran peak ratio, 408
morphological operators, 58, 449

closing, 59
dilation, 58, 59, 62, 322
erosion, 58, 62, 298
opening, 59

mother wavelet, 105
mouse gesture, 433
Moving Picture Experts Group, 407
moving window, 30
moving-window Fourier filter, 157
MQ coding, 406
MR bias field correction, see bias field correction
multidimensional texture vector, 245
multigrid approach, 358, 369, 379
multimodal histogram, 44
multidimensional thresholding, 50, 259
multifractals, 326
multigrid approach, 358, 379
multilevel blurring, 185
multiscale analysis, 103, 130
multiscale texture analysis, 236
multitolerance region growing, 162
muscle fibers, 231
myocardium, 205

nearest-neighbor interpolation, 373
network bandwidth, 386
neural networks, 11, 169, 268
neuronal patterns, 324
NIFTI format, 453

NIH Image, 33, 91, 444
noise, 8, 9, 55

1/f noise, 334
brown noise, 332
fractional Brownian noise, 322, 337
Gaussian noise, 24, 152, 243
Perlin noise, 243
pink noise, 334
Poisson noise, 157
red noise, 334
reduction, 168–169
salt-and-pepper noise, 40, 151
shot noise, 40, 151
signal-to-noise ratio, 8–9, 13–14
uncorrelated noise, 334
white noise, 331

nonlinear contrast enhancement, 9, 414
nonlinear regression, 254, 339
nonlinear transformations, 355
normalized Fourier descriptors, 292
notch filter, 82
Nyquist sampling theorem, 74, 109

Octave, 444
OpenCV library, 467
OpenDX, 17, 458, 461–465
OpenGL, 426, 427
opening, 59
optimum global threshold, 44, 119
orthogonal basis, 71
osteoarthritis, 343
osteoporosis, 341
Otsu’s method, 45, 66, 158, 161, 302, 341, 380,

449
Otsu’s threshold, see Otsu’s method
outlining, 60, 61
overlapping cell nuclei, 304

Packbits encoding, 396
PACS, 389
particle analysis, 278, 450
pass-band, 82
peak signal-to-noise ratio, 408
perceived contrast, 421
perimeter length, 282, 284
periodic component, 9, 70
periodontitis, 343
Perlin noise, 243
persistence, 331
perspective projection, 426
perspective transformation, 355
photobleaching, 133, 454
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photometric interpretation, 414
picture archiving and communication system, see

PACS
piecewise geometric histogram, 290
pink noise, 334
pixel depth, 448
pixel manipulation, 54
plugins (ImageJ), 451
point-spread function, 24, 86, 87, 155
Poisson noise, 157
polarization, 64
polygons, 10, 177, 211, 223–224, 289, 317, 422
portable network graphics (PNG), 396
positioning mismatch, 351
positron emission tomography, 6, 132
potassium channel, 332
potential energy, 174, 381
Powell’s multidimensional minimization, 367
power-law, 254, 256, 313, 324, 332, 334, 340
power spectrum, 76, 155
Prewitt operator, 36
principal axes, 352
printers, 28, 415
Progressive Graphics File, 406
projection

3D visualization, 423–426,
computed tomography, 4, 94–95, 134
deformable models, 206
imaging, 4, 165, 271, 302, 342
maximum-intensity projection, 428

pruning, 299
pseudo-texture, 412
pupillary reflex, 232
pyramidal decomposition, 111, 116

Q index, 408
quadrature mirror filter pair, 110
quantization table, 402

R-table, 223
radiopharmaceuticals, 3
Radon transform, 94, 214
raised cosine window, 89
Ramachandran-Lakshminarayanan kernel, 95
random walks, 334
randomized Hough transform, 226
range filter, 145
range operator, 50
rank filter, 58
raw data, 463
ray-tracing, 367
re-voting mechanism, 232
red noise, 334

redundancy, 390
redundant arrays of inexpensive disks, 390
reference image, 352, 360, 364, 368–369, 379
region growing, 10, 47–50, 66, 161, 162, 164, 166,

168, 278, 280, 304, 430, 458, 471–472
region merging, 53
region of interest, 252
region splitting, 11, 53
registration

anatomical landmarks, 365
chamfer 3/4/5 transform, 368
chamfer matching, 368
fiducial markers, 360–364
floating image, 352, 360–361, 367, 369
homologous areas, 351
homologous points, 382
landmark points, 357, 360, 365, 380–381
linear transforms, 352
positioning mismatch, 351
quality metric, 360
reference image, 361
rigid-body model, 351, 353
stereotactic frame, 360
total registration error, 381

repeating patterns, 254
repulsors, 183, 185
rescale, 54
rescaled range, 332
resolution, 3, 6
respiratory motion, 381
restoration, 9, 29
retina, 66, 380
RF signal, 5, 132
RGB model, 416
RGBA model, 432
rigid-body model, 351, 353
ringing, 83
ripples, 84, 187
Roberts’ cross, 36
rolling ball algorithm, 449
Röntgen, 1
root mean squared error, see mean squared error
rose plot, 271, 335, 408
rotate, see rotation operation
rotation, 221, 225
rotation operation, 312, 353, 377, 433
rotation-invariant, 248, 285
rubber bands, 173
run percentage, 259, 260
run-length, 64, 238, 257–258
run-length encoding, 395
run-length method, 238, 257
run-length non-uniformity, 259
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S-transform, 272
salt-and-pepper noise, see shot noise
sandbox dimension, 324
saturation, 28, 126, 249, 264, 391, 400, 417–419
saturation function, 126
scaling, 30, 103, 104
scaling behavior, 329, 332
scaling function, 107
scaling limits, 321, 325
scaling operation, 353, 378
scaling rule, 317, 321
Scilab, 444, 445
Scilab Image Processing toolbox, 445
Scion Image, 444, 456
scoliosis, 231
scripting languages, 444, 459
second-derivative operator, 33
seed points, 11, 47, 67
segmentation, 7, 10

divide-and-conquer, 289
fuzzy c-means clustering, 11, 53
G-wire, 205
grow-merge, 251
hill-climbing algorithm, 156, 167
hysteresis thresholding, 49
isodata method, 44, 158
k-means clustering, 11, 51
k-nearest-neighbor method, 270
live wire, 197
local threshold, 159, 163
Otsu’s method, 45, 47, 64–66, 158–159, 162,

430
region growing, 47–50, 66, 161, 162, 164, 166,

168, 278, 280, 304, 430, 458, 471–472
split-merge, 11, 53, 164, 251
threshold map, 160
watershed segmentation, 60, 62

segmentation colormap, 421
self-organizing map, 268
self-similarity, 310, 311
self-similarity dimension, 314
separability, 133
shape, 7, 9

acutance, 302
anisotropy, 64–65, 238, 248–249, 259, 261
area ratio parameter, 284
aspect ratio, 278–279
boundary delineating, 198
boundary moment, 284, 301
boundary points, 279, 282, 287, 299
compactness, 282, 283
connectedness, 47
contour, 16

contour tracing, 293
differential chain code, 290
eccentricity, 222, 281
Euler number, 296
Feret’s diameter, 284
incomplete shapes, 227
jag counter, 302
Moran peak ratio, 408
perimeter length, 282, 284
run-length, 64
self-similarity, 17, 311, 314
skeletonization, 60, 296, 298, 299, 305
solidity, 284

shape analysis, 276
shape factor, 292
shape primitives, 211
shape self-similarity, 17, 311, 314
sharpen more, 33
sharpening, 33, 127
sharpening kernel, 33, 34
shear transformation, 354
Shepp-Logan filter, see Shepp-Logan kernel
Shepp-Logan head phantom, 85, 378, 404, 407,

427
Shepp-Logan kernel, 96, 378, 404
short run emphasis, 259, 260
shot noise, 40, 151
Sierpinsky gasket, 313
signal-to-noise ratio, 8, 55, 131,
similarity measure, 53, 303
similarity metric, 10, 358
simple illumination and reflection model, 425, 426
simplex algorithm, 367
simplicial cell decomposition, 192
sinc interpolation function, 374, 375
Single photon emission computed tomography,

see SPECT
sinogram, 214
skeleton

branch, 297
endpoint, 197
Euler number, 296
link, 299
graph, 79
pruning, 299
topology, 295

skeletonization, 60, 296, 298, 299, 305
skew, 239, 242
Slicer (software), 453, 455
sliding-window compression, 396
smoothing, 31
snake friction, 187
snake mass, 187
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snakes, 16, 180
snakes, see deformable models
Sobel operator, 36, 38
soft thresholding, 57, 132
soft tissue deformation, 208
software

AMIDE, 453
ANALYZE, 457
BioImage Suite, 453
BioImageXD, 453, 454
Crystal Image, 456
CVIPTools, 454
Cygwin, 455
DICOM software, 392
e-Film, 452
GIMP (GNU image manipulation program),

443
GTK, the Gimp Toolkit, 456
ImageJ, 15, 393, 444, 447
ImageMagick, 393
IMAL, 454
ITK (Insight Toolkit), 382
Khoros, 445
Matlab, 444
MeVis-Lab, 445
NIH Image, 33, 91, 444
Octave, 444
OpenCV library, 467
OpenDX, 17
OpenGL, 426, 427
Scilab, 444, 445
Slicer, 453, 455
TNImage, 454
VisIt, 455
VTK (Visualization Toolkit), 455
WaveLAB, 466

software patents, 442
solid rendering, 432
solidity, 284
source code, 393, 441, 442
spatial resolution, 13, 301
spatial transformations, 351
spatial-domain filters, 9, 30
spatially adaptive Wiener filter, see adaptive

Wiener filter
SPECT, 6, 132
specular reflection, 232, 425
spline, 293, 357, 378, 380

B-splines, 357
cubic splines, 357
interpolation, 378
thin-plate splines, 357

split-and-merge segmentation, 11, 53, 164, 251

spots, 239, 251
springs, 173, 174
stack, 23, 55, 64, 200, 447
stair-step calibration phantom, see calibration

phantom
standard deviation, 26
statistical moment invariants, 285
statistical moments, 45, 239, 285
statistical texture classification, 238
Stein’s unbiased risk estimator, 133
stellate lesions, 270
stereotactic frame, 360
storage and archive server, 389
storage systems, 386
straight edges, 211
stretching force, 174
subband coding filter, 107, 110–113
subband filter, see subband coding filter
subsampling, 109
superposition rule, 352, 353
surface matching, 371, 381
surface rendering, 380, 422
symbol table, 397

tagged image file format (TIFF), 390
template, 87, 88, 211
texel, 236
texture, 9, 10, 17

autocorrelation, 9, 10, 17
cluster tendency, 246
coarseness, 252, 254
correlation, 246
energy maps, 251
entropy, 46
first-order statistics, 265
Fourier descriptors, 291, 292
gray-level non-uniformity, 259
inverse difference, 246
inverse difference moment, 246
Laws’ Texture Energy Metrics, 251
low gray level emphasis, 259
Markov random fields, 264
multiscale texture analysis, 236
pseudo-texture, 412
run percentage, 259, 260
run-length method, 238, 257
run-length non-uniformity, 259
self-similarity, 310–311, 314, 319, 322, 329,

341, 406
statistical moment invariants, 285
statistical texture classification, 238
texture element, 236
texture homogeneity, 246
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texture analysis, 12, 236
texture element, 236
texture homogeneity, 246
texture self-similarity, 310
thin-plate splines, 357
thinning, 58, 61
three-dimensional displays, 428
threshold, 10, 38, 44

adaptive threshold, 161
Bernsen threshold, 161
entropy maximization method, 44
hard thresholding, 57, 119
hysteresis thresholding, 49
isodata method, 44, 158
iterative thresholding method
local threshold, 159
multidimensional thresholding, 50, 259
Otsu’s method, 45, 66, 341
soft thresholding, 57, 132

threshold map, 160
thyroid gland, 266
TIFF format, 390, 458
tiling, 55, 405
tissue microstructure, 265
TNImage, 454
top-hat filter, 67
topological invariants, 297
topologically invariant, 295
topology, 295
topology-adaptive snake, 192, 193
total registration error, 381
Tourette syndrome, 380
training, 147, 153, 169, 197, 201, 204, 266, 268,
transform

cosine transform, 91, 92
Fourier transform, 73
Gabor transform, 263
Hartley transform, 91
Hough transform, 211, 212
S-transform, 272
wavelet transform, 106, 111

translation, 105, 106
translation operation, 352, 353
tri-linear interpolation, 373
triangle, 72, 192, 423
tristate median filter, 153
twiddle factor, 79
two-dimensional discrete Fourier transform,

74

ultimate eroded points, 62
ultrasound imaging, 1, 5, 97
ultrasound motion images, 233

ultrasound speckle reduction, 169
uncorrelated noise, 243, 332, 334
universal threshold, 119, 123
unsharp masking, 34, 46, 56, 127, 158

value representation (DICOM), 391
vanishing moments, 108
variance, 45, 51, 141–144, 156, 239
vector fields (visualization), 455
vena cava, 237, 249, 434
vertex, 177–187, 190, 194–196, 202, 224, 289,

296, 315, 329, 373, 424
video compression, 408
virtual arthroscopy, 437
virtual bronchoscopy, 433
virtual colonoscopy, 436
virtual patient, 436
Visible Human Project, 434, 437, 456
visible-light imaging, 6
VisIt (software), 455
visual image processing networks, 443
visual programming, 461
visualization, 15, 17, 28, 461

ambient illumination, 425
atmospheric effects, 426
contour lines, 422
contrast, 7–8, 27–28, 415
dithering, 415
elevation landscape, 167, 175
flat shading, 426
maximum-intensity projection, 428
nonlinear contrast enhancement, 9, 414
projection

axonometric, 426
isometric, 424
perspective, 426

simple illumination and reflection model, 425,
426

solid rendering, 432
surface rendering, 380, 422
window/center function, 388, 414

Visualization Data Explorer, 461
visualization goal, 421, 430, 434
visualization package, 455
Visualization Toolkit, 453, 455
visualization tools, 450
volume matching, 365
vote, 213, 216, 217, 228
VTK (Visualization Toolkit), 455

watershed segmentation, 60, 62
WaveLAB, 466
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wavelet, 16, 103
basis functions, 128
CDF 9/7 wavelet filter, 405
coefficients, 119
Daubechies, 108–109, 127
Denoising, 66, 119–124
Haar wavelet, 104
LeGall 5/3 wavelet filter, 405
mother wavelet, 105
pyramidal decomposition, 111, 116
quadrature mirror filter pair, 110
vanishing moments, 108

wavelet basis, 105, 129
wavelet coefficient shrinking, 119, 133
wavelet coefficients, 110, 119
wavelet compression, 410, 454
wavelet decomposition, 116, 133, 135
wavelet function, 104
wavelet processing toolbox, 466
wavelet sharpening, 127
wavelet shrinkage, 121, 131
wavelet shrinkage filter, 121, 133
wavelet transform, 128, 129, 130, 132
wavelet-based compression, 130, 405
wavelet-based denoising, 119, 131
wavelet-based filters, 16, 116, 129
wavelet-based highpass filter, 124
wavelet-based interpolation, 134

wavelet-based unsharp masking, 127
waves, 5, 75, 251
Welch window, 90
white noise, 331
Wiener filter, 87, 98
window

adaptive window size, 162
Bartlett, 90
Gaussian, 90
Hamming, 89, 375
Hann, 89
moving window, 30
raised cosine window, 89
Welch, 90

window function, 89
window size, 127, 129, 302
window/center function, 388, 414
windowed Fourier transform, 129, 263
windowed sinc function, 375
within-class variance, 45

X-ray mammography, 166, 316, 387
X-rays, 1, 4, 8

YCbCr model, 402, 405, 418

zero padding, 31, 55, 303
zero-crossings, 43, 208
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FIGURE 2.8 Demonstration of some edge detection operators. The original image is the CT
slice in Figure 2.7A. Images A and B show the results of the Sobel and compass edge detectors
with color-coded edge directions. Whereas the edge magnitude is very similar, the discrete
nature of the edge directions in the compass operator becomes clearly visible. In image C the
LoG operator with � = 3.0 was applied, and zero crossings (edge locations) are marked in red.
An apparent double edge appears at the steepest edges. Image D shows a color-coded version
of the Frei–Chen operator. Red hues indicate high values (low projection angles) in edge space,
with some similarity to the Sobel and compass operators. Blue–green hues indicate high values
in line space, most prominent in the vascular structure and the thin traces of the ribs.
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FIGURE 2.13 Multichannel thresholding. The upper image shows a composite created from
Figure 2.12A (luminance), Figure 2.12B (green–blue hues), and the local range operator applied
to Figure 2.12A (red–orange hues). A two-dimensional histogram of the last two images (B)
shows peaks for the lumen (bk), the outer wall (ow) with high local irregularity but low
fluorescence, and the inner wall (iw) with intermediate irregularity and high fluorescence.

FIGURE 6.5 Application of a deformable contour for the segmentation of the ventricular
space in an MR image slice of the brain (A). The snake tends primarily to follow the external
energies, which are represented by the magnitude in the gradient image (inset B). Note that the
snake uses a weak gradient ridge to take a “shortcut” on the right-hand side, where the bending
energy would get very high. This behavior can be controlled with the parameter �. Image C
shows the slice after the application of a smoothing filter with the snake superimposed.
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FIGURE 6.7 The snake is pulled into the high-bending zone by two attractors (green dots).

FIGURE 6.13 Surface rendering of a human brain from MR data (A) after segmentation of
the brain and deepening of the sulci by thresholding. A balloon-line active surface is shown
step by step to shrink around the segmented brain and follow the gradient forces into the sulci
(B–F). Particularly in image F, the active surface can be seen to take some “shortcuts” to
minimize its bending energy.
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FIGURE 8.8 Composite image of the ultrasound image in Figure 8.2. The red color channel
represents clustering, the green channel represents contrast, and the blue channel represents
inertia.

FIGURE 8.14 Run-length histograms of some of the textures in Figure 8.1: (A) corduroy
at 0◦ scan angle, (B) corduroy at 90◦ scan angle, (C) glass, (D) carpet, (E) bark, and (F) knit,
C–F at 0◦ scan angle. The histograms have been contrast-enhanced and false-colored for better
visual representation. Black represents zero; blue, low values; green, intermediate values; and
red, high values. Each histogram shows increasing gray values (16 bins) from top to bottom
and increasing run lengths (32 bins) from left to right.
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FIGURE 9.1 Example of shape analysis and classification. Image A shows various red
blood cells (synthetically generated image) with three types of deformation. Each deformed
cell occurs twice in the image, with a different size and rotation. Image B is the segmented
(binarized) image, obtained through thresholding, and image C was obtained by quantifying
the irregularity of the shape and using a false-color representation of the shape metric.

FIGURE 10.7 Landscape generation using the iterative midpoint displacement technique. A
shows the random displacements as gray values (light gray areas have a higher elevation than
dark gray areas). With suitable false coloring and added contour lines, a topographical map is
created (B).
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FIGURE 10.8 Three-dimensional rendering of the topographical map shown in Figure 10.7,
with elevation-dependent colors, texture-mapped sea level, and texture-mapped sky added.

FIGURE 10.15 Determining the mass dimension of a simulated aggregation cluster. The
mass (nonbackground pixels) of the aggregate inside the circles of increasing radius is counted,
and the slope of the mass over the radius is determined on a double-logarithmic scale.
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FIGURE 10.17 Elevation landscape representation of the segmented spongy area of a ver-
tebral CT image. The left panel shows one cross-sectional CT slice through the vertebra with
the spongy area highlighted. The right image is the corresponding elevation map. The white
arrow indicates the view direction.

FIGURE 10.18 Four steps in the process of calculating the blanket dimension. Starting
with the top left image, the landscape is drawn with one pixel per box (s = 1), whereas in
subsequent iterations 4 pixels (s = 2), 16 pixels (s = 4), and 64 pixels (s = 8) are averaged. As
a consequence, the elevation landscape becomes less jagged and the surface area decreases.
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FIGURE 11.3 Matched but unregistered slices from the Visible Human data set. (A) shows a
T1>-weighted MR slice of the head, and (B) shows the corresponding CT slice. The images are
mismatched in position, rotational orientation, and scale. Anatomy-based homologous fiducial
markers (red in the MR image and green in the CT image) have been placed manually.

FIGURE 11.4 Registration process based on fiducial markers. First, the centroid of the
markers is determined (green lines in A and B). Next, the centroids are brought in congruence
with a translation operation. The angles of the green lines provide the necessary rotation angle,
and the length ratio provides the scaling factor. After the transformation, the MR image (C)
matches the CT image (B) in terms of position, rotation, and scale. It can be seen that the
green lines, which connect the fiducial markers with the centroid, have the same length and
orientation in (B) and (C). The images are then fused (D), with the MR image having a red
tint and the CT image having a blue tint. A minor mismatch can still be seen; this mismatch
cannot be corrected with rigid-body transformations.
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FIGURE 12.8 Demonstration of the effect of selective image information loss. Image A,
subjected to an adaptive anisotropic diffusion lowpass filter, is strongly blurred (B). The loss
of detail at high spatial frequencies is obvious. Conversely, when only the color (hue and
saturation) information is blurred and the intensity information is left unaltered (C), almost no
differences to the original image are detectable. The difference between images A and C is
shown in image D.
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FIGURE 13.2 Demonstration of additive color generation. The images are magnified sec-
tions of photographs of a CRT screen (A) and a LCD screen (B), both displaying a color
gradient blue–green–red–green–blue. In each image, one pixel is delineated (white triangle
and square, respectively). Each pixel is approximately 0.25 mm in size. It can be seen that each
pixel is composed of three components: red, green, and blue. Note that the camera that was
used to take these photos has a high sensitivity for green, and the brightest green segments are
overexposed.
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FIGURE 13.3 Graphical representations of the RGB and HSV color models. Each color
represents one point inside the RGB cube, and its position is determined by the value of its
R, G, and B components in Cartesian coordinates. Here, only the edges of the filled cube
are shown. The edges of the cube give an example of the color gradients with black (k)
and white (w) at diagonally opposite ends, and with the additive colors cyan (c), magenta
(m), and yellow (y) at off-axis corners. The HSV model uses a cylinder coordinate system
with the hue (H) as the angular component, the saturation (S) as the radial component, and
the value (V, also known as intensity or brightness) as the axial component. The central
axis of the cylinder covers the gray-value gradient from black to white. (HSV pie from
http://en.wikipedia.org/wiki/HSL and HSV.)
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FIGURE 13.4 Gray-scale image of a micro-CT cross section of a mouse femur (A) and
three false-color representations (B–D). In (B), the color scheme called Rainbow [Equation
(13.5)] was applied, in (C) the color scheme called Fire, and in (D) a color scheme called
Terra. The graphs underneath the color images are the corresponding lookup tables (the
x-axis is the image gray value and the y-axis is the color component value). Whereas smooth
transitions were desired in images B and C, the Terra color scheme in image D introduces
abrupt transitions, which cause the appearance of contour bands.
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FIGURE 13.7 Examples of elevation landscape rendering. The source image (A) is the
Shepp–Logan head phantom, with some additive noise in the left ventricle. A scale bar was
placed to the right of the phantom. Rendering B was performed using the home-made isometric
view that served as this chapter’s example (Figure 13.6), and rendering C was performed with
OpenGL. The red cube in the top left corner of image C is the light source. Elevation landscape
rendering is particularly useful for recognizing shapes: From the original image, the intensity
function in the scale bar at the right image edge cannot readily be determined. In the landscape
renderings, however, the curved nature becomes obvious, and an anti-gamma function can be
recognized.

FIGURE 13.10 Visualization of the brain inside the head. The brain and the head were
prepared as separate objects and placed in the scene for rendering. In image A, a section of the
head is removed in the head image, whereby the brain is exposed in the removed section. In
image B, a clip plane separates the upper section of the skull form the lower, and transparency
was used in the upper section.
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FIGURE 13.12 Three frames from the primate blood vessel animation. Aorta and vena cava
are boldly colored (red and blue, respectively), while the spine was assigned a color with less
saturation. Although some a priori knowledge was used for segmentation, the course of the
blood vessels and the unusual shape of the aorta are clearly visible.

FIGURE 13.13 Training of medical students with a virtual patient. The setting is an oph-
thalmologist’s office, and the patient can be asked to perform various tasks, such as telling the
number of fingers indicated, or following the hand with his eyes. In this simulation, the hand is
controlled by the medical student by means of a three-dimensional positioning device. Simple
clicks make it possible to extend a specific number of fingers. (Courtesy of Dr. Kyle Johnsen.)
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FIGURE 14.6 Example of an OpenDX visual program. The input image (A) exists in native
DX format as created by Crystal Image. In the visual program (B), the String specifies the
file name, and the Import operator converts the image into a field. With AutoColor, color
is being added to the nodes of the field. Rubbersheet creates the elevation map. Finally, the
Image operator renders the object (C). The ColorBar operator is responsible for adding the
color scale bar to image C, and the Describe operator describes the data object at the point
where it is connected.
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FIGURE 14.8 Visualization of a vector field. The visual program (A) is relatively complex
because it merges three components: the vector field itself, visualized with the AutoGlyphs
operator, and two scalar fields that contain the outline of the flow chamber, visualized as
isosurfaces. The lower isosurface (about one-third of the chamber) was made nontransparent,
whereas the upper part of the flow chamber was made semitransparent.
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