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The automation of diagnostic tools and the increasing availability of extensive medical datasets in the 
last decade have triggered the development of new analytical methodologies in the context of biomedi-
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support clinicians in their time, volume, and accuracy demanding decision making tasks. From simple 
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ness of computerized medicine to the field-clinicians and ultimately to the patient. This chapter presents 
a thorough review of this field and highlights the achievements and shortcomings of each family of 
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Though an unparalleled amount and diversity of imaging and clinical data are now collected as part of 
routine care, this information is not sufficiently integrated and organized in a way that effectively supports 
a clinician’s ability to diagnose and treat a patient. The goal of this chapter is to present a framework 
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for organizing, representing, and manipulating patient data to assist in medical decision-making. The 
authors first demonstrate how probabilistic graphical models (specifically, Bayesian belief networks) are 
capable of representing medical knowledge. They then propose a data model that facilitates temporal and 
investigative organization by structuring and modeling clinical observations at the patient level. Using 
information aggregated into the data model, they describe the creation of multi-scale, temporal disease 
models to represent a disease across a population. Finally, they describe visual tools for interacting with 
these disease models to facilitate the querying and understanding of results. The chapter concludes with 
a discussion about open problems and future directions.
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The estimation of motion of the myocardial and arterial wall is important for the quantification of tissue 
elasticity and contractility and has gained attention as a determinant of cardiovascular disease. In this 
chapter, a review is attempted regarding the analysis and quantification of motion within the cardiovas-
cular system from sequences of images. The main sources of cardiovascular wall motion include blood 
pressure, blood flow and tethering to surrounding tissue. The most commonly applied techniques for 
cardiovascular motion analysis include feature-based and pixel-based methodologies; the latter further 
include block matching, optical flow and registration techniques. Two distinct paradigms based on these 
methodologies are highlighted, namely myocardium and carotid artery wall motion. The current status 
of research in these areas is reviewed and future research directions are indicated.
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Intracoronary Ultrasound (ICUS) imaging is an intravascular catheter-based technique which provides 
real-time, high resolution, cross-sectional images of coronary arteries. In these images the lumen, the 
media-adventitia border, the plaque burden and the composition of the plaque can be identified. Con-
ventionally, ICUS border detection is performed manually. However, this process is laborious and time 
consuming. To enhance the clinical applicability of ICUS, several automated algorithms have been 
developed for fast ICUS segmentation and characterisation of the type of the plaque. In this chapter 
the authors present an overview on the developments in ICUS processing and they describe advanced 
methodologies which fuse ICUS and X-ray angiographic data in order to overcome indigenous limita-
tions of ICUS imaging and provide complete and geometrically correct coronary reconstruction. 
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Recent advances in computer science provide the intelligent computation tools needed to design and 
develop Diagnosis Support Systems (DSSs) that promise to increase the efficiency of physicians during 
their clinical practice. This chapter provides a brief overview of the use of computational intelligence 
methods in the design and development of DSSs aimed at the differential diagnosis of hepatic lesions 
from Computed Tomography (CT) images. Furthermore, examples of DSSs developed by our research 
team for supporting the diagnosis of focal liver lesions from non-enhanced CT images are presented.
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        Marotesa Voultsidou, University of Crete, Greece
        J. Michael Herrmann, University of Edinburgh, UK

Indicative features of an fMRI data set can be evaluated by methods provided by theory of random 
matrices (RMT). RMT considers ensembles of matrices and yields statements on the properties of the 
typical Eigen systems in these ensembles. The authors have studied the particular ensemble of random 
correlation matrices that can be used as a noise model for the empirical data and that allows us thus to 
select data features that significantly differ from the noisy background. In this sense RMT can be un-
derstood as offering a systematic approach to surrogate data. Interestingly, also the noise characteristics 
change between different experimental conditions. This is revealed by higher-order statistics available 
from RMT. The authors illustrate the RMT-based approach by an exemplary data set for the distinction 
between a visuomotor task and a resting condition. In addition it is shown for these data that the degree 
of sparseness and of localization can be evaluated in a strict way, provided that the data are sufficiently 
well described by the pairwise cross-correlations.  
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Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue 
microstructure by probing the diffusion of water molecules in a biological tissue. Although originally 
proposed for the characterization of cerebral white matter connectivity and pathologies, its implementation 
has extended to many other areas of the human body. In a parallel development, a number of diffusion 



models have been proposed in order to extract the underlying tissue microstructural properties from the 
diffusion MRI signal. The present study reviews the basic considerations that have to be taken into ac-
count in the selection of the diffusion encoding parameters in diffusion MRI acquisition. Both diffusion 
tensor imaging (DTI) and high-order schemes are reviewed. The selection of those parameters relies 
strongly on requirements of the adopted diffusion model and the diffusion characteristics of the tissue 
under study. The authors review several successful parameter selection strategies for the human brain, 
and conclude with the basics of parameter optimization on promising applications of the technique on 
other tissues, such as the spinal cord, the myocardium, and the skeletal muscles.
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Segmentation plays a crucial role in cardiac magnetic resonance imaging (CMRI) applications, since it 
permits automated detection of regions of interest. In this chapter the authors review semi-automated 
and fully automated cardiac MRI segmentation techniques and discuss their advantages. They classify 
those segmentation methods as classical and model-based.
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Image registration is the process of determining the correspondence of features between images collected 
at different times or using different imaging modalities. A wide range of registration algorithms was 
proposed in literature for solving this task. In this chapter the focus will be on oncology applications, 
where registration is the prior step of: i) subtraction imaging (to emphasize hyper (or hypo) enhanced 
structures), ii) fusion imaging (to integrate anatomical and functional information about lesions) and 
iii) serial imaging comparison (to monitor the progression/regression of a disease). These applications 
are of great relevance in tumors diagnosis, staging, and treatment planning. The goal of this chapter is 
to provide an overview of registration algorithms considering these different applications in oncology. 
The authors discuss the advantages/disadvantages of each algorithm, the results gained and the possible 
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Breast cancer is the most common cancer in women worldwide. Mammography is currently the most 
effective modality in detecting breast cancer, challenged by the presence of dense breast parenchyma, 
with relatively low specificity in distinguishing malignant from benign lesions. Breast ultrasound and 
Magnetic Resonance Imaging (MRI) are significant adjuncts to mammography providing additional di-
agnostic information. Various Computer-Aided Diagnosis (CADx) schemes have been proposed across 
modalities, acting as clinical tools that provide a “second opinion” to assist radiologists in the diagnos-
tic task of lesion characterization by means of quantitative image feature extraction and classification 
methods. The advent of multimodality imaging broadens the role of CADx, in terms of complementary 
tissue properties analyzed. In this chapter, major stages of CADx schemes in breast imaging are reviewed, 
while challenges and trends are discussed and highlighted by corresponding application examples of 
CADx methodologies for microcalcification clusters in mammography and masses in Dynamic Con-
trast-Enhanced MRI.

Chapter XI
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 C. I. Christodoulou, University of Cyprus, Cyprus
 C. Loizou, Intercollege, Cyprus
 M.S. Pattichis, University of New Mexico, USA
 C.S. Pattichis, University of Cyprus, Cyprus
 S. Kakkos, University of Patras Medical School, Greece
 A. Nicolaides, Imperial College, UK

Stroke is the third leading cause of death in the Western world and a major cause of disability in adults. 
The objective of this work was to investigate morphological feature extraction techniques and the use 
of automatic classifiers; in order to develop a computer-aided system that will facilitate the automated 
characterization of carotid plaques for the identification of individuals with asymptomatic carotid stenosis 
at risk of stroke. Through this chapter, the authors summarize the recent advances in ultrasonic plaque 
characterization and evaluate the efficacy of computer-aided diagnosis based on neural and statistical 
classifiers using as input morphological features.  Several classifiers like the K-Nearest Neighbour(KNN) 
the Probabilistic Neural Network(PNN) and the Support Vector Machine(SVM) were evaluated resulting 
to a diagnostic accuracy up to 73.7%.

Chapter XII
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The objective of this chapter is to propose a quantitative hysteroscopy imaging analysis system in gynae-
cological cancer and to provide the current situation about endoscopy imaging. Recently works, involves 
endoscopy, gastroendoscopy, and colonoscopy imaging with encouraging results. All the methods are 
using image processing using texture and classification algorithms supporting the physician diagnosis. 
But none of the studies were involved with the pre-processing module. Also, the above studies are trying 
to identify tumours in the organs and no of the are investigates the tissue texture. The system supports 
a standardized image acquisition protocol that eliminates significant statistical feature differences due 
to viewing variations. In particular, the authors provide a standardized protocol that provides texture 
features that are statistically invariant to variations to sensor differences (color correction), angle and 
distance to the tissue. Also, a Computer Aided Diagnostic (CAD) module that supports the classifica-
tion of normal vs abnormal tissue of early diagnosis in gynaecological cancer of the endometrium is 
discussed. The authors investigate texture feature variability for the aforementioned targets encountered 
in clinical endoscopy before and after color correction. For texture feature analysis, three different fea-
tures sets were considered: (i) Statistical Features, (ii) Spatial Gray Level Dependence Matrices, and 
(iii) Gray Level Difference Statistics. Two classification algorithms, the Probabilistic Neural Network 
and the Support Vector Machine, were applied for the early diagnosis of gynaecological cancer of the 
endometrium based on the above texture features. Results indicate that there is no significant difference 
in texture features between the panoramic and close up views and between different camera angles. 
The gamma correction provided an acquired image that was a significantly better approximation to the 
original tissue image color. Based on the texture features, the classification algorithms results show that 
the correct classification score, %CC=79 was achieved using the SVM algorithm in the YCrCb color 
system with the combination of the SF and GLDS texture feature sets. This study provides a standard-
ized quantitative image analysis protocol for endoscopy imaging. Also the proposed CAD system gave 
very satisfactory and promising results. Concluding, the proposed system can assist the physician in the 
diagnosis of difficult cases of gynaecological cancer, before the histopathological examination.

Chapter XIII
Combining Geometry and Image in Biomedical Systems: The RT TPS Case ................................... 197
        Thomas V. Kilindris, University of Thessaly, Greece
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Patient anatomy, biochemical response, as well functional evaluation at organ level, are all key fields 
that produce a significant amount of multi modal information during medical diagnosis. Visualization, 
processing and storage of the acquired data sets are essential tasks in everyday medical practice. In or-
der to perform complex processing that involves or relies on image data a robust as well versatile data 
structure was used as extension of the Visualization Toolkit (VTK). The proposed structure serves as a 
universal registration container for acquired information and post processed resulted data. The structure 
is a dynamic multidimensional data holder to host several modalities and/or Meta data like fused image 
sets, extracted features (volumetric, surfaces, edges) providing a universal coordinate system used for 
calculations and geometric processes. A case study of Treatment Planning System (TPS) in the stereotactic 
radiotherapy (RT) based on the proposed structure is discussed as an efficient medical application.]
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Internal Radionuclide Dosimetry using Quantitative 3-D Nuclear Medical Imaging ........................ 213
        Ioannis Tsougos, University of Thessaly, Greece
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Quantitative three-dimensional nuclear medical imaging plays a continuously increasing role in radionu-
clide dosimetry, allowing the development of patient-specific treatment planning systems. The established 
method for dosimetry is based on the measurement of the biokinetics by serial gamma camera scans, 
followed by calculations of the administered activity and the residence times, resulting in the radiation 
absorbed doses of critical organs. However, the quantification of the activity in different organs from 
planar data is hampered by inaccurate attenuation and scatter correction as well as due to background 
and organ overlay (Glatting, 2006). Alternatively, dosimetry based on quantitative three-dimensional 
data is more accurate and allows a more individualized approach, provided that all effects that degrade 
the quantitative content of the images have been corrected for. In addition inhomogeneous organ ac-
cumulation of the radionuclide can be detected and possibly taken into account (De Jong, 2004). This 
chapter provides adequate information on internal emitter dosimetry and a state-of-the-art review of the 
current methodology.  

Chapter XV
Diffusion Tensor Imaging and Fiber Tractography  ............................................................................ 229
        Evanthia E. Tripoliti, University of Ioannina, Greece 
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Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) modality which can significantly 
improve our understanding of the brain structures and neural connectivity.  DTI measures are thought 
to be representative of brain tissue microstructure and are particularly useful for examining organized 
brain regions, such as white matter tract areas.  DTI measures the water diffusion tensor using diffusion 
weighted pulse sequences which are sensitive to microscopic random water motion.  The resulting dif-
fusion weighted images (DWI) display and allow quantification of how water diffuses along axes or dif-
fusion encoding directions.  This can help to measure and quantify the tissue’s orientation and structure, 
making it an ideal tool for examining cerebral white matter and neural fiber tracts.  In this chapter the 
authors discuss the theoretical aspects of DTI, the information that can be extracted from DTI data, and 
the use of the extracted information for the reconstruction of fiber tracts and the diagnosis of a disease.  
In addition, a review of known fiber tracking algorithms is presented.

Chapter XVI
Image Processing and Machine Learning Techniques for Facial Expression Recognition ................ 247
        Anastasios Koutlas, University of Ioannina, Greece
        Dimitrios I. Fotiadis, University of Ioannina, Greece



The aim of this chapter is to analyze the recent advances in image processing and machine learning 
techniques with respect to facial expression recognition. A comprehensive review of recently proposed 
methods is provided along with an analysis of the advantages and the shortcomings of existing systems. 
Moreover, an example for the automatic identification of basic emotions is presented: Active Shape 
Models are used to identify prominent features of the face; Gabor filters are used to represent facial 
geometry at selected locations of fiducial points and Artificial Neural Networks are used for the clas-
sification into the basic emotions (anger, surprise, fear, happiness, sadness, disgust, neutral); and finally, 
the future trends towards automatic facial expression recognition are described.

Chapter XVII
Developments and Advances in Biomedical Functional Infrared Imaging ........................................ 263
        Arcangelo Merla, Institute of Advanced Biomedical Technologies (ITAB), Foundation
             G. d’Annunzio University, Chieti, Italy, and G. d’Annunzio University, Chieti-Pescara, Italy

The authors of this chapter present an overview on recent developments in the field of clinical applica-
tions of the functional infrared imaging. The functional infrared imaging is a relatively recent imaging 
methodology introduced for the study for biomedical purposes of the functional properties and altera-
tions of the human thermoregulatory system. The methodology is based on the modeling of the bio-heat 
exchange processes and the recording of thermal infrared data by means of advanced technology. Some 
innovative applications of functional infrared imaging to diagnostics, psychometrics, stress measure-
ments and psycho-neurophysiology will be presented, with special emphasis to the potentialities and 
the capabilities that such technique may bring to biomedical investigations.

Chapter XVIII
DNA Microarrays: Analysis and Interpretation  ................................................................................. 278
        Aristotelis Chatziioannou, National Hellenic Research Foundation, Greece
        Panagiotis Moulos, National Hellenic Research Foundation, Greece

The completion of the Human Genome Project and the emergence of high-throughput technologies at 
the dawn of the new millennium, are rapidly changing the way we approach biological problems. DNA 
microarrays represent a promising new technological development, widely used for the investigation 
and identification of genes associated with important biological processes. The chapter is divided in two 
parts: the first discusses current methods for the acquisition and quantitation of the microarray image 
while the second focuses in the analysis and interpretation of the microarray signals (standardization, 
normalization, statistical analysis etc.) 

Chapter XIX
Image Processing and Machine Learning Techniques for the Segmentation of cDNA
Microarray Images ............................................................................................................................. 294
        Nikolaos Giannakeas, University of Ioannina, Greece
        Dimitrios I. Fotiadis, University of Ioannina, Greece

Microarray technology allows the comprehensive measurement of the expression level of many genes 
simultaneously on a common substrate. Typical applications of microarrays include the quantification 



of expression profiles of a system under different experimental conditions, or expression profile com-
parisons of two systems for one or more conditions. Microarray image analysis is a crucial step in the 
analysis of microarray data. In this chapter an extensive overview of the segmentation of the microarray 
image is presented. Methods already presented in the literature are classified into two main categories: 
methods which are based on image processing techniques and those which are based on Machine 
learning techniques. A novel classification-based application for the segmentation is also presented to 
demonstrate efficiency.

Chapter XX
Recent Advances in Automated Chromosome Image Analysis  ......................................................... 307
        Petros S. Karvelis, University of Ioannina, Greece
       Dimitrios I. Fotiadis, University of Ioannina, Greece

Automated chromosome analysis is now becoming routine in most human cytogenetics laboratories. It 
involves both processing and analysis of digital images and has been developed because of the demand 
by cytogeneticists. Over the years, many techniques have been introduced for the automatic segmentation 
and classification of chromosome images, of which only a few are included in the available commercial 
systems. Today, advances in chromosome imaging techniques, especially in multispectral imaging, lead 
the way for the development of new and improved methods for the location, segmentation and classifi-
cation of chromosome images by exploiting the color information. In this chapter the authors describe 
methods which have been already developed for automated chromosome analysis.

Chapter XXI
Machine Learning in Morphological Segmentation ........................................................................... 320
        O. Lezoray, Université de Caen Basse-Normandie, France
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The segmentation of microscopic images is a challenging application that can have numerous applica-
tions ranging from prognosis to diagnosis. Mathematical morphology is a very well established theory 
to process images. Segmentation by morphological means is based on watershed that considers an image 
as a topographic surface. Watershed requires input and marker image. The user can provide the latter but 
far more relevant results can be obtained for watershed segmentation if marker extraction relies on prior 
knowledge. Parameters governing marker extraction varying from image to image, machine learning 
approaches are of interest for robust extraction of markers. The authors review different strategies for 
extracting markers by machine learning: single classifier, multiple classifier, single classifier optimized 
by model selection.



Chapter XXII
Pit Pattern Classification Using Multichannel Features and Multiclassification ................................ 335
        Michael Häfner, Medical University of Vienna, Austria 
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Wavelet-, Fourier-, and spatial domain-based texture classification methods have been used success-
fully for classifying zoom-endoscopic colon images according to the pit pattern classification scheme. 
Regarding the wavelet-based methods, statistical features based on the wavelet coefficients as well 
as structural features based on the wavelet packet decomposition structures of the images have been 
used. In the case of the Fourier-based method, statistical features based on the Fourier-coefficients in 
ring filter domains are computed. In the spatial domain, histogram-based techniques are used. After 
reviewing the various methods employed we start by extracting the feature vectors for the methods 
from one color channel only. To enhance the classification results the methods are then extended to 
utilize multichannel features obtained from all three color channels of the respective color model used. 
Finally, these methods are combined into one multiclassifier to stabilize classification results across 
the image classes.

Chapter XXIII
Automatic Identification and Elastic Properties of Deformed Objects Using
their Microscopic Images  ................................................................................................................... 351
        C. Papaodysseus, National Technical University of Athens, Greece 
        P. Rousopoulos, National Technical University of Athens, Greece 
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In this chapter the state of the art is presented in the domain of automatic identification and classification 
of bodies on the basis of their deformed images obtained via microscope. The approach is illustrated 
by means of the case of automatic recognition of third-stage larvae from microscopic images of them 
in high deformation instances. The introduced methodology incorporates elements of elasticity theory, 
image processing, curve fitting and clustering methods; a concise presentation of the state of the art 
in these fields is given. Combining proper elements of these disciplines, the authors first evaluate the 
undeformed shape of a parasite given a digital image of a random parasite deformation instance. It is 
demonstrated that different orientations and deformations of the same parasite give rise to practically 
the same undeformed shape when the methodology is applied to the corresponding images, thus con-
firming the consistency of the approach. Next, a pattern recognition method is introduced to classify the 
unwrapped parasites into four families, with a high success rate. In addition, the methodology presented 
here is a powerful tool for the exact evaluation of the mechano-elastic properties of bodies from images 
of their deformation instances. 



Chapter XXIV
Nonlinear Ultrasound Radiation-Force Elastography ......................................................................... 373
        Alexia Giannoula, University of Toronto, Canada
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Elastography or elasticity imaging can be defined as the science and methodology of estimating the 
mechanical properties of a medium (including soft tissue). In this chapter, an overview of elastography 
and its relation to tissue pathology will be presented. The basic principles of the static and dynamic 
methods will be described with special emphasis on the dynamic methods that rely on the acoustic 
radiation force of ultrasound. Of interest are the low-frequency narrowband shear waves that can be 
generated by a modulated radiation force produced by the interference of two continuous-wave (CW) 
ultrasound beams of slightly different frequencies. The advantages of using narrowband shear waves 
to estimate the viscoelastic properties of tissue will be discussed. Furthermore, an implementation of 
the inverse-problem approach will be presented and it will be shown how harmonic maps of the local 
shear modulus and viscosity can be reconstructed based on both the fundamental and higher-harmonic 
components of the propagated narrowband shear waves.
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The aim of this chapter is to provide an overview about models and methodologies used for the Dy-
namic Contrast Enhancement (DCE) analysis. DCE is a non-invasive methodology aimed to diagnostic 
the nature of a lesion on the base of the perfusion’s dynamic of specific contrast agents. The idea at the 
base of DCE is that, in several pathological tissues, including tumors and inflammatory diseases, the 
angiogenic process is abnormal, hence the characterization of vascularisation structure may be used to 
support the diagnosis. In this chapter, the authors will describe the basic DCE procedures and introduce 
some of its most innovative evolution based on the pharmacokinetic analysis technique (PK), and the 
empirical model (EM). Even if DCE is still a medical research topic, there is large interest for this type 
of approach in biomedical applications as witnessed by the availability of specific tools in the last gen-
eration top-class US, CT, and MR machines.

Chapter XXVI
Automatic Correspondence Methods towards Point-Based Medical Image Registration:
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        George K. Matsopoulos, National Technical University of Athens, Greece

The accurate estimation of point correspondences is often required in a wide variety of medical image 
processing applications including image registration. Numerous point correspondence methods have 
been proposed, each exhibiting its own characteristics, strengths, and weaknesses. This chapter presents 
a comparative study of four automatic point correspondence methods. The four featured methods are the 
Automatic Extraction of Corresponding Points approach, the Trimmed Iterated Closest Points scheme, 
the Correspondence by Sensitivity to Movement technique and the Self-Organizing Maps network. 



All methods are presented, mainly focusing on their distinct characteristics. An extensive set of dental 
images, subject to unknown transformations, was employed for the qualitative and quantitative evalu-
ation of the four methods, which was performed in terms of registration accuracy. After assessing all 
methods, it was deduced that the Self-Organizing Maps approach outperformed in most cases the other 
three methods in comparison.
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Various approaches have been taken to detect anomalies, with certain particularities in the medical im-
age scenario, linked to other terms: content-based image retrieval, pattern recognition, classification, 
segmentation, outlier detection, image mining, as well as computer-assisted diagnosis, and computer-
aided surgery. This chapter presents, a review of anomaly detection (AD) techniques and assessment 
methodologies, which have been applied to medical images, emphasizing their peculiarities, limitations 
and future perspectives. Moreover, a contribution to the field of AD in brain computed tomography im-
ages is also given, illustrated and assessed. 
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The authors present in this chapter an overview on evaluation of medical image compression. The different 
methodologies used in the literature are presented. Subjective evaluation uses some a priori knowledge 
such as the judgment of experts or the ability to realize a correct diagnosis. Objective evaluation generally 
takes into account the value of metrics: the PSNR is an example of such a criterion. The goal of hybrid 
evaluation is to realize a reliable judgment while having a simple computation. The authors discuss on 
the benefits and drawbacks of these approaches. The European Project called OTELO in which they 
were involved, gives feedback on ultrasound image compression.
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Medical images are often characterized by high complexity and consist of high resolution image files, 
introducing thus several issues regarding their handling. Current compression schemes produce high 
compression rates, sacrificing however the image quality and leading this way to unenviable examina-
tion.  Region of Interest (ROI) coding has been introduced as an efficient technique for addressing such 



issues, by performing advanced image compression and preserving quality in diagnostically critical 
regions. This chapter discusses the basic ROI approaches and provides an overview of state of the art 
ROI coding techniques for medical images along with corresponding results.

Chapter XXX
Segmentation Methods in Ultrasound Images .................................................................................... 473
        Farhang Sahba, Medical Imaging Analyst, Canada

Ultrasound imaging now has widespread clinical use. It involves exposing a part of the body to high-
frequency sound waves in order to generate images of the inside of the body. Because it is a real-time 
procedure, the ultrasound images show the movement of the body’s internal structure as well. It is usually 
a painless medical test and its procedures seem to be safe. Despite recent improvement in the quality 
of information from an ultrasound device, these images are still a challenging case for segmentation. 
Thus, there is much interest in understanding how to apply an image segmentation task to ultrasound 
data and any improvements in this regard are desirable. Many methods have been introduced in existing 
literature to facilitate more accurate automatic or semi-automatic segmentation of ultrasound images. 
This chapter is a basic review of the works on ultrasound image segmentation classified by application 
areas, including segmentation of prostate transrectal ultrasound (TRUS), breast ultrasound, and intra-
vascular ultrasound (IVUS) images.
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Preface

Diagnostic imaging in biomedicine is based on several techniques and processes aiming at the enhance-
ment of experts’ capability to evaluate imaging data. Diagnostic imaging combines image processing 
and decision support methods to improve and accelerate case-specific advice in clinical environments.

Decision support today focuses on diagnosis, prognosis, therapy and follow-up recommendations 
and is usually based on simple and easily acquired features met in biomedical data. The latest break-
throughs in imaging technologies in medicine lead to an explosion of the imaging data available. New 
techniques and methods addressing mainly acquisition and processing of information from medical and 
biological images appeared and the integration of biomedical image data into decision support systems 
is a challenging task. This mainly supports the decision on the patient’s health status and the quality of 
the extracted diagnosis and prognosis.
Despite the wide application of decision support systems in medicine, only a few such systems have been 
developed for biomedical imaging. One of the reasons is the dif.culty in representing anatomical or 
functional units of the images in formal features. Dealing with this uncertain and imprecise information 
increases the complexity of decision support systems. Furthermore, each imaging modality and each 
type of pathology requires the development of dedicated low-level feature extractors. Although, standard 
computer-vision techniques may be used (template matching, region growing, etc.), specific methodologies 
and algorithmic approaches need to be developed. These difficulties, combined with the computational 
cost associated with biomedical imaging applications, have prevented, so far, the development of fully 
automated image guided decision support systems. By producing a formal and structured representa-
tion of the images, imaging decision support systems enable new applications such as the automated 
generation of anatomical and functional atlases or the content-driven image retrieval. The abundance 
of information derived from cross-sectional imaging modalities, such as computed tomography (CT), 
magnetic resonance imaging (MRI), single photon emission computerized tomography (SPECT), positron 
emission tomography (PET), or conventional planar imaging technologies such as digital X-ray, and 
ultrasound highlights the need for the design and the development of decision support systems based 
mainly on multiple imaging data. Such tools improve diagnostic accuracy and overall reproducibility 
by providing a second opinion and objective measurements of normal and abnormal patterns.

This handbook features the most current research findings in all aspects of biomedical imaging, di-
agnostic and decision support methodologies, from theoretical and algorithmic problems to successfully 
designed and developed biomedical image guided decision support systems. The handbook is intended 
for all those working in the field of medical image analysis and information technologies in biomedicine. 
It provides different approaches and levels of knowledge for experienced researchers, graduate students, 
computer engineers, and medical practitioners interested in emerging intelligent diagnostic tools and 
systems. The handbook serves as the basis for understanding the future of decision support technolo-
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gies and services based on biomedical imaging, exemplifying the impact of knowledge extraction on 
clinical environments.

The objective of this Handbook is to present state of the art in the field and present advances 
which:

• Bridge the gap between medical and biological imaging with clinical decision support systems.
• Integrate biomedical images in the most efficient way in existing decision support systems.
• Present a unified framework for image analysis in medical and biological applications.
• Enhance the readers’ capability in designing decision support systems which employ biomedical 

images.

This book is divided into three sections. The first introduces the readers to some advanced image-
based decision support applications. This part addresses the utilization of existing methodologies and 
techniques to several clinical areas with increased needs for computer-aided assistance. An overview of 
computational methods and tools applied in decision support systems is presented. Integration of imaging 
data as well as new approaches on cardiac, intracoronary and cardiac MRI data are analyzed extensively. 
In addition, clinical decision support systems for the interpretation of hepatic lesions, oncology samples 
and breast imaging are presented, along with a quantitative analysis of hysteroscopy imaging in gyneco-
logical cancer. The second section of the book presents novel methodologies in the field of biomedical 
imaging. 3D quantitative radionuclide dosimetry and combination of geometry and image data appear 
to have great interest in the area of radiation therapy. Diffusion tensor imaging, infrared imaging as well 
as DNA microarray analysis are new issues. Research studies based on the mechano-elastic properties of 
matter and elastographic applications are also presented. In the third section, methodological approaches 
of image processing and their medical applications are presented.

Themis P. Exarchos 
Athanasios Papadopoulos
Dimitrios I. Fotiadis
University of Ioannina, Greece
August 2008
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Abstr Act

The automation of diagnostic tools and the increasing availability of extensive medical datasets in the 
last decade have triggered the development of new analytical methodologies in the context of biomedi-
cal informatics. The aim is always to explore a problem’s feature space, extract useful information and 
support clinicians in their time, volume, and accuracy demanding decision making tasks. From simple 
summarizing statistics to state-of-the-art pattern analysis algorithms, the underlying principles that 
drive most medical problems show trends that can be identified and taken into account to improve the 
usefulness of computerized medicine to the field-clinicians and ultimately to the patient. This chapter 
presents a thorough review of this field and highlights the achievements and shortcomings of each family 
of methods. The authors’ effort has been focused on methodological issues as to generalize useful con-
clusions based on the large number of notable, yet case-specific developments presented in the field.
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Computational Methods and Tools for Decision Support in Biomedicine

Introduct Ion

Contemporary and future methods of healthcare 
delivery will be exploiting new technology, novel 
sensing devices and a plethora of modes of in-
formation generated by distributed data sources. 
This raw data is inevitably increasing in volume 
and complexity at a rate faster than the ability of 
primary healthcare providers to access and under-
stand it. Several countries are currently consider-
ing issues of integrated personalised healthcare 
and the application of ‘intelligent’ data mining 
methodologies in providing medical decision 
support to the clinician (and the individual), using 
principled pattern recognition methodologies. 

Within such an environment, the domain of 
medical imaging, with its various structural (CT, 
MRI, U/S) and functional (PET, fMRI) modali-
ties, is probably on the top of the list with respect 
to the amount of raw data generated. Most of 
these modalities are explored in other chapters 
of this volume. Even though image inspection 
by human experts enables the accurate local-
ization of anatomic structures and/or temporal 
events, their systematic evaluation requires the 
algorithmic extraction of certain characteristic 
features that encode the anatomic or functional 
properties under scrutiny. Such imaging features, 
treated as markers of a disease, can subsequently 
be integrated with other clinical, biological and 
genomic markers, thus enabling more effective 
diagnostic, prognostic and therapeutic actions. 
It is the purpose of this chapter to address issues 
related to the decision making process, to trace 
developments in infrastructure and techniques, as 
well as to explore new frontiers in this area.

t he Medical Informatics r evolution

During the last decades we are witnessing a 
gradual shift in the medical field. Medical pro-
fessionals are increasingly being supported by 
advanced sensing equipment. These instruments 
provide objective information and assist in reduc-

ing the margin of error in diagnosis and prognosis 
of diseases. Detailed imaging techniques provide 
accurate anatomic and/or functional maps of the 
human body, and advanced signal processing 
methods performing biosignal and biochemical 
analyses are now largely automated, faster and 
increasingly accurate. In the broader medical 
research field, larger datasets of patients includ-
ing multiple covariates are becoming available 
for analysis. 

Figure 1 outlines the information flow in a 
medical decision support system. At an initial 
stage, a large amount of data is collected from 
various sensors and pre-processed. This data is 
accessibly stored in a structured format and fused 
with other information, such as expert knowledge. 
At a higher level, patterns are sought in the full 
dataset and translated in an intelligent way to 
produce meaningful and helpful reasoning. This 
output supports healthcare professionals during 
their prognostic, diagnostic and other decision 
making tasks.  At the end of this process, feedback 
to the system in the form of expert evaluation or 
validity of analysis can be incorporated to improve 
performance. 

This relative data abundance has resulted in 
a corresponding explosion of scientific papers 
referring to thorough statistical analysis with 
data mining and pattern classification techniques. 
New findings are more easily made available to 
the scientific community through the internet and 
cheap processing power aids the development of 
complex models of diseases, drugs, and effects. 

In this context the field of medical informatics 
emerges as the intersection of information technol-
ogy with the different disciplines of medicine and 
health care. It deals with the resources, devices, 
and methods required to optimize the acquisition, 
storage, retrieval, analysis and use of informa-
tion in health and biomedicine (VanBemmel & 
Musen, 1997). Medical informatics tools include 
not only computers but also clinical guidelines, 
formal medical terminologies, and information, 
communication and decision support systems. It 
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is by now evident that medical informatics do not 
just provide information but also summarize it in 
an intelligent and comprehensive form.

c urrent state in Medical Informatics

According to the latest statistics, an increasing 
number of health care institutions are initiating 
the shift to informatics both for internal use and 
for patient accessibility. Funding for Healthcare 
Information Technologies (HIT) is at an all time 
high reaching in some countries 3.5% of their 
healthcare budget (Steele, 2002). In most cases, 
such efforts are not standardized within countries 
and the expectations are much lower at a global 
scale. Although initially driven by requirements to 
support logistics, billing, and patient administra-
tion, today’s healthcare information systems face 
a growing interest for higher level applications 

such as diagnostic decision support and treatment 
evaluation. 

Serious efforts have been made in the last five 
years in creating standards for a patient’s Electron-
ic Health Record (EHR) (Katehakis, Tsiknakis, & 
Orphanoudakis, 2002) to facilitate data exchange 
not only between hospitals, labs and clinicians, but 
also between institutions and countries. The task 
of structuring an individual’s medical status and 
history in a common format has been undertaken 
by a number of vendors. There are three main 
organizations creating standards related to EHR: 
HL7, CEN TC 215 and ASTM E31. HL7 operating 
in the United States, develops the most widely 
used health care-related electronic data exchange 
standards in North America (HL7 RIM, Clinical 
Document Architecture, CDA), while CEN TC 
215 operating in 19 European member states, is 
the pre-eminent healthcare information technol-

Figure 1. Medical informatics decision support system dataflow
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ogy standards developing organization in Europe. 
Both HL7 and CEN collaborate with the ASTM 
that operates in the United States and is mainly 
used by commercial laboratory vendors. ASTM’s 
Continuity of Care Record (CCR) standard has 
recently been criticised for being too focused on 
patient file transfer in contrast to CDA’s adapt-
ability to emerging future needs and applications 
(Ferranti, Musser, Kawamoto, & Hammond, 
2006). In the medical imaging field DICOM is 
the most widely used standard (Bidgood, & Horii, 
19970). A broader framework termed integrat-
ing healthcare enterprises (IHE, www.ihe.com) 
is an initiative by healthcare professionals and 
industry to improve the way computer systems 
in healthcare share information. IHE promotes 
the coordinated use of established standards such 
as DICOM and HL7 to address specific clinical 
need in support of optimal patient care. Systems 
developed in accordance with IHE communicate 
with one another better, are easier to implement, 
and enable care providers to use information 
more effectively.

The combination of EHR standards with the 
upward trend in funding for HIT creates good 
prospects in the field. However a decisive factor 
in the expansion of such technologies in the ap-
plied domain is their acceptance by the healthcare 
personnel. There is some scepticism regarding the 
extensive use of computerized tools for decision 
support. Starting from individual data safety to 
reliability of automated systems, to proper train-
ing and acceptance, the attitude of clinicians is 
often positive only in institutions focused on 
research.

A diversity of Applications

Within such a context and mentality, a number of 
key application areas can be identified in which 
automated data processing is already or can be 
effectively applied. Disease diagnosis is probably 
the most important application of informatics in 
medical decision making. It involves the evalu-

ation of criteria that can discriminate between 
different pathologies. Prognosis of the onset of 
pathology is also among the leading applications 
of pattern recognition tools in medicine (Bates, 
2002). Its utility ranges from preemptive advice to 
statistical analysis of risk for insurance companies. 
At subsequent stages, following a patient’s initial 
diagnosis, treatment evaluation is a key issue, 
which involves monitoring of disease progress and 
correlation of observed results with the treatment 
plan; the objective being to quantify the effect of 
the chosen treatment on the pathology.

From a similar perspective, modelling of pa-
tient survival utilizes ideas from statistical risk 
and survival analysis and censoring models to esti-
mate the probability of a health event (i.e. relapse, 
death) –due to a specific disease– of a patient at a 
specific time (Taktak, Fisher, & Damato, 2004). 
It is also used for patient grouping and allocation 
to specialized reference centres. Moreover the 
statistical results from the survivability analysis 
are used to optimize follow-up monitoring of 
patients in a personalized manner.

At a lower level, electronic health records 
(EHR) are gradually becoming a reality providing 
near real-time data access, and thus dramatically 
expanding the clinician’s opportunities for timely 
response. Although not an application in itself, 
these clinical information systems and the related 
standards elevate the functionality of upper layers 
of decision support systems by providing a uni-
fied structured and meaningful representation of 
multimodal and diverse data. 

From a broader epidemiological standpoint, 
automated data processing has made possible 
the large scale analysis of populations with the 
objective of identifying disease traits and epide-
miological patterns that were previously beyond 
the reach of a single researcher. 

All the above applications share common 
analytic aspects but at the same time pose a 
number of difficulties for the biomedical engi-
neers, as they indicate a transition from disease 
management to personalized treatment (Cimino, 
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& Shortliffe, 2006). Can we put together rational 
structures for the way clinical evidence is pooled, 
communicated, and applied to routine care? What 
tools and methods need to be developed to help 
achieve these aims in a manner that is practicable, 
testable, and in keeping with the fundamental 
goal of healthcare - the relief from disease? In 
the following sections we present a perspective 
on the current state-of-the-art in automated data 
analysis and decision support. 

bAckground

need for Intelligent k nowledge 
Extraction t ools

Advanced biosensing methods and technologies 
have resulted in an explosion of information and 
knowledge about diseases and their treatment. As 
a result, our ability to characterize, understand 
and cope with the various forms of diseases is 
growing. At the same time, errors in U.S. hos-
pitals cause from 44,000 to 98,000 deaths per 
year, putting medical errors, even at the more 
conservative estimate, above the eighth leading 
causes of death (Steele, 2002). 

It seems that difficulties and failures of medical 
decision-making in everyday practice are largely 
failures in knowledge coupling, due to the over-
reliance on the unaided human mind to recall and 
organize all the relevant details (Hsinchun, Fuller, 
Friedman, & Hersh, 2005). They are not, specifi-
cally and essentially, failures to reason logically 
with the medical knowledge once it is presented 
completely and in a highly organized form within 
the framework of the patient’s total and unique 
situation. If we are to reduce errors and provide 
quality of care, we must transform the current 
healthcare enterprise to one in which caregivers 
exercise their unique human capacities within 
supportive information systems that compensate 
for their inevitable human limitations. 

Therefore, tools to extend the capacity of the 
unaided mind are required to couple the details 
of knowledge about a problem with the relevant 
knowledge from combined, evidenced and vali-
dated clinical and genomic data repositories.

underlying t echnologies

In this direction there are a number of technologies 
that serve as foundations upon which the upper 
layer services can be built. At the data collection 
level, most researchers and clinicians face the 
need for common protocols to standardise and 
assist data collection, allow online incorpora-
tion of new cases and comparison of results over 
diverse population sets. Much like the EHR eases 
the transfer of health records, common data col-
lection standards (Potamias, & Moustakis, 2001) 
are needed to facilitate interoperability of not 
only patient data but also analysis and presenta-
tion tools at levels ranging from institutional to 
international level.

The emerging GRID (Huang, Lanza, Rajasek-
aran, & Dubitzky, 2005) technologies are of great 
utility in the wide application field of collecting, 
storing, processing, and presenting the medical 
data in a way transparent to the end user. Utiliz-
ing bandwidth, computational power and other 
resources optimally, the GRID promises a cost 
effective solution to the unification of the medical 
informatics landscape. Although presently limited 
to research purposes, its use is undoubtedly go-
ing to extend the limits of artificial intelligence 
in medicine.

Moving to a more abstract (re)presentation 
layer, the development of medical and genomic 
ontologies and their alignment is a requirement 
for storing and handling huge datasets in a struc-
tured and logically founded way. A lot of research 
effort has been devoted recently towards this di-
rection primarily in connection to DNA analysis 
(Alonso-Calvo, & Maojo, 2007), as explained in 
the last section.
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Speci.c Challenges

The breadth and depth of information already 
available in both medical and genomic research 
communities, present an enormous opportunity 
for improving our ability to study disease-mecha-
nisms, reduce mortality, improve therapies and 
meet the demanding individualization of care 
needs. The inability to share both data and tech-
nologies developed by MI and BI research com-
munities and by different vendors and scientific 
groups, is therefore severely hampering the dis-
covery process (Martin-Sanchez et al., 2004). 

Among the challenges that characterize medi-
cal data pattern analysis one can identify data 
missingness as a key concept (Perez, Dennis, Gil, 
Rondon, & Lopez, 2002). Missing data occur due 
to a number of reasons: inconsistent data entry, 
poor protocol design, death censoring, inadequate 
personnel familiarization with the system and 
inconsistent sensing equipment between collec-
tion centres. The patterns of missing data depend 
on the specific causes of this effect. The optimal 
way to handle this is in turn based upon the pat-
tern and the covariance of the effect with other 
model factors. As discussed in a related review 
paper (Burton, & Altman, 2004), most often in 
published clinical research this phenomenon is 
handled inadequately. Cases or covariates with 
missing data are discarded or imputed in naïve 
ways resulting in added bias to the statistical 
findings. Safe imputation of medical datasets is 
realistically achievable up to certain missing-
ness ratios. Above these thresholds the affected 
covariates have to be discarded. In particular, 
Expectation Maximization (EM) imputation, data 
augmentation and multiple imputation are con-
sidered effective and statistically sound methods 
to compensate for this problem.

Apart from incomplete data, noise is also a 
crucial factor in medical informatics data. The 
human body has itself largely varying charac-
teristics. Sensing equipment also introduce an 
additional noise component (Bruce, 2001). On 

top of that, examiners assess the raw information 
in a subjective way depending on the context, 
their experience and other factors. The final 
quantifiable and electronically storable result is 
far from an ideal measurement. Taking this into 
account, any biomedical pattern recognition 
system has to be robust with respect to noise. 
Common practice dictates that the noise compo-
nent should be removed as early as possible in the 
processing sequence. As an additional measure, 
cross validation of research results can be used 
in the post-processing phase to minimize output 
variance.

Closely related to the reliability of the input 
information is the concept of uncertainty quan-
tification. Researchers observe very strong un-
certainties in data, models, and expert opinions 
relating to clinical information (Ghosh, 2004). 
Being able to quantify this factor in every step 
of the computational process makes it possible to 
infer bounds on the final decision support outcome. 
This is far from theoretical. The real world deci-
sions that a healthcare professional has to make 
require that the information used is as concise as 
possible. Confidence intervals are already used in 
commercial imaging diagnostic support software 
packages. More advanced techniques as Bayesian 
Belief networks and Dempster-Schafer theory of 
evidence are still under research.

Finally, a usually overlooked part of any 
medical problem is that the outcome usually 
affects human lives. In practice this makes the 
misclassification cost largely asymmetric (Frei-
tas, Costa-Pereira, & Brazdil, 2007). A false 
negative patient diagnosis costs far more than 
a false positive one (usually not even measur-
able in medical expenses). Yet, in most clinical 
classification research papers, cost functions are 
assumed symmetric as a default for simplicity 
reasons. Another important problem is that the 
models’ assumptions are not always analysed in 
detail. It is common practice to assume Gaussian 
distributions or equal class priors due to their 
mathematical tractability, although they are not 
applicable to all contexts.
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Biomedical datasets usually consist of features 
of different modalities. Data types can range from 
CT images, to EEGs, to blood tests, to microarray 
data or experts’ opinions (Acharya, Wasserman, 
Stevens, & Hinojosa, 1995). All have different 
dimensionalities and dynamic ranges and require 
different pre-processing, data mapping and feature 
extraction and representation methods. 

The data is often collected through large scale 
multicenter studies. The participating centres are 
usually distributed geographically and have to 
submit new samples online. This creates the need 
for on-site data reduction in order to be able to 
transmit and store high volumes of patient data. 
A pattern classifier should be scalable or modular 
or be able to run in an automated way before the 
data has to be transmitted to a core facility.

In such a distributed setting a number of se-
curity topics become very important. In our case 
the term security is considered to be information 
systems security, which covers all aspects of data 
or information protection. The measures applied 
to protect information systems include:

• Authentication & Authorisation: Ensuring 
that the distributed data or other resources 
are accessible only to those people who are 
authorised to do so. 

• Con. dentiality: The data produced or 
handled is not exposed to unauthorised 
persons. 

• Accountability: The ability to create an 
Audit Trail, to observe and chronologically 
log all actions undertaken by users (patient 
history data entry, treatment logging, etc). 

• Non-repudiation: Strongly related to 
accountability is non-repudiation, which 
involves preventing an individual or entity 
from denying having performed a particular 
action related to data (records tampering, 
lowering security level, releasing). 

• Privacy: Since much work to be carried out 
deals with clinical data concerning patients’ 
private information, it should be assured that 

privacy is well protected. For example: In 
many cases researchers are able to complete 
their work without knowing the identity of 
the patients concerned in their study. This 
can be accomplished through de-identifica-
tion and pseudonymisation (Taira, Bui, H. 
Kangarloo, Taira, Bui, & E. Kangarloo, 
2002).

The latter topic, patients’ privacy, has a great 
impact on current research efforts due to the nature 
of post-genomic data and the existing legislation 
concerning this type of information. Data pro-
tection measures need to comply with laws and 
ethical guidelines, while reassuring patients about 
the proper protection of their sensitive informa-
tion. Conversely, data protection measures must 
not be so restrictive that they inhibit the work of 
researchers. 

Answering the above needs will evidently 
enhance the scope and results of medical infor-
matics as a practical healthcare tool.

MEthods for Proc Ess Ing 
MEdIc Al  dAt A

Having established some of the main challenges 
to be addressed by the biomedical informatics 
research community, we will in the following sec-
tion present the available methods for processing 
multilevel medical data.

f unctional t axonomies

Medical data dimensionalities can be high, 1-D 
time series, 2-D images, 3-D body scans, 4-D spa-
tio-temporal sequences. How this data is processed 
depends on the eventual functionality required to 
be reached by the technological tools. The first 
high level division of techniques depends upon 
whether or not one is aware of the type or class of 
ailment, or whether one is more concerned with 
a generic investigation of health state. 
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If the problem cannot be posed in a way that one 
can ascribe an explicit target value of a prognostic 
or medical indicator, then we are dealing with an 
unsupervised problem. For instance, in dealing 
with the visualization of a population of thousands 
of people based on features extracted from ECG 
waveforms, specific ailments might be irrelevant 
and we are more interested in how the population 
is dispersed as a distribution. This would be the 
visualization problem of unsupervised density 
estimation. Using such an unconditional distribu-
tion would be useful at the individualized level 
for detecting whether an individual should be 
considered somehow anomalous, or an outlier of 
the population. Such information could then be 
used as a warning signal for further investigation 
of that individual. Figure 2 depicts a functional 
hierarchy of unsupervised processing tasks, along 
with exemplar algorithms that implement these 
functional tasks.

In feature extraction, most techniques are fo-
cused either in decomposing the biomedical data 
into components (ICA, PCA) so that the noise and 
the signal may be more easily discriminated, or 
in transforming data into another more appropri-

ate representation (Projection Pursuit, PCA), or 
simply in data reduction without reducing the 
relevant signal content. Clustering relies on the 
existence of similarity or dissimilarity measures 
for separating cases that exhibit a pathology from 
the general population, taking into account prior 
knowledge (Bathula, Papademetris, & Duncan, 
2007) and cause-effect relationships. Some fuzzy 
classification techniques can additionally account 
for multiple concurrent pathological causes.

A common such application is the use of ICA 
for feature extraction from modalities such as 
electroencephalograms (EEGs) and functional 
magnetic resonance imaging (fMRI) signals. 
As an example, (Moosmann, Eichele, Nordby, 
Hugdahl, & Calhoun, 2008) present such an 
application with extensions to synchronous 
visualization and data fusion. The two signal 
sources first undergo preprocessing to including 
correction of head motion related image offsets, 
temporal filtering and appropriate masking to 
deal with eye, pulse and magnetic susceptibil-
ity artifacts. Independent components are then 
estimated, back-reconstructed, averaged across 
data-sets and compared to the original sources 

Figure 2. Functional separation of unsupervised tasks.
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with linear regression. This 2-stage process 
creates both robust feature representations and 
classification outcomes.

Visualization of high dimensional biomedi-
cal data is an important and under-researched 
area.  It is a difficult task since the projection 
of high-dimensional data onto low dimensional 
spaces in which data can be visualized requires 
compromises that necessarily distort the data. 
Amongst the more common visualization methods 
are projections onto dominant principal com-
ponent spaces, the self-organising feature map 
(SOFM), the Generative Topographic Map, and 
a group of methods which explicitly exploit rela-
tive dissimilarity between feature vectors rather 
than their absolute distances (Serocka, 2007). 
Another important application of unsupervised 
methods is related to density modelling.  This is 
an explicit attempt to describe the probabilistic 
structure of medical data in situations that we 
do not have gold standard target data vectors. In 
this domain, one is usually interested in describ-
ing the unconditional probability distribution of 
patient’s characteristics without knowledge of 
explicit disease characteristics or states. 

If on the other hand one focuses on a specific 
class of ailment (e.g. benign or malignant cancer), 

then we are concerned with a supervised problem. 
Supervised problems are exemplified by classifica-
tion and prediction problems where one is able to 
collect data involving ground truth target vectors 
for patients with known established outcomes.  In 
supervised approaches labelled data is used as a 
source for constructing generic models which can 
then be applied to individuals from a population 
in which these target labels are not yet known. 
Many approaches in supervised biomedical tasks 
come under the categories of prediction and clas-
sification. Because we have access to a dataset of 
labelled patient data, parametric or nonparametric 
models can be constructed in attempting to re-
produce the generator of the labelled data without 
reproducing the noise itself. The basic difference 
between classification and prediction tasks is in 
the nature of the target variable; in classification 
tasks one is concerned with the estimation of a 
binary vector, whereas in generic prediction the 
target is typically a continuously varying quantity, 
such as life expectancy. In this view, supervised 
classification extends to function approximation. 
Data modelling aims to provide some form of 
regularization or smoothing to allow noise and 
outliers to be eliminated. Figure 3 depicts this 
functional taxonomy of supervised tasks along 

Figure 3. Functional separation of supervised tasks, with algorithm examples.
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with examples of common algorithms used in 
each area.

As an illustrative example we can briefly 
describe the case of classification of SPECT 
images of Alzheimer’s disease patients (Fung, 
& Stoeckel, 2007). In this medical imaging clas-
sification problem certain preprocessing has to be 
applied in order to remove noise, amplify edges, 
centre the region of interest and perform spatial 
and space normalization before the actual clas-
sification mechanism is applied. A support vector 
machine was trained to identify regions using 
spatial information. The SVM was primarily used 
for feature selection by choosing subregions in 
which cerebral activity deviates highly from a set 
of baseline images (pre-labeled dataset). Figure 4 
shows the extracted rectangular regions of voxels 
overlaid on the respective SPECT image. 

Model selection and Evaluation 
t echniques

Model selection and assessment are crucial 
common aspects that cut across the supervised/
unsupervised boundary and relate to evaluation 
strategies of algorithmic approaches. In biomedi-
cal data processing it is essential to construct low 

bias models that are robust to fluctuations (in data 
and model parameters) for stability. Overtraining 
of adaptive models, or over-parameterization of 
parameterized models are two examples of situ-
ations to be avoided, in particular in biomedical 
data processing. Methods for model assessment 
involve issues linked to the bias-variance dilemma 
and regularization, either explicitly through the 
cost functions being used or implicitly through 
restricting the model class. However, more and 
more in the intermediate levels of biomedical data 
processing, the use of single models is being re-
placed by methods of averaging. This is motivated 
from the Bayesian perspective of marginalization 
rather than selection. By averaging over model 
predictions or over models trained on different 
data samples drawn from the same distribution, it 
is possible to compensate for weak or overtrained 
models. Common methods of averaging include 
Bootstrap, Boosting, Bagging, Stacking, Bayes-
ian averaging and approximate methods based 
on sampling, such as Markov chain Monte Carlo 
methods.

Many novel and promising models are pre-
sented and evaluated in the published literature 
in a way that leaves doubt regarding the variance, 
reproducibility and reliability of the results (Mur-

Figure 4. Rectangular regions picked by the algorithm overlaid on a SPECT image of an Alzheimer’s 
disease patient.
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phy, 2004). Showing high accuracies on a specific 
dataset instance is not important unless supported 
by analysis that verifies statistical robustness. A 
large amount of research work and debate has 
been devoted to the choice of performance metrics 
(Eberhart, & Dobbins, 1990).  Optimistically, 
diagnostic or prognostic models should aim to 
produce the class-conditional probabilities for 
combinations of disease occurrence and feature 
or test presence. Assessment and evaluation needs 
to also reflect the full tradeoffs between selecting 
prognostic classes depending upon a threshold, 
such as the Receiver Operating Characteristic 
(ROC) curve (Lasko, Bhagwat, Zou, & Ohno-
Machado, 2005). Alternatives to the misclas-
sification probabilities are the predictive values, 
which quantify the clinical relevance of the test 
and involve the reverse conditioning of prob-
abilities. Another description of the prognostic 
value of a test (or model) is in terms of positive 
and negative Likelihood ratios (McGee, 2002). 
These are specifically relevant since they quantify 
the increase in knowledge about a disease gained 
through the output of a diagnostic model. 

Apart from the above performance metrics, 
the medical informatics community faces the 
need to standardize measures for clustering, 
visualization, model comparisons and optimi-
zation. Such common metrics that should be 
considered involve scoring metrics (Wilcoxon 
and Kruskal-Wallis statistics), prediction error 
variance, entropy measures, mutual information, 
Kullback-Leibler divergence and dissimilarity 
metrics, such as Standardised Residual Sum of 
Squares (STRESS).

data and decision f usion

In pattern analysis it is known that there is no 
single best algorithm for a specific dataset. Clas-
sifier ensembles have in recent years produced 
promising results, improving accuracy, confi-
dence and most importantly improved feature 
space coverage in many practical applications. 

In biomedical problems the combination of 
multiple classifiers has been effectively applied 
for diagnosis, gene selection and patient group-
ing (Dimou, Manikis, & Zervakis, 2006). The 
driving principle behind this type of approach is 
that a combination of elementary classifiers can 
map a feature space effectively, provided that 
the outcomes are interpreted and combined in 
a statistically appropriate way. Classifier fusion 
methods are described and reviewed in (Ruta & 
Gabrys, 2000). A common pitfall in using en-
sembles is that the base classifiers’ outcomes are 
in many cases not interpretable as probabilities. 
This limits the choice of the available combiners 
if the objective is to provide statistical bounds on 
the fused output. Therefore, researchers should 
pay attention to the assumptions of each fusion 
method. The low ratio of positive to negative cases 
in clinical datasets poses an additional problem 
for both individual classifiers and combiners. Ad-
justing for prior class distributions is an efficient 
way to handle this asymmetry. 

Data fusion will also play an important part 
of clinical decision support, mainly in imaging 
related applications. Combining the various types 
of available information into a single decision 
boundary is important if all available information 
is to be utilized (Barillot, Lemoine, Le Briquer, 
Lachmann, & Gibaud. 2003). In achieving this 
goal the relative weight of each datasource and con-
textual information need to be accounted for.

f utur E t r Ends

Medical data Integration 

The nature and amount of information now avail-
able opens directions of research that were once in 
the realm of science fiction. Pharmacogenomics 
(Roses, 2002), diagnostics (Sotiriou, & Piccart, 
2007) and drug target identification are just a 
few of the many areas that have the potential to 
use this information to dramatically change the 
scientific landscape in the life sciences.
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During this information revolution, the data 
gathering capabilities have greatly surpassed the 
data analysis techniques. If we were to imagine 
the Holy Grail of life sciences, we might envis-
age a technology that would allow us to fully 
understand the data at the speed at which it is 
collected. Sequencing, localization of new genes, 
functional assignment, pathway elucidation, and 
understanding the regulatory mechanisms of 
the cell and organism should be seamless. In a 
sense, knowledge manipulation is now reaching 
its pre-industrial age. The explosive growth in 
the number of new and powerful technologies 
within proteomics and functional genomics 
(Celis, 2003) can now produce massive amounts 
of data. However, data interpretation and subse-
quent knowledge discovery require explicit and 
time consuming involvement of human experts. 
The ultimate goal is to automate this knowledge 
discovery process.

The process of heterogeneous database in-
tegration may be defined as “the creation of a 
single, uniform query interface to data that are 
collected and stored in multiple, heterogeneous 
databases.” Several varieties of heterogeneous 
database integration are useful in biomedicine. 
The most important ones are:

• Vertical integration. The aggregation of 
semantically similar data from multiple het-
erogeneous sources. For example, a virtual 
repository that provides homogeneous ac-
cess to clinical data that are stored and man-
aged in databases across a regional health 
information network (Martín, Bonsma, 
Anguita, Vrijnsen, García-Remesal, Crespo 
et al., 2007). 

• Horizontal integration. The composition of 
semantically complementary data from mul-
tiple heterogeneous sources. For example, a 
system that supports complex queries across 
genomic, proteomic, and clinical informa-
tion sources for molecular biologists.

From the theoretical point of view, there ex-
ist three types of database integration methods 
(Sujansky, 2001), namely 1) Information Linkage 
(IL), 2) Data Transformation (DT) and 3) Query 
Translation (QT). While IL uses cross references 
to establish proper links among the data sources, 
DT creates a centralized repository with a uni-
fied schema representing the integration (e.g. 
Data Warehouses). Conversely, QT focuses the 
transformation effort in the query and the re-
trieved results—i.e. a query formulated for the 
integration is divided into a set of sub-queries, 
appropriate for the underlying databases. After 
these queries are launched, retrieved results are 
integrated and presented to the user in a unified 
manner. IL is used by a variety of online sources, 
such as MEDLINE, GENBANK, OMIM, Prosite, 
etc. DT has been widely used in industrial solu-
tions. However, given the disparate and evolving 
nature of data in the biomedical domain, the exist-
ing privacy issues and the significant size of the 
databases, QT approaches are more appropriate 
for mediation solutions in the field. 

Approaches to solve syntactic and 
semantic heterogeneities among 
biomedical databases

Ironically, huge gains in efficiency in the “front 
end” of the discovery pipeline have created huge 
“down stream” inefficiencies because the data 
cannot be accessed, integrated, and analyzed 
quickly enough to meet the demands of drug 
R&D. The industry has outgrown traditional 
proprietary data capture and integration methods 
solve only part of the problem. First generation 
integration solutions that centred on the concept 
of local repositories have not scaled well, are 
costly to maintain, and ultimately are limited in 
long-term usefulness.

To achieve the aforementioned objectives 
and goals a new breed of techniques, systems 
and software tools are required for two main 
reasons:(a) to convert the enormous amount of 
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data collected by geneticists and molecular biolo-
gists into information that physicians and other 
health-care providers can use for the delivery 
of care and the converse, and (b) to codify and 
anonymize clinical phenotypic data for analysis 
by researchers.

Towards the goal of seamless information 
and data integration (for sharing, exchanging and 
processing of the relevant information and data 
items) the need for uniform information and data 
representation models is raised. The Resource De-
scription Framework (RDF) and XML technology 
offers the most suitable infrastructure framework 
towards seamless information/data integration. 
Based on an appropriate RDF Query Language the 
generated XML documents can be parsed in order 
to: (i) homogenize their content (according to the 
adopted data-models and ontologies); and (ii) apply 
dynamic querying operations in order to generate 
sets of data on which intelligent data processing 
operation could be uniformly applied.

Syntactically homogeneous access to distrib-
uted data sources is typically provided by way of 
wrappers (Thiran, Hainaut, & Houben, 2005; Her-
nandez, & Kambhampati, 2004). One of the main 
challenges in building wrappers is the variation 
in the query functionality of the underlying data 
sources. Data sources may not only use different 
data models and support syntactically different 
query mechanisms, but the query capabilities can 
differ as well. This makes it difficult to support a 
common query language, an essential step towards 
syntactic homogeneity. There are two extreme 
approaches. A highly expressive common query 
language can be chosen. This, however, makes it 
difficult to implement wrappers for sources with 
primitive query capabilities. On the other hand, if a 
very basic common query language is chosen, sig-
nificant and unnecessary performance penalties 
are introduced as the capabilities of the underlying 
data sources are not effectively used. 

As neither approach is ideal, an intermediate 
solution is proposed in (Martín, Bonsma, Anguita, 
Vrijnsen, García-Remesal, Crespo et al., 2007). 

A powerful common query language is chosen, 
but wrappers may choose to only support a subset 
of the queries, based on the capabilities of the 
underlying data source. Each wrapper describes 
the queries it supports using the Relational Query 
Description Language (RQDL) developed for this 
purpose. An RQDL specification consists of a set 
of query templates that represent parameterized 
queries that are supported. Benefits of this ap-
proach are that wrappers can provide and expose 
exactly the query functionality that corresponds 
to that of the underlying data source. A drawback 
is the increased complexity associated with inter-
preting and reasoning about the query capabilities 
of each source. It is generally recognized that 
writing wrappers requires significant program-
ming effort, and as a result research efforts have 
been devoted to automating parts of this (Thiran, 
Hainaut, & Houben, 2005). 

The largest barrier to heterogeneous database 
integration is the variety with which similar 
data are represented in different databases, 
i.e., semantic or representational heterogene-
ity. It is appropriate to consider several types 
of representational heterogeneity that schema 
integration techniques must resolve. The most 
general type of heterogeneity is related to the 
data models themselves. Aggregating data from 
relational, hierarchical, object-oriented, and flat 
file databases into a single representation is the 
first step in schema integration. However, even 
if all database systems were to use the relational 
model, significant semantic heterogeneity would 
remain. Semantic differences occur when the 
meanings of table names, field names and data 
values across local databases are similar but not 
precisely equivalent. 

Semantic interoperability, as an important 
practical problem, has been tackled from many 
different angles (Martín, Bonsma, Anguita, 
Vrijnsen, García-Remesal, Crespo et al., 2007). 
Methods to achieve semantic interoperability 
largely fall into the following three categories: 
model alignment, using semantic tags or metadata, 
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and developing shared conceptual references or 
ontologies.  The first approach, model alignment, 
creates mappings among models to support their 
semantic interoperability (Klein, 2001). The sec-
ond method is to use semantic tags or metadata, 
such as the Dublin Core Metadata Initiative. The 
third approach, which is also the ideal solution 
to semantic interoperability, is to develop core 
ontology or a shared conceptual reference model 
to serve as the common ground for all systems. 

c onclus Ion

In this chapter we have identified common al-
gorithmic aspects in biomedical data processing 
by reference to a more generic taxonomy of ap-
proaches to pattern recognition. In biomedical data 
analysis, whether the task is time series or image 
analysis, microarray processing or histology 
analysis, there are common themes that emerge, 
such as the desire to reduce noise, reduce dimen-
sion, transform to more suitable representations 
for subsequent interpretation, extract similarities, 
and exploit dissimilarities.

In many areas there have been significant 
advances in international research, notably in the 
areas of neural networks, optimisation and image 
analysis, and Bayesian approaches to inference. 
However, several bottlenecks can be identified. 
Among them is the development of methods that 
have been genuinely devised to support medical 
decision making. To this end, tools and techniques 
that engage clinicians to all stages from data acqui-
sition, to processing, validation and interpretation 
of results should be largely encouraged.

Biomedical data is notoriously unreliable, 
noisy, distributed and incomplete. Many tools 
and methods, however, assume data integrity. 
There are a proportionally insufficient number of 
methods which explicitly deal with uncertainty, 
both in the inputs and the outputs. Only a few 
methods exist that present predictions along with 
uncertainties in those predictions.  

Developments in other areas, such as complex-
ity, communications and information theory prob-
ably have a great deal to offer to biomedical data 
processing, as algorithmic requirements cross the 
discipline boundaries. What we have presented in 
this report is merely a summary of current com-
mon aspects reflecting future promise along with 
an indication that much more research is required 
in effectively dealing with the pattern processing 
waterfall. Advances are required in areas such 
as (a) biomedical ontologies, (b) ontology based 
integration of heterogeneous biomedical data, 
and (c) service oriented computational frame-
works capitalizing on modern technologies (i.e. 
Grid) enabling the fast and efficient processing 
of biomedical data.
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kE y t Er Ms

Information Fusion: The utilization of all 
available information at multiple abstraction levels 
(measurements, features , decisions) to maximize 
an expert system’s performance.

GRID Computing: A service scheme that 
facilitates the utilization of the processing and 
storage resources of many computers as a common 
infrastructure for specific application domains 
(scientific etc.).

Medical Informatics: Study, invention, and 
implementation of structures and algorithms 
to improve communication, understanding and 
management of medical information.

Principal Components Analysis (PCA): 
Transformation often used to reduce multidimen-
sional data sets to lower dimensions for analysis 
(also known as Karhunen-Loève or Hotelling 
transform).

Prognostic/Diagnostic Models: Mathemati-
cal/ algorithmic models designed to provide early 
detection of disease.

Electroencephalogram (EEG): Measure-
ment of postsynaptic electrical activity produced 
by the brain’s neurons.

Functional Magnetic Resonance Imaging 
(fMRI): Method to measure the haemodynamic 
response related to neural activity in the brain 
or spinal cord.

Receiver Operating Characteristic: Curve 
that connects all points defined of corresponding 
sensitivity-specificity values for varying threshold 
levels. It is used to visualize a trained classifier’s 
overall performance irrespective of specific deci-
sion thresholds.

Single Photon Emission Computed Tomog-
raphy (SPECT) Imaging: A nuclear medicine 
tomographic imaging technique using gamma 
rays.
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Abstr Act

Though an unparalleled amount and diversity of imaging and clinical data are now collected as part of 
routine care, this information is not sufficiently integrated and organized in a way that effectively sup-
ports a clinician’s ability to diagnose and treat a patient. The goal of this chapter is to present a frame-
work for organizing, representing, and manipulating patient data to assist in medical decision-making. 
We first demonstrate how probabilistic graphical models (specifically, Bayesian belief networks) are 
capable of representing medical knowledge. We then propose a data model that facilitates temporal and 
investigative organization by structuring and modeling clinical observations at the patient level. Using 
information aggregated into the data model, we describe the creation of multi-scale, temporal disease 
models to represent a disease across a population. Finally, we describe visual tools for interacting with 
these disease models to facilitate the querying and understanding of results. The chapter concludes with 
a discussion about open problems and future directions.
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Introduct Ion

More patient data is being gathered, given the 
adoption of the electronic medical record (EMR), 
the availability of clinical tests, and the growing 
rates of chronic diseases (Wyatt & Wright, 1998).  
Modern medical records are not only comprised 
of traditional data (e.g., clinical notes, labs), but 
also digital images (e.g., computed tomography, 
magnetic resonance imaging) and other graphi-
cal representations (e.g., pulmonary function 
graphs). Notably, medical imaging is becoming 
the predominant in vivo tool for objectively docu-
menting patient presentation and clinical findings. 
Patient care is largely dependent upon imaging 
to understand disease processes and to establish 
tangible evidence of treatment response. However, 
even within imaging, the scope of data collected 
can range from the cellular level (e.g., molecular 
imaging) to tissue level (e.g., histopathology), up 
to the level of the organism itself (e.g., conven-
tional radiology). As the quantity and diversity of 
collected data continues to grow, the task of con-
solidating this information in a way that improves 
patient care becomes a challenge: clinicians need 
effective tools to organize, access, and review the 
data. For instance, current methods for querying 
image data are limited to a set of keywords (e.g., 
stored as part of the image header), but much of 
the clinically useful information about a disease 
is contained within the image itself (e.g., mass 
volume, border, shape). Advances in image pro-
cessing have resulted in sophisticated algorithms 
for automated content extraction (Pham, Xu, & 
Prince, 2000), enabling the characterization, 
segmentation, and classification of pixel data 
to extract meaningful features from an image 
(e.g., regions of edema). However, the extraction 
of meaningful features from patient data alone 
is insufficient. While imaging data provides a 
phenotypic description of disease progression, 
the combination of imaging and other clinical 
observations has the potential to better model 
and predict disease behavior. A collective under-

standing of how features from different levels are 
needed: a finding observed at the phenotype level 
can be explained as an emergent manifestation 
of multiple findings at the genotype level. For 
instance, the cellular level serves as the basis for 
describing genetic/proteomic irregularities that 
lead to larger scale effects that are seen at the tis-
sue, organ, and organism levels. While research 
in the area of intelligent data analysis (IDA) has 
explored content extraction and representation, 
current approaches have significant limitations: 1) 
they do not capture the context in which the data 
was collected; 2) the data is not represented in a 
way that facilitates a computer’s ability to reason 
with the information; and 3) a lack of tools exists 
for facilitating the querying and understanding 
of the stored data.

This chapter describes efforts, particularly 
those undertaken by the Medical Imaging In-
formatics Group at the University of California, 
Los Angeles (UCLA), to address these issues by 
transforming clinical observations into a repre-
sentation enabling a computer to “understand” 
and reason with the data. Computer understand-
ing, in this context, is defined as being able to 
determine the relative importance of a given 
data element (e.g., necrosis size) in the patient 
record in relation to a phenomenon of interest 
(e.g., brain tumor). The chapter is organized as 
follows: Section 2 provides an overview of IDA 
and recent work in the area towards creating 
expert systems. While various techniques for rep-
resenting medical knowledge exist, this chapter 
focuses on probabilistic graphical models. Section 
3 introduces a phenomenon-centric data model 
(PCDM) that structures clinical observations 
at the patient level by organizing findings (i.e., 
collected data) around a given phenomenon (i.e., 
medical problem). Section 4 describes the pro-
cess of generating multi-scale, temporal disease 
models using dynamic Bayesian belief networks 
to represent a disease across a population: these 
steps are illustrated in the context of our efforts 
to develop tools that help assess and manage 
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patients with brain tumors.  Subsequently, Sec-
tion 5 discusses a novel interface for querying 
these models using a visual paradigm to facilitate 
the composition of queries related to image fea-
tures. The chapter concludes by describing open 
problems in the area and identifying potential 
directions for future work.

bAckground

The field of intelligent data analysis (also com-
monly referred to as knowledge discovery) has 
matured over the past as a product of several 
disciplines, including statistics, computer science, 
pattern recognition, and artificial intelligence 
(Hand, 1998). Unlike data mining, which focuses 
on specific algorithms and techniques for solving 
a particular problem, IDA encompasses a wide 
range of tasks from content extraction and orga-
nization of data, through to reasoning with the 
data and visualizing the results (R. Bellazzi & 
Zupan, 2001; Holmes & Peek, 2007). The specific 
goals of IDA within medicine are: 1) to extract 
useful information from collected patient data; 2) 
to organize this data in a meaningful representa-
tion that facilitates retrieval and medical decision 
making tasks; and 3) to assist in the interpretation 
of patient data by presenting the information in 
a context-sensitive manner (Lavrac et al., 1998). 
IDA accomplishes these goals using a number of 
techniques such as decision trees, neural networks, 
support vector machines, and Bayesian networks. 
Comprehensive reviews on the topic of data min-
ing for diagnosis and prediction may be found in 
(Bath, 2003; Chen et al., 2005; Riccardo Bellazzi 
& Zupan, 2008).

Representing medical knowledge in a com-
puter-understandable form (i.e., a model) poses 
several key challenges: 1) the uncertainties inher-
ent to medical knowledge must be captured; 2) 
the models must be sufficiently intuitive so that 
domain experts understand the explanations 
proposed by the system; and 3) the models must 

be practically analyzable using algorithms that 
are computationally tractable. Although various 
data mining techniques address these challenges 
with varying degrees of success, we argue that 
probabilistic graphical models are best capable to 
meet these requirements. A probabilistic graphical 
model provides a normative method for modeling 
uncertain phenomena, with the corresponding 
computational techniques for comprehensive, 
detailed model analysis. A graphical model is 
comprised of a set of nodes, which are connected 
by arcs. Each node represents a random variable, 
and each arc represents a probabilistic relationship 
between nodes. Having roots in both probability 
theory and graph theory, probabilistic models are 
solvable either using purely algebraic manipula-
tion or by using diagrammatic representations of 
probability distributions. Importantly, graphical 
models also provide a readily understood vi-
sual representation of the relationships among 
variables; assumptions made in the model (e.g., 
conditional independence relationships between 
variables) are explicitly encoded into the graph 
structure. For the remainder of this chapter, we 
focus on probabilistic graphical models, specifi-
cally Bayesian belief networks, as the method for 
modeling clinical observations.

bayesian belief network

A Bayesian belief network (BBN) is an instance 
of a graphical model, which offers a complete 
and intuitive representation of uncertain domain 
knowledge (Pearl, 1988). Formally, a BBN is 
a directed acyclic graph (DAG) whose nodes 
represent evidence variables and arcs represent 
associations (or in some cases, causal links) 
between nodes. When the model is instantiated, 
each node is set to a specific value. The arcs in 
the DAG represent the probabilistic influences 
between the variables. A variable Xi is depen-
dent on its parents and children in the DAG but 
is conditionally independent of any of its non-
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descendents given its parents, a property known 
as the Markov condition.

Formally, the structure of the DAG is a rep-
resentation of a factorization of the joint prob-
ability distribution. Each variable Xi in the DAG 
is specified by a set of conditional probability 
distributions: P(X | parents(X)). Each of these 
distributions describes the joint effect of a spe-
cific combination of values for the parents of Xi 
on the probability distribution over the values of 
Xi. These sets of conditional probability distribu-
tions define a joint probability distribution that 
is factorized over the graph’s topology using the 
following equation:

( ) ( | ( ))
X

P U P X parents X= ∏

Using this equation, knowledge bases that 
have been formerly computationally intractable 
because of their large joint probability space are 
now realizable as the space can be more compactly 
represented using the Markov property. Indeed, 
because of its ability to capture uncertainty in 
medical data and to answer a wide range of clinical 
queries, BBNs are an increasingly popular for-
malism for representing models of disease (Shwe 
et al., 1991; Heckerman, Horvitz, & Nathwani, 
1992). Work in utilizing BBNs in biomedicine 
(Lucas, van der Gaag, & Abu-Hanna, 2004) can 
be roughly classified into three categories:

• Diagnostic and prognostic reasoning: 
Applications of BBNs encompass a range 
of broad fields such as internal medicine, 
to more specific areas such as tumor clas-
sification, pulmonology, neuroimaging, and 
mammography (Kahn et al., 1997; Friston et 
al., 2002; Kline et al., 2005). Several projects, 
such as MUNIN and Pathfinder, have used 
BBNs to provide classification of presenting 
symptoms and/or objective clinical findings 
(Andreassen et al., 1999). Another class of 
applications attempt to predict values based 

on a patient’s presentation and/or a potential 
intervention. Many of these applications sup-
port limited prognostic queries, which are 
addressed more thoroughly in (Nikiforidis 
& Sakellaropoulos, 1998; Sebastiani et al., 
2005).

• Treatment selection (decision support): 
Closely related to the prognostic usage of 
BBNs is decision support, allowing a user to 
view different scenarios to optimize some 
criteria and select a plan of action (Herskovits 
& Gerring, 2003; Leibovici et al., 2000). This 
set of applications utilizes a broader class 
of BBNs called influence diagrams and can 
be seen as a global optimization problem 
across the network (Meyer et al., 2004). 

• Functional linkage: BBNs are being pur-
sued in bioinformatics and to model biologi-
cal phenomenon (Friedman et al., 2000), such 
as modeling and analyzing cellular networks 
and computing genetic linkages.

While popular in medicine, traditional 
Bayesian belief networks are limited because 
they require clinical data and disease processes 
– which are intrinsically temporal in nature – to 
be condensed and represented using a single node. 
Addressing this shortcoming, dynamic Bayesian 
networks (DBN) (Murphy, 2002) are an extension 
of BBNs that model time-variant states, which 
are common in functional magnetic resonance 
imaging (fMRI) (Battle, Chechik, & Koller, 
2007), gene expression networks, and other bio-
informatics-related problems (Yu et al., 2004). 
DBNs are a generalized version of hidden Mar-
kov Models (HMMs): they are similar to HMMs 
but have the advantage of separating out hidden 
state variables and thus reducing the number of 
probabilities required to express state transitions. 
Formally, let Xt be a vector representing the set 
of unobservable state variables at some time, t, 
and Et denote the set of observable evidence at 
time t. A DBN, depicted in Figure 1, is defined 
in three parts: the initial prior distribution, P(X0); 
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the sensor model, P(Et | Xt), which gives the con-
ditional distribution of the evidence variables for 
a given time point, t; and the transition model, 
P(Xt+1 | Xt), which details how the current state 
affects a future state.

The remainder of this chapter presents a 
framework for organizing clinical observations 
into a representation that enable computers (i.e., 
expert systems) to assist in clinical decision 
making that builds upon these past works and 
formalisms. The framework is described in the 
context of assessing and managing patients with 
primary malignant brain tumors. Patient data 
is used to populate a phenomenon-centric data 
model (PCDM), which in turn is used to generate 
a disease model from a neuro-oncology research 
database maintained at the UCLA Medical Center. 
In addition to radiology, pathology, surgical, lab, 
demographic, imaging, and medical information, 
the database contains outcome information such 
as Karnofsky score, time to progression (TTP), 
and time to survival (TTS) for each patient. We 
demonstrate how the database is reorganized 
following the PCDM to facilitate temporal and 
investigative exploration of the data.

org AnIZIng  PAt IEnt  dAt A

The first step towards organizing clinical data 
is the creation of a clinical repository. To be 
useful, the repository must make possible quick 

retrieval of patient data, while accommodating 
the changing needs of the hospital environment 
(Johnson, 1996). Though various schemas (e.g., 
entity-value-attribute with classes and relation-
ships (EAV/CR) (Nadkarni et al., 1999)) have 
been proposed that address these conditions, 
their approaches, while highly generalizable, do 
not explicitly contain the contextual details about 
collected data (e.g., degree of certainty, reason for 
collection) and their relationships, nor natively 
support temporal manipulation of the data (Ad-
lassnig et al., 2006). To address these shortfalls, 
(Bui, Taira, El-Saden, Dordoni, and Aberle 2004) 
has introduced an extended entity-relationship 
(ER) data model called a phenomenon-centric 
data model (PCDM) based on the principle that 
knowledge discovery is an exploratory process, 
going from an unknown, described phenomenon 
to documented conclusions through iterative 
refinement of theories. The core PCDM consists 
of three classes of entities:

1. Phenomena & findings. Central to the data 
model, a phenomenon is defined as the 
center of an investigation, such as a medical 
problem of interest (e.g., patient complains of 
a migraine). A set of findings is associated 
with a phenomenon and is anything that is 
observable (e.g., slurred speech). 

2. Theories & evidence. A theory attempts 
to account for a phenomenon, and is often 
a working conjecture (i.e., a hypothesis). 

Figure 1. A general example of a dynamic Bayesian belief network with two time slices.
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The theory is a logical explanation based 
on all available evidence and observations. 
Theories explain the facts, but are not the 
facts themselves, instead representing how 
facts are related. Findings are thus a type of 
evidence used to support these hypotheses, 
linking causes and effects. Evidence can 
also be derived from different sources (e.g., 
an x-ray image showing a bone fracture, a 
population-based study).

3. States, properties, & behaviors. A finding 
is simply an object: its description is given 
by a state entity, which acts as a vector of 
specific properties. This abstraction defines 
a finding at a single point in time in terms 
of objective features (e.g., the size of an 
observed tumor). The degree of certainty as-
sociated with an observation, error bounds, 
and noise models are captured as part of the 
property entity. Changes between states are 
defined as a behavior – that is, a change in 
a given property (e.g., decrease in tumor 
size) over time.

Figure 2 depicts the core entities of the PCDM 
and how entities are linked together. These entities 
serve as high-level templates, from which sub-
classed objects are created for specific medical 
problems. The PCDM also utilizes streams (Bui, 
2000; Dionisio et al., 1996) as a way of capturing 
temporal data sequences in the patient record. A 
stream comprises a set of (valid and logical) time-
based data elements occurring at a single point 
in time (e.g., a lab value’s timestamp) or duration 
(e.g., a drug regimen over weeks). The evolution 
of findings associated with a phenomenon is 
represented using a stream, enabling representa-
tion of the behavior of a finding’s properties as 
they change over time. Streams can also be used 
to capture a clinician’s differential diagnosis 
and the progression of evidence towards a final 
diagnosis.

Pcd M for neuro-o ncology

Data elements from the existing neuro-oncol-
ogy database can be reorganized into a PCDM. 
Image features (tumor, edema, necrosis, cystic 

Figure 2. A portion of the PCDM that illustrate core entities of the PCDM.
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components) and pathology results (histology, 
tumor genetic markers) are modeled as findings. 
Because of the temporal nature of these findings, 
they are represented in streams; for instance, the 
stream construct is used to model individual im-
age studies acquired at different time points. In 
addition, each finding is associated with one or 
more states that provide information on a finding’s 
properties and the context in which properties are 
observed. For example, image studies include at-
tributes such as acquisition protocol parameters 
and scanner/site information. Theories and evi-
dence entities associate problems and findings to 
provide an explanation of why certain findings 
occur: a theory entity is used to relate (increased) 
edema, signs of necrosis, and other image find-
ings to an underlying cause (e.g., chemotherapy, 
steroids). These entities define the structure of 
the data model using a combination of expert 
opinion and scientific literature. Behavior entities 
capture changes in properties for a given finding; 
an example would be capturing the quantita-
tive differences in tumor burden of the patient 
as treatment progresses. Figure 3 illustrates a 

portion of the PCDM for neuro-oncology. The 
structure of the PCDM captures information 
from different data sources and across multiple 
levels of detail. In particular, relationships among 
image features in the neuro-oncology database 
and other clinical variables are explicitly defined, 
providing contextual information on what factors 
contribute to the observed image features. This 
integrative and comprehensive representation of 
patient data is then used to guide the creation of 
a disease model.

cr EAt Ing  dIsEAsE Mod Els

The purpose of creating a disease model is to 
formalize the representation of knowledge about 
the disorder such that computers are able to reason 
with the information and provide meaningful 
answers to queries from clinicians. In this sec-
tion, we describe a methodology for developing 
temporal, multi-scale disease models that integrate 
heterogeneous data collected during routine pa-
tient care. We advocate a gradated approach for 

Figure 3. An instance of the PCDM for neuro-oncology.
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model construction, which: 1) allows the model to 
be built progressively as new variables are made 
available (e.g., the discovery of new genomic 
tests, new quantitative imaging parameters); and 
2) permits an evaluation to be done at each step 
to assess improvements in answering queries. 
Generation of a disease model proceeds iteratively 
using information stored in the PCDM through 
the following four steps:

1. Variable selection: Variables are commonly 
identified using sources such as clinical data 
repositories, expert opinion, public data 
sources, and published literature. Entities in 
the PCDM (e.g., findings) can be translated 
into variables in the model. Once a variable 
is identified, it is codified using standardized 
representations (e.g., Unified Medical Lan-
guage System (UMLS), RadLex, Common 
Data Model, etc.) (Zou et al., 2003). The use 
of common terminology enables the model to 
be linked with external knowledge sources 
(e.g., Gene Ontology, Fundamental Model 
of Anatomy) (Rubin, Shah, & Noy, 2008).

2. Network structure: After model variables 
have been specified, the next step is to 
define the associations between variables. 
Such links correspond closely to a scientific 
hypothesis relating a cause (e.g., an inter-
vention) to an effect. The network topology 
may be defined using the structure of the 
PCDM, expert opinion, scientific literature, 
or inferred computationally given sufficient 
data. While the PCDM is a wide range of 
semantic relationships, only a subset of these 
relationships is delineated in a BBN: the con-
cepts representing theories and hypotheses 
within the PCDM are bound to a directed path 
within the BBN, establishing the rationale 
for the observations and findings.

3. Discretization: To address complexity 
issues in large static models, continuous 
variables need to be divided into a finite 
number of states using either univariate 

methods (e.g., equal-width binning, quan-
tiles) or class-based methods (e.g., minimum 
description length processing), both of which 
are reviewed in (Monti, 1999). When dealing 
with temporal data, an additional discretiza-
tion step is taken to represent variables at 
different time points. Variables are divided 
into temporal clusters based on the time point 
associated with each value. These clusters 
are then used to define the transition states 
in the DBN.

4. Parameter estimation: Given the qualita-
tive description of the BBN topology, the 
last construction step, parameter estima-
tion, involves computing the conditional 
probability tables (CPTs) for each variable 
(or prior probabilities for root nodes). Com-
putation of CPTs typically occurs in two 
ways: calculated from clinical data using an 
expectation maximization (EM) algorithm; 
or elicited from scientific literature and ex-
perts. While data stored in the PCDM may 
be used to compute the probabilities, two 
potential issues arise: 1) not all patients may 
have information for a given variable (e.g., if 
a patient does not have genetic information); 
and 2) the database may not contain sufficient 
data to represent the probability distribution. 
While obtaining opinions from domain 
experts may be used to overcome these is-
sues, such an approach can introduce a bias 
into the values (Monti & Carenini, 2000). 
Parameter fitting algorithms such as EM, 
Gibbs sampling, and gradient ascent may be 
used to learn CPTs with missing data. In the 
situation where few outcomes are available 
relative to the number of covariates, the use 
of propensity scores (Glynn, Schneeweiss, 
& Stürmer, 2006), which are the conditional 
probability of assignment to a specific state 
given a vector of observed covariates, may 
improve estimates of their values.
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Imaging-c entric t emporal disease 
Model for brain t umors

Drawing upon the PCDM for neuro-oncology, we 
created a disease model that predicts how changes 
in image features and treatment selection over 
time affect a patient’s time to progression (TTP) 
and time to survival (TTS). During the variable 
selection process, we identified findings in the 
PCDM that were related to demographics (e.g., 
age, gender), image features (e.g., edema, contrast 
enhancement, mass effect), and treatments (e.g., 
resection extent, dosage of chemotherapy) and 
represented them as variables in the model. Using 
the temporal clusters defined in the PCDM, we 
divided the DBN into two logical time slices based 
on the patient’s TTP: the first cluster representing 
status and treatment before initial progression, 
and the second temporal cluster representing 
progression and subsequent changes in treatment 
protocol. The structure of the model is based on 
the associations between findings defined in the 
PCDM. To parameterize the model, we used a 
subset of 200 patients from the database that 
had glioblastoma multiforme (GBM) and an 

initial treatment of a chemotherapy drug called 
temozolomide. The resulting DBN is depicted in 
Figure 4. The transition model included all nodes 
except the non-temporal data (age, gender, race, 
tumor location), which were held static, and TTS 
was influenced by the values of the TTP over 
both time slices. Using a 10-fold cross validation 
where we trained the model on 90% of the data 
and tested the model on the remaining 10% and 
averaged the results over ten trials, the accuracy 
for predicting the initial TTP, second TTP, and 
TTS was 83%, 85%, and 87% respectively. To 
determine whether modeling time improved 
model performance, we evaluated a static BBN’s 
ability to predict TTS. Using the same variables 
as the DBN, we generated a model that aggre-
gated all of the temporal clusters and found that 
the model achieved 79% accuracy. To provide 
a baseline comparison for our results, we used 
logistic regression to model the same variables 
as the previous two models and determined that 
the logistic regression predicted the initial TTP, 
second TTP, and TTS with an accuracy of 72%, 
84%, and 86%, respectively.

Figure 4. DBN for neuro-oncology. Only the first time slice (t0) is shown. All nodes in the network were 
duplicated in two time states (i.e., t0 , t1 ) except demographic variables, tumor location, and time to 
survival. Time to survival was influenced by both time to progression at t0 and t1.
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APPl Ic At Ions

Up to this point, we have presented a framework 
for establishing a clinical repository that organizes 
patient data, using this data to create a disease 
model across a population. However, this process 
is only useful when users (i.e., clinicians) can eas-
ily interact with these models to obtain relevant 
information that helps them make informed deci-
sions about a patient’s case. While much literature 
has been published on building BBNs to answer 
clinical queries, little has been written about the 
interface that clinicians use to pose queries to 
the model. Such an interface must effectively 
support the full spectrum of user activities (e.g., 
reviewing a patient for the first time, diagnosis 
and treatment planning, a follow-up visit, etc.). 
BBN visualizations typically employ the DAG as 
the pictorial representation upon which queries 
are composed and results presented (e.g., using 
node monitors). The problem with current types 
of visualizations being explored is: 1) that as the 
complexity of the BBN grows, understanding 
variable interaction is difficult at best; and 2) that 
the variables are visually abstracted and thus lose 
contextual meaning. We suggest the development 
of surrogate interfaces; these interfaces provide 
users with a familiar environment to intuitively 
pose queries and automatically translate the 
user’s queries into parameters that can be used to 
instantiate the model. One such system is Trau-
maSCAN (Ogunyemi, 2006), in which the user 
interacts with a three-dimensional model of the 
body to place entry and exit wounds for injuries 
from gunshots; then, in combination with inputted 
patient findings, the system performs reasoning 
on a Bayesian model to predict the most prob-
able symptoms and conditions arising from the 
specified injuries.

Visual Query Interface

Given the visual and spatial nature of medical 
images (e.g., size, shape, location), a visual query-

by-example interface seems well-suited to the 
task, allowing for composition of a query image 
(such as in content-based image retrieval systems, 
(Shyu et al., 1999)). Past studies show that visual 
querying has a shallower learning curve, allows 
more expressive queries (vs. text keywords), and 
generates more accurate results (Catarci, Costa-
bile, & Matera, 1995). We introduce the visual 
query interface, which improves interaction with 
the BBN in two ways: 1) it provides visual tools 
for users to pose graphical queries to represent 
image features; and 2) it uses the network struc-
ture of the model to guide users through the 
query formulation process. The fundamental ele-
ments in a visual query are graphical metaphors 
(Marcus, 1998), which correspond to visual rep-
resentations of variables specified in the disease 
model. Graphical metaphors range from capturing 
nominal inputs (e.g., male/female) to representing 
visual features (e.g., edema shape and size). For 
non-spatial constructs (e.g., gender), the graphical 
metaphor may simply be an icon: selecting this 
icon enables the user to add this variable to the 
query and indicate a value. For entities involving 
visual features, invoking the graphical metaphor 
from the toolbar will allow the user to draw the 
corresponding entity in a sketch editor. The system 
then automatically translates the arrangement of 
graphical metaphors into parameters that are used 
to instantiate the BBN.

The process of posing a visual query is as 
follows: from a normal or patient imaging study, 
the user selects a representative slice or location 
to pose the query; the user iteratively constructs 
a query by drawing upon the available set of 
metaphors to capture various visual features of 
the disease; and the final visual query is translated 
into an object representation that is used to set 
the states of variables in the model as the basis 
of a maximum a posteriori query.

A disadvantage of existing visual query inter-
faces is that users are presented with a potentially 
large set of graphical metaphors but receive little 
or no guidance on how to effectively utilize these 
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metaphors to construct a query. This problem 
is commonly faced in programs that contain a 
multitude of commands; for instance, Microsoft 
addresses this issue in Office through Ribbon 
(McCormack et al., 2007), a method for dynami-
cally displaying available functionality based 
on task. Similarly, we introduce the adaptive 
toolbar (Hsu & Bui, 2006), which uses the inher-
ent structure and CPTs of the underlying BBN 
to selectively present metaphors. This approach 
reduces the potential visual clutter associated 
with presenting the entire set of metaphors 
simultaneously and assists users in selecting 
which metaphor is best suited for a particular 
query. The determination of whether a metaphor 
is (un)related is influenced by the relationships 
among the variables in the BBN. Each metaphor 
is mapped to a corresponding variable in the 
model. Selection of a metaphor, and thus the vari-
able, computes the Markov blanket for the BBN 
node; variables in the Markov blanket are then 

selected for presentation in the toolbar. Figure 5 
illustrates the main query editor interface and the 
adaptive toolbar concept. The figure depicts the 
system being used in a neuro-oncology context: 
users are presented with a normal brain atlas 
(ICBM452), from which axial/coronal/sagittal 
slices can be selected (Figure 5b). Above the 
editor, the adaptive toolbar presents available 
metaphors based on context: as the user selects 
structures (e.g., white matter) or metaphors (e.g., 
edema metaphor) in the editor, related metaphors 
are presented in the toolbar while unrelated 
metaphors are removed (Figure 5a). For example, 
when the rim contrast metaphor is selected, the 
user is prompted to define whether the border 
is thick or thin. This adaptive presentation 
of relevant metaphors not only simplifies the 
process of creating a query by reducing visual 
selection clutter but also enforces logical rules 
regarding the order that metaphors are selected 
to formulate a query.

Figure 5: Left side depicts the visual query interface. The adaptive toolbar (a) is dynamically updated to 
guide the user, allowing for composition using the query-by-example paradigm in the visual editor (b). 
The toolbar uses the underlying BBN to select the appropriate graphical metaphors at any given time. 
The right side illustrates how the adaptive toolbar guides the query formulation process.
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futur E tr Ends

The latest breakthroughs made by imaging tech-
nologies have not only provided a wealth of new 
information about a disease but also underscored 
the need for novel approaches that are scalable, 
extensible, and capable of helping users with 
understanding this information:

• Improved methods for analyzing clinical 
data. The development of advanced medi-
cal imaging techniques has resulted in the 
discovery of new variables that characterize 
disease behavior. Models should be modular 
and extensible so that new variables may be 
easily incorporated into existing models. In 
addition, techniques need to be scalable: 
as more data is generated about a patient, 
algorithms must be capable of handling the 
increased quantities of data. Fully automated 
methods are needed to identify and extract 
features; manual or semi-automated algo-
rithms are too costly and time consuming 
to generate meaningful amounts of data for 
population-level modeling. Finally, models 
should be adaptable: they should have the 
ability to accommodate data from a single 
clinical site to a large quantity of data from 
a clinical trial that involves multiple sites. 

• Development of novel visualizations. The 
utility of building comprehensive, integrated 
models are realized when tools and visual-
izations that assist users with knowledge 
exploration and discovery are available. 
These tools should draw upon imaging and 
clinical observations to provide insight into a 
user’s clinical questions. In the book Visual 
Thinking, (Arnheim, 2004) contends that 
perception is highly intertwined with the 
process of reasoning. If the user is unable 
to quickly perceive the meaning of an image 
or display, the information is useless. New 
visualizations need to not only facilitate 
the user’s ability to understand the data but 

also direct the user towards new avenues of 
research with the goal of discovering new 
knowledge.

Building upon these themes, our goal is to 
leverage DBNs as a way to represent temporal 
information, allowing users to understand changes 
that occur in a patient through the course of a 
disease. As part of future work, we will address 
limitations of our modeling paradigm: 1) the model 
is highly sensitive to the method of discretization 
and sample size; 2) it assumes that data is missing 
at random; and 3) the results may be confounded 
by hidden variables. We also intend to expand the 
development of new visualizations that improve 
the interaction between the user and underlying 
model.

conclus Ion

Medical imaging is an objective method for 
characterizing and tracking disease progression. 
As new techniques are developed for imaging 
the human body at various levels of detail (e.g., 
cellular to organ), large amounts of data are col-
lected about a patient. However, the full utility of 
this information to assist in diagnosis, prognosis, 
and treatment is unrealized without a means to 
understand this information in the context of all 
the other clinical observations. Clinical reports, 
laboratory values, and pathology results provide 
contextual information that shed additional light 
into the high-level features captured in radiologi-
cal images. Recent developments in intelligent 
data analysis have made it possible to automate 
the accurate characterization and extraction of 
unique features from images and clinical reports. 
Unfortunately, current efforts to organize this 
information have not addressed the need for han-
dling the integration of data acquired at multiple 
sources and at different levels of detail. A unified 
framework that encompasses the entire process 
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from organizing, representing, and interacting 
with patient data is needed.

In this chapter, we introduced a phenomenon-
centric data model as a way to organize all of the 
data collected about individual patients into a 
comprehensive model that defines how observa-
tions are related to one another. Drawing upon 
this unified model, we described the generation 
of multi-scale, temporal disease models that 
represent a disease at the population-level and 
support a variety of clinical queries related to the 
diagnosis and treatment of a patient given his/her 
unique findings. Finally, we presented a visual 
query interface as an intuitive novel method for 
posing clinical queries visually by manipulating 
graphical metaphors. While we have presented 
the framework in the context of neuro-oncology, 
the framework is generalizable to other medical 
domains. Ultimately, a comprehensive framework 
such as the one presented provides clinicians with 
a powerful tool for effectively integrating and 
understanding the information that is mined from 
the large quantities of medical data and has the 
potential for improving patient care.

Acknowl Edg MEnt

The authors would like to thank Dr. Timothy 
Cloughesy for providing access to the UCLA Neu-
ro-Oncology Database. This work is supported 
in part by funding from the National Institutes of 
Health P01-EB000216 and T15-LM007356.

rE f Er Enc Es

Adlassnig, K.-P., Combi, C., Das, A. K., Keravnou, 
E. T., & Pozzi, G. (2006). Temporal representation 
and reasoning in medicine: Research directions 
and challenges. Artif Intell Med, 38(2), 101-113.

Andreassen, S., Riekehr, C., Kristensen, B., 
Schonheyder, H. C., & Leibovici, L. (1999). Us-

ing probabilistic and decision-theoretic methods 
in treatment and prognosis modeling. Artif Intell 
Med, 15(2), 121-134.

Arnheim, R. (2004). Visual Thinking. Berkeley, 
CA: University of California Press.

Bath, P. (2003). Data mining in health and medi-
cal information. Annual Review of Information 
Science and Technology, 38, 331-369.

Battle, A., Chechik, G., & Koller, D. (2007). 
Temporal and Cross-Subject Probabilistic Mod-
els for fMRI Prediction Tasks. In B. Scholkopf 
(Ed.), Advances in Neural Information Processing 
Systems 19: Proceedings of the 2006 Conference 
(pp.121-128). Cambridge: MIT Press.

Bellazzi, R., & Zupan, B. (2001). Intelligent data 
analysis--special issue. Methods Inf Med, 40(5), 
362-364.

Bellazzi, R., & Zupan, B. (2008). Predictive 
data mining in clinical medicine: Current issues 
and guidelines. Int J Medical Informatics, 77(2), 
81-97.

Bui, A. A. (2000). A multimedia data model 
with generalized stream constructs. (Ph.D. Dis-
sertation, University of California, Los Angeles, 
2000).

Bui, A. A., Taira, R. K., El-Saden, S., Dordoni, 
A., & Aberle, D. R. (2004). Automated medical 
problem list generation: Towards a patient time-
line. Medinfo, 11(Pt 1), 587-591.

Catarci, T., Costabile, M. F., & Matera, M. (1995). 
Visual metaphors for interacting with databases. 
ACM SIGCHI Bulletin, 27(2), 15-17.

Chen, H., Fuller, S. S., Friedman, C., & Hersh, 
W. (2005). Medical Informatics: Knowledge 
Management and Data Mining in Biomedicine. 
New York, NY: Springer.

Dionisio, J. D., Cardenas, A. F., Taira, R. K., Ab-
erle, D. R., Chu, W. W., McNitt-Gray, M. F., et al. 
(1996). A unified timeline model and user interface 



  ��

Integrating Imaging and Clinical Data for Decision Support

for multimedia medical databases. Comput Med 
Imaging Graph, 20(4), 333-346.

Friedman, N., Linial, M., Nachman, I., & Pe’er, 
D. (2000). Using Bayesian networks to analyze 
expression data. J Computational Biology, 7(3-
4), 601-620.

Friston, K. J., Penny, W., Phillips, C., Kiebel, 
S., Hinton, G., & Ashburner, J. (2002). Classical 
and Bayesian inference in neuroimaging: theory. 
NeuroImage, 16(2), 465–483.

Glynn, R. J., Schneeweiss, S., & Stürmer, T. 
(2006). Indications for propensity scores and re-
view of their use in pharmacoepidemiology. Basic 
Clin Pharmacol Toxicol, 98(3), 253-259.

Hand, D. J. (1998). Intelligent data analysis: Is-
sues and opportunities. Intelligent Data Analysis, 
2(1), 67-79.

Heckerman, D. E., Horvitz, E. J., & Nathwani, 
B. N. (1992). Toward normative expert systems. 
Part I: the pathfinder project. Methods Inf Med, 
31(2), 90-105.

Herskovits, E. H., & Gerring, J. P. (2003). Applica-
tion of a data-mining method based on Bayesian 
networks to lesion-deficit analysis. NeuroImage, 
19(4), 1664-1673.

Holmes, J. H., & Peek, N. (2007). Intelligent data 
analysis in biomedicine. J Biomedical Informat-
ics, 40(6), 605-608.

Hsu, W., & Bui, A. A. (2006). A framework for 
visually querying a probabilistic model of tumor 
image features. In D.W. Bates (Ed.), AMIA Annu 
Symp Proc, 354-358.

Johnson, S. B. (1996). Generic data modeling for 
clinical repositories. J Am Med Inform Assoc, 
3(5), 328-339.

Kahn, C. E., Roberts, L. M., Shaffer, K. A., & 
Haddawy, P. (1997). Construction of a Bayesian 
network for mammographic diagnosis of breast 

cancer. Computers in Biology and Medicine, 
27(1), 19-29.

Kline, J. A., Novobilski, A. J., Kabrhel, C., Rich-
man, P. B., & Courtney, D. M. (2005). Derivation 
and validation of a Bayesian network to predict 
pretest probability of venous thromboembolism. 
Annals of Emergency Medicine, 45(3), 282-290.

Lavrac, N., Kononenko, I., Keravnou, E., Kukar, 
M., & Zupan, B. (1998). Intelligent data analysis 
for medical diagnosis: Using machine learning 
and temporal abstraction. AI Communications, 
11(3), 191-218.

Leibovici, L., Fishman, M., Schonheyder, H. 
C., Riekehr, C., Kristensen, B., Shraga, I., et 
al. (2000). A causal probabilistic network for 
optimal treatment of bacterial infections. IEEE 
Transactions on Knowledge and Data Engineer-
ing, 12(4), 517-528.

Lisboa, P. J. G. (2002). A review of evidence of 
health benefit from artificial neural networks in 
medical intervention. Neural Networks, 15(1), 
11-39.

Lucas, P. J., van der Gaag, L. C., & Abu-Hanna, 
A. (2004). Bayesian networks in biomedicine and 
health-care. Artif Intell Med, 30(3), 201-214.

Marcus, A. (1998). Metaphor design for user 
interfaces. Conference on Human Factors in 
Computing Systems, 129-130.

McCormack, M.J., Kenney, A.R., Bryant C.W., 
Covington C.D., Dickinson, R.L., Coggins R.E. et 
al. (2007). Patent No. WO/2007/030696. Geneva: 
World Intellectual Property Organization. 

Meyer, J., Phillips, M. H., Cho, P. S., Kalet, I., 
& Doctor, J. N. (2004). Application of influence 
diagrams to prostate intensity-modulated radia-
tion therapy plan selection. Physics in Medicine 
and Biology, 49(9), 1637-1653.

Monti, S. (1999). Learning hybrid Bayesian net-
works from data. (Ph.D. Dissertation, University 
of Pittsburgh, 1999).



��  

Integrating Imaging and Clinical Data for Decision Support

Monti, S., & Carenini, G. (2000). Dealing with 
the expert inconsistency in probability elicita-
tion. IEEE Transactions on Knowledge and Data 
Engineering, 12(4), 499-508.

Murphy, K. P. (2002). Dynamic Bayesian Net-
works: Representation, Inference and Learning. 
(Ph.D. Dissertation, University of California, 
Berkeley, 2002).

Nadkarni, P. M., Marenco, L., Chen, R., Skoufos, 
E., Shepherd, G., & Miller, P. (1999). Organiza-
tion of heterogeneous scientific data using the 
EAV/CR representation. J Am Med Inform Assoc, 
6(6), 478-493.

Nikiforidis, G. C., & Sakellaropoulos, G. C. (1998). 
Expert system support using Bayesian belief net-
works in the prognosis of head-injured patients of 
the ICU. Med Inform (Lond), 23(1), 1-18.

Ogunyemi, O. (2006). Methods for reasoning from 
geometry about anatomic structures injured by 
penetrating trauma. J Biomedical Informatics, 
39(4), 389-400.

Pearl, J. (1988). Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference. 
San Francisco, CA: Morgan Kaufmann.

Pham, D. L., Xu, C., & Prince, J. L. (2000). Cur-
rent methods in medical image segmentation. 
Annual Review of Biomedical Engineering, 2(1), 
315–337.

Rubin, D. L., Shah, N. H., & Noy, N. F. (2008). 
Biomedical ontologies: a functional perspective. 
Brief Bioinform, 9(1), 75-90.

Sebastiani, P., Ramoni, M. F., Nolan, V., Bald-
win, C. T., & Steinberg, M. H. (2005). Genetic 
dissection and prognostic modeling of overt 
stroke in sickle cell anemia. Nature Genetics, 
37, 435-440.

Shwe, M. A., Middleton, B., Heckerman, D. E., 
Henrion, M., Horvitz, E. J., Lehmann, H. P., et al. 
(1991). Probabilistic diagnosis using a reformula-

tion of the INTERNIST-1/QMR knowledge base. I. 
The probabilistic model and inference algorithms. 
Methods Inf Med, 30(4), 241-255.

Shyu, C. R., Brodley, C. E., Kak, A. C., Kosaka, 
A., Aisen, A. M., & Broderick, L. S. (1999). AS-
SERT: A physician-in-the-loop content-based 
retrieval system for HRCT image databases. 
Computer Vision and Image Understanding, 
75(1), 111-132.

Wyatt, J. C., & Wright, P. (1998). Design should 
help use of patients’ data. Lancet, 352(9137), 
1375-1378.

Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., 
& Jarvis, E.D. (2004). Advances to Bayesian 
network inference for generating causal networks 
from observational biological data. Bioinformat-
ics, 20(18), 3594-3603.

Zou, Q., Chu, W. W., Morioka, C., Leazer, G. H., 
& Kangarloo, H. (2003). IndexFinder: A method 
of extracting key concepts from clinical texts for 
indexing. In M. Musen (Ed.), AMIA Annu Symp 
Proc, 763-767.

kE y tE r Ms

Intelligent Data Analysis: The use of statisti-
cal, pattern recognition, machine learning, data 
abstraction, and visualization tools for analysis 
of data and discovery of mechanisms that created 
the data.

Data Mining: The principle of sorting through 
large amounts of data and picking out relevant 
information.

Probabilistic Graphical Model: A graph that 
represents independencies among random vari-
ables by a graph in which each node is a random 
variable and missing edges represent conditional 
independencies.
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Bayesian Belief Network: A directed acyclic 
graph that represents a set of variables and their 
probabilistic independencies.

Dynamic Bayesian Network: A directed 
graphical model of stochastic processes that gen-
eralize hidden Markov models and are typically 
used to model a time series.

Graphical Metaphor: Unique and identifiable 
visual representations of variables specified in 
the disease model.

Visual Query Interface: A tool that enables 
user to visually interact with the underlying 
graphical model and guides the user through the 
query formulation process by adapting the inter-
face based on the structure of the model.
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Abstr Act

The estimation of motion of the myocardial and arterial wall is important for the quantification of tissue 
elasticity and contractility and has gained attention as a determinant of cardiovascular disease. In this 
chapter, a review is attempted regarding the analysis and quantification of motion within the cardiovas-
cular system from sequences of images. The main sources of cardiovascular wall motion include blood 
pressure, blood flow and tethering to surrounding tissue. The most commonly applied techniques for 
cardiovascular motion analysis include feature-based and pixel-based methodologies; the latter further 
include block matching, optical flow and registration techniques. Two distinct paradigms based on these 
methodologies are highlighted, namely myocardium and carotid artery wall motion. The current status 
of research in these areas is reviewed and future research directions are indicated.
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Introduct Ion 

Cardiovascular disease (CVD) is caused by 
disorders of the heart and blood vessels, and 
includes coronary heart disease (heart attacks), 
cerebrovascular disease (stroke), raised blood 
pressure (hypertension), peripheral artery dis-
ease, rheumatic heart disease, congenital heart 
disease and heart failure. According to the World 
Health Organization (World Health Organization 
website), CVD is the number one cause of death 
globally and is projected to remain the lead-
ing cause of death. An estimated 17.5 million 
people died from cardiovascular disease in 2005, 
representing 30% of all global deaths. Of these 
deaths, 7.6 million were due to heart attacks and 
5.7 million were due to stroke. Around 80% of 
these deaths occurred in low- and middle-income 
countries. If appropriate action is not taken, by 
2015, an estimated 20 million people will die from 
cardiovascular disease every year, mainly from 
heart attacks and strokes. 

Clinical diagnosis, treatment and follow-up 
of cardiovascular disease are greatly aided by 
a number of imaging techniques which provide 
qualitative and quantitative information about 
morphology and function of the heart and the 
blood vessels. Furthermore, advanced image 
processing methods can be used to extract fea-
tures from digitized images and facilitate image 
interpretation and subsequent decisions on disease 
management. Among such features, the estima-
tion of motion of the myocardial and arterial 
wall is important for the quantification of tissue 
elasticity and contractility and has gained atten-
tion as a determinant of cardiovascular disease. 
Myocardial and arterial wall elasticity is altered 
with age as well as in the presence of pathology 
(eg. myocardial infarction, atherosclerosis) mainly 
due to altered wall composition. 

 In this chapter, a review is attempted regarding 
the analysis and quantification of motion within the 
cardiovascular system from sequences of images. 
The main sources of cardiovascular wall motion 

are described, techniques for imaging tissue mo-
tion are reported and the most commonly applied 
methodologies for motion estimation based on 
temporal image sequences are discussed. Specific 
clinical applications of these methodologies for 
the analysis and quantification of motion of the 
myocardium and the carotid artery wall are also 
presented within this chapter.

bAckground 

Motion of the Myocardial and Arterial 
wall 

Throughout the cardiovascular system, tissue mo-
tion is caused by blood pressure, blood flow and 
tethering to surrounding tissue. Blood pressure, 
commonly expressed in terms of the transmural 
pressure (intramural minus extramural), causes 
tensile stress in the wall. As the transmural pres-
sure rises, mechanical stresses are induced in all 
directions within the wall. Compressive stress 
may occur and is enhanced when the less compli-
ant deeper wall layers prevent the surface layers 
from expanding, resulting in further compression. 
Stresses in the longitudinal and circumferential 
directions, on the other hand, are generally tensile 
in nature, leading to tissue lengthening. 

Unlike orthogonal forces such as those induced 
by transmural pressure, fluid shear generated 
by friction or viscous drag due to blood flow 
acts tangentially upon the cardiovascular wall 
and endothelium. The magnitude of fluid shear 
depends on factors such as local geometry, local 
velocity of blood flow and the viscosity of blood 
as largely related to the haematocrit. In the heart, 
shear strain may be developed between the endo-
cardium, the myocardium and the pericardium, 
whereas in arteries between neighboring arterial 
layers (intima, media, adventitia) and between 
arterial wall and surrounding tissue. In arteries, 
atherosclerotic plaques tend to occur where flow 
velocity and shear stress are reduced and flow 
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departs from a laminar unidirectional pattern. 
The relationship is unclear and may reflect a di-
rect effect of shear on the wall. Many features of 
endothelial cell biology, including production of 
nitric oxide, are modified by shear. Alternatively, 
low flow characteristics tend to increase the resi-
dence time of circulating particles in susceptible 
regions while particles are cleared rapidly from 
regions of relatively high wall shear stress and 
laminar unidirectional flow. 

Tether, a term used to describe the constraint 
imposed on the wall from the tissues surround-
ing it and from arterial side branches, is another 
source of wall motion. Tethering reduces motion 
due to haemodynamic factors but can induce wall 
movement due to body motion. 

Cardiovascular structures are characterized 
by a wide variability of their material properties: 
(1) they are distinctly anisotropic; (2) their elastic 
properties are nonlinear, becoming stiffer with 
higher degrees of strain; and (3) in the case of 
atherosclerotic plaques, stiffness also increases 
with increases in frequency of applied stress. 

Altered motion patterns of the myocardial 
wall in the presence of disease (eg. heart infarcts) 
include reduced mobility of wall segments. Such 
segments are usually characterized as hypokinetic 
or akinetic. 

Mechanical factors are more complicated in 
the case of diseased (atherosclerotic) arterial walls, 
where the presence of atheromatous plaque alters 
the local geometry and, subsequently, blood flow 
and mechanical forces acting on the wall. Intrinsic 
mechanical forces clearly contribute to plaque 
rupture and occurrence of vascular symptoms 
(Falk et al., 1995). It has also been demonstrated 
that reduction of arterial wall motion inhibits ex-
perimentally mediated atherosclerosis (Tropea et 
al., 2000). Plaque rupture, often with thrombosis 
superimposed, is a complication of the advanced 
atherosclerotic lesion (Falk, 1992). It occurs 
when the tension on a plaque exceeds its tensile 
strength and may lead to acute ischaemic events 
(McIsaac et al., 1993). Plaque composition, rather 

than plaque size, seems to determine the risk of 
plaque rupture (Falk, 1992). Histological features 
that characterise the unstable (rupture-prone) 
plaque include a thin, eccentric fibrous cap and 
a large necrotic core of lipid and cellular debris 
(Lee & Libby, 1997). This plaque configuration 
is particularly unstable because large mechanical 
stresses develop in the thinnest portions of the 
fibrous cap. The soft lipid core is unable to bear 
these mechanical forces and excess stresses are 
thus “concentrated” in the fibrous cap, particularly 
at the junction with the normal vessel, also called 
the “shoulder” region (Lee & Libby, 1997). Even 
in a mildly stenosed model of a patient-derived 
artery with compliant wall, the plaque shoulder 
exhibited raised internal stress, which along with 
reversed flow in the post-stenotic zone, is believed 
to be important for the continued development 
of the plaque and for potentially catastrophic 
events in the end stages of the disease (Lee et 
al., 2004).

Imaging c ardiovascular t issue
Motion 

Although the title of the very first description 
of echocardiography by Edler and Hertz (1954) 
mentioned ‘recording of the movements of heart 
walls’ as its goal, the objective and quantitative 
measurement of cardiovascular wall motion has 
remained difficult in clinical practice. Modern 
imaging systems allow real-time imaging of 
moving structures as well as storage of tempo-
ral image sequences, or cine loops, for further 
processing. Tissue motion can be quantitatively 
estimated from these sequences provided they 
are acquired at sufficiently high frame rates. The 
major imaging modalities allowing recording of 
wall motion include ultrasound and magnetic 
resonance imaging (MRI). 

Ultrasound imaging is widely used in the 
diagnosis of cardiovascular disease because it al-
lows non-invasive assessment of disease severity 
and tissue morphology. M-mode and real-time 
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der Geest & Reiber, 1999). With the use of this 
technique, cine MR images are acquired with 
a superimposed parallel grid of dark saturation 
lines. These tagging lines are induced by a special 
pre-pulse sequence immediately following the 
R-wave of the ECG and can subsequently be fol-
lowed over the cardiac cycle. Dedicated computer 
algorithms can subsequently be used to track the 
intersection points of the tagging lines automati-
cally over the cardiac cycle, to quantify tissue 
deformations. Another well-known MRI method 
for measuring local motion is motion-encoded 
phase-contrast imaging. In contrast to the tagging 
that image longitudinal magnetization, the mo-
tion-encoding methods obtain information about 
tissue dynamics by phase encoding the velocity of 
transverse magnetization (Mc Veigh, 1996). Over 
the past decade, MR elastography (MRE) has 
emerged as a sensitive method for noninvasively 
evaluating the mechanical properties of biologi-
cal tissues (Manduca et al., 2001). MRE enables 
direct quantification of the viscoelastic mechanical 
properties of tissue by dynamically imaging the 
propagation of cyclical shear deformations that 
are induced in a material. 

Methods for c ardiovascular t issue 
Motion Analysis from sequences of 
Images 

A number of approaches have been used to recover 
cardiovascular motion from sequences of images. 
They can be divided into two main categories: (i) 
feature-based methodologies, and (ii) pixel-based 
methodologies. Techniques of each category, with 
their relative advantages and limitations, can be 
used to investigate different aspects of the motion 
field. The principal characteristics of methodolo-
gies of each category are described below. 

Feature-based methodologies. These rely on 
the estimation of movement of salient features 
in the imaged scene (Aggarwal & Nandhaku-
mar, 1988). Features include lines, edges, object 
boundaries, corners, etc. To apply such methodolo-

B-mode scanning, although developed in the 
1960s and 1970s respectively, are still the most 
commonly applied methods for studying tissue 
motion (Anderson & McDicken, 1999). They are 
now used in combination whereby the B-mode 
depicts the motion of tissues in a two-dimensional 
(2D) image and the M-mode provides more de-
tailed information on how some selected tissue 
parts in the image move with time, often over 
several cardiac cycles. Images of moving tissue 
may also be produced by modifying the filters 
used in Doppler blood flow imaging to reject the 
low amplitude blood echoes and retain the higher 
amplitude signals from tissue; the technique is 
known as tissue Doppler imaging (TDI) (Yu et 
al., 2007). A disadvantage of both M-mode and 
TDI is that they provide motion estimation in 
only one direction, i.e. along the ultrasound beam 
axis. A recently introduced approach to imaging 
mechanical properties of tissue is elastography 
(Ophir et al., 1999). The method consists in 
calculating 2D local tissue strain through cross-
correlation of radio-frequency segments for the 
estimation of the time shift resulting from a 
small deformation. Because ultrasonic images 
are 2D tomograms, three-dimensional (3D) re-
construction can be readily achieved off-line from 
multiple image slices if the imaging planes are 
spatially encoded. 3D real-time imaging (Nelson 
et al., 1999) is a relatively new development in 
ultrasound that allows 3D quantitation of organ 
dynamic geometry. 

MRI is an established, although still rapidly 
advancing, imaging modality providing accurate 
quantification of anatomy, function, flow and 
perfusion of the cardiovascular system at rest 
and under stress conditions (J Magn Reson Imag, 
1999). Compared to ultrasound imaging, MRI of-
fers a wider topographical field of view (window) 
and superior contrast resolution resulting in easy 
definition of anatomical information without the 
need for contrast medium or invasive techniques. 
An MRI technique suitable for non-invasive as-
sessment of tissue motion is MRI tagging (van 
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gies, the images need first be segmented so as to 
extract the features to be followed throughout the 
sequence. Rigid body motion is usually assumed 
for the extracted features (Fig. 1). Deformable 
models, designed to track deformable object 
contours, are more appropriate for biological 
structures (McInerney & Terzopoulos, 1996). 
In addition to this, the Hough Transform (HT), 
which detects parametric curves in an image, 
may be applied to individual sequence images 
to track the location of straight lines, circles or 
ellipses, corresponding to anatomical structures 
of interest (Nash et al., 1997). 

Pixel-based methodologies. These allow for 
motion estimation by studying displacement be-
tween frames at the pixel level. The most widely 
used pixel-based methodologies in medical image 
applications include block matching, optical flow 
and registration methods. 

Block matching. Given a block of pixels, 
or reference block, in the first of two images, 
matching consists in finding the block in the 
second image that best matches the block in the 
first image, termed reference image (Dufaux & 
Moscheni, 1995) (Fig. 2a). This definition relies 
on the assumption that the reference block re-
mains constant over time and motion which is 
valid if the frame rate is sufficiently high. The 
method requires a good measure of match. The 
value of such a measure should be large when 

the selected block and the interrogated image 
region coincide in intensity levels and small 
otherwise. The search for the best-matched block 
is typically constrained to a search window, the 
size of which has to be appropriately chosen 
because it may affect motion analysis results. A 
large search window allows accurate tracking of 
rapid movements that could be lost if the search 
widow was smaller, but increases the possibility 
for mismatch and the computational complexity 
of the algorithm. In conventional block matching 
methods, pixel velocities are considered constant 
within pixel blocks. To overcome this constraint, 
the affine block motion model (Fig. 2b) can be 
used to estimate the velocity field of a block that 
undergoes not only translation but also rotation 
and scaling (Glasbey & Madria, 1998). 

Optical . ow. Optical flow relies on the estima-
tion of the spatiotemporal change of the intensi-
ties of individual pixels, rather than of blocks of 
pixels, throughout an image sequence (Dufaux 
& Moscheni, 1995). The result is a dense vector 
map where each pixel is represented by a vector 
corresponding to its velocity between two frames 
(Fig. 3). The assumption is made that the intensity 
of a given pixel is constant between two consecu-
tive frames of the sequence. This assumption is 
true when the temporal separation between the 
two frames is small, or, in other words, when the 
frame rate is high. 

Figure 1. Schematic illustration of feature-based motion analysis algorithm. (a) Reference image. (b) 
Interrogated (current) image.

(a) (b)

A
A

B
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Registration. Image registration consists in 
finding a correspondence function (transforma-
tion) mapping coordinates from a reference image 
to coordinates of homologous point in a test image 
(Fig. 4). Registration methods are usually applied 
to data acquired at the same time point either to 
achieve multimodal integration or to compen-
sate for small misalignments. Motion tracking 
applications of registration techniques have also 
been reported. Registration schemes may be rigid, 
when only translations and rotations are allowed, 
affine, when the transformation maps parallel lines 
onto parallel lines (Maintz & Viergever, 1998) 

or nonrigid, allowing for soft tissue deformation 
(Crum et al., 2004). Optical flow has been used 
in combination with registration approaches to 
enhance the efficiency of the latter. 

The selection of the appropriate methodology 
to be used in a specific application depends on a 
number of factors, including (a) the type of mo-
tion information that is required, (b) the quality 
of the available images and (c) the merits and 
demerits of particular methods. Feature-based 
methodologies are suitable for applications in 
which feature segmentation is a feasible task; 
they may not be the optimal choice in cases where 

Figure 2. Schematic illustration of block matching algorithms. (a) Conventional block matching. Motion 
of a block of pixels is estimated by searching for the most similar block of pixels in a search window at 
subsequent frames. (b) Affine block matching. Motion of a block of pixels is estimated by wrapping the 
block at the current frame according to the affine parameters computed in the previous frame.

Figure 3. Schematic illustration of the optical flow algorithm. The optical flow at the pixel (x,y) is the 
2D-velocity vector (  

dt
dy,

dt
dx  ).
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image features have a fuzzy appearance, as is the 
case of noisy ultrasound images. A limitation of 
these methodologies is the assumption of rigid 
body motion which may not be representative of 
anatomical structures. Pixel-based methodologies 
do not rely on such assumptions, but require that 
motion be smooth and small thus requiring high 
rates of image acquisition. In particular, a limita-
tion of optical flow approaches is its sensitivity to 
noise due to its dependence on spatio-temporal 
gradients. 

c l InIc Al  APPl Ic At Ions 

A number of approaches based on the methods 
described in the previous section have been used 
to estimate different aspects of the displacement 
fields of the myocardial and arterial wall described 
in section II.A. In this section, examples of such 
applications are presented concerning the study 
of motion of the myocardium and arterial wall. 
These are the most studied anatomical structures 
of the cardiovascular system, probably because 
they are associated with the two main causes of 
death due to cardiovascular disease, namely heart 
attack and stroke, respectively. 

Reliable analysis and quantification of tissue 
motion requires the use of (i) an appropriate imag-

ing modality allowing the recording of temporal 
image sequences at sufficiently high frame rates 
and (ii) a robust technique for processing the ac-
quired image sequences. The use of standardized 
procedures, in the form of a carefully designed 
protocol, is crucial not only for image record-
ing but also for accurate interpretation of the 
motion analysis results. Technical issues related 
to constraints imposed by cardiovascular wall 
physiology and physical principles of the imaging 
modality should be taken into account in such 
protocols. More specifically, issues including the 
subject setup, the imaging angle of the anatomi-
cal structure of interest and the consideration of 
sources of displacement other than the cardio-
vascular forces, should be addressed in a clinical 
protocol. In addition to this, the settings of the 
imaging modality during the recording process 
should also be determined in the same protocol. 

Myocardium 

The estimation of cardiac motion contributes in 
identifying localized regions exhibiting move-
ment abnormalities, which are indicative of the 
existence of ischemic segments caused by insuf-
ficient tissue microcirculation. A large number of 
approaches have been developed to describe and 
quantify heart motion. They may be divided into 

f(x,y)

Figure 4. Schematic illustration of image registration. The correspondence function, f(x,y), maps coor-
dinates from a reference image (a) to coordinates of homologous points in the current image (b).
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three main categories: (i) estimation of endocar-
dial motion through image intensity changes, (ii) 
detection and tracking of boundary of anatomical 
structures (eg. ventricular wall) and (iii) tracking 
of anatomical, implanted or induced myocardial 
landmarks (Frangi et al., 2001). 

Optical flow, block matching and registration 
methods have been applied to approximate motion 
estimation problems of the first category. Sühling 
et al. (2004) used multiscale motion mapping, a 
technique similar to optical flow, to determine 
motion and deformation at arbitrary locations of 
synthetic and real echocardiograms. The useful-
ness of the method was demonstrated in a series of 
complex motion analyses that included abnormal 
septal motion and analysis of myocardial twisting. 
Ledesma-Carbayo et al. (2005) proposed a novel 
spatio-temporal elastic registration algorithm to 
estimate myocardial displacement fields from 
2D ultrasound sequences. The key feature of 
the algorithm consists in the use of an analytical 
representation of the displacement based on a 
semilocal parametric model of the deformation us-
ing B-splines. Application to real image sequences 
showed that displacement and strain parameters 
were significantly different for normal, hypoki-
netic and akinetic myocardial segments. 

Curvature-matching has been used to find 
point correspondences in an attempt to automati-
cally track nonrigid cardiac structures (Amini & 
Duncan, 1992; Benayoun & Ayache, 1998).  Amini 
& Duncan (1992) presented a unified framework 
for motion tracking of curves and surfaces using 
elastic models of the objects and constraints on 
the types of motion. Potential applications of 
the methodology were illustrated in 3D MR and 
computed-tomography image sequences. More 
recently, a number of approaches have been 
proposed for automated detection and tracking 
of endocardial structures from 2D or 3D image 
sequences allowing measurement of global func-
tional parameters (Angelini et al., 2005; Gérard et 
al., 2002; Zagrodsky et al., 2005). Most of these 
methodologies require a manual initialization 

step, thus compromising the reproducibility of 
the analysis. Zagrodsky et al (2005) proposed 
an automatic, registration-assisted, initialization 
which, however, suffers from being time-con-
suming. Alternative approaches to automated 
initialization for segmentation and tracking of the 
endocardial wall border included the use of the 
HT for circles in MR (van der Geest et al., 1997; 
Müller et al., 2005) and ultrasound images (Van 
Stralen et al., 2008). The methodology presented 
by van Stralen et al (2008) used the HT to detect 
candidate left ventricle center points subsequently 
used to detect the ventricle long axis by combining 
dynamic programming in 3D and 2D+time data. 
The demonstrated robustness, accuracy and low 
computational cost of the methodology make it 
a valuable starting point for various high-level 
segmentation techniques. 

Landmark-based methods provide informa-
tion on material point correspondence. Implanted 
markers suffer from being invasive, precluding 
their routine use in humans. Although they are 
regarded as the gold standard, there are some 
concerns in the literature about their effect on 
both image quality and modification of the motion 
patterns (Frangi et al., 2001). Among potential 
anatomical markers, coronary artery bifurcation 
points and the mitral valve annulus have been re-
ported. Nevo et al. (2007) used multidimensional 
dynamic programming combined with apodized 
block matching to automatically track the mitral 
valve hinge points motion from echocardiographic 
images. For sequences of 20 patients with acute 
myocardial infarction, the automatic technique 
agreed well with results obtained manually and 
outperformed two commonly used tracking 
methods, namely forward tracking and minimum 
tracking.  

c arotid Arteries 

Motion of the normal and diseased carotid artery 
wall is important in the diagnosis of carotid ath-
erosclerosis. The motion patterns of atheromatous 
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plaques may be related to the risk for cerebrovas-
cular complications, such as stroke. Studies on the 
analysis and quantification of motion of the carotid 
artery wall are relatively limited – especially when 
compared to those about myocardial wall motion 
– and are based on the processing of temporal 
sequences of 2D and 3D ultrasound images. 

Block-matching-based techniques have been 
used to estimate arterial motion from B-mode 
(Golemati et al., 2003; Cinthio et al., 2005; Cinthio 
et al., 2006) and radiofrequency (Bang et al., 2003; 
Dahl et al., 2004) ultrasound images using high 
frame rates; 25 Hz in (Golemati et al., 2003) and 
55 Hz in (Cinthio et al., 2005; Cinthio et al., 2006; 
Bang et al., 2003; Dahl et al., 2004). Golemati et 
al. (2003) estimated motion at the wall-lumen 
interface and within the tissue using block sizes 
of 3.2×2.5 mm and 6.3×2.5 mm, respectively, 
and the normalized correlation coefficient as the 
matching criterion. Measurements in 9 normal 
(non-atherosclerotic) adults showed that arterial 
wall distensibility in the radial direction was 
significantly higher than distensibility in the lon-
gitudinal direction (10.2±4.5% vs. 2.5±0.89%). 

Cinthio et al (2005) designed and evaluated a 
novel non-invasive echo-tracking system based 
on block matching for measurement of radial and 
longitudinal motion of the arterial wall. They used 
a small block size, namely 0.7×0.7 mm, which 
allowed them to estimate motion of individual 
arterial layers. Reproducibility, or intra-rater 
variability, was determined in terms of the stan-
dard deviation of the measurements in in-vitro 
experiments using an agar phantom. Recordings 
including three periods of 0.5 Hz square wave 
movements of amplitudes ranging from 0.05 to 
2 mm showed that reproducibility ranged from 0 
to 8 μm for the radial direction and from 0 to 12 
μm for the longitudinal direction. Experiments 
in 10 healthy humans showed a distinct bidirec-
tional longitudinal movement of the intima-media 
complex during the cardiac cycle (Cinthio et al., 
2006). More specifically, an antegrade movement, 
i.e., in the direction of the blood flow, in early 

systole was followed by a retrograde movement, 
i.e., opposite the direction of blood flow, later 
in systole and a second antegrade movement in 
diastole. The adventitial region showed the same 
basic pattern of longitudinal movement, but with 
lower magnitude; thereby introducing shear strain 
and, thus, shear stress within the wall. 

Bang et al. (2003) studied motion dynamics 
of carotid plaques using a computerized method 
based on cross-correlation similar to that used by 
Golemati et al (2003). Their method produced a 
dense displacement vector map from which 29 pa-
rameters were estimated representing amplitude, 
stretch/compression and shear motion (Dahl et al., 
2004). They made five independent recordings 
of two-three heart cycles each in 12 patients to 
study intra-operator variability between record-
ings and between heart cycles within individual 
recordings. Of the 29 motion parameters, 7 were 
found to reproduce well and their ability to dis-
criminate between plaque types should be further 
investigated; these parameters describe tensional 
and torsional motion, in addition to mere veloc-
ity amplitude. With regard to the acquisition 
scheme, averaging of three repeated recordings, 
each covering at least two heart cycles, yielded 
acceptable accuracy. 

An optical-flow-based approach was one of 
the first attempts to quantitatively analyze ca-
rotid artery motion (Chan, 1993). In that study, 
2D motion analysis from ultrasound images was 
performed for low frame rates, namely 1 Hz, and 
a small number of tracked points. Meairs and 
Hennerici (1999) used optical flow to estimate 
carotid plaque surface motion from three-dimen-
sional (3D) ultrasound image sequences obtained 
at a frame rate of 25 Hz. 13 symptomatic and 18 
asymptomatic plaques with no significant differ-
ences in echogenicity or surface structure were 
investigated. Asymptomatic plaques had surface 
motion vectors of equal orientation and magnitude 
to those of the internal carotid artery, whereas 
symptomatic plaques demonstrated evidence 
of inherent plaque movement. Maximal surface 
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velocity was not different between the two plaque 
types, but maximal discrepant velocity, defined 
as the maximal difference between maximal and 
minimal velocities, was significantly higher in 
symptomatic plaques. Mokhtari-Dizajl et al (2006) 
used an optical-flow-based motion analysis algo-
rithm to estimate systolic and diastolic diameters 
of the right common carotid artery from sequences 
of colour Doppler ultrasound images acquired at a 
frame rate of 30 Hz. They subsequently calculated 
standard arterial stiffness indices, which were 
found to be significantly different in subjects with 
severe, i.e. greater than 40%, stenosis compared 
to subjects with mild or no stenosis. 

Recently, Golemati et al (2007) used a feature-
based methodology, namely the Hough Transform 
(HT), to automatically extract straight lines and 
circles from sequences of B-mode ultrasound 
images of longitudinal and transverse sections, re-
spectively, of the carotid artery. Extracted features 
were further used to estimate vessel diameters as 
well as indices of arterial wall physiology, such 
as the intima-media thickness and the arterial 
distension waveform. The results were reasonably 
similar to those obtained using block matching; 
suggesting the possibility of using the HT to seg-
ment dynamic images of the carotid artery. 

f utur E t r Ends 

The analysis and quantification of motion within 
the cardiovascular system is expected to provide 
valuable information about myocardial and arte-
rial wall mechanics. Future trends in this chal-
lenging field include three major axes of potential 
research interest: 

(1) The development, implementation and 
validation of a large number of motion estimation 
algorithms capable to efficiently quantify wall 
strain under a variety of clinical scenarios. 

(2) The selection of appropriate methods from 
a pool of robust algorithms (see (a)) and their sys-
tematic application in large-scale clinical studies 

to demonstrate the usefulness of quantitatively 
assessed contractility as a determinant of car-
diovascular disease. 

(3) The combination of wall contractility indi-
ces with other clinical biomarkers of cardiovas-
cular disease (eg. genetic, clinical, image-based) 
in an integrated diagnosis support system. This 
should allow global description of different disease 
patterns, characterized by different combinations 
of markers’ values, and may contribute not only 
to early and valid diagnosis of cardiovascular 
disease but also to optimized selection of treat-
ment schemes. 

dIscuss Ion And c onclus Ion 

Motion of the cardiovascular tissue, which may be 
used to quantify tissue elasticity and contractility 
and is considered a determinant of cardiovascular 
disease, can be efficiently estimated from temporal 
image sequences using a number of feature-based, 
pixel-based and registration methodologies. A 
carefully designed study protocol taking into 
account technical issues important for reliable 
image recording is crucial for valid interpretation 
of the motion analysis results. 

An important step in the estimation of tissue 
motion is the validation of the motion analysis 
techniques. Validation may be achieved using 
either specially devised phantoms which simulate 
the properties of biological tissue or computer-
generated images. Tissue-mimicking phantoms 
have proved useful in validation experiments 
(Cinthio et al., 2005; Bang et al., 2003; Dineley 
et al., 2006), but require specialized equipment 
which may not be easily available. Software 
programs capable of simulating medical images 
have been developed, which allow the evaluation 
not only of imaging modality settings but also 
of image processing methods. As an example, 
FIELD II, an ultrasound simulation package, was 
used to evaluate the accuracy of a spatio-temporal 
nonrigid registration algorithm for ultrasound 
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cardiac motion estimation (Ledesma-Carbayo 
et al., 2005). 

The motion field of the healthy and diseased 
cardiovascular wall remains to be studied in detail 
using one or more appropriate algorithms. Indices 
of motion may subsequently be combined with 
(i) other image-derived indices, including tissue 
echogenicity and (ii) clinical markers of disease, 
in an attempt to globally characterize the physiol-
ogy of the cardiovascular tissue. Further in-depth 
investigation of the myocardial and arterial wall 
motion may provide useful insights into the 
mechanisms of cardiovascular disease and may 
assist in selection of optimal treatment. 
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kE y t Er Ms

Tissue Motion Analysis: Detection and 
tracking of motion of manually or automati-
cally selected tissue areas from temporal image 
sequences using appropriate image processing 
methodologies. 

Tissue Motion Quantification: Extraction 
of indices characterizing tissue motion patterns. 
(Tissue motion patterns may have been estimated 
using tissue motion analysis – see above). 

Imaging Modality: System making use of 
fundamental concepts of physical science (eg. 
acoustics, magnetic resonance, X-ray, nuclear 
physics) to provide images of biological tissues. 
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Cardiovascular Forces: Mechanical forces 
exerted on the myocardium and the arterial wall. 
They are due to blood pressure, blood flow and 
tethering to surrounding tissue. They are respon-
sible for cardiovascular tissue strain, expressed 
through its motion pattern. 

Feature-Based Methodologies (for motion 
analysis): Methodologies which rely on the 
identification and subsequent motion estimation 
of salient features in the imaged scene. 

Pixel-Based Methodologies (for motion 
analysis): Methodologies which rely on the dif-
ferences of pixel intensities between frames of 
a sequence. 

Registration Methodologies (for motion 
analysis): Methodologies which rely on recover-
ing a correspondence function mapping coordi-
nates from a reference image to coordinates of 
homologous point in a test image. 
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Abstr Act

Intracoronary Ultrasound (ICUS) imaging is an intravascular catheter-based technique which provides 
real-time, high resolution, cross-sectional images of coronary arteries. In these images the lumen, the 
media-adventitia border, the plaque burden and the composition of the plaque can be identified. Con-
ventionally, ICUS border detection is performed manually. However, this process is laborious and time 
consuming. To enhance the clinical applicability of ICUS, several automated algorithms have been 
developed for fast ICUS segmentation and characterisation of the type of the plaque. In this chapter 
the authors present an overview on the developments in ICUS processing and they describe advanced 
methodologies which fuse ICUS and X-ray angiographic data in order to overcome indigenous limita-
tions of ICUS imaging and provide complete and geometrically correct coronary reconstruction.
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Introduct Ion

Accurate assessment of luminal pathology is use-
ful for the diagnosis and treatment of coronary 
artery disease. The traditional method used for 
the depiction of coronary artery morphology is 
coronary angiography, which provides two–di-
mensional (2-D) views of the luminal silhouette. 
Major limitation of this modality is its inabil-
ity to provide information regarding the plaque 
burden and the composition of the plaque, data 
which are useful to guide treatment and estimate 
prognosis.

To overcome these limitations intracoronary 
ultrasound (ICUS) has been introduced. ICUS 
requires the insertion of a catheter, within the 
coronary artery. At the tip of the catheter there 
is a transducer which transmits ultrasound signal 
perpendicular to its axis. There are two types of 
ICUS systems: the “mechanical” and the “elec-
tronic” ICUS systems. In mechanical systems 
a single rotating transducer, at 1800 rpm (30 
revolutions per second), sweeps a high frequency 
(20 – 40 MHz) ultrasound signal perpendicular 
to the axis of the catheter, while in electronic 
systems there is an array of small crystals which 
have been programmed so that one set of crystals 
to transmit and the other to receive simultane-
ously. In both systems cross–sectional images 
of the coronary artery are produced by detect-
ing the reflections of the ultrasound signal while 
this is passing through the vessel.  As the ICUS 
catheter is pulled–back (either manually or by a 
motorized pull–back device) a series of images 
is generated. In each image, the luminal border, 
the outer vessel wall border (in the text the term 
media–adventitia border is used), the stent border, 
the plaque and the composition of the plaque can 
be identified and accurate measurements can be 
obtained (Mintz et al., 2001).

In ICUS images there are often several artefacts 
which may reduce the ability to identify the regions 
of interest (Figure 1). These artefacts include: the 
non–uniform rotational distortion which appears 

only in the mechanical ICUS systems, the ring 
down artefact (a bright halo surrounding the 
transducer) that is due to a high amplitude of the 
ultrasound signal, the guide wire artefact, the 
near field artefact, the blood speckles artefact, 
etc. (Nissen et al., 1993).

Initially, ICUS border detection was performed 
manually. However, it became apparent that this 
process is laborious, time consuming and can be 
unreliable in the hands of inexperienced opera-
tors. Therefore, there was an emerging interest 
in the development of fast and accurate (semi-) 
automated segmentation algorithms which would 
enhance the clinical applicability of ICUS. These 
algorithms had to face several challenges mostly 
caused by the high noise content, the low im-
age resolution, the non–uniform luminance and 
contrast as well as the presence of the above 
mentioned artefacts.  

Another problem that needed to be addressed 
was the reliable identification of the type of the 
plaque as well as the integration of the detected 
ICUS borders into a 3-D object which would 
represent the coronary vessel. Some of the earlier 
work on the 3-D reconstruction and visualization 
of the ICUS sequence assumed that the vessels 
were straight. However, with this assumption, 
ICUS could not provide any information on the 
3-D arterial geometry or the spatial orientation 
of the plaque onto the artery. To overcome these 
limitations fusion of biplane angiographic data 
and ICUS has been proposed.

In this chapter we attempt to present an over-
view of the developments in ICUS processing. 
This review is organised as follows: in the next 
section we describe the segmentation algorithms 
which have been introduced for ICUS border 
detection and plaque characterization. We also 
present methodologies which have been initially 
proposed for 3-D coronary reconstruction. In 
the main part of the chapter we describe novel 
techniques able to fuse ICUS and angiographic 
data in order to generate geometrically correct 
coronary segments. In addition, we present two 
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Figure 1. Structures and artefacts observed in an ICUS image

advanced user–friendly systems, that incorporate 
these data fusion techniques and allow reliable and 
comprehensive coronary representation with the 
general goal to show future trends and interesting 
potentialities of these systems. 

bAckground

(semi-) Automated border detection 
Algorithms

Over the last two decades a multitude of method-
ologies has been introduced for the segmentation 
of the ICUS images. The first semi–automated 
method was described by Dhawale et al. (1993). 
Their approach required an expert observer to 
approximate the regions of interest in each ICUS 
image. These estimations were then used to guide 
a 1-D dynamic search algorithm. Two years later, 
Sonka et al. (1995) developed a faster segmentation 
methodology. His approach incorporated a priori 
knowledge of the ICUS images’ characteristics 
and utilised a minimum cost algorithm for bor-

der detection. In this method an expert observer 
had to approximate the regions of interest only 
in the first image and afterwards the algorithm 
found automatically the regions of interest in the 
next frames. Bouma et al. (1996) were the first 
to introduce a fully automated methodology for 
luminal border detection. This approach processed 
images obtained at the same coronary segment and 
at the same phase of the cardiac circle to detect 
the region with different luminosity. This region 
corresponded to the blood speckles and thus to 
the lumen. Even though this method was fully 
automated, it had limited clinical applicability 
since it failed to identify the media–adventitia 
border and required an increased number of 
ICUS frames.  

Von Birgelen et al. (1996) developed a semi–
automated, clinically applicable segmentation 
methodology. Their approach utilised a minimum 
cost algorithm for border detection. Initially, 
they modelled the ICUS sequence in a 3-D cyl-
inder–like object. In a next step, a minimum cost 
algorithm was applied to identify the regions of 
interests in longitudinal cut planes of the object. 
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These borders were then transferred onto the 
ICUS images and used to guide the segmentation 
of each image.       

Lobregt and Viergever (1995) suggested the use 
of deformable models (snakes) for ICUS border 
detection. Snakes are parametrical curves that 
are described by an energy function. In an ICUS 
image the deformable models have the ability 
to be attracted by the regions of interest which 
minimize their energy function. This desirable 
feature renders them useful in ICUS processing. 
Thus, over the last years many methodologies 
have incorporated deformable models for ICUS 
border detection (Plissiti et al., 2004; Giannoglou 
et al., 2007; Sanz-Requena et al., 2007). An inter-
esting approach was introduced by Plissiti et al. 
(2004). In their method a Hopfield neural network 
was utilised to expedite the minimisation of the 
deformable model’s energy function. They also 
incorporated efficient algorithms to overcome 
common artefacts observed in ICUS images (e.g. 
the blood speckle artefact and the guide wire ar-
tefact) and to address ordinary problems in ICUS 
segmentation such as the increased noise and the 
computation of the media–adventitia border in 
images where calcified lesions are present. In 1999 
Shekhar et al. (1999) modelled the ICUS sequence 
into a 3-D cylinder–like object and then they used 
for first time a 3-D deformable model to identify 
the regions of interest. A year later Kovalski et 
al. (2000) suggested a modification in the energy 
function of the 3-D model introducing the balloon 
snakes while in 2002 Klingensmith and Vince 
(2002) proposed a segmentation approach based 
on 3-D B-spline surfaces. 

Today, there is variety of segmentation algo-
rithms and user–friendly systems (Koning et al., 
2002) that are available for ICUS border detection. 
However, ICUS segmentation still remains a chal-
lenging and heated issue since none of the existed 
methodologies appears to be as reliable as the 
expert observers (Klingensmith et al., 2000; Bou-
rantas et al., 2005). This is due to the fact that the 
increased noise and artefacts seen in ICUS frames 

often mislead these algorithms. Therefore, most 
systems require an expert observer to inspect the 
segmentation process, introduce the appropriate 
corrections whenever the method fails and restart 
the procedure from the corrected image.  

Plaque c haracterization Algorithms

There is direct and indirect evidence that the 
architecture and the histological characteristics 
of the atherosclerotic plaque play an important 
role in outcome and natural evolvement of the 
atherosclerotic process (Falk et al., 1995). Rec-
ognition of the type of the plaque may also be 
a key in the lesion–specific treatment strategy. 
Several studies have showed that ICUS can be 
a useful tool in assessing various morphologic 
features and identifying the composition of the 
plaque (Gussenhoven, 1989). 

Traditionally, plaque’s characterization was 
performed by expert observers. The categorization 
of an atheroma was depended on its echogenicity 
in ICUS frames. According to Mintz et al. (2001) 
an atheroma could be classified as: calcific (a 
bright echogenic plaque which obstructs the 
penetration of the ultrasound), soft (an echolucent 
plaque with high lipid content), fibrous (a plaque 
with intermediate echogenicity between soft and 
calcific) or mixed (a plaque including more than 
one acoustic subtype, e.g. fibrocalcific, fibrofatty 
etc.). Rasheed et al. (1995) and Zhang et al. (1998) 
developed the first computerized methods for 
plaque characterisation. Both they compared 
the gray–scale intensity of the plaque with the 
adventitial region of the artery to classify the 
plaque as calcified, mixed, or soft. 

Nair et al. (2002) and Kawasaki et al. (2002) 
proposed more advanced methodologies to iden-
tify the type of the plaque. These approaches are 
called “virtual histology” and are superior to those 
introduced by Rasheed et al. (1995) and Zhang 
et al. (1998) since the latter often fail to differ-
entiate the soft from the mixed plaque. Virtual 
histology today constitutes the gold standard for 
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plaque characterisation and is based on spectral 
analysis of the radiofrequency back–scattered 
ICUS signals. In these methods the average power 
of the back–scattered signal from a small volume 
of tissue is calculated and used to identify the 
composition of the plaque which is then depicted 
in each ICUS image using a comprehensive co-
lour–coded map.  

3-d r econstruction of Icus  Images

To visualize the vessel’s morphology and to mea-
sure the plaque volume integration of the ICUS 
sequence into a 3-D object has been suggested. 
Conventional 3-D reconstruction methodologies 
stack all the ICUS frames to form a cylinder–
shaped object (Rosenfield et al., 1991; Roelandt et 
al., 1994). However, this process did not take into 
account the luminal and outer vessel wall changes 
during the cardiac circle, resulting in a “sawtooth” 
artefact that was more prominent in normal vessels 
with increased diameter and preserved compli-
ance. This problem was overcome by gating the 
image acquisition and selecting only the ICUS 
frames that corresponded to the same phase of 
the cardiac circle (e.g. to the end–diastolic phase). 
There are two methodologies for ICUS gating: the 
prospective electrocardiographic gating (Bruining 
et al., 1998) and the retrorespective gating (Zhang 
et al., 1998). In the first case the ICUS images 
are acquired only at a predefined phase of the 
cardiac circle (e.g. at the peak of R wave). After 
the acquisition of the first frame the catheter is 
pulled–back at a specific distance, by an automated 
ECG gated pull–back device, to acquire the next 
frame and so on. Thus, immediately after acquisi-
tion, a volumetric dataset is obtained, ready for 
volumetric analysis. In retrorespective gating the 
ICUS images are obtained continuously while the 
ICUS catheter is pulled–back at a constant speed 
(e.g. 0.5mm/sec or 1mm/sec) by an automated 
pull–back device. Then, the ICUS frames are 
selected on the basis of the electrocardiogram, 
to prepare the final volumetric dataset. 

Even though these straight 3-D reconstruction 
methods managed to overcome the “sawtooth” 
artefact they still have two significant limitations. 
The first is that they fail to provide reliable infor-
mation about the spatial orientation of the plaque 
onto the artery and the second is that they do not 
take into account the vessel curvature. These 
approximations may lead to miscalculation of 
the plaque volume especially in segments with 
increased curvature where the error can be up to 
5% (Schuurbiers et al., 2000). 

f us Ion of Icus  And 
Ang Iogr APhIc dAt A

developed Methodologies for 
g eometrically c orrect Arterial 
r econstruction 

To overcome the above mentioned limitations 
reliable combination of the 3-D arterial geometry 
(obtained from biplane angiographic images) 
with the luminal and vessel wall data (obtained 
from ICUS images) has been proposed. The first 
methodology able to fuse ICUS and X–ray angio-
graphic data was proposed by Klein et al. (1992). 
A limitation of this methodology was the fact that 
they used the vessels’ midline to approximate the 
ICUS catheter path. In addition, Klein et al. did 
not estimate the spatial orientation of the ICUS 
images onto the reconstructed vessel. Three 
years later Lengyel et al. (1995) implemented a 
snake algorithm to extract the vessel’s midline 
in a more accurate fashion. Lengyel et al. also 
proposed a methodology which used anatomical 
landmarks, that were visible in both ICUS and 
angiographic images (e.g. side branches, calcium 
plaques etc.), to estimate the spatial orientation 
of the ICUS images.  

A different approach was introduced by Co-
thren et al. (2000) who used dynamic biplane 
angiographic images to reconstruct the pull–back 
of the ICUS catheter. In a next step, they placed 
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the ICUS images onto the reconstructed path and 
then, they back–projected each frame onto the 
angiographic images to find its spatial orientation. 
Although, this approach appeared to provide geo-
metrically correct coronary arteries it had limited 
clinical use since it required an increased number 
of biplane angiographic images to reconstruct the 
catheter path. In addition, it became apparent that 
the methodology used to identify the absolute 
orientation of the ICUS images was not accurate 
in the common cases of vessels’ overlapping or 
angiographic artefacts. Finally, the validation of 
this method showed that the cardiac and respira-
tory movements reduce its accuracy. 

These limitations were overcome by Slager et 
al. (2000) who developed a clinically applicable 
methodology. Slager et al. used a parametric 3-
D curve to extract the ICUS catheter path from 
two biplane angiographic images. In a next step, 
they placed the ICUS images perpendicular onto 
the path. To find the spatial orientation of each 
frame they first determined their relative twist 
using the Frenet–Serret formula. Then, they 
back–projected the reconstructed artery onto the 
angiographic images and compared these projec-
tions with the outline of the artery as shown in 
biplane angiographies. Afterwards, they rotated 
the first frame around its axis and the angle of the 
first frame, at which these outlines best match, 
represented the correct absolute orientation. A 
similar reconstruction method was proposed by 
Wahle et al. (1999), while Bourantas et al. (2005) 
introduced a methodology which used B-spline 
surfaces to extract the ICUS catheter path in a 
more accurate fashion. 

user–f riendly systems for 
g eometrically c orrect Arterial 
r econstruction 

In order to enhance the clinical and research ap-
plicability of the previously described data fusion 
techniques the development of user–friendly sys-
tems is required. These systems have to be fast, 

stable, and able to overcome common difficulties 
such as the presence of arterial overlapping or 
foreshortening or the partial visualisation of the 
ICUS catheter in the X–ray images. Moreover, 
they should not require visualisation of additional 
calibration objects to define image geometry and 
to correct distortion. Finally, they should include 
a visualisation platform for comprehensive rep-
resentation of the final objects and a quantitative 
analysis sub–system which will provide the opera-
tor with accurate measurements.  

Today, there are two systems available. The 
first was developed by Wahle et al. (2004). This 
includes the 3-D reconstruction methodology 
introduced by Wahle et al. (1999) which provides 
3-D or 4-D (3-D + time) objects from ICUS and 
X–ray angiographic images. It also incorporates a 
module that can create a finite–element mesh into 
the final objects. This mesh is used to estimate the 
local plaque thickness and to compute the local 
haemodynamics. 

To visualise the final objects, Wahle et al. 
used the standardised Virtual Reality Modelling 
Language (VRML). More specifically, the visu-
alisation module utilised the 2-D texture mapping 
capabilities of VRML to render a 3-D volume as 
a set of 2-D surfaces. In these images the opera-
tor can see the luminal and the media–adventitia 
surface and visually assess the severity of the 
atherosclerosis since the plaque is depicted in a 
colour–coded map (where the blue corresponds 
to the low amount of plaque and the red to the 
increased amount, Figure 2A1). In addition, the 
system allows visual estimation of the vessel’s 
local curvature showed in a colour–coded map 
(the red indicates the inner curvature while the 
blue indicates the outer curvature, Figure 2A2) 
and assessment of the correlation between the 
vessel’s curvature and the plaque burden (Figure 
2A3). Apart from the VRML 2-D texture map-
ping technique, a 3-D graphical user interface 
was incorporated that allows virtual endoscopy 
of the reconstructed vessel. Thus, the operator 
can see the coronary artery from inside, estimate 
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the type of the plaque and the local shear stresses 
and assess in detail the extent of atherosclerosis 
(Figure 2B1, 2B2). The system introduced by 
Wahle et al. (2004) has features which render it 
as a practical tool in research but it has limited 
clinical applicability since it fails to provide arte-
rial reconstruction in real time.

This limitation was addressed by Bourantas 
et al. (2008) who developed a novel system able 
to perform expedite coronary reconstruction. The 
fact that this novel system is fast and manages to 
provide all diagnostic data that are valuable for 
treatment planning, while the patient is in the 
catheterisation table, renders it useful in clinical 
practice. This system, named by the inventors AN-

GIOCARE, incorporates a well–established and 
validated methodology (Bourantas et al., 2005) for 
arterial reconstruction and a quantitative analysis 
sub–system able to process the detected ICUS 
borders and the final 3-D objects and to provide 
reliable measurements. ANGIOCARE operates 
in a user–friendly environment (Figure 3) facili-
tating fast learning by the operator and includes 
an advanced 3-D photorealistic visualisation 
environment which allows comprehensive 3-D 
representation of the final object. In this visualisa-
tion platform the operator can examine the arterial 
morphology and visually assess the distribution 
of the plaque (depicted in a colour–coded map, 
Figure 4A). In addition, he can interact with the 

Figure 2. Image A shows a left coronary artery with part of the left main and a segment of the left ante-
rior descending artery; the branch to the left circumflex artery (red line) has not been followed and was 
discarded: A1) Plaque thickness showed in a rainbow colour–map from low (blue) to high (red) amounts 
of plaque. The media–adventitia border is depicted with a grey colour; A2) representation of the local 
curvature in a colour–coded map. The red indicates “inner” curvature, the blue indicates “outer” cur-
vature while the green marks the sides; A3) Correlation analysis between local vessel’s curvature and 
circumferential plaque distribution: blue regions indicate a high correlation and red a low correlation. 
B1) Endoscopy of the reconstructed artery. ICUS data showed in semi–transparent fashion. In this images 
it is possible to look behind of the stenosis (arrow); B2) Reconstructed luminal surface of the same view 
with depiction of the shear stress in colour–coded fashion. The increased shear stresses correspond to 
the red areas while the low shear stresses to the dark blue. (From Wahle et al., 2004)
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object in real time, select a segment of his interest 
and obtain quantitative measurements (Figure 
4C). He can also back–project the object onto the 
angiographic images and assess the distribution 
of the plaque by performing virtual endoscopy 
(Figure 4D).  

These two systems today constitute the 
gold standard in coronary imaging since they 

provide complete, accurate and comprehensive 
representation of coronary artery’s morphology. 
The obtained 3-D objects are superior to those, 
derived by all the other systems which process 
data from different imaging modalities (e.g. X-ray 
angiography, multi slices computed tomography, 
magnetic resonance imaging) and allow more 
accurate assessment of plaque burden. 

Figure 3. Snapshot of the user–friendly interface used for the extraction of the catheter path (A) and the 
segmentation of the ICUS images (B). (From Bourantas et al., 2008).

Figure 4. A) Luminal surface with colour–coded delineation of the plaque thickness (red indicates in-
creased plaque while blue reduced); B) depiction of the luminal and the media–adventitia borders. The 
outer vessel wall is showed in a semi–transparent fashion; C) Quantitative measurements (displayed at 
the bottom-left side of the screen) from a segment with significant luminal stenosis; D) Virtual endoscopy 
of the reconstructed vessel. (From Bourantas et al., 2008).
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f utur E t r Ends

Nowadays, there is an augmented interest in the 
role of blood flow in the atherosclerotic process 
since it seems that local haemodynamics create 
an environment which determines the behaviour 
of the endothelium and affects plaque’s forma-
tion. The above mentioned systems can be used 
to further investigate this relationship. They can 
be utilised to implement complex haemodynam-
ics, determine the local endothelial shear stress 
and predict changes in arterial morphology and 
blood flow after stent implantation. In addition, 
the already developed systems may be used to 
process data regarding the composition of the 
plaque (given by virtual histology) and create 
objects which will allow the identification of the 
vulnerable and ruptured plaque. These objects 
will provide information that is necessary to 
study in detail the role of local haemodynamics 
in the process of vulnerable plaque formation 
and rapture. 

Finally, the present systems can be implement-
ed to process other imaging modalities such as 
the optical coherence tomographic images (OCT). 
OCT images have higher resolution (axial capac-
ity 15μm) than ICUS and allow the identification 
of neointimal coverage in stents (Takano et al., 
2007). Data suggests that neointimal coverage is 
incomplete after drug eluting stent implantation 
resulting possibly in late thrombosis. Fusion of 
OCT and angiographic images will allow us to 
further understand the mechanisms that are in-
volved in this process and decide about the type 
and duration of antiplatelet treatment.

c onclus Ion

New developments in ICUS processing allow 
fast, reliable and reproducible segmentation of 
the ICUS images and accurate quantification 
of the type of the plaque. Novel methodologies 
able to fuse X–ray and ICUS data provide fully 

and geometrically correct coronary representa-
tion and nowadays constitute the state of the art 
in arterial reconstruction. The newly developed 
user–friendly systems for 3-D reconstruction 
appear to have increased research applicability 
as they allow blood flow simulation and direct 
evaluation of the correlation between the local 
haemodynamics and the plaque thickness. In 
addition, these systems constitute a useful tool 
in clinical practice since they provide in real time 
comprehensive coronary representation and offer 
measurements useful to guide treatment. 
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kE y t Er Ms

B-Splines: Parametrical curves which are 
described by the following formula:
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where, u is B-spline’s )(uC  knot vector, Ni,p(u) 
is B-spline’s basis functions and iAP ,  is the sum 
of the control points that have been used to ap-
proximate spline’s morphology.

Frennet–Serret Formula: A mathematical 
formula developed by Jean Frédéric Frenet and 
Joseph Alfred Serret to calculate the curvature 
and torsion of a 3-D curve.

Neural Network: A modelling technique 
based on the observed behaviour of biological 

neurons and used to mimic the performance of a 
system. It consists of a set of elements (neurons) 
that start out connected in a random pattern, and, 
based upon operational feedback, are modelled 
into the pattern required to generate the optimal 
results.

Neointima Coverage: A new or thickened 
layer of arterial intima formed especially on a 
prosthesis (e.g. stents) by migration and prolifera-
tion of cells from the media. 

Optical Coherence Tomography: Intravascu-
lar imaging modality which provides cross–sec-
tional images of the vessel. It is similar to ICUS 
since it requires the insertion of a catheter within 
the artery, which transmits infrared light. The light 
is back–reflected as passing through the vessel. 
These reflections are obtained and analysed to 
finally generate high resolution cross–sectional 
images.  

Drug Eluting Stent: A metal tube, which is 
placed into diseased vessels to keep them open and 
releases a drug that blocks cells’ proliferation 

Vulnerable Plaque: Atherosclerotic plaque 
which is prone to thrombosis or has high probabil-
ity of undergoing rapid progression and causing 
coronary events. 



�0  

Chapter V
Diagnostic Support Systems 

and Computational Intelligence: 
Differential Diagnosis of Hepatic Lesions 

from Computed Tomography Images

Stavroula G. Mougiakakou
National Technical University of Athens, Greece

Ioannis K. Valavanis
National Technical University of Athens, Greece

Alexandra Nikita
University of Athens, Greece & DIAKENTRO, Diagnostic Imaging Center for the Woman and the 

Child, Greece

Konstantina S. Nikita
National Technical University of Athens, Greece 

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstr Act

Recent advances in computer science provide the intelligent computation tools needed to design and 
develop Diagnostic Support Systems (DSSs) that promise to increase the efficiency of physicians during 
their clinical practice. This chapter provides a brief overview of the use of computational intelligence 
methods in the design and development of DSSs aimed at the differential diagnosis of hepatic lesions 
from Computed Tomography (CT) images. Furthermore, examples of DSSs developed by our research 
team for supporting the diagnosis of focal liver lesions from non-enhanced CT images are presented.
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Introduct Ion

Hepatic diseases, including disorders that cause 
the liver to function improperly or cease its func-
tion (e.g. hepatitis and cirrhosis), are one of the 
most common diseases all over the world. Accord-
ing to the National Center for Health Statistics, 
the American Liver Foundation, and the United 
Network for Organ Sharing over 26.000 people in 
the United States die each year from chronic liver 
disease and cirrhosis, while according to the Of-
fice for National Statistics in the United Kingdom, 
liver disease is now the fifth most common cause 
of death after heart disease, stroke, chest disease 
and cancer. Hepatic cancer is one of the fastest 
growing cancers in the United States, while the 
number of Hepatocellular Carcinomas (HCC), 
type of primary liver cancer and one of the top 
eight most common cancers in the world, is rising 
worldwide. HCC is much more common outside 
the United States, representing 10% to 50% of ma-
lignancies in Africa and parts of Asia. Advances 
in imaging technologies permit the non-invasive 
detection and diagnosis of liver of both diffuse 
hepatic disease, like hepatitis and cirrhosis, and 
focal liver lesions like cysts, hemangiomas and 
HCC. The diagnosis can be performed through a 
wide array of medical imaging techniques includ-
ing Ultrasonography (US), Magnetic Resonance 
(MR) imaging, and Computed Tomography (CT) 
with or without contrast agents. The choice of 
imaging test depends on the clinical question, 
availability of the test, patient’s condition and 
clinician’s familiarity with the test. US imaging 
is inexpensive, widely available, can easily detect 
cysts, but its diagnostic accuracy depends strongly 
on the operator and his/her experience. CT and 
MR imaging are more sensitive in detecting focal 
liver lesions. MR imaging although accurate in 
detecting and differentiating liver lesions, is very 
expensive and therefore not very popular. The most 
commonly used image-based detection method 
of liver lesions is CT due to its short acquisition 
time, wide imaging range, high spatial resolution, 

and relatively low cost. Although the quality of 
liver images has lately improved, it is difficult 
even for an experienced clinician to discriminate 
various types of hepatic lesions with high accuracy 
and without the need for diagnosis confirmation 
by means of contrast agents (related with renal 
toxicity or allergic reactions). 

Rapid development of computer science per-
mitted the design and development of comput-
erized systems able to assist radiologists in the 
interpretation, early detection and diagnosis of 
abnormalities from hundreds of medical images 
every day. These systems are known as Diagnos-
tic Support Systems (DSSs). Recent advances in 
DSSs demonstrated that the application of digital 
image processing techniques along with advanced 
Computational Intelligence (CI) methods increase 
the efficiency, diagnostic confidence and produc-
tivity of radiologists, acting as a “second” opinion 
to the clinician.

The main areas of computerized analysis of 
liver images are: i) general image preprocessing 
in order to improve the quality of hepatic images; 
ii) registration of images in case of multi data sets; 
iii) manually, semi- or fully-automatic segmenta-
tion of Regions of Interest (ROIs) corresponding 
to anatomical structures and/or liver lesion; iv) 
visualization into two- and/or three-dimensional 
(2D and/or 3D) space of liver lesions for diagnosis, 
surgery, radiation therapy planning, quantitative 
studies and final presentation purposes; v) image 
analysis for the detection of an abnormality and 
its classification into one out of several types of 
liver tissues. Generally, a DSS includes tools 
based on image processing techniques in order 
to support all the above mentioned techniques of 
computerized analysis, while the intelligence is 
provided through the usage of CI based algorithms 
embedded into the DSS. CI algorithms belong 
to Artificial Intelligence (AI) methods and are 
able to handle complex data characterized by 
non-linearities.

It is worth mentioning that a DSS can be 
combined with computer based medical image 
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archiving and management systems following 
certain information protocols, e.g. DICOM and 
HL7. Furthermore, a DSS can support telematic 
technologies, in order to permit the remote diag-
nosis and tele-consultation between health care 
professionals, and can be integrated with the 
electronic medical patient record (Mougiakakou, 
to appear).

This chapter presents an overview of advanced 
computer analysis methods used to provide intel-
ligent diagnostic support in the assessment of 
focal liver lesions from CT images. Furthermore, 
specific DSS architectures, developed by the 
Biomedical Simulations and Imaging (BIOSIM) 
Laboratory, aimed at supporting the diagnosis 
of focal liver lesions from non-enhanced CT im-
ages, are presented. Some future perspectives 
in the area of DSSs and concluding remarks are 
also given. 

bAckground  

In the following, the fundamentals for the de-
velopment of a DSS for liver diseases are given, 
along with examples of DSSs already published 
in the literature.

 
dss  g eneral Architecture

A general architecture of a DSS is presented in 
Figure 1. Typically a DSS for diagnosis of liver 
lesions consists of the following modules: (1) 
image preprocessing; (2) registration; (3) segmen-
tation; (4) visualization; and (5) image analysis 
supporting tools for feature extraction, selection, 
and classification (Stoitsis, 2006).

1.  Image preprocessing: The image prepro-
cessing module improves the quality of the 
images through the application of image 

Figure 1. General architecture of a DSS for CT liver lesions
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processing algorithms that perform noise 
removal, contrast enhancement and edge 
sharpening. Noise removal is done mainly 
through the application of simple filtering 
methods (average, median, Gaussian) (Russ, 
1992). Since these low-pass filtering methods 
perform edge smoothing, edge-preserving 
noise reduction methods have also been 
proposed, e.g. bilateral filtering (Tomasi, 
1998) and anisotropic diffusion (Perona, 
1990) was used prior to liver segmenta-
tion (Eibenberger, 2008). Local or global 
histogram equalization can be used for 
further enhancing the image (Gonzales, 
2002). Histogram based manipulation can be 
used to improve the contrast of the hepatic 
image and reveal originally unapparent 
textural information, e.g. global histogram 
equalization was successfully used prior to 
extraction of textural features and rendered 
conspicuous texture (Huang, 2006). 

2. Registration: In the case of multi image data 
sets or multimodal images, the application 
of registration (or matching) algorithms is 
needed, in order to avoid misalignments 
among images. Registration is used to 
compare two or more medical images, 
to discover difference between them or 
to combine information aiming to reveal 
information not accessible from individual 
images. Medical image registration methods 
can be distinguished into intensity-based 
registration and feature-based registration 
(Wang, 2005). For liver images many regis-
tration algorithms have been proposed, but 
the most promising are based on Free Form 
Deformation (FFD) (Masutani, 2006).

3. Segmentation: In the segmentation module, 
the whole liver and/or sub-areas corre-
sponding to normal or abnormal ROIs are 
extracted. Liver segmentation is a difficult 
task due to the diversity and complexity of 
its anatomical structure. Therefore, con-
ventional segmentation methods cannot be 

applied in clinical practice. Segmentation 
can be performed using manual, semi-
automatic or fully-automatic methods. In 
general, liver segmentation methods include 
(i) intensity-based e.g. thresholding, (ii) de-
formable model-based, e.g. snake algorithms 
and level-set techniques, and (iii) statistical 
model-based approaches (Lee, 2007). Figure 
2 presents examples of liver segmentation 
using a semi-automatic method based on 
the seeded region growing technique opti-
mized by the self-similar mapping method 
(Mougiakakou, to appear).

4. 3D Visualization: For the 3D visualization 
of the organ and/or the segmented ROI(s), 
surface rendering and volume rendering 
techniques are usually applied. For 3D 
visualization from CT images, a modified 
version of the Marching Cubes (MC) algo-
rithm, which belongs to surface rendering 
algorithms, has been also proposed (Mou-
giakakou, to appear), as presented in Figure 
3. 

5. Image analysis: Each of the extracted ROIs 
is fed to the image analysis module where  
(i) feature extraction, (ii) feature selection 
and (iii) classification, are performed. More 
specifically, for each ROI, a set of features 
is estimated, usually by means of texture 
analysis.  First Order Statistics (FOS) and 
the Spatial Gray Level Dependence Matrix 
(SGLDM) method are the most widely used 
methods for texture analysis. FOS calculate 
simple characteristics using the ROI inten-
sity function, e.g. mean value, contrast, 
angular second moment (Haralick, 1992). 
The elements of the SGLDM (Haralick, 
1973; Haralick, 1992) represent the values of 
the probability function Pij, which measure 
the normalized frequency in which all pixel 
pairs consisting of pixels with interpixel 
distance d along a direction q and with gray 
level values i and j, respectively, appear in 
the ROI. Several features can be obtained 
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from SGLDM elements, e.g. correlation 
and contrast. Similarly, textural features 
can be obtained using the Gray Level Dif-
ference Matrix (GLDM) (Wezka, 1976), 
whose elements represent the probability 
that a particular absolute difference in grey 
level appear within an interpixel distance d 
along a direction q.  Gray Level Run Length 
Method (GLRLM) identifies paths of pixels 
with the same gray level within the ROI and 
extracts features based on the identified 
paths, e.g. short run length emphasis, long 
run length emphasis, run length distribution 
(Mir, 1995). Convolving the ROI with Laws’ 
masks and calculating the so-called energy 

statistics on the resulted image comprises 
another way for analyzing a hepatic tissue 
image (Laws, 1980). The use of Gabor filters 
at different orientations and frequencies and 
extraction of features of the resulted image 
after convolving the ROI with these filters 
(mean, standard deviation, energy) have 
been also used (Lee, 2006; Dettori, 2007). 
Auto-covariance coefficients that reflect 
the interpixel correlation within an image 
have been used as texture measurements 
of hepatic tissue images (Huang, 2006). 
Fractal dimension measurements capture 
the roughness of a ROI and have been used 
successfully for texture analysis of liver 
images (Sariyanni, 2001). 

Figure 2. Examples of segmented liver from non-enhanced CT image data using (a) the seeded region 
growing technique, and (b) after the application of the self-similar mapping method

Figure 3. Three-dimensional visualization of liver from CT data

(a) (b)
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Once the initial feature set from a hepatic 
ROI has been obtained, it is desirable to select 
the most robust features in order to provide input 
to the classification module where the computer-
ized diagnosis is performed. Since an exhaustive 
search in the feature space is impossible due to 
computational cost, sub-optimal methods can be 
applied. Thus, a forward feature selection method 
was proposed to select the features used to classify 
liver tissue based on the texture of US images (Sun, 
1996). Statistical approaches have also appeared in 
literature. Specifically, the f-ratio obtained using 
analysis of variance was proposed to select the 
best texture features derived from vascular US 
images (Stoitsis, 2006), while the Fischer criterion 
was also proposed to compare texture features 
obtained using Gabor filters on a set of test images 
(Grigorescu, 2002). The evolutionary strategy of 
Genetic Algorithm (GA) (Goldberg, 1989) based 
feature selection seems promising for identifying 
the most robust texture features obtained from 
hepatic CT images (Gletsos, 2003). GAs follow 
the evolutionary model of Darwin and select the 
most informative subset starting from an initial 
population of random feature subsets (chromo-
somes) that are evaluated by a fitness function. All 
chromosomes exchange genetic material, mate, 
depending on their fitness and mutate within a 
number of generations that GA runs for. When 
the pre-defined number of generations has been 
executed, the algorithm returns the best subset of 
features according to the used fitness function that 
corresponds to the chromosome that has evolved 
from the optimization process. 

Finally, the features selected in the previous 
step are fed to a classifier. The classifier decides 
on the type of hepatic tissue that the ROI under 
examination corresponds to, and actually provides 
a second opinion to the physician. The classi-
fier comes usually from the fields of machine 
learning and statistics. Most of the times the 
classifier is a supervised one, i.e. the classifier 
has been trained offline and can generalize to 
unknown data. The generalization ability of the 

classifier is usually measured using resampling 
techniques during training and evaluation process, 
e.g. bootstrapping and cross-validation (Efron, 
1982). The most popular classifiers belong to the 
class of Artificial Neural Networks or Neural 
Networks (NNs), e.g. multi-layer perceptron NNs 
(Gletsos, 2003, Hein, 2005) or probabilistic NNs 
(Chen, 1998). Support Vector Machines (SVMs) 
is a state-of-the-art technique for constructing 
optimal separating hyperplanes in feature space 
by mapping the input vector to a space of higher 
dimensionality using a non-linear mapping. They 
have been successfully applied for the discrimina-
tion of liver tissue using texture features (Huang, 
2006; Lee, 2006; Lee, 2007). Nearest-neighbor 
classifiers decide on the type of hepatic lesion 
according to a distance-based similarity metric 
of the query feature vector among feature vec-
tors that correspond to already known types of 
tissue (Kyriakou, 1997; Mougiakakou, to appear). 
Finally, a fuzzy c-means clustering algorithm has 
been used to discriminate hepatic lesions using 
fractal measurements (Sariyanni, 2001). Given 
that the feature space has been defined, all known 
classifiers can be used for the discrimination of 
liver tissue. However, one should be careful when 
constructing the classifier, e.g. training it with a 
partition of the available data, in order to obtain an 
acceptable generalization ability. Lately, the use of 
ensembles of classifiers has gained interest in the 
field of computer aided diagnosis (Christodoulou, 
2003; Jerebko, 2003) and they can also be applied 
within DSSs for the discrimination of hepatic le-
sions from CT (Mougiakakou, 2007). 

Examples of dss  for l iver diseases 
from ct  Images

The above mentioned modules are common to the 
majority of the available intelligent DSS for liver 
diagnosis from US (Asvestas, 1998; Kadah, 1996; 
Sujana, 1996; Sun, 1996), MR (Zhang, 2005) and 
CT imaging modalities. In the following para-
graphs, intelligent systems for the diagnosis of 
liver diseases from CT images are presented.
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A DSS able to identify automatically the liver 
boundary from CT images and distinguish the 
extracted ROI into normal liver, hepatoma and 
hemageoma has been proposed by Chen (1998). 
The system is based on the concept of the nor-
malized fractional Brownian motion model to 
find an initial liver boundary and then uses a 
deformable contour model to precisely delineate 
the liver boundary. For each segmented ROI, a 
set of texture features based on SGLDM is esti-
mated providing input to a probabilistic NN for 
the characterization of the hepatic tissue. The 
system results to a classification performance of 
the order of 83%. 

Additionally, a DSS for the classification of 
hepatic tissue from non-enhanced CT images 
into four categories has been proposed by Gletsos 
(2003). The system consists of two modules: the 
feature extraction and the classification modules. 
The feature extraction module calculates the 
average gray level and 48 texture characteristics, 
which are derived from the SGLDM, obtained 
from the free-hand ROIs, as delineated by an 
experienced radiologist. The classifier module 
consists of three sequentially placed feed-forward 
NNs. The first NN classifies into normal or abnor-
mal liver regions. The abnormal liver regions are 
characterized by the second NN as cyst or “other 
disease”. The third NN classifies “other disease” 
into hemangioma or hepatocellular carcinoma. 
Furthermore, GA-based feature selection is ap-
plied in order to select the most robust features 
and improve the classification performance. An 
overall classification performance of the order of 
97% was achieved.

Huang (2006) has proposed a system able to 
differentiate benign from malignant hepatic tu-
mors from non-enhanced CT images. Suspicious 
tumor regions were delineated in CT images by 
an experienced radiologist. For each region auto-
covariance texture features have been estimated 
providing input to a SVM for discriminating the 
various types of hepatic tumors.

Furthermore, the use of a wide set of image 
derived features (e.g. size, shape, diffuse of liver 
disease) has been proposed for the development of 

statistical prediction rules into a computer model, 
in order to discriminate benign from malignant 
and hepatocyte-containing vs non–hepatocyte 
tissue (Seltzer, 2002). The features have been 
derived from non-enhanced MR, contrast mate-
rial-enhanced CT and contrast enhanced MR 
images. 

Hein (2005) has investigated the applicability 
of a modified NN training algorithm (based on 
simulated annealing with a logarithmic cooling 
schedule) in the detection of pathological focal 
liver lesions. More specifically, square ROIs of 
contrast-enhanced CT images have been used 
as input to the algorithm, which uses the entire 
ROI information and not the information from 
extracted features. The accuracy of the algorithm 
in evaluating liver CT images showing either 
normal findings or hypovascularized focal liver 
lesions was of the order of 99%.

Shimizu (2005) has proposed a DSS for early 
and late phase three dimensional CT images of 
liver cancer obtained with a multi-detector row 
CT scanner. First, registration of two phase im-
ages using FFD has been applied and liver regions 
including malignant and cystic lesions have been 
extracted. Then malignant liver regions were 
enhanced and candidate regions were determined 
using region growing and level set methods. 
Finally, for each candidate region three features 
- selected by means of a forward stepwise selec-
tion method - corresponding to shape and gray 
values in and around the candidates, were fed to 
an SVM for the classification into normal and 
malignancy. 

dIAgnos Is of  foc Al  l IVEr  
l EsIons  fro M non -Enh Anc Ed 
ct  IMAg Es 

DSS architectures developed by the BIOSIM 
Laboratory aimed at the computerized diagnosis 
of CT focal liver lesions have been based on the 
use of several texture features sets combined with 
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Ensembles of Classifiers (ECs). Several intel-
ligent DSS architectures that use FOS, SGLDM, 
GLDM, Texture Energy Measurements (TEM) 
and Fractal Dimension Measurements (FDM) as 
texture descriptors of hepatic images and an EC 
have been comparatively assessed (Mougiakakou, 
2007). The best performing architecture for the 
discrimination of liver tissue ROIs into four 
categories, namely normal tissue (C1), cyst (C2), 
hemangioma (C3) and hepatocellular carcinoma 
(C4) has been defined and is presented in the 
present chapter (Figure 4). 

The selected architecture uses a fused opti-
mal feature set of texture measurements of ROIs 
extracted using FOS, SGLDM, GLDM, TEM 
and FDM and an ensemble of five statistical 
and machine-learning based classifiers. In the 
following, the image acquisition, feature extrac-
tion, selection and classification sub-modules 
of the DSS are presented and its performance 
in the discrimination of the liver tissue ROIs is 
discussed. Furthermore, the discriminative ability 
of all feature sets to detect each type of hepatic 
tissue was assessed in terms of area (AZ) under 
Receiver Operating Characteristic (ROC) curves 
and results are reported (Valavanis, 2007).

Image Acquisition

Abdominal non-enhanced CT images with a 
spatial resolution of 512×512 pixels and 8-bit gray-

level at the W150+60 window were taken from 
both patients and healthy controls. A total of 147 
ROIs 76 of which corresponded to C1, 19 to C2, 
28 to C3, and 24 to C4 were identified by the radi-
ologist (Figure 5). The diagnosed hepatic lesions 
from patients with C2, C3, and C4, were validated 
by needle biopsies, density measurements, and 
the typical pattern of enhancement after the in-
travenous injection of iodine contrast.  

f eature Extraction

For each ROI a set of 89 texture features are 
extracted initially using the methods of FOS, 
SGLDM, GLDM, TEM and FDM:

First order Statistics: For each ROI, six fea-
tures are obtained from FOS (Haralick, 1992) 
using the image intensity function. These features 
correspond to average gray level (avg), standard 
deviation (sd), entropy (ent), coefficient of vari-
ance (cv), skewness (sk), and kurtosis (kur).

Spatial Gray-Level Dependence Matrix: 
Eight texture features can be calculated from the 
SGLDM of each ROI. These correspond to angular 
second moment (asm), contrast (con), correlation 
(corr), sum of squares (ss), inverse difference 
moment (idm), entropy (ent), homogeneity (hg), 
cluster tendency (clt) and depend on intersample 
spacing and angular direction (Haralick, 1973; 
Haralick, 1992). The SGLDM features are cal-
culated for six different values of the interpixel 

Figure 4. Proposed DSS for the characterization of liver tissue from non-enhanced CT images
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distance d: d=1, 2, 4, 6, 8, 12 pixels. For each value 
of d, the values are computed by averaging over 
four uniformly distributed angular directions, 
0o, 45o, 90o, and 135o. Thus, a total of 48 texture 
characteristics are obtained.

Gray-Level Difference Matrix: Application 
of the GLDM to each ROI results to a set of 20 
texture features. These are derived using the gray 
level difference density function (Wezka, 1976) 
and correspond to values  of contrast (con), mean 
(mn), entropy (ent), inverse difference moment 
(idm), and angular second moment (asm) for 
interpixel distance d=1, 2, 3, 4. For each d, the 
feature values are calculated as the mean value 
of the feature estimations for the directions (0, 
d), (-d, d), (d, 0), (-d, -d).

Texture Energy Measurements: The TEM 
features are extracted after the application of 
Laws masks which are originally derived from 
the vectors L3={1, 2, 1}, E3={-1, 0, 1}, and S3={-

1, 2, -1} (Laws, 1980). Convolving these vectors 
with themselves or with one another, vectors of 
length five can be derived. In the current study 
the following vectors were calculated: L5={1, 
4, 6, 4, 1}, S5={-1, 0, -2, 0, -1}, E5={-1, -2, 0, 2, 
1} and R5={1, -4, 6, -4, 1}. Multiplication of the 
column vectors of length 5 with the row vectors 
of the same length results in 5x5 Laws’ masks. 
In this study the following Laws’ masks were 
considered: L5TE5, L5TS5, -E5TS5, and R5TR5. 
After the convolution of each mask with the ROIs, 
texture statistics are applied, estimating absolute 
sum / # of pixels (as), sum of squares / # of pixels 
(ss), and entropy (ent). Thus, the resulting feature 
vector contains twelve texture features.

Fractal Dimension Measurements: In order 
to extract more information on a ROI, a feature 
extraction method based on the concepts of the 
Fractional Brownian Motion (FBM) model and 
multiple resolution imagery was employed (Wu, 

Figure 5. Regions of Interest (ROIs) identified by an experienced radiologist on CT images from (a) 
normal hepatic parenchyma, (b) cyst, (c) hemangioma, and (d) hepatocellular carcinoma.
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1992). The roughness of a surface of the ROI, natu-
rally occurring as the end result of random walks, 
can be characterized by its Fractal Dimension 
(FD), FD = H – 3, according to the FBM model 
developed by Mandelbrot (Mandelbrot, 1983). 
The values H(k), which correspond to the H value 
of the image computed for an image resolution 
k, can provide more texture information, i.e. for 
the lacunarity or the regularity of the ROI. The 
original image corresponds to a k=1 resolution, 
the original image reduced to a half-sized image 
corresponds to a k=2 resolution, etc. Here, we 
calculated 3 FDM features that correspond to 
H(1), H(2), and H(3) .

f eature selection

Feature selection based on a GA (Goldberg, 1989) 
has been applied to the subsets of the texture fea-
tures extracted in order to get the most informa-
tive ones for discriminating the four liver tissue 

types. More specifically, feature selection was 
applied offline to feature vectors estimated from 
SGLDM, GLDM and TEM, in order to produce the 
parsimonious feature vectors with dimensionality 
lower than ten (Gletsos, 2003). The features that 
were selected from the original SGLDM, GLDM 
and TEM feature sets are presented in Table 1. 

f eature sets Evaluation using roc

Both full FOS, SGLDM, GLDM, TEM, FDM 
and reduced SGLDM, GLDM, and TEM features 
sets have been thoroughly evaluated using ROC 
curves generation for all binary classification tasks 
in the discrimination of four liver tissue types 
(Valavanis, 2007). Thus, ROC curves for all binary 
tasks, namely “C1 vs all”, “C2 vs all”, “C3 vs all”, 
“C4 vs all” were generated using a multilayer 
perceptron NN as classifier and measurements of 
area under curve Az values were obtained. Fur-
thermore, total area under curve measurements 
(total Az) were calculated in order to evaluate each 

SGLDM GLDM TEM

SGLDMidm )1( =d GLDMidm )1( =d TEMas  (Mask: L5TE5)

SGLDMent )1( =d GLDMasm )1( =d ssTEM (Mask: L5TE5)

SGLDMclt )1( =d GLDMent )2( =d entTEM (Mask: L5TE5)

SGLDMcor )2( =d GLDMmean )4( =d ssTEM (Mask: -E5TS5)

SGLDMidm )2( =d GLDMidm )4( =d entTEM (Mask: -E5TS5)

SGLDMcon )4( =d ssTEM (Mask: L5TS5)

SGLDMcor )8( =d entTEM (Mask: L5TS5)

SGLDMcon ( 12)d = ssTEM (Mask: R5TR5)

Table 1. The selected features from the SGLDM, GLDM and TEM feature sets fed into EC of DSS
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feature set in the multi-class problem. Results 
show that FOS feature set outperforms all other 
full or reduced feature sets in all binary decision 
cases and in the total Az measurement (0.802 ± 
0.08). The second best performing feature set in 
terms of total Az measurement is the TEM set 
in its full (0.754 ± 0.063 using twelve features) 
or reduced version (0.765 ± 0.066 using eight 
features). SGLDM and GLDM feature sets seem 
to follow in total performance with rather small 
differences in total Az measurements (mean Az 
within the range [0.67 0.72]), whereas FDM is the 
worst performing feature set (total Az: 0.613±0.059 
using only three features). It has to be noted that the 
application of feature selection keeps the high Az  
measurements of TEM feature set, thus providing 
an equally performing set of lower dimensionality 
(eight out of 12 features were selected). Total Az 
measurements imply the same for SGLDM set 
(eight out of 48 features were selected). A moder-
ate reduce in total Az measurement was observed 
for the reduced GLDM set (five out of 20 features 
were selected). Finally, Az values for the binary 
decisions show that C3 is the most difficult case 
to discriminate using the texture features used in 
this study. On the other hand, C2 is the easiest to 
discriminate with the maximum Az value of all 
other liver tissue types (0.996 ± 0.016 obtained 
using FOS features). 

ROI Classification

The 30-dimensional feature vector resulted after 
the combination of full FOS, FDM and reduced 
SGLDM, GLDM and TEM texture features is fed 
to an EC that classify the ROI into one of the four 
classes (C1, C2, C3 or C4). The EC consists of one 
multi-layer perceptron NN (MLP-NN) (Haykin, 
1999), one probabilistic NN (P-NN) and three 
k-nearest neighbour classifiers (k-NN) (Kadah, 
1996). Once the five primary classifiers have been 
generated, a weighed voting scheme (Jerebko, 
2003) is used to combine their outputs.

dss  Evaluation

In order to obtain reliable results on the perfor-
mance of the DSS, the design, implementation 
and evaluation of both the primary classifiers and 
the EC was undertaken 50 times according to the 
resampling technique of bootstrapping (Efron, 
1982; Mougiakakou, 2007). The EC achieved 
a classification accuracy 84.96% ± 5.67%. The 
EC has been evaluated in the bootstrap testing 
sets using the one-versus-all comparisons (Patel, 
2005) in order to get sensitivity and specificity 
when discriminating one type of liver tissue from 
the remaining three. The resulted sensitivities 
and specificities, in terms of mean values and 
corresponding standard deviations, are presented 
in Table 2. It can be observed that the EC is 
characterized by high sensitivity and specific-
ity in the diagnosis of C1, C2, and C4, while a 
significantly lower sensitivity is achieved in the 
case of C3 due to misclassification of C3 into 
C1 and C4. This can be explained by the similar 
texture values of the ROIs belonging to classes 
C1, C3 and C4, thus making the discrimination 
difficult for the EC.

The presented DSS has been integrated into 
the pilot version of DIAGNOSIS (Mougiakakou, 
to appear), a telematics-enabled system for the 
archiving and management of medical images 
and assistance of diagnosis. The system is now 
under evaluation at the Radiological Department 
of Euginidion Hospital, Athens, Greece.

futur E tr Ends

Focusing on diagnosis support of liver diseases, 
full automation in the detection of hepatic lesions 
is the ultimate goal in the design and development 
of DSSs for the characterization of liver tissue 
from CT images. To this end, further research is 
needed towards the optimization of the registration 
methods and the improvement of segmentation 
algorithms for both segmentation of the liver and 
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detection of suspicious ROIs. Furthermore, the 
application of feature selection methods in order 
to obtain highly informative and parsimonious 
feature sets seems to reduce the computational 
complexity, while the combination of classifiers 
into an ensemble can improve the final per-
formance. Furthermore, FOS texture features 
were found in our studies to provide superior 
informative content on the texture of focal liver 
lesions. Additionally, the use and optimal tun-
ing of kernel-based classifiers, e.g. SVMs, for a 
specific hepatic tissue classification problem and 
the employment of new strategies in constructing 
ECs, e.g. genetic programming, may comprise the 
next steps towards the improvement of the image 
analysis module.

An important issue in the design and develop-
ment of DSSs is the reliable evaluation of their 
performance. This can be done using evalua-
tion methods such as the leave-one-out, cross-
validation, hold-out, and bootstrapping. These 
techniques have become lately valuable when 
classification techniques are applied in biomedical 
engineering studies, since small-sized samples 
often used in these studies can lead to biased 
evaluation results.

Future work in the field of DSSs for hepatic le-
sions may include the use of information extracted 
from 3D CT images and multimodal imaging 
modalities, as well. The latter would   permit 
assisting a physician during the diagnosis of a 
wider range of hepatic diseases. 

In general, DSSs are estimated to become 
part of clinical work in the characterization of 
various lesions in the next years. They promise 
to increase the efficiency of health care profes-
sionals during the diagnostic examinations in 
daily clinical work, while increasing accuracy 
in medical diagnosis.

conclus Ion

In this chapter state-of-the-art DSSs for the compu-
terized diagnosis of liver diseases from CT images 
have been presented. Image preprocessing, regis-
tration and segmentation algorithms, visualisation 
techniques, as well as image texture descriptors 
and classifiers from the fields of computational 
intelligence and statistics have been described and 
are widely used in order to produce a “second” 
opinion and assist the procedure of diagnosis. 
Finally, DSSs designed and developed by our 
research team for the differential diagnosis of 
focal liver lesions from non-enhanced CT images 
have been presented.
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kE y tE r Ms

Diagnostic Support Systems: Computer 
programs that assist a physician or a health pro-
fessional during the diagnostic process.   

Computational Intelligence: A branch of 
computer science that develops algorithms and 
techniques to imitate some cognitive abilities, 
like recognition, learning and evolution.
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Artificial Neural Networks: Information 
processing systems with interconnected compo-
nents analogous to neurons that mimic biological 
nervous systems and the ability to learn through 
experience.

Genetic Algorithms: Algorithms which vary 
a set of parameters and evaluate the quality or 
“fitness” of the results of a computation as the 
parameters are changed or “evolved”. 

Texture Features: Numerical descriptors 
calculated from the intensity of pixels in a given 
image region that characterize the texture (rough-
ness) of this region.

Feature Selection: Strategy for selecting a 
sub-set of variables from an initial set towards 
reducing the dimensionality of input vector to 
a classifier and building more robust learning 
models.  

Ensemble of Classifiers: A set of classifiers 
whose individual predictions are fused through 
a combining strategy.

Non-Enhanced CT Images: CT images 
obtained without administration of contrast 
agents.
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Abstr Act

Indicative features of an fMRI data set can be evaluated by methods provided by theory of random 
matrices (RMT). RMT considers ensembles of matrices and yields statements on the properties of the 
typical eigensystems in these ensembles. The authors have studied the particular ensemble of random 
correlation matrices that can be used as a noise model for the empirical data and that allows us thus to 
select data features that significantly differ from the noisy background. In this sense RMT can be under-
stood as offering a systematic approach to surrogate data. Interestingly, also the noise characteristics 
change between different experimental conditions. This is revealed by higher-order statistics available 
from RMT. The authors illustrate the RMT-based approach by an exemplary data set for the distinction 
between a visuomotor task and a resting condition. In addition it is shown for these data that the degree 
of sparseness and of localization can be evaluated in a strict way, provided that the data are sufficiently 
well described by the pairwise cross-correlations.

The aim of art is to represent not the outward appearance
of things, but their inward significance. — Aristotle
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Introduct Ion

In order to reveal features of interest in em-
pirical data there is often no other option than 
a comparison to the corresponding quantities in 
surrogate data, that is, shuffled, boosted, random-
ized or otherwise rearranged data of the same 
kind. Surrogate data (Theiler, Eubank, Longtin, 
Galdrikian, & Farmer, 1992) provide a contrast 
or a baseline against which relevant data features 
are to be compared, while the actual generation 
process of surrogate data that provide the desired 
contrast remains a matter of an on-going debate. 
Not only may the shuffling of the data cause a 
level of randomness against which any feature 
appears significant, but also may the surrogate 
data in a high-dimensional problem become 
sparse and thus not sufficiently representative 
for the underlying distribution. By reference to 
random matrices we suggest a more systematic 
framework for providing baselines to data fea-
tures of potential interest. This framework does 
not necessarily include the discrimination of 
artifacts from intrinsic features. It will, however, 
systematically reduce the data space such that later 
other methods may be invoked in order to further 
analyze the data. It will further provide sensitive 
means for the distinction of various scenarios at 
which seemingly similar data were obtained. If 
for a certain quantity a prediction from Random 
Matrix Theory (RMT) exists then it is possible to 
rate the difference between two data sets relative 
to their respective distance to the theoretical value. 
Of particular interest is, furthermore, that RMT 
provides descriptions of spatial properties of the 
data. These can be used for the discrimination of 
active and non-active brain voxels which forms an 
essential step in the analysis of fMRI data. Thus, 
suggestive data properties such as sparseness and 
localization of features can be expressed as well 
by quantities which are meaningful in the theory 
of random matrices.

Random matrix theory studies ensembles of 
matrices. An ensemble is a distribution over the set 

of all matrices. In the limit of high dimensions all 
matrices of the ensemble are similar in the sense 
that they share certain properties regardless of the 
dynamical principles or the interactions under-
lying the system. In this sense the properties of 
the ensemble are universal. In this way a random 
matrix approach to data processing does not only 
study a few sets of surrogate data, but allows us 
in principle to compare the given data set to a set 
of all possible surrogate samples.

bAckground

dimension r eduction

A main objective of fMRI analysis is to discrimi-
nate between brain voxels that are active or non-
active for a specific stimulus or task. Because of 
noise originating from the scanning equipment, 
movements of the subject and the hemodynamic 
processes the discrimination is ambiguous and 
noise removal remains a key step in the analysis 
of the data. Independent Component Analysis 
(ICA) or clustering methods (Voultsidou, Dodel, 
& Herrmann, 2005; Dodel, Herrmann, & Geisel, 
2002) have been proposed in order to detect the 
informative components underlying the data. 
Noise removal can be interpreted as the prob-
lem of estimating the intrinsic dimensionality 
of the data, that is the number of variables that 
is required for a faithful representation of the 
relevant processes. For this purpose, often a 
cutoff in the eigenvalue spectrum of the data 
covariance matrix is employed, which defines the 
dimensionality of the signal and noise space. The 
most simplistic approach in estimating the model 
order is Principal Component Analysis (PCA) of 
the sample covariance matrix, where a cutoff can 
be defined by any abrupt change in the sequence 
of the eigenvalues. 

In order to extract interesting components from 
fMRI data, Hansen et al. (1999) suggested the use 
of the estimated generalization error for finding 
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the optimal number of principal components 
while further components can be safely ignored. 
Likewise in ICA, the predicted sum of squares was 
used (M. J. McKeown, 2000). Cordes and Nandy 
(2006) assumed correlated Gaussian noise that 
satisfies an auto-regressive model the coefficients 
of which were estimated by maximizing the qual-
ity of fit of the model with respect to the data and 
were used as well to indicate the number of rel-
evant eigenvalues. Other approaches are based on 
information-theoretic criteria such as Minimum 
Description Length (M. H. Hansen & Yu, 2001), 
Akaike Information Criterion, Bayesian Informa-
tion Criterion (Schwarz, 1978), and Probabilistic 
Principal Component Analysis (PPCA) (Minka, 
1999). By explicitly incorporating Gaussian noise 
to the model, Everson and Roberts (2000) used 
a Bayesian framework to estimate the eigenval-
ues and the rank of the covariance matrix while 
Beckmann and Smith (2004) used a PPCA scheme 
to estimate the number of activation and non-
Gaussian noise sources before applying ICA. Here 
it is the theory of random matrices that provides 
us with a measure of the dimensionality of the 
data such that must not use a map that actually 
performs the reduction of the data.

r Mt  for data Processing

Although RMT has been originally established 
in physics (Wigner, 1967; Brody, Flores, French, 
Mello, Pandey & Wong, 1981; Mehta, 1991) it 
has turned out to be applicable successfully to a 
number of phenomena such as the stock market 
(Plerou et al., 2002) and EEG studies (Šeba, 
2003) because it permits the identification and 
subsequent suppression of features which are 
universally present in large classes of systems 
(Brody et al., 1981). In physics such features are 
considered as a direct characterization of the 
system. In the present context, however, they will 
serve as a baseline against which the significance 
of those that deviate from universality can be 
estimated. More specifically, by comparing the 

properties of the data correlation matrix with the 
generic properties of random matrices we aim at 
separating the contributions to it into two groups, 
namely (i) the part that conforms to the universal 
properties of random matrices and is interpreted 
as “noise” and (ii) the part that deviates from the 
RMT predictions and can hence be interpreted 
as the informative part. This separation becomes 
evident by studying the statistical properties of 
the eigenvalues of the correlation matrix and in 
particular the eigenvalue distribution, the level 
space distribution and the number variance, as 
well as the localization properties of the corre-
sponding eigenvectors.

data c orrelation Matrices

The data from an fMRI experiment are given as 
an (M×T)-matrix X where M denotes the number 
of voxels in one (volume) image and T is the length 
of the trial measured by the number of time steps. 
The correlation matrix requires centering and 
normalization of the data. If Xi is the time series 
of activities of voxel i, and Xit is the intensity of 
voxel i at time t then 

∑ ∑ 2

1

1 1

it it

i

it it

(X X )
TD =

(X X )
T T

−

−

∑

  (1)

is its centered and variance-normalized version. 
The data correlation matrix is given by the ma-
trix product C = DDT , where D consists of the 
columns Di (1). In order to obtain the eigenvalues 
and the eigenvectors of C we performed a Singular 
Value Decomposition on the data matrix D such 
that T= USVD . The eigenvalues of C are the 
non-zero entries of the diagonal matrix SC = SST 
while its eigenvectors form the columns of U. The 
temporal average in Eq. 1 may as well be replaced 
by a spatial average (Dodel, Geisel & Herrmann, 
2000) in order to obtain spatial correlation matri-
ces of the form D'D'C' T=  with D' being the 
corresponding spatially centered data.
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t he Ensemble of r andom c orrelation 
Matrices

A typical ensemble in RMT is the Gaussian 
Orthogonal Ensemble (GOE), a set of matrices 
with entries drawn independently from a fixed 
Gaussian distribution. In the context of data 
analysis, the correlation matrices are characterized 
by non-negativity and bounded entries. In order 
to satisfy this property an ensemble of random 
correlation matrices (RCE) is defined. Matrices 
C in RCE can be obtained from matrices B by
 T= BBC , where B is a matrix of random ele-
ments with zero mean and unit variance. While 
the RCE is naturally better suited as a compara-
tor to the data, the GOE is used as a reference. 
Theorems in RMT usually hold for matrices of 
infinite size. Although in many cases finite-size 
corrections are available (Izrailev, 1990), we will 
include also numerics on the finite size effects for 
comparison to the standard RMT results.

r Mt -bAsEd dAt A 
ch Ar Act Er IZAt Ion

Eigenvalue distribution

An early result of RMT is the Wigner semi-circle 
law describing the normalized spectrum of a ma-
trix that contains independently Gaussian distrib-
uted elements by the density of eigenvalues μ

        212)=p( −
   (2)

where the width of the distribution is scaled to 
[−1, 1]. Since we are interested in correlation 
matrices, the law assumes a modified form. Cor-
relation matrices are positive semi-definite, (i.e. 
all of their eigenvalues λn ≥ 0), and can thus be 
represented as C = AAT, where A can be chosen 

as a symmetric matrix. If λ = μ2 is an eigenvalue 
of C then μ is an eigenvalue of A. In the place 
of the semi-circle law now a quarter-circle law 
is considered:

112) −
λπ

=p(λ    (3)

The integrated form
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0

2 ))arcsin12')')

      (4)

is statistically more reliable and thus often practi-
cally preferable. Its inverse function is also known 
as level distribution and can be compared with 
empirical data. It is given by

 
n=

N
nP 






−1

    (5)

where λn, { }Nn ,,2,1 ∈ , are the non-zero ei-
genvalues of the correlation matrix C and N is 
the total number of eigenvalues.

In order to compare Eq. 4 with the correspond-
ing one for experimental data, the function
 

n=)(λN nC     (6)

is defined on the discrete set of empirical eigen-
values {λ1,...,λN}. For the comparison the scaling 
of the spectrum to unity length is necessary as 
assumed in Eq. 3. Because the scaling depends on 
the extreme eigenvalues such that the applicability 
of RMT will not become visible, we proceed by 
restricting the fit to a part of the spectrum while 
minimizing at the same time the number of points 
which are excluded from the fit.

In place of Eq. 4 a more general fitting func-
tion is considered, which allows for shifts α and 
scaling along both axis by means of b and c,
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The fit is performed by gradient descent with 
respect to α, b, and c on the squared fitting error
 

( ) ( ) ( )( )∑ −
1

2

0

n

n=n
nCnn

0
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(8)

where n0 ≥0 large eigenvalues and N-n1 small 
eigenvalues are excluded, while for the analysis 
of errors the locally resolved version of Eq. 8 for 
a particular n0 

( ) ( )( )2
nCn0nn, NP=E −   (9)

is considered. The eigenvalues that when are ex-
cluded from the fitting process in the course of the 
minimization of the fitting error are considered 
to form the informative part of the data and are 
thus assigned to the signal space. 

Four cases can be distinguished in a typical 
quality of fit. In the first case the semi-circle law 
is well obeyed. In the second one the quality of 
the fit is drastically reduced. In the third case the 
scaling in the optimized fitting function is such 
that the test values fall outside the domain of 
definition (arcsin!). A fourth case is characterized 
by very large extrapolation errors, which indicate 
clearly that the large eigenvalues do not obey RMT 
and thus are considered to reflect non-random 
processes underlying the data.

unfolding the spectrum

Universality of the results from RMT is revealed 
only after a normalization procedure. 

This unfolding procedure (Brody et. al. 1981) 
transforms the envelope of the spectral density 
to uniformity such that only local differences are 
left for further analysis, that is, the smooth part 
of the cumulative spectral function is extracted 
and only the fluctuations of the eigenvalues (or 

“levels”) are considered. The integrated density 
of states

 
( ) ( ) ( )∫ ∑∑

∞−

−=−
i

i
i

i d=N '

      (10)

with δ being the Dirac delta function and θ the 
Heaviside step function is of staircase-shape.

Several approaches have been proposed to 
smooth N(λ). Polynomial fitting of Eq. 10 works 
well for systems with level density as smooth as 
a polynomial. Another widely used method is 
replacing the δ-functions in Eq. 10 by Gaussian 
functions of standard deviation σ which can be 
a constant for the whole spectrum or be adapted 
to the local variability of the spectrum. The most 
common approach to unfold the spectrum is the so 
called local unfolding. The unfolded eigenvalues 
ε are calculated by

1
1

i+ i
i+ i

iK
−

 
  (11)

where Ki is the local mean level space

( )∑
−

−
k+i

ki=j
j+ji +

=K 112k
1

  (12)

and the number of consecutive level spaces 2k 
in the running average is the free parameter of 
the model.

l evel space distribution

A simple statistical quantity that is studied in RMT 
is the (nearest-neighbor) level space distribution 
P(s), that relates to the distance  i1+ii =s −  
between the unfolded eigenvalues. P(s) provides 
information on short range spectral correlations. 
For the GOE it is known to obey the Wigner 
surmise (Wigner, 1967):

( ) 42

se=sP /
2

−

   (13)
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Instead of calculating the level space distribu-
tion directly, the more robust, integrated form

∫ P(s)ds=N(s)     (14)

is  usual ly prefer red ,  which leads to 
 ( ) 4/1

2

RMT e=sN −− . Finite-size results differ 
from the theoretical value, as shown in Fig. 1(a). 

t he number Variance

Higher-order information is contained in the 
number variance ( )L2Σ  which is defined as the 
variance of the number of unfolded eigenvalues 
in an interval of length L:

( ) ( ) ( ) 22 2
0 0−  (15)

where N(L,ε0) counts the number of levels in the 
interval [ε0, ε0 + L] of unfolded eigenvalues and 
the averages are over ε0. Usually, ( )L2Σ  is defined 
by an additional average over the ensemble. For 
a GOE the number variance in the limit of large 
matrix size is given by (Brody et al., 1981):

 
( ) 








−

8
1.57722ln2

2
22 +L=(L)  (16)

The number variance for the GOE and the 
RCE samples is shown in Fig. 2(a). Apart from 
a scaling factor that compensates for finite size 
effects, ( )L2Σ  saturates as L increases and espe-
cially as it approaches the width of the unfolding 
procedure k, allowing thus no statements for L 
above that value. In the following, comparisons 
based on ( )L2Σ  will be therefore restricted to L 
values below k.

statistical Analysis of Eigenvectors

Entropy Localization Length

RMT provides also a natural way to study the lo-
calization of activity. The concepts of the entropy 

localization length and the width of an eigenvector 
cover two main aspects, namely the sparsity of 
the eigenvectors and the relative location of their 
largest components, respectively. The entropy 
localization length is based on Shannon entropy 
(Izrailev, 1990; Luna-Acosta, Méndez-Bermúdez, 
& Izrailev, 2001) which is defined as

( )∑−
N

=i

n
i

n
i

(n)
N ww=H

1

ln
 

  (17)

where 2n n
i iw (u )≡  and n

iu  denotes the ith compo-
nent of the nth normalized eigenvector, (n = 1, ... ,N) 
of the data correlation matrix C. The entropy (n)

NH  
gives a measure of the number of components in an 
eigenvector that are significantly large. In the case 
of extreme localization ( )0, 0,1,0, ,0n

iw = ,   and 
0=H (n)

N , while the most extended eigenvectors 
is ( )1/ ,1 /n

iw = N, N  with ( )ln(n)
NH = N .

The entropy localization length n
Hl  is defined 

as

( )( )n
NNH Hn

Hl = Ne −

    (18)

where, NH  introduces a normalization factor 
for a finite basis such that in the case of a fully 
extended eigenvectors the value n

Hl  equals the 
size of the basis N.

Width of an Eigenvector

The entropy localization length (Eq. 18) represents 
the effective number of large components of an 
eigenvector, however, without any information 
about their location. Eigenvectors of the same 
length may have different structure depending 
on the location of the large or small components. 
Additional information can be expressed by the 
mean square root (or width of an eigenvector) cl  
(Luna Acosta et al., 2001), which is defined by in-
troducing the center of mass of an eigenvector
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( )( ) ( )( )
12

22

1

N
(n) n
c i x cx y cy

i=
l = w i n n + i n n  − −    

∑
      (19)

where ix, iy denote the position of a voxel i in the 
image and ncx , ncy denote the corresponding center 
of mass. Small values of cl  imply localization 
while large values indicate extendedness.

Contrast in an Illustrative Data Set

The applicability of RTM to fMRI analysis can 
be demonstrated by studying the differences be-
tween correlation matrices obtained from the ex-
perimental data and from the random ensembles. 
By construction the sets have the same number 
of eigenvalues as the data correlation matrix C 
such that a direct comparison of the statistical 
properties is possible even in the finite-dimen-
sional case. The fMRI data, consisting of six 

layers each, were recorded under two conditions. 
The first has been captured while the subject 
was in resting state (REST) while in the second 
the subject was engaged into a visuomotor task 
(TASK). The integrated level space distribution 
(14) does not indicate a significant deviation 
from the surrogate data (RCE and GOE, cf. Fig. 
1). This observation confirms earlier findings in 
EEG data (Šeba, 2003) and suggested to consider 
more complex statistical quantities. 

The two fMRI data sets differ from the syn-
thetic sets with respect to the number variance, 
while the artificial matrices produced very similar 
results (see Fig. 2(a)). In addition, the number 
variance of the TASK data set deviates more from 
the GOE/RCE sets than the REST set which is 
mainly caused by differences among the largest 
eigenvalues or more specifically by the fact that 
the eigenvectors representing stimulus-related 
activity are more prominent in the TASK data. 

Figure 1. Integrated level space distribution for the GOE (a), the RCE (b) and the two fMRI data sets 
(REST (c) and TASK (d)) In the insets the differences from the theoretical prediction are shown.
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A number of eigenvectors that correspond to 
the largest eigenvalues are responsible for the 
deviations from the random behavior and can 
be characterized as significant data features. 
This can be seen if a number Nl of the largest 
eigenvalues are discarded from the analysis. Figs. 
2(b), (c) demonstrate the process of approaching 
the universal behavior described by RMT as Nl 
increases. If a number Nl = 10 of the largest eigen-
values are discarded from the analysis then the 
REST results converge to the GOE/RCE behavior 
while the TASK results are affected when the 
random “bulk” is more exposed after removal of 
Nl = 20 eigenvalues. By continuously increasing 
Nl one expects the difference in ( )L2Σ  between 
the fMRI data sets and the synthetic ones to 
vanish. The REST data set shows no substantial 
difference when Nl increases further but shows 

a sub-Gaussian behavior which implies that the 
bulk of the REST spectrum is more “rigid” than 
the GOE/RCE ones.

Exclusion of an increased number of large 
eigenvalues from the analysis of the TASK data 
set shows a tendency to reach the GOE/RCE curve 
but the procedure is extremely slow (Fig. 2(b),(c)). 
This suggests that the rest of the spectrum still 
carries information that cannot be separated by 
second order statistics used in this approach.

The differences in ( )L2Σ  between the two 
fMRI data sets as a function of the number of 
excluded eigenvalues Nl can be measured in terms 
of standard deviation (Fig. 2(d)). For the six layers 
we calculate the mean 2Σ  and the corresponding 
standard deviation for each value of L, to obtain the 
mean standard deviation (MSD) of the two sets. 
Their difference averaged over L is then defined 

Figure 2. (a) Number variance for the fMRI data sets (REST and TASK) and the GOE and RCE sets. 
The theoretical prediction is also shown. (b) ,(c)  Number variance for the fMRI and the synthetic data 
sets after exclusion of some of the largest eigenvalues (Nl=10 in (b) and Nl=20 in (c)). (d) Mean Σ2(L)  
difference between the TASK and the REST data set in units of mean standard deviation as a function 
of the number of omitted largest eigenvalues



��  

Significance Estimation in fMRI from Random Matrices

as ( )2 2 2
T R MSD∆Σ = Σ − Σ  where 2

T and 2
R hold 

for the TASK and the REST data set respectively. 
A further exclusion of eigenvalues does not lead 
to a further decay of ( )L2Σ , implying that traces 
of the stimulus are no longer noticeable in this 
way. 

The relevant eigenvectors of the empirical cor-
relation matrices can be identified by comparing 
their spatial properties to the random ensembles 
in terms of entropy localization length and widths 
of the eigenvectors (Fig. 3). For the GOE sample, 
neither lH nor lc show a systematic dependency on 
the eigenvalue number. The entropy localization 
length lH and the width of the eigenvector lc of 
both fMRI data sets deviate from the GOE case, 
as is shown in Fig. 3(c) and 3(d), respectively. 
The eigenvectors with the highest eigenvalues 

exhibit small values of lH and thus contain a 
small number of relative high components. The 
largest lH value corresponds to the eigenvector 
with the largest eigenvalue and indicates global 
activation. Towards the center of the spectrum 
the eigenvectors tend to show similar behavior 
as the random vectors, because lH is close to the 
number of components. 

The width lc of the eigenvectors provides ad-
ditional information. Neighboring eigenvectors 
in particular those with the largest eigenvalues 
exhibit different degrees of sparsity. Although 
their entropy localization length is smaller than 
that of the rest of the spectrum their effective 
components are distributed from high localiza-
tion to high extendedness. We propose to com-
bine information from the entropy localization 
length lH and the width of the eigenvectors lc to 

Figure 3. Entropy localization length of the eigenvectors of a GOE-like matrix (a) and of the eigenvec-
tors of a correlation matrix of fMRI data (c). In (a) the mean lH (white line) is very close to the total 
number of eigenvectors N indicating that the eigenvectors are extended. In (b) and (d) the width of the 
eigenvectors of a GOE-like matrix and those of a covariance matrix of fMRI data is shown respectively. 
The index n of the eigenvectors is given in descending order according to the corresponding eigenvalue. 
Black dots correspond to the REST data set while gray to the TASK data set.
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select potentially interesting eigenvectors. The 
candidates are chosen from a limited number of 
large components and are represented by small 
lH. Then these eigenvectors are characterized by 
small lc values. Because such features might be 
present as well for small eigenvalues, the vari-
ance of the eigenvalues must be also taken into 
account. Fig. 4 illustrates this concept for the 
eigenvectors of the correlation matrix of one slice 
from the fMRI data and from a GOE-like matrix 
for comparison.

The RMT approach in feature selection in 
fMRI is conceptualized in Fig. 5. Deviations from 
the universal properties described by RMT can be 
interpreted as data features that can be considered 
significant. These can be obtained by studying 
the statistical properties of the eigenvalues and 
the eigenvectors of the data correlation matrix. 
In particular the investigation of the eigenvalue 

distribution and statistical quantities such as the 
level space distribution and the number variance 
of neighboring eigenvalues can provide the cor-
responding eigenvectors of potential interest. 
Furthermore by studying the entropy localization 
length and the width of the eigenvectors, signifi-
cant eigenvectors can be distinguished from the 
unstructured noise-like random vectors.

f utur E tr Ends

We have presented methods derived from RMT 
that express rather abstract features of the data. 
This is expected to enable comparisons of data sets 
that include different trials, sessions and subjects, 
and establishes thus an important precondition for 
the meta-analysis of families of data sets. While 
the identification of more practical features might 

Figure 4. Entropy localization length lH , as a function of the width of the eigenvectors lc  for a slice of 
fMRI data (upper left corner) and a GOE-like matrix (upper right corner). The height of vertical lines 
represents the eigenvalues of the corresponding eigenvectors. In the bottom row a localized eigenvector 
with small lH , small lc and large eigenvalue (left) and an extended eigenvector with relatively high lH 
and lc  from the bulk of the spectrum (right) are shown.
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still be problematic it seems realistic to compose 
a noise model by a combination of noise-like 
eigenvectors from various data sets, which can 
be used as a significance threshold for relevant 
features such as the foci of activation. 

It should be also noted that while we were us-
ing temporal PCA, an implementation based on 
spatial PCA is easily possible. To proceed further, 
one may also consider extensions to ensembles 
of mixing matrices such those obtained by ICA 
or to matrices that are studied in linear dynamic 
models of fMRI activity.

A further drawback of the present approach 
may be seen in its apparent linearity. Although it 
is clear that the extraction of spatial or temporal 
non-linearities in the data is possible, it might 
be interesting to combine the present statistical 
approach with the computationally more handy 
non-linear methods from the theory of neural 
networks. Voultsidou, Dodel & Herrmann (2005) 
have considered but the simplest properties, but 
also higher order structures can be revealed in 

Figure 5. Schematic overview of the described RMT methods for the analysis of fMRI data.

correspondingly higher-order neural networks. 
In the same direction points a natural extension 
that has been achieved by local RMT (cf. Leitner 
and Wolynes, 1997), which in principle allows 
the definition of matrix ensembles for particular 
spatial or temporal ranges and thus a more focus 
analysis.

The potential of RMT is certainly not ex-
hausted and the last few years have brought 
about a large number of papers on this theory 
and its application to all branches of the study of 
complex systems. Although in brain theory RMT 
is unlikely to occur as a self-contained theory, it 
can be used as a preprocessing or complementary 
tool to other statistical approaches.

dIscuss Ion And c onclus Ion

We have presented a technique based on random 
matrix theory to analyze the cross-correlations 
of fMRI data that will allow the selection of the 
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number of relevant eigenvectors. The technique 
was demonstrated on two fMRI data sets. The 
first data set contains records from a resting sub-
ject while the second one was obtained under a 
visuomotor task. 

At the first stage of the approach we have em-
ployed a Principal Component Analysis in order 
to find the eigenvectors and the eigenvalues of the 
fMRI correlation matrices, the statistical proper-
ties of which we investigated. The eigenvectors 
of the correlation matrix describe distributed pat-
terns of functional connectivity while the eigen-
values represent their corresponding prevalence. 
After unfolding, a required procedure for testing 
the statistical properties of the eigenvalues and 
their deviations from the RMT predictions, the 
physical meaning of the transformed eigenvalues 
is not necessarily interpreted as before. Regarding 
the statistical properties of the eigenvalues, two of 
the most common quantities have been studied, 
namely the level space distribution and the number 
variance. The level space distribution appeared to 
be insensitive in stimulus presentation as it was 
also shown in a similar study of an EEG experi-
ment under visual stimulation (Šeba, 2003). On the 
other hand, ( )L2Σ    turned out to be the main indi-
cator of the significance of the important features 
in the data. The number variance of both data sets 
deviates from the RMT predictions, but is much 
more prominent to the data set that corresponds 
to recordings under stimulation. These deviations 
are due to the largest eigenvalues. While in the 
case of resting condition the largest eigenvalues 
may correspond to heart beat and respiratory 
effects, stimulus effects also contribute in the 
case of task condition data. Excluding a number 
of the largest eigenvalues results in a decrease of 

2Σ  difference between the two fMRI data sets 
as well as between the fMRI data sets and the 
GOE/RCE ensembles providing a first evidence 
of the number of stimulus related eigenvalues and 
their corresponding eigenvectors.

We also investigated the statistical proper-
ties of the eigenvectors. In particular we studied 

the entropy localization length which gives the 
number of effective components in an eigenvec-
tor. The width of the eigenvectors distinguishes 
between localized and extended ones. Stimulus 
related eigenvectors are expected to be of a 
limited number of high valued components and 
gathered in localized regions. The combination of 
the entropy localization length and the width of 
the eigenvectors offer an additional criterion for 
selecting the appropriate number of potentially 
interesting eigenvectors. 
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k Ey t Er Ms

functional Magnetic Resonance Imaging 
(fMRI): A non invasive neuroimaging technique 
that studies neural activity based on metabolic 
changes in the brain under the subject’s stimula-
tion or task performance.

Model Order Selection: The proper selection 
of the number of effective features underlying 
the data.

Principal Component Analysis (PCA): A 
linear orthogonal transformation that transforms 
the data to a new coordinate system such that the 
new directions point to the maximal variance of 
multivariate data. The objectives of PCA are 1) 
to identify meaningful underlying variables and 
2) to possibly reduce the dimensionality of the 
data set.

Independent Component Analysis (ICA): A 
computational method for separating statistically 
independent sources that are linearly mixed. 

Random Matrix Theory (RMT): Concerned 
with questions about the statistical properties of 
the eigenvalues and eigenvectors of large matri-
ces of various ensembles which are determined 
by certain symmetries such as real symmetric, 
Hermitian matrices etc.

Universality: In statistical mechanics refers 
to the observation that a large class of systems 
share properties that are independent of their 
dynamics.

Shannon Entropy: Or information entropy 
is a measure of the uncertainty associated with 
a random variable. It quantifies the amount of 
information conveyed per message.



  ��

Significance Estimation in fMRI from Random Matrices

Author not E

Please send any comments to marotesa@physics.
uoc.gr. The authors would like to thank the NMR 
GmbH Göttingen and J. B. Poline for providing us 
with the data, and S. Dodel, T. Geisel, G. Lohm-
ann, G. Tsironis and T. Kottos for very inspiring 
discussions as well as the chapter reviewers for 

their comments. This work has been supported 
by EU and the Greek Ministry of Education 
(EΠEAEK II) and by the Marie Curie program. 
J.M.H. is PI of the BCCN Göttingen and is af-
filiated to the Max Planck Institute for Dynamics 
and Self-Organization, Bunsenstraße 10, 37073 
Göttingen, Germany.



�0  

Chapter VII
Optimal Diffusion Encoding 

Strategies for Fiber Mapping in 
Diffusion MRI

Dimitrios C. Karampinos
University of Illinois at Urbana-Champaign, USA

Robert J. Dawe
Illinois Institute of Technology, USA

Konstantinos Arfanakis
Illinois Institute of Technology, USA

John G. Georgiadis
University of Illinois at Urbana-Champaign, USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstr Act

Diffusion Magnetic Resonance Imaging (diffusion MRI) can provide important information about tissue 
microstructure by probing the diffusion of water molecules in a biological tissue. Although originally 
proposed for the characterization of cerebral white matter connectivity and pathologies, its implemen-
tation has extended to many other areas of the human body. In a parallel development, a number of 
diffusion models have been proposed in order to extract the underlying tissue microstructural properties 
from the diffusion MRI signal. The present study reviews the basic considerations that have to be taken 
into account in the selection of the diffusion encoding parameters in diffusion MRI acquisition. Both 
diffusion tensor imaging (DTI) and high-order schemes are reviewed. The selection of these parameters 
relies strongly on requirements of the adopted diffusion model and the diffusion characteristics of the 
tissue under study. The authors review several successful parameter selection strategies for the imaging 
of the human brain, and conclude with the basics of parameter optimization on promising applications 
of the technique on other tissues, such as the spinal cord, the myocardium, and the skeletal muscles.
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Introduct Ion

Diffusion Magnetic Resonance Imaging (dif-
fusion MRI) based on the H1 signal is a unique 
noninvasive imaging technique that can be used 
to probe the intrinsic diffusion properties of free 
water in deep tissues. Motivated by the idea of 
probing molecular diffusion with NMR, diffu-
sion MRI was first applied in vivo in the 1980s 
(Le Bihan, Breton, & Lallemand, 1986; Moseley, 
Cohen, & Kucharcyzk, 1990). As the explosive 
growth of diffusion MRI literature indicates, the 
technique has been used extensively for the non-
invasive characterization of tissue structure and 
function. Since water diffusion is restricted by 
morphological transport barriers, the technique 
has been extremely useful in the early clinical 
diagnosis of certain pathologies such as stroke and 
brain trauma (Moseley, Cohen, & Mintorovitch, 
1990). In terms of characterizing tissue histoar-
chitecture, one prevalent application of diffusion 
MRI is to probe the integrity and the connectiv-
ity of white matter in the central nervous system 
(Arfanakis, Haughton et al., 2002).

In order to translate the diffusion MRI mea-
surements into mass transport barrier geometry 
information and ultimately morphological tissue 
properties, several different models of the un-
derlying diffusion process have been proposed 
to accurately represent the characteristics of the 
tissue microstructure. Numerous review papers 
have been published covering the various aspects 
of diffusion MRI. Some have focused on the 
theoretical foundations of the various diffusion 
models (Minati & Weglarz, 2007), and others on 
the comparison of the performance of the vari-
ous techniques (Alexander, 2005). The present 
review is oriented towards selecting experimental 
parameters for the available basic and advanced 
diffusion encoding techniques to image the human 
brain. The basic elements of the various diffusion 
models proposed are briefly reviewed in a unified 
way based on the “q-space formalism”, with a 
particular focus on ways to optimize the diffu-

sion encoding schemes in order to maximize the 
precision of fiber mapping. The challenges arising 
from the application of these schemes in tissues 
other than the brain are also discussed.

dIffus Ion Encod Ing
for Mul At Ion

We introduce below the q-space formalism to 
describe the evolution of the transverse magnetiza-
tion of the spins of protons of the water molecules. 
The prototypical diffusion MRI experiment is 
based on the pulsed-gradient spin-echo (PGSE) 
sequence, which uses two identical gradient pulses 
inserted on both sides of the 180º refocusing pulse 
of a conventional spin-echo sequence, following 
the formulation of Stejskal-Tanner (Stejskal & 
Tanner, 1965). A schematic of the PGSE sequence 
is given in Figure 1. The diffusion gradient is 
labeled g, the diffusion gradient duration δ, and 
the spacing between the diffusion gradients Δ. 
Since the diffusion gradient constitutes a vector 
quantity, it can be further described by the product 
of its amplitude g and a unit vector g.

Based on the assumption that the diffusion 
gradient pulses are sufficiently narrow, we can 
neglect spin motion during δ (short pulse ap-
proximation). A spin located at position r at time 
t = 0 will gain phase equal to γδgr following the 
application of the first diffusion gradient pulse. 
If we assume that the molecule has moved to 
a position r′ during time ∆ and just before the 
second (refocusing) gradient pulse is applied, 
the spin phase will change by –γδgr′ after the 
application of the second diffusion gradient pulse. 
The net phase shift will be finally γδg(r - r′). If 

( | , )P r' r  represents the probability of a spin to 
be located at position r′ at time t = ∆, given that 
it was at position r at time t = 0, then the normal-
ized amplitude of the echo (echo amplitude with 
diffusion weighting over echo amplitude without 
diffusion weighting) for a uniform spin density 
is (Callaghan, 1991):
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q r∆ =E P ( )( , ) ( | , ) exp 2 d 'd−  ∫ ∫ ' r q r' r r r

where 1(2 )−=q g defines the reciprocal 
space of spin displacements. In the case when 

( | , )P r' r  is independent of the starting posi-
tion r and depends only on the net displacement 
R = r' – r, we can define the ensemble average 
propagator:

+ RP R r( , ) ( | , )d= ∫ r r

We can then rewrite the expression for the 
echo signal:

q R [ ]( , ) ( , ) exp 2 dE = ∫ qR R

The above expression indicates that the dif-
fusion MRI signal is the Fourier transform of 
the ensemble average propagator. For Gaussian 
diffusion with a constant diffusion coefficient D, 
the normalized signal becomes E(b) = exp(–bD), 
where 2 2 2

3
b g  = − 

 
   is the variable most com-

monly used to quantify the amount of diffusion 
weighting in a diffusion MRI experiment.

In the case of crossing fibers, information about 
the angular structure of the ensemble average 
propagator is sought in terms of the orientation 
distribution function, defined as the radial projec-
tion of propagator:

2

0

( ) ( ) dODF P r r r
+∞

= ∫u u

The extraction of the tissue diffusion proper-
ties relies on the ability to recover accurately the 
ensemble average propagator from the MRI signal. 
As the above analysis indicates, the signal intensity 
is obtained in terms of the spin displacement R 
= r' – r rather than in a physical absolute space 
coordinates (Callaghan, 1991). Blumich (Blumich, 
2003) points out that the increased resolution of 
methods based on this formalism (~ 100 µm) is 
derived from the fact the signal is averaged over 
an ensemble of similar structures. Therefore the 
success of such methods in resolving the micro-
structure is based on the presence of short range 
spatial order in each voxel and on the effectiveness 
in the q-space sampling to adequately represent 
this order. Focusing on tissues in the central ner-
vous system and especially white matter provides 
this short range order. Neural tracts correspond 
to multiple diverging and crossing bundles of 
myelinated axons. In healthy living neural tis-
sue, each axon consists of an aqueous core (with 
a diameter of a few microns) surrounded by a 
tubular sheath of myelin that is less permeable to 
water than the intra-axonal space. We should note 
in passing that in the following text, as well as in 
the relevant literature, the term “crossing fibers” 
is employed for simplicity to refer to crossing 

Figure 1. Schematic representation of the pulsed-gradient spin-echo sequence.
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fiber bundles, rather than to crossing individual 
axons. The latter feature is not consistent with 
human histology and anatomy.

Different diffusion models have been proposed 
in order to assure efficient signal acquisition and 
accuracy in the quantification of the tissue mi-
crostructure properties, such as the mean spatial 
correlation length or fiber orientation. These 
models have been based either on q-space or dis-
placement-space formulations. Techniques based 
on q-space formulations use a priori information 
of the underlying diffusion process to model the 
diffusion MRI signal. Techniques working in 
displacement-space can directly measure charac-
teristics of the propagator without using a priori 
information of the tissue diffusion properties.

Several reviews have appeared in the MRI 
literature comparing the performance of dif-
fusion MRI techniques in mapping cerebral 
neuronal fiber networks. Instead of comparing 
the advantages and the disadvantages of the 
various previously proposed methods, the goal 
of the present review is to focus on the optimal 
diffusion encoding strategies for certain classes 
of these techniques. We will start from the most 
basic diffusion model and then proceed with high 
order models. We will also extend our discussion 
to the selection of optimal parameters, in tissues 
other than the brain, where diffusion MRI has 
been applied.

o Pt IMIZAt Ion of dIffus Ion 
Encod Ing str At Eg IEs

In diffusion MRI, noise that is present in the raw 
diffusion-weighted images is propagated to the 
final calculations of the diffusion propagators 
and their associated scalar quantities (e.g. mean 
diffusion coefficient and anisotropy metrics). 
Therefore, much effort in recent years has been 
focused on optimization of diffusion acquisition 
schemes, with the aim of reducing the inherent 
errors in raw data acquisition as well as their 

propagation to the final diffusion propagator 
estimation. The optimization of the diffusion 
encoding strategies involves the selection of the 
variables related to the q-space coverage (Figure 
2) which includes the number of the diffusion 
encoding directions (Ndir), the number of b-values 
(Nb), the number of averages with and without 
diffusion-weighting (Nav,b and Nav,b=0), and the 
optimum choice of the set of b-values. The selec-
tion of the aforementioned parameters depends 
strongly on the adopted diffusion model and the 
measurement noise characteristics.

signal-based diffusion Models

Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) was introduced in 
1990s (Basser, Mattiello, & Le Bihan, 1994) and 
constitutes the basic diffusion model for charac-
terization of the anisotropic diffusion properties 
of a tissue. In DTI, anisotropic diffusion is de-
scribed by a 2nd rank tensor D. The corresponding 
expressions for the ensemble average propagator 
and the diffusion MRI signal are:

( )

1

3

1( , ) exp
44

T

P
− 

∆ = − 
 

R D RR
D

 
  ( , ) expE b b = −  

T
g g Dg

If λ1, λ2 , λ3 are the eigenvalues of the diffusion 
tensor, we can define the mean diffusivity and the 
fractional anisotropy (FA) metrics:

+ +1 2 3Trace( )
3 3

= =
D

− +( ) ( ) ( )2 2 2

1 2 3

2 2 2
1 2 3

3FA
2

− + −
=

+ +

There have been a significant number of 
previous studies focusing on the optimization of 



��  

Optimal Diffusion Encoding Strategies for Fiber Mapping in Diffusion MRI

DTI acquisition schemes exploring the number 
of gradient diffusion encoding directions, the 
orientation of diffusion directions, and the amount 
of diffusion weighting (b-values).

Number of Diffusion-Encoding Directions
The estimation of the diffusion tensor requires 
a minimum of six diffusion-weighted measure-
ments along six non-collinear directions, and a 
b=0 s/mm2 measurement. In order to increase 
the accuracy in the estimation of the diffusion 
tensor, more than seven signals in total are typi-
cally acquired. In that case, the problem becomes 
over-determined, and various approaches can 
be used for tensor estimation. However, for a 
given total imaging time, it is possible to repeat 
multiple times, Nav,b, the acquisition of data along 
few diffusion directions, Ndir, or to acquire data 
along many directions, Ndir, without repeating 
any acquisition (Nav,b=1). For example, data for 
six diffusion directions could be acquired twice, 
or data for 12 directions could be acquired once 
in the same imaging time.

In-vivo experiments suggest that accuracy in 
the estimation of the diffusion tensor in anisotro-
pic systems increases when diffusion-weighted 
signals are acquired along as many different 

directions as possible, rather than repeating 
measurements in only a few directions. In one 
study, FA maps from the brain of healthy human 
volunteers exhibited higher SNR and improved 
contrast between white matter structures and the 
surrounding brain tissue when more diffusion 
directions were employed (Jones, Horsfiled, & 
Simmons, 1999). Similarly, another study reported 
greater contrast-to-noise ratio (CNR) in FA maps 
between white and gray matter for an increas-
ing number of diffusion directions (Arfanakis, 
Cordes, Haughton, Carew, & Meyerand, 2002) 
(Figure 3). In this study, schemes with Ndir=6, 
11, 23, and 46 directions were investigated, while 
the total imaging time was held approximately 
constant by repeating the acquisition for schemes 
with fewer directions. The CNR increased quite 
rapidly between the 6- and 11-direction schemes 
(0.08 to 0.15), as well as between the 11- and 23-
direction schemes (0.15 to 0.17), but appeared 
to reach a plateau between 23 and 46 directions 
(Figure 3). 

For a small number of diffusion-encoding 
directions, the accuracy in estimating the eigen-
values of the diffusion tensor and quantities based 
on the eigenvalues of the tensor, such as the com-
monly used FA parameter, is highly dependent 

Figure 2. Basic q-space sampling parameters: Ndir  points distributed on each of the Nb spherical shells.
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upon the orientation of the tensor in relation to the 
diffusion directions. For example, a scheme with 
three of its diffusion directions perfectly aligned 
with the principle axes of the tensor (defined by 
the three eigenvectors of the tensor) would yield 
a more accurate estimate of the eigenvalues and 
FA than a scheme whose directions were not 
aligned with the tensor axes, since the former 
scheme directly measures the tensor eigenval-
ues. However, a priori information regarding 
the exact tensor orientations in vivo is generally 
not available. In this case, the dependence of the 
noise in the eigenvalues on tensor orientation 
can be minimized by selecting a scheme with a 
relatively large number of uniformly distributed 
diffusion directions. Skare et al. (Skare, Hedehus, 
Moseley, & Li, 2000) have shown that for just 
six directions, the noise of FA is dependent on 
tensor orientation (Figure 4a). For 30 uniformly 
distributed directions (Jones et al., 1999), the noise 
in FA is low and rotationally invariant (Skare 
et al., 2000) (Figure 4b). Therefore, also taking 
into consideration the findings discussed above, 
schemes that include at least Ndir=30 uniformly 
distributed directions, approximately, are desir-

able for performing DTI of the human brain, 
which normally contains the full range of tensor 
orientations, as shown in Figure 5.

Distribution of Diffusion-Encoding Directions 
in Three-Dimensional (3D) Space
The advantages of using a large number of dif-
fusion directions can not be fully realized unless 
their orientations are optimized. For anisotropic 
systems in which no a priori information is avail-
able regarding the local orientations of the tensors, 
the diffusion directions should be distributed as 
uniformly as possible in three-dimensional space. 
Toward this end, the diffusion-weighted directions 
have been defined based on one of three types 
of schemes: heuristic, geometric polyhedra, and 
numerically optimized.

Heuristic schemes consist of diffusion direc-
tions defined by vectors that originate at the center 
of an imaginary cube and point to the cube’s 
vertices, face centers, and edge bisectors (Hasan, 
Parker, & Alexander, 2001). Heuristic schemes 
with up to 13 directions have been devised, but 
it is important to note that these directions have 
not been uniformly distributed according to any 

Figure 3. Contrast-to-noise ratio (CNR) between gray and white matter of a single subject, for acquisition 
schemes with 6, 11, 23 and 46 diffusion directions. CNR increases when more DW gradient orientations 
are used. A plateau is achieved for approximately 30 diffusion directions. 
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Figure 4. Standard deviation of FA of a simulated cylindrical tensor as a function of the orientation 
of the primary eigenvector, for (minimum energy) schemes with 6 (a) and 30 (b) diffusion directions, 
respectively. θ and φ are the azimuth and zenith angles respectively. The standard deviation of FA varies 
significantly with tensor orientation when a scheme with few diffusion directions is used, and is almost 
independent of tensor orientation when many diffusion directions are used.

Figure 5. (a) Uniform distribution of tensor orientations in 3D space. (b) Distribution of the orientation of all 
white matter tensors of a single human subject. θ and φ are the azimuth and zenith angles respectively.

quantitative criteria. As such, these schemes are 
not expected to be optimal.

Similarly, schemes based on geometric poly-
hedra also consist of diffusion directions defined 
by the vertices of various solids (Hasan et al., 
2001). Unlike the heuristic schemes, however, 
the polyhedra have at least 12 faces, and the re-
sulting schemes appear to possess optimality, as 
discussed later. The regular icosahedron provides 

a framework for the minimum six diffusion di-
rections that are required for tensor estimation. 
This polyhedron consists of 20 equilateral triangle 
faces, with 5 faces meeting to form each vertex. 
Lines connecting each vertex to its counterpart 
on the opposite side of the icosahedron are used to 
define the six diffusion directions of the ICOSA6 
scheme (Hasan et al., 2001). The dual of the ico-
sahedron is the dodecahedron, which consists of 
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12 pentagonal faces and 20 vertices, allowing for 
the definition of 10 unique diffusion directions. 
An obvious disadvantage of relying on polyhedra 
for defining diffusion directions is the fact that 
only schemes with a “magic number” of direc-
tions can be formed. For instance, Hasan’s family 
of “icosahedron polyhedra” can provide schemes 
with number of directions equal to 5n2 + 1 for n = 
1, 2, 3, etc. Although a variety of other polyhedra 
can be used to obtain diffusion direction sets, the 
fact remains that geometric polyhedra schemes 
do not allow ultimate flexibility in the number of 
directions employed.

The most flexible and optimal sets of diffu-
sion directions appear to be those constructed 
using numerical optimization. One of several 
quantities can be used for the minimization cri-
terion, including the total variance of the diffu-
sion tensor and the inverse pseudo-determinant 
or condition number of the diffusion encoding 
matrix (Hasan et al., 2001; Skare et al., 2000). 
In addition, Jones et al. (Jones et al., 1999) de-
scribed the use of a “minimum force” criterion 
for achieving uniformly distributed diffusion 
directions in three dimensions. In this scheme, 
unit charges are placed on the surface of a sphere 
and arranged to minimize the force exerted be-
tween the charges (Figure 6). Since antiparallel 
diffusion directions are equivalent, there is an 
added constraint that each charge must pair with 
a complementary charge on the exact opposite 
surface of the sphere. The diffusion directions 
are then defined as vectors pointing from the 
center of the sphere to one charge from each 
pair. The minimum energy criterion is similar 
to the minimum force scheme, except that the 
total Coulombic energy is minimized instead of 
the force. The numerically optimized schemes 
described here can accommodate any number 
of diffusion directions. 

After correcting for unequal imaging times, the 
icosahedral schemes and most of the numerically 
optimized schemes were shown to be equivalent 
(Hasan et al., 2001). The schemes that were found 

to be suboptimal were heuristic schemes and those 
based on minimization of the condition number 
of the diffusion-encoding matrix. 

Diffusion Weighting: b-Values
Another important aspect in the development of 
optimal DTI acquisition schemes is the selec-
tion of diffusion weighting and the number of 
measurements at different b-values. Although 
multiple b-values can be used to probe diffusion in 
multiple compartments, the use of a single b-value 
in addition to b=0 s/mm2, yields information that 
is usually most valuable for the range of diffu-
sion coefficients found in the human brain. The 
optimal value of the diffusion-weighting (b-value) 
depends on the tissue under investigation, and 
more specifically on the tissue’s microstructural 
boundaries to diffusion, as well as on the noise 
levels of the DTI experiment. Employing b-values 
that are too low will fail to detect anisotropic 
diffusion characteristics, while b-values that are 
too high will lead to significantly low diffusion-
weighted signals, comparable to the noise floor. 
Given a priori knowledge of the trace of the dif-
fusion tensor, the optimum b-value can be chosen 
to be approximately 1.11 × 3 / Tr(D), where Tr(D) 
is the trace of the diffusion tensor (Jones et al., 
1999). Using this method with Tr(D) = 3.0 × 10-3 
mm2/s (  = 1.0 ×10-3 mm2/s), the b-value becomes 
1110 s/mm2. The situation is more complex in 
vivo, however, since the chosen b-value must be 
sensitive to  values ranging from about 0.3 to 
3.0 × 10-3 mm2/s at different locations within the 
human brain (Armitage & Bastin, 2001). This 
problem has been addressed by Armitage and 
Bastin, who have defined the diffusion-to-noise 
ratio (DNR) as the SNR of the calculated diffusion 
tensor trace map. This quantity is the product of 
the SNR of the low b-value image and a factor 
that describes the sensitivity of the high b-value 
to a given rate of diffusion. Adjusting the high 
b-value can make the acquisition optimally sensi-
tive to various ranges of  by ensuring that the 
DNR remains above a desired threshold of 20 or 
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greater (Armitage & Bastin, 2001). A range of 
b-values from approximately 900 to 1000 s/mm2 
have been found to be appropriate for conventional 
DTI acquisitions in the human brain (Armitage 
& Bastin, 2001; Jones et al., 1999). Finally, an ap-
propriate ratio of the number of measurements at 
the high b-value to the number of measurements 
at low b-value (typically b≈0 s/mm2) for DTI is 
between 6 and 9 (Jones et al., 1999).

Diffusion Tensor Imaging constitutes the basic 
diffusion model employed in clinical research. 
Nevertheless, in a typical diffusion MRI ex-
periment, the imaging voxel is millimeter sized, 
which is several orders of magnitude larger than 
the cell (e.g. axon) diameter. The MRI voxel 
can therefore accommodate multiple bundles of 
axonal fibers with different orientations. In such 
cases, the simple DTI model has to be refined to 
accommodate the multiple fiber orientations that 
can potentially exist within each voxel. Several 
higher order models of the diffusion signal have 

been proposed to account for these complications, 
and they are discussed in detail below.

Multiple Compartments Models

The simplest modification of the basic DTI model 
in order to account for intravoxel fiber crossings 
is by modeling the signal as a linear weighted 
sum of multiple exponentials. If g is the unit 
vector along a diffusion direction, then for M 
crossing-branching fibers the normalized diffu-
sion signal is:

  

1
( , ) exp[ ]

M

i
i

E b f b
=

= −∑
T

ig g D g

Alexander and Barker (2005) used Monte Carlo 
simulations to estimate the optimal value for b in 
a diffusion MRI experiment to determine fiber 
orientations using the multi-exponential model 
and q-space sampling on a single spherical shell. 

Figure 6. Each vertex of this polyhedron represents the location of a charge from a set of 46 equal charges, 
positioned on the surface of a sphere in such a manner that the total energy is minimized. Each pair of 
vertices on exact opposite locations on the surface of the sphere define a diffusion-encoding direction 
for a scheme with 23 directions total.
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For the two fiber directions case they show that 
the main variable that has a strong effect on the 
optimal setting of b is the mean diffusivity. Spe-
cifically, for typical values of mean diffusivities 
in the brain, they find that the optimal b values for 
estimating two fiber orientations are in the range 
between 2200 and 2800 s/mm2. They also show 
that the optimal setting is largely independent 
of the total number of measurements Nav,b=0+Ndir 
with Ndir/ Nav,b=0 fixed.

More elaborate models haven been proposed 
based on the assumption of non-interacting multi-
ple compartments and involve elaborate analytical 
expressions describing diffusion inside cylindrical 
fibers, as in CHARMED (Assaf, Freidlin, Rohde, 
& Basser, 2004) and in QUAQ (Raguin et al., 
2006). These models further compartmentalize the 
signal in terms of intracellular and extracellular 
space. They use multiple shells in q-space and can 
therefore afford optimal accuracy for one- and two-
fibers reconstruction for the same b-value range. 
Specifically, Assaf and Basser (2005) follow an 
interesting approach for optimizing the q-space 
sampling strategy by increasing the number of 
directions at higher b values. This is consistent 
with the fact that high angular resolution is needed 
at higher b-values in order to detect the angular 
dependence of the signal.

ADC Modeling Techniques

A second class of diffusion methods models 
the angular pattern of the diffusion coef-
ficient along each diffusion encoding di-
rection which is defined by the unit vector 
 [ ]( , ) sin( ) cos( );sin( )sin( );cos( )=g  
based on the equation:

 

1( ( , )) ln( ( , ( , )))apD E b
b

= −g g

where θ, φ are the azimuth and zenith angles, 
respectively. The measurement of diffusion coef-
ficient along a large number of diffusion gradient 

directions is referred as high angular resolution 
diffusion imaging (HARDI).

The first proposed technique of this kind is 
the spherical decomposition method proposed by 
Alexander et al. and Frank (Alexander, Barker, 
& Arridge, 2002; Frank, 2002), which is based 
on the decomposition of the apparent diffusion 
coefficient in terms of real-valued spherical 
harmonics:
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Terms up to second order originate from single 
fiber populations, whereas terms of fourth order 
or higher represent the effect of crossing fibers. 
The spherical harmonics decomposition scheme 
uses q-values distributed over a single spherical 
shell and a high number of diffusion directions 
which depends on the highest order of coefficients 
needed to describe the underlying diffusion pro-
cess. Specifically, a rotation-invariant spherical 
harmonic decomposition (Zhan, Stein, & Yang, 
2006) shows that for Ndir>90 and SNR>60 for 
the reference image the results are consistent for 
the coefficients up to the 4th order in phantom 
simulations. For for Ndir>128 and SNR>80 for the 
reference image the results are consistent for the 
coefficients up to the 6th order.

Another application of the spherical harmonics 
set is based on the expression of the normalized 
signal as the direct spherical convolution of the 
response function for a single axially symmetric 
fiber aligned with the z-axis with the orientation 
distribution function, decomposed on spherical 
harmonics (Tournier, Calamante, Gadian, & 
Connelly, 2004):

  ( , ( , )) ( , ) ( ( , ))oE b E b ODF= ⊗g g

Tournier et al investigated the effect of the b 
value on the performance of the spherical decon-
volution method concluding that intermediate b 
values should be preferred to allow adequate angu-
lar dependency on the signal without attenuating 
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the signal down to the noise level. For SNR=30 for 
the reference image, their results reveal an optimal 
b value in the 3000-4000 s/mm2 range.

Diffusion circular spectrum mapping (DCSM) 
methods (Zhan, Gu, Silbersweig, Stern, & Yang, 
2003; Zhan, Stein, & Yang, 2004) used the angle 
ψ between the applied diffusion direction and 
the primary fiber direction to represent angular 
deviation results for the apparent diffusion coef-
ficient profile:

= +1 1
1 1( ) cos(2 )

2 2CSD − +

Zhan and Yang (2006) show that b-value has 
little effect on the angular deviation of the DCSM 
method for the two fibers case for the noise-free 
case. When noise effects are included, the results 
for b=2000 s/mm2 are more robust than the results 
with b=5000 s/mm2.

Finally, a generalized DTI method has been 
proposed (Ozarslan & Mareci, 2003), using b>1000 
s/mm2 and a number of diffusion directions com-
parable to spherical harmonics decomposition:
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An extensive analysis of the optimal diffusion 
encoding parameters for the generalized DTI is 
lacking, but these parameters should follow the 
general rules like the spherical harmonics decom-
position scheme, since there is a well understood 
equivalency between the two methods (Ozarslan 
& Mareci, 2003).

Propagator-based diffusion Models

All the methods described up to this point model 
the diffusion signal. Another family of methods 
extracts information for the fiber orientation based 
on the propagator characteristics. The recon-
struction of the ensemble average propagator by 
means of the Fourier transform of the diffusion 
normalized signal is referred to as diffusion spec-

trum imaging (DSI) (Wedeen et al., 2000). The 
extraction of the propagator is possible either by 
three-dimensional Fourier transform of the dif-
fusion signal on a cartesian lattice (Lin, Wedeen, 
Chen, Yao, & Tseng, 2003), or by one-dimensional 
Fourier transform of the diffusion signal along 
each direction to retrieve radial components of 
the propagator (Cohen & Assaf, 2002).

Assuming that the diffusion gradient vectors 
are distributed isotropically over a sphere, the 
nominal angular resolution of DSI (in radians) is 
inversely proportional to the square root of the 
number of directions (Wedeen, Hagmann, Tseng, 
Reese, & Weisskoff, 2005). The fiber orientation 
separation power depends strongly on the maximal 
sampling radius (b value). While extending the 
maximal sampling radius above b-values of 18000 
s/mm2 is not expected to improve accuracy, not 
going far enough in q-space will limit the angu-
lar contrast. Wedeen et al (Wedeen et al., 2005) 
showed that a maximal b-value of 12000-18000 is 
adequate to resolve well known areas of crossing 
fiber, such as in the brainstem and the centrum 
semiovale using 515 q-space samples.

Since information about the angular structure 
of the diffusion spectrum is sought, researchers 
focused on techniques for direct measurement 
of the orientation distribution function (ODF). 
Tuch (Tuch, 2004) showed that the Funk-Radon 
transform, which is a generalization of the Radon 
transform to spherical coordinates, can be used 
to extract ODF from measurements taken on a 
sphere corresponding to a single q value in a 
method called q-ball imaging (QBI):

( ) ( )dODF E
⊥

= ∫q u
u q q

The initial implementation of q-ball imaging 
was done a single q-value and was able to resolve 
fiber crossings with b values between 2500 and 
4000 s/mm2. A recent generalization of q-ball 
imaging  fusing the diffusion signal from differ-
ent diffusion wavevectors (labeled as multiple 
wavevector fusion, or MWF) has shown that the 
q-space sampling efficiency of q-ball imaging can 
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be significantly boosted by employing samples 
in two q-space shells (Klachaturian, Wisco, & 
Tuch, 2007). They show that the combination 
of samples at b=700 s/mm2 and b=3200 s/mm2 
can induce a reduction in the number of required 
q-space samples from 322 to 193. The improved 
accuracy of MWF can be explained by the fact 
that the low b value samples provide the low an-
gular resolution characteristics of the propagator 
while the high b value samples enhance the high 
angular resolution information.

Finally, Zhan and Yang (2006) performed 
a systematic study on the effect of b value and 
SNR for DSI and QBI methods. Their noise-free 
results show that DSI and QBI methods should 
be used for b>1000 s/mm2. When they consid-
ered the effect of noise, the angular deviation in 
the prediction of the fiber angles was higher for 
b=5000 s/mm2 than for b=2000 s/mm2.

hybrid diffusion Models

Wu and Alexander (2007) have recently in-
troduced a comprehensive diffusion encoding 
and analysis approach, labeled hybrid diffusion 
imaging (HYDI), to assess the complementary 
information provided from the various diffusion 
models. In the proposed q-space sampling scheme, 
multiple shells are used with an increasing number 
of diffusion encoding directions per encoding 
shell as the diffusion-weighting increases. The 
most interior shells are then used for diffusion 
tensor analysis, the outermost shell is used for 
QBI processing and the all the shells may be used 
for implementing DSI.

dIscuss Ion

We have pointed out earlier that the success of 
diffusion weighted MRI is based on the pres-
ence of short range spatial order in the tissue 
microstructure contained in each voxel and on 
the optimization of the q-space sampling in order 

to adequately represent this microstructure. The 
emphasis of the present chapter is on the second 
aspect, which hinges on selecting a subvoxel dif-
fusion model. We can broadly classify diffusion 
models into diffusion tensor schemes and high-
order schemes. DTI constitutes the most basic 
diffusion model and the family of high-order 
models includes multiple compartments models, 
ADC modeling techniques, propagator-based 
diffusion models and hybrid methods. As the 
previous discussion indicates, the majority of the 
studies available in the literature related to the 
optimization of diffusion encoding parameters 
have focused on DTI schemes. Although several 
high order diffusion models have been proposed in 
order to resolve crossing and branching neuronal 
fiber structures, a systematic investigation of the 
effect of the main diffusion encoding parameters 
on the extracted results for many of these tech-
niques is currently lacking for many high-order 
schemes. This is mostly related to the complexity 
of its implementation and the requirement to first 
validate each technique with either simulations 
or phantoms or studies involving (post mortem) 
histological analysis performed in tandem with 
MRI, before the optimization step. However, op-
timization of the diffusion encoding parameters 
is not only related to the improvement of outcome 
in terms of increased SNR or spatial resolution, 
but it is also connected to the total acquisition 
time, with long imaging protocols constituting a 
major obstacle in the clinical implementation of 
many high-order schemes.

A significant number of human brain studies 
have been conducted in an effort to determine the 
DTI acquisition strategy that provides unbiased 
estimation and desirably low noise properties 
of the diffusion tensors. In brief, a diffusion 
weighting (b-value) of  900-1000 s/mm2 (Armit-
age & Bastin, 2001; Jones et al., 1999), a ratio 
of high b-value images to low b-value images 
between 6 and 9 (Armitage & Bastin, 2001; 
Jones et al., 1999; Skare et al., 2000), an SNR 
of the b=0 map of 20 or greater (Armitage & 
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Bastin, 2001), and a set of diffusion directions 
uniformly distributed in 3D space (Hasan et al., 
2001), such as those provided by the “minimum 
energy” or “icosahedral” schemes, are some of 
the essential characteristics of a DTI acquisition 
scheme that provides high quality DTI measure-
ments. Furthermore, for a specified total imaging 
time, measuring DW signals in multiple diffusion 
directions, instead of acquiring multiple copies of 
few DW images, increases the contrast to noise 
ratio in FA maps (Arfanakis, Cordes et al., 2002; 
Jones et al., 1999). In addition, for anisotropic dif-
fusion, using acquisition schemes with less than 
approximately 30 diffusion directions causes the 
noise of the diffusion tensor to become dependent 
on the orientation of the primary eigenvector of 
the tensor (Skare et al., 2000). For approximately 
30 diffusion directions, the noise of the diffusion 
tensor becomes rotationally invariant.

Although quantitative studies for optimiz-
ing diffusion encoding strategies in numerous 
high-order diffusion schemes employed for fiber 
mapping are lacking, we are presenting here a 
qualitative comparison of the main experimental 
parameters of these schemes. Table 1 summarizes 
some of the employed diffusion encoding param-
eters for in vivo brain measurements using the 
high-order diffusion schemes discussed above. 

In terms of the level of the employed diffu-
sion-weighting, all of these methods require higher 
b-values (b>1000 s/mm2) than DTI acquisitions so 
that the sensitivity of the signal to higher angular 
resolution structures is maximized. DSI tech-
niques rely on sampling up to very high b-values (b 
up to 17000 s/mm2) to assure high angular contrast 
on the derived orientation distribution function. 
Both ADC modeling techniques and QBI rely also 
on q-space data acquired on shells with higher b-
values (b=2000-4000 s/mm2) than DTI in order to 
characterize regions of complex histoarchitecture 
with crossing white matter tracts. One important 
issue related to the selection of b-value, is the need 
of avoiding signal levels near the “noise-floor”. 
Some high-order schemes employ b-values of the 

order of 6000-10000 s/mm2 for the outer shells. 
The signal level for this strong diffusion-weight-
ing can become comparable to the noise level for 
some of the diffusion encoding directions. The 
extraction of the diffusion parameters in these 
cases can be potentially improved using Rician 
noise models.

Considering the required number of diffusion 
encoding shells and directions per shell, the opti-
mum angular sampling on each shell is uniform, 
and the number of shells depends on the charac-
teristics of the model. ADC modeling techniques 
use experimental data on a single shell with a 
number of directions higher than 30 (as proposed 
for DTI) but in general lower than 100. Diffusion 
spectrum imaging is the most demanding method 
in terms of q-space coverage, since it relies on 
the 3-dimensional inverse Fourier transform of 
the echo attenuation signal. The QBI technique, 
as originally proposed, requires sampling on a 
single shell with a high number of diffusion en-
coding directions (> 100). New techniques have 
been proposed based on optimizing the q-space 
coverage depending on the specific application 
and the information that is sought (Klachaturian 
et al., 2007; Wu & Alexander, 2007). By using 
variable number of sampling points on different 
q-space cells, these techniques are effectively 
introducing new ideas for q-space sampling that 
is more efficient than that for QBI and DSI, but 
they have not yet been optimized.

futur E tr Ends

The application of diffusion weighted MRI to areas 
other than the brain focuses on tissues which are 
mainly characterized by locally oriented fibrous 
microstructure. Diffusion tensor imaging is the 
main method employed for fiber mapping in areas 
outside the brain. Applications of DTI in areas 
with a preferred orientation, such as the spinal cord 
(Summers, Staempfli, Jaermann, Kwiecinski, & 
Kollias, 2006), the skeletal muscle (Sinha, Sinha, 
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High-order diffusion models Ndir Nb b (s/mm2) Nav,b=0 Nav,b

Multiple compartments techniques
Bi-exponential model
(Alexander & Barker, 2005) 

28-246 1 2200-2800 ~Ndir/9 1

CHARMED model
(Assaf & Basser, 2005)

6-30 10 714-10000 1 1

ADC modeling techniques
Spherical harmonics descomposition
(Frank, 2002)

43 1 3000 20 20

Spherical harmonics descomposition
(Alexander et al., 2002)

60 1 1000 3 1

Spherical harmonics deconvolution
(Tournier et al., 2004)

60 1 2971 18 3

Diffusion circular spectrum mapping (Zhan et al., 
2003)

90 1 3076 6 6

Generalized diffusion tensor imaging
(Ozarslan & Mareci, 2003)

81 1 1050 1 1

Propagator-based techniques
Diffusion spectrum imaging
(Wedeen et al., 2005)

515 points on a cubic lattice of 5 lattice units in 
radius with 
bmax= 17000

1 1

q-ball imaging
(Tuch, 2004)

253 1 4000 1 1

Multiple wavevector fusion
(Klachaturian et al., 2007)

60 directions at b1=700 and 123 directions  at 
b2=3200

10 1

Hybrid techniques
Hybrid diffusion imaging
(Wu & Alexander, 2007)

3-50 5 375-9375 - -

Table 1. Summary of basic q-space sampling parameters for the various high order diffusion en-
coding schemes.

& Edgerton, 2006), and the peripheral nerves 
(Skorpil, Karlsson, & Nordell, 2004), could po-
tentially use  a lower number of directions, which 
could be further optimized if there is a priori 
knowledge of that preferred orientation (Peng & 
Arfanakis, 2007; Skorpil, Engstroem, & Nordell, 
2007). The corresponding b value also has to be 
modified according to the mean diffusion coef-
ficient of the tissue (i.e. b=500-600 s/mm2 in the 
case of skeletal muscle). More elaborate muscle 
architecture, such as in the tongue (Wedeen et al., 
2005), can be potentially resolved with high order 
diffusion models. Finally, further optimization 
of the diffusion encoding parameters is needed 

in tissues involving secondary structures and 
additional morphometric parameters defined by 
the secondary and tertiary eigenvectors of DTI, 
as is the case for the myocardium (Helm, Tseng, 
Younes, McVeigh, & Winslow, 2005), and the 
skeletal muscle (Karampinos, King, Sutton, & 
Georgiadis, 2007).

conclus Ion

In summary, diffusion MRI constitutes a valuable 
tool towards the in vivo characterization of tissue 
microstructure, such as in the human central ner-
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vous and skeletal systems. However, the extraction 
of parameters of physiological relevance relies on 
the interpretation of the measured diffusion MR 
signal, which is not straightforward and depends 
on the complexity of the underlying mass trans-
port process. Numerous diffusion models have 
been proposed to quantify this transport process. 
Each method imposes different requirements for 
optimizing the diffusion encoding acquisition, 
depending on the employed q-space coverage. 
The distribution and the number of diffusion 
encoding directions, the number of shells and the 
level of diffusion-weighting are the main diffusion 
encoding parameters that have to be determined. 
The selection of the above parameters is strongly 
related to the employed diffusion encoding scheme 
and is ultimately determined by the information 
sought by the radiologist, the physiologist, or the 
MR physicist. The optimization of the parameters 
basically relies on the need for minimizing noise 
while keeping the acquisition time reasonably 
short and should be always addressed with con-
siderable attention. As the application of diffusion 
MRI penetrates deeper into the clinical practice, 
the blending of diffusion modeling and imaging 
will generate more insight for the optimization 
of the diffusion MRI encoding strategies under 
clinical settings.
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k Ey tE r Ms

Apparent Diffusion Coefficient (ADC): 
Diffusion coefficient derived from the normal-
ized diffusion signal along a specific encoding 
direction.

b Value: Variable expressing the amount of 
diffusion-weighting on a diffusion MRI experi-
ment.

Diffusion Spectrum Imaging (DSI): Method 
for the reconstruction of ensemble average propa-
gator based on the 3D inverse Fourier transform 
of the complex echo attenuation signal in 3D 
q-space.

Diffusion Tensor Imaging (DTI): Basic dif-
fusion model representing tissue diffusion as an 
anisotropic Gaussian diffusion process described 
by a second rank tensor.

Fractional Anisotropy (FA): Metric of the 
anisotropy of the diffusion tensor in DTI.

High Angular Resolution Diffusion Imag-
ing (HARDI): Measurement of diffusion coef-
ficient along a large number of non-collinear 
directions.

Pulsed-Gradient Spin-Echo (PGSE) Se-
quence: The basic diffusion-weighted spin-echo 
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sequence employing two identical gradient pulses 
on both sides of the refocusing pulse.

q-Ball Imaging (QBI): Method for the recon-
struction of the orientation distribution function 

from diffusion measurements taken on a sphere 
in q-space based on the Funk-Radon transform.

q-Space: Reciprocal vector space of average 
spins displacement.
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Abstr Act

Segmentation plays a crucial role in cardiac magnetic resonance imaging (CMRI) applications, since 
it permits automated detection of regions of interest. In this chapter we review semi-automated and 
fully automated cardiac MRI segmentation techniques and discuss their advantages. We classify those 
segmentation methods as classical and model-based.

Introduct Ion

The structure and the size of the left ventricle 
(LV) are important indicators for the primary 
diagnosis of several cardiovascular diseases. LV 
contraction, capacity and wall thickness play a 
key role in the absorption and transportation of 
blood to the cardiac tissue( ischemia),  while a 
decrease in LV output or the ejection fraction 
(EF), causes fatal consequences (hypertension) 

(Reeder et al. 2001).  The rapid development of 
medical imaging techniques makes possible the 
acquisition of cardiac anatomy images. These 
images come from a variety of medical imaging 
methodologies, including X-ray, X-ray Computed 
Tomography (CT), MRI, and ultrasound. Howev-
er, segmentation of Cardiac Magnetic Resonance 
(CMR) images faces several difficulties. First, the 
inadequate edge information in the image between 
the myocardium and the surrounding anatomical 
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structure makes the detection of epicardium a 
difficult task.  Second, the detection of the en-
docardium boundary is not easy, because cavity 
heterogeneities usually include wrong contours 
(Rogowska, 2000).  In this chapter we review 
recent CMRI automated segmentation techniques 
and discus their advantages.

bAckground

CMRI can be acquired from several views.  Long-
axis (LA) and short-axis (SA) views of the heart 
are obtained routinely since random imaging 
planes can be selected. Figure 1 demonstrates the 
most common selected MRI views in a typical 

cardiovascular MR examination.  CMRI mages 
are used to assess global and regional, RV and 
LV function as represented by systolic volume 
(SV), ejection fraction (EF), LV mass (Lorenz 
et al. 1999), wall-thickening (Vallejo et al. 2000), 
myocardial motion (Buckberg et al. 2007), and 
circumferential shortening of myocardial fibers 
(Tseng et al. 2003).

Segmentation is the process of partitioning 
an image into regions which are homogeneous, 
related to one or more characteristics or features 
(Castleman, 1996). For the estimation of several 
cardiac functions during a CMRI examination, the 
boundaries of the LV, RV and epicardium need to 
be accurately determined.  Thus, edge detection 
and image segmentation must be performed in 

Figure 1.  Horizontal LA multi-segmented cine MR images during: (a) the end–diastolic phase and (b) 
the end–systolic phase.  Vertical LA multi–segmented cine MR images during: (c) the end–diastolic 
phase and (d) the end–systolic phase. SA multi–segmented cine MR images during: (e) the end–diastolic 
phase and (f) the end–systolic phase.
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order to generate topologically correct cardiac 
surfaces from image data with minimum human 
effort and user interaction.

The mathematical description for the segmen-
tation problem is: Consider an image I which is 
assumed to have N regions Sk ⊂ I, k=1…N, such 
that the union of all those regions is the entire 
image I:

1

N

k
k

I S
=

=      (1)

and these regions are disjoint:

i jS S∩ = ∅    (2)

Thus, segmentation is defined as the proce-
dure to find all the disjoint regions Sk (Sonka et 
al. 1998).

In the literature, several works have been 
published introducing techniques for the seg-
mentation for several imaging modalities (MRI, 
CT, echocardiograph, etc.). For each modality 
the problems are different and the methods are 
tailored to each modality. 

In addition, segmentation methods can be 
classified in many ways: 

• Manual, semi-automatic, fully automatic
• Pixel-based (local methods) and region-

based (global methods)
• Manual depiction, low level segmentation 

(thresholding, region growing, etc.) and 
model-based segmentation (deformable 
contours, statistical shape models, etc.)

• Classical (thresholding, region-based, edge-
based) and model-based segmentation (de-
formable contours, statistical shape models, 
active appearance models (AAMs), active 
shape models (ASMs)) 

The segmentation methods for CMRI pub-
lished up to 2000, have been extensively re-
viewed in (Pham et al. 1998; Suri, 2000; Suri et 
al.  2002). 

Manual detection of boundaries is difficult and 
time consuming. The problem becomes more in-
tensive when the amount of images grows. Manual 
methods are inferior to inter- and intra- observer 
variability and are out of the scope of this chap-
ter. The elementary semi-automated techniques, 
such as thresholding or region growing are not 
sophisticated (Adams & Bischof, 1994; Zhu & 
Yuille, 1996; Hojjatoleslami & Kittler, 1998). 
Those techniques are used to detect simple bound-
aries and they require high quality of images. 
The current trend is to move to fully automated 
segmentation of cardiac structure (Hautvast et al. 
2006; Pednekar et al. 2006; Lynch et al. 2006). 
Semi-automated methods utilize the extracted 
boundary results (generated by sophisticated 
automatic algorithms) as initial guess, and then 
allow the user to draw the required boundaries 
manually. Usually, it is required from the opera-
tor to place an initial contour around the desired 
area or move the cursor around this area. These 
methods still need expert knowledge by the user, 
but reduce significantly the effort (Waiter et al. 
1999; Gerard, 2002).

In this chapter we discuss the most common 
used semi-automatic and fully automatic seg-
mentation methods which have been employed 
in CMRI. We classify those methods as classical 
and model-based.

c l AssIc Al  sEg MEnt At Io n MEt ho ds 

Classical segmentation methods for CMRI are 
categorized into two classes. The first refers to 
region-based methods, which rely on the homoge-
neity of spatially localized features.  The second 
is based on boundary finding, using discontinuity 
information. Homogeneity is the characteristic of 
a region and discontinuity is the characteristic 
of the boundary of a region.  Region-based ap-
proaches include region growing, thresholding 
and watershed methods. Boundary-based ap-
proaches include edge detection and edge linking 
methods. 
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t hresholding Methods

It is the simplest segmentation technique and it is 
an effective tool to separate out structures which 
have different intensity ranges. Two of the most 
commonly used techniques for determining the 
threshold value in an image are: the intensity 
histogram and the Otsu’s method (Otsu, 1978).  
A survey of these methods can be found in 
(Saho, 1988).  Thresholding methods are: global 
(single threshold) or local threshold (depending 
on the position in the image), multi- thresholding 
and adaptive thresholding (Sonka et al. 1998).  
Thresholding methods are applied in several 
cardiac image modalities to separate the LV, by 
finding the minimum between the two modes in a 
grey scale histogram. Those are semi-automated 
and provide limited accuracy and low reliability 
in extracting the boundaries (Suri, 2000).  For 
the segmentation of LV and RV in CMRI, Weng 
et al. proposed an extension of the thresholding 
algorithm (Weng, 1997). A preliminary global 
threshold value is determined, by performing an 
analysis of the intensity histogram. This threshold 
value is adapted dynamically to subsequent steps 
of the algorithm by fine-tuning it using feedback 
from a learned-likelihood measure. Recently, 
Lynch (2006) has also utilized intensities in an 
unsupervised threshold clustering technique.  
The procedure started with an edge preserving 
filter followed by an adapted k-means clustering 
algorithm to successfully segment the LV cavity 
from the SA CMRI.

In general, threshold-based methods are not 
suitable for segmenting CMRI because of their 
sensitivity to noise. They are very susceptible to 
noise in low contrast images and produce scattered 
groups of pixels rather than connected regions.

Edge detection Methods

Those are not segmentation methods but the 
obtained results of the edge detection can be 
used as a pre-processing stage in segmentation. 

Morphological operators are used to extract edges: 
Roberts, Prewitt, Kirch, Robinson, Frei-Chen and 
Sobel. A review of those operators is available 
in (Sonka et al. 1998; Rogowska, 2000). One of 
the most commonly used edge detectors, which 
perform well in a variety of medical modalities, 
is the Canny edge detector (Canny, 1986).  Since 
first and second derivatives are very sensitive to 
the existence of noise, those methods might fail.  
One straightforward solution is to remove noise 
from the images.  Pratt (1991) describes noise-
removing image filters, such as the median filter, 
the low pass filter and the Wiener filter. Wu (1997) 
published applications of 3D edge detection meth-
ods in combination with matched filters for the 
segmentation of cardiac CT and MRI data using 
the Laplacian and Gaussian operators.

Edge detection is not commonly used in CMRI 
segmentation. In (Zhang, 1999), the author pointed 
out that the Sobel edge detector failed to detect 
continuous epicardium boundary, and failed to 
detect LV and RV boundaries. However, the Canny 
edge detector succeeded in detecting the epicar-
dium and the LV boundary, but failed to detect the 
RV boundary.   A semi-automated edge-detection 
procedure was used by Waiter (1999) to exctract 
the endocardial and epicardial borders of the LV 
in SA cine-MRI scans. The semi-automated ap-
proach started with an estimation by the user for 
the epicardial and endocardial borders.

A similar method to edge detection is the 
boundary tracing. In the boundary-based segmen-
tation, the boundary is represented as a collection 
of ordered points, which lie between areas of 
the image with different intensity values. Each 
point on the boundary is locally the maximum 
of the gradient magnitude of the image intensity.  
Boundary or edge extraction can be treated as a 
two-step process: edge detection and edge link-
ing (Canny, 1986; Cox et al. 1993; Zhang, 1999).  
In Figure 2, an example of edge detection in SA 
CMRI is shown.

The intensity of an image provides only par-
tial and uncertain information about the edges 



���  

Segmentation of Cardiac Magnetic Resonance Images

location. This is due to the existence of noise 
introduced in the imaging process and the fact 
that any measurement device is imperfect. This 
means that edge detection methods are in general 
ill-posed

r egion-based Methods

Those are techniques which extract regions 
within an image. A region is an area within an 
image which is connected based on a predefined 
criterion. A simple approach is to start with some 
user-selected pixels (seeds) representing distinc-
tive image regions and to grow them until the 
area around them is covered.  

Concerning CMRI  region growing methods 
have either become obsolete (Balzer et al. 1998) 
or are used with others (Cassen et al. 2001; Jolly, 
2006). Cassen (2001) suggest a combination of 
a region growing method, which is based on a 
split and merge algorithm, and active contours. 

His algorithm integrates the topological and 
geometrical characteristics of the LV in CMRI 
over time. Recently, a region-based segmentation 
method has been proposed by Jolly (2006). It uses 
the expectation-maximization (EM) algorithm to 
fit a mixture of three Gaussians to the histogram. 
They create a myocardium response image by 
computing the probability that a pixel belongs 
to the middle Gaussian distribution which cor-
responds to the myocardium. In Figure 3, the 
histogram of the CMRI that was used by (Jolly, 
2006) is shown.

Watershed Segmentation

The watershed transform was originally proposed 
by Digabel (1978). In this transformation, an image 
can be viewed as a 3D surface with its grey-levels 
determining the height of the surface at any point. 
The lighter the shade of grey value at a point in the 
image, the higher will be the altitude of the cor-

Figure 2. Examples of edge detection and edge linking: (a) An intensity SA CMRI, (b) The edge detection 
result. Bright pixels are the detected boundary pixels, (c) The edge linking result. The red line denotes the 
epicardium boundary and the blue lines denote the endocardium boundaries and, (d) Image segmenta-
tion result, a binary image with the boundaries superimposed (Zhang, 1999).
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responding point on the surface. Thus, an image 
can be thought as a topographical relief containing 
valleys (minimas) and peaks (maximas).   Grau 
(2004), proposed an improvement of the watershed 
transformation, which makes it more suitable for 
use in medical images. The improved algorithm 
enables the usage of prior information-based dif-
ferent functions for each object to be segmented, 
instead of the usual gradient calculation which 
watershed algorithms normally use. 

Interactive Watershed Transform (IWT) is 
applied by Hahn (2003), to efficiently segment 
multidimensional grayscale images and CMRI.  
The application of IWT on CMRI, using a single 
marker on an arbitrary slice and phase with an 
appropriate “preflooding” height, was enough to 
segment the LV on all slices and phases. The lat-
est work in this field came by Hamarneh (2007). 
He proposed a method to enhance watershed 
segmentation utilizing prior shape and appear-
ance knowledge. His method iteratively alligned 
a shape histogram with the result of an improved 
k-means clustering algorithm of the watershed 
segments. Figure 4 demonstrates the application 
of the improved k-means clustering to a watershed 
segmentation of a SA CMRI.

Watershed segmentation has several disad-
vantages. It is sensitive to noise: each noisy pixel 
corresponds to a catchment basin, which causes 
the watershed algorithm to segment it. Besides, 
it is also limited when regions with low contrast 
boundaries are detected.

Model-based segmentation Methods

Inherent difficulties (image artefacts, noise and 
motion) impose the use of prior knowledge in order 
to improve CMRI segmentation performance.  
Methods based on a priori models of cardiac 
geometry, known as deformable models, have 
retained attention and obtained a provided high 
accuracy results.

Active Contours or “Snakes”

Those are special cases of the deformable models. 
They were first introduced by Kass (1988) and 
they are energy-minimizing models. The energy 
to be minimized is an aggregate of the internal, 
image and external forces of a contour (snake). 
The internal energy imposes a piecewise smooth-
ness constraint and the image forces push the 
snake towards salient features in an image such 
as edges, lines and subjective contours (Kass 
et al. 1988). The external forces, such as those 
coming from a user interacting with the snake, 
are responsible for reaching the snake towards a 
local minimum.

Geometrically, the snake is a parametric con-
tour embedded in a 2D image plane ( ) 2,x y ∈ . 
The snake can be represented parametrically by 
( ) ( )( ), ( ) Tv s x s y s=  where x and y are coordi-

nate functions and s ∈ [0,1] is the parametric 
domain. Thus, the energy equation which must 
be minimized is:

Figure 3. Region-based segmentation for CMRI: (a) Input image, (b) Histogram, (c) Myocardium re-
sponse image (Jolly, 2006).
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A review of the active contour models in medi-
cal image analysis can be found in (McInerney 
& Terzopoulos, 1996). In the last ten years, many 
researchers have employed active contours to seg-
ment CMRI.  In most of them, the interest was on 
the LV due to the nature of its shape in SA CMRI 
slices. The performance of active contours was the 
subject of research in numerous extensions to the 
original snake formulation. These extensions are 
classified in three main categories: geometrical 
representations, optimization algorithms and 
external force extensions. Extended geometrical 
representation include B-spline snakes (Brigger 
et al. 2000), T-snakes (McInerney & Terzopoulos, 
2000), and Fourier parametering (Staib & Duncan, 
1992). The most well-known applicable external 
force extensions include the pressure force (Co-

hen, 1991), the gradient-vector-flow (GVF) (Xu & 
Prince, 1998; Santarelli et al. 2003) and the distance 
potential force (Cohen L. & Cohen I., 1993).

Santarelli (2003) obtained good agreement 
between manual and automatic LV volume esti-
mation with the use of a non-linear anisotropic 
filtering and a GVF snake. The introduction of 
the GVF field into the traditional snake permitted 
the progressive growth of a deformable contour 
in homogeneous regions extending the capturing 
range over that of a traditional snake.  Spreeuwers 
(2003) proposed a coupled active contour approach 
which is based on the fact that the epicardial and 
endocardial boundaries are not independent and 
extract both contours simultaneously.

A new external force for the active contour 
model, which is based on the orientation gradient 
of three-dimensional velocity vector fields from 
cardiac phase contrast MRI is introduced in (Cho 
et al. 2003). Velocity images together with the 
magnitude images were used for the segmenta-

Figure 4.  LV segmentation using the watershed algorithm: a) Original MR cardiac image, b) Water-
shed transformation of the image, c) Coalesced watershed segments resulting from improved k-means 
clustering and d) The initial segmentation estimate (Hamarneh & Li, 2007).
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tion of myocardial boundaries. A tensor-based 
orientation gradient force and the seed contour 
tracking scheme for the generalized active contour 
model were developed to improve the accuracy of 
semi-automated segmentation of the myocardium 
throughout the entire cardiac cycle.

Extending the snake theory, Lorenzo et. al. 
(2004), designed a probabilistic atlas of manually 
segmented temporally aligned data. Automatic 
segmentation was achieved by registering the 
atlas on the data, using this as the initial guess 
for the EM algorithm. The EM algorithm iterates 
until convergence and this is followed by the ap-
plication of a final classification step, where the 
Markov random fields (MRF) and connected 
components (CC) are employed to refine the 
initial segmentation.

Recently, Pluempitiwiriyawej (2005) have de-
veloped a novel stochastic active contour scheme 

(STACS) for cardiac image segmentation.  They 
choose an energy minimization approach which 
combines characteristics of curve evolution theory 
and statistical modeling of the images to segment 
a homogeneous object (the heart and its structures) 
from the background (chest wall or other anatomy). 
They also compared three different active contour 
algorithms (Xu & Prince, 1998; Chan & Vese, 
2001) with the proposed active contour and a 
manual LV segmentation (Figure 5).

A modification of the active contour model, 
which tends to maintain a constant contour en-
vironment by matching gray values in profiles 
perpendicular to the contour, it is introduced in 
(Hautvast et al. 2006). The contours must maintain 
a constant position with respect to neighboring 
anatomical structures, such as the resulting con-
tours reflect the preferences of the user.

Figure 5.  Comparing the segmentation results of a CMRI using different algorithms. Initial contours 
are the dashed lines; the final contours are the solid lines: (a) Xu and Prince’s GVF snake algorithm, 
(b) Chan and Vese’s active contour algorithm, (c) STACS and (d) Contour traced manually by an expert.  
(Pluempitiwiriyawej et al. 2005).
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Figure 6. Basic anatomical landmarks of a cardiac 
MR image shape: Anterior and inferior junctions 
between RV and LV.

Nguyen (2007) published a comparative study 
on the external force extensions of the active 
contour model and filtering techniques usually 
used to improve CMRI quality. The segmentation 
performances were established for a GVF snake, a 
pressure force-based snake and a guided pressure 
force-based snake in comparison to the traditional 
snake formulation. They clearly pointed out, that 
the local assessment of segmentation accuracy 
showed a number of segmentation difficulties in 
both endocardial and epicardial levels, despite 
the proposed extensions of the traditional snake 
formulation.

Active Shape Models 

Active Shape Model (ASM) is a statistical model 
which encodes shape variability across a training 
set of an object of interest. It was first proposed by 
Cootes (1994).  Recently, many studies on ASMs 
for cardiac segmentation have been published 
(Shen & Davatzikos, 2000; Shen & Davatzikos, 
2001; De Bruijne et al. 2003; Davatzikos et al. 
2003; Frangi et al. 2003; van Assen et al. 2003; 
van Assen et al. 2006; Nain et al. 2006).

Once a training set has been acquired, the next 
step is to landmark the training set. Landmarking 

is the process of determining and locating a set 
of corresponding points across a training set of 
images. The cardiac shape includes two anatomi-
cal landmarks: the points where the RV border 
meets the epicardial called anterior and inferior 
junction as it is shown in Figure 6.

Kaus (2004) proposed an approach to auto-
matically segment the LV in SA an LA CMR 
images. He integrated diverse sources of prior 
knowledge learned from annotated images into the 
deformable surface model as in (Kass et al. 1988; 
Montagnat et al. 1998). Those sources of prior 
information include inter- and intra-subject shape 
variability, surface features and spatial relation-
ships between the endocardium and epicardium. 
Prior knowledge such as intra- and inter-subject 
variability is modeled using a Point Distribution 
Model (PDM) which is embedded into the deform-
able model as an ASM, as described in (Weese 
et al. 2001). The surfaces features are modeled 
using a k-means clustering scheme. In addition 
to this, the spatial relationship of the epicardium 
and endocardium is modeled to prevent the two 
separate meshes from intersecting with each other 
due to attraction to missing or false features.

Ordas (2003) proposed an extension of the 
ASM framework making use of a non-linear ap-
pearance model as in the Optimal Features ASMs 
(OF-ASMJ approach by van Ginneken (2002)) and 
incorporated a reduced set of differential Cartesian 
invariant features as local image descriptors. Re-
sults depict that both optimal features algorithms 
have barely the same performance.  Statistical 
properties of the wavelet transform of cardiac 
shape, were introduced by Davatzikos (2003), 
making the shape deformation more global and, 
thus, getting better results for small training sets. 
This allowed to have a robust ASM, improving 
the segmentation of CMRI.  A methodology for 
incorporating more knowledge about cardiac 
structure through the use of level set methods 
and ASMs, and could potentially offer a robust 
approach to CMRI segmentation is presented in 
(Rousson et al. 2004). 
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A 3D statistical shape model of the heart 
(atria, ventricles and epicardium) was developed 
by Lotjonen (2004), combining information 
from both LA and SA CMRIs. The shape varia-
tions were modeled in two ways: using Principal 
Component Analysis (PCA) and Independent 
Component Analysis (ICA) based shape models 
with non-parametric distributions.  Delhay (2005) 
presented a 3D surface model which also consid-
ers a temporal constraint to increase the accuracy 
of the segmentation. Fritz (2006) proposed an 
automatic cardiac segmentation procedure with 
minimal user interaction. It is based on a combined 
bi-temporal statistical model of the LV and RV 
using PCA, as well as, ICA to model global and 
local shape variations. Recently, Renno (2006) 
designed a software to automate the steps in ASM 
training. ASMs were constructed from manu-
ally segmented ventricular models, allowing the 
user to cite entire datasets for processing using a 
GVF-based landmarking procedure and PCA to 
construct the statistical shape model.  In Figure 7 a 
comparison of manual segmentation of SA CMRI 
with automatic segmentation using PCA models 
derived from landmarked templates is shown.

Active Appearance Models 

Active Appearance Models (AAMs) were intro-
duced as a learning-based method of registration 
and interpretation of face images (Edwards et al. 
1988; Cottes et al. 1998). These models were built 
based on a set of order-less annotated images. 
Cootes (2001) presented  a review of  AAMs ap-
plications in medicine. An AAM can be applied 
to detect automatically a contour in CMRI by 
minimizing the difference between the model 
and the image, where the model is constrained 
to ‘statistically plausible’ organ appearances 
(Figure 8).

Several authors have proposed methods based 
on the AAM including extensions to 3D [Steven 
et al. 2002], 2D + time [van der Geest et al. 2004], 
or 3D + time [Stegmann, 2001]; also called active 
appearance motion models (AAMMs).  AAMMs 
represent the contours for the whole cardiac cycle 
simultaneously, and they are suitable for full-cycle 
contour detection.  AAMMs have the advantage 
that the detected contours change smoothly over 
time, omitting discontinuities inherent to con-
ventional 2D frame-by-frame contour detection 
techniques. 

Figure 7. Comparison of: (a) manual segmentation with automatic segmentation using PCA derived 
from landmarked templates (ASMs), with (b) 25, (c) 50, (d) 100 decimations and (e) PCA restriction for 
the template with 100 decimations at the same slice (Renno et al. 2006).
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Figure 8. Two examples (top and bottom row) of an AAM for simultaneous contour detection in: (a), (d) 
four chamber, (b), (e) SA and (c), (f) two chamber CMRI views.

Mitchell (2001) applied a hybrid ASM and an 
AAM model matching scheme to SA CMR slices 
of the LVs and RVs. He argues that conventional 
AAM approach failss to produce precise borders 
in the segmentation of SA cardiac MR data. This 
is since AAM is optimized for global appearance 
and so it is less sensitive to local structures and 
boundary information.  However, since the heart 
is a three-dimensional organ and the CMRI data 
is three-dimensional as well, the 2D AAM was 
extended to 3D in (Mitchell et al. 2002).  In Figure 
9, an application of a 3D AAM for the segmenta-
tion of the LV is shown.

Stegmann (2004) further extended the AAM 
towards 3D + time by coupling the 3D detection 
in the end-diastolic and end-systolic frames in one 
model. They further improved Mitchell’s (2002) 
work by introducing an improvement on the solu-
tion of breath holding problem. The comparison 
of the segmentation results, after the utilization 
of ICA and PCA in AAM, was presented by 
Uzumcu (2003).  Since the introduction of the 
PCA is followed by global shape variations which 

can lead to unsatisfying segmentation results, 
Suinesiaputra (2004) use the ICA in order to 
handle local shape variations by the minimization 
of statistical dependence of the components of the 
shape representation.  The approach is applied to 
CMRI for the detection of abnormalities in the 
context of infracted myocardial areas. Extending 
his previous work, Stegmann (2005) introduced a 
bi-temporal AAM of the LV. He simply combined 
the end-diastolic and end-systolic landmarks into 
one feature vector and thus created a bi-temporal 
AAM representation.  Zambala (2006) presented a 
two-component model extension based on AAMs 
and its integration into a software tool for heart 
function analysis. The proposed system provides 
automatic segmentation and visualization of 
important data such as wall thickening and EF.   
Andreopoulos (2008) proposed a framework for 
the analysis of SA CMRI, using statistical models 
of shape and appearance. They introduced an 
algorithm for fitting 3D AAMs on SA CMRI and 
a hierarchical 2D + time ASMs which integrates 
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temporal constraints and simultaneously improves 
the 3D AAM segmentation results.

The basic difference between ASMs and 
AAMs lies in the mechanism fitting the model to 
the image data, which is based on locally updating 
surface points for the ASMs, instead of using the 
complete volume for the AAMs. An advantage 
of ASMs over AAMs is the fact that they can be 
applied to 3D processing of sparse MR data, such 
as the LA and SA views.

futur E tr Ends  

To develop successfully robust automated contour 
detection in CMRI, it is clear that a priori knowl-
edge of cardiac image is needed. This knowl-
edge is related to cardiac shape, motion, image 
characteristics or spatial context. Because of 
their integral knowledge about organ shape and 
image characteristics, model-based methods are 
more efficient in solving a variety of difficult 
cardiac contour detection problems. In addition 
systems in 3D+time dimension will be proven 
more efficient.

c onclus Ion

Segmentation of CMRI remains a challenging 
filed in medical image analysis.  The need for 
semi- or fully-automatic methods to extract useful 
clinical measurements from CMRI has led to the 
development of various techniques. In this chapter, 
we reviewed the most significant segmentation 
methods, both classical and models-based. Classi-
cal methods are not efficient in segmenting CMRI 
since they are sensitive to noise and intensity 
inhomogeneity. Even, noise can be treated using 
various filters those do not stand alone but work 
in combination with other methods.
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kE y tE r Ms

Classification: The process of deriving a 
mathematical function that can predict the mem-
bership of a class based on input data.

Expectation-Maximization (EM) Algo-
rithm:  It is used in statistics for finding maximum 
likelihood estimates of parameters in probabilistic 
models, where the model depends on unobserved 
latent variables.

Gaussian Distribution: Also called the stan-
dard normal distribution, is the normal distribution 
with mean zero and variance one.

Image Intensity: An image is defined as a two-
dimensional function f(x, y) the amplitude of f at 
any pair of coordinates (x, y) is called the intensity 
or gray level of the image at that point.

K-Means Algorithm: The k-means algorithm 
is an algorithm to cluster n objects based on at-
tributes into k partitions, k ≤ n. The algorithm 
minimizes the total intra-cluster variance or the 
squared error function. 

Laplacian Operator: The Laplacian opera-
tor is a second order differential operator in the 
n-dimensional Euclidean space, defined as the 
divergence of the gradient.
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Abstr Act

Image registration is the process of determining the correspondence of features between images collected 
at different times or using different imaging modalities. A wide range of registration algorithms was 
proposed in literature for solving this task. In this chapter the focus will be on oncology applications, 
where registration is the prior step of: i) subtraction imaging (to emphasize hyper (or hypo) enhanced 
structures), ii) fusion imaging (to integrate anatomical and functional information about lesions) and 
iii) serial imaging comparison (to monitor the progression/regression of a disease). These applications 
are of great relevance in tumors diagnosis, staging and treatment planning. The goal of this chapter is 
to provide an overview of registration algorithms considering these different applications in oncology. 
We discuss the advantages/disadvantages of each algorithm, the results gained and the possible future 
developments to comply with new requirements.

Introduct Ion

The role of imaging in oncology has increased in 
the last few years, both for identification and stag-
ing of the primitive tumors and for re-evaluation of 
patients during chemotherapy or radiotherapy.

Often, clinical and therapeutic decisions 
are taken from the comparison of information 
extracted by images acquired using different 
modalities (multimodal analysis) or by a single 
modality at different time instants (multitemporal 
analysis).
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Typical examples are the integration of ana-
tomical information of CT and functional infor-
mation of PET, the analysis of contrast-enhanced 
images for identification and characterization of 
lesions or the comparison of images acquired at 
different stages of a treatment (chemotherapy or 
radiotherapy).

For many of these tasks, image registration is a 
crucial step to recover the geometric relationship 
between corresponding points in multiple images 
of the same scene (Figure 1) which allows a direct, 
immediate point-to-point analysis.

Literature provides a wide range of articles and 
reviews treating the problem of image registra-
tion in biomedical applications (Maintz, 1998; 
Fitzpatrick, 2000; Zitova, 2003), some of them 
dedicated to a particular organ like heart (Makela, 
2002) and brain (Toga, 2001; Thompson, 2000) 
or to a particular imaging modality like nuclear 
medicine (Hutton, 2002) or digital angiography 
(Meijering, 1998). 

The goal of this chapter is to provide an over-
view of registration algorithms for applications 
in oncology and in particular for the diagnosis, 
staging and monitoring of tumors.

The chapter is organized as follows: after 
a brief recall of general concepts about image 
registration techniques, we will introduce three 
applications of registration procedure in oncol-
ogy (image subtraction, image fusion and serial 
imaging comparison) and we will describe the 
registration algorithms that better suit with each 

particular task. In addition, we will discuss open 
issues and future trends of this topic.

bAckground

Registration can be achieved by different methods 
that take into account different aspects. Maintz 
(1998) has suggested a nine dimensionality scheme 
to classify registration methods that Fitzpatrick 
(2000) has condensed in eight. For our purposes, 
the most useful classifications are with respect to 
(1) registration basis (i.e. the aspect/feature used 
to achieve the registration) and (2) geometrical 
transformation.

r egistration basis

According to registration basis, algorithms can 
be classified as being point-based, surface-based, 
or intensity-based. 

In point-based methods, registration can be 
achieved by selecting a transformation that aligns 
a set of corresponding point pairs identifiable in 
the images to be aligned. Then, interpolation is 
used to infer correspondence throughout the rest 
of the image volume in a way consistent with the 
matched points. 

Surface-based image registration methods 
involve determining corresponding surfaces 
in different images (and/or physical space) and 
computing the transformation that best aligns 

Figure 1. Registration of one image (A) to the coordinate system of another image (B) by a transforma-
tion, T: (x,y,z)  (x’, y’, z’)
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these surfaces. Intensity-based methods involve 
calculating a transformation between two images 
using the pixel (voxel) values only. They have 
recently become the most widely used registration 
methods. A major attraction of these algorithms 
is that the amount of pre-processing or user-in-
teraction required is lower than for point-based 
or surface-based methods. In addition, feature 
calculation is straightforward or even absent when 
only grey-values are used, such that accuracy is 
not limited by segmentation errors as in point or 
surface based methods.

Intensity approaches match intensity patterns 
among images using mathematical or statistical 
criteria. They define a measure of similarity 
between the two images and adjust the transfor-
mation until this measure is maximized. They 
assume that the images will be most similar at 
the correct registration. The most used measures 
of similarity include: (1) squared differences in 
intensities, (2) correlation coefficient and (3) 
information-theoretic measures such as mutual 
information (Crum, 2004).

The first two similarity measures are suitable 
for mono-modal registration where the intensity 
characteristics are very similar in the images. 
For multi-modal registration, similarity measures 
have been developed, which define weaker rela-
tionships between intensities to reflect the different 
intensity scaling of the imaging modalities. 

The most widely employed measure is mutual 
information (MI), or relative entropy, a basic 
concept of information theory, which can be 
considered a nonlinear generalization of cross-
correlation. It was first proposed for medical image 
registration in 1995, independently by Viola and 
Wells (1995) and by Collignon (1995). 

Given two images A and B, the definition of 
the mutual information MI (A, B) of these im-
ages is

( , ) ( ) ( ) ( , )MI A B H A H B H A B= + −  (1)

with H(A) and H(B) the entropies of the images A 
and B, respectively, and H(A,B) their joint entropy. 
The joint entropy H(A,B) measures the dispersion 
of the joint probability distribution p(a,b): the 
probability of the occurrence of intensity value 
a in image A and intensity value b in image B (at 
the same image position), for all a and b in the 
overlapping part of A and B. The joint probability 
distribution should have fewer and sharper peaks 
when the images are matched than for any case 
of misalignment. At misregistration, noncorre-
sponding combinations of a and b will be aligned, 
causing dispersion in the distribution and hence 
a higher entropy value.

Therefore, to register images means to maxi-
mize mutual information that is equal to minimize 
joint entropy.

However, mutual information measure is 
dependent on the extension of overlap between 
images, since the joint histogram, and therefore 
the probability distributions, are computed only 
for the overlapping part of the images. In order to 
reduce the dependency of the overlapping area, 
normalized mutual information measures have 
been proposed, such as the entropy correlation 
coefficient ECC by Maes (1997),

2 ( , )
( ) ( )

H A BECC
H A H B

⋅
=

+
   (2)

and the normalized mutual information by Stud-
holme (1999),

( ) ( )
( , )

H A H BNMI
H A B

+
=    (3)

NMI and ECC are obviously related being 
2 2ECC NMI= − ⋅ .

The maximization of MI has become the 
method of choice for multimodal registration in 
a wide range of applications. Maes (2003) states 
that this success can be explained by the fact that 
it gets rid of the need for image segmentation or 
preprocessing as required with previous registra-
tion algorithms and that it allows for completely 
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automated registration without need for user 
interaction, making the method very well suited 
for application in clinical practice. 

g eometrical t ransformation

A geometrical transformation maps points from 
space X of one image (floating image) to the 
space Y of the other image (reference image). 
The transformation T applied to a point in X 
represented by the column vector x produces a 
transformed point x’,

x’=T(x)     (4)

If the point y∈Y corresponds to x, then a 
successful registration will make x’ equal, or 
approximately equal, to y. Any nonzero displace-
ment T(x)-y is a registration error. 

Fiztpatrick (2000) divides the set of all possible 
T into rigid and nonrigid transformations with the 
latter further divided into many subsets (scaling, 
affine, projective, perspective and curved). In 
medical applications, the most important classes 
are rigid, affine and curved transformations.

1.  Rigid: In a rigid registration the misalign-
ment correction involves only translations 
and rotations. This suffices to register images 
of rigid objects (like bones). In addition, rigid 
registration was also used to approximately 
align images that show small changes in 
object shape (for example serial MR images 
of the brain during contrast injection). 

2.  Affine: The affine transformation preserves 
the parallelism of lines, but not their lengths 
or their relative angles. It extends the degrees 
of freedom of the rigid transformation with 
a scaling factor for each image dimension, 
and, additionally, a shearing in each dimen-
sion. It is an appropriate transformation class 
when the image may have been skewed 
during acquisition as, for example, when 

the CT gantry angle is incorrectly recorded 
(Fitzpatrick, 2000).

3. Curved (or non-linear): This type of trans-
formation allows the mapping of straight 
lines to curves. A detail review of this class of 
algorithms may be found in Crum (2004). 

Deformation can be either free-form (any de-
formation is allowed) or guided by an underlying 
physical model of material properties, such as 
tissue elasticity or fluid flow. 

Transformations used in curved registration 
range from smooth regional variation described by 
a small number of parameters to dense displace-
ment fields defined at each voxel (Crum, 2004). 
One of the most important transformations is 
the family of splines. Spline-based registration 
algorithms use corresponding (‘‘control’’) points, 
in the source and target image and a spline func-
tion to define correspondences away from these 
points. The two main categories are ‘‘thin-plate’’ 
spline and B-spline. Each control point belonging 
to a thin-plate spline has a global influence on 
the transformation: if its position is perturbed, 
all other points in the transformed image change. 
This can be a disadvantage because it limits the 
ability to model complex and localized deforma-
tions and because, as the number of control points 
increases, the computational cost associated with 
moving a single point rises steeply. By contrast, 
B-splines are only defined in the surrounding area 
of each control point; perturbing the position of 
one control point only affects the transformation 
in the neighbourhood of the point. Because of this 
property, B-splines are often referred to as hav-
ing ‘‘local support’’. B-spline based non-linear 
registration techniques (Rueckert, 1999; Schnabel 
2001) are popular due to their general applicability, 
transparency and computational efficiency. Their 
main disadvantage is that special measures are 
sometimes required to prevent folding of the de-
formation field and these measures become more 
difficult to enforce at finer resolutions. 



��0  

Image Registration Algorithms for Applications in Oncology

Other approaches involve the use of elastic 
or viscous fluid models. Elastic models (Bajcsy, 
1989) treat the source image as a linear, elastic 
solid  and deform it using forces derived from an 
image similarity measure. 

Replacing the elastic model by a viscous fluid 
model (Christensen,1996) allows large and highly 
localized deformations, but the higher flexibility 
increases the opportunity for misregistration.

Another technique, the ‘‘demons’’ algorithm 
(Thirion, 1998), can be thought of as an approxi-
mation to fluid registration. 

Finite element (FE) models allow more prin-
cipled control of localized deformations and 
have been mainly applied in surgical scenarios 
(Hagemann, 1999). These models divide the 
image into cells and assign to these cells a local 
physical description of the anatomical structure. 
Such approaches tend to be used where there are 
strong biomechanical constraints in operation, 
i.e. they are appropriate for serial registration of 
images of brains undergoing some mechanical 
intervention but not appropriate for intersubject 
registration.

Where registration speed is important some 
researchers (Dougherty, 1999) have applied optical 
flow techniques that were originally developed 
in the computer vision and artificial intelligence 
community. Some adaptation has been required 
for medical applications because the ‘‘constant 
intensity’’ assumption is usually broken in serial 
medical images and optical flow methods have 
not been widely adopted. 

A number of strategies are employed to im-
prove the speed of processing. The use of coarse-
to-fine (multi-resolution, pyramidal) methods 
provides not only a means to gradually match finer 
and finer details but also faster initial estimates 
(Maes, 1999, Rueckert, 1999). In addition, most 
similarity measures do not require measurement 
at all points in order to determine the optimal 
transformation of the image. It is, therefore, quite 
common to sub-sample the image volume, at least 
during early iterations, increasing the sampling as 
the algorithm gets closer to the final solution.

Finally, recently some phase-based methods 
that are able to register images by simple analytical 
calculations (no iterations are required) have been 
introduced (Mainardi, 2006; Mainardi, 2008).

APPl Ic At Ions In oncology

The different categories of applications in oncol-
ogy in which registration has a relevant role can 
be roughly divided in subtraction imaging, fusion 
imaging and serial imaging comparison. 

subtraction Imaging

In the last years, contrast-enhanced imaging, in 
particular Dynamic Contrast-Enhanced Magnetic 
Resonance Imaging (DCE-MRI) has gained at-
tention in the early diagnosis of malignancies 
of different organs, in particular of breast and 
liver. 

In a typical examination, a patient is scanned 
prior to and immediately after the intravenous 
injection of the contrast agent (usually chelates of 
Gadolinium). Post-contrast scans are performed 
repeatedly and the resulting MR image consists 
of a set of images of parallel tissue slices. 

Subtraction of unenhanced images from gado-
linium-enhanced images has been pursued in an 
attempt to maximize the qualitative recognition 
of lesion enhancement. In fact, the application of 
a technique to subtract pre- from post-contrast 
images makes it easier to pick out and character-
ize lesions, by eliminating common background 
signals and emphasizing hyper (or hypo) enhanced 
structures. 

However, during MR dynamic acquisitions 
(which usually lasts a few minutes), any motion 
by the patient, even mere respiration activity, 
may induce changes in the shape of the breast 
and misalignment between pre-contrast and post-
contrast volumes. Volumes matching is usually 
required to improve accuracy and efficiency of 
lesion detection.
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Recently, dynamic subtraction MRI was 
used to characterize lesions in cirrhotic patients 
although small lesions were not shown optimally 
(Yu, 2005). The authors concluded that misreg-
istration limited the qualitative assessment of 
lesions <2 cm in size.

In the subtraction of dynamic imaging of soft 
tissue organs like breast and abdominal organs 
the main requirements that registration algorithms 
should comply with are: (1) to be non-rigid, (2) 
pixel-independence and (3) computational ef-
ficiency. 

Several registration methods have been pro-
posed in literature for solving the specific problem 
of breast MRI registration (Mainardi, 2008; Pluim, 
2003; Davis, 1997; Hayton, 1997; Hayton, 1999; 
Rueckert, 1999; Rohlfing, 2003; Lucht, 2000; 
Denton, 1999) using rigid and non-rigid trans-
formations as well as different figures of merit. 
Intensity-based algorithms carry out alignment by 
the calculation of information-theoretic measures, 
such as Joint Entropy (JE), Mutual Information 
(MI) and Normalised Mutual Information (NMI) 
which are independent from pixel intensity. But 
these algorithms are usually limited to rigid or 
affine transformation (Pluim, 2003). Conversely a 
non-linear registration algorithm based on elastic 
deformation using physical models (Davis, 1997) 
assumes that the intensity of tissue between im-
ages remains constant.

An attempt to realise a non-linear transforma-
tion taking into account pixel intensity variation 
was proposed by Hayton (1997) who introduced 
a pharmacokinetic model to describe changes 
in pixel values. However, the need to select the 
model of the different tissues and lesions may 
limit the performance of the method. A different 
solution was proposed by Rueckert (1999) and 
later by Rohlfing (2003). The authors obtained 
a non-linear registration by combining an affine 
transformation for the global motion of the breast 
and a free-form deformation (FFD) based on B-
splines for the local breast motion. The method 

iteratively minimises a cost function which 
represents a combination of the cost associated 
with the smoothness of the transformation and a 
measure of similarity (NMI). 

Finally an approach including automatic 
feature extraction and realignment based on cor-
responding features between pre and post-contrast 
images was proposed (Lucht, 2000). In (Denton, 
1999) the superiority of a non-linear registration 
method in respect to rigid or affine ones, was dem-
onstrated. Anyway these last methods, although 
very attractive, are iterative and often very time 
consuming for a direct clinical application.

In order to speed up registration, Main-
ardi (2008) proposed a slice-to-slice registration 
(therefore 2D) of breast images (Figure 2) using a 
method (fully automatic) based on a multiresolu-
tion, phase-based motion estimation procedure 
performed through Complex-Discrete Wavelet 
Transform (CDWT).

This method is also applied to liver images 
by adding a first 3D rigid registration step before 
the slice-to-slice non rigid CDWT registration, 
in order to take into account the cranio-caudal 
excursion of liver (Mainardi, 2006).

f usion Imaging

Different imaging modalities bring complemen-
tary information that can be advantageously used 
in the area of cancer diagnosis and treatment and 
many applications in clinical practice benefit from 
an integrated visualization and combined analysis 
of such multimodal images. 

Image fusion in oncology raises clinical value 
of PET (Pattichis, 2001). PET scans combined with 
CT and MRI enable the visualization of functional 
and anatomic data, minimizing misinterpretations 
especially in the case of adjacent and very small 
tissues structures.

Early detection of brain tumors is possible 
on MRI and CT but tumor grading remains a 
difficult task, that can be better performed using 
PET images.
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Nelson (1997) demonstrated the value of regis-
tering MRI and PET in the evaluation of patients 
with brain tumors. In fact, active tumor may not 
enhance on MRI but may be metabolically active 
on PET: PET may distinguish active tumor from 
radiation necrosis but without an exact localiza-
tion that may be provided by MRI.

PET/CT fusion is also useful in planning 
radiation therapy of lung tumors (Driver, 2004). 
Moreover, PET is the most accurate procedure 
for the assessment of liver metastasis in liver 
surgery, linked with its fusion of CT and MRI 
(Pattichis, 2001).

Despite these advantages, there are some 
limiting factors to use image fusion in clinical 
practice that Pattichis (2001) underlined. About 
these, there are the cost intensive investment in 
hardware and software and the time-consuming 
fusion procedure. 

The first problem related with the fact that exist 
hybrid scanners using PET and CT imaging and 
therefore this means very high costs. However, 
these scanners although very useful, don’t solve 

the problem of soft tissue organ that can shift or 
deform anyway during the two consecutive but 
not simultaneous scans.

In terms of registration problem, there are 
differences with respect to an intramodality reg-
istration. The main difference is that it is not pos-
sible to assume that image intensities are linearly 
correlated and using some global measure such 
as absolute difference between image intensities 
of corresponding voxels or cross-correlation of 
intensities (Maes, 1997).

In this context, the main requirements are 
therefore: i) non linear measures of similarity, ii) 
correction of sharing and scaling due to different 
scanners iii) correction of large displacements iv) 
for soft tissue organs correction of deformations 
(curved transformations). In addition, the speed of 
calculating the final registration of two volumes 
is crucial for clinical usability.

Therefore, the most suitable registration al-
gorithms in this case seem again intensity-based 
methods and especially those based on the infor-
mation theoretic approach. 

Figure 2. A case of multicentric lesion in the breast. MIP (maximum intensity projection) reconstruction 
of the subtraction image after (a) no registration, (b) rigid registration, (c) affine registration, (d) CDWT 
registration. The arrow shows a small medial lesion in the left breast. 
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In fact, the matching of geometrical features of 
images, such as edges (Maintz, 1995) and ridges 
(van den Elsen, 1995) lead to have a very peaked 
optimum at the registration solution and be rather 
insensitive to misregistration at larger distances, 
as all nonedge or nonridge voxels correlate equally 
well. In addition, feature extraction involves extra 
time and may introduce geometrical errors. 

Therefore, another approach has been pro-
posed by Woods (1993) and by Hill (1993). They 
measure the dispersion of the 2-D histogram 
of the image intensities of corresponding voxel 
pairs and assume the minimum as the registered 
position. Unfortunately, Hill’s criterion requires 
segmentation of specific regions to make the 
method work, while Wood’s method assumes 

relationship between the grey-values in the dif-
ferent modalities, which reduces its applicability 
to some very specific multimodality combinations 
(PET/MR).

However, thanks to the work of Woods and 
Hill, other authors recognized that this particular 
registration problem may be better solved using 
the information theory and they arrive to introduce 
NMI maximization criterion (Viola, 1995; Col-
lignon, 1995). This immediately attracted a lot of 
interest from the research community and a lot of 
authors recently use it for multimodal registration 
(Rizzo, 2005; Klein, 2007; Sundar, 2007; Loeckx, 
2007). In Figure 3, an example of the effect of 
registration in fusion imaging is shown. 

Figure 3. Registered and reformatted CT and MR images of the brain of a patient showing a lesion (Maes, 
2003): (a) CT. (b) MR. (c) Blending of the skull from CT with the brain tissues from MR demonstrates 
the high quality of the registration result. (© 2003 IEEE)
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serial Imaging c omparison

One of the most obvious clinical applications of 
registration is in the area of serial imaging. Com-
parison of scans from a given patient acquired over 
various time intervals can be routinely performed 
to follow disease progression and response to 
treatment.

A direct comparison between successively 
scanned images is generally not possible (Bosc, 
2003): patient position is never identical and a 
variety of complex global or local deformations 
of anatomical structures may be observed.

In Patriarche (2004) it may be found a very 
detailed review of automated detection of change 
in serial MR imaging studies of the brain. A lot 
of different techniques were introduced in order 
to approach the problem of detection of change 
in brain tumors. The most common approach 
for the detection of change in imaging studies 
is visual inspection. The main problem of this 
approach is the huge amount of data presented 
to radiologist. Therefore, some authors proposed 
to use a registration-subtraction method in order 
to enhance changes in an unique image. In this 
case, registration aims to correct position (trans-
lation) and orientation (rotation) differences and 

geometrical distortions due to scanner (scaling 
and shearing). Classical intensity-based methods 
limited to rigid (or affine) alignment were used 
(Hajnal, 1995), while other authors used surface-
based methods (Ettinger, 1994).

However, these methods don’t provide a quan-
titative measure of change and to quantitatively 
assess brain deformations, non-linear registration 
algorithms may be applied (Figure 4). 

There are a number of problems with using 
non-linear registration for change detection. One 
is that non-linear registration is underconstrained. 
For a given pair of acquisitions, there are an 
infinite number of displacement fields that will 
yield a match. This problem is typically partly 
addressed by specifying the constraints under 
which the displacement field will be derived, by 
using continuum mechanical models (Freebor-
ough, 1998).

In addition, in tumor progression and regres-
sion, a given region of tissue can not only change 
position or deform, it can change also character: 
white matter can become enhancing or edema-
tous; enhancing tumor can become necrotic, etc. 
Infiltration and expansion can coexist with this 
change of character as well. However, some non-
linear algorithms are based on the assumption 

Figure 4. Two serial MR transversal slices of a patient at different times aligned by a 3D affine reg-
istration. In each of them the segmentation of tumor is shown (a, b). In (c) synchronous views of the 
segmentation lesion and the displacement field obtained by non-rigid registration. Affine and non-rigid 
registration were obtained using b-spline method (ITK Rueckert software).
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that a particular region of tissue exists in both 
acquisitions (and appears identical in terms of 
intensity) and has simply moved. 

In order to solve this problem, a first solution 
is to use non linear registration algorithms based 
on information theory and thereof not influenced 
of intensity changes.

An approach that attempts to accomplish 
this disambiguation of frank growth from tissue 
character change has been described by Thirion 
(1999). The central theme provided by these au-
thors is that if new tissue is being deposited (as 
in the case of tumor growth), then mass effect 
will be present in adjacent structures. Therefore, 
they use a warping algorithm to develop a vector 
displacement field from the serial imaging studies 
in neighbourhood tissues and arrive, in turn, to 
derive changes in tumors.

Another type of serial imaging widely used 
in cancer diagnosis and treatment is DCE-MRI. 
During DCE-MRI, a contrast agent (CA), such 
as Gd-DTPA, is introduced into the bloodstream 
and diffuses between the blood vessels and the 
interstitial spaces of the tissues. If a sufficient 
number of temporal acquisitions is used, it is 
possible to describe this process by deriving a 
contrast agent concentration time course and fit-
ting a tracer kinetic model within each voxel in a 
volume of interest (VOI) (Jackson, 2005). 

The quantitative, model-based, analysis of 
contrast agent uptake kinetics in DCE-MRI at 
high temporal resolution allows to estimate the 
magnitude and spatial distribution of physiological 
kinetic parameters such as the volume transfer 
coefficient of contrast agent between capillaries 
and the extravascular extracellular space (Ktrans). 
These parameters provide useful information 
on microvascular status for studies of tumors 
and inflammatory conditions (Padhani, 2001). 
Potential clinical applications include screening 
for malignant disease, lesion characterization, 
monitoring of lesion response to treatment, and 
assessment of residual disease.

Unfortunately, the voxel signal profile will in 
general be corrupted by motion (Figure 5), and 
this should be corrected to ensure the highest 
levels of model parameter precision. 

In this case, registration are two main require-
ments: (1) similarity index independence of signal 
intensity as DCE-MRI has the goal to distinguish 
different tissues by their different CA uptake char-
acteristics, which leads to non-stationary contrast 
properties and (2) more important, computational 
time, being the set of serial images characterized 
by 50 and more acquisitions. 

Buonaccorsi (2007) stated that conventional 
motion correction (e.g. registering each image vol-
ume in the time series to the time series mean) has 
limited success because the passage of the contrast 
agent introduces new image features. In addition, 
the resulting time-varying information content is 
problematic even for inter-modal cost functions 
(e.g. mutual information, correlation ratio), which 
are most effective with a consistent information 
content between the input and reference images. 
If computational cost is a must, registration al-
gorithms should be limited to a ROI.

Some investigators have registered pre-con-
trast to post-contrast images and incorporated 
a simplified tracer kinetic model directly into a 
registration cost function (Hayton, 1997), but it 
has not yet been practicable to register an entire 
DCE-MRI time-series at high temporal resolu-
tion using a more detailed physiological model of 
enhancement in abdominal tumors.

In order to address the above issues, Buon-
accorsi (2007) proposed a tracer-kinetic model 
driven registration method with a more detailed 
models of contrast agent kinetics. The iterative 
registration procedure is focused on a tumor 
volume of interest (VOI), employing a threedi-
mensional (3D) translational transformation that 
follows only tumor motion.

The method was showed to be fast enough 
for routine use (it takes on the order of 2 hours 
to analyze a data set with 75 time-point image 
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volumes) and it addresses the problems of rapidly 
varying signal intensity and the appearance of new 
features that confound conventional registration 
methods.

f utur E tr Ends

Image registration is one of the most important 
tasks in oncology for integrating and analyzing 
information from various sources. In fact, there 
are a lot of techniques, among these subtraction 
imaging, fusion imaging, serial imaging analysis 
that are not feasible without a prior registration.

Although a lot of work has been done, auto-
matic image registration still remains an open 
problem. 

One of the most challenging tasks is the cor-
rection of soft tissues deformations. Although a 
lot of non-linear registration methods were intro-
duced there is a conceptual question that should 
be addressed: how to distinguish between image 
deformations and real change in the scene.

In multimodal medical imaging registration, 
MI technique has become a standard reference. 
However, the MI criterion has some limitations. 
To overcome them, it is possible to combine the 
MI with other methods, such as feature-based 
methods in order to gain higher robustness and 
reliability. 

Therefore, the future development on this 
field could pay more attention to the feature-
based methods, where appropriate invariant and 
modality-insensitive features can provide good 
platform for the registration.

Another question is the computational cost and 
fastness. To speed up the computation, different 
authors often employed multiresolution along 
with fast optimization algorithms. Unfortunately, 
when the images have significant rotation and/or 
scaling differences, these methods either fail or 
become extremely time expensive.

In the case of serial imaging comparison, 
mainly for DCE-MRI, registration is a very 
demanding task due to high temporal resolution 
data (more than 50 temporal acquisitions to align). 

Figure 5. Comparison of the contrast agent concentration time series and model-fit results for a single 
voxel within the tumor rim pseudotissue of the SNR 10 motion-corrupted software phantom (Buonac-
corsi, 2007), before and after tracer kinetic model–driven registration. (Reprinted with permission of 
Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc, © 2003 Wiley-Liss).
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Although the speed of computers has been grow-
ing, the need to decrease the computational time 
of methods persists. The complexity of methods 
as well as the size of data still grows (the higher 
resolution, higher dimensionality, larger size of 
scanned areas). Moreover, the demand for higher 
robustness and accuracy of the registration usu-
ally enforces solutions utilizing the iterations or 
backtracking, which also produces increase of 
computational complexity of the method.

One important improvement in the future 
could be to incorporate more knowledge and cre-
ate expert systems able to recognize the type of 
given task and to decide by itself about the most 
appropriate solution.

c onclus Ion

This chapter gives a survey of the classical and 
up-to-date registration methods in oncology, 
underlying the requirements for each particular 
application (image subtraction, image fusion and 
change detection). These clinical applications can 
aid in diagnosis, treatment and therapy phases. 
The main problems to solve for applications in 
oncology are pixel intensity independence and 
fastness. Although, many authors have contributed 
to solve these issues, a final solution has not been 
yet reached. The future trends will be to include 
more information in the registration problem and 
the use of dedicated expert systems.
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kE y tE r Ms

Contrast Enhancement: An image process-
ing technique aiming at enhancing global or local 
contrast of an image. In MR or CT imaging, in 
order to characterize different types of lesions 
contrast is augmented by intravenous injection 
of a contrast agent.

Image Fusion: The process of combining rel-
evant information from two or more images into 
a single image. The resulting image will be more 
informative than any of the input images.
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Image Registration: The task of finding a cor-
respondence function mapping coordinates from 
a reference image to coordinates of homologous 
points in a test image.

Image Subtraction: A technique that permits 
to emphasize hyper (or hypo) enhanced structures 
by subtracting pre- from post-contrast images in 
MR or CT imaging.

Mutual Information: In probability theory 
and information theory, the mutual information of 

two random variables is a quantity that measures 
the mutual dependence of the two variables. 

Oncology: The branch of medicine that deals 
with tumors, including study of their development, 
diagnosis, treatment, and prevention.

Serial Imaging: Consists of the sequential 
acquisitions over time of images of the same 
patient to monitor changes of a pathological area 
and effects of therapies/treatments.
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Abstr Act

Breast cancer is the most common cancer in women worldwide. Mammography is currently the most 
effective modality in detecting breast cancer, challenged by the presence of dense breast parenchyma, 
with relatively low specificity in distinguishing malignant from benign lesions. Breast ultrasound and 
Magnetic Resonance Imaging (MRI) are significant adjuncts to mammography providing additional 
diagnostic information. Various Computer-Aided Diagnosis (CADx) schemes have been proposed 
across modalities, acting as clinical tools that provide a “second opinion” to assist radiologists in 
the diagnostic task of lesion characterization by means of quantitative image feature extraction and 
classification methods. The advent of multimodality imaging broadens the role of CADx, in terms of 
complementary tissue properties analyzed. In this chapter, major stages of CADx schemes in breast 
imaging are reviewed, while challenges and trends are discussed and highlighted by corresponding ap-
plication examples of CADx methodologies for microcalcification clusters in mammography and masses 
in Dynamic Contrast-Enhanced MRI.
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Introduct Ion

Breast cancer is the most common cancer in 
women worldwide and the second leading cause 
of cancer deaths after lung cancer. Lifetime risk of 
developing invasive breast cancer is approximately 
1 in 8 women. Screen-Film Mammography (SFM), 
providing structural tissue properties by means 
of X-ray attenuation differences, is currently the 
most effective modality in detecting breast lesions 
such as masses, microcalcification (MC) clusters 
and architectural distortions. 

SFM, although characterized by high spatial 
resolution (25 μm pixel size), is challenged by 
the relatively low image contrast, especially in 
case of dense breast parenchyma. Limitations of 
SFM are attributed to 3D information loss, due 
to projection geometry, and the sigmoid response 
curve (characteristic curve) of the screen-film, as 
image detector.

A natural extension of SFM is achieved by 
Full-Field Digital Mammography (FFDM) over-
coming screen-film response limitation by the 
linear and broader characteristic curve of direct or 
indirect digital detectors (Williams et al., 2006). 
At present, the only technical limitation of FFDM 
is spatial resolution (40 μm pixel size). The higher 
detection accuracy of FFDM is demonstrated in 
screening of dense breasts (Pisano et al., 2005). 
Up to date, eight FFDM units have been approved 
by FDA1. Detection performance of FFDM is 
further enhanced by the capability to manipulate 
lesion-to-background contrast with image pro-
cessing tools offered by viewing mammograms 
in softcopy display workstations. Recently, in an 
attempt to deal with 3D information loss, often 
resulting in misdetection of lesions obscured by 
overlapping dense parenchyma, Digital Breast 
Tomosynthesis has been introduced (Park et al., 
2007). This is achieved by acquiring a small 
number of 2D projection images and adequately 
reconstructing tomographic images (slices) with 
respect to breast depth (z-axis). 

When biological processes underlying disease 
are not captured by X-ray imaging, insight to ad-
ditional structural and functional tissue properties 
as well as 3D imaging is exploited by modalities 
adjunct to mammography, such as Ultrasound 
(US) and Magnetic Resonance Imaging (MRI).

MRI acquires the nuclear magnetic resonance 
signal from hydrogen nuclei of tissue. By applying 
3D encoded magnetic fields, time constants T1 
and T2, characterizing the recovery of longitu-
dinal and transverse magnetization respectively, 
provide unique biophysical properties used to 
differentiate contrast among tissues. In addition 
to 3D spatial information of anatomical structures, 
Dynamic Contrast-Enhanced MRI (DCE-MRI) 
offers a functional approach to imaging based on 
differentiation of malignant from benign tissue 
with respect to cellular composition, permeability 
and microvessel density. DCE-MRI data captures 
kinetics of contrast agents in targeted tissues (Wu 
& Markey, 2006).

Computer-Aided Detection and Diagnosis 
(CADe and CADx) schemes have been proposed 
across breast imaging modalities, acting as 
clinical tools that provide a “second opinion” to 
radiologists, with mammography being the most 
successful paradigm (Sampat et al., 2005). 

CADe systems have been developed to im-
prove radiologists’ performance in detecting 
breast lesions, by identifying suspicious regions 
of masses and MC clusters. CADe methodolo-
gies employed and performances achieved are 
provided in excellent reviews (Tourassi, 2005; 
Chan et al., 2005; Sampat et al., 2005). High per-
formance mammographic CADe schemes have 
been incorporated in commercially available, 
FDA approved systems2. The impact of CADe 
systems, i.e. significant increase of breast cancers 
detected with an acceptable increase of recall rate, 
is reported in peer-reviewed retrospective and 
prospective studies, although with some criticism 
(Fenton et al., 2007). 

CADx systems in breast imaging aim to as-
sist radiologists in the diagnostic task of lesion 
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characterization (malignancy vs. benignity), thus 
affecting patient management (follow-up vs. bi-
opsy). The development of CADx systems is still 
ongoing in breast imaging (Suri et al., 2006). The 
advent of intra- and inter-modality computer-
ized analysis broadens the role of CADe/CADx 
schemes both in terms of image feature fusion 
and/or image data fusion.

bAckground  

By definition, CADx systems in breast imaging 
are fully automated computer vision algorithms 
developed to improve radiologists’ performance 
in characterizing breast lesion status (malignant 
vs. benign), by providing probability estimates 
of malignancy of lesions. Specifically, CADx 
schemes are targeted to increase diagnostic 
specificity (i.e. fraction of benign lesions correctly 
characterized by the system), while maintain-
ing high sensitivity (i.e. fraction of malignant 
lesions correctly characterized by the system). 
This presupposes a near perfect performance of 

CADx schemes dealing with the large variability 
of lesion appearance and low conspicuity (Giger 
et al., 2000). The major steps of a CADx scheme 
are illustrated in Figure 1.

Initialization of a CADx scheme requires 
identification of a lesion Region Of Interest (ROI) 
or Volume Of Interest (VOI) provided either by a 
radiologist or by the output of a CADe scheme. 
This step benefits from enhancement and/or de-
noising, segmentation and registration algorithms 
(Giger et al., 2000).

Lesion segmentation is critical for lesion 
morphology analysis, while in texture and pat-
tern analysis this step can be omitted (Sampat et 
al., 2005).

Feature extraction aims at quantification of 
image content by means of computer algorithms 
to capture tissue alterations, due to underlying 
biological processes reflected either as mor-
phology or as texture variations, mimicking or 
complementing radiologist interpretation. Feature 
extraction may also benefit from spectral and 
multiscale (frequency band) analysis. In addi-
tion to structural information, mainly provided 

Figure 1. Flowchart of a typical CADx scheme. Optional steps are indicated by dashed lines.

2D/3D Feature Extraction

Feature Selection

Lesion Segmentation

Classification

Radiologist/ CADe
Lesion ROI/VOI

Identification

Likelihood of Malignancy
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by mammography, functional tissue properties 
provided by 3D US and MRI data are also ex-
ploited. A second category of CADx schemes 
employing qualitative observer ratings of lesion 
characteristics as inputs to classification schemes 
are not subject of this review.

In case of highly dimensional feature spaces 
combined with small training datasets, a feature 
selection strategy is preferred to avoid overtrain-
ing. Depending on the feature selection method 
and the criterion used, a set of the most discrimi-
nant features can be defined to obtain improve-
ments in classification accuracy.

Classification algorithms are utilized to parti-
tion the data in two or more classes. Classification 
performance depends on size and difficulty of the 
case sample, as well as evaluation methodology 
used, so that special care must be taken in study 
design (Suri et al., 2006). 

The performance of CADx schemes is evalu-
ated by metrics such as sensitivity and specific-
ity or area under the ROC (Receiver Operating 
Characteristic) curve (Az). ROC curve expresses 
Sensitivity as a function of 1-Specificity. To satisfy 
high specificity while maintaining high sensitivity, 
the partial ROC curve (e.g. 0.9Az, defined as the area 
under the ROC curve above sensitivity threshold 
of 0.9) is suggested (Jiang et al., 1996).

cAdx schEMEs In br EAst
IMAgIng

c Adx schemes in Mammography

The reported CADx schemes in mammography 
have dealt with both masses and MC clusters. 
CADx schemes have obtained high performance 
for masses (Sampat et al., 2005; Tourassi, 2005), 
while MCs remain a challenge (Cheng et al., 2003; 
Sampat et al., 2005).

Morphology-Based CADx Schemes for 
MC Clusters

Morphology analysis is a major approach for di-
agnosis of MCs, according to BIRADS lexicon. 
A wide range of individual MC morphology and 
intensity properties have been utilized:

• Area, perimeter, elongation, circularity, 
compactness, eccentricity, moment ratio, 
axis ratio, concavity index, effective thick-
ness and volume, shape signature.

• Mean and standard deviation of intensity, 
mean and standard deviation of exterior 
intensity (background), MC contrast, edge 
strength (boundary sharpness).

CADx schemes that classify MC clusters are 
based on two categories of cluster features:

i. Category I: Features based on descriptive 
statistics of individual MC morphology and 
intensity properties (average, standard de-
viation, coefficient of variation, maximum, 
median, range).

ii. Category II: Features describing cluster 
morphology, intensity and individual MC 
distribution within a cluster, considering 
the cluster as an entity: 
 Area, diameter, perimeter, circularity, 

eccentricity, elongation, solidity.
 Mean and standard deviation of back-

ground intensity.
 Number of MCs, proximity to the 

nearest MC (mean number of nearest 
neighbours, distance to nearest neigh-
bour), cluster density (mean distance 
between MCs), distance to pectoral 
and breast edge.

To avoid classifier overtraining in case of 
many features used, selection methods such as 
root-mean-square error, Karhunen-Loeve Trans-
form and Principal Component Analysis have 
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been utilized (Tsujii et al., 1999; Kallergi, 2004; 
Papadopoulos et al., 2005). However, such an ap-
proach does not highlight specific MC properties. 
Table I summarizes CADx schemes incorporating 
feature selection methods, providing discriminant 
MC cluster features.

Shape estimation of individual MCs at 100 μm 
spatial resolution is difficult, due to quantifica-
tion errors, especially for small size MCs (Jiang 
et al., 1999). Even at 50 μm resolution, Betal et 
al. (1997) extracted individual MC features only 
from the three largest MCs within the cluster. 
Another limitation of morphology analysis is its 
dependence on the accuracy of the segmentation 
algorithm (Veldkamp & Karssemeijer, 1998). MC 
size and shape variability, superimposed sur-
rounding tissues and high frequency noise chal-
lenge segmentation accuracy (Cheng et al., 2003; 
Sampat et al., 2005), and thus development of MC 
segmentation methods is currently ongoing.

Segmentation of individual MCs has employed 
grey-level based methods with empirically defined 
parameters, such as region growing (Chan et al., 
1998; Jiang et al., 1999) and grey-level threshold-
ing on pre-processed ROIs (Leichter et al., 2000a; 
Buchbinder et al., 2002; Kallergi, 2004). More 
sophisticated methods have been proposed, such 
as morphologic operations (Tsujii et al., 1999; 
Soltanian-Zadeh et al., 2004; Papadopoulos et 
al., 2005), watershed algorithms (Betal et al., 
1997; Paquerault et al., 2004), Bayesian pixel 
classification combined with Markov Random 
Field models (Veldkamp et al., 2000) and radial 
gradient-based methods (Paquerault et al., 2004; 
Arikidis et al., 2008).

As observed in Table 1, morphology-based 
CADx schemes achieved high performance when 
the number of MCs (category II) was used as a 
feature. This observation is consistent with the 
fact that variability in morphology of individual 
MCs within the cluster is a strong indicator of 
malignancy. Leichter et al. (2000a) demonstrated 
that heterogeneity of individual MC morphology-
based features outperforms features related to the 

distribution of MCs within the cluster (category 
II). On the other hand, many features of category 
I contribute to high performance, based however 
on segmentation methods with empirically set pa-
rameters (Chan et al., 1998; Leichter et al., 2000a; 
Buchbinder et al., 2002; Kallergi, 2004). 

Recently, a parameter-free segmentation 
method was introduced, validated by a CADx 
scheme utilizing category I MC morphological 
properties (area, length and relative contrast). The 
method relies on implementation of active rays 
(polar-transformed active contours) within the B-
spline wavelet representation, to initially provide 
point estimates of the MC contour. Subsequently, 
a region growing method constrained by the MC 
contour point estimates is utilized, to finally de-
lineate individual MC contours (Arikidis et al., 
2008). An application example of the method is 
provided for an individual MC (Figure 2) and for 
an MC cluster (Figure 3).

Texture-Based CADx Schemes for MC 
Clusters

Another approach that overcomes limitations 
associated to segmentation issues is texture 
analysis applied on ROIs containing MC clusters. 
This approach is based on the hypothesis that 
malignancy (as indicated by MCs) would cause 
changes in the texture of tissue surrounding it 
(Sampat et al., 2005). Aiming at capturing such 
tissue texture alterations, CADx schemes have 
exploited various texture feature sets as well as 
feature selection and classification algorithms 
(Cheng et al., 2003), summarized in Table 2. 
Since a direct comparison is not feasible, due to 
the heterogeneous datasets analyzed, in the fol-
lowing paragraphs existing trends in MC cluster 
texture analysis is provided. 

The Grey Level Co-occurrence Matrix 
(GLCM) characterizes the spatial distribution 
of grey levels in an image (Haralick et al., 1973). 
Features extracted from GLCMs provide texture 
heterogeneity and coarseness, which is not nec-
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Study Discriminant Features Feature Selection /
Classifier

Perform-
ance (Az)

Betal et al.,
1997

IPercentage of irregular and round MCs, inter-quartile range of MC area.
IINumber of MCs.

Exhaustive search /      k-
nearest-neighbour

0.84 (patient)

Chan et al., 
1998

ICoefficient of mean density variation, moment ratio variation and area 
variation, maximum moment ratio and area.

Genetic algorithm and 
stepwise LDA / LDA

0.79 (cluster)

Jiang et al., 
1999

IMean area and effective volume, SD of effective thickness and effective 
volume, 2nd highest MC-shape-irregularity measure.
IINumber of MCs, circularity, area.

Qualitative correlation 
with radiologist’s 
experience / NN

0.92 (patient)
0.83 (cluster)

Veldkamp
et al., 2000

ISD of individual MC area, orientation and contrast, mean of individual MC 
area and orientation, cluster area.
IINumber of MCs, distance to pectoral edge and breast edge.

Sequential forward 
feature selection /         k-
nearest-neighbour

0.83 (patient)
0.73 (cluster)

Sklansky
et al., 2000

IMean area, aspect ratio and irregularity.
IINumber of MCs.

Genetic algorithm / NN 0.75 (cluster)

Leichter 
et al., 2000a

IMean shape factor, SD of shape factor,  brightness and area
IIMean number of neighbours, mean distance to the nearest MC.

Stepwise LDA / LDA 0.98 (cluster)

Buchbinder et 
al., 2002

IAverage of length extreme values. Stepwise LDA / LDA 0.81 (cluster)

Paquerault
et al., 2004

IMean area and effective volume, relative SD of effective thickness and 
effective volume, 2nd highest MC-shape-irregularity.
IINumber of MCs, circularity, area.

Qualitative correlation 
with radiologist’s 
experience / LDA and 
Bayesian NN

0.86 (LDA, 
patient)
0.82 (LDA, 
cluster)

Arikidis et al., 
2008

ISD of length extreme values. Exhaustive search / 
LSMD

0.86 (patient)
0.81 (cluster)

Table 1. Morphology-based CADx schemes for MC clusters

*SD: Standard Deviation; I: category I; II: category II; NN: Neural Network; LDA: Linear Discriminant Analysis; LSMD: Least Square 
Minimum Distance

essarily visually perceived. The discriminating 
ability of GLCMs features, as extracted from 
original image ROIs containing MCs, has been 
demonstrated by most studies (Dhawan et al., 
1996; Kocur et al., 1996; Chan et al., 1997, 1998; 
Kramer & Aghdasi, 1999; Soltanian-Zadeh et al., 
2004), with specific GLCMs feature combinations 
achieving an Az of 0.88 (Chan et al., 1997). In 
addition, GLCM-based features have shown to be 
more effective than morphology analysis (Chan et 
al., 1998), while their combination can provide an 
even higher classification performance. Soltanian-
Zadeh et al. (2004) demonstrated that GLCMs 
extracted from ROIs containing the MCs were 
superior to GLCMs extracted from segmented 
MCs and suggested that “there may be valuable 
texture information concerning the benignity or 
malignancy of the cluster in those areas that lie 
outside the MCs”.

Aiming at capturing tissue texture alterations 
in multiple scales, First Order Statistics (FOS) 
(i.e. energy, entropy and square root of the coef-
ficients norm) extracted from wavelet or multi-
wavelet transform subimages have been exploited. 
Wavelet/multi-wavelet FOS have shown to be 
more effective than GLCMs features (Kocur et 
al., 1996) and shape features (Soltanian-Zadeh et 
al., 2004), suggesting the advantages offered by 
the multiscale/multiresolution representation. 

An obvious extension of wavelet FOS is the 
computation of co-occurrence matrix features 
from wavelet decomposed subimages to describe 
coefficients second order statistics. Kramer and 
Aghdasi (1999) demonstrated that co-occurrence 
matrices features extracted from wavelet decom-
posed subimages were superior to GLCMs and 
wavelet FOS.
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Figure 2. B-spline active rays’ segmentation method. (a) Individual MC of the cluster, depicted at Figure 
3. (b) Dots indicate the initial estimate of the MC contour, ‘x’ the seed pixel and the solid line the final 
MC contour.

Figure 3. (a) Original ROI depicting pleomorphic MC cluster (DDSM_C_0309_1.RIGHT_CC). (b) 
Segmented individual MCs.

(b)(a)

(b)(a)

Another texture-based approach for clas-
sification of MC clusters focuses on analyzing 
texture of the tissue surrounding MCs (Thiele et 
al., 1996; Karahaliou et al., 2007, 2008a) rather 
than ROIs containing MCs. The rationale of this 
approach is based on the fact that the MC, a tiny 
deposit of calcium in breast tissue, can neither 
be malignant nor benign. This characterization 
refers rather to the MC surrounding tissue that 
is also the one subjected to pathoanatomical and 
immunochemistry analysis to derive a benign or 
a malignant outcome. 

Recently, the surrounding tissue analysis 
approach was investigated in screening mam-
mograms (Karahaliou et al., 2007, 2008a) to aid 

radiologists in decisions concerning follow-up 
and biopsy. Tissue surrounding MCs was defined 
on both original and wavelet decomposed images 
provided by Mallat’s redundant dyadic wavelet 
transform, assuming a coarse MC segmentation 
step (Figure 4). Both grey level texture and wavelet 
coefficient texture features at three decomposition 
levels were extracted from surrounding tissue 
ROIs. The discriminating ability of each feature 
set was investigated using a Probabilistic NN 
(PNN). Classification outputs of most discrimi-
nating feature sets were combined using a major-
ity voting rule. In a dataset of 100 MC clusters 
(54 malignant, 46 benign) originating from 85 
dense mammographic images, the combined 
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scheme demonstrated the highest performance 
(Az=0.989).

The main advantage of texture-based schemes 
is that they overcome increased accuracy demands 
of MC segmentation algorithms, employed in mor-
phology-based schemes. In case of ROI analysis 
containing MCs, the MC segmentation step is 
completely omitted; while in the MC surrounding 
tissue approach only a coarse MC segmentation 
step is required.

The approach of surrounding tissue analysis 
on mammograms aims at analyzing the tissue 
that generates the MCs (the cause) rather the MC 
itself (the result). Whether this approach is just 
“the easy way” or the “correct way” is not clear 
yet. The surrounding tissue hypothesis has to 
be further investigated with respect to features 
and pattern classification methodologies, as well 
as correlation of extracted image features with 
pathoanatomical findings.

c Adx sch EMEs In br EAst  Mr I

The following section summarizes CADx ap-
proaches for diagnosis of breast lesions in DCE-
MRI, thoroughly described in detail in recent re-
views (Wu & Markey, 2006; Meinel & Reinhardt, 
2006; Behrens et al., 2007; Eyal & Degani, 2007), 
with emphasis on quantification of lesion contrast 
uptake heterogeneity, a current trend.

DCE-MRI, in addition to 3D spatial informa-
tion of anatomical structures, provides functional 
information of the tissue by recording the dis-
tribution of contrast agents over time (dynamic 
data).

Due to its high sensitivity in detecting ma-
lignant lesions even in presence of dense paren-
chyma, DCE-MRI is increasingly used as an 
adjunct to mammography or for imaging high 
risk women and for assessing tumor response to 
therapy. However, reported specificity values in 
discriminating malignant from benign tissue are 
highly varied (35%-85%).

Breast lesion diagnosis in DCE-MRI is 
achieved by assessment of morphological prop-
erties, requiring high spatial resolution imaging 
protocols, and analysis of contrast-enhancement 
kinetics, requiring high temporal resolution imag-
ing protocols (Schnall & Ikeda, 1999). 

Analysis of contrast-enhancement kinetics is 
achieved by generation of a kinetic curve (signal 
intensity vs. time) conventionally computed from 
a user defined ROI, either covering the entire le-
sion or placed within the lesion, and subsequent 
categorization of the kinetic curve into persistent, 
plateau or washout (Kuhl et al., 1999). This ap-
proach quantifies average local contrast uptake 
ignoring however uptake heterogeneity.

While the combined assessment of morpho-
logical/architectural characteristics and average 
contrast kinetics has shown to improve DCE-MRI 
specificity (Schnall et al., 2001), the increased 
inter- and intra-observer variability in interpreta-
tion of DCE-MRI data, mainly due to ROI-based 
kinetics analysis (Stoutjesdijk et al., 2005), has 
motivated the development of CADx schemes.

CADx methodologies based on average con-
trast kinetics combined with either qualitative 
morphological features (Kinkel et al., 2000; 
Vomweg et al., 2003) or with computer extracted 
morphological features (Meinel et al., 2007) have 
demonstrated a positive impact on radiologists’ 
diagnostic  performance.

In order to take into account lesion uptake 
heterogeneity, CADx schemes have focused on 
pixel- or voxel-wise analysis of kinetics data (Lucht 
et al., 2001; Subramanian et al., 2004; Twellmann 
et al., 2005; Chen et al., 2006) in combination with 
quantitative morphology descriptors (Gilhuijs et 
al., 2002; Chen et al., 2004; Deurloo et al., 2005) 
or on pixel-wise parametric modelling of lesion 
kinetics and subsequent spatial color mapping 
(Eyal & Degani, 2007).

While the impact of breast DCE-MRI CADx 
schemes in the clinical environment is under in-
vestigation (Wiener et al., 2005), several schemes 
have obtained FDA approval3. 
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Study Features Feature Selection /  Classifier Performance *
Dhawan et al., 
1996 

GLCMs features

Entropy, Energy (Decomposition: wavelet packets; Filters: 
Daubechies 6/20; Levels: 0, 1) 

Cluster features

Multivariate Cluster Analysis, 
Genetic Algorithm-based method / 
Backpropagation Neural Network, 
Linear classifier, k-Nearest 
Neighbor

Combined feature 
space: 0.86

Kocur et al., 
1996

SRN (Decomposition: DWT; Filters: Daubechies4 & 
Biorthogonal 9.7; Levels: 0-5) 

GLCMs feature (angular second moment).

Eigenmasses (Karhunen-Loeve coefficients)

Neural Network, Decision 
Boundary Analysis /
Multilayer Perceptron Neural 
Network

Wavelet-based: 88% 

Thiele et al., 
1996**

GLCMs features
Fractal Geometry based features

Linear and Logistic Discriminant 
Analysis 

Combined feature 
space: 85% 

Chan et al.,  
1997 

GLCMs features Stepwise Linear Discriminant 
Analysis / 
Neural Network

0.88

Chan et al., 
1998 

GLCMs features 

Cluster features (Morphological)

Genetic Algorithm, Stepwise Linear 
Discriminant Analysis / Linear 
Discriminant Analysis

Combined feature 
space: 0.89

(0.93, patient-basis)
Kramer & 
Aghdasi, 1999 

GLCMs features 

Entropy, Energy, SRN (Decomposition: DWT; Filters: 
Daubechies 4/6/20 & Biorthogonal 2.8; Levels: 0-4)

Co-occurrence based (Decomposition: DWT; Filters: 
Daubechies 4/6/20 & Biorthogonal 2.8; Levels: 1-4)

Sequential Forward Selection / 

Neural Network, k-Nearest 
Neighbor

Combined feature 
space: 94.8% 

Soltanian-
Zadeh et al., 
2004 

GLCMs features from segmented MCs and from ROIs 
containing the MCs

Entropy, Energy (Decomposition: wavelet packets; Filters: 
Daubechies 6/10/12; Levels: 1, 2

Entropy, Energy (Decomposition: multi-wavelet (3 Filters); 
Levels: 1, 2) 

Cluster features (shape) 

Binary and Real valued Genetic 
Algorithm / 

k-Nearest Neighbor

Multi-wavelet 
features: 0.89

Karahaliou et 
al., 2008a**

First order statistics

GLCMs features

Laws’ texture energy measures

Energy, Entropy (Decomposition: redundant DWT; Filter: 
B-spline; Levels: 1-3) 

Co-occurrence based (Decomposition: redundant DWT; 
Filter: B-spline; Levels: 1-3) 

Exhaustive search per feature 
set (with respect to highest 
classification accuracy and 
minimum # of features) /  
Probabilistic Neural Network

Combined scheme: 
0.989

Table 2. Texture-based CADx schemes for MC clusters

*Performance on a cluster-basis in terms of Az index or % overall classification accuracy. Patient-basis performance is further provided for 
Chan et al. (1998).

**Studies analyzing tissue surrounding MCs.
SRN: Square Root of the Norm of coefficients; DWT: Discrete Wavelet Transform

The significance of quantifying lesions’ 
kinetics heterogeneity and its potential both in 
cancer diagnosis and in evaluation of anticancer 
therapy has been recently highlighted (Jackson et 
al., 2007). Following, studies having focused on 

quantifying breast lesion kinetics heterogeneity 
are reviewed.

Issa et al. (1999) quantified heterogeneity of 
breast lesions expressed on exchange rate param-
eter maps provided by pixel-wise compartmental 
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Figure 4. (a) 600x600 pixels ROI depicting a MC cluster (DDSM_B_3406, RIGHT_CC). Surrounding 
tissue ROI (area outside the segmented MCs) depicted on original (b), approximation 1st scale (c), 
approximation 2nd scale (d), gradient magnitude 2nd scale (e), and gradient magnitude 3rd scale (f) 
subimage (128x128 pixel ROI).

(a) (b) (c)

(d) (e) (f)

pharmacokinetic modelling on semi-automatically 
delineated ROIs. Heterogeneity was quantified by 
statistical moments (mean and standard deviation) 
of 10 different segments of the lesion parameters 
distribution. A specificity of 88% with sensitivity 
88% was achieved in classification of 50 breast 
lesions (25 malignant, 25 benign), suggesting 
the ability of lesion heterogeneity quantification 
metrics in breast lesion differentiation.

Gibbs & Turnbull (2003) also investigated 
GLCMs features extracted from a rectangular 
ROI containing the lesion on a representative 
post-contrast slice. Using LRA, a 3 texture pa-
rameter model achieved an Az of 0.80±0.07 in 
discriminating malignant from benign lesions. 
When combining texture features with lesion 
size, patient age and time-to-peak enhancement 
diagnostic accuracy was increased to 0.92±0.05.  
These results are consistent with the fact that 
benign lesions present more homogeneous uptake 
patterns, while malignant lesions demonstrate 
more heterogeneous patterns. 

Chen et al. (2007) extended the approach of 
contrast uptake heterogeneity quantification for 
breast cancer diagnosis by investigating 3D GL-
CMs features. The proposed volumetric texture 
analysis, applied on automatically segmented 
3D breast lesions by fuzzy c-means clustering, 
was tested on a dataset of 121 breast lesions (77 
malignant, 44 benign), and further compared to 
a 2D texture analysis. The 3D texture analysis 
yielded significantly higher classification perfor-
mance over the 2D texture analysis suggesting its 
potential in computer-assisted diagnosis of breast 
lesions in MRI.

Woods et al. (2007) employed a 4D co-oc-
currence texture analysis on DCE-MRI data 
to distinguish between non-malignant and ma-
lignant breast tissue. The algorithm employs a 
back-propagation NN to label each voxel into 
“malignant” or “non-malignant” type based on 
local spatial and temporal voxel intensity varia-
tions. The method was tested on dataset 8 breast 
lesions (4 malignant, 4 benign) and achieved an 
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Az=0.998 in correctly classifying breast lesion 
voxels, suggesting its potential in segmenting 
malignant lesions in DCE-MRI.

Recently, a texture analysis approach in DCE-
MRI was introduced (Karahaliou et al., 2008b) 
aimed at quantifying heterogeneity of lesions 
not only with respect to contrast uptake (Peak 
Enhancement) but also with respect to Time-to-
Peak Enhancement and Post-Initial Enhancement 
(Wash out). This is achieved by fitting a linear-
slope model pixel-wise to a representative lesion 
slice time series and using fitted parameters to 
create three kinetic maps. Maps are converted to 
a single HSV color-coded image, subsequently 
used for delineating lesion uptake boundary, by 
grey level thresholding followed by morphological 
operations, on the gradient of color-coded ROI 
(Figure 5a-c). The delineated boundary is then 
used to define corresponding areas on each kinetic 

map (Figure 5d-f). Kinetic maps are treated as 
grey level images and subjected to texture analysis 
by means of FOS and GLCMs features. The most 
discriminating subset of features (combination of 
2-5 features) was selected per map, via exhaustive 
search, using PNN and leave-one-out training-
testing methodology. Final classification was 
obtained by combining classification outputs of 
most discriminating feature subsets from the three 
maps, via majority voting. Performance evalua-
tion of individual maps classifications and of the 
combined scheme was achieved by ROC analysis, 
on a dataset of 57 breast lesions (30 malignant, 
27 benign). The combined scheme achieved the 
highest performance (0.978±0.017) and statisti-
cally significantly (p<0.05), as compared to 
individual maps classification. Texture features 
extracted from the Wash Out map outperformed 
(0.902±0.040) features extracted from the other 
two individual maps.

Figure 5. (a) Color-coded ROI depicting invasive ductal carcinoma. (b) Gradient of color-coded ROI. 
(c) Delineated lesion boundary (boundary pixels are assigned white grey level) on the gradient color-
coded ROI. (d) Wash Out map. (e) Time-to-Peak Enhancement map. (f) Peak Enhancement map.

a b c

d e f
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Results suggest that quantification of breast 
lesion kinetics heterogeneity is a highly promising 
approach that has to be further exploited in the 
frame of DCE-MRI CADx systems.

futur E tr Ends  

The advantages offered by the various CADx 
schemes across breast imaging modalities have 
been exploited and well recognized (Leichter et 
al., 2000b; Horsch et al., 2004, Sahiner et al., 
2007; Behrens et al., 2007).

A “unimodal” CADx scheme can objectively 
“diagnose” a breast lesion either by mimicking 
some of the radiologists’ interpretation criteria 
as specified by BIRADS lexicon per imaging 
modality or by offering information that can-
not be visually perceived. In addition, recently 
reported unimodal CADx schemes have tried to 
take advantage of information offered by multiple 
views based on feature fusion, i.e. combination 
of features from two or more images of the same 
modality (Huo et al., 2001; Gupta & Markey, 
2005; Timp et al., 2007). However, in case of 
not conclusive information provided by a single 
modality, the effectiveness of unimodal CADx 
schemes is limited. In order to mimic radiolo-
gists’ work-up flow in such cases, integration of 
diagnostic information provided by adjunct mo-
dalities is required. 

Multimodality image fusion (Behrenbruch 
et al., 2004) and multimodality CADx schemes 
(Giger, 2004; Drukker et al., 2005; Horsch et al., 
2006) account for emerging and highly promis-
ing technologies in breast cancer diagnosis, by 
exploiting complementary tissue properties as 
provided by imaging modalities. Recently, “bi-
modal” CADx schemes (i.e. mammography and 
US) have been reported based either on feature 
fusion (Drukker et al., 2005) or on decision fusion 
(Jesneck et al., 2006), demonstrating the increased 
potential of the multimodality approach. 

Recently, Content-Based Image Retrieval 
(CBIR) systems based on knowledge obtained 
from “similar” confirmed cases, employing 
various similarity indices for retrieval, have been 
proposed for mass diagnosis in mammography and 
US imaging (Giger, 2004). “Interactive CADx” 
schemes, also exploiting CBIR technologies and 
enabling relevance feedback (Tourassi, 2005) 
are suggested as alternative to “silent CADx 
readers”.

Emerging molecular imaging involving MRI, 
PET and optical imaging are expected to offer new 
insights in capturing altered physiology or cellular 
metabolism of breast tissue, eventually affecting 
future CADx schemes (Suri et al., 2006).

conclus Ion

One approach of improving interpretation accu-
racy of breast imaging is to increase radiologists’ 
confidence levels regarding breast lesion detection 
and diagnosis, especially in cases of early or oc-
cult disease, by means of image processing and 
analysis methods. 

Following the successful paradigm of CADe 
systems in the clinical environment, CADx 
schemes are aimed at assisting radiologists in 
the diagnostic task, by providing estimates of 
probability of malignancy by means of quantita-
tive image feature extraction and classification 
methods.

The classification performance of such 
schemes depends on tissue properties captured by 
various modalities (structural and/or functional), 
as well as by optimizing all stages of a CADx 
scheme such as segmentation, feature spaces 
exploited, as well as feature selection and clas-
sification methods employed to deal with high 
dimensional spaces. 

Combining complementary multimodal 
information in comprehensive environments is 
expected to further enhance diagnostic accuracy 
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of CADx schemes, by providing a more realistic 
simulation of clinical work-up flow.

Although, stand alone evaluation of CADx 
schemes, by means of ROC analysis, is limited by 
the size and quality of case sample analyzed up 
to now, the true impact is expected to be derived 
from large scale prospective clinical studies.
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k Ey t Er Ms

Classification: Algorithms aimed at parti-
tion the data in two or more classes. They are 
differentiated as unsupervised (data structure is 
determined from data itself) or supervised (data 
structure is determined using a prior knowledge 
or information).

Computer-Aided Detection (CADe): CADe 
systems in breast imaging are fully automated 
computer vision algorithms developed to improve 
radiologists’ performance in detecting breast le-
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sions, by identifying suspicious regions in a breast 
image or series of images.

Computer-Aided Diagnosis (CADx): CADx 
systems in breast imaging are fully automated 
computer vision algorithms developed to improve 
radiologists’ performance in characterizing breast 
lesion status (malignant vs. benign), by providing 
probability estimates of lesions’ malignancy.

Feature Extraction: Quantification of im-
age content by means of computer algorithms, 
aiming to capture tissue alterations, due to un-
derlying biological processes reflected either as 
morphology or as texture variations, mimicking 
or complementing radiologist interpretation, used 
in subsequent pattern analysis.

Feature Selection: Strategy to avoid super-
vised classification overtraining in case of a high 
feature dimensionality in small training datasets. 
Depending on feature selection method and crite-
rion used, sets of the most discriminant features 
are obtained improving classification accuracy.

Lesion Segmentation: The process of delin-
eating the boundary of a lesion from an image or 
image series either by use of interactive computer 
tools (manual) or by automated image segmenta-
tion algorithms.

Mammography: The most effective imaging 
modality in detecting breast lesions such as mass-
es, microcalcification clusters and architectural 
distortions, providing structural tissue properties 
by means of X-ray attenuation differences.

Endnot Es

1 GE Senographe 2000D, Fischer Imaging 
SenoScan, Lorad Digital Breast Imager, 
Lorad/Hologic Selenia, GE Senographe 
DS, Siemens Mammomat Novation DR, GE 
Senographe Essential and Fuji Computed 
Radiography Mammography Suite. 

2 ImageChecker - R2 Technology Inc., Mam-
moReader™ - Intelligent Systems Software 
Inc., Second Look™ - CADx Medical 
Systems Inc., Kodak Mammography CAD 
Engine - Eastman Kodak Co.

3 CADst ream™, by Conf i r ma, Inc. 
(Kirkland,WA); 3TP Software Option, by 
CAD Sciences, White Plains (NY); CADi-
mas™, by Alan Penn & Associates., Inc. 
(Rockville, US).
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Assessment of Stroke by 
Analysing Carotid Plaque 
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Abstr Act

Stroke is the third leading cause of death in the Western world and a major cause of disability in adults.  
The objective of this work was to investigate morphological feature extraction techniques and the use 
of automatic classifiers; in order to develop a computer aided system that will facilitate the automated 
characterization of carotid plaques for the identification of individuals with asymptomatic carotid 
stenosis at risk of stroke. Through this chapter we summarize the recent advances in ultrasonic plaque 
characterization and evaluate the efficacy of computer aided diagnosis based on neural and statistical 
classifiers using as input morphological features.  Several classifiers like the K-Nearest Neighbour(KNN) 
the Probabilistic Neural Network(PNN) and the Support Vector Machine(SVM) were evaluated resulting 
to a diagnostic accuracy up to 73.7%.
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Introduct Ion

High-resolution ultrasound has made possible the 
noninvasive visualization of the carotid bifurca-

tion and for that reason it has been extensively 
used in the study of arterial wall changes; these 
include measurement of the thickness of the intima 
media complex (IMT), estimation of the severity of 
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rotic plaques. Several studies have indicated that 
“complicated” carotid plaques are often associ-
ated with ipsilateral neurological symptoms and 
share common ultrasonic characteristics, being 
more echolucent (weak reflection of ultrasound 
and therefore containing echo-poor structures) 
and heterogeneous (having both echolucent and 
echogenic areas). In contrast, “uncomplicated” 
plaques which are often asymptomatic tend to be 
of uniform consistency (uniformly hypoechoid 
or uniformly hyperechoid) without evidence of 
ulceration (Reilly, 1983; O’Donnell, 1985; Leahy, 
1988; Langsfeld, 1989; Geroulakos , 1993). 

Different classifications of plaque ultrasonic 
appearance have been proposed in the litera-
ture. Reilly classified (O’Donnell, 1985) carotid 
plaques as homogenous and heterogeneous, 
defining as homogeneous plaques those with 
“uniformly bright echoes” that are now known 
as uniformly hyperechoic (type 4) (see below). 
Johnson(1985)  classified  plaques as dense and 
soft, Widder(1990), as echolucent and echogenic 
based on the their overall level of echo patterns, 
while Gray-Weale(1988) described 4 types: type 
1, predominantly echolucent lesions, type 2, echo-
genic lesions with substantial (>75%) components 
of echolucency, type 3, predominately echogenic 
with small area(s) of echolucency occupying less 
than a quarter of the plaque and type 4, uniformly 
dense echogenic lesions. Geroulakos(1993) sub-
sequently modified the Gray-Weale classification 
by using a 50% area cut off point instead of 75% 
and by adding a fifth type, which as a result of 
heavy calcification on its surface cannot be cor-
rectly classified. 

Regarding the clinical significance of carotid 
plaque heterogeneity, it seems that the hetero-
geneous plaques described in the three studies 
published in the 1980’s (Table 1), include hy-
poechoic plaques. Also heterogeneous plaques in 
all studies listed in Table 1 contain hypoechoic 
areas (large or small) and appear to be the plaques 
which are associated with symptoms or if found 
in asymptomatic individuals they are the plaques 
that subsequently tend to become symptomatic.

stenosis due to atherosclerotic plaques and plaque 
characterization (Reilly, 1983; El-Barghouti, 1996; 
Elatrozy, 1998). Applications of carotid bifurca-
tion ultrasound include: (1) identification and 
grading of stenosis of extracranial carotid artery 
disease often responsible for ischemic strokes, 
transient ischemic attacks (TIAs) or amaurosis 
fugax (AF); (2) Follow-up after carotid endar-
terectomy; (3) evaluation of pulsatile neck mass; 
(4) investigation of asymptomatic neck bruits: 
severe internal carotid artery stenosis is a predic-
tive factor for future stroke; (5) cardiovascular 
risk assessment: the presence of carotid bifurca-
tion atherosclerotic plaques is associated with 
increased cardiovascular mortality(Joakimsen, 
2000; Schmidt, 2003); (6) clinical studies on the 
effect of lipid-lowering and other medications 
on carotid intima media thickness(IMT)which 
includes plaque thickness(Salonen, 2003).

During the last decade, the introduction of 
computer aided methods and image standardiza-
tion has improved the objective assessment of 
carotid plaque echogenicity(El-Barghouti, 1996; 
Elatrozy, 1998) and heterogeneity(El-Barghouti, 
1996; Salonen, 2003) and has largely replaced 
subjective (visual) assessment(Reilly, 1983; Reilly, 
1988) that had been criticized for its relatively 
poor reproducibility(Arnold , 1987). Through 
this chapter we are trying to introduce the use of 
morphological image analysis and automatic clas-
sifiers for the creation of an automatic ultrasound 
image classification system for the estimation of 
the risk of stroke.

bAckground 

Visual Classification of Atherosclerotic 
Plaque in ultrasound Imaging

High-resolution ultrasound provides information 
not only on the degree of carotid artery stenosis 
but also on the characteristics of the arterial wall 
including the size and consistency of atheroscle-
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Table 1. Ultrasound carotid plaque heterogeneity and clinical implications 

Author Year Ultrasound carotid plaque heterogeneity Clinical implications
O’Donnell Jr 1985 Visual classification; distinguished fine vs rough and random 

vs regular texture
Histology study

Aldoori 1987 Visual classification Plaque classification
Leahy 1988 Plaques containing echolucent components. Homogeneous 

plaques had uniform consistency suggestive of sclerotic 
plaques

Heterogeneous plaques more frequently 
symptomatic and associated with ipsilateral 
infarction on CT scan

Sterpetti 1988 Mixed high-, medium-, and low-level echoes. Homogenous 
lesions had uniformly high-medium-level echoes

Heterogeneous plaques became 
symptomatic more frequently during 
follow-up

Langsfeld 1989 Predominantly echolucent plaques with a thin “egg shell” 
cap of echogenicity and echogenic plaques with substantial 
components of echolucency

Heteroneous plaques more frequently 
symptomatic. Heterogeneous plaques 
became symptomatic more frequently 
during follow-up

Widder 1990 Visual estimation, plaques being classified into four categories 
(homogeneous, slightly or markedly heterogeneous and non 
visible)

Histology study

Giannoni 1991 Not provided Heterogeneous plaques progressed and 
became symptomatic

ECPSG 1995 Mixed composition Heterogeneous plaques contained more 
calcification

Kagawa 1996 Plaques composed of a mixture of hyperechoic, isoechoic and 
hypoechoic plaques. Normal intima-media complex used to 
define isoechoicity

Heterogeneous lesions consisted of a 
mixture of atheroma and fibrosis on 
histology and demonstrated calcification 
more frequently than the homogeneous 
ones

Kardoulas 1996 Mixed echo level pattern Association of plaque heterogeneity with 
symptoms less consistent in comparison 
with echolucency

AbuRahma 1998 Plaques composed of a mixture of hyperechoic,isoechoic and 
hypoechoic plaques. Normal intima-media complex used to 
define isoechoicity

Heterogeneous plaques more frequently 
symptomatic

natural history studies

Initially Reilly(1983) suggested that patients with 
asymptomatic carotid artery disease involving 
echolucent heterogeneous plaques might be at 
increased risk of future stroke. In the mid 1990s 
computers were used to obtain measurements of 
the grey scale of plaques. Although similar results 
were obtained by different teams (El-Barghou-
ti,1996; Gronholdt, 2001; Biasi, 1998), different 
cut off points had to be used by different centres. 
It became obvious that obtaining ultrasonic images 
is subjective. If ultrasonic scanning is performed 
in a relatively dark room the ultrasonographer 

reduces the gain; in a bright room the gain is 
increased. It was realised that if reproducible 
measurements of echodensity or texture were to 
be made some form of image normalization was 
essential. Our team has introduced the method of 
image normalization using blood and adventitia as 
two reference points with linear (Elatrozy,1998). 
As a result reproducible measurements of overall 
plaque echogenicity can be made with a high 
inter and intra-observer accuracy(Sabetai, 2000; 
Tegos, 2000).  

Finally, our group in Christodoulou(2003), 
Kyriacou(2007) has shown that it is possible to 
identify patients at risk of stroke based on texture 
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features extracted from high-resolution ultrasound 
images of the carotid plaques. For this purpose, 
multiple texture feature sets and modular neural 
networks were applied. The developed system(
Christodoulou,2003) was able to automatically 
classify carotid plaques into symptomatic or 
asymptomatic with a success rate of 73%.

Ass Ess MEnt of th E r Isk of 
strok E bAsEd on
Mor Pholog Ic Al  AnAl ys Is

Material

A total of 274 carotid plaque ultrasound im-
ages(137 asymptomatic plaques and 137 
symptomatic plaques associated with retinal or 
hemispheric symptoms(33 stroke, 60 TIA, and 
44 AF).  Patients with cardioembolic symptoms 
or distant symptoms(> 6 months) were excluded 
from the study. Asymptomatic plaques were truly 
asymptomatic if they had never been associated 
with symptoms in the past where as symptom-
atic if they had been associated with retinal or 
hemispheric symptoms(Stroke, TIA or AF), i.e. 
unstable plaques.

Image Acquisition

The ultrasound images were collected in the 
Irvine Laboratory for Cardiovascular Investiga-
tion and Research, Saint Mary’s Hospital, UK, 
using an ATL(model HDI 3000 - Advanced 
Technology Laboratories, Seattle, USA) duplex 
scanner with a 5-10 MHz multifrequency probe. 
Longitudinal scans were performed using duplex 
scanning and colour flow imaging. Images were 
captured according to the protocol mentioned in 
Nicolaides(2003).

Plaque segmentation

The plaque identification and segmentation tasks 
are quite difficult and were carried out manually 

by a physician or vascular ultrasonographers who 
are experienced in scanning. The main difficulties 
are due to the fact that the plaque edges cannot 
be distinguished from blood based on brightness 
level difference, or using only texture features, or 
other measures. Also calcification and acoustic 
shadows make the problem more complex. Thus, 
acoustic shadows were excluded. The identifica-
tion of the outline of hypoechoic plaques was 
facilitated using a color image indicating the 
blood flow (see Figure 1). Also, a temporary log 
image transformation facility was used in order to 
get a better definition of the edges of the plaque. 
This guaranteed that the plaque was correctly 
outlined. The procedure for carrying out the 
segmentation process, was established by a team 
of experts and was documented in the ACSRS 
project protocol(Nicolaides, 2003). 

Figure 1 illustrates an ultrasound image 
with the outline of the carotid plaque and the 
corresponding color blood flow image. The next 
step includes feature extraction as described in 
the following section and Figure 2 illustrates 
a number of examples of symptomatic and 
asymptomatic plaques as an expert physician 
segmented these. The examples were chosen 
at random. These examples demonstrate the 
difficulty to distinguish visually between as-
ymptomatic and symptomatic plaques.

Morphological Analysis

Morphological features are motivated from the 
need to study the basic structure of the plaque. We 
used two morphological analysis methods in order 
to quantify morphological features of the plaques. 
The first one was based on a multilevel approach 
where the image intensity was thresholded at three 
different levels, while the second one was based 
on gray scale morphological analysis. 

Morphological features of plaques are strongly 
associated with events. For example black (echo-
lucent) plaques with white big blobs are consid-
ered to be very dangerous. We provide a more 
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detailed discussion on the relationship between 
morphological methods and clinical expectations 
in section 3.4.1.

We will next provide a mathematical descrip-
tion of the Pattern Spectrum. In developing the 
mathematical description, our attempt is to pro-
vide an intuition into what the Pattern Spectrum 
is measuring and how the measurements relate 
to plaque image analysis. Our presentation is 
closely related to previously published work in 
(Dougherty, 1992; Maragos, 1989).

Pattern spectra are defined in terms of transla-
tions and dilations of a single structural element. 
For the morphological analysis carried out in 
this research we consider the cross ‘+’ structural 
element. The cross structural element exhibits 
limited directional selectivity. This is desirable 
since there is no clearly preferred direction for 

the analysis.  We let the set B to represent the ‘+’ 
structural element, and define it by its five pixel 
coordinates

( ) ( ) ( ) ( ) ( ){ }1, 0 , 0, 0 , 1, 0 , 0, 1 , 0,1B = − −  (1)

We define discrete-set translation by points 
using

( ) ( ){ }, : ,B p m i n j m n B+ = + + ∈

where

p = (i, j)    (2)

In B + p, we are centering the structural ele-
ment over the point p = (i, j). We define binary 
dilation using

Figure 1. Selection of a plaque: a.The gray scale and the blood flow colour image are loaded b.User 
has selected a log transform on the gray scale image for better visualization of the plaque c.The final 
selected plaque is saved in order to start feature extraction.©2005 IOS Press 

a.  b.  

c.  

Color blood 
flow image 

Manually 
selected 
plaque 
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{ }: and 
p B

X B X p a b a X b B
∈

⊕ = + = + ∈ ∈

      (3)

The definition leads to the definition of kB 
that denotes the k-fold expansion of B, and is 
given by

( ){ }

1 dilations

0,0 , 0,

, for integer  1.
k

k
kB B B B k

−

 ==  ⊕ ⊕ ⊕ >




      (4)

Pattern spectra are defined in terms of open-
ings and closings with kB. We do not have any 
clear clinical interpretation for the pattern spectra 
generated by closings with kB. Thus, we will 
only focus on the pattern spectra generated by 
openings with kB.

Multilevel Binary Morphological
Analysis

In multilevel binary morphological analysis 
we are interested in extracting different plaque 
components and investigating their geometric 
properties. We begin by generating three binary 
images by thresholding:

Figure 2. Shows some examples of segmented a) asymptomatic and b) symptomatic plaques. Under each 
plaque are the type of plaque and several other characteristics. 

Asymptomatic plaques:

Symptomatic plaques:
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( ) ( ){ }
( ) ( ){ }
( ) ( ){ }

, : such that  , 25 ,

, : such that  25 , 50 ,

, : such that  , 50 .

L i j f i j

M i j f i j

H i j f i j

= <

= ≤ ≤

= >      (5)

Here, binary image outputs are represented 
as sets of image coordinates where image inten-
sity meets the threshold criteria. Overall, this 
multilevel decomposition is closely related to a 
three-level quantization of the original image in-
tensity. To see this, note that we can simply assign 
quantization levels to each of the pixels in L, M, 
H and then use them to provide an approximate 
reconstruction of the original image. 

In L, we want to extract dark image regions 
representing blood, thrombus, lipid or haemor-
rhage. Similarly, in H, we want to extract the 
collagen and calcified components of the plaque, 
while in M, we want to extract image components 
that fall between the two. Thus, to decide the 
threshold levels of (5), we varied the threshold 
levels so as to extract the desired components 
from the plaques.

In what follows, we introduce the use of 
morphological pattern spectra for analyzing the 
extracted binary images. Our motivation lies in 
analyzing the structural components of each bi-
nary image. We provide a few examples motivated 
by clinical (visual) observations. Note that if the 
plaque is captured as a single component in the 
low intensity image (L), or in the high intensity 
image (H), then the plaque is most likely to be 
stable with little chance for rupture. Also, the 
plaque will most likely be asymptomatic if the 
lipid core regions in the low intensity image are 
made up of small, scattered components. The most 
dangerous cases occur when image components 
in the middle image (M) appear to be very thin. 
The risk may be less when image components in 
the middle image appear relatively thick. We also 
expect that black (echolucent) plaques with white 
big blobs to be very dangerous. In this case, we 
would expect to see large components in both the 

low image and the high image intensity images 
(see Figure 3). 

We compute normalized pattern spectra for 
each one of the three binary images L, M, H. Thus, 
in the following discussion, we will use the symbol 
X to denote any one of the three binary images L, 
M, H. Binary image erosion is defined using

{ }:
p B

X B X p a B a X
∈

= − = + ⊆   (6)

An opening is then defined in terms of an 
erosion followed by a dilation:

( )X B X B B= ⊕     (7)

In general, an opening reduces the input im-
age X B X⊆ . However, when the input image 
can be expressed in terms of translations of the 
structural element B, the opening operation will 
preserve the input image. We thus write

X B X=     (8)

when 

p S
X B p B S S B

∈
= + = ⊕ = ⊕   (9)

for some set of possible translates S. From (8)-
(9), we note that an opening will not alter the 
binary input image provided that the binary im-
age components are “thick and rough enough” to 
contain all translates of the structural element. 
On the other hand, any isolated components of 
X that are smaller than B will be removed by 
the opening operation. Here, we define smaller 
in terms of set operations. We say that a binary 
image set A is smaller than another binary image 
set B if A is a proper subset of a translation of B. 
Conversely, any isolated components of X that 
are larger than B will not be totally removed from 
the opening operation (where larger is defined in 
a similar way).

In general, for any given binary image, an 
opening outputs an approximation to the input 
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Figure 3. The three binary level images: (L, M, H) of an asymptomatic and a symptomatic carotid plaque 
© 2007 Springer(Kyriacou, 2007).
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image. This approximation is expressed as a union 
of translations of the structural element 

B z X
X B B z

+ ⊆
= +     (10)

The approximation error image is defined in 
terms of the set difference X X B−  . We quantify 
the approximation error by counting the number 
of pixels in the difference image. We write A(S) 
to denote the cardinality of the set S.

For measuring the binary components at dif-
ferent scales, we consider a sequence of openings 
with the dilated structural element (see (4)):

, , 2 , ,X X B X B X nB   

  (11)

For our plaque images, we note that the 
plaques are segmented, and image intensity 
outside the plaque is assigned to zero (see Figure 
1). Thus, for a sufficiently large value of k, kB 
will outgrow the support of the plaque. When 
this happens, the opening operation will return 
the empty-set image. We thus pick n to be the 
smallest integer for which ( 1)X n B+ = ∅

 . 
For computing (11), we note that a single 

opening is needed each time, since the open-
ings can be computed recursively using 

( )( 1)X n B X nB B+ =  
. It is also clear from 

this recursive relationship that the openings gen-
erate decreasing images
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2X nB X B X B X⊆ ⊆ ⊆ ⊆     (12)

with decreasing areas

( ) ( ) ( ) ( )2A X nB A X B A X B A X≤ ≤ ≤ ≤   

      (13)

We form the set difference images using

( )
( )

( )

0

1

1

;

; 2

; ( 1) .n

d X B X X B

d X B X B X B

d X B X n B X nB−

= −

= −

= − −



 



 

  

      (14)

The difference images are orthogonal with 
respect to set intersection

( ) ( ); ;i jd X B d X B∩ = ∅ when i ≠ j (15)

We can reconstruct the image using the dif-
ference images

( )( )
( )

1
0

0

( ) ;

; .

n
ii

n
ii

X X nB d X B

d X B

−
=

=

= ∪

=







 
      (16)

We think of the image decomposition given 
by (16) as a multiscale decomposition where the 
difference images di( f; B) represent information 
captured at the i-th scale.

The pattern spectrum is also defined in terms 
of the number of elements in the difference im-
ages

( ) ( )( ), ;X nPS n B A d X B=   (17)

In (17), we note that the pattern spectra vary 
with the size of the plaque. 

To remove this dependency, we consider a 
probability density function (pdf ) measure de-
fined as

( ) ( )( ) ( ), ; /X kpdf k B A d X B A X=

for 0k ≥ .       (18)

In (18), we note that the normalization is mo-
tivated by the reconstruction formula (see (16)). 
Given the pdf-measure, we can also construct the 
cumulative distribution function (cdf ) using

( ) ( )
1

0

0, 0,
,

, , 1 0.
k

f
f

r

k
cdf k B

pdf r B n k
−

=

=
=  + ≥ >
∑

      (19)

Gray Scale Morphological Analysis

For gray scale morphological analysis, we assume 
that the input image f(i, j) denotes the (positive) 
gray scale image intensity at pixel (i, j). At every 
pixel, for structural element B, we define gray 
scale dilation by

( )( )
( ) ( )

( )
, ,

, max ,
m n B i j

f B i j f m n
∈ +

⊕ =  (20)

which represents the maximum intensity value 
over the support of the translated structural ele-
ment. Similarly, for symmetric structural elements 
(as is the case for ‘+’), we define gray scale erosion 
using the minimum value:

( )( )
( ) ( )

( )
, ,

, min ,
m n B i j

f B i j f m n
∈ +

=
 (21)

We then define openings using the new 
definitions for grey-scale erosions and dilations. 
Instead of the subset relation, we now have that 
an opening reduces image intensity in the sense 
that f B f≤

 for every pixel.
Due to the bounds of the extend of the plaque, 

we are again limited in the maximum number of 
openings that make sense. Here, instead of the 
empty set, the limit is the zero-image. The dif-
ference images are formed in the same way. For 
the reconstruction, we use a finite sum instead of 
a union:

( )

( )

1

0

0

( ) ( ; )

; .

n

i
i

n

i
i

f f nB d f B

d f B

−

=

=

= +

=

∑

∑



 (22)
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For the gray scale definition of the pattern 
spectrum we use

( ) ( ), ;f kPS k B d f B=    (23)

where

( )
( ),

,
i j

f f i j= ∑    (24)

We now normalize by the original image 
intensity

( ) ( ), ; /f kpdf k B d f B f= , for 0k ≥  
      (25)

Morphological Analysis Application to 
Atherosclerotic Carotid Plaques

We begin with a summary. For each plaque we 
compute the three binary images L, M, H as out-
lined in (5). For each binary image, we compute the 
pdf and cdf distributions as outlined in (18)-(19), 
for k = 0,...,70. Similarly, for gray scale morpho-
logical image analysis, we compute the pdf and 
cdf distributions based on gray scale erosions and 
dilations (see (25)). Thus, we compute pdf and cdf 
measures on the original gray scale image and the 
three binary images that are derived from it. 

For each one of the four images, the positively-
indexed pdf and cdf measures provide us with 
normalized size distributions of the white (or 
brighter) blob-components. These measures are 
based on binary and gray scale openings. Some 
examples are shown in Figure 4.

Classi.cation Techniques

The KNN Classifier
The statistical pattern recognition K Nearest 
Neighbor(KNN) classifier was applied for classify-
ing carotid plaques into two groups(asymptomatic 
and symptomatic). In the KNN algorithm in 
order to classify a new pattern, its k nearest 
neighbors from the training set are identified. 

The new pattern is classified to the most frequent 
class among its neighbors based on a similarity 
measure that is usually the Euclidean distance. 
In this work the KNN carotid plaque classifica-
tion system was implemented for values of k = 
1, 3, 5, 7 and 9 using for input the  eight texture 
feature sets and morphology features described 
above(Christodoulou, 2003).

The PNN Classifier
A Probabilistic Neural Network (PNN) classifier 
was used for developing classification models for 
the problem under study. The PNN falls within the 
category of nearest-neighbor classifiers(Candela, 
1995). For a given vector w to be classified, an 
activation ai is computed for each of the two 
classes of plaques (i = 1,...,2). The activation ai is 
defined to be the total distance of w from each of 
the Mi prototype feature vectors ( )i

jx  that belong 
to the i-th class:

( ) ( )( ) ( )

1
exp

iM Ti i
i j j

j
a

=

 = − − −  ∑ w x w x   (30)

where β is a smoothing factor. The normalized 
activations 

1
/

N

i i i
i

a a a
=

= ∑  provide a confidence esti-

mate for the hypothesis that w belongs to class i. 
We then classify w into the class that yields the 
highest confidence. An important advantage of 
the PNN is that it provides confidence estimates 
for our classification decision. Also, to avoid 
dependence on the smoothing factor β, the value 
of β was set to the one that yielded the minimum 
misclassification error on the training set.

The SVM Classifier
The Support Vector Machine(SVM) was also used 
for developing classification models for the prob-
lem. The method is initially based on nonlinear 
mapping of initial data set using a function φ(.) 
and then the identification of a hyperplane which 
is able to achieve the separation of two categories 
of data. The PNN network performance is com-
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pared to an SVM classifier with Gaussian Radial 
Basis Function(RBF) kernels. Details about the 
implementation of the SVM algorithm used can 
be found in(Joachims, 1999).

Feature Selection

A popular way to reduce the dimensionality of a 
feature vector is Principal Component Analysis 
(PCA)( Duda,2001). This method can be used in 

cases when the input features vector is large but 
the components of this vector are highly correlated. 
After applying PCA, the data set is represented 
by a reduced number of uncorrelated features 
while retaining most of its information content. 
In this study feature sets were reduced to smaller 
dimension sets by using only the components 
which contributed for 98% of the variance in the 
data set. 

Figure 4. Results from a sequence of openings using a ‘+’ structural element on a gray level and a 
low-intensity image( -image in multi-level binary morphology) of an asymptomatic carotid plaque. The 
radius of the structural element ranges from 1 to 5 pixels (plotted at 20 pixels/mm). © 2007 Springer 
(Kyriacou, 2007)
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Classification Tests

The leave-one-out estimate was used for validat-
ing all the classification models.  A total of 274 
subsets of size 273 were used for training the 
classifiers, and the performances of the classifi-
ers were evaluated on the remaining one subset. 
The performances of the classifier systems were 
measured using the receiver operating character-
istics (ROC) curve parameters . The parameters 
calculated for ROC curves are the numbers of: 
(i) true positive (TP), (ii) false positives(FP), (iii) 
false negatives(FN), and (iv) true negatives(TN). 
We also compute the Sensitivity(SE) and 
Specificity(SP. For the overall performance, 
we provide the correct classification(CC) rate 
which gives the percentage of correctly classified 
plaques(Kyriacou, 2007).

rE sul ts 

The median of the estimated pdfs and cdfs ex-
tracted from the plaques can be seen in Figures 
5 and 6. All figures are plotted against the radial 
size of the structural element.  We have divided 
the results into the two categories of multilevel 
binary and gray scale morphological analysis.

r esults from Multilevel binary
Morphological Analysis

From the results, we observe that the median 
symptomatic cdf is stochastically smaller than 
the median asymptomatic cdf for the L-images.
This means that the median cdf for the symp-
tomatic cases assumes equal or smaller values 
than the asymptomatic cdf. 

For the M-images, the median cdf of the as-
ymptomatic cases turned out to be stochastically 
larger to that of TIA&Stroke but smaller to that 
of Amaurosis Fugax; thus the median cdfs of as-
ymptomatic and symptomatic plaques are almost 
equal. Due to these observations, as expected, the 

classification results from the M-images where 
relatively lower. Finally, for the H-images, the 
median symptomatic cdf turned out to be stochas-
tically larger than the asymptomatic cdf.  

We attempt to relate our measurements to 
clinical expectations for a known type of dan-
gerous plaques. Consider the case of having a 
plaque characterized by a dark background with 
isolated white blobs. This description character-
izes dangerous symptomatic plaques. In this case, 
the uniformity in the dark regions suggests that 
the symptomatic cdf plot in the L-image will be 
slow to rise, resulting in a cdf that is stochastically 
smaller than that of the median asymptomatic case. 
On the other hand, the isolated white blobs will 
force the cdf of the H-image to be stochastically 
larger than that of the median asymptomatic case. 
Thus, in this case, both of these observations are in 
agreement with our measurements. Naturally, we 
will also need to investigate how to extend these 
observations for different types of plaques(also 
see Sterpetti,(1988)).

The cdfs and pdfs of all plaques were used 
with the PNN and SVM classifiers. Both classi-
fiers were tested on both the pdf and cdf feature 
sets. The first set included features produced for 
the whole range of scales(1-70) while the sec-
ond set included the pattern spectra of selected 
scales(L-Images:1,2,3,4,5 , M-Images: 3,4,9,11,12, 
H-Images: 2,11,12,15,18, (Panayiotou, 2006) 
These scales were selected because of their dis-
criminatory power as evaluated using the C4.5 
decision trees algorithm(Panayiotou, 2006; Han 
2000). The C4.5 was run and the pattern spectra 
scale with the highest discriminative score was 
computed. This best scale was then removed 
and the C4.5 was run again to compute the next 
best scale. The procedure was repeated 5 times. 
The dimensionality of the entire pdf/cdf feature 
vectors from both sets was also reduced using 
Principal Components Analysis(PCA). For PCA, 
we selected a small number of components that 
accounted for 98% of the total variance.
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Figure 5. Corresponding median values of the pdfs and cdfs of asymptomatic versus symptomatic 
plaques for the three different levels(L, M, H images) of multilevel binary morphological analysis. The 
first line of each sub-plot represents the median cdf and pdf for Asymptomatic vs. Amaurosis Fugax 
vs.(TIA&Stroke) plaques, while the second line represents the median cdf and pdf for Asymptomatic 
Vs Symptomatic plaques. In the plot, radius refers to radial spread of the structural element. © 2007 
Springer(Kyriacou, 2007)
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Table 1 presents the results of the ROC analysis 
for the SVM and PNN classifiers for the differ-
ent feature sets investigated. Classifiers where 
tested using features extracted from the L, M 
and H images and the combination of the three. 
The highest percentage of correct classifications 
score was 73.7% and was achieved using the 
SVM classifier on the features extracted from 
the L-images(cdf  scales: 1-70 + PCA). For PNN, 
the highest percentage of correct classifications 
score achieved was 70.4% for pdf  scales: 1-70 + 
PCA. The combination of the three feature sets 
gave the same highest results as those achieved 
with the L-images feature set.

r esults from g ray scale Morphological 
Analysis

From the results, we can observe that the median 
symptomatic cdf is stochastically larger than 

the median asymptomatic cdf. Recall that this 
means that the median cdf for the symptomatic 
cases assumes equal or larger values than the 
asymptomatic cdf. The median and box plots of 
pdfs and cdfs for gray scale morphological can 
be seen in Figure 6.

In turn, for the dangerous type of symptomatic 
plaque discussed in section 4.1, this observation 
appears to be in agreement with our expectations. 
Here, the isolated white blobs against a dark 
background in the symptomatic plaques leads to 
a larger concentration of the detected components 
in the lower scales of the pattern spectrum, as 
compared to the asymptomatic cases. In turn, as for 
the H-images, this cause a rise in the symptomatic 
cdf as compared to the median asymptomatic cdf 
(also see Mavrommatis, 2006). 

Again the cdfs and pdfs of all plaques were used 
with the PNN and SVM classifiers. Both classifiers 
were tested on both the pdf and cdf feature sets. 
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Figure 6. Corresponding median values of the pdfs and cdfs of asymptomatic versus symptomatic 
plaques for the gray scale morphological analysis. The first row represents the median cdf and pdf for 
Asymptomatic Vs Amaurosis Fugax Vs(TIA & Stroke) plaques, while the second represents median cdf 
and pdf for Asymptomatic Vs Symptomatic plaques. © 2007 Springer(Kyriacou, 2007)
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Table 2. Percentage of correct classifications(%CC), percentage of false positives(%FP), percentage 
of false negatives(%FN), percentage sensitivity(%SE) and percentage specificity(%SP) of Multi Level 
morphological features using the SVM and PNN classifiers, for the L, M and H images. Classification 
models developed for two classes using the leave one out method, with 137 symptomatic and 137 as-
ymptomatic plaques.

L 
Im

ag
e

  SVM classifier %CC %FP %FN %SE %SP
SVM rbf spread = 0.4
PCA  for pdf scales 1,2,3,4,5,6 70.80 42.34 16.06 83.94 57.66
SVM rbf spread = 9.0510 
pdf scales 1,2,3,4,5,6 69.71 51.09 9.49 90.51 48.91
SVM rbf spread = 0.1
PCA for cdf scales 1-70 73.72 36.50 16.06 83.94 63.50
SVM  rbf spread = 12.8
cdf scales 1-70 72.26 37.23 18.25 81.75 62.77
SVM rbf spread = 1.6
PCA for pdf scales 1-70 70.07 43.07 16.79 83.21 56.93
SVM rbf  spread = 9.0510
pdf scales 1-70 70.80 41.61 16.79 83.21 58.39

Average Values 71.23 41.97 15.57 84.43 58.03

L 
Im

ag
e

 PNN classifier %CC %FP %FN %SE %SP
PNN spread =5
PCA for pdf scales 1,2,3,4,5,6 66.79 62.77 3.65 96.35 37.23
PNN spread =5
pdf scales 1,2,3,4,5,6 66.79 63.50 2.92 97.08 36.50
PNN spread =5
PCA  for cdf scales 1-70 70.07 37.96 21.90 78.10 62.04
PNN spread =5
cdf scales 1-70 70.07 37.96 21.90 78.10 62.04
PNN spread =5
PCA for pdf scales 1-70 70.44 40.88 18.25 81.75 59.12
PNN spread =5
 pdf scales 1-70 69.71 35.77 24.82 75.18 64.23

Average Values 68.98 46.47 15.57 84.43 53.53

M
 Im

ag
e

  SVM classifier %CC %FP %FN %SE %SP
SVM rbf spread = 0.1414
PCA  for pdf scales 3,4,9,11,12 60.58 45.99 32.85 67.15 54.01
SVM rbf spread = 0.1
pdf scales 3,4,9,11,12 59.49 47.45 33.58 66.42 52.55
SVM rbf spread = 2.2627
PCA for cdf scales 1-70 55.47 34.31 54.74 45.26 65.69
SVM  rbf spread = 0.2
cdf scales 1-70 59.12 29.93 51.82 48.18 70.07
SVM rbf spread = 0.4
PCA for pdf scales 1-70 58.39 37.96 45.26 54.74 62.04
SVM rbf  spread = 0.1
pdf scales 1-70 58.39 37.96 45.26 54.74 62.04

Average Values 58.57 38.93 43.92 56.08 61.07

continued on the following page
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M
 Im

ag
e

 PNN classifier %CC %FP %FN %SE %SP
PNN spread =5
PCA for pdf scales 3,4,9,11,12 48.18 10.95 92.70 7.30 89.05
PNN spread =5
pdf scales 3,4,9,11,12 48.18 10.95 92.70 7.30 89.05
PNN spread =5
PCA  for cdf scales 1-70 49.27 9.49 91.97 8.03 90.51
PNN spread =5
cdf scales 1-70 48.91 11.68 90.51 9.49 88.32
PNN spread =5
PCA for pdf scales 1-70 51.46 9.49 87.59 12.41 90.51
PNN spread =5
 pdf scales 1-70 51.09 9.49 88.32 11.68 90.51

Average Values 49.52 10.34 90.63 9.37 89.66

H
 Im

ag
e

  SVM classifier %CC %FP %FN %SE %SP
SVM rbf spread = 9.0510
PCA  for pdf scales 2,11,12,15,18,19 58.76 47.45 35.04 64.96 52.55
SVM rbf spread =12.8 
pdf scales 2,11,12,15,18,19 58.39 47.45 35.77 64.23 52.55
SVM rbf spread = 6.4
PCA for cdf scales 1-70 59.12 42.34 39.42 60.58 57.66
SVM  rbf spread = 0.4
cdf scales 1-70 59.12 41.61 40.15 59.85 58.39
SVM rbf spread = 9.0510
PCA for pdf scales 1-70 62.04 40.88 35.04 64.96 59.12
SVM rbf  spread = 0.8
pdf scales 1-70 60.22 45.26 34.31 65.69 54.74

Average Values 59.61 44.17 36.62 63.38 55.84

H
 Im

ag
e

 PNN classifier %CC %FP %FN %SE %SP
PNN spread =5
PCA for pdf scales 2,11,12,15,18,19 43.80 24.82 87.59 12.41 75.18
PNN spread =5
pdf scales 2,11,12,15,18,19 43.80 24.82 87.59 12.41 75.18
PNN spread =5
PCA  for cdf scales 1-70 59.12 48.18 33.58 66.42 51.82
PNN spread =5
cdf scales 1-70 58.76 48.91 33.58 66.42 51.09
PNN spread =5
PCA for pdf scales 1-70 57.66 64.23 20.44 79.56 35.77
PNN spread =5
 pdf scales 1-70 55.47 65.69 23.36 76.64 34.31

Average Values 53.1 46.11 47.69 52.31 53.89

Table 2. continued

continued on the following page
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Table 2. continued

C
om

bi
na

tio
n 

L 
M

 H
 Im

ag
es

 PNN classifier %CC %FP %FN %SE %SP
PNN spread =5
PCA for pdf scales (Low: 1,2,3,4,5,6) (Med:3,4,9,11,12)(H
igh:19,12,15,11,18,2) 69.34 53.28 8.03 91.97 46.72
PNN spread =5
pdf scales (Low: 1,2,3,4,5,6) (Med:3,4,9,11,12)(High:19,1
2,15,11,18,2) 69.71 54.01 6.57 93.43 45.99
PNN spread =5
PCA  for cdf scales 1-210 69.71 37.96 22.63 77.37 62.04
PNN spread =5
cdf scales 1-210 68.61 40.15 22.63 77.37 59.85
PNN spread =5
PCA for pdf scales 1-210 70.44 42.34 16.79 83.21 57.66
PNN spread =5
 pdf scales 1-210 70.07 38.69 21.17 78.83 61.31

Average Values 69.65 44.41 16.3 83.7 55.6

C
om

bi
na

tio
n 

L 
M

 H
 Im

ag
es

  SVM classifier %CC %FP %FN %SE %SP
SVM rbf spread = 6.4
PCA  for pdf scales (Low: 1,2,3,4,5,6) (Med:3,4,9,11,12)(Hig
h:19,12,15,11,18,2) 71.90 43.07 13.14 86.86 56.93
SVM rbf spread =6.4
pdfscales(Low:1,2,3,4,5,6) (Med:3,4,9,11,12)(High:19,12,15
,11,18,2) 71.90 45.26 10.95 89.05 54.74
SVM rbf spread = 12.8
PCA for cdf scales 1-210 69.34 43.80 17.52 82.48 56.20
SVM  rbf spread = 2.2627
cdf scales 1-210 71.90 39.42 16.79 83.21 60.58
SVM rbf spread = 9.0510
PCA for pdf scales 1-210 70.80 42.34 16.06 83.94 57.66
SVM rbf  spread = 6.4
pdf scales 1-210 73.36 39.42 13.87 86.13 60.58

Average Values 71.53 42.22 14.72 85.28 57.78

The first set included features produced for the 
whole range of scales (1-70) while the second set 
included the pattern spectra of selected scales(2, 
3, 5, 10, 21, and 23) (Panayiotou, 2006), using the 
C4.5 decision trees algorithm (see section 5.1).

f utur E tr Ends

What was presented in this chapter is actually 
an overview of some of the new techniques cur-
rently applied for the estimation of the risk of 

stroke using ultrasound images. Future trends 
include analysis of plaque video for the estimation 
of plaque motion; as well as the introduction of 
several other biochemical measurements or gene 
analysis models so as to improve the stroke risk 
estimation models.

c onclus Ion

Concluding, multilevel binary and gray scale 
morphological analysis features can help us 



  ���

Assessment of Stroke by Analysing Carotid Plaque Morphology

quantify the distribution of blob elements in the 
atherosclerotic carotid plaques. We have found that 
there is significant overlap between pattern spec-
tra coming from symptomatic and asymptomatic 
plaques. Most of the discriminating power was 
concentrated in the smaller components for lower 
scales. These results are comparable to results 
produced using texture analysis algorithms of 
a similar dataset(Christodoulou, 2003;Kyriacou 
2007) as well as results reported by another 
group(Wilhjelm,1998). 

In previous work carried out by our group the 
highest percentage of correct classifications was 
73% using texture features and the self-organis-
ing map (SOM) classifier(Christodoulou 2003). 
Furthermore it was shown in that binary morpho-
logical analysis features compare well with the 
most successful texture feature sets and provide 
additional information for the identification of 
individuals at risk of stroke. 

Table 3. Percentage of correct classifications(%CC), percentage of false positives(%FP), percentage of 
false negatives(%FN), percentage sensitivity(%SE) and percentage specifity(%SP) of Gray Scale mor-
phological features using the SVM and PNN classifiers. Classification models developed for two classes 
using the leave one out method, and 137 symptomatic and 137 asymptomatic plaques.

G
ra

y 
Sc

al
e

  SVM classifier %CC %FP %FN %SE %SP
SVM rbf spread = 2.2627
PCA  for pdf scales 2,3,5,10,21,23 66.79 20.44 45.99 54.01 79.56
SVM rbf spread = 0.5657
pdf scales 2,3,5,10,21,23 65.33 28.47 40.88 59.12 71.53
SVM rbf spread = 2.2627
PCA for cdf scales 1-70 63.14 42.34 31.39 68.61 57.66
SVM  rbf spread = 2.2627
cdf scales 1-70 62.41 32.12 43.07 56.93 67.88
SVM rbf spread = 1.1314
PCA for pdf scales 1-70 60.22 43.80 35.77 64.23 56.20
SVM rbf  spread = 0.5657
pdf scales 1-70 63.14 36.50 37.23 62.77 63.50

Average Values 63.51 33.95 39.06 60.95 66.06

G
ra

y 
Sc

al
e

 PNN classifier %CC %FP %FN %SE %SP
PNNspread =5
PCA for pdf scales 2,3,5,10,21,23 56.57 22.63 64.23 35.77 77.37
PNN spread =5
pdf scales 2,3,5,10,21,23 56.57 22.63 64.23 35.77 77.37
PNN spread =5
PCA  for cdf scales 1-70 60.58 36.50 42.34 57.66 63.50
PNN spread =5
cdf scales 1-70 62.04 35.77 40.15 59.85 64.23
PNN spread =5
PCA for pdf scales 1-70 58.76 42.34 40.15 59.85 57.66
PNN spread =5
 pdf scales 1-70 60.22 48.91 30.66 69.34 51.09

Average Values 59.12 34.8 46.96 53.04 65.2



���  

Assessment of Stroke by Analysing Carotid Plaque Morphology

r Ef Er Enc Es

AbuRahma, A. F., Kyer, P. D., Robinson, P. A., et al. 
(1998). The correlation of ultrasonic carotid plaque 
morphology and carotid plaque hemorrhage: clini-
cal implications. Surgery, 124, 721-8.

Aldoori, M. I., Baird, R. N., Al-Sam, S. Z., et al. 
(1987). Duplex scanning and plaque histology in 
cerebral ischaemia. European Journal of Vascular 
Surgery, 1, 159-64.

Arnold, J. A. C., Modaresi, K. B., Thomas, N., 
et al. (1999) Carotid plaque characterization by 
duplex scanning. Observer error may undermine 
current clinical trials. Stroke, 30, 61-5.

Biasi, G. M., Mingazzini, P. M., Baronio, L., 
Piglionica, M. R., Ferrari, S. A., Elatrozy, T. S., 
Nicolaides, A. N. (1998) Carotid plaque charac-
terization using digital image processing and its 
potential in future studies of carotid endarterec-
tomy and angioplasty. Journal of Endovascular 
Surgery, 5(3), 240-6.

Candela, G. T., Grother, P. J., Watson, C. I., Wilkin-
son, R. A., & Wilson, C. L. (1995). PCASYS – a 
pattern-level classification automation system 
for fingerprints.  Technical report. NISTIR 5647:  
National Institute of Standards and Technology. 

Christodoulou, C. I., Michaelides, S. C., & Pat-
tichis, C. S. (2003). Multi-feature texture analysis 
for the classification of clouds in satellite imagery. 
IEEE Transactions on Geoscience and Remote 
Sensing, 41(11), 2662-2668.

Christodoulou, C. I., Pattichis, C. S., Pantziaris, 
M., & Nicolaides, A. (2003). Texture Based Classi-
fication of Atherosclerotic Carotid Plaques.  IEEE 
Transactions on Medical Imaging, 22, 902-912.

Dougherty, E. R. (1992). An Introduction to 
Morphological Image Processing, Belingham. 
Washington. SPIE Optical Engineering Press.

Dougherty, E. R., Astola, J. (1994). An Introduc-
tion to Nonlinear Image Processing, Belingham. 
Washington, SPIE Optical Engineering Press.

Duda, O. R., Hart, E. P., & Stork, D. G. (2001). 
Pattern Classification (pp. 259-265), Willey. 

Elatrozy, T., Nicolaides, A., Tegos, T., et al. (1998). 
The objective characterisation of ultrasonic carot-
id plaque features. European Journal of Vascular 
and Endovascular Surgery, 16, 223-30.

El-Barghouti, N., Nicolaides, A. N., Tegos, T., et 
al. (1996). The relative effect of carotid plaque 
heterogeneity and echogenicity on ipsilateral cer-
ebral infarction and symptoms of cerebrovascular 
disease. International Angiology, 15, 300-6.

European carotid plaque study group (1995). 
Carotid artery plaque composition - Relationship 
to clinical presentation and ultrasound B-mode 
imaging. European Journal of Vascular and 
Endovascular Surgery, 10, 23-30.

Geroulakos, G., Ramaswami, G., Nicolaides, A., 
et al. (1993). Characterisation of symptomatic and 
asymptomatic carotid plaques using high-resolu-
tion real-time ultrasonography. British Journal of 
Surgery, 80, 1274-7.

Giannoni, M. F., Spezial, F., Faraglia, E., et al. 
(1991). Minor asymptomatic carotid stenosis 
contralateral to carotid endarterectomy (CEA). 
Our experience. European Journal of Vascular 
Surgery, 5, 237-45.

Gray-Weale, A. C., Graham, J. C., Burnett, J. R., 
et al. (1988). Carotid artery atheroma: comparison 
of preoperative B-mode ultrasound appearance 
with carotid endarterectomy specimen pathology. 
Journal of Cardiovascular Surgery, 29, 676-81.

Gronholdt, M. L., Nordestgaard, B. G., Schroeder, 
T. V., Vostrup, S., & Sillesen, H. (2001). Ultrasonic 
echolucent carotid plaques predict future strokes. 
Circulation, 104, 68-73.

Han, J. M. Kamber (2000). Data Mining: Concepts 
and Techniques. Morgan Kaufmann.



  ���

Assessment of Stroke by Analysing Carotid Plaque Morphology

Joachims, T. (1999). Advances in Kernel Methods 
- Support Vector Learning In B. Schölkopf, C. 
Burges, & A. Smola (Eds.), Making large-Scale 
SVM Learning Practical.. MIT Press.

Joakimsen, O., Bønaa, K. H., Mathiesen, E. B., et 
al. (2000). Prediction of Mortality by Ultrasound 
Screening of a General Population for Carotid 
Stenosis: The Tromsø Study. Stroke, 31, 1871-6. 

Johnson, J. M., Kennelly, M. M., Decesare, D., et 
al. (1985). Natural history of asymptomatic carotid 
plaque. Archives of Surgery, 120, 1010-2.

Kagawa, R., Moritake, K., Shima, T., et al. (1996). 
Validity of B-mode ultrasonographic findings in 
patients undergoing carotid endarterectomy in 
comparison with angiographic and clinicopatho-
logic features. Stroke, 27, 700-5. 

Kardoulas, D. G., Katsamouris, A. N., Gallis, P. 
T. et al. (1996). Ultrasonographic and histologic 
characteristics of symptom-free and sympto-
matic carotid plaque. Cardiovascular Surgery, 
4, 580-90.

Kyriacou, E., Pattichis, M.,  Pattichis, C. S., Ma-
vrommatis, A.,  Christodoulou, C. I., Kakkos,S., 
Nicolaides, A. (2007). Classification of Athero-
sclerotic Carotid Plaques Using  Morphological 
Analysis on Ultrasound images.  Journal of Ap-
plied Intelligence, Springer. ISSN: 0924-669X 
(Print) 1573-7497 (Online).

Langsfeld, M., Gray-Weale, A. C., & Lusby, R. 
J. (1989). The role of plaque morphology and 
diameter reduction in the development of new 
symptoms in asymptomatic carotid arteries. 
Journal of Vascular Surgery, 9, 548-57.

Leahy, A. L., McCollum, P. T., Feeley, T. M., et 
al. (1988). Duplex ultrasonography and selection 
of patients for carotid endarterectomy: Plaque 
morphology or luminal narrowing? Journal of 
Vascular Surgery, 8, 558-62.

Maragos, P. (1989). Pattern spectrum and mul-
tiscale shape representation. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 
11, 701-715.

Mavrommatis, A. (2006). Morphology of Carotid 
US Images, MSc thesis, Univ. of Cyprus, Nicosia, 
Cyprus.

Nicolaides, A., Sabetai, M., Kakkos, S.M., Dhanjil, 
S., Tegos, T., Stevens, J. M., Thomas, D. J., Francis, 
S., Griffin, M., Geroulakos, G., Ioannidou, E., & 
Kyriacou, E. (2003). The Asymptomatic, Carotid, 
Stenosis and Risk of Stroke (ACSRS) study. In-
ternational Angiology, 22(3), 263-272.

O’Donnell, T. F. Jr., Erdoes, L., Mackey, W. C., 
et al. (1985). Correlation of B-mode ultrasound 
imaging and arteriography with pathologic 
findings at carotid endarterectomy. Archives of 
Surgery, 120, 443-9.

Panagiotou, S.  (2006). Classification of Plaques 
Using SVM Class. MSc thesis, Univ. of Cyprus, 
Nicosia Cyprus.

Reilly, L. M., Lusby, R. J., Hughes, L., et al. (1983). 
Carotid plaque histology using real-time ultra-
sonography. Clinical and therapeutic implications. 
American Journal of Surgery, 146, 188-93.

Sabetai, M. M., Tegos, T. J., Nicolaides, A. N. et. 
al. (2000). Reproducibility of computer-quantified 
carotid plaque echogenicity. Can we overcome the 
subjectivity?. Stroke, 39(9), 2189-2196.

Salonen, R. M., Nyyssonen, K., Kaikkonen, J., 
et al. (2003). Six-year effect of combined vita-
min C and E supplementation on atherosclerotic 
progression: the Antioxidant Supplementation 
in Atherosclerosis Prevention (ASAP) Study. 
Circulation, 107, 947-53.

Schmidt, C., Fagerberg, B., Wikstrand, J., et al. 
(2003). On behalf of the RIS study group. Multiple 
risk factor intervention reduces cardiovascular 
risk in hypertensive patients with echolucent 
plaques in the carotid artery. Journal of Internal 
Medicine, 253, 430-8.



��0  

Assessment of Stroke by Analysing Carotid Plaque Morphology

Sterpetti, A. V., Schultz, R. D., Feldhaus, R. J., 
et al. (1988). Ultrasonographic features of carotid 
plaque and the risk of subsequent neurologic 
deficits. Surgery, 104, 652-60.

Tegos, T. J., Sametai, M. M., Nicolaides, A. N. 
et al. (2000). Comparability of the ultrasonic tis-
sue characteristics of carotid plaques. Journal of 
Ultrasound Medicine, 19, 399-407.

Widder, B., Paulat, K., Hachspacher, J., et al. 
(1990). Morphological characterization of carotid 
artery stenoses by ultrasound duplex scanning. Ul-
trasound in Medicine and Biology, 16, 349-54.

Wilhjelm, J. E., Gronholdt, L. M., et al. (1998). 
Quantitative Analysis of Ultrasound B-Mode 
Images of Carotid Atherosclerotic Plaque: Cor-
relation with Visual Classification and Histologi-
cal Examination. IEEE Transactions on Medical 
Imaging, 17(6), 910-922.

kE y t Er Ms

Stroke: Rapidly developing loss of brain 
functions due to malfunction in the blood supply 
to the brain. This can be due to Ischemia(lack of 
blood supply) or due to haemorrhage. 

Gray Scale Ultrasound Carotid Plaque Im-
age: Image produced by using B-Mode ultrasound 
technique on carotid arteries

Morphology Analysis: Analysis of the 
morphology of images, describes the structur-
ing elements on an image with no directional 
sensitivity

Assessment of the Risk of Stroke: Evaluation 
of the risk that a person has for a stroke event, 
based on several risk factors and predictors.

Automatic Classifiers: Mathematical func-
tions that can classify events based on several 
features and previously known cases. 

Computer Aided Diagnosis: Diagnosis sup-
ported by computer methods, usually by using 
automatic classifiers in order to get an estimation 
on the exact diagnosis.
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Abstr Act

The objective of this chapter is to propose a quantitative hysteroscopy imaging analysis system in gynae-
cological cancer and to provide the current situation about endoscopy imaging. Recently works, involves 
endoscopy, gastroendoscopy, and colonoscopy imaging with encouraging results. All the methods are 
using image processing using texture and classification algorithms supporting the physician diagnosis. 
But none of the studies were involved with the pre-processing module. Also, the above studies are trying 
to identify tumours in the organs and no of the are investigates the tissue texture. The system supports 
a standardized image acquisition protocol that eliminates significant statistical feature differences due 
to viewing variations. In particular, the authors provide a standardized protocol that provides texture 
features that are statistically invariant to variations to sensor differences (color correction), angle and 
distance to the tissue. Also, a Computer Aided Diagnostic (CAD) module that supports the classifica-
tion of normal vs abnormal tissue of early diagnosis in gynaecological cancer of the endometrium is 
discussed. The authors investigate texture feature variability for the aforementioned targets encountered 
in clinical endoscopy before and after color correction. For texture feature analysis, three different fea-
tures sets were considered: (i) Statistical Features, (ii) Spatial Gray Level Dependence Matrices, and 
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Introduct Ion

In the United States, in 2007, it is estimated that 
over 39,080 new cases will be diagnosed with 
gynaecological cancer of the endometrium re-
sulting to approximately 7,400 deaths (American 
Cancer Society). Within the female population, 
gynaecological cancer accounts for the second 
highest mortality rate. Early diagnosis and treat-
ment of gynaecological cancer are essential for 
better quality of life and longer life. 

The development of minimally invasive 
surgery has presented the possibility of new 
approaches to certain longstanding problems in 
gynaecology. The initial efforts with hysteroscopy, 
transabdominal/transvaginal laparoscopy opera-
tions have already demonstrated the advantages 
of endoscopic techniques over traditional open 
and endovascular approaches. The advantages 
of laparoscopic/hysteroscopic methods are es-
pecially significant in patients with a low risk 
factor when the operation is usually prophylactic 
(Cohen et al, 2003). 

The objective of this chapter is to provide a 
standardized protocol for eliminating significant 
differences in texture feature analysis of endos-
copy images that is also used for classifying ROIs 
into normal and abnormal tissue. For gynaecologi-
cal cancer, we show that the proposed approach 
eliminates significant statistical different due to 

sensor variations (color correction), distance from 
the tissue (panoramic vs close up) and camera 
angle. We validate the approach for texture fea-
tures extracted at difference viewing conditions 
from: calf endometrium chosen for its resemblance 
to human tissue, chicken cavities chosen for pro-
viding a more realistic laparoscopy/hysteroscopy 
operation environment, and also verify the find-
ings for human subjects.

The structure of the chapter is as follows. In 
section II, a brief sections on overview of hys-
teroscopy/laparoscopy imaging is given. This is 
followed by methodology, results, discussion, and 
concluding remarks.

bAckground

In laparoscopic/hysteroscopic imaging, the 
physician guides the telescope inside the uterine 
or abdominal cavity investigating the internal 
anatomy, in search of suspicious, cancerous le-
sions (Bankman et al, 2000). During the exam, the 
experience of the physician plays a significant role 
in identifying suspicious regions of interest (ROIs), 
where in some cases, important ROIs might be 
ignored and crucial information neglected (Sierra 
et al, 2003). The analysis of endoscopic imaging 
is usually carried out visually and qualitatively 
(Fayez et al, 1991, based on the subjective exper-

(iii) Gray Level Difference Statistics. Two classification algorithms, the Probabilistic Neural Network 
and the Support Vector Machine, were applied for the early diagnosis of gynaecological cancer of the 
endometrium based on the above texture features. Results indicate that there is no significant difference 
in texture features between the panoramic and close up views and between different camera angles. 
The gamma correction provided an acquired image that was a significantly better approximation to the 
original tissue image color. Based on the texture features, the classification algorithms results show that 
the correct classification score, %CC=79 was achieved using the SVM algorithm in the YCrCb color 
system with the combination of the SF and GLDS texture feature sets. This study provides a standard-
ized quantitative image analysis protocol for endoscopy imaging. Also the proposed CAD system gave 
very satisfactory and promising results. Concluding, the proposed system can assist the physician in the 
diagnosis of difficult cases of gynaecological cancer, before the histopathological examination.
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tise of the endoscopist. Therefore, this procedure 
suffers from interpretational variability, lack of 
comparative analysis and it is time consuming.

To the best of our knowledge, there are no 
other studies proposing a standardized quantita-
tive image processing and analysis procedure 
for the laparoscopic/hysteroscopic imaging for 
gynaecological cancer. Several endoscopic stud-
ies have been reported related to standardisation, 
that focused on comparing different treatment 
methods in clinical gynaecological laparoscopy. 
On the other hand, several CAD systems with 
most of them based on texture analysis have 
been reported mainly for colonoscopy with 
highly promising results (Shi et al, 2006; Bank-
man et al, 2000; Tjoa et al, 2003; Karkanis et 
al, 1999; Karkanis et al, 2003), laryngoscopy, 
(Haralick et al, 1973) and other endosopic imag-
ing modalities. In (Shi et al, 2006), 47 computed 
tomographic (CT) colonography data sets were 
obtained in 26 men and 10 women (age range, 
42–76 years). Results shown that the use of 3D 
viewing improves classification accuracy for the 
three readers and increases significantly the area 
under the receiver operating characteristic curve. 
Features maximum polyp width, polyp height, 
and preparation significantly affected the true 
positive measure, whereas features like colonic 

segment, attenuation, surface smoothness, disten-
tion, preparation, and true nature of candidate 
lesions significantly affected the false positive 
measure. In (Tjoa et al, 2003), A hybrid system 
was developed for the assessment of colon tissue. 
It was shown that a slightly higher classification 
accuracy was achieved when combining texture 
and color features, versus texture only, or color 
only features. In (Karkanis et al, 1999) it was 
shown that the texture spectrum maintains the 
important structure of different texture classes 
and also preserves the textural information in the 
original endoscopic images. In (Karkanis et al, 
2003), a CAD system was presented for the detec-
tion of tumours in colonoscopic video based on 

color wavelet covariance (CWC) analysis features. 
The performance in the detection of abnormal 
colonic regions corresponding to adenomatous 
polyps was very high, reaching 97% specificity 
and 90% sensitivity.

In this chapter, a standardized procedure based 
on color imaging correction and texture feature 
extraction, analysis and classification proposed by 
our group for the analysis of gynaecological tissue 
is presented (Neophytou et al, 2005; Neophytou et 
al, 2004; Neophytou et al, 2004; Neophytou et al, 
2006; Neophytou et al, 2007). The gamma correc-
tion algorithm which is used extensively in many 
applications for correcting the camera images 
is applied for correcting the endoscopy images. 
The usefulness of gamma correction was also 
demonstrated on endoscopic video processing. In 
a medical endoscopy video contrast improvement 
method that provides intelligent automatic adap-
tive contrast control was presented. The method 
was based on video data clustering and video data 
histogram modification, that allowed defining the 
automatic gamma control range from 0.5 to 2.0. 
Applying gamma correction on the images, will 
also limit the variability when analyzing images 
captured with different cameras, telescopes and 
endoscopic hardware. 

Several textural features were computed in this 
work based on Statistical Features (SF) (Wu et al, 
1992), Spatial Gray Level Dependence Matrices 
(SGLDM) (Haralick et al, 1973), and Gray level 
difference statistics (GLDS) (Wenska et al, 1976). 
Furthermore the diagnostic performance of the 
texture features was evaluated with two differ-
ent classifiers: the Probabilistic Neural Network 
(PNN), and the Support Vector Machine (SVM) 
(Wenska et al, 1976; Christodoulou et al, 1999; 
Specht et al, 1990; Joachims et al, 1999; Ebrchart 
et al, 1990). These classifiers were trained to clas-
sify the texture features into normal or abnormal 
ROIs, with promising success.
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MEthodology

We summarize our integrated approach in Figure 
1. We break our method into four parts. First, 
we perform color correction to compensate for 
sensor variations. Second, we acquire clinical 
images while carefully controlling the camera 
angle and distance to the tissue. Third, we perform 
texture analysis through statistical analysis of the 
extracted texture features. Fourth, classification 
analysis is carried out in classifying tissue as 
normal or abnormal, and comparing the results 
with the medical expert.

r ecording of Endoscopic Video

For image acquisition, we used the medical tele-
scope provided by Wolf (The company Richard 
WOLF GmbH) (2,8 mm diameter and 30 degrees 
viewing angle). Endoscopy video was captured 
using the Circon IP4.1 RGB video camera (The 
ACMI Corporation). All videos were captured 
at clinically optimum illumination and focusing. 
The camera was white balanced using a white 
surface (white color of the palette) as suggested 
by the manufacturer. The light source was a 300 
Watt Xenon Light Source from ACMI Corporation 
(The ACMI Corporation). The analog output 
signal from the camera (PAL 475 horizontal 
lines) was digitized at 720x576 pixels using 
24 bits color and 25 frames per second at two 
resolutions: (i) approximately 15 pixels/mm for 
the panoramic view and at (ii) approximately 21 
pixels/mm for the close up view. The video was 
saved in AVI format. Digitization was carried 
out using the Digital Video Creator 120 frame 
grabber (The Pinnacle Systems company) that 
was connected to the PC through the IEEE 1394 
port. The capturing conditions were controlled 
by the physician reflecting the clinical conditions 
of an operation.

r ecording of t esting t argets

The testing targets were obtained from the Ed-
mund Industrial Optics Company (The Edmund 
Optics company). The general purpose of a test 
pattern is to correct for variations in the camera 
sensors. The target contained 24 color squares. 
Testing images were captured at optimum illu-
mination and focusing based on the experience 
of the physician, using the camera and the tele-
scope under investigation. Following the above 
procedure we captured and saved the medical 
video (AVI format) of the testing palette and then 
extracted TIFF images of the 24 color squares. 
The corresponding targets were digitally gen-
erated based on the data given by the Edmund 
Optics Company (The Edmund Optics company) 
as the ground truth of the experiment.

c olor c orrection Algorithm

Most of the cameras have a nonlinear relationship 
between the signal voltage and the light intensity 
(Haeghen et al, 2000; Jung et al, 2005, Grossberg 
et al, 2004). We assume that the recorded image 
intensity is a function of a simple linear model 
prior to separable non-linear gamma distortion 
(see general model reported in Fig. 1 of (Grossberg 
et al, 2004)). We write:

11 12 13 1

21 22 23 2

31 32 33 3

p in

p in

p in

R a a a R k
G a a a G k
B a a a B k

       
       = +       
               

(1)

where: [Rin Gin Bin]
T denotes the red (Rin ), green 

(Gin ), and blue (Bin ) components of the target 
image intensity and 

T
p p pR G B    denotes the 

colors of the acquired image. We let A denote the 
transformation matrix and k denote the constant 
offset vector. We then have a gamma model for 
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the non-linear gamma relationship to the recorded 
image (components: , ,out out outR G B ):
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To compute all the parameters of the model, 
we use non-linear least squares (see lsqnonlin 
function in MATLAB (The MathWorks company 
for software)) by solving equations (1) and (2) for 
known target images. We estimate matrices A, 
k and the gamma values, γR, γG, γB for each color 
component. To recover the original, target image 
color components, we invert the color transforma-
tions given in equations (1) and (2).

c apturing Video from Experimental 
t issue in Panoramic vs. c lose up 
Views

A total of 40 images (20 panoramic, and 20 close 
up) were captured from experimental tissue from 
two calf endometria at distances of 3 and 5 cm 
for panoramic and close up views respectively 
(see Figures. 2a and 2b).

A similar experiment was repeated using tis-
sue from a chicken cavity. A total of 200 images 
(100 panoramic, and 100 close up) were captured 
from 10 chickens under the same viewing condi-
tions as above.

c apturing Video from t issue at t wo 
different c onsecutive Angle Views

Similar to the previous experiment, a total of 40 
images (20 at angle 1 and 20 at angle 2, with 3 
degrees of difference) were captured from two calf 

endometria (see Figures. 2c and 2d). The same 
experiments were carried out for the chicken cav-
ity where a total of 200 images from 10 chicken 
cavities were captured at two different angles.

c apturing Video from the
Endometrium

The physician guides the telescope connected to 
a camera inside the uterus in order to investigate 
suspicious lesions of cancer. First, he/she inves-
tigates the anatomy of the organ and second, in 
panoramic view, he/she searches for suspicious 
areas. When a suspicious area is identified the 
physician switches to close up mode. This proce-
dure is considered to be the standard procedure 
for identifying ROIs. 

A total of 40 videos were recorded from 40 
subjects from the endometrium. From these vid-
eos, 418 ROIs of 64x64 pixels were cropped and 
classified into two categories: (i) normal (N=209) 
and (ii) abnormal (N=209) ROIs based on the 
opinion of the physician and the histopathologi-
cal examination.

rgb  t ransformation to g ray scale, 
hs V, yc rc b systems

All ROIs of 64x64 pixels were extracted from the 
tissue videos by the physician, for the purpose of 
clinical endoscopy imaging. The RGB images 
were transformed to gray scale using

Y = (0.299R + 0.587G + 0.114B)  (3)

where Y is the intensity image.
For transforming to HSV, we used:
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Figure 1. A standardized quantitative image acquisition and analysis protocol in hysteroscopy imaging 

Figure 2. ROIs from the calf endometrium under different viewing conditions: (a) panoramic, (b) close 
up, (c) angle 1 and (d) angle 2.

(a) (b) (c) (d)

Color Correction

1. Calibrate the camera following the guidelines by the manufacturer (i.e. white balance). This provides optimal-viewing calibra-
tion that will be environment dependent.

2. Capture the color ROIs using the color palette and their corresponding digitally generated values based on the data given by 
the manufacturer.

3. Compute the gamma correction parameters.

Image Acquisition

4. Acquire images at an angle that is nearly orthogonal to the object under investigation (only allowing 3 degree deviation) and at 
distances of 3cm (close-up) to 5cm (panoramic).

5. Manually segment the ROIs under investigation in this examination.
6. Gamma correct the ROI images and visually assess the gamma corrected ROIs. This provides environment-independent cali-

bration.

Texture Analysis

7. Color convert the ROIs from the RGB to the HSV and to the YCrCb systems.
8. Compute texture features (eg: the SF, SGLDM, GLDS feature sets and at different scales) on the gamma corrected ROIs of step 

7 each channel of the color systems.
9.  Compare texture features extracted from a collection of normal and abnormal cases to determine significant differences. Verify 

that variations in acquisition angle and distance to object do not yield significant differences.
10.  Perform visual expert analysis of the results. 

Classification Procedure

11.  Train SVM and PNN classification models based on texture features computed at step 8 for differentiating between normal vs 
abnormal ROIs of the endometrium. This step is applied only for training purposes given that a significant number of cases has 
been collected and validated based on histopathological examination.

12.  Apply texture features on trained SVM and PNN models to derive if ROI is normal or abnormal.
13.  Compare (and derive ROC measures) of SVM and PNN models classification of step 12, with experts classification of step 10 

classified as normal or abnormal.



  ���

Quantitative Analysis of Hysteroscopy Imaging in Gynaecological Cancer

( )max , , ,
max( , , ) min( , , ) ,

max( , , )

3 , for ,
max( , , ) min( , , )

1 , for ,
max( , , ) min( , , )

5 , for , .
max( , , ) min( , , )

V R G B
R G B R G BS

R G B

G B R G B
R G B R G B

B RH G R B
R G B R G B

R G B R G
R G B R G B

=
−

=

 −
− ≥ −

 −
= − ≥

−
 −

− ≥
−

     

      
      (4)

For transforming to Y, Cr, Cb, we used:

0.299 0.587 0.114
0.596 0.275 0.321
0.212 0.523 0.311

Y R
Cr G
Cb B

     
     = − −     
     −     

      (5)

f eature Extraction

Texture features were extracted from the seg-
mented ROI images in order to characterize tissue 
captured under different viewing conditions, as 
well as to differentiate between normal and abnor-
mal tissue. A total number of 26 texture features 
were extracted from endoscopic images (described 
next). These feature sets were also successfully 
used in numerous previous works in texture 
analysis (Petrou et al, 2006). Some of the features 
used capture complementary textural properties, 
however, features that were highly dependent or 
similar with features in other feature sets, were 
identified through statistical analysis and elimi-
nated. The ROI color images were transformed 
into gray scale images and the following texture 
features were computed: 

Statistical Features (SF): SF features describe 
the gray level histogram distribution without con-
sidering spatial dependence (Wu et al, 1992). 

Spatial Gray Level Dependence Matrices 
(SGLDM): The spatial gray level dependence 
matrices as proposed by (Haralick et al, 1973) 
are based on the estimation of the second-order 
joint conditional probability density functions 

that two pixels (k, l) and (m, n) with distance d in 
direction specified by the angle q, have intensities 
of gray level (i) and gray level ( j). Based on the 
estimated probability density functions, texture 
measures were extracted, proposed by Haralick et 
al. (Haralick et al, 1973). For a selected distance 
d (in this work d=1 was used), and for angles q 
= 0o, 45o, 90o and 135o we computed four values 
for each of the texture measures. The features 
were calculated for displacements δ=(0,1), (1,1), 
(1,0), (1,-1), where δ=(Δx, Δy), and their range of 
values were computed.

Gray level difference statistics (GLDS): The 
GLDS algorithm (Wenska et al, 1976) is based 
on the assumption that useful texture informa-
tion can be extracted using first order statistics 
of an image. The algorithm is based on the 
estimation of the probability density pδ of im-
age pixel pairs at a given distance δ=(Δx, Δy), 
having a certain absolute gray level difference 
value. For any given displacement δ=(Δx, Δy), let 

( , ) ( , ) ( , )x yf x y f x y f x y= − + ∆ + ∆ . Let pδ be the 
probability density of fδ(x,y). If there are m gray 
levels, this has the form of an m-dimensional vector 
whose ith component is the probability that fδ(x,y) 
will have value (i). If the picture f is discrete, it 
is easy to compute pδ by counting the number of 
times each value of fδ(x,y) occurs, where Δx and 
Δy are integers. Coarse texture images result in 
low gray level difference values, whereas, fine 
texture images result in inter-pixel gray level 
differences with great variances. Features were 
estimated for the following distances: δ=(d,0), 
(d,d), (-d,d), (0,d). A good way to analyze texture 
coarseness is to compute, for various magnitudes 
of δ, some measure of the spread of values in pδ 
away from the origin.

statistical Analysis

The Wilcoxon rank sum test was applied (Shapiro 
et al, 1965) to investigate if the texture features 
exhibited significant statistical difference for 
different viewing conditions and between texture 
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features extracted before and after gamma correc-
tion at a≤0.05. The Wilcoxon test returns a p-value, 
which represents the probability of observing the 
given data by chance if the medians are equal. 
Small values of p imply that the null hypothesis 
should be rejected (Gibbons, 1965). 

Classification Algorithms

The diagnostic performance of the texture features 
was evaluated with two different classifiers: the 
Probabilistic Neural Network (PNN), and the 
Support Vector Machine (SVM). These classifiers 
were trained to classify the texture features into 
two classes: i) normal ROIs or ii) abnormal ROIs. 
The PNN (Specht, 1990) classifier basically is 
a kind of Radial Basis Function (RBF) network 
suitable for classification problems. This classifier 
was investigated for several spread radius in order 
to identify the best for the current problem. The 
SVM network was investigated using Gaussian 
Radial Basis Function (RBF) kernels; this was 
decided as the rest of the kernel functions could 
not achieve so good results. The SVM with RBF 
kernel was investigated using 10-fold cross vali-
dation in order to identify the best parameters 
such as spread of the RBF kernels (Joachims, 
1999). The leave-one-out method was used for 
validating all the classification models. A total of 
418 runs were carried out for training the classi-
fiers, and the performance of the classifiers was 
evaluated on the remaining one subset (Ebrchart 
et al, 1990). 

The performance of the classifier systems were 
measured using the parameters of the receiver op-
erating characteristic (ROC) curves: true positives 
(TP), false positives (FP), false negatives (FN), 
true negatives (TN), sensitivity (SE), specificity 
(SP), and precision (PR). We also computed the 
percentage of correct classifications ratio (%CC) 
based on the correctly and incorrectly classified 
cases.

r Esul ts

c olor c orrection Algorithm

The Circon IP4.1 endoscopy camera was used 
for capturing video from both the testing targets 
and tissues. In these experiments, the color cor-
rection algorithm was run using the recorded test 
targets and the ground truth images as supplied 
by Edmund Optics Company. The computed 
color correction parameters were then used for 
correcting the images. 

Table 1 tabulates the A, k and γ values of the 
R, G, B channels for three different experiments 
as well as their median values. It is clearly shown 
that a variability exists between the A, k, and 
γ values for these experiments. The variability 
documented in Table 1 motivated us to investigate 
it further. 

A database of 209 normal and 209 abnormal 
ROIs of the endometrium recorded from 40 
women was analysed. Images were corrected, 
using different combinations of the A, k, and γ 
values and their corresponding texture features 
were computed. Neural network models were 
trained to classify 100 normal and 100 abnor-
mal endometrium images. The rest of the cases 
were used for evaluating the performance of the 
models. The percentage of correct classifications 
score was computed for the evaluation set. It was 
found that the texture features computed with the 
median values of A, k and γ for the three experi-
ments gave the highest score. The results of these 
experiments are reported in detail in another study 
(Neofytou et al, 2007). It was thus decided to use, 
the median values of A, k and γ in this study as 
well. The median gamma values for the three 
channels ( )1,078 , 1,046, 1,040R G B= = =  
were very close to unit values.
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c apturing Video from Experimental 
t issue in c lose up vs. Panoramic 
Views

The results of the statistical analysis in the close 
up vs the panoramic view (using experimental 
tissues) indicates the variability due to the use of 
different viewing conditions. For this experiment, 
we use calf endometria, in an environment that 
is similar to actual operating conditions. Prior 
to gamma correction, we have found that there 
was no significance difference between features 
computed from the panoramic and close-up views 
(Neofytou et al, 2007). We also repeated these 
experiments using the chicken cavities, under the 
same viewing conditions and the same medical 
equipment. The results were very similar as for 
the calf endometria (Neofytou et al, 2004).

c apturing Video from Experimental 
t issue in t wo different c onsecutive 
Angle Views

We now present statistical analysis results for 
texture feature values extracted from different 
angles. Here, we note that gamma correction 
did not seem to affect the results. There was no 
significant difference between the texture features 
values. It is clear that there are no significant 
differences between texture feature values from 
different angles, whether we apply gamma cor-
rection or not (Neofytou et al, 2004). As before, 
we also repeated these experiments using the 
chicken cavities, under the same viewing condi-
tions and the same medical equipment, and the 
results were similar.

Table 1. Gamma correction parameters A, k and γ for three different experiments and their median 
values. (Copyright BioMedical Engineering OnLine, 2007, (Neofytou et al, 2007))

A matrix No Correction Exp 1 Exp 2 Exp 3 Median values for Exps 1, 2, 3
a11 1 0.827 0.927 0.975 0.927
a12 0 0.065 0.011 0.105 0.065
a13 0 0.042 0.004 0.104 0.042
a21 0 0.065 0.011 0.105 0.065
a22 1 0.780 0.935 0.895 0.895
a23 0 0.071 0.062 0.134 0.071
a31 0 0.042 0.004 0.104 0.042
a32 0 0.044 0.032 0.023 0.032
a33 1 0.868 1.011 1.044 1.011
k matrix
k11 0 7.693 1.101 -1.673 1.101
k21 0 10.083 2.090 0.528 2.090
k31 0 -8.161 1.598 -5.689 -5.689
γ matrix
γR 1 1.285 1.078 1.038 1.078
γG 1 1.220 1.046 0.999 1.046
γB 1 1.180 0.971 1.040 1.040
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Analysis of Images of human
Endometria

In this subsection we present results from the 
statistical analysis of ROIs extracted from human 
endometria. The results are summarized in Table 
2. The non-parametric Wilcoxon rank sum test was 
used to decide if there is a significant difference 
between normal and abnormal ROIs at a≤0.05. 
The results indicate that there is a significant 
difference. Furthermore, as we can see in Table 
2, after gamma correction, the entropy values 
are preserved. From the table, it is clear that the 
median SGLDM contrast for abnormal cases is 
dramatically larger than the corresponding median 
value for the normal ROIs.

Classification Results

Table 3 presents the performance of the different 
PNN and SVM classification models investigated 
using the texture features. It is clearly shown that 
the SVM classifier performed better than the PNN 
classifier. For the SVM classifier, the best perfor-
mance was achieved with the SF+SGLDS followed 
by the SGLDM+GLDS, and SF+SGLDS+GLDS 
with a percentage of correct classifications (%CC) 
of 79%, 76%, and 77%, respectively. Similar clas-
sification performance to the corrected ROIs was 
also obtained for all models for the uncorrected 
ROIs. Moreover, similar performance for all 
models as given in Table 3 was obtained when the 
feature sets were transformed using PCA without 
increasing the %CC.

Table 2. Percentile values of the texture features and statistical analysis for normal (N=209) vs abnormal 
(N=209) ROIs of the endometrium extracted from 40 subjects. Statistical analysis was carried out after 
gamma correction but also between the normal/abnormal ROIs before and after gamma correction at 
a≤0.05. (Copyright BioMedical Engineering OnLine, 2007, (Neofytou et al, 2007))

Normal ROIs Abnormal ROIs

Normal vs 
Abnormal 

ROIs

Original vs
Corrected 

Images
For Normal 

ROIs

Original vs
Corrected 

Images
For 

Abnormal 
ROIs

P5% P25% P50% P75% P95% P5% P25% P50% P75% P95% H H H
SF
Mean 110,11 138,44 156,06 173,91 204,36 98,48 129,37 144,65 170,48 206,06 1 1 1
Variance 13,23 29,44 54,63 127,94 286,63 31,33 66,9 124,39 223,33 492,3 1 1 1
Median 110,18 138,83 156,44 174,42 203,53 98,2 127,92 143,75 171,43 207,7 1 1 1
Mode 109,95 135,75 156 175 201,05 98 124 146,5 176 211,4 1 1 1
Skewness -1,01 -0,46 -0,14 0,12 0,56 -1,14 -0,47 -0,14 0,18 0,62 0 0 0
Kurtosis 1,94 2,26 2,64 3,09 4,39 1,82 2,24 2,62 3,16 4,85 0 0 0
Energy 0,02 0,03 0,04 0,06 0,09 0,02 0,02 0,03 0,04 0,06 1 1 1
Entropy 2,66 3,02 3,34 3,68 4,09 3,11 3,44 3,74 3,99 4,32 1 1 1
SGLDM           
Contrast 2,54 3,1 3,82 4,87 12,27 2,55 4,82 7,04 10,99 21,94 1 1 1
Correlation 0,85 0,93 0,96 0,98 0,99 0,91 0,95 0,97 0,98 0,99 1 1 0
Variance 13,02 28,83 53,97 126,41 284,3 30,89 65,53 120,85 221,38 488,55 1 1 1
Homogeneity 0,37 0,45 0,48 0,5 0,53 0,31 0,38 0,42 0,46 0,53 1 1 1
Entropy 4,47 4,93 5,31 5,78 6,28 5,01 5,49 5,93 6,28 6,65 1 1 1
GLDS           
Homogeneity 0,37 0,45 0,48 0,5 0,53 0,31 0,38 0,42 0,46 0,53 1 1 1
Contrast 2,54 3,09 3,81 4,86 12,24 2,55 4,81 7,03 10,97 21,89 1 1 1
Energy 0,17 0,24 0,25 0,27 0,3 0,14 0,18 0,21 0,24 0,3 1 1 1
Entropy 1,37 1,45 1,54 1,64 2 1,37 1,63 1,77 1,96 2,24 1 1 1
Mean 1,18 1,33 1,44 1,63 2,45 1,19 1,62 1,89 2,31 3,16 1 1 1
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Table 3. Classification performance of the SVM (PNN) models for the classification of normal and ab-
normal ROIs of the endometrium based on texture features for the RGB, HSV and YCRCB systems.

SVM (PNN) classifier %CC %FP %FN %SE %SP %PR

RGB
SF 75 (66) 21 (18) 28 (49) 71 (50) 78 (81) 77 (72)

SGLDM 72 (67) 23 (25) 31 (40) 68 (59) 76 (74) 74 (70)

GLDS 69 (63) 3 (18) 27 (55) 72 (44) 66 (81) 68 (70)
SF+SGLDM 70 (67) 34 (24) 25 (40) 75 (59) 65 (75) 68 (71)

SF+GLDS 73 (68) 30 (14) 22 (49) 77 (50) 69 (85) 71 (77)

SGLDM+GLDS 74 (67) 22 (21) 29 (43) 70 (56) 77 (78) 76 (72)
SF+SGLDM+GLDS 73 (68) 22 (19) 31 (43) 68 (56) 77 (80) 75 (74)

HSV
SF 72 (70) 30 (22) 25 (37) 75 (62) 69 (77) 71 (73)
SGLDM 74 (70) 27 (21) 23 (37) 76 (62) 72 (78) 73 (74)

GLDS 69 (67) 24 (26) 37 (39) 62 (60) 75 (73) 72 (69)

SF+SGLDM 74 (70) 36(21) 15 (37) 84 (62) 63 (78) 69 (74)
SF+GLDS 76 (70) 20 (17) 26 (42) 73 (57) 79 (82) 77 (76)

SGLDM+GLDS 72 (71) 31 (20) 24 (37) 75 (62) 68 (79) 70 (75)

SF+SGLDM+GLDS 75 (69) 30 (21) 19 (39) 80 (60) 69 (78) 72 (73)

YCrCb
SF 73 (68) 21 (11) 31 (51) 68 (48) 78 (88) 76 (81)
SGLDM 74 (69) 28 (14) 23 (47) 76 (52) 71 (85) 72 (78)

GLDS 75 (68) 24 (13) 25 (50) 75 (49) 75 (86) 75 (78)

SF+SGLDM 76 (70) 25 (13) 22 (46) 77 (53) 75 (86) 75 (79)

SF+GLDS 79 (69) 25 (12) 16 (48) 83 (51) 74 (87) 76 (81)

SGLDM+GLDS 76 (69) 25 (15) 23 (46) 76 (53) 75 (84) 75 (77)

SF+SGLDM+GLDS 77 (70) 25 (15) 20 (44) 79 (55) 74 (84) 75 (78)

dIscuss Ion  of  th E r Esul ts

For better and consistent classification perfor-
mance, we limited our study to a distance of 3 
cm for close up examinations and a distance of 5 
cm for panoramic examinations. We also limited 
our camera angle variations to remain within 3 
degrees. Furthermore, we recommend that the 
camera should be color corrected. When the pro-
posed standardized protocol is followed, we show 
that there are no significant differences between 
texture features extracted from the same type of 
tissue (normal or abnormal), but under different 

viewing conditions. On the other hand, even for the 
same type of tissue, significant differences arise 
from large variations in the viewing conditions 
that do not conform to the protocol (as shown in 
(Neofytou et al, 2007)).

More importantly, after applying the proposed 
protocol, a large number of texture features show 
significant differences between ROIs extracted 
from normal versus abnormal tissues. Findings of 
this work were published in (Neofytou et al, 2005; 
Neofytou et al, 2004; Neofytou et al, 2004; Neo-
fytou et al, 2007). To the best of our knowledge, 
although there are guidelines for performing the 
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endoscopy examination, there are no guidelines 
for the quantitatively interpretation of the results 
(American Society for Gastrointestinal Endos-
copy), (European Society for Gynaecological 
Endoscopy). Standardization efforts for reporting 
endoscopy examinations have been proposed 
(Yokoi et al, 2006).

r ecording of Endoscopic Video

Recent efforts are focused on producing guidelines 
for gynaecological endoscopy such as gynaeco-
logical endoscopy and hysteroscopy (European 
Society for Gynaecological Endoscopy). These 
efforts will help the gynaecologist in standard-
izing the procedure for capturing endoscopic 
video and will enable the quantitative analysis 
of tissue pathology. Similar efforts exist in other 
endoscopic procedures such as gastrointestinal 
endoscopy and colonoscopy (American Society 
for Gastrointestinal Endoscopy). Quantitative 
analysis in these areas is still under investigation. 
In this study, a complete framework for capturing 
and analyzing gynaecological endoscopic video 
was proposed (Scarcanski et al, 2006). 

c olor c orrection Algorithm

Although the importance of the gamma color 
correction algorithm is widely recommended in 
the literature, it is rarely used (relevant excep-
tions are (Neofytou et al, 2007) and (Cohen et 
al, 2003). We recommend that the gamma color 
correction algorithm should be used routinely 
for endoscopic images. This will facilitate the 
standardised analysis of endoscopic images. 

Image Analysis from Experimental 
t issue for different Viewing
c onditions

It is shown that there was no significant difference 
in the texture features for panoramic vs close up 
views and for small consecutive angles in normal, 

experimental tissue. Gray scale median, variance 
and entropy were higher in the close up view 
compared to the panoramic view, whereas contrast 
and homogeneity were essentially the same in both 
views. When comparing two consecutive angles, 
variance was higher in the smaller angle, whereas 
median, entropy, contrast and homogeneity were 
in the same range.

In this study, the close up and panoramic view 
distances were 3 cm and 5 cm respectively. An-
other study was carried out by our group where 
the conditions similar to laparoscopy examina-
tion were investigated. In that study the close up 
and panoramic view distances were 4 cm and 7 
cm respectively and similar results to this study 
were obtained (Neophytou et al, 2004). Similar 
results were also obtained for texture features 
obtained from different angles (with a difference 
of 2 degrees).

However, when the distance between the close 
up vs panoramic views was higher than 6 cm, 
significant differences in some texture features 
were obtained. We have also found that some 
texture feature values exhibited significant dif-
ferences when the angle differences were more 
than 5 degrees.

human Images from the
Endometrium

We have found that a standardized protocol is 
necessary in order to eliminate any significant 
differences that may arise due to the lack of color 
correction. When the proposed standardized pro-
tocol is applied, significant differences in texture 
features are only due to the desired difference 
between normal versus abnormal tissue. The 
standardized protocol is essential for subsequent 
use of texture features in a CAD system in gyn-
aecological cancer. The protocol is also expected 
to contribute to increased accuracy in difficult 
cases of gynaecological cancer.

We hope that the proposed standardized pro-
tocol will serve as a starting point for allowing 
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comparisons between different medical centers 
and images acquired using different medical 
equipment. 

Table 4 tabulates the texture characteristics of 
normal vs abnormal ROIs as these were obtained 
by interpretation of the texture features values 
given in Table 2.

Classification Performance

There was a significant difference in the SF, 
SGLDM, and GLDS features investigated between 
the normal and abnormal ROIs as documented 
in previous sections. Based on the CAD system 
developed, the highest percentage of correct clas-
sifications score was 79% and was achieved for 
the SVM classifier for the SF+GLDS feature sets. 
These results support the application of texture 
analysis for the assessment of difficult cases of 
normal and abnormal ROIs for gynaecological 
cancer. The proposed CAD system can be proved 
to be a useful tool for the gynaecologist during 
the operation so as to identify suspicious ROIs 
that should be investigated with histopathological 
examination.

futur E tr Ends

Future work will focus on investigating the use-
fulness of the proposed methodology in other 

gynaecological organs, i.e. cervix, and ovary. 
Moreover, the standardized protocol will be 
used for investigating if there is variability in the 
computed texture feature sets between different 
clinics, as well as in collecting and analyzing 
more cases. The protocol could also be applied for 
the provision of telediagnosis or teleconsultation 
services to rural health centers by experienced 
clinics during a regular laparoscopy/hysteroscopy 
examination.

More work is needed towards automating the 
pre-processing component of the protocol, and 
more specifically in the automated segmenta-
tion of normal and abnormal tissue, not only 
in freezed laparoscopy/hysteroscopy images, 
but also in video. It is noted that this is a very 
difficult task. Multi scale texture analysis, and 
multi classifier classification should also further 
be investigated towards differentiating between 
normal and abnormal tissue. will be explored 
in the cases of endometrium and ovary cancer 
increasing the physician diagnosis in difficult 
cases of gynaecological cancer.

It is hoped that the above mentioned tech-
nologies, will help the physician in detecting 
the disease at its onset, thus offering a better 
service to the citizen, via the CAD standardized 
and quantitative analysis. These will facilitate 
increased prevention, and better monitoring and 
management of the patient. 

Table 4. Texture characteristics of normal vs abnormal ROIs of the endometrium as these were obtained 
by interpretation of the texture features values given in Table 2.

Normal Abnormal
Gray level High Slighthly darker
Variance Low Very High
Contrast Low High
Homogeneity Normal range Slighthly lower
Entropy Normal range Slighthly higher



���  

Quantitative Analysis of Hysteroscopy Imaging in Gynaecological Cancer

conclus Ion

The use of a standardised protocol for capturing 
and analyzing endoscopic video will facilitate the 
wide spread use of quantitative analysis as well 
as the use of CAD systems in gynaecological 
endoscopy. The proposed standardized protocol 
suggests the use of color correction and the use of 
specific viewing conditions so that there will be 
no significant differences in texture feature values 
extracted from the same type of tissue (normal 
or abnormal). On the other hand, when either 
color correction is not applied or the standardized 
viewing conditions are not used, significant dif-
ferences in texture features can arise, even when 
they come from the same type of tissue. This 
implies that the proposed standardized protocol 
cannot be further simplified by reducing any of 
its requirements.

When the proposed protocol is applied, we have 
found that several texture features can be used to 
discriminate between normal and abnormal tissue 
since they exhibit significant differences for the 
two types of tissue investigated. Furthermore, 
a CAD system was developed based on texture 
features and classification models for classifying 
between normal and abnormal endometria with 
very satisfactory and promising results. Future 
work will focus on investigating the usefulness of 
the proposed methodology in other gynaecological 
organs and clinics, as well as in comparing the 
findings between the different clinics. Finally, 
we hope that the proposed system can also be 
applied to other endoscopic modalities such as 
colonoscopy and gastroscopy.
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kEy t Er Ms

Automatic Classifiers: Mathematical func-
tions that can classify events based on several 
features and previously known cases. 

Computer Aided Diagnosis: Diagnosis sup-
ported by computer methods, usually by using 
automatic classifiers in order to get an estimation 
on the exact diagnosis.

Hysteroscopy Examination: The physician 
guides the telescope connected to a camera 
inside the endometrium in order to investigate 
the cavity.
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Abstr Act

Patient anatomy, biochemical response, as well functional evaluation at organ level, are key fields 
that produce a significant amount of multi modal information during medical diagnosis. Visualization, 
processing, and storage of the acquired data sets are essential tasks in everyday medical practice. In 
order to perform complex processing that involves or rely on image data a robust as well versatile data 
structure was used as extension of the Visualization Toolkit (VTK). The proposed structure serves as a 
universal registration container for acquired information and post processed resulted data. The structure 
is a dynamic multidimensional data holder to host several modalities and/or Meta data like fused image 
sets, extracted features (volumetric, surfaces, edges) providing a universal coordinate system used for 
calculations and geometric processes. A case study of Treatment Planning System (TPS) in the stereotactic 
radiotherapy (RT) based on the proposed structure is discussed as an efficient medical application.

Introduct Ion

Computer aided medical applications for diag-
nosis, therapy, simulation or training proliferate 
gradually in everyday practice heavily relying 
on image data (Dawson and Kaufmann, 1998; 

Spitzer & Whitlock, 1998). Radio therapy plan-
ning, surgery as well medical simulation requires 
anatomic and physical modeling of the whole 
or part of the human body. Further on in silico 
functional study of the human body physiology 
requires the interoperation of several models to 
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approximate an as real as possible behavior (Noble, 
2002; Gavaghan, Garny, Maini, & Kohl, 2006; 
Seemann, Hoeper, Doessel, Holden, & Zhang,  
2006). Major sources of real world data related 
to anatomical details are tomographic image sets. 
Tomographic image sets of 3D solid objects are 
in general  stacked 2D cross-sectional images 
of the inspected object  that contain geometric 
information mixed with material properties of 
the solid in terms of radiation absorbance. 

The modality used to obtain the tomographic 
set determines the geometric accuracy of anatomi-
cal regions, the resolution of material properties 
as well functional characteristics. The almost 
annual doubling in computer power permits 
today real time manipulation of simultaneous 
multimodal datasets representation also know as 
image fusion and 3D image registration. Some-
times modalities act complementary in cases of 
sparse acquired datasets (Shim, Pitto, Streicher,  
Hunter P. J. & Anderson I. A.  2007). In order to 
study physiological function of  internal organs 
several models have been  proposed ranging from 
simple calculation diagrams to complex animated 
3D solid models (France et al. 2005; Noble 2002; 
Seemann, 2007; Selberg & Vanderploeg, 1994;  
Spirka & Damasa, 2007).  Almost all models 
involve dynamics and geometry. Physiological 
functions rule dynamics, dynamics produce data 
and data become finally visualized (Freudenberg, 
Schiemann, Tiede, & Hoehne, 2000). Soft tissue 
simulation used extensively in computer assisted 
surgery planning or training is an example. Tissue 
is modeled as a deformable object   while collision 
detection between the virtual surgery instruments 
or even neighbor organs is used. Deformation is 
modeled according to physiological data while 
collision detection queries the geometric mod-
els to undertake the desired action for example 
simulated tissue ablation, rapture (Nealen et al. 
2005; Teschner et al., 2005). 

The Visible Human Project is another reference 
project that serves educational as well research 
(Ackerman 1998; Robb & Hanson 2006). Using the 

multimodal sets of the project (CT, MRI, CRYO) 
volume reconstruction of the human body both 
female and male is possible. Especially today 
where computational power and special graphics 
hardware is widely available at the cost of regular 
home personal computer the realization of a virtual 
dissection is feasible (Spitzer et al. 2004).  One 
successful example is the Voxel-Man navigator 
(Schiemann, Tiede &  Hoehne, 1997). Image 
guided techniques can assist both surgery and 
diagnosis. Virtual Endoscopy is an example of 
simulated endoscopic examination for diagnostic 
purposes (Robb, 1999). Reconstruction of the 
anatomy is done using tomographic imagesets and 
a fly through visualization is adopted to provide 
the analogous of real endoscopy. Once again 
improvements in the medical scanning systems 
combined with progress in computer systems lead 
to a novel approach of diagnostic medical imag-
ing. Finally therapy planning systems in medicine 
make extensive use of imageset. Either directly or 
indirectly used to extract volumetric – geometric 
characteristics and 3D models those systems be-
come essential in calculating complex therapeutic 
schemes like stereotactic radiotherapy, IMRT, 
neurosurgery, liver surgery orthopedics surgery 
etc (Mock et al. 2004; Shim et al. 2007). 

All these systems are relative new and are 
undergoing an evaluation period where knew con-
cepts from already established knowledge areas 
are reused. An example mentioned above is colli-
sion detection. Collision detection concept serves 
gaming from the very first day when primitive 
bouncing ball games debuted to the virtual reality 
implementation of industrial standard simulators. 
Data structures are continuously tested in the 
complex field of computer visualization.

Finally the most critical part is the man ma-
chine interface.  But poor human interaction with 
application‘s functional dynamics can render 
useless even a state of the art system. Thus a lot 
of new techniques, input devices, displays, and 
controllers exist to fulfill the principal need for 
as possible high reality representation of the real 
world.
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bAckground 

The primary task in spatial modelling of the human 
body is to regain real world patient’s geometry 
from the available image data. Since the introduc-
tion of CT and MRI image datasets in medical 
diagnosis this task is mentally performed by the 
physician. Tilling cross-sectional images across a 
light box can reduce the size of area in interest as 
well the ability of the physician to traverse in space 
along planar data. Computer aided reconstruction 
was introduced (Robb et al, 1974; Herman & 
Liou, 1977) known as 3D reconstruction. On the 
2D interactive visual display systems (computer 
monitors) this is done successful using different 
techniques like ray tracing, volume rendering [etc.] 
The amount as well the nature of data are more 
photometric than geometric thus it is extremely 
difficult to perform several morphometric mea-
surement or even distance calculation between 
points in those data sets. A polygonal approxima-
tion of the external surface of the ventricle can be 
easily used to calculate any metrics like volume or 
surface distance. Applying a flow approximation 
model that involves finite element methods on the 
polygonal surface modelled vena cava is more 
efficient and feasible than to apply the simplest 
flow law in a point cloud that represents spatially 
the amount of absorbed energy. The results of the 
3D reconstruction are geometric constructs with 
defined spatial boundaries composed by planar 
polygons also called polygonal approximations. 
(Fig. 1) 

Polygonal approximations may vary in 
resolution as well in the type of primitive planar 
polygons used. The simplest planar polygon to 
manipulate mathematically and handle unam-
biguously by graphics rendering hardware is the 
triangle therefore the approximation tends more 
to triangulation. It is shown that any polygon can 
be divided in triangles. As already explained for 
practical reasons triangles were the first and are 
still used as the most favoured primitive polygon 
type to approximate surfaces. Polygonal surface 

approximations can be viewed in general as a 
fitting problem, a point set in R3 space has to be 
fitted in one ore more possible surface approxi-
mations embedded in R3 space. In most cases the 
point set is derived from a tomographic image 
set where the sliced nature ensures that points 
are rather layered than arbitrarily distributed in 
a cloud manner like the points acquired using a 
3D digitizer.

The procedure to extract an anatomical mean-
ingful region enclosed by a planar curve, the 
boundary of the anatomical unit, is called contour-
ing or contour extraction.  Contour extraction plays 
a key role in anatomical surface reconstruction. 
Algorithms that directly extract a surface (also 
called an isosurface) from a 3D point data set 
are well known and are extensively optimised. 
The famous Marching Cubes (MC) algorithm 
(Lorensen & Cline, 1987) or later improvements 
of it (Brodlie  & Wood, 2001; Lopes & Brodlie, 
2003) in surface extraction speed,  resolution as 
well accuracy are widely used to extract surface 
on relatively large  well defined anatomical units 
like bones. Application of the algorithm to smaller 
soft tissue areas does not always supply acceptable 
results even if fed by MRI image datasets. Using 
extracted planar contours the previous mentioned 
problem becomes a problem to combine points of 
adjacent slices that are not evenly spaced along 
adjacent contours. Although introduced in the 
early day of graphical computing (Kepel 1975, 
Fuchs, Kedem & Uselton,  1977) it is still an ac-
tive research topic (Jones & Chen, 1994;  Berzin 
2002).  Contouring algorithms often produce high 
detail contours. In order to reduce the level of 
detail, unnecessary or redundant vertices have to 
be removed using Vertex reduction filters applied 
to each contour line. These filters operate at each 
point that forms the polygonal contour line. A very 
simple one is the n-th point where the every n-th 
point is part of the output contour line but has the 
disadvantage that it is sensitive to the start point 
as well essential characteristics of the contour 
line might be lost arbitrarily. More complex algo-
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rithms preserve local geometrical characteristics 
(ie curvature) according to predefined tolerance 
metrics (distance, energy functions etc) without 
sacrificing global geometry of the processed line 
(Douglas and Peuckert 1973; Reuman and Witkam 
1974). The reduction can be also done at a later 
stage on higher dimension by merging /eliminating 
triangular elements based on spatial smoothing 
criteria or other restrictions or requirements. 
Sometimes regeneration of the triangular mesh is 
needed. A collection of some classical algorithms 
to achieve polygonal mesh manipulation can be 
found in several survey and reviews (Heckbert 
& Garland 1997;  Luebke, 2001).

Unlike geometric surfaces that can be de-
scribed using equation sets in general point re-
constructed surfaces do not have straight forward 
analytical expressions that can participate in 
transformations, actual processing is performed 
on their corresponding surface points.  A set of 
powerful and well explored surface categories are 
the implicit surfaces. These surfaces can be ex-

pressed as the zero level set of a function f(x,y,z). 
Implicit surfaces have some useful properties that 
are exploited in computer graphics as implicit 
surface modelling, especially in solids modelling, 
animation and simulation. One of their property 
extensively used is the intrinsic space division  
they provide. Consider the equation of a sphere 
of radius r in 3D space placed at the origin

2 2 2 2x y z r+ + =    (1)

Rewriting the equation as the zero level set 
we can classify every point in R3 according to 
the spheres surface as “inside”/ ”outside” or at 
surface by checking the sign of f(x,y,z). Thus an 
implicit surface divides the 3D space in a known 
way. It is also easy to combine implicit surfaces 
and form more complex surfaces or solid shapes 
by setting a tree like structure where the leaves 
are surfaces and the branches are operators in this 
case the root will represent the resulted final stage 
of construction. This method is know as Construc-

Figure 1. Demonstrating part of the external surface of the head triangulated and embedded into a CT 
slice
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tive Solid Geometry (CSG). The resulted construct 
has the same property regarding classification of 
points in space therefore it is easy to built complex 
constructs approximating real world constructs 
and interact , manipulate or perform collision 
detection. We have successfully expanded this 
property to polygonal reconstructed shapes by 
imitating the classification behavior of implicit 
surfaces permitting the participation of these 
functions to CSG driven simulation applications.  
Fig. 2 and Fig. 3

rE g Istr At Ion And fus Ion of
Mod Al It IEs And gr APhIcs In
st Er Eot Act Ic rA dIoth Er APy 

Stereotactic Radiotherapy as well Radiosurgery 
make intensive use of image extracted features. 
Main concerns in therapy planning and irra-
diation procedure are proper localisation of the 

lesion in terms of diagnosis and definition in 
real world coordinate system as well calculation 
of the spatial distribution of deposited energy, 
called dose, on the lesion and healthy tissue. 
Further on possible successive sessions required 
need also follow up evaluation and verification 
based on new datasets and physical examinations 
acquired. Special systems are developed to assist 
this procedure called Treatment Planning Systems 
(TPS). Those systems simulate the irradiation 
room world by modelling precisely all devices 
involved in the plan like the linear accelerator 
(LINAC) the patient table and the patient itself 
to perform geometric verification in 3D space of 
patient placement, lesion targeting, functional 
feasibility and finally accepted volume dose dis-
tribution. The data input to the system are single 
or multimodal tomographic image sets represent-
ing the desired body anatomy where the lesion 
is located. Stereotactic radiotherapy is widely 
known for successful treatment of malignances 
into the head. Its almost spherical geometry that 

Figure 2. Visualizing the «inside/outside» property of the  universal matrix voxels. Grey voxels are inside 
black voxels are outside. The implicit surface (patch) used to classify the voxels is also visible. Voxels 
have been intentionally shrinked for better visual perception
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is easily accessed by the rotational LINAC as well 
the homogeneity of the brain tissue that allows 
fast dose calculation made it an excellent field of 
therapeutic application.  Stereotactic radiotherapy 
can be also applied to treat almost any part the 
human body (Stereotactic Body Radiotherapy). 
Specific areas with high spatial density of dif-
ferent anatomical structures (spinal cord, blood 
vessels, trachea, lymphatic network etc)  like the 
neck  require sophisticated calculating power de-
manding TPS to achieve feasibility of irradiation 
within the required therapeutic, safety and geo-
metrical constraints. A novel mounting approach 
of the LINAC on a robotic arm combined with 
a six freedom degree patient table and a patient 
movement synchronisation system is the state 
of the art in radiotherapy. The CyberKnife as it 
is called  has been applied to lung (Brown et al. 
2007; Cessaretti et al. 2008), pancreas, prostate 
(Fuller et al. 2008), neck, and spinal cord (Sah-
gal,  Larson, & Chang, 2008) cancer treatment 
promising higher dose accuracy and almost total 
body access. 

The patient images used for the simulated 
reconstruction presented were axial scans of 
the head.  The image size was 256 x 256 or 512 
x 512 pixels.  Two types of slices are used fine 
and normal slices with 1.0 and 5.0 mm thickness 
respectively. The total size of the stack is 40 to 
80 slices. Normal slices are used to define the 
exterior of the head and provide also landmarks 
for proper localisation of the imageset regarding 
the real world coordinate system. Fine slices in-
clude the lesion which is usual soft tissue. After 
successful localisation contour extraction (also 
know as delineation) of all organs or anatomic 
areas has to be performed in order to reconstruct 
their models in 3D space. Contour extraction can 
be done manually, semi automatically and auto-
matically. In case of manual contour extraction 
the physician marks every point that belongs to 
the contour trying to follow it based on visual 
distinction of the boundaries. Proper contrast 
level is applied using window and slope settings 
in order to locate anatomic areas. All the points 
are linearly connected and form a closed contour. 

Figure 3. A closer look at the implicit surface patch
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The semi automatic way works also in planar 
mode but for every contour on a particular slice 
a physician indicates the point that is part of the 
external surface of desired organ or anatomical 
area. The selected Hounsfield Unit (HU) selected 
is used by a contour extraction algorithm as the 
isoline value and the points that belong to the 
corresponding isoline are generated. It is possible 
that more than one closed isoline exist, in this case 
manual intervention determines the correct one 
although automatic detection  and correction can 
be implemented by advising already delineated 
contours or anatomic atlas retrieved prototypes. 
(Falcao & Udupa 2000; Faerber, Ehrhardt, &  
Handels  2007). The last method can be also used 
for automatic contour extraction. Pateint slices 
are registered with an anatomic atlas and neces-
sary seed points are automatically transferred  to 
initiate contouring algorithms. (Faerber, Ehrhardt, 
& Handels  2005) Physicians have to review the 
generated contours and accept or modify them 
to the anatomical detail desired. 

Intermediate slice imaging data can be artifi-
cially generated using several classical interpo-
lation methods (Lehmann, Goenner, & Spitzer 
1999) or image registration techniques (Penney 
et al. 2004; Frakes et al 2008). Once delineation 
process is complete the image stack contains 
overlaid planar curves or to be more accurate a 
point set that is line connected to form a linear 
approximation of a set of contour curves. There 
are no interslice connections yet established.  All 
these contour curves will be used to form a closed, 
watertight hull that encloses the area of interest 
in 3D space. The hull surface is composed by 
triangular elements that interconnect points of 
adjacent slices.  A lot of hull generation algorithms 
exist. Some of them can directly operate on point 
clouds (points distributed in 3D space) were other 
require a planar layout of points. The connection 
element between points is still a linear segment 
and the representation is a connectivity list that 
indicates a traversal direction from one point to 
the next. While constructing contours and hulls 

the problem of direction is important because a 
lot of other issues like normals direction on planar 
elements are directly related. In order to ensure 
that the reconstructed hulls normals direction is 
consistent all contour lines extracted are filtered 
to maintain clockwise or counter clockwise con-
nection. Once the global direction is set the con-
nection of the points of the individual triangles 
has to be the same to ensure that each normal 
vector on every triangle will point outside the 
hull. This convention is stressed because the 
characterization algorithm used to determine and 
construct the models inside/outside map requires 
consistent normals direction. Also the light and 
transform algorithm of the render engine will 
produce a messy image (obscured and darkened 
areas) making 3D image perception difficult  ( 
Borodin, Zachmann  & Klein, 2004). 

The user saved structures that model organs 
and anatomic units are automatically saved as 
implicit surface constructs. These constructs 
consist of the polygonal data that is needed to 
represent the surface; the point set an octtree 
and normals cache. The octtree is a treelike data 
structure for space subdivision like the quad 
trees in planar subdivision. The use of octtrees 
speeds up point, elementary triangle retrieval 
of the polygonal surface. The normals cache is 
actually an array holding the normal vectors for 
every individual triangular element. Generation 
of the normals cache and the octtree is done upon 
creation of the implicit surface. Both of them 
are needed to speedup the point classification 
algorithm. As already mentioned any given point 
in 3D space can be characterized relative to an 
implicit surface. The implicit surface construct 
using its own classification algorithm replies to the 
call surfA->InOut() returning only three values 
1, -1 and 0 representing outside, inside and “at 
surface” respectively.

All structures are embedded into a particular 
3D data structure that acts as the universal con-
tainer for the modeling environment. The structure 
has rectilinear grid for space subdivision.  The cells 
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composing this grid are called voxels. Depending 
on the implemented simulation, the size of the 
hexahedral voxels may be non equal for every 
side of the cell allowing a more dense resolution 
in areas required. Once an implicit surface con-
struct is embedded into the universal container a 
new attribute is generated and added to the voxels 
that is used to label all voxels of the container 
as inside/outside the embedded surface or to be 
more concrete if the implicit surface represents 
the patient left eye “belongs to LE”. Subsequent 
embedding of implicit surface structures causes 
a universal voxel to be multiple labeled. Specific 
volume data can be easily queried out of the uni-
versal data structure by counting the voxel labeled 
to the organ of interest. The particular developed 
TPS for radiotherapy uses a complex hexahedral 
grid based on the acquired patient image spatial 
resolution. The hexahedral cells have quadratic 
section matched to image resolution while the 
height of each cell depends whether the cells have 
normal or fine slice embedded into them. It is also 
possible to work entirely on the fine resolution 
by interpolating missing slices between normal 
slices but the result does not justify the com-
putation overhead. In stereotactic radiotherapy 
the therapeutic dose is delivered partially to the 
patient using more irradiation beams that form 
fans rather than single beams. The benefit of this 
concept is that all irradiation beams are positioned 
to converge to a common area accumulating 
maximum energy as close as possible at the le-
sion. The placement of the beams as well the arcs 
traversed by individual beams is a problem that 
does not have a single solution. Restrictions apply 
to the path of every beam regarding sensitive or 
even forbidden anatomic units. These have to be 
either totally omitted or the dose should be kept 
below an upper limit. As already mentioned ir-
radiation beams are generated by LINACs that 
are machines with a rotating gantry around a 
center called the isocenter. The gantry can rotate 
either clockwise or counterclockwise up to 180 
degrees. The patient table rotates as well around 

the same the isocenter but the semi circle drawn 
is always on a plane perpendicular to the rotation 
plane of the gantry. It is obvious that while the 
gantry rotates to irradiate it should not in any 
way collide with the patient. Thus operational 
restrictions and machine limitations have to be 
taken in account during therapy planning. Using 
a simulated view of the beam also called “beams 
eye view” (BEV) the physician can see how the 
beam will interact with anatomic structures. Vi-
sual guidance ensures that the beams avoid them 
and a proper set of starting and ending angle are 
chosen for the rotating gantry position. 

Isocenter placement is also a critical planning 
stage. Sometimes more than one isocenter are 
needed to cover adequately the whole volume of 
the lesion. Every isocenter has its own set of beams 
and has to be verified as already mentioned. 

Once all preconditions are set the simulation 
starts firing beams passing through the isocenter 
across our geometric constructs registering energy 
deposition on the respectively cells contained into 
the beam’s path. The calculation of the dose D 
(v) on a given voxel v is given by the following 
simplified formula: 

( ) ( )( ) ( ) ( )( ),D v TPR d v OAR d v offset v C= ⋅ ⋅
      (2)

   
Function d(v) is the depth of voxel(cell) v  

referred to the beams entry point in patients 
external surface (skin). The function offset(v) is 
the distance of voxel v to the beams centerline. 
TPR(d) is the Tissue Phantom Ratio at phantom 
depth d while OAR(d, off) is the off-axis ratio at 
depth d and distance off from the beam’s centerline 
entering the phantom. C is  a collimator specific 
precalculated correction constant that justifies the 
circular field of the beams to a predefined square 
sectioned radiation field at a standard source 
detector distance. 

The dose contents of the the voxels involved 
are added up and stored as new attribute to the 
voxel representing the total dose. Quality evalua-
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tion of the treatment plan requires visualization of 
the total dose as well computation some metrics. 
The total dose data is a volumetric dataset like the 
initial imageset. Visualization of dose data can 
be done either in 2D or 3D after normalization 
against a special user selected point (max. dose, 
dose at isocenter, specific point in patients body) 
Both of them require overlay with acquired patient 
images as well any delineated organs to percept 
the actual effect. In 2D visualization the dose is 
usually color coded in contrast to the gray scaled 
CT/MRI images. Radiotherapists prefer to view 
isodose curves instead of colored areas overlaid 
on grey scaled images. At this point automatic 
multiple contour extraction algorithms give a set 
of isodose lines. Every isodose line is carefully 
examined traversing through CT/MRI slices for 
the anatomic structures enclosed.

In 3D the only meaningful visualization of the 
total dose data is the extracted isosurfaces (Fig. 
4). These isosurfaces show the volume of lesion 
enclosed that receives the specific dose. Only one 
surface at a time is meaningful to be displayed. 
Control on the isosurface opacity can highly con-
tribute to spatial perception of the relative volume 
covered. Usually more than one treatment plans 
are generated as a result of optimization. Dose 
profiles are compared and the best plan is set for 
implementation. 

Stereotactic Radiotherapy is in its nature an 
extended registration and fusion process. (Pellizari 
1998). Multimodality coordinates (CT, MRI, PET, 
MR-Spectroscopy etc), machine – room coordi-
nates (LINAC, table), patient body coordinates 
(lesion) as well the therapeutic plan (expected 
dose) have to be co-registered on the physical 
patient. Therefore spatial precision is essential in 
stereotactic radiotherapy. Proper positioning of 
the patient has to be ensured by any means. Any 
movement of the patient during dose delivery 
should be avoided. Specially designed frames 
have been developed and applied to patients to 
achieve this goal as well to provide a physical 
reference coordinates frame that is also used for 

fast registration of patient multimodal images. It 
is known that CT scans provide accurate anatomi-
cal information with high spatial resolution while 
MRI, has excellent soft tissue contrast and PET, 
MR-Spectroscopy etc reveal functional disorders 
sometimes down to metabolic level. This mutual 
information derived from the multimodality can 
be combined to precisely locate the lesion using 
the delineation process described above. (Maintz 
and Viergever 1998;. Pluim, Maintz, & Viergever, 
2003); 

Advanced image registration techniques 
promise frameless treatment (Eggers, Muehling, 
& Marmulla, 2006) while real time registration 
might compensate respiration movement that 
elastically deforms the torso geometry affect-
ing internal organs boundaries. (Rietzel, Chen,  
Choi, & Willet, 2005; Lu et al 2006; McClelland 
et al. 2006).  

The whole simulation environment of the 
TPS was coded in C++. Imageset and dataset 
processing, environment modeling and graphics 
realization was done using kitware’s Visualization 
Toolkit (VTK). (Schroeder, Martin, & Lorensen, 
1998). The proposed structures were designed 
according to VTK’s interface model ensuring 
seamless integration and easy usage to already 
experienced developers.  

f utur E t r Ends

Geometric concepts in biomedical systems are 
intrinsically related to biomedical images.  In 
most cases images are the starting point to lead 
to representation of world’s real models. In pro-
totyping the order is reversed but the common 
point is still high fidelity representation.  Fol-
lowing the chain from the acquired image sets 
to 3D representation and user interaction almost 
all points need constant improvement. Multi slice 
medical scanners may increase spatial resolution 
and scanning speed producing more data to be 
processed at later processing stage. Consider 
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dynamic, real time processing of the imageset 
generated and existing graphic hardware reaches 
its limits. This data flooding overwhelms today’s 
multicore general purpose CPU as well volatile 
memory bandwidth and size. Also processing 
software should encourage the development and 
use of well defined, high quality libraries, tool-
kits, classes even total development platforms 
stressing constant optimization and reusability 
of code. Dynamics in models might be handled 
by specialized hardware. Recall in early 90’s the 
term GPU was more fiction than fact while the 
first SuperVGA adapters proudly displayed true 
color images to CRT monitors. Today’s dedicated 
graphics processors pose units that perform higher 
than general purpose CPU raising the interest for 
general purpose GPU. 

Constructional limits posed by solid state 
physics have been always the nightmare of 
microelectronics to disturb/cancel Moore’s law. 

Core redesign of CPUs entering parallelism us-
ing multiple identical cores and promising novel 
nanomaterials might keep the Moore’s law valid 
for the near future. Specialized processors might 
strongly support some highly repeatable tasks. 
Today PhysX, a dedicated physics processor unit 
(PPU) starts offering physics calculation offering 
universal collision detection, rigid-body dynam-
ics, soft-body dynamics and deformation, fluid 
dynamics, and smart particle systems in gaming 
industry. But hardware is not a sole contributor, 
software needs also redesign and refactoring to 
exploit as more as possible the available or future 
GPU hardware platform. Thus the co-evolution 
algorithms-architecture leads to a Chicken/Egg 
problem. 

Although fundamental limits of image reg-
istration are continuously studied (Robinson & 
Milanfar, 2004; Yetik & Nehorai 2006) the  topic 
is still an open research and application field 

Figure 4. Demonstrating 3D dose representation. The object in red is the target volume while the olive 
colored surface embedded in it is the isosurface of a specific user selected dose level. The arcs are the 
4 beam used to deliver dose to the target. The external surface of the head is colored orange.
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(Orchard 2008).  New and old hardware plat-
forms (GPU, VLSI) are investigated promising 
high performance for sophisticated registration 
algorithms (Gupta & Gupta 2007; Samant,  Xia, 
Muyan-Oezcelik & Owens, 2008). New optimiza-
tion techniques and parallel implementation of the 
registration process (Wachowiak & Peters, 2006) 
show significant speed up maintaining robustness 
and accuracy.  

The final part of the chain is human visual 
perception and interaction. Beside tremendous 
improvement in imaging and processing hard-
ware the terminal visualization display remains 
2-dimensional. The demand for real 3D display 
system is an old but still active research field for 
wide area of applications. There exist some imple-
mentations with acceptable spatial perception of 
the objects displayed. A commercially available 
system using dome shaped display unit offers 
color 3D projection for RT planning (Napoli et 
al., 2008). Some recent research has announced 
the development of an updatable flat monochrome 
holographic display (Tay et al. 2008). 

Finally virtual reality environments offer a 
new perception in medical training and treatment 
planning. In some surgical operations instead 
of looking to an image guiding display system 
information is directly projected in front of 
the surgeons view field (Lorensen et al. 1993). 
Wearing a special head mounted display (HMD) 
visual system graphical information is overlayed 
to the surgeons view field (Grimson et al 1996). 
The information may be a CT/MRI image or 
synthetic graphical simulated information. This 
is a typical application of augmented reality. In 
general augmented reality is actually an image 
registration problem in real time. A visual system 
(camera) is used to provide the real world image 
while a computer is synthesizing the composed 
– overlaid   image to be projected. The problems 
to be solved in real time are real scene light 
matching, real world – object coordinate sys-
tems transformation and matching ( Uenohora 
& Kanade, 1995). The benefits of augmented 

reality eliminate the use of stereotactic frames 
because solving the coordinate transformation 
a virtual universal real time coordinate system 
accompanies the patient thus any externally 
attached positioning devices can be omitted 
(Grimson et al, 1996). Total immersion virtual 
reality is also promising a new dimension in 
medical training and education. Simulating a 
complete environment (i.e. operation room) by 
synthesizing the scene with graphically modeled 
3D objects enhances spatial reality perception. A 
radiotherapy room has been simulated (Philips, 
Ward & Beavis, 2005) using this type of virtual 
reality for training. The linac movement was 
controlled by a real handheld device. Although 
VR systems progress in the visual part of real-
ity the lack of proper human interaction. User 
interaction is mainly done using keyboard and 
pointing device. In some cases joysticks are 
used to move or traveling through 3D scenes. In 
surgical and laparoscopy simulators the sense of 
touch is essential. Special controls that imitate 
force feedback using haptics technology are ex-
plored (Westerbring-van der Putten, Goossens, 
Jakimowicz, & Dankelman, 2008).

c onclus Ion

Visualization of geometric features embedded in 
biomedical images is essential for medical spatial 
perception. We have presented an application 
framework for image and geometry coregistration 
by extending functionality of an already existing, 
reliable and widely used visualization toolkit. High 
speed computing at medium cost permits to switch 
from the classic 2 dimensional patient images to 
3 dimensional patient anatomy reconstruction. 
Establishing a universal matrix where all geo-
metrical structures and image reside, interact and 
register topological and functional data might 
serve as basic framework to build simulation 
application. A real application in stereotactic 
radiotherapy treatment planning that is based on 
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the particular framework was presented in detail. 
There are functional topics in the application 
that can be optimized to increase performance 
in repeated treatment planning. To enhance the 
framework the parameter of time to support mo-
tion could be a possible extension serving real 
time dynamics where needed. On the other hand 
evolving hardware like virtual reality supporting 
devices could give another perspective of design 
and simulation in biomedical systems. 
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kE y tE r Ms

Contouring: A subdivision process where a 
set of points logically connected forms a construct 
that represents a common characteristic feature in 
general. On a 2D space contouring generates lines 
while on a 3D space beside lines and surfaces.

Dose Calculation/Optimization: The proce-
dure to determine the body absorbed energy in 
both the lesion and healthy tissue. The optimiza-
tion of the process is inherent due to steep dose 
delivery around the target.

Image Fusion: Simultaneous presentation of 
multimodal registered images on a visual media.

Image Registration:  Registration of images in 
a common known reference coordinate system.

Implicit Surface Modeling: Specific model-
ing process that approximates every geometrical 
model using implicit mathematical functions as 
analytical surface representation constructing 
complex geometric representations maintaining 
mathematical functionality of the final model.

Multimodal Imaging (Multispectral): Im-
ages of the same object using different physical 
acquisition technology the term is widely used 
for medical imaging while multispectral refers 
to satellite imaging and survey.
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Octtrees: 3D space divison data structures 
analogous to 2D quad trees. Used for storage, 
compression, collision detection, point search 
etc.of 3D models.

Stereotactic Radiotherapy: A Radiation ther-
apy procedure that requires precise localization 
of the target area to deliver fractioned prescribed 
dose by means of convergent or not beams.

Surface Reconstruction: The reconstrunction 
of geometrical surface The surface might by a 
point cloud, know contours of the recoctructed 
surface, known gradients.

Treatment Planning System (TPS): A 
computer based system used to simulate, calcu-
late and optimize the radiotherapy treatment of 
patients. The main tasks are lesion localization, 
radiation plan generation according to safety and 
health constaints and geometric feasibility plan 
optimization.

Visualization Toolkit (VTK): An open 
source graphical toolkit widely used as a common 
extendable customizable platform for scientific 
visualization.
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Abstr Act

Quantitative three-dimensional nuclear medical imaging plays a continuously increasing role in ra-
dionuclide dosimetry, allowing the development of patient – specific treatment planning systems. The 
established method for dosimetry is based on the measurement of the biokinetics by serial gamma 
camera scans, followed by calculations of the administered activity and the residence times, resulting 
in the radiation absorbed doses of critical organs. However, the quantification of the activity in differ-
ent organs from planar data is hampered by inaccurate attenuation and scatter correction as well as 
due to background and organ overlay (Glatting 2006). Alternatively, dosimetry based on quantitative 
three-dimensional data is more accurate and allows a more individualized approach, provided that all 
effects that degrade the quantitative content of the images have been corrected for. In addition inhomo-
geneous organ accumulation of the radionuclide can be detected and possibly taken into account (De 
Jong 2004). This chapter provides adequate information on internal emitter dosimetry and a state of 
the art review of the current methodology. 
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Introduct Ion 

In order to estimate the absorbed dose for all 
significant tissues in nuclear medicine, one must 
determine for each tissue the quantity of energy 
absorbed per unit mass. This yields the quantity 
absorbed dose, and can be extended to the calcula-
tion of dose equivalent if desired. This response 
and the prediction of toxicity is essential to rational 
the implementation of cancer therapy. 

Nevertheless, to state that the absorbed dose 
alone would predict the radiobiologic response 
of tissue is an oversimplification that would 
certainly lead to hypo- or hyper- estimation of 
the radiation induced effects. It has already been 
recognized in radiotherapy that the response is 
affected by a number of parameters such as: the 
type of radiation (LET), the rate at which absorbed 
dose is delivered, the radiobiologic characteristics 
of the tumor or normal tissue etc. Moreover the 
anatomical characteristic of the patients have 
to be taken into account, since the presence of 
different structures affects the distribution of 
radiation dose.

Presently, nuclear medicine dosimetry is 
based on the measurement of the biokinetics of 
the radionuclide by serial gamma camera scans, 
followed by calculations comprising three steps. 
First the percentage of administered activity of 
the radiopharmaceutical must be determined for 
the accumulating organs for several scan times. 
Second these biokinetic data must be integrated 
to obtain the percentage of the number of decays 
in the source organs, i.e the residence times and 
third, the radiation absorbed doses of critical 
organs must be determined.

However, using planar data to quantify the 
activity in different organs may be severely af-
fected by several factors, such as the inaccurate 
attenuation and scatter correction as well as the 
background and organ overlay. 

Dosimetry that takes into account quantitative 
3-dimensional data is more accurate and obvi-
ously allows the so called ‘tailor made’ approach, 

in terms of the individualization of therapy on 
each specific patient. Nevertheless there are fac-
tors that can potentially degrade the quantitative 
content of the images, or insert erroneous data, 
such as the inhomogeneous organ accumulation 
of the radionuclide, which have to be detected 
and taken into account. 

The research on dosimetry is focused on the 
development of software tools, which allow the 
use of tomographic functional data (PET-SPECT) 
in conjunction with anatomical information from 
CT or MRI, providing a more accurate and detailed 
description of the individual patient situation. 
Firstly anatomical and functional data need to 
be registered and fused and then manual or au-
tomated Regions Of Interest (ROIs) are drawn. 
Hence dose calculation is based on dose kernel 
convolution methods, reliant on convolving the 
radioactivity distribution with a medium specific 
radionuclide dose-kernel, defined as the adsorbed 
dose per decay at a point away from the source. 
The innovation consists in the application of the 
CT information, which allows the use of different 
dose kernels depending on the different evaluated 
structures.

bAckground 

Absorbed Dose Definitions and
c alculations

The biologic responses of radionuclide therapy 
are mediated by a well defined physical quantity, 
the absorbed dose, defined as the energy absorbed 
per unit mass of tissue. Absorbed dose is a non-
stochastic quantity applicable to both indirectly 
and directly ionizing radiations. For indirectly 
ionizing radiations, energy is imparted to matter 
in a two step process. In the first step (resulting in 
kerma) the indirectly ionizing radiation transfers 
energy as kinetic energy to secondary charged 
particles. In the second step these charged particles 
transfer some of their kinetic energy to the medium 
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(resulting in absorbed dose) and lose some of their 
energy in the form of bremsstrahlung (electro-
magnetic radiation produced by the deceleration 
of a charged particle, such as an electron, when 
deflected by another charged particle, such as an 
atomic nucleus) losses. 

• The absorbed dose is related to the stochastic 
quantity energy imparted. The absorbed 
dose is defined as the mean energy ε imparted 
by ionizing radiation to matter of mass m in 
a finite volume V by: 

 dD
dm

=     (1)

• The energy imparted ε is the sum of all en-
ergy entering the volume of interest minus 
all energy leaving the volume, taking into 
account any mass-energy conversion within 
the volume. 

The unit of absorbed dose is joule per kilogram 
(J⋅kg -1). The special name for the unit of absorbed 
dose is the gray (Gy). 

Specifically for radionuclide therapy the 
energy absorbed in a particular mass of tissue 
is defined as:

Ε = number of radionuclide disintegrations in a 
particular volume x energy emitted per disinte-
gration of the radionuclide x fraction of emitted 
energy that is absorbed by a particular (target) 
mass. (Sgouros 2005)

Depending on the identity of the radionuclide, 
particles or rays of characteristic energy and 
abundance will be given off at a rate dependent 
on the amount of activity present. 

Most of the quantities needed for a calculation 
of dose are now defined: the energy per decay (and 
number per decay), activity and mass of the target 
region. One other factor needed is the fraction of 
emitted energy that is absorbed within the target. 
This quantity is most often called the absorbed 

fraction and is represented by the symbol φ. For 
photons (gamma rays and x rays) some of the 
emitted energy will escape objects of the size 
and composition of interest to internal dosimetry 
(mostly soft tissue organs with diameters of the 
order of centimetres). For electrons and beta 
particles, most energy is usually considered to be 
absorbed, so we usually set the absorbed fraction 
to 1.0. Electrons, beta particles and the like are 
usually grouped into a class of radiations referred 
to as ‘nonpenetrating’ emissions, while x and 
gamma rays are called ‘penetrating’ radiations. 
Subsequently a generic equation for the absorbed 
dose rate in our object as:

.
i i i ikA n ED
m

Σ
=

   (2)

where 
.

D  is the absorbed dose rate (rad h−1 or Gy 
s−1), A is the activity (μCi or MBq), n is the number 
of radiations with energy E emitted per nuclear 
transition, E is the energy per radiation (MeV), φ 
is the fraction of energy emitted that is absorbed 
in the target, m is the mass of target region (g or 
kg) and k is the proportionality constant (rad g 
μCi−1 h−1 MeV−1 or Gy kg MBq−1 s−1 MeV−1).

The equation of the cumulative dose would 
be shown as:

~

i i i ik n ED
m

ΑΣ
=     (3)

where D is the absorbed dose (rad or Gy) and ~
Α  is the cumulated activity (μCi h or MBq s). 
(Stabin 2005)

The term φ accounts for the emission type, 
energy, and also the geometry and characteristics 
of the source or target tissue, to provide a net 
factor that converts the total energy emitted in a 
particular source region to that absorbed in the 
region or in other regions. The absorbed fraction 
factor φ is generally determined by Monte Carlo 
calculations (Sgouros 2005, Loevinger  1988, 
Snyder 1978).
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dosimetry systems

Medical Internal Radiation Dose (MIRD) 
System 

The system that defined medical internal dosime-
try for many years, is the system developed in 1988 
by the Medical Internal Radiation Dose (MIRD) 
Committee of the Society of Nuclear Medicine 
(Loevinger 1988). The equation for absorbed dose 
in the MIRD system is as follows:

~
( )

k
hr k h

h
D A S r r= ←∑    (4)

In this equation, rk represents a target region 
and rh represents a source region. The cumulated 
activity is given in the term 

~
Α .

Hence all other terms of the basic equation 
are lumped in the S factor, that is:

( )
( )

k

i i i i k h
k h

r

k n E r r
S r r

m
←

← = ∑
  (5)

The use of the ‘S factor’ approach greatly fa-
cilitated dose calculations. This was accomplished 
by isolating and tabulating values for those fac-
tors of the absorbed dose calculation that could 
be generalized.

The S values were initially calculated based 
on idealized models of human anatomy defined 
as a collection of appropriately placed distinct 
organ volumes with mass and composition that 
were selected to reflect a typical or standard hu-
man anatomy.

The absorbed fractions required for the 
determination of the S values were calculated 
for each radionuclide by taking into account a 
certain number of decays uniformly distributed 
throughout each idealized organ volume, while the 
absorbed fraction from each source–target organ 
pair was calculated by Monte Carlo simulations 
(Snyder 1978). 

Of course these calculations were performed 
with very limited computational power, resulting 
in several simplifying assumptions. Therefore 
the application of these values to real patient 
anatomies that deviate from the idealized model 
would certainly lead to errors.

These potential errors led several groups to 
develop better generations of anthropomorphic 
phantoms after the development of the Snyder 
phantom (Snyder  1969). For example the devel-
opment of the series of phantoms by Cristy and 
Eckerman (1987) allowed dose calculations for 
different size and age, by including six phantoms 
representing children and adults of both genders. 
According to Stabin (2006) “absorbed fractions 
for photons at discrete energies were published for 
these phantoms, which contained approximately 
25 source and target regions. Tables of S values 
were never published, but ultimately were made 
available in the MIRDOSE computer software 
(Stabin 1996).”

Moreover Stabin (1995) modelled the changes 
to the uterus, intestines, bladder and other organs 
that occur during pregnancy and included specific 
models for the foetus, foetal soft tissue, foetal 
skeleton and placenta, in an adult female model. 
The S values for these phantoms were also made 
available through the MIRDOSE software. 

Other structures or particular organs have 
also been described by detailed models, such as 
the eye (Eckerman 1981, Holman 1983), brain 
(Eckerman 1981, Bouchet 1999), peritoneal cavity 
(Watson 1989), prostate gland (Stabin 1994), bone 
(Eckerman and Stabin 2000, Bouchet 1999), and 
rectum (Mardirossian 1999, Cross  1992).

Moreover in order to represent tumours small 
unit density spheres have also been introduced 
(Stabin and Konijnenberg 2000).

The evolution of such phantoms from the early 
beginning with the MIRD 5 Phantom, to the latest 
NURBS adult model is suggestively illustrated in 
the following figure (based on Stabin (2006)).
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Phantom based dosimetry software

Several groups have utilized the MIRD methodol-
ogy by developing software where the S factors 
are implemented.  MABDOSE (Johnson 1999) 
allows the user to place spherically shaped tumors 
within the simplified anatomic model originally 
described by the MIRD Committee. The most 
widely used, was the MIRDOSE software with 
versions 1, 2, 3 and 3.1 (Stabin 1996). The code 
automated the calculation of internal dose for a 
large number (>200) of radiopharmaceuticals in 
10 different anthropomorphic models with great 
success, until it was replaced by a newer code 
called OLINDA/EXM (Organ Level INternal 
Dose Assessment with EXponential Modelling) 
(Stabin 2005). This software includes data for 
more than 800 radionuclides resulting in S values 
specific to 10 phantoms and 5 organ models. The 
program also includes α-particle emitters and a 
pharmacokinetic module that may be used to 
determine organ cumulated activities, as well 
as the ability to perform minor patient-specific 
adjustments to doses reported for the standard 
phantoms.

Image based dosimetry software

The use of 3D imaging modalities, such as PET/CT 
and SPECT/CT allowed the use of tomographic 
functional data and anatomical data to be imple-
mented towards the development of patient-spe-
cific nuclear medicine dosimetrical systems.  This 
was made possible by the increase in computer 
processing power and the implementation of point-
kernel or Monte Carlo calculation methodologies 
for the estimation of absorbed fractions.

In order to accomplish 3D image based do-
simetry, one would need two requisites. The first 
requisite is a 3D anatomic imaging study, in order 
to define the anatomy and provide tissue density 
information (e.g CT or MRI), in conjunction with 
a 3D imaging of the radioactivity distribution (e.g. 
PET or SPECT). The second requisite would be an 
expedient software that implements the absorbed 
fraction calculation (point kernel or Monte Carlo) 
in order to estimate the spatial distribution of the 
absorbed dose.

Based on the aforementioned idea several 
groups sought to contribute to the development 
of such software, including the following efforts:  
the 3D-Internal Dosimetry (3D-ID) code (Kolbert  

Figure 1. The evolution of the idealized models of human anatomy, utilized to aid the internal nuclear 
dosimetry.
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1997), the RTDS code (Liu  1999) the DOSE3D 
code (Clairand  1999) and the SIMDOS code 
(Dewaraja  2005).

The most fully developed and widely used 
software package until now is the 3D-ID, which 
is able to perform both Monte Carlo and point-
kernel based calculations. The 3D-ID software 
package accomplished the two requisites mention 
above. It takes the distribution of radiolabeled 
antibody for a given patient (from SPECT or PET) 
and combines it with anatomic information (from 
CT or MRI) to yield absorbed dose estimates that 
are specific to a particular patient’s biodistribu-
tion and anatomy (Sgouros 1990, Sgouros 1993, 
Kolbert 1997, Sgouros 2003-2004). 

This work introduced the concept of dose 
volume histograms for internally administered 
radionuclides in a clinical trial of 131I-labeled 
anti-B1 antibody. Nevertheless the analysis did 
not reveal a statistically significant dose–re-
sponse relationship (Sgouros 2003), but Koral 
(2002) were able to demonstrate a dose–response 
relationship, using a more robust and validated 
SPECT quantitation methodology in a selected 
subset of 15 patients with pelvic or abdominal 
tumors.

Internal dosimetry using Quantitative 
3-d nuclear Medical Imaging 

The Difference Compared to External 
Beam Therapy

In order to understand the limitations, problems, 
challenges and research directions of Targeted 
Radiotherapy (TRT) dosimetry, it is useful to 
consider its standard clinical practice and compare 
it with external beam therapy. Currently, in almost 
all TRT treatments the administered activity is 
fixed; the clinician empirically modifies them ac-
cording to patient characteristics including age, 
size and clinical findings (Flux 2006). However, 
clinical studies have shown that this approach 
leads to errors in the order to 30%-100% or even 

higher. The main reason for such errors is that 
the absorbed dose is not only a function of the 
administered dose, but is highly correlated to a 
number of other factors that are patient specific, 
including both anatomical and functional varia-
tions. It is obvious that no radiation oncologist or 
medical physicist would suggest the same pro-
tocol in all patients with a certain type o cancer 
(Siegel  2002); Variations in beam type, energy, 
beam exposure time, geometry, etc are decided 
for different patients. 

The Importance

The importance of the need of personalized dosim-
etry in TRT is stated in the EU council directive 
97/43/EURATOM (Nuis A 1997) in which it is 
stated that “For all medical exposure of individuals 
for radiotherapeutic purposes exposures of target 
volumes shall be individually planned; taking 
into account that doses of non-target volumes and 
tissues shall be as low as reasonably achievable 
and consistent with the intended radiotherapeutic 
purpose of the exposure.” However, the physical 
principles of TRT make it a very complicated 
problem as compared to external beam therapy. 
For as accurate as possible absorbed dose esti-
mation and personalization, information about 
radioisotope type, radiopharmaceutical kinetics, 
patient anatomy and disease characteristics is 
needed; this information can be known, measured 
or estimated. 

The Components in TRT

Radioisotope type defines the particles emitted 
by the used radionuclide. They can be alpha, beta 
particles, gamma rays or a combination. The 
type of the emitted particles and their energy 
is known. However, the interaction between 
particles and tissue is a statistical process and 
accurate calculations are not straight forward. 
Radiopharmaceutical kinetics gives information 
about a) where the radionuclide is concentrated, 
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b) in what percentage (at least theoretically), c) 
how fast it accumulates in target organs (both 
tumors and normal organs) and d) for how long 
it remains in these areas (Stabin and Flux 2007). 
Patient anatomy provides accurate information 
about tumor(s) and organs size, as well as pos-
sible non homogeneous areas. Finally, the dis-
ease type plays a critical role in the selection of 
radiopharmaceuticals and can affect their kinetic 
properties. TRT dosimetry aims to personalize 
the abovementioned parameters and overcome the 
limitations of the standard procedures (Cremonesi 
2006). An accurate dose calculation model must 
address all those issues. 

Imaging

Imaging plays a critical role since image provides 
the personalized anatomical as well as functional 
information (Bardies 2006). The most evident in-
formation that (tomographic) imaging provides is 
the location, the size and the volume of the organs 
and the tumor. This is a standard procedure in all 
therapeutic schemes and CT or MRI imaging are 
suitable modalities. It is important to mention that 
in a kidney dosimetry study (Pauwels 2005), the 
inclusion of the actual kidney masses (derived 
from CT) lead to a significant rescale in absorbed 
doses. The new values differed up to 100% and 
explained the unexpected renal toxicity in patients 
with small kidney. 

While anatomical imaging has obvious impor-
tance, the functional imaging techniques SPECT 
and PET provide complementary information 
about tracers kinetics and tumors functionality. 
First of all, it must be emphasized that in most 
cases the imaging tracer is different from the 
therapeutic one. Thus, it is necessary to correlate 
the behavior of the imaging and the therapeutic 
radiopharmaceutical (Siegel 1999). However, 
there are significant research efforts towards the 
use of radiolabeled peptides (Cremonesi 2006), 
especially on those that emit gamma rays, which 

permit 3D imaging of the therapeutic radionu-
clides distribution. 

When using a proper imaging tracer, varia-
tions in accumulation in tumors can be depicted. 
Planar scintigraphic imaging provides functional 
information but is limited to one projection plane. 
Image quantification is not possible due to organs 
overlapping, low resolution, attenuation, scatter-
ing, collimator penetration and system dead time. 
Although such problems appear in conventional 
diagnostic planar imaging, the use of higher en-
ergy isotopes makes those effects more severe. 
Tomographic SPECT imaging overcomes the 
problem of organs overlapping. In addition more 
advanced iterative reconstruction algorithms 
allow system and acquisition parameters to be 
included in reconstruction process and partially 
compensated. PET is currently the most robust 
technique for the acquisition of quantified func-
tional images. Compared with SPECT it offers 
~100 times higher sensitivity, which significantly 
improves SNR, thus quantification. Moreover, 
attenuation and scatter correction have been 
well studied in PET, while the lack of collimator 
minimizes penetration errors. Finally PET/CT, 
which has practically replaced PET, combines 
both functional and anatomical information and is 
continuously gaining acceptance in dosimetry.

Monte Carlo

The role of Monte Carlo (MC) simulations in 
dosimetry could be divided into four major 
categories: (a) use of MC for the simulation of 
particles-matter interaction, (b) modeling of 
physical phenomena through image acquisition 
process, (c) optimization of imaging system design 
and acquisition protocols, (d) use of MC for dose 
calculation. Although, the latter in principle fully 
addresses the problem of personalized absorbed 
dose calculation, there are practical computational 
limitations, which cannot permit the clinical ap-
plication of MC. 
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A number of Monte Carlo packages have been 
developed and validated for a number of applica-
tions including dosimetry. On the one hand, there 
are generic MC code such as EGSnrc (Nelson 
1985), Geant4 (Agostinelli 2003), or MCNP 
(Briesmeister 2000), which have can be used in 
a variety of nuclear physics applications. Their 
main advantages are the wide use and validation, 
as well as continuous support and update. How-
ever, there are limitations on specific applications 
e.g. time management, simulation of low energy 
photons etc. The later is rather important in the 
case of dose calculation. On the other hand a 
number of MC packages have been designed in 
order to address specific problems such as SPECT 
and PET imaging, namely SIMIND (Ljungberg  
1989), simSET (Harrison  1993) and GATE (Jan  
2004). The main advantage of those packages 
is the relatively simple geometry construction, 
the fast implementation of simulation code and 
usually the performance advantages since they 
are optimized on specific applications. How-
ever, there are disadvantages such as limits in 
the physics description and issues concerning 
maintenance, support and upgrades.

As a first step, MC can be used in order to 
accurately model all physical processes related to 
particles generation and interaction with matter. 
Usually, patient body is descretized in voxels. 
Their size is determined by the available modal-
ity resolution. In the case of CT submillimeter 
resolution is possible, while in SPECT and PET 
voxel size is usually some millimeters. A differ-
ent material is assigned in each voxel. Thus, MC 
code can model physical processes by taking 
into account patients’ anatomical map. In order 
to select the appropriate MC code two require-
ments are needed: a) accurate and detailed physics 
simulation, b) possibility to introduce anatomical 
maps into the simulation. Thus, patient specific 
emission voxels can be defined (e.g. from SPECT 
or PET images), as well as absorption voxels (e.g 
from CT or MRI images). 

MC is a widely used tool for the simula-
tion, study and modeling of several processes 
that limit accuracy of tomographic and planar 
images. Details about the role of MC in image 
corrections can be found elsewhere (Zaidi and 
Hasegawa 2003). In dosimetry the role of MC is 
to provide additional tools and methods that will 
improve image quantification, thus increase the 
accuracy of functional planar, SPECT or PET im-
ages. The main steps include scanner and source 
simulation. Then MC is used e.g to study scatter 
distributions for a particular scanner and acquisi-
tion configuration and include this information 
in reconstruction probability matrix. In addition, 
MC is a very useful tool for modeling collimator 
penetration in scintigraphic and SPECT imaging 
and improve image resolution. The importance of 
attenuation correction in PET and SPECT and the 
use of CT for the calculation of the attenuation 
map is another challenging problem; MC can be 
used in order to correlate CT X-rays attenuation 
coefficients to gamma ray photons attenuation, 
resulting to improved quantification. While MC 
is used for modeling those effects one critical 
parameter is the possibility to introduce advanced 
phantoms including patient imaging data. This 
leads to advanced correction techniques optimized 
for human studies and specific scanners.

MC is also used for scanner and imaging 
protocols optimization. When scanner geometry 
is accurately modeled, it is possible to assess the 
effects of patient size and injected dose on system’s 
count rate e.g. NECR estimation in PET (Watson 
2005). The use of anthropomorphic phantoms 
and MC simulations is increasingly being used 
for modeling heart and respiration motion. The 
latter one can severely affect image quantification, 
especially in the case of CT attenuation correction 
(Osman 2003). The NCAT phantom that includes 
respiratory motion pattern, in combination with 
MC toolkits that can simulate time dependent 
phenomena are being used for respiratory motion 
compensation.
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Finally, MC can be used in order to directly 
calculate absorbed dose provided that patient 
geometry, radionuclide type and concentration 
locations are known (Kolbert 1997). Initially, MC 
was used in order to derive dose kernels in water 
and calculate absorbed dose using convolution 
methods (Furhang 1996). This method assumed 
a uniform patient body, although it is possible to 
use CT values in order to define different regions 
and use dose kernels for other materials. A purely 
MC based dosimetry includes a) import of the CT 
scan, in order to define patient attenuation map; 
b) import of the SPECT or PET scan (possibly 
with selected ROIs) in order to define emission 
map and c) use of MC in order to model dose 
distribution. 

Dose Calculation using NM Information 
and Dose Kernels 

The strategy for dose calculation is summarized 
in figure 2. It can be divided in four major steps, 
as it has already been described. Some key points 
are highlighted.

Dose kernels are defined as the absorbed dose 
per decay at a point r away from the source. Dose 
kernels are usually generated using MC simula-
tions. A common strategy is the simulation of a 
point source in a homogeneous media and the 
calculation of absorbed dose as a function of 
distance from the source. MC simulation must 
take into account transport of initial photons and 
all resulting particles. 

According to Furhang (1996) the dose kernel 
in cGy/Bq-s is given by the formula:
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where ndec is the number of photons per decay, 
ntotal is the total number of histories per simula-
tion, and 1.602x10-18 is an MeV/g-cGy conversion 
factor. Two examples of the dose kernel for I125 
and Sm153 are shown in Figure 3.

In order to calculate absorbed dose a specific 
dose distribution must be given (usually derived 
from a functional image). Then it is possible to fit 
the kernel to an algebraic expression such as:
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Depending on the isotope i can range between 
1 and 3. Dose is determined by convolving those 
kernels with the activity of the nuclear medicine 
image in 3D space. To speed up the process it is 
possible to work in Fourier domain and replace 
convolution, by multiplication.

The main drawback of the method is the dif-
ficulty of incorporating tissue inhomogeneity, 
eventhough it is known from anatomical images. 
The dose kernel can only be generated assuming 
an infinite, homogeneous medium. In addition 
grid size affects both accuracy of kernel calcula-
tion as well as simulation time (Liu 1998). Use 
of different kernels and functional information is 
possible, which will increase computational time 
and algorithmic complexity.

Direct Dose Calculation using Monte 
Carlo Packages

When MC is used for absorbed dose calculation 
patient-specific information is used; Patient body 
is discretized in voxels and each voxel is treated 
as a unique medium having a uniform p and Z 
value. A SPECT or PET image is used in order 
to provide cumulated activity and determine 
the number of photon emissions at each voxel. 
A CT or MRI image is used to distinguish be-
tween water and bone, to evaluate the equivalent 
pathlengths, and to discard particles escaping 
the body. This approach can accurately account 
for p and Z variations within the human body 
by simulating particle transport and tallying the 
energy deposited (Furhang 1996). However, the 
voxel dimension is an upper limit on the step 
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Figure 2. A summary of the dose calculation plan

Figure 3.  Dose kernels for I125 and Sm153. The plot shows the absorbed dose x r2 (cGy.cm2/Bq.sec) 
on the Y axis, versus the distance r in cm on the X axis.

Step 1: Register anatomical (CT, MRI)
with functional images (SPECT, PET).

Step 2: Define regions of interest in
order to define source or target volumes

Step 3: Calculate dose
in target volumes

Images are already registered and fused if a combined
modality has been used e.g SPECT/CT or PET/CT

Use an automatic image registration algorithm if images
have been separately acquired.

Select if ROIs will be drawn on the anatomical or
functional image.

Select ROIs determination algorithm (automatically or
manually)

Use kernel
convolution method

Use Monte Carlo
calculation

Define radionuclide and appropriate kernel

Convolute kernel with the source ROI image.

Select MC package

Use CT/MRI to define other materials/kernels

Define radionuclide

Use SPECT/PET image to define source
location and concentrated activity

Use CT/MRI to define patient specific
attenuation map

Include tracer kinetics (if (known)

Run simulation

Step 4: Produce dose maps

Display 3D dose distribution maps and dose contours (usually
fused on the anatomical image).

Provide quantified results of total absorbed dose in organs of
interest. Include time dependence if tracer kinetics are known.
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size, and thus requires resampling of interaction 
parameters at every voxel.

Depending on the estimated activity on the 
source organ, photons are generated; Initial photon 
positions can be uniformly sampled within each 
voxel. Each photon is emitted with a random 
direction and with energy sampled from the 
radionuclide emission spectrum (Weber 1989). 
Media differentiation is determined by setting a 
water-bone density threshold and Z of each voxel 
can be determined from a CT image. Given the 
medium cross sections and the particle energy, 
the MC code either locally deposits the particle, 
or provides the direction and the distance, T, to 
the next interaction in the corresponding infinite 
homogeneous medium having unit density. The 
process continues until the particle escapes pa-
tient geometry, or particle energy falls below a 
preselected energy threshold (e.g. 10 keV) and the 
particle energy is assumed locally absorbed.

Absorbed dose can be given by such an ex-
pression

, ,

, ,

( , , ) ( ) , 10

1 , 10

ab
x y z

medium

x y z

EDose x y z E T E KeV
V

E KeV

 = ⋅ > 
 

≤

where x,y,z are target voxel coordinates, E is the 
photon energy in MeV, V is the voxel volume in 

cm3, μab(Ε)/ρ is the mass energy absorption co-
efficient that depends on the voxel medium and 
is measured in cm2g-1 and Tx,y,z is the pathlength 
across voxel x,y,z in cm.

f utur E tr Ends

uncertainties in Absorbed dose
c alculations

The quality and accuracy of the input data imple-
mented in dosimetry software, determines the 
validity of the overall internal dose assessment. 
Efforts to measure attenuation correction, scatter 
correction, overlapping and irregularly shaped 
organs, and the measurement of patient thickness 
and background correction factors, are always 
subject to analytical errors. (Fischer 2003).

According to the ICRP (1988), the likely error 
associated with the aforementioned measure-
ments and the direct measurement of activity in 
a patient’s organ can reach up to a factor of 2, or 
about ± 100%, while the error associated with 
the use of a mathematical construct such as the 
MIRD phantom to represent the actual size and 
mass of a patient and internal organ is about ± 
20 to 60%. The optimization of the measurement 
techniques by the implementation of 3D data and 
the customization of the actual patient size and 

Figure 4. An example of the 3-D dose kernel calculation implemented in the registered anatomical and 
functional image information.
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organ weight can reduce the overall uncertainty of 
an organ dose estimate to about ± 30%. (Fischer 
2000)

The use of phantoms and standard models in 
the dosimetry of internal emitters never included 
the tabulation of S values for tumors, correctly 
so, because obviously tumors do not have definite 
absorption or standard dimensions or certain po-
sitions in the human body. Although this has not 
been a concern in diagnostic nuclear medicine, in 
therapeutic nuclear medicine the absorbed dose 
to tumors is of outmost importance in order to 
evaluate the treatment efficacy.  

The expectation that radionuclide dosimetry 
could be used to plan radionuclide therapy in the 
same way that dosimetry is used to plan external 
beam radiotherapy has yet to be met. In large part, 
this unfulfilled expectation is the direct result of 
the many variables involved in determining the 
biologic effect of targeted radionuclides. 

The objective in cancer radiotherapy is to 
design treatments that result in minimum normal 
tissue complication and maximum tumour control 
probabilities. To accomplish this goal, a quantita-
tive description of the organ response to radiation 
is of great importance. This can be achieved by 
determining the relationship between the 3-D 
dose distribution and organ radiation response 
(Tsougos 2005). Several “biomathematical” 
models (radiobiological response models) have 
been developed to estimate the radiation-induced 
symptoms. The aim was to quantify the normal 
tissue response to irradiation thus translating the 
dose delivered to normal tissue complication prob-
ability, NTCP, or the dose delivered to the tumour, 
calculating the tumour control probability (TCP) 
(Kutcher 1991, Burman 1991). Towards that direc-
tion several groups have derived radiobiological 
parameters, which are used in empirical models 
by comparing the predicted response values with 
the observed incidence of radiation complications. 
Some of the models have started to be gradually 
implemented in the clinical practice as a helping 

tool in external radiotherapy, but there is no such 
attempt in internal dosimetry yet.

Meredith (2002) summarized the current 
knowledge in the relationship between results 
from internal and external sources of radiation, 
and concluded in three specific problems that 
still apply. 

The first problem is that in internal dosim-
etry the factors such as the lack of radionuclide 
homogeneity within the tissues, or the tissue 
density changes which may have affected the 
image quantification are not carefully taken into 
account, resulting in less accurate data compar-
ing to external dose data. The second problem is 
that tracer studies used to establish the biokinet-
ics (and thus the dosimetry) may have different 
biokinetic patterns than when the full therapeutic 
dose is given, as has been documented in several 
studies. The last problem is the lack of uniformity 
on the reporting of internal dose results, which 
depends on the different use of image quantifica-
tion methods, computer programs, dose conver-
sion factors, etc.

c onclus Ion

Internal radionuclide dosimetry has evolved 
greatly since the 1970s with the development of 
the MIRD models and calculational techniques; 
however it still stands at an early stage of devel-
opment.

The physics of absorbed dose estimation is 
improving by the active research in the fields of 
patient-specific dosimetry supported by the appli-
cation of 3D imaging. The availability of faster and 
more efficient computers, improved and accurate 
Monte Carlo methods and imaging devices that 
support both anatomy and radioactivity tomog-
raphy (PET / CT) will push internal dosimetry 
into a new era of individualized therapy.

Nevertheless, two important prerequisites 
should be considered when implementing inter-
nal dosimetry software. First the image input for 
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dosimetric calculations should be quantitative 
because the validity of the data input is crucial 
for the output. Moreover it has to be noted that 
the correction of the images for all effects that 
degrade the quantitative content is especially 
difficult to achieve for SPECT or PET images 
obtained using non-pure positron emitting nu-
clides. (Glatting 2006).

Albeit, a treatment planning approach to radio-
nuclide therapy like in external radiotherapy will 
eventually require incorporation of biologic and 
radiobiologic considerations in order to predict 
response in an individual patient, and efforts in 
this direction are just beginning. 
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kE y t Er Ms

Absorbed Dose: A general term denoting the 
quantity of radiation or energy absorbed. For spe-
cial purposes it must be appropriately qualified. It 
is defined as absorbed dose per unit mass.

Dosimetry: The accurate measurement of the 
absorbed dose.

Monte Carlo: An analytical technique in 
which a large number of simulations are run 
using random quantities for uncertain variables 
and looking at the distribution of results to infer 
which values are most likely.  

Nuclear Medicine: The branch of medicine 
concerned with the use of radioisotopes in the 
diagnosis, management, and treatment of dis-
ease. Nuclear medicine uses small amounts of 
radioactive materials or radiopharmaceuticals, 
substances that are attracted to specific organs, 
bones, or tissues.

Radionuclide Therapy: A form of cancer 
therapy, by the use of radionuclides that localise 
to certain organs (e.g., radioactive iodine or gal-
lium), and deliver cytotoxic radiation doses to 
tumours.

Tomographic Data: Data acquired by radio-
logic / nuclear medicine imaging techniques for 
making detailed three-dimensional images of a 
plane section of a solid object.

Treatment Planning: A system that calculates 
the dose that will be absorbed by a radionuclide 
therapy.
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Abstr Act

Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) modality which can significantly 
improve our understanding of the brain structures and neural connectivity.  DTI measures are thought 
to be representative of brain tissue microstructure and are particularly useful for examining organized 
brain regions, such as white matter tract areas.  DTI measures the water diffusion tensor using diffu-
sion weighted pulse sequences which are sensitive to microscopic random water motion.  The resulting 
diffusion weighted images (DWI) display and allow quantification of how water diffuses along axes 
or diffusion encoding directions.  This can help to measure and quantify the tissue’s orientation and 
structure, making it an ideal tool for examining cerebral white matter and neural fiber tracts.  In this 
chapter the authors discuss the theoretical aspects of DTI, the information that can be extracted from 
DTI data, and the use of the extracted information for the reconstruction of fiber tracts and the diagnosis 
of a disease.  In addition, a review of known fiber tracking algorithms is presented.
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Introduct Ion

A major challenge for neuroscience is to under-
stand brain function in terms of connectional 
anatomy and the dynamic flow of information 
across neuron networks. In the last 10-15 years, 
MR imaging techniques have been increasingly 
applied to the study of molecular displacement 
(diffusion) in biological tissues. The MR mea-
surement of an effective diffusion tensor of 
water in tissues can provide unique biological 
and clinical information that is not available by 
other imaging modalities. For this purpose Dif-
fusion Tensor Imaging is applied. DTI is an MRI 
modality which emerged as a powerful method 
for investigating white matter architecture. Dif-
fusion is the random translational or Brownian 
motion of molecules and can be either isotropic 
or anisotropic depending on the characteristics of 
the tissue. The diffusion anisotropy can be fully 
characterized, providing more details on tissue 
microstructure. Fiber tracking in the brain is the 
most advanced application, which in combination 
with fMRI might open a window on brain connec-
tivity and the understanding of brain function. In 
this chapter we describe the tensor theory used to 
characterize molecular diffusion in white matter, 
and the information that can be extracted from 
DTI data. We review techniques for acquiring 
relatively high resolution diffusion-sensitive MR 
images and computer-based algorithms that allow 
the generation of white matter fiber tract maps 
from the tensor data. We discuss the role of these 
white matter maps in the assessment or diagnosis 
of white matter diseases and the way that can be 
combined with fMRI data to produce a clear view 
of brain function and connectivity (Bihan, 2001; 
Melhem, 2002; Nucifora 2007).

bAckground

Diffusion is the random translation or Brownian 
motion of molecules which is driven by internal 

thermal energy. The mobility of molecules can be 
characterized by a physical constant, the diffusion 
coefficient D. The random motion of molecules, 
in the presence of a strong magnetic gradient 
results in MR signal loss as a consequence of 
the dephasing of spin coherence. The signal at-
tenuation depends on D and on the b-factor and 
is given by (Basser, 1994; Basser, 1998; Bihan, 
2001; Le Bihan, 1991; Mattiello, 1994; Mattiello, 
1997; Melherm 2002):

A = exp(-b*D)    (1)

The b-value expresses the degree of diffusion 
weighting and it is determined by the type of the 
sensitizing gradient scheme implemented in the 
MR experiment. It is given by:

= ∆2 2 2 ( )3b G −    (2)

where γ is the gyromagnetic ration, G is the 
strength of gradients,  is the duration of gradi-
ents and δ is the time between gradients.

Adding two diffusion-sensitizing gradients 
before and after the refocusing pulse of a spin-echo 
sequence constitutes the basis of the diffusion-
weighted MR imaging. The signal intensity S in 
each voxel of a DWI is affected by the choice of 
b value, the pulse sequence time echo and by two 
parameters: a) the apparent diffusion coefficient 
(ADC) and b) the spin-spin relaxation time (T2). 
Apparent diffusion coefficient reflects molecular 
diffusivity in the presence of restrictions. The 
following equation describes the relationship 
between signal intensity and those parameters 
(Basser, 1994; Basser, 1998; Bihan, 2001; Le 
Bihan, 1991; Mattiello, 1994; Mattiello 1997):

S = S0e
–b(ADC) 	 	 	 (3)

where ADC is given as:
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0

1 ln SADC Sb
 = −  
 

	 	 	 (4)

and S0 is the signal intensity for b=0.
If the diffusion is the same in all directions 

is called isotropic. In small structures, as axons, 
the diffusion is restricted to some directions more 
than others. In that case the diffusion is called 
anisotropic. Diffusion anisotropy can no longer 
be characterized by the constant D, but requires 
a tensor D. A tensor is a mathematical quantity 
which describes the properties of an ellipsoid in 
the three dimensional space:

D D D

D D D D

D D D

xx xy xz

yx yy yz

zx zy zz

 
 

=  
 
 

   (5)

The diagonal elements of D represent the ap-
parent diffusion coefficient along the x, y, z direc-
tion, while the off diagonal elements represent the 
correlation between the diffusion in perpendicular 
directions. The tensor D is symmetric (Dij = Dji, 
i,j = x,y,z i ≠ j) and positive definite. The deter-
mination of tensor D can be achieved by apply-
ing diffusion sensitizing gradients in at least six 

directions in addition to a non-diffusion weighted 
image(b = 0). An important property of the tensor 
is that it be diagonalized. The diagonalization of 
the tensor D is necessary in order to determine 
the basic diffusion directions. The diagonaliza-
tion leaves only three non zero elements along the 
main diagonal of the tensor (Basser, 1994; Basser, 
1998; Bihan, 2001; Le Bihan, 1991; Mattiello, 
1994; Mattiello, 1997; Melhem, 2002):

1

2

3

0 0
D̂ 0 0 .

0 0

λ 
 = λ 
 λ 

   (6)

The diagonal elements, which are called ei-
genvalues, reflect the shape of the ellipsoid and 
their sum reflects the size of the ellipsoid. An 
eigenvector v corresponds to each eigenvalue and 
determines the main direction of the diffusion. 
The eigenvector of the largest eigenvalue cor-
responds to the direction of the main diffusion 
direction (Figure 1) (Basser, 1994; Basser, 1998; 
Bihan, 2001; Le Bihan, 1991; Mattiello, 1994; 
Mattiello, 1997; Melhem, 2002).

Figure 1. Eigenvalues and eigenvectors
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Ext r Ac t Ed  In f o r MAt Io n  f r o M 
dt I dAt A

The DTI data can be analyzed in two ways to 
provide information on the microstructure and 
the architecture for each voxel (Conturo, 1996; 
Hsu, 1995). Those are the mean diffusivity and 
the degree of anisotropy. The mean diffusivity ˆ

 
characterizes the overall mean-squared displace-
ment of molecules and the presence of obstacles 
to diffusion (Figure 2a):

1 2 3ˆ
3

+ +
=     (7)

The degree of anisotropy describes the varia-
tion of molecular displacements in the space and 
it is related to the presence of oriented structures. 
The most commonly used invariant measures 
are:

• Relative Anisotropy (RA): it represents 
the ratio of the anisotropic part of D to its 
isotropic part and is given as (Figure 2b):

 
2 2 2

1 2 3
2

ˆ ˆ ˆ( ) ( ) ( )1
ˆ3

RA − + − + −
=

      (8)

• Fractional Anisotropy (FA): it measures 
the fraction of the magnitude of D that can 
be ascribed to anisotropic diffusion and is 
given as (Figure 2c):

 + +
− +− +2 2 2

1 2 3
2 2 2

1 2 3

ˆ ˆ ˆ( ) ( ) ( )2
3

FA −
=

      (9)

• Volume Ratio (VR): it represents the ratio 
of the volume of the ellipsoid to the volume 
of a sphere of radius ˆ and is given as (Figure 
2d):

  
1 2 3

3

* *
ˆVR =

   (10)

The main direction of the diffusivities is linked 
to the orientation of the structures.

Anisotropy maps are often color encoded (color 
maps) and represent directional information of the 
principal eigenvector (Pierpaoli, 2002; Pierpaoli, 
1996; Sorensen, 1999). White matter color maps 
are created on the basis of the three vector ele-
ments of the principal eigenvector for each voxel. 
The absolute values of the vector elements are 
assigned to red (vx element), green (vy element) 
and blue (vz element). If the principal eigenvector 
is 45o between the x- and y-axes, yellow (red plus 
green) is assigned to the voxel. The intensity of the 
color of each voxel is determined by the degree 
of the fractional anisotropy (Figure 2d).

dAt A Ac QuIsIt Ion

To extract all necessary information from DTI 
data, the full tensor must be determined. This 
is accomplished by collecting a b0 image and 
diffusion weighted images along six gradient 
directions, using diffusion-sensitized MRI pulse 
sequences. The process of data acquisition in DTI 
consists of two steps: a) diffusion sensitization 
and b) spatial encoding. DTI is influenced by the 
strength, the number and the orientation of the 
gradients. Although, the increase of the number 
of sensitizing gradient directions improves the 
accuracy of diffusion tensor estimates and fiber 
tracking applications, the optimal number of gra-
dients and their orientation is widely discussed 
(Bihan, 2001; Melhem, 2002; Nucifora, 2007).

A variety of spatial encoding schemes has 
been proposed for diffusion tensor MR imaging. 
The most commonly schemes used in practice 
are based on echo-planar readout and include 
single-shot and multi-shot techniques. Multi-shot 
techniques provide higher spatial resolution, 
higher signal to noise ratio, low susceptibility-
related distortion but longer data acquisition time 
which makes them more susceptible to artefacts 
related to respiration, cerebrovascular and cere-
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Figure 2. DTI data: (a) Mean Diffusivity, (b) Relative Anisotropy, (c) Fractional Anisotropy, (d) Volume 
Ratio and (e) Color Map.

(a) (b)

(c) (d)

(e)

Figure 1: DTI data: (a) Mean Diffusivity, (b) Relative Anisotropy, (c) Fractional Anisotropy, (d)
Volume Ratio and (e) Color Map.

brospinal fluid flow, eye motion and involuntary 
head motion. 

The presence of such artefacts during data 
acquisition may lead to signal tissue misinter-
pretation. Therefore, scan times are kept short, 
by using large voxel sizes and fast acquisition 
techniques such as echo-planar imaging. Arte-
facts such as eddy currents are removed during 
preprocessing and can be further reduced with a 
modified acquisition, such as gradient and spin 
echo (GRASE), fast spin-echo and line scanning 
techniques (Alexander, 1997; Alexander, 2005; 

Anderson, 2002; Armitage, 2001; Chang, 2005; 
Hasan, 2001; Haselgrove, 1996; Jones, 1999; Jones, 
2004; Kingsley, 2004; Nucifora, 2007; Rohde, 
2004; Rohde, 2005; Turner, 1991; Xing, 1997). 

Line scanning is occasionally used in imag-
ing children due to its inherent insensitivity to 
variations in the phase of the MR signal induced 
by physiologic motion. Alternatively navigator 
information can be acquired during a multi-shot 
sequence to account for motion during recon-
struction. One such approach is periodically 
rotated overlapping parallel lines with enhanced 
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reconstruction, or PROPELLER, DT imaging, 
which acquires data in a rotating blade of k-space. 
Similarly, self-navigated interleaved spiral, or 
SNAILS, DT imaging acquires data through a 
spiral in k-space. In both cases, the oversampled 
center of k-space provides the navigator data 
(Finsterbusch, 2000; Forbes, 2002; Gudbjartsson, 
1996; Pipe, 2006; Pipe, 2002).

Pulsation of cerebrospinal fluid and cardiac 
pulsation can be corrected by decreasing voxel 
size or using fluid-attenuated inversion-recovery 
diffusion weighted imaging and cardiac gating, 
respectively. Susceptibility artefacts are addressed 
by applying a single-shot stimulated echo acquisi-
tion or multi-shot diffusion protocol which does 
not introduce phase errors due to subject motion. 
Finally, parallel imaging has been proven useful in 
reducing susceptibility artefacts both in single-shot 
and multi-shot acquisitions. Parallel imaging strate-
gies combine the signal intensity from individual 
coil elements of an RF coil array to accelerate 
MR imaging data acquisition without interfering 
with the contrast mechanisms. This reduces the 
distortions seen in echo planar imaging (EPI), but 
has the disadvantage that the signal to noise ratio 
(SNR) is lower. Because the intrinsic SNR of an 
MR imaging scanner is roughly proportional to 
the field strength, the combination of multicoil 
receiver arrays with parallel imaging techniques 
on high field magnets has produced good quality 
DT MR imaging data (Bammer, 2003; Bhagat, 
2004; Falconer, 1997; Hirsch, 1999; Kwong, 1991; 
Pagani, 2007; Papadakis, 2002; Riesebeg, 2005; 
Skare, 2001).

Although tensor model can represent most 
white matter regions, it does not adequately 
describe voxels with crossing diverging or con-
verging white matter tracts. These fiber tracts 
theoretically could be resolved using improved 
voxel resolution. However, multiple directions 
of diffusion within a single voxel are modeled 
using higher order vectors. These methods 
generally involve the examination of q-space, 
which contains the Fourier transform of diffusion 

properties. Depiction of most fiber tracts was im-
proved using 3T DT tractography compared with 
depiction using 1.5T tractography. More specifi-
cally DT tractography at 3T enables improved 
visualization of the corticospinal tract compared 
to DT tractography at 1.5T. 3T tractography of 
the superior longitudinal fasciculus, corpus cal-
losum, and fornix has some advantages over 1.5T 
tractography. Further refinement of efficient MR 
sequences are needed to improve the image qual-
ity and reliability of 3T DT tractography (Basser, 
1994; Lazar, 2003; Okada, 2006; Ozarslan, 2003; 
Pierpaoli, 196; Tuch, 2002).

f IbEr  tr Ack Ing  Algor Ith Ms

A variety of methods for the reconstruction of 
fiber tracts within white matter using DTI data 
has recently been suggested. Those methods are 
deterministic and probabilistic. Deterministic 
methods are based on line propagation algorithms 
which use local tensor information for each step 
of the propagation. Techniques differ in the way 
that information from neighboring pixels is 
incorporated to define smooth trajectories or to 
minimize noise contributions. More specifically, 
simple line propagation techniques which con-
nect voxels using local tensor information (local 
principal eigenvector orientation), are incapable 
of providing accurate representation of white 
matter tracts. To overcome this problem line 
propagation using continuous, rather than discrete, 
number fields are employed to provide connec-
tions which follow the actual white matter tract. 
Furthermore, line propagation techniques can be 
further improved to create a smooth (curved) path 
by interpolating the vector of the principal axis 
or the whole diffusion tensor for each coordinate 
as a line is propagated. The probabilistic methods 
are based on global energy minimization to find 
the energetically most favorable path between two 
predetermined voxels (Bahrens, 2003; Basser, 
2000; Conturo, 1996; Jackowski, 2005; Lazar, 
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2003; Masutani, 2003; Mori, 1999; Mori, 2002; 
Parker, 2003; Parker, 2002; Westin, 2002). 

l ine Propagation t echniques

Assuming that the orientation of the dominant 
component of the diagonalized diffusion tensor 
represents the orientation of dominant axonal 
tracts, DTI can provide a 3D vector field, in which 
each vector represents the fiber orientation. A 
simple way to reconstruct a 3D trajectory from a 
3D vector field is to propagate a line from a seed 
point following the local vector orientation. This 
starts from a seed point and follows the principal 
eigenvector of the current voxel. This voxel is 
connected to the adjacent one toward which the 
fiber direction is pointing. However, if a line is 
propagated simply by connecting pixels, which 
are discrete entities, the vector information con-
tained at each pixel may not be fully reflected 
in the propagation and the real tract cannot be 
represented. To overcome these problems line 
propagation with continuous vector field can be 
used. Tracking is launched from a seed voxel 
from which a line is propagated in the direc-
tion of eigenvector which is associated with the 
largest eigenvalue. At the point where the line 
leaves the voxel and enters the next the direction 
is changed to that of the principal eigenvector of 
the neighboring voxel. In order to create a smooth 
path, which is more accurate when the curvature 

of a reconstructed line is steep with respect to 
the imaging resolution, an interpolation method 
is used. When propagation moves to a new voxel 
a distance-weighted averaged of nearby vectors 
orientation is computed or the diffusion tensors 
are interpolated as a line propagates (Figure 3). 
The choice between the two approaches (continu-
ous propagation and interpolation) depends on the 
degree of curvature of the tract of interest with 
respect to the imaging resolution. In other words 
if the resolution is low and bending in the recon-
structed path are evident, interpolation provides 
an advantage in terms of accuracy. On the other 
hand, if the resolution is sufficiently high the 
simple continuous line propagation is faster.

Line propagation is terminated when one of the 
following criteria holds: (a) a fractional anisotropy 
threshold equals to 0.2. This termination criterion 
helps to exclude gray matter and to segment white 
matter tracts which are separated by gray mat-
ter, (b) the change between pixels angle ranges 
from 35o to 45o. In general, it is preferable to set a 
threshold which prohibits a sharp turn during line 
propagation. In the cases when two white matter 
tracts are close the angle becomes an important 
criterion for adequate segmentation. The signifi-
cance of this terminating criterion depends on the 
particular trajectories of tracts of interest and the 
image resolution (Basser, 2000; Conturo, 1999; 
Lazar, 2001; Lori, 1999; Mori, 1998; Mori, 1999; 
Mori, 2002; Stieltjes, 2001; Xue, 1999).

Figure 3. Line propagation: (a) Discrete vector field, (b) continuous vector field, (c) interpolation method

(a) (b) (c)
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Figure 4. White matter fiber tracking from different regions of the brain

Results of fiber tracking algorithms using line 
propagation techniques are shown in Figure 4.

Energy Minimization t echniques
	

Fast marching and simulated annealing methods 
belong to this category (Parker, 2000; Tuch, 2001). 
In the stationary formulation of the level set theory, 
the evolution of a front allows a time of arrival, 
T, from a starting point to any point in the image 
to be determined. The rate, F, at which the front 
evolves, is related to T by: 

| | 1T F∇ =     (11)

F is defined in the direction normal to the 
front. Usually the propagation of the front is 
governed by the image intensity and other con-
straints, such as the curvature of the front. F can 
be calculated as:

1( ) | ( ) * ( ) |F r A r n r=    (12)

where r is the front; n is the unit normal to the front; 
ε1 is the principal eigenvector of diffusion; and 
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A is the value of fractional anisotropy. The front 
propagates at the point of smallest T (highest F); 
at the point where the principal eigenvector direc-
tion is most similar to the normal to the front. As 
the front propagation proceeds from one or more 
seed points, each voxel is assigned an arrival time. 
Once the front propagation has finished, a map of 
arrival times from the seed point(s) to the rest of 
the brain is obtained. This may be interpreted as 
a likelihood of a connection map. Points that are 
well connected to the seed region(s) have short 
arrival times; those far away or poorly connected 
have larger arrival times. To determine the most 
likely path between any point within the arrival 
time map and the seed point(s), a set of link points 
is defined. From each one of these, the gradient 
of steepest descent in T is found, giving the most 
likely path back to the seed point(s). Hence, a 
trace of the best connection(s) between the seed 
point(s) and the link point(s) is created.

If two arbitrary points are chosen in a 2D vector 
field, the most favorable way to connect them is 
through simulated annealing, a technique which 
minimizes the effect of noise in a global fashion. 
Two initial ROIs are selected initially based on 
knowledge of the anatomy of the brain. Alterna-
tively, the amount of the lowest energy can be used 
to estimate the “likeliness” of the connection. For 
example, if two selected ROIs are not connected 
by the real tract, the energy to force a connection 
between them must be large even for the energy 
minimized path. This approach can be extended 
to create the “connectivity map”.

The techniques discussed above are all based 
on the principle that a clear principal axis can be 
defined inside an MRI voxel, which means that 
the voxel occupies a single tissue and that the 
vector can be connected to a neighboring voxel. 
In some situations these assumptions are violated, 
so some approaches, that were recently suggested 
to address them, are discussed below.

The assumption that the direction of the largest 
principal eigenvector (principal axis) aligns with 
a single local fiber orientation is not always true. 

Until recently, this problem requires termination 
of tracking. To better quantify this judgment, 
indices for the cigar (Cc ) and planar (Cp ) shaped 
ellipsoids have been defined and new computer-
based tracking approaches have been presented. 
These techniques are:

1. Tensor line (Lazar, 2000; Weinstein, 1999): 
It uses not only the principal eigenvectorε1, 
but the entire diffusion tensor, D, to deter-
mine the propagation direction. The diffu-
sion tensor defines a deflected direction, vout 
= D*vin, where vin is the initial direction. 
The propagation direction is given as: vprop 
= (1–a)*vin + a* vout where a is a user defined 
weighting factor. Studies have demonstrated 
that this approach can successfully recon-
struct major fiber bundles and the results 
are more robust and reproducible under 
conditions of high noise.

2. Surface line (Zhang, 2001): The algorithm 
begins by generating many streamtubes 
(which represent linear anisotropy) and 
streamsurfaces (which represent planar 
anisotropy) and then selects some of them 
in order to create a representative subset. 
Initially, each voxel with a linear or planar 
anisotropy value greater than some thresh-
old has a representative streamtube or a 
streamsurface. The criteria for selecting the 
subset include the size of the structure, the 
average anisotropy in the region contain-
ing the structure, and the similarity of the 
structures. Structures with low scores on 
these criteria are not included. 

3. Diffusion spectrum (Frank, 2001; Wedeen, 
2000): This technique images a distribu-
tion of fiber orientations within each voxel, 
mapping within each MRI voxel the 3D 
probability density function (PDF) of proton 
diffusion using q space diffusion MRI and 
Fourier transform (FT) encoding and recon-
struction. Similarly, it was demonstrated 
that the degree of anisotropy can be directly 
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estimated from the high angular resolution 
acquisition (43 orientations) without using 
any tensor calculation.

When there are multiple populations of tracts 
within a pixel, the above techniques can improve 
tractography results by detecting and visualizing 
such pixels (stream surface technique), providing 
more robust tracking (tensor line technique) and 
better describing tract architecture within a pixel 
through an increased number of measurements 
(diffusion spectrum technique). However, simple 
unconstrained DTI tract tracing cannot distin-
guish whether two tracts are crossing or kissing 
within a pixel. In this case there are three options: 
a) terminate tracking when a pixel with non-ci-
gar-shape anisotropy is met, b) use anatomical 
knowledge so that the tracking can penetrate the 
ambiguous regions by finding a path with mini-
mum energy and c) take into account the existence 
of consistent artefacts in the tracking results that 
go through particular anatomical regions. These 
artefacts may include missing branches and/or 
systematic mislabeling of adjacent tracts.

Even though there is no error in the DTI 
measurement process, noise and partial volume 
effect (PVE) make fiber tracking a complicated 
process. The first factor is largest for the linear 
line propagation models and smaller for the other 
techniques which use fitting, regularization and/or 
energy minimization processes. Partial volume 
effect is directly related to the noise since image 
resolution must be increased to reduce PVE, 
leading to lower SNR. The enhancement of SNR, 
as a postprocessing step, results in the reduction 
of resolution and, hence, increases PVE. The 
minimization of the errors can be achieved by 
the following two approaches:

1. Knowledge-based multiple-ROI ap-
proach (Mori, 2002; Stieltjes, 2001; Xing, 
1997): A drawback of this approach is that it 
can, in many cases, be applied only to ana-
tomically well-documented tracts, imposing 

limitations on the discovery of new tracts. 
However, it has a significant advantage since 
the location of many tracts can be identified 
in living humans non-invasively.

2. Probabilistic approach (Mori, 2002): As-
suming that errors due to noise and PVE are 
random, they are expected to have low repro-
ducibility if the same subject is repeatedly 
scanned and the results are superimposed. 
Poor brain normalization quality may lead 
to obscure definition of smaller tracts of 
interest, and thus decreasing detection of 
abnormalities. These limitations become 
especially apparent for the smaller fiber 
structures near the cortical areas of the 
brain. 

AnAl ys Is of  dt I

In section 3 the features which can be extracted 
from DTI data are reported. Those are scalars 
or tensors and permit the use of a variety of 
statistical techniques for group analysis. Scalar 
DTI measures such as anisotropy, diffusivity and 
probability maps are compared using histogram, 
ROI or voxel-based analysis techniques (Anbeek, 
2004; Biligili, 2004; Cerignani, 2003; Ciccarelli, 
2003; Davatzikos, 2004; Jones, 2005; Lin, 2005; 
Mascalchi, 2002; Nyul, 1999; Steens, 2004; 
Tzouio-Mazoyer, 2002).

Histogram analysis does not require any 
presuppositions related to anatomy or pathologic 
features, making it suitable for widespread dis-
eases such as multiple sclerosis or small vessel 
ischemic disease. On the other hand only global 
conclusions can be drawn on the composition of 
white gray matter. This may be a disadvantage 
when considering lesions in the brain since their 
effects often depend on their location.

ROI analysis is used to test hypothesis for 
specific regions where the disease is suspected. 
Any significant differences that are detected can 
be ascribed to the ROI, thus, offering a possible 
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correlation between structure and function. ROIs 
drawn on DTI may suffer from artefacts and de-
creased resolution, whereas those drawn on higher 
resolution images must be accurately registered 
to the DT images. In this case registration must 
be performed carefully.

Voxel-by-voxel analysis depends usually less 
on the operator and can be more easily automated 
than ROI analysis, but it can only be performed 
after intersubject registration.

APPl Ic At Ions

Analysis of DTI aims to demonstrate the re-
lationship between the white matter structure 
and the function of the anatomical region that is 
depicted. In this section application of DWI and 
DTI in disorders of the central nervous system are 
reviewed. We emphasize diseases mainly affect-
ing the white matter such as dementia, neoplasm, 
epilepsy, ischemic, psychiatric and demyelinating 
diseases (Horsfield, 2002; Nucifora, 2007).

In premature newborns, increased anisotropy 
is found in developing cortical gray matter rather 
than in unmyelinated white matter, and cortical 
anisotropy steadily decreases during the first few 
months of life. This reflects the radial anisotropy 
of the glial scaffolding that guides the migration 
of neurons to the cortex.

Although mild decreases in anisotropy are a 
normal result of aging, DT imaging has shown 
additional abnormalities in patients with several 
types of dementia and neurodegenerative dis-
eases. A study of patients with early Parkinson 
disease demonstrated decreased anisotropy in 
the substantia nigra but normal anisotropy in 
the putamen and caudate nucleus. Increased dif-
fusivity and decreased anisotropy were found 
in the corpus callosum and the frontal temporal 
and parietal white matter in both patients with 
Alzheimer Disease (AD) and those with lewy 
body dementia.

Since schizophrenia may involve disordered 
brain connectivity, many investigators have used 
DTI to demonstrate a variety of white matter 
abnormalities, often correlated with performance 
on neuropsychiatric tests. Decreased anisotropy 
in the white matter subserving language centers 
has been correlated with the presence of auditory 
hallucinations and also decreased anisotropy has 
been ascribed in the arcuate fasciculus of children 
with behavioral disorders, in the prefrontal white 
matter of the patients with bipolar disorder, and in 
the right superior frontal gyrus of elderly patients 
with depression.

The specificity of DTI measures for white 
matter abnormalities has spurred its use in 
demyelinating diseases, particularly multiple 
sclerosis. Several studies have demonstrated 
increased diffusivity and decreased anisotropy 
which vary with the degree and type of contrast 
enhancement. However, DTI has also demon-
strated abnormalities in normal appearing white 
matter and gray matter.

The use of DTI in ischemic diseases is expand-
ing well beyond its proven role in the detection 
of early acute ischemia into the domain of prog-
nosis and long-term management of ischemic 
sequelae. Patients with cerebral autosomal domi-
nant arteriotherapy with subcortical infarcts and 
leukoencephalopathy, or CADASIL, syndrome 
demonstrated decreased anisotropy and increased 
diffusivity in normal appearing white matter 
representing early ischemia. DTI abnormalities 
in the frontal lobes and cingulated fasciculus have 
been associated with specific types of cognitive 
impairment in this disease.

The changes in diffusivity may have important 
implications in the delineation of tumor margins 
beyond what is currently demonstrated with 
conventional imaging. Also, they may be used 
to predict tumor response to chemotherapy and 
radiation. Furthermore, the neurosurgical uses for 
tractography are not limited to oncology. There 
are multiple examples of the use of tractography 
in surgical planning for epilepsy. Intra-operative 
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maps of language centers in epilepsy have been 
analyzed with tractography to suggest locations of 
eloquent white matter. Tractography has also been 
used to determine whether seizure foci involved 
the visual radiations, and findings were in concor-
dance with cortical visual evoked potentials.

futur E tr Ends

The full potential of DTI will probably not be 
realized until it is integrated with other image 
modalities to obtain rich characterization of white 
matter. The most intriguing application is the 
integration of tractography with functional imag-
ing. Activation maps are the natural complement 
of tractography. A temporal relationship between 
activated foci implies the existence of subservi-
ent fiber tracts, whereas anatomic connectivity 
between two regions of the brain suggests a 
functional relationship. The excellent correlation 
of BOLD functional MR data with tractography 
findings in motor and visual cortex may illustrate 
the future of structure function investigations in 
the brain, ultimately to culminate in a comprehen-
sive description of the “human connectome”.

conclus Ion

Diffusion magnetic resonance imaging is an 
evolving tool in the examination of central ner-
vous system. Techniques such as diffusion tensor 
imaging offer a glimpse into brain microstructure 
at a scale which is not easily accessible with 
other modalities, in some cases improving the 
detection and characterization of white matter 
abnormalities. DTI is the only non-invasive ap-
proach available to track white matter fibers and 
therefore has a tremendous impact on the brain 
function studies. With DTI, diffusion anisotropy 
effects can be fully extracted, characterized and 
exploited providing even more exquisite details 
on tissue microstructure. The DTI demonstrates 

subtle abnormalities in a variety of diseases, thus, 
can have a broad range of possible applications. 
The most advanced application is tractography. 
Fiber tracking techniques offer an overall view of 
brain anatomy, including the degree of connectiv-
ity between different regions of brain. Optimal 
utilization of the wide range of data provided with 
DTI requires attention during acquisition and 
analysis. Although, first results of incorporation 
of DTI in clinical practice, especially in the as-
sessment of brain tumors, diffuse axonal injury, 
pediatric brain development and cerebral infarcts, 
are promising, DTI is not fully utilized. The full 
potential of DTI will be realized when it will be 
integrated with other image modalities such as 
functional MRI. Activation maps are the natural 
complement of tractography. This combination of 
fMRI and DTI will open a window on the brain 
connectivity issues.
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k Ey t Er Ms

Brownian Motion: (named in honor of the 
botanist Robert Brown) is the random movement 
of particles suspended in a liquid or gas or the 
mathematical model used to describe such random 
movements, often called a particle theory.

Diffusion: The spontaneous movement of 
particles from an area of high concentration to 
an area of low concentration in a given volume of 
fluid. Diffusion MRI is a specific Magnetic Reso-
nance Imaging (MRI) modality which produces 
in vivo images of biological tissues weighted by 
the local micro structural characteristics of water 
diffusion.

Diffusion Tensor Imaging: A magnetic reso-
nance imaging (MRI) technique which enables 
the measurement of the restricted diffusion of 
water in tissue in order to produce neural tract 
images. Its common application is in the imaging 
of white matter where the location, orientation, 
and anisotropy of the tracts can be measured. 

Echo Planar Imaging: A technique of planar 
imaging in which a complete planar image is 
obtained from one selective excitation pulse.
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Fractional Anisotropy: One of the com-
monly used measures of deviation from isotropy 
and reflects the degree of alignment of cellular 
structures within fiber tracts, as well as their 
structural integrity.

Mean Diffusivity: A measure of the aver-
age molecular motion independent of any tissue 
directionality. It is affected by the cellular size 
and integrity.

Navigator Echoes: Additional spin or gradient 
echoes used to monitor changes in the position of 
the sample during the scan time.

Relative Anisotropy: The ratio of the aniso-
tropic part of tensor D to its isotropic part.

Signal to Noise Ratio: Used to describe the 
relative contributions to a detected signal of the 
true signal and random superimposed signals 
(noise).

Volume Ratio: The ratio of the ellipsoid vol-
ume to the volume of a sphere.
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Abstr Act

The aim of this chapter is to analyze the recent advances in image processing and machine learning 
techniques with respect to facial expression recognition. A comprehensive review of recently proposed 
methods is provided along with an analysis of the advantages and the shortcomings of existing systems. 
Moreover, an example for the automatic identification of basic emotions is presented: Active Shape Models 
are used to identify prominent features of the face; Gabor filters are used to represent facial geometry 
at selected locations of fiducial points and Artificial Neural Networks are used for the classification into 
the basic emotions (anger, surprise, fear, happiness, sadness, disgust, neutral); and finally, the future 
trends towards automatic facial expression recognition are described.

Introduct Ion

The face is the fundamental part of day to day 
interpersonal communication. Humans use the 
face along with facial expressions to denote con-
sciously their emotional states (anger, surprise, 
stress, etc.) or subconsciously (yawn, lip biting), 

to accompany and enhance the meaning of their 
thoughts (wink) or exchange thoughts without 
talking (head nodes, look exchanges). Facial 
expressions are the result of the deformation in 
a human’s face due to muscle movement. The 
importance of automating the task to analyse 
facial expressions using computing systems is 
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apparent and can be beneficial to many different 
scientific subjects such as psychology, neurology, 
psychiatry, as well as, applications of everyday 
life such as driver monitoring systems, automated 
tutoring systems or smart environments and hu-
man-computer interaction. Although humans 
are able to identify changes in facial expressions 
easily and effortlessly even in complicated scenes, 
the same is not an easy task to be undertaken by 
a machine. Moreover, computing systems must 
share the same robustness and accuracy with a 
human so that these systems could be used in a 
real-world scenario and provide adequate aid.

Advances in topics such as face detection, 
face tracking and recognition, psychological 
studies as well as the processing power of modern 
computer systems make the automatic analysis of 
facial expressions possible for use with real world 
examples where responsiveness (i.e. real time 
processing) is required along with sensitivity (i.e. 
being able to detect various day to day emotional 
states and visual cues) and the ability to tolerate 
head movements or sudden changes. 

For an effective automatic facial expression 
recognition (AFER) system there are several 
characteristics that must be present so that it can 
be efficient. These are outlined in the Figure 1.

Face detection and identification of prominent 
features is a crucial step for an AFER system. 
It is the first step for any system that carries the 
automatic tag and the performance of this step 
in terms of accuracy is crucial for the overall 

accuracy of the system. Various approaches are 
presented in the literature in terms of static or 
temporal identification of the face or identification 
of prominent features such as eyes in contrast to 
identifying the presence of a face in a scene.

When the face is located it must be modeled 
so that it can be represented in an appropriate 
manner. The facial representation could be based 
on the facial geometry that encompasses some 
unique features of homogeneity and diversion 
across humans. It could also be based in charac-
teristics that appear after some transformation 
with mathematical expressions modeling texture, 
position and gray-level information. After that the 
feature vector is built by extracting features. It 
can be represented either holistically or locally. 
Holistic approach treats the face as a whole, i.e. 
the processing of the face and the mathematical 
information applies to the whole face without 
considering any special prominent features of it. 
On the other hand the local approach treats each 
prominent feature of the face in a different way 
and the feature extraction process is applied in 
selected locations in the image which are often 
called fiducial points. Lastly, there are systems 
which are related to the processing of image se-
quences or static images which combine the two 
approaches, treating the face in a hybrid manner. 
There is also a distinction in terms of the presence 
of temporal information or not.

Classification is the last step for an AFER 
system. The facial actions or the deformations 

Figure 1. Structure of an automatic facial expression recognition system
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due to facial movement are categorized either 
as basic emotions or as Action Units (AUs). In 
what follows depending on the use of temporal 
characteristics or not the classification process is 
considered temporal or static for this chapter.

This chapter introduces recent advances in 
automatic facial expression recognition. The first 
part contains an introduction to the automatic 
facial expression recognition systems, including 
their structure, their objectives and their limita-
tions. In the second part a review of recent work, 
is presented related to face identification, acquisi-
tion and recognition, facial feature transforma-
tion, feature vector extraction and classification. 
In part three a particular approach is described 
along with quantitative results.

bAckground

Introduction

Most systems try to recognize a small set of pro-
totypic emotions which share characteristics of 
universality and uniformity across people with 
different ethnic background or cultural heritage. 
The six basic emotions were proposed by Ekman 
and Friesen (1971) and are: disgust, fear, joy, 
surprise, sadness and anger. The neutral position 
inherits most of the characteristics that are shared 
across basic emotions and could be considered a 
seventh basic expression. Diversity of the neutral 
position arises mainly due to variations in pose 
and not muscle movement.

In every day life basic emotions occur rather 
infrequently. Emotions that are more frequent to 
occur in everyday life are due to subtle changes 
in certain specific areas such as the eyebrows or 
eyelids and so on.  For example the tightening of 
the lips in case of anger or the lowering the lips 
in case of sadness. These changes in the appear-
ance of facial expression are subtle and systems 
that recognize such changes are required to be 
more precise. The Facial Action Coding System 

(FACS) (Ekman & Friesen, 1978) provides the 
mechanisms to detect facial movement by human 
coders. When a coder is viewing a sequence of the 
facial behaviour of a human subject can decode 
Action Units (AU). Action Units are a set of ac-
tions that correspond either to muscle movement 
in facial expressions such as raising upper lip or 
blinking or some miscellaneous actions such as 
bite lip or blow. FACS consists of 44 action units. 
There is also a scale of intensity that can describe 
each action unit in a scale of 5. 

Even though Ekman and Friesen proposed cer-
tain combinations of action units as descriptive of 
certain emotions, FACS itself does not contain any 
emotion-specific information. These are coded in 
separate systems such as the Emotional Specific 
FACS (EMFACS) (Friesen & Ekman, 1983). By 
converting action units from FACS to EMFACS 
or other emotion-specific systems, expressions 
can be coded, such as sadness or surprise.

It is reported in the literature that there is a 
distinction between facial expressions that are 
spontaneous and those that are initiated by request 
often referred to as posed (Ekman, 1991,2003). 
From a physiological point of view it is perfectly 
justified since spontaneous actions and posed ac-
tions originate from different parts of the brain; 
namely the subcortical areas of the brain and the 
cortical motor strip, respectively (Meihle, 1973). 
Major differences between spontaneous and posed 
facial expressions are the actual movement that is 
initiated from facial muscles and the dynamics of 
the expression (Ekman & Rosenberg, 2005). Sub-
corticaly initiated facial expressions (spontaneous) 
are characterized by synchronized, smooth, sym-
metrical, consistent and reflex-like facial muscle 
movement. On the other hand facial expressions 
that are cortically initiated (posed) tend to be less 
smooth, with more varying dynamics (Ekman & 
Rosenberg, 2005). 

To develop and evaluate systems that are 
subject to the above conditions reliable anno-
tated databases must be used. There are several 
attempts in the literature for the development of 
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such databases but it is difficult to comprehend 
all different variability issues in a single data-
base. An example is the Japanese Female Facial 
Expression Database (JAFFE) (Lyons et al. 1999). 
It features ten different Japanese women posing 
3 or 4 examples for each basic emotion contain-
ing a total of 213 still images. The Cohn-Kanade 
database (Kanade et al. 2000) is another database 
but differs from JAFFE since it contains tem-
poral information and is used widely for facial 
expression analysis (Tian et al. 2001). It contains 
image sequences of 100 subjects posing a set of 
23 facial displays and contains FACS annotation 
in addition to basic emotion tags. Although it is 
used widely for the evaluation of AFER systems 
it has certain drawbacks. The image sequences 
in order to be complete and fully functional 
should contain 3 states for the dynamics of each 
expression; the onset which is the initialization 
of the expression, the apex which is the peak of 
the expression and the offset where the expres-
sion declines. Unfortunately, the Cohn-Kanade 
database contains information that excludes the 
offset of the expression. Another shortcoming 
of the Cohn-Kanade database is that the images 
contain a timestamp that is overlapping with the 
subject’s expression certain times. The MMI 
database (Pantic et al., 2005) contains both posed 
and spontaneous facial actions. Furthermore, it 
contains over 4000 videos as well as 600 static 
images. The images are coded based on FACS, 
either single action units or combinations, and 
basic emotions. Furthermore apart from frontal 
views, profile views are included. Another recently 
developed database is the Yin Facial Expression 
Database (Yin et al. 2006) which contains 3D 
facial expression information. The expression 
data includes 3D models, texture information 
and raw model data. It also provides a landmark 
point set for evaluating facial features segmenta-
tion techniques. It also features 6 basic emotions 
plus the neutral position.

Most research groups that are working with 
AFER systems either use the available databases 

or collect their own signals to evaluate the meth-
ods. This slight fragmentation on the evaluation 
of such systems does not make possible the 
comperative evaluation of all methods proposed 
in the literature.

f ace detection

Face detection and identification of prominent fea-
tures is a crucial step for an AFER system. This is 
the first step of any system that operates automati-
cally and the overall performance of the system 
mainly depends on the correct identification of 
the face or certain facial features such as eyes, 
eyebrows, mouth and so on. The task of locating 
the face or the prominent features of a face in a 
scene should be independent of any occlusions in 
the scene, variations of lightening conditions and 
should tolerate changes in face pose. There are 
various approaches to detect faces or prominent 
characteristics of the face using appearance based 
methods and statistical techniques, or template 
based methods (Hjelmas & Low 2001; Yang et 
al. 2002;  Li & Jain 2005).

The most commonly employed face detection 
algorithm in automatic facial expression recogni-
tion systems is the real-time face detector proposed 
by Viola and Jones (2001,2004). The face detector 
does not work directly with image intensities but 
there is a set of features extracted related to Haar 
basis functions. The Haar-like features can be 
computed at different scales and locations. For 
each set of features Adaboost is used to choose 
the most important features from the large set of 
potential features (Freund & Schapire, 1995). The 
classifiers are combined in a cascade, successive 
manner to speed up the detector’s performance. 
The face detector is able to detect faces very 
rapidly. There are other works that have adapted 
the proposed methodology. Fasel et al. (2005) 
used Gentleboost (Friedman et al., 2000) instead 
of Adaboost. Gentleboost instead of using the 
binary output of each filter, uses the output in a 
continuous manner.
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 Statistical learning techniques combined with 
appearance features are usually used to detect 
faces in images. Rowley et al. (1998) used a neu-
ral network to detect face regions from non face 
regions using as a feature vector pixel intensities 
and spatial relationships between pixels. Sung and 
Poggio (1998) used a neural network also but as 
the feature vector they have used distance mea-
sures. A real-time method proposed by Petland 
et al. (1994) detects faces by using a view-based 
eigenspace method that incorporates prominent 
features of the face such as eyes and mouth. Apart 
from real-time processing the method can handle 
head positions which vary. Another method that 
can handle varying head motion was proposed by 
Schneiderman and Kanade (2000) which utilises a 
3D object detection and appearance features such 
as object or non object features using a product 
of histograms which contains object statistics 
based on wavelets coefficients and their position 
on the object. 

Template based methods are simple to imple-
ment but are usually prone to failure when large 
variations in pose or scale exist (Yang et al., 
2002). In part the above problem can be tackled 
by deformable models.  Kass et al. proposed the 
Active Contour Models or snakes (Kass et al., 
1987). The snake is initialized at the proximity of 
the structure and is fitted onto nearby edges. The 
evolution of the snake relies in the minimization 
of an energy function. Cootes et al. has proposed 
Active Shape Models (ASM) (Cootes et al. 1995) 
and Active Appearance Models (AAM) (Cootes 
et al. 1998). Active Shape Models differ from 
snakes mainly due to global shape constrains that 
are enforced on the deformable model, ensuring 
this way that the model deforms according to the 
variations of the landmark points found in the 
training set. Moreover, a statistical gray-level 
model is built around landmark points which as-
sume a Gaussian and unimodal distribution. Ac-
tive Appearance Models extend the functionality 
of ASM capturing texturing information along 
with shape information. Recently variations of 

the ASM method have been introduced. Optimal 
Features ASM (OF-ASM) (Van Ginneken et al. 
2002) allow for multimodal distribution of the 
intensities while high segmentation accuracy is 
reported but it is more computationally expensive. 
Sukno et al. (2007) extended OF-ASM to allow 
application in more complex geometries using 
Cartesian differential invariants.

Readers are referred to Hjelmas and Low 
(2001), Yang et al. (2002) and Li & Jain (2005) 
for a more thorough analysis concerning devel-
opments in detecting faces in images or image 
sequences.

f acial f eatures Extraction

The facial feature extraction step aims at modeling 
the face using some mathematical representa-
tion in such a way so that it could later form the 
feature vector and be fed into a classifier. There 
are two approaches to represent the face and 
subsequently facial geometry. Firstly, the face 
can be processed as a whole often referred to as 
holistic or analytic approach and secondly it can 
be represented at the location of specific regions 
or at the location of fiducial points often referred 
to as local approach.

Essa and Petland (1997) treated the face 
holistically using optical flow and measured de-
formations based on the face anatomy. Black and 
Yacoob (1998) also utilized an optical flow model 
of image motion for facial expression analysis. 
Their work explores the use of local parameter-
ized optical flow models for the recognition of 
the six basic emotional expressions. Donato et 
al. (1999) has used several methods for facial 
expression recognition. They have used holistic 
Principal Component Analysis, EigenActions, 
where the principal components were obtained 
on the dataset by using difference images. A set 
of topographic local kernels were used for Local 
Feature Analysis that were matched to the sec-
ond-order statistics of the input ensemple. They 
have used also Fisher linear discriminates (FLD) 
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to project the images in a space that provided the 
maximal separability between classes and Inde-
pendent Component Analysis (ICA) to preserve 
higher order information.

The other approach referred to as local ap-
proach, tries to symbolize the geometry of promi-
nent features in a local manner. The local approach 
can be either based on the geometric properties of 
the features or some appearance based methods 
that transform the image with a mathematical 
representation. Pantic and Rothkrantz (2000) used 
geometric features to categorize in different ac-
tion units as well as combinations of action units 
and basic emotions. Tian et al. (2001) detected 
and tracked changes in facial components. The 
models that they produced included a lip model 
with 3 states (open, close, tightly closed), an eye 
model with 2 states (open and closed), brow and 
cheek models and transient facial features model 
with 2 states (present or not present). Their cat-
egorization is based on action units.

Gabor based transformations are widely used 
to extract facial appearance changes. It has been 
shown that simple cells in the primary visual cor-
tex can be modeled by Gabor functions (Daugman 
1980, 1985). This solid physiological connection 
between Gabor functions and human vision has 
yielded several approaches to feature extraction 
(Ye et al. 2004) and facial expression recognition  
(Zhang et al. 1998; Lyons & Akamatsu 1998; Lyons 
et al. 1999; Gu et al. 2005; Guo & Dyer 2005; Liu 
& Wang 2006). Moreover, Gabor functions are 
optimal for measuring local spatial frequencies 
(Shen & Bai, 2006). Zhang et al. (1998) compared 
the Gabor function coefficients at the fiducial 
points location with the coordinates of the fiducial 
points and concluded that the first represent the 
face better than the latter. Donato et al. (1999) 
reported that Gabor functions performed better 
than any other method used in both analytic and 
holistic approaches.

Fiducial points are used around the prominent 
features of the face, the location of which are 
used to extract the feature vector. The number of 

fiducial points used varies and mainly depends 
on the desired representation, as it is reported 
that different positions hold different information 
regarding the expressions (Lyons et al. 1999). The 
way that these fiducial points are identified in an 
image can either be automatic (Gu et al. 2005) 
or manual (Zhang et al. 1998; Lyons et al. 1999; 
Guo & Dyer 2005).

For a more elaborate approach related to fa-
cial expression recognition the reader can refer 
to Pantic and Rothkrantz (2000) and Fasel and 
Luettin (2003).

Classification

The last step of an AFER system is the clas-
sification of the feature vectors into meaningful 
categories. The distinction between classifica-
tion methods used in the literature depends on 
whether or not temporal information is used. 
Moreover, there is another distinction in terms 
of the categories that the classifiers classify into 
being basic emotions, single action units based on 
FACS or action units combinations that are used 
to form broader notions of emotions such as fear 
or stress and so on.

A Hidden Markov Model (HMM) describes 
the statistical behaviour of a process that gener-
ates time series data having certain statistical 
characteristics. Lien et al. (2000) used the tem-
poral characteristics and HMM to classify into 
action units or combinations of action units. A 
comparative study of the performance of differ-
ent classifiers is provided by Cohen et al. (2003). 
They have used both static and dynamic classifiers 
such as Naïve-Bayes based classifiers and Hidden 
Markov Models (HMM), respectively, to classify 
into basic emotions. The static classifiers used 
were, a modified Naïve-Bayes which assumed 
the distribution to be Cauchy not Gaussian and 
a Tree-Augmented Naïve Bayes classifier. They 
have also employed a multi-level HMM which 
allowed to segment long video sequences to 
different expression segments using temporal 
information. 
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Static classifiers do not use any temporal in-
formation that is available in image sequences. 
They use the information of a single image. Several 
methods can be found in the literature including 
neural networks, support vector machines (SVM), 
etc. Guo and Dyer (2005) provide a comparative 
study of different classifiers using the simplified 
Bayes, SVM and combinations of these classifiers 
using Adaboost. They also proposed a Linear 
Programming classifier. They categorized into 
basic emotions using the JAFFE database. Neural 
Networks have been deployed in various studies 
as well known classifiers for multi-class problems 
(Zhang et al. 1998).

Temporal classifiers are more suitable for per-
son-depended tasks due to their higher degree of 
variability in expression in humans as well as the 
variation in the dynamics of each expression. They 
are considered more difficult to train since they 
need a larger training set and more parameters 
in order to train them adequately. Static classi-
fiers can be problematic when they are used in 
sequences where each frame is categorized. When 
the expression is not at its peak it is likely that the 
static classifier can perform poorly. On the other 
hand static classifiers are easily using a smaller 
number of parameters

APPl Ic At Ion

On this section an approach for automatic facial 
expression recognition is presented. The proposed 
methodology includes four stages: (a) automatic 
discovery of prominent features of a face, such 
as the eyes, and subsequent discovery of fiducial 
points, (b) construction of the Gabor Filter Bank, 
(c) extraction of the Feature vector at the loca-
tion of the fiducial points and (d) classification 
(Figure 2).

Active shape Models

Active Shape Models (Cootes et al. 1995) utilize 
information from points around prominent fea-

tures of the face which are called landmarks. A 
Point Distribution Model (PDM) and an image 
intensity profile are computed around the land-
marks. For a total of S landmark points a single 
vector is represented as

1 1( , , , , , ) .T
s sx x y y=x     (1)

The shapes collected from the training stage 
are aligned to the same coordinate frame. The 
dimensionality of the aligned data is reduced by 
applying Principal Component Analysis and the 
mean shape is computed, thus forming the PDM. 
Any shape of the training set can be approximated 
by the mean shape, x, the eigenvector matrix P 
and bi, which defines the shape parameters for 
the ith shape,

, ( ).T
i i i ib b= + = −x x P P x x   (2)

The dimensionality is reduced by selecting 
only the eigenvectors that correspond to the 
largest eigenvalues. Depending on the number of 
excluded eigenvectors there is an error introduced 
in Equation (2). Furthermore, the parameter bi is 
constrained to deform in ways that are found in 
the training set: 

, 1 ,i ib i M≤ < <    (3)

where β is a constant, usually, from 1-3, λi is the 
ith eigenvalue and M is the total number of the 
selected eigenvectors. This is done to ensure 
that only allowable shapes are represented by 
Equation (2). 

At the training stage, for each point a profile 
that is perpendicular to the shape boundary is 
investigated to obtain information regarding 
the gray-level structure above and below each 
point. A vector is computed using the intensity 
derivatives along the profile. This is done to ensure 
some tolerance to global intensity changes. Each 
sample is then normalized using the statistical 
model gathered from all training images for that 
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point. Under the assumption that the samples are 
part of a Gaussian distribution the mean and the 
covariance are calculated. The above procedure 
is repeated for all landmark points thus forming a 
statistical gray-level structure model. The correct 
deformation and convergence of a shape in a new 
image is done recursively. First, the mean shape 
is initialized. The goal is to deform each point of 
the shape so that its correct position is located. 
In order to identify the correct position for any 
given point a profile perpendicular to the shape 
model is investigated. This is the same procedure 
as in the training stage. The displacement for 
each landmark point is estimated by minimizing 
the Mahalanobis distance between the training 
model and the test model. The shape parameters 

are updated and the procedure is repeated until 
the point converges to a correct location. This 
procedure is repeated for all points until conver-
gence to correct locations.

For each image a total number of 74 points are 
chosen to locate the landmark points. The num-
ber of fiducial points that are used in the feature 
extraction process is reduced to 20. The points 
that are chosen are near the places of interest in 
the face which contain information about the 
muscle movement. Figure 2 shows two examples 
of images that the prominent features were (a) 
correctly identified and (b) incorrectly identified 
and the set of the 20 fiducial points proposed for 
the feature vector extraction.

Figure 2. Flow Chart of the proposed method
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g abor f unction

A two dimensional Gabor function g(x, y) is the 
product of a 2-D Gaussian-shaped function re-
ferred to as the envelop function and a complex 
exponential (sinusoidal) known as the carrier and 
can be written as (Dougman 1980,1985; Manju-
nathan & Ma 1996)

2 2

2 2

1 1
( , ) exp 2 ,

2 2x y x y

x y
g x y jW= − + +

     
    
     

      (4)

where x, y are the image coordinates, σx, σy are 
the variances in the x, y coordinates respectively 
and W is the frequency of the sine wave. The 
above representation combines the even and odd 
Gabor functions which are defined in (Dougman, 
1980).

g abor f ilter bank

A Gabor filter bank can be defined as a series of 
Gabor filters at various scales and orientations. 
The application of each filter on an image produces 
a response for each pixel with different spatial-
frequency properties.

Let g(x, y) be the mother function, the Filter 
bank derives by scaling and rotating the mother 
function:

cos sin
( , ) ( , ), ,

sin cos

x x
g x y g x y

y y

′ −
′ ′ ′= =

′
    
    
    

      (6)

where θ = n� / K, K is the total number of orienta-
tions and n = 0, 1,..., K – 1.

Manjunathan and Ma showed that Gabor fil-
ters include redundant information in the images 
produced by the filter (Manjunath & Ma, 1996; 
Guo & Dyer, 2005). By selecting certain scaling 
parameters the constructed filters are not over-
lapping with each other thus avoiding redundant 
information. This leads to the following equations 
for the filter parameters a, σu and σv:

1
1
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−
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( )
2

tan ,2 2ln 2
W

Kv u= −   (9)

where a is the scaling factor, S is the number 
of scales, m = 0, 1,..., S – 1, Uh and Ul are the 
high and low frequency of interest. In this work 

,2 4 2 16h lU U= =  are chosen with three 
scales and six orientations differing by �/6. A total 
of 18 different Gabor Filters are defined which 
are used to extract the feature vector.

f eature Extraction

The Gabor decomposition of any given image 
at any scale and orientation is produced by con-
volving the image with a particular filter. The 
magnitude of the resulting complex image is used 
to define the features that will form the feature 
vector. The feature vector is formed according to 
the following equation:

, , , 0,1, , , 0,1, ,5 ,
l l

l l

x k y k

k l i j
i x k j y k

F G l N k
+ +

= − = −

  = = = 
 

∑ ∑  

      (10)

where N is the number of the fiducial points used, 
and k is the number of neighboring pixels used 
to form the regions.

A total of 20 fiducial points are used to form 
the feature vector and regions of different size are 
employed to evaluate the methodology.

Artificial Neural Networks

A feed forward back propagation ANN is em-
ployed. The architecture of the ANNs is shown 
schematically in the Figure 3.
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The first layer referred to as input layer consists 
of t inputs which is the dimension of the feature 
vector. The second layer referred to as hidden 
layer consists of t + c/2 neurons, where c is the 
number of classes used for classification. Finally, 
the output layer consists of the basic emotions 
and the neutral position. The sigmoid function 
is used as activation function for these hidden 
neurons. The third layer (output layer) consists of 
c neurons. The activation function of the output 
neurons is the linear function. In order to train 
the ANN the mean square error function is used 
and the number of epochs is 500.

dataset

The JAFFE database (Lyons et al. 1999) is used 
for the evaluation of the proposed method. It 
features ten different Japanese women posing 3 
or 4 examples for each basic emotion containing 
a total of 213 images. Neutral position inherits 
all characteristics of a basic emotion and it is 
included in the annotation of the database as a 
seventh basic emotion.

r esults

Seven sets of experiments are conducted using 
automatic identification of fiducial points and 

are compared with seven sets of experiments 
conducted when 34 fiducial points are manu-
ally identified. Table 1 presents the accuracy of 
the methodology for both sets of points and all 
different regions which are used. In the tables 
presented below the abbreviations correspond to 
the 7 categories that are used for the classification 
(SU for surprise, DI for disgust, FE for fear, HA 
for happy, NE for neutral, SA for sadness and 
finally AN for anger). For the evaluation the ten 
fold stratified cross validation method is used. 
The gradual increase, points out that the when the 
region gets broader it utilizes more information 
that describe better facial geometry. It should be 
noted that the dimension of the feature vector 
when the 20 points are used is 360 whereas when 
34 points are used the dimension is 612.

The best accuracy is reported when a region 
of 9x9 pixels is used for the 20 fiducial points 
set. In Table 2 below the confusion matrix of the 
best performing region is presented. Fear and 
sadness have the poorest performance amongst 
all emotions while neutral has the highest. There 
are a few misclassifications of sadness that are 
classified as fear. Zhang et al. (1998) have excluded 
fear from their experiments due to the difficulty 
of expressing the emotion from the subjects and 
some evidence that fear is processed differently 
by the human brain. Yin et al. (2006) reported 

Figure 3. Artificial Neural Network Architecture
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difficulties even among human experts to distin-
guish certain emotional states, namely sad with 
fear and disgust with anger. 

Zhang et al. (1998) performed a set of ex-
periments extracting the feature vector by single 
pixels at the location of 34 fiducial points manu-
ally identified and a modified ANN. When they 
used the full annotation of JAFFE they reported 
less than 90% accuracy. They repeated the ex-
periments excluding fear and reported accuracy 
of 92.3%. Guo and Dryer (2005) compared the 
performance of different classifiers on the JAFFE 
database using 34 fiducial points manually identi-
fied. They extracted the feature vector using the 
magnitude of the pixel values of the 34 fiducial 
points proposed by Zhang et al. (1998) which 
were manually selected. Three classifiers were 
compared and the accuracy of each are presented. 
When the Simplified Bayes was used the reported 
accuracy was 63.3%, when the linear Support 
Vector Machines (SVM) was used the reported 
accuracy was 91.4% and when the non linear 
(Gaussian Radial Basis function kernel) SVM 
was used the reported accuracy was 92.3%. The 
methodologies presented above construct the 
feature vector utilizing information from a single 
pixel, the pixel that the fiducial point corresponds. 
This pixel-based approach can be modified to ac-

commodate information from neighboring pixels 
at the location of each fiducial point forming a 
neighborhood, named region. The advantage of 
this modification is twofold: first artefacts that 
are introduced due to imprecise identification of 
prominent features of the face are avoided; an 
automatic methodology is more likely to vaguely 
identify the exact location of a fiducial point than 
a human expert. Second, a larger region is utilised 
which carries more information at certain areas 
of the face that contain important information 
on the facial muscle movement, allowing the 
reduction of the number of the fiducial points 
used to 20 (14 less that previous approaches). 
This is a 42% dimensionality reduction at the 
feature vector allowing for faster computation. 
The methodology has an accuracy of 90.2% and 
can be compared with methods that use single-
pixel information and more fiducial points that 
are manually identified.

c onclus Ion

Automatic facial expressions recognition is a 
vital issue in human interpersonal communica-
tion. Systems that are able to perform well and 
analyse facial expressions in real world examples 

Neighborhood 
size

Accuracy
Automatic 20 points Manual 34 points

Single Pixel 67.6% 72.8%
3x3 77.0% 81.7%
5x5 84.0% 84.0%
7x7 83.1% 85.0%
9x9 90.2% 87.3%
11x11 89.7% 87.8%
13x13 87.3% 87.0%

Table 1. Accuracy obtained for different region sizes



���  

Image Processing and Machine Learning Techniques for Facial Expression Recognition

are advantageous for scientific applications as well 
as everyday real world applications. 

In this chapter an approach to automatic facial 
expression recognition system is presented. The 
identification of the prominent features is done 
automatically and the feature vector is extracted 
using a specially constructed Gabor Filter bank 
that avoids redundant information. A region 
based methodology that ensures some flexibility 
on the identified points and avoids artefacts is 
employed. Moreover, a 20 fiducial point set is 
used that models facial geometry adequately for 
facial expression recognition. The methodology 
presented does not perform very well when try-
ing to classify sadness or fear and reports the 
biggest losses between the two emotions but has 
been reported in the literature that these emotions 
often are troubling for human experts also and 
cannot be adequately distinguished (Zhang et al., 
1998;Yin et al., 2006).

f utur E t r Ends

Automatic facial expression systems will steadily 
move towards real world applications. In terms of 
research there are still fields that must be inves-

tigated in order to allow the transition of AFER 
systems to real world applications. 

A very persistent requirement is often defined 
in terms of speed and accuracy of the system. The 
AFER systems should be developed to operate 
in real time and to be fully automated without 
manual intervention. Modern computer systems 
are close to allow this kind of processing over-
head and there are system, usually embedded, 
that allow to operate in real time. More efficient 
methods for face identification, recognition and 
acquisition in terms of speed and accuracy would 
facilitate the application of AFER systems in real 
world examples.

An active research field concerning the AFER 
systems is the categorization of such systems not 
only in basic, global emotions that are limited in 
nature, but also in facial actions or deformations 
that would allow more diversity in terms of the 
categorized emotions. Basic emotions cover a 
small set of the emotions that are present in a 
human face in every day life. Scientific subjects 
that would benefit from an active fully working 
AFER system are very little concerned with basic 
emotions and study different states and emotions 
such as pain, stress, fatigue and so on. This will 
also be beneficial moving towards real-world 

SU DI FE HA NE SA AN

SU 28 0 1 0 1 0 0

DI 0 26 2 0 0 1 0

FE 1 2 26 0 1 2 0

HA 0 0 1 29 1 0 0

NE 0 0 0 0 30 0 0

SA 0 1 4 1 0 25 0

AN 0 1 0 0 0 0 28

Table 2. Confusion matrix of the best performing region (9x9) for the 20 points set.
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applications since there is a distinction between 
posed expressions and spontaneous expressions. 
The databases that are currently in use in the 
scientific community do not include data for 
spontaneous expressions.
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kE y tE r Ms

Action Unit (AU): The key element of FACS, 
each action unit describes facial deformation due 
to each facial muscle movement. There are a total 
of 44 AUs where the majority involves contrac-
tion or relaxation of facial muscles and the rest 
involve miscellaneous actions such as “tongue 
show” or “bite lip”.

Basic Emotions: They are a small set of pro-
totypic emotions which share characteristics of 
universality and uniformity across people with 
different ethnic background or cultural heritage. 
The six basic emotions were proposed by Ekman 
and Friesen (1971) and are: disgust, fear, joy, 
surprise, sadness and anger.

Classification: The task that categorizes 
feature vectors into appropriate categories. Each 
category is called a class. 

Facial Action Coding System (FACS): It is 
a system developed by Ekman and Friesen (1978) 
to categorize human expressions. Using FACS 
human coders can categorize all possible facial 
deformation into action units that describe facial 
muscle movement.

Feature Vector Extraction: The task of 
providing a feature vector that describes facial 
geometry and deformation. There are two ways 
to model facial geometry and deformation: first by 
using prominent features of the face and second 
by using a mathematical transformation so that 
changes in appearance are modeled.
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Image Processing: The analysis of an image 
using techniques that can identify shades, colors 
and relationships which cannot be perceived by 
the human eye.

Machine Learning: The purpose of machine 
learning is to extract information from several 
types of data automatically, using computational 
and statistical methods. It is the use of computer 
algorithms which improve automatically using 
experience.

Point Distribution Model (PDM): It is a 
model that tries to form a distribution of sample 
points from the training set. When the PDM is 
constructed it can approximate the position of 
each model point in a new image without manual 
intervention.
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Abstr Act

This chapter presents an overview on recent developments in the field of clinical applications of the 
functional infrared imaging. The functional infrared imaging is a relatively recent imaging methodol-
ogy introduced for the study of the functional properties and alterations of the human thermoregulatory 
system for biomedical purposes. The methodology is based on the modeling of the bio-heat exchange 
processes and the recording of thermal infrared data by means of advanced technology. Some innova-
tive applications of functional infrared imaging to diagnostics, psychometrics, stress measurements and 
psycho-neurophysiology will be presented, with special emphasis to the potentialities and the capabilities 
that such technique may bring to biomedical investigations.

Introduct Ion

Objects are characterized by a variety of physical 
parameters such as shape, weight, and size. How-
ever, one of the most frequently measured physical 
properties is temperature. Temperatures may be 
measured with either a contact or non-contact de-
vice. The thermal infrared imaging systems create 
electronic picture of the scene. Such non-contact 

systems allow the representation of the surface 
thermal distribution of an object by detecting the 
thermal infrared emission spontaneously emitted 
by the object itself. Early use of thermal infrared 
imaging in medicine dates back to early ‘60s. 
Several studies have been performed so far to 
assess the contribution that such information may 
provide to the clinicians. The physiological basis 
for using thermal infrared imaging in medicine is 
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the fact that the skin temperature distribution of the 
human body depends on the complex relationships 
defining the heat exchange processes between 
skin tissue, inner tissue, local vasculature, and 
metabolic activity. All of these processes are 
mediated and regulated by the sympathetic and 
parasympathetic activity to maintain the thermal 
homeostasis. The presence of a disease may affect 
both at a local or systemic level, the heat balance 
or exchange processes, resulting in an increase 
or a decrease of the skin temperature. Therefore, 
the detection of skin temperature abnormalities 
may provide diagnostic criteria for a variety of 
diseases interfering with the regular control of 
the skin temperature.

Unfortunately, such a simplistic approach, 
combined with early and not enough mature 
technology, did not provide adequate and effective 
results for supporting routinely use of thermal in-
frared imaging in diagnostics. Therefore, thermal 
infrared imaging has been substantially discarded 
as a diagnostic tool until the middle ‘90s.

At the beginning of ‘90s, the evolution of 
technological advances in infrared sensor tech-
nology, image processing, computer architecture, 
knowledge-based databases, and their overall 
system integration has resulted in new methods 
of research and use in medical infrared imag-
ing. The development of infrared cameras with 
focal plane arrays added a new dimension to this 
imaging modality (Roganski, 2002). New detec-
tor materials with improved thermal sensitivity 
are now available and the production of high-
density focal plane arrays (up to 640 x 480) has 
been achieved. Read-out circuitry using on-chip 
signal pre-processing is now in common use. 
These breakthroughs led to the availability of 
commercial and user-friendly camera systems 
with thermal sensitivity less than 30 mK (20 mK 
for nitrogen cooled cameras), as well as spatial 
resolution of 25-40 microns, given the appro-
priate optics. Furthermore, time resolution has 
been greatly improved, being now possible to 

acquire up to 100 full frame images per second 
(Bronzino, 2007).

The last-generation camera systems allow ef-
fective monitoring and studying the dynamics of 
the local control of the skin temperature and in 
which manner diseases or external stimuli may 
influence it (Diakides, 2002). This means that the 
characteristic parameters modeling the activity of 
the skin thermoregulatory system can be retrieved 
and used as quantitative and effective diagnostic 
parameters (Merla, 2002). Therefore, modeling 
the activity of the skin thermoregulatory system 
can provide specific parameters from which to 
infer diagnostic criteria (Merla, 2007).

As a consequence, there is an emerging interest 
in the development of smart image processing al-
gorithms and bio-heat transfer models to enhance 
the interpretation of thermal signatures. In the 
clinical area, new researches are underway to 
achieve quantitative clinical data interpretation in 
standardized diagnostic procedures and protocols 
(Diakides, 2002).

In the past 10 years, significant progress has 
been made internationally by advancing a thrust 
for new initiatives worldwide for clinical quantifi-
cation, international collaboration, and providing 
a forum for coordination, discussion, and pub-
lication. As a result of this process, three IEEE 
Engineering in Medicine and Biology Magazines, 
Special Issues dedicated to biomedical thermal 
imaging have been published (Diakides, 1998, 
2000, 2002) in addition to a growing number of 
papers published on top international medical 
journals.

Developments of new quantitative approaches 
and methods in modern thermal infrared imag-
ing have been proposed to re-visit classical ap-
plications of thermal imaging in medicine. The 
approaches so far proposed include among the 
others: quantitative active dynamic thermal-IR 
imaging (Novakowsky, 2007), dynamic thermal 
assessment (Anbar, 2007), advanced image pro-
cessing (Wiecek, 2007). Even early detection of 
breast cancer by means of thermal imaging based 
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on the new methodologies has been re-proposed 
(Keyserlingk, 2007, Qi, 2007).

A detailed review of such approaches and 
methodologies can be found in Bronzino (2006, 
2007). 

Among the other techniques, the functional 
infrared (f IR) imaging has been proposed 
(Merla, 2002). The functional Infrared Imaging 
is the study for diagnostic purposes of the local 
functional properties of the thermoregulatory 
system through extensive use of in vivo bio-heat 
transfer models (Merla, 2002, 2006). This ap-
proach is aimed at a quantitative assessment of 
functional properties of tissues, vascularisation 
and processes involved in the local control of 
the temperature. The use of bio-heat transfer 
models allows for obtaining functional informa-
tion on bio-physics quantities involved in local 
thermoregulation (like tissue thermal capacity or 
heat exchange coefficients) from which to infer 
diagnostic parameters.

In this chapter we will focus on fIR imaging. 
Some of the most important recent clinical ap-
plications of the fIR imaging will be presented 
to highlight the typology of the approach.  In 
addition, some innovative applications of thermal 
imaging to psychometrics, stress measurements 
and neuro-psycho-physiology will be presented 
with the general goal of showing future and in-
teresting potentialities of the methodology. 

und Erst And Ing funct Ion Al  
Infr Ar Ed IMAg Ing through
ExAMPl Es of bIo MEdIc Al
APPl Ic At Ions 

For long time, medical infrared imaging (medical 
thermography) has been mostly associated with 
early detection of breast cancer. Thermal effects 
secondary to neoplastic-related angiogenesis have 
been used as a possible early detector of malignant 
lesions. The approach generally followed was 
based on the individuation of asymmetric thermal 

patterns or features, often subjectively interpreted 
(Keyserlingk, 2007). There is a general consensus 
that such an approach provides a screening tool, 
which may result, highly sensitive, but poorly 
specific. As the medical community moved toward 
other more anatomic screening techniques, like 
mammography, the general interest for medical 
thermal imaging soon decreased. 

Thanks to the technological advancement and 
a better understanding of the physiology of the 
human thermal signal, thermal infrared imaging 
has been used in areas different from breast cancer 
detection. Such area cover diagnosis of a variety 
of diseases related to the following systems: 
micro/macro circulatory, peripheral nervous, 
autoimmune, muscle-skeletal, and cutaneous. 

The capability of extracting quantitative pa-
rameters, in addition or conjunction to the tem-
perature dynamics, from bio-heat models has open 
the medical thermal imaging to the use in several 
fields like immunology, dermatology, neurology, 
and many others. Such a functional approach has 
completely re-designed the use of thermal imag-
ing in medicine. A complete ad exhaustive review 
of the applications of the functional approach to 
the medical infrared imaging cannot be allocated 
within this chapter. An exhaustive and detailed 
list of applications and references can be found 
in Bronzino (2007).

In order to show the approach proposed with 
functional infrared imaging, two examples of its 
application to diagnostic, respectively from im-
munology and urology, are presented. 

r aynaud’s Phenomenon and
scleroderma 

Raynaud’s phenomenon (RP) is defined as a 
painful vasoconstriction - that may follow cold or 
emotional stress - of small arteries and arterioles 
of extremities, like fingers and toes. RP can be 
primary (PRP) or secondary to scleroderma (SSc). 
Scleroderma is an auto-immunological disease 
affecting the connective tissue and determin-
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ing structural and morphological changes in the 
microvascular tissue. The early evaluation of the 
vascular damage is crucial in order to distinguish 
between PRP and SSc.  Merla et al. (2002) proposed 
to model the response of the fingertips to a cold 
stress to get an effective diagnostic parameter 
depicting the actual physiology of the finger, 
being the finger temperature determined by the 
net balance of the energy input/output. The more 
significant contributes come from the input power 
due to blood perfusion and the power lost to the 
environment (Figure 1). 

The authors have demonstrated that, integrat-
ing the temperature curve T over time, it is pos-
sible to compute the amount of heat stored in the 
finger, namely Q.  The latter quantity is intrinsi-
cally related to the finger thermal capacity. The 
Q parameter has been used to discriminate and 
classify PRP, SSc and healthy subjects (Merla et 
al., 2002). The grand average Q values for PRP, 
SSc and healthy subjects groups are in shown 
in Figure 1, lower panel. The sensitivity of the 
method in order to distinguish patients from 

Figure 1. (a) Experimental re-warming curves after cold stress in normal subjects. The continuous curve 
represents the recorded temperature finger. The outlined curve represents the exponential temperature 
pattern exhibited by the finger in absence of thermoregulatory control. In this case, the only heat source 
for the finger is the environment. (b) One- way ANOVA test applied to the Q parameter calculated for 
each group (PRP, SSc, and healthy). The Q parameter clearly discriminates among the three groups 
(from Merla et al., 2002).
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normal is 100%. The specificity in distinguishing 
SSc from PRP is 95%. Q clearly highlights the 
difference between PRP, SSc, and normal subjects. 
The method is actually used to monitor the clini-
cal evolution of the disease and to follow-up the 
pharmacological treatment.

Varicocele, scrotal hyperthermia, and 
Infertility

Varicocele is a widely spread male disease 
consisting into a dilatation of the pampiniform 
venous plexus and of the internal spermatic vein. 
Consequences of such a dilatation are an increase 
of the scrotal temperature and a possible impair-
ment of the potential fertility (Miusset, 1991; 
Merla, 2002). 

The study of the scrotal thermoregulatory 
processes, together with scrotal thermal imaging 

data, allows for revealing secondary-to-varicocele 
abnormal thermoregulation after an induced cold 
stress (Figure 2). Affected testicles return to 
pre-stress equilibrium temperatures faster than 
do normal testicles (Merla, 2002). A series of 
studies conducted by the authors has shown that 
functional infrared imaging allows the accurate 
detection of asymptomatic varicocele and that 
the semen properties (especially spermatozoa 
motility) are related to the scrotal thermoregula-
tory dynamics as measured by the time constant 
of the thermal recovery after a controlled cold 
stress (Merla, 2002, 2006). The sensitivity and 
specificity of fIR imaging for detecting asymp-
tomatic varicocele are actually 100% and around 
95%, respectively. 

The control of the scrotum temperature should 
improve after varicocelectomy as a complemen-
tary effect of the reduction of the blood reflux. 

Figure 2. (a) Second grade right varicocele. The temperature distribution all over the scrotum clearly 
highlights significant differences between affected and unaffected testicles. (b) The same scrotum after 
varicocelectomy. The surgical treatment reduced the increased temperature on the affected hemiscrotum 
and restored the symmetry in the scrotal temperature distribution. (c) Third grade left varicocele. (d) The 
same scrotum after varicocelectomy. The treatment was unsuccessful into repairing the venous reflux, 
as documented by the persisting asymmetric scrotal distribution. (From Merla et. al, 2004).
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Moreover, follow-up of the changes in scrotum 
thermoregulation after varicocelectomy (Figure 
2) may provide early warning on the presence 
of relapsing or persistence of the disease after 
incomplete or improper treatment and it may be 
used as a suitable complementary follow up tool 
(Merla, 2004).

c o MPut At Ion Al  nEuro-
Psycho- Phys Iology  bAsEd
on fI r  IMAg Ing

One of the most important and innovative poten-
tiality that fIR imaging may offer is the capability 
of providing data of neuro-psycho-physiology 
relevance in unobtrusive and non invasive way. 
Studying emotional reactions using thermal infra-
red imaging and fIR imaging is becoming a reality 
and several applications have been developed so 
far in very diversified fields, like psychometrics, 
human-computer interfaces, continuous healthy 
monitoring, and even security, with the last gen-
eration of deception detection systems based on 
thermal imaging (Pavlidis, 2002).

Emotional reactions constitute the response 
to a wide variety of external stimuli, like alarms, 
psychological pressure, as also pleasant situations, 
etc. Codification of other individual’s emotional 
status and responses plays a fundamental role for 
the strategies of the inter-individual interactions. It 
is extremely interesting and challenging to transfer 
to an artificial intelligence system the interpreta-
tion of emotional states and responses. In fact, an 
automatic computerized system, which would be 
able “to read” the emotions, could be applied in 
many and diversified basic and applied research 
fields, up to revolutionizing several aspects of daily 
life. Preliminary efforts for developing automated 
monitoring system for emotion recognition have 
regarded mainly virtual reality, human-computer 
interaction, and, with the intensification of the 
war on terror after September 11th, deception 
detection. Conventional approaches for emo-

tion recognition are based on the measurements 
of several physiological parameters expressing 
autonomic sympathetic nervous system (ANS) 
activity, like skin sympathetic response (SSR), 
hand palm temperature, heart beat and/or breath 
rate modulations, peripheral vascular tone (i.e., 
blood perfusion), facial expression and electro-
myography activity. Monitoring these parameters 
is, in a certain sense, invasive because it requires 
contact between the subject and the sensors. It 
requires the voluntary and cooperative partici-
pation of the subjects. Finally, the time required 
for placing sensors, performing measurements 
and analyzing data is not negligible. Therefore, 
traditional channels for monitoring ANS activ-
ity do not allow non-invasive, non-contact and 
quick measurement of emotional responses or 
physiological vital signs. On the contrary, neuro-
psychology, security surveillance systems based 
on psychophysiological response of suspects, and 
sustained health care monitoring during daily life 
activity requires the “true” spontaneous emotional 
response recorded in a contact-less fashion. Since 
ANS activity regulates cutaneous blood perfusion, 
local tissue metabolism, and sudomotor response, 
sympathetic cutaneous thermal effects are ex-
pected as side results of emotional responses or 
arousal. Therefore, sympathetic thermal effects 
of emotional responses can be recorded non-
invasively and at distance by means of infrared 
thermal (IR) imaging (Merla, 2004, 2007). Ad-
equate bio-heat modeling of IR data could then 
allow for the characterization of each specific ANS 
physiological signals, as already demonstrated for 
some of them, at a preliminary level – (Garbey, 
2007; Pavlidis, 2007). The researches in the above-
mentioned fields unlock the more general pos-
sibility of monitoring human physiological vital 
signs at a distance and in a non-invasive fashion 
throughout the integrated use of advanced thermal 
imaging, bioheat transfer modeling and computa-
tional physiology. Thermal data for bioheat-based 
computations and monitoring of vital signs are 
usually performed on the subject’s face. The face 
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is usually exposed and – given the proper optics 
-within the field of view of the thermal camera. 
Many physiological variables, such as superficial 
blood flow and cardiac pulse, are related in some 
way to the heat transfer mechanism of the human 
body. Due to this interrelationship, it is possible 
to compute such physiological variables from the 
raw thermal imagery. Relatively little work exists 
in the literature towards this direction. The models 
are based on partial differential equations (PDE). 
The time evolution of 2D blood flow, cardiac 
pulse, and breath rate can reveal important clues 
about many health problems. The screening al-
lowed is automated, continuous, and it permits a 
rigorous mathematical modeling (Pavlidis, 2003). 
Following, the state of the art in the field of in-
frared imaging-based computational physiology 
is reviewed and described.

blood f low c omputation

Superficial blood flow on the face can be computed 
by using a pair of bioheat models. One model 
computes blood perfusion in homogeneous tissue 
regions that are void of large superficial vessels 
(perfusion model) (Figure 3). 

The other model computes directional blood 
flow in a major superficial vessel, like the external 
carotid (directional model). The perfusion model 
has been reported in a number of papers (Pavlidis 
et al., 2001, 2002, 2003) and tested extensively 
in human experiments with excellent results. The 
directional model has been briefly reported in the 
2004 CVPR Proceedings (Garbey, 2003). Since 
the model measures directional blood flow in a 
major vessel, it is related to the heart output and 
can yield the cardiac pulse waveform. In general, 
bioheat modelling on the surface of the body 
starts with the construction of the energy balance 
equation on a control volume that extends several 
millimetres in depth.

The dynamic form of this equation is a PDE 
with boundary conditions that are determined by 

environmental and other factors, including the 
sensor output (skin temperature). A major term 
in the energy balance equation is convective heat 
produced by blood flow. The solution of the PDE 
form of the equation yields the evolution of the 
blood flow variable. Specifically, the directional 
blood flow model assumes that the vessel acts as a 
heat source for the surrounding four-layer control 
volume tissue. These layers are successively, in 
positive z direction, the skin, the fat, the muscle, 
and the core (see Figure 4(a)). 

It is assumed that each layer is isotropic with 
respect to thermal conductivity K(z), metabolic 
heat rate qM(z), density ρ, and specific heat c of 
the tissue. The heat effect of the vessel on the skin 
temperature depends on the vessel’s depth and 
shape as well as the blood temperature and flow 
rate. Let consider a single large vessel running 
along a direction x parallel to the skin layer (see 
Figure 4(a)). The heat conduction in the tissue 
surrounding the vessel is dominant in directions 
parallel (x) and perpendicular (z) to the skin. In the 
remaining y direction we can neglect heat transfer 
because of the presence of other vessels, which are 
assumed being quasi-periodically arranged and 
similar to that considered. Therefore, the following 
2D PDE model has been introduced: 

( ) ( )c K z K z
t x x z z

∂Θ ∂ ∂Θ ∂ ∂Θ   − −   ∂ ∂ ∂ ∂ ∂   

( , ) ( , ),( , ) (0, ) (0, )BL Mq x t q x z x z L D= + ∈ ÷

where qM is the volumetric metabolic heat while 
qBL is the heat due to blood flow speed uBL in 
a vessel assimilated to a line source z = S(x). 
Θ(x,z,t) is the temperature distribution function 
in the control volume tissue over time, K(z) is the 
thermal conductivity of a particular layer within 
the volume, while ρ and c are the tissue density 
and specific heat, respectively. Given the proper 
boundary conditions, the mathematical problem 
is to retrieve the blood flow speed uBL(t) from the 
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Figure 3. Cutaneous blood perfusion rate visualization while watching neutral-content (left) and erotic-
content (right) movies. Specific cutaneous distributions appear to be evoked by emotional stimuli. (From 
Merla, 2007).

Figure 4. (a) Four-layer tissue structure hypothesized by our model along with the coordinate system 
convention. The red curve represents the assumed position and shape of the vessel. (b) The graph at the 
top shows the time variation of the blood flow speed in a major superficial vessel, as the PDE model 
computes it. The graph at the bottom shows the corresponding input to the model, that is, the time varia-
tion of the skin temperature (from Pavlidis, 2007).

skin temperature obtained with a thermal infrared 
camera. In extensive direct simulation and limited 
application of the inverse solution on real data the 
model behaved excellently (Pavlidis, 2007) (see 
Figure 4(b)). The inverse solution correlated very 
well with ground-truth data collected through 

a standard contact blood flow meter (Pavlidis, 
2007).

 
c ardiac Pulse c omputation

In addition to the amplitude of the blood flow-
waveform as computed above, it is possible to 
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compute the frequency of the blood flow pulsation 
(cardiac pulse). Both amplitude and frequency are 
important in potential applications of this technol-
ogy. The method is based on the assumption that 
temperature modulation due to pulsating blood 
flow produces the strongest thermal signal on a 
superficial vessel. This signal is affected by physi-
ological and environmental thermal phenomena. 
Therefore, the resulting thermal signal that is be-
ing sensed by the infrared camera is a composite 
signal, with the pulse being one of its components. 
Research efforts are directed into recovering 
the frequency of the component signal with the 
highest energy content. A contact-free pulse 
measurement methodology has been proposed 
by Sun et. al. (2005). Based on the outcome of 
Fourier analysis, an estimation function computes 
the cardiac pulse. Figure 5 illustrates the general 
steps of the proposed methodology. Considering 
that the blood vessel is a long, narrow structure, 
the pulse propagation phenomenon causes slight 
phase shift on the temperature profiles along 
the blood vessel. This may weaken the signal if 
conventional signal recovery methods in the time 
domain are used. Each pixel along the blood ves-
sel has a unique periodical temperature profile, 
which is shifted with respect to the others. Av-
eraging these temperature profiles may weaken 
the signal. Although, the temperature profiles of 
the pixels along the blood vessel are shifted in the 
time domain, their frequency should remain the 
same (un-shifted). Therefore, by operating on the 
frequency domain and combining appropriately 
the power spectra of these temperature profiles 
it is possible to reinforce the signal instead of 
weakening it. 

 
breath r ate c omputation

Human breathing consists of expiration and inspi-
ration phases. In expiration, air that was heated 
through its contact with the lungs flows via the 
nostrils to the environment. Conversely, in inspira-
tion environmental air flows via the nostrils to the 

lungs. This creates a periodic thermal signal in 
the vicinity of the nostrils that oscillates between 
high (expiration) and low (inspiration) values. In 
traditional pulmonary studies, a thermistor is 
attached near the nostrils to capture this phenom-
enon and produce a representative breath signal. 
The thermal imager can be viewed as a virtual 
thermistor, since it captures the same phenom-
enon, but at a distance (Pavlidis, 2007). Figure 6 
shows a thermal snapshot of a subject during the 
expiration phase. One can observe the contrast 
between the hot expired air, next to the nasal area 
and the lower intensity surrounding background. 
During the inspiration phase, the hot expired air 
is absent. As a periodic signal, the breath signal 
can be analyzed through Fourier transformation 
on sliding segments (windows) of the normalized 
breath thermal signal. 

sudomotor r esponse and g alvanic 
skin r esponse

The Autonomic Nervous System (ANS) and 
particularly its sympathetic division has been 
the object of intense study in neurophysiology 
and psychophysiology. The sympathetic division 
readies the body for a crisis that may require 
sudden, intense physical activity. It is a primal 
survival mechanism. Therefore, interest on meth-
odologies that scrutinize sympathetic responses 
is well founded and has many applications. When 
sympathetic activation occurs, an individual ex-
periences increased activity in the cardiovascular 
and respiratory centres of the pons and medulla 
oblongata, leading to elevations in blood pressure, 
heart rate, breathing rate, and depth of respiration. 
These vital sign changes are mediated through 
adrenergic postganglionic fibres. Determina-
tion of sympathetic activation through vital sign 
monitoring is not always straightforward. As an 
alternative, researchers focused their efforts on 
sympathetic manifestations effected through cho-
linergic postganglionic fibres. These fibres inner-
vate sweat glands of the skin and the blood vessels 
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Figure 6. Breathing rate measurement methodology. The thermal signal (upper panel) is delayed with 
respect to the signal obtained through standard belt respiratory device

to skeletal muscles and the brain. They provide a 
pathway to stimulating sweat gland secretion and 
selectively enhancing blood flow to muscles. In 
this context, Electro-Dermal Activity (EDA) has 
been the gold standard for peripheral monitoring of 
sympathetic responses. EDA is measured through 
the Galvanic Skin Response (GSR), which is a 
simple and reproducible method for quantifying 
sweat gland activation in the palm. 

Alternatively, EDA can be captured through a 
palm thermistor, which registers the full thermo-

regulatory phenomenon including changes both in 
blood flow and sweat gland activation. Indeed, in 
recent years, it has been demonstrated that during 
arousal additional physiological signs materialize 
on the face. Specifically, it has been shown that 
sudomotor responses associated to EDA can be 
appreciated, recorded and quantified by means 
of thermal camera (Merla et al., 2004, Pavlidis, 
2007) (see Figure 7). Concomitantly to the palm 
area, strong sweat gland activation is manifested in 
the maxillary area. This is one more sympathetic 

Figure 5. Pulse measurement methodology (from Garbey, 2007).
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Figure 7. Sudomotor response activated by a startle stimulus. Discontinuous thermal pattern around 
the mouth highlights the arousal activation of the sweat glands

Figure 8. Coronary bypass. Thermal imaging documents blood re-perfusion after de-clamping of the 
anastomosis. (a) closed clamp; (b) just after de-clamping; (c) at regime. The temperature increase along 
the artery is used to compute arterial blood flow and myocardial tissue perfusion.

thermoregulatory phenomenon manifested on the 
face. Therefore, it can be sensed and computed 
through thermal imaging and multi-resolution 
analysis (Coli, 2007). The results reveal tonic 
(baseline) and phasic (event related) component 
of the GSR and of the associated sympathetic 
thermal response.

f utur E t r Ends

The functional infrared imaging has great potenti-
alities for establishing itself as a useful functional 
and parametric imaging modality in the next 
future. The ongoing research is mainly devoted 
for developing new algorithms for sustained and 
unobtrusive monitoring of individuals, both in 
terms of health monitoring and neuro-psycho-
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logical investigation. Improved bio-heat transfer 
models and solving algorithms are also needed 
for faster and more effective computation of 
functional parameters of interest for diagnosis 
and monitoring. 

Diseases manifesting themselves through 
impairment of the skin thermoregulation are the 
best candidates to be studied through the proposed 
approach.

Moreover, the functional infrared imaging 
has been proposed as an adjunctive tool for imag-
ing-based assistance to microsurgery (Campbell, 
2006) and cardiac surgery aimed at assessing 
correct arterial blood re-perfusion after anas-
tomosis de-clamping (Figure 8) (Merla, 2001). 
Arm re-implantation, local sympathectomy and 
coronary bypass surgeries were considered. 
In addition, the technique has been used to 
follow up the restoration of the neurovascular 
functions through the evaluation thermoregula-
tory processes related to the treated region. The 
preliminary results from the conducted studies 
have proved that the functional infrared imaging 
can be advantageously used in imaging-assisted 
surgery thanks to its non-invasiveness and its 
high informative content on re-vascularization 
and re-perfusion processes.

c onclus Ion

Functional infrared imaging is a biomedical 
imaging technique that relies on high-resolution 
infrared imaging and on the modeling of heat 
exchange processes. Functional infrared imag-
ing is aimed at providing quantitative diagnostic 
parameters through the functional investigation 
of the local thermoregulatory processes. The 
potential biomedical applications of functional 
infrared imaging are numerous, ranging from 
those described here, to psychometrics, cutaneous 
blood flow modeling, activity of the peripheral 
nervous system, and angiopathies. For the studies 
reported here, the technique is sensitive as the 

corresponding gold standard techniques. In some 
cases, it represents a useful follow-up tool (like 
in varicocelectomy, to promptly assess possible 
relapses) or even an elective diagnostic tool, as in 
the scleroderma and Raynaud’s phenomenon. In 
neuro-psycho-physiology, it offers the capability 
of monitoring individuals without requiring their 
cooperation and without limiting their spontane-
ous activity. A strong and continuous research is 
going on to reinforce and spread out these innova-
tive biomedical imaging techniques.
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Autonomic Nervous System: The autonomic 
nervous system (ANS) (or visceral nervous sys-
tem) is the part of the peripheral nervous system 
that acts as a control system, maintaining homeo-
stasis in the body. These maintenance activities 
are primarily performed without conscious control 
or sensation. The ANS has far reaching effects, 
including: heart rate, digestion, respiration rate, 
salivation, perspiration, diameter of the pupils, 
micturition (the discharge of urine), and sexual 
arousal.
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Bioheat: Heat amounts generated within in 
vivo tissues and vasculature.

Infrared Imaging: Graphical representation 
of the superficial temperature distribution of bod-
ies obtained through its thermal emission.

Perfusion: Amount of blood for volume unity 
of tissue.

Sympathetic Activity: The activity of nervous 
system that takes over where an immediate and 
effective response is required. The sympathetic 
nervous system works alongside the parasym-

pathetic nervous system and is known as the 
involuntary system because the actions caused 
by it are not consciously executed.

Thermal Emission: Photonic emission of en-
ergy by bodies due to their temperature. The ther-
mal emission is described by Stefan-Boltzmann, 
Planck and Wien laws.

Thermoregulation: The complex of the pro-
cesses involved into maintaining the human body 
temperature at stationary ranges.
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Abstr Act

The completion of the Human Genome Project and the emergence of high-throughput technologies at 
the dawn of the new millennium, are rapidly changing the way we approach biological problems. DNA 
microarrays represent a promising new technological development, widely used for the investigation 
and identification of genes associated with important biological processes. The chapter is divided in two 
parts: the first discusses current methods for the acquisition and quantitation of the microarray image 
while the second focuses in the analysis and interpretation of the microarray signals (standardization, 
normalization, statistical analysis etc.)

Introduct Ion

DNA molecules encode the total information re-
garding cellular proteinosynthesis. Understanding 
cellular processes and the association between 
cells of dissimilar functionality, is essential for 
biological sciences. The ever increasing number 
of available fully or partially sequenced species 
across the evolutionary scale, fruit of the latest 
technological and computing advancements (shot-

gun sequencing, explosion of computational and 
storing capacity) have reshaped modern biological 
research, shifting it towards a systems approach 
rather than focusing in individual genes (Ideker, 
Galitski, & Hood, 2001). 

DNA microarrays constitute part of these new 
biotechnological developments which allow the 
simultaneous monitoring of the expression of 
whole genomes. Since its introduction, there has 
been a deluge of papers presenting experimen-
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tal outcomes from a broad range of biological 
and clinical domains including: i) identification 
and categorization of diagnostic or prognostic 
biomarkers, ii) classification of diseases, e.g. tu-
mours with different prognosis microscopically 
indistinguishable, iii) monitoring the response 
to different treatments or therapies, iv) under-
standing of the mechanisms involved in disease 
genesis (Tarca, Romero, & Draghici, 2006), v) 
discovery of key nodes-promising drug targets- in 
biological pathways at several pathological states 
(Maynard et al., 2003) and vi) better understanding 
of several biological functions among different 
organisms. 

bAckground

A DNA microarray is normally a slide made of 
silica or synthetic materials where on top an or-
dered array of oligonucleotide clones is imprinted, 
corresponding to regions of all discovered or 
putative genes of an organism’s genome, at suf-
ficient quantities to ensure evasion of saturation 
effects, which allows the specific binding of 
genes or gene products (Schena, 2003). DNA 
microarrays are composed of thousands of DNA 
sequences (probes), each representing a gene. 
The DNA sequences can be long (500-2500bp) 
cDNA sequences or shorter (25-70bp) oligonucle-
otide sequences. Oligonucleotide sequences can 
be pre-synthesized and deposited with a pin or 
piezoelectric spray, synthesized in situ by pho-
tolithographic (Affymetrix) or inkjet (Agilent) 
technologies, or be attached to microscopic beads 
(Illumina) which are then randomly dispersed 
over the wells of the microarray slide.

Relative quantitative detection of gene expres-
sion can be carried out between two samples on a 
single array or by single samples using multiple 
arrays. The first approach entails (at least) two 
sample sources which are labelled with different 
fluorescent molecules, usually Cy3 (green fluores-
cence) and Cy5 (red fluorescence) Conventionally 

Cy3 represents the ‘control’ state whereas Cy5 
represents the state under examination. These 
samples are hybridized together on the same ar-
ray, a scanner laser-excites the dyes and an image 
is produced for each dye. The relative intensities 
of each channel represent the relative abundance 
of the RNA or DNA product in each sample. In 
the second approach, each sample is labelled 
with the same dye and hybridized onto separate 
arrays (Bajcsy, Liu, & Band, 2007). The absolute 
fluorescent values of each spot may then be scaled 
and compared to detect possible alterations in 
gene expression.

The resulting images are used to generate a 
dataset where pre-processing is performed prior 
to the analysis and interpretation of the results, 
in order to ensure the same level of comparison 
within and across slides, as well as to mitigate 
the role of noise. The pre-processing step entails 
useful transformations and assessment of the sig-
nal quality of the gene probes, in order to extract 
or enhance reliable signal characteristics which 
render the dataset amenable to the application of 
various data analysis methods.

The quantification of gene expression implies 
that the amount of fluorescence measured at each 
sequence specific location is proportional to the 
amount of mRNA hybridized onto the gene probes 
on the array. Processing of the images maps the 
arrayed gene spots and quantifies their expression, 
to the relative fluorescence intensities, measured 
for each spot. Microarray experiments do not 
directly provide insight on the absolute level of 
expression of a particular gene; nevertheless, 
they are useful to compare the expression level 
among conditions and genes (e.g. health vs. dis-
ease, treated vs. untreated) (Quackenbush, 2002; 
Tarca et al. 2006).

After pre-processing, normalization is applied 
to compensate for systematic differences among 
genes or arrays. Among others, it addresses issues 
such as unequal quantities of RNA, differences 
in labelling dyes, systematic bias of the measured 
expressions stemming either from the image ac-
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quisition part with different PMT or laser gains 
or from flaws in the washing/dilution procedure. 
It can be performed either on a per chip basis 
or/and across chips.

Another hindering factor is the absence of 
expression values usually for hundreds of probes 
within a microarray, due to several unpredictable 
factors (e.g. array scratches, scanner improper 
configuration, spot light saturation etc.). Reliable 
missing value imputation has therefore significant 
implications regarding the successful conduct 
of a microarray experiment and requires special 
consideration. 

The statistical selection stage provides signifi-
cantly differentially expressed gene lists but this 
represents nothing but a first step. Transforming 
information into knowledge and gaining insight 
over specific biological questions are daedalean 
tasks. Available biological databases, can con-
tribute in revealing biological pathways or more 
generally processes underlying the biological 
mechanism investigated. The use of sophisticated 
statistical learning and data mining techniques 
for the identification of important genes, as clas-
sifiers among different experimental conditions 
(e.g. healthy tissue from cancer tissue or two dif-
ferent tumour types) and the derivation of disease 
specific molecular genetic signatures (biomarkers) 
can pave the way for rational drug design. This 
exhaustive course is termed as ‘meta-analysis’ and 
includes pathway analysis to uncover genes with 
a certain expression profile, potentially regulated 
by common transcription factors, exploration for 
common regulatory elements among groups of 
genes and functional analysis based on biologi-
cal ontologies.

The rest of the chapter is organized as follows: 
firstly, information regarding the image related 
methodologies of microarrays is given as it con-
stitutes an important aspect with a large impact 
on subsequent analysis steps (Yang, Buckley, & 
Speed, 2001). Then a brief overview of the various 
steps of microarray data analysis and interpreta-
tion is provided.

MIcro Arr Ay IMAg E AnAl ys Is

Three major tasks that have to be carried out for 
the transition of scanner  acquired raw images 
to quantitative arithmetic data used for further 
experimental assessment (Yang et al., 2001): i) 
addressing or gridding, which is the process of 
assigning coordinates to each of the spots for a 
spotted or bead array or the alignment of a rectan-
gular lattice for the mapping of pixels to specific 
probes in Affymetrix arrays, ii) segmentation, 
which allows the classification of pixels either as 
foreground, or background and iii) information 
exctraction which involves calculating foreground 
and background intensities.

g ridding

Grid alignment arranges a set of unevenly spaced, 
parallel and perpendicular lines (a template) to 
the image representing a 2D array of spots. The 
objective is to find all template descriptors (e.g. 
line coordinates and their orientations), so that 
pairs of intersecting perpendicular lines define 
the signal area of 2D array spots in a microarray 
scan (Bajcsy et al., 2007). Although the basic 
structure of arrays is usually known and can be 
provided as feedback to the gridding algorithm, 
there is a number of parameters that have to be 
properly estimated: such as the dimensions of grid 
rows and columns, the slight variation on print 
positions, the area enclosed between rows and 
columns within each grid and overall position of 
the array in the image (e.g. array rotation) (Yang 
et al., 2001). Generally, the gridding procedures 
can be distinguished in three main categories 
(Bajcsy et al., 2007): i) manual gridding, where 
the user specifies dimensions and spot radius to 
form a template and the rest of the alignment is 
performed manually, ii) semi-automated gridding, 
where the user provides basic data (e.g. corner 
spots and grid dimensions) and the algorithm 
performs the rest using image correlation tech-
niques and iii) fully-automated gridding, where 
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the user provides any prior knowledge regarding 
microarray layout and the algorithm uses data 
driven methods to optimize internal parameters 
for the optimal grid layout. Most microarray im-
age analysis packages (GenePix, Spot, ScanAr-
ray) support several gridding algorithms with 
varying results. Other automated algorithms 
perform optimal alignment by multiple template 
matching and finalization criteria based on pixel 
locations and distances among them (Galinsky, 
2003), using Markov random fields (Brandle, 
Bischof, & Lapp, 2003), or local minimization 
of each row, and column pixel intensity sums, 
using sliding windows with size approximating 
a typical spot size. Bajcsy et al., 2007 provides 
an extensive description of gridding methods for 
cDNA microarrays. Concerning gridding on Af-
fymetrix arrays, it is performed through bi-linear 
interpolation between the 4 corners of the array, 
identified by checkerboard-like sequences manu-
factured for this purpose (Arteaga-Salas, Zuzan, 
Langdon, Upton, & Harrison, 2008).

segmentation

Image segmentation can be generally defined 
as partitioning the image to several different re-
gions of certain properties (Soille, 1999). There 
exist several segmentation algorithms. The most 
widely used in spotted microarrays are the fixed 
circle, adaptive circle, seeded region growing 
and histogram segmentations. The fixed circle 
algorithm simply fits a constant radius circle to 
each spot on the array. The background can be 
estimated by extending the radius of the circles 
and averaging the intensity of the pixels lying 
between the outer part of the inner circle and the 
inner part of the outer circle. Although simple in 
its implementation, it works nicely when all spots 
are circular and around the same size but proves 
unsatisfactory for spots of various diameters. 
Adaptive circle algorithm partially tackles this 
as the diameter of each circle is tuned for each 
spot separately. An arising problem is the auto-

maticdetection of spot edges, as manual diameter 
adjustment can be extremely time-consuming 
(each array contains several thousands of spots). 
Dapple software (Buhler, Ideker, & Haynor, 2000) 
addresses this by calculating the Laplacian of the 
image and locating pixels with high values in the 
transformed image. These should correspond to 
spot edges. Even though adaptive circle is more 
sophisticated, it is still not suitable for irregularly 
shaped spots (e.g. doughnut shaped or scratched), 
as it may not detect accurately their precise shape 
(Figure 1). Seeded region growing (Adams & 
Bischof, 1994) use specified starting points as 
spot centers and proper thresholds to create an 
adapted polygon that encloses as much of the 
spot’s shape as possible. A different approach 
is implemented in the histogram segmentation, 
where a mask larger than any spot on the array is 
applied to each spot. Then, a histogram of pixel 
intensities within each mask is constructed and 
predefined percentile thresholds determine the 
foreground and background areas (Yang et al., 
2001). Variations of this method include statistical 
testing (Chen et al., 2002) or k-means clustering 
(Bajcsy et al., 2007; Li, Fraley, Bumgarner, Yeung, 
& Raftery, 2005) to classify pixel intensities as 
foreground or background. Other approaches 
for image segmentation utilize the theory of 
mathematical morphology (Angulo & Serra, 
2003; Soille, 1999) and introduce image filters 
such as the morphological opening and closing 
and morphological operators such as erosion and 
dilation.

Segmentation in Affymetrix microarrays is 
easier in many ways than spotted arrays, as the 
gene probes are synthesized in strictly predefined 
coordinates. Taking into account possible mis-
alignment during the gridding procedure which 
affects mostly the pixels around the perimeter of a 
probe cell and that the signal of a probe cell tends 
to be weakest around its edges, the 5×5 array of 
pixels attributed to a probe cell is reduced to a 
3×3 array of central pixels (Arteaga-Salas et al., 
2008). Segmentaton in Illumina microarrays is 
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performed using incomplete Voronoi diagrams 
(Galinsky, 2003). Image segmentation algorithms 
and software packages that support them are 
summarized in Table 1.

Information Extraction

This step in microarray image analysis transforms 
the preceding procedures into useful arithmetic 
values to be used in subsequent analysis steps. Two 
main values have to be estimated for each spot: the 

foreground intensity so as to have a measure of 
mRNA hybridization for each gene and the back-
ground intensity which reflects several non-specific 
hybridizations, owed to numerous biochemical 
(non-specific binding, cross hybridization, wash-
ing protocol) or technical (presence of dust, 
scratches or other artefacts on the glass, scanner 
miscalibration) reasons. Background estimation 
enables background correction for the derivation 
of more robust gene expression estimates.

Figure 1. A small portion of a scanned spotted microarray image displaying nine spots on gray-scale 
where the dark and bright pixels represent low and high pixel values respectively. The variability in spot 
sizes and shapes can be easily noticed (image adapted from (Yang et al., 2001)).

Segmentation algorithm Software packages
Fixed circle ScanAlyze, GenePix, QuantArray, ScanArray
Adaptive circle GenePix, Dapple
Adaptive shape Spot, GenePix
Histogram method QuantArray, ScanArray, DeArray, ImaGene
Affymetrix segmentation GCOS
Illumina segmentation BeadStudio, R Bioconductor package: beadarray (Dunning, Smith, Ritchie, & 

Tavare, 2007)

Table 1. Segmentation algorithms and indicative software packages, where the respective methods are 
implemented.
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Foreground Intensity

As each pixel value in a scanned image represents 
the hybridization level for a particular cDNA 
sequence (Yang et al., 2001), a natural measure 
of expression is the mean intensity over all pixels 
that define a spot in spotted arrays. An alterna-
tive estimate is the median of spot pixels which 
is more robust to outliers than the mean. In Af-
fymetrix arrays, the 75th percentile of the reduced 
pixel set is reported as the estimate of the probe 
cell intensity, along with the standard deviation 
(Arteaga-Salas et al., 2008). Concerning Illumina 
bead arrays, intensities are extracted followin the 
algorithm of (Galinsky, 2003) where bead centers 
are supplied as virtual pixel centers. Individual 
bead signals are computed based on a 3x3 pixel 
area around each of four real pixels covering the 
virtual one (Kuhn et al., 2004).

Background Intensity

Background estimation algorithms for spotted 
microarrays can be classified in three main cat-
egories (Yang et al., 2001): (1) local background, 
where background intensities are estimated us-
ing several regions surrounding the spot (Figure 
2). (2) constant background, where background 
is estimated based in a set of negative controls 
(plant genes that should not hybridize with human 
mRNA samples) and (3) no background estima-
tion at all, as the proper background correction 
method for spotted microarrays remains a debat-
able issue (Scharpf, Iacobuzio-Donahue, Sneddon, 
& Parmigiani, 2007). Background correction in 
Affymetrix microarrays is based both in pixels 
surrounding the reduced pixel set, as well as on the 
mismatch probe pairs which reflect effects such as 
non-specific or cross hybridization. Concerning 
Illumina bead arrays, background correction is 
based both in local background estimated by the 
area defined by the surrounding spot pixels as well 
as negative controls (Kuhn et al., 2004).

MIc r o Ar r Ay dAt A Pr o c Ess Ing 
And Int Er Pr Et At Ion

Having derived the raw expression signal for each 
gene probe from the microarray images, the need 
for further processing arises in order to render 
these indexes of gene expression comparable as 
much within the same slide as across different 
slides. The tens of thousands of probes existing in 
every microarray slide, as well as the pronounced 
noise impact render imperative the use of system-
atic methodologies for the mathematically reliable 
and computationally effective processing of tens 
or hundreds of thousands of values. 

Pre-Processing

The initial step in this direction is the pre-process-
ing which comprises the following actions:

• Signal background correction 
• Logarithmic transformation of the signal 

channel values and calculation of their ratio 
in the case of two channel experiments

• Filtering procedures to eliminate non-infor-
mative genes

Regarding background correction, the inten-
tion is to adjust for hybridization of sample tran-
scripts whose sequences do not perfectly match 
those of the probes on the array, and for other 
systematic or haphazard sources of error ( scanner 
artefacts, technical setbacks, washing issues or 
quantum fluctuations) (Speed, 2003). Depending 
on the type of microarray technology adopted, 
each slide contains specific spots for estima-
tion of the background (empty spots, exogenous 
negative control spots, spiked-in genes)) which 
permit the application of various methods for the 
background estimation. Concerning Affymetrix 
arrays, background can be estimated through the 
‘mismatch probes’ which cover all slide surface. 
Spot background correction, when applied, can 
be effected either by subtracting the background 
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value from the signal value for each probe, or by 
dividing the background value from the signal 
value for each probe that is, subtraction of the log 
transformed values of the background from the 
signal respectively or by providing model based 
corrected signal estimations. For the estimation 
of the signal and the background, the mean or 
the median of the spot signal and background 
can be utilized. Regarding weak signal datasets( 
a majority of spot signals is close or below back-
ground levels), dividing rather than subtracting the 
signal by the background, (signal-to-noise ratio), 
an established notion in systems theory, is tacitly 
adopting the perception of the experimentalist 
about the quality of a signal. Signal quality is 
considered good when its strength is some orders 
of magnitude greater than that of the background, 
namely its ratio compared to noise, is big enough, 
according to criteria set by the expert or inferred 
statistically (Chatziioannou & Moulos, 2007b).

Logarithmic transformations transform the 
data population in order, torender it compliant 
with the normality assumptionand amenable to 

the utilization of parametric statistics. In the case 
of ratio values, the logarithm base 2 transforma-
tion of the expression ratio (i.e. Cy5/Cy3 in cDNA 
microarray experiments or Signal_condition(x)/
Signal_control(x)) is advocated. This has the major 
advantage that it treats differential up-regulation 
and down-regulation equally (Quackenbush, 
2002) while at the same time projects data on 
a continuous mapping space. For example, if 
the expression ratio is 1, then log2(1) equals 0 
and represents no change in expression. If the 
expression ratio is 4, then log2(4) equals +2 and 
for expression ratio of log2(1/4) equals -2. Besides 
the advantages of using expression ratios here, 
the pitfalls of working with ratios should also be 
stressed. For example, genes with the same R/G 
ratios of 400/100 and 4/1 but whose values lie at 
a completely different range with different error 
thresholds for the respective regions will end up 
having the same expression ratio of 4, a fact that 
raises significant concerns, regarding the validity 
of the results. 

Figure 2. This image depicts several local background estimation methods. The region inside the dashed 
circle corresponds to the spot mask from which the foreground intensity is estimated. The solid circles 
represent pixel regions that are used by QuantArray for background intensity estimation while the dotted 
square is used on ScanAlyze. The dashed diamond shapes depict regions which are used for background 
estimation by Spot (image adapted from (Yang et al., 2001)).
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Finally, the filtering procedures aim at exclud-
ing problematic or unreliable, array spots. They 
are usually based in processes which utilize either 
the estimation of the probe’s background or the 
detection  of possible outlier values, to locate can-
didate genes to be removed from further analysis. 
In this way, both the computational efficiency of 
the processing of the whole dataset is increasing 
by limiting useless calculations, and the impact 
of noise is decreasing, as erroneous values are 
excluded from the derivation of the normalized 
values. Some gene filtering methods are cited here 
(Chatziioannou & Moulos, 2007b):

• A signal-to-noise threshold filter: Signal(x)/
Background(x) < T, where T represents 
a threshold below which noisy spots are 
filtered out.

• A distance based filter  between the signal 
and background distributions. A spot is ro-
bust if their signal and background means 
diverge from each other a fixed distance 
determined by the respective standard de-
viations. Spots with signal features smaller 
than this distance are filtered out.

• A filter test for the reproducibility of mea-
surements where parametric or non-para-
metric statistical tests are used to examine 
for each spot, if the derived values of all 
replicates within a condition follow a nor-
mal (or more generally a continuous sym-
metrical) distribution with mean (median) 
equal to the respective one derived by the 
respective replicates, thus excluding outli-
ers among the replicate signal values of a 
specific condition.

data normalization

Typical normalization methods are global mean or 
median normalization (Bilban, et al., 2002), rank 
invariant normalization (Tseng et al., 2002) and 
LOWESS/LOESS methods (Cleveland, Grosse, 

& Shyu, 1992). Normalization methods tacitly 
assume that the total level of RNA expression in 
a microarray slide through varying conditions is 
roughly constant. Actually housekeeping gene 
expression (around 10% of the total gene popula-
tion and responsible for the greatest - around 90% 
- of the total RNA expression) does not exhibit 
significant variation among conditions, an as-
sumption though that might be proven refutable 
for certain housekeeping genes. Rank invariant 
normalization methods are based exclusively on 
signal intensities and they do not use all genes 
during the normalization procedure. Instead, a 
statistical algorithm determines a subset of genes 
which are found to be non-differentially expressed 
across different slides (Tseng et al., 2002; Hoff-
mann, Seidl, & Dugas, 2002). However, they do 
not account for systematic dependencies of the log 
ratio statistics to signal intensity (Quackenbush, 
2002). The need for normalization and its impact 
on the dataset values is depicted in Figure 3.

There exist several methods for normalizing 
cDNA (Hedge et al., 2000; Finkelstein et al., 
2002; Yang, Dudoit et al., 2002) as well as oligo-
nucleotide (i.e. Affymetrix, Illumina, Nimblegen) 
microarray data (Irizarry et al., 2003; Wu et al., 
2004; Lin et al., 2008). There has been a seminal 
effort, to propose a framework for the comparison 
of normalization algorithms scoping to provide a 
checklist to the researcher on which algorithm to 
pick for his dataset. In brief, the algorithm that 
is associated with the less over-normalization 
potential (smaller reduction of the total signal 
entropy), smaller bias (greater accuracy) and vari-
ance (greater precision) is the optimal one for the 
dataset at hand (Argyropoulos et al., 2006).

Imputation of Missing Values

During a microarray experiment, expression 
measurements may become unavailable for sev-
eral probes due to several reasons, a phenomenon 
which might affect a significant part of the total 
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probe values population. This problem further 
hinders the application of automated procedures 
since it affects different genes in each microar-
ray image. Therefore the issue of missing value 
imputation, based on certain statistical or geo-
metrical criteria is imperative. A naïve solution is 
to estimate missing data for a probe by the mean 
expression of the remaining probes over the rest 
of the slides. However, this strategy demonstrates 
poor performance (Troyanskaya et al. 2001) and 
does not account for the correlation among genes. 
More sophisticated methods have been proposed 
using matrix Singular Value Decomposition and 
k-Nearest Neighbors (Troyanskaya et al. 2001; 
Nguyen, Wang & Carrol, 2004).

statistical selection

Target of a microarray experiment is the identifca-
tion of differentially expressed genes between two 
or more states (time points, phenotypic categories, 
biological specimen from different tissues, species 
etc.) Thus, for each gene on the array, the “null” 
hypothesis is that this gene is not differentially 
expressed among different states and the “alterna-
tive” is that there is indeed difference in the gene’s 
expression among the different states. Several 
types of statistical tests are used, parametric (t-
test, ANOVA) (Kerr, Martin, & Churchill, 2000; 
Ideker et al., 2000; Dudoit et al., 2002) or non-
parametric (Wilcoxon sign-rank, Kruskal-Wallis) 
(Conover, 1980) which can be applied to cDNA 

Figure 3. (a) An MA plot for a cDNA microarray slide. It displays the log2(R/G) for each element of the 
array as a function of the ½*log2(R*G) product intensities and can reveal systematic intensity depen-
dent effects on the log2 ratio values. R and G correspond to corrected Cy5 and Cy3 signal intensities 
respectively. The upper panel of (a) depicts the MA plot before normalization while the bottom panel, 
after LOESS normalization. The bright line on the upper panel draws the normalization curve. After 
normalization, the cloud is centered around zero (b) A boxplot for 19 cDNA arrays. The upper panel 
of (b) presents the systematic trends in microarray slides briefly mentioned in sections 2.1-2.4. Direct 
comparisons in ratios cannot be made since data are not centered around a common reference value. 
Bias is removed after normalization, as depicted in the bottom panel of (b) (borrowed from the normal-
ization analysis of the dataset of Tzouvelekis et al., 2007).

(a) (b)
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or oligonucleotide arrays (Tusher, Tibshirani, & 
Chum 2001). A comparison of several statistical 
selection methods can be found in (Pan, 2002). 
However, strong statistical significance does not 
necessarily mean biological significance as it 
is not coupled with the notion of a strong fold 
change or absolute intensity. On the other hand, 
many genes might not reach the threshold simply 
because of the small number of replicates used to 
define each state.

As in general there is no golden standard 
method for microarray data statistical analysis 
whereas the results of several methods might 
present limited overlap (Kim et al., Lee, &  Sohn, 
2006), a fact which does not appear to depend 
on different microarray platform technologies (; 
Canales et al., 2006), a recent study (Guo et al., 
2006) suggests that the overlap among results, 
is increasing, when a less stringent statistical 
threshold together with a reasonable fold-change 
cut-off is adopted.

In microarray experiments, even for a strict 
statistical threshold like 0.01, a large number of 
false positives (100 in 10000 genes) can be ob-
served. Instead of using FWER methods, which 
adjust p-values by dividing them with the number 
of hypotheses tested (Dudoit et al., 2003), FDR 
methods seek to minimize the proportion of errors 
committed by falsely rejecting null hypotheses 
(Benjamini, & Hochberg, 1995; Storey, & Tib-
shirani, 2003). As they are less stringent than 
they are considered more suitable for microarray 
data (Tarca et al., 2006; Allison, Cui, Page, & 
Sabripour, 2006).

Meta-Analysis

In microarray experiments, researchers usually 
find themselves bewildered by a myriad of find-
ings (Allison et al., 2006), with no evident pattern 
of correlation among them. Transforming infor-
mation into knowledge about specific biological 
functions is by all means a self-evident task. The 
use of sophisticated statistical learning and data 

mining techniques can highlight important groups 
of genes, which are able to act as disease-specific 
molecular genetic signatures, or belong to the same 
pathways or more generally biological processes. 
This exhaustive search process can be termed as 
‘meta-analysis’.

Classification

One of the targets of meta-analysis is to assign 
genes or biological samples to classes on the basis 
of their expression measurements (Speed, 2003). 
Such problems are mainly classified into two cat-
egories: unsupervised and supervised learning. In 
unsupervised learning, the algorithm attributes 
objects into classes without any prior knowledge 
of these classes (Newton, 2002). This task is 
accomplished through proper metrics, which es-
timate the relative distance between objects and 
linkage algorithms that perform the clustering of 
the closest objects (Kaufman & Rousseeuw, 1990). 
Examples of unsupervised learning techniques 
are k-means clustering, hierarchical clustering 
(Speed, 2003), gene-shaving (Hastie et al., 2002), 
self-organizing maps (Torkkola et al.,2001) and 
FLAME (Fu, & Medico, 2007).

Principal Component Analysis

Principal Component Analysis (PCA) can iden-
tify a core set of genes, out of the thousands, 
able to distinguish the dataset among different 
experimental conditions and thus simplify the 
analysis and visualization of multidimensional 
data sets (Raychaudhuri, Stuart, & Altman, 2000; 
Jolliffe, 2002). 

Given m observations on n variables on an m 
by n data matrix, PCA reduces the dimensional-
ity of the data matrix by finding r new variables, 
termed Principal Components, ( r ≤n) account-
ing for a fixed significant percentage of the total 
original variance, while remaining mutually 
uncorrelated and orthogonal. In microarray data 
analysis, the genes can be considered as variables 
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and the conditions as observations, the opposite 
or even both (Parmigiani et al., 2003). PCA has 
been used for outlier genes (Hilsenbeck, et al., 
1999), in the optimization of clustering (Yeung, 
& Ruzzo, 2001) and generally classification tech-
niques (Liu et al., 2002).

Gene Shaving

Gene shaving (Hastie et al., 2002) identifies sub-
sets of genes with coherent expression patterns 
and large variation across conditions. It differs 
from hierarchical clustering and other analysis 
methods in that genes may belong to more than 
one cluster and the clustering may be supervised 
by an outcome measure. It performs an iterative 
PCA process on genes (rows) to obtain nested gene 
clusters and then uses a statistic to determine the 
optimum cluster size. 

k-Nearest Neighbours (k-NN)
Classification 

The k-NN classification is a very simple, yet 
powerful classification method. The key idea 
behind k-NN is that similar observations belong 
to similar classes. The weighting scheme of the 
class numbers is often a majority rule, but other 
schemes are conceivable. The class assessment 
is usually performed according to the distance of 
the new instant from the majority of the instances 
that belong to different classes. One major draw-
back of k-NN classifiers is the requirement of all 
available data, something incurring significant 
overhead, for a large training dataset. The k-NN 
algorithm can be naturally expanded to treat 
multiclass problems since the only difference is 
that there are more than two data clouds in the 
data space.

RankGO

RankGO (Chatziioannou & Moulos, 2007a) is an 
application for the derivation of groups of genes 

related to Gene Ontology (GO) Terms, which do 
not only have a high statistical score (high gene 
enrichment, namely a high proportion of genes an-
notated to a specific GO term from the significant 
gene list, to the total number of genes assigned 
to this GO term within the total genes of the 
whole microarray) but at the same time comprise 
a biologically significant number of genes as this 
significance is derived from the mapping of genes 
to specific GO terms. In brief, RankGO assigns 
each GO term a statistical score, through a proper 
statistical test (hypergeometric, Fisher exact test), 
groups together GO terms with the same score, 
sorts the distribution of GO term scores accord-
ing to their frequency, and finally GO terms cor-
responding to scores above the cutoff threshold 
after bootstrapping, represent both statistically 
and biologically significant pathways.

GOALIE

GOALIE (Ramakrishnan, et al., 2005) is an ap-
plication that uses clustered numerical microarray 
gene expression measurements to reconstruct the 
cluster analysis based on time windows, proper 
statistical measures and temporal logic methods. 
It results in a temporal logic model connecting 
gene with their GO terms across different time 
points.

Gene Set Enrichment Analysis (GSEA) 

GSEA (Subramanian et al., 2005) uses a ranked 
gene list, depicting the whole array for all samples 
(phenotypic classes) instead of the top scoring 
portion of it, together with gene sets (derived from 
prior biological knowledge, GO etc.). The goal 
of the algorithm behind GSEA is to determine 
whether a gene set is enriched with members of 
the gene list primarily found at the top or bottom 
for the various classes. 
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Bayesian Analysis for Time Series
Microarray Experiments (BATS)

BATS (Angelini et al., 2007) is a new software 
equipped with a friendly GUI for Bayesian Analy-
sis of Time Series microarray experiments. It 
implements a fully functional Bayesian software 
which permits the user to automatically identify 
and estimate differentially expressed genes, in 
time course microarray experiments. BATS can 
carry out both simulations and analysis on real 
data experiments from different platforms.

futur E tr Ends

Certain recent studies (Allison et al., 2006; 
Draghici, Khatri, Eklund, & Szallasi, 2006; Dupuy 
& Simon, 2007) raise some skepticism regarding 
certain aspects of microarray analysis methodolo-
gies performance, with the scope to highlight any 
problematic approaches used so far or to consider 
properly inconsistencies among results derived 
from different microarray platforms. A compara-
tive study published in 2004 using microarrays for 
cancer studies (Dupuy & Simon, 2007) focuses on 
3 basic analysis misconceptions: (1) in outcome-
related gene findings where there is no clear or 
inadequate control for multiple statistical test-
ing, (2) when clustering gene expression values, 
it is considered that clusters are meaningful for 
distinguishing outcomes whereas the clustering 
procedure itself is based on genes selected for 
their correlation with outcome, and (3) in studies 
using supervised learning methods for predic-
tion, there is bias in the estimation of prediction 
accuracy through an inaccurate cross-validation 
procedure (e.g. not proper setup of a training and 
test dataset). Some more general considerations 
are proposed in (Allison et al., 2006). Thus, apart 
from the fact that more accurate methods for 
microarray quality-control assessment need to 
be developed together with approaches for their 

validation, more attention should be drawn to the 
scrutiny of sets of analysis outcomes and their 
correlation to well known functionalities in order 
to evaluate complex multi-component biological 
hypotheses. Additionally, as the assumption of 
statistical independence regarding the expression 
among genes is generally not valid, this imposes 
caution to the statistical procedures that should 
be applied and how, together with an extended 
attention in the evaluation of current techniques 
for normalization, statistical selection procedures 
and clustering methodologies, rather than to the 
development of novel ones. Finally, the existence 
of certain limitations in current microarray 
platforms should be recognized, resulting to 
the inability of detecting expression changes of 
specific genes. Problems of such nature should 
be resolved in the future by research in the areas 
of nucleic acid hybridization, and technological 
advances in detection methods and hybridization 
conditions (Draghici et al., 2006) moving micro-
arrays towards becoming an accurate diagnostic 
tool rather than a high-throughput tool used in 
biological research.

conclus Ion

It is now widely accepted that DNA microarrays 
have become an invaluable tool to modern bio-
logical research. Their usefulness can be easily 
verified by the deluge of papers published during 
the last years, either exploring several biological 
systems in a more systematic way using micro-
arrays, or introducing novel tools and statistical 
algorithms for the extraction or grouping of 
valuable information. Although their use might 
raise certain problems of systematic nature, if 
such issues as those described in section 5 will be 
taken into account during the analysis procedure, 
microarrays can provide useful results in various 
aspects of biological research.
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kEy t Er Ms

Addressing or Gridding: The process of 
assigning coordinates to each of the spots for a 
spotted or bead array or the alignment of a rect-
angular lattice in order to map pixel elements to 
specific probes in Affymetrix arrays.

DNA Microarray: Normally a slide made of 
silica or synthetic materials where on top an or-
dered array of oligonucleotide clones is imprinted, 
corresponding to regions of all discovered or puta-
tive genes of an organism’s genome, which allows 
the specific binding of genes or gene products.

Meta-Analysis: The exhaustive search pro-
cess which comprises numerous and versatile 
algorithmic procedures to exploit the gene expres-
sion results by combining or further processing 
them with sophisticated statistical learning and 
data mining techniques coupled with annotated 
information concerning functional properties of 
these genes residing in large databases. 

Missing Value Imputation: The estimation of 
missing probe values for a gene by the expression 
of other probes over the rest of the slides, based 
on certain statistical or geometrical criteria.

Normalization: The set of processes applied 
to compensate for systematic errors among genes 
or arrays in order to derive meaningful biological 
comparisons.

Segmentation: The process of classification 
of the area regarding a specific spot on the array 
to permit the distinction of the spot pixels either 
as foreground, or background.

Signal Information Exctraction: The process 
of calculating foreground and background intensi-
ties, based on the respective pixel distributions 
derived from the segmentation step.
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Abstr Act

Microarray technology allows the comprehensive measurement of the expression level of many genes 
simultaneously on a common substrate. Typical applications of microarrays include the quantification 
of expression profiles of a system under different experimental conditions, or expression profile com-
parisons of two systems for one or more conditions. Microarray image analysis is a crucial step in the 
analysis of microarray data. In this chapter an extensive overview of the segmentation of the microarray 
image is presented. Methods already presented in the literature are classified into two main catego-
ries: methods which are based on image processing techniques and those which are based on Machine 
learning techniques. A novel classification-based application for the segmentation is also presented to 
demonstrate efficiency.

Introduct Ion

Several types of microarrays have been devel-
oped to address different biological processes: 
(i) cDNA microarrays (Eisen, 1999) are used for 

the monitoring of the gene expression levels to 
study the effects of certain treatments, diseases, 
and developmental stages on gene expression. 
As a result, microarray gene expression profiling 
can be used to identify disease genes by com-
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will only hybridize with its complementary 
probe. The probe-sample hybridization process 
on a microarray typically occurs after several 
hours. All unhybridized sample probes are then 
washed off and the microarray is scanned twice, 
at different wavelengths corresponding to the 
different dyes used in the assay. The digital im-
age scanner records the intensity level at each 
grid location producing two greyscale images. 
The intensity level is correlated with the absolute 
amount of RNA in the original sample, and thus, 
the expression level of the gene associated with 
this RNA.

Automated quantification of gene expression 
levels is realized analyzing the microarray im-
ages. Microarray images contain several blocks 
(or subgrids) which consist of a number of spots, 
placed in rows and columns (Fig. 1). The level of 
intensity of each spot represents the amount of 
sample which is hybridized with the correspond-
ing gene. The processing of microarray images 
(Schena et al., 1995) includes three stages: ini-
tially, spots and blocks are preliminarily located 
from the images (gridding). Second, using the 
available gridding information, each microarray 
spot is individually segmented into foreground 
and background. Finally, intensity extraction, 

Figure 1. A Block of a Typical Microarray Image
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paring gene expression in diseased and normal 
cells. (ii) Comparative genomic hybridization 
application assesses genome content in different 
cells or closely related organisms (Pollack et al., 
1999). (iii) SNP detection arrays identify single 
nucleotide polymorphism among alleles within or 
between populations (Moran & Whitney, 2004). 
(iv) Finally, Chromatin immunoprecipitation 
(chIP) technologies determine protein binding 
site occupancy throughout the genome, employing 
ChIP-on-chip technology (Buck & Lieb, 2004).

The experiment of cDNA microarrays typi-
cally starts by taking two biological tissues and 
extracting their mRNA. The mRNA samples 
are reverse transcribed into complementary 
DNA (cDNA) and labelled with fluorescent dyes 
resulting in a fluorescence-tagged cDNA. The 
most common dyes for tagging cDNA are the 
red fluorescent dye Cy5 (emission from 630-660 
nm) and the green-fluorescent dye Cy3 (emission 
from 510-550 nm). Next, the tagged cDNA copy, 
called the sample probe, is hybridized on a slide 
containing a grid or array of single-stranded 
cDNAs called probes. Probes are usually known 
genes of interest which were printed on a glass 
microscope slide by a robotic arrayer. According 
to the hybridization principles, a sample probe 
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calculates the foreground fluorescence intensity, 
which represents each gene expression level, 
and the background intensities. Ideally, the im-
age analysis would be a rather trivial process, 
if all the spots had circular shape, similar size, 
and the background was noise and artefact free. 
However, a scanned microarray image has none of 
the above characteristics, thus microarray image 
analysis becomes a difficult task. In this chapter, 
we describe several microarray segmentation al-
gorithms based on image processing and machine 
learning techniques.

bAckground

Resent studies in microarrays have been shown that 
segmentation methods can significantly influence 
microarray data precision (Ahmed et al., 2004). 
Several methods have been proposed for the seg-
mentation of microarray images. These methods 
can be classified into four categories: (i) Fixed and 
adaptive circle, (ii) histogram-based, (iii) adaptive 
shape, (iv) clustering. The first three categories are 
based on image processing techniques, while the 
fourth is based on machine learning. Fig. 2 shows 
an overview of the already developed methods 
for microarray image segmentation. Earliest ap-
proaches fit a circle (with fixed or adaptive size) 
around each spot, characterizing the pixels in the 
circle as signal pixels and the pixels out of the 
circle as background pixels. Such an approach 
is used by Scanalyse (Eisen, 1999) and Dapple 
(Buhler et al., 2000). Histogram-based techniques 
estimate a threshold (GSI Lumonics, 1999; Chen 
et al., 1997), such that pixels with intensity lower 
than the calculated threshold are characterized as 
background pixels, whereas pixels with higher 
intensity as signal pixels. The adaptive shape 
segmentation methods are usually based on the 
Watershed Transform (Siddiqui et al., 2002) and the 
Seed Region Growing algorithm (Buckley, 2000; 
Wang et al., 2001). The most recent techniques 
employ clustering algorithms such as K-means 

(Bozinov & Rahnenführer, 2002; Ergüt et al., 
2003; Wu & Yan, 2004), Fuzzy C-Means (FCM) 
(Ergüt et al., 2003), Expectation-Maximization 
(EM) (Blekas et al., 2005) and Partitioning Around 
Medoid (PAM) (Nagarajan, 2003). A hybrid 
method (Rahnenführer & Bozinov, 2004) which 
engages Image Processing and Machine learning 
techniques has been proposed. In this chapter we 
address a pixel by pixel classification approach 
for the segmentation of microarray images. The 
current application, which is presented in section 
4, classifies the pixels of the image into two catego-
ries (foreground and background) using the Bayes 
classifier. Already developed clustering techniques 
generate groups of pixels, characterizing these 
pixels as signal or background using a set of rules, 
i.e. the group with the maximum mean intensity 
value is characterized as signal. Instead of this, 
the current approach directly classifies each pixel 
to the designated category. 

MIcro Arr Ay sEg MEnt At Ion 
MEthods

Image Processing t echniques 

Fixed or Adaptive Circle Segmentation

Fixed circle segmentation is the earliest method 
developed for microarray image analysis. This 
algorithm is implemented by Eisen et al, (Eisen, 
1999) and it is included in the ScanAnalyze soft-
ware tool. The method assumes that all the spots 
are circular with a constant radius. A circular mask 
of a fixed radius, called target mask, is placed on 
each spot location, considering all the pixels inside 
the mask as foreground pixels. On the other hand, 
background contains any external pixel which is 
close to the corresponding spot. Fig. 3 shows the 
way that masks are placed on each spot using the 
ScanAlyze software. 

The elimination of the constant radius assump-
tion was the next step in microarray image analysis 
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studies, generating the adaptive circle algorithm. 
Assuming that the shape of all spots is circular, the 
radius for each spot is automatically estimated or 
manually adjusted by the user, for each spot. For 
instance, Dapple (Buhler et al., 2000) estimates 
the radius of the spot using the Laplacian-based 
edge detection. The manual approaches are ex-
tremely difficult and time consuming due to the 
large amount of microarray spots contained in a 
single image. 

Histogram-Based Segmentation

The methods inn this category are based on the 
histogram of the image. Histogram-based ap-
proaches fix a circular mask on each spot, which 
is larger than the spot size, and then a threshold 
value of the pixel intensity is computed to seper-
ate the foreground and background pixels within 
the mask. QuantArray software (GSI Lumonics, 
1999) calculates the threshold globally from the 

Figure 2. Current status of microarray image segmentation methods.

Figure 3. ScanAlyze image segmentation
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histogram for all pixels within the masked area, 
while UCSF Spot software (Jain et al., 2002) es-
timates locally the threshold using the percentile 
cut-off. These methods can be unstable since the 
circular mask could be too large and it can cover 
neighbouring spots. In addition, adaptive thresh-
olding segmentation methods do not provide the 
expected results when the signal is weak because 
there is no marked transition between foreground 
and background.

To overcome these difficulties, Chen et al. 
proposed a pixel selection method based on the 
Mann-Whitney test (Mann & Whitney, 1947). The 
Mann-Whitney test is a non-parametric statisti-
cal test for assessing the statistical significance 
of the difference between two distributions. The 
method associates a confidence level with every 
intensity measurement based on the significance 
level of the test. Each iteration of the algorithm 
calculates the threshold value between foreground 
and background pixels. At the first step, a circular 
target mask is placed in order to enclose all pos-
sible foreground pixels separating them from the 
background. A set of pixels from the background 
is randomly selected and compared against the 
pixels with the lowest intensity within the target 
mask. If the difference between the two sets is not 
significant, the algorithm discards some predeter-
mined number of pixels from the target area and 
selects new pixels for investigation. Each iteration 
ends when the two sets significantly differ from 
each other, and the signal pixels are considered as 
the pixels remaining inside the target mask.

Adaptive Shape Segmentation

More sophisticated image processing techniques 
comprise the adaptive shape segmentation. These 
methods include no assumption on the size and 
the shape of the spot. The Seed Region Growing 
(SRG) algorithm (Adams & Bischof, 1994) selects 
randomly a small set of pixels, called seeds, as 
the initial points of a region in the area of each 
spot. At each iteration, the algorithm considers 

simultaneously the neighbouring pixels of every 
region grown from a seed. The neighbouring 
pixels are ordered under several criteria. The most 
common criterion uses only the intensity of the 
neighbouring pixels and the mean intensity of the 
growing region. This criterion C is defined as:

( ) ( ) ,sC i I i I= −     (1)

where S refers to the growing region, I(i) is the 
intensity of the pixel i which is neighbour to the 
region S, and sI  is the mean intensity of the grow-
ing region S at the current iteration. 

Next, the algorithm finds the region’s neigh-
bouring pixel m which corresponds to the mini-
mum criterion C and labels it as a region pixel or 
as a boundary pixel between two regions. If all 
the neighbours of m belong to a single region, m 
is also labelled to the region. Therefore if m has 
only one neighbour that belongs to another region, 
m is marked as boundary pixel. The algorithm 
iterates until all pixels have been assigned to a 
region or labelled as boundary pixels.

Another adaptive shape segmentation method 
is based on the Watershed Transform (WT) (Roer-
dink & Meijster, 2000). WT is a popular segmenta-
tion method which originates from mathematical 
morphology. The image is considered as a topo-
graphical relief, where the height of each point is 
related to its grey level, resulting to a topological 
relief with many wells in the position where spots 
are located, as it is shown in Fig. 4.

Imaginary rain falls on the terrain. The wa-
tersheds are the lines separating the catchment 
basins. The output of the watershed algorithm is 
a tessellation of the input image into its different 
catchment basins, each one characterized by a 
unique label. The pixels that belong to the water-
shed lines are assigned a special label. Siddiqui 
et al. (Siddiqui et al., 2002) had implemented a 
segmentation method where the watershed trans-
form is applied to the gradient of the image (Serra, 
1982) and not to the original one. The gradient 
operator is very sensitive to grayscale variation 
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and noise and it can cause development of a large 
number of irrelevant catchment basins. However, 
these oversegmentation problems can be overcome 
using watershed transform techniques without 
any additional computational effort.

Machine l earning based
segmentation

Nowadays, traditional image processing tech-
niques have to cope with more complex problems 
in the fields of medical informatics and bioinfor-
matics. The integration of machine learning in 
image processing is very likely to have a great 
benefit to the field, which will contribute to a 
better analysis of medical and biological data. 
Microarray image analysis methods have already 
employed several machine learning techniques 
in order to segment the image. Clustering is the 
most common technique that is used for the seg-
mentation of the microarray images. The idea of 
the clustering application is to divide the pixels 

of the image into several clusters (usually two 
clusters) and then to characterize these clusters 
as signal or background. Clustering algorithms, 
such as K-means, Fuzzy C-Means, Expectation-
Maximization etc. have been employed in several 
microarray imaging segmentation studies. 

The K-means segmentation algorithm is based 
on the traditional K-means clustering (MacQueen, 
1967). It employs a square-error criterion, which is 
calculated for each of the two clusters. The square 
error criterion for the two clusters is given as: 

2
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and xik is the feature vector of the ith pixel , nk 
is the number of pixels which belong to the kth 
cluster and Mk are the centroids of the kth cluster, 
respectively:

Figure 4. A microarray image represented as a topographical relief
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K-means is commonly fed with the intensity 
of each pixel in the microarray image as features. 
However, there is already developed segmenta-
tion methods based on the K-means algorithm, 
which use more intensity features of each pixel 
(such as mean intensity of the neighbourhood of 
the pixel, or spatial features). For instance, Ergüt 
et al. (Ergüt et al., 2003) employed the K-means 
algorithm using only the intensity of the pixel 
as a feature, while Wu et al. (Wu & Yan, 2004) 
used three intensity-based features as well as 
the Euclidean distance between the pixel and the 
center of the spot, as the fourth feature. Both the 
channels of the microarray image are segmented 
simultaneously. Thus, for each pixel the intensities 
from both channels are combined to one feature 
vector. The number of cluster centres K is set usu-
ally to two, due to the fact that the segmentation 
is used for characterizing the pixels of the image 
as foreground or background pixels.

A number of studies employ the Fuzzy C-
Means (FCM) (Bezdek, 1981), instead of the crisp 
K-means algorithm. FCM is a data clustering 
technique in which a dataset is grouped into K 
clusters with each data point in the dataset belong-
ing to a cluster to a certain degree. For example, 
a certain pixel that lies close to the centroid of a 
signal cluster will have a high degree of belong-
ing or membership to that cluster and another 
pixel that lies far away from the centroid of a 
cluster will have a low degree of membership to 
that cluster.

The FCM algorithm is based on the minimiza-
tion of the following objective function:

( )
3 2

1
,

kn

m ik ik k
i k

J u x M
=

= −∑∑   (5)

where, xik is the feature vector of the ith pixel, Mk 
is the centroid of each cluster, uik is the degree 
of membership of xik in each cluster, 

2
ik kx M−  

is the Euclidean distance between xik and Mk, nk 
is the number of the pixels that belong to the kth 
cluster. The parameter γ is the weighting expo-
nent for uik which controls the fuzziness of the 
resulting clusters. Each pixel is classified in the 
cluster with the maximum calculated member-
ship function.

A more robust than K-means and FCM clus-
tering technique is the Partition Around Medoids 
(PAM) (Kaufman & Rousseeuw, 1989) clustering. 
PAM minimizes a sum of dissimilarities instead 
of a sum of squared Euclidean distances. The 
algorithm first computes a number of represen-
tative objects, called medoids. A medoid can be 
defined as that object of a cluster, whose average 
dissimilarity to all the objects in the cluster is 
minimal. In the classification literature, such 
representative objects are called centrotypes. 
After finding the set of medoids, each object of 
the dataset is assigned to the nearest medoid. 
Nagarajan et al. (Nagarajan, 2003) developed a 
segmentation method based on the PAM to extract 
the target intensity of the spots. The distribution 
of the pixel intensity in a grid containing a spot is 
assumed to be the superposition of the foreground 
and the local background. The partitioning around 
medoids is used to generate a binary partition 
of the pixel intensity distribution. The medoid 
(PAM) of the cluster members are chosen as the 
cluster representatives. 

According to the assumption that the pixels 
of the image could be grouped in several clusters 
in order to extract the signal and background of 
a microarray image, more sophisticated methods 
had been proposed in the literature. Blekas et al. 
(Blekas et al., 2005) proposed a Gaussian Mixture 
Model (GMM) approach for the analysis of the 
microarray images using the Expectation-Maxi-
mization (EM) (Dempster et al., 1977) algorithm. 
EM is an ideal candidate for solving parameter 
estimation problems for the GMM or other neural 
networks. This methodology provides modelling, 
flexibility and adaptability to the data, which are 
well-known strengths of GMM. The maximum 
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likelihood and maximum a posteriori approaches 
are used to estimate the GMM parameters via 
the expectation-maximization algorithm. The 
approach has the ability to detect and compen-
sate for artefacts that might occur in microarray 
images. This is accomplished by a model-based 
criterion that selects the number of the mixture 
components.

hybrid k -Means segmentation

Finally, it is meaningful to refer a work presented 
by Rahnenführer et al. (Rahnenführer & Bozinov, 
2004) who tried to engage both the image process-
ing and the machine learning techniques. The 
hybrid K-means algorithm is an extended version 
of the K-means segmentation approach (Bozinov 
& Rahnenführer, 2002). The machine learning 
contribution includes repeated clustering in order 
to increase the number of foreground pixels. As 
long as the minimum amount of foreground pixels 
is not reached, the remaining background pixels 
are clustered into two groups and the group with 
pixels of higher intensity is assigned as foreground. 

After the clustering, the number of outlier pixels 
in the segmentation result is reduced with mask 
matching. 

c l Ass If Ic At Ion-b AsEd
APPl Ic At Ion

segmentation using the bayes
Classifier

In this section a novel segmentation method 
that classifies the pixels of the image into two 
categories (foreground and background) using 
classification techniques is presented. This clas-
sification-based approach directly classifies each 
pixel to the designated category. More specifi-
cally, the Bayes classifier (Gonzalez et al., 2004) 
is employed to classify the pixels of the image 
into different classes. The Bayes Classifier is 
fed with an informative set of 11 features (Table 
1) (Giannakeas & Fotiadis, 2007) to deal with 
the artefacts of the image. Thus, the method 
can classify the pixels of the image into signal, 
background and artefacts. 

FEATURE TYPE CHANNEL DESCRIPTION

Intensity
features

GREEN

1 Intensity of the pixel

2 Mean intensity value of the 3x3 neighbourhood of the pixel

3 Intensity standard deviation of the 3x3 neighbourhood of the pixel

RED

4 Intensity of the pixel

5 Mean intensity value of the 3x3 neighbourhood of the pixel

6 Intensity standard deviation of the 3x3 neighbourhood of the pixel

Spatial Features

7 x-coordinate of the pixel in the image

8 y-coordinate of the pixel in the image

9 Euclidean distance between the pixel and the centre of the spot

Shape
features

GREEN 10 Correlation of the neighbourhood of the pixel and the Gaussian template

RED 11 Correlation of the neighbourhood of the pixel and the Gaussian template

Table 1. Features for the classification segmentation
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The concept of the Bayes classifier is to esti-
mate the a posteriori probability of a sample (pixel) 
to belong in a class. The a posteriori probability 
is given by the Bayes theorem:

2
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( )( | ) ( )
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where, x ∈ R11 is the feature vector, wi: i = 1,2 are 
the two classes, P(wi ) is the a priori probability 
that an arbitrary sample belongs to class wi, P(wi 
| x) is the a posteriori conditional probability that 
a specific sample belongs to a class, p(x) is the 
density distribution of all samples, and p(x|wi ) is 
the conditional density distribution of all samples 
belonging to wi.

The Gaussian density function is often used 
to model the distribution of feature values of a 
particular class. The general multivariate Gauss-
ian density function is given as:
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where D is the dimension of the feature vector 
(D=11 in our case). μi and Σi are the mean vector 
and the covariance matrix of the features of the 
corresponding class respectively: 
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where Ni is the number of pixels belonging to 
class wi.

In the training stage, the proposed approach 
estimates the mean vector and the covariance 
matrix for each class. Given the mean vector, 
the covariance matrix and the gaussian density 
distribution, the a posteriori probability is esti-
mated for each sample and each class in the testing 
stage. The pixel is classified to the class with the 
maximum a posteriori probability.

r esults

To quantify the effectiveness of the classifica-
tion-based approach an image from the Stanford 
Microarray Database (SMD) (Gollub et al., 2003) 
is used. This image includes 16 blocks and each 
block consists of 576 spots, forming 24x24 rows 
and columns. Two of the blocks are used for the 
training (1152 spots and ~350000 pixels) and 14 
blocks for the testing (5184 spots and ~3500000 
pixels). In order to extract pixel by pixel informa-
tion from the annotation, we simulate the fixed 
circle segmentation that is used by Scanalyse. 
For this task, the known radius of the fixed circle 
and the coordinates of the centres of each spot 
are used. Thus, a binary map is generated for the 
whole block, characterizing the pixels inside the 
circle as signal pixels and the pixel outside of the 
circle as background. 

Table 2 presents the overall accuracy, specific-
ity and selectivity of classification based meth-
odology while the Table 3 shows the results of 
the Bayes classification in each individual spot. 
The accuracy, the specificity and the sensitivity 
of the proposed method is defined as:

Images Training Training Acc % Sp % Se %

Experiment
lc4b007rex2

2 Blocks 
(1152 spots)

14 Blocks
(8050 spots) 86.28 90.21 82.21

Table 2. Accuracy results for the classification-based segmentation
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# ,
#

of correctly detected pixelsAcc
total of pixels in the image

=  (10)

# ,
#

of correctly identified signal pixelsSp
total of signal pixels

=
      (11)

# .
#

of correctly identified background pixelsSe
total of background pixels

=  
      (12)

In Table 3, three different types of spot are 
selected for illustration, expressed, low expressed 
and high expressed spot. 

The current classification-based method detects 
efficiently the signal and the background pixels as 
it is shown in Table 2. We also have to stress that 
better results are reported for specificity as it is 
shown in Table 3. The main reason for this is the 
imbalanced dataset, i.e. it contains a large number of 
background pixels compared to the signal ones. 

To compare the clustering-based techniques 
versus the classification based one four clustering 
approaches based on the K-means and the FCM 

algorithms are employed. Initially, both of these 
algorithms are fed with only the intensity of the 
two channels of the image. Then all the features 
of Table 1 are used. The accuracy results are 
shown in Table IV. As it is shown in this Table, 
the reported accuracy of the Bayes classifier is 
quite better than the other four approaches. In 
addition, the specificity (Sp) of the background 
class is extremely increased using the supervised 
classification-based segmentation.

f utur E t r Ends

Future trends in the field of microarray technology 
could include: (1) The manufacturing and use of 
simpler arrays for quick and more-accurate-clini-
cal diagnoses. (2) The acceptance of national (if not 
international) standards for array manufacturing, 
scanning, and analysis, and (3) The emergence 
and increasing use of smaller nano-arrays.

Accordingly, investigation and future chal-
lenges are generated for the computer-based 

Description Red Green Annotation Result

Expressed spot

Low expressed 
spot

High expressed 
spot

Table 3. Results of the classification-based segmentation in individual spots
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Method Acc % Signal Sp % Background Sp %
K-means

(2 features) 65.49 88.14 41.95

K-means
(11 features) 73.85 91.36 55.66

FCM
(2 features) 65.88 87.21 43.71

FCM
(11 features) 74.20 90.94 56.79

Bayes
(11 features) 86.28 90.21 82.21

Table 4. Comparison of clustering and classification-based methods

analysis of the microarrays. The development of 
new intelligent image processing techniques to 
eliminate the noise sources inherent in the DNA 
microarray process becomes more challenging. 
Additionally, the development of advanced image 
processing methodologies is significant to speed 
up the real-time diagnosis and implementation 
procedures of the next generation of system-on-
a-chip devices. The extension of the machine 
leaning applications in the field of microarray 
image processing could provide more robust and 
effective tools for these purposes. Those methods 
can ultimately provide a new generation of diag-
nostic systems that can help to unlock the unknown 
patterns of complex diseases and their molecular 
phenotypes and allow rapid and responsive treat-
ment mechanisms for these diseases. 

c onclus Ion

An overview of the already developed methods for 
microarray is presented in this chapter. We cat-
egorized all the methods into two main categories, 
earlier approaches which use image processing 
techniques and approaches which use Machine 
learning techniques such as clustering. Image 
processing is an important stage in the circle of 
life of a microarray experiment. Reliability of 
this stage strongly influences the results of data 

analysis performed on extracted gene expressions. 
Several methods related to image processing or 
Machine learning techniques have been developed 
in this area. In this chapter we emphasized to the 
significance of the classification-based techniques 
for the segmentation of microarray image analysis. 
A Bayes classifier is presented to demonstrate 
the effectiveness of the classification techniques. 
According to the promising accuracy results, the 
precision of the microarray data during the next 
steps of the experiment might be significantly 
influenced. 
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kE y tE r Ms

Block: Blocks are also known as grids or 
subgrids. These are areas of the microarray slide 
(and relatively of the microarray image) in which 
a number of spots are located. 

Classification: It is a procedure in which 
individual items are placed into groups based 
on quantitative information on one or more char-
acteristics inherent in the items and based on a 
training set of previously labelled items.

Clustering: It is the task of decomposing 
or partitioning a dataset into groups so that the 
points in one group are similar to each other and 
are as different as possible from the points in the 
other groups.

Image Processing: The analysis of an image 
using techniques that can identify shades, colours 
and relationships that cannot be perceived by 
the human eye. In the biomedical field, image 
processing is used to produce medical diagnosis 
or to extract data for further analysis.

Machine Learning: It refers to the design 
and development of algorithms and techniques 
that allow computers to “learn”. The purpose of 
machine learning is to extract information from 
several types of data automatically, using com-
putational and statistical methods.

Microarray: Sets of miniaturized chemical 
reaction areas that may also be used to test DNA 
fragments, antibodies, or proteins, by using a chip 
having immobilised target and hybridising them 
with a probed sample.

Spot: It is a small and almost circular area 
in the microarray image whose mean intensity 
represents the expression level of the correspond-
ing gene.
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Abstr Act

Automated chromosome analysis is now becoming routine in most human cytogenetics laboratories. It 
involves both processing and analysis of digital images and has been developed because of the demand 
by cytogeneticists. Over the years, many techniques have been introduced for the automatic segmentation 
and classification of chromosome images, of which only a few are included in the available commercial 
systems. Today, advances in chromosome imaging techniques, especially in multispectral imaging, lead 
the way for the development of new and improved methods for the location, segmentation and classifi-
cation of chromosome images by exploiting the color information. In this chapter the authors describe 
methods which have been already developed for automated chromosome analysis.

Introduct Ion

c hromosomes 

Chromosomes are structures that contain genes, 
which store in strings of DNA all the data neces-
sary for an organism’s development and mainte-
nance. They contain vast amounts of information; 

in fact each cell in a normal human being contains 
46 chromosomes which have 96 10×  bits of in-
formation (Thompson, 1992). Chromosomes can 
only be examined visually during cell division 
(mitosis). They are extremely long and thin which 
make them essentially invisible. However, dur-
ing the metaphase stage of mitosis, they contract 
and become much shorter (around 2–10μm) and 
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wider (around 1–2 μm diameter), (Fig. 1(a)). At 
this stage, they can be stained to become visible 
and can be imaged by a microscope.

Chromosome analysis is the procedure from 
which chromosomes are photographed during cell 
division and then are assigned to each class. This 
procedure is called karyotyping, where chromo-
somes are aligned in pairs in a tabular array as it 
is shown in Fig. 1(b). Karyotyping is a useful tool 
to detect deviations from normal cell structure. 
Examples include peripheral blood, bone marrow, 
amniotic fluid, and products of conception. Nor-
mal human somatic cells have 46 chromosomes: 
22 pairs of autosomes (chromosomes 1-22) and 
two sex chromosomes. Females carry two X 
chromosomes (46, XX), while males have a X 
and a Y (46, XY). Germ cells (egg and sperm) 
have 23 chromosomes: one copy of each autosome 
plus a single sex chromosome. This is referred to 
as the haploid number. One chromosome from 
each autosomal pair plus one sex chromosome 
is inherited from each parent. Mothers can con-
tribute only an X chromosome to their children, 
while fathers can contribute either an X or a Y. 
Abnormal cells may have an excess or a deficit 
of chromosomes and/or structural defects which 
depict an exchange of genetic material.

c hromosome Abnormalities 

Chromosome abnormalities can be very complex. 
There are two basic types of abnormalities: nu-
merical and structural and both types can occur 
simultaneously. The most obvious abnormality is 
an unusual number of chromosomes. Having only 
one type of chromosome is a monosomy, such as 
Turner’s syndrome, in which there is only one X 
chromosome and no Y. Having three chromosomes 
is a trisomy, such as Down’s syndrome, in which 
there are three Type-21 chromosomes.

There can also be duplications of genetic 
material within a chromosome and transloca-
tions where two chromosomes exchange genetic 
information. The Philadelphia chromosome re-
sults from a translocation in the 9th and 22nd 
chromosomes. This is often associated with 
chronic myelogenous leukemia (Nowell, 1960). 
Detecting these abnormalities is vital because 
they are reliable indicators of genetic disease 
and damage. Chromosome abnormalities are 
particularly useful in cancer diagnosis and the 
related research (Gray, 1992).

Digital imaging has contributed to cytoge-
netics instrumentation reducing the workload 
in clinical labs and producing quantitative data 
for both research and diagnosis. The last few 

Figure 1. (a) A slide of grayscale banded chromosomes and (b) their karyotype.
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decades we have seen continuous endeavors in (a) 
the development of innovative image acquisition 
and enhancement methods on technologies that 
exploit our knowledge of the molecular basis of 
cancer or other diseases, and (b) the integration 
of these emerging genomic technologies with 
traditional imaging methods for more effective 
solutions for health care delivery. In this chapter 
we introduce the reader to the state of the art for 
automated methods in chromosome analysis.

bAckground

The methods presented below are divided into two 
main categories based on the type of the image 
which is used.

Methods based on g rayscale
c hromosome Images 

Grayscale chromosome imaging techniques de-
veloped in early 60s (Human Ch., 1960) and they 
were able to distinguish seven groups of chromo-
somes. This type of classification was known as 
Denver classification. On 1971, Giemsa staining 
technique was proposed and finally a unique 
banding pattern appeared on each chromosome 
type so that all 22 pairs of chromosomes and the 
X and Y chromosomes could be uniquely identi-
fied (Summer, 1971). 

Segmentation

By the term segmentation we mean the segmenta-
tion of the image into background and objects of 
interest (which are the chromosomes). Although 
image segmentation could be automatic: the seg-
mentation of touching and overlapping clusters 
of chromosomes (Ji, 1989) prevent this. These 
often consist of two or more chromosomes, either 
touching or overlapping with each other. There-
fore, these objects must be further divided into 
the consisting chromosomes.

The methods developed for automated segmen-
tation can be classified into three categories:

• Thresholding methods (Lundsteen, 1987; 
Piper, 1989): These methods choose auto-
matically a threshold T. Pixels with intensity 
above or equal of T are considered as chromo-
some pixels and pixels with intensity lower 
of T are considered as background pixels. 
These methods cannot handle touching or 
overlapping chromosomes.

• Valley or Pale path searching methods (Ji, 
1989; Vossepoel, 1987; Ji, 1994; Popescu, 
1999): Valley searching methods try to find 
“valleys” of gray values called pale paths 
that represent separations of chromosomes. 
They are complex methods which depend 
on several parameters. Ji (Ji, 1989) was the 
first who introduced pale paths. The chro-
mosome image is searched for clusters of 
chromosomes and then the pale path usually 
starts from a point of high curvature – cut 
point. When the pale path reaches the op-
posite side of the boundary of the cluster the 
procedure is terminated and the cluster is cut 
using the pale path. An example of a pale 
path is shown in Fig. 2. Later, Ji (Ji, 1994) 
used the concepts of skeletons and convex 
hulls to decompose overlaps. Vossepoel 
(Vossepoel, 1987) defined a set of rules to 
find candidate cut points and then to link 
points with a minimum-cost algorithm. This 
method often works well at finding accurate 
boundaries, but does not handle overlaps.

• Model based methods (Agam, 1997; Le-
rner, 1998; Carters, 1999; Carters, 2002): 
These methods first find all the touching 
chromosomes and then determine all lines 
starting from points of high curvature. 
These lines are used to cut the touching 
chromosomes and the objects derived are 
compared to prototypes. Agam et al. (Agam, 
1997) used minsets to decompose touching 
and overlapping grayscale chromosomes. In 
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their work, they determined minsets using 
(rectangular) shape-based hypothesis testing 
to choose cut points for dividing clusters of 
chromosomes. Their method was successful 
in many cases but its application is limited 
to grayscale chromosome images.

• Watershed based methods (Graham, 1989; 
Karvelis 2005): Watershed based methods 
use the watershed algorithm (Vincent 1991) 
to decompose touching chromosomes. 
Graham et. al. (Graham 1989) proposed a 
split-and-merge technique to oversegment 
the image and combine segments only if they 
satisfy certain criteria, such as convexity. 
These methods are useful for decomposing 
touching chromosomes but they cannot 
handle overlaps.

Classification

Once the chromosome image is segmented, clas-
sification of the segmented regions follows. The 
goal of this step is to arrange the chromosomes 
into a karyotype such the one shown in Fig. 1(b) 
to be examined by the cytogeneticists. Features 
of the segmented regions are used to classify each 

region to a chromosome class. These features 
usually include: chromosome length, centromere 
index, and banding pattern.

Chromosome length is simple to measure for 
properly segmented chromosomes. The centro-
mere is the region in the middle of the chromo-
some involved in cell division and the control of 
gene expression (Moradi, 2003). The centromere 
divides the chromosome into two arms the p-arm 
and the q-arm. The centromere index is defined 
as the ratio of the length of the p-arm divided by 
the length of the q-arm. 

_ .lengthof p armCentromere Index CI
lengthof q arm

−
= =

−

      (1)

This ratio divides the 24 chromosome classes 
into three groups: (a) Submetacentric (CI < 1), 
(b) Acrocentric (CI ≅ 0) and (c) Metacentric 
(CI ≅ 1), (Fig. 3). However, centromeres are subtle 
and sometimes difficult to locate. The length and 
the centromere index by themselves cannot be 
used to classify chromosomes reliably into their 
24 classes.

A very powerful and popular feature for 
manual and automated chromosome classification 
is the banding pattern of each chromosome class. 
However, banding patterns are often difficult to 
extract automatically. Often a medial axis trans-
form (Lerner, 1995) is performed to measure a 
density profile by integrating the intensities along 
sections perpendicular to the medial axis.

Several transforms have been proposed for rep-
resenting chromosome banding patterns. Fourier 
descriptors have been used as global descriptors 
of the chromosome’s density profile, and the first 
eight components of the Fourier transform were 
found to be the most useful for discrimination 
(Moller, 1970). Another transform proposed in 
(Granum, 1981) describes a set of weighted den-
sity distribution functions which serve as a set 
of basis functions. Each chromosome’s density 

Figure 2. Pale path separating two chromo-
somes
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profile was correlated with these functions, and 
the correlations served as a representation of that 
chromosome, rather than the profile itself.

Several classifiers have been used as well. 
These include neural networks (Sweeney, 1994; 
Errington, 1993; Lerner, 1998)and support vec-
tor machines, achieving high classification rates 
(Kou, 2002). Another popular approach is ho-
mologue matching (Zimmerman, 1986; Stanley 
1998). This technique classifies chromosomes 
based on the assumption, that every chromosome 
class is represented by two identical chromosomes. 
This technique is useful for detecting chromosome 
abnormalities.

Fuzzy classifiers (Vanderheyydt, 1980) have 
also been employed. The output of these clas-
sifiers is a numerical measure of similarity to a 
chromosome class. While notable success has 
been achieved with these methods, they all suffer 
from the same drawback. They rely on features, 
such as centromere position and banding pattern, 
which is difficult to measure and depend on the 
segmentation.

Combined Segmentation and
Classification Methods

Although traditional image analysis methods 
have considered segmentation and classification 
as separate processes they can be combined. The 

result of this combination is that often information 
of classification could be passed to segmentation 
and vice versa. Indeed in the case of chromosome 
segmentation, this has been realized and suggested 
by Ji (Ji, 1994). Agam et. al. (Agam, 1997) also 
combined the two stages.

Methods based on Multichannel
c hromosome Images

New imaging techniques started to appear in mid 
90s with the most promising technique the Multi-
plex Fluorescent In Situ Hybridization (M-FISH, 
Speicher, 1996). Using M-FISH, it is possible 
to create a combination of fluorophores, where 
each class of chromosomes absorbs a different 
combination of these fluorophores. Since each 
fluorophore has a different emission spectrum, 
each chromosome class appears as a different 
color visually distinguishable from all other 
classes without the aid of banding patterns. An 
image of each fluorophore can be obtained using 
appropriate optical filters. An example of an M-
FISH image is shown in Fig. 4.

This new imaging technique introduces several 
advantages:

1. The chromosome classification is simpli-
fied (Speicher, 1996). Only the spectral 
information from the multispectral image 

Figure 3. The three categories of chromosomes according to the centromeric index

Submetacentric Metacentric Acrocentric
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is estimated and no features such as length, 
centromere position and band pattern are 
used.

2. Subtle chromosomal aberrations are detected 
(Veldman, 1997). Traditional monochrome 
imaging techniques failed to detect rear-
rangements of genetic material such as 
the translocation of telemetric chromatin, 
because it is difficult to detect them with 
banding alone. M-FISH (color karyotyping) 
is able to sufficiently depict these anoma-
lies. 

3. It can be used for the identification of small 
genetic markers which remain elusive after 
banding (Ried, 1997).

To date there is little work on image analysis 
of M-FISH chromosomes images. Methods devel-
oped for the classification of human chromosomes 
are mainly based on pixel-by-pixel classification 
algorithms (Sampat, 2002; Choi, 2004; Wang, 
2005; Schwartzkopf 2005). A typical M-FISH 
set consists of 6 images. Hence each pixel can be 
viewed as a 6 feature vector in a 6 dimensional 
space where each element represents the response 
of the dye. The classification procedure is mod-
eled as a 6 feature 24 class pattern recognition 
problem. Each of the 24 chromosomes classes 
is modeled by a Gaussian density probability. 
The parameters (mean vectors and covariance 
matrixes) of the densities are learned through a 
training set using standard Maximum Likelihood 
Estimation. 

Then for any given pixel, described by the 
feature vector 6x∈ℜ , can be classified by using 
the Bayes Decision Rule, which is: 

( | ) ( | ),i i jDecidec if P c x P c x i j> ∀ ≠ , (2)

where ci is the ith chromosome class and P(ci|x) is 
the a posteriori probability of the class ci.

Region based classification approaches have 
also been proposed (Eils, 1998; Saracoglu, 2001). 
The method of Eils et al. consisted of two stages: 

(i) spectral calibration and (ii) adaptive region 
classification. During the calibration stage a 
five-dimensional optimal vector called adaptive 
feature vector, representing each class, was found 
by minimizing an energy term. The region clas-
sification stage was based on a Voronoi image 
tessellation algorithm. Then the closest adaptive 
feature was computed determining the class for 
each region. Neighboring regions were merged 
if they belong to the same class or alternatively, 
when their color distance was below a preset 
threshold.

AdVAnc Es In Aut o MAt Ed
c hro Moso ME AnAl ys Is usIng 
Mul t Ich Ann El  c hro Moso ME
IMAg Ing (M-f Ish )

Most of the methods for automated chromosome 
classification problem are based on pixel-by-pixel 
classification techniques; without taking into ac-
count neighborhood information. Therefore, seg-
mentation information provided by a multichannel 
segmentation method followed by a region-based 
classification could be employed in order to more 
accurately segment M-FISH images and thus 
improve the classification accuracy.

segmentation

In order to segment the M-FISH image into re-
gions the Watershed Transform (Vincent, 1991) 
is employed. However in order to compute the 
watershed transform first the gradient magnitude 
of the multispectral image (Drewniok, 1994) is 
computed combining the contrast information 
from the different spectral channels. 

Instead of separately computing the scalar gra-
dient for each channel, DiZenzo (DiZenzo, 1986) 
introduced a tensor gradient while Drewniok 
extended this work to multispectral images. 
Suppose, an M-FISH 2 5( , ) :I x y ℜ → ℜ  since the 
M-FISH image consists of 5 image channels. 
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Each pixel of the image is represented by a 5-
dimension vector: 

[ ]1 2 5( , ) ( , ) ( , ) ( , ) TI x y I x y I x y I x y= 

      (3)

where ( , ), 1 5iI x y i≤ ≤  are the components (chan-
nels) of the M-FISH image. 

Let also the direction v defined by the angle 
ω:

v = [cosω   sinω]T,   (4)

thus the directional derivative of the function 
I(x, y) is:

1 1 1
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      (5)

where :1 5x y
i i iI I I i ∇ = ≤ ≤  , J is the Jacobian 

matrix and x
iI  and y

iI  are the derivatives of the 
ith component in the x and y direction, respec-
tively.

The direction v which corresponds to the 
maximum of the directional derivative I(x, y) is 
found, by maximizing the Euclidean norm:

2 ( ) ( ) ( )T T TJ v J v J v v J J v⋅ = ⋅ ⋅ =  (6)

The extrema of the quantity vT(JTJ)v, are given 
by the eigenvalues of the matrix JTJ (Drewniok, 
1994).

A common problem of the direct application 
of the watershed transform on the gradient image 
is over-segmentation. To overcome this problem 
(Bieniecki, 2004) the grayscale reconstruction 
(Vincent, 1993) of the multichannel gradient mag-
nitude was computed. Grayscale reconstruction 
reduces the number of unwanted minima, as it 
provides an intuitive selection scheme controlled 
by a single parameter.

The next step of the method is the computa-
tion of the watershed transform. The watershed 
transform is a powerful segmentation method 
which presents several advantages over other 
developed segmentation methods:

1. The watershed lines form closed and con-
nected regions, where edge based techniques 
usually define disconnected boundaries 
that need post-processing to produce closed 
regions.

2. The watershed lines always correspond to 
obvious contours of objects which appear 
in the image.

Figure 4. Five channel M-FISH image data: (a) Aqua fluor, (b) Far red fluor, (c) Green fluor, (d) Red 
fluor, (e) Gold fluor and (f) Color M-FISH image.

(a)

(b)

(c)
(d)

(e)

(f )
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The output of the WT is a tessellation Tn of the 
image into its different catchment basins, each 
one characterized by a unique label:

{ }1 2, , ,n nT T T T=  ,   (7)

where n is the number of the regions.
Only the pixels belonging to the watershed 

lines are assigned a special label to distinguish 
them from the catchment basins. The application 
of the WT to the grayscale reconstructed multi-
channel gradient magnitude image is illustrated 
in Fig. 5.

Classification

Let ωi, i = 1,...,24 denote the 24 classes and z ∈ R5 
is a 5-dimensional random variable. The a priori 
probability that a feature z belongs to a class ωi is 
P(ωi ). p(z | ωi ) is the class conditional probability 
distribution function, which represents the prob-
ability distribution function, for a feature vector 
z given that z belongs to class ωi. P(ωi | z) is the a 
posteriori probability, which represents the prob-
ability that the feature vector z belongs to class ωi 
given the feature vector z. The above quantities 
are related through the Bayes theorem:

24
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( | ) ( )( | )
( | ) ( )

i i
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k k
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p P

=

=

∑
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  (8)

Suppose that a segmented region , 1iR i Q≤ ≤ , 
where Q is the number of regions in the im-
age, produced by the multispectral watershed 
segmentation, consists of ℓ pixels. Z is the set 
of (ℓ) vector values of each region in the image 

{ }1 2, , ,Z =


z z z . It can be observed that two 
pixels in spatial proximity to one another are 
unconditionally correlated with the degree of cor-
relation decreasing as the distance between them 
increases. Assuming that the watershed transform 
segments the image into homogenous regions the 
likelihood p(z | ωi ) is computed as,

1 2
1

( | ) ( , , , | ) ( | )i i k i
k

p Z p z z z p z
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= … = ∏
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      (9)

where , :1 24i i iΣ ≤ ≤  is the mean vector and 
covariance matrix of the ith probability density 
function.

Working with the natural logarithm and drop-
ping all terms that are the same for all classes, 
the Bayes decision rule assigns a region Z to 
class ωi  if:

, ( ) ( ),i ji j DS Z DS Z∀ ≠ >

1

1

1( ) ln ( ) ( ) ln ( )
2 2

t
i i k i i k i i

k
DS Z P−

=

= − Σ − − Σ − +∑


 z

      (10)

The a priori class probabilities for each class 
P(ωi ), are computed using a training set. Then 
P(ωi ) is calculated as the percentage of all chro-
mosome pixels in the training data that belong 
to the class ωi :

24
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k
k
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=

=

∑
 (11)

It is well known that the chromosome class 
reflects the size of each chromosome in descend-
ing order (i.e. chromosome 1 is the largest and 
chromosome 22 is the smallest). The application 
of the method in an M-FISH image is shown in 
Fig. 6. Initially the image is segmented using the 
multichannel watershed segmentation (Fig. 6(b)) 
and then the segmented regions are classified based 
on the region Bayes classification method (Fig. 
6(c)). The final classification map after the region 
merging step is shown in Fig. 6(d). A separate 
colour was used to represent each chromosome 
class in the image.
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Image dataset

A public available database ADIR MFISH chro-
mosome image database (ADIR, M-FISH) can be 
used to measure the classification accuracy. The 
database consists of 200 multispectral images 
having dimension 517x645 pixels. The database 
contains five-channel image sets recorded at 
different wavelengths. In addition, a DAPI im-
age file is included for each M-FISH image. The 
specimens were prepared with probe sets from 
four different laboratories: Applied Spectral Im-
aging (Migdal HaEmek, Israel), Advanced Digital 
Imaging Research (ADIR; League City, Texas, 
USA), Cytocell Technologies (Cambridge, UK), 
and Vysis (Downers Grove, IL, USA).

r esults

Four images were chosen randomly three times 
from the dataset and the test was performed with 
the remaining images. Thus, three different train-
ing subsets (Sub A, Sub B, Sub C) were created. 
The training dataset consists of all chromosome 
classes and no overlap between the training and 
testing data exists. Also pixels belonging to two 

or more chromosomes (chromosome overlaps) 
were not included for training and testing.

The proposed method was compared with 
a Bayes pixel-by-pixel classification technique 
(Sampat, 2002), which is the main classification 
scheme for several related works in the litera-
ture (Sampat, 2002; Choi, 2004; Sampat, 2005; 
Wang, 2005; Schwartzkopf, 2005). Pixel-by-pixel 
classification is performed for the pixels in the 
segmented regions of chromosomes. The training 
and evaluation of both methods was made using 
the same training and testing set. The average 
chromosome classification accuracy obtained for 
each M-FISH training subset: Sub A, Sub B, and 
Sub C is shown in Table 1.

futur E tr Ends

Automated chromosome analysis and recogni-
tion of microscopic images is undergoing active 
development. Methods based on high-resolution 
digitized imagery appear currently to be the only 
approach with the required discriminatory power. 
The field of microscopic chromosome image 
analysis demands competence in a wide range 

Figure 5. M-FISH watershed segmentation. (a) Initial M-FISH image, and (b) watershed regions of the 
M-FISH image.

(a) (b)
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Figure 6. Example of an M-FISH image segmentation and classification: (a) Original M-FISH mage, 
(b) the segmented image using the multichannel watershed segmentation, (c)the image after region 
classification, and (d) the final classification map using region merging.

(a) (b)

(c) (d)

Table 1. Chromosome classification accuracy using the described method and a pixel-by-pixel clas-
sification method.

Subsets
Classification accuracy

Region based Pixel-by-pixel [35]
Sub A 82.2%( ± 14.9%) 70.8%( ± 16.2%)
Sub B 82.4%( ± 14.8%) 70.6%( ± 16.8%)
Sub C 82.6%( ± 14.4%) 70.4%( ± 16.5%)

Overall 82.4% 70.6%

of disciplines, from the practical clinical situa-
tion to optics, electrooptical devices, computer 
architecture, software engineering, multivariate 
statistics, and decision theory.

c onclus Ion

Chromosome image analysis is an essential tool 
for detecting chromosome abnormalities, which 
can be indicators of radiation damage, cancer, and 

a wide variety of inherited diseases. Grayscale 
chromosome imaging techniques have been the 
golden standard for many years and a wide va-
riety of automated classifications methods exist 
already in the literature. Although new imaging 
techniques developed to aid the cytoneticists in 
detecting those abnormalities, such as M-FISH, 
only few automated classification methods exploit 
these types of images.

If classification is performed on a pixel-by-
pixel basis, the classification will be dominated by 
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noisy painting inhomogeneities. This is obvious 
by the misclassification errors produced by the 
pixel-by-pixel algorithm. In contrary region-based 
classification avoids these types of errors, since 
pixels with similar spectral information contribute 
in the classification.
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kE y tE r Ms

Centromere: The centromere is a region, 
found in the middle of the chromosome, involved 
in cell division and the control of gene expres-
sion.

Centromere Index: The centromere index 
is defined as the ratio of the length of the short 
arm of the chromosome divided by the length of 
the other arm.

Chromosome: A chromosome is a continuous 
piece of DNA, which contains many genes, regula-
tory elements and other nucleotide sequences.

Classification: The process of deriving a 
mathematical function that can predict the mem-
bership of a class based on input data.

Machine Learning: As a broad subfield 
of artificial intelligence, machine learning is 
concerned with the design and development of 
algorithms and techniques that allow computers 
to “learn”.

Watershed: The segmentation based on water-
shed designs is a family of segmentation methods 
that consider an image as a topographic relief the 
flooding of which is simulated.
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Abstr Act

The segmentation of microscopic images is a challenging application that can have numerous applica-
tions ranging from prognosis to diagnosis. Mathematical morphology is a very well established theory to 
process images. Segmentation by morphological means is based on watershed that considers an image 
as a topographic surface. Watershed requires input and marker image. The user can provide the latter 
but far more relevant results can be obtained for watershed segmentation if marker extraction relies 
on prior knowledge. Parameters governing marker extraction varying from image to image, machine 
learning approaches are of interest for robust extraction of markers. We review different strategies for 
extracting markers by machine learning: single classifier, multiple classifier, single classifier optimized 
by model selection.
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Introduct Ion

The visual evaluation of microscopic slides is a 
tedious task, which requires hard concentration 
of the pathologist screening the specimen under 

study. With the advent of image processing as an 
efficient way to extract objects of interest in im-
ages, the automatic analysis of images acquired 
from light microscopes has become an emerg-
ing and challenging image analysis application. 
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using watershed is of course the definition of ap-
propriate markers with minimal efforts (Rivest, 
1992; Meyer, 2001). User provided markers can 
be attractive for interactive segmentation but for 
automatic segmentation other techniques have to 
be considered. An accurate extraction of reliable 
markers requires prior knowledge on the latter 
(color, texture, shape, etc.). To incorporate such 
prior knowledge for the automatic extraction of 
markers, machine-learning techniques (Derivaux, 
2007; Lezoray, 2002; Levner 2007) are the most 
natural candidates. Figure 2 provides a schematic 
view of all components involved in the design of 
a morphological segmentation scheme relying on 
machine learning algorithms for marker extraction. 
To perform morphological color image segmenta-
tion, a machine learning based classification of 
pixel feature vectors is done. The result is labeled 
in connected components and refined by a color 
watershed. To infer a proper machine learning 
based pixel classifier, an image database with an 
associated ground truth is constructed and pixel 
feature vectors are shared among classes as a basis 
for supervised learning. In the following Sections, 
conceiving of each one of these components is 
described.

MAch InE lEA rn Ing In
Mor Pholog Ic Al  sEg MEnt At Ion 
of MIcrosco PIc IMAg Es

Machine l earning

Far more relevant results can be obtained for wa-
tershed segmentation if marker extraction relies 
on prior knowledge. Parameters governing marker 
extraction varying from image to image, machine 
learning approaches are of interest for robust 
extraction of markers. However, with the use of 
machine learning algorithms for the extraction 
of seeds, one can consider either unsupervised 
or supervised learning approaches. Unsupervised 
approaches do not make use of any learning step 

Microscopic image analysis schemes are usually 
threefold: image segmentation, objects features 
computation, objects classification. We propose 
to focus on the first part of this scheme for the 
segmentation of microscopic images of bronchial 
cytology stained by the international coloration 
standard of Papanicolaou and acquired in light mi-
croscopy. The aim of the segmentation is to extract 
cells in images; cells being composed of a nucleus 
and a cytoplasm. Segmentation being in general 
a difficult task, machine learning has emerged as 
a key component of intelligent computer vision 
programs when adaptation is needed (Arif, 2007). 
In this Chapter, we consider the segmentation of 
microscopic images by morphological methods 
and show how to integrate machine learning into 
a morphological segmentation scheme.

bAckground

Mathematical Morphology is a very well estab-
lished theory to process images (Serra, 1988). 
The watershed is the basic tool of Mathematical 
Morphology for segmentation. It has proved to be 
a powerful tool and it is used in a large number 
of applications, such as, medicine, remote sens-
ing, robotics, and multimedia (Meyer, 2001). The 
parameters for a watershed are marker and input 
images (Soille, 2004). The watershed grows the 
markers based on a flooding simulation process 
by considering the input image as a topographic 
surface. The problem is to produce the divide-line 
image on this surface (Roerdink, 2000). Each 
marker is associated to a color. The topography 
is flooded from below by letting colored water 
rise from the holes with its associated color, at 
an uniform rate across the entire image. When 
the rising water of distinct colors would merge, 
a dam is built to prevent the merging. Figure 1 
illustrates such a process on a color hematol-
ogy image with two different sets of markers 
(provided by the user or by a machine learning 
algorithm). The most difficult problem when 
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Figure 1. Segmentation by watershed: a) original hematology image, b) 3D view of the image as a 
topographic surface c) user-defined inner and outer marker after connected components labeling, d) 
user-defined markers superimposed, e) superimposed regions of color watershed with c) as markers, f) 
Machine Learning based marker extraction after connected components labeling, g) Machine Learning 
based markers superimposed, h) superimposed regions of color watershed with f) as markers. Regions 
colored in black in marker images ((c) and (f)) correspond to unlabeled pixels, other pixels correspond 
to region seeds.

Figure 2. Schematic view of components involved in the design of a morphological segmentation scheme 
relying on machine learning algorithm for marker extraction.

(a) (b) (c) (d)

(e) (f) (g) (h)
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and supervised methods do need a learning step 
to infer an appropriate model of the data. The two 
approaches (unsupervised or supervised learning) 
have benefits and defects, and it is often difficult to 
make a choice between both. A machine learning 
algorithm is a recognition tool called a classifier 
that provides class memberships information for 
a vector received in input. Therefore, a classifier 
aims at building a function F that maps the input 
feature space to an output space. Each example 
(x, y) consists of an instance px X∈ ⊂   and a 
label y ∈ Y = {ω1,...,ωK} where X is the feature 
vector input space and K the number of classes to 
be discriminated. A classifier can be considered 
as a mapping F from instances to labels F: X → 
Y. Usually, classifiers provide class membership 
estimates f(x, ωi ) and the classification of an input 
feature vector x is performed by:

( )( ) arg min ,
i

iF x f x=

We assume that a dataset D of n examples in 
a real-dimensional space p is provided. In the 
sequel, we review some classical unsupervised 
and supervised classifiers (Duda, 2000).

k-Means

Among unsupervised clustering formulations that 
are based on minimizing a formal objective func-
tion, the most widely used is probably k-means 
clustering (Linde, 1980). It consists in finding a 
set of k examples of p called centers, so as to 
minimize the mean squared distance from each 
data example to its nearest neighbor. To classify 
an input feature vector x, the class memberships 
are estimated in terms of Euclidean distance:

( ),
iif x x c= −

where 
i

c  denotes the center of class ωi and ||.|| is 
the Euclidean distance.

Fisher Linear Discriminant Analysis 
(FLDA)

Fisher’s linear discriminant is an unsupervised 
classification method that projects high-di-
mensional data onto a line (denoted by w) and 
performs classification in this one-dimensional 
space (Fisher, 1936). To find this projection, one 
maximizes the following objective:

( )
T

B
T

W

w S wJ w
w S w

=

where SB is the between classes scatter matrix and 
SW the within classes scatter matrix. To classify 
an input feature vector x, the class memberships 
are estimated by:

( ), T
i if x w x b= +

where bi is a threshold deduced from prior prob-
abilities.

Bayesian Classifier

This classifier is based on the Bayesian decision 
theory (Duda, 2000). It is a supervised statistical 
approach to pattern classification that assumes that 
the decision problem is expressed in probabilistic 
terms. For multivariate distributions, mixtures of 
Gaussian distribution models are used. To classify 
an input feature vector x, the class memberships 
are estimated for each class by the equation in ,

( ) ( )1,
2 i

T

if x x= − −

( ) ( )1 1 log
2i ii

x−
− − Σ∑

( ) ( )log log 2
2i

Kp− +

where 
i
 denotes mean attribute vector, 

i
Σ  is 

conditional covariance matrix of class ωi (normally 
distributed) and 

i
p  prior probability of class ωi.
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k-NN

The k Nearest Neighbors method is a well known 
supervised algorithm in the field of machine 
learning (Michie, 1994). Given a training set and 
a distance defined in the feature space, the basic 
k-NN rule consists in searching for the k nearest 
neighbors of an input feature vector. The estimated 
class probabilities are proportional to the number 
of classes among the k nearest neighbors:

( )
( ), ,

, i
i

S x k
f x

k
=

where S(x, ωi, k) denotes the set of patterns among 
the k nearest neighbors to point x that belong to 
class ωi and |.| denotes the cardinal of a set.

Support Vector Machines (SVM)

SVM are supervised classifiers based on the struc-
tural risk minimization principle from statistical 
learning theory (Cristianini, 2000; Vapnik, 1998). 
SVM express predictions in terms of a linear 
combination of kernel functions on a subset of the 
training data, known as support vectors. SVM map 
an input vector x into a high-dimensional feature 
space H through some nonlinear mapping function 
φ(.) and builds an optimal separating hyper-plane 
in that space. The mapping is performed by a 
kernel function k(.,.) that defines an inner product 
in H. A typical kernel is Gaussian kernel:
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x x

k x x
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This reduces the training of a SVM to maxi-
mizing a convex quadratic form subject to linear 
constraints. The maximum margin separating 
hyper-plane can be represented as a linear com-
bination of training points called support vectors 
(SV):

( )*

1

n

i i i
i

w y x
=
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An example of the training set is a support 
vector if * 0i ≥ . Many specific algorithms can 
solve the convex quadratic problem of SVM, 
the most competitive being Sequential Minimal 
Optimization (Platt, 1998). The training algorithm 
produces a decision function where each support 
vector has a αi value characterizing his weight on 
the hyper plane position. The output of a SVM 
for a given input feature vector x is:

( )*( ) ,
n

i i i
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f x y k x x
∈

= ∑

The output of a SVM is not a probabilistic 
value, but non-calibrated distance measurement 
of an example to the separating hyper-plane. 
Platt proposed a method to map SVM outputs 
into positive class posterior probabilities by ap-
plying a sigmoid function to the SVM output 
(Platt, 1999):

( ) ( )( )
1,

1 expif x
Af x B

=
+ +

where A and B are obtained by minimizing the 
negative log like hood under a test set. Finally, 
SVM are binary classifiers and multi-class deci-
sion functions are usually designed by combining 
several two-class SVM decision functions (Hsu, 
2002).

Multi Layer Perceptrons (MLP)

A MLP is a supervised classifier expressed by a 
network of simple neurons called perceptrons. 
The perceptron computes a single output from 
multiple real-valued inputs by forming a linear 
combination according to its input weights and 
then possibly putting the output through some 
nonlinear activation function (Rosenblatt, 1958). 
A single perceptron is not very useful because 
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of its limited mapping ability. The perceptrons 
can, however, be used as building blocks of a 
larger, much more practical structure. A typical 
multilayer perceptron (MLP) network consists 
of a set of source nodes forming the input layer, 
one or more hidden layers of computation nodes, 
and an output layer of nodes. The input signal 
propagates through the network layer-by-layer 
(Dreyfus, 2005). The computations performed 
by such a feed forward network with a single 
hidden layer are:

( )
0 0

,
h dn n

i ij jk k
j k

f x g w g w x
= =

  
=      

∑ ∑

Where wij denotes the weight between neurons 
i and j, nh the number of hidden units, nd the num-
ber of input units and g is a nonlinear activation 
function (e.g. a sigmoid). The supervised learn-
ing problem of the MLP can be solved with the 
back-propagation algorithm.

Image database

When one wants to conceive a segmentation 
method for a given type of microscopic color 
images, it is essential to utilize a data set of repre-
sentative images. This shows several key benefits 
for the conception and the evaluation of a complete 
segmentation scheme. For the considered class of 
microscopic images, a microscopy expert has to 
choose judicious images that well describe the 
whole segmentation problem: all the objects to be 
extracted (and further segmented) are present on 
at least one image. Once the representative images 
are determined, they are manually segmented in 
several classes and objects of interest are extracted. 
This enables the constitution of a database of 
segmented images (a ground truth). This ground 
truth is associated to a set of pixel feature vectors 
shared in several classes that a machine-learning 
algorithm has to learn to categorize. Therefore, a 
ground truth database can be used for the learning 
step of supervised machine-learning algorithms 

(Bayes, k-NN, SVM, MLP) and also as a refer-
ence segmentation to evaluate the relevance of 
an automatic segmentation. In the sequel, we 
will consider a publicly available database of 8 
images from bronchial cytology that have been 
manually segmented (Meurie, 2005).

The use of machine-learning algorithms to 
extract seed from images comes to perform pixel 
feature vector classification. Each pixel of the 
ground truth is associated to a feature vector x 
and a class y. All the couples (x,y) associated to 
ground truth pixels define a dataset of examples 
and a machine learning algorithm has to infer 
a mapping function F as close as possible to 
ground truth. A machine-learning algorithm used 
to categorize pixels in images produces image 
classification and not image segmentation. In an 
image classification, classes are assigned to pixels 
that are not necessarily spatially connected. To 
obtain segmentation from an image classification 
result, one has therefore to perform a labeling of 
connected components. Figure 3 (a)-(b) show a 
microscopic color image from bronchial cytology 
and its ground truth where pixels have been clas-
sified into three classes (background, cytoplasm, 
nuclei). One the opposite, Figure 3 (c)-(d) show 
typical image segmentations where connected 
components have distinct labels.

Moreover, since color is the main information 
used to classify pixels, different feature vectors 
can be considered by using different color rep-
resentations in different colors spaces (Lukac, 
2006). This change of color representation can 
have high influence on final results. Figure 3(c)-
(d) show two different segmentation results where 
the feature vector associated to pixels is either a 
vector in YCh1Ch2 color space (Figure 3(c)) or a 
vector in RGB color space (Figure 3(d)).

Classification and Segmentation 
Evaluation

An important issue when designing a segmenta-
tion method is the evaluation of results. Having 
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a ground truth obviously facilitates evaluation 
but several precautions have to be undertaken. A 
classical way to assess the performance of a clas-
sifier that produces a classification on image pixels 
is to compute a classification rate for each class. 

Let F be a machine learning algorithm given 
feature vector inputs X and class outputs Y. To 
quantify the error rate of a machine-learning 
algorithm, a loss function is defined to assess if 

the prediction realized is close to the ground truth. 
The error rate (ER) is defined by (Duda, 2000):
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and the loss function is usually defined by
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Figure 3. Morphological segmentation of a microscopic color image (a) with a Bayesian classifier for 
extracting seeds: in YCh1Ch2 (c) and RGB (d) color spaces. Figure 3(b) presents the ground truth of 
Figure 3(a) where three classes of pixels are shown (black for background, blue for cytoplasm, and 
green for nuclei). F-measures for the nuclei and cytoplasm classes are provided. Figure 3(e) and (f) 
respectively present results of a pixel classification by SVM and further refined by a watershed. qshape 
and qseg measures are provided to globally quantify the segmentation quality.

(a) Original Image (b) Ground truth of (a)

(c) F(nuclei)=0.84, F(cytoplasm)=0.75 (d) F(nuclei)=0.73, F(cytoplasm)=0.72

(e) Classification by SVM (qshape=0,769 and
qseg=7,33)

(f) Machine Learning based morphological
segmentation (qshape=0,492 and qseg=4,58)
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This involves counting the misclassification 
error if input feature vector x is wrongly classified. 
The classification (success) rate is then defined 
as 1-ER(X,Y,Z).

However, if the proportion of elements among 
classes is not well balanced, the classification rate 
is no more confident. This is generally the case 
for feature data sets coming from microscopic 
ground truth images where most of pixels belong 
to background in a very high proportion (higher 
than 80%). A classifier that classifies all pixels as 
background will have a classification rate close to 
80% although it performs very badly. To correct 
this, it is recommended to use a Balanced Error 
Rate (BER) that computes the average of the error 
rates on each class. BER is defined by:
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Other measures to evaluate classification re-
sults exist. The most used are based on Precision 
and Recall measures. They are obtained from an 
analysis of the classification confusion matrix. 
Let TP denote True Positives, FP False Positives, 
and FN False Negatives that are defined for each 
class by:
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From the latter, Precision, Recall and F-mea-
sure, can be defined by:
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For instance, a specific F-measure for the 
evaluation of microscopic image classification 
has been proposed in (Meurie, 2003). Figure 
3(c)-(d) provides such a F-measure for nuclei and 
cytoplasm classes. One can see that this measure 
well reflects how good the classification is with 
respect to ground truth (the higher the F-measure, 
the better).

All previous methods are dedicated to pixel 
classification results evaluation: they do not take 
into account the spatial information in images. 
Therefore, for the case of segmentation evalu-
ation, other specific measures have to be taken 
into account. An excellent review of segmentation 
evaluation methods can be found in (Chabrier, 
2006). However, all these methods are not always 
suited for evaluating microscopic image segmen-
tation results. A more specific method has been 
proposed in (Lebrun, 2007) to evaluate in a single 
measure the segmentation of cells in microscopic 
images. This cell segmentation quality criterion 
qseg takes into account the adequacy qshape between 
the shape of the objects produced by an automatic 
segmentation Ia and an expert segmentation Ie. 
That criterion also takes into account the num-
ber of missing objects nmissing and the number of 
artifact objects nartifact. Definition of that criterion 
is, with λ ∈ [0,1]: 

( )missing artifact1seg shapeq q n n= + + −

Constant λ makes it possible to favor a segmen-
tation that limits the number of missing objects 
as compared to the number of artifact objects. In 
the case of cell segmentation, it is essential that 
no cell is lost, even if that forces to keep some 
artifacts, so a typical value is λ = 0,9. The shape 
adequacy qshape is defined as following: 

( )( )
( ) ( )

2
max

1 min , ,
a e

shape e e
I p I pa

q d p I d
I ≠

= ∑
In the latter, de(p,Ie ) corresponds to the distance 

between the pixel p and its nearest pixel belonging 
to the shape edges in expert segmentation Ie. dmax 



���  

Machine Learning in Morphological Segmentation

value aims at restricting the effect of weighting 
decrease when pixels are close to expert segmen-
tation boundaries. In Figure 3, values of qseg and 
qshape are provided for two images obtained from 
image classification by SVM, and further refined 
by a watershed. Obtained values efficiently quan-
tify segmentation results (the lower qseg value, the 
better) as confirmed by visual analysis.

Multiple Classifier Fusion

In this Section, a complete morphological seg-
mentation scheme based on machine learning 
techniques for marker extraction is designed for 
the automatic segmentation of bronchial color 
microscopic images. First, the abilities of different 
machine learning algorithms are studied for sole 
pixel classification. Given an image as input, each 
classifier processes an image by assigning a label 
to each pixel. Unsupervised classification directly 
treats each image without exploiting any model 
inferred from an image database whereas this is 
the case for supervised classification. Whatever 
the classifier, its hyper-parameters and feature 
vector used to represent a color pixel have serious 
influence on final results. It is therefore essential 
to choose the best representation and parameters. 
This is performed in cascade: first, each classifier 
has its parameters optimized, and second the best 
pixel color features are determined, both steps 
with respect to F-measure. Once this is done, a 
set of different classifiers is obtained, operating 
on different pixel representations and having dif-
ferent abilities to extract seeds. Table 1 presents, 
for each of the abovementioned classifiers, the 
retained color feature vector used to represent 
pixels so as to obtain the best results in terms of 
F-measure for the extraction of cytoplasm and 
nuclei. This F-measure is measured and averaged 
over all the comparisons with ground truth im-
ages. As shown in Table 1, the color representation 
has high influence on results and classifiers do 
not respond in the same way to similar feature 
vectors. Moreover, supervised classifiers (SVM, 

Bayes, MLP and kNN) tend to provide better 
pixel classification results in terms of F-measure. 
Figure 4 presents classification results for a color 
microscopic image with classifiers of Table 1.

Previous results have shown that pixel clas-
sification is a good candidate for marker extrac-
tion. However, it remains difficult to choose only 
one single classifier for extracting markers since 
results obtained by some of them are very close. 
Despite this, SVM, Bayes, kNN and k-means 
can be retained as the most reliable classifiers. 
Therefore, this first step of classifier evaluation 
was essential to retain the best machine-learn-
ing candidates for marker extraction regarding 
the problem under consideration.

Since it is difficult to choose a single clas-
sifier to perform a marker extraction task, an 
alternative lies in combining outputs of several 
classifiers. Figure 4(h) shows an intersection map 
of several pixel classifications obtained from dif-
ferent classifiers. In this image, pixels colored in 
yellow present cases where at least one classifier 
predicted a different class from the other classi-
fiers. To alleviate these incoherencies, a classical 
way is to fuse the outputs of several classifiers to 
take a final decision. This comes to do multiple 
classifier fusion. Given a set of m classifiers, a 
combination rule g can be used to fuse results. 
This combination rule is used to estimate class 
membership estimates by (Kuncheva, 2004):

( ) ( ) ( ) [ [{ }( )| , , 1,i j i j ip x g f x j m= = ∀ ∈

where fj(x,ωi ) and φj(ωi ) respectively denote class 
membership estimates by classifier j for class ωi, 
and the confidence in the classification performed 
by classifier j for class ωi. The confidence is a 
value assessing the reliability of a classifier in its 
recognition of a given class. Typical values for 
confidence are provided by evaluation measures. 
Table 2 presents results that show the interest in 
multiple classifier fusion with respect to using 
single classifiers. The confidence of each classifier 
is evaluated with F-measures and only three clas-
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sifiers are combined (SVM, Bayes and k-means). 
Two combination rules g are considered (sum and 
majority vote). First, multiple classifier combina-
tion enables to obtain better final classification 
whatever the combination rule, sum combination 
rule outperforming majority vote. Therefore, 
multiple classifier combination is a simple and 
efficient method to merge the outputs of several 
classifiers with close accuracies.

As mentioned earlier, pixel classification is 
only one step in a machine-learning based mor-
phological segmentation scheme. To assess the 
quality of marker extraction by machine-learn-
ing means, one needs evaluation of the whole 

segmentation scheme (classification followed by 
watershed) and not only of the sole pixel classi-
fication. These results are presented in Table 2. 
In this case, one evaluates the final segmentation 
obtained through the whole scheme of Figure 2. 
First, whatever the classifier, multiple classifier 
combination for marker extraction of a watershed 
performs always better than single classifier 
marker extraction. Second, spatial refinement 
by watershed enables increasing of the nuclei 
detection rate.

Finally, there are few differences between the 
obtained results. Even if one classifier performs 
slightly better than another one, this is not of high 

Classifier Color feature vector 100*F(cytoplasm) 100*F(nuclei)
k-means YCh1Ch2 69,5 74,4
FLDA RGB 50,8 72,4
FLDA I1I2I3 57,3 71,9
FLDA HSL 59,9 69,8
SVM YCh1Ch2 77,4 74,2
Bayes YCh1Ch2 72,2 74,6
MLP YCbCr 56,9 73
kNN HSL 79,9 70

Table 1. Pixel classification results with different machine learning algorithms and feature vectors. 
The first four rows concern unsupervised classifiers and the last four rows supervised classifiers. Best 
F-measures are bold faced.

Figure 4. Several pixel classifications ((c) to (g)) of an original image (a) and the intersection map of 
all these classifications (h) illustrating the way they agree altogether.

(a) Initial image (b) Expert ground truth (c) k-Means (d) Bayes

(e) k-NN (f) MLP (g) SVM (h) Intersection map
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importance for the next morphological segmen-
tation step, watershed. However, the previous 
scheme has pointed out which classifier performs 
the best in average: Support Vector Machines. In 
next Section, we show one can globally optimize 
such a single supervised classifier.

Single Classifier Optimization

Working with machine learning algorithms for 
pixel classification involves taking into account 
not only the recognition rate of the base inducer 
but also the processing time needed to perform a 
single pixel classification (Lebrun, 2008). SVM 
are powerful classifiers having high generalization 
abilities, but the decision function build by SVM 
has a complexity that increases with training set 
size (Steinwart, 2004). As a consequence, using 
SVM directly on a huge pixel dataset is not di-
rectly tractable to produce fast and efficient pixel 
classifier (Lebrun, 2008). Therefore, it is essential 
to perform an efficient model selection of SVM 
that achieves a trade-off between recognition rate 
and low complexity of the inducer (the decision 
function). Such a trade-off can be expressed via 
a criterion to optimize (Lebrun, 2007) that will 
be called Decision Function Quality (DFQ) in the 
sequel. A natural way to reduce the complexity 
of decision functions produced by SVM is to 
control the number of support vectors. Since the 

latter is related to training set size, one can control 
complexity by modifying training set size through 
Vector Quantization (Gersho, 1991). As opposed 
to the approach described in previous Section that 
operates in cascade, it is more natural to choose 
for a SVM, in a single optimization process, the 
values of the SVM hyper-parameters, and the 
simplification level of the training set, in order 
to optimize the proposed DFQ criterion. Such 
an optimization process is usually named model 
selection. Exhaustive search for model selection 
being not tractable, meta-heuristic have to be 
used, e.g. taboo search (Glover, 1999). Such a 
model selection for pixel classification has been 
proposed in (Lebrun, 2007) to design SVM de-
cision function of high recognition rates while 
being parsimonious. To perform pixel classifica-
tion, three different binary decision functions 
are induced, each one discriminating one class 
of pixel against the others. This is called a one-
against-all decomposition. 

Results obtained with this methodology are 
shown in Table 3. Recognition rate is determined 
using a balanced error rate. Results show that 
training time stays tractable in all cases. Mean 
classification time per image is also tractable (only 
few seconds) as compared with no dataset quanti-
zation (classification time higher than 1 hour). If 
we compare this to results presented in previous 
Section, SVM was probably the best pixel classifier 

Classification scheme 100*F(cytoplasm) 100*F(nuclei)
Classification by sum rule combination 78,3 74,9

Classification by majority vote rule combination 78,1 74,8
Classification refined by Watershed 100*F(cytoplasm) 100*F(nuclei)

k-means + Watershed 72,8 76,2
SVM + Watershed 73,2 75,8
Bayes + Watershed 71,1 76,3

Sum rule combination + Watershed 76,5 76,4

Table 2. F-measures for cytoplasm and nuclei extraction by different combination rules of pixel classifica-
tions (k-means, Bayes, SVM) and by classification refined by watershed (i.e. a complete morphological 
segmentation making use of machine-learning algorithms for extracting markers).
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Color space 1-BER |SV| Training time Mean classification time
RGB 86.55 % 479 2639 10.32
XY1Z 86.80 % 1364 12017 29.22
L*a*b* 86.74 % 745 3856 16.80
L*u*v* 86.35 % 2680 5761 61.98
LCH1 85.97 % 1239 6785 27.40

YCh1Ch2 87.09 % 303 6404 6.58
I1I2I3 86.85 % 2589 4760 54.11
HSL 86.02 % 2520 2899 55.52
YCbCr 86.67 % 519 2668 11.08
Average 86.56 % 1382 5310 30.34

Table 3. Recognition rate (1-BER), total number of support vectors |SV|, training time and mean clas-
sification time (in seconds) per image are given for multi-class decision functions produced with nine 
different color spaces.

Pixel classification Pixel Classification
refined by watershed

Image qseg qshape q’ qseg qshape q’
0 17.24 1.04 16.20 4.60 0.80 3.80
1 6.11 1.01 5.10 4.36 0.96 3.40
2 11.00 0.90 10.10 6.26 0.66 5.60
3 24.59 2.19 22.40 4.89 1.49 3.40

4 6.34 0.24 6.10 2.30 0.20 2.10

5 6.42 0.52 5.90 2.45 0.45 2.00
6 7.33 0.73 6.60 4.58 0.68 3.90
7 13.99 0.79 13.20 3.17 0.57 2.60

average 11.63 0.93 10.70 4.08 0.73 3.35

Table 4. Cell segmentation quality (qseg), shape quality (qshape) and missed artifact  trade-off quality 
(q’= qseg - qshape) with 8 microscopic images for pixel classification and pixel classification refined by 
watershed.

but also the slowest. A careful model selection is 
therefore essential. As attended, color space has 
also an impact on recognition rate.

Moreover, one can see that high confidence 
in class memberships is obtained. Classification 
result is close to ground truth but with processing 
times largely lower than for classifiers described 
in previous Section. Finally, to obtain image seg-
mentation from image classification, a watershed 
is performed with as markers the classification 

result of a SVM-based pixel classification after 
model selection. Table 4 shows benefits of refining 
image segmentation obtained by pixel classifica-
tion: better results are always obtained regarding 
sole pixel classification. Figure 5 shows segmen-
tation results with this segmentation scheme in 
comparison with expert segmentation. Globally, 
automatic segmentations have good matchings 
with expert segmentations.
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Figure 5. Cell microscopic images (first row), segmentations produced by SVM after model selection 
refined by watershed (middle row) and expert segmentation (last row).

f utur E t r Ends

Future works will concern the adaptation of 
machine-learning based algorithms to the clas-
sification of regions. It is much more natural, 
and presumably more efficient, to work with 
perceptually meaningful entities obtained from 
low-level grouping process. This will transform 
the problem of pixel classification into a problem 
of region classification. However, even if this can 
be attractive in terms of complexity reduction, 
this introduces other problems in terms of region 
description that have to be studied in depth.

c onclus Ion

Machine Learning algorithms have emerged as 
powerful techniques to introduce adaptation into 
the conception of image processing algorithms. 
For the special case of Mathematical Morphol-
ogy making use of watershed from markers, far 
more relevant results can be obtained with mark-
ers extracted by pixel classification by machine 
learning algorithms. In this chapter, we described 

how to exploit machine learning for morphologi-
cal segmentation. 
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kE y tE r Ms

Classification: The process of deriving a 
mathematical function that can predict the mem-
bership of a class based on input data.

Classifier Combination: Classifier combina-
tion consists in combining results obtained from 

a set of classifiers to achieve higher performance 
than each single classifier.

Ground Truth: A ground-truth database is 
a database that provides a list of the objects in 
each image.

Machine Learning: As a broad subfield 
of artificial intelligence, machine learning is 
concerned with the design and development of 
algorithms and techniques that allow computers 
to “learn”.

Mathematical Morphology: Mathematical 
morphology (MM) is a theoretical model for 
digital images built upon lattice theory and topol-
ogy. It is the foundation of morphological image 
processing, which is based on shift-invariant 
(translation invariant) operators based principally 
on Minkowski addition.

Model Selection: Selection of an optimal 
model to predict outputs from inputs by fitting 
adjustable parameters.

Support Vector Machines: SVM map input 
vector to a higher dimensional space where a 
maximal hyperplane is constructed.

Watershed: Segmentation by watershed 
designs a family of segmentation methods that 
consider an image as a topographic relief the 
flooding of which is simulated.
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Chapter XXII
Pit Pattern Classification Using 

Multichannel Features and 
Multiclassification
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Abstr Act

Wavelet-, Fourier-, and spatial domain-based texture classification methods have been used success-
fully for classifying zoom-endoscopic colon images according to the pit pattern classification scheme. 
Regarding the wavelet-based methods, statistical features based on the wavelet coefficients as well as 
structural features based on the wavelet packet decomposition structures of the images have been used. 
In the case of the Fourier-based method, statistical features based on the Fourier-coefficients in ring 
filter domains are computed. In the spatial domain, histogram-based techniques are used. After reviewing 
the various methods employed we start by extracting the feature vectors for the methods from one color 
channel only. To enhance the classification results the methods are then extended to utilize multichannel 
features obtained from all three color channels of the respective color model used. Finally, these methods 
are combined into one multiclassifier to stabilize classification results across the image classes. 
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Introduct Ion 

Today, the third most common malignant dis-
ease in western countries is colon cancer.. For 
that reason a regular examination of the colon is 
recommended, especially for people at an age of 
50 years and older. Colonoscopy is currently the 
best test available to identify colon cancer. 

Colonoscopy is a medical procedure which 
allows a physician to investigate the inside of 
the colon. This is done by using a colonoscope, 
a flexible instrument equipped with a CCD chip 
for visualisation of the organ and controlled by 
the physician. In case a lesion is detected, tissue 
samples can be taken and relevant lesions can be 
removed, avoiding thus surgery.

Modern colonoscopies allow the acquisition of 
digital images and video sequences from inside 
the colon during the colonoscopy. This makes it 
easier for the physician to review the results from 
a colonoscopy and to document the growth and 
spreading of an eventually tumorous lesion. To 
obtain images which are as detailed as possible 
a magnifying colonoscope is used. This type of 
colonoscope provides images which are up to 
150-fold magnified and thus are very detailed 
as they uncover the fine surface structure of the 
mucosa as well as small lesions.

A common procedure to visually enhance the 
structure of the mucosa is to spray indigo carmine 
or methylen blue onto the mucosa. While dyeing 
with indigo carmine causes a plastic appearance 
of the mucosa, dyeing with methylen blue helps to 
highlight the boundary of a lesion. Cresyl violet is 
often used to actually stain the margins of the pit 
structures, which is also referred to as staining.

In this work we document the good perfor-
mance of several texture classification tech-
niques to perform an automated classification 
of pit pattern images acquired by a magnifying 
colonoscope. Based on these methods, we show 
the benefit of using features based on three color 
channels. Finally, we present one possible way to 
combine several methods and classifiers to build 
a multiclassifier.

Note that the developed techniques are not 
meant to replace the physicians’ diagnosis but are 
designed to act as a decision support system for 
the human operator during colonoscopy – here a 
reliable and immediate diagnosis is a significant 
advantage since a second colonoscopy required in 
many cases can be avoided as there is no need to 
wait for the histological classification of eventu-
ally extracted biopsies.

PIt PAtt Ern c l Ass If Ic At Ion

Polyps of the colon are a frequent finding and 
are usually divided into metaplastic, adenoma-
tous, and malignant. As resection of all polyps 
is time-consuming, it is imperative that those 
polyps which warrant endoscopic resection can 
be distinguished: polypectomy of metaplastic 
lesions is unnecessary and removal of invasive 
cancer may be hazardous. For these reasons, as-
sessing the malignant potential of lesions at the 
time of colonoscopy is important.

To be able to differentiate between the dif-
ferent types of lesions a classification method 
is needed. 

The most commonly used classification system 
for distinguishing between non-neoplastic and 
neoplastic lesions in the colon is the pit pattern 
classification originally reported by Kudo, Hirota 
et al. (1994) and Kudo, Tamura et al. (1996).

This system allows a differentiation between 
normal mucosa, hyperplastic lesions (non-neo-
plastic), adenomas (a pre-malignant condition), 
and malignant cancer based on the visual pattern 
of the mucosal surface. Hence, this classification 
scheme is a convenient tool to decide which lesions 
need not, which should, and which most likely 
can’t be removed endoscopically. The mucosal 
pattern as seen after dye staining and by using 
magnification endoscopy shows a high agreement 
with the histopathologic diagnosis. Furthermore, 
due to the fact that this method is based on the 
histopathologic (and therefore visual) structure of 
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the mucosa, it is a convenient choice for a clas-
sification using image processing methods.  

As illustrated in Figure 1, this classification 
method differentiates between the five main 
types I to V according to the mucosal surface of 
the colon. Type III is divided into two sub-types, 
III-S and III-L, designating the size of the pit 
structure. The higher the number of the pit type 
is, the higher is the risk that the lesion under 
investigation is malignant.

It has been suggested that pattern of type I 
and II are characteristic of non-neoplastic lesions, 
type III and IV are found on adenomatous polyps, 
and type V are strongly suggestive of invasive 
carcinoma.

Lesions of type I and II are benign, representing 
the normal mucosa or hyperplastic tissue, and in 
fact are non-tumorous. Lesions of type III and IV 
in contrast represent lesions which are neoplastic. 
Type V lesions usually are highly indicative for 
cancer. Thus a coarser grouping of lesions into 
two instead of six classes is also possible.

Using a magnifying colonoscope together with 
indigo carmine dye spraying, the mucosal crypt 
pattern on the surface of colonic lesions can be 
observed (Kudo et al., 1996). Several studies found 
a good correlation between the mucosal pit pattern 
and the histological findings, where especially 
techniques using magnifying colonoscopes led 
to excellent results (Hurlstone et al., 2004).

As depicted in Figure 1 pit pattern types I to 
IV can be characterized fairly well, while type 
V is a composition of unstructured pits. Table 1 
contains a short overview of the main character-
istics of the different pit pattern types.

Although at a first glance this classification 
scheme seems to be straightforward and easy to be 
applied, it needs some experience and exercising 
to achieve fairly good results (Hurlstone, 2002; 
Tung, Wu, & Su, 2001) – here, an automated deci-
sion support system for the physician conducting 
the colonoscopy would improve the situation. To 
illustrate this, Figure 2 contains images out of the 
training set used throughout this work.

fEA tur E Extr Act Ion And
c l Ass If Ic At Ion

The task of automated image classification con-
sists of two major parts: the extraction of relevant 
features from images and the classification based 
on these features. These parts are outlined in the 
following section.

wavelet-based Methods

Previous work has already shown that wavelet-
based methods can be used successfully for the 
classification of colon cancer. In (Karkanis et al., 
2001) frames of an endoscopic video are trans-
formed to the wavelet domain using the discrete 
pyramidal wavelet transform. Based on the result-
ing wavelet coefficients, second order statistics 
are computed from co-occurrence matrices for 
the wavelet subbands. These statistical values are 
used as input for an artificial neural network. An 
implementation along with results is documented 
in (Maroulis et al., 2003).

The approaches described in (Karkanis et al., 
1999; Karkanis et al., 2000) are very similar, but 
instead of using all subbands, only the subband 
with the highest variance in the coefficient his-
togram is used to obtain features.

In (Häfner et al., 2006a; Liedlgruber & 
Uhl, 2007) different wavelet-based methods in 
conjunction with different classifiers have been 
used successfully for pit pattern classification. 
Six distinct methods have been investigated to 
obtain features based on the wavelet transform. 
The types of features include statistical features 
as well as structural features. 

Statistical Features

In previous work (Häfner et al., 2006a) we have 
already presented results using two classical 
feature sets generated from the discrete wavelet 
packets transform (DWP). The DWP transform 
domain contains the pyramidal wavelet transform 



���  

Pit Pattern Classification Using Multichannel Features and Multiclassification

Pit type Characteristics

I roundish pits, which designate a normal mucosa
II stellar or papillary pits

III-S small roundish or tubular pits which are smaller than the pits of type I
III-L roundish or tubular pits which are larger than the pits of type I

IV branch-like or gyrus-like pits
V non-structured pits

Table 1. The characteristics of the different pit pattern types.

Figure 1. Pit pattern classification according to Kudo et al.

Figure 2. Images taken with a colonoscope showing the different types of pit pattern.

I II III-S

III-L IV V
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(WPC) as a subset of the subbands which are used 
to extract the corresponding first type of feature 
vector. Possible features computed are based on 
the coefficients in the subbands (e.g. the Energy, 
Logarithm of energy, Variance, Entropy, or the 
l-Norm).

The Local discriminant bases algorithm (LDB) 
(Saito & Coifman, 1995; Saito, 1997; Rajpoot, 
2003) is used to generate the second type of feature 
vectors considered in previous work. Contrasting 
to the previous technique this method is already 
highly focused on discrimination between differ-
ent classes. Here, a wavelet packet basis optimal 
for discrimination between images of different 
classes is constructed. Once this basis has been 
identified all training images are decomposed into 
this basis. The resulting subbands are then used 
in the subsequent feature extraction step.

Wavelet packets can be used in two additional 
ways to extract statistical features from the DWP 
domain (Liedlgruber & Uhl, 2007). Both rely 
on the best-basis algorithm (Coifman & Wicker-
hauser, 1992) which decomposes a given image 
into an optimal wavelet packet basis according 
to a specified cost function (e.g. like Logarithm 
of energy, Entropy, Lp-Norm and the Threshold 
cost function). The resulting subband structure 
usually concentrates the energy of the image in 
an optimal way.

The Best-basis method (BB) decomposes each 
training image into an optimal wavelet packet 
basis with respect to the chosen wavelet family. 
The resulting subbands are used to extract features 
from. Since however the resulting decomposition 
structures are different among the images, we 
employ a voting procedure, which assures, that 
the feature vectors for the different images are 
based on the same subbands and that the subband 
ordering within the feature vectors is the same. 
After all training images are decomposed into their 
respective best basis subband structures, we count 
the occurrence of each subband of a fully decom-
posed DWP decomposition quadtree in the set of 
all training images’ best basis subband structures. 

The subbands used to extract features from (also 
for the images to be subsequently classified) are 
those with the highest occurrence count.

The Best-basis centroid (BBCB) method also 
decomposes each training image into an optimal 
wavelet packet basis according to the best-basis al-
gorithm. Subsequently, a common decomposition 
structure – a so-called centroid – is determined, 
into which all images are being subsequently 
decomposed and which is used to extract features 
from. This centroid is obtained by determining the 
subband structure which has the smallest average 
distance to all best-basis decomposition trees of 
the training images according to some quadtree 
distance metric.

Structural Features

In contrast to the feature extraction methods 
presented in the previous section, the methods 
presented in this section rely on the best-basis 
subband structures.

In the best-basis structural method (BBS) we 
use two different ways to create a feature vector 
(Liedlgruber & Uhl, 2007). The first method 
creates a feature vector for a given image, which 
contains the so-called unique node values of the 
respective decomposition quadtree. These unique 
node values uniquely identify each possible node 
in a quadtree. To ensure, that the feature vectors 
among all images contain the same node posi-
tions, for each node present in a tree a zero is 
inserted into the feature vectors for those images, 
which do not contain the according node in their 
decomposition structures. Having obtained these 
feature vectors, the euclidean distance is used to 
calculate the similarity between two images. 

The second feature extraction method uses the 
decomposition trees directly as features. Using a 
quadtree distance metric the distance between two 
images can then be calculated. These distances are 
subsequently used to classify an unknown image 
using the k-NN classifier (see below).
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f ourier-based Approach

Contrasting to the feature extraction methods 
presented above, also the discrete Fourier trans-
form (DFT) can be used for feature extraction 
resulting in excellent classification results (Häfner 
et al., 2007). This approach is based on the Fast 
Fourier Transform (FFT), which is an efficient 
algorithm to compute the DFT. Using the 2D-FFT, 
all training images are transformed to the Fourier 
domain. Based on the resulting Fourier coeffi-
cients, the power spectrum is computed for each 
image. Several non-overlapping rings of different 
starting offsets and widths are chosen from the 
power spectrum (ring filters, band-pass filters). 
These rings are then used to extract features such 
as the mean and the standard deviation of the 
coefficients’ magnitudes contained in each of the 
rings. This yields a feature vector consisting of 
n entries for n distinct rings in the filter. Figure 
3 shows two examples of ring filters.

In (Häfner et al., 2007) the entire information 
contained in the RGB color model has been chosen 
to create feature vectors from. Therefore a single 
feature vector is created from each of the three 
color channels (R, G and B). These feature vectors 
are then concatenated to form one large feature 
vector. Then the Bayes classifier (see below) is 
used for classification.

One major problem is the huge number of 
possible ring configurations to choose from. As 
a consequence, in (Häfner et al., 2007) a genetic 
algorithm is proposed to perform a search for op-
timal ring configurations. We follow this strategy 
but use all types of classifiers considered in this 
work (see below).

spatial domain Approach

Pit pattern classification can also be performed in 
the spatial domain using a selection of different 
histograms (Häfner et al., 2006b).

The experiments in (Häfner et al., 2006b) have 
been conducted using 1D, 2D and 3D histograms. 

The classical intensity 1D histograms are created 
for all channels of the RGB color model. The 
2D histograms (co-occurrence histograms) are 
created for the luminance channel of the YUV 
color model. The 3D histograms are created for 
all channels of the RGB color model concurrently 
per definition.

For the classification process the k-NN clas-
sifier (see next section) is used. The distance 
measure used to compute the distance between 
two normalized histograms Ha and Hb for images 
Ia and Ib, respectively, is based on the so-called 
histogram intersection. For 1D histograms the 
distance is defined as
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The experiments in (Häfner et al., 2006b) 
consider the RGB color model and the luminance 
channel of the YUV color model only. In this work 
we examine the information of all color channels 
of the YUV and HSV color model too.

Classification

In (Häfner et al., 2006a) we employed two dis-
tinct classifiers, namely the k-Nearest Neighbors 
classifier (k-NN) and Support Vector Machines 
(SVM). Using the k-NN classifier classification 
is done by finding the k closest neighbors of 
an input feature vector x in the feature space 
according to some distance metric (e.g. euclid-
ean). The unknown sample x is then assigned 
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to the dominating class among the k nearest 
neighbors.

The SVM classifier, presented in more detail in 
(Chang & Lin, 2001; Hsu, Chang, & Lin; Burges, 
1998), is another, recently developed classifier, 
which has already been successfully used to 
classify texture using wavelet features (Rajpoot 
& Rajpoot, 2004). The basic idea behind SVM 
is to construct classifying hyperplanes, which 
are optimal for separation of given data. These 
hyperplanes divide the feature space into two 
distinct classes. For the 6-classes case a voting 
procedure, combining the two classes classifica-
tion steps, is employed.

In addition to these two classifiers, we also use 
the Bayes classifier, which is explained in more 
detail in (Fukunaga, 1990). This is a probabilistic 
classifier based on the Bayes theorem. During 
classification each unknown image is a assigned 
to that class, to which the image belongs to most 
probably or which causes minimal costs with 
respect to some cost function. 

Mul t Ic hAnnEl  f EAt ur Es And t hE 
Mul t Icl Ass If IEr

As already mentioned above, the experiments 
presented in (Häfner et al., 2007) have been car-
ried out by using all color channels for feature 
extraction. Since this improved the results, hope 

is raised that this will also apply to the wavelet-
based methods. Therefore we extended the wave-
let-based methods using non-structural features 
to use all color channels. 

Multiclassifier for Two Classes

Although the methods presented above deliver a 
very promising classification accuracy already, 
we now describe how these methods have been 
combined in the 2-classes case to improve the 
accuracy.

The multiclassifier mainly relies on two pieces 
of information: method ranking and method reli-
ability. The ranking expresses how accurately a 
method classifies images mostly misclassified. 
Based on a list containing the x most misclassi-
fied images for class c the rank for each method 
is updated for all x images. The rank for the most 
accurate method for the given image is incre-
mented by N, which denotes the total number of 
methods combined. The rank for the second-best 
method is incremented by N-1, and so on. Finally, 
the ranking Rm,c for each method m and class c 
is normalized and transformed to lie between 
-1 and 1. This computation is repeated for each 
image class c to get the ranking information for 
all classes.

The method reliability is telling us how much 
we can rely on the classification result of a specific 
method. The computation of the reliability Am for 

Figure 3. Two examples of possible ring configurations
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a method m is based on the Bayesian a posteriori 
probability:
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where C is the number of classes used, Ni is the 
number of images in class i, N is the total number 
of images, bi is the a priori probability for class i 
and ri is the classification rate for class i. Multi-
plying the inner part of the sum by Ni produces a 
weighted measure, which accounts for the unbal-
anced training set. Finally, the value is normalized 
and transformed to lie between -1 and 1.

Two allow controlling the strength of influ-
ence the ranking and the reliability have on the 
result of the multiclassifier, these values are 
remapped by

( ) ( ) ( ) ( )ln /ln 0.5sign f
fV x x x=   (5)

where f is the parameter controlling the shape of 
the remapping function. The effect of choosing 
different values for f is depicted in Figure 4. Ob-
viously f=0.5 corresponds to a linear mapping. 
The resulting image class ci for an image i is 
calculated by
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where M is the number of methods combined, Di,j 
is the remapped value of the previously assigned 
class p for image i by method j (-1 for class 1 and 
1 for class 2), Aj is the reliability of method j and 
Rj,p is the ranking for method j and class p. The 
resulting class is then
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Multiclassifier for Six Classes

Due to the binary nature of the multiclassifier 
introduced by Equation (6), the 6-classes case 

needs to be handled slightly different. The 
computation of the ranking and the reliability 
remain almost the same, just the transformation 
to the range between -1 and 1 has been omitted. 
Additionally the reliability is computed for each 
class which reflects the reliability of a method for 
a specific class.

The final classification result is obtained by 
a weighted majority voting, based on value xc 
which is calculated for each image i and class c 
as follows: 
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where Aj,c is the reliability of method j for class c, 
Rj,c is the ranking for method j and αi,j is
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The final class C for the unknown image is 
obtained by

cc
xC maxarg=     (10)

Methods which perform poor for a class c, are 
filtered out on a per-class basis. Thus only the Xc 
most reliable methods are considered for class c. 
Furthermore, to reduce the worsening effect of 
unreliable methods, we apply a threshold func-
tion to the reliability of a class c. The result is a 
modified version of Equation (8):
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c i j j c k t j c f j c
j

x B A V R
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where βj,c,k is set to 1 if method j is among the k 
most reliable methods for class c. Otherwise βi,j,k 
is set to 0 and therefore method j is ignored. Bt is 
the threshold function using threshold t.

To consider the low sample count for class 
III-S, different threshold values are used for this 
class and all other classes (empirical values 0.1 
and 0.4, respectively). This is necessary since the 
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reliability is based on a priori knowledge, which 
leads to very low reliabilities for class III-S - even 
if a method performs equally well or better than 
for another class. 

ExPEr IMEnts And r Esul ts

settings

In our experiments we use 484 images acquired 
in 2005 and 2006 at the Department of Gastro-
enterology and Hepatology (Medical University 
of Vienna) using a zoomcolonoscope (Olympus 
Evis Exera CF-Q160ZI/L) with a magnification 
factor set to 150. Lesions found during colonos-
copy have been examined after application of 
dye-spraying with indigo carmine as routinely 
performed in colonoscopy. Biopsies or mucosal 
resection have been performed in order to get a 
histopathological diagnosis. Biopsies have been 
taken from type I, II, and type V lesions, as those 
lesions need not to be removed or cannot be re-
moved endoscopically. Type III and IV lesions 
have been removed endoscopically. Out of all 
acquired images, histopathological classification 

resulted in 198 non-neoplastic and 286 neoplastic 
cases. The detailed classification results, which 
are used as ground truth for our experiments, are 
shown in Table 2.

Due to the rather limited set of images available 
for our experiments, we use leave-one-out cross-
validation. Thus, 483 out of 484 images are used as 
training set. The remaining image is then classified. 
This process is repeated for each image.

r esults

Multichannel Features

Figure 5 shows the differences between the overall 
classification results (percentage of correctly clas-
sified images) we obtain using features from single 
color channels and multichannel features in the 2-
classes case using the RGB color model. Figure 6 
depicts the same comparison, but for the 6-classes 
case. In Tables 5 and 6 the respective results are 
presented in a more detailed fashion (especially 
with respect to results for each single class).

As we can see from Figure 5, regarding the 
2-classes case, using multichannel features im-

Figure 4. The effect of different choices for f in the value remapping function
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proves the results for nearly all methods. The result 
improvements lie between 5 % and 17 % for the 
BB method with the k-NN classifier and BBCB 
with the Bayes classifier, respectively. Only the 
result for the BBS method used with the Bayes 
classifier drops by 4 %. Concerning classifiers, 
the Bayes classifier gives the best results, followed 
by SVM and k-NN (except for the BBS method 
which performs best using SVM).

Regarding the 6-classes case, the improve-
ments are very similar, as shown in Figure 6. Using 
multichannel features the results are improved by 
values between 5 % and 13 % for the LDB method 
with the k-NN classifier and the BB and BBCB 
methods using the Bayes classifier, respectively. 
Again the results drop considerably using the 
BBS method. 

While the result drops by 1 % only when using 
BBS in conjunction with the k-NN classifier, the 
result decreases by 27 % for the combination of 
BBS and the Bayes classifier. Again, the Bayes 
classifier provides the best overall results but again 

BBS behaves significantly different compared to 
the rest of the feature extraction methods.

The best classification results given in Tables 
3 to 6 have been found by large scale experimen-
tation testing a significant amount of different 
parameter settings for each technique considered 
(e.g. by using different feature vector lengths, 
different color channels or k-values when using 
the k-NN classifier). 

During our experiments it turned out that re-
garding the single channel tests most of the best 
results have been achieved using the red channel 
of the RGB color model. The other color chan-
nel often yielding good results is the luminance 
channel of the YUV color model. Regarding the 
multichannel tests the best results have always 
been achieved using the RGB color model.

Apart from that, it has been observed that some 
of the feature vector lengths in the multichannel 
case are considerably higher compared to their 
single channel counterparts. In the 2-classes 
case the feature vector lengths vary between 3 
and 100, and 3 and 261, in the single channel and 

Figure 5. Comparison of the different methods using single channel (SC) and multichannel (MC) features 
in the 2-classes case
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Table 2. Number of images per class used in our experiments

Pit Pattern I II III-S III-L IV V
# of Images 126 72 18 62 146 60
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Figure 6. Comparison of the different methods using single channel (SC) and multichannel (MC) features 
in the 6-classes case
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Table 3. Percentage of correctly classified pit 
pattern images using single channel features in 
the 2-classes case

I - II III-S - V Total
LOCAL DISCRIMINANT BASES

k-NN 66 83 76
SVM 65 89 79
Bayes 73 86 81

BEST BASIS METHOD
k-NN 42 76 62
SVM 56 81 71
Bayes 71 84 79
STRUCTURAL BEST BASIS METHOD

k-NN 47 79 66
SVM 73 73 73
Bayes 53 75 66

BEST BASIS CENTROID METHOD
k-NN 70 76 73
SVM 60 90 78
Bayes 77 87 83
PYRAMIDAL WAVELET TRANSFORM
k-NN 56 71 65
SVM 63 85 76
Bayes 77 88 84

HISTOGRAM METHOD
k-NN 83 90 87

Table 4. Percentage of correctly classified pit 
pattern images using multichannel features in 
the 2-classes case

I - II III-S - V Total
LOCAL DISCRIMINANT BASES

k-NN 73 88 82
SVM 78 93 87
Bayes 89 92 91

BEST BASIS METHOD
k-NN 37 88 67
SVM 67 90 81
Bayes 84 92 89
STRUCTURAL BEST BASIS METHOD

k-NN 62 75 70
SVM 54 100 81
Bayes 44 74 62

BEST BASIS CENTROID METHOD
k-NN 82 84 83
SVM 92 95 94
Bayes 100 100 100
PYRAMIDAL WAVELET TRANSFORM
k-NN 56 81 71
SVM 77 87 83
Bayes 91 95 94

HISTOGRAM METHOD
k-NN 94 93 94

FOURIER METHOD
k-NN 74 81 78
SVM 85 92 89
Bayes 97 98 98

multichannel case, respectively. In the 6-classes 
case we observe lengths between 7 and 91, and 3 
and 150, when using single channel features and 
multichannel features, respectively. This resulted 
in notedly higher computational demand. 

The k-values for the k-NN classifier used 
to get the best results in the 2-classes case are 
rather low compared to the number of samples 
in each class (between 1 and 11, and 1 and 29, 
in the single channel and multichannel case, 
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respectively). Regarding the 6-classes case, the 
values are rather high compared to the number 
of samples of class III-S (between 1 and 10, and 
1 and 22, in the single channel and multichannel 
case, respectively). 

In the case of the wavelet-based tests we 
tried different statistical features of which no 
dominating one has been observed. For structural 
features, in most cases using the unique node IDs 
delivers the best results. This is due to the fact 
that the underlying implementation is not able 
to use quadtrees as features for the SVM and 
Bayes classifier.

Figures 7 and 8 show the ring configurations 
used for the Fourier method in the 2-classes and 
6-classes case, respectively. From these figures 
it seems that mostly low frequency components 
contain important coefficients for the classifica-

tion regarding the 2-classes case as well as the 
6-classes case.

Multiclassifier

Since the multichannel features outperformed 
the single channel features as pointed out above, 
the multiclassifier has been tested using the mul-
tichannel feature based methods only.

From Table 7 we see that in the 2-classes case 
the multiclassifier outperforms all methods except 
the Fourier method and the BBCB method. Both 
superior methods are using the Bayes classifier in 
this case and reach 98 % and 100 %, respectively, 
compared to 98 % overall classification accuracy 
reached by the multiclassifier. 

Regarding the 6-classes case, the multiclas-
sifier delivers a considerably better overall clas-
sification result of 94 % compared to the single 

Table 5. Percentage of correctly classified pit 
pattern images using single channel features in 
the 6-classes case

Table 6. Percentage of correctly classified pit 
pattern images using multichannel features in 
the 6-classes case

I II III-S III-L IV V Total
LOCAL DISCRIMINANT BASES

k-NN 69 42 28 45 57 10 49
SVM 65 51 0 50 64 48 56
Bayes 67 49 0 65 55 55 56

BEST BASIS METHOD
k-NN 52 18 0 42 53 0 38
SVM 59 43 0 47 53 17 46
Bayes 63 29 39 65 43 57 50

STRUCTURAL BEST BASIS METHOD
k-NN 53 31 0 44 52 15 42
SVM 100 0 0 3 98 0 56
Bayes 94 0 0 3 10 22 31

BEST BASIS CENTROID METHOD
k-NN 54 35 11 45 42 43 43
SVM 61 47 11 39 51 38 49
Bayes 68 54 6 68 53 62 58

PYRAMIDAL WAVELET TRANSFORM
k-NN 59 32 0 27 47 22 40
SVM 63 26 0 8 73 30 47
Bayes 68 60 6 71 48 65 58

HISTOGRAM METHOD
k-NN 71 61 67 81 84 67 74

I II III-S III-L IV V Total
LOCAL DISCRIMINANT BASES

k-NN 61 38 6 58 73 33 55
SVM 71 51 11 76 76 63 67
Bayes 75 60 6 52 77 60 66

BEST BASIS METHOD
k-NN 55 26 0 45 67 8 45
SVM 94 6 6 2 100 0 56
Bayes 68 51 0 65 71 68 63

STRUCTURAL BEST BASIS METHOD
k-NN 54 4 0 6 67 42 41
SVM 92 92 0 8 95 0 67
Bayes 0 0 100 0 0 0 4

BEST BASIS CENTROID METHOD
k-NN 56 43 17 56 53 53 51
SVM 60 51 0 53 76 60 61
Bayes 75 51 0 65 79 95 71

PYRAMIDAL WAVELET TRANSFORM
k-NN 64 44 6 48 53 17 48
SVM 53 51 6 61 69 52 57
Bayes 84 56 0 47 90 47 69

HISTOGRAM METHOD
k-NN 81 82 83 87 89 80 84

FOURIER METHOD
k-NN 53 47 11 52 59 43 51
SVM 70 53 0 61 77 60 64
Bayes 87 81 28 89 94 88 86
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Figure 7. The Fourier filters in the 2-classes case for the R, G and B channel (from left to right)

Figure 8. The Fourier filters used in the 6-classes case for the R, G and B channel (from left to right)

methods, which reach an overall classification 
result between 4 % and 86 % for the BBS method 
and the Fourier method, respectively, both using 
the Bayes classifier.

dIscuss Ion And futur E 
tr Ends

To highlight the clinical relevance of the results 
obtained throughout this work, a comparative 
meta-study of Kato, Fu et al. (2006) should be 
mentioned. This study showed, that regarding the 
2-classes case, the overall (human) classification 
accuracy of magnifying colonoscopy based on the 
pit pattern scheme varies between approximately 
80 % and 99 %. The multiclassifier presented in 
this work delivers a classification accuracy of 98 

% in the 2-classes case which ranges among the 
top-values achieved by physicians documented in 
this study. The Fourier method in the multichannel 
case is able to deliver almost the same accuracy 
as well. This clearly shows that the discussed 
approach can be a valuable decision support 
technique in clinical usage.

One possible way to further improve the clas-
sification results would be to map features into 
another, better suitable feature space using Linear 
discriminant analysis or Principal component 
analysis. Apart from that, additional preprocessing 
to the images may be applied. Up to now no par-
ticular preprocessing has been performed except 
for the histogram method, where a Gaussian blur 
has been used. Although this has been tried with 
the rest of the methods too, there was no significant 
gain in classification performance. 
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Table 7. Overall classification results in percent using the multiclassifier based on methods using mul-
tichannel features

Pit Type I II III-S III-L IV V Total
2 classes 94 100 98
6 classes 100 94 83 81 97 92 94

c onclus Ion

In this work we show that automated pit pattern 
classification is feasible using general purpose 
texture classification techniques. However, op-
timal results are achieved after careful selection 
and optimization of classification parameters 
only, except for the histogram-based techniques 
which deliver satisfying results in an almost ad-
hoc manner. It has turned out that classification 
results can be enhanced when considering all the 
color information stored in an image. 

Apart from that we showed one possible way 
to combine different methods into one multiclas-
sifier. The proposed multiclassifier is able to yield 
significantly better results in the 6-classes case as 
compared to the single classification techniques 
(while in the 2-classes case a slight degradation 
of the best results is found). The classification 
accuracy observed for the best standalone multi-
channel techniques and the multiclassifier already 
qualify the approach as an interesting choice for 
a decision support system for clinical usage.

Acknowl Edg MEnt

This work is partially funded by the Austrian Sci-
ence Fund (FWF) under Project No. L366-N15 and 
by the Austrian National Bank ”Jubiläumsfonds” 
Project No. 12514.

rE f Er Enc Es

Burges, C. J. C. (1998). A Tutorial on Support Vec-
tor Machines for Pattern Recognition. Data Min-
ing and Knowledge Discovery, 2(2), 121-167. 

Chang, C., & Lin, C. (2001). LIBSVM: A Library 
for Support Vector Machines. Retrieved April 1, 
2005, from http://www.csie.ntu.edu.tw/~cjlin/

Coifman, R. R., & Wickerhauser, M. V. (1992). 
Entropy-based algorithms for best basis selec-
tion. IEEE Transactions on Information Theory, 
38(2), 713-719. 

Fukunaga, K. (1990). Statistical Pattern Recogni-
tion. Morgan Kaufmann. 

Hsu, C., Chang, C., & Lin, C. A Practical Guide 
to Support Vector Classification.

Häfner, M., Liedlgruber, M., Wrba, F., Gangl, 
A., Vécsei, A., & Uhl, A. (2006a). Pit pattern 
classification of zoom-endoscopic colon images 
using wavelet texture features. Proceedings of the 
International Conference on Advances in Medical 
Signal and Image Processing (MEDSIP 2006).

Häfner, M., Kendlbacher, C., Mann, W., Taferl, 
W., Wrba, F., Gangl, A., Vécsei, A., & Uhl, A. 
(2006b). Pit pattern classification of zoom-endo-
scopic colon images using histogram techniques. 
Proceedings of the 7th Nordic Signal Processing 
Symposium (NORSIG 2006), 58-61.

Häfner, M., Brunauer, L., Payer, H., Resch, R., 
Wrba, F., Gangl, A., et al. (2007). Pit pattern 
classification of zoom-endoscopical colon images 



  ���

Pit Pattern Classification Using Multichannel Features and Multiclassification

using evolved Fourier feature vectors Proceedings 
of the 2007 IEEE Machine Learning for Signal 
Processing Workshop (MLSP’07), 99 - 104.

Hsu, C., & Lin, C. (2002). A Comparison of 
Methods for Multi-Class Support Vector Ma-
chines. IEEE Transactions on Neural Networks, 
13(2), 415-425. 

Hurlstone, D. P. (2002). High-Resolution Magni-
fication Chromoendoscopy: Common Problems 
Encountered in `̀ Pit Pattern’’ Interpretation and 
Correct Classification of Flat Colorectal Le-
sions. American Journal of Gastroenterology, 
97, 1069-1070. 

Hurlstone, D. P., Cross, S. S., Adam, I., Shorthouse, 
A. J., Brown, S., Sanders, D. S., & Lobo, A. J. 
(2004). Efficacy of High Magnification Chromo-
scopic Colonoscopy for the Diagnosis of Neoplasia 
in Flat and Depressed Lesions of the Colorectum: 
a Prospective Analysis. Gut, 53, 284-290.

Karkanis, S., Iakovidis, D., Maroulis, D., Theo-
fanous, N., & Magoulas, G. (2000). Tumor 
Recognition in Endoscopic Video Images using 
Artificial Neural Network Architectures. Pro-
ceedings of the 26th EUROMICRO Conference 
(EUROMICRO’00), 423-429.

Karkanis, S., Iakovidis, D., Karras, D., & Marou-
lis, D. (2001). Detection of Lesions in Endoscopic 
Video using Textural Descriptors on Wavelet 
Domain supported by Artificial Neural Network 
Architectures.  Proceedings of the. International 
Conference on Image Processing (ICIP’01), 
833-836.

Karkanis, S., Magoulas, G., Grigoriadou, M., & 
Schurr, M. (1999). Detecting Abnormalities in 
Colonoscopic Images by Textural Description 
and Neural Networks. Proceedings of the Work-
shop on Machine Learning in Medical Applica-
tions, Advance Course in Artificial Intelligence 
(ACAI’99), 59-62.

Kato, S., Fu, K., Sano, Y., Fujii, T., Saito, Y., 
Matsuda, T., et al. (2006). Magnifying colonos-
copy as a non-biopsy technique for differential 
diagnosis of non-neoplastic and neoplastic lesions. 
World journal of gastroenterology : WJG, 12(9), 
1416-20. 

Kudo, S., Hirota, S., Nakajima, T., Hosobe, S., 
Kusaka, & H., Kobayashi, T. (1994). Colorectal 
tumours and pit pattern. Journal of Clinical Pa-
thology, 47(10), 880-885. 

Kudo, S., Tamura, S., Nakajima, T., Yamano, H., 
Kusaka, H., & Watanabe, H. (1996). Diagnosis of 
colorectal tumorous lesions by magnifying endos-
copy. Gastrointestinal endoscopy, 44(1), 8-14. 

Liedlgruber, M., & Uhl, A. (2007). Statistical and 
structural wavelet packet features for Pit pattern 
classification in zoom-endoscopic colon images 
(P. Dondon, V. Mladenov, S. Impedovo, & S. 
Cepisca, Hrsg.). Proceedings of the 7th WSEAS 
International Conference on Wavelet Analysis & 
Multirate Systems (WAMUS’07), 147-152.

Maroulis, D., Iakovidis, D., Karkanis, S., & Kar-
ras, D. (2003). CoLD: a versatile detection system 
for colorectal lesions in endoscopy video-frames. 
Computer methods and programs in biomedicine, 
70(2), 151-66. 

Rajpoot, N. (2003). Local Discriminant Wavelet 
Packet Basis for Texture Classification. Proceed-
ings of the International Society for Optical En-
gineering SPIE Wavelets: Applications in Signal 
and Image Processing X, 774-783.

Rajpoot, K., & Rajpoot, N. (2004). Wavelets and 
support vector machines for texture classification. 
Multitopic Conference, 2004. Proceedings of 
INMIC 2004. 8th International, 328-333.

Saito, N. (1997). Classification of Geophysical 
Acoustic Waveforms and Extraction of Geologi-
cal Information Using Time-Frequency Atoms. 
1996 Proceedings of the Computing Section of the 
American Statistical Association, 322-327.



��0  

Pit Pattern Classification Using Multichannel Features and Multiclassification

Saito, N., & Coifman, R. R. (1995). Local Dis-
criminant Bases and their Applications. J. Math-
ematical Imaging and Vision, 5(4), 337-358.

Tung, S., Wu C-S, & Su, M. (2001). Magnifying 
Colonoscopy in Differentiating Neoplastic From 
Nonneoplastic Colorectal Lesions. American 
Journal of Gastroenterology, 96, 2628-2632.

kE y t Er Ms

Classification Feature: A numerical or syn-
tactical value used to describe an observed prop-
erty of an object (e.g., size, color, shape, …).

Classification Feature Vector: A collection 
of classification features describing the proper-
ties of an object.

Classifier: An algorithm to assign unknown 
object samples to their respective classes. The deci-
sion is made according to the classification feature 
vectors describing the object in question.

Colonoscope: A flexible, lighted instrument 
used to examine the inside of the colon.

Colonoscopy: A medical procedure during 
which a physician is examining the colon for 
polyps using a colonoscope.

Color Histogram: A graphical representa-
tion of a distribution of colors within an image. 
The data contained in a histogram is obtained by 
counting the occurrence of each possible color of 
the respective color model within the image.

Fourier Transform: An algorithm used to 
decompose a signal (e.g., an image) into its fre-
quency components and to compute the frequency 
spectrum for a given signal.  

Wavelet Transform: A transform used to 
decompose a signal into its frequency compo-
nents, similar to the Fourier transform. But the 
time-frequency resolution of the wavelet transform 
can be adjusted since basis functions with com-
pact support are used, in contrast to the Fourier 
transform, where sine and cosines are used as 
basis functions.
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Automatic Identification and Elastic 

Properties of Deformed Objects 
Using their Microscopic Images
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Abstr Act

In this chapter the state of the art is presented in the domain of automatic identification and classification 
of bodies on the basis of their deformed images obtained via microscope. The approach is illustrated 
by means of the case of automatic recognition of third-stage larvae from microscopic images of them 
in high deformation instances. The introduced methodology incorporates elements of elasticity theory, 
image processing, curve fitting and clustering methods; a concise presentation of the state of the art in 
these fields is given. Combining proper elements of these disciplines, we first evaluate the undeformed 
shape of a parasite given a digital image of a random parasite deformation instance. It is demonstrated 
that different orientations and deformations of the same parasite give rise to practically the same 
undeformed shape when the methodology is applied to the corresponding images, thus confirming the 
consistency of the approach. Next, a pattern recognition method is introduced to classify the unwrapped 
parasites into four families, with a high success rate. In addition, the methodology presented here is a 
powerful tool for the exact evaluation of the mechano-elastic properties of bodies from images of their 
deformation instances. 

C. Papaodysseus
National Technical University of Athens, 

Greece
 

P. Rousopoulos
National Technical University of Athens, 

Greece

D. Arabadjis
National Technical University of Athens, 

Greece

M. Panagopoulos
National Technical University of Athens, 

Greece

P. Loumou
National Technical University of Athens, 

Greece

G. Theodoropoulos
Agricultural University of Athens, Greece



���  

Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images

Introduct Ion

There are numerous applications, where bodies 
suffer deformation due to elastic forces (stresses). 
In these cases, one frequently encounters two 
important problems: (a) to make a consistent 
and reliable estimation of the deformed body’s 
mechano-elastic properties from images of ran-
dom instances of body deformation and (b) to 
identify the deformed body automatically from 
these very images. We would like to emphasize 
that, as a rule, automatic classification of bodies 
on the basis of images of their deformation, is 
practically prohibited by the randomness of the 
deformation. One encounters such problems in 
various disciplines applications, such as automatic 
identification of highly deformed parasites, cells 
or large molecules from their images obtained via 
microscope, in strength of materials, elastography 
(Manduca et al. 1998, Washington and Miga, 2004) 
in civil engineering in general, etc. 

In the present chapter, we present the following 
new approach to tackle the aforementioned prob-
lems: We estimate the mechano-elastic properties 
of a body suffering an equivalent to 2D deforma-
tion from an image of it at an arbitrary deformation 
instance. Knowledge of these mechano-elastic 
properties allows unwrapping/straightening the 
deformed body image, a fact that in turn permits 
the application of pattern recognition techniques 
for the body automatic classification/identifica-
tion. We have applied the introduced approach to 
an important and some times crucial veterinary 
problem, namely the automatic identification of 
domestic animal parasites, from their images 
obtained via microscope.

bAckground

some necessary notions and r elations 
from Elasticity t heory

We now proceed to state some notions that are 
commonly used in most approaches of Elasticity 

theory (Chandrasekharaiah and Debnath, 1994). 
These will later be used in the analysis on which 
the unwrapping of the parasite is based. 

Definition of the Stress and the 
Strain Tensor

Consider a one-to-one correspondence between 
all points of the deformed and the undeformed 
parasite states. Thus, let us consider two arbi-
trary points, say ( ),A x y  and ( ),B x dx y dy+ +  
of an undeformed parasite element and let 'A  
and 'B  be their unique images in the deformed 
parasite body. In other words, due to the deforma-
tion, point A moves to ( )' ,x yA x u y u+ +  and point 
B to ( )' ,x x y yB x dx u du y dy u du+ + + + + + . We 
consider the lengths of AB



 and ' 'A B


: 

² ²ds AB dx dy= = +


 and

' ' ' ( )² ( )²x yds A B du dx du dy= = + + +


22
y yx x u uu udx dy dx dx dy dy

x y x y
  

= + + + + +  
   

Now one defines the relative elongations along 
the x- and y-axes:

Along the x-axis, we set 0dy = , in which case, 
ds and 'ds  above become dsx and 'xds , respectively. 
Thus, the relative elongation is defined to be 

'x x
xx

x

ds ds
ds
−

=

22

2 1 1yx x uu u
x x x

  = + + + −  
   

 (1)

Similarly, along the y-axis we set dx = 0 and 
thus the relative elongation εyy is defined to be:
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'y y
yy

y

ds ds
ds
−

=

2 2

2 1 1y y xu u u
y y y

   
= + + + −   

  
 (2)

If the relative elongations are small, after ex-
panding the square roots of (1) and (2) in Taylor 
series, we obtain

x
xx

u
x

∂
=

∂
,    y

yy

u
y

∂
=

∂
            (3)

Moreover, using the same assumption, the 
tangent of the angle of deformation of the x-axis, 

1tan , and the y-axis, 2tan , become yu
x

 and xu
y

 
respectively (Figure 1). Also, the hypothesis of 
small relative elongations results that 1 1tan ≅ , 

2 2tan ≅  implying that the initially right angle 
is deformed by

1 2
y xu u

x y
∂ ∂

= + = +
∂ ∂

  (4)

Therefore, after using the shear stress definition 
1 1
2 2

y x
xy yx

u ut t
x y

 
= = = + 

 
, we adopt thes-

tandard strain tensor definition: ˆ xx xy

yx yy

 
=  

  
.  

Next, in order to study the elastic forces’ dis-
tribution throughout the parasite body, we proceed 
by considering an arbitrary differential element 
in the parasite body, starting at point (x, y) with 
vertices A(x,y), ( ),B x dx y+ , ( ),C x dx y dy+ + , 

( ),D x y dy+  (Figure 2). Let the force per unit area/
length acting on the side AD be x xx xyi j= +

 



, 
where the first subscript denotes the axis to which 
the side is vertical, while the second subscript 
denotes the vector component axis. Similarly, 

y yx yyi j= +
 

 . It is evident that the four func-
tions σxx, σxy, σyx, σyy, suffice to determine the stress 
condition of the considered differential element. 
Hence, we define the standard stress tensor 

ˆ xx xy

yx yy

 
=  

  

Hypothesis on the Parasite Constitutive 
Equation

The parasite constitutive equation relates the stress 
tensor  ̂with the strain tensor .̂ These two tensors 
can be related through any functional form, i.e. 

ˆˆ ( )f= . However, in many practical circum-
stances, this functional form can be considered to 
be linear, namely ˆ ˆˆ A= ⋅ , where ˆ is a constant 
matrix (generalized Hooke ’s law).

Presentation of Vector Quantization 
and c lustering Methods and
Algorithms  

In many practical applications, one encounters 
the problem of classifying kindred objects into 
different groups, according to a set of criteria. 
Usually, these criteria are quantitatively expressed 
by means of characteristics; the ensemble of 
the values of these characteristics form vectors. 
Thus, the classification problem transforms into 
collecting similar vectors in separate clusters. For 
this reason this problem is often called “vector 
quantization” or “clustering”. Many different 
clustering methods have been developed so far, 
which are distinguished to the hierarchical meth-
ods and the partitional ones.

Partitional Algorithms

Suppose we have N-distinct groups and that 
the mean value (the centroid) of the members 
of each group is Ci , i = 1...N. Then each new 
member is classified to the group from the cen-
troid, C , of which it has the minimum distance. 
Partitional algorithms based on this approach 
are called centroid-based. One of the first cen-
troid-based algorithms is the K-Means (Jain and 
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Dubes, 1988) where the data are classified into 
K clusters according to the Euclidean distance 
of each member from the centroid vector of each 
cluster. The member is attributed to the cluster 
of minimum distance, while the centroid vector 
is dynamically computed. Another well-known 
centroid-based algorithm, called ISODATA, em-
ploys the same approach reformulating the choice 
of distance function between the members and 
the centroids.

Other algorithms (PAM Kaufman and Rous-
seeuw 1990, CLARANS Ng and Han 1994), 

called medoid-based, replace groups’ mean val-
ues with other reference points inside the groups 
(medoids). The medoid of a group is calculated 
so as its mean distance from the group members 
is minimal. Although these algorithms perform 
a more reliable classification than centroid-based 
ones, they fail to deal with clusters significantly 
different in size, or with clusters with convex 
borders. Specifically, medoid-based algorithms 
are less noise-sensitive than the centroid-based 
ones but they can reliably classify only data sets 
with groups of round borders and similar sizes.

Figure 1. Element differential deformation

Figure 2. Differential element strain forces
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Hierarchical Algorithms

This class of algorithms is conceptually different 
to the partitional ones. Initially, they attribute a 
different group to each member of the data set. 
They proceed by merging the pairs of groups 
of minimum distance. This merging process is 
repeated until a desired number of groups or a 
threshold distance between them is achieved. In 
general, hierarchical algorithms comprise the 
following steps:

• A proper distance function (Euclidean, 
Minkowski, Manhattan) is chosen to evalu-
ate the similarity between two groups.

• Based on this distance, the algorithm creates 
a similarity matrix, S, containing the relative 
distances between all pairs of groups.

• When two groups manifest strong dissimilar-
ity, then the corresponding entry in matrix S 
is close to zero, thus creating a sparse matrix 
S’.

• Next, this sparse matrix is represented by 
a graph, where the graph nodes are data 
groups and the graph weighted vertices are 
the similarity values between data groups.

This approach has been realized by means of 
various algorithms, where each algorithm employs 
a different distance and/or a different merging 
process. Thus we have the following variations 
of hierarchical algorithms.

• In the first class of algorithms (Jain and 
Dubes, 1988), a representative of each group 
is defined, e.g. its centroid. Subsequently, 
proper thresholds are defined both for the 
computation of the sparse matrix and the 
merging of similar data groups.

• Single link method: The distance of all ele-
ments of a group A from all elements of 
a group B is computed and the minimum 
of these distances, dm, is spotted. Then, 
similarity between A and B is expressed 

via dm; clearly the smaller dm the grater the 
similarity between A and B.

• The CURE method (Guha et al., 1998): This is 
a combination of the previous two methods, 
in the sense that a class of representatives 
for each group is separately defined and the 
distance of the representatives of group A 
from the representatives of group B is calcu-
lated. These distances express the similarity 
of A and B and determine if groups A and 
B must be merged. When two groups get 
merged a new class of representatives of the 
resulting group is dynamically computed. 
These algorithms satisfactory deal with the 
classification of noisy groups of irregular 
size and shape.

• group-average method: This algorithm dif-
fers from the single link method in the sense 
that it normalizes distances between group 
elements of A and B with the sizes of the 
groups, to cope with substantial group size 
variability.

• ROCK (Guha et al., 1998): This algorithm is 
actually the group-average method, where 
the user interactively performs normaliza-
tion. 

• The class of CHAMELEON algorithms: The 
basic idea behind these algorithms is that 
the similarity between two groups A and B 
is based not only on the distance between 
their elements, but also on the internal simi-
larity of the elements of each group. Thus, 
the notion of closeness of each group A is 
introduced, that measures a kind of average 
distance between the elements of A. It also 
introduces the concept of interconnectivity 
to be a kind of average distance between 
two clusters or sub-clusters. The similarity 
between A and B is expressed via the product 
of interconnectivity and closeness.

Finally a clustering algorithm that performs 
best for the problem in hand is more analytically 
presented in the Section entitled “The employed 



���  

Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images

method of automatic identification of para-
sites”.  

dEt Er MInAt Ion  of  
MEch Ano -El Ast Ic  Pro PErt IEs 
And  Aut o MAt Ic  cl Ass If Ic At Ion  
of  ob JEcts  us Ing  IMAg Es of  
th EM In hIgh  dEfor MAt Ion

One of the main ailments of the livestock industry 
is related to the threat of strongyles, which are 
common endoparasitic nematodes of domestic 
animals. The correct identification of the parasite 
population that has infected a particular organism 
would allow for quick and efficient treatment of 
the disease, thus minimizing economic losses. 

Usually, to diagnose the presence of such a 
parasitic infection, a coprological examination is 
required, where eggs produced by the strongyles 
are identified. Most of the commonly encoun-
tered parasitic strongyles, such as Haemonchus 
and Osteragia spp., produce similarly sized and 
shaped eggs that are hard to identify. However, the 
third-stage larvae, obtained after coproculture of 
the corresponding eggs, are sufficiently different 
(McMurtry et al., 2000, Theodoropoulos et al., 
2000). To the best of our knowledge, automated 
identification of third stage larvae from their digi-
tal images has not been previously achieved.  

One major difficulty in the automatic para-
site identification, is that many quantitative 
features explicitly depend on the shape of the 
deformed parasite. The identification process can 
be greatly improved if the images of the larvae 
were straightened digitally, so that all quantita-
tive features could be used irrespectively of larva 
deformation. 

In this section, we formulate an integrated 
solution to the problem of the automatic identifi-
cation of parasites from their microscopic images 
representing the parasite at a highly deformed 
stage. The presented methodology can be extended 
so as to tackle the general problem of automatic 

identification of objects suffering an equivalent 
to 2D elastic deformation. To achieve this, we 
first use digitised parasite images, in which the 
motile parasite is oriented in a random fashion 
and may have assumed any shape. Proper image 
segmentation algorithms are employed and a suit-
able edge detection algorithm is used to extract 
the parasite contour line. For the unwrapping, 
or straightening, of the contour line, concepts of 
curve fitting and elasticity theory are used. Once 
the parasites are straightened, we automatically 
classify them by means of a novel algorithm, 
which employs a set of quantitative features such 
as parasite perimeter, area etc.

determination of the body 
Mechano-Elastic Properties

Assumptions for the mechano-elastic properties 
of the parasite

We will now state some hypotheses concerning 
general elastic properties of the parasite, whose 
validity will be confirmed by the subsequent 
analysis and the performed experiments.

• All parasite parts are isotropic, homogeneous 
and continuous.

• The static equation of balance holds for the 
deformed element too (1st order Theory)

• The longitudinal axis of the undeformed 
parasite is a straight line and an axis of 
symmetry.

• The plane parasite surfaces, the cross sec-
tions, which are initially perpendicular to 
its symmetry axis, remain plain and perpen-
dicular to a proper corresponding line after 
the deformation.

• The cross dimensions are small compared 
to the parasite length.

• The stress plane is either vertical to or in-
cludes the symmetry axis. 

• The generated stresses and displacements 
along the parasite body are linearly related. 
More specifically, Hooke’s law is valid, 
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namely the displacement tensor is linearly 
associated with the stress tensor.

The adopted symmetry assumptions allow us 
to study the elastic behavior of the parasite in two 
dimensions. As a result, the information extracted 
from the parasite images may be sufficient for this 
study, as well as for unwrapping the parasite.

Properties of the Parasite Elastic 
Deformation

In the following, we will compute the strains the 
deformed parasite suffers at an arbitrary instance. 
All these strains on the deformed plain section, 
initially perpendicular to the symmetry axis, are 
expressed by means of the strains that the center 
of the section suffers. Using these results, we will, 
for the first time, prove an important property of 
the tangents along parasite contour.

The Parasite Element Deformation. The Strains 
on the Undeformed Cross Sections
Without any loss of generality, we assume that 
the undeformed parasite is placed so as to have 
its symmetry axis parallel to the x-axis. Consider 
a differential element  on the undeformed 
parasite, with A∆ and BΓ normal to the axis of 
symmetry, which, after the completion of the para-
site deformation, is transformed to ' ' ' '. 
Let point Μ, the middle of section A∆, have 
coordinates (x,0). Consequently, point N, the 
middle of section BΓ, has coordinates (x+dx,0), 
while an arbitrary point P at section A∆ is at (x,y). 
Moreover, we let (u,w) be the displacement of M, 
meaning that point M’ of the deformed element 
has coordinates (x+u,w).

Now, we want to find the displacement of 
P, namely 'PP



 under the aforementioned de-
formation; we emphasize that according to our 
hypothesis cross section A∆ remains plain and 
undeformed in all parasite wrapping instances 
(Figure 3).

Let 1'  be a straight line parallel to the x-axis 
passing through P’. ' '



 defines a straight line 
2'  parallel to the y-axis and ' '



 is vertical to 
it. In addition, we consider ' '



 to be vertical 
to the line segment ' '



. Thus, the coordinates of 

K’ are (x + u, w + dw) and 
' 'tan
' '

K M dw
K N du dx

= =
+

. 

Since u is only x-dependent, it holds that du u
dx x

= . 

Consequently, 

1tan
1

dw
dudx
dx

=
+

   (5)

The coordinates of P’ are (x + u – ysin(φ), 
w + ycos(φ)). So, the coordinates of 'PP



 be-
come

( ) ( )( )( )' sin , cos 1PP u y w y= − + −


Since u and w are only x-dependent quanti-
ties, strains εxx, εyy, εxy and εyx are given by the 
following expressions: 

3 2 2

2 2

cos ( )cos( ) tan( )
1

xx
du d du y d w d uy dudx dx dx dx dx

dx

 
= − = − − 

 +
,

εyy = cos(φ)–1,

1 sin( )
2xy yx

dw dy
dx dx

 = = − = 
 

2 2
3

2 2

1 1 cos ( ) tan( )
2

dw d w d uy
dx dx dx

  
− −  

  
      (6)

According to the adopted assumptions, the 
expression connecting stresses and strains is

 
ˆˆ = Ε       (7)
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where ˆ is the strain tensor formed by the rela-

tions (6), 11 12

21 22

E E
E E

 
Ε =  

 
 a constant matrix, ˆ the 

corresponding stress tensor.

Parasite Equilibrium Equations 
Consider a section A normal to the x-axis in the 
undeformed parasite’s state. Then, the bending 
moment M about the y-axis and the vertical shear 
force V are given by the following expressions:

xx
A

y dAΜ = ∫     (8)
    
and 

xyV dA
Α

= ∫     (9)

In addition, the stress component σxx also 
results in a force N normal to A and in the x-di-
rection given by 

xx
A

dAΝ = ∫     (10)

We assume that the parasite is in an equilibrium 
position each time a photograph is taken. Then, 
equilibrium along the x-axis implies that N = 0, 
V = 0. Since we have considered the x-axis to be 
the symmetry axis of the parasite and since we 
have adopted the assumption that the generalized 
Hooke’s law holds, Equation (11) follows.

Combining (11) and N = 0, we deduce that

12
11 0

2
Edu dwE

dx dx
+ =    (12)

and Equation (13).

Figure 3. Completed differential element deformation

2 2
312 11 12

11 2 2cos ( ) tan( )
2 21 A

E E Edu dw dw d w d uN E A A ydAdudx dx dx dx dx
dx

 
   

= + − + −   
  +

 

∫

          12
11 2

Edu dwN E A A
dx dx

= +

Equation (11).
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Combining (13) and V = 0, we deduce that

( ) 11
12 1 cos( ) 0

2
E dwE

dx
− + =   (14)

(12) and (14), imply that

 

 

2 2
3 11 12

2 2

2 2
3 11

2 2

cos ( ) tan( )
21

cos ( ) tan( )
2

xx

xy

E E dw d w d uy du dx dx dx
dx
E dw d w d uy

dx dx dx

 
   

= − + − 
  +

 
  = − −    

i.e. linear expressions of y. Therefore, the middle 
of the deformed cross section suffers no stress; 
the curve formed by all these unstressed middle 
points, usually called the neutral line, has the 
following properties:

• It is the curve to which the symmetry axis is 
transformed due to the elastic deformation 
process.   

• No stress is exerted along it.
• As a consequence, the neutral line and the 

parasite symmetry axis are of the same 
length.

• The undeformed cross sections initially 
perpendicular to the symmetry axis, remain 
perpendicular to the neutral line even after 
the parasite deformation.

An Important Property of the Deformed 
Parasite Contour Tangents
Let ℓ(x) be the upper boundary of the parasite in its 
two-dimensional image; hence – ℓ(x) is the lower 
contour bound. Let AD be an arbitrary parasite 
cross section, intersecting the x-axis at the point 
M(x,0). Then this cross section, moves to a sec-
tion A′D′, perpendicular to neutral line, where 
A′ is ( ( )sin( ), ( ) cos( ))x u x w x+ + −   and D′ 
is ( ( )sin( ), ( ) cos( ))x u x w x+ − +  . The upper 
and lower parasite boundaries now correspond to 
two curves, say U′ and L′ respectively. The vec-
tor x-parametric equation of U′ in the 2D image 
parasite representation is, 

( ) ( )( )sin( ) ( ) cos( )Ur x u x i w x j′ = + − + +






 

      (15)

while the corresponding one for the deformed 
lower boundary is 

 ( )
2 2

311 11
12 2 21 cos( ) cos ( ) tan( )

2 2 A

E Edw dw d w d uV E A A ydA
dx dx dx dx

  = − + − −    
∫

     ( ) 11
12 1 cos( )

2
E dwV E A A

dx
= − +

Equation (13).

− +  
2 2

3 2
2 2

( ) ( )' ' sin( ) ( ) cos ( ) cos( ) ( )sin( ) cos ( )d d x d w d x d wr OM x i x j
dx dx dx dx dx′Λ

   
− = + + 

   






 

+ −  

2 2
3 2

' 2 2

( ) ( )' ' sin( ) ( ) cos ( ) cos( ) ( )sin( ) cos ( )U
d d x d w d x d wr OM x i x j
dx dx dx dx dx

   
− = − − 

   






 

Box 1.
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( ) ( )( )sin( ) ( ) cos( )r x u x i w x j′Λ = + + + −






 

      (16)

Next we compute the inner products of tangent 
vector Ur ′′



 and cross section D A′ ′


 and r ′Λ′


 and D A′ ′


. 
Thus (see Box 1).

Since, we have assumed that neutral line tan-
gent is perpendicular to the rotated and translated 
cross section 

d d( ) ( )' '
( )' ' 2U U
xr OM D A r D A x

dx dx
′ ′ ′ ′− ⋅ = ⋅ = −

  

 



      (17)

d d( ) ( )' '
( )' ' 2 xr OM D A r D A x

dx dxΛ Λ′ ′ ′ ′− ⋅ = ⋅ =
  

 



      (18)

It also holds that 

'' ' ' 'U
d dr OM r OM
dx dx′Λ− = −

 

 

  (19)

Now, if we let γ be the angle between ''Ur  and 
D A′ ′


 and θ the one between ''r Λ


 and D A′ ′


, then, 
combining (17), (18) and (19) we obtain 

'

'

' '
cos 1
cos' '

U
dr OM D A
dx
dr OM D A
dxΛ

  ′ ′− ⋅ 
  = = −
  ′ ′− ⋅ 
 

 



 



 (20)

and, as a consequence, cosγ = –cosθ, which 
gives us 

γ + θ = �    (21)

This last relation proves to be fundamental 
in defining and obtaining the cross section’s 
coordinates, as well as those of the neutral line. 
Knowledge of the coordinates of the neutral line 
allows us to “unwrap”, or straighten, the outline 

of the parasite, as is shown in the following Sec-
tion.

unwrapping the Parasite: Evaluation 
of the Method

Polynomial Approximation of the
Deformed Parasite Contour: State of 
the Art 

The next step is to determine if there are specific 
mathematical curves that optimally fit the parasite 
contour in the obtained images. First, parasite 
contour has to be extracted. To achieve this, 
initially we have performed segmentation of the 
image of the deformed parasite by the method 
introduced in Papaodysseus et al., 2004. Next, 
the contour of the parasite has been determined 
via dedicated software. 

In order to determine polynomial curves that 
best fit the contour, we have tentatively applied 
techniques introduced in Craig, 1999, Papaodys-
seus et al., 2005, Papaodysseus et al., 2008. For the 
present application the following method proved 
quiet satisfactory: 

 The curve parameter is chosen to be the con-
tour length s, calculated via the distance of the 
successive pixels that form it. Subsequently, we 
approximate the variables x and y of the parasite 
by polynomials up to 21 degree:

( )
( ) 0
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−
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      (22)

Suppose now, that one wants to test if the 
upper parasite contour corresponds to the 
aforementioned curve and at the same time 
to compute the parameters of this optimal 
curve: Let , 1,2,...,P P

ir i N=


 be the centers of 
the pixels forming the upper contour and let 

{ }1 1 0 1 1 0, ,..., , , , ,..., ,n n n na a a a b b b b− −Π = . Hence the 
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parametric vector equation of the prototype curve 
is ( ) ( ) ( )|Mr s x s i y s jΠ = +



 

.
Next, we compute the optimal set of parameters 

ΟΠ  and the corresponding sequence of values of 
the independent variable , 1,2,..., p

is i N= , so that  
( )|M

ir s ΟΠ


 best fits P
ir


 according to the chosen 

quadratic norm ( )2

2
1

PN
P M

i i
i

E r r
=

= −∑
 

.

Algorithms that can minimize  E2 are the 
conjugate gradient and/or the Nelder – Mead 
method (Nelder and Mead, 1965). Both these 

algorithms start from a tentative initial position 
∏1 and each time generate a new set of parameter 
values ∏2, ∏3, etc, so that E2 eventually converges 
to its minimum value, in which case the optimal 
set of parameters ∏0is obtained. 

In order that this approximation is good 

enough, the minimum value of E2, say E2(min), that 
corresponds to the theoretical curve generated by 
∏0, must be smaller than a small threshold com-
mon for all parasites (Figures 4a and 4b).

Figure 4a. Outer and inner polynomial curves that best fit this parasite’s contour

Figure 4b. Polynomial curves that best fit another parasite’s contour



���  

Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images

Determining the Deformed Body’s Neutral 
Line

In this section, we will analytically describe the 
methodology we have introduced and applied for 
determining the exact position of the neutral line 
in the deformed parasite, as well as the positions 
of the cross sections that, by hypothesis, always 
remain undeformed and normal to the neutral 
line. This methodology comprises the following 
steps: 

Step 1: We, first, extract the parasite contour. 
Next, we spot the head and the tail of the parasite 
as follows: First, to spot the tail, for each contour 
pixel p we consider the sets of pixels PL that lie 
on its left and PR that lie on its right and we ap-
proximate both PL and PR with line segments in 
the Least Squares sense. We let the tail T be the 
pixel where these two line segments form the 
most acute angle. 

Second, we spot the parasite “head” H: We 
move away from the tail and we locally approxi-
mate the contour by polynomials of fifth degree, 
of which we compute the curvature. We let the 
“head” be the point of maximum curvature 
which also lies between 0.4 and 0.6 of the whole 
contour length. 

Step 2: We divide the whole contour into two 
parts I and II (arbitrarily upper and lower), that 
both end at the parasite “head” and “tail”. Then 
we approximate both parts with polynomials of 
type (22). All performed experiments indicate that 
this approximation is excellent. We form a dense 
sequence , 1...II II

jM j N=  of points belonging to 
the polynomial curve best fitting part II and a less 
dense sequence , 1...I I

iM i N=  on curve fitting part 
I; let I

i


 and II
j



 be the unit tangent vector to these 
model curves at each I

iM  and II
jM  respectively.    

Step 3: Subsequently we spot parasite’s neutral 
line as follows.

We move away from tail T along part I and we 
connect 1

IM  with each point of set , 1...II
jM j K= , 

where K is a predefined number of pixels, say 

5% of the whole contour length. We form vectors 

1, 1 , 1,...,II I
j jr M M j K= =



 . We keep only those vectors 
1, jr  that lie entirely within the parasite body and for 
these we compute the angles 1,

I
j and 1,

II
j formed 

by each vector 1, jr  and the tangent vectors 1
I

 and 

1,
II

j
  respectively. Then, we define the sequence 

1, 1, 1,
I II

j j j∆ = + −  and we let 1
IIN  be that point 

where the minimum value of the sequence ∆φ1, j 
occurs, say the d1-th of sequence II

jM ; we con-
sequently define 1 1

I IIM N


 to be a cross section of 
the parasite that remains undeformed and normal 
to the neutral line.

Next we compute the second cross section as 
follows: We move away from the tail vertex T 
and 1

IM  at 2
IM  and once more, we define the set 

of points 
1

, 1,...,II
d jM j K+ = . Proceeding as before 

we define the vectors, 
12, 2 , 1,...,II I

j d jr M M j K+= =


 . 
We compute the corresponding angles 2,

I
j be-

tween 2, jr  and 2
I

, as well as 2,
II

j between 2, jr  and 

1

II
d j+

 . We spot the minimum of the sequence 

2, 2, 2,
I II

j j j∆ = + −  which occurs at point 2
IIN , 

say the d2-th point of sequence II
jM . We let 2 2

I IIM N


 
be the second cross section that remains unde-
formed and normal to the neutral line. 

Finally we proceed in obtaining all cross sec-
tions I II

i iM N


 passing from , 1...I I
iM i N=  by the 

same method (Figures 5a,b). The middle points 
of these cross sections belong to the neutral line 
and the unit vector normal to these sections is 
tangent to the neutral line.

Description of the Unwrapping Process

We have shown in the Section entitled “Properties 
of the parasite elastic deformation” that under the 
adopted assumptions the neutral line undertakes 
no stress and it is found in the middle of the 
corresponding cross section. Consequently, we 
define the neutral line of the deformed parasite 
to be the locus of the middle points Kn of the 
cross sections I IIM N  as they are determined 
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in the previous section. Clearly, the length of 
the neutral line remains unchanged during the 
various phases of the parasite deformation and 
it coincides with the length of the undeformed 
parasite’s symmetry axis.

Therefore, in order to unwrap the parasite 
and find its undeformed shape, we proceed as 
follows:

• We compute the distance of all successive 
middle points Ki and Ki+1, say δi.

• Along the x-axis we form a sequence of points 
Λi of equal number with Ki, as follows: Λ1 is 
placed at the axis origin; Λ2 in the positive 
x-axis, so that the distance between points 
Λ1 and Λ2 is equal to the distance between 
middle points K1 and K2. We continue this 
process so that Λi and Λi+1 are equidistant 

Figure 5a. Determination of the cross sections of the parasite in Figure 4a

Figure 5b. Determination of the cross sections of the parasite in Figure 4b
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Figure 6. The unwrapped contour versions for 6 parasites of the same gender with the one in Figure 4a

Figure 7. The unwrapped contour versions for 6 parasites of the same gender with the one in Figure 4b

with Ki Ki+1, until all middle points are ex-
hausted.

• Moving in a direction perpendicular to 
the x-axis at each point Λi we choose two 
points: Ai with y-coordinate equal to λi / 2, 
namely half the length of the cross section 

I II
i iM N  and point Bi with y-coordinate –λi / 

2. We set points Ai to form the one part of 
the parasite, while points Bi form the other 
parasite part (Figures 6, 7).
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Evaluation of the Parasite Unwrapping
Results

If the assumptions made and the introduced meth-
odology are correct, one expects that different 
phases of the parasite deformation will generate 
the same undeformed parasite version, at least 
with an acceptable approximation. Figures 6, 7 
demonstrate that this is indeed the case. In fact, 
the undeformed parasite borders have a difference 
that might be considered negligible in respect to 
the parasite dimensions. We have employed five 
different measures to describe the differences 
between the shapes of the unwrapped parasite 
that resulted from different phases. These mea-
sures are: 

I.  ( )
1, 100%

P P
i

i Pa
−

= ⋅
 



, where P
i  is the length 

of the unwrapped parasite obtained from 
the ith wrapped larva phase and P

  its mean 
value.

II.
 

( )
2, 100%

P P
i

i P

E E
a

E
−

= ⋅ , where P
iE  is the area 

of the unwrapped parasite obtained from 
the ith wrapped larva phase and PE its mean 
value.

III. 
( )

( )
,

3, 100%
i j jj

i
jj

mean y y
a

mean y

−
= ⋅ , where yi,j is the 

width of the unwrapped parasite that cor-
responds to the ith phase at point xj; hence, 
we define ( ),j i ji

y mean y= . 

IV. ( )
4, 100%

P P
i

i Pa
Π − Π

= ⋅
Π

, where P
iΠ  is PΠ

the perimeter of the unwrapped parasite 
obtained from the ith wrapped larva phase 
and PΠ  its mean value.

V. ( )
5, 100%

P P
i

i P

C C
a

C
−

= ⋅  , where P
iC  is 

the maximum cross section diameter of 
the unwrapped parasite obtained from the 

ith wrapped larva phase and PC  its mean 
value.

The mean value and standard deviation of 
quantities a1,i, a2,i , a3,i , a4,i, a5,i  are shown in 
Table 1.

t he Employed Method of Automatic 
Identification of Parasites  

Description of the Introduced 
Classification Algorithm

In the previous sections, we have deduced a 
number of reasonable and justifiable mechano-
elastic properties of the considered parasites 
and we have exploited them in order to virtually 
unwrap the parasites from the corresponding 
initial wrapped instances.

In order to classify the unwrapped parasite 
curves to the proper family, we have employed an 
original identification algorithm presented in this 
Section. This algorithmic scheme is in a sense a 
more complicated version of the k-means algo-
rithm, however, at the same time differs from the 
other partitional algorithms, e.g. Lee et al. 1997, 
Jain and Dubes, 1988, Ng and Han 1994, since it 
does not require a predefined number of clusters, 
while it also dynamically estimates the cluster 
centers by exploitation of the entire data set and 
not only of the group.  This method comprises 
the following steps:

•  Step 1: We divide the available set of un-
wrapped parasite curves into a Training and 
a Test Set, by means of a random number 
generator. We also enumerate the individuals 
of the Training Set, randomly. Finally we 
define a set of characteristics upon which 
automatic identification will be based.

•  Step 2: We determine a set of useful quan-
tities that will be employed throughout the 
automatic identification process.
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•  Step 3: We perform an initial classification 
of the Training Set samples to groups where 
we stress that the parasite family may in-
corporate various different groups. We also 
compute the center of each such group.

•  Step 4: We correct the clustering performed 
in Step3, as well as the groups’ centers es-
timation, for the Training Set in hand.

•  Step 5: We attribute the parasites of the 
Test Set in corresponding groups and hence 
families.

A detailed presentation of the aforementioned 
steps follows.

Step 1: First, the available set of unwrapped 
parasite curves is randomly divided in two subsets, 
a Training Set and a Test Set. The elements of the 
Training Set are also randomly enumerated.

Subsequently we define a number of charac-
teristics upon which we will base the automatic 
parasite classification. Specifically:

 CH1. The length of the axis of symmetry 
of the unwrapped parasite.

 CH2. The maximum length of the sections 
normal to the parasite’s neutral line.

 CH3. The average parasite width.
 CH4. The standard deviation of the parasite 

widths
 CH5. The area defined by the upper and 

lower contour of the unwrapped parasite.
 CH6. The perimeter of the unwrapped 

parasite.
 CH7. The ratio of perimeter/area.
 CH8. The average curvature of the contour 

of the parasite, computed directly by means 
of the explicit form of the contour polynomial 
approximation of the wrapped parasite in its 
initial image.

 CH9. The standard deviation of the curvature 
computed above.

 CH10. The average curvature of the contour 
of parasite, computed numerically on its 
unwrapped version.

 CH11. The standard deviation of the cur-
vature computed above.

 Evaluation the discrepancy 
between the unwrapped 

versions of Figure 6.

Evaluation the discrepancy 
between the unwrapped 

versions of Figure 7.

Average discrepancy of all 
experimental results

Mean value
Standard 
Deviation

Mean value
Standard 
Deviation

Mean value
Standard 
Deviation

1a  (Length):
0.82 0.29 1.04 0.73 0.91 0.56

2a (Area):
2.30 1.18 1.41 0.62 1.73 1.01

3a (Width):
1.87 1.06 1.32 0.60 1.68 0.94

4a (Perimeter):
0.84 0.34 1.07 0.74 0.95 0.59

5a (Max cross section 

diameter):

2.63 1.68 2.62 1.63 2.71 1.72

Table 1.  Negligible dissimilarities between unwrapped versions of the same parasite are computed from 
images of radically different deformation stages of the same individual.
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Next, we define the a vector x in R11 such that its 
first component x1 is the value of CH1 character-
istic for a single individual, its second component 
is the value of CH2 for the same parasite instance, 
etc. To avoid unbalanced distances between differ-
ent components of two parasites characteristics’ 
vectors, we normalize x as follows: For each one 
of the aforementioned characteristics, say the j-
th, we compute its average value for all parasites 
of the Training Set. If this mean value is jx , we 
substitute the j-th component of x with 

j j

j

x x
x
−  for 

all individuals in both Training and Test Set.
Step 2: Now, we will estimate the values of a 

number of parameters that will be proved useful 
in the automatic classification of parasites in the 
proper group. First, we compute the value of a 
parameter Dmax, so as to ensure an as great as 
possible separability between the groups’ centers. 
Therefore, for each family of individuals of the 
Training Set, say the j-th, we compute the mean 
value ( )j

 of its characteristic vectors; moreover 
let I( j) be the set of individuals of the j-th family 
and IC( j) the set of samples belonging in other 
families. Next, we estimate Dmax via maximiza-
tion of quantity shown in Box 2.

Second, we define a weight function of 
each characteristic vector on the basis of the 
distance of x from the center of each group. In 
fact, if c is the center of an arbitrary group, then 
this weight function is given by the formula 

( )2( , ) expx c A x c= − −
   

. The constant A ap-
pearing in this formula is estimated using Dmax 
and the assumption that values of each charac-
teristic inside the same group follows a normal 
distribution. We note that application of both 

Kolmogorov and Chi2 Tests does not contradict 
this hypothesis (a = 0.0001). Thus, the goal of 
achieving separation between groups at a confi-
dence level 99.9% leads to the value of A: 

3
max 2

A
D

=

Step 3: In order to achieve a first automatic 
classification of the Training Set parasites, we 
consider the first sample of this set (1)x  and we 
let it be an initial estimation of the center of the 
first group 1(1) (1)c x=

 

. Next, we consider the 
second sample of the Training ensemble with 
characteristic vector (2)x  and we compute its 
Euclidean distance from 1(1)c , say:

( )
11 2

1 1
1

( (1), (2)) (1) (2)i i

i
d c x c x

=

= −∑ 

If 1( (1), (2)) maxd c x D≥
  , then (2)x  becomes 

the center of a new group letting 2 (1) (2)c x=
  . 

Simultaneously the value of center 1(1)c  is 

updated via formula 1 1
1

1

(1) (2) (2)(2)
1 (2)

c xc +
=

+

 

 , 
2

1 1(2) exp( ( (1), (2)) )A d c x= − ⋅
  ; we also define 

quantity S1(1) = 1 and we update S1(2) = 1 + 
β1(2). Simultaneously, to avoid dependence of the 
groups’ centers value on the order of choice of 
samples, we update the value of 2c , employing (1)x , 

by means of the formula 2 2
2

2

(1) (1) (1)(2)
1 (1)

c xc +
=

+

 



 

similarly defining S1(1) = 1 and updating S1(2) = 
1 + β1(2); in the notation 2 (2)c  the subscript in-
dicates the cardinal number of the group while 
the argument is used to indicate the number of 
the iteration.

( ) ( )
4 2 2

1 ( )( )

1 1( ) ( ) max ( ) ( ) max
( ) ( )CCj i I jI j II

S x j D x i j D
N j N j= ∈∈

 
= − − − − + 

  
∑ ∑ ∑   

Box 2.
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We continue this recursive process and sup-
pose that at the (j-1)-th step, k centers have been 
generated 1( 1) , ... , ( 1)kc j c j− −

 

. Let ( )x j

 be the 
characteristic vector of the new incoming sample 
of the Training Set; then we compute distances

( )
11 2

1
( ( 1), ( )) ( 1) ( )l l

i i
l

d c j x j c j x j
=

− = − −∑ 

If the maximum of these distances is greater 
than Dmax, we generate a new group center, 

1(1) ( )kc x j+ =
  . In addition we update the value of 
previously estimated centers via formulas

( 1) ( 1) ( ) ( )( )
( )

m m m
m

m

S j c j j x jc j
S j

− − +
=

 

 , 

( ) ( 1) ( )m m mS j S j j= − +  where 

2( ) exp( ( ( 1), ( )) )m mj A d c j x j= − ⋅ −
 

for m = 1...k. 

Again, to minimize dependence on the order of 
choice of the characteristics vectors, we compute 
the whole sequence 1 1(2) ,..., ( )k kc c j+ +

 

 of updates of 
center 1(1)kc +



 via the following process: we consider 
that for the updating of 1(1)kc +



 only, the characteris-
tics vector (1)x  is a newcomer, in which case 1(2)kc +

  

is computed via 1 1
1

1

(1) (1) (1)(2)
1 (1)

k k
k

k

c xc + +
+

+

+
=

+

 



. Next 

we consider that (2)x  comes and consequently 
the centre of the k+1 group is updated as before, 
etc. until 1( )kc j+

  is evaluated.
At the end of Step3, a number of distinct 

centers kc  1...k M= , is generated. To correspond 
these centers to parasite families, we compute the 
distances of each kc  from all characteristics vectors 

( )x j

; let ( )kx j

 be the vector of minimum distance 
from kc . Then kc  is attributed to the family from 
which ( )kx j  is generated. We emphasize that this 
computation of the centers is not irrevocable and 
it must be readjusted using the entire information 
the Training Set offers. This will be realized in 
the next step.

Step 4: We attribute each individual of the 
Training Set with characteristic vector x to the 
group with center kc  from which x has the mini-
mum distance. After having classified all samples 
of the Training Set to a family by means of this 
method, we compare this classification with the 
actual one, the expert has made. In practice, the 
procedure described in Step 3 offers an initial 
classification of the Training Set samples, which 
has a success rate of at least 75%. Let W1 be the 
subset of individuals of the Training Set that 
have been erroneously classified so far; we will 
employ the samples of W1 to readjust the proper 
parasite groups’ centers, so that the classification 
success rate is drastically improved. To be specific, 
consider one sample 1( )x i

 of W1, initially attrib-
uted to the group with center ,1wc  corresponding 
to the 1st  parasite family. However, according 
to the expert’s classification of the Training Set 
samples, sample  1( )x i

 should have been attrib-
uted to the 4th parasite family. To deal with this 
discrepancy, we first consider the centers of all 
groups belonging to family 4 and we choose the 
center that has minimum distance from 1( )x i

 
with vector ,1rc . Now, we revaluate centers ,1wc , ,1rc  
and the corresponding weighting factors Sr,1(N), 
Sw,1(N), as follows:

,1 ,1 1 1
,1

,1 1

( ) (1) ( ) ( )
( ) ( )

r r
r

r

S N c i x i
c

S N i
+

←
+

 



,

,1 ,1 1 1
,1

,1 1

( ) ( ) ( ) ( )
( ) ( )

w w
w

w

S N c n i x i
c

S N i
−

←
−

 



,1 ,1 1( ) ( ) ( )r rS N S N i← + ,

,1 ,1 1( ) ( ) ( )w wS N S N i← −

where 

1 ,1 1 ,1 1( ) ( ) ( )w ri i i= − ,

( )( )2
,1 1 ,1 1( ) exp , ( )w wi A d c x i= − ⋅

 

,
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( )( )2
,1 1 ,1 1( ) exp , ( )r ri A d c x i= − ⋅

 

Subsequently, we consider another sample of 
W1 and we repeat the process until all W1 individu-
als are exhausted.

At this point, we repeat the classification of 
all samples of the Training Set to a group and the 
corresponding family, by employing the newly 
estimated groups’ centers values. We compare 
this classification with the one furnished by the 
expert for the Training Set parasites and sup-
pose that the ensemble of erroneously identified 
individuals is W2. Using the above procedure we 
reevaluate the group centers, this time employing 
the characteristics vectors of W2.

In general, suppose that the (n–1)th iteration 
of this process has been completed and that the 
comparison of the obtained classification with 
the one the expert furnished, generates a set Wn 
of erroneous identifications. Using an arbitrary 
sample of Wn with characteristic vector ( )x i

 we 
recompute the centers of the corresponding right 
and wrong groups, ,rc , ,wc , via formulas:

, ,
,

,

( ) (1) ( ) ( )
( ) ( )

r r
r

r

S N c i x i
c

S N i
+

←
+

 



,

, ,
,

,

( ) (1) ( ) ( )
( ) ( )

w w
w

w

S N c i x i
c

S N i
+

←
+

 



, ,( ) ( ) ( )r rS N S N i← + ,
,( ) ( ) ( )w wS N S N i← −

where

, ,( ) ( ) ( )w ri i i= − ,

( )( )2
, ,( ) exp , ( )w wi A d c x i= − ⋅

 

,

( )( )2
, ,( ) exp , ( )r ri A d c x i= − ⋅

 

The aforementioned procedure stops when one 
of the following conditions hold: 1) Wn is empty, 

i.e. the algorithm has classified the Training Set 
samples with 100% success rate or 2) the success 
rate has “stagnated” for a considerable number 
of iterations. We note that in practice condition 
1) almost always occurs and that if condition 2) 
holds, then the success rate is very high. 

In each iteration, the repositioning of the 
groups’ centers performed in the above procedure, 
reduces the distance between the vectors of the 
center of the right group and a sample that has 
erroneously classified:

,
, 1 ,

,

( )
( 1) ( ) ( )

( ) ( )
r

r r
r

S N
c n x i c x i

S N i+ + − = − <
+

   

, ( )rc x i−
 

At the same time, the distance between the 
center of the group to which this sample has been 
erroneously assigned and the sample’s character-
istic vector, increases:

,
, 1 ,

,

( )
( ) ( )

( ) ( )
w

w w
w n

S N
c x i c x i

S N i+ − = − >
−

   

, ( )wc x i−
 

In the end of this step one has performed Nw 
iterations and obtained a sequence of centers, 
namely { }, , 1... ( )j Nwc j M Nw=

 , in practice opti-
mally placed as far as classification of the Training 
Set parasites is concerned. 

Step 5: Next, we will perform automatic iden-
tification of the Test Set parasites, by exploitation 
of the groups centers evaluated in Step4 and their 
distance from the characteristics vector of each 
test sample. Specifically, if TEST

ix  is the vector of 
characteristics of the i-th element of the Test Set, 
we compute each distance from the sequence of 
group centers ( ), , , 1... ( )TEST

j Nw id c x j M Nw=
   and 

we attribute TEST
ix  to the group with minimum 

distance with center *,j Nwc . Hence we identify the 
family of the  TEST

ix parasite as the one to which 
group with center *,j Nwc  belongs.
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Parasite Genus Number of 
individuals

Percentage of
Classifications with
0 erroneous
identifications

Percentage of
Classifications with
1 erroneous
identification

Percentage of
Classifications with
2 erroneous
identifications

1) Cooperia 17 57% 34% 9%
2) Oesophagostomum 24 31% 48% 21%
3) Ostertagia 16 100% 0% 0%
4) Trichostrongylus 31 33% 45% 22%

Table 2. Results of the automatic identification process of the parasites.

Application of the Method and Results

The entire set of data consisted of 193 parasite 
images that were shot at an arbitrary deformation 
instance. We randomly divided this set into 100 
pairs of Training and Test Sets almost equal in 
number. For each Training Set we applied the 
procedure described in Steps 1-4, thus classifying 
all its members into groups, which in turn belong 
to one of the 4 families.

Next, we considered all samples of the cor-
responding Test Set and we applied Step 5 to 
identify the proper family to which the sample 
belongs. We repeated the aforementioned process 
for all 100 pairs of Training and Test Sets and 
we kept record of the correct and erroneous test 
classifications in each case. The related results 
are summarized in Table 2.

futur E tr Ends

The analysis presented in this chapter is quite 
general and it can be easily extended to take into 
account the determination of the mechano-elastic 
properties of various objects on the basis of their 
deformed images. Thus, for example, one may 
apply a similar methodology in the case of images 
of molecules, DNA, red blood cells, as well as of 
other cells, which are obtained via microscope. 

Consequently, one may employ the knowl-
edge of the elastic properties in order to obtain 

straightened versions of the deformed bodies and 
finally one can perform automatic identification of 
the straightened objects. Clearly this approach is 
also applicable in the case of non microscopic im-
ages. Moreover, the introduced clustering method 
described in the Section entitled “Description 
of the introduced classification algorithm” can 
be applied in radically different projects such as 
grouping of curves in an image and/or painting, 
in writer identification, etc.

Finally, it is reasonable to expect that exploita-
tion of the color content of the parasite body image 
will offer parasite automatic classification near to 
perfection. Therefore, research in all these topics 
should take place in the future.

conclus Ion

The performed experiments verify the validity of 
the aforementioned hypotheses and of the related 
analysis. In particular, the unwrapped versions 
of the contours of different deformed instances 
of the same parasite manifest strong similarity. 
Hence, the straightened contours seem to be reli-
able representations of the undeformed parasites 
and they can be employed in an automatic parasite 
classification system. Also, the assumptions on 
the elastic properties of parasite bodies seem to 
be confirmed by the obtained results. The authors 
used a new classification method, which succeeds 
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in classifying the deformed parasites to proper 
groups and four families with more than 95% 
success rate. 

r Ef Er Enc Es

Chandrasekharaiah, D. S., & Debnath, L. (1st 
Ed.). (1994). Continuum Mechanics. Boston, MA: 
Academic Press.

Craig, D. (1999). Fitting Curves and Surfaces 
With Constrained Implicit Polynomials. IEEE 
Transactions on PAMI, 21(1), 31-41.

Sudipto G., Rajeev, R., & Kyuseok, S. (1998). 
CURE: An efficient clustering algorithm for large 
databases. In Proc. of 1998 ACM-SIGMOD Int. 
Conf. on Management of Data.

Gillian, A., Xiaoyi, P. J., Horst, D. B., Kevin, D. 
W., & Andrew, R. B. (1996). An Experimental 
Comparison of Range Image Segmentation Al-
gorithms, IEEE Transactions on PAMI, 18(7), 
673-689.

Guha, S., Rastogi, R., & Shim, K. (1999). ROCK: 
A robust clustering algorithm for categorical 
attributes. Proc. of the 15th Int’l Conf. on Data 
Eng.

Jain, A. K., & Dubes, R. C. (1988). Algorithms 
for Clustering Data. Prentice Hall.

Karypis, G., Han, E. H., & Kumar, V. (n.d.). CHA-
MELEON: A Hierarchical Clustering Algorithm 
Using Dynamic Modelling. IEEE Computer: 
Special Issue and Data Analysis and Mining.

Kaufman, L., & Rousseeuw, P. J. (1990). Find-
ing Groups in Data: an Introduction to Cluster 
Analysis. JohnWiley & Sons.

Kohonen, T. (1984). Self-Organization and As-
sociative Memory. Berlin - Springer Verlag.

Lee, D., Baek, S., & Sung, K. (1997). Modified 
k-means Algorithm for Vector Quantizer Design. 
IEEE Signal Processing Letters, 4(1), 2-4.

Malvern, L. E. (1969). Introduction to the Mechan-
ics of a Continuous Medium. Englewood Cliffs, 
NJ: Prentice-Hall.

Manduca, A., Dutt, V., Borup, D. T., Muthupillai, 
R., Ehman, R. L., & Greenleaf, J. F. (1998). Re-
construction of Elasticity and Attenuation Maps 
in Shear Wave Imaging: An Inverse Approach, 
Medical Image Computing and Computer-As-
sisted Interventation — MICCAI’98, 1496, Lecture 
Notes in Computer Science, Springer Berlin / 
Heidelberg, (pp. 606-613).

McMurtry, L. W., Donaghy, M. J., Vlassoff, A., 
& Douch, P. G. C. (2000). Distinguishing mor-
phological features of the third larval stage of 
ovine Trichostrongylus. Veterinary Parasitology, 
90(1-2), 73-81.

Nelder, J. A., & Mead, R. (1965). A Simplex 
Method for Function Minimization. Computer 
Journal, 7, 308-313. 

Ng, R., & Han, J. (1994). Efficient and effective 
clustering method for spatial data mining. In 
Proc. of the 20th VLDB Conference, (pp.144–155), 
Santiago, Chile.

Panagopoulos, Th., Papaodysseus, C., Exarhos, 
M., Triantafillou, C., Roussopoulos, G., & Rous-
sopoulos, P. (2004). Prehistoric Wall-Paintings 
Reconstruction Using Image Pattern Analysis 
And Curve Fitting. IEEE Systems Man and Cy-
bernetics, 1, 108-113. 

Papaodysseus, C., Exarhos, M., Panagopoulos, 
P., Roussopoulos, P., Triantafillou, C., & Pan-
agopoulos, Th. (2008). Identification of Geo-
metrical Shapes in Paintings and its Application 
to Demonstrate the Foundations of Geometry in 
1650 BC. IEEE Transactions on Image Process-
ing, 14(7).



���  

Automatic Identification and Elastic Properties of Deformed Objects Using their Microscopic Images

Papaodysseus, C., Exarhos, M., Panagopoulos, 
Th., Triantafillou, C., Roussopoulos, G., Pantazi, 
Af., Loumos, V., Fragoulis, D., & Doumas, C. 
(2005). Identification of Geometrical Shapes in 
Paintings and its Application to Demonstrate 
the Foundations of Geometry in 1650 BC. IEEE 
Transactions on Image Processing, 14(7).

Román-Roldán R., Gómez-Lopera J. F., Atae-Al-
lah C., Martínez-Aroza J., & & Luque-Escamilla, 
P. L. (2001). A measure of quality for evaluating 
methods of segmentation and edge detection. 
Pattern Recognition, 34, 969-980.

Theodoropoulos, G., Loumos, V., Anagnosto-
poulos, C., Kayafas, E., & Martinez-Gonzales, 
B. (2000). A digital image analysis and neural 
network based system for identification of third-
stage parasitic strongyle larvae from domestic 
animals. Computer Methods and Programs in 
Biomedicine, 62(2), 69-76.

Washington, C. W., & Miga, M. I. (2004). Modal-
ity Independent Elastography (MIE): A New Ap-
proach to Elasticity Imaging. IEEE Transactions 
on Medical Imaging, 23(9), 1117-1128.

k Ey t Er Ms

Automatic Curve Classification: A process 
which automatically classifies curves into differ-
ent groups according to their similarity. 

Curve Fitting Methods: Techniques that 
optimally fit a curve of desired functional form 
into a set of pixels or data points.

Elastic Deformation Invariants: Quanti-
ties, shapes or characteristics of a body, e.g. a 
parasite, which remain invariant during its elastic 
deformation.

Image Operations: Actions performed on 
an image that change the colour content of its 
pixels usually to detect or bring out some image 
characteristics.

Parasite Image Segmentation: The auto-
mated procedure that isolates parasite body in 
its microscopic image and perhaps locates the 
various parasite body regions.

Parasite Mechano-Elastic Properties: The 
quantities and properties that characterize the 
body of a parasite, from the point of view of 
Mechanics and Elasticity Theory. 

Pattern Classification Techniques: A set 
of methods that classify the members of  a data 
set in different groups according to a number of 
group-characteristic patterns.
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Introduct Ion

The elasticity of soft tissues depends, to a large 
extent, on their molecular building blocks (fat, 
collagen, etc.), and on the microscopic and 
macroscopic structural organization of these 

Abstr Act
 
“Elastography” or “elasticity imaging” can be defined as the science and methodology of estimating the 
mechanical properties of a medium (including soft tissue). In this chapter, an overview of elastography 
and its relation to tissue pathology will be presented. The basic principles of the static and dynamic 
methods will be described with special emphasis on the dynamic methods that rely on the acoustic 
radiation force of ultrasound. Of interest are the low-frequency narrowband shear waves that can be 
generated by a modulated radiation force produced by the interference of two continuous-wave (CW) 
ultrasound beams of slightly different frequencies. The advantages of using narrowband shear waves 
to estimate the viscoelastic properties of tissue will be discussed. Furthermore, an implementation of 
the inverse-problem approach will be presented and it will be shown how harmonic maps of the local 
shear modulus and viscosity can be reconstructed based on both the fundamental and higher-harmonic 
components of the propagated narrowband shear waves.

blocks (Fung, 1981). Pathological changes are 
generally correlated with local changes in tissue 
stiffness (Figure 1). Many cancers, such as scir-
rhous carcinoma of the breast, liver metastases, 
prostatic carcinoma, and thyroid cancer, appear 
as extremely hard nodules (Anderson, 1984). 
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Other types of breast cancers (e.g. intraductal 
and papillary carcinoma) are soft (Ariel, 1987). 
Other diseases involve fatty and/or collagenous 
deposits, which increase or decrease tissue elastic-
ity. The standard medical practice of soft tissue 
palpation is based on qualitative assessment of 
the low-frequency stiffness of tissue and has been 
used for centuries by physicians to distinguish 
between normal and diseased tissues. Palpation 
is sometimes used to assess organs such as the 
liver, and it is not uncommon for surgeons at the 
time of laparotomy to palpate tumors that were 
not detected preoperatively using conventional 

imaging methods, such as Ultrasound, Computer 
Tomography (CT), or Magnetic Resonance Imag-
ing (MRI), since none of these modalities cur-
rently provides the type of information elicited 
by palpation. 

In many cases, despite the difference in stiff-
ness, the small size of a pathological lesion and/or 
its location deep in the body, preclude its detection 
and evaluation by palpation. In general, the le-
sion may or may not possess acoustic backscatter 
properties, which would make it detectable using 
ultrasound. For example, tumors of the prostate 
or the breast could be invisible or barely visible 

Figure 1. (a) Sonogram and (b) elastogram of an in-vivo benign breast tumour (fibroadenoma) and (c) 
sonogram and (d) elastogram of an in-vivo malignant breast tumour (invasive ductal carcinoma). Note 
that black indicates stiff and white indicates soft tissue. Adapted version, reprinted from Ultrasonics, 
38, Konofagou (2000), pp. 400-404, ©2000, with permission from Elsevier.
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in standard ultrasound examinations, yet be much 
harder than the embedding tissue. Furthermore, 
diffuse diseases (e.g. cirrhosis of the liver) are 
known to significantly increase the stiffness 
of the liver tissue as a whole (Anderson, 1984). 
However, they may appear normal in conventional 
B-mode ultrasound examination. Based on the 
simple concept of palpation and the observation 
that echogenicity and the stiffness of tissue are 
generally uncorrelated (Garra, 1997; Ophir, 2001), 
tissue elastography or elasticity imaging (Ophir, 
1991) seeks to provide non-invasive quantitative 
systems that can measure or image the local 
mechanical properties of tissue. Such systems 
could provide new information related to tissue 
structure and/or pathology (see Figure 1) and could 
significantly enhance the accuracy of diagnosis, 
even at early stages of disease.

In conventional (B-mode) ultrasound imaging, 
the ability to differentiate between various tissues 
within the body depends on changes in the acoustic 
properties, which in turn, depend primarily on the 
bulk (elastic) modulus (Cobbold, 2007). The range 
of variation of the bulk modulus is very small, 
i.e., significantly less than an order of magnitude. 
On the other hand, the shear modulus μl (known 
as the second Lamé constant), which is defined 
as the ratio of shear stress to shear strain that is 
involved in the passage of a transverse wave, may 
change by many orders of magnitude, depend-
ing on the tissue (Cobbold, 2007). This suggests 
that by imaging one or more characteristics of 
shear wave propagation, improved sensitivity to 
localized changes in elastic properties could be 
achieved, thereby, providing useful diagnostic 
information (Sarvazyan, 1998).

Low-frequency shear waves are known to 
travel within tissue with a propagation speed that 
is several orders of magnitude less than that of 
compressional waves1. An effective way in which 
localized low-frequency shear waves can be re-
motely generated within tissue, is by the dynamic 
radiation force resulting from the interference 
of two confocal quasi-CW ultrasound beams of 

slightly different frequencies. In contrast to most 
radiation force-based methods presented previ-
ously, the aforementioned dual-beam source can 
generate narrowband low-frequency shear waves. 
Such waves suffer less from the effects of disper-
sion, enabling the frequency-dependent shear 
speed and attenuation to be estimated at a specific 
frequency. This can be achieved by tracking the 
shear-wave phase delay and change in amplitude 
over a specific distance. Measurements at differ-
ent frequencies can then be fitted to a viscoelastic 
model (e.g. the Voigt model, see following sec-
tions), enabling the tissue elasticity and viscosity 
to be extracted (Giannoula, 2008b). 

In this chapter, the modulated acoustic radia-
tion force will be modeled, based on the confocal 
dual-beam configuration. In order to increase the 
shear detection Signal-to-Noise-Ratio (SNR), 
higher-source pressure conditions may be needed, 
and thus, the presence of higher harmonics gener-
ated by nonlinear effects must be accounted for. 
Subsequently, the generation and propagation of 
short-duration shear waves at both the fundamen-
tal and harmonic modulation frequencies will 
be described, based on the approximate Green’s 
functions for viscoelastic media, as derived by 
Bercoff (2004b). Furthermore, an implementation 
of the inverse-problem approach will be presented 
and it will be shown how harmonic maps of the 
local shear modulus and viscosity estimates can 
be obtained, based on both the fundamental and 
higher-harmonic components of the shear-wave 
spectrum. Future trends will be also discussed 
and conclusions will be finally drawn.

bAckground

During the past two decades, various methods 
have been proposed for measuring or estimat-
ing the tissue elasticity. Elastography methods 
generally use a source of mechanical motion to 
produce a stress-field distribution on the probed 
tissue (tissue excitation). The applied stress, then, 
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causes minute displacements within the tissue, 
which can be measured using magnetic resonance 
(MR) (Bishop, 1998; Muthupillai, 1995; Kruse, 
2000), ultrasound (Ophir, 1991; Konofagou, 2000; 
Sugimoto, 1990) or optical techniques (Sarvazyan, 
1998). The use of ultrasound has several significant 
advantages, including real-time imaging capabili-
ties, very high resolution in motion estimation (~1 
μm), simplicity, non-invasiveness, and relatively 
low cost. Overviews of elastography methods can 
be found in (Wilson, 2000) and (Parker, 2005).

static vs. dynamic Elastography

Elastography methods fall into two general cat-
egories, according to the temporal characteristics 
of the applied excitation: static (or quasi-static) 
and dynamic methods. 

In static elastography (Ophir, 1991; Konofa-
gou, 2000), tissue is compressed slowly and the 
distribution of its displacement is measured (using 
ultrasound, MR, etc.). The measured distribution 
of strain is related to the predicted distribution 
of stress and the resulting parameters of moduli 
are deduced through elasticity equations. Ophir 
(1991) used an external compressor to form strain 
images. It should be noted, that a strain image 
is generally formed by applying one or two-di-
mensional cross-correlation techniques to pairs 
of RF echo fields (e.g. A-lines), acquired before 
and after the tissue deformation (compression). 
Often in static methods, the strain alone is used as 
a surrogate for stiffness; that is, low strain means 
high stiffness and high strain results from softer, 
or low-stiffness regions (see Figure 1). 

Konofagou (2000) managed to estimate shear 
strains from high-precision axial and lateral strain 
components and showed how these estimates can 
serve as a direct measure of tissue mobility, and 
thus,  as a potential criterion of tissue characteriza-
tion. For example, low shear strain can be generally 
interpreted as lack of mobility (e.g., firm binding 
of a tumour to its surroundings) and thereby, it 
may indicate a potential malignancy.

The difficulty with the static methods is that 
they require knowledge of boundary conditions 
outside of the region under investigation. An alter-
native means to investigate tissue elastic properties 
is to generate transient acoustic waves within the 
body and measure the associated transient motion 
in the spatiotemporal domain. These are known 
as dynamic elastography methods (Catheline, 
1999; Fatemi, 1998; Nightingale, 2002; Lerner, 
1988; Sandrin, 2004; Sarvazyan, 1998; Sugimoto, 
1990; Yamakoshi, 1990) and have the advantage 
of potentially revealing the dynamic properties of 
the interrogated medium (such as viscosity). At 
the same time, they overcome boundary problems 
linked to the static methods. 

dynamic Elastography Methods

It is possible to create stress in a dynamic method 
by using external mechanical vibration (Catheline, 
1999; Krouskop, 1987; Lerner, 1988; Sandrin, 
1999; Yamakoshi, 2000) or by using an acoustic 
radiation force generated by a focused ultrasound 
beam (Bercoff, 2004a; Catheline, 2004; Fatemi, 
1998; Konofagou, 2003; Nightingale, 2002; Night-
ingale, 2003; Sarvazyan, 1998; Sugimoto, 1990). 
An overview of these two classes of elastography 
methods will be presented in the following two 
subsections. 

Stress Generation Using External 
Mechanical Vibration

Krouskop (1987) proposed a method to measure 
non-invasively the elastic modulus in soft tissue 
in vivo, by exciting a specific tissue region with 
an external vibrator (operating at approximately 
10 Hz) and measuring the resulting tissue motion 
using pulsed Doppler ultrasound.

Lerner (1988) proposed an ultrasonic imaging 
modality called sonoelasticity imaging, which 
measured and imaged tissue displacement in 
response to externally applied low-frequency 
monochromatic mechanical vibration (10-100 
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Hz) using color Doppler ultrasound. An advan-
tage of sonoelasticity imaging was its ease of 
implementation on modern ultrasound scanners, 
its low computation requirements, and its ability 
for real-time implementation. 

Yamakoshi (1990) applied low-frequency (less 
than 200 Hz) sinusoidal vibration at the surface 
of the interrogated medium and the resulting mo-
tion (both amplitude and phase) was measured 
from the Doppler frequency shift of the reflected 
ultrasound waves. The vibration phase image 
was used to determine the shear wave propaga-
tion velocity.  

Catheline (1999) proposed an ultrasound-
based technique, which they called transient 
elastography, to deal with artifacts induced by 
diffraction in sonoelastography (e.g. wave reflec-
tion or standing waves). This method used a low-
frequency (40–250 Hz) pulsed excitation to create 
displacements in tissue, which were then detected 
using pulse-echo ultrasound. The numerical val-
ues of elasticity and viscosity were deduced from 
the wave propagation (using cross-correlation 
techniques). This technique was effective, but 
required frame rates exceeding those available 
in ultrasound scanners at that time.

The work of Catheline (1999) was extended by 
Sandrin (1999) with the study of two-dimensional 
(2-D) shear wave propagation. Specifically, with 
a method entitled time-resolved 2-D pulsed elas-
tography (Sandrin, 1999), a low-frequency (50-
200 Hz) pulsed shear wave was generated using 
an external vibrating device, while an ultra-fast 
ultrasonic imaging system, specifically designed 
for this application, acquired 2-D frames at a very 
high frame rate (up to 10,000 frames/s). The tis-
sue displacement that was induced by the slowly 
propagating shear wave was measured using 
standard cross-correlation techniques. A single 
low-frequency pulsed excitation was necessary to 
acquire the full data set. Thus, acquisition times 
were considerably reduced compared to MRI or 
Doppler detection methods. Furthermore, the 

proposed technique could be applied in the pres-
ence of tissue movement.

Stress Generation Using Acoustic 
Radiation Force

The elasticity imaging methods described pre-
viously are characterized by the application of 
stress throughout the entire interrogated object. 
However, it is possible to create a localized stress 
field within tissue with the acoustic radiation 
force of ultrasound, the principles of which will 
be presented in the following subsection. The 
concept of assessing the mechanical properties of 
tissue by monitoring its response to the acoustic 
radiation force, was first proposed by Sugimoto 
(1990), who attempted to quantify tissue hardness 
by applying a minute deformation in the tissue 
using the radiation force of a focused ultrasound 
beam and measuring the induced deformation with 
a pulse-echo method as a function of time. 

A technique known as shear wave elasticity 
imaging (SWEI) was introduced by Survazyan 
(1998). In this method, localized shear waves (1 
kHz) were remotely generated in tissue by the 
radiation force of a focused ultrasound beam 
using a short modulating pulse. The propagation 
of the induced shear waves was detected using a 
laser-based optical system and a magnetic reso-
nance imaging (MRI) system and the local shear 
modulus parameter was estimated.  

Nightingale (2002) proposed the acoustic 
radiation force impulse (ARFI) method. It used 
a short-duration (< 1 ms) acoustic radiation force 
to generate localized displacements in a 2-D 
region-of-interest (ROI) in tissue and the tissue 
response was determined using ultrasound cor-
relation-based techniques. It was reported that the 
system was capable of measuring displacements 
down to the limits projected by the Cramer-Rao 
lower bound (Kay, 1993), i.e., about 0.2 μm. Night-
ingale (2003) applied also the above process to 
visualize the propagation of the induced transient 
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shear waves and used direct inversion methods to 
estimate the shear elastic modulus parameter. 

The supersonic shear imaging (SSI) technique, 
described Bercoff (2004a), provided a new ul-
trasound method for real-time (less than 30 ms) 
quantitative mapping of the viscoelastic properties 
of soft tissue. By successively focusing the “push-
ing” beam (~100-μs pulse) at different depths at 
a supersonic speed, two quasi-plane shear waves 
of stronger amplitude can be created that propa-
gate in opposite directions, by the constructive 
interference of all the resulting shear waves from 
each “push”. These were imaged by an ultrafast 
ultrasound scanner (6000 frames/s). 

 Fatemi (1998) proposed a technique known 
as ultrasound-stimulated-vibro-acoustography 
(USVA), in which two quasi-CW ultrasound 
beams of slightly different frequencies are used 
to remotely generate a localized dynamic (oscil-
latory) radiation force at the difference frequency, 
typically in the low kHz range. In fact, this 
method forms the basis of the method described 
below (Giannoula, 2008b). Fatemi (1998) created 
a modulated field in the intersection zone which 
caused tissue in the focal region to vibrate at the 
beat frequency. In response, the region emit-
ted low-frequency longitudinal waves (known 
as acoustic emission), which could be detected 
externally by a hydrophone and depended on the 
radiation force and the elastic properties of the 
medium (Fatemi, 1998; Fatemi, 2000). It should 
be noted, that in the above work, lossless media 
and linear ultrasound propagation were assumed. 
Under these assumptions, the presence of an ob-
stacle (scatterer) was required for the generation 
of the modulated radiation-force and the acous-
tic-emission fields. By ignoring the shear-wave 
generation and propagation, the authors obtained 
high-resolution, but qualitative only, maps of the 
local mechanical properties of tissue.

By using a similar dual-beam setup, Konofagou 
(2003) proposed a technique named harmonic 
motion imaging (HMI), for estimating the local 
Young’s modulus from the oscillatory (harmonic) 

tissue motion induced by a dynamic (harmoni-
cally-varying) radiation force. Similarly to USVA, 
this method estimates tissue motion during and 
not after the application of the force (the latter ap-
plies to most shear-based methods, such as these 
presented above). This could potentially provide 
a better estimate of the mechanical properties of 
the excited lesion or tumour and would be less 
affected by the surrounding tissue. 

Principles of the Acoustic r adiation 
f orce

All elastography methods descried in the previous 
subsection relied on the use of the acoustic radia-
tion force of ultrasound for the generation of stress 
within the excited medium. It should be noted, that 
understanding the acoustic radiation force dates 
back to 1902, when Rayleigh (1902) described a 
theory of the acoustic radiation pressure as an 
acoustic counterpart of the radiation pressure 
produced by electromagnetic waves. Since then, 
several theories have been proposed in order to 
further explain the underlying physics and contro-
versy has arisen from improperly posed problems, 
confusion over definitions and the difficulties 
associated with nonlinear phenomena (Biquard, 
1932; Beyer, 1978; Lee, 1993; Torr, 1984). 

When ultrasound is incident on an obstacle 
whose properties differ from that of the propaga-
tion medium, a force will be exerted and this con-
sists of two components: the first is an oscillatory 
component with a time-average of zero, arising 
from the time-varying acoustic pressure acting on 
the body. The second is a steady component that 
is known as the radiation pressure. Its presence 
is an inherent property of the nonlinear relation 
between pressure and density in the propaga-
tion media (Cobbold, 2007). Thus, in a fluid it 
seems reasonable to express the total radiation 
pressure by:

Radiation Pressure = pressure due to nonlin-
earity + pressure due to attenuation
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which asserts that provided attenuation is pres-
ent, a radiation pressure will exist even when the 
propagation medium is perfectly linear.

In the absence of any obstacle, a finite-am-
plitude acoustic wave propagating in a lossless 
medium, whose density is nonlinearly related to 
the pressure, will result in a transfer of momentum 
from the wave to the medium. If the medium is also 
viscous, additional momentum will be transferred 
(Westervelt, 1951). Both forms of momentum 
transfer, i.e., those resulting from nonlinearity and 
absorption, contribute to the radiation pressure 
acting in the propagation direction. In comparison 
to the effects of tissue nonlinearity, the effects 
of attenuation in soft tissue, at frequencies in 
the MHz frequency range, can be expected to be 
dominant, as assumed in this chapter. 

hAr Mon Ic  ul tr Asound  
r AdIAt Ion -forc E IMAg Ing

The radiation force exerted in an infinite isotro-
pic, homogeneous, and attenuating medium is 
considered here. In addition, because the pressure 
in the focal zone region may be large, it is nec-
essary to account for the presence of harmonics 
generated by nonlinear effects (Giannoula, 2007; 
Giannoula, 2008b).

description of the Proposed 
dual-beam system Model

For a finite-amplitude ultrasound beam propagat-
ing in an attenuating medium, it can be shown that 
the force per unit volume, generated at location 
r, is given by (Nyborg, 1998):

Figure 2. (a) Illustrating the principles of a simple confocal radiation force imaging system used to 
generate low-frequency shear waves. (b) Transducer A (inner) is a confocal circular disk of aperture 
radius a1=1.3 cm and transducer B (outer) is a confocal annular disk with inner and outer radii a21=1.4 
cm and a22=2.1 cm, respectively (see also Section 2.2). The dynamic radiation force produced by the 
interference of the two beams is also shown at the common focal point (at a distance of 7.0 cm from the 
transducers).
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2 ( , )( , ) = , = 1,2,n n
n

tt n
c

I rF r  (1)

where c is the propagation speed, the subscript 
n denotes the n’th harmonic of the fundamental 
frequency f0 and In(r,t) is the acoustic intensity 
vector. Moreover, if the attenuation coefficient 
is assumed to have a power-law frequency de-
pendance, then the attenuation can be written as 

0( ) =n f f , where γ is typically close to unity 
in most soft tissues. For a focused acoustic beam, 
the force is applied throughout the focal region 
of the beam and for absorbing media (such as 
tissue), it is assumed to be in the direction of the 
wave propagation, i.e. the z-axis.

With reference to Figure 2, we consider two 
coaxial confocal quasi-CW2 ultrasound beams 
A and B excited at the angular frequencies 

0= / 2a − ∆   and 0= / 2b + ∆ , where ω0 
and Δω are the center and difference frequencies, 
respectively, such that 0 ∆ << . If the beams 
propagate in the z-direction with a common focal 
point at 0(0, 0, )z  then, in the region of intersection, 
the resulting pressure can be written as:  

, ,( , ) = ( ) ( )jn jna b
n n a n b

t tp t p e p e+r r r , 
n = 1,2,…       (2)

where , ( )n ap r  and , ( )n bp r  are the complex am-
plitude functions of the ultrasonic beams at the 
n’th harmonic. The resultant intensity field at 
the region of interference will contain two high-
frequency static (time-invariant) components 
and a low-frequency (dynamic) components at 

= ( )b an n∆ −  (Nyborg, 1998). All high-fre-
quency terms can be neglected, since they do not 
fall within the low acoustic frequency range. 

Based on (1), the modulated (time-varying) 
radiation force corresponding to the n’th harmonic 
is therefore given by (Giannoula, 2008b):

02 ( )( , ) = a b
n

n f ft
c

∆ +F r  ×

( ( ))
, , , ,{[ ( ) ( ) ( ) ( )] }

,
2

nj n t
n b n a n a n bRe p p e ∆ +∆∗ ∗+ rr v r r v r

= 1,2,n 

    (3)

where , ( )n av r  and , ( )n bv r  denote the particle veloci-
ties, ∗ denotes the complex conjugate, Δφn(r) is 
the phase difference at which the corresponding 
n’th harmonics of the two beams arrive at point 
r and for convenience, we have chosen the time 
t = 0 to correspond to the time at which the ‘tone 
bursts’ from the two sources reach the geometric 
focus. Details of the above derivation can be also 
found in (Giannoula, 2008a).

For our simulations, which were written in 
Matlab (The MathWorks, Inc., Natick, MA), a 
confocal source consisting of two simple coaxial 
concave radiation sources with a common geomet-
ric focal depth of 7.0 cm was assumed. As shown 
in Figure 2(b), the outer aperture radius was 1.3 cm 
for beam-A, while for beam-B the inner and outer 
aperture radii were 1.4 cm, 2.1 cm, respectively. 
The source pressure amplitude was taken to be 
372 kPa (Zemp, 2003) at excitation frequencies 
of 2.0 MHz ± 250 Hz. The medium was assumed 
to have a propagation speed of c =1550 m/s, a 
density of 1050 g/m3, a nonlinearity coefficient3 
of β = 5.0, an attenuation characterized by γ =1.1 
and α0 = 0.3 dB/(cm MHz1.1). 

To calculate the fields generated by the trans-
ducers for n =1,2,…, we made use of a modi-
fied version of the 2nd-order operator splitting 
nonlinear model of Zemp (2003), that enabled 
the harmonic field distribution to be calculated 
for n =1-4 with reasonable accuracy. The axial 
pressure amplitudes of the first four harmonics 
for beam-A and beam-B are shown in Figure 3. 
Fifty propagation planes were used to capture the 
axial variations of the harmonics. Close to the 
transducer, the approximations used in the non-
linear propagation algorithm caused errors in the 
calculated pressure profiles, but over the region of 
the last maxima and beyond, the accuracy is quite 
sufficient. In the region of the geometric focus, a 
dynamic component of the radiation force will be 
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present at the fundamental modulation frequency 
of 500 Hz, as well as at the harmonic frequencies 
of nΔf (i.e., at 1000 Hz, 1500 Hz, etc, for n = 2,3, 
…). The corresponding spatial force-field patterns 
on the geometric focal plane at t = 0, 2.0 ms, etc, 
are shown in Figure 4 for n =1-4. The forces per 
unit volume have been normalized with respect 
to the maximum fundamental force at focus. 

As illustrated in Figure 2, the radiation force 
described in (3), causes media in the focal zone 
to vibrate at the difference frequency. As a result, 
low-frequency longitudinal and shear waves will 
be generated that propagate away from this zone. 
In contrast to most shear wave-based elasticity 
imaging methods previously described, it will be 
shown that these tone-burst generated shear waves 
can have a relatively narrow bandwidth.  

shear-wave Propagation Induced by 
the Modulated r adiation f orce

To predict the manner in which shear waves are 
generated and propagate in an elastic medium 
due to the creation of a localized force field it 
is necessary to use the Navier-Stokes equation 
(Cobbold, 2007). Aki (2002) derived analytical 
expressions of the displacement field for purely 

elastic media, known as the Green’s functions 
( , )tG r . Bercoff (2004b) extended this model to 

account for viscous effects and obtained approxi-
mate expressions of the Green’s functions based 
on the Voigt model for a viscoelastic medium. 
In both cases, it was found that the displacement 
field u(r, t) could be written as the sum of three 
types of waves: a pure compressional wave ( , )c tu r  
propagating at a speed c, a pure shear wave ( , )s tu r  
that propagates at a much smaller speed cs and a 
coupling term ( , )cs tu r , that contains both types 
of waves. 

Now the i’th component (i = x,y, z) of the total 
shear displacement field due to the fundamental 
component of the radiation force ( , )t∆F r  acting 
in the j-direction can be expressed as (Bercoff, 
2004b):

( , ) ( , ) **i ju t F t∆≈r r
[ ( , ) ( , )] = ( , ) ( , )s cs s cs

ij ij i iG t G t u t u t+ +r r r r ,   (4)

where the approximation applies to soft-tissue4 
media and ∗∗ denotes a four-dimensional (4-D) 
spatiotemporal convolution. The approximate 
expression of the viscoelastic Green’s function for 
the pure shear term as derived by Bercoff (2004b) 
based on the Voigt model, is given by

Figure 3. Axial pressure amplitude of the n’th harmonic component (n=1...4) for (a) beam A (confocal 
circular disk) and (b) beam B (confocal annular ring).

 
(a) 

 
(b) 



���  

Nonlinear Ultrasound Radiation-Force Elastography

1( , ) =
4

s
ij

s

G t
c

r  ×

2 2( ) ( / )1 exp
22

ij i j s s

ss

t r c c
r v tv t

−  −
− 

 
,     (5)

where i = x,y, z, =| |r r , = /i r i∂ ∂ , ρ is the density 
of the medium and δij is the Krönecker δ-function 
with δij= 1 if i = j  and 0 otherwise. In addition, 
vc = (ηc + 2ηs) / ρ, vs = ηs / ρ denote the kinematic 
bulk and kinematic shear viscosity, respectively, 
where ηc and ηs are the bulk and shear viscosities. 
The coupling term, containing both longitudinal 
and shear wave components, can be written in a 

similar manner (Bercoff, 2004b). The coupling 
term has a r-3 dependence (see (23) in Bercoff 
(2004b)), which causes both components to 
rapidly reduce with distance (near-field term, 
(Sandrin, 2004)), as compared to the pure shear 
term expressed by (5), which varies as r-1 (far-
field term).

In the immediate region surrounding the 
geometric focus, the primary component of the 
force is along the z-axis and in the following 
analysis, this is assumed to be the only component 
of significance, i.e., i = j =  z. The origin of our 
coordinate system is taken to be at the geometric 
focus (z = 7.0 cm).

Figure 4. Normalized radiation force per unit volume on the geometric focal plane (7.0 cm) for: (a) the 
fundamental (500 Hz), (b) the second harmonic (1000 Hz), (c) the third harmonic (1500 Hz) and (d) 
the fourth harmonic (2000 Hz).

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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First, we consider the modulated n’th-har-
monic radiation force to be a spatial impulse at 
the origin (point force) that varies sinusoidally 
in time at the beat frequency nΔf, such that each 
harmonic modulation waveform consists of 
a short cosine wave of duration D starting at 
t=0. It should be noted that as the duration is 
increased, the bandwidth of the shear waves will 
decrease, making it possible to determine the 
wave propagation characteristics at a specific 
frequency. However, for many periods of the 
modulation frequency, depending on the peak 
pressure, there will be an associated temperature 
rise. For in vivo use, the maximum temperature 
change is limited by regulatory specifications of 
the thermal index (TI), which increases with the 
modulation waveform duration (Abbott, 1999). 
We shall limit our discussion  to values of D that 
correspond to periods of a few cycles, thereby 
limiting the TI while still maintaining a reason-
ably narrow bandwidth. 

With the help of (3), the n’th harmonic com-
ponent of the radiation force in the z-direction is 
described by

(0, ) = ( )nF t∆ r  ×

0 , ,
2

2 ( ) (0) (0)
( ) ( )a b n a n bn f f p p

H t H D t
c

+
−  ×

cos[ 2 (0)]nn f t⋅ ∆ ⋅ + ∆ ,  n = 1,2,...  (6)

where H(.) denotes a Heaviside step functions. If 
Nh harmonics are considered for each beam, then 
the modulated finite-amplitude radiation force 
generated by the interference of these beams, 
can be written as 

1
(0, ) (0, )

hN

n
n

F t F t∆ ∆

=

= ∑ , where 
(0, )nF t∆  is given by (6). 
The finite-amplitude shear component can be 

written as a time convolution between the total ra-
diation force and the shear Green’s function, i.e.

0
2

0

2( , ) ( , )
D

s s
z zzu t G

c
= ∫r r  ×

, ,
1

( ) (0) (0)cos[ ( ) (0)]
hN

a b n a n b n
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n f f p p n t d
=

 
+ ∆ − + ∆ 

 
∑

      (7)

where the shear waveform has been taken to 
consist of a short modulated wave of duration D 
starting at t = 0 and ( , )s

zzG r t  is the shear compo-
nent of the viscoelastic Green’s function (given 
by (5) for i = j =  z).

The influence of several parameters on the spa-
tiotemporal profile of the fundamental component 
of the shear displacement field was described in 
(Giannoula, 2008a; Giannoula, 2008b). The man-
ner in which the characteristics of the viscoelastic 
propagation medium, i.e., the shear viscosity and 
speed, affect the evolution of the fundamental 
shear-wave component was analyzed. 

r econstructing harmonic Maps 
of the l ocal shear Modulus and 
Viscosity

From measurements of the shear displacement 
on an imaging plane as a function of time, it is 
possible to derive maps of the local shear modulus 
and viscosity of the medium, based on inverse 
algorithms (Bercoff, 2004a; Catheline, 2004).

The inverse problem approach in elastography 
is based on the shear-wave propagation equation. 
This can be written in the frequency domain, for 
a viscoelastic, isotropic, piece-wise homogeneous 
solid, as follows (Aki, 2002; Bercoff, 2004a):

( )
2

2

( , , ) 1
t l s

u x z t j
t

 ∂
ℑ − + ∂ 

 ×

[ ]( , , )t u x z tℑ ∆  = 0   (8)

where ( , )u tr  is the total shear displacement, 
ℑt[.] denotes its Fourier transform (with respect 

to time), μl and ηs are the shear modulus and 

viscosity, respectively, and Δ = 
2 2 2

2 2 2x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 

denotes the 3-D Laplacian operator. If the imag-
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ing area is specified to be the (x, z) plane, then 
only two of the above three second-order spatial 
derivatives can be experimentally measured. 

Therefore, a strong assumption, that the out-of-

plane spatial derivative 
2

2

u
y

 ∂
 ∂ 

 is negligible, needs 

to be made (Catheline, 2004), i.e., 
2 2

2 2x z
∂ ∂

∆ ≈ +
∂ ∂

. 

As a result, it can be shown that (8) yields the 
following expressions for the local shear modulus 
and viscosity:
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[ ]
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  ℑ ∂ ∂  =  
ℑ ∆  

  ℑ ∂ ∂  =  
ℑ ∆  (9)

where Re{.} and Im{.} denote the real and imagi-
nary parts. The above equations can be averaged 
over a range of frequencies around the excitation 
frequency (i.e., in our case, around the harmonic 
modulation frequency nΔf ) and have the poten-
tial to provide quantitative estimates of the local 
shear modulus and shear viscosity based on either 
the fundamental or the higher-harmonic shear 
components. 

In the forward problem, a circular inclusion 
of negligible thickness with a radius of 6.0 mm, 
centered at (x=15.0 mm, y=15.0 mm) was assumed 
to have a shear modulus and viscosity 6.0 kPa and 
5.0 Pa⋅s, respectively. The corresponding shear 
modulus and viscosity of the background medium 
were taken 2.0 kPa and 0.1 Pa⋅s. A finite-amplitude 
modulated force at Δf=100 Hz was assumed to 
have duration 20.0 ms (two cycles). Furthermore, 
the source pressure, center frequency and at-
tenuation coefficient were taken to be 450 kPa, 
2.5 MHz and 0.35 dB/(cm⋅MHz1.1), respectively. 
The approximate viscoelastic Green’s functions 
(including the coupling term) were used. The 
displacement field was sampled throughout a 
30×30 mm2 field in order to determine ( , , )u x z t∆  

and 2 2( , , )u x z t t∂ ∂ . Examples of the reconstructed 
maps of the local shear modulus and viscosity on 
the (x,z) plane are shown in Figure 5, based on the 
fundamental and second-harmonic component of 
the calculated displacement fields. Except within 
the immediate focal zone (Bercoff, 2004a), the 
reconstruction results are a reasonable approxi-
mation to the assumed distribution for both the 
fundamental and the second harmonic.

In Figure 6, reconstructed maps are shown 
under noisy conditions, based on the first four har-
monic components and the average of the first three 
harmonic components, for a modulation frequency 
of 100 Hz. Specifically, Gaussian noise of zero 
mean and (normalized) variance 0.2 was added 
to the calculated total shear displacement field 
(corresponding to SNR values of approximately 
60 dB) and the inverse equations described by (9) 
were next applied. The shear viscosity within the 
circular inclusion region was assumed 2.0 Pa⋅s. 
Good estimation results have been obtained espe-
cially from the fundamental and second-harmonic 
component. For the higher harmonics (n = 3, 4), 
noise amplification is observed especially at larger 
distances from the source and this is probably at-
tributed to the derivatives involved in the inverse 
algorithm, known as highpass operations which 
tend to amplify noise. However, taking the average 
of the first three reconstructed maps gives better 
reconstruction results, through the smoothing 
effect on outliers.

discussion

As discussed earlier in this chapter, the class 
of dynamic elastography methods that use the 
acoustic radiation force of ultrasound to generate 
transient motion within tissue, has been recently 
receiving growing interest. Such methods have 
shown great promise to provide quantitative 
stiffness estimates in a locally excited region 
of interest within the interrogated medium in a 
non-invasive manner.
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Figure 5. Maps of the estimated local (a), (c) shear modulus and (b), (d) shear viscosity from (a)-(b) 
the fundamental and (c)-(d) the second-harmonic shear displacement on the (x,z) plane. A modulation 
frequency of 100 Hz was assumed, along with an emission duration of 20.0 ms.

  

A specific methodology for remotely generat-
ing low-frequency shear waves within a medium 
was proposed in this section, based on narrow-
band radiation-force excitations resulting from 
two intersecting confocal quasi-CW ultrasound 
beams of slightly different frequencies. In this 
way, a highly-localized modulated force field 
can be created at an easily controllable modula-
tion frequency. In contrast to most elastography 
methods presented so far, which make use of a 
broadband excitation (short pulse), an important 
advantage of the above modulated source is that 
the spectrum of the generated low-frequency 
(<1 kHz) shear waves will not be significantly 
distorted as they propagate through tissue by dif-
ferent frequency-dependent effects (Giannoula, 
2008b) and as a result, the viscoelastic parameters 

can be more accurately determined at a specific 
frequency. 

The proposed dual-beam source should be 
capable of producing sufficiently accurate 2-D 
maps of the local shear modulus and viscosity 
of a locally excited region of tissue at both the 
fundamental and multiples of the modulation 
frequency, by using conventional ultrasound 
equipment for tissue excitation. For detecting 
the associated tissue motion (i.e., acquisition of 
2-D images of the induced tissue displacement), 
a B-mode ultrasound scanning system would be 
needed, operating at a high frame, i.e., > 3000 
frames per second. Such ultrafast scanners can 
nowadays be constructed (Catheline, 2004).
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Figure 6. Maps of the estimated local (left column) shear modulus and (right column) shear viscosity 
from (a)-(b) the fundamental, (c)-(d) the second-harmonic, (e)-(f) the third-harmonic, (g)-(h) the forth-
harmonic and (i)-(j) the mean average of the first three harmonic components on the (r,z) plane. The 
modulation frequency was assumed 100 Hz and the emission duration 20.0 ms.
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futur E tr Ends

For the in-vivo application of the proposed 
method, several challenges should be addressed 
and more realistic clinical conditions should be 
considered. Specifically, the method should be 
experimentally validated in real biological soft 
tissues, which are known to exhibit inhomoge-
neous and/or anisotropic behaviour. Another 
challenge often encountered in-vivo, is the physi-
ological motion that many organs experience due 
to the respiration and/or the cardiac cycle. The 
effects of such motion on the proposed model 
and possible ways of compensating for it need 
also to be examined. 

The above challenges appear to be significant 
future avenues that should be explored in order for 
the field of tissue elastography to provide valuable 
diagnostic information. In fact, several studies 
have been recently presented toward these trends, 
i.e., under more practical clinical situations (Bai, 
2006; Genisson, 2003; Fahey, 2006). 

Particularly for the proposed methodology, 
work is also being carried out in order to assess 
the performance of the generated local visco-
elastic maps, based on image quality metrics 
that are commonly used in elastography. Such 
metrics involve the observed contrast, the contrast 
transfer efficiency (CTE), contrast-to-noise-ratio 
(CNR) (Ponnekanti, 1995) and also, the SNR 
and resolution. Furthermore, fusion algorithms 
for combining efficiently the generated local 
maps from several spectral components (e.g. 
from the fundamental and the higher-harmonic 
components) are also sought, in order to gener-
ate elastogram images of improved quality (e.g. 
increased CTE and SNR).

conclus Ion

An overview of elastography and its major 
categories was provided in this chapter, with 
special emphasis on the dynamic elastography 

methods that use the acoustic radiation force 
of ultrasound. Furthermore, a specific meth-
odology was proposed for remotely generating 
low-frequency narrowband shear waves by 
using the modulated radiation force resulting 
from two intersecting CW beams of slightly 
different frequencies. The advantages of us-
ing narrowband shear waves to estimate the 
viscoelastic properties of tissue were discussed. 
Nonlinear ultrasound propagation was also as-
sumed in this chapter, so that a high-intensity 
force field is created in the focal zone, leading 
in turn, to the generation of shear waves of 
sufficient energy that can propagate and be 
detected at several wavelengths away from the 
source. Subsequently, an implementation of the 
inverse-problem approach was presented and 
two-dimensional (2-D) spatial maps of the lo-
cal shear modulus and viscosity were derived, 
based on the fundamental and higher-harmonic 
components of the shear-wave spectrum, for 
both noise-free and noisy conditions. 
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kE y tE r Ms

Acoustic Radiation Force: The force that 
is exerted when an ultrasound wave hits an ob-
stacle that absorbs, scatters, or reflects energy. 
This force is in the direction of propagation and 
is also known as the time-averaged (Langevin) 
radiation pressure.

Elastography (or Elasticity Imaging): The 
general class of quantitative methods, which aim 
at measuring or imaging the mechanical properties 
of a medium, including soft tissue.

Finite-Amplitude Acoustic Wave: Propaga-
tion of an acoustic wave within a medium under 
conditions where the pressure and density are non-
linearly related. The small-signal approximation 
that is involved in the linear propagation theory is 
no longer valid. The pressure is considered suf-
ficiently high that nonlinear effects arise, which 
cause the generation of higher harmonics.

Inverse-Problem: It involves the mathematical 
processes where the values of some parameters, 

characterizing a system under investigation, must 
be inferred from the observed (measured) data.

Narrowband Spectrum: It describes a signal 
whose frequency spectrum occupies a narrow 
range of frequencies (as opposed to broadband). 

Shear Modulus: The ratio of the shear stress 
to the shear strain (or angular deformation), that is 
related to the passage of a transverse wave (where 
a shearing motion is involved). It is also known 
as the second Lamé constant.

Shear Viscosity: A coefficient that char-
acterizes the viscous properties of a fluid and 
is related to the absorption (loss) of energy (or 
else, damping) due to the presence of velocity 
gradients in the fluid. This means that adjacent 
layers move at differing speeds and as a result, 
there is a frictional drag force that causes energy 
to be dissipated.

Shear (or Transverse) Wave: Form of wave 
propagation in a solid medium where the particle 
movement is at right angles to the direction of 
propagation.

Endnot Es

1 Kruse (2000) measured the low-frequency 
shear speed (in the range 75-300 Hz) to be 
around 1.5-2.5 m/s in porcine liver and 1-2.2 
m/s in porcine kidney. Typical values of the 
compressional speed of sound have been 
reported around 1550-1600 m/s in liver and 
1560-1570 m/s in kidney (see Figure 1.11 in 
(Cobbold, 2007)).

2 The ultrasound beams are characterized as 
quasi-CW, since the transmitted waveforms 
are of finite duration, although they are made 
long enough to appear continuous.

3 The coefficient of nonlinearity β is a di-
mensionless parameter characterizing the 
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nonlinearity of a medium, which can be 
expressed by the amount of distortion im-
posed in a sinusoidal waveform, causing it 
to become more like a sawtooth. In terms 
of frequency content, this is equivalent to 
harmonic generation at integer multiples of 
the original frequency (Cobbold, 2007).

4 As noted by Sandrin (2004), for soft tissue-
like media, the bulk modulus λl is much 
greater than the shear modulus μl, so that 
the effects of the longitudinal term are neg-
ligible compared to the shear and coupling 
terms.



���  

Chapter XXV
Dynamic Contrast 

Enhancement: 
Analysis’s Models and Methodologies

Valentina Russo
University La Sapienza, Italy

 
Roberto Setola

University CAMPUS Bio-Medico, Italy

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstr Act
 
The aim of this chapter is to provide an overview about models and methodologies used for the Dynamic 
Contrast Enhancement (DCE) analysis. DCE is a non-invasive methodology aimed to diagnostic the 
nature of a lesion on the base of the perfusion’s dynamic of specific contrast agents. The idea at the 
base of DCE is that, in several pathological tissues, including tumors and inflammatory diseases, the 
angiogenic process is abnormal, hence the characterization of vascularisation structure may be used to 
support the diagnosis. In this chapter, we will describe the basic DCE procedures and introduce some of 
its most innovative evolution based on the pharmacokinetic analysis technique (PK), and the empirical 
model (EM). Even if DCE is still a medical research topic, there is large interest for this type of ap-
proach in biomedical applications as witnessed by the availability of specific tools in the last generation 
top-class US, CT and MR machines.
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Introduct Ion

Normal and pathological tissues rely on the pres-
ence of the blood for an adequate supply of nutri-
ents and for removal of waste metabolic materials. 
As tissues develop, a proper structured vascular 
network is  “developed” at the same time. This 
process is known as angiogenesis (Padhani and 
Husband, 2001).

In pathological tissues, including tumors and 
inflammatory diseases, the angiogenic process 
is often abnormal, leading to the development 
of vascular beds, characterized by an exces-
sive proportion of blood vessels with peculiar 
morphological and dynamic properties. Hence 
the characterization of vascularisation structure 
may be used to support non-invasive diagnoses 
of several pathologies. This analysis is generally 
performed using the Dynamic Contrast-Enhance-
ment (DCE) procedure (Jackson, 2003; Jackson, 
2004). This method aims to determine the degree 
of morbidity of a disease on the base of the lo-
cal vessel morphology analyzing how a specific 
contrast media perfuse into the tissues. This type 
of approach may be included into those field of 
Biomedical Image researches that are moving 
from the analysis of a single image (or a spatial 
sequence) to the temporal examination of images’ 
sequence, in order to emphasize physio-pathologic 
information strictly relates with the dynamic 
properties of the observed process. This passage 
imposes to provide physicians with sophisticated 
analysis tools, allowing huge quantities of raw data 
to be processed and analyzed. As for this purpose, 
development in imaging processing, computer 
vision and artificial intelligence in medical im-
age interpretation have shown that software tools 
can pursue the objective of detecting, extracting 
and measuring useful features of the dynamic 
process under investigation, thus supporting the 
diagnosis process. 

In addition to diagnostic issue, the kinetic of 
dynamic contrast enhancement may be used in 
clinical practice as a pharmacodynamic indicator 

of biological activity (i.e. for antivascular cancer 
drugs): it can define the biologically active dose 
and foresee the efficacy of a pharmacological 
treatment.

In this chapter, we will describe the basic 
DCE procedure and introduce some of its most 
innovative evolution based on the pharmacoki-
netic analysis technique (PK), and the empirical 
model (EM).

bAckground

Quantitative characterization of microvascular 
structure using DCE is a powerful tool, able to 
provide valuable information for clinical purposes 
and/or for therapeutic trials. One goal of DCE is 
to characterize tissue regions, since some of their 
features (blood flow, vascular characteristics, or 
tissue integrity) are expected to vary in pathologi-
cal tissue with respect to normal one. 

In a typical DCE study, the dynamic informa-
tion shows the rate at which tissue “enhances”, 
and subsequently the rate at which Contrast Agent 
(CA) washes out. The enhancement is thought to 
be the result of the CA arriving via the system 
blood flown and diffusing into the interstitial 
space around these vessels (which is known as 
the extravascular extracellular space - EES). The 
rate and the amplitude of enhancement depend 
on the density and permeability of the micro-
vasculature and on the relative size of the EES. 
The degree of enhancement is, therefore, related 
to the distribution and concentration of the CA 
in the vessels and in the ESS; hence the shape of 
the enhancement curve, then, reflects blood flow, 
vascular volume, extravascular volume and vessel 
permeability (Srikanchana et al., 2004). 

The CA is used generally as an intravascular 
marker while the leakage into the interstitial space 
is generally ignored. In practice the kinetics of 
CA distribution are more complex and additional 
data can be obtained from explicit modelling of 
the contrast (enhancement) leakage process. In 
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the presence of leaky capillary endothelial mem-
branes, intravascular CA will pass into the ESS, 
causing enhancement. The leakage rate depends 
on the surface area of leaky endothelium, on the 
permeability of the endothelium itself and on the 
concentration gradient of the CA across the vessel 
wall. It has become apparent that quantification 
of contrast leakage may be a powerful indica-
tor of the state of neo-vascular angiogenesis in 
pathologies, such as tumors and inflammatory 
processes. As for cancer research, this is very 
appealing, since the inhibition of angiogenesis 
presents new therapeutic chances of targeting 
of newly formed vessels, with the final aim at 
inhibiting their onset and growth.

Quantification of the CA enhancement effect 
can be performed using a variety of techniques 
ranging from simple measurements of the rate 
of enhancement (Florie et al., 2006) to complex 
algorithmic analysis, applying pharmacokinetic 
models to the imaging data, in order to measure 
the transfer constant (Ktrans) of the contrast agent 
between the blood stream and the EES (Brix et 
al., 1999).

DCE analysis can be performed by non-com-
partmental (model-independent) or compart-
mental methods. Non-compartmental methods 
estimate the exposure to a CA by estimating 
the area under the curve of a concentration-time 
graph and is highly dependent on estimation of 
total CA exposure. Total CA exposure is most 
often estimated by Area Under the Curve (AUC) 
methods. Compartmental methods estimate the 
concentration-time graph using Pharmacokinetic 
(PK) models to describe and predict the concen-
tration-time curve. Pharmacokinetic (PK) models 
are hypothetical structures that are used to de-
scribe the fate of a drug (in our case the CA) in 
a biological system, after its administration. PK 
compartmental models are often similar to kinetic 
models used in other scientific disciplines, such 
as chemical reactor engineering and rely on the 
definition of the compartment, that is a portion 

of space characterized by an uniform distribution 
of system properties (components concentration, 
temperature, pressure, pH).

Compartmental model are generally distin-
guished in terms of number of compartments 
that are needed for a complete description of 
the target systems (Padhani and Husband, 
2001):

• One compartemental model: Following 
CA administration, the body is depicted as 
a kinetically homogeneous unit (see Figure 
1.a); this configuration assumes that the 
CA achieves instantaneously an uniform 
distribution throughout the body and that 
the CA equilibrates instantaneously between 
tissues. Thus the CA concentration–time 
profile shows a mono-phasic response (i.e. 
it is mono-exponential). Notice that this 
does not imply that the CA concentration 
in plasma equals the concentration in the 
tissues; however, changes in the plasma 
concentration quantitatively reflect changes 
in the tissues.

• Two compartemental model: The two-
compartment model resolves the body into 
a central compartment and a peripheral 
compartment (see Figure 1.b). Although 
these compartments have no physiologi-
cal or anatomical meaning, it is assumed 
that the central compartment comprises 
tissues that are highly perfused, while 
the peripheral compartment refers to less 
perfused tissues. A two-compartment 
model assumes that, after the CA admin-
istration into the central compartment, CA 
transfers between that compartment and 
the peripheral compartment. Notice that 
the CA does not achieve instantaneous 
distribution, (i.e. equilibration), between 
the two compartments;

• Multicompartmental model: In this 
model the CA distributes into more than two 
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compartments and the concentration–time 
profile is described by several exponential 
terms; at least one exponential term for each 
assumed compartment.

The advantage of compartmental with respect 
to non-compartmental analysis is the ability 
to predict the concentration at any time. The 
disadvantage is the difficulty in developing and 
validating the proper model.

dynamic c ontrast Enhancement

Classic DCE 
 

Dynamic Contrast Enhancement (DCE) is an 
approach, used in radiological framework, to 
evaluate the vascularisation of suspected or 
anomalous tissue. This non-invasive method 
determines the type of the local vascularisation 
analyzing the perfusion’s dynamic of specific CA 
insight the tissues (Florie et al., 2006). Specifi-
cally, from the knowledge of the time evolution 
of the backscatter signal intensity corresponding 
to each ROI (Region Of Interest), one can iden-

tify a set of parameters useful for diagnose, such 
as: contrast wash-in and wash-out time (speed), 
contrast concentration (intensity) and in which 
way the contrast media perfuses into the lesion 
(uniformity) (Horsfield et al., 2004; Kier et al., 
2005; Florie et al., 2006). To evaluate these pa-
rameters, the fundamental hypothesis is that the 
change of the intensity in the image corresponds 
to augment local concentration.

The DCE procedure is generally arranged as 
follows: the specific CA is injected and several 
acquisitions of images are performed at intervals, 
over a time period ranging from 30 seconds to 
several minutes, giving as result  a sequence of 
images. DCE can be performed, with substan-
tially the same conceptual framework, on images 
produced via US (Ultra Sound), CT (Computer 
Tomography) and MR (Magnetic Resonance) 
exams, where specific contrast media are used. 

Even if DCE is still a medical research topic, 
there is large interest for this type of approach in 
clinical applications. Indeed, the last generation 
top-class US, CT and MR machines have dedicated 
tools to perform DCE analysis. Unfortunately, 
these tools are largely vendor oriented, devoted to 

Figure 1. (a) One compartmental model; (b) Two compartmental model
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support diagnoses for specific anatomical districts 
(e.g., evaluation of a lymph node, discrimination 
of adnexal masses, etc.) and limited to a single 
type of source (e.g., US or CT or MR). Recently 
some projects are on going to overcome these 
drawbacks, providing to radiologist a user-friendly 
framework to correctly perform the analysis 
(Russo et al., 2007).

Notice that, while usual CT and MR analy-
sis are performed on spatial sequences, DCE is 
done on a temporal sequence: different scans 
are performed on the same anatomical region, 
at different times. Then, the images are suitable 
arranged, as illustrated in Figure 2, in order to 
create the temporal sequence.

Substantially, basic DCE analysis can be 
reduced to the evaluation of the Contrast-En-
hancement (CE) curve illustrated schematically 
in Figure 3 (Horsfield et al., 2004; Marret et al. 

2004; Kier et al., 2005; Florie et al., 2006; Russo 
et al., 2007). 

CE is defined, for each pixel and with respect 
to any image into the sequence, as:

[ ]0( , , ) ( , , ) ( , )k kI T x y i T x y i x y= −  (1)                                          

where I(Tk,x,y) is the intensity at the abscissa (x,y) 
at sample time Tk, i0(x,y) is the basal value (i.e. 
the mean value of intensity registered before the 
perfusion of the Contrast Media and assumed as 
background noise). Sometimes, to reduce the ef-
fect of noise and artifacts due to patient’s motion, 
Eq. (1) is evaluated with respect to a sub-ROI 
averaging the data associated with all the pixels 
inside the region. 

By inspecting the CE Curve (see Figure 3), 
it is possible to evaluate the relevant parameters 
(Kier et al., 2005; Marret et al., 2004) for diagnoses 
and, specifically:

Figure 2. Logical process to create a temporal sequence from N spatial sequence



  ���

Dynamic Contrast Enhancement

• Area under curve (AUC): Represents 
the area under the CE Curve; it measures 
the quantity of CA absorbed by the region 
investigated, hence it yields an estima-
tion of blood flow that diffuses into the 
region:

 ( )AUC A =

 ( ) ( ) ( )k k-1 0
1 ( , )

1T -T , , ,
M

k
k x y A

i T x y i x y
N= ∈

 
−   

 
∑ ∑

 
 

        
(2)

 all the quantities are referred, for generality 
purpose, to the sub-ROI A that includes N 
pixel, and with respect to a time sequence 
composed by M frames, not necessarily 
timely equispaced.

• Local peak intensity (LPI): Is the maxi-
mum increment of the intensity with respect 

to the baseline intensity i0 (the pure tissue 
answer without any CA response). The in-
tensity variation depends exclusively on the 
local presence of CA, hence this quantity 
gives an estimation of the maximal quantity 
of blood that, at a given time instant, comes 
to the region:

 ( , )
( ) max max

k x y A
LPI A

∈
=

 ( ) 0, , ( , )ki T x y i x y−      (3)

 where the max operator is evaluated with 
respect to all the frames into the sequence 
and for all pixels inside the sub-ROI. 

• Time to peak (TTP): It is the time when 
the intensity reaches its maximum value. It 
gives an indication about whether this region 
is directly supplied with blood or through 
revascularization:

Figure 3. Contrast enhancement curve, with the definition of some of the relevant parameters: AUC, 
LPI, TTP and SLOPE
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Figure 4. AUC (Area Under Curve) colour map with the corresponding values; Enhancement Curve of 
whole ROI, in the upper figure; Enhancement Curve of the select portion of M-SM layer (green) and 
Ms-M layer (red), in the lower figure.

 ( ) :kTTP A T= =

 ( ) 0, , ( , ) ( )ki T x y i x y LPI A− ≡    ( 4 )       
                                                         

 some authors suggest the use of T90 quanti-
ties, which is the time taken to reach 90% 
of the maximum enhancement value instead 
of TTP.

• Average Rising (SLOPE): It is a measure-
ment of the slope of the curve between the 
started rising point and the peak; it is related 
to the average blood flow perfusion to the 
tissues and joins temporal and intensity 
aspects into a single parameter:

 
( )( )
( )

LPI ASLOPE A
TTP A

=   (5)

These parameters are generally represented 
via specific colour maps, in order to provide an 
immediate overview of the ROI as illustrated in 

Figure 4 where we report the AUC, and the related 
parameters, associated with a bowel wall affected 
by Crohn’s inflammation. 

Some software tools, as DyCoH (Russo, Setola 
et al. 2007), allow the user to inspect quickly 
the different colour maps associated with the 
parameters (2) – (5) to read the values assumed 
in each specific location in order to identify the 
most relevant areas and to compare the CE in 
different sub-ROI (Figure 4).

 
Pharmacokinetic Model Analysis

DCE studies produce time series images that 
enable pixel-by-pixel analysis of contrast kinetic 
within a disease. These time-signal curves can 
be analysed with descriptive “heuristic” such 
as initial slope, time to peak, or rate of wash-
out. These methods are valuable and easy to 
apply; however, they provide no insight into 
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the underlying physiology. Moreover, they are 
highly dependent on the imaging protocol and 
scanner. Pharmacokinetic (PK) models instead 
provide a means of summarizing contrast en-
hancement data in terms of parameters directly 
related with underlying vascular anatomy and 
physiology (Choyke et al., 2003). The use of PK 
models leads to the derivation of those param-
eters which are independent of the scanning 
acquisition protocol or any features associated 
with it. Each of the PK analysis approaches 
uses curve fitting techniques to characterize the 
Arterial Input Factor (AIF) and tissue contrast 
concentration curve. 

Commonly used PK models assume that the 
CA resides and exchanges between two compart-
ments in the disease: the vascular space and the 
ESS. CA reaches the lesion through the vascular 
space by perfusion and diffuses between the 
vascular space and the EES; the rate of diffusion 
from the vascular space to the EES determined 
by the concentration in plasma and EES, and the 
permeability of the capillary-EES interface. As 
clarified by Tofts el al. (1999) and by Srikanchana 

et al. (2004) the essential features of a variety of 
models are covered by the Generalized Kinetic 
Model (GKM). Other modelling approaches are 
designed to separate the contribution of blood 
volume, flow and permeability to signal changes 
seen during DCE. These approaches may well 
represent the future of this but are currently too 
demanding in terms of imaging speed, image 
reproducibility and over all time consuming for 
routine clinical use. The Brix model (Srikanchana 
et al. 2004), which will be described in the fol-
low, is one of several models that deal with the 
situation in which the arterial concentration is 
not directly assessed. 

General Kinetic Model

The physiological processes of GKM are described 
in Figure 5, where the GKM simplifies the anatomy 
into two functional components, the vascular 
space and the EES. A CA, when introduced into 
the vascular space, will leak into the EES at a 
characteristic rate and then will leak back into 

Figure 5.Block diagram of the general kinetic model (GMK)
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the vessel at another rate. Thus the net change in 
concentration can be described as:
 

transt t
p

e

dC CK C
dt v

 
= − 

 
   (6)

where ve  is the ESS fractional volume index and  
Ktrans is the transfer constant related to “wash in”. 
Moreover the transfer constant kep , defined as:

trans

ep
e

Kk
v

=     (7)

characterizes the “wash-out” dynamic of CA 
from the tissue. Cp is the concentration of CA in 
the blood plasma, while Ct is the concentration of 
CA in the tissue under investigation (i.e., tumour 
or inflammatory tissue). Hence, the concentration 
of CA within the tumour or inflammatory tissue 
is determined by the blood plasma concentration 
curve and the two parameters Ktrans and ve (Choyke 
et al., 2003). Furthermore, these parameters can 
be numerically evaluate on the base of a variable 
concentration input function. Solving the above 
is convolution integral:

( ) ( ) epk ttrans
t pC t K C t e = ⊗   (8)

To evaluate Ktrans and kep  a numerical solution 
for the GKM via a non-linear fitting algorithm 
is allowed. The constant kep is formally the flux 
rate constant between the ESS and blood plasma 
and can be derived from the shape of the CA 
with respect to the volume, whereas the transfer 
constant and the ESS require absolute values of 
CA concentration (Choyke et al., 2003).

On the basis of data of dynamic MRI - CE 
(Choyke et al., 2003),  show that Ktrans  controls 
the height of the Ct curve, while kep=Ktrans/ve de-
termines the shape of the curve: smaller kep, more 
delayed the enhancement. Ktrans is a function of 
flow (perfusion) and permeability; larger the flow 
and the permeability, larger is Ktrans (Choyke et 
al., 2003). The transfer constant Ktrans, formally 

called “volume transfer constant”, has several 
physiologic interpretations, depending on the 
balance between capillary permeability and blood 
flow in the tissue of interest. In high permeability 
situations (as in the Kety Model, see below) the 
transfer constant equals the blood plasma flow per 
unit volume tissue (see Eq. 10); in the opposite 
case of low permeability (PS-Limited Model, 
see below) the transfer constant corresponds to 
the product of blood vessel permeability and the 
corresponding surface area in the unit volume of 
tissue (see Eq. 12).

Several authors have proposed different 
specification of Ktrans (Tofts et al., 1999) in order 
to emphasize some specific agents and to improve 
parameters set up. 

One of these is the Flow-Limited Model (High 
Permeability) provided by Kety (Tofts et al., 1999; 
Choyke et al., 2003). This model is based on two 
assumptions: first, the arterial and venous blood 
have well-defined concentrations, supplying and 
draining the tissue under study. Second, perme-
ability is high, venous blood leaves the tissue with 
a CA concentration that is all times in equilibrium 
with the tissue itself. Thus, soon after injection of 
the CA, the arterial concentration is high and the 
venous concentration is low, then the most of the 
CA is being removed from the blood as it passes 
through the tissue. For an extracellular tracer, 
the Kety model can be extended by setting the 
venous concentration equal to that of the ESS. 
In this case the following differential equation 
relates tissue concentration Ct  to arterial plasma 
concentration Cp :

( )1t t
p

e

dC CF Hct C
dt v

 
= − − 

 
  (9)

with  Ktrans given by:

( )1transK F Hct= −    (10)
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where F is the perfusion (or flow) of whole blood 
per volume unit, ρ is the density of tissue and Hct 
is the Hematocrit.

A different model is the PS-Limited Model 
(Low Permeability) (Tofts et al., 1999; Choyke 
et al., 2003). This model assumes that there is a 
high flow, hence the blood plasma can be con-
sidered as a single pool, with equal arterial and 
venous concentration. The transport of CA out 
of the vasculature is slow enough to deplete the 
intravascular concentration. The rate of uptake 
is determined by the permeability surface area 
product of the capillary wall and the concentration 
difference between the blood plasma and the ESS. 
If the contribution of the tracer in the intravascular 
space is ignored the transport equation is:

t t
p

e

dC CPS C
dt v

 
= − 

 
 transK PS=  (11)

with Ktrans given by:

transK PS=     (12)

where PS is the permeability surface area product 
per unit of volume.

The previous two models can be integrated 
into the Mixed Flow and PS-Limited Model (Tofts 
et al., 1999; Choyke et al., 2003). This model 
assumes that the CA uptake may be limited by 
both blood flow and permeability. In this case the 
transport equation is:

( )1t t
p

e

dC CEF Hct C
dt v

 
= − − 

 
 (13)

where E, the extraction ratio, is the fractional 
reduction in capillary blood concentration as it 
passes through the tissue

a t

a

C CE
C
−

=     (14)

Immediately after CA injection, when there 
is no back flow from ESS to blood plasma, E is 
a constant and it can be considered as an appro-
priate index to characterize the specific tissue 
and CA. Notice that, after a while, as the tissue 
concentration grows up after injection, backflow 
increases and the extraction ratio decreases, 
inducing a variation of E that becomes a time 
varying function. 

Brix Model

The Brix model (Brix et al., 1999; Srikanchana 
et al., 2004) is also a two compartment model in 
which the AIF is assumed to be the result of a 
prolonged constant infusion that takes the shape 
of square wave, i.e. the CA instantly reaches a 
plateau, remains constant for a while and then 
instantly is over. The input function Kin, the 
elimination constant kel, and the rate constants K12 
and K21 describe the transfer of CA respectively 
to and from the peripheral compartment. Figure 
6, shows the block diagram of a Brix model. The 
mathematical expression of the temporal response 
of Ct(t) is:

( ) ( )1 1 21 21' '( ) 1 1 1e ek t k t k t k t
tC t A v e e u e e = + − − −  

      (15)

where A is a fitting parameter depending on the 
properties of the tissue,  on the type of sequence 
and on the infusion rate (Kin). 

Brix noted that the Tofts approximation (see 
below) yields good results only in the brain, but 
it was not able to fit the kinetic of other organs. 
Hence Brix proposed a more complete mathemati-
cal description, including  a term referring to an 
adjustable AIF parameter, in order to realize a 
larger accordance with clinical data.

Tofts Model

The Tofts model takes a different approach with 
respect to the arterial input function (AIF), but 
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retains the fundamental assumptions of the GKM 
(Tofts and Kermode, 1991; Tofts et al. 1999). 
Whereas all the previous models were based on 
two exponential function (that reflecs the be-
haviour of the two compartmental model), Tofts 
developed a new model based on three exponential 
function. In this model the input function is as-
sumed to be the result of a pulse bolus injected 
into a two compartment system. This system of 
compartments modifies the pulse bolus into a 
bi-exponential arterial input function. This was 

then used in the solution of the GKM leading to 
three exponential solutions as:

31 2 ( )( ) ( )
1 2 3( ) m tm t m tC t D b e b e b e −− − = + + 

      (16)

where m3 = k/v1, b1 = ka1/(m3- m1), b2 =  ka2/(m3- 
m2), b3= -(b1+ b2), and a1 ,a2 ,m1, m2 have been 
determined empirically from plasma curve. No-
tice that, the exponential parameters are usually 

Figure 6. Block diagram of Brix model

Figure 7. Block diagram of Tofts model
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estimated from other “pooled” measurements of 
the AIF, so it is not measured each time. 

Empirical Model

A DCE image sequence is typically composed by 
a small number of images, generally six to ten, 
spaced a minute or more apart. Hence, the time 
evolution of each pixel can be extremely affected 
by noise, thus making ambitious to attempt to fit a 
multi-exponential model, especially with a wide 
number of parameters. 

Indeed, it can be shown that the error in the 
fit, Err, is given by:

2 2

1

M
i i

i

C cErr
M P=

−
=

−∑    (17)

where M is the number of time points, P is the 
number of free parameters in the model, Ci is the 
concentration of CA, and ci is the model estimate 
of the concentration of CA. Consequently for a 
fixed number of parameters, the fewer the number 
of data points, the larger the error. In practice, it is 
not possible to increase the number of time points 
without sacrificing spatial resolution, or reducing 
the field of view to a part of the volume.  

On the other hand, it is possible to lower the 
error by reducing the number of parameters. For 
instance, one tries to measure a parameter ex-
perimentally, rather than to try estimate it. On the 
other way, this method introduces measurement 
errors into the model. 

A different solution is to adopt a black-box 
modelling approach. In this framework we assume 
a general model without any specific physical 
meaning and try to estimate those parameters that 
better fit the empirical data. In this way we can 
largely reduce the number of free parameters to 
be evaluated through fit, but unfortunately we lost 
large part of the physical meaning of them.

Then instead of derive the model from PK 
equations, it is chosen empirically to seek a par-

simonious fit to the time series data. This can be 
obtained considering a voxel-wise tissue signal 
intensity over time of the form: 

( )
ct
bf t a t e

−
= ⋅ ⋅     (18)

where t is the elapsed time since the injection of 
the CA; and a, b and c are positive real adjustable 
parameters. Hence, this model, requiring only 
three parameters, is more robust with respect 
to experimental errors and pre-measurement of 
physiological properties, because (i) it does not 
rely on measured parameters or constants relating 
to the type or density of the tissue, and (ii) it does 
not assume any particular relationship between 
the observed change in signal intensity and the 
concentration of contrast agent. The model is 
defined in terms of just one exponential function 
and the range of its parameters can be restricted 
to a relatively narrow set of values. To perform 
data fitting thorugh this model, a nonlinear fitting 
algorithm is needed. The minimization problem, 
in the least squares sense, is not a convex one and 
thus a global best fit is not guaranteed. It has been 
experienced that the estimated values for the model 
parameters lie within a relatively narrow range: 
e.g. Gal et al. (2007) based on clinical data sets 
observed that a∈(0,200), b∈(0,100) and c∈(0,3). 

f utur E t r Ends

Even though DCE is still a research field, there is 
a growing interest in its use in clinical applica-
tions. This is largely due to its non-invasive nature, 
supporting diagnoses with (relatively) easy, fast 
and patient comfortable tests. This interest is also 
witnessed by the increase  of literature dealing 
with this topic, and, moreover, by the introduction 
in the market of new generation top-class US, CT 
and MR machine specific software tools. 

Substantially, DCE studies produce time 
series images that enable pixel-by-pixel analysis 
of contrast agent kinetic within a lesion. These 
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time-signal curve can be analysed with descrip-
tive “heuristic” parameters, such as initial slope, 
time to peak, or rate of wash-out. These methods 
are valuable and easy to apply; however, they 
provide no insight into the underlying physiology 
and they are highly dependent on the imaging 
protocol and scanner. To overcome these limits, 
Pharmacokinetic (PK) models were developed, in 
order to interpret contrast enhancement data in 
terms of parameters directly related to vascular 
anatomy and physiology; with this final aim, sev-
eral models are under development. They differ for 
the assumptions done on flow rate of the plasma 
and permeability characteristics of blood vessels. 
Moreover, the most sophisticated model are mov-
ing from one compartmental model to model with 
two or multiple compartments, in order to take 
into account more complex phenomena.

Unfortunately, because DCE sequences are 
typically composed by few images, the fitting of 
experimental data is an hard task, especially in the 
presence of a large number of parameters. Then, 
some authors have proposed empirical models, 
which can be considered as a trade-off between 
the computational simplicity of the heuristic 
approach and the powerful synthesis of the PK 
one. The major disadvantage of this empirical 
approach is that the extracted parameters lack of 
any physical meaning.

Apart from the studies about the most suitable 
way to extract relevant information from DCE 
sequences, there is the need to improve regis-
tration procedures and to make the tools more 
user-friendly, with the final goal of developing 
decision systems to support physicians in the 
categorization, classification and diagnose of the 
different lesions.

c onclus Ion

In this paper we have illustrated the basic 
principles and the most innovative approaches 
developed within the Dynamic Contrast Enhance-

ment (DCE) framework. DCE is an interesting 
methodology able to exploit the improvement in 
bio-medical imaging processing to support no-
invasive diagnoses. It is based on the assumption 
that vascularisation in pathological tissues is 
largely different from that in the healthy ones, 
and peculiar for the specific type of pathology. 
Hence a contrast agent (CA) can be used to em-
phasise the vascularisation bed associated with 
the different pathologic tissue, thus resulting in 
a useful diagnostic tool.

Notice that in the DCE approach the diagnos-
tic information is strictly related with the time-
dynamic of the CA perfusion. This imposes to 
focus on an image temporal sequence referring 
to a given anatomic region; generally DCE is 
performed on a sequence of 6 to 10 images, col-
lected in an overall elapsed time interval ranging 
from 30 seconds to some minutes. Unfortunately, 
moving from the analysis of a single image to that 
of a sequence, there is an exponential increase 
of raw data to be consider; the quantity of in-
formation become so huge to exceed the human 
capability. In this contest, it appears mandatory 
to develop a suitable Computer Aid Diagnoses 
(CAD), supporting the evaluation of the most 
relevant aspects and information contained 
within biomedical images.
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kEy t Er Ms 

Arterial Input Factor (AIF): Is the Input 
Function and it measures the Plasma Contrast 
Concentration (of a Contrast Agent)

Area Under Curve (AUC): Represents the 
area under the CE Curve; it measures the quantity 
of CA absorbed by the tissue, hence it yields an 
estimation of blood flow that diffuses into the 
specific region

Contrast Agent (CA): Contrast Media per-
fuses into the tissue

Contrast Enhancement (CE): Tissue Con-
trast Concentration: the shape of an Enhancement 
Curve reflects blood flow, vascular volume, extra-
vascular volume and vessel permeability

Dynamic Contrast Enhancement (DCE): 
The perfusion’s dynamic of specific Contrast 
Agent insight the tissues;

Extravascular Extracelllar Space (EES): 
Interstitial space (around vessels) 

Transfer Constant (Ktrans): Formally called 
volume transfer constant is the transfer constant 
related to “wash in” of the CA into the tissue

Transfer Constant (kep): Is the transfer 
constant related with the “wash-out” of the CA 
from the tissue; formally is the flux rate constant 
between the ESS and blood plasma and can be 
derived from the shape of the tracer concentration 
vs volume data

Pharmacokinetics (PK): It is referred to the 
evalutation of chemical compounds distribution 
in body over time.

General Kinetic Model (GKM): Is the 
basic model often used to simplifies the human 
anatomy into two functional components (two 
compartments).



  �0�

Chapter XXVI
Automatic Correspondence 

Methods towards Point-Based 
Medical Image Registration: 

An Evaluation Study

George K. Matsopoulos
National Technical University of Athens, Greece

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstr Act
 
The accurate estimation of point correspondences is often required in a wide variety of medical image 
processing applications including image registration. Numerous point correspondence methods have 
been proposed, each exhibiting its own characteristics, strengths and weaknesses. This chapter pres-
ents a comparative study of four automatic point correspondence methods. The four featured methods 
are the Automatic Extraction of Corresponding Points approach, the Trimmed Iterated Closest Points 
scheme, the Correspondence by Sensitivity to Movement technique and the Self-Organizing Maps net-
work. All methods are presented, mainly focusing on their distinct characteristics. An extensive set of 
dental images, subject to unknown transformations, was employed for the qualitative and quantitative 
evaluation of the four methods, which was performed in terms of registration accuracy. After assessing 
all methods, it was deduced that the Self-Organizing Maps approach outperformed in most cases the 
other three methods in comparison.
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Introduct Ion

In this chapter, a comprehensive evaluative study 
of various automatic correspondence methods is 
presented towards point-based two-dimensional 
(2D) medical image registration. Four methods 
for automatic correspondence have been selected 
after literature search. Analytically, the Automatic 
Extraction of Corresponding Points technique 
(Likar & Pernus, 1999), which is a modification 
of the template matching technique (referred over 
17x), the Trimmed Iterative Closest Point algo-
rithm (Chetverikov, Svirko & Stepanov, 2002), 
which is a modification of the Iterative Closest 
Point algorithm (the ICP algorithm is referred 
over 1650x), the Correspondence by Sensitivity 
to Movement approach (Guest, Berry, Baldock, 
Fidrich & Smith, 2001), as a improvement of the 
template matching technique (referred over 24x) 
and a Self Organizing Maps network (Matso-
poulos, Asvestas, Mouravliansky & Delibasis, 
2004), developed by the authors (referred over 
5x) are initially reviewed and their performance is 
compared both qualitatively and quantitatively. In 
the evaluation process, all presented methods are 
applied to dental image pairs subject to unknown 
transformations. Hence no a priori knowledge of 
actual correspondences could be assumed and 
therefore the performance of the four featured 
point correspondence methods was evaluated 
both visually and quantitatively in terms of reg-
istration quality, using the Root Mean Square 
Difference.

bAckground

There are numerous applications in medical 
imaging where geometrical registration is 
performed including the alignment of data 
between two modalities with anatomical in-
formation (CT-CT or CT-MRI), between ana-
tomical atlases and dynamic studies (CT-PET, 
CT-SPECT, MRI-PET) or between images of 

the same modality acquired at different times 
(Maintz & Viergever, 1998).

Several image features may be exploited for 
the matching process, depending on the mo-
dalities used, the specific application and the 
implementation of the transformation utilized. 
There are numerous comprehensive surveys 
of medical image registration (Hajnal, Hill & 
Hawkes, 2001; Zitova & Flusser 2003), in terms 
of imaging modalities and employed techniques. 
The medical image registration methods can be 
classified into two main categories: image similar-
ity-based methods and point-based methods. In 
image similarity-based methods, the registration 
of different images involves the optimization of a 
quantity measuring the similarity between the im-
ages, under constraints imposed by the preferred 
transformation model (Johnson & Christensen, 
2003; Pluim, Maintz & Viergever, 2003). On the 
other hand, in point-based methods, registration 
involves the determination of the coordinates of 
corresponding features/points in different images 
such as landmark points, ridges or surfaces, and 
the estimation of a geometrical transformation 
using these corresponding features (Bookstein, 
1997; Pitiot, Thompson & Toga, 2002; Pizer, 
Fritsch, Yushkevich, Johnson & Chaney, 1996). 
The corresponding features can be determined 
either manually or automatically. 

In the literature, numerous automatic cor-
respondence methods have been devised (Cao, 
Pan, Li, Balachandran, Fitzpatrick, Chapman & 
Dawant, 2004; Chetverikov, Svirko & Stepanov, 
2002). According to the general methodology, a 
correspondence method incorporates two main 
steps; namely, detection and matching. The de-
tection step aims at extracting salient anatomical 
points of the visible anatomy and/or geometrical 
interest points located at the locus of the optimum 
of some geometric property, such as L-shaped 
corners, T-shaped junctions and Y-shaped junc-
tions (Laliberte, Gagnon & Sheng, 2003; Likar & 
Pernus, 1999). After the detection of these interest 
points, the correspondence between them can be 
established by the matching step.
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dAt A Ac QuIsIt Ion

The four correspondence methods featured in 
this chapter were evaluated on 96 dental image 
pairs, subject to unknown transformations. The 
following semi-controlled geometry protocol 
was employed: a dry mandible was mounted on 
a device which permitted the object and the film 
to be rotated vertically and horizontally relative 
to the central part of the X-ray beam. The focus 
of the object and the object-to-film distance were 
kept constant at 40 cm and 0.5 cm, respectively. 
The radiographs were digitized with a flatscanner 
(Agfa Arcus II) producing 8-bit gray scale image 
files. The reference radiograph was taken with the 
central ray of the X-ray beam perpendicular to 
the long axes of the teeth as judged subjectively 
and with no resulting overlaps of adjacent tooth 
surfaces. Corresponding images were then ob-
tained by moving the object either vertically or 
horizontally relative to the X-ray beam at 0º, 3º 
and 6º, respectively. This corresponds to motion 
about the x- and y- axis in three-dimensional 
space. Four dry mandibles were used in order to 
produce a total of 96 in vitro dental pairs grouped 
into four sets of 24 image pairs each (Sets I-IV). 
In each set, the same acquisition parameters were 
kept; thus brightness and/or contrast correction 
was not priory required. Furthermore, the acquired 
images, however, included white background 
representing regions outside the film limits and 
had to be preprocessed by suitably cropping them; 
thus excluding the undesired parts. The size of 
the cropped in vitro radiographs used in the study 
was 428×310 pixels. 

MEthodology

In general, all point correspondence methods are 
based on the same principal: Given a pair of 2D im-
ages (reference image and corresponding image) 
of the same anatomical scene and a set of interest 
points (control points) in the reference image, IR, 

the automatic correspondence algorithm detects 
a set of homologous points (corresponding points) 
in the corresponding image, IC. The homologous 
points may be drawn from a predefined pool of 
candidate points or simply estimated from scratch. 
Once the corresponding points are detected, they 
are utilized together with their respective control 
points to define a global transformation, which in 
turn is used to register the corresponding images. 
In our case the control points were extracted using 
the general purpose method adopted by Likar et 
al. (1999) for obtaining points around edges and 
ridges on dental images. The rest of this section 
is concerned with presenting the methodology 
adopted in order to evaluate the four point cor-
respondence methods featured in this chapter. 
Moreover, a brief description of each method is 
presented, focusing on the distinct characteristics 
of each scheme.

t he Automatic Extraction of 
c orresponding Points Method

The Automatic Extraction of Corresponding 
Points (AECP) method employs a template 
matching scheme to obtain correspondences (Di 
Stefano, Mattocia & Tombari, 2004). In order to 
determine the correspondence of a point (x, y), a 
circular area of radius r from the reference image 
is propagated over a circular area of radius R from 
the corresponding image, which is centered at (x, 
y). As the template circulates over the designated 
area of the corresponding image, the differences 
between the template and the area underneath are 
recorded. Therefore, for each pixel (x, y) of the 
reference image, its neighborhood of radius r is 
compared to the equally sized neighborhood of 
each pixel lying on a radius R around (x, y) on the 
corresponding image. This means that the digital 
circle of radius r around (x, y) is compared to all 
digital circles of radius r centered at ( ),x k y l+ +  
on the corresponding image with 2 2 2k l R+ < . In 
order to compare the neighborhoods in question, 
the mean absolute difference of intensities is used 
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as a similarity measure (Likar & Pernus, 1999). 
Thus, for each pixel of the reference image and 
for 2 2 2k l R+ < :

1(( , ),( , ))Sim x y x k y l
N

+ + =

2 2 2
,

( , ) ( , )R C
i j

i j r

I x i y j I x k i y l j
∀

+ <

+ + − + + + +∑
(1)

where N is the number of pixels in the neighbor-
hood of radius r.

The area which gives an average intensity value 
that minimizes Equation (1) is assumed to be the 
neighborhood of the corresponding point. Hence, 
the center of that area is considered to be the cor-
responding point of (x, y) in the corresponding 
image. This particular technique prerequisites 
that R r≥ . In fact, for small R values, the search 
area is reduced and hence the likelihood of an 
erroneous corresponding point is increased. 
On the other hand, if R is very large, the search 
area is broadened, increasing the computational 
cost. In this study, the values R = 25 and r = 5 
were used. The effect of varying the two radii is 
discussed later. 

t he t rimmed Iterative c losest Point 
Algorithm

The Iterated Closest Point (ICP) algorithm (Besl 
& McKay, 1992) is broadly used for allocating 
corresponding points, due to its robustness, sim-
plicity and fast execution time. Numerous vari-
ants of the ICP have been devised over the years. 
We are particularly interested in the Trimmed 
Iterated Closest Point (TICP) algorithm variant 
(Chetverikov, Svirko & Stepanov, 2002), which 
has the capability to maximize the efficiency of 
the original ICP scheme. TICP requires the extrac-
tion of a suitable pool of candidate points from 
the corresponding image as well as the definition 
of control points on the reference image. Those 
two point sets are utilized by TICP as the scheme 
tries to minimize the average distance between 
the two sets by finding the closest point from 

the reference set to the corresponding set, in an 
iterative manner. 

The innovation of this approach lies with the 
fact that it only considers a predefined number of 
points that have the minimum distances, instead 
of working with the entire sets. The parameters 
of the point transformations are calculated over a 
minimal set of points, thus increasing the robust-
ness of the algorithm. In our case the similitude 
transformation was adopted to estimate the cor-
responding points and the average Euclidean 
distance between the point sets was considered 
as our measure of match. Moreover, the number 
of points extracted from the corresponding im-
age may differ from that of the reference image. 
This asymmetry widens the search area for the 
correspondences and hence lessens the possibil-
ity of finding spurious corresponding points. 
The TICP algorithm eventually converges to an 
optimal set of corresponding points, provided that 
proper points of interest were selected on both the 
reference and the corresponding image.

t he c orrespondence by sensitivity 
to Movement t echnique

The Correspondence by Sensitivity to Movement 
(CSM) algorithm is an advanced variant of the 
Template Matching scheme for allocating point 
correspondences. As with AECP, Template Match-
ing estimates corresponding points by matching a 
region from the reference image to a region from 
the corresponding image (one-to-one match) and 
hence a unique correspondence is calculated per 
control point. On the other hand, CSM considers 
several candidate corresponding points for each 
control point, using a weighting scheme (Guest, 
Berry, Baldock, Fidrich, Smith & 2001).

The algorithm comprises of three distinct stag-
es. Firstly, a number of candidate corresponding 
points, called “tentative points”, are calculated for 
each control point. The tentative points are bound 
to a specific region on the corresponding image. 
A similarity measure is then calculated for each 
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tentative point. In our case a simple correlation 
scheme was employed to realize those similarity 
measures. The tentative points together with their 
similarity measures form the match-map. Dur-
ing the second stage of the algorithm the control 
points on the reference image are slightly displaced 
towards all directions and a new match-map is 
estimated in each case. Each new tentative point 
is calculated by summing over the match-map, 
while taking distances from the control point to 
each point in the match-map into account. Tenta-
tive corresponding points iq  are calculated using 
Equation (2) shown below.

i i
i

i

K x
q

K
=

∑
∑

    (2)

where ix  is the vector from the control point to 
point i in the match-map. Ki is a constant defined 
by 2

1
i

i

i

mK
x

=
+

, where mi is the similarity  value 

for point i. The sums involved in Equation (2) 
are calculated over the entire match-map. Using 
Equation (2), a cloud of tentative corresponding 
points is estimated for each minor movement of 
a control point. The final stage of CSM involves 
analyzing the distribution of those tentative points 
for each control point. If the tentative points are 
scattered along a line, the point closest to the 
line is considered as the corresponding point, 
otherwise the centroid of the scatter is selected.

In effect, the particular approach calculates 
several candidate corresponding points and then 
selects the optimal point by running a simple reli-
ability test. By moving each control point over a 
specified area of the reference image, several scat-
tered candidate points are estimated. In general, if 
those points are scattered over a relatively small 
area on the corresponding image, the candidate 
points are considered to be reliable. On the con-
trary, wildly scattered candidate points indicate 
an erroneous estimation process or an unreliable 
control point.  

t he self-o rganizing Maps network

The Self Organizing Maps (SOMs) is a neural 
network algorithm, which is able to train itself 
in an unsupervised manner, through an iterative 
process (Matsopoulos, Asvestas, Mouravlian-
sky & Delibasis, 2004). The SOMs model was 
introduced by Kohonen (1990) and comprises of 
a layer of m neurons arranged in a one-dimen-
sional or two-dimensional grid. In our case, a 
neuron j is placed at each control point Pj from 
the reference image. A weight vector wj, which 
holds the parameters of a local transformation, 
is then associated with each neuron. The local 
transformation preferred in this study is a typical 
similitude transformation, involving a rotation, 
a scaling and two translation parameters. The 
network is firstly initialized by setting the weight 
vector wj of every neuron j to the parameters of 
the identity similitude transformation. After the 
network is properly initialized the training itera-
tions begin. At each iteration n, a random signal 
s(n), is generated and presented to the network. The 
random signal generator is similar to the one used 
in simulated annealing (Matsopoulos, Asvestas, 
Mouravliansky & Delibasis, 2004). The compo-
nents of the random signal are random numbers 
within a predefined range and correspond to the 
parameters of a local similitude transformation. 
The generated random signal is then applied to all 
network neurons. The neuron j with weight vector 
wj is declared as the winning neuron, according 
to the rule below:

( )
( )( ) ( )( ){ }arg max ,

i iA R CT A
i

j MoM I I=
s n

      (3)

where Ai is a square region centered around Pi, 
Ts(n)(Ai) is a geometric transformation of the region 
Ai with parameter vector s(n), ( )

iA I  denotes 
the restriction of an image I to the region Ai and 
MoM is the preferred measure of match, which 
in our case is gradient correlation (Gonzalez & 
Woods, 1992).
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This practically means that the wining neuron 
is the one that achieves the maximum measure 
of match subsequent to the application of signal 
s(n). After the winning neuron j is found, the 
neuron itself as well as its neighboring neurons i 
have their weight vectors modified according to 
the following equation:

[ ]( 1) ( ) ( ) ( ) ( )i i ij in n h n s n n+ = + −w w w  (4)

where hij is a Gaussian type function which 
depends on the distance between the winning 
neuron and its neighboring neurons and n. At 
this point, a single iteration is complete; hence 
a new random signal is presented to the network 
and the process described above is repeated. The 
training of the network terminates after a fixed 
number of iterations is reached (for example n 
= 5,000). After the training is completed, the 
weight vectors of the neurons contain the optimal 
local transformation parameters. The control 
points obtained from the reference image are 
then transformed according to those parameters 
in order to produce their estimated correspond-
ing points.

c omparison Implementation

The point correspondence methods previously 
described were applied on all 96 acquired medical 
dental image pairs. Given a reference image and an 
initial set of points, the four methods in comparison 
calculated a set of estimated homologous points 
on the corresponding images. Those estimated 
points were used to determine a global transforma-
tion towards image registration. A typical affine 
transformation was used for this purpose, which 
is defined by the following equation:

1 2

3 4

'
'

1 0 0 1 1

x a a dx x
y a a dy y

     
     = ×     
     
     

                        (5)

where a total of six (6) parameters are required 
to define the affine transformation. 

Therefore, each pixel of the corresponding 
image with coordinates (x, y), is transformed to its 
new coordinates ( , )x y′ ′ , where 1 2x a x a y dx′ = + +  
and 3 4y a x a y dy′ = + + . The parameters of the 
affine transformation were calculated using the 
corresponding points acquired by the four meth-
ods in comparison. For all four cases, the optimal 
values of the selected geometrical transformation 
parameters were obtained by a Least Squares 
approach in conjunction with Singular Value 
Decomposition (SVD) (Press, Teukolsky, Vetter-
ling & Flannery, 1992). Having fully defined the 
transformations, in each case, they were applied 
on the corresponding images in order to suitably 
register them.

The produced registered images were utilized 
to qualitatively and quantitatively assess the four 
methods. The performance of each featured point 
correspondence scheme depends on a number 
of parameters. The optimal parameters were 
selected after a series of trials on several image 
pairs from all available sets, in order to enhance 
the validity of the study. Those parameters are 
summarized in Table 1. As can be seen in Table 
1, identical parameters were used for common 
properties of the four methods, in order to conduct 
a meaningful and fair comparison. The major 
parameters affecting each scheme are further 
discussed later. 

rE sul ts

As mentioned, four data sets were used to 
qualitatively and quantitatively evaluate the four 
automatic point-based correspondence methods 
in comparison. All four sets comprise of image 
pairs obtained using semi-controlled geometry 
protocols. The performance of the four point 
correspondence methods was evaluated in terms 
of registration accuracy.
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Qualitative Evaluation

The registration quality of the four methods in 
comparison was visually assessed by superim-
posing the edges of the reference image on the 
aligned corresponding image. The edges were 
detected by applying a 3×3 Sobel gradient filter 
(Gonzalez & Woods, 1992). An example is shown 
in Figure 1 featuring an image from Set III (shown 
in Figure 1(a)). 

As can be seen in Figure 1, the registered 
image produced using the corresponding points 
estimated through the SOMs method (Figure 1(e)) 
is more accurate than the other three methods in 
comparison (Figure 1(b)-(d)). The white outline 
of the edges in Figure 1Error! Reference source 
not found.(e) fits the aligned corresponding image 
more accurately than the images obtained using 
AECP (Figure 1(b)), TICP (Figure 1Error! Ref-
erence source not found.(c)) and CSM (Figure 
1(d)). This may also be verified by calculating the 
absolute difference of the reference image with 
respect to its registered counterpart. This case is 
illustrated in Figure 2. 

The images shown there were obtained by 
evaluating the absolute difference between the 

intensity of the reference image and the intensity 
of the transformed corresponding image, on a pixel 
by pixel basis. In this case the darker the resulting 
difference the higher the registration quality. Yet 
again, SOMs (Figure 2(e)) performs better than 
all other three methods in comparison, in terms 
of registration quality. However, in both Figure 1 
and Figure 2, it can be seen that although AECP 
(Figure 1(b) and Figure 2(b)) and CSM (Figure 
1(d) and Figure 2(d)) perform generally worse than 
SOMs, they clearly outperform TICP (Figure 1(c) 
and Figure 2(c)) for the particular example.
Quantitative Evaluation

Quantitative evaluation of the four methods was 
performed using the Root Mean Square Differ-
ence (RMSD) between the reference and the 
finally aligned corresponding image (Zacharaki, 
Matsopoulos, Asvestas & Gröndahl, 2004). The 
RMSD is calculated as follows:

( ) ( )( )2

1

N

R i GTR i
i

I r I r
RMSD

N
=

−
=

∑  

 (6)

Parameter AECP TICP CSM SOMs

Measure of Match Absolute Intensity 
Difference

Euclidean 
Distance Correlation Gradient 

Correlation
Transformation - Similitude
Maximum Displacement 80 pixels
Maximum Rotation 25 degrees
Maximum Scaling 10 %
Stopping Number of
Iterations - 500 - 5,000

Inner Search Radius 5 pixels - - -
Outer Search Radius 25 pixels - - -
Match-Map Size - - 15×15 pixels -

Table 1. Parameters used for the qualitative and quantitative evaluation of AECP, TICP, CSM and 
SOMs
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Figure 1. Visual Assessment of the Four Point Correspondence Methods, in Terms of Registration Accu-
racy. (a) Reference Dental Image Drawn From Set III. Registered Corresponding Image with the Edges 
of the Reference Image Superimposed for (b) AECP, (c) TICP, (d) CSM and (e) SOMs.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

where the sum is calculated only over the N  pixels 
belonging to the region of overlap of the reference 
(IR) and the finally aligned image, using the geo-
metrical transformation (IGTR). Generally, a small 
value of RMSD corresponds to a small average 
intensity difference between homologous pixels 
in the reference and the registered corresponding 
image. This, in turn, suggests that the smaller the 
value of RMSD obtained, the higher the quality 
of the intensity-based image registration. 

The results for a sample of 24 image-pairs from 
Set III are presented in Table 2 using the affine 

transform. From Table 2, it is evident that SOMs 
outperforms the other three methods for the vast 
majority of the radiographic pairs in terms of the 
RMSD metric. In particular, in 14 out of the 24 
sample pairs, the SOMs network achieved better 
than all three methods in comparison. Moreover, 
the mean RMSD over the entire sample of 24 
dental pairs is greatly improved using the SOMs 
algorithm (6.689) against AECP (9.561), TICP 
(9.563) and CSM (11.576). Finally, the robustness 
of SOMs is verified by its relatively low standard 
deviation of the RMSD (1.146) against the three 
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compared methods (1.895, 4.745 and 2.929, re-
spectively), as revealed in Table 2.

The results for a sample of 24 image-pairs from 
Set III are presented in Table 2 using the affine 
transform. From Table 2, it is evident that SOMs 
outperforms the other three methods for the vast 
majority of the radiographic pairs in terms of the 
RMSD metric. In particular, in 14 out of the 24 
sample pairs, the SOMs network achieved better 
than all three methods in comparison. Moreover, 
the mean RMSD over the entire sample of 24 
dental pairs is greatly improved using the SOMs 

algorithm (6.689) against AECP (9.561), TICP 
(9.563) and CSM (11.576). Finally, the robustness 
of SOMs is verified by its relatively low standard 
deviation of the RMSD (1.146) against the three 
compared methods (1.895, 4.745 and 2.929, re-
spectively), as revealed in Table 2.

Quantitative analysis over the all four sets 
of 96 total dental image pairs has shown that 
the Self-Organizing Maps approach performs 
better than the other three point correspondence 
methods on average. Those considerations are 
illustrated in Table 3. There, SOMs exhibits a 

Figure 2. Visual Assessment of the Four Point Correspondence Methods, in Terms of Registration Ac-
curacy. (a) Reference Dental Image Drawn from Set III. Absolute Difference Between the Reference 
Image and the Registered Corresponding Image with the Edges of the Reference Image Superimposed 
for (b) AECP, (c) TICP, (d) CSM and (e) SOMs.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 
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Dental Image Pairs AECP TICP CSM SOMs
Pair-1 9.874 6.170 20.930 6.743
Pair-2 10.951 6.548 9.515 6.684
Pair-3 9.514 6.454 8.652 7.956
Pair-4 10.730 7.181 10.242 6.644
Pair-5 8.892 17.902 9.266 8.105
Pair-6 10.608 5.730 11.883 6.509
Pair-7 11.200 7.591 12.657 7.370
Pair-8 4.503 3.702 6.760 5.502
Pair-9 6.821 8.854 12.350 5.506
Pair-10 11.502 12.239 12.680 6.916
Pair-11 9.747 14.993 13.192 7.847
Pair-12 10.320 4.130 7.165 4.219
Pair-13 10.478 6.544 9.810 5.706
Pair-14 11.857 7.962 13.773 6.344
Pair-15 7.175 13.375 11.782 5.708
Pair-16 8.799 4.976 10.182 6.523
Pair-17 6.084 8.753 12.606 6.133
Pair-18 10.459 6.748 12.559 6.355
Pair-19 12.463 16.980 13.528 7.501
Pair-20 9.802 7.846 14.649 9.057
Pair-21 9.427 15.800 10.888 6.689
Pair-22 7.874 11.088 9.012 5.321
Pair-23 10.398 21.002 9.729 6.272
Pair-24 9.991 6.950 14.015 8.919
RMSD

Mean ± Std.dev. 9.561 ± 1.895 9.563 ± 4.745 11.576 ± 2.929 6.689 ± 1.146

Table 2. Performance of the four automatic correspondence methods in terms of registration accuracy 
using the RMSD for the entire Set III.

Data Sets AECP TICP CSM SOMs
Semi-Controlled Geometry 

Set I (24 pairs) 6.252 ± 1.113 7.357 ± 1.858 13.412 ± 2.192 7.253 ± 1.234

Semi-Controlled Geometry 
Set II (24 pairs) 16.545 ± 3.767 16.738 ± 3.500 21.233 ± 6.351 14.038 ± 3.208

Semi-Controlled Geometry 
Set III (24 pairs) 9.561 ± 1.895 9.563 ± 4.745 11.576 ± 2.929 6.689 ± 1.146

Semi-Controlled Geometry 
Set IV (24 pairs) 18.612 ± 10.796 20.805 ± 9.778 17.258 ± 4.248 9.618 ± 2.339

Table 3. Performance of the four automatic correspondence methods in terms of registration accuracy 
using the RMSD for all Sets (Average Values over Sets I-IV).
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much lower average RMSD over AECP, TICP 
and CSM for Sets II-IV. Especially for Set IV, 
SOMs achieved acceptable correspondences, 
while the other three methods failed for most 
image pairs in the particular set. In addition, the 
much lower standard deviation measurements 
obtained for SOMs in most cases, suggests that 
the technique is quite robust as it exhibits con-
sistent performance.

dIscuss Ion

In this study, four methods for estimating point 
correspondences were considered: the Automatic 
Extraction of Corresponding Points (AECP) tech-
nique, the Trimmed Iterated Closest Points (TICP) 
approach, the Correspondence by Sensitivity to 
Movement (CSM) algorithm and the Self Orga-
nizing Maps (SOMs) network. The four methods 
were evaluated using a large variety of dental 
radiographs, obtained by a semi-controlled geom-
etry protocol. After quite an extensive qualitative 
and quantitative analysis, it was concluded that 
the SOMs approach outperformed in most cases 
AECP, TICP as well as CSM in terms of registra-
tion quality, based on the RMSD measurement.

All four methods in comparison depend on 
several parameters which control key aspects 
of their algorithms. The preferred values for 
the parameters used to evaluate all methods are 
quoted in Table 1. When possible the same values 
were employed for common properties of the four 
methods, throughout the study. Nevertheless, the 
values shown in Table 1 were obtained after several 
trials using images from all featured sets, in order 
to ensure the best possible performance out of each 
method. Furthermore, as can be seen in Table 1, 
there are numerous parameters unique to each 
method. The effect of varying those parameters 
has to be examined comprehensively to assess the 
results obtained previously. For this purpose, the 
same image pair (from Set III) was used for all 
methods in order to obtain comparable results.  In 

addition, each method exhibits its own strengths 
and weaknesses, which are reviewed in some 
further detail throughout this section.

As mentioned earlier, the Automatic Extrac-
tion of Corresponding Points (AECP) technique is 
based on Template Matching. The method improves 
the efficiency of the original Template Matching 
scheme, by employing circular templates and hence 
limiting the search area on the corresponding image 
(Likar & Pernus, 1999). AECP allocates correspon-
dences by propagating a circular template of radius 
r (inner radius) from the reference image over a 
designated circular area of radius R (outer radius) 
on the corresponding image. Therefore, the size 
of the two circular areas, defined by their radii, is 
of particular importance for the AECP scheme. A 
dental pair from Set III was employed to examine 
the behavior of AECP when varying those two 
radii. The results are demonstrated in Figure 3. 
Figures 3(a) and (b) show how the RMSD and the 
execution time of the method respond to adjust-
ing the inner radius r. Equally, Figures (c) and (d) 
demonstrate the effects of varying the outer radius 
R. As illustrated in Figure 3, the optimal values for 
the two radii are r = 5 and R = 25, which are used 
throughout the study. The execution time of the 
particular approach increases almost exponentially 
when increasing the value of the radii, especially 
when raising the value of the inner radius (Figure 
3(b)); thus using any value r ≥ 9 and R ≥ 100 would 
be impractical.

AECP greatly improves the efficiency of the 
original Template Matching scheme. In general, 
AECP exhibits execution times reduced as much as 
50% compared to its descendant method, without 
affecting the accuracy of the produced correspond-
ing points. There are some cases, nevertheless, 
where the particular approach suffers from an 
increased number of false correspondences. This 
mainly occurs in corresponding images which are 
transformed by large rotations or translations. As 
AECP does not search the corresponding image in 
a strictly exhaustive manner, the algorithm may 
be confused and consider an erroneous search 
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Figure 3. Performance of the Automatic Extraction of Corresponding Points method in Terms of the 
RMSD and Execution time for Varying Values of the Two Radii. The Method was Applied to a Dental 
Image from Set III. Effects on Varying the Inner Radius from 3 to 15 Pixels, on (a) the RMSD Between 
the Reference and the Registered Corresponding Image and (b) the Execution Time. Effects of Varying 
the Outer Radius from 5 to 125 Pixels, on (c) the RMSD and (d) the Execution Time.
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Figure 4. Performance of the Trimmed ICP Method for Varying the Number of Trials (Iterations). A 
Dental Image from Set III was Used and the Method was Applied with the Number of Trials Ranging 
from 50 to 1,000. The Effects on Performance were Recorded in Terms of (a) the RMSD and (b) the 
Execution Time.

area, which in turn will give rise to a spurious 
corresponding point. Furthermore, AECP is a 
complete solution for extracting points of inter-
est and estimating their correspondences. Since 
the particular study is only concerned with point 
correspondence, the feature extraction part of the 
algorithm was deliberately excluded from the 
evaluation process.

The Trimmed Iterated Closest Point algorithm 
used throughout the chapter is an improved ver-

sion of ICP (Besl & McKay, 1990). The basic idea 
of TICP is to calculate correspondences between 
two or more point clouds. In our case, the first 
point cloud is considered to be the set of initial 
points on the reference image, while the second 
one is a set of candidate points on the correspond-
ing image. Therefore, the particular approach 
requires points of interest to be extracted from 
both the reference and the corresponding image. 
TICP then tries to match those two sets of points 
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in an iterative manner as described earlier. All 
ICP variants adopt a trial-and-error approach to 
allocate correspondences. As a result the accuracy 
of the estimated corresponding points should 
improve after each iteration (trial). Obviously the 
more iterations are completed the more accurate 
the results obtained. However, there is a certain 
number of iterations beyond which minimal 
accuracy improvements are recorded. Since an 
increased number of trials negatively impacts on 
the efficiency of TICP, the preferred number of 
trials is usually selected such that accuracy and 
execution time are balanced.

An example is shown in Figure 4, where an 
image pair from Set III is considered. TICP was 
applied to the particular image pair for a varying 
number of iterations, ranging from 50 to 1,000. 
As can be seen in Figure 4(a), no significant per-
formance gain is observed after 500 iterations, 
in terms of the RMSD. Since convergence time 
increases steadily with the number of trials (Figure 
4(b)), the particular value was considered to be 
sufficient and therefore was selected for evaluat-
ing TICP throughout the study.

Although the TICP method can be highly ef-
ficient and fast, it is heavily dependent upon the 
performance of the preferred point extraction 
method. The reason for this is that the algorithm 
itself is not able to calculate the point correspon-
dences but it merely links points from one set to 
another. Therefore, ICP variants are generally not 
suitable for allocating point correspondences unless 
there is a predefined set of candidate corresponding 
points on the corresponding image. Those points 
may be either defined automatically or manually.

Another method based on Template Matching 
is the Correspondence by Sensitivity to Move-
ment (CSM) technique (Guest, Berry, Baldock, 
Fidrich & Smith, 2001). As mentioned, CSM 
firstly performs minor movements to the control 
points on the reference image thus producing 
a candidate (or tentative) corresponding point 
for each such movement. The set of tentative 
points associated with a control point define its 

match-map. The size of the match-map refers 
to the area within which acceptable tentative 
corresponding points are considered. The size 
of the match-map, usually expressed by a cubic 
area, is of particular importance for CSM, as 
only candidate points within the match-map are 
estimated. In order to assess the optimal size of 
the match-map, several trials were conducted 
featuring varying sizes ranging from 3×3 to 33×33 
pixels. The performance of CSM in each case 
was evaluated in terms of the RMSD between 
the reference and the registered corresponding 
image, using a dental image from Set III. 

The results shown in Figure 5(a) indicate that 
the optimal match-map size is 15×15 pixels, which 
was adopted as the preferred value throughout 
the study. As can be seen in Figure 5(a), either 
excessively small or large match-maps hinder 
the efficiency of the CSM algorithm. The reason 
for this is that small match-maps simply do not 
provide sufficient space for candidate correspon-
dences, while large ones may well confuse the 
algorithm by producing spurious candidates, thus 
scattering the tentative corresponding points over 
a large area, as with the AECP approach. On the 
other hand, the size of the match-map does not 
have an immense effect in the execution time of 
the algorithm. This is illustrated in Figure 5(b). 
Although the execution time for CSM does rise 
as the match-map size increases, the effect is 
minimal compared to AECP, which also features 
a similar template scheme.

By examining the distribution of candidate 
corresponding points over minor displacements of 
the control points, CSM ensures that the estimated 
corresponding points are as reliable as possible. 
In effect, the particular method initially performs 
a Template Matching scheme for defining the 
match-maps and then it examines the reliability 
of the estimated correspondences by assessing 
their sensitivity to the movement of their respec-
tive control point. In that way only reliable cor-
responding points may be extracted. Therefore, 
CSM favours robustness over execution time, as 
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Figure 5. Performance of the Correspondence by Sensitivity to Movement Algorithm for Varying the Size 
of the Match-Map. The Match-Map was Varied from 3 to 33 Pixels Wide and the Tests were Performed 
on a Dental Image from Set III. The Performance was Assessed in Terms of (a) the RMSD and (b) the 
Execution Time.
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it is generally slower than AECP and TICP. On 
the other hand, although CSM is an improvement 
over the original Template Matching scheme, it 
does not always guarantee superior performance 
over its descendant method. In fact, there are cases 
where the efficiency of CSM degrades due to the 

characteristics of the featured image pair. Poor 
quality blurred images are especially unfavour-
able for CSM.

As with any other iterative method, the Self 
Organizing Maps approach is greatly affected by 
the number of iterations executed. Again, the more 
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Figure 6. Performance of the Self Organizing Maps Methods for a Varying Number of Iterations. A 
Dental Image from Set III was Used and the Method was Applied with a Varying Number of Stopping 
Iterations Ranging from 500 to 15,000. The Effects on the Performance were Recorded in Terms of (a) 
the RMSD and (b) the Execution Time.

iterations performed, the better the accuracy of 
the corresponding points, up to a certain number 
where no further noticeable improvement can be 
accounted. For the particular image pairs included 
in this study, it was observed that SOMs did not 
improve point accuracy noticeably for more than 
5,000 iterations. In some instances (especially 
in small images) performance was saturated for 

even less iterations, but the value of 5,000 was 
universally adopted to suffice all cases. 

As can be seen in Figure 6, the SOMs algo-
rithm was tested on a dental image pair from 
Set III using a fluctuating number of iterations 
(from 500 to 15,000). There, it is quite clear that 
employing more than 5,000 iterations does not 
improve the accuracy noticeably (Figure 6(a)). 
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Moreover, the fact that the convergence time of 
the particular approach raises dramatically as the 
number of trials increases (Figure 6(b)), using 
a larger number of iterations would hinder the 
efficiency of the method, as the execution time 
of the algorithm increases without any perfor-
mance gain.

After qualitative and quantitative evaluation 
of all four methods over all four dental image 
sets, it was concluded that SOMs outperformed 
AECP, TICP and CSM on average. However, 
the superiority of SOMs comes at a cost to 
convergence time. In general SOMs was the 
slowest method of all four methods examined. 
It took about 4 minutes to calculate the point 
correspondences of 50 control points. For the 
same images and number of control points, 
AECP and CSM estimated the correspondences 
in approximately 3 minutes, while TICP in about 
2 minutes. All tests featured in this study were 
performed on a typical desktop workstation 
(AMD Opteron 165, 1800 MHz processor with 
2 GB of RAM). 

f utur E t r Ends

The presented comparative study involves the 
evaluation of four automatic correspondence 
methods and the evaluation of their performance 
in 2D dental radiographs. The study could be 
extended either to incorporate more methods to 
define automatic correspondence on the same 
image data or the application of these methods 
to define correspondence on 2D unimodal image 
pairs from other modalities. Finally, a future step 
may include the evaluation of the performance 
of various automatic correspondence methods 
applied to three-dimensional (3D) unimodal or 
multimodal image data such as CT or MRI data, 
towards automatic point-based registration. 

c onclus Ion

This chapter presented a comprehensive evaluative 
study comparing four commonly used methods for 
obtaining point correspondences towards image-
based registration. The Automatic Extraction of 
Corresponding Points (AECP), the Trimmed ICP 
(TICP), The Correspondences by Sensitivity to 
Movement (CSM) and the Self Organizing Maps 
(SOMs) techniques were all assessed both visu-
ally and quantitatively. The four methods were 
applied individually on 96 dental image pairs 
subject to unknown transformations. In general, 
the SOMs approach outperformed in most cases 
the other three methods in comparison in terms of 
the average RMSD between the reference image 
and the registered corresponding image. On the 
other hand, AECP and TICP performed evenly 
in most cases.
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k Ey t Er Ms

Automatic Point Correspondence: The 
automatic process of estimating the homologous 
points on the corresponding image of a set of 
initial points from the reference image.

Dental Imaging: The representation of dental 
elements on a film, acquired through specific 
radiographic protocols

Image Registration: The process of match-
ing a corresponding image to a reference image, 
using suitable transformations

Iterated Closest Points: Automatic point 
correspondence method which works by mini-
mizing the average distance from a set of points 
on the reference image to a set of points on the 
corresponding image
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Point Extraction: The automatic or manual 
process of extracting points of interest from an 
image

Self Organizing Maps: Automatic iterative 
method for allocating point correspondences, 
based on Kohonen’s neural network

Template Matching: Automatic point cor-
respondence method based on matching regions 
from the reference image to transformed regions 
of the corresponding image
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Abstr Act

Various approaches have been taken to detect anomalies, with certain particularities in the medical im-
age scenario, linked to other terms: content-based image retrieval, pattern recognition, classification, 
segmentation, outlier detection, image mining, as well as computer-assisted diagnosis, and computer-
aided surgery. This chapter presents, a review of anomaly detection (AD) techniques and assessment 
methodologies, which have been applied to medical images, emphasizing their peculiarities, limitations 
and future perspectives. Moreover, a contribution to the field of AD in brain computed tomography im-
ages is also given, illustrated and assessed.
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Introduct Ion

In general terms, anomaly detection (AD) can 
be considered as the process of detecting a small 
fraction of the data that differs, in some sense, 
from the global trend or pattern defined by the 
data set. The goal of an anomaly detector can 
be thought as the identification of the most un-
usual samples in a data set, without having any 
a priori information about their properties, other 
than they are rare and have a low probability of 
occurrence. 

By their nature, anomalies do not permit a 
positive definition of their properties, making 
difficult a general formulation of the AD prob-
lem. Most of the approaches to detect anomalies 
use, instead, a negative definition: anomalies are 
data samples that do not conform to the rule or 
model of normalcy. This led to a broad group of 
anomaly detectors that are based on some type 
of a mathematical model, or description, charac-
terizing the data under interest. Data fitting this 
description is considered as normal; those not 
fitting the model are considered anomalous. The 
general taxonomy for AD in image analysis can 
be thought to be composed of: (1) Observation 
field definition, (2) Background model estimation 
and (3) Detection. 

This chapter discusses the particularities of 
the AD techniques in the context of medical 
images, their current status and perspectives. 
The Chapter is organized as follows: the next 
section presents the AD problem in pathology, 
gives an overview of the state-of-art in AD, and 
discusses AD algorithms assessment, where we 
propose a new evaluation measure. Then, we 
propose an AD algorithm for brain computed 
tomography (CT) images. In the last sections 
we analyze future trends in the domain and give 
some conclusions.

bAckground

Most AD algorithms for medical image analysis 
are profoundly influenced by the specific image 
datasets used and by the medical or biological 
task. Figure 1 shows this diversity at a glance. 
Most reported studies have dealt with detection 
of tumors in digital mammography (Huang, 2004; 
Selvi, 2005; Wei, 2005; Peng, 2006; Chiracharit, 
2007; Ikedo, 2007; Karnan, 2007), lung CT images 
(Minhas, 2005; Sluimer, 2006), and brain magnetic 
resonance (MR) images (Gering, 2003; Prastawa, 
2004; Lee, 2005; Benamrane, 2006; Menze, 2006; 
Shinkareva, 2006; Bouix, 2007; Ekin, 2007), but 
many others can be mentioned.

Since the foundational work of Sklansky and 
Ballard (1973) on automatic location of tumors 
in radiographs using pattern-recognition-related 
methods, there have been several approaches fo-
cused in the detection of anomalies represented in 
medical images. Among others, one can cite the 
detection of different kind of tumors (Krivacic, 
2004; Iyatomi, 2006; Strzelecki, 2006; Xu, 2006; 
Kelm, 2007; Montgomery, 2007), hemorrhages, 
multiple sclerosis, malformations and more (Ber-
telli, 2006; Shinkareva, 2006; Stoitsis, 2006). Any 
lesion (characterizing a disease, as Alzheimer’s 
(Ashton, 2006), or due to an accident) that is 
structurally and compositionally distinct from 
surrounding healthy tissue could be highlighted 
by an appropriate imaging modality and therefore 
could be detected by an AD approach. 

Most AD works in the medical scenario are 
focused on studying organs more prone to develop 
certain types of cancers: breast, lungs, and brain. 
Variety of studies comprises AD techniques ap-
plied to images of cells (Krivacic, 2004; Spinosa, 
2005), as well as to whole body scans (Ashton, 
2006; Huang, 2007). In addition, image analysis of 
some other organs have benefited from AD proce-
dures, e.g. the prostate (Kelm, 2007), the carotid 
artery (Stoitsis, 2006), the heart (Bertelli, 2006; 
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Strzelecki, 2006), the nasopharyngeal structure, 
the tympanic membrane (Xie, 2006), the retina 
(Xiaoxue, 2004), and the skin (Iyatomi, 2006). 

To deal with AD, several imaging modalities 
have been used: 

• Photography: conventionally taken (Iyatomi, 
2006), or specially derived with M-modes 
(Bertelli, 2006), or obtained with the ex-
tension of an endoscope, or a microscope 
(Krivacic, 2004; Xie, 2006; Goode, 2007).

• Electrical impedance tomography (Minhas, 
2005). 

• Ultrasound-based systems (Huang, 2004; 
Stoitsis, 2006; Strzelecki, 2006; Ikedo, 
2007). 

• X rays (Sklansky, 1973; Müller, 2005). 
• Computed tomography (CT) (Messmer, 

2006; Sluimer, 2006). 

• Magnetic resonance imaging (MRI) (Gering, 
2003; Prastawa, 2004; Lee, 2005; Benamrane, 
2006; Bouix, 2007; Ekin, 2007; Vovk, 2007).

• Functional magnetic resonance imaging 
(fMRI) (Shinkareva, 2006).

• Magnetic resonance spectroscopy imaging 
(MRSI) (Menze, 2006; Kelm, 2007). 

• Single photon emission computed tomog-
raphy (SPECT) and positron emission 
tomography (PET) (Montgomery, 2007).

Environmental and genetic changes cause 
great variability in the anatomical structures 
from one individual to another, which make the 
AD over medical images procedure very difficult. 
This variability is even higher in the condition 
of disease or abnormality. However, current 
medical imaging systems, with proper calibra-
tion and exploitation, assure certain standardized 
conditions. For instance, as shown in Figure 2, 

Figure 1. Medical images used for AD
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modern CT systems provide 4096 gray-level im-
ages, representing different density levels (given 
in Hounsfield Units, HU), arbitrarily established 
at 0 HU for water and -1000 HU for air. Figure 
2 shows default settings for CT (0 ± 2000/2 HU, 
on top) and re-scaled window/level adjustments 
for brain matter (35 ± 70/2 HU, right) and bone 
analysis (800 ± 2000/2 HU, left) in the multi-slice 
CT scanner, Philips ‘Brilliance 40’ (64-channel 
thin-slice). 

As illustrated in Table 1, even those imaging 
modalities that look very close in appearance, 
as X ray/CT and MR images, may have differ-
ent gray-levels to represent a given normal or 
abnormal tissue. Bright X ray/CT images are 
associated to high density tissues (i.e. high at-
tenuation of X rays), and dark X ray/CT images 
are associated to low density tissues (Müller, 
2005; Messmer, 2006; Sluimer, 2006). For MR, 
on the other hand, brighter regions are related 
to higher signal intensities.

o verview of Ad Approaches

AD has its own foundations, based on statistics 
(Markou, 2003a), neural networks (Markou, 
2003b), machine learning, and image mining 
(Hodge, 2004), however, in some cases the AD 
strategy is not applied directly but associated to 
other image analysis techniques such as classifi-
cation, segmentation, image mining and content-
based image retrieval. 

Special Cases

AD in medical images can be seen as a special 
case of: 

• Classification approach using generally two 
classes: normal and anomaly (Pokrajac, 
2005; Selvi, 2005; Spinosa, 2005; Menze, 
2006; Shinkareva, 2006; Strzelecki, 2006; 
Bouix, 2007). It should be highlighted that 

Figure 2.  Density levels in a 12 bit DICOM image and window/level adjustments
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typical classification algorithms are not 
suited to deal with the critical data imbalance 
(normal class is much more abundant than 
the infrequent anomaly class) of most AD 
problems, but it could assist in some stage 
to pre-classify the normal tissues. AD ap-
plication itself requires the classifier to act 
as a detector rather than as a classifier. 

• Segmentation technique allowing the seg-
mentation of  abnormal regions in an image, 
combining detection and delineation (Ger-
ing, 2003; Huang, 2004; Prastawa, 2004; 
Lee, 2005; Ségonne, 2005; Bertelli, 2006; 
Strzelecki, 2006; Bouix, 2007; Huang, 2007; 
Montgomery, 2007).

• Content-based image retrieval to extract 
anomaly images from a database and 
indicate the anomaly within the retrieved 
image (Lehmann, 2005; Hersh, 2006; Xu, 
2006). In case of databases containing nor-
mal (non-pathologic) cases, dissimilarity 
retrieval is applied.  

• Medical image mining (Lehmann, 2005; 
Peng, 2006), as well as outlier detection 
(Prastawa, 2004; Rousseeuw, 2006) can be 
applied to detect anomalies. 

Statistical Methods

Statistical methods comprise parametric and 
non-parametric techniques. Parametric methods 
assume that data distributions are Gaussian in 
nature, characterized by their mean and covari-
ance, and exploit probabilistic/Gaussian mixture 
modeling, hidden Markov models, Markov ran-
dom fields (MRF) (Gering, 2003; Selvi, 2005), 
conditional random fields (Lee, 2005) and hypoth-
esis testing, by using robust statistics: minimum 
volume estimation, convex peeling, principal 
component analysis (PCA), and expectation 
maximization (EM) plus deterministic annealing 
(Markou, 2003a; Hodge, 2004; Rousseeuw, 2006; 
Daszykowski, 2007; Ekin, 2007). Non-parametric 
methods, as histogram analysis, include density 
estimation based on the k-nearest neighbors al-
gorithm with Euclidean or Mahalanobis distance 
(Markou, 2003a), local kernel models or Parzen 
windowing (Hodge, 2004; Prastawa, 2004), and 
features matching (between training and test 
data) using some dissimilarity measures. In this 
context, the work of Pokrajac et al. (2005) pro-
posed a method using measures of dissimilarity 
(Mahalanobis distance and the Kullback-Leibler 
divergence) to compute the difference between 

Table 1. Normal and abnormal tissues vs. imaging modalities

Structure Image acquisition modality
Normal/ 
anomaly Tissue Approximate 

Density (HU) X ray/CT T1 MR T2 MR

Normal

Air -1000 Very dark Very dark Very dark
High density bone > 250 Very bright Very dark Very dark

Fat -90 ± 10 Dark Bright Bright
Water 0 ± 5 Dark Dark Bright

Brain matter 35 ± 35 Intermediate Intermediate Intermediate

Anomaly

Bleeding or hemorrhage 55 ± 5 (fresh)
80 ± 10 (old) Bright Bright Bright

Infarction Dark Dark Bright

Tumors Dark (if no 
calcified) Dark Bright
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spatial probability distributions of regions of 
interest (such as lesions, tumors, areas of brain 
activity, etc.) in an image of a new subject and 
each of the considered classes represented by 
historical data. 

Neural Networks

Both, supervised (as multi-layer perceptrons) 
(Strzelecki, 2006) and unsupervised (as self-
organizing maps, SOM) (Huang, 2004) neural 
networks can be useful for AD in medical im-
aging. Radial basis functions (Minhas, 2005), 
learning vector quantization, probabilistic neural 
networks, Hopfield networks, support vector 
machines (SVM) (Lee, 2005; Wei, 2005; Menze, 
2006; Xu, 2006; Chiracharit, 2007), synchronized 
oscillator network (Strzelecki, 2006), and adaptive 
resonance theory can be used. 

Gering (2003) recognizes deviations from nor-
malcy by using a contextual dependency network 
that incorporates context (immediate and broad) 
to detect tumors in MR images. All training is 
performed on healthy tissue, and it extends EM-
based segmentation with region-level properties 
to derive a multi-level MRF approach. Classifi-
cation of every voxel considers: the voxel itself, 
the surrounding neighborhood (Markov) of the 
voxel, the region where the voxel belongs (entire 
connected region), the global setting (position of 
the voxel’s region relative to other regions), and 
user guidance. 

Huang & Chen (2004) integrate SOM and 
watershed segmentation (Pratikakis, 2005) for 
textural analysis to extract contours of breast 
tumors from ultrasound images. Menze et al. 
(2006) applied linear and nonlinear feature extrac-
tion, including independent component analysis, 
PCA, and wavelet transformations, combined with 
classifiers such as linear discriminant analysis or 
Fisher’s linear discriminant, chemometric meth-
ods (Rousseeuw, 2006), SVM (Kelm, 2007), and 
ensemble methods to classify echo time in vivo 
MRSI and detect recurrent brain tumors. 

Machine Learning and Data Mining

Unlike the statistical and neural network meth-
ods, the machine learning approaches can deal 
with multi-type vectors and symbolic attributes. 
These approaches can use rule-based systems 
and decision trees, e.g. C4.5. In the AD scenario, 
we are interested in rules describing infrequent 
out-of-the-norm cases, while association rule min-
ing algorithms may generate certain redundant 
rules. Based on the normal regions, data mining 
techniques can generate models of normality to 
recognize deviations from them, considered as 
anomalies.

Xiaoxue et al. (2004) used a multiple-instance 
learning mining approach to detect hard exudates 
in retinal images from diabetic patients. In general, 
the training images only have vague class labels, 
but no other information. Therefore, a mining 
approach is adequate to the problem of learning 
the characteristics of anomalies. They extracted 
relevant image features, discover anomalies and 
deal with errors in the training data.

Wei et al. (2005) propose the use of relevance 
vector machine (RVM), as a classifier, to detect 
micro-calcifications in digital mammograms as a 
supervised-learning problem. RVM is a machine-
learning procedure based on Bayesian estimation 
theory, with a sparse decision function defined 
by a very small number of relevance vectors. 
RVM is not only accurate but also computation-
ally efficient. 

Goode et al. (2007) propose an automated, 
online approach to AD in high-content screen-
ing assays for pharmaceutical research based on 
machine learning approach as well. 

Hybrid Systems

More recently, statistical, neural networks or 
machine learning methods have been combined 
in hybrid systems to obtain better performance. 
However, combining AD algorithms is different 
than combining classifier ensembles because, 
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in the latter, classification algorithms deal with 
combining discrete class labels (e.g. using some 
voting technique), while in AD, the anomaly 
scores or rankings of the algorithms are combined 
instead.

Hybrid systems proliferate in recent works on 
AD in the medical image context. For instance, 
a genetic algorithm to search for bright spots 
in mammograms has been combined with a 
knowledge-discovery mechanism to improve its 
performance (Peng, 2006).

Neural networks, fuzzy logic and genetic algo-
rithms have been combined in a hybrid system to 
detect anomalies present in brain MR images and 
to specify their nature (malign or benign tumors) 
(Benamrane, 2006). A neural network classifier, 
a Bayesian classifier, and a classifier based on 
hidden Markov chains were joined by a behavior 
knowledge space fusion rule for a semi-automatic 
classification process (Bertelli, 2006).

Assessment of AD Algorithms

To evaluate the performance of AD systems, one 
requires a suitable ground truth, and appropriate 
similarity measures. The same procedure can 
be used to fine-tune the parameters of the AD 
systems (operation point), deciding the thresh-
old value which represents an intolerant devia-
tion from normalcy, to recognize lesions from 
healthy surroundings. However, obtaining an 
acceptable ground truth is a very difficult task, 
and standard performance evaluation measures 
such as the misclassification rate are irrelevant 
in the AD context.

Ground Truth

The most common approach to evaluate the re-
sults of an AD technique is to compare them with 
those of a group of experts (segmented by hand) 
for a set of images. Human experts have excel-
lent recognition capabilities due to prior global 
knowledge; however, their delineation ability is 

poor. The intra-expert coefficients of variation 
have been reported around 6.5%, and the inter-
expert coefficients of variation is in the order of 
22.1% according to (Ashton, 2006), or around 
15% in both intra and inter-operator coefficients 
in accordance with (Gering, 2003), coinciding 
with our experience. Phantoms (synthetic images 
(Gering, 2003; Pokrajac, 2005) or known physi-
cal objects) could be used as well to evaluate the 
AD algorithms, at least in a preliminary stage, 
but this is not a trivial task. 

Unlike the hundreds of datasets of medical 
images available for some other image analysis 
tasks, particular annotated datasets for AD algo-
rithm assessment are very uncommon. This lack 
of gold standards for validating AD algorithms, 
forced Bouix et al. (2007) to focus their atten-
tion on a common agreement principle to assess 
algorithms for brain tissue classification without a 
ground truth. They found this technique suitable 
for AD, but not sufficient for a precise performance 
evaluation of brain tissue classifiers.

Performance Measures 

Having a suitable ground truth (showing anomaly 
regions) for the considered AD problem, the 
assessment of the AD algorithm requires the 
definition of similarity measures to compare the 
reference data with the AD system output. Several 
measures have been used, from differences in 
size of the detected anomalies (Strzelecki, 2006) 
to numerous distances between boundaries of 
segmented anomalies, using e.g. the Hausdorff 
distance (Prastawa, 2004), or measures of spatial 
overlap (Bouix, 2007).

In this context, a ground truth can be seen as a 
binary image, X, showing 0 (black) in the normal 
regions and 1 (white) in the anomaly regions. In 
the same way, the AD results could be represented 
as a binary image, Y, with similar assignation of 
values. Both, X and Y, are defined over the same 
finite grid of N spatial sites (see example of Fig-
ure 8). Figure 3 depicts a schematic reasoning, 
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based on information theory, to compute popular 
measures of similarity between Y and X. The fol-
lowing notations are considered: 

• a = number of occurrences of xi = 1 and yi = 
1 (anomalies detected as anomalies), known 
as true positives.

• b = number of occurrences of xi = 0 and yi 
= 1 (non-anomalies detected as anomalies), 
known as false positives.

• c = number of occurrences of xi = 1 and yi 
= 0 (anomalies detected as non-anomalies), 
known as false negatives.

• d = number of occurrences of xi = 0 and yi = 0 
(non-anomalies detected as non-anomalies), 
known as true negatives.

Several similarity (and corresponding dis-
similarity) coefficients can be computed as simple 
measures for evaluation. In general, the most 
popular measures (represented in the bottom right 
corner of Figure 3) are:

• Se = sensitivity, detection rate, or recall, 
which is the probability of detecting anoma-
lies correctly, defined as

 ( )Recall 1| 1eS p Y X= = = =

 ( )1 0 | 1 1a cp Y X
a c a c

= − = = = = −
+ +  

      
      (1)

• Sp = specificity, which is the probability of 
detecting normalcy correctly1, computed 
as

 ( )0 | 0pS p Y X= = =

 
( )1 1| 0 1d bp Y X

b d b d
= − = = = = −

+ +
      (2)

• Pp = positive predictive value, precision, or 
Bayesian detection rate, which is the prob-
ability of having positives correctly detected, 
that is

 ( )Precision 1| 1pP p X Y= = = =

 
( )1 0 | 1 1a bp X Y

a b a b
= − = = = = −

+ +
      (3)

Figure 3. Information theory-based similarity between two sets
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• Pn = negative predictive value, or Bayesian 
negative rate, which is the probability of 
having negatives correctly detected, ac-
cording to

 ( )0 | 0nP p X Y= = =

 
( )1 1| 0 1d cp X Y

c d c d
= − = = = = −

+ +   
     (4)

• RC = classification rate, accuracy, or simple 
matching coefficient2, which is the rate of 
correct classifications, computed as

 ( ) ( )1C smR D p X Y p X Y= = = = − ≠

 
1a d b c

a b c d a b c d
+ +

= = −
+ + + + + +

      (5)

Due to the large number of zeros (black areas) 
in the binary images X and Y ((d+b) >> (a+c)), 
the above measures are usually biased in the 
AD context. Remember that anomalies are very 
uncommon events, much more infrequent in a 
massive screening program3. To have a better idea 
of this imbalance in the data, we can use the base 
rate (rate of anomalies), RB, which is normally 
<<1 in most AD scenarios, and corresponds to 
the prior probability of anomaly,

( ) ( )1 1 0BR p X p X= = = − =

1a c b d
a b c d a b c d

+ +
= = −

+ + + + + +   (6)

To deal with this critical imbalance of the 
data, some authors have used the following coef-
ficients instead:

• DT = Tanimoto distance , or Rogers distance, 
which is similar to the classification rate 
but it gives double weight to (b+c) in the 
denominator

 ( )2T
a dD

a d b c
+

=
+ + +

  (7)

• DR = distance of Russel and Rao, which 
does not involve the term d in the nu-
merator,

 R
aD

a b c d
=

+ + +    (8)

• DJ = distance of Jaccard (Bouix, 2007), 
which discards completely the term d, 

 J
aD

a b c
=

+ +
   (9)

• DC = distance of Czekanowski, Dice, So-
rensen or F-measure, which is similar to 
the distance of Jaccard, but giving double 
weight to a,

 
2 2

2
e p

C measure
e p

S P aD F
S P a b c

= = =
+ + +

      (10)

In this paper, we propose to adapt a measure 
for intrusion detection introduced by Gu et al. 
(2006), to fine-tune and assess AD algorithms in 
the medical image analysis scenario. The proposed 
measure, referred to as the AD rate or capabil-
ity, RAD, can be seen as the ratio of the mutual 
information, I(X;Y), between the ground truth, 
X, and the AD output image, Y, and the entropy 
of the ground truth, H(X), 

( )
( )

( ) ( )
( )

; |
AD

I X Y H X H X Y
R

H X H X
−

= =

( ) ( ) ( ) ( )
( )

( ) ( )

|
| log

1
log

x y

x

p x p y x
p x p y x

p y
p x p x

−
= −

−

∑∑
∑

      (11)

where, (equation 12)

( ) ( ) ( )log 1 log 1B B B BH X R R R R= − − − −  
      (13)



  ���

Anomaly Detection in Medical Image Analysis

Therefore, RAD (0 ≤ RAD ≤ 1) takes into account 
all the important aspects of detection capability, 
according to 

( ) ( )
( ) ( ) ( )

log log 1 log 1 log
1

log log 1
p p n n

AD
B B

a P b P c P d P
R

a c R b d R
+ − + − +

= −
+ + + −

      (14)

The proposed AD rate provides an intrinsic 
measure of AD capability and it is sensitive to 
operation parameters (Gu, 2006) of the AD sys-
tem. We have verified all these advantages over 
the more traditional measures. 

Pro Pos Ed Ad Algor Ith M for  
br AIn ct  IMAg Ing

Unlike the abundant works on AD in brain MR 
imaging, there is no much work on AD in brain 
CT scanning. In this section, we propose an AD 
algorithm for brain CT imaging. CT is cheaper and 
more widely available than MR imaging systems. 
Therefore, efforts to detect anomalies (lesions) 
from brain CT images are plenty justified.

In general, MR outperforms CT to detect 
brain tumors, but CT is better for the detection 
of calcification, hemorrhages and bony details. 
CT is very useful for diagnosing cerebrovascu-
lar accidents, intracranial hemorrhage, and for 
evaluating skull fractures. CT scanning may be 
used, as well, replacing MR, in the presence of 
patients semiconscious, unable to remain mo-
tionless, suffering of claustrophobia, or carrying 
metallic implants. 

Materials and Methods

Data Collection and Preliminary Stage

Data of 27 brain CT studies, have been collected, at 
the University Hospital “Arnaldo Milián Castro”, 
Santa Clara, Cuba, using a multi-slice CT scanner, 
model Philips ‘Brilliance 40’ (64-channel thin-
slice). In total, 890 slices of size 512×512 voxels 
and resolution of 12 bits, i.e. 4096 gray-levels, 
have been used for this study. 

Compared to most of the published works on 
medical AD, where a statistical model of common 
background tissues is first determined, and then 
anomalies are determined (Ashton, 2006), the 
proposed approach uses a combination of feature-
based and histogram-based classification scheme. 
In order to assess our method, we selected, with 
the help of radiologists and neurologists, a set of 
regions representing the following normal classes 
(Figure 4): air/background (BG), cerebrospinal 
fluid (CSF), white and gray matter (WM and GM, 
respectively), and skull high density bone (HDB). 
From these regions, we extracted patches of 16×16 
voxels. Each patch corresponds to an area of 8mm 
× 8mm at the given resolution.  For each of the 
extracted patches, the histogram, and feature 
vector consisting of two elements: the gray-level 
median and the threshold-entropy, have been 
estimated for the classification, as described in 
the following sub-sections. 

Feature-Based Classification
To pre-classify CSF and BM (WM+GM) regions, 
we did try 40 different features, which has been 

( )
( )( ) ( ) ( )

( ) ( )

( ) ( )
( ) ( ) ( )( ) ( )( )

( )( )

1
| log 1 log

1 11 1

1 11
1 log 1 1 log

1 1 1 1

B eB e
B e B e

B e p BB e B p

B pB p
B p B p

B p B e B p e B

R SR SH X Y R S R S
R S S RR S R S

R SR S
R S R S

R S R S R S S R

−
= − − −

− + −+ − −

− −−
− − − − −

− + − − − +

(12)
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Figure 4. Patches of 16×16 voxels taken from normal class regions in a brain CT image (left) and its 
normalized average histograms (right)

                

Figure 5. Behavior of best ranked features at (pre)classifying CSF and BM normal patches

             
 

used in numerous works (Huang, 2004; Lehm-
ann, 2005; Müller, 2005; Pokrajac, 2005; Radke, 
2005; Benamrane, 2006; Peng, 2006; Sluimer, 
2006; Stoitsis, 2006; Strzelecki, 2006; Xu, 2006; 
Taboada, 2007). Namely:

• Entropy-based measurements: Shannon 
entropy, p-norm entropy, log energy entropy, 
threshold-entropy, and SURE entropy. 

• Central tendency of the gray-level values: 
Arithmetic mean, Trimmed mean, Median, 
Harmonic mean and Geometric mean. 

• Dispersion of the gray-level values: Range, 
Inter quartile range, Standard deviation, 
Variance, and Median absolute deviation 
based on means and on medians. 

• Shape of the probability distribution: 
Skewness and Kurtosis. 

• Gray-level co-occurrence matrix 
(GLCM)-based texture measurements: 
(Xie, 2006). Contrast, dissimilarity, similar-
ity, homogeneity, angular second moment, 
energy, maximum probability, entropy, 
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mean, variance, standard deviation, and cor-
relation. For these GLCM features, we used 
east and south orientations, and a distance 
of one, reducing the number of gray-levels 
to 20 (985-1065, width = 4). 

               
 For every labeled patch, we computed the 40 

features and we ranked them according to their 
classification relevance by using the FSV (Feature 
selection via concave minimization and support 
vector) function in Spider, a Machine Learning 
Toolbox for MATLAB (http://www.kyb.tuebin-
gen.mpg.de/bs/people/spider/index.html). 

According to this ranking, the best perform-
ing features, to recognize brain areas in CT im-
ages, are the entropy-based features, followed 
by those representing the central tendency. The 
dispersion parameters and the shape of the prob-
ability distributions perform poorly, as it can be 
expected from Figure 4. Surprisingly, none of the 
GLCM features was ranked amongst the first 8 
best features.

In order to assess the 12 best ranked features 
(median and arithmetic, geometric, harmonic, 
and trimmed at 10% means; Shannon’s, log 
energy, 2-norm, SURE, and threshold entro-
pies; and GLCM means in the south and east 
directions), we selected a set of patches from 
the CSF and BM classes. Every feature has been 
normalized according to the mean (µ) and the 
standard deviation (σ) (estimated over the set 
of patches).

( ) i
n

xx i −
=     (15)

Figure 5 depicts the plots of the normalized 
feature values (xn), for the selected set of 250 CSF 
patches (patches numbered 1 to 250 in Figure 5), 
and 250 BM patches (patches numbered 251-375 
from WM; and patches 376-500 from GM). As 
it can be seen, all the considered 12 features can 
distinguish CSF (patches 1-250, corresponding to 
normalized feature values around -1) from BM 
(patches 251-500, around +1). However, within 

BM, the subclasses WM (patches 251-375) and 
GM (patches 376-500) can not be differentiated. 
From the 12 considered features, only the threshold 
entropy Hthr (16), with threshold T1 = 1020 (Figure 
5 right) being the gray-level intersection between 
the CSF and BM prototype histograms, performs 
slightly different.

{ }1# ,thr iH i x T= >    (16)
            
As 11 of these features behave similarly, we 

decided to use a feature vector consisting of two 
elements: (i) the gray-level median m50 (because 
it is the best suited feature in the presence of 
artifacts) and (ii) the threshold entropy Hthr to 
(pre)classify the patches under test. Therefore, 
the feature-based classification will use two 
prototype vectors (each of two elements, m50 and 
Hthr), VCSF and VBM for the classes CSF and BM, 
respectively. The classes will be characterized by 
their means (mCSF and mBM, for the CSF and the 
BM classes, respectively) and covariance matrices 
(CCSF and CBM).

For the classification, the Mahalanobis-in-
spired distance (Rousseeuw, 2006; Daszykowski, 
2007; Taboada, 2007), DM, between the feature 
vector of the i-th patch, Vi, and the prototype 
feature vectors, VCSF and VBM, are computed:

 ( ) ( )

( ) ( )

1

1

( , )

( , )

T
M i CSF i CSF CSF i CSF

T
M i BM i BM BM i BM

D V V V m C V m

D V V V m C V m

−

−

= − −

= − −
      (17)

The i-th patch is (pre)assigned to the class for 
which the distance DM has a minimum value, as 
the nearest neighbor pattern matching in (Ger-
ing, 2003).

Histogram-Based Classification
Despite their simplicity, histogram-based tech-
niques have proved their worth as a low-cost, 
low-level approach. Therefore, to complement 
the feature-based classification, we propose a 
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histogram-based scheme with variable-bin-size 
histograms.

The variable-bin-size histograms are based 
on the traditional window/level adjustments used 
to visually analyze CT images of BM and skull 
(Figure 2). More precisely, we forced a first bin 
to include gray-level values below 985, BG class, 
and a last bin over 1250, matching the HDB. 
The rest of the bins are adjusted as in the brain 
window/level adjustment (985-1065, width=4).  
Finally we obtain 23 bins: 0, 985, 989, …, 1061, 
1065, 1250, and 4095. 

After computing the variable-bin-size histo-
gram of every patch, we estimated an average 
(prototype) normalized histogram for the CSF 
and BM classes, respectively. Let, hCSF and hBM 
be such reference histograms. Then, we evaluated 
several histogram-based distances, Dh, reported in 
the literature (Lehmann, 2005; Rousseeuw, 2006; 
Stoitsis, 2006; Taboada, 2007). Namely, the L1, L2 
and L∞ norms, Matusita distance, Bhattacharyya 
distance, and χ2 distance, Histogram intersection, 
Kullback-Leibler divergence, Harmonic mean 
of Kullback-Leibler (symmetric), and the Earth 
Mover’s distance. 

In order to measure the ability of the consid-
ered distances for the separation between classes, 
we propose the use of a separation measure, S, 
subtracting the two histogram-based distances. 
For instance, if the expected class is BM, then Si 
is computed for the i-th patch (with histogram hi) 
by using Dh as 

Si = Dh(hi,hCSF) − Dh(hi,hBM).                  (18)

The analysis of the ranking of the 10 distances, 
with respect to the classification rate and the 
separation measure, showed that the best results 
are obtained using the χ2 distance (Dh1=Dχ2) and 
L∞ norm (Dh2=DL∞). 

( )
2

2

1
( , )

n
i i

i i i

x y
D x y

x y=

−
=

+∑ ,    (19)

1
( , ) maxL i ii n

D x y x y∞ ≤ ≤
= − .     (20)

Classification Stage

The block diagram of the classification stage is 
shown in Figure 6. After loading the image slice 
or the whole set of slices (of size 512×512 each) 
from a CT study, a sliding window of 16×16 
voxels generates a set of patches with 50% of 
overlapping (in total, 3969 patches per slice) 
(Taboada, 2007). An important part of these 
patches (Ne) can be immediately pre-classified 
as BG, or HDB. The rest of the patches (Nr = 
3969 – Ne) will be classified using the following 
procedure. 

For the feature-based classification, we get:

minDM (i) = min (DM(Vi ,VCSF), DM(Vi ,VBM)),            
1<i<Nr ,

if minDM (i) = DM(Vi ,VCSF), then Mclass(i) = 
CSF,    1<i<Nr ,             

if minDM (i) = DM(Vi ,VBM), then Mclass(i) = 
BM,     1<i<Nr .    (21)

For the histogram-based classification, the 
nearest neighbor pattern matching approach is 
applied, using the first best ranked distances Dh1 
and Dh2:

minDh (i) = min (Dh1(hi ,hCSF), Dh1(hi ,hBM)),            
1<i<Nr ,

if minDh (i) = Dh1(hi ,hCSF), then hclass(i) = CSF,    
1<i<Nr ,   
             
if minDh (i) = Dh1(hi ,hBM), then hclass(i) = BM,     
1<i<Nr .      (22)

minDh2 (i) = min (Dh2(hi ,hCSF), Dh2(hi ,hBM)),            
1<i<Nr ,
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if minDh2 (i) = Dh2(hi ,hCSF), then h2class(i) = 
CSF,    1<i<Nr ,            

if minDh2 (i) = Dh2(hi ,hBM), then h2class(i) = 
BM,     1<i<Nr .     (23)

As there are only two possible normal classes, 
the final classification is as follows: 

if hclass(i) = Mclass(i), then class(i) =hclass(i),   
else class(i) = h2class(i) .   (24) 

After these stages, it may happen that some 
anomalies had been inadvertently pre-classified 
as pertaining to a normal class (CSF or BM), i.e. 
there may be some false negatives. To improve 
the AD performance, we computed the robust 

distance (Rousseeuw, 2006), Drob, among all the 
feature vectors (V) characterizing the patches 
pre-classified in the same class, 

( ) ( )1( ) T
rob rob rob robD V V m S V m−= − − .   (25)

We can detect anomaly patches by their large 
values of Drob. The robust distance Drob is very 
similar to DM in (17), but unlike the classical centre 
(mean), a robust method uses a minimum covari-
ance determinant (MCD), mrob, as a multivariate 
location estimate. In addition, Drob uses a scatter 
matrix, Srob, instead of the covariance matrix in 
(17) and it is not affected by the masking effect. 
We use the MCD method (Rousseeuw, 2006), 
implemented in the MATLAB function FAST-
MCD (available at http://www.agoras.ua.ac.be).  

Figure 6. Proposed AD system: Block diagram of the classification stage
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r esults and discussion 

Pre-Classification Stage

Combining both best ‘gross classifier’ approaches: 
feature-based using the vector (m50, Hthr), and 
histogram-based with χ2 and L∞ norm distances 
as Dh1 and Dh2, respectively, the obtained rate of 
classification was 100%. 

Note that the performed pre-classification 
(BM or CSF) is just an intermediate stage to deal 
with the variable ‘background’ (normal tissues) 
where the anomalies can appear in disguise. The 
final purpose is to detect the anomalies or lesions 
represented in the CT images. 

For all the patches, pre-classified as normalcy, 
in a particular class (BM or CSF), the robust 
distance is computed as in (25) to reclassify those 
patches with associated Drob over a threshold 
computed with the FASTMCD function. 

We should note that, applying (25) with the 
mean and the covariance matrix estimated in the 
training stage (mCSF and CCSF for CSF class, or mBM 

and CBM for BM class), where only normal patches 
were used (no outliers or anomalies), one may 
obtain similar results. Despite the higher computa-
tional burden, we propose the robust distance with 
the MCD estimate because this robust approach 
circumvents any slight calibration or performance 
issue biasing the data under assessment (or those 
used for training) by re-adjusting the characteris-
tics of the mean and covariance matrix. 

Classification Stage

We performed some evaluation of the AD algorithm 
of Figure 6 for the classification stage by using 10 
slices, containing various representative lesions: 
tumors, hemorrhages and infarctions areas (Figure 
7 shows four of them). Observe that some are hyper-
dense (brighter than the surrounding tissue) and 
some are hypo-dense (darker than surroundings). 

 The hyper-dense lesions have been detected 
almost always, i.e. bleeding, hemorrhage, calci-
fications, or calcified tumors, as in the example 
of Figure 8, although sometimes they could be 

Figure 7. Examples of lesions to detect with the AD system here implemented
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Figure 8. Example of performance evaluation of AD system

confused with GM, which is part of the BM 
normal class. 

In the obtained AD results for the 10 slices 
(images), we observe an overall sensitivity of 
74.2%, specificity of 99.8%, and positive predic-
tive value of 84.1%. The Jaccard distance (65%) 
has a similar behavior as the proposed AD rate 
(60%), but the latter is even more sensitive to any 
variation of performance. 

The proposed AD algorithm can not identify 
hypo-dense lesions with gray-level values between 
those of normal classes, BM and CSF, and some-
times totally overlapped with the latter. Hence, 
we will need to incorporate in future work other 
criteria to correctly discriminate these classes. A 
good candidate should take into account position 
and region properties such as area, elongation, 
compactness, etc.

futur E tr Ends

The universe of applications of AD algorithms 
for medical image analysis will consolidate and 
advance in the near future. Automatic annotations 
of anomalies in medical images by AD systems 
will help teaching and research, along with 
several clinical applications, including region-
based compression algorithms for telemedicine. 
Definitively, more AD algorithms will succeed in 
clinical practice in the near future because it will 
be a market for them; they will be faster and easier 
to use, more reliable, and interactively correctable 
if needed. Recently, certain AD systems have 
evolved from simple detection to interpretation, 
characterization and follow-up (Sluimer, 2006; 
Stoitsis, 2006); that will be the future.

Unfortunately, appropriate medical image 
databases carefully annotated for AD algorithm 
benchmarking are not currently available. Al-
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though, in certain areas, this necessity has been 
recognized and first steps are being undertaken 
(Sluimer, 2006; Messmer, 2006), more efforts 
should be focused in this direction to allow objec-
tive comparison of particular AD algorithms. 

For certain applications, such as surgical 
planning, surgical guidance (DiMaio, 2007), 
volumetric analysis (Ashton, 2006), time series 
analysis (Radke, 2005; Huang, 2007), and com-
puter aided diagnosis (Iyatomi, 2006; Peng, 2006; 
Sluimer, 2006), images should be annotated. 
However, manual annotation is a subjective and 
very expensive task. In these applications, auto-
matic segmentation of anomalies by using AD 
algorithms can save much of the time required 
for sketching contours, with very high stability. 
AD systems will take care increasingly of this 
annotation process, or at least be considered as a 
starting point or as a second opinion reading in 
a screening program.

More and more AD algorithms will be incorpo-
rated into the medical imaging equipment, as well 
as in computer-assisted diagnosis and computer-
aided surgery systems, to help and complement 
doctors’ interpretations. As AD algorithms will 
be part of the imaging systems, to reduce their 
effective computational time, some processing 
stages should be performed from the time the 
data are acquired. 

Bioinformatics, pharmaceutical research, nano-
medicine and neurosciences are currently some 
of the most prolific research fields, which should 
benefit to a great extent from medical imaging 
AD systems. Online distributed approaches for 
AD will become more available in applications 
such as high content screening with immediate 
corrective action, early termination, and redesign 
of assays (Goode, 2007). Opportunities may arise 
where AD at the organ level images will benefit 
from findings at the molecular, cellular, and atomic 
levels. On the other hand, results at the organ 
level imaging and microscopy combined, merging 
macro and micro worlds, may help researches 
on physiological functions. We believe that AD 

systems will evolve from simple detection to 
interpretation, characterization and follow-up.

conclus Ion

AD in medical image analysis is a complex field 
associated to several imaging modalities to study 
lesions, structurally and compositionally distinct 
from surrounding healthy tissue, in certain or-
gans. There have been numerous works on AD 
systems for digital mammography, lung CT, and 
brain MR imaging. Other areas have started to 
obtain encouraging results, and new applications 
are devised these days.

To evaluate the performance of AD systems, 
annotated datasets (ground truth) and some ad-
equate assessment measures as gold standards 
should be defined. In this work, we did propose 
the AD rate or capability, RAD, a very complete 
measure for this purpose.

AD associated to brain CT images, although 
not undertaken before in the literature, presents a 
group of challenging problems. Histogram-based 
and feature-based measurements were combined 
with a nearest neighbor pattern matching approach 
to obtain a pre-classification of image patches 
decomposed with a sliding window. Later, ro-
bust distance computation inside every normal 
class decides if there is any outlier (anomaly) or 
not. Better results could be obtained by using 
machine learning approaches to produce useful 
rules, such as age of the patient, as well as region-
based measures. According to these rules, part 
of the ‘normal regions’ may be re-classified as 
anomalies, improving final results. 
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k Ey t Er Ms

Anomaly: Deviation or departure from the 
normal or common order, form or rule; one that 
is peculiar, irregular, abnormal or difficult to 

classify. In image analysis, anomalies are un-
known targets, which are relatively small and 
with low probability of occurrence. Tumors, 
micro-calcifications, and vascular irregularities 
are examples of anomalies in the medical image 
analysis framework.

Anomaly Detection (AD) Systems: Systems 
used to detect anomalies. They can be developed 
with no prior knowledge of the data, or modeling 
both normality and anomalies, or modeling only 
normality. In the medical imaging context, the 
third approach is the best suited. AD systems can 
be based on statistical methods, neural networks, 
or machine learning.

Imaging Modalities: Different physical prin-
ciples involved in the acquisition of an image. In 
the medical imaging context, we can mention: 
photography, endoscope, microscopy, electrical 
impedance tomography, ultrasound-based sys-
tems, X rays, CT, MRI and fMRI, MRSI, SPECT, 
PET and PET/CT. 

Content-Based Image Retrieval: Process 
of retrieving images from databases based on its 
real visual contents (features of texture, shape, 
and color) by using signal processing, pattern 
recognition and computer vision methods. 

Segmentation: The partitioning of digital im-
ages into different regions, which group elements 
(pixels or voxels) with similar feature values. 

Ground Truth: The image gold standard for 
assessing detection/classification algorithms. 
This term was originally used to designate the 
true information gathered in ground to evaluate 
remote sensing techniques like aerial photographs 
or satellite imagery, but it has been generalized 
to other scenarios. 

Measures of Performance: Measures used 
to evaluate the performance of AD algorithms, 
by using images with available ground truths. 
Most of them are based on the coincidences (true 
positives and true negatives) and not coincidences 
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(false positives and false negatives) between 
regions detected/classified by algorithms under 
assessment and the corresponding regions in the 
ground truth.

Window/Level Adjustment: Mapping of por-
tions of the image dynamic range to the dynamic 
range of the display monitor. For instance, a 12 
bit CT image should be re-scaled for brain matter 
analysis with a window/level adjustment around 
35 ± 35 Hounsfield Units (i.e. gray-levels between 
1000 and 1070). This is the base of the variable-
bin-size histogram approach in this work.

Endnot Es

1   Its complementary dissimilarity measure, 
(1-Sp), is known as the false alarm rate.

2   Its complementary dissimilarity measure, 
(1-RC), is known as the misclassification rate 
and it is proportional to the square of the 
Euclidean distance, which is the Hamming 
distance in communications.

3  In a context where all the patients are ex-
pected to have certain degree of lesions or 
anomalies, e.g. a follow up program or a 
confirmation study, the imbalance is not 
that critical, but still (d+b) >> (a+c).
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Abstr Act
 
The authors present in this chapter an overview on evaluation of medical image compression. The differ-
ent methodologies used in the literature are presented. Subjective evaluation uses some a priori knowl-
edge such as the judgment of experts or the ability to realize a correct diagnosis. Objective evaluation 
generally takes into account the value of metrics: the PSNR is an example of such a criterion. The goal 
of hybrid evaluation is to realize a reliable judgment while having a simple computation. The authors 
discuss on the benefits and drawbacks of these approaches. The European Project called OTELO in 
which they were involved, gives feedback on ultrasound image compression.

Introduct Ion

Medical imaging is an important and a powerful 
technique whose goal is to facilitate the expert 
diagnosis. Many image processing algorithms can 
be used within this context such as: image filter-
ing, compression, segmentation, interpretation 
or retrieval... One important issue concerns the 
evaluation of different image processing results 

for the medical expert: as for example, image 
filtering can improve the image quality but can 
disturb the ability of a medical expert to make 
a diagnosis.

The proposed chapter deals with the par-
ticular field of the evaluation of medical image 
compression. Image compression for medical 
applications is an important topic as many 
image acquisitions are transmitted and stored 



���  

Evaluation of Medical Image Compression

for a further analysis. In this context, we want 
to minimize the size of the compressed image 
while keeping a sufficient quality for the diag-
nosis. Several evaluation methods have been 
proposed in the state of the art. We propose 
in this chapter to make an overview of these 
approaches. We present different evaluation 
techniques for either an expert in image pro-
cessing or for a medical expert. We discuss the 
advantages and drawbacks of each method. 
The European OTELO project (Delgorge et al., 
2005) in which we have been involved, provides 
a good experience feedback in the evaluation 
of medical image compression.

The main objective of the European OTELO 
project (mObile Tele-Echography with an ultra 
Light rObot) was to develop a robotic tele-echo-
graphic system. A light weight robot holds and 
moves a real probe on a distant patient accord-
ing to the expert gesture and permits an image 

acquisition using a standard ultrasound device 
(see Figure 1). Ultrasound images constitute 
the only feedback information available to the 
medical expert to remotely control the distant 
robotized system. The expert controls the remote 
probe holder robot by using a dedicated input 
device and based on the quality of the received 
information. The diagnosis made by the specialist 
strongly depends on the quality of these images. 
An important task also concerns the evaluation 
of the quality of the compressed images. Many 
experimental results  are presented in this chapter 
in order to illustrate the behaviors of the different 
evaluation methods.

We can distinguish three types of evaluation 
methods in the state of the art. The first one  
concerns the subjective evaluation. The quality 
of a compression result, for any medical types of 
images, is traditionally evaluated by considering 
a visual test where many experts examine a large 

Figure 1. the OTELO tele-echographic system
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set of images and score each one based on their 
quality or the ability to make a correct diagnosis. 
Second, we present the objective evaluation meth-
ods. Many statistical criteria have been proposed 
in the literature to automatically evaluate different 
compression results of a single image. We pro-
pose to compare many of them and discuss their 
efficiency. Subjective and objective evaluation 
methods have many advantages and drawbacks. 
These two approaches are complementary. That 
is why many works propose an hybrid approach. 
These methods are presented in the main trust of 
this article. The goal of these methods is to make 
a reliable judgment (similar to a medical expert) 
while using some statistical criteria to make the 
evaluation of a large set of compression results 
possible. The future trends in the domain are then 
proposed and a conclusion is given.

bAckground

Image compression is an important issue in 
medical imaging as the distant visualization of 
medical images is now possible through high 
bandwidth networks for different applications 
(discussion between experts on a difficult case, 
storage of medical images of a patient...) and as 

telemedecine becomes an emergent technology 
nowadays (Delgorge et al., 2005).

Image compression is an image processing 
algorithm whose objective is to decrease the 
size of storage of the image while preserving as 
much as possible its visual quality (see Figure 
2). Even if this definition is quite simple, the 
main problem is to evaluate the quality of a 
compression result. As for example, the result 
given in Figure 2 is clearly not very good but 
it is difficult to say if this quality would be 
satisfactory for a medical expert to make a 
diagnosis. 

We present in the following sections two clas-
sical approaches for the evaluation of medical 
image compression results.

subjective Evaluation 

The evaluation of image processing results can 
be realized in a subjective way. It can be done 
through different approaches:

• The quality of a result can be visually ap-
preciated by an user on a benchmark image. 
The well known « Lena » image is an ex-
ample. All researchers in image processing 
can rather easily compare the results they 

Figure 2. Example of a JPEG compression result (ratio 5%) of an ultrasound image

 

JPEG Compression 
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obtain using their own algorithm with some 
from the state of the art;

• It is also possible to use a synthetic ground 
truth in order to compare the results of dif-
ferent algorithms. As for example, synthetic 
images can be used in order to evaluate the 
quality of a medical image segmentation 
result;

• The use of a phantom (synthetic material) 
also permits to evaluate some image process-
ing results while keeping all acquisitions 
artifacts; 

• Another solution consists in asking as many 
experts as possible to quantify the quality 
of the obtained results. For medical applica-
tions, many approaches were defined in the 
literature such as the simple visualization of 
results, the visual comparison of results or  the 
performance quantification in term of ability 
to realize a correct medical diagnosis.     

Nowadays, the two first methods are rarely 
used because the achieved evaluation reliability 
is poor. The two last methods are more and more 
used with many alternatives. We present in this 
section, the possible solutions and some associ-
ated feedbacks.

In the multimedia world, the quantification of 
the subjective quality perceived by an observer 
remains the only reference as regards to the quality 
of images (Klein, 1993). The International Consul-
tative Committee of Radio communication (CCIR) 
defined multiple standardized evaluation methods 
to define the image quality. The principle of a 
subjective test is contingent upon a standardized 
structure, which consists of an observers group, 
a quantification method for  the appreciation of 
the visual quality (i.e. a subjective scale of quality 
notation), a set of test images, a display material, 
a test room and a protocol defining the notation 
process of the images as well as the experimental 
conditions. 

The three most current tests are the follow-
ing (International Telecommunication Union, 
2002):

• Method with one stimulus: It makes it 
possible to evaluate many imagery systems. 
A set of images degraded by various treat-
ments is presented in a random order. The 
appreciation of the image quality is given 
by the expert without any reference image. 
The scale of notation can be defined or built 
by the observer itself as the test advances. 
Figure 3 shows an example of such a sub-
jective evaluation with 5 possible scores 
(from unacceptable to very good). The main 
problem of this approach is that it requires 
a certain number of images for an observer 
in order to stabilize the scale of scores. Note 
also that the original image is not given, that 
is not very comfortable for the observer.

• Method with double stimulus: Images are 
evaluated per pair: an original image (the 
reference) and a compression result. The 
observer must score this result according to 
the preset scale. In general, two categories 
of scales are proposed: the first translates 
the feeling of the visual quality of the im-
age (that can be considered as a criterion 
of “nice image”), the second translates the 
degree of degradation (that is a criterion of 
“good image” for the application). 

• Comparative method: Different images 
representing the multiple treatments we want 
to compare are presented at the observer. 
The comparison is realized considering 
the different compression results. The ob-
server must sort all of them considering the 
alteration associated to the original image. 
Figure 4 gives an example where an expert 
is asked to sort 5 compression results given 
the original image.
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Figure 3. Example of an evaluation using only 
one stimulus 

Figure 4. Example of an evaluation using the comparative approach

A large quantity of recommendations is pub-
lished (International Telecommunication Union, 
2002). They relate mainly to: 

• the environment of the test: displaying con-
ditions, the visualization material, distance 
of the expert to the screen, 

• the resolution and contrast of the screen, 
• the image database used for the test, 
• observers (or experts): they must be at least 

15, their vision must be measured and cor-
rected if necessary, their experiment must 
be raised (specialty, age), 

• the protocol of the test: it must be precisely 
explained to the observers, 

• the duration of test: it must last at least 30 
minutes, 

• the analysis and the presentation of the 
results.

This kind of tests implies that all the experts 
follow a very rigorous protocol. This approach  
requires important human and financial fund-
ings. This is why, it is not rare to find in the 
literature some studies taking as a starting point 
these recommendations but not following them 
all completely (Naegele-Jackson et al., 2002; 
Azpiroz-Leehan et al., 2004). Moreover, such 
qualitative and subjective evaluations depend of 
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the medical specialty of the expert, its motiva-
tion, its availability, its tiredness or its interest 
in such tests.

Receiver Operating Characteristic (ROC) 
curves provide many tools to analyze the behav-
ior of models, algorithms or human judgments. 
It can be used to compare different compression 
methods by considering the medical application 
(Weatherburn et al., 2003). In order to choose 
a compression method or a parameter, we can 
evaluate the number of cases corresponding to a 
correct diagnosis. Figure 5 shows an example of 
ROC curves. We look for a compression method 
that maximizes the correct positive rate while 
minimizing the false positive rate. In this case, the 
Test A has to be preferred than the other one.

o bjective Evaluation 

A subjective evaluation permits to take into ac-
count the medical expertise. The main drawback 
of this approach is that these tests are very time 
and manpower consuming. In the literature, many  
statistical criteria are available and offer a simple 
tool to evaluate the quality of a compression result 
according to the original one.

Figure 5. Example of ROC curves 

Statistical Criteria

There are several methods to evaluate an image 
quality. The quality of a compression result can be 
represented thanks to the pixel distance between 
the compression result and the original image. 
The most known distance is the Minkowski one. 
From this measure, we obtain many distances: 
the Euclidean distance, the Manhattan distance, 
the Chebychev distance and the mean square 
error (MSE). These measures can be calculated 
considering the neighborhood of a pixel and not 
only with one pixel (Tamtaoui et al., 1999). In the 
image processing literature, the most frequently 
used measures are the mean square error (MSE) 
and the peak signal to noise ratio (PSNR) (Yang, 
2005; Zhong, 2005).

The similarity between two images can be 
translated thanks to correlation measures. Sev-
eral criteria have been proposed in (Linfoot, 1958) 
and are based on the power spectral density: in par-
ticular, the fidelity, the structural content and the 
normalized cross correlation. The Czekanowski 
coefficient (Andreautos et al., 1998) measures 
the correlation between two images considering 
parameters extracted from both of them.
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The above mentioned distances can be calcu-
lated in the spectral field. The goal is also to isolate 
the image distortion on particular frequency bands 
or to separate the distortions due to the spectral 
phase or magnitude (Avcibas et al., 2002).

T-J Chen proposed in (Chen 2003) a new qual-
ity measure based on the Moran statistics. The 
Moran I coefficient translates the studied area 
clearness, it measures a structural distortion and 
not a gray level pixel variation. The compressed 
image statistical properties are used in (Turaga 
et al., 2004) to evaluate the distortion due to the 
compression.

Some graphical criteria, based on the his-
tograms of images, have been proposed. The 
graphical distance also measures the dissimilarity 
between two histograms or uses the difference 
image histogram to represent a fidelity measure 
between the original image and the compression 
result (Sundersingh, 2000).

Discussion

The main advantage of objective criteria is the 
simplicity of computation. It is then possible to 
automatize the evaluation of a large set of com-
pression results. The important drawback of all 
these statistical criteria is the fact that they do 
not always correspond to the human visual sys-

tem (HVS) – representing the observer’s visual 
perception.

The definition of the distance measures de-
pends on the kind of degradations introduced 
in the image by the compression algorithm. The 
problem of a graphical measure based on the 
histogram is the fact that the histogram is not a 
single function: the same histogram can represent 
two completely different images.

Moreover, the MSE and PSNR distance mea-
sures are very popular due to their simplicity of 
mathematical definition, even if many studies 
showed that these criteria are not enough relevant. 
As for example, Figure 6 shows the bad reliability 
of the PSNR measure. Two different compression 
methods (obtained by using the Jpeg-LS and Jpeg 
algorithms) give two compression results with dif-
ferent compression rate but a similar PSNR value 
(PSNR=32.5dB). We can clearly see that the Jpeg 
result quality is visually worst than the Jpeg-LS 
one, whereas the PSNR evaluates as equal their 
quality. In this example, we understand that the 
PSNR is not an efficient criterion for a medical 
application.

In the OTELO project framework, we stud-
ied some statistical criteria and compared them 
with respect to the results of an expert evalu-
ation. We selected several criteria of different 
types according to some previous works in the 
literature (Avcibas et al., 2002): distance mea-

Figure 6. Comparison of two compression results with same PSNR

Original image  Jpeg-LS result Jpeg result 
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sures, denoted Dx ; correlation measures Cx; 
spectral measures Sx ; PSNR measure P1 (see 
Table 1). The three best criteria are D5, S2 and 
S1, reaching for D5 a maximal value of 65.3%. 
This means that this criterion is able to reproduce 
the ability of a medical expert to compare two 

Table 1. Statistical criteria chosen for the OTELO 
study

D1 Minkowski distance - Mean absolute error
D2 Minkowski distance - Mean square error
D3 Minkowski distance - Modified infinity norm
D4 Neighborhood error - 8 neighbors
D5 Neighborhood error - 24 neighbors
D6 Multi-resolution error
C1 Normalized cross correlation
C2 Image fidelity
C3 Czekonowski correlation
S1 Spectral phase error
S2 Spectral phase-magnitude error
S3 Block spectral magnitude error
S4 Block spectral phase error
S5 Block spectral phase-magnitude error
S6 Block spectral error
P1 Peak signal to noise ratio

Figure 7. Hybrid evaluation 

compression results in 65.3% of the cases. One 
can notice that the PSNR criterion, often used 
for the comparison of compression results, ranks 
only at the ninth place.

MAIn focus  of th E ch APt Er

We focus in this section on the hybrid evaluation 
approach. This methodology has for objective to 
realize a reliable judgment while keeping a simple 
computation (see Figure 7).

human Visual system (hVs) based 
c riteria 

The objective of these criteria is to give some 
evaluation results close to those we would ob-
tain with a subjective evaluation while having 
the same calculation simplicity as the objective 
criteria. Since 1950, many models have been 
proposed with the goal to simulate the human 
visual system (HVS), representing the visual 
perception. The first HVS models were based on 
an approach called single channel. In this case, 
the HVS is considered as a simple space filter 
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whose characteristics are defined by a function 
of sensitivity to contrast. 

Le Callet and Barba (Le Callet & Barba, 2001) 
proposed on this principle, a criterion for the 
evaluation of a compression result. It carries out 
the combination of perceptual errors between the 
original image and the compression result to obtain 
a quality score. The performances of the criterion 
(evaluated using a subjective evaluation) allow a 
benefit of about 30% of effectiveness (measured 
by the coefficient correlation factor) compared to 
the PSNR. Mathematical models of observers were 
also developed for the nuclear medicine (Pommert 
& Höhne 2002). The compression result, the error 
image or a simple statistical criterion are then 
balanced by one of these models. The definition 
of artificial models of observers concerns a rather 
long and expensive procedure and is dependent 
on the type of tested images.

Some studies model the HVS and then define 
some criteria from this model (Carnec, 2004). 
One can also find in the literature many criteria 
proposing to combine statistical metrics and some 
characteristics of the HVS. In the following study 
(Miyaji et al., 2000), the SNR is balanced by local 
factors reflecting visual perception (the effect of 
mask, frequential characteristics). When some 
specificities of the image are taken into account, 
one can note that the correlation of the criterion 
with subjective quality increases (compared to the 
only use of statistical metrics). The error of evalu-
ation noted by this HVS based criterion decreases 
about 30% compared to the PSNR.

For the OTELO project, we studied also some 
HVS based criteria: human visual system based 
measures Hx ; contrast measure T1 (see Table 2). 
The T1 and H1 criteria gave good results, obtaining 
respectively the second and fifth place considering 
the results of all the statistical and HVS based 
criteria. The T1 criterion is able to reproduce 
the ability of a medical expert to compare two 
compression results in 65.3% of the cases. 

Table 2. HVS based criteria chosen for the OTELO 
study

H1 Absolute norm Human Visual System
H2 L2 norm Human Visual System

H3 Similarity
H4 DCTune error
T1 Contrast measure

f usion of Evaluation c riteria 

The models proposed in the literature to represent 
the HVS are either too simple or too complex: 
they do not represent in an efficient way the HVS 
and they are too complex to obtain a criterion 
easily usable. In order to mitigate these various 
disadvantages, some works propose to combine 
several statistical measures (Cane, 1997) and 
bring them closer to the HVS (see Figure 8). One 
can find some works on combinations of criteria 
by linear regression, analysis of the variance and 
construction of a Kohonen chart (Avcibas et al., 
2002) or with a genetic algorithm (Olivès, 1998; 
Delgorge et al., 2006).

A possible method for the fusion of evalua-
tion criteria consists in combining linearly the 
best ones. A combined criterion can be written 
as follows:

C FUSION= ∑
i =1

N

ai . Ci   (1)

Where ai are coefficients that permit to 
define the importance of the criterion Ci in the 
computation of CFUSION and to take into account 
its variation interval. These coefficients have to 
be determined by optimization by considering 
some evaluation examples given by experts. The 
value N corresponding to the number of criteria 
to fuse and can be set by the user. The choice of 
criteria to fuse can be done according to their 
efficiency (used alone) or by selecting them in 
the optimization process (Delgorge et al. ; 2006). 
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The optimization method can be a classical lin-
ear method (such as simplex) without selection 
of criteria to fuse. In the other case,  a genetic 
algorithm can be used.

This last approach has been applied in the 
OTELO project, in order to improve the evalua-
tion of compression results quality and to perform 
better than the statistical criteria. We combined 
the minimal number of statistical criteria while 
obtaining an evaluation as close as possible to 

Figure 8. Fusion of evaluation criteria  

Figure 9. One solution to learn the medical expertise 

the medical judgment. The highest similarity rate 
of correct comparison obtained is 75.3% for the 
fusion of 9 selected criteria. The selection pro-
cess of criteria to fuse permits also to determine 
complementary ones. 

Medical Expertise l earning 

The fusion of statistical criteria can be done ac-
cording to another approach: the learning of the 
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medical assessment data. In this case, the objective 
is to define an algorithm that is able to compare 
two compression results similarly as a medical 
expert. In the previous section, the decision func-
tion for the comparison of two compression results 
was set (as for example, induced by the choice of 
a linear combination). With this new approach, 
the decision function is estimated thanks to a 
learning algorithm (see Figure 9). The support 
vector machine (SVM) has been proposed as the 
learning algorithm for the OTELO application 
(Delgorge et al., 2006). 

Suppose we have two compression results 
A and B we want to compare. We compute on 
each compression result N different evaluation 
criteria (that can be selected previously). As 
for example, for the compression result A, we 
have a vector C A

1
,.. , C A

N
 where C A

i
 is the value of 

the criterion number i. We have so two vectors 
for each compression result we can merge in a 
single one denoted COMP= C A

1
,.. , C A

N
, C B

1
,.. , C B

N
. 

This pattern represents the comparison of the 
compression results A and B. We can use some 
judgments given by experts on the comparison of 
different compression results as reference. Given 
this reference, if the result A is better judged than 
the result B by experts, the COMP vector must 
lead to a an exit of the comparison algorithm 
equals to 1. 

In the OTELO project experiments, when 95% 
of the whole data set is used in the learning database, 
the system obtains a successful recognition rate of 
92.8%, for the fusion of 5 criteria computed for 
each of the two compression results to compare.

discussion

As for us, hybrid evaluation is nowadays the best 
approach to quantify the performance and the 
quality of  an image processing result. The defi-
nition of a single evaluation tool for any medical 
applications is impossible. It is so necessary to 
take into account the particular context of the ap-
plication and also different evaluation approaches. 

This is also the case for different domains such 
as paper reviewing. The evaluation of a paper 
is based on different criteria (clarity, adequacy 
to the literature review, contribution...) that are 
taken into account by the evaluator based on its 
experience and expertise.

We presented three possible methods in the 
medical image compression. Table 3 sums up the 
results we obtained in the context of the OTELO 
project. Note that the best objective evaluation 
criterion gave a performance equals to 65,3% 
based on medical experts judgment. The medical 
expertise learning shows clearly its benefit.

futur E tr Ends
 

Image processing is now a mature technology. The 
evaluation of a processing result is an important 
task especially in medical imaging. Different 
approaches have been proposed in the literature. 
Nevertheless, few techniques are used for the vali-
dation of a new algorithm. Generally, the PSNR 
is used to compare multiple compression results 
even if different studies showed that this evaluation 
criterion does not give a reliable judgment. 

We think that two main future trends have to 
be considered.

The first one concerns the analysis of evalu-
ation methodologies. Even if some new criteria 
are proposed in the literature, none validation are 
generally provided. The systematic comparison 
of evaluation criteria is necessary to increase the 
reliability of the judgment that is realized. It will 
have also an impact on the progress in defining 
new image compression methods.

Table 3. Hybrid evaluation results

Approaches Performance
Human Visual System criterion 65,3%
Fusion of criteria 75,3%

Medical expertise learning 92,8%
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The second issue concerns the proposition of 
new hybrid evaluation criteria. They combine the 
advantages of objective and subjective evaluation 
methods. An hybrid evaluation criterion, through 
integrating some visual perception considerations, 
is an elegant and interesting solution. The expertise 
learning is another solution which is similar to 
a medical expert training. New  criteria can be 
developed integrating many aspects such as the 
medical application, the type of image or the type 
of displaying tool.      

c onclus Ion

Evaluation of medical image compression is a great 
challenge as this processing is more and more 
used for storage and telemedecine applications. 
The difficulty for the medical application is that a 
medical expert does not see the same thing than a 
non expert. The main interest of a medical expert 
is to quantify in which measure the processing 
will facilitate its diagnosis. A non expert will 
appreciate the quality of an image considering 
the alterations of the compression result. Many 
studies have to be done in order to define a metric 
that embeds this kind of information.
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kE y tE r Ms

Fusion: Combination of different data in order 
to improve decision making.

Hybrid Evaluation: The goal of this approach 
is to obtain a judgment as reliable as the subjective 
one while having an easy computation.

Human Visual System (HVS): It refers to the 
visual perception of humans that is simulated by 
researchers in evaluation.

Objective Evaluation: It is a quantitative 
evaluation generally based on statistical criteria. 
None a priori knowledge is used for the evalu-
ation. 

Peak Signal-to-Noise Ratio (PSNR): The 
PSNR is most commonly used as a measure of 
quality of reconstruction in image compression. 

Receiver Operating Characteristic (ROC): 
ROC curves provides tools to analysis the behavior 
of models, algorithms or human judgments.

Subjective Evaluation: It is a quantitative or 
a qualitative evaluation involving experts or some 
a priori knowledge.
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Abstr Act
 
Medical images are often characterized by high complexity and consist of high resolution image files, 
introducing thus several issues regarding their handling. Current compression schemes produce high 
compression rates, sacrificing however the image quality and leading this way to unenviable examina-
tion.  Region of Interest (ROI) coding has been introduced as an efficient technique for addressing such 
issues, by performing advanced image compression and preserving quality in diagnostically critical 
regions. This chapter discusses the basic ROI approaches and provides an overview of state of the art 
ROI coding techniques for medical images along with corresponding results.

bAckground

Medical imaging has a great impact on medicine, 
especially in the fields of diagnosis and surgical 
planning. Proper assessment requires high image 
quality, which is translated into higher require-
ments for storage capacity and transmission 
bandwidth in applications like electronic health 
records and telemedicine applications. Medical 

image compression can reduce redundancy of the 
image data in order to be able to store or transmit 
data in an efficient form. Compression can be 
lossy or lossless; Lossy compression methods, 
especially when used at low bit rates, achieve 
higher compression ratio and size/rate reduction 
but also introduce compression artifacts. Loss-
less compression methods may also be preferred 
for high value content, such as medical imagery 
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or image scans made for archival purposes. The 
tradeoff between lossy and lossless image com-
pression can be addressed by introducing the 
Region of Interest (ROI) coding; for most medical 
images, the diagnostically significant informa-
tion is localized over relatively small regions of 
interest. In this case, region-based coding offers 
better utilization of the available bit rate since 
the high quality should be maintained only for 
the aforementioned diagnostically significant 
regions and the rest of the image can be encoded 
at a lower bit rate.

Introduc Ing bAsIc c onc EPts 
of ro I cod Ing

The functionality of Region of Interest (ROI) 
is important in medical applications where cer-
tain parts of the image are of higher diagnostic 
importance than others. In such a case, these 
regions need to be encoded at higher quality 
than the background. During image transmis-
sion for telemedicine purposes, these regions 
are required to be transmitted first or at a higher 
priority. In transformation-based ROI coding 
methods, the coefficients associated with the 
ROI are transferred ahead of those associated 
with the background. Therefore, when an image 
is coded with an emphasis of ROI, it is neces-
sary to identify the coefficients required for the 
reconstruction of the ROI. Thus, a ROI mask is 
introduced to indicate which coefficients have to 
be transmitted exactly in order for the receiver to 
reconstruct the ROI. Usually, the wavelet trans-
form (Burrus et. al., 1998; I. Daubechies, 1998) is 
applied to the image at the encoder side and the 
resulting coefficients not associated with the ROI 
are scaled down (shifted down) so that the ROI 
associated bits are placed in higher bit planes The 
mask in wavelet domain is a map pointing out 
all the related coefficients for the reconstruction 
of the ROI. The corresponding locations of the 

coefficients in next scale are calculated from the 
current scale. An example calculation of the ROI 
mask is as follows (Liu et. al. 2004):

Let Rn the wavelet domain of an image and 
Ω∈Rn the Region of Interest. The characteristic 
function ( )xΩ  is defined as:

( )
1,    if 
0,    if else 

x
xΩ

∈Ω
= 


   (1)

Then the ROI mask will be generated accord-
ing to:

( ) ( )( )i ig x W x xΩ= +

  ( )     iiI x xΩ ∈ Λ   (2)

where iW  stands for the wavelet operator for the ith 
subband, Λ is the index set of all subbands and iI 
is identity operator equipped with down-sampling 
operation respectively.

ROI coding has been applied on different types 
of medical images. For instance, MAXSHIFT of 
JPEG2000 (ISO/IEC JTC 1/SC 29/WG 1 (ITU-
T SG8), JPEG 2000 Part II Final Committee 
Draft, 2000), set partitioning in hierarchical trees 
(SPIHT) (A. Said and W.A. Pearlman, 1996), 
embedded block coding with optimized trunca-
tion (EBCOT) (Taubman, 2000), adaptive integer 
wavelet transforms (IWTs) (Minami et. al. 2001) 
and region-based discrete wavelet transform (RB-
DWT) (S. Li and W. Li, 2000) are the most common 
transformations utilized for region coding on still 
medical images.  Variations of the aforementioned 
algorithms have been proposed for application 
on volumetric (i.e. three dimensional) images 
(e.g., 3D SPHIT (Xiong et. al., 1998)). Additional 
techniques allow the implementation of multiple 
and arbitrary ROI coding as well as dynamic 
coding for scalable medical image compression. 
Regarding medical video compression, similar 
techniques allow the annotation of regions with 
higher diagnostic importance within the video 
sequence (Liu et. al., 2004). Figure 1 presents 
two medical image samples and a medical video 
image compressed using ROI coding.
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ro I cod Ing tE chn IQuEs for 
2-d MEdIc Al  IMAg Es

This section provides ROI coding techniques ap-
plied on still 2-D medical images. The principle of 
the general-scaling method (also defined in Part 
II of the JPEG2000 Imaging Standard (ISO/IEC 
JTC 1/SC 29/WG 1 (ITU-T SG8) JPEG 2000 Part 
II Final Committee Draft, 2000)) is to scale (shift) 
coefficients so that the bits associated with the 
ROI are placed in higher bit-planes than the bits 
associated with the background (see Figrue 2(b)). 
Then, during the embedded coding process, the 
most significant ROI bit-planes are placed in the 
bit-stream before any background bit-planes of the 
image. Depending on the scaling value, some bits 
of the ROI coefficients might be encoded together 
with non-ROI coefficients. Thus, the ROI will be 
decoded, or refined, before the rest of the image. 
Regardless of the scaling, a full decoding of the 

bit-stream results in a reconstruction of the whole 
image with the highest fidelity is available. If the 
bit-stream is truncated, or the encoding process 
is terminated before the whole image is fully 
encoded, the ROI will be of higher quality than 
the rest of the image.

According to the MAXSHIFT method, (de-
fined in ISO/IEC JTC 1/SC 29/WG 1 (ITU-T SG8) 
JPEG 2000 Part I Final Committee Draft Version 
1.0, Mar. 2000.), the scaling value is computed in 
such a way that it makes possible to have arbitrary 
shaped ROIs without the need for transmitting 
shape information to the decoder. This means also 
that the decoder does not have to perform ROI 
mask generation either. The mapping of the ROI 
from the spatial domain to the wavelet domain 
is dependent on the used wavelet filters and it is 
simplified for rectangular and circular regions. 
The encoder scans the quantized coefficients and 
chooses a scaling value s such that the minimum 

Figure 1. Image samples compressed with Region of Interest (ROI) coding: (a) skin lesion image, (b) 
MRI image, and (c) medical video image (snapshot); (d) – (f) same images with background compressed 
at higher factor than the ROI.

 
      (a)    ( b)    ( c) 

 
                    (d)                                    (e)                                            (f) 
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coefficient belonging to the ROI is larger than the 
maximum coefficient of the background (non-ROI 
area). As illustrated in Figure 2(c) all of the wavelet 
coefficients that are not part of the ROI are scaled 
down by (s + D), where D is a small constant. As 
a result all the wavelet coefficients correspond-
ing to the background have a magnitude < 1. 
The decoder, after receiving the bit-stream, just 
scales up (by s + D) all coefficients that have a 
magnitude < 1; therefore no extra information 
about the shape of the ROI is required.

The advantages of the MAXSHIFT method, 
in comparison to the scaling based method, is 
that encoding of arbitrary shaped ROIs is possible 
without the requirement of shape information 
provision and without the need for calculating 
the ROI mask. The encoder is simpler, since no 
shape encoding is required, i.e. shape is implicit. 
The decoder is almost as simple as a non- ROI 
capable decoder, while it can still handle ROIs 
of arbitrary shape. The MAXSHIFT method 
however, results in slightly higher bit-rates, 
while no background information is available 
before the whole ROI is decoded (A. Bradley 

and F. Stentiford, 2002). Performance metrics of 
the MAXSHIFT and general scaling method in 
the context of medical images are provided by 
Anastassopoulos and Skodras (2002), proving the 
referred consumption regarding the superiority 
of the MAXSHIFT method. 

The ROI coding schemes included in 
JPEG2000 standard, provide better image quality 
in critical diagnostic areas. However lossy-to-loss-
less compression of ROI is not supported, unless 
the ROI consists of the whole image. Liu et. al. 
(2002) propose a lossy-to-lossless ROI compres-
sion scheme. The scheme is based on Set Parti-
tioning in Hierarchical Trees (SPIHT) (A. Said 
and W. A. Pearlman, 1996) and Embedded Block 
Coding with Optimized Truncation (EBCOT) (D. 
Taubman, 2000). The input images are segmented 
into the foreground and background respectively 
and a chain code-based shape coding scheme by 
Liu et. al. (2002) is used to code the ROI’s shape 
information. Then, the critically sampled shape-
adaptive integer wavelet transforms (Minami et. 
al., 2001) are performed on the foreground and 
background image separately to facilitate lossy-

Figure 2. Illustration of coefficient scaling in image compression: (a) Full image compression, (b) gen-
eral ROI scaling-based method, (c) MAXSHIFT method.
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to-lossless coding. Finally, the shape coding 
bit-stream, the foreground bit-stream, and the 
background bit-stream are combined into a single 
bit-stream. In this algorithm extraneous coeffi-
cients outside the ROIs are not coded. Regarding 
the SPIHT, the multipass “zerotree” coding is 
adapted in order to reduce the redundancy. Us-
ing methods provided by Tasdoken and Cuhadar 
(2003), the spatial orientation trees in the wavelet 
domain are divided into categories, according 
to whether all or some coefficients are inside or 
outside the ROIs. In order to improve SPIHT’s 
coding efficiency, the EBCOT’s context model for 
bit-pale coding is borrowed. The latter applies the 
arithmetic coding on sign bits and refinement bits 
as well. The wavelet transform used in EBCOT 
is replaced again with a shape-adaptive wavelet 
transform (Minami et. al., 2001). A modification 
is also made, so that only coefficients inside ROIs 
are coded after performing the wavelet decom-
position. Experiments conducted on chromosome 
images proved the efficiency of the proposed 
schemes both in the context of lossy and lossless 
image compression.

The Region-based Integer Wavelets Transform 
(RB-IWT) proposed by Tasdoken and Cuhadar, 
(2003) is another ROI coding scheme based on 
SPIHT. In this implementation, the integer wavelet 
transform (Dewitte and Cornelis, 1997) is utilized 
in order to obtain the representation of the par-
titioned image plane rather than differentiating 
the coefficients associated with each region. The 
specific approach is suggested as a low-complexity 
implementation based on the lifting mechanism 
that also enables lossless coding of image regions. 
The ROI is obtained through an integer wavelet 
decomposition of the partitioned image signal, 
which maps the partitioned image plane into a 
partitioned wavelet coefficient plane. These parse 
representations of the arbitrary shape regions are 
encoded using a modified SPIHT algorithm. Ex-
perimental results provided by the authors, proved 
that the proposed RB-IWT method performs 
better than SPIHT based ROI coding.

Penedo et al. (2003) propose a two ROI 
wavelet-based coding methods with application 
to digital mammography. In both methods, after 
segmenting the breast region, Region-Based 
Discrete Wavelet Transform (RBDWT) (S. Li and 
W. Li, 2000) is applied. Then in the first method 
an Object-Based extension of the Set Partition-
ing in Hierarchical Trees (OB-SPIHT) (Said and 
Pearlman, 1996) coding algorithm is used, while 
the second method utilizes an Object- Based ex-
tension of the Set Partitioned Embedded bloCK 
(OB-SPECK) (Islam and Pearlman, 1999) coding 
algorithm. Using RBDWT it is possible to effi-
ciently perform wavelet sub-band decomposition 
of an arbitrary shape region, while maintaining the 
same number of wavelet coefficients.  Both OB-
SPIHT and OB-SPECK algorithms are embedded 
techniques, i.e. the coding method produces an 
embedded bit-stream which can be truncated at 
any point, equivalent to stopping the compres-
sion process at a desired quality. The wavelet 
coefficients with larger magnitude are those with 
larger information content. In a comparison, with 
full-image compression methods as SPIHT and 
JPEG2000, OB-SPIHT and OB-SPECK exhibit 
much higher quality in the breast region at the 
same compressed file size. 

A different approach is presented by Dil-
maghani et. al. (2003), where the Embedded 
Zerotree Wavelets (EZW) coding technique is 
adopted for ROI coding in Progressive Image 
Transmission (PIT). Using sub-band decompo-
sition and image wavelet transform to eliminate 
or reduce the correlation in the sub-images at 
different resolutions, the whole frequency band 
of the original image is split into different sub-
bands at different resolution. The EZW algorithm 
is effectively applied to wavelet coefficients to 
refine and encode the most significant ones. The 
optimum bit allocation, bi, for any sub-band with 
bandwidth wi, and average power of Pi is derived 
as follows:

1
( ) log 2( )

N
i j i i i

j ii

w w w P wbi B
W W P w=

= + ∑ ,  i=1,2,...N         
      (3)
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where B and W are the given total bit-rate and 
the total bandwidth respectively. Equation 3 is 
used to assign the bit rate to each band. Due 
to the partially localized nature of the wavelet 
transform, it is possible to specify an arbitrary 
region to be compressed. This is performed by 
specifying the corresponding wavelet coefficients 
of the ROI in the wavelet space and then apply-
ing the EZW algorithm on these coefficients. 
The latter belong to different scales and thus to 
different resolutions in the wavelet domain. The 
constraint on the bit-rate is limited to the size of 
the ROI. In order to send the ROI, a recognizable 
image is firstly send to the receiver, and then the 
requested ROI is progressively improved.  

Another ROI coding technique is based on 
vector quantization (VQ) (Cziho et. al., 1997; 
Nasrabadi and King, 1998). In VQ, the image 
is divided into small non-overlapping blocks. 
At the encoder side, each vector xi of the image 
is compared to the elements of a codebook W = 
{w0,w1,...,wN-1}, called the codevectors or code-
words, and only the index of the nearest code-
vector is transmitted. In the Region-of-Interest 
VQ (ROI-VQ) approach a separate codebook is 
generated for every region (or image ‘object’, i.e. 
organ). The properties of these codebooks, (i.e. 
the codebook size and the block size), are chosen 
according to the medical importance of the given 
object. If an object is diagnostically important, 
a large codebook containing small codewords is 
created. Inversely, for less important regions, the 
block size is smaller and/or the codebook contains 
less codevectors. This compression algorithm has 
been adapted for echoendoscopic images of the 
esophagus wall. The ROI-VQ method succeeds 
in obtaining a good rate/distortion performance, 
and preserving the quality on the most important 
part, (i.e. on the esophagus wall). 

Finally a wavelet based ROI coding algorithm 
implemented for Personal Digital Assistants 
(PDAs) is described by Doukas et. al. (2005). 
The algorithm is based on octave decomposition, 
which repeatedly divides the lower sub-band into 

4 sub-bands. The ROI shape is given by the user 
as a binary mask form on the source image and 
the wavelet coefficients on the ROI and on the 
Region of None Interest (RONI) are quantized 
with different step sizes. For this purpose, a 
corresponding binary mask is obtained, on the 
wavelet transform domain. 

ro I cod Ing In Volu MEtr Ic 
MEdIc Al  IMAg Es

Volumetric medical images have introduced 
further problems regarding their handling and 
transmission, due to the sheer volume of data they 
contain. Thus, the use of a compression method 
enhanced with ROI coding for diagnosis in critical 
areas, is considered essential in this case. 

Three-dimensional wavelet coding provides 
better performance compared to corresponding 
2D methods by exploiting the inter-slice correla-
tion that exists in such image data. An evaluation of 
conventional ROI coding schemes on volumetric 
images, called SA –DWT exists in the work by 
Ueno and Pearlman (2003). In this algorithm only 
samples within an object are transformed (S. Li 
and W. Li, 2000) according to the shape informa-
tion additionally sent to the decoder. The length of 
each one-dimensional segment to be transformed 
varies from segment to segment. Compared with 
scaling-based ROI (SB-ROI), fewer samples are 
necessary to encode the object, so more efficient 
coding of the object can be expected. However 
flexible ROI coding such as user-driven ROI cod-
ing on interactive applications is difficult to real-
ize. In user-driven ROI coding, the user modifies 
or specifies an ROI in the middle of the coding 
process. In SA-DWT the wavelet transform needs 
to be performed again when the ROI is speci-
fied /modified. This, it would cause significant 
increase of computational cost for efficiently 
using transmitted until that time code data. The 
object and background are faithfully reproduced 
without the pixel blending artifacts in the case 
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of MAXSHIFT. With the exception of very low 
coding rates, SA-ROI has better compression 
performance than SB-ROI.

A hybrid model of lossless compression in 
the region of interest, with high-rate, motion-
compensated, lossy compression in other regions 
is applied on colon CT images in Gokturk et. al. 
(2001). The colon wall is segmented through a 
sequence of 3-D morphological image processing 
techniques. The output of the motion compensated 
coding acts as an initial approximation for ROI 
areas. Once the ROI is segmented in each slice, 
a hybrid compression scheme is used for coding 
the images. The first slice of the volume is com-
pressed with a lossless coder. Each slice is then 
coded by motion compensated coding, which 
also acts as a prediction filter for ROI. Finally, 
the difference between the real-image ROI block 
and the predicted-image ROI block is coded by 
an entropy minimizing lossless coder.

An extension to 3D-SPIHT that allows 3D 
ROI coding in volumetric images is presented by 
Agrafiotis et. al. (2003). In order to identify the co-
efficients that affect the ROI, a three dimensional 
bitmap mask is maintained at the encoder. This 
mask undergoes a similar to wavelet transform, 
where at each step the necessary coefficients 
for the perfect reconstruction of the ROI at the 
current level of decomposition are identified. In 
order to assign greater priority to the ROI, the 
coefficients of the bitmap mask are scaled up 
through a fixed number of left bit shifts (S). The 
larger the number of left shift bits, the greater 
the emphasis placed on the ROI and the faster 
the lossless reconstruction of it.

ro I cod Ing In MEdIc Al  VIdEo 
sEQuEnc Es

The storage requirements for medical video 
sequences are even higher. Conventional com-
pression methods of captured video mostly rely 
on a combined motion estimation–compensation 

strategy, followed by an often frequency-based, 
residual coding method. These methods may 
provide impressive compression ratios (100:1) 
with relatively small amounts of image quality 
degradation (Ang et. al., 1991; Bernabe et. al., 
2000). Unfortunately, the compression of medical 
video sequences (e.g. angiogram or endoscopic 
video sequences) using conventional video com-
pression methods is non-optimal (Gibson et. al., 
2000), due to the particular structure of medical 
video data and mainly due to the unusual motion 
patterns and large amounts of background texture. 
A wavelet-based ROI encoder for compression 
of angiogram video sequences is presented in 
Gibson et. al., (2004). The specific approach 
is a combination of a three-dimensional (3-D) 
wavelet compression scheme based on the SPIHT 
algorithm, ROI detection and bit allocation, and 
a wavelet-based texture modeling approach that 
models the high frequency texture for some of the 
diagnostically unimportant background areas of 
an image. This allows for a larger proportion of 
the total bit allocation to be used within the ROI 
area. In terms of compression performance, the 
proposed method can operate at a compression 
ratio around 10:1 with differences between the 
original and compressed images assessed as being 
not of diagnostic significance by trained cardiolo-
gists. A pixel (x,y) is defined as a point within a 
ROI according to the following equation:

( ) ( )1,         ,
,

0,         otherwise
ADf x y k T

x yR >= 


  (4)

( , )Df x y  is a two-dimensional spatial Gaussian 
filter applied to the deviation of the frame dif-
ference function. KAT is an empirically chosen 
constant, selected based on the precautionary idea 
that it is preferable to include diagnostically non-
significant areas into the ROI than it is to exclude 
significant areas for the ROI. The ROI map R(x,y) 
is post-processed into a block-based representa-
tion—in this case, using blocks of 16x16 pixels 
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in size. Thus in case a pixel with a given block is 
labeled as belonging to the ROI, then all of the 
pixels in that block will be labeled as being part 
of the ROI. Hence, the ROI is strictly expanded 
when described as a collection of blocks. ROI 
encoding is performed by representing each block 
by a single bit and transmitting the resultant bit 
stream uncompressed. Although techniques such 
as run length encoding would likely work well 
on this bit stream, the net effect on the required 
total bandwidth would prove negligible. Addi-
tional experiments were conducted comparing 
the efficiency of the proposed method against the 
conventional 3D-SPIHT coding algorithm. The 
corresponding results prove the efficiency of the 
proposed methods in the context of less quality 
distortion in ROI for different bit rates.

c o MPAr Ison of sur VEyEd 
t Echn IQuEs And dIscuss Ion

In this chapter several techniques enabling ROI 
coding image compression in distributed tele-
medicine systems for various types of medical 
image modalities are discussed. These techniques 
are summarized in Table 1, presenting a quick 
overview of their basic features.  

As presented, the General Scaling, the MAX-
SHIFT, the EZW-based and the ROI-VQ methods 
require additional coefficients to decode the object, 
whereas in the rest of the discussed techniques both 
the background and the ROI are coded using the 
same number of coefficients as the entire image. 
A few methods require the ROI shape information 
to be incorporated into the bit-stream, whereas 
most of them support arbitrary ROI coding. The 
exact decoding of the object feasibility refers to 
the ability of the method to preserve the entire 
ROI without pixel blending artifacts. Finally, cor-
responding metrics (in PSNR per bits per pixel) 
are provided in the last column of Table 1, proving 
the efficiency of each method.

A cA sE study  APPl Ic At Ion of 
MEdIc Al  IMAg E ro I cod Ing

Medical image ROI coding is mostly utilized for 
reducing the required size and bit rate for storing, 
manipulating and transmitting images and main-
taining quality for assessment at the same time. 
The application domain is thus mostly telemedi-
cine applications using different kinds of image 
modalities; mammograms are coded properly in 
order to keep only the required visual information 
for more efficient storage (Penedo et. al., 2003; S. 
Li and W. Li, 2000; Islam and Pearlman, 1999; 
Dilmaghani et. al.,2003). Echoendoscopic images 
(Cziho et. al.,1997; Nasrabadi and King, 1998) and 
angiogram video sequences are transmitted more 
efficiently over telemedicine networks utilizing 
proper ROI coding respectively.

In the context of telemedicine applications 
and medical ROI coding, a transmission and 
examination application of DICOM images on 
mobile devices (Doukas et. al., 2005) is discussed 
in this section. The application enables scalable 
compression, retrieval and decompression of 
medical images on mobile devices, enhanced 
with ROI coding for advanced image examination 
of specific areas within the image. The system 
can be used for accessing medical images at a 
health care center, where the electronic medical 
record system resides, at a medical treatment/care 
center established at a sports facilities center, 
at a treatment center on an island, on an urban 
area, or even remotely on patient’s site, and in an 
ambulance. An inherent feature of the proposed 
application is its support for mobility making this 
suitable for heterogeneous radio access network 
infrastructures. The application adopts the Dis-
tortion Limited Wavelet Image Codec (DLWIC) 
algorithm (Shapiro, 1999). In DLWIC, the image to 
be compressed is firstly converted to the wavelet 
domain using the orthonormal Daubechies wavelet 
transform (Daubechies, 1998). The transformed 
data is then coded by bit-levels and the output 
is coded using QM-coder (Lehtinen, 1999), an 
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ROI coding 
method

Reference Medical 
Image 
category

Image type 
applied to

Corresponding 
results:
(PSNR in dB) 
(bits per pixel

Comments

General ROI-
based scaling 
method

Anastassopoulos 
and Skodras (2002), 
ISO/IEC JTC 1/SC 
29/WG 1 (ITU-T SG8) 
JPEG 2000 Part II 
Final Committee Draft 
(2000)

2-D still 
images

Nephrostogram 44.91 (0.08 bpp) Part of JEPG2000. The image can 
be resolved even in case of truncated 
bit-stream.

MAXSHIFT Anastassopoulos, 
and Skodras (2002), 
ISO/IEC JTC 1/SC 
29/WG 1 (ITU-T SG8) 
JPEG 2000 Part I 
Final Committee Draft 
Version 1.0 (2000)

2-D still 
images

Nephrostogram 44.90 (0.08 bpp) Simple decoding process without 
needing ROI mask generation.

Lossy-to-
lossless ROI 
coding

Liu et. al. (2002), Said 
and Pearlman (1996), 
D. Taubman (2000), 
Liu et. al. (2002), 
Minami et. al. (2001)

2-D still 
images

Chromosome 
Images

44.4 (0.08 bpp) Lossless image compression 
provided, ROI must be 
predetermined.

RB-IWT Tasdoken and Cuhadar 
(2003), Said and 
Pearlman (1996), 
Anastassopoulos and 
Skodras (2002)

2-D still 
images

-- 35 (0.8 bpp) A low complexity ROI coding 
mechanism.

OB-SPIHT, 
OB-SPECK

Penedo et. al. (2003), 
S. Li and W. Li (2000), 
Islam and Pearlman 
(1999)

2-D still 
images

Mammogram 54.2 (0.8 bpp) The bit-stream can be truncated, 
proved high quality compression in 
breast region.

EZW-based 
ROI

Dilmaghani et. al. 
(2003), Doukas et. al. 
(2005)

2-D still 
images

Mammogram, knee 
CT scans

N/A The ROI is decoded progressively at 
the receiver.

Hybrid coder Gokturk et. al. (2001) Volumetric 
images

Colon CT scans 32.0 (0.52 bpp) ROI must be predetermined.

ROI-VQ Cziho et. al. (1997), 
Nasrabadi and King 
(1998)

2-D still 
images

Echoendoscopic 
images

31.58 (0.03 bpp) Obtains good rate/distortion 
performance preserving ROI quality.

SA-DWT Ueno and Pearlman 
(2003)

Volumetric 
images

MRI Chest 52.5 (0.50 bpp) Requires more computation power 
than other techniques.

Extended 3D-
SPIHT

Agrafiotis et. al. 
(2003), Gibson et. al. 
(2004)

Volumetric 
images, 
Medical 
Video 
sequences

MRI Head, 
Angiogram video 
sequences

38.78 (0.52 bpp) Similar to General scaling method, 
quite simple and efficient, Efficient 
ROI coding in medical video 
sequences.

Table 1. Overview of the discussed ROI coding techniques, presenting the related references, the ap-
plicable medical image category (2-D still images, volumetric images and video sequences), and the 
image type each method is applied to.
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advanced binary arithmetic coder. The algorithm 
processes the bits of the wavelet transformed 
image data in decreasing order concerning their 
significance in terms of Mean Square Error 
(MSE). This produces a progressive output stream 
enabling the algorithm to be stopped at any phase 
of the coding. The already coded output can be 
used to construct an approximation of the original 
image. The proposed medical application follows 
a three-tier architecture, consisting of the client 
part, the DICOM Server and the Electronic Medi-
cal Record System - Remote Database Manage-
ment System (EMR-RDBMS). Client requires a 
Java enabled web - browser and communicates 
using HyperText Transfer Protocol (HTTP) and 
Remote Method Invocation (RMI) protocols with 
the server. Figure 2 presents screenshots from 
the application in use. Conducted experiments 
evaluating the performance of the transmission 
of medical images over wireless networks have 
proved that wavelet compression and ROI coding 
can reduce transmission time over 50% in cases 
of slow networks (e.g., GRPS).

c onclus Ion

ROI coding preserves image quality in diagnos-
tically critical regions by performing advanced 

image compression, enabling better image 
examination and addressing issues, regarding 
image handling and transmission in telemedicine 
systems. Therefore ROI coding is considered 
quite important in distributed and networked 
electronic healthcare. The presented coding 
techniques have been classified according to the 
image type they apply on; two-dimensional still 
medical images, volumetric images and medical 
video sequences. The ROI mask generation, the 
coding and the transmission process are described 
in the relative sections. A comparison between 
the referred techniques informs the reader about 
their feasibilities and characteristics, such as 
object decoding, user-driven ROI selection and 
shape information transmission. Corresponding 
results are also provided indicating the efficiency 
of each method. 

f utur E t r Ends

The results presented so far, from the research 
community are promising for the future. It is now 
necessary to adapt the existing algorithms in order 
to decrease complexity. This will enable their use 
in portable and mobile devices, which have limited 
computing power allowing the support of moving 
and commuting physicians. Current and future 

Figure 3. Application screenshots: (a) for a Tablet PC, (b) for a PDA, (c) for ROI support on lossy 
compressed image.

   
(a) (b) (c) 
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research trends in the discussed context should 
also focus in addressing ROI coding issues like 
complexity in large medical datasets (Schelkens 
et. al., 2003), improved coding of volumetric im-
ages (Kontos and Megaloikonomou 2004) and the 
automatic selection of diagnostically important 
areas before coding (Nguyen et. al., 2005).  
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k Ey t Er Ms

Distributed Telemedicine: Store-and-for-
ward telemedicine involves acquiring medical 
data (like medical images, biosignals etc) and 
then transmitting this data to a doctor or medi-
cal specialist at a convenient time for assessment 
offline. Dermatology, radiology, and pathology 
are common specialties that are conducive to 
asynchronous telemedicine. 

Medical Image Coding: Refers to image com-
pression as the application of data compression on 
digital images. In effect, the objective is to reduce 
redundancy of the image data in order to be able 
to store or transmit data in an efficient form. Im-
age compression can be lossy or lossless. Lossy 
compression methods, especially when used at low 
bit rates, introduce compression artifacts. Lossless 
compression methods may also be preferred for 
high value content, such as medical imagery or 
image scans made for archival purposes. 

ROI Coding: The Region Of Interest (ROI) 
coding it is a function that enables a non-uniform 
distribution of the image quality between a se-
lected region (the ROI) and the rest of the image 
(background). ROI coding of medical images al-
lows the compression of diagnostically important 
regions at better quality without affecting the 
visual assessment procedure, whereas areas like 
the background can be coded at lower quality in 
order to decrease image size and improve storage 
and/or transmission procedures.

Volumetric Medical Image: A typical 3D 
data set is a group of 2D slice images acquired 

by a CT or MRI scanner. Usually these are ac-
quired in a regular pattern (e.g., one slice every 
millimeter) and usually have a regular number 
of image pixels in a regular pattern. This is an 
example of a regular volumetric grid, with each 
volume element, or voxel represented by a single 
value that is obtained by sampling the immediate 
area surrounding the voxel.

Wavelet: A one-dimensional pulse, usually 
the basic response from a single reflector. Its key 
attributes are its amplitude, frequency and phase. 
The wavelet originates as a packet of energy from 
the source point, having a specific origin in time, 
and is returned to the receivers as a series of events 
distributed in time and energy. The distribution 
is a function of velocity and density changes in 
the subsurface and the relative position of the 
source and receiver.

Wavelet Coding: Wavelet coding or compres-
sion is a form of data compression well suited 
for image compression (sometimes also video 
compression and audio compression). Wavelet 
compression can be either perfect (lossless) or 
lossy, where a certain loss of quality is accepted. 
Using a wavelet transform, the wavelet com-
pression methods are adequate for representing 
transients, such as percussion sounds in audio, or 
high-frequency components in two-dimensional 
images, for example an image of stars on a night 
sky. This means that the transient elements of a 
data signal can be represented by a smaller amount 
of information than would be the case if some 
other transform, such as the more widespread 
discrete cosine transform, had been used.
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Abstr Act
 
Ultrasound imaging now has widespread clinical use. It involves exposing a part of the body to high-
frequency sound waves in order to generate images of the inside of the body. Because it is a real-time 
procedure, the ultrasound images show the movement of the body's internal structure as well. It is usually 
a painless medical test and its procedures seem to be safe. Despite recent improvement in the quality 
of information from an ultrasound device, these images are still a challenging case for segmentation. 
Thus, there is much interest in understanding how to apply an image segmentation task to ultrasound 
data and any improvements in this regard are desirable. Many methods have been introduced in existing 
literature to facilitate more accurate automatic or semi-automatic segmentation of ultrasound images. 
This chapter is a basic review of the works on ultrasound image segmentation classified by application 
areas, including segmentation of prostate transrectal ultrasound (TRUS), breast ultrasound, and intra-
vascular ultrasound (IVUS) images.

Introduct Ion

Among different image modalities, ultrasound 
imaging is one of the most widely used technolo-
gies for the diagnosis and treatment of diseases 
such as breast and prostate cancer. Ultrasound 
equipment is less expensive to purchase and 
maintain than many other imaging systems such 
as X-ray, computed tomography (CT), or magnetic 

resonance imaging (MRI). These images are the 
result of reflection, refraction, and deflection of 
ultrasound beams from different types of tissue 
with different acoustic impedances. The detection 
of the object boundaries in such images is crucial 
for diagnostic and classification purposes. 

However, attenuation, speckle, shadows, and 
signal dropout can result in missing or diffused 
boundaries. Also the contrast between areas 
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of interest is often low. These obstacles make 
segmentation of these images a challenge. Fur-
ther complications arise when the quality of the 
image is influenced by the type and particular 
settings of the machine. Despite these factors, 
ultrasound imaging still remains an important 
tool for clinical applications and any effort to 
improve segmentation of these images is highly 
desirable. Thus, there is currently an interest in 
understanding how to apply image segmentation 
to ultrasound data. Figure 1 demonstrates the basic 
principle of an ultrasound imaging transducer. 
Using an ultrasound transducer, a pulse of energy 
is transmitted into the body along the path shown 
by line 1. After this beam encounters any surface, 
including tissue or structures within an organ, a 
part of the transmitted energy is backscattered 
along the original trajectory and received by the 
transducer which now acts as a receiver. These 
returning waves are converted to electrical sig-
nals, amplified, and finally shown. After that, 
the direction of the transmitted beam changes to 
attain the data from the next line close to the first 
one. The ultrasound transducer repeats the same 
procedure to cover 64-256 lines and makes the 
entire image (Webb, 2003).   

This chapter contains an overview of the ideas 
representing the ultrasound segmentation problem 
in particular clinical applications.

bAckground

Many methods have been introduced to facilitate 
more accurate segmentation of ultrasound images. 
The performance of these methods is generally 
improved through the use of expertise or prior 
knowledge. All segmentation methods usually 
require at least some user interaction to adjust 
critical parameters. The type of user interaction 
varies, depending on the amount of time and effort 
required from the user.

This chapter is a review of ultrasound image 
segmentation methods and focuses on clinical ap-
plications that have been investigated in different 
clinical domains. It centers on reviewing the ideas 
behind the incorporated knowledge of ultrasound 
physics such as speckle structure, as well as prior 
information about the intensity or shape model. 
We review some principal works in this area 
according to their applications where the major-

Figure 1. The basic principle of an ultrasound imaging transducer (© 2003 IEEE,   Reprinted, with 
permission from IEEE Press Series in Biomedical Engineering 2003. “Introduction to Biomedical Im-
aging”, by A. Webb).

	



  ���

Segmentation Methods in Ultrasound Images

ity of efforts have been focused. These include 
segmentation of prostate transrectal ultrasound 
(TRUS), breast ultrasound, and intravascular 
ultrasound (IVUS) images. 

ul tr Asound IMAg E 
sEg MEnt At Ion Accord Ing t o 
c l InIc Al  APPl Ic At Ions

Based on clinical application, ultrasound im-
age segmentation can be categorized in various 
groups. In this section, we mention some important 
methods in each group.

Prostate segmentation

Prostate cancer is one of the most frequently diag-
nosed malignancies in the adult and aging male 
population (Mettlin,1995). Ultrasound imaging 
is a widely used technology for the detection and 
intervention of this cancer and may help to reduce 
death rate if used in early stages.

As the prostate boundaries play an important 
role in the diagnosis and treatment of prostate 
cancer, it is crucial for many clinical applications 
to accurately detect them. These applications 
include the accurate placement of needles during 
the biopsy, accurate prostate volume measurement 
from multiple frames, constructing anatomical 
models used in treatment planning, and estimation 
of tumor border. These images are the result of 
reflection, refraction, and deflection of ultrasound 
beams from different types of tissues with differ-
ent acoustic impedances (Insana et al., 1993). 

Some factors, such as poor contrast, speckle, 
and weak edges, however, make the ultrasound im-
ages inherently difficult to segment. Furthermore, 
the quality of the image may be influenced by the 
type and particular settings of the machine. 

Currently, the prostate boundaries are gen-
erally extracted from TRUS images (Insana 
et al., 1993). This kind of imaging has been a 

fundamental tool for prostate cancer diagnosis 
and treatment. 

Prostate boundaries must generally be out-
lined in 2D TRUS image slices along the length 
of the prostate. But as previously mentioned, the 
signal-to-noise ratio in these images is very low. 
Therefore, traditional edge detectors fail to extract 
the correct boundaries. 

Consequently, many methods have been de-
veloped to facilitate automatic or semi-automatic 
segmentation of the prostate boundaries from the 
ultrasound images.  Figure 2 shows segmentation 
of some sample ultrasound images of the prostate 
using the method presented by Nanayakkara et al. 
(2006); it contains the ground truth boundaries 
drawn by an expert as well as contours generated 
by the computerized method.

Knoll et al. (1999) proposed a technique for 
elastic deformation of closed planar curves re-
stricted to particular object shapes. Their method 
is based on a one-dimensional dyadic wavelet 
transform as a multi-scale contour parameteriza-
tion technique to constrain the shape of the prostate 
model. Important edges at multiple resolutions 
are extracted as the first step. Then a template 
matching procedure is used to obtain an initial 
shape of the contour. The shape of the contour is 
constrained to predefined models during deforma-
tion. While they reported that the method provides 
an accurate and fully automatic segmentation of 
2D objects, the dependence of the statistically 
derived prior model has limited its capability for 
segmentation of aberrant shapes.

Richard et al. (1996) presented a texture-based 
algorithm for prostate segmentation. This method 
segments a set of parallel 2D images of the prostate 
into prostate and non-prostate regions to form 
a 3D image. This algorithm is a pixel classifier 
which classifies each pixel of an ultrasound image 
using four associated texture energy measures. 
One of the drawbacks of this approach is that 
the number of clusters cannot be predicted for 
an image; therefore, the resulting image may be 



���  

Segmentation Methods in Ultrasound Images

represented by a set of disconnected regions and 
no post-processing technique is proposed for 
preventing or overcoming the problem of such 
discontinuities. 

Ladak et al. (2000) proposed a cubic spline 
interpolation technique for semi-automatic seg-
mentation of the prostate. The algorithm uses 
an initial contour based on four points given 
by the user. The user selects four points around 
the prostate and then uses the discrete dynamic 
contour. A model is used to refine the boundary. 
Although this semi-automatic algorithm can seg-

ment a wide range of prostate images, at least four 
initial points must be defined accurately by the 
user (radiologist). In addition, it is less satisfac-
tory when the prostate has an irregular shape and 
cannot be perfectly approximated by the initial 
points. For such cases, further human intervention 
is required to achieve satisfactory results.  

Wang et al. (2003) presented two methods for 
semi-automatic three-dimensional (3D) prostate 
boundary segmentation using 2D ultrasound 
images. The segmentation process is initiated 
by manually placing four points on the bound-

Figure 2. Four samples for prostate boundary detection. The solid line shows the contour generated by 
the computerized method and the dotted line shows the corresponding manual outline (Reprinted (par-
tially), from Physics in Medicine and Biology, 51, N.D Nanayakkara, J. Samarabandu, and A. Fenster, 
“Prostate segmentation by feature enhancement using domain knowledge and adaptive region based 
operations”, pp. 1831–1848, 2006, with permission from IOP publishing Ltd).
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ary of a selected slice. Then an initial prostate 
boundary is determined. It is refined using the 
discrete dynamic contour until it fits the actual 
prostate boundary. The remaining slices are then 
segmented by iteratively propagating the results to 
other slices and implementing the refinement.

Hu et al. (2003) proposed an algorithm for 
semi-automatic segmentation of the prostate 
from 3D ultrasound images. In this method, the 
authors use model-based initialization and mesh 
refinement using deformable models. Six points 
are required to initialize the outline of the pros-
tate using shape information. The initial outline 
is then automatically deformed to better fit the 
prostate boundary.

Chiu et al. (2004) introduced a semi-automatic 
segmentation algorithm based on the dyadic wave-
let transform and the discrete dynamic contours. 
In this method, a spline interpolation is first used 
to determine the initial contour based on four user-
defined initial points. Then the discrete dynamic 
contour refines the initial contour based on the 
approximate coefficients as well as the wavelet 
coefficients generated using the dyadic wavelet 
transform. A selection rule is also used to choose 
the best contour.

Abolmaesumi et al. (2004) used an interactive 
multi-model probabilistic data association filter to 
extract prostate contours from transrectal ultra-
sound images. As the first step, a Sticks filter is 
used to enhance the image. The problem is then 
addressed by considering several equally spaced 
radii from a seed point towards the boundary of 
the prostate. In this method, the border of the 
prostate is represented as the trajectory of a mov-
ing object. This motion is modeled using a set 
of dynamical models where their measurement 
points are presented as candidate edge points 
along each radius. As the method does not use 
any numerical technique, their results show that 
the convergence is also fast.

Pathak et al. (2000) proposed an edge-guided 
boundary delineation algorithm for prostate 
segmentation provided as a visual guide to the 

observer. This step is followed by manual edit-
ing. For automatic edge detection, the algorithm 
first uses a Sticks filter to enhance contrast and 
reduce speckle. Then, an anisotropic diffusion 
filter is applied to smooth the result of the previ-
ous stage. Finally, some basic prior knowledge 
such as shape and echo pattern is used to extract 
the most probable edges. After these stages, by 
using a manual linking procedure on the detected 
edges, the final boundary is indicated.

Shen et al. (2003) presented a statistical shape 
model for segmentation of the prostate in ultra-
sound images. A Gabor filter bank is employed 
in both multiple scales and multiple orientations 
to represent the image characteristics around 
the prostate boundaries. As these features give 
both edge directions and edge strengths, they can 
provide the information for deformation of the 
prostate model. This strategy can generate both 
coarse and fine image features that further allow 
the model to focus on particular features at dif-
ferent deformation steps. To make the proposed 
method more robust against local minima, several 
hierarchical deformation strategies are proposed 
as well. In another work, the authors have also 
introduced an adaptive focus deformable model, 
which uses the concept of an attribute vector 
(Shen et al., 2001).

Figure 3 shows segmentation of an ultrasound 
image of the prostate using the method presented 
in (Shen et al., 2003). This figure demonstrates 
the results of the algorithm in the different steps 
(iterations). As can be seen, the method is robust 
with respect to a bad initialization. 

Betrounia et al. (2005) proposed a method for 
the automatic segmentation of trans-abdominal 
ultrasound images. Adaptive morphological and 
median filtering are employed together to detect 
the noisy areas and smooth them. Using this 
method, the contours of the prostate can be en-
hanced without changing the critical information 
in the image. An optimization algorithm is then 
employed to search for the contour initialized from 
a prostate model. The algorithm has been shown 
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to have accurate results in terms of average dis-
tance and average coverage index in comparison 
to those obtained by manual segmentation.

breast c ancer

Breast cancer is one of the leading causes of death 
in women. Along with digital mammography, 
ultrasound has been one of the most commonly 
used methods for early detection and diagnosis of 
breast cancer in the last decade. Ultrasound can 

help to distinguish whether a mass is benign or 
malignant (cancerous). Automatic segmentation of 
breast tumors using ultrasound imaging can assist 
physicians in making faster and more accurate 
diagnoses (Noble et al., 2006). The problem with 
segmenting ultrasonic breast images is mostly 
the variance of the lesion’s shape and the fact 
that often the borders of the lesion are not well 
distinguished. Figure 4 demonstrates three differ-
ent manually segmented ultrasonic breast lesions 
with great differences in their shapes and sizes as 
represented in (Madabhushi et al., 2003).

Figure 3. Demonstration of the algorithm represented in (Shen et al., 2003). The dashed contour indi-
cates the manually segmented prostate. The solid contours show the resulting the automatic algorithm 
in the different steps (iterations). The final segmentation results are shown in the right-bottom corner; 
a case of the bad initialization. (© 2003 IEEE, Reprinted with permission from IEEE Transaction on 
Medical Imaging, 2003, 22(4), pp. 539-551, “Segmentation of Prostate Boundaries from Ultrasound 
Images Using Statistical Shape Model”, by D. Shen, Y. Zhan and C. Davatzikos).
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Huang et al. (2004) proposed an approach 
that combines a neural network  classifier with a 
morphological watershed segmentation method 
to extract precise contours of a breast tumor from 
ultrasound images. Textural analysis is employed 
to generate the inputs of the neural network to 
classify US images. The features of the texture 
contain auto covariance coefficients to classify 
US images using a self-organizing map. After 
these features have been classified, an adaptive 
preprocessing procedure is selected by neural 
network output and then watershed transformation 
automatically determines the contours of the 
tumor. This method contains a preprocessing step 
which helps the watershed algorithm through a 
good selection of markers. The self-organizing 
map is used in order to select the appropriate 
preprocessing filter locally from a set of nine 
predefined filters.  Figures 5 demonstrates two 
malignant and benign cases of breast ultrasound 
images. In this figure, the first, second, and third 
rows show the original magnified monochrome 
breast image, the contours manually sketched, and 

the contours determined by the proposed system 
in (Huang et al., 2004) , respectively. 

Chen et al. (2002) presented a method based 
on a neural network. The aim of this method is 
to make the classification based on a set of input 
features. These features are variance contrast, 
autocorrelation contrast, and the distribution 
distortion in the wavelet coefficients. These are 
inputs of a multilayer perceptron neural network 
with one hidden layer which is trained by error 
backpropagation. Image texture is an important 
component in their method.   

Xiao et al. (2002) discussed a method for 
simultaneous estimation of video-intensity 
inhomogeities and segmentation of US image 
tissue regions. The number of regions (classes) 
needs to be specified. It employs a combination 
of the maximum a posteriori (MAP) and Markov 
random field (MRF) methods to estimate the 
US image distortion field. The approach shows 
consistent segmentations under different time 
gain compensation (TGC) settings on the 
tested data. 

Figure 4. Three manually segmented tumors with different shapes and sizes (© 2003 IEEE, Reprinted 
with permission from  IEEE Transaction on Medical Imaging, 2003, 22(2), pp. 155–169, “Combining 
low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast le-
sions”, by  A. Madabhushi and D. N. Metaxas).
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Figure 5. Contour segmentation. The first row: Original magnified monochrome breast ultrasound im-
ages (left malignant and right benign case); the second row, manual sketch contour; and the third row, 
automatic sketch contour. (Reprinted from Ultrasound in Medicine & Biology, 30(5), Y. L Huang and 
D. R. Chen, “Watershed segmentation for breast tumor in 2-D sonography”, pp. 625–632, 2004, with 
permission from Elsevier). 



  ���

Segmentation Methods in Ultrasound Images

 Horsch et al. (2001) introduced a segmenta-
tion technique that is based on maximizing a 
utility function over partition margins which 
are defined through gray-value thresholding of 
a preprocessed image that has enhanced mass 
structures. It requires the manually defined 
lesion center. The problem of shadowing is not 
discussed. Shape, echogeneity, margin, and 
posterior acoustic behavior are computed as four 
features to test the effectiveness when directed 
at distinguished malignant and benign masses. 
The authors have further evaluated their method 
in (Horsch et al., 2004) to assess the advantages 
of the different mentioned features using linear 
discriminant analysis. It is shown that the two 
best features are depth-to-width ratio for shape 
and normalized radial gradient for margin. 

Sahiner et al. (2004) developed 2D and 3D 
intensity-gradient active contour models for 
automated segmentation of the mass volumes. 
For initialization of the active contour, texture 
and morphological features were automatically 
extracted from the segmented masses and their 
margins. Algorithm parameters were determined 
empirically. To find the segmentation result, 
depth to width ratio, a posterior shadowing 
feature measure, and texture features were 
computed around the boundary of each 2D slice 
and then linear discriminant analysis was used 
to classify volumes.

Madabhushi et al. (2003) proposed a method 
that uses the combination of intensity and texture 
with empirical domain-specific knowledge, 
along with directional gradient and a deformable 
shape-based model. A second-order Butterworth 
filter is used to remove speckle noise, and then 
the contrast of the tumor regions is enhanced. 
The image pixels are probabilistically classified 
based on intensity and texture information and 
then a region growing technique is used to 
obtain an initial segmentation of the lesion. The 
boundary points are found to supply an initial 
estimate to a deformable model.  It attempts to 
limit the effects of shadowing and false posi-

tives by incorporating empirical domain-spe-
cific knowledge. The method requires a small 
database for training.  

There are also some other methods that take 
into account the domain knowledge and consider 
the specification of ultrasound images such as 
speckle or artifacts.

Intravascular ultrasound

Intravascular Ultrasound (IVUS) is a non-invasive 
technique which provides real-time high-resolu-
tion images with valuable anatomical informa-
tion about the coronary arterial wall and plaque. 
IVUS consequently provides new insights into 
the diagnosis and therapy of coronary disease. 
IVUS imaging can be used as a complementary 
imaging tool to contrast X-ray angiography (Rad-
eva et al., 2003), (Noble et al., 2006). Due to the 
ultrasound speckle, catheter artifacts, or calcifica-
tion shadows, processing of IVUS image sets is 
a challenge. To perform an accurate quantitative 
analysis, a good segmentation of the lumen, the 
plaque, and the wall borders is required. Methods 
used for IVUS segmentation usually apply contour 
modeling (Kovalski et al., 2000; Sonka et al., 
1995; Cardinal et al., 2003; Olszewski et al., 2004; 
Noble et al., 2006). Figure 6 shows a schematic 
form of a cross-sectional anatomy of a diseased 
coronary artery (Sonka et al., 1995).  

 Cardinal et al. (2003) presented a three-
dimensional IVUS segmentation model based 
on the fast-marching method and gray level 
probability density functions of the vessel wall 
structures. A mixture of Rayleigh PDFs model 
the gray level distribution of the whole IVUS 
pullback. Using this method, the lumen, intima 
plus plaque structure, and media layers of the 
vessel wall were computed simultaneously. 

The results were obtained with average point 
to point distances between segmented vessel 
wall borders and ground truth. The authors 
have also shown the potential of gray level PDF 
and fast-marching methods in 3D IVUS image 
processing.
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Sonka et al. (1995) introduced a semi-automatic 
knowledge-based method for segmentation of 
intravascular ultrasound images which identifies 
the internal and external elastic laminae and the 
plaque-lumen interface. This approach attempts 
to incorporate a priori knowledge about cross-
sectional arterial anatomy, such as objectshape, 
edge direction, double echo pattern, and wall 
thickness. The method uses a cost function based 
on edge strength to find the border. However, the 
method does not take into account speckle statis-
tics. To assess the performance of the method, they 
compared five quantitative measures of arterial 
anatomy derived from borders extracted by the 
algorithm, with measures derived from borders 
manually indicated by an expert. 

Shekhar et al. (1999) developed a three-
dimensional segmentation technique, called 
active surface segmentation, for semi-automatic 
segmentation of the lumen and adventitial borders 

in serial IVUS images in examinations of coronary 
arteries. The authors also presented a faster 
method, based on a fast active contours technique 
(a neighborhood-search method) (Klingensmith 
et al., 2000). Both of their works used only 
intensity gradient information for snakes. The 
technique was assessed by computing correlation 
coefficients and by comparing the results to the 
expert tracings.

Takagi et al. (2000) presented an automated 
contour analysis assisted by a blood noise re-
duction algorithm used as preprocessing step. 
Subtraction of two consecutive IVUS images 
acquired at the same position in time can increase 
the signal-to-noise ratio of the lumen area, i.e., 
obtain good contrast between the lumen and other 
parts in the image. As the blood echo speckles 
have higher temporal and spatial variations than 
the arterial wall, an adaptive filtering of speckle 
was applied based on pre-segmentation of blood 

Figure 6. A schematic cross-sectional anatomy of a diseased coronary vessel. (©1995 IEEE, Reprinted 
with permission from IEEE Transaction on Medical Imaging, 1995, 14(4), pp. 719–732, “Segmentation 
of intravascular ultrasound images: A knowledge-based approach”, by  M. Sonka, X. M. Zhang, M. 
Siebes, M. S. Bissing, S. C. DeJong, S. M. Collins and C. R. McKay).  
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and tissue areas. Their preliminary results showed 
that automated contour detection facilitated with 
a blood noise reduction algorithm appeared to 
be a reliable technique for area measurements in 
40-MHz IVUS imaging.

Kovalski et al. (2000) developed an algorithm 
to identify the lumen border and the media-
adventitia border (the external elastic membrane). 
To represent the contours in this method, a 3D 
balloon model is recruited by using polar coordin-
ates. In this representation, the control points can 
only move along the radial direction. The reported 
inter-observer area variability is comparable to the 
result in (Klingensmith et al., 2003) except that 

the method in (Kovalski et al., 2000) is automatic. 
Figure 7 illustrates three sets of images with the 
lumen and media-adventitia tracings with shad-
owing artifacts from (Kovalski et al., 2000). The 
left, middle, and right columns demonstrate the 
original image, the manual contours, and the result 
of automatic procedures, respectively.  

The features are extracted in three dimensions. 
The results for border contours obtained by this 
method were compared to the manually extracted 
results. The method suffers from some tuning of 
the algorithm’s parameters when using different 
scanners.

Figure 7. The comparison between the manual and the automatic tracings of the lumen and media-ad-
ventitia for three different slices. Left: Original image; middle: Manual tracing and right: automatic 
detection. (Reprinted from Ultrasound in Medicine & Biology, 26(4), G. Kovalski, R. Beyar, R. Shofti, 
and H. Azhari, “Three-dimensional automatic quantitative analysis of intravascular ultrasound images”, 
pp. 527–537, 2000, with permission from Elsevier).



���  

Segmentation Methods in Ultrasound Images

Haas et al. (2000)  used an algorithm based 
on the optimization of a maximum a posteriori 
estimator. It implements an image generation 
model based on the Rayleigh distribution of the 
image pixels and a priori information about 
the contours. Using the property of the closed 
contours, they are modeled by first-order Markov 
random fields, expressing a strong correlation 
between a contour point and its two next neighbors. 
During the first stage, the algorithm detected the 
reliable points and then chose either the global 
or the first maximum along the radial direction 
depending on the contour prior energy. Dynamic 
programming is used to accelerate the estimation 
process. Additional information from the blood 
flow is used to initialize the segmentation in 3D 
image sets.  

Pardo et al. (2003) proposed a statistical 
deformable model for 3D segmentation of ana-
tomical organs applied to IVUS images. A bank 
of Gaussian derivative filters is used to generate 
a feature space at different orientations and 
scales, to locally describe each part of the object 
boundary. The feature space was reduced by linear 
discriminant analysis and a statistic discriminant 
snake is used in a supervised learning scheme to 
guide the model deformation. It is performed by 
minimizing the dissimilarity between the learned 
and found image features. The proposed approach 
is of particular interest for tracking temporal 
image sequences. Anatomical organs including 
IVUS are segmented and the results compared 
to expert tracings for validation.  

As one of the approaches incorporating high-
level knowledge in IVUS image segmentation, 
Olszewski et al. (2004) proposed a learning 
technique based on the human visual system. 
This method mimics the procedure performed 
by human experts for automatic detection of the 
luminal and the medial-adventitial borders. The 
approach requires no manual initialization or 
interaction. To verify the accuracy of the method, 
it is applied on a reasonable data set.

A key drawback for Intravascular Ultrasound 
imaging is its inability to consider the vessel 
curvature and the orientation of the imaging 
catheter (Noble et al., 2006). Therefore, the 
information extracted from this data is distorted, 
since the vessel curvature remains unconsidered. 
An answer for correct 3D reconstruction of the 
IVUS can be derived from the fusion between 
intravascular ultrasound images and biplane 
angiography (Noble et al., 2006). 

f utur E t r Ends

Ultrasonic imaging stands as one of the most 
important medical imaging applications of phys-
ics and engineering. There have been recent 
advances in transducer technology and image 
formation procedure which significantly improve 
the quality of information obtained from ultra-
sound devices.  

There is a need for more effort in the area of 
segmentation validation to better evaluate the 
strengths and limitations of the existing methods 
on larger and more varied databases of images. 
This would be especially useful for the adoption 
of methods which are more appropriate in clinical 
applications. Future efforts for ultrasound seg-
mentation methods should also more effectively 
consider imaging physics. 

Basically, a 3D ultrasound image can be con-
structed from 2D slices which are put together. For 
such an application, the size and shape of the object 
of interest is to be extracted in each slice. This 
means that a fast and reliable segmentation method 
for individual slices is needed. Considering the 
correlation between the sequential frames, this 
can be subjected to further research.

4D ultrasound system provides a next genera-
tion for medical imaging applications which allow 
faster diagnosis and improve treatment success 
rates. A 4D ultrasound device takes multiple 
images in rapid succession and creates a 3D mo-
tion video, which is very valuable for diagnosis 
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purposes. Any effort towards applying current 
segmentation methods in these successive frames 
would be desirable.

c onclus Ion

Ultrasound imaging is a non-invasive, easily por-
table, and relatively inexpensive image modality 
that has been used for clinical applications for a 
long time. 

Ultrasound imaging can be used to visual-
ize the anatomy of the body organs. It also has 
excellent temporal resolution. In this technique, 
by exposing a part of the body to high-frequency 
sound waves, we can generate images of the inside 
of the body.

On the other hand, segmentation is an im-
portant image processing task that partitions the 
image into meaningful regions. These regions 
are homogeneous with respect to specific char-
acteristics or features such as gray level, texture, 
etc. Segmentation is an important tool in medical 
imaging and it is useful for many applications such 
as feature extraction and classification.

Although ultrasound imaging is one of the most 
widely used technologies for diagnosis and treat-
ment, it is still a challenging case for segmentation 
tasks due to attenuation, speckle, shadows, and 
signal dropout. Improvements in this area of re-
search are thus highly desirable. Many methods 
have been introduced in existing literature to fa-
cilitate more accurate automatic or semi-automatic 
segmentation of ultrasound images. 

This chapter reviews the ultrasound image 
segmentation methods by focusing on clinical 
applications that contain important ideas dem-
onstrating significant clinical usefulness.

The focus of this chapter is on reviewing the 
works which have incorporated prostate trans-
rectal ultrasound (TRUS), breast ultrasound, and 
intravascular ultrasound (IVUS) images. 

The future trend for ultrasound image segmen-
tation can focus on improvement of the current 

methods such that they can be adopted for real 
clinical applications. Development of new and 
effective methods for construction of 3D images 
from 2D slices is also another interesting area 
of research. 

As the next generation of ultrasound imag-
ing devices, the 4D ultrasound system should 
be positioned as a top research area for image 
segmentation. 
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k Ey t Er Ms

Breast Ultrasound: Generation of ultrasound 
images from the breast for diagnostic and treat-
ment purposes. 

Image Segmentation: This is an important 
image processing task that partitions the image 
into meaningful regions.

Intravascular Ultrasound: This is an ultra-
sound medical imaging methodology that uses a 
catheter with a miniaturized ultrasound probe to 
visualize the inside walls of blood vessels.

Prostate Ultrasound: Generation of ultrasound 
images from the prostate for diagnostic and treat-
ment purposes.

Ultrasound Imaging: This is an ultrasound-
based diagnostic imaging technique used for 
visualizing internal organs and their structures 
and possible lesions.
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medicine and more specifically Telecardiology.

Panagiota Loumou was born in Athens, Greece in 1985. She is a graduate student at the National 
Technical University of Athens, Department of Electrical & Computer Engineering. She is a member of 
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