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Series Editors’ Preface

Nearly six years ago, a special volume of Advances in Parasitology
(vol. 47) dealt with the uses of remote sensing and geographical in-
formation systems in the study of disease epidemiology. In a sense,
this volume is a follow-on to that publication, dealing as it does with
some practical applications of those techniques to the study of par-
asitic and infectious diseases.

We are once again fortunate in having Simon Hay, David Rogers
and—a newcomer this time—Alastair Graham, of the University of
Oxford in the United Kingdom, as guest editors. They have assem-
bled a formidable array of talented research workers from the UK
and the USA as contributors to what we are sure will be a valuable
source of both technical and epidemiological data in this rapidly
growing field.

We are sincerely grateful to the guest editors, authors and all those
who have contributed to the production of this volume.

John Baker
Ralph Muller
David Rollinson

ADVANCES IN PARASITOLOGY VOL 62 vii
ISSN: 0065-308X  $35.00
DOI: 10.1016/S0065-308X(05)62017-9



Guest Editors’ Preface

It has been five years since an earlier special issue of Advances in
Parasitology, Volume 47, outlined the advances that remote sensing
(RS) and geographical information systems (GIS) could bring to epi-
demiology. During this interval a vast amount of work has been
undertaken in this area and these RS data and GIS tools have moved
from the novel to part of the mainstream of spatial epidemiology.
Data availability has continued to limit the engagement of many
potential users, however. This has been most obvious in continental
and global scale public-health applications, and predictably these
limitations have been particularly acute in regions with low band-
width internet connections, often where the public health need is
greatest. The primary reason for compiling this new volume was to
enable a wider range of epidemiologists to have access to the global
environmental data (satellite and demographic), which we have been
collectively working with for over a decade. The second reason for
devising this special issue was to demonstrate that RS and GIS do not
simply create pretty maps, but biologically informative information
and ultimately pragmatic control tools. That being said, we also hope
you like the front cover!

This special issue of Advances in Parasitology, Volume 62, “Global
mapping of infectious diseases: methods, examples and emerging ap-
plications” comprises 10 reviews and a DVD of global environmental
and population data. There are four introductory reviews: one on the
various methods used to predict disease distributions (Rogers, this
volume, pp. 1-35); another on the global environmental datasets that
can be used for disease mapping (Hey et al., this volume, pp. 37-77);
a further one exploring the concepts of spatial resolution, accuracy
and uncertainty measures in disease mapping based on remote sens-

ADVANCES IN PARASITOLOGY VOL 62 ix
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X GUEST EDITORS’ PREFACE

ing (Atkinson and Graham, this volume, pp. 79-118) and a final one
on predicting the global distribution of human population (Balk
et al., this volume, pp. 119-156). Three reviews follow dealing with
defining the global distribution limits of Plasmodium falciparum and
P. vivax malaria (Guerra et al., this volume, pp. 157-179), first at-
tempts to map the environmental limits of dengue and yellow fever at
the global scale (Rogers et al., this volume, pp. 181-220) and con-
tinued efforts to map the geo-helminths for the targeting of control
activities (Brooker et al., this volume, pp. 221-262). Finally, three
application reviews discuss current research topics that have emerged
from our ability to consider epidemiological phenomena at the global
scale. Tick-borne diseases are used as an example of how to coin-
cidentally map geographic and phylogenetic space (Randolph and
Rogers, this volume, pp. 263-291). The penultimate review investi-
gates the spread of disease vectors and the pathogens they transmit
via global transport networks (Tatem et al, this volume, pp.
293-343). The final review discusses methods and evidence required
to evaluate the impacts of climate change on vector-borne disease
(Rogers and Randolph, this volume, pp. 345-381).

The public health environment, as well as our research, has evolved
significantly in the last five years. The millennium development goals
(http://www.un.org/millenniumgoals/) have been signed and largely
drive the global development agenda. More recently these have been
emphasized and augmented by the commission for Africa (http://
www.commissionforafrica.org/), which helped to highlight the in-
creasing importance of public health interventions in achieving in-
ternational development goals. Our ability to document the
“epidemiological state of the Earth” is therefore a crucial underpin-
ning to measuring, planning, costing and ultimately delivering on
these promises. We hope that the information and methods outlined
in these reviews will in some small way contribute.

Furthermore, global environmental change has continued apace
throughout the past five years. These changes for example to climate,
transport networks, disease pathogens and their vectors do not re-
spect administrative boundaries and their influences and impacts are
best addressed at the global scale. With increasing computing power
and ever cheaper data storage capacity, a wider variety of researchers
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can start to evaluate changes using the baseline data provided here.
Our final reviews aim to convey some of the research opportunity
that, we believe, these data facilitate.

Finally, we would like to note the passing of Byron Woods and
Louisa Beck. Both participated in the previous special issue and were
valued colleagues, whose contributions will be missed. We would also
like to thank the series editors and development editors at Academic
Press for their continued support and their help in making this col-
lection of reviews, a book.

S.I. Hay
A.J. Graham
D.J. Rogers



Contents

CONTRIBUTORS TO VOLUME 02 . . . . ... . e

SERIES EDITORS’ PREFACE . . . . .. . ...
GUEST EDITIORS” PREFACE. . . .. .. e

Models for Vectors and Vector-Borne Diseases
D.J. Rogers
ADSLIact . . . . . e

A Brief History of Distribution Modelling. . .. ...........
Families of Distribution Models . . .. ..................

~N O\ LD RN~
=
()
=
-
o
v/
o
z
-+
=
w2
e}
)
-
[72]
(¢}
v,
[
o+
o
[72]
a
=+
w2
>

Acknowledgements . ... ......... ... .. ... .. ...
References .. ...... .. .. .. . . . .. .. . .

Global Environmental Data for Mapping Infectious
Disease Distribution

S.I. Hay, A.J. Tatem, A.J. Graham, S.J. Goetz and
D.J. Rogers

Abstract . .. ... ..
Introduction . . . ... . ... ... ..
The AVHRR Sensor . . .......... ... . ... ..........
Temporal Fourier Analysis (TFA). .. ..................
Future Global Environmental Data. . .. ................
ConclusSions . . ... ..
Acknowledgements . .. ..... ... .. ... ... .. ...
References . .. ..... ... .. . . . ... ...

RAEEab ol

ADVANCES IN PARASITOLOGY VOL 62
ISSN: 0065-308X  $35.00
DOI: 10.1016/S0065-308X(05)62015-5

12
14
19
21
30
33
33

38
38
39
49
57
70
70
71

xiii



Xiv CONTENTS

Issues of Scale and Uncertainty in the Global Remote
Sensing of Disease

P.M. Atkinson and A.J. Graham

AbStract . . .. ... 80
. Introduction ............ ... ... ... 80
2. Issues of Scale and Spatial Resolution. . .. .............. 86
3. Issues of Uncertainty. .. ......... ... ... ....... 96
4. SUMMATY . . vt e e e e e e e e e 107
Acknowledgements .. ......... ... .. ... ... 108
References ... .. ... .. .. . . .. .. 108

Determining Global Population Distribution: Methods,
Applications and Data

D.L. Balk, U. Deichmann, G. Yetman, F. Pozzi, S.I. Hay and

A. Nelson
AbStract . .. ... 120
1. Introduction ........... ... . . .. ..., 120
2. Data. ... e 124
3. Methodology. . . ....... ... . ... 133
4. Health Applications. . .. ........ ... ... ... ... 138
5. DISCUSSION . . .ttt e 144
6. Data Dissemination. . ... .......... ... .. ... ... .. 148
Acknowledgements .. ......... ... . ... ... .. 151
References . . ... ... .. .. . .. . ... 151

Defining the Global Spatial Limits of Malaria
Transmission in 2005

C.A. Guerra, R.W. Snow and S.I. Hay

ADbstract . . .. ... 157
1. Introduction ............. ... .. ... ... 158
2. The Distribution of Malaria Risk from Travel Guidelines. ... 159
3. The Biological Limits of Transmission. . .. .............. 161
4. Distinguishing P. falciparum and P. vivax risk . ... ... ... .. 169
5. Regional Analysis . .. ......... ... ... ... 169
6. DISCUSSION . ... ... 173



CONTENTS XV

7. Conclusions . ... .... .. ... 174
Acknowledgements . ... ........... ... .. ... ... ... 175
References . ... ... . . . . . . . . . 175

The Global Distribution of Yellow Fever and Dengue
D.J. Rogers, A.J. Wilson, S.I. Hay and A.J. Graham

Abstract . . ... ... 182
1. Introduction ............ ... ... . ... 182
2. The Pathogens ............ ... .. .. . .. .. ..., 183
3. Materials and Methods . . ......... ... ... . ... ... ... 193
4. Results. ... ... . ... 200
5. DISCUSSION . . .. vt 208
6. Conclusion . . ...... ... . ... 209
Acknowledgements .. ........... ... .. ... .. ... 210
References .. ...... ... .. . . . ... ... 211

Global Epidemiology, Ecology and Control of
Soil-Transmitted Helminth Infections

S. Brooker, A.C.A. Clements and D.A.P. Bundy

Abstract . . .. ... 221

l. Introduction ............... .. ... ..., 222
2. Transmission Dynamics and the Environment . .. ......... 224
3. Ecological Correlates. . . ............ .. .. ........... 227
4.  Predicting Distributions . . . .. ... ... ... 231
5. Urbanization. . .. ........ ... ... 232
6. Global Control Strategies. . ... .............. ... 234
7. Control Applications of GIS/RS. . .. .................. 237
8. Global Distributions . .. ........... ..., 243
9. Predicted Numbers of Infections. . ... ................. 246
10. The Future. ... ... ... ... . . . . . . . 250
Acknowledgements . . ........... ... .. .. ... ... ... 252

References . .. ... .. . .. . . . .. 252



XVi CONTENTS

Tick-borne Disease Systems: Mapping Geographic and
Phylogenetic Space

S.E. Randolph and D.J. Rogers

Abstract . . .. .. 263
1. Predicting Changing Risk of Infection on Evolutionary Time

Scales. . .. ... 264
2. The Evolutionary Time Scale for Vector-Borne Flaviviruses . . 267
3. Correlates of Phylogenetic Patterns. . .. ................ 269
4. Testing the Role of Climate in the Evolution of Tick-borne

Flaviviruses. . . . ... ... 276

Acknowledgements .. .......... ... .. .. .. .. .. 285

References .. ...... ... ... . .. .. ... ... 285

Global Transport Networks and Infectious
Disease Spread
A.J. Tatem, D.J. Rogers and S.I. Hay

Abstract . . .. .. 294
1. Introduction ............... ... ... 294
2. Global Transport Networks and Pandemics. . . ........... 295
3. Global Transport Networks and Disease Vector Invasions ... 306
4. Global Transport Networks and Vector-borne Diseases . . . . . 319
5. Conclusions . ........ ... 332

Acknowledgements .. ........... . .. ... ... 332

References . ... ... ... ... . . .. . . . ... 333

Climate Change and Vector-Borne Diseases
D.J. Rogers and S.E. Randolph

Abstract . . . ... 346
1. The Mathematics and Biology of Changes in Vector-Borne

DiSeases . . ..ot 346
2. Defining the Criteria for Claiming Climate Impacts on

Vector-Borne Diseases . . . . ......................... 351

3.  Models for Climate Change Impacts on
Vector-Borne Diseases . . . .. .. .. ... 353



CONTENTS XVii

4. Biological and Statistical Approaches to Vector-Borne
Disease Futures. . . . .......... .. ... ... .. 355
5. Recent Changes in Vector-Borne Diseases: Has Climate Change
Already had an Impact?. . . .......... .. ... .......... 366
6. Conclusions . .......... ... .. 376
Acknowledgements ... ........ ... .. ... . ... ... 377
References . . ... ... . ... ... .. 377
INDEX . .o 383
CONTENTS OF VOLUMES IN THIS SERIES. . . . . oo oi i 391

Colour Plate Section can be found at the back of this book



Models for Vectors and Vector-Borne
Diseases

D.J. Rogers

TALA Research Group, Tinbergen Building, Department of Zoology,
University of Oxford, South Parks Road, Oxford 0X1 3PS, UK

Abstract . . . . . ... 1
1. A Brief History of Distribution Modelling . . . .. ... ... .... 2
2. Families of Distribution Models. . . ... ............... 4
2.1. Logistic Models: The Theory . . . . ... ............ 4
2.2. Discriminant Analysis Models: The Theory . . ... ... .. 10
3. Predictor Variable Selection in Distribution Models . . . . . . .. 12
4. What to Do With Sparse Datasets?. . . .. ............. 14
4.1. Bootstrap Sampling. . . .. ... ... ... . ... 15
4.2. Environmental Envelope Expansion. . . . ... ... ..... 17
5. Incorporating Spatial Information Into Models. . . . ... ... .. 19
6. Model Selection and Multi-Model Inference . . . . ......... 21
6.1. Application to Vector and Disease Mapping. . . . ... ... 26
7. Conclusion . . ... 30
Acknowledgements . . . . ... ... L L 33
References . . . .. .. ... . .. ... 33
ABSTRACT

The development of models for species’ distributions is briefly re-
viewed, concentrating on logistic regression and discriminant analyt-
ical methods. Improvements in each type of modelling approach have
led to increasingly accurate model predictions. This review addresses
several key issues that now confront those wishing to choose the
“right” sort of model for their own application. One major issue is
the number of predictor variables to retain in the final model.
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2 D. J. ROGERS

Another is the problem of sparse datasets, or of data reported to
administrative levels only, not to points. A third is the incorporation
of spatial co-variance and auto-covariance in the modelling process.
It is suggested that many of these problems can be resolved by
adopting an information-theoretic approach whereby a group of
reasonable potential models is specified in advance, and the “‘best”
candidate model is selected among them. This approach of model
selection and multi-model inference, using various derivatives of the
Kullback—Leibler information or distance statistic, puts the biologist,
with her or his insight, back in charge of the modelling process that is
usually the domain of statisticians. Models are penalized when they
contain too many variables; careful specification of the right set of
candidate models may also be used to identify the importance of each
predictor variable individually; and finally the degree to which the
current “‘best” model improves on all the other models in the can-
didate set may be quantified. The ability definitely to exclude some
models from the realm of all possible models appropriate for any
particular distribution problem may be as important as the ability to
identify the best current model.

1. A BRIEF HISTORY OF DISTRIBUTION MODELLING

Human beings, first as hunter-gatherers and later as scientists, have
always appreciated the value of spatial information. Simple obser-
vations and collections of museum specimens reinforce the notion
that no single species occurs everywhere. Maps of plant and animal
distributions that were made for a variety of purposes record the
known distribution of these living organisms as points or within poly-
gons specifying some local region, either ecological (e.g. within a
forest) or political (e.g. within a country or region). It is clear that the
development of some of these polygon boundaries also benefited
from the increasing knowledge of climatic constraints to species’ dis-
tributions. For example, the historical map of the distribution
of tsetse flies (Glossina spp.) in Zimbabwe is based on very few
point records (tsetse were collected at known points by farmers, mis-
sionaries, District Officers and others) supplemented with the
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entomologists’ increasing understanding that to complete develop-
ment successfully tsetse require certain minimum temperatures that
are found only at lower altitudes. In many places, therefore, the his-
torical tsetse map follows elevation contours.

This example suggests that, as was said of models by Box, “All
maps are wrong, but some are useful” (Box, 1979). The real question
1s, how useful are such maps, and can we improve upon them with
current technology? This technology comes in four guises. The first is
simply the increased information that we now have for many species
that is available both digitally and online; the second is the increas-
ingly powerful computers that we have, not just to hold but also to
process the data; the third is the new generations of satellites that are
providing us with information about our natural environments at
unprecedented spectral, spatial and temporal resolutions; and finally
the fourth is the increasingly sophisticated mathematical models that
can be applied to distribution data. This combination of information,
knowledge and understanding is available at a critical moment in
human history, when the distributions of many other animals, plants
and diseases are being affected, directly and indirectly, by the most
ubiquitous of all species—our own. It seems we are beginning to
understand the distributions of plants and animals only at the point
when we are about to change them dramatically.

Biologists require maps for many different purposes. Here we
concentrate on the use of maps to increase our understanding of the
biological and other processes that determine the distribution and
abundance of species in space and time. Which are the important
variables; how do they act; and how do they differ in places of disease
presence and absence, or in places of different disease abundance? We
therefore eschew mapping methods that simply reproduce the distri-
bution map, or points drawn from the distribution map (the “training
set” data), through one or other pure ‘“‘pattern-matching” approach.
Thus both neural network models and k-nearest neighbour tech-
niques will be ignored (Williams et al., 1992), as will be tree-based
classification methods (Green, 1978) and those hybrids, such as
GARP, that use genetic algorithms to improve on initial approaches
using more traditional methods (Stockwell and Peters, 1999). Each of
these appears to make the assumption that what is required is a
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description, as accurate as possible, of the training set data in terms of
the available suite of predictor variables, from which a distribution
prediction is made. While the end results of these alternative
approaches can be maps with high levels of statistical accuracy, the
biological insight they provide is minimal.

2. FAMILIES OF DISTRIBUTION MODELS

In a recent review of predictive mapping of species’ distribution,
Rushton et al. (2004) show that logistic regression methods are by far
the most commonly used approach. In fact, none of the examples
reviewed used discriminant analysis, which is curious given the
pervasive assumption of some or other form of normality (the key
assumption of discriminant analysis) throughout the ecological liter-
ature (see below). This section shows that, despite the great accuracy
of many logistic regression models, biologically their assumptions are
essentially unrealistic. If we are to use statistics to increase our
biological understanding we should start with a model type that
potentially allows us to do so.

2.1. Logistic Models: The Theory

Logistic regression models are often applied to the relatively simple
problem of the distribution of an organism or disease and whether or
not it is absent or present in any area. The heart of logistic regression
is a relationship between a response variable y and sets of predictor
variables x;, x, etc. as follows:

y=PB+pfix1+Pfpxo+---+e (1)

where f is the intercept, 1, 5> etc. are partial coefficients and ¢ is a
residual error term (Dobson, 1990; Cramer, 2003).

Equation (1) is not used directly for the simple reason that the
response variable y may take any value, and could certainly be well
outside the theoretical limits (for binary presence/absence modelling)
of 0 to 1.0. Even if the range of observed values of x on which the
equation is based limits y to this range, there is no a priori reason why
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the model should not be extrapolated using a wider range of values of
x, giving “impossible” values of y. Instead, the variable y from Eq. (1)
is used in the following logistic equation that predicts the probability
of presence or absence of a species:

e exp()
I'presence — m

and therefore

o)
(1 + exp(n))

Equation (2) has the convenient property that 0<Prpesence<1,
i.e. the response variable Pryesence 1 bounded within the only logical
possible range of 0 to 1. Equation (2) is simply one of a number of
alternatives that has this desirable property of confining an
unbounded prediction (Eq. (1)) to a fixed range, but there seems to
have been little investigation in the literature of these alternatives
to date.

One of the “problems” with Eqs (1) and (2) is illustrated in
Figure 1, where the simplest form of Eq. (1) has been used:

y =B+ Bix1 (3)

(i.e. also dropping the error term for illustration purposes). Figure 1
shows that logistic regression allows only a single transition from 0
(absence, or “off ) to 1.0 (presence, or ““on’’) across the entire range
of any single predictor variable x;, in the situation where y is an
increasing function of x; (i.e. positive f;, Figure la), or a single
transition from 1.0 (presence) to 0 (absence) when y is a decreasing
function of x; (i.e. negative f;, Figure 1b). Many biological responses
are non-linear with respect to increases in critical driving variables;
for example, as temperature increases from very low levels, where
species are absent, to intermediate levels (species present) to very high
levels (species absent again) we clearly have two transitions
(effectively “off”” to ““on”, and then back to “off” again) on a single
environmental variable. Without specifying the form of this biolog-
ical relationship it is clear that a simple logistic model using this single
environmental variable could not capture the entire species’

2)

Prabsence =



t-)
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Figure 1 Examples of logistic curves where the dependent variable (y in
text Eq. (3)) (a) increases and (b) decreases with the independent variable, x.

There can be only one “on”—“off ™ or ““of]

RT3

on’ transition with any single

variable when y is linearly related to x, so that two independent variables are
required to define an ““off ”—“on”—"off "’ response (e.g. ¢).
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distribution, although it may be satisfactory for some parts of this
distribution.

To capture the “off —"“on”—"“off” nature of species’ distributions,
simple logistic regression requires two variables, one capturing the “off
to “on” transition and the other the “on” to “off” transition. Put to-
gether, these can give a reasonable semblance of what is happening on
the ground (Figure 1c), but biologically, in a rather unrealistic way.

It may be deduced from the above that a non-linear form of Eq. (3)
may in fact be the solution to the “off ”"—“on”—“off”” problem if it can
be arranged that y is an increasing function of x; over part of the
range of x; and a decreasing function over other parts of the range of
x1. This may be achieved by the following quadratic expression for y
in Eq. (1) (again omitting the error term):

y =B+ Bix1 +ﬁ2x% 4)

Incorporating Eq. (4) into Eq. (2) gives the so-called Gaussian
logistic equation, which has rarely been used in distribution studies,
despite its apparent applicability.

While the various forms of Eq. (2) will produce numbers that range
between zero and one the distribution of these outcomes is usually
non-normal. This helps to explain why the optimal cut-off threshold
in logistic models (i.e. the level of the output variable that is taken to
separate “‘presence’”’ from ‘““‘absence” in any predictive distribution
map) is rarely exactly 0.5. Sometimes authors take an arbitrary cut-
off value that gives the best-looking output map. At other times more
objective criteria are used (such as ROC or area-under-the-curve
methods—see Table 1 and later) that essentially maximize the dis-
criminatory ability of the logistic model (i.e. as judged by its ability
correctly to describe the input data).

While logistic regressions are usually applied to simple binary sit-
uations they can be extended to situations with more than two cat-
egories or outcomes, when they are known as multinomial logistic
regressions (Cramer, 2003). This extension of logistic regression
models is rarely used in distribution studies, even when obvious cat-
egorical variables, or continuous variables made into categories (such
as various levels of the abundance of vectors or the prevalence of a
disease), are to be modelled.
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Table 1 Various accuracy metrics applicable to distribution modelling
Accuracy Range of  Description Advantages Disadvantages
metric values
Correct (%) 0-100% Overall percentage Simple and easy to Presence and absence
accuracy, all calculate sites given equal
categories weight. Metric
combined usually affected by
prevalence
False positives ~ 0-100% % of total training Simple and easy to Should be considered
(%) set sample calculate with its
wrongly predicted complement—
as ‘presence’ false negatives
False negatives  0-100% % of total training Simple and easy to Should be considered
(%) set sample calculate with its
wrongly predicted complement—
as ‘absence’ false positives
Sensitivity 0-1 Ability to identify Derived from Concentrates on
positives correctly diagnostics. positives only.
Useful measure of Should be
positive test considered with its
accuracy complement—
specificity
Specificity 0-1 Ability to identify Derived from Concentrates on
negatives correctly diagnostics. negatives only.
Useful measure of Should be
negative test considered with its
accuracy complement—
sensitivity
Producer’s 0-100% Ability to predict the A guide to the Not particularly
accuracy training set data modeller to useful to users
correctly identify where
current models are
wrong
Consumer’s 0-100% Accuracy of model A guide to the user An important metric
accuracy predictions to indicate the for operational
probability with use, but not
which each model particularly useful
prediction is to the modeller in
correct identifying model
errors
i (kappa) —1to1l Index of agreement Adjusts for chance Sensitive to overall
for positive and model agreement prevalence at high
negative samples with training set and low
combined data (for which prevalence levels
Kk = 0). Applicable
to multiple
categories of
presence/absence
or abundance
AUC 0-1 AUC is the area Effectively combines  Rather more time

under the curve of

sensitivity and

consuming to
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Table 1 (continued)

specificity) (x-
axis), sometimes
called the receiver
operating
characteristics
(ROC) plot

AIC is Akaike’s
Information
Criterion used in
information-
theoretic models

logistic regression
analyses where
probability
thresholds to
achieve best fit
(for presence/
absence) are often
NOT 0.5. Less
affected than x by
high/low overall
prevalence

Estimates the

difference between
a model’s
performance and
some unknown,
ultimate truth.
Models with lower
AICs are better
than those with

Accuracy Range of  Description Advantages Disadvantages
metric values
a plot of specificity to assess calculate than
sensitivity (y-axis) model accuracy. other methods,
against (1- Commonly used in and more difficult

to interpret.
Works only for
binary (presence/
absence) situations

AIC is used to

compare models
on an arbitrary
scale. Absolute
and relative
differences
between models
are more
informative, and

can determine
which models to
drop from a
candidate set of
‘possible’ models

higher AICs

A little thought will show that the intercept term in the basic
logistic Eq. (1) determines the position of the logistic curve on the
predictor-variable axis, while the coefficients determine how quickly
the curve rises or falls as the predictor variables change. In other
words they reflect the sensitivity of the organism’s distribution to
changes in the associated environmental variables. Small values of the
coefficients result in a slow transition from “off”” to “on” or “on” to
“off ”’; large values produce a rapid transition. In practice, of course,
the coefficients are estimated by least squares and other methods
applied to real datasets, and their inspection can reveal the likely
sensitivity of the species to variations of the predictor variables.
Needless to say, the greater the number of predictor variables, the less
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easy it is to draw conclusions about either the contribution of any
single one of them to describing distributions, or the sensitivity of the
species concerned to small variations in their values.

2.2. Discriminant Analysis Models: The Theory

Details of the discriminant analytical approach to distribution models
have been given elsewhere (Rogers, 2000). Initially these models used
linear discriminant functions with equal co-variance matrices
(Rogers, 1993; Rogers and Randolph, 1993); the use of non-linear
discriminant functions and unequal covariance matrices later allowed
the description of more complex distributions over larger areas
(Robinson et al., 1997; Rogers, 1998). Here we highlight the impor-
tant differences between discriminant analytical and logistic regres-
sion model concepts and conclusions.

Discriminant analysis is one of the techniques that assume a
multivariate normal distribution both of predictor datasets and also of
the response variable, which is an estimate of the probability of species
presence or absence. Briefly, the areas of presence of a species are
assumed to experience a range of conditions described by a multivari-
ate normal distribution, and the areas of absence are assumed to be
described also by a multivariate normal distribution with a different
multivariate mean or “‘centroid’ and (usually) different co-variances of
the same set of predictor variables. These two distributions therefore
exist in multivariate environmental space and together define a mul-
tivariate surface on which it is possible to locate the environmental
conditions of any point on a map, and to calculate the probability with
which this point “belongs” to the cluster defining presence or, alter-
natively, to the cluster defining absence. These probabilities are more
correctly described as such than is the case for logistic regression
probabilities, since they assume some underlying normal frequency
distribution, although a normalization step is usually required to cal-
culate them (thus they are linear functions of the exact probabilities
rather than the exact probabilities themselves). The use of observed or
other more appropriate prior probabilities produces (Bayesian) max-
imum likelihood output predictions in such discriminant analysis
models (Swain, 1978).
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This brief description highlights the difference between logistic and
discriminant analytical methods and identifies the critical assumption
of an underlying uni- or multivariate normal frequency distribution
of the predictor variables (and response variable) in the latter, but not
the former method. Univariate and multivariate assumptions pervade
many branches of ecology in different guises. For example, much
competition theory assumes a univariate response of competing spe-
cies on a continuous environmental variable (Macarthur, 1972); ideas
of species packing (hence competitive exclusion etc.) along the same
environmental variables were first derived assuming identical and
essentially univariate normal responses of species to variation in the
resource—the species’ exploitation curves (Macarthur, 1972).
Canonical and other correspondence analyses, widely used in com-
munity ecology, also assume underlying univariate normal responses
of individual species within the community to whole sets of environ-
mental variables that are explicitly specified in canonical analyses, but
implied in the other sorts of correspondence analyses (Jongman et al.,
1995). And so on. While one might legitimately question whether or
not the actual responses are precisely uni- or multivariate normal,
most uni- and multivariate analytical methods are fairly robust to
small departures from normality, and these distribution-based ap-
proaches appear to have worked well for these ecological applica-
tions. One might even argue that an ecological “model” that does not
make some underlying assumption of multivariate normality is the
exception rather than the rule. If this is the case why, then, do most
biologists use logistic regression to model species distributions? The
answer appears to be a mistaken assumption that a frequency dis-
tribution of environmental conditions (of either presence or absence
points) that is clearly non-normal renders any multivariate method
inapplicable. However, rather than change the model to one that does
not assume any underlying distribution at all (e.g. the logistic regres-
sion model), an alternative option is first to pre-process the environ-
mental data in some way or other to make them more nearly normal,
and thus suitable for discriminant analysis or other methods. This
can usually be achieved by clustering the environmental data
(Rogers, 2000). When this is done, a single distribution (e.g. of
environmental conditions in areas of a species’ presence) is broken
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into a series of distributions, each of which is much more likely to be
multivariate normal than is the original distribution (in fact, cluster-
ing algorithms tend to ensure this outcome).

While the early forms of discriminant analysis, which assumed
common and equal multivariate normal co-variances of sets of data
points around their respective centroids, performed well for certain
datasets (generally involving classifications of flowers or skulls), other
methods, such as logistic regression, performed better on species’
distribution data. Discriminant analytical methods were, in general,
ignored for such applications. This situation was not improved by the
relative paucity of software for maximum likelihood discriminant
analysis that newcomers to the field could use. Nevertheless, the
biological insight provided by discriminant analysis admits this ap-
proach to the existing family of informative ecological models that
make analogous assumptions about species’ responses to environ-
mental conditions. Discriminant analysis easily handles multiple
categories of the dependent variables (whether of absence and pres-
ence clusters, or multiple categories of continuous variables such as
vector abundance or disease prevalence) and thus also copes well with
a variety of non-linear biological responses (when the categories or
clusters are not collectively linearly dependent on any combination of
environmental variables). In addition, the maximum likelihood out-
puts of discriminant analysis lend themselves to the information-
theoretic and multi-model selection methods outlined below.

3. PREDICTOR VARIABLE SELECTION IN
DISTRIBUTION MODELS

For both logistic and discriminant analysis approaches to species’
distribution modelling, most workers select variables from a suite of
candidate descriptors in step-wise inclusion or step-wise exclusion
fashion (Rushton et al., 2004). Two decisions have to be taken here.
The first is to select a criterion on which to base variable selection; the
second is to decide when enough variables have been selected because
additional variables no longer improve the model in some way
or other.
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Criteria for variable selection are based either upon some strictly
statistical measure such as the change in Mahalanobis Distance,
residual sum of squares, odds- or variance-ratio, or else upon the
improved fit of the model to the data with and without the variable in
question, in comparison with all other candidate variables in the
dataset. These methods will not necessarily, and usually do not, select
the same variables. Step-wise inclusion methods will tend to select
variables that are un-correlated with each other (because variables
that are correlated with those already in the model do not improve
model fit), but it follows from this that the first selected variable
strongly influences the selection of all later variables. A different first
variable very often results in a completely different set of selected
variables in alternative models of the same distribution. These differ-
ent sets of predictor variables often confuse the novice modeller, but
they arise ultimately from the correlation structure of the entire pre-
dictor dataset, embedded in which are various “‘subsets’ of predictor
variables sharing the common characteristic of being least correlated
with other variables in the same subset (and therefore by definition
more correlated with other variables in other subsets).

Knowing when to stop adding (or subtracting) additional variables
in step-wise inclusion (or exclusion) methods for distribution mod-
elling is somewhat problematic. Strict statistical criteria are difficult
to define (e.g. what absolute or relative value should be chosen for
reduction in the sums of squares?), but easy to apply, once selected.
Criteria based on model fits to the data are easier to define, but more
difficult to apply in practice (e.g. a 5% improvement in overall model
fit is easily obtained with a small change to a large patch of the
species’ distribution, but a larger change to a smaller patch—giving
the same overall 5% improvement—might result in a better-looking
or more useful predictive map).

Table 1 lists a variety of accuracy metrics as used in the remote-
sensing literature, and many of these can be used for variable selection
at model-building time. That is to say, whatever metric is preferred by
the user is calculated for each candidate variable’s inclusion into the
existing model, and the variable that maximizes the metric is the one
selected for inclusion next. Clearly those metrics that need to be paired
to achieve the best overall accuracy (such as sensitivity and specificity)
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may be weighted equally when used together, or differentially if the
“cost” of incorrect predictions is greater for a false absence than for a
false presence prediction (Congalton, 1991; Fielding and Bell, 1997).
Kappa varies from —1 (model entirely opposite to observations)
through 0 (model fit no better than random) to 1 (perfect fit). Landis
and Koch (1977) suggest the following ranges of agreement for
the k statistic: poor, k <0.4; good, 0.4< xk <0.75 and excellent,
Kk >0.75.

With a burgeoning number of potential predictor variables, derived
from a variety of ground-based or satellite systems, the danger is that
some of these layers, by chance alone, will have some skill in de-
scribing the observed distribution, and will therefore be selected in the
final model. The greater the number of predictor variables available
for modelling, the higher is the probability that this will happen. Step-
wise inclusion methods will continue to select variables as long as
they meet the threshold criterion for inclusion. There is no particular
penalty for selecting a model with many variables over one with fewer
variables other than that imposed by the residual degrees of freedom,
which are usually large enough not to affect the level of significance
of a final model with many or with few variables.

The practice of using as many descriptor layers as possible
and selecting them in some fashion or other that improves the “fit”
of the model is called ‘““data-mining” by its proponents, and ‘“‘data-
dredging” by its detractors. The latter suggest that this practice leads
to final models that are neither parsimonious nor informative bio-
logically and suggest instead an information-theoretic approach that
overcomes many of these problems. These methods are described
later.

4. WHAT TO DO WITH SPARSE DATASETS?

Distribution models are designed to draw inferences from sparse da-
tasets to make predictions about distributions over much larger areas.
In this section, we discuss the nature of sparse datasets, and what may
be done to ensure that the resulting maps use as much of the infor-
mation they contain as is possible.
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The training set data are a subset of the total distribution of any
species and thus contain partial but not full information about the
species’ distribution, hereafter referred to as ‘“‘reality” or “truth”. A
different training set, of the same sample size, would contain different
points and therefore would present different partial information about
the same reality. A modelling approach applied rigorously to each
training set would produce two different predictions of reality. Which
is correct? In fact it is very likely that neither model is correct, although
one is going to be more correct than the other. The problem for the
modeller is that she or he does not know which is the more correct,
because she or he does not know what reality—the true distribution—
actually is. All that we can know is that modelling using different
training sets will give different predictions of reality, among which it is
apparently impossible to choose the “best”. Nevertheless, we should
try to estimate from the training set how variable are our modelling
estimates of reality, because users of predictive maps can rightly expect
of the modeller some statement about the uncertainty of any model’s
predictions.

A second problem arises when we know a sparse dataset does not
sample the entire geographic range of a species’ distribution. When
observations come from only part of a species’ range, is it possible to
infer from them the wider geographical distribution of which they are
only a part? Thus the first problem above is one of sparse but
geographically unbiased training set data while the second is one of
sparse and geographically biased training sets. Two methods help us
to draw as much information as possible from sparse training sets of
different degrees of geographical bias: bootstrap sampling and
environmental envelope expansion.

4.1. Bootstrap Sampling

Bootstrap sampling is one of the methods normally used for testing
the accuracy of predictive models (Davison and Hinkley, 2003). A
bootstrap sample is simply a sub-sample of a set of training data that
is used to make one prediction of a species’ distribution. Multiple
bootstrap samples are taken, a prediction is made for each and the
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entire set of predictions is then combined to produce a single, average
prediction. This prediction reflects the uncertainty we should have of
a species’ real distribution “on the ground”, on the basis of any
particular set of training data.

Bootstrap samples should be taken from the training set with
replacement because we assume that the training set itself is a sample
of reality, and the occurrence of any one observation within it is
essentially random. A different training set could contain that
observation more than once, or not at all. Only bootstrap sampling
with replacement reflects this.

One advantage of bootstrap sampling is that within any one model
the samples can be arranged to have equal numbers of presence and
absence observations. Recent work suggests that this situation pro-
duces model outputs with the greatest accuracy (McPherson
et al., 2004).

Figure 2 (Figure 2 is Plate 1.2 in the Separate Color Plate Section)
shows an example of the bootstrap approach applied to a very sparse
dataset for Rift Valley Fever (RVF) in Africa and the near Middle
East. Figure 2a shows the fit of a discriminant analytical model
applied to the entire training set of presence (n = 62) and absence
(n = 2000) points (the latter selected to be within 0.5 and 10.00 de-
grees of any presence point). The accuracy metrics for this model are
high (overall % correct = 97.0; false positives = 2.3%, false nega-
tives = 0.7%; k = 0.813), although this is more due to an accurate
description of absence than of presence points (sensitivity = 0.774,
specificity = 0.976). Overall, the map underestimates the distribution
of this disease within Africa. Figure 2b shows the mean predictions of
100 bootstrap models using the same dataset (each model with 200
presence and 200 absence points, randomly selected with replacement
from the training set). The bootstrap approach extends the areas
predicted to be suitable for this disease, but there is considerable
uncertainty about the status of many of the additional high-risk areas
of Figure 2b compared with Figure 2a. Nevertheless, the average
accuracy statistics for the 100 models that contributed to Figure 2b
are impressive. The mean x value for the top 10 models was 0.895
(s.0. = 0.017) and for the bottom 10 models was 0.851 (s.n. = 0.020).
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4.2. Environmental Envelope Expansion

When it is suspected that the training set is geographically biased, a
different approach may be adopted. In this approach, only the pres-
ence data points are used and a selection of absence points is gen-
erated within the GIS (as in the bootstrap example above) that are
within a specified geographical distance of the presence points. There
should be many more absence than presence points. The approach
assumes that some of these absence points are in reality presence
points that have simply not yet been identified as such, and the chal-
lenge is to establish which these are. Again multiple models are run.
In each model, all of the observed presence points (or bootstrap
samples of them) are taken, together with an equal number
(i.e. a subset) of the absence points. In the various runs of the
model, any particular absence point appears with a different sample
of other absence points and they collectively define the environmental
envelope of absence; the presence points obviously define the envi-
ronmental envelope of presence. Clearly in any one run of the model,
a particular point of absence may be assigned to the category of
presence with a certain probability. If this same point is always as-
signed a high probability of presence in all the models in which it is
included, and regardless of the other absence points with which it is
associated, then it seems reasonable to re-assign it to the category of
presence points. The output of each model run is therefore stored in
terms of the predicted probability of membership of the presence and
absence categories of each point in the dataset used. When all the
model runs are completed the average probabilities are calculated
from the stored data. Data points for presence that are consistently
predicted to belong to the presence category with very low probability
are re-assigned to the absence category (there are usually very few of
these) and data points for absence that are consistently predicted to
belong to the presence category are re-assigned to this category. Thus
the environmental envelope for presence is expanded along the en-
vironmental dimensions defined by the sparse training set. The new
training set with the re-assigned data points is then used to make map
predictions in the usual way (or by bootstrap sampling, previous
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section). Further rounds of envelope expansion can be carried out,
each one starting with the output of the previous round.

This approach has been very successful in expanding predictions of
the geographical distributions of diseases within the same broad
climatological/vegetation type as the training set data, but it obvi-
ously cannot identify other areas of vector or disecase presence that
are quite different from the training set regions. An example using the
Rift Valley dataset (previous section) is shown in Figure 2c. The
figure shows the results after the first round of environmental enve-
lope expansion applied to the training set data, and using exactly the
same bootstrap samples as were used to produce Figure 2b. In this
case, the presence/absence status of the training set data was adjusted
on the basis of the mean probabilities of presence/absence determined
for them in the 100 bootstrap samples; training set ““positives’ that
were predicted to belong to the presence category with a mean prob-
ability of <0.25 were re-assigned to the absence class, while training
set “‘negatives” with a mean probability of presence of 0.50 or greater
were re-assigned to the presence class. A single model was then pro-
duced, in the same way as Figure 2a, but using this corrected training
set (overall % correct = 94.4, false positives = 4.3%, false nega-
tives = 1.4%, k = 0.757, sensitivity = 0.767, specificity = 0. 955). In
comparison with the predictions in Figure 2b, Figure 2c indicates a
greater degree of model certainty of disease presence throughout the
savannah zones of West Africa but is more cautious in its predictions
for the Arabian Peninsula and in East Africa (Ethiopia, Somalia,
Kenya, Tanzania, Zambia and Zimbabwe). RVF certainly occurs in
the latter five countries, but has not yet been reported from Ethiopia
(Gideon, 2005). Figure 2 shows that the two modelling approaches
are making rather different predictions using the same sparse dataset.
The bootstrap approach seeks to extract the maximum information
from the training set as given, and without necessarily questioning the
status of each data point. Environmental envelope expansion begins
with the assumption that some of the training set data are wrongly
assigned to the absence category, and seeks to identify these, to re-
assign them to the presence category. More experience with both
methods is required before we can decide which is better for handling
sparse datasets.
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5. INCORPORATING SPATIAL INFORMATION
INTO MODELS

So far the models discussed do not explicitly take into account the
spatial arrangement of the training set observations, nor are any
spatial variables explicitly used in model predictions. These predic-
tions are generally spatially coherent for the simple reason that the
environmental data on which they are based exhibit spatial co-var-
iation, as discussed by Atkinson and Graham (this volume, pp.
79-118). Many sets of training data consist simply of point records
from which it is difficult to infer the spatial relationships of the un-
derlying distribution (e.g. the RVF dataset of the previous section). In
other cases, however, and certainly when the training data are in
polygon form (where the polygons represent the natural boundaries
of the species’ distribution, not political or administrative level units),
these data do contain some information on the spatial pattern of the
species’ distribution, and this information can be, and probably
should be, included in the model. Individuals of a species occur in a
spatially coherent pattern for two different reasons: firstly the indi-
viduals may be independently responding to the same set of envi-
ronmental conditions. Since the individuals are likely to share
environmental preferences, they are likely to co-occur regardless of
any biological interaction between them. Secondly animals and plants
occur in patches through the processes of natural reproduction and
limited dispersal away from the parental area. Whatever the under-
lying causes, the pattern can be included as a predictor variable in the
model by defining, for each observation of species’ presence, the
occurrence of the species in adjacent habitat squares (or pixels).
Unfortunately, of course, the number of occupied adjacent pixels is
unknown for each of the training set observations and so must be
estimated. The modelling therefore proceeds in stages. Initially an
ordinary (i.e. non-spatial) model is fitted to a set of training data and
applied to all the pixels in the region, thus generating a first ““guess”
of the species’ distribution, from which the pattern of adjacent
occupation (i.e. the auto-covariance) can be estimated for the training
set data. Next a new model is constructed, this time using the auto-
covariances (plus the other predictor variables) and the training set
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data. This model is applied to all the pixels in the image using the
current model to estimate the auto-covariances. Predicted values for
the unsurveyed squares are combined with observed values of the
surveyed squares to generate a new distribution prediction.

This new prediction is the starting point for further rounds of
prediction, constituting what is known as the Gibbs’ sampler. During
these rounds, a model is made of the training set data and taking
account of their auto-covariances as judged by the current map. A
random starting point in the map is selected and predictions are then
made only for the unsurveyed squares, again using each square’s
auto-covariance. This process is repeated until the predicted map
does not change significantly between iterations.

In the above modelling approach, the predictions are generally
probabilities but the interim and final maps record simply presence/
absence, and the auto-covariances are calculated from these. Initial
implementation of the Gibbs’ sampler recommended probabilities be
turned into presence/absence predictions stochastically (i.e. rather
than by thresholding the probabilities at a certain level to ensure, for
example, the same number of predicted as observed occupied
squares).

When this approach was applied to describe the distribution of red
deer in the Grampian Region of Scotland, Augustin et al. (1996)
showed that this stochastic rule does not rapidly lead to convergence
of parameter estimates, whereas leaving the probabilities as predicted
by the models did so. In this case, the auto-covariances are calculated
as a weighted function of the probabilities rather than of the 0/1
stochastic realizations of these probabilities. This alternative ap-
proach is called the “modified Gibbs’ sampler’” and was found by the
authors to lead to rapid convergence of parameter estimates and also
to give the best results of the four methods tried, which were a simple
logistic model, an auto-logistic model (that stopped before the Gibbs’
sampler stage), a Gibbs’ sampler and a modified Gibbs’ sampler
model.

As pointed out at the start of this section, models which do not
explicitly take account of the spatial coherence of species’ occur-
rences, nevertheless, usually give predictions that are spatially coher-
ent for the simple reason that the predictor environmental variables
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change gradually through space, not abruptly. The relative contri-
butions of environmental variable and species’ auto-covariances to
species’ occurrence in any area can be gauged by running models
without and with the auto-logistic, Gibbs’ sampler or other explicit
measures of the species’ distribution as predictor variables. If, for
example, the Gibbs’ sampler adds nothing to the descriptive power of
a distribution model, it may be concluded that direct or indirect in-
dividual interactions are unimportant in determining the species’
presence in any area and that any spatial coherence seen is due to
environmental variables alone.

6. MODEL SELECTION AND MULTI-MODEL INFERENCE

A significant departure from the modelling approach described above
is provided by the work of Burnham, Anderson and others who
promote what is called an information-theoretic approach that
appears to tackle a number of problems that arise with the more
traditional ways of modelling species’ distributions (Burnham and
Anderson, 2002).

In this approach, it is assumed that there exists an n-dimensional
and unknowable truth (the real distribution of organisms in the
present case) that models can only attempt to approximate rather
than describe completely. There exists, therefore, a certain distance
(I(f,g9)) between model (g) and reality (f) that is captured by the
Kullback—Leibler (K-L) information or distance measure which is

defined as:
/)
1.0 = [ @tog( £ dx g

for continuous functions and

k
I(f.9) =" _p;-log (%) (6)
i=1 !

for discrete distributions such as the Poisson, binomial etc. In Eq. (5),
full reality f'is considered fixed while g varies over a range of models
indexed by 0. In Eq. (6), there are k& possible outcomes of the
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underlying random variable. The true probability of outcome i is p;,
while the modelled outcome is 7;, with > p; = > m; = 1.

These rather fearsome looking equations are really quite simple. It
is obvious from both, for example, that in the unlikely event that the
models perfectly describe reality, g(x|0) = f(x) in Eq. (5) and =; = p;
in Eq. (6). The logarithmic terms will therefore be 0 (because
log(1) = 0) and the Kullback—Leibler distance, I(f,g), will thus also be
0 in each case. The greater the discrepancy between model and reality,
the larger will I(f,g) become. Thus the K-L distance is a guide to
model accuracy and may be used to select the best from a set of
candidate models for any particular situation.

There is one obvious problem, however, and that is that we do not
know in each case what the truth (f(x) or p;) actually is. Taking the
continuous case as an example, Eq. (5) can be re-arranged as follows:

I(f.9) = / () log(f (x)) dx — / F()loggxO) dx (D)

with the following statistical expectations:
I1(f, 9) = Er[log(f(x))] — Er[log(g(x]0))] ()

each with respect to the distribution f. The first expectation on the
right-hand side of Eq. (8) will be unknown (because it is the expec-
tation of reality) but constant (reality does not change!). The second
expectation on the right-hand side of Eq. (8) will vary, depending
both upon the model and its current parameters. This means that
although I(f,g) cannot be evaluated exactly, it can be estimated up to
a constant C (viz E/flog(f(x))])

1(f,9) = C — Ey[log(g(x]0))]
or
I(f,9) — C = —Ey[log(g(x10))] )

The left-hand side is a relative directed distance between f and g and
thus the value of the right-hand side can be used to select between
different candidate models. A model with a lower value of this quan-
tity is better than one with a higher value. Because we do not know C
we can never know just how good our “best” model really is, but the
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difference between models is a guide to how much better is our best
model than any others in the candidate set.

In the discussion so far, it is assumed that the parameters of the
candidate models are already known. In reality they must be
estimated from a set of data. Akaike showed that in practice the
K-L distance could be estimated from the empirical log-likelihood
function evaluated at its maximum point (Akaike, 1973). The prac-
tical equivalent of Eq. (9) is what has since become known as the
“Akaike Information Criterion” or AIC, defined as follows:

AIC = —21log(¢(0]y)) + 2K (10)

where log(f(H‘ y)) is the value of the log-likelihood at its maximum
point (i.e. the maximum likelihood estimate) and K is the number of
estimated parameters in the model. It is clear from Eq. (10) that the
first term on the right-hand side will tend to decrease as the number
of parameters in the model increases (because a model with more
parameters is almost bound to fit a dataset better than one with fewer
parameters) while the second term (2 K) will obviously increase. This
achieves a neat balance between over-fitting a model (too many
parameters, A1C penalized with a large value of 2 K) and under-fitting
a model (too few parameters, AIC large because the first term is
large).

A modification of the AIC was suggested by Hurvich and Tsai
(1989) for the situation where the sample size is small in relation to
the number of fitted parameters. This modification, the corrected AIC
or AIC,, is calculated as follows:

AIC, = —2log(t(d]y)) + 2K< (11)

n
n—K— 1)
where n is the sample size and all other terms are as in Eq. (10). In
general, unless the sample size is large in relation to the number of
estimated parameters, Eq. (11) is to be preferred over Eq. (10).

The modelling approach recommended by Burnham and Anderson
(2002) involves proposing a set of candidate models for the biological
situation involved, then fitting these models to the data and calcu-
lating the AIC or AIC,. values. As mentioned before, the absolute
values of these quantities are usually of little interest, but differences
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between them are very informative. The A/C difference (A,) is defined
as follows:

A; = AIC; — AICoi (12)

where AIC,,;, is the minimum A/C for any candidate model in the set
of models, and the model with this minimum value is the current best
one. Despite the very wide possible range of absolute values of AIC,
AIC differences of approximately > 10 indicate models that have very
little support and therefore can be omitted from further considera-
tion, while A/C differences of <2 are indicative of strong support.
Given any particular set of models, the likelihood of one of the
models within the set (g,), given the data, is proportionately related to
the AIC difference by the following:

£(g|x) o exp (— % A,~> (13)

These likelihoods are usually normalized across the entire set, R, of
candidate models to determine a set of Akaike weights, w; that sum
to 1.0:

exp(—1A;

R (14)
2_:1 exp(—3A,)

w; =

These weights are thus an effective way to scale and interpret the AIC
difference values.

Equations (12)—(14) involve comparisons between models, and Eq.
(14) refers to a particular set of models. Thus one can only conclude
that a particular model has a A;, likelihood or Akaike weight relative
to some one (A;) or all other models (w;) in a particular set of models.
Choice of a candidate set of models therefore becomes crucial. If a
candidate model is dropped from the set, or a new model is added, the
various quantities should be recalculated. However, a quantity called
the evidence ratio w;/w;, where i and j are just two of the candidate
models, is not affected by any other model in the candidate set, but
just by the two models being compared. Evidence ratios may be used
to judge how much better one model is compared with another,
regardless of any other models in the candidate set.
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For some biological systems where the mechanisms are fairly well
understood, the set of candidate models may be easy to define.
For example if we seek a model for plant growth, we might generate a
series of potential models that involve the quantity of available sun-
light, water or soil nutrients in various combinations. The informa-
tion-theoretic approach is ideal in this situation because what we
really seek is some idea of the relative importance of variables we
know, or suspect, to be of importance. In the case of animal and plant
distributions, however, it is much more difficult to identify in advance
a set of “‘reasonable’ environmental variables and so we tend to fall
back upon the step-wise or data-mining methods described earlier in
this review. Nevertheless, it seems that even here this alternative
approach may be able to help. For example, we could generate a set
of candidate models which described distributions using different
sorts of variables (temperature, humidity, vegetation indices) and
select between them. Burnham and Anderson are sympathetic to this
approach, if only because it is, in their view, the lesser of two
evils:

“While we do not condone the use of information theoretic approaches to

blatant data dredging, we suggest it might be a more useful tool than hy-

pothesis testing in exploratory data analysis where little a priori knowledge is
available. Data dredging has enough problems and risks without using a test-

ing-based approach that carries its own set of substantial problems and limi-
tations” (Burnham and Anderson, 2002).

The information-theoretic approach provides a completely differ-
ent paradigm from the traditional statistical approach to model
building. There are no formal levels of any test statistic that deter-
mine ‘“‘significance” of one result over another, and therefore no for-
mal hypothesis testing either. As Burnham and Anderson point out,
there are many areas of life and science that involve numbers that do
not readily fall within the realm of traditional statistical testing. For
example, one does not ask for a formal test of significance if a soccer
match is won by 3 goals to 1 or by 10 goals to 1. One infers that the
winners in the second match were considerably better than their op-
ponents, in comparison with the winners of the first match. How large
should be the differences in goals scored for them to be judged
“significant™ is irrelevant in this case. The match results simply give
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us evidence for the greater superiority of the winners (compared with
the losers) of the second match compared with the first, and allow us
to rank the teams in a tournament situation. Model selection and
multi-model inference is in many ways more like a tournament. We
seek the best possible candidate from a whole suite of models to do
the job we have in hand. We are able to say how much better is this
model compared to all the other models we have constructed, and we
are able to discard at least some models because some or other
information metric (the Akaike weight, or the evidence ratio) puts
them so much lower than the current best model. There are, however,
no threshold values for any of these metrics, signifying *‘significant”
in one case or ‘“‘not significant” in another, because such formal
statistics are inappropriate in this situation. Burnham and Anderson
go so far as to say that the use of null hypothesis testing for model
selection must be considered ad hoc (albeit a rather refined set of ad
hoc procedures), whereas there is a sound theoretical basis to the
information-theoretic approach to model selection criteria. (There
remains a role for formal hypothesis testing in more experimental
situations where the experimenter can define treatment and control
groups that differ only in a single or limited number of variables,
although even here it is not so much the significance of the effect that
is of interest, but the size of the effect.)

Needless to say, the issue of the type of models we should use for
distribution mapping is still debated. A recent review of distribution
modelling strongly favours the information-theoretic approach
(Rushton et al., 2004). A later article in the same journal redresses
the balance with a plea for pluralism (Stephens et al., 2005).

6.1. Application to Vector and Disease Mapping

Since the output of discriminant analysis can be expressed as a prob-
ability (strictly a Bayesian posterior probability), the likelihood ¢ is
simply

¢=]]Pr(yy (15)
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where Pr(Y)) is the probability of the observed outcome, defined as

Pr(Y;) =P/ Q/ " (16)

where P; is the predicted probability of presence for a presence point
(Y;=1), and Q; is the complement of P;.

The most convenient form of the log likelihood function of Egs.
(15) and (16) is the following:

log(t(@1y)) = > log P(x;,0) + ) log O(x;, 0) (17)
€A i€eAy
where 4; and A, denote the sets of observations with Y =1 and 0,
respectively (Cramer, 2003). Thus it is possible to calculate the
corrected AIC,, from Eqgs. (17) and (11). One could therefore use the
AIC, to select between models and, equally importantly, to decide
how much better the best model is compared with the others.

The Akaike weights are also useful in helping to determine the
relative importance of the predictor variables. If the current best
model contains variable x;, say, but has only a modest Akaike
weight, then it is clear that there is considerable model uncertainty
and therefore only weak evidence for the importance of x; as a
predictor variable. However, the Akaike weights can be summed for
all models across the set that contains x|, or x»,, or xs, etc. and these
summed weights reflect the relative importance of these variables
across all models (Burnham and Anderson, 2002). It will generally
happen that the sum of the Akaike weights for a variable will exceed
the Akaike weight of the best model (in which the variable may or
may not occur) and it can also happen that a variable not in the
“best”” model can have a summed Akaike weight that exceeds that of
any other variable, even those included in the “best” model. These
summed Akaike weights therefore highlight the relative importance
of each variable regardless of which models the variable occurs in.
This procedure can also be extended to pairs of variables, or to in-
teraction effects between variables (if interaction terms are included
in the candidate models). For the correct conclusions to be drawn
about any particular variable, it is advisable to use a set of candidate
models in which the variables being compared occur about the same
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number of times. Obviously this is more likely to be the case for
important variables than for unimportant ones.

In all the models shown in Figure 2 the variables were selected for
sequential step-wise inclusion using the AIC, as the selection crite-
rion; thus during each round the variable was selected that gave the
smallest value of the AIC,., indicating a closer approach to the
“truth” or “reality” than with any other candidate variable. Virtually
always the reduction in AIC, exceeded 10 for every included variable,
indicating that each additional variable made a substantial contribu-
tion to improving the fit of the model. The models always included
only 10 variables, although on the criterion of AIC, reduction it
appears that many more could have been included. There were no
signs of an increase in the 4/C. due to the penalty imposed by in-
creasing numbers of predictor variables K (Eq. (11)), which is not
surprising given the large total number of data points in each model
(400 in the bootstrap models; >2000 in the others). When the boot-
strap models were ranked from lowest AIC, (i.e. best fit) to highest
AIC,, the mean values of the alternative kappa statistic for model
accuracy correlated sensibly with them, although there was consid-
erable scatter of individual results (x = 0.895, s.p. = 0.017 for the top
10 models; ¥ = 0.851, s.0. = 0.020 for the bottom 10 models). Figure
3 (Figure 3 is Plate 1.3 in the Separate Color Plate Section) shows the
sets of variables selected by each of the bootstrapped models, which
are arranged in A/C, order from lowest (at the top of the image) to
highest (bottom of the image). In Figure 3 each row of the image
refers to one model, the variables selected for it are shown as coloured
squares, and their order of selection is indicated by the rainbow col-
our scale, red orange, yellow green etc. (see figure legend). The red
line down the middle of the image indicates that variable 14, the
annual amplitude of the Land Surface Temperature, was not only
consistently selected in all of the models but was often selected as the
most (or second most) important variable. No other variable had
such a consistent performance or such a high rank, although the very
last one, the variance of the Normalized Difference Vegetation Index,
was fairly often selected second in the lower-ranking models. Within
this ranked series of models the Akaike weights (Eq. (14)) indicated
that the very few top models were so much better than all the others
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that the rest could be discarded (the weights for the top five models
were 0.8074, 0.0799, 0.0710, 0.0413 and 0.0003, respectively). Table 2
shows the summed Akaike weights for each of the top 20 variables
across all models in which they appeared. This allows the assessment

Table 2 Rift Valley Fever model predictor variables

Variable Summed Akaike weight Mean rank N/100
wdl007al 1.00000 1.26 100
wdl014p3 1.00000 6.28 81
wdl014al 0.99993 7.74 69
wdl007mn 0.99951 10.33 23
DEM 0.95830 7.46 54
wdl003al 0.92011 8.41 51
wdl007p2 0.88755 8.51 43
wdl007vr 0.84904 6.45 65
wdl003a2 0.80750 10.03 27
wdl007p3 0.80750 9.99 22
wdl007a3 0.19211 9.77 34
wdl003a0 0.15076 10.62 11
wdl014p2 0.11242 8.98 44
wdl003vr 0.07989 9.35 40
wdl014a2 0.07985 10.5 17
wdl014pl 0.07106 10.26 25
wdl003a3 0.04170 9.8 31
wdl014mn 0.04131 9.48 22
wdl014vr 0.00046 6.72 62
wdl007mx 0.00042 10.44 20

Summed Akaike weights (second column) for the top predictor variables (first
column) of the 100 RVF bootstrap models used to produce Figure 2b (see text for
details). The mean ranks (i.e. the order in which the variables were selected, where
rank 1 = the first selected variable, rank 10 = the tenth selected variable and all non-
selected variables are given a rank of 11) are given in the third column, and the
number of times (out of 100 models) each variable was selected is given in the final
column.

Notes: Key to variable names: wdl0 refers to NOAA-AVHRR data at 0.10 degrees
resolution in the latitude/longitude format, 03 refers to the AVHRR channel 3
(MIR), 07 to Land Surface Temperature and /4 to Normalized Difference Vege-
tation Index (NDVI) data; a0 is the (Fourier and arithmetic) mean, a/, a2 and a3
refer to the amplitudes of the annual, bi-annual and tri-annual cycles, respectively of
temporal Fourier processed imagery and p/, p2 and p3 to their corresponding phases
(timing of the first peak); mn and mx refer to the minimum and maximum and vr to
the variance. DEM is a digital elevation layer (see Hay et al., this volume, pp. 37-77
for more details).
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of the importance of each variable independently of both the other
variables, and of the particular models in which the variable appears.
Given the very high weights of the very few top models in this series,
these summed weights reflect whether or not the variables concerned
were included in these top models. The summed Akaike weights
(Table 2, second column) do not necessarily scale with the mean
rank (i.c. mean order of step-wise inclusion into the models) of each
predictor variable (Table 2, third column). Perhaps not surprisingly,
given its occurrence in all models and often as the first variable, the
annual amplitude of the Land Surface Temperature has the highest
summed Akaike weight. The next variable (phase of the tri-annual
NDVI cycle) had an equal summed weight, but appeared in fewer
models (Table 2, last column), although in all of the top 25 models.
The next three variables appeared in 20 (NDVI annual amplitude), 6
(LST minimum) and 14 (DEM) of the top 25 models, respectively.
The “best” model had a combination of variables not found in any
other of the 100 models. Whether or not this indicates that this
unique combination of variables describes the disease better than
any other, or simply the bootstrap sample that happened to have
been selected during that run of the model, is a moot point. By its
very nature bootstrap sampling is bound to produce, simply by
chance, one set of randomly selected data that gives rise to a model
that is “better” than all the rest. Only if this subset of data is an
unbiased sample of the real disease situation on the ground (some-
thing that cannot be assessed; this is the unknown “truth” we are
trying to model) will this best model also be the best model for the
disease.

7. CONCLUSION

Despite a plethora of models available to describe vector and disease
distributions, practitioners tend to favour only a few approaches.
Logistic regression methods appear to have the largest number of
followers (Rushton et al., 2004), especially within Europe, while the
GARP approach has a strong following in North America (Stockwell
and Peters, 1999). Part of the reason for this dominance is the
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availability of logistic-regression routines within many standard
statistical packages, or of the GARP program from dedicated
websites. This review seeks to redress the balance, to make distribu-
tion mapping yet another branch of ecology, with underlying as-
sumptions of normally or multivariate normally distributed predictor
variables. In so doing its aim is not only to point out the numerous
advantages of such assumptions (for example, their biological realism
coupled with statistical tractability) but also to provide a route map
towards a more unified theory combining population and community
ecology. Population dynamics and the distribution of individual spe-
cies are the basic ingredients of ecological communities but, to date,
these subjects have been studied in isolation because, it seems, of an
incompatibility between the under-pinning theoretical models.
Briefly, methods that made no assumptions about underlying fre-
quency distributions of predictor variables, or that allowed only sin-
gle “off ”—*‘on” transitions on single variables (as does simple logistic
regression) were hardly compatible with the Macarthurian tradition
of quantitative community ecology in which the normal distribution
is an all-pervading assumption, regarded by many even as an axiom.
It might indeed be a delusion that the response of any species to
gradual changes in each key predictor variable is shaped like a nor-
mal, or apparently normal, curve; but it is certainly not shaped like
the underlying sigmoid curve of the logistic regression model.
Biological processes occur within bounds, and therefore the sum to-
tal of biological processes that ultimately determine a species’ distri-
bution is also likely to occur within bounds. The future holds many
uncertainties for biological communities such as how they will re-
spond to gradual habitat destruction, or to climate change? By uni-
fying individual and community analysis we might be able to discover
if communities are no more than the “sum of their parts™, in which
case we might expect communities to re-arrange themselves under the
forces of global change, or if indeed they are greater that the sum of
their parts, in which case environmental change may result in com-
munity disintegration, and a significant loss of ecosystem services to
human-kind.

Vectors and vector-borne diseases are one component of ecosys-
tems, and they too may show gradual or catastrophic changes as
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environments change. Rogers and Randolph (this volume, pp.
345-381) show that we are presently far from understanding which
type of change to expect. Their great sensitivity to environmental
conditions suggests that these diseases may be among the first of all
diseases to show distribution and intensity changes as climates change
but, as Rogers and Randolph (this volume, pp. 345-381) points out,
we must not let this sensitivity lead us to conclude that any change in
a vector-borne disease is due to climate. By modelling species’ dis-
tributions in the ways outlined in the present review, it should be
possible to estimate the sensitivity of any disease to climate change by
examining the limits of its environmental envelope in multivariate
space. When this is matched to the predicted changes in climate, also
in multivariate space, it is possible to map the areas on the ground,
which will fall within the environmental envelope in the future. It is
these areas that are at risk of disease invasion and spread.

A common feature of many vector-borne and other diseases is the
paucity of hard data we have for their precise geographic distribu-
tions. This did not particularly matter in the days of equally sparse
climatic data (also from point sources) or of fairly coarse spatial
“climate surfaces™ that were produced from such data. One set of
coarse data could be related to another set of coarse data to produce
a risk map of such poor spatial resolution as to be almost useless.
Today, however, environmental data from satellites are available at
unprecedented spatial resolutions, and these reveal the inadequacies
both of past maps and of the data on which they are based (see Hay
et al., this volume, pp. 37-77). This therefore presents us with a new
problem of how to deal with sparse distribution data. While it is
possible to produce risk maps from such data using the techniques
outlined in this review, one must nevertheless ask whether the current
best model is describing simply the data or, more importantly, the
disease. Bootstrap sampling does not resolve this problem, since a
bootstrap sample of a biased training set is itself likely to be biased. If
all maps are wrong, and only some of them are useful, we must be
able to distinguish the useful from the useless. It is likely that only
additional, independent data collected during ground-truthing of risk
map predictions will enable us to do this. It is, perhaps, time to return
to the field.
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Plate 1.2 An example of treatment of a sparse data set. Records of the presence of
Rift Valley Fever (RVF) in Africa and the near Middle East are modeled here in three
different ways. (A) Maximum likelihood discriminant analysis applied to records for
RVF presence (n = 62) and 2000 randomly selected points for RVF absence within 0.5
to 10.00 degrees of any presence point; (B) mean predictions of 100 bootstrap samples
from these data, of 200 presence and 200 absence points sampled at random from the
training set, with replacement; (C) after expansion of the environmental envelope using
the predictions of the bootstrap samples of Figure 2B and re-assignment of ‘absence’ to
‘presence’ status of training set absence points that were consistently classified as
presence points. A single model was then produced, as for Figure 2A. The records of
RVF presence used in all models are shown as blue points. These records were ob-
tained from querying two sources: (a) the PubMed reference database (National Cen-
ter for Biotechnology Information (NCBI) of the National Library of Medicine
(NLM), MD, USA; url: http://www.ncbi.nim.nih.gov/entrez/query.fcgi) for the period
1920-2005 and (b) the ProMED database (url: http://www.promedmail.org/) for the
period January 1994-December 2004. In each case, geographical point locations were
extracted wherever possible from the original literature or from geo-locatable place
names referenced in the GEONet Names Server of the National Geospatial-Intelli-
gence Agency’s and the US Board of Geographic Names’ databases (http://earth-
info.nga.mil/gns/html/), the Encarta 2005 Premium Suite (Microsoft Corporation,
WA, USA), the Alexandria Digital Library Gazetteer (http://middleware.alexan-
dria.ucsb.edu/client/gaz/adl/index.jsp) or the Getty Thesaurus of Geographic Names
Online (http://www.getty.edu/research/conducting_research/vocabularies/tgn/in-
dex.html). I thank Dr Simon Hay for providing these data for modelling.

The environmental data were derived from the Advanced Very High Resolution
Radiometer (AVHRR) on board the National Oceanographic and Atmospheric Ad-
ministration (NOAA) satellites and cover the period from 1982 to 1999. These data are
described in detail in Hay et al. (this volume, pp. 37-77). Monthly maximum-value
composited data from the AVHRR middle infra red, the derived land surface tem-
perature (LST) and the normalized difference vegetation index (NDVI) data were
temporal Fourier processed to extract annual, bi-annual and tri-annual seasonal sig-
nals, which were captured as separate images showing the amplitudes and phases or
timing of the first peak of each of the three signals (Rogers, 2000). In addition the
signal means, maxima, minima and variances were also available, as was a single
digital elevation surface (DEM) derived from the GTOPO30 coverage (http://ed-
cdaac.usgs.gov/gtopo30/gtopo30.asp). All AVHRR data were originally produced and
made available at a spatial resolution of 8 x 8 km in the Goode’s Interrupted Ho-
molosine projection and after Fourier processing were projected back to latitude/
longitude format by bi-linear interpolation to 0.10 degree spatial resolution. The DEM
data at an original 30 arc second resolution (1/120th of a degree) were similarly re-
sampled to 0.1 degree resolution by averaging. Satellite and DEM data were later
extracted for each of the disease ‘presence’ and ‘absence’ points and these data formed
the training sets for model construction.

All models used a non-linear discriminant analysis approach (Rogers, 2000). Train-
ing set data were first clustered into 2 presence and 3 absence clusters and, for each
model, 10 variables were selected by step-wise inclusion using the minimum A/C,
values as the selection criterion (Burnham and Anderson, 2002). Models assumed
equal prior probabilities and the output risk maps shown here are of posterior prob-
abilities (averaged values in the case of the bootstrapped models).
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Plate 4.7 Spatial Lorenz curve for the population distribution compared to the
land area of Ecuador, 2000 (with insert indicating the non-cumulative distribution of
population density).
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Plate 1.3 Results from the 100 bootstrap models for (left) Rift Valley Fever, (middle) Yellow Fever and (right) Dengue. Each row in the image refers to one of the
models, which are arranged in rank order, with 1 (lowest A/C. value) at the top and 100 (highest AIC, value) at the bottom. Each of the 31 columns on the right of the
image indicates one of the satellite predictor variables available to describe the disease. The first column of these 31 columns is for the digital elevation layer or DEM.
There then follow three sets of 10 columns referring to the Fourier-processed AVHRR MIR, LST and NDVI imagery. These layers are in the following order: mean,
phase of annual cycle, amplitude of annual cycle; phase of bi-annual cycle, amplitude of bi-annual cycle; phase of tri-annual cycle, amplitude of tri-annual cycle;
maximum of fitted Fourier cycles (summed annual to tri-annual), minimum of fitted Fourier cycles and variance of the original signal. In any single model (row) the
top (i.e. first selected) predictor variable is coloured red, the second most important variable is coloured orange and so on according to the rainbow colour scale to the
right of the image. Variables not chosen in any model are not coloured at all in that row. The red line down the first image indicates variable 14 in the variable list,
which is the annual amplitude of LST. This variable is consistently chosen in all RVF models, and is usually the most important variable, but there is no other single
variable which is consistently chosen second. (The left-most column refers to the model number in the sequence; this, and the grey area to the left of the variable
columns should be ignored.) The other two images may be similarly interpreted (see Rogers et al., this volume, pp. 181-220, for more details).
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ABSTRACT

This contribution documents the satellite data archives, data process-
ing methods and temporal Fourier analysis (TFA) techniques used to
create the remotely sensed datasets on the DVD distributed with this
volume. The aim is to provide a detailed reference guide to the genesis
of the data, rather than a standard review. These remotely sensed
data cover the entire globe at either 1 x 1 or 8 x 8 km spatial reso-
lution. We briefly evaluate the relationships between the 1 x 1 and
8 x 8 km global TFA products to explore their inter-compatibility.
The 8 x 8 km TFA surfaces are used in the mapping procedures de-
tailed in the subsequent disease mapping reviews, since the 1 x 1 km
products have been validated less widely. Details are also provided on
additional, current and planned sensors that should be able to pro-
vide continuity with these environmental variable surfaces, as well as
other sources of global data that may be used for mapping infectious
disease.

1. INTRODUCTION

The growth in the use of remote sensing (RS) and geographic infor-
mation systems (GIS) has been fuelled, in part, by scientific demands to
address many environmental issues at the global scale. The focus of RS
and GIS in public health has been on infectious disease mapping (Hay
et al., 1997, 2000; Rogers et al., 2002; Tatem et al., 2004; Rogers, this
volume, pp. 1-35). This has rarely been attempted at global scales
primarily due to a lack of readily available environmental data for
epidemiologists (Hay ez al., 1996, 1997; Hay, 2000). The RS data pro-
vided with this volume, and described in this review, go some way
towards resolving this problem. These wide-area RS and other envi-
ronmental data will be of utility to a variety of applications, but our
emphasis here is entirely on infectious disease mapping.

Infectious diseases that have poikilothermic arthropod intermedi-
ate hosts are very sensitive to environmental conditions (Rogers and
Packer, 1993). This is often highlighted by explaining sensitivities
to temperature, rainfall and humidity of components of the basic
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reproductive number (Ry) of vector-borne diseases (Hay et al., 1997;
Rogers et al., 2002; Rogers and Randolph, this volume, pp. 345-381),
which mathematically describes the potential for parasite/pathogen
persistence through time (Anderson, 1993). The RS-based data re-
viewed here have been developed to obtain information or ‘‘surro-
gates” of the more traditional climatic variables of relevance to the
transmission of vector-borne diseases and thus infectious disease
mapping (Hay and Lennon, 1999; Goetz et al., 2000; Hay, 2000;
Green and Hay, 2002). We focus primarily on the Advanced Very
High Resolution Radiometer (AVHRR) which, more than any other
satellite sensor, has found considerable application in large area ep-
idemiology (Hay, 2000; Rogers, this volume, pp. 1-35). We do not
describe the various applications of these data as this is done else-
where (Hay et al., 2000; Rogers et al., 2002) and is amply illustrated
throughout this volume.

2. THE AVHRR SENSOR

The basic principles of RS and satellite sensor systems have been
reviewed previously (Hay et al., 1997; Hay, 2000; Tatem et al., 2004).
Here we provide a brief overview of the AVHRR sensor, a series of
which have collected the RS data distributed on the accompanying
DVD. It is beyond the scope of this review to extend this treatment to
other sensors.

2.1. History and Overview

The National Oceanographic and Atmospheric Administration’s
(NOAA) series of polar-orbiting Television Infrared Observation
Satellites (TIROS) has been operational since 1978 (Cracknell, 1997).
TIROS-N (later renamed NOAA-6) was the first satellite to carry the
AVHRR, originally for meteorological purposes, and has been followed
by eleven satellites, each with an operational lifetime of 2-4 years. The
definitive description of the NOAA polar-orbiting satellites, their radi-
ometer payloads and the data they generate are given in Cracknell
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(1997) and Kidwell (1998). Information on the NOAA-AVHRR satellite
series is updated regularly by the NOAA Satellite and Information
Services (NOAASIS) [http://noaasis.noaa.gov/].

The NOAA-AVHRR satellites complete 14.1 near-polar, Sun-
synchronous orbits every 24 hours at an altitude of 833—870 km. The
NOAA-AVHRR can view a 2800 km swath of the Earth and so, at
this orbital frequency, daily data are recorded for the entire Earth
surface. Radiation is currently measured in six wavebands (channels)
of the electromagnetic spectrum (five on platforms prior to NOAA-
15) so that six images are recorded for each area sensed. The visible
(channel 1) and near infrared (channel 2) measure reflected solar
radiation, whereas the thermal channels (4 and 5) measure emitted
thermal infrared. Channel 3 (split into 3A and 3B on the latest plat-
forms) senses the middle-infrared (MIR) and is sensitive to a com-
bination of both reflected and emitted radiances.

The nominal 1.1 x 1.1km spatial resolution data are transmitted
continuously and may be received by stations near to the satellite’s
path, where they are referred to as High Resolution Picture Trans-
mission (HRPT) data (Cracknell, 1997). On request to NOAA, these
data may also be recorded on an on-board tape storage system and
later transmitted to Earth as the satellites pass over a network of
receiving stations. The data are then referred to as Local Area Cov-
erage (LAC). These data have found application in a very wide range
of disciplines that have been reviewed by Ehrlich et al. (1994) and
Cracknell (1997).

Two processing steps reduce the spatial resolution of most of the
NOAA-AVHRR data available to the research community. Since the
on-board tape system is incapable of holding global coverage data at
1.1 x 1.1 km spatial resolution, the information from each area of five
(across-track) by three (along-track) pixels is stored as a single value
corresponding to the average of the first four pixels only, of the first
row of the 5 x 3 block. The resulting imagery is referred to as Global
Area Coverage (GAC) data. GAC data, with a stated nominal spatial
resolution of 4 x 4km, are far from ideal representations of the raw
data (Justice et al., 1989; Robinson, 1996). Nevertheless, the GAC
data are the only form in which the NOAA-AVHRR archive was and
continues to be collected. Reasonable quality global datasets are
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available at a variety of spatial resolutions (4 x 4km and coarser)
starting in the early 1980s (James et al., 1994). When further proc-
essed, these data are often re-sampled to an 8 x 8 km spatial reso-
lution before distribution (James et al., 1994).

2.2. AVHRR Archives

A series of 1 x 1km spatial resolution NOAA-AVHRR data are
available at the ““Global Land 1-KM AVHRR Project” homepage on
the United States Geological Survey (USGS), EROS Data Center,
website [URL: http://edcdaac.usgs.gov]. The dataset was generated to
obtain a standard year of observations for the global land cover
mapping project by the International Geosphere Biosphere Pro-
gramme — Data and Information System (IGBP-DIS) (Eidenshink
and Faundeen, 1994; Townshend et al., 1994; Teillet et al., 2000).

The 8 x 8 km spatial resolution NOAA-AVHRR data are available
at the Global Land Biosphere Data and Information Web Site at the
Goddard Space Flight Center’s Distributed Active Archive Center
[http://daac.gsfc.nasa.gov/]. The data were archived with the purpose
of providing a long-term database for Earth observation, with a
particular emphasis on tropical deforestation (Townshend, 1994).
These images are referred to as the Pathfinder AVHRR Land (PAL)
dataset (James et al., 1994).

2.3. From Digital to Environmental Data
2.3.1. Temporal Range

The 1 x 1km NOAA-AVHRR data are available by decad (10 day
unit) from April to December 1992 (9 months, 27 decads, 162 files);
January-September 1993 (9 months, 27 decads, 162 files); February—
December 1995 (11 months, 33 decads, 198 files) and January—April
1996 (2 months, 6 decads, 36 files) (see Table 1).

The 8 x 8 km NOAA-AVHRR data are available from August 1981
to September 2001 inclusive; a 20-year time series. While the 1 x 1 km
data are obviously more detailed spatially, the longer time series of the
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Table 1 Dates of the NOAA-AVHRR 1 x 1km data acquisition ar-
chived for IGBP-DIS. A dot indicates acquisition of all decads

Month 1992 1993 1995 1996

January
February
March
April

May

June

July
August
September
October
November
December

8 x 8 km imagery provides opportunities for examining changing land-
surface patterns over a critical period of the Earth’s history. These
issues are explored in detail in Sections 3.2 and 3.3 respectively.

2.3.2. Data Obtained and File Sizes

For each decad of the 1 x 1 km NOAA-AVHRR the following param-
eters were downloaded: channels 3, 4, 5, the normalized difference veg-
etation index (NDVI), satellite and solar zenith angles (see Hay, 2000 for
definitions). This amounts to ~680 gigabytes (Gb) of compressed data.
When each global image is uncompressed it is 17347 lines/rows by
40031 samples/columns. For 8-bit imagery the file size is therefore
(17347 x 40031 = 694417 757 bytes) or ~678 Mb. For 16-bit data the
file size is ~1.36 Gb.

The global 8 x 8 km data, in contrast, are considerably smaller, at
2168 lines/rows by 5004 samples/columns, and so for 8-bit data the
files (2168 x 5004 = 10848 672 bytes) are ~10.6 Mb and double that
for 16-bit files. The 20-year duration of the 8 x §km data archive
makes the total multitemporal database close to 3.5Gb when com-
pressed. The spatial resolution of the 1 x 1 km NOAA-AVHRR data
and the temporal duration of the 8§ x 8km NOAA-AVHRR data
result in such large volumes of data, that distribution on DVD in
their original form is not possible, an issue addressed in Section 3.
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2.3.3. Geo-Registration and Projection

All RS data represent conditions on a spherical Earth as a regular,
gridded raster array of picture elements (pixels). Capturing features of a
3-dimensional object (the globe) on a 2-dimensional map involves some
compromise in accurately representing direction, distance, shape and
area (Snyder and Voxland, 1994; Snyder, 1997) and different map pro-
jections are used for applications that need to show one or other of these
map features as accurately as possible. The projection chosen for both
the 1 x 1 km and 8 x 8 km NOAA-AVHRR data at source is the In-
terrupted Goode’s Homolosine, which is a combination of a Sinusoidal
projection covering the tropical regions of the Earth (to latitudes of
4044’ North and South) and the Mollweide projection elsewhere. This
combination of projections was considered to be the best at maintaining
the shape and area of the continents (Steinwand, 1994). Despite the
geographical superiorities of the Goode’s projection the majority of po-
tential non-specialist RS or GIS users, and the software with which they
are familiar, use latitude and longitude data in an equi-rectangular grid
technically known as the Plate-Carrée projection. After temporal Four-
ier processing (see Section 3) of the data in their original projection we
resampled the resulting files using a bilinear interpolation algorithm
(Mather, 1999) that ignored sea pixels along coastlines (i.e. sea pixels
were given weights of zero in the interpolation algorithm), and distribute
both 1 x 1 and 8 x 8 km NOAA-AVHRR products in the Plate-Carrée
projection, at nominal resolutions of 0.01° and 0.1°, respectively. The
resulting images are therefore 36000 columns x 18000 rows or 3600
columns x 1800 rows, respectively. Table 2 gives the full details that are
required for manipulating these data in RS and GIS software packages.

2.3.4. Rescaling

Values of geophysical variables are usually rescaled before storage
as image files, and represented as either 8-bit (i.e. byte) or 16-bit
(i.e. integer) binary numbers. This saves on hard disk storage space
(a limiting component in earlier computers) and facilitates image com-
pression, which further saves storage space. Eight-bit numbers are al-
ways positive, and span the range from 0 to 255. Sixteen-bit numbers
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Table 2 Geo-referencing information for the TALA RS data

Details 1 x 1 km imagery 8 x 8§ km imagery

Projection Geographic Geographic
(latitude/longitude) (latitude/longitude)

Image size, columns 36000 3600

Image size, rows 18000 1800

Upper-left coordinate, pixel centre —179.995 —179.95

Upper-left coordinate, pixel centre 89.995 89.95

Units decimal degrees decimal degrees

Pixel size: x 0.01 0.1

Pixel size: y 0.01 0.1

Spheroid WGS84 WGS84

Datum WGS84 WGS84

may be stored either in signed 16-bit format (range between —32 767
and +32767) or unsigned 16-bit format (range between 0 and 65 535).
Much confusion arises when unsigned 16-bit integers (exceeding
+32767) are regarded as signed integers, and vice versa, and users
must take care to specify to their software the correct format (i.e.
‘signed’ or ‘unsigned’) of 16-bit integer image data. Parts of the full
digital range of stored data are often ‘reserved’ for mask values (in-
dicating the sea, image quality, or some detail of the map projection
used) and these should be specified by the providers of the imagery.
The original images were stored at source in either 8-bit or 16-bit
format, with certain values reserved to indicate masks, sea or pro-
jection interruptions. Full details of this conversion process for the
1 x 1km imagery are given as examples. The satellite zenith angle
(SaZA) data have units of degrees and were stored in 8-bit files. In the
original files, the binary min/max = 10/190 were used to represent the
geophysical min/max=—-90/90 and mask values were 0=missing
data over land; 1 =ocean; 2= Goode’s interrupted area. The satellite
zenith angle was calculated from SaZA =(DN—100) where DN is the
original stored 8-bit number. The solar zenith angle (SoZA) also has
units of degrees and was originally stored as 8-bit files. The binary
min/max were 10/190 and the geophysical min/max were 0/180. The
mask and other values were exactly the same as for the SaZA
imagery, so SoZA =(DN—10). The NDVI is a ratio and has no units.
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It was archived as 8-bit files, the binary min/max of which were 10/
210 with the geophysical min/max = —1/1 and mask and other values
as before; so NDVI=(DN-110) x 0.01. Finally, the radiance data
(channels 3, 4 and 5) had units of degrees Kelvin and were originally
stored as unsigned 16-bit data with binary min/max =10/1018 and the
geophysical min/max =160/340. Mask and other values were as be-
fore, so channel 3, channel 4 or channel 5= (DN + 886.32)/5.602.

In general, before the processing steps outlined below, the imagery
was stored in signed 16-bit format with the mask and other values (0,
1, 2) being stored as —999, —998 and —997, respectively. The 8 x
8 km NOAA-AVHRR data were archived similarly with further de-
tails and (different) rescaling values given by James et al. (1994).

2.3.5. Quality Control and Data Pre-Processing

Ancillary data provided with the original imagery were used to ex-
clude unreliable pixels in both the 1 x 1 and 8 x 8 km datasets. Qual-
ity control removed pixels taken at satellite zenith angles (SaZA)
greater than 40°, to reduce bi-directional effects and parallax errors
due to image pixels acquired at viewing angles far from nadir (Hay
and Lennon, 1999; Hay, 2000). Pixels with solar zenith angles (S0oZA)
exceeding 80° were also excluded, to eliminate data retrieved at low
sun elevations (i.e. at dusk and dawn) that result in shadows that
affect image quality and therefore interpretation (Hay and Lennon,
1999; Hay, 2000). In addition, the 8 x 8km NOAA-AVHRR data
included a data layer that could be used to mask those pixels deter-
mined as cloudy by the ‘Clouds from AVHRR’ (CLAVR) algorithm
(Stowe et al., 1991; Hay and Lennon, 1999).

The NDVI data were then maximum-value composited (Holben,
1986) into monthly files. The (incomplete) set of monthly 1 x 1 km
NOAA-AVHRR data for 1992-1996 were further subjected to max-
imum value composition to generate a single set of 12 monthly images
representing the average (i.e. synoptic) year using all the available
data. The particular files contributing to each synoptic month are
shown in Table 1. These data were then rescaled conditionally (if
<—996 = 0, else = (NDVI + 1) x 1000)) and stored as signed 16-bit
integers ready for temporal Fourier analyses (TFA).
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MIR (channel 3) data were also maximum-value composited in the
same way (Lambin and Ehrlich, 1996). The subsequent processing
procedure was identical to that applied to the NDVI. Data values
indicating a temperature estimate of 350 K or greater were screened
out at this stage, as they were clearly in error. These data were then
conditionally rescaled (if < — 999 =0, else = (MIR x 10)) for stor-
age as signed 16-bit integers.

Land surface temperature (LST) data were derived using a split
window algorithm (Price, 1983), using quality-controlled channel 4
and 5 data and maximum-value composited (Lambin and Ehrlich,
1996). Subsequent processing was identical to that of the channel 3
data. These data were conditionally rescaled (if<—999=0, else=
(LST x 10)) for storage as signed 16-bit integers.

The 1x1 and 8 x 8km datasets were not corrected system-
atically for the effects of satellite orbit drift over the lifespan of each
satellite, which can affect the inter-comparability of these multi-
temporal data (Gutman, 1999). This can be particularly problematic
in the thermal channels because satellite orbit decays progressively
delay the timing of the daily measurement, which is obviously critical
for a variable such as temperature that shows strong diurnal var-
iation (Gleason et al., 2002). For these and other reasons, the AV-
HRR data for 1981 and all data after 1999 were excluded from the
8 x 8km NOAA-AVHRR time series before TFA (Nemani et al.,
2003). Many small artefacts in satellite data are smoothed by TFA
(see Section 3) but we emphasize that these uncorrected data are not
appropriate for the analyses of temporal change. Datasets that sys-
tematically deal with such artefacts for monitoring temporal change
are becoming available (Tucker et al., 2005). Finally, only NDVI,
MIR and LST data products are processed and distributed here.
Although it is possible to derive air temperature and vapour pressure
deficit (Goetz et al., 2000), we have avoided these indices as they
have been tested less widely, can require further geophysical data
inputs and show co-linearity with these existing products, a number
of which are used in their generation. Data provided on the accom-
panying DVD are in the format and with the new scaling as outlined
above, with further details in Table 3 and the DVD README
file.



Table 3 DVD imagery contents with details of scaling factors to be applied to the data, the data units and expected values

File name Imagery type (°) Image Scaling Units Geophysical min. Geophysical max.
wd1003a0 TFA 0.1 mean MIR (x/10) =273  °C -7.8 48.9
wd1003al TFA 0.1 MIR annual amplitude (x/10) °C 0 30.8
3.1wd1003a2  TFA 0.1 MIR bi-annual amplitude (x/10) °C 0 1.0
wd1003a3 TFA 0.1 MIR tri-annual amplitude (x/10) °C 0 0.6
wd1003d1 TFA 0.1 MIR pvs described by annual cycle No scaling % 0 94
wd1003d2 TFA 0.1 MIR pvs described by bi-annual cycle No scaling Y% 0 45
wd1003d3 TFA 0.1 MIR pvs described by tri-annual cycle No scaling % 0 13
wd1003mn TFA 0.1 Minimum MIR (x/10) =273  °C -26 324
wd1003mx TFA 0.1 Maximum MIR (x/10) =273  °C -3.6 50.9
wd1003pl TFA 0.1 MIR phase of annual cycle (x/10) Months 0 12
wd1003p2 TFA 0.1 MIR phase of bi-annual cycle (x/10) Months 0 6
wd1003p3 TFA 0.1 MIR phase of tri-annual cycle (x/10) Months 0 4
wd1003vr TFA 0.1 MIR variance (x/10) % 0 563
wd1007a0 TFA 0.1 Mean LST (x/10) =273  °C -30.7 554
wd1007al TFA 0.1 LST annual amplitude (x/10) °C 0 3.7
wd1007a2 TFA 0.1 LST bi-annual amplitude (x/10) °C 0 1.0
wd1007a3 TFA 0.1 LST tri-annual amplitude (x/10) °C 0 0.5
wd1007d1 TFA 0.1 LST pvs described by annual cycle No scaling Y% 0 96
wd1007d2 TFA 0.1 LST pvs described by bi-annual cycle No scaling % 0 48
wd1007d3 TFA 0.1 LST pvs described by tri-annual cycle No scaling Y% 0 11
wd1007mn TFA 0.1 Minimum LST (x/10) =273  °C —43.5 54.3
wd1007mx TFA 0.1 Maximum LST (x/10) =273  °C —26.5 58.9
wd1007p1 TFA 0.1 LST phase of annual cycle (x/10) Months 0 12
wd1007p2 TFA 0.1 LST phase of bi-annual cycle (x/10) Months 0 6
wd1007p3 TFA 0.1 LST phase of tri-annual cycle (x/10) Months 0 4
wd1007vr TFA 0.1 LST variance (x/10) % 0 758
wd1014a0 TFA 0.1 Mean NDVI (x/1000) =1  No units® —0.086 0.803
wdl014al TFA 0.1 NDVI annual amplitude (x/1000) No units* 0 0.445

(Continued)
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Table 3 (continued)

File name Imagery type (°)  Image Scaling Units Geophysical min. Geophysical max.
wd1014a2 TFA 0.1 NDVI bi-annual amplitude (x/1000) No units® 0 0.251
wd1014a3 TFA 0.1 NDVI tri-annual amplitude (x/1000) No units® 0 0.131
wd1014d1 TFA 0.1 NDVI pvs described by annual cycle No scaling Y% 0 94
wd1014d2 TFA 0.1 NDVI pvs described by bi-annual cycle No scaling % 0 80
wd1014d3 TFA 0.1 NDVI pvs described by tri-annual cycle No scaling Y% 0 39
wd1014mn TFA 0.1 Minimum NDVI (x/1000) —1  No units® —0.12 0.764
wd1014mx TFA 0.1 Maximum NDVI (x/1000) —1  No units® —0.066 0.865
wd1014pl TFA 0.1 NDVI phase of annual cycle (x/10) Months 0 12
wd1014p2 TFA 0.1 NDVI phase of bi-annual cycle (x/10) Months 0 6
wd1014p3 TFA 0.1 NDVI phase of tri-annual cycle (x/10) Months 0 4
wd1014vr TFA 0.1 NDVI variance (x/100)00 0 0.116
wd1030dm Globe D.E.M. Globe DEM No scaling Meters —295 6815
afpop00 Pop. surf. UNEP-GRID Population for Africa No scaling Persons 0 1580304
afpopd00 Pop. d. surf. UNEP-GRID Population for Africa No scaling Persons/km?> 0 84923
gpw00 Pop. surf. SEDAC Gridded population of the World  No scaling Persons 0 1467471
gpw00d Pop. d. surf. SEDAC Gridded population of the World  No scaling Persons/km®> 0 122755
grump-2000 M. pop. surf. SEDAC Gridded population of the World ~ No scaling Persons 0 1346722

TFA =Temporal Fourier analysis; pvs =proportion of variance in original signal;

“no units because it is a ratio. Geophysical minimum and geophysical maximum values do not include masks. Globe DEM—digital
elevation model. Pop. surf. = population surface, Pop. d. surf. =population density surface, M. pop. surf. =modelled population surface.
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3. TEMPORAL FOURIER ANALYSIS (TFA)
3.1. History and Application

Monthly composite imagery usually shows strong serial correlations
(i.e. seasons wax and wane in a relatively predictable manner) and this
data redundancy may be eliminated in two different ways. Tradition-
ally, the data are subjected to principal components analysis (PCA),
and the resultant significant principal components are used in analyses
(Eastman and Falk, 1993; Lillesand and Kiefer, 2000). Alternatively,
the data may be subjected to TFA, which describes natural environ-
mental cycles such as temperature and vegetation growth in terms of
annual, bi-annual, tri-annual and other cycles with shorter or longer
wavelengths (periods) (Rogers, 2000). The great attraction of TFA is
that it produces a set of orthogonal (i.e. uncorrelated) outputs while
retaining a description of seasonality (lost in PCA) that is of vital
interest in vector and disease mapping (Rogers et al., 1996; Rogers,
2000; Rogers and Robinson, 2004). One disadvantage of both PCA
and TFA is that they both assume stationarity (i.e. constant mean and
variance) of the data over time. Trends in data can first be removed by
differencing the time series from a moving average spanning a number
of annual cycles, and then analysing the de-trended time series. Al-
ternatively, if the trend itself is of interest, a windowing approach can
be applied, whereby the data are analysed in a series of (usually over-
lapping) windows in time. Within each window the data are assumed
to be mathematically stationary, and the windowed TFA results can be
compared to look for changes in the Fourier components (means,
amplitudes, phases etc.) through time.

The origins, mathematical basis and arguments for the biological
appropriateness of TFA are developed in detail elsewhere (Rogers,
2000; Rogers et al., 2002; Rogers and Robinson, 2004). In brief, the
trajectory through the year (the sequence of 12 monthly images) of
every picture element (pixel) in the environmental time series is de-
scribed by a series of orthogonal sine curves (cycles/harmonics) with
different frequencies. Each cycle is described by its amplitude (the
maximum variation of the cycle around the mean) and phase (its
timing). A total of six cycles is required to describe a dataset of 12
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months perfectly (with cycle periods of 12, 6, 4, 3, 2.4 and 2 months).
We find that around 90% or more of the variation in the original
images is usually captured by the first three (i.e. annual, bi-annual
and tri-annual) cycles, and much of the remainder is often simply
‘noise’, so we normally use only these to capture important features
of the seasonal variation at each site.

During TFA the raw time series of data were first examined for
obvious drop-out values, that arise either from absent imagery or else
from pixels masked out in the quality control algorithm of image
processing. Data for such months were linearly interpolated from
data for the months before and after the dropout months (with data
wrap-around when dropout months occurred right at the start or
right at the end of the sequence). The resulting time series were sub-
jected to TFA and the raw data were then compared with the re-
composed result (i.e. the sum of the Fourier-fitted annual, bi-annual
and tri-annual cycles only). Months where the absolute difference
between the raw and recomposed data exceeded user-determined
threshold values were also regarded as incorrect (these threshold
values were generously set so that only obvious outliers would be
trapped at this stage). These months were therefore linearly interpo-
lated as before, using data from adjacent months, and TFA carried
out again on the corrected data. This process was repeated until no
further outliers were identified (generally requiring no more than one
or two rounds of interpolation of a few data points). Finally, no
8 x 8km imagery was available for the months of September—
December 1994. Images for these months were first created using the
averages of the same months from the 1993 and 1995 images, and
these were used in TFA.

3.2. Fourier Data Products

The TFA algorithm developed by the TALA group produces 14
different products for each input satellite channel; the overall mean
(a0); the amplitude of the annual (al), bi-annual (a2) and tri-annual
(a3) cycles; the phase (i.e. peak timing) of the annual (p1), bi-annual
(ph2) and tri-annual (p3) cycles in months (starting at zero in January);
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the proportion of the variance in the original time series that is de-
scribed by the annual (d1), bi-annual (d2), tri-annual (d3) and all three
cycles combined (da); the maximum (mx) and minimum (mn) of the
seasonal cycle recomposed from the first three harmonics only; and
finally the variance (vr) of the original (i.e. not the fitted) time series.
These products are made available in full for the 8 x 8 km imagery but
only a subset is given for the 1 x 1km products due to space con-
straints (see DVD README file). Specifications for each 8 x 8 km
NOAA-AVHRR TFA file are given in Table 3 and examples for each
band given in Figure la-n. Note that equivalent details for the
I x 1km NOAA-AVHRR TFA data are only in the DVD README
file. Figure 2a and b provides a vignette of the processed 1 x 1 and
8 x 8km imagery for the lower reaches of the Nile river in Egypt,
Africa. The following section briefly discusses the inter-comparability
of these data.

3.3. Inter-Comparison of TFA Surfaces

We have not assumed that 1 x 1 and 8 x 8 km TFA surfaces can be
used interchangeably, because of the rather different origins, time pe-
riods and processing chains to which the data were subjected. Regres-
sion tests between 1x1 and 8 x 8km surfaces were therefore
performed at different latitudes to examine whether the overpass times
of the various satellites, and varying solar and viewing illumination
levels produced regional effects. The global area represented by the
NOAA-AVHRR imagery was divided into eight latitude bands:
90-70°N, 70-50°N, 50-30°N, 30-10°N, 10°N-10°S, 10-30°S, 30-50°S,
50-90°S (see Figure 3). The 1 x 1km NOAA-AVHRR images were
resampled using a mean filter to match the spatial resolution of the
8 x 8 km imagery. A stratified random sample of 10000 points within
each region was created and values of the pixels representing these
points extracted from the mean, maximum and minimum MIR, LST
and NDVI. Figure 4a—f shows a sample of these scatter plots of mean
MIR, LST and NDVI 8 x 8 km pixel values against mean MIR, LST
and NDVI 1 x 1 km pixel values for the S0°N-30°N and 10°N-10°S
latitudinal segment. Regression analysis was carried out between the
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Figure 2a,b The lower reaches of the Nile river in Egypt illustrate the
difference between the 8 x 8 km spatial resolution imagery (on the left) and
the 1 x 1km imagery (right). Images are of the mean NOAA-AVHRR
NDVI TFA a0 product (Table 3). Data are histogram equalized stretched
from the minimum data value (black, also water mask) to maximum (white)
for display.

two sets of extracted pixel values. No significant differences were ob-
served between the fit of a linear model (see Table 4) and various non-
linear alternatives.

Figure 4 highlights scatterplots for two of the most epidemiolog-
ically important latitudinal segments; the 50-30°N segment encom-
passing the US, Southern Europe and much of Asia, and the
10°N-10°S segment encompassing the equatorial tropical regions of

Figure la—n Panel of the fourteen 8§ x 8§km NOAA-AVHRR NDVI
TFA images (a) a0, mean, (b) mn, minimum and (c) mx, maximum signal
recomposed from the first three Fourier cycles. The amplitude of the (d) al,
annual cycle, (e) a2, bi-annual and (f) a3, tri-annual are also shown, in
addition to the (g) pl, phase of annual, (h) p2, bi-annual, (i) and p3, tri-
annual cycle in months. The proportion of the variance in the original time
series described by the (j) d1, the annual, (k) d2, the bi-annual, (I) d3, the tri-
annual and (m) da, all three cycles combined is also shown with (n) vr, the
variance of the original data time series. Data are histogram equalized
stretched from the minimum data value (black, also water mask) to max-
imum (white) for display.
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Figure 3 Latitudinal sample regions, (a) 90-70°N, (b) 70-50°N, (c) 50-30°N, (d) 30-10°N, (e) 10N-10°S, (f) 10-30°S,
(g) 30-50°S, (h) 50-90°S.
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Figure 4a—f Scatterplots for latitudinal segments shown in Figure 3 of 8 x 8§ km imagery sample points against
1 x 1 km imagery sample points for 50°N—30°N for MIR (a), LST (b) and NDVI (¢) and for 10°N-10°S for MIR (d), LST
(e) and NDVI (f). One-to-one lines (dashed) are added for ease of interpretation. Solid lines (and equations) are least
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Table 4 Values of r* produced through linear regression analysis be-
tween 8 x 8 and 1 x 1km imagery by latitudinal segment (latitudinal seg-
ments shown in Fig. 3)

Latitude Mean MIR Mean LST Mean NDVI
70-90°N 0.368 0.778 0.135
50-70°N 0.705 0.755 0.523
30-50°N 0.903 0.809 0.692
10-30°N 0.950 0.510 0.822
10S-10°N 0.902 0.608 0.587
10-30°S 0.869 0.434 0.860
30-50°S 0.931 0.858 0.651
50-90°S 0.737 0.819 0.546

the World. Figure 4a shows that there is correspondence between the
1 x 1 and 8 x 8 km imagery for all three environmental variables at
50-30°N, with the vast majority of sample pixels clustered along the
one-to-one lines (i.e. indicating little bias). These results are reflected
in Table 4, showing r* values above 0.69 for all three variables. An
area of concern is the clusters of rogue NDVI pixels which exhibit
very low values in the 1 x | km NOAA-AVHRR imagery. These
represent small water-bodies and coast pixels not distinguishable at
the 8 x §km scale (but certainly affecting the values of the pixels at
this scale). Figure 4b shows that, for MIR and NDVI, little bias
between the 1 x 1km and 8 x 8 km imagery exists at tropical lati-
tudes, and that large differences again exist in a small handful of
NDVI pixels. A more significant concern is that the 8 x 8 km NOAA-
AVHRR LST data are showing apparently higher temperature than
the corresponding 1 x 1km imagery. This may be an artefact of the
difference in time periods over which each TFA product was pro-
duced, with the 8 x 8 km imagery providing a more reliable synoptic
estimate given the much greater numbers of contributing years. Table
4 shows that, despite this bias, at tropical latitudes all three mean
environmental variables exhibit relatively strong correlations (all
r*>0.58). We have focused on the 8 x 8 km imagery in our studies,
but we have included a smaller subset of the 1 x 1km imagery for
wider experimentation which should, nevertheless, bear these com-
parisons in mind.
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4. FUTURE GLOBAL ENVIRONMENTAL DATA

4.1. Terra, Aqua and Modis

The Terra (EOS AM-1) and Aqua (EOS PM-2) satellites, launched in
December 1999 and May 2002 respectively, are a part of (NASA)
Earth Observing System (Parkinson, 2003). A range of onboard sen-
sors capture a variety of image types, but most relevant in this context
are the MODerate Resolution Imaging Spectroradiometer (MODIS)
and, exclusively for Terra, the Advanced Spaceborne Thermal Emis-
sion and Reflection (ASTER) radiometer.

MODIS is particularly attractive for epidemiological applications
due to; (i) a better spectral resolution than AVHRR, with 36 spectral
channels with smaller waveband ranges and significantly improved
signal-to-noise ratios (Justice et al., 2002), (ii) a one to two-day repeat
time temporal resolution at significantly higher spatial resolution
(250 x 250 to 1000 x 1000m depending on the channel) than AV-
HRR (Townshend and Justice, 2002) and (iii) fully processed and
quality assessed data products, giving unparalleled, rapid access to
contemporary and reliable data on large-area ecosystem processes.
MODIS is also potentially attractive to the public health community
thanks to the availability of its products at no charge to users, and its
longer mission lifespan (Tatem et al., 2004). A drawback of MODIS
data, when compared to AVHRR, is the considerably greater com-
puting resources needed to cope with the larger data volumes of some
of its products. These constraints are likely to diminish rapidly with
the exponential increases in computer power and storage capacities,
but these spatial resolutions at the global scale will still present a
significant challenge to the majority of users.

ASTER is an alternative data source for studies that have tradi-
tionally used SPOT-HRV or Landsat TM sensors (see below). The
spatial resolution of ASTER varies with wavelength, yielding 15, 30
and 90m resolutions at visible-near infrared (VNIR), short wave in-
frared (SWIR) and thermal infrared (TIR), respectively (Yamaguchi
et al., 1998), and the images may prove a powerful tool for studying
local disease processes (Tatem et al., 2004).
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Spectral bands within the MODIS 36 band array are broadly sim-
ilar to those of AVHRR, which may permit temporal continuity of
datasets and thus the potential for extending the AVHRR time series
(Friedl et al., 2002), providing funding for the Terra and Aqua sat-
ellites continues (a significant consideration given the uncertainty of
most USA-based Earth observation systems (Lawler, 2005)). Like-
wise, ASTER uses spectral channels similar in characteristics to those
of Landsat TM. Significant ongoing efforts in RS are seeking to
overcome issues that arise from differences in radiometric and spatial
resolutions between old and new sensors (NOAA — NPOESS, 2003).
We develop these issues further in Section 4.3.

4.2. Other Satellite Sensors

This section focuses on those sensors that can provide information at
the global scale. Many sensors that have not proven useful in epide-
miological studies and those with evident constraints, such as difficul-
ties of image costs or data access, are not considered. A more complete
account of satellite sensors is available in Campbell (2002) and Verger
et al. (2003). There are many planned enhancements to the existing
sensors which, due to the frequency of modification, are best reviewed
at their relevant web sites. These, and the basic technical specifications
of the sensors reviewed here, are detailed in Table 5.

4.2.1. Geostationary Satellites

The principal payload of Meteosat is the Meteosat Visible and Infra-
Red Imager (MVIRI) (EUMETSAT, 2000). The radiometer operates
in a broad visible waveband, a water vapour absorption infrared
waveband and a thermal infrared waveband. The Meteosat satellites
were designed for meteorological applications, so part of their spec-
tral range is located in the thermal infrared area of maximal water
vapour absorption, making it ideal for monitoring clouds. At nadir
the spatial resolution is 2.5 x 2.5km for the visible images and 5 x
5km for the thermal infrared and water vapour images. Further from
the equator, the spatial resolution decreases so that over northern



Table 5 Technical specifications of satellite sensors that have been used in epidemiology or that show significant
potential for epidemiological applications

o
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Satellite® Sensor Bands® Bandwith (um) Spatial res. (m) Temporal res. Swath (km) URL m
S
Landsat-5 MSS°© 1 0.500-0.600 80 16 days 185 http://landsat.gsfc.nasa.gov 1
2 0.600-0.700 80 o
3 0.700-0.800 80 é
4 0.800-1.100 80 m
™ 1 0.450-0.520 30 16 days 185 E
2 0.520-0.600 30 >
3 0.630-0.690 30 r
4 0.760-0.900 30 g
5 1.550-1.750 30 3
6 10.40-12.50 120
7 2.080-2.350 30
Landsat-7 ETM + 1 0.450-0.520 30 16 days 185
2 0.530-0.610 30
3 0.630-0.690 30
4 0.780-0.900 30
5 1.550-1.750 30
6 10.40-12.50 60
7 2.090-2.350 30
8 (P) 0.520-0.900 15
NOAA-16 & AVHRR 1 0.580-0.680 1090 12 hours 2800 http://edc.usgs.gov/products/
17 satellite/avhrr.html
2 0.725-1.000 1090
3A 1.580-1.640 1090
3B 3.550-3.930 1090
4 10.300-11.300 1090
5 11.500-12.500 1090
SPOT-4 HRVIR 1 0.500-0.590 20 1-4 days 60 http://www.spotimage.fr/
2 0.610-0.680 20

a
©
(Continued)



Table 5 (Continued)

Satellite® Sensor Bands® Bandwith (um) Spatial res. (m) Temporal res. Swath (km) URL
3 0.780-0.890 20
4 1.580-1.750 20
VGT-1 0 0.450-0.520 1000 1 day 2250
2 0.610-0.680 1000
3 0.780-0.890 1000
4 1.580-1.750 1000
SPOT-5 HRG P 0.480-0.710 5 1-4 days 60
1 0.500-0.590 10
2 0.610-0.680 10
3 0.780-0.890 10
4 1.580-1.750 20
VGT-2 Same as VGT-1  Same as VGT-1
Terra MODIS 1-2 0.620-0.876 250 1-2 days 2330 http://terra.nasa.gov/
3-7 0.459-2.155 500
8-36 0.405-14.385 1000
ASTER VNIR (3 bands)  0.500-0.900 15 4-16 days 60
SWIR (6 bands)  1.600-2.500 30
TIR (5 bands) 8.000-12.000 90
GOES-12 Imager 1 0.550-0.750 1000 26 minutes 3000 http://www.goes.noaa.gov/
2 3.800-4.000 4000
3 6.500-7.000 8000
4 10.200-11.200 4000
N 11.500-12.500 4000
Meteosat-7 MVIRI 1 0.450-1.000 2500 30 minutes http://www.eumetsat.de/
2 5.700-7.100 5000
3 10.500-12.500 5000
MSG-1 SEVIRI 1 0.560-0.710 4800 15 minutes http://www.esa.int/msg/
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(Meteosat-8) 2 0.740-0.880
3 1.500-1.780
4 3.480-4.360
5 5.350-7.150
6 6.850-7.850
7 8.300-9.100
8 9.380-9.940
9 9.800-11.800
10 11.000-13.000
11 12.400-14.400
12 (HRV) 0.400-1.100

4800
4800
4800
4800
4800
4800
4800
4800
4800
4800
1670

4Operational and/or latest satellite of the series in orbit.

P = Panchromatic.

°Also onboard Landsat-1, -2, -3 and -4. For all acronyms refer to text. Res. = Resolution.
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Europe, for example, it is 4 x 4km in the visible wavebands and
8 x 8 km in the thermal infrared and water vapour wavebands. Each
image is transmitted to the Earth in real time as each scan line is
completed, and new images are generated at 30-min intervals.

Meteosat Second Generation (MSG) satellites are designed to give
continuity to Meteosat missions with improved spatial, spectral and
temporal resolutions (EUMETSAT-ESA, 1998; EUMETSAT, 2001;
Schmetz et al., 2002). MSG-1 was launched in August 2002 and, after
a period of commissioning and validation, routine operations started
in January 2004 (EUMETSAT, 2004). Of particular potential on
board this satellite is the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) sensor, designed to acquire images every 15min
from 12 different bands at a spatial resolution of 1.4 x 1.4km for the
visible, and 3 x 3km for all other bands. MSG high-quality datasets
have raised expectations as powerful tools for studying temporal and
spatial tropical disease patterns in Africa (Hay, 2000). These have
largely not been realized due to data archival and distribution re-
strictions in Europe.

It is important to stress that despite the fact that Meteosat products
have found wide application in malaria studies in Africa (Hay et al.,
1998, 2003b; Rogers et al., 2002), they cannot be used in the Amer-
icas, Oceania or much of Asia as the satellite’s sensors capture only
that part of the Earth’s disc visible from a stationary orbit positioned
over the equator at the Greenwich meridian (i.e. longitude 0°). This
area includes Africa, Europe and the Middle East. The satellites with
equivalent capabilities for the American and Pacific region are
NOAA'’s Geostationary Operational Environmental Satellite (GOES)
(NASA, 1999). The satellite stationed at 75° W is known as GOES-E
while that at 135°W is called GOES-W. GOES has been used mainly
for weather observations and forecasts for the last 25 years (NASA,
1999), and its products offer great potential for epidemiological ap-
plications. The general properties of GOES-12 imagery are included
in Table 5 for reference.

Two other satellite systems complete the constellation of five sat-
ellites that provide geostationary sensor coverage for the entire globe.
Indian Ocean Data Coverage (IODC) is provided by Meteosat 5,
which has found continued use in a different geostationary orbit
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position. The sensor details have already been discussed in this sec-
tion. The final satellite and sensor to mention is the Geostationary
Meteorological Satellite (GMS) series which sits in orbit above 140°E.
GMS-1 was launched in 1977, the first in a series of satellites cul-
minating in GMS-5 which completed its observational mission in
May 2003. GOES-9 has been used as a backup to GMS-5 that had to
shut down its imager due to a technical fault. The replacement for the
GMS series (and GOES-9) is a new Japanese satellite called the
Multi-Functional Transport Satellite (MTSAT-1R), which became
operational in 2005 and is to be followed by MTSAT-2. These sat-
ellites carry sensors that image in 5 wavebands: visible, near-infrared,
two infrared channels and a water vapour channel. The visible images
have a spatial resolution of 1 x 1km while all other channels are
sensed at 4 x 4km spatial resolution at nadir.

4.2.2. Landsat

The launch of Landsat-1 in 1972 heralded a new era of high reso-
lution RS (Lauer et al., 1997, Markham et al., 2004). Since then, the
Landsat programme has generated a continuous supply of high res-
olution imagery for the entire globe, from the first Multispectral
Scanner (MSS) aboard Landsat-1 to the latest Enhanced Thematic
Mapper (ETM+) on board Landsat-7 (Mika, 1997). During this
time, there has been a substantial evolution in the quality of the
radiometers (Mika, 1997), their calibration (Chander ez al., 2004;
Thome et al., 2004) and the development of multi-spectral data anal-
ysis techniques developed to process captured data (Landgrebe,
1997). The novelty and conspicuous success of the Landsat pro-
gramme forced issues regarding data distribution and cost (Draeger
et al., 1997) and the feasibility of commercial RS (Williamson, 1997)
to be considered seriously for the first time. Many countries have
emulated and extended features of the Landsat programme, and
other high-resolution RS data sources are becoming increasingly
available (Campbell, 2002).

On May 2003, the scan line corrector (SLC) subsystem on board
Landsat-7 developed an anomaly (Markham et al., 2004). Later that
year the problem was identified as a permanent mechanical failure and
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Landsat-7 resumed its mission with the SLC turned off. The device was
designed to compensate for the forward motion of the satellite. This
malfunction causes data loss at the edges of images, with an effective
30% loss of information (Markham et al., 2004). Simple interpolation
techniques have been applied to the datasets with promising results,
but further validation is needed. Since the remaining pixels, comprising
30km? in the center, are unaffected, Landsat-7 is still able to yield
useful imagery in the middle of each scene (USGS, 2003).

4.2.3. SPOT

The French Satellite Pour I'Observation de la Terre (SPOT) programme
began in 1986 with the launch of SPOT-1, carrying the High Resolution
Visible (HRV) payload. There were many similarities to Landsat-TM
imagery, but, essentially, the SPOT-HRV achieved a slightly higher
spatial resolution with fewer spectral channels. Data collection has con-
tinued with SPOT-4, which carries the High Resolution Visible and
Infrared (HRVIR) sensor and the multi-spectral VEGETATION
(VGT-1) instrument. The more recent SPOT-5 has a VGT-2, similar
to its predecessor, and a High Resolution Geometric (HRG) camera
that achieves spatial resolutions of up to Sm (Campbell, 2002). Of par-
ticular relevance from an epidemiological perspective is the VGT in-
strument, due to the high-quality vegetation index it offers, the
availability of fully corrected imagery at a constant 1 x 1km spatial
resolution, and an almost daily global coverage in four spectral bands
(0.45-1.75 um) (Campbell, 2002; Maisongrande et al., 2004). The VGT
sensor data can be provided as a number of different products: VGT-P
products (the physical values); VGT-SI products (daily maximum value
composited syntheses), VGT-S10 products (10-day maximum value
composited syntheses) and VGT-D10 products (10-day BiDirectional
Composite syntheses). The VGT-S10 and VGT-D10 products are also
available in degraded resolutions of 4 x 4 and 8 x 8 km.

4.2.4. ADEOS

The Japanese polar orbiting Advanced Earth Observation Satellite
(ADEOS) program provides global observation datasets, albeit with
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limited temporal coverage due to instrument problems. The ADEOS-
1 satellite, launched in August 1996, went out of service in June 1997
due to structural damage to its solar array. The ADEOS-II platform,
launched in December 2002 went out of service in late October 2003,
also due to loss of power and subsequent sensor failure. Both plat-
forms carried a Global Imager (GLI) with a spectral range spanning
the visible to thermal infrared portion of the spectrum. The 36 GLI
spectral bands acquired data at 10:30 local time from an altitude of
800 km in a Sun-synchronous polar orbit. The additional spectral
information provided by GLI data has potential for improving es-
timates of land surface variables, including fire disturbance mapping
and “hot spot” monitoring, as well as more visible channels useful for
monitoring surface waters. A swath width of 1600 km provided ob-
servational data suitable for global land surface monitoring with a
repeat interval of four days. The GLI data have a spatial resolution of
250 x 250 m in six channels, comparable to MODIS, and 1 x 1km in
other spectral bands. Improved atmospheric water vapour absorption
bands aided estimation of vertical humidity profiles and near-surface
water content, which were being used for improved weather fore-
casting and have utility in disease vector mapping (Goetz et al., 2000).
ADEOS science teams have provided higher order datasets of envi-
ronmental variables derived from the raw GLI data. Production of
vegetation cover type, density, productivity and change have expe-
rienced severe set-backs from instrument failures, but refined datasets
of potential utility to disease applications exist for most of 2003.

4.3. Data Continuity and NPOESS

Continuity between NOAA-AVHRR and MODIS, the current
“work horses” of global RS observing systems, requires both com-
parability assessments between sensors and the development of future
new technology sensors. The latter will have improved radiometric
and spectral properties, often provided at finer spatial resolution.
Inter-sensor comparability requires assessments of the ability to re-
trieve consistent surface environmental information from instruments
with different spectral, spatial, geometric, radiometric and orbital
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acquisition properties. NASA has recently funded several studies to
address these issues in order to ensure continuity of the primary sur-
face reflectance, as well as spectral vegetation indices and other data
products that are used to derive many of the environmental variables
relevant to epidemiological research. These efforts include empirical
comparisons with sensor cross calibrations and associated transfor-
mation statistics, similar to what has been done with higher resolu-
tion sensors (Goetz, 1997). More analytical assessments are planned
based on modelling radiative transfer and incorporating relative sen-
sor responses across the energy spectrum within the sensor band
passes. Both approaches will lead, either separately or in combina-
tion, to releases of improved datasets compared to those distributed
on the accompanying DVD, in addition to providing an extended
observational record.

The primary satellite platforms that will provide data continuity
with AVHRR, Terra and Aqua over the next two decades of Earth
observation are the National Polar-orbiting Operational Environ-
mental Satellite Systems (NPOESS). An NPOESS Preparatory
Project (NPP) satellite is scheduled for launch in May 2006 [URL:
http://jointmission.gsfc.nasa.gov/]. It will carry four primary sensors
including the Visible Infrared Imager Radiometer Suite (VIIRS), the
Cross-Track Infrared Sounder, the Advanced Technology Micro-
wave Sounder, and the Ozone Mapping and Profiler Suite. The sensor
of primary interest to epidemiological research is the VIIRS, which is
intended to provide global observations of land, ocean and atmos-
phere parameters on a near-daily basis. VIIRS is a 22-band instru-
ment, with a spectral range from the visible through the thermal
infrared wavelengths (0.4-12pm). Each image swath will extend
3000 km, from a satellite orbit of 833 km, by scanning fore and aft
+56° of nadir. Image data will be acquired at two spatial resolutions,
370 and 740 m. A unique feature of VIIRS is that it will reduce pixel
size across track (along scan), which will therefore compensate for the
pixel size expansion that typically accompanies off-nadir viewing. The
ground track of NPP will mimic that of Terra, with a 16-day repeat
interval consistently acquiring data at 10:30 local time in its descend-
ing node (the ascending node data are acquired at night). On the
planned series of NPOESS satellites that follow NPP, data will be
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acquired at 09:30, 13:30 and 17:30, respectively, in order to provide
measures of diurnal variability and continuity with Aqua. These sat-
ellites are currently planned for launch after 2010. Although delays
are expected, the life expectancy of the instruments will ensure there
are periods of overlap between VIIRS sensors. A broad range of
environmental variables will be provided from VIIRS observational
data by NPP and NPOESS project science teams, including vegeta-
tion indices, surface temperature, land cover type classifications, en-
ergy and heat fluxes, atmospheric water vapour and soil moisture
dynamics. Much of this work will be based on algorithms already
developed by the MODIS science teams. The production of VIIRS
continuity datasets will also make use of a wide range of geometric,
radiometric and atmospheric corrections of the raw image data.

4.4. Other Data Sources

This brief section is not intended to be a comprehensive list of the
digital data available to the epidemiological community but simply
selected highlights that we have found to be particularly useful. A
more comprehensive listing can be found at [http://www.eden-
fp6project.net/].

4.4.1. Digital Elevation

Elevation influences temperature, rainfall and humidity and has been
used widely in the mapping of infectious disease (Guerra et al., this
volume, pp. 157-179). The 1km Global Land One-kilometre Base
Elevation (GLOBE) Digital Elevation Model (DEM) is provided on
the accompanying DVD. Full documentation is provided elsewhere
[URL: http://www.ngdc.noaa.gov/seg/topo/report/]. We have resam-
pled these data to be compatible with the 1 x 1km and 8 x 8km RS
datasets. Table 6 summarizes the important features of the data.
The Shuttle Radar Topography Mission (SRTM) obtained elevation
data on a near-global scale to generate the most complete high-
resolution digital topographic database of Earth. The SRTM consisted
of a specially modified radar system that flew on board the space
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Table 6 Geo-referencing information for the GLOBE DEM data

Details 30 arc second imagery
Projection Geographic latitude/longitude)
Image size, columns 43200

Image size, rows 21600

Upper-left coordinate, pixel edge —180

Upper-left coordinate, pixel edge 90

Units Decimal degrees

Pixel size: x 0.00833333

Pixel size: y 0.00833333

Spheroid WGS84

Datum WGS84

Vertical (z) units Metres above mean sea level

shuttle Endeavour during an 11-day mission in February of 2000
(Rabus et al., 2003; Smith and Sandwell, 2003; Sun et al., 2003). The
SRTM is an international project led by the National Geospatial-
Intelligence Agency (NGA) and NASA. Elevation data at 1, 3 and 30
arc-second spatial resolution (USGS, 2004) are freely available from
Global Land Cover Facility [http://www.landcover.org/data/srtm/].

4.4.2. Gridded Climatologies

The Climate Research Unit at the University of East Anglia, UK,
produces a range of global gridded climatologies (New et al., 1999,
2000, 2002; Mitchell and Jones, 2005) derived from interpolated me-
teorological station data  [http://www.cru.uea.ac.uk/cru/data/
hrg.htm]. These include 0.5 x 0.5° time series from 1901 to 2000
(New et al., 1999, 2000) and 10 x 10 arc-second climatology of syn-
optic months (1961-1990) (New et al., 2002). They include useful
comparative information on precipitation, wet day frequency, daily
mean temperature, diurnal temperature range, cloud cover, frost day
frequency, vapour pressure, wind speed, relative humidity and sun-
shine hours. These data have found extensive use in epidemiological
studies (Rogers and Randolph, 2000; Hay et al., 2002; Shanks et al.,
2002; Small et al., 2003).
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4.4.3. The Africa Data Dissemination Service (ADDS)

The ADDS is operated by the US Agency for International Devel-
opment (USAID) as part of its Famine Early Warning System Net-
work (FEWS NET) [http://igskmncnwb015.cr.usgs.gov/adds/]. It
provides a regularly updated archive of AVHRR-derived NDVI for
Africa, as well as a suite of climatic products, including rainfall es-
timate data related to disease risk and food insecurity. The advantage
of these data is that they are available in near real-time and hence
useful for malaria epidemic monitoring (Hay ez al., 2003a,b).

4.4.4. Gridded Human Population Data

Demographic data are crucial if visually striking maps are to be
turned into useful operational tools. The “‘state-of-the-art” in pop-
ulation mapping is detailed extensively elsewhere in this volume (Balk
et al., this volume, pp. 119-156) and the data can also be found on the
accompanying DVD (see Table 3 and Balk et al., this volume).

4.4.5. Administrative Boundary Data

One frequent difficulty in interpreting disease and other data that are
mapped to local administrative boundaries, and given local adminis-
trative names, is that there is no agreed global dataset of administrative
boundaries beyond admin level 1 (the major division below country
level zero). Although currently incomplete, the best current prospects
for a global documented standard seems to be the United Nations
funded Second Level Administrative Boundaries project [http://
www3.who.int/whosis/gis/salb/salb_home.htm]. Data for many coun-
tries are already available and the site is frequently updated.

4.4.6. Global Landcover Facility (GLCF)

The GLCF at the University of Maryland, USA holds a vast array of
freely downloadable satellite imagery and other data sources [http://
www.glcf.umiacs.umd.edu/index.shtml]. Satellite imagery available
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includes global coverage of MODIS and Landsat MSS, TM and
ETM +, with ASTER data made available recently. A variety of
vegetation, land cover, forest and burned area products, all derived
from satellite imagery, are available globally. We include it here be-
cause it is an unparalleled resource.

5. CONCLUSIONS

The 8 x 8km TALA TFA RS dataset provides the most stable syn-
optic surfaces our group has used for monitoring global scale envi-
ronmental conditions of relevance to infectious disease mapping. The
data represent a significant spatial resolution advance on synoptic
climatologies and complement the suite of data these surfaces pro-
vide. The 1 x 1 km TALA TFA data streams are less comprehensive
temporally, show some latitudinally dependent differences with the
8 x 8km TFA data and are hence more experimental. They should
therefore be used with greater caution. Ancillary DEM, population
and human settlement data are also distributed on the DVD. These
collective data represent a contemporary snapshot of environmental
conditions of use to those engaged in infectious disease mapping and
wider environmental studies. It is difficult to predict their useful life-
span but we hope the continuity missions outlined will make their
regular updating a necessity.
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ABSTRACT

Scale and uncertainty are important issues for the global prediction of
disease. Disease mapping over the entire surface of the Earth usually
involves the use of remotely sensed imagery to provide environmental
covariates of disease risk or disease vector density. It further implies
that the spatial resolution of such imagery is relatively coarse (e.g.,
8 or 1 km). Use of a coarse spatial resolution limits the information
that can be extracted from imagery and has important effects on the
results of epidemiological analyses. This paper discusses geostatistical
models for (i) characterizing the scale(s) of spatial variation in data
and (ii) changing the scale of measurement of both the data and the
geostatistical model. Uncertainty is introduced, highlighting the fact
that most epidemiologists are interested in accuracy, aspects of which
can be estimated with measurable quantities. This paper emphasizes
the distinction between data- and model-based methods of accuracy
assessment and gives examples of both. The key problem of validat-
ing global maps is considered.

1. INTRODUCTION

Global epidemiology has been a focus of spatial epidemiological re-
search for many years (Vonreyn and Mann, 1987; Elliott, 1993). A
range of diseases has been studied, usually based on extensive liter-
ature searches, including asthma and related conditions (Beasley
et al., 1998), lymphatic filariasis (Michael and Bundy, 1997), influenza
and avian influenza (Cox and Subbarao, 2000), hepatitis B virus
(Custer et al., 2004), and HIV/AIDS (De Cock and Weiss, 2000;
Ippolito et al., 2000; Morison, 2001).

Today, epidemiologists have available a growing range of increas-
ingly large spatial datasets potentially covering very large areas of the
Earth’s surface. Spatial data are characterized by an attribute value z
and a location (x, y), usually expressed in a two-dimensional Cartesian
coordinate system (such as latitude and longitude). The widespread
availability of large spatial datasets has been facilitated by rapid in-
creases in the power of affordable personal computer hardware, the
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dissemination and uptake of increasingly sophisticated geographical
information system (GIS) software (Nicholson and Mather, 1996;
Staubach et al., 2001; Kirby, 2003; Elliott and Wartenberg, 2004; Jarup,
2004) and the sudden success of the internet, supporting web-based
dissemination and sharing of data (LaPorte et al., 1996; Gotway and
Young, 2002). Prime among the sources of large spatial datasets is
remote sensing, defined as the use of electromagnetic radiation (EMR)
sensors to record images of the environment, which can be interpreted
to yield useful information (Curran, 1985). Remote sensing has the
potential to provide complete cover, in the form of one or more images,
synoptically at a range of spatial and temporal scales (Hay, 2000;
Graham et al., 2004). No other source of environmental data can pro-
vide such spatially rich information. This is especially true at the global
scale.

1.1. Indirect Relations

Remotely sensed imagery and other forms of spatial data can be used
to support a wide range of epidemiological analyses, although remote
sensing rarely leads to direct measurement of the property of interest.
Rather, the property that is remotely sensed (for our purposes EMR
in optical or microwave wavelengths) is usually related indirectly to
the property of interest (Lillesand and Kiefer, 2004). Curran et al.
(2000) described this situation in the context of disease mapping using
land cover as the indirect link between radiation and vector or par-
asite prevalence. The amount of EMR reflected or emitted in a spe-
cific waveband from the Earth’s surface is a direct function of the
land cover or, more generally, Earth surface properties. Radiation
may also be reflected by the atmosphere.

Reflected or emitted EMR is only indirectly related to disease vec-
tors (Rogers and Randolph, 1991; Cross et al., 1996; Hay et al., 1997;
Crombie et al., 1999). For example, the distribution of malaria-
carrying Anopheles mosquitoes is related to the signal recorded by a
sensor through properties such as mosquito habitat, proximity to
water and land surface temperature (LST) (all of which are functions
of land cover). It is also related to proxies for rainfall lagged by one
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or two months [such as the normalized difference vegetation index
(NDVI) and cold cloud duration (CCD)] (Hay et al., 1996; Rogers
et al., 1996; Thomson et al., 1996, 1999). Such information has been
used to predict the seasonality of malaria transmission (Hay et al.,
1998a, b). Further, reflected radiation is indirectly related to parasite
prevalence (Linthicum et al., 1999). For example, the malaria para-
site is related to the signal recorded by a sensor through climate and
land surface properties, as well as the malaria vector and human
settlement distributions (Curran et al., 2000). This means that if
remotely sensed images are to be useful in epidemiological studies
then it is necessary to model the indirect relations between reflected
(or emitted) radiation and vector or parasite prevalence through (of-
ten non-linear) functions of land surface and atmospheric properties.

1.2. Sensor Characteristics

Remotely sensed images may be acquired in a range of different
wavelengths of the electromagnetic spectrum (EMS). Most remotely
sensed imagery used commonly in the study of disease is recorded in
visible to thermal-infrared wavelengths. For example, the National
Aecronautics and Space Administration (NASA) Landsat Enhanced
Thematic Mapper (ETM +) satellite sensor acquires images in seven
discrete wavebands or portions of the EMS, while the National Oce-
anographic and Atmospheric Administration (NOAA) Advanced
Very High Resolution Radiometer (AVHRR) satellite sensor ac-
quires imagery in five wavebands (Cracknell, 1997) (Hay et al., this
volume, pp. 37-77). Such multi-band optical imagery can be inval-
uable for mapping classes of land cover and continua such as veg-
etation biophysical (Goel et al., 2003) and biochemical properties
(Curran et al., 1998). Many modern imaging sensors record radiation
in several hundred spectral wavebands, referred to as hyperspectral
sensing (Curran, 1994).

Microwave remote sensing measures radiation in microwave wave-
lengths either emitted (passive sensing) or backscattered (active sens-
ing) from the Earth’s surface. Most active microwave remote sensing
is achieved using synthetic aperture radar (SAR) imagery, which can
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be useful for predicting a range of structural properties (e.g., of veg-
etation) and has been used to predict the flooding status of Kenyan
Rift Valley fever vector habitats (Pope et al., 1992). Interferometric
SAR (e.g., from the highly successful Shuttle Radar Topography
Mission; Kellndorfer et al., 2004; Eineder and Adam, 2005) is a
comparatively recent technique that uses SAR to predict height, often
with very high accuracy. Many other parts of the EMS and methods
of remote sensing (e.g., LIDAR to sense surface height directly;
Naesset et al., 2005) may be useful in an epidemiological context.

The number, size and position of wavebands are just three of the
several sensor characteristics that are important in determining the
suitability of sensor imagery for a given epidemiological purpose and
the quality of the resulting predictions (e.g., disease map). A further
important sensor characteristic in the context of global disease pre-
diction is the spatial resolution. While the number, size and position
of each waveband in the EMS determines the spectral (attribute)
information in an image, the spatial resolution of the imagery has
equally important and predictable effects on the resulting information
and its utility for particular applications. The spatial resolution of
satellite sensors can vary from several kilometres (e.g., NOAA
AVHRR imagery has two spatial resolutions of 1.1 and 8 km) to less
than 1m (e.g., Quickbird panchromatic imagery has a spatial reso-
lution of 0.6 m, although the multiband imagery has a spatial res-
olution of 2.4m) (Danson et al., 2003).

For the global mapping of disease it is impractical to cover the
entire surface of the Earth with fine spatial resolution (e.g., 1-100 m)
imagery. This is partly because of the enormous numbers of data
involved at fine spatial resolutions and the amount of effort involved
in “stitching” together large numbers of images. An early example of
a global remote sensing product is provided by the DISCover project
which used NOAA AVHRR imagery to map land cover over the
entire globe with a spatial resolution of 1 km (Loveland et al., 2000).
This has been superseded by the Global Land Cover (GLC) 2000
project (Latifovic et al., 2004; Giri et al., 2005), components of which
were produced using Moderate Resolution Imaging Spectrometer
(MODIS) imagery (Friedl et al., 2002). The requirement to adopt
relatively coarse spatial resolution data (e.g., 500 m—8 km) when
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mapping over large areas such as continents (e.g., Africa) or the entire
globe has important implications for subsequent analyses, which are
explored further in this paper.

As already described, remotely sensed imagery is rarely the object
of scientific interest itself. To be useful, the imagery must usually be
combined, via a model, with primary data acquired on the ground of
the property of interest. Such “ground data” may represent areas
(e.g., ground surveys of tsetse flies, Hendrickx et al., 2001; number of
clinical cases of a disease per health facility, each of which serves an
unknown, but definable catchment population, Gething ez al., 2004)
or points (e.g., individuals in an intensive community-based survey).
Even in the former case, the geographical catchments are likely to be
smaller than, or at least of different geometry to, the image pixels,
such that both cases present a serious problem for modelling: spe-
cifically, the problem of incompatible spatial units (Hay et al., 2001;
Dungan et al., 2002; Gotway and Young, 2002). This problem is
discussed in Section 2.

1.3. Choice of Modelling Framework

In remote sensing, it is common to use the multivariate (multi-band)
information to predict some property of interest (e.g., land cover,
NDVI, LST) using one of several classes of model (e.g., physical
model, statistical model). Physical models are usually analytical and
are fitted to empirical data in the forward sense (Strahler ez al., 1986).
The fitted model is then inverted to predict the property of interest.
Statistical models, also referred to as empirical models, are usually
fitted to empirical data directly and rarely require inversion
(Schowengerdt, 1997). Semi-empirical models (Graham and Harris,
2003) lie between these two.

In a statistical sense, remotely sensed imagery are most commonly
associated with the random field or random function (RF) model in
which each point in space is treated as being characterized by a ran-
dom variable (RV) and the relation between RVs at different loca-
tions is modelled using a spatial covariance or equivalent “‘structure”
function (Atkinson, 1999). Several different models are applicable to
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such data including geostatistical models (Matheron, 1965, 1971;
Chilés and Delfiner, 1999) and spatially autoregressive models (e.g.,
Augustin et al., 1996, developed the autologistic model which is
popular in ecology). An alternative to the RF model is the object-
based model or view (Hay er al., 2003), as might be applicable
to point data on health facilities in a given country (Gething
et al., 2004). Statistical techniques such as point pattern analysis and
cluster modelling (Diggle and Rowlingson, 1994; Cockings et al.,
2004; Dragicevic, 2003a; Kulldorff er al., 2003) may aid epidemio-
logical investigation of such data.

Although not the primary interest of this paper, process models
should be considered alongside the static RF and object-based views
of the world. Dynamic models of disease processes are becoming ever
more common based on increased availability of suitable data and
high-performance computer power. Such models are being fitted at
the local or even individual level, replacing previous population-
based models (Anderson et al., 1991) and introducing new insights
into the factors influencing the space—time dynamics of disease (Bian,
2004; Cisternas et al., 2004; Eubank et al., 2004). Such models
ultimately rely on high-quality data both on the disease and the
environment in which it is transmitted, and the latter can often be
provided by remote sensing. Where this is the case, the efficacy of the
model at representing real processes will depend on the characteristics
of the model and the input data (such as spatial resolution).

1.4. The Image Processing Chain

Whichever modelling approach is chosen, fitting a model can be seen
as one of several components in what is known as the processing
chain (Schott, 1987). Common components in the processing chain
are image acquisition, radiometric calibration (e.g., Guyot and Gu,
1994), atmospheric correction (e.g., Chavez, 1996), geometric correc-
tion, model fitting, prediction and accuracy assessment. Each of these
components can have an effect on the information content and
accuracy of the final output.
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The purpose of this paper is to evaluate the effect of two compo-
nents of the processing chain, scale and uncertainty, on epidemio-
logical predictions made based on remotely sensed imagery. Issues of
spatial scale and spatial resolution are considered in Section 2, and
issues of uncertainty are considered in Section 3. Section 4 provides a
conclusion.

2. ISSUES OF SCALE AND SPATIAL RESOLUTION

2.1. Preliminaries

Scale and the scaling of data are central subjects in remote sensing
and GIS (Woodcock and Strahler, 1987; Quattrochi and Goodchild,
1997). A fundamental concept that underpins the understanding of
scale and scaling is that data z,(x) on property z defined on a support
v (the size, geometry and orientation of the space on which each
measurement is made) at locations x are a function of both reality
(i.e., the underlying property of interest z(y), where y denotes any
point location within the target space) and the sampling framework
s(xy, ) with parameters \ fixed at location x,:

zv(x) =1 (2(y), (x5, W) (1)

Equation (1) ignores the temporal dimension, and the uncertainty
in measurement which is developed in Section 3. The key point is that
mathematical operations are applied to the data, not reality, and so
the outcome of any operation is partially a function of the sampling
framework. Only by understanding and modelling the effects of the
sampling framework is it possible to characterize adequately and
predict optimally the underlying property of interest.

The sampling framework comprises both spatial and temporal pa-
rameters with the spatial set of parameters comprised of the sample
size n (e.g., 30), sampling scheme ¢ (e.g., random, stratified random),
sampling density d (e.g., 30 observations per km?) and support v (e.g.,
a point, a pixel). The support itself is defined by a further set of
parameters: geometry p, (e.g., square wave response over a square
pixel, 2-D Gaussian function), orientation 6, (e.g., north-to-south)
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and size |v| (e.g., 1 km on a side). These six parameters {r, define the
spatial sampling framework completely:

s(Wy) =1 (n,d.d. py, 0y, V1) )

The temporal sampling framework s(\s,) is defined by an equivalent
five parameters \, (support orientation is meaningless in 1-D).
Together, these 11 generic parameters \Jy , define the sampling frame-
work s(\x ;). Once defined, the sampling framework can be applied to
any region of interest to obtain data by fixing location x and time #;
conceptually involving definition of a further three parameters.
Equation (1) can now be updated to include the temporal dimension:

2v(x, 1) = £ (2(¥), (x5, . Wy)) )

The sampling framework has an important influence on the meas-
ured data. From this point onwards, the sampling framework
s(Xs, 1,V ,) is represented by s(x, f), where 7 represents time.

The word scale has numerous different meanings (Curran and
Atkinson, 1998; Dungan et al., 2002). The most common meaning in
the present context is the cartographic definition of scale: the ratio
between a distance in a representation, model or map of reality to the
actual distance in reality (e.g., 1:10000). This definition can be
confusing for many reasons that have been explained previously
(Atkinson and Tate, 2000; Dungan et al., 2002) and so, in this paper,
the everyday usage is adopted in which scale simply means size
(e.g., large-scale investigation or process simply means large inves-
tigation or process). This is the definition commonly adopted in
ecology and physics. This definition is required because it is necessary
to define the scale(s) of measurement in the sampling framework and
the scale(s) of spatial variation in the data, neither of which are ratios.

One of the most important effects of s(x, #) on observed data is to
determine the scales of spatial variation present in the data. More
fully, the scales of spatial variation present in spatial data are a
function of the scales of spatial variation present in reality and the
sampling framework. Certain parameters of s(x, ¢) defined above, for
example the support, have a greater effect than others. Knowledge of
which scale(s) of spatial variation are revealed (and which are omit-
ted) is important. The filter on reality induced by s(x, ) determines,
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fundamentally, the information content of data, and the outcome
of subsequent analyses on those data. For example, Belward and
Lambin (1990) describe limits to characterizing spatial structure using
NOAA AVHRR imagery. It is common in remote sensing that pixels
are compared directly to ground data and the correlation coefficient
and predictive power of a fitted regression model will depend on the
image and ground supports, both in relative and absolute terms. The
choice of spatial resolution for remote sensing investigations has been
the subject of extensive research (e.g., Woodcock and Strahler, 1987;
Atkinson and Curran, 1995, 1997; Curran and Atkinson, 1999).

The advantages of modelling scale in the above context are that (i)
the scale(s) of spatial variation in data may be characterized and (ii) by
combining such information with a model of the convolution process
implicit in sampling it is possible to change the scales of variation in
data as a function of hypothetical changes in s(x, #). This provides a
very powerful means for addressing directly some of the most impor-
tant issues of scale inherent in the global prediction of disease.

2.2. Measurement Scales
2.2.1. The Support

Of all the parameters of s(x, #), the support is the most important in
that it provides a fundamental limit on the scales of spatial variation
that can be exhibited in data. The size of support |v| has the greatest
influence, but geometry p, also has an effect and orientation 6y, can be
important where variation is anisotropic. These support effects are best
modelled as a convolution of the underlying signal by the support:

200 = | 2 dy @

where v is the support, y a point and /,(y) represents the support.
Thus, the support changes the basic character of the dataset, obscuring
certain fine scales of spatial variation from the investigator.

Further effects are induced where the supports of individual data
vary, for example, with census data. Such variation leads to the
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modifiable areal unit problem (MAUP) (Openshaw, 1984; Unwin,
1996). Then, the so-called aggregation effect of |v| is intermingled
with a zonation effect. Wakefield (2003, 2004) provides methods for
assessing the effects of area-based (i.e., cell-based) data used in ep-
idemiology by comparing the predictions to point statistics using a
random effects model. Krieger et al. (2002) provide an example in
which the relation between socioeconomic status and cancer inci-
dence depends on support size.

2.2.2. Spatial Resolution

In remote sensing, the terms support and spatial resolution are often
used interchangeably. Whereas the support is defined above as a first-
order parameter of s(x, ¢) (because it relates to a single observation),
the spatial resolution is a second-order property (because it is a
function of more than one observation). Spatial resolution provides
an important lower limit to the scales of spatial variation that can be
captured in a given dataset. Spatial resolution is a function of the set
of smallest distances between observations as well as the support. In
remote sensing the spatial resolution is equal to the pixel size, which is
an approximate representation of the support. In ecology, the term
“grain” is often used interchangeably to mean spatial resolution
(Dungan et al., 2002).

2.2.3. Spatial Extent

The spatial extent is defined here as a second-order property that
provides an upper limit on the scales of spatial variation present in
data. It is a function of the set of largest distances between obser-
vations.

Although it is helpful conceptually to distinguish between the
spatial resolution and spatial extent as lower and upper limits im-
posed by s(x, ), in reality, the set of all possible pairs of observations
implicit in s(x, #) determines the full sampling of the scales of spatial
variation existing in the convolved variable of interest Z,(x) (i.e., the
property of interest measured on the given support).
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2.3. Scale(s) of Spatial Variation
2.3.1. Characterizing Spatial Variation

There exist many different methods for characterizing spatial variation.
These can be organized according to the basic data model adopted.
For the RF model, various forms of regression analysis (e.g., Kelsall
and Diggle, 1998) and geostatistical approaches (Chilés and Delfiner,
1999) are popular. For geostatistics, basic structure functions such as
the spatial covariance, autocorrelation function and variogram are
used for characterization (Curran and Atkinson, 1998; Atkinson,
1999). Geostatistics has been applied to non-communicable disease
(e.g., Oliver et al., 1992, 1998; Webster et al., 1994; Minozzo and
Fruttini, 2004), and, less commonly, to communicable disease (e.g.,
Diggle et al., 2002).

For the object-based model, point-pattern analysis provides a wide
range of functions (e.g., the K-, L- and D-function) where the objects
are points (Cressie, 1991). Point pattern analysis and cluster analysis
have been applied widely in exploring spatial variation in disease risk
(Diggle and Rowlingson, 1994; Gatrell et al., 1996; Lawson, 2000;
Dragicevic, 2003b). Hand and Bolton (2004) provide a review of
pattern discovery techniques from a statistical perspective. For other
types of object (i.e., non-point objects) the tools are not as well
founded statistically, mostly relying on technical developments in
GIS and landscape ecology (e.g., Hay et al., 2003).

Much spatial variation in disease vector distributions and predic-
tors of disease (e.g., environmental controls on vector distribution) at
the global scale may be modelled appropriately using RF. Therefore,
the geostatistical approach provides the focus in this section. Of the
available functions, the variogram is usually preferred because it
exists in circumstances where the covariance and autocorrelation
function do not. Specifically, the variogram relies on a weaker model
of stationarity (referred to as intrinsic stationarity) than the covar-
iance and autocorrelation (second-order stationarity) (Myers, 1989)
and consequently this discussion is restricted to variography.

For continuous variables, such as NDVI, LST and CCD, the sam-
ple semivariance is defined as half the average squared difference
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between values separated by a given lag h. The sample variogram 7 (h)
may be estimated using

A 1 P(h) ,
W= Spmy 20 e b (5)

where P(h) is the number of paired comparisons at a specific lag h and
Z(x,) an observation (treated as a realization of Z(x) at location x,,).
The sample variogram may be estimated for all directions lumped
together (omnidirectional) or for several orientations where variation
is thought to be anisotropic.

The sample variogram is a set of semivariances at a set of discrete
lags. To allow statistical inference, it is usually necessary to fit a
continuous mathematical model to the estimated variogram. To en-
sure that all linear combinations of the RF result in non-negative
variances, the variogram model must be conditional negative semi-
definite (CNSD). It is common practice to select from a pre-defined
set of CNSD models (McBratney and Webster, 1986; Webster and
Oliver, 1990). Two commonly selected models are given below.

(i) the nugget effect model:

0 0 ifh=0 ©
=« 1 otherwise )
where ¢ is the nugget variance parameter; and
(ii) the spherical model:
1.55-05(%)" ifh<a
y(h) = ¢ a G) . (7
1 otherwise

where ¢; is the sill variance parameter and a the range parameter.
Webster and Oliver (1990) provide further examples. The model is
usually fitted to the sample variogram by some automatic process such
as weighted least squares (e.g., Cressie, 1985, 1991; Goovaerts, 1997).

It is important to understand the meaning of the information that
the variogram conveys. For example, the sill ¢; of the spherical model
provides information on the amount of variation present in V. More
precisely, the sill estimates the a priori variance D*(v,0) of Z (that is
the variance obtained on a support v within an infinitely sized region).
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The model form and the range a provide information on the scale(s)
of spatial variation. The variogram models described may be used
singly or in a positive linear combination, in which case the resolved
variation is said to be ‘nested’ (see Webster and Oliver, 1990). The
nugget model is often fitted together with a structured component
(such as a spherical model) to represent a discontinuity at the origin.
The nugget variance ¢, represents unresolved variation that exists on
a micro-scale and measurement error, but it can also arise from un-
certainty both in estimating the variogram and in fitting the model at
short lags (Atkinson, 1997). Where observations are abutting or
overlapping, as for remotely sensed imagery, then the amount of
micro-scale variation can be assumed to be small and the nugget
variance can be assumed to be due primarily to measurement error
(e.g., Curran and Dungan, 1989). While fractals are an important
mathematical model of scaling in the natural world because they are
scale-invariant, they are beyond the scope of this discussion. How-
ever, it is interesting to note that fractal dimension can be estimated
from the modelled variogram (Klinkenberg and Goodchild, 1992).

The modelled variogram provides a basis for statistical inference
via geostatistical spatial prediction, known as kriging. Geostatistical
kriging has been applied to a variety of disease prediction problems.
For example, Oliver et al. (1992) and Webster et al. (1994) were one
amongst the first to apply geostatistics to characterize and map dis-
ease pattern. Kelsall and Wakefield (2002) used kriging to map colo-
rectal cancer in Birmingham, UK. Geostatistical cokriging has been
applied to map the risk of childhood cancer (Oliver et al., 1998) and
tick habitats from NOAA AVHRR imagery (Estrada-Pena, 1998).
Bayesian statistical approaches have become popular in epidemiology
(e.g., Wakefield and Morris, 2001). Model-based geostatistics, in
which a Bayesian framework is used to incorporate the uncertainty in
variogram estimation into spatial predictions, has been applied to
mapping malaria in the Gambia (Diggle et al., 2002).

Generally, the focus of interest in disease mapping is in charac-
terizing and mapping spatial variation at a particular point in time,
but recent advances have been made in space—time modelling of dis-
ease processes (e.g., Baker, 2004; Grenfell et al., 2001; Mugglin
et al., 2002).
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2.3.2. Upscaling and Downscaling the Data

Whereas several papers have appeared in which geostatistical and
related spatial statistical methods are applied to epidemiological
problems, including characterizing the scales of spatial variation in
disease, little research has considered the potential for scaling offered
by the geostatistical framework. Since data are often acquired or
assembled with different supports, and varying sampling strategies
more generally, researchers should give serious consideration to the
potential solutions provided for handling such diverse datasets
(Gotway and Young, 2002).

Upscaling refers to an increase and downscaling to a decrease, in the
size of support. Upscaling and downscaling are recognized as impor-
tant operations in ecology and related subjects (Bierkens et al., 2000).
The importance of these operations is now being realized by epide-
miologists who have shifted their focus to national, continental and
now global scales, through increased utilization of remotely sensed
imagery. Upscaling is usually relatively easy to achieve. For example,
where sufficient data exist at the finer spatial scale (e.g., an image), data
upscaling is achieved readily by averaging over a kernel defined by the
new larger support. The averaging is usually through a linear com-
bination of the smaller cells, but can be non-linear (Bierkens et al.,
2000). Where data are sparse spatially and interpolation is required,
data upscaling may be achieved by geostatistical block kriging (Burgess
and Webster, 1980) or block cokriging (Atkinson et al., 1992)
(although care is needed to distinguish desirable regularization over
the support from unwanted convolution due to smoothing; Atkinson
and Kelly, 1997; Atkinson and Tate, 2000). Further, upscaling can be
achieved using block conditional simulation, which removes the
smoothing of kriging, but retains the uncertainty of prediction
(Deutsch and Journel, 1992; Journel, 1996).

Downscaling is more difficult to achieve because it implies an in-
crease in information content above that provided by the original
data. For continua, a solution may be achieved using the geostatis-
tical methods of area-to-point kriging for the univariate case
(Kyriakidis, 2004) and downscaling cokriging for the multivariate
case (Pardo-Iguzquiza et al., 2005). For classification, a solution may
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be achieved using super-resolution mapping (Tatem et al., 2001, 2002;
Atkinson, 2005). The latter has already been applied in an epidemi-
ological context to map settlement distribution in Kenya (Tatem
et al., 2004). These techniques for downscaling allow an increase in
the spatial resolution of the predicted map.

There are many different situations in epidemiology and remote
sensing in which it may be desirable to manipulate one or more
variables to provide data on matching supports. As the pixel is
usually larger than the support of the ground data, the mis-match
may mean that certain (fine) scales of variation expected to be present
in the ground data will automatically be missing from the imagery. By
default, this reduces the correlation between image and ground data.
The appropriate action depends on whether the fine-scale variation is
of interest or not. If of interest, the imagery should be downscaled to
match the support of the ground data through linear methods (area-
to-point kriging and cokriging) or non-linear constrained optimiza-
tion (super-resolution mapping). If this is not done, the fine-scale
variation will be missed in predictions based on the imagery. The fine-
scale variation may be of interest where other datasets are defined on
the smaller support (i.e., resolving the problem of incompatible sup-
ports between variables). Further, downscaling may provide a means
by which to conduct validation at the scale of ground observation. If
the fine scale of spatial variation is not of interest, correlation and
regression analyses may be applied directly, with the caveat that the
additional fine-scale variation at the ground will increase the uncer-
tainty of the prediction.

More complicated scenarios exist. For example, several different
variables to be used in an epidemiological study may have been cap-
tured at fundamentally different measurement scales. Such scales may
include different levels of cartographic generalization in digitized
lines and choropleth maps, different spatial resolutions in scanned
aerial photographs and digital sensor imagery, and different enu-
meration areas in population censuses. The same basic principles of
convolution and scaling apply to all of these datasets. The fitting of
appropriate models and application of proper scaling relations is
non-trivial given such a diversity of datasets. Nevertheless, the
scenario is realistic, and in many ways typical of epidemiological
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analysis at the global scale where data are rarely collected for the
purpose and investigators must use that which is available. While
dealing with such incompatible spatial measurement scales is difficult,
researchers should be aware of the problems, the effects of such scales
on the data and results of analyses, and where possible take action to
model such effects as part of their analyses.

2.3.3. Upscaling and Downscaling the Model

Upscaling (downscaling) can refer to the variable of interest, but it can
also refer to the model (e.g., the variogram). Journel and Huijbregts
(1978) give a series of equations for the geostatistical operation of
regularization that are helpful in understanding the effect of the sup-
port on the variogram. The relation between the punctual or ‘point’
semivariance and the regularized (or convolved) semivariance at a lagh
is given by (Journel and Huijbregts, 1978):

Py() = 7(v, vn) — 7(V, V) @)

where (v, vy) is the integral punctual semivariance between two sup-
ports of size v whose centroids are separated by h, given formally by

I L
7)== / / Wy,¥) dy dy )
Ve v v(h)

where y describes an observation of size v and y' describes independ-
ently another observation of equal size and shape at a lag h away. The
quantity j(v,v) is the integral punctual semivariance within an
observation of size v:

1
V.Y =25 / / 2y, y) dy dy' (10)

where y and y now cover the same pixel independently.

The fact that observed data are always a function of s(x, 7), and
particularly the support, means that in order to convolve the vario-
gram model, it is first necessary to deconvolve. Downscaling can be
applied to the model (e.g., variogram) representing the character of
spatial variation (Pardo-Iguzquiza er al., 2005). Such a deconvolved
or deregularized model must be estimated for area-to-point kriging
and cokriging above, and it must be estimated empirically from data
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for super-resolution mapping of fine-scale spatial pattern (Tatem
et al., 2002).

3. ISSUES OF UNCERTAINTY

3.1. Preliminaries

Observed spatial data zj(x) (e.g., of spectral response z on support v
at location x) can be viewed as being comprised of the true values
zy(X) plus some variable e,(X) representing measurement error:

Zy(x) = zv(X) + &y(x) (11

It has been demonstrated above that the “true” value z,(x) is a
convolved version of the unobservable point property of interest z(x)
[Equation (3)]. Thus, combining Eqgs. (3) and (11):

230, 1) = £(2(9), 5 (X5 2 Wy ) €v(X)) (12)

The effect of ey(x) is to add uncertainty to the already convolved
observable variable.

Uncertainty is defined here as a general concept, with meaning
similar to that in its everyday usage (Atkinson and Foody, 2002).
There are many forms of uncertainty, including ambiguity (expressed
using a probabilistic model) and vagueness (expressed using fuzzy set
theory; Klir, 2001). Here we are concerned primarily with ambiguity.
Fundamentally, whether the interest is in measurement uncertainty or
prediction uncertainty, the focus of attention in most epidemiological
studies is accuracy. Accuracy is defined as the combination of un-
biasedness and precision. Bias arises from systematic error ey (x) and
imprecision from random error e,(x):

ey(x) = e5(x) + ex(x) (13)

Accuracy, bias and precision can be estimated via measurable
quantities. Such estimates of bias and (im)precision amount to esti-
mates of the expectation of the systematic E(|e,(x)|) and random
E(‘er(x){) components of the error in Eq. (13).

It is rarely possible to estimate the actual error ey(Xg). If the actual
error were known, the observed value could be adjusted to the true
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value and the uncertainty would disappear. Rather, it is common to
estimate the expected error. To provide an expectation, a statistical
model (no matter how trivial) is required, and the model is fitted to an
ensemble of data (no matter how small). The statistical model is
usually stationary in the parameter being estimated.

3.2. Uncertainty in Data and Methods

Uncertainty manifests itself in all stages of the processing chain
(Schott, 1987). Measurement error can have deleterious effects on
modelling and prediction based on the data, and prediction inaccu-
racy can, in turn, lead to inappropriate public health decisions.

The remotely sensed data used in this volume have inherent meas-
urement errors (Nemani et al., 2003), in addition to those related to
georectification and atmospheric correction. Problems such as strip-
ing and missing pixels introduce serious, albeit obvious and detect-
able, errors into the remotely sensed data (Figure 1). Clearly, it is
important to identify such errors in imagery so that they can be
handled appropriately.

In addition to the satellite sensor data, the epidemiological data used
in the modelling process can be, and often are, replete with errors. Such
errors can include incorrect georeferencing of a location, usually as a
result of user error; confusion regarding which location reference in a
gazetteer is correct; incorrect diagnosis of a specific disease leading to
presence or absence records where the opposite is correct; issues over
the reliability of the record source, especially for historical sources or
less often recorded diseases; confusion over the aggregation methods
applied to the data, which may have implications for the final location
and data values used; and the use of randomized input points (for
presence and/or absence) taken from within areal records.

Further sources of error and uncertainty are introduced by the
modelling methods themselves. Generally, no method or model is
perfect and prediction always involves uncertainty, usually expressed
through the predictive error distribution.

If the investigator processes the satellite sensor data, collects the field
epidemiological data and codes the computer programs then much of



P.M. ATKINSON AND A.J. GRAHAM

Figure I A subset image of the 1 x 1 km data demonstrating the types of
error in the 1 km spatial resolution imagery. Notice the gap in the coverage
(black area to the left of the image) due to masking out of cloud, the offset
river (black line in the centre of the image) due to misregistration and the
striping (dark grey feature running diagonally across the image) linked to
data collection problems with the sensor.

the uncertainty and error can be controlled, or at least accounted for.
When using data or programs from other sources it is important that
the investigator is aware of the quality of the data, and the methods
employed to produce them, via appropriate metadata. A lack of meta-
data creates uncertainty about (data and model) uncertainty.

Given the above discussion, it should be clear that information on
uncertainty, in the form of estimates of accuracy (precision, and
where possible bias) is important in epidemiological analysis. Infor-
mation on uncertainty should be provided as an average globally
(e.g., precision for an entire map), but should, where possible, also be
provided at the local level (e.g., per-country, -region, -local area or
even per-pixel). No map of disease, or vector distribution, is complete
without some assessment of uncertainty.

Accuracy assessment can be achieved in two fundamentally differ-
ent ways. One approach is to use unseen data (e.g., jack-knifing) or in
some cases the data used in prediction (e.g., cross-validation) to
evaluate the predictions through direct comparison of known and
predicted values. This approach is data based. Another approach is to
use the fitted model, together with assumptions or knowledge of the
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predictive error distribution to estimate uncertainty in the predic-
tions. This approach is model based.

3.3. Data-Based Accuracy Assessment

Data-based assessment of accuracy involves comparison of model-
based predictions with data that have not been used in prediction
and, depending on the method, may not have been used in fitting the
model. Such a comparison results in direct estimation of the actual
error. Although an extremely valuable spatially located source of
information, the data are rarely used directly. Usually, a spatially
stationary statistical model is adopted and the errors lumped to pro-
vide a global estimate of accuracy.

3.3.1. Categorical Variables

Accuracy assessment for categorical variables usually centres on the
confusion matrix or contingency table (Foody, 2002). Many statistics
can be derived from the confusion matrix, including the overall accuracy
(the number of correct predictions divided by the total number of pre-
dictions), the users’ and producers’ accuracies, and sensitivity and
specificity (Cohen, 1960; Rosenfield and Fitzpatrick-Lins, 1986; Story
and Congalton, 1986; Congalton, 1991; Foody, 2002). Since several of
these statistics are adopted in this volume they are given brief attention
in this section (also see Table 1 in Rogers, this volume, pp. 1-35).

An example of a contingency table for a binary classification is
given in Table 1. A contingency table requires two or more variables
from which the frequency of agreement can be calculated. This is
undertaken by listing all categories of the classification (e.g., presence/
absence or class) in rows and the concomitant reference class in col-
umns. The cell frequency is computed for each cell and summed (for
rows and columns). Dividing a correctly modelled class cell value by
the row total results in a value known as the ‘user’s accuracy’. Di-
viding the same cell value by the column total results in the ‘pro-
ducer’s accuracy’. The user’s accuracy is a measure of commission
error, indicating the probability of a correct prediction, while the
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Table 1 Example of a contingency table for a hypothetical presence/
absence system denoting the true-/false-positive values, true-/false-negative
values, users/producers and total accuracies and k

Actual presence Actual absence Row total Users accuracy
Predicted 15 3 18 83%
Presence True positive (TP) False positive (FP)
Predicted 1 12 13 92%
absence False negative (FN)  True negative (TN)
Column total 16 15 31
Producers 93% 80% 87%
Accuracy Total accuracy
K =0.741

95% confidence interval: 0.503—0.978

producer’s accuracy indicates how well the training data have been
predicted (Lillesand and Kiefer, 2004). The overall accuracy of the
prediction is calculated by dividing the sum of the diagonal (true
positive values) by the sum of all values in the table (Table 1).

Kappa (k) is a widely used statistic for estimating the accuracy of
prediction of a categorical variable. The x statistic is a ‘‘discrete
multivariate technique ... for determining statistically if one error
matrix is significantly different from another” (Zhan et al., 2002)
while accounting for chance. k is calculated from the contingency
table using the following conceptual equation:

observed accuracy — chance agreement (14)
K =
1 — chance agreement

The full equation requires the number of rows in the contingency
table (r), the total observations in a row (x;. ), the total observations in a
column (x ), the number of observations in row i and column i (the
diagonal) (x;) and the total number of observations in the matrix (V):

N Z Xii — Z(XH - X4i)
K = l:1 _ l:1 (15)
N> = 3 (Xig - X4i)

i=1
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Despite the utility of x in the context of disease distribution mod-
elling, as a summary of the contingency table, some caveats do exist. A
major criticism is that k does not distinguish between types or causes of
disagreement and that the statistic may be sensitive to sample size
(Fielding and Bell, 1997; Forbes, 1995), failing when one class is sub-
stantially larger than the other. Another concern is that comparison
between r values for classifications based on the same input data may be
statistically flawed (Foody, 2004). The Tau coefficient may also be de-
rived from the confusion matrix (Foody, 2002). Kendall’s Tau is a dis-
tribution-free correlation coefficient, which can be applied to ordinal
(rank) data (Shaw and Wheeler, 1994) and can be applied readily to
abundance distribution mapping. This statistic is linked closely to x but
relies on a priori probabilities (as opposed to the a posteriori probabilities
used when calculating x) (Fielding and Bell, 1997).

The percentage of pixels correctly assigned to either presence or
absence classes are summary statistics, providing initial indications of
the accuracy of a classification (although unlike x these do not account
for chance occurrence). Two further tests linked to the contingency
table are useful for assessing slightly different aspects of accuracy.
These are sensitivity, which identifies true positives as a proportion of
all positive predictions; and specificity which identifies true negatives as
a proportion of all negative predictions. Table 2 shows the links be-
tween sensitivity and specificity and the contingency table.

Receiver operating characteristic (ROC) curves were devised to
define thresholds in early radar backscatter returns from equipment
operated by different technicians, but the method has now been
directed at epidemiological studies (Goddard and Hinberg, 1990;
Thompson and Zucchini, 1989) to define cut-off points in diagnostic
tests. The ROC curve (Brooker et al., this volume, pp. 221-262) is
created by plotting sensitivity against 1-specificity, and the area under
the curve (AUC) is frequently used to discriminate between different
curves. A completely non-effective model would produce a flat line,
indicating that for every true positive, the procedure also generated a
false positive resulting in an AUC value of 50% (i.e., half the plot is
under the line).

Where it is available, the “true” image subtracted from the ob-
served image provides a more basic primitive than the confusion
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Table 2 The inter-relationships between sensitivity and specificity. A test
with high values of specificity and sensitivity has few false positives or false
negatives and demonstrates that the predicted output is reasonably accurate

Result Name
True-positive result Sensitivity
True-negative result Specificity
False-negative result 1-Sensitivity
False-positive result 1-Specificity

matrix because it retains important spatial information in the error-
per-pixel. Given such an error or difference image, the spatial char-
acter of the error may be explored as well as its magnitude.

3.3.2. Continuous Variables

For continua, several common statistics may be used to describe the
different aspects of accuracy of interest. The scatterplot of the pre-
dicted against the observed variable may provide a useful visual de-
scription, in some ways equivalent to the confusion matrix. Given an
appropriate (i.e., Gaussian) error distribution, the correlation coeffi-
cient provides a measure of precision, while the mean error provides a
measure of bias. The root-mean-squared error provides information
on overall accuracy, as does the mean absolute error. Many similar
and related statistics exist. Such statistics are well known and so are
not described further here.

As for categorical variables, a difference image, if available, pro-
vides a useful tool for exploring the spatial character of the error. For
continua, variography of the error is a useful approach that can re-
veal scales of variation in the autocorrelated error.

3.3.3. Cross-Validation

Cross-validation is a method for assessing accuracy based on the data
that were used to fit the model (Chilés and Delfiner, 1999). The basic
principle is that a datum is omitted, and all other data are used to
predict at that location. The observed value is subtracted from the
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predicted value to estimate the actual error. The datum is replaced.
The process is repeated until all observed data have been predicted,
allowing construction of a full error distribution. Cross-validation
provides an important check on accuracy where external data are not
available for accuracy assessment.

3.4. Model-Based Accuracy Assessment
3.4.1. Continuous Variables

Model-based assessment of accuracy refers to the use of the model to
generate estimates of precision (it is often not possible to estimate
bias without external data and moreover, if it were estimated the
model should be adjusted to remove it). At the most basic level, the
model might be used to estimate the error variance, per-prediction.
Regression-type predictors can be used to provide such an estimate,
based on the linear model involved and the assumption of a Gaussian
error distribution. For example, the estimation of confidence intervals
around predictions made using a regression model has been standard
practice for many years (De Groot and Schervish, 2001; Jarner et al.,
2002).

A good example of a regression-based estimate of prediction var-
1ance is the popular kriging variance. The kriging variance is provided
for every spatial prediction made. The distinction between actual error
variance and expectation of error variance (i.e., kriging variance) is
important: the kriging variance has many, well-documented short-
comings (Goovaerts, 1997). An estimate of the expected error variance
is only as good as the statistical model used to provide it. Nevertheless,
where it is possible to make model-based estimates of precision, they
should be given. They cost little in terms of additional effort and are
sometimes the only information on uncertainty available.

The error variance is only one parameter of an assumed Gaussian
error distribution, and so is of limited value, particularly where
interest is in some non-linear function of the data (e.g., the probability
p(z(x0)>k|z(x)) of exceeding some threshold k). Researchers have
recently turned their attention to the problem of estimating the entire
conditional cumulative distribution function (ccdf). The predicted
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value is then seen as the mean of the ccdf, with alternatives less likely,
but nevertheless possible. Given the entire ccdf, it is possible to con-
sider non-linear functions of the data (e.g., p(z(Xo) > k|z(x))). It should
again be remembered that an estimate of the ccdf depends on the
goodness of the model.

Proper treatment of uncertainty is the core concern of statistics.
Several researchers have developed Bayesian approaches that are
applicable to disease data (e.g., Cressie, 1995; Stern and Cressie, 2000;
Diggle et al., 2002). Markov chain Monte Carlo (MCMC) has gained
popularity in statistics in recent years as a method for solving
integration problems that are analytically intractable (Lawson, 2000).
It allows fitting of statistical models, while estimating the predictive
error distribution as well as the distributions for each of the param-
eters in the model. MCMC is likely to appear as an important tool in
the epidemiologists’ toolkit in time.

3.4.2. Categorical Variables

Many classification algorithms can be used to provide information on
the uncertainty of prediction, although this is sadly rarely the case. For
example, the Mahalanobis distances used in discriminant analysis and
maximum likelihood classification can be used to provide information
on the discriminatory power of individual input variables. Various
measures such as the sum of the Mahalanobis distances between all
classes and the sum of the distances between non-zero classes (i.c.,
classes of prevalence) can be useful in determining the variables that
are selected for inclusion in a stepwise discriminant analysis.
Similarly, the maximum likelihood classifier predicts the most
likely class for a given case by selecting from the set of posterior
probabilities for all classes. Although rarely used, this set of prob-
abilities provides information on the degree of uncertainty of each
individual allocation. For example, from a set of six classes, a max-
imum likelihood of only 0.4 indicates an uncertain allocation (Foody
et al., 1992). Entropy estimated for all six probabilities encapsulates
the uncertainty in allocation more completely (Maselli ez al., 1994).
Similar measures can be estimated for other classifiers including, for
example, artificial neural networks where the strength of activation of
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output neurons indicates much the same information as for the max-
imum likelihood classifier.

3.5. Validation of Global Disease Maps: Some
Considerations

A key problem in the prediction of disease globally is validation. Pre-
dictions are often made on the support of the remotely sensed covariates
(e.g., 8 x 8km) and it may be very difficult to find suitable methods of
acquiring “known” or high-accuracy data on the property of interest
with which to assess the accuracy of such predictions. A major problem
is in matching the supports of the remotely sensed and ground variables.

Suppose that the image pixel size is nominally 8 km on a side and
complete coverage of several variables (e.g., NDVI, LST, CCD) for
Africa has been used to predict malaria parasite rate (PR) by month.
Let us suppose that PR data are available for 50 health facilities in
Kenya and that these data have been suggested as a possible source
for checking the accuracy of the map. There are multiple problems
with the use of such data including:

(i) Sometimes imperfect data are the only source of information
available for validation: the PR data may represent certain
age groups or be conditioned in other ways. The accuracy
assessment will depend on the suitability of PR as a measure of
what has actually been predicted.

(i) Only the area of Kenya is covered and this limits the range of
values that will be included in the correlation analysis used for
accuracy assessment. Strictly the accuracy assessment applies
to Kenya only: extrapolation of the accuracy estimate to the
rest of Africa requires assumptions of stationarity.

(i) If the PR data are averages per facility then the support is
unknown. It may be approximated by the catchment of the
facility, but that also is most likely unknown.

(iv) The sample size at the ground will influence the precision of the
resulting accuracy assessment. The sampling scheme used will
have an influence: it may be necessary to deal with autocor-
relation in the residuals of a regression.
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(v) It may be extremely difficult to match the PR data with the
correct pixel from the imagery, particularly if the imagery are
not geometrically corrected, but also because the large pixel
makes geometric correction and identification of precise loca-
tion within the image difficult.

(vi) The support of the imagery is not a square pixel but a centre-
weighted function due to the point spread function (PSF) of
the sensor.

(vii)  Where the support of the PR data is smaller than the pixel, the
PR data will include variance that is not included in the pre-
dicted values leading to a smaller correlation.

The frequency of spatial variation in disease risk (or PR in the
example) can be very fine relative to a support of 8 km. For example,
while malaria risk is often demarcated into spatially homogeneous
zones based on seasonality, in reality malaria risk can vary over dis-
tances of a few hundred metres, particularly in a country such as
Kenya which encompasses a diverse range of habitats, changes in
elevation and local climates. Where the frequency of spatial variation
in disease risk is fine relative to the support, researchers need to be
especially careful to construct their ground data on the same support
as that of the imagery (predictions). This implies the use of geosta-
tistical methods to predict the ground variable on the same support as
the imagery. Potential methods include kriging and cokriging, but
researchers need to be aware that such linear regression-based meth-
ods involve smoothing (conditional bias), and that such smoothing
may affect the correlation coefficient (Atkinson and Tate, 2000).
Geostatistical conditional simulation provides a potential partial so-
lution (Journel, 1996; Chilés and Delfiner, 1999).

3.6. Satellite Sensor Datasets Used in this Volume

Two satellite sensor-derived data sets are provided on the DVD with
this volume, each with a different spatial resolution. Both datasets are
temporal Fourier processed, the first having an original spatial res-
olution of ~8 x 8 km and the second having a finer spatial resolution
of 1 x 1 km (Hay et al., this volume, pp. 37-77). Modelled predictions



SCALE AND UNCERTAINTY ISSUES 107

of disease and vector distributions presented in subsequent reviews
are based on the reprojected (to 0.10 degree spatial resolution)
8 x 8 km data due to issues of computing performance, data storage
and effective viewing at the global scale. Almost 20 years of monthly
composites of 10-day averaged AVHRR data were used as input to
the ~8 x 8 km Fourier dataset, the methods of creation of which are
detailed in Chapter 2 (Hay et al., this volume, pp. 37-77). The
~8 x 8 km data files are of a manageable size for analysis and dis-
tribution and have an acceptable spatial resolution for the global
scale studies discussed in this volume. These are important consid-
erations, as the spatial prediction models need to be adaptable to a
variety of computer specifications and the output interpretable at the
scale of the entire globe. A balance needs to be achieved between the
desire for high-spatial resolution data and the increasing file size or
data volume associated with increasing spatial resolution. For ex-
ample, the spatial resolution of the 1 km data is arguably more useful
to the field epidemiologist than the 8 km data, but the data volume is
in excess of 1.4 GB per variable (compared to 10.8 MB for 8 km data).
Such data volumes not only create storage and backup problems but
also severely affect both the initial processing time and the compu-
tational speed when modelling disease distributions. Moving such a
large data volume also creates logistical problems.

4. SUMMARY

Scale and uncertainty are important issues in the prediction of global
disease distributions. Disease mapping over the entire surface of the
Earth increasingly involves the use of remotely sensed imagery. Such
data often provide complete coverage of the entire surface of the
Earth and can be used to predict environmental covariates of disease
risk or disease vector density. Global coverage implies a relatively
coarse spatial resolution (e.g., 8 or 1 km) and this will impose limits
on the information content of the imagery and the information that
can be extracted on disease risk or disease vector distribution. This
paper introduced geostatistical models for (i) characterizing the
scale(s) of spatial variation in data (i.e., variogram) and (ii) changing
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the scale of measurement of both the data (i.e., upscaling and down-
scaling) and the geostatistical model (i.e., convolution and deconvo-
lution). Such models provide a means of handling the effects of scale
in epidemiological analyses. A discussion of uncertainty highlighted
the fact that uncertainty is a vague concept and that most epidemi-
ologists are interested in measurable quantities that estimate accu-
racy, or components of accuracy such as bias and precision. The
distinction between data- and model-based methods of accuracy as-
sessment was emphasized and examples of both were given. The key
problem of validating global maps was discussed briefly.

This paper has highlighted some of the problems involved with the
use of coarse spatial resolution data and uncertain methods of pre-
diction in the global mapping of disease. The epidemiological com-
munity is encouraged to pay close attention to the effects of scale and
uncertainty as discussed in this paper and adopt appropriate methods
to handle such effects.
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ABSTRACT

Evaluating the total numbers of people at risk from infectious disease
in the world requires not just tabular population data, but data that
are spatially explicit and global in extent at a moderate resolution.
This review describes the basic methods for constructing estimates of
global population distribution with attention to recent advances in
improving both spatial and temporal resolution. To evaluate the op-
timal resolution for the study of disease, the native resolution of the
data inputs as well as that of the resulting outputs are discussed.
Assumptions used to produce different population data sets are also
described, with their implications for the study of infectious disease.
Lastly, the application of these population data sets in studies to
assess disease distribution and health impacts is reviewed. The data
described in this review are distributed in the accompanying DVD.

1. INTRODUCTION

Deriving population at risk estimates as a basis for evaluation of
disease burdens requires spatially explicit, moderate-resolution pop-
ulation data at the global scale. In this contribution, methods for
constructing estimates of global population distribution that are
suitable for geographic analysis are described. Though the basic ap-
proach has been used widely for more than a decade, particular at-
tention is given to recent advances to increase both spatial and
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temporal resolution. As global data products are dependent on a
diverse set of inputs, issues related to input and output data reso-
lution have an immediate bearing on the suitability of the resulting
datasets for a given task. This paper also reviews applications of these
population databases in the health sector, in particular, for the study
of infectious disease. Finally, the population and associated data files
that accompany this volume are briefly described.

1.1. Rendering Population on a Global Grid

Global or broad-scale inquiry on the relationship between population
and environmental factors such as disease vectors or habitats is in-
trinsically spatial. While notable exceptions exist, especially at the lo-
cal scale, two key barriers have contributed to the paucity of spatially
oriented analysis: (1) the methods of analysis require some knowledge
of geographic data and tools for analysis; and (2) population data, at
regional and global scales, have tended to be recorded in national
units that do not permit cross-national, subnational, or cross-habitat
analysis. These barriers have been slowly eroding. One trend that has
contributed to this is that the collectors and custodians of demo-
graphic data—the national census and statistics offices—increasingly
compile and distribute data for small administrative or statistical
units. While data from population censuses conducted before the 1990
round of population censuses were often published only for the coun-
try and major divisions such as provinces or states, more recent census
output often includes digital census databases with detailed demo-
graphic data for districts, subdistricts, or even ‘“‘enumeration” areas
(EAs), the smallest geographical unit in most census operations.
Great progress has been made in harmonizing subnational data
released for different dates so that they are comparable across inter-
national borders. First, since census years are not synchronized
across the world, this involves interpolation or extrapolation of pop-
ulation estimates to a common base year. Second, subnational ref-
erence units can be vastly different in size and shape across countries.
For spatial analysis, it is often preferable to instead record population
estimates on a set of standardized reporting units, such as regular grid
cells. Grids are more commonly used to collect or compile data
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describing natural phenomena. In interdisciplinary work, conversion
to a regular grid imposes consistency that would be more difficult to
achieve with irregularly shaped census or administrative units. Meth-
ods that transform population data from native census units (which
correspond to vector format) to a regular raster grid are the main
focus of this paper. A third harmonization issue arises for other de-
mographic variables where, despite efforts by the United Nations and
others to promote common definitions, indicators are often not en-
tirely comparable. This is a major reason why global, georeferenced
demographic databases have so far focused on the simplest of all
demographic variables: total population.

Efforts to estimate population distribution for a regular raster grid
predate the computerization of geography that started in the 1980s.
Early examples such as the map by Adams (1968) for West Africa
served largely cartographic purposes. Census offices, most notably
those of Japan and Sweden, also produced national population grids
for inclusion in national atlases (e.g., Tufte, 1990, on Japan). Com-
puterized population maps for individual countries were produced by
the US Census Bureau using rectangular grid cells superimposed with
circles for major urban areas (Leddy, 1994). Deichmann and Eklundh
(1991) presented a continental, gridded population database for Af-
rica used to investigate interactions between population and land
degradation. Others, such as Martin and Bracken (1991), developed
techniques for producing local-level population grids (see Clark &
Rhind, 1992; Deichmann 1996a, for reviews).

1.2. Institutional Stewardship

While national statistical offices produce population estimates that
are sometimes linked to spatial data, few agencies render their pop-
ulation estimates on a common grid. The first efforts to place pop-
ulation data on a global-scale latitude—longitude grid were completed
in the mid-1990s at the National Center for Geographic Information
and Analysis at the University of California, Santa Barbara (Tobler
et al., 1997). This initial dataset was itself an outgrowth of prior work
on regional and continental databases. The Global Demography
Workshop held in 1994 at CIESIN (the Center for International
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Earth Science Information Network, now part of the Earth Institute
at Columbia University) brought together experts in the field and
helped advance methodological development and database creation
for the first global grid. CIESIN is the locus of current global efforts,
though it works closely with partnering institutions. Like many com-
plex global data products, the Gridded Population of the World
(GPW) database has evolved with numerous partners. Subsequent
versions have included different collaborators, inputs, and outputs,
but the guiding principle is to achieve the best possible suite of data
products representing the distribution of human population, some-
times heuristically (i.e., without modeling) and sometimes with light
modeling (Deichmann, 1996a). The fewer the assumptions and inputs
that are used in the construction of the databases, the fewer the
restrictions that have to be imposed on the appropriateness of use in a
wide variety of applications. For example, if land cover were used to
predict population densities, one could not predict expected changes
in land cover from a resulting population distribution(s) that included
land cover as a reallocation factor, as it would be endogenous.

Since the first version of GPW, several key advances have been made:
the spatial resolution of administrative boundary data is improving;
national statistical offices and spatial data providers and related insti-
tutions are adopting more open-data policies; population and spatial
data providers are increasingly aware of, and increasingly collaborate
with one another; and the computing capacity to manage, manipulate,
and process increasingly large datasets is continually expanding (Balk
and Yetman, 2005). As a result of these advances, some countries now
produce and disseminate high-resolution spatially explicit population
data. In local studies, nationally produced data are typically superior
(i.e., of higher resolution, with more variables, and so on) to globally
rendered data. Researchers asking highly place-based questions should
begin with locally available data, if possible. Nevertheless, many ques-
tions are regional in scale, or at least span across more than one coun-
try, or require data that have been transformed to a common grid. For
those problems, the data in this paper are highly suitable.

The basic global database to arise out of these efforts is the GPW,
now in its third revision, with large gains to resolution having been
made with each revision. In addition to the key advances described
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above, advances in ancillary data to allow for light modeling, espe-
cially valuable where input data are of suboptimal spatial resolution,
have allowed for more sophisticated but still simple modeling. Thus,
GPW and related population data products are the main focus of this
review. The resulting datasets are also included in the accompanying
DVD. Details on the variations in these databases, their methods,
assumptions, and limitations follow.

2. DATA

The georeferenced population data sets that are the focus of this
paper share as a critical common characteristic: the fact that they are
constructed with an emphasis on the highest-resolution input data,
rather than focusing on statistical or heuristic prediction of popula-
tion distribution from coarse input data. That is, they attempt to
measure the distribution of the population of the world, as measured
at one’s usual place of residence. The basic premise is that no amount
of further processing or modeling can substitute for obtaining pop-
ulation counts for the smallest geographic reporting units available.
Censuses in many countries are far from perfect and reliable civil
registration systems exist only in a small number of countries. These
sources provide the only complete enumeration of a country’s pop-
ulation and by definition, provide the only geographically complete
count of residents. By making additional assumptions about regu-
larities in population distribution, it is possible to further disaggre-
gate the reported district or subdistrict totals, but usually one cannot
then reliably assess how accurate the resulting distributions are be-
cause there is no basis for sound validation. Population distribution
modeling should therefore be considered a last resort in the absence
of EA population maps, rather than as a goal in itself. When mode-
ling is undertaken, the inputs of that model and the means for the
redistribution should be made as transparent as possible.

The differences in these evolving data products are reviewed in
Table 1 and are discussed in subsequent sections. Fundamental mod-
ifications include an increase in input resolution by over 20 times
from the first to the current version of GPW (Balk and Yetman,



Table I Comparison of GPW versions and related databases

Data set GPW Accessibility model GRUMP vl
GPW vl GPW v2 GPW v3 GPW 2015

Publication year 1995 2000 2004 2004 2004 2004

Years of estimation 1994 1990, 1995 1990, 1995, 2000 2015 1960-2000 1990, 1995, 2000

Number of input units 19 000 127000 376 500 376 500 Varies by continent c. 1000000

Modeled inputs None None None None Infrastructure, Urban areas
urban areas

Spatial extent Global Global Global Global Africa, Asia, Latin  Global
America

Authors Tobler et al. CIESIN, IFPRI, CIESIN & CIAT CIESIN, FAO, and Deichmann; WRI; CIESIN, IFPRI,

and WRI CIAT CIAT, UNEP World Bank, and

and CIESIN CIAT

Gridded surface 5 2.5 2.5 2.5 2.5 30"

resolution®

Population density . . . ] ° °

Population counts ° ° ° ° ° °

Land area ° ° ° ° ° °

Population-weighted ° ° °

admin. units
Urban extent mask °
Settlement points (xls, °

csv, shp formats)

Note: A dot indicates the data set is publicly available. " and " represent arc-minutes and arc-seconds, respectively.
4Gridded surfaces are available in these formats: 00, bil, ascii.
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2005), and nearly a tripling again for the modeled data products of
the Global Rural Urban Mapping Project (GRUMP) (Balk et al.,
2005a). Increases in the input data enabled a corresponding increase
in output resolution from 5arc-minutes of GPW version 1-2.5arc-
minutes for later versions of GPW and related products. The data
products from the GRUMP effort utilize higher resolution inputs,
and thus outputs have been rendered at a 30 arc-second resolution.
The basic method by which population counts are transformed
from census units to a grid, developed for the first version of GPW
(Tobler et al., 1997) and modified slightly for GPW v2 (Deichmann
et al., 2001), remain the same in the third version; related databases
with light modeling use additional methods, but the basic method
underlies all of these databases. Population data are transformed
from their native spatial units that are usually administrative division
of irregular shape and resolutions (see Figure 1) to a global grid of
square latitude—longitude cells at a resolution of 2.5 arc minutes (i.e.,
approximately 4.6km at the equator). The main inputs consist of
geographically referenced boundaries of administrative or statistical
reporting units at the highest available resolution—ideally the EA,
but more typically at district or subdistrict level. The methods used to
distribute the reporting unit total population numbers across the
raster grid cells that fall into that unit differ slightly between the
different versions of GPW and closely related data. These will be
discussed below. Temporal adjustments are discussed in Section 3.

Administrative Level
[Jo-1
2
s
s

Figure 1 Administrative level used per country.
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2.1. Gridded Population of the World

The GPW database uses two basic inputs: non-spatial population es-
timates (i.e., tables of population counts listed by administrative area
names) and spatially explicit administrative boundary data. These are
collected from hundreds of different data providers (often differing for
the population and boundary data). The first part of the process is to
match the population estimates with the administrative boundaries into
what is known as polygon (or vector) format, ensure that the resulting
data are geospatially consistent (e.g., that all internal boundaries
match, leaving no unaccounted polygons or that island chains which
might share a single population figure should they belong to the same
administrative unit), and sum to the national-level population, as es-
timated by the data provider. These basic consistency checks mirror
census principles of not leaving any resident out and not counting
anyone more than once. To construct the GPW database, the admin-
istrative unit data in polygon format are converted to raster grids. In
version 1, built-in geographic information systems (GIS) software
functions were used to accomplish this conversion: grid cells that fall
onto the boundary of two or more units were assigned to only one
reporting unit based on a simple majority rule. The total unit popu-
lation was then proportionally allocated over all grid cells assigned to
that unit. A second product from this effort used these grids as a
starting point for a re-distribution algorithm called smooth pycnophy-
lactic (mass-preserving) interpolation (Tobler, 1979). The assumption
underlying this approach is that those areas within a given adminis-
trative unit that neighbor regions with higher population densities are
likely to house more people than areas that neighbor low-population
density regions. The previously homogeneous population figures in grid
cells within each administrative unit are thus re-distributed taking grid
cells in neighboring units into account. By iteratively adjusting grid cell
populations on this basis, the method results in a maximally smooth
surface while preserving total population within each reporting unit.
The second and third versions of GPW retained most of the char-
acteristics of the “‘unsmoothed’ version of GPW v1, while significantly
increasing the number of reporting units that served as input to the
gridding routine. While version 1 relied on about 19 000 administrative
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units, version 2 used 120000, and version 3 used 375000 units with
much of the increased precision achieved in developing countries (see
Table 1). The main difference in processing in these newer versions lies
in the way boundary areas between administrative units are treated.
While version 1 allocated grid cells to only one unit even if it was
shared by two or more (i.e., majority rule), GPW v2 and v3 use a
proportional allocation so grid cells are assigned population in pro-
portion to the area of overlap of grid cell and administrative units.
Figure 2 (detail) and Table 2 illustrate this for a grid cell in the
Dominican Republic. Proportional allocation is often referred to as an
areal weighting scheme (e.g., Goodchild ez al., 1993).

2.2. Global Rural Urban Mapping Project

The allocation mechanism for the GRUMP (Balk et al., 2005a) builds
on the GPW approach but explicitly considers population of urban
areas. In addition to data for statistical reporting units, the project

Grid Cells

| | Provincia

£5E2 8] .,’) Santiago
ﬁ_ ,fﬁ Detail of Rf’drlguez )
e gridding Santiago
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for cells
containing
boundaries San Juan i
0 100 km
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Figure 2 Grid cell size in relationship to administrative boundaries,
Dominican Republic.
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Table 2 Areal weighting scheme to allocation of population whose
boundaries cross grid cells

Administrative unit Administrative unit Area of overlap (sq Population estimate
name density (persons/sq km) for grid cell
km)
Santiago Rodriguez 64.2 5.3 340
Santiago 246.5 2.2 542
San Juan 75.9 12.8 972
Total for cell 91.3 20.3 1854

collected population estimates, point location, and the approximate
footprint for urban centers in each country. The objective is to dis-
aggregate the urban area populations from the total population of the
administrative unit into which the urban area falls. This allows us to
allocate urban and rural population separately, which effectively in-
creases the number of input units and thus the effective resolution of
the population grid.

In contrast to GPW, estimates of population for urban centers
were needed in addition to population estimates associated with their
census boundaries. Much less investment has been required from
national statistical agencies to collect and publish population esti-
mates for urban areas, unless these are entirely consistent with the
census information for administrative units (which is rarely the case).
Nevertheless, city population figures are published in a variety of
sources. These data were collected and then matched with the urban
footprint. That matching also occurs through a series of steps starting
with simply a name-match of the populated places with geographic
locations (i.e., latitude and longitude of the presumed center of the
urban area). The geographic coordinates were found in national or
international gazetteers, such as that of the US National Geospatial
Intelligence Agency (see Balk et al., 2005a, for details).

A more challenging problem was to determine the footprint of
major city areas. The most important source are nighttime satellite
images that show areas lit by streetlights and other permanent light
sources that are concentrated in urban settlements (Elvidge er al.,
1999). In cases where statistical sources indicated a city that could not
be detected on nighttime satellite images—a common occurrence in
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Africa—urban areas were delineated from other sources (e.g., Tac-
tical Pilotage Charts) or approximated by circles whose sizes were
given by population—area relationships calibrated (through a regres-
sion analysis) on existing data. It is acknowledged that a circle is not
an accurate form for any city, but this assumption was the most
practical one to implement and the basic shape from lights for small
extents tends toward circular. Circle-generated extents in each coun-
try were cross validated with other locations of near population size
to confirm that the sizes were on the same order of magnitude. Con-
versely, footprints that could not be matched with populated place
information were not assumed to have population and were discarded
from the data. The population estimates, matched with geographic
point locations were summarized for each footprint, producing an
urban extent data set with population estimates.

The final step was to use these many pieces of information—which are
summarized as administrative regions with population estimates and
urban extents with population estimates (shown as panels 1A and 1B, re-
spectively, in Figure 3)—and generate a population grid (panel 2B,
Figure 3). (Figure 3 is Plate 4.3 in the Separate Color Plate Section.).

Because these come from different sources, it is important to make
sure that the urban area population totals do not exceed those of the
administrative areas in which the urban areas are located. Thus, a
model is used to re-allocate population of the administrative areas
given the population of the urban areas, the total population of the
administrative area, and minimum and maximum criteria about each
country’s urbanization trends (details are given in Balk ez al., 2005a).
The output resolution for this grid is 30 arc-seconds, similar to that of
the nighttime lights’ data. The GRUMP population grid also uses a
proportional allocation rule in gridding.

2.3. Accessibility Modeling

The final set of gridded population datasets reviewed here are based
on an additional set of assumptions about population distribution:
the basic premise is that people tend to live in or close to cities and
tend to move toward areas that are well connected with urban
centers. Even in rural areas, it is expected that densely populated
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areas are closer to transport links than more isolated areas, and
higher densities are nearer cities than the hinterland. These stylized
facts concerning the distribution of people across space are imple-
mented using the concept of accessibility—a measure of the ease by
which destinations such as markets or service centers can be reached
from a given location. In practice, these measures are adapted from
the well-known gravity model of spatial interaction (Haynes &
Fotheringham, 1984). They represent the sum of an indicator of size
or mass at destinations (such as population of surrounding cities)
inversely weighted for some function of distance. The ideal measure
here is an estimate of travel time using the shortest route on a ge-
ographically referenced transportation network of roads, rivers, rails,
and so forth. The resulting access estimates for each grid cell are then
used to proportionally distribute each administrative unit population
total across the grid cells that fall into it. This approach has been
implemented for continental-scale databases for Africa, Asia, and
Latin America, with support from the United Nations Environment
Programme, the International Center for Tropical Agriculture
(CIAT), and others. Nelson and Deichmann (2004) describe the lat-
est version for Africa and document the modeling approach in detail.
The most important input into the model is information about the
transportation network consisting of roads, railroads, and navigable
rivers and their associated speeds of travel (i.e. 60 km per hour for 2-
lane paved roads, 30 km per hour for railroads, etc.). The second
main component is information on the location and population of
urban centers, which are then linked to the transport network. These
inputs are used to compute a measure of accessibility (V;) for each
node (intersection) in the network, which is based on the sum of the
population of towns (Py) in the vicinity of the current node weighted
by a function of travel time across the network between the node and
the towns f(dy). Figure 4 illustrates the computation of the accessi-
bility index for a single node based on the weighted sum of the pop-
ulation of four towns that are within a given travel time threshold.
The accessibility values at each node were interpolated into a raster
surface to create an accessibility index for each grid cell. Raster data
on inland water bodies (lakes and glaciers), protected areas, and
altitude were then used heuristically to reduce the accessibility
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Figure 4 The computation of accessibility potential for a single node on
the transport network where four towns are within the chosen travel time
threshold.

potential in areas where there is little or no population. Accessibility
values in water bodies and areas of extremely high altitude were set to
zero. Accessibility values in protected areas and forest reserves were
reduced by 80% and 50%, respectively. Both adjustments were heu-
ristically chosen in the absence of empirical data.

The accessibility values estimated for each grid cell serve as weights
to distribute population proportionately. The grid cells in the acces-
sibility index were summed within each administrative unit. Each value
was then divided by the corresponding administrative unit sum such
that the resulting weights sum to one within each administrative unit.
Multiplying each cell value by the total population yields the estimated
number of people residing in each grid cell. The standardization of the
accessibility index implies that the absolute magnitudes of the pre-
dicted access values are unimportant—only the variation within the
administrative unit determines population densities within each district
(Deichmann, 1997; Nelson & Deichmann, 2004)—but that, similar to
GRUMP, the sum of grid cell population values for each unit cannot
exceed the value for the administrative unit in which they fall.

2.4. Highly Modeled Surfaces

Another recently developed dataset, LandScan, takes a highly mode-
led approach, whereby much less investment is made in using the
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highest possible resolution population data (ORNL, 2003). This data
set is categorically different from those described above, in that it
does not attempt to represent nighttime, census residence, or usual
population but rather it aims to measure an “‘ambient’ population—
i.e., the average location of an individual across seasons, days of the
week, and times of day. Instead, effort is spent on getting annual
updates to relatively coarse-level population inputs, and to ancillary
data (including roads, nighttime lights, elevation, slope, and land
cover) to be fitted to a complex model (Dobson et al., 2000). The
specific model parameters or their calibration are not published and,
thus, it is difficult to assess the appropriateness or accuracy of this
approach. LandScan receives less attention here, but is briefly dis-
cussed where it has been applied in the studies below.

3. METHODOLOGY

Though the basic method for re-distributing population from census
and other units to a grid has been discussed, there are additional
methodological requirements. For each reporting unit, a consistent
population estimate for a baseline year is obtained. Where no census
data or official estimates are available for the target year, a popu-
lation figure is estimated using census year population and inter-
censal growth rates.

3.1. Adjusting Population Estimates to Target Years

Key inputs in all population databases reviewed in the previous sec-
tion are subnational population totals typically available for small
administrative or statistical reporting units. The standard source for
such data is a national population and housing census, or, in some
instances, a large demographic survey. Population censuses are un-
dertaken periodically in many countries, once a decade. Exceptions
are countries in which well-functioning civil registration systems
make periodic census-taking unnecessary. Many countries take their
censuses on the decadal year (1980, 1990, 2000), others take them
on the first year thereafter (1991, 2001). (The US Census Bureau
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maintains an inventory of past and future census dates for each
country at www.census.gov/ipc/www/cendates/.) Some countries pro-
duce inter-censal estimates. Other countries, particularly those expe-
riencing civil unrest, with few resources, or where census information
may be deemed to be politically threatening, tend to have less regular
censuses taken at intervals wider than once per decade.

Given that the population data are collected in different years, the
small area population totals need to be reconciled by estimating
population for the target years of interest. In GPW v3, these are 1990,
1995, and 2000 as well as a projection for 2015. GRUMP is similarly
produced for 1990, 1995, and 2000. The regional Africa and Latin
America data sets that are based on the accessibility model include
population estimates for 1960, 1970, 1980, 1990, and 2000. For most
countries, where two native population estimates were available from
the national statistical offices, an average annual population growth
rate was computed, as follows:

In (%)

t

(1)

where r is the average rate of growth, P; and P, the population totals
for the first and second reference years, respectively, and ¢ the number
of years between the two census enumerations. This rate was then
applied to the census figures to interpolate or extrapolate population
totals to the target years. For example, the 1995 estimate is calculated
(where 7 is now the difference between P, and 1995):
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Some countries had only one population estimate. This includes
newly formed states (e.g., Croatia) as well as countries that for either
economic or political reasons have not conducted a census or released
census results since 1990 (e.g., Angola). Others have conducted a
recent census (e.g., Afghanistan) but administrative areas have
changed to an extent that it cannot be matched with prior censuses.
Additionally, many small islands have infrequent censuses and do not
have subnational data. In these instances, national-level growth rates
from the United Nations were used in lieu of intrinsically calculated
growth rates (United Nations, 2001).
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3.1.1. Boundary Matching Over Time

The GPW population surfaces use only population and boundary
information and the other datasets use these data in combination
with other sources. These pieces of information are linked. Where
boundaries have changed over time, as they often do, considerable
effort is made to reconcile the differences. For example, if a district in
1990 were split into two districts in 2000, the population for the two
districts in 2000 would be summed so as to represent the same areal
distribution as given in 1990. (It is usually impossible to adequately
divide the population for the given district of 1990 in the absence of
information provided by the census office to this effect.) As higher
resolution data are collected, the need for reconciling boundary
changes becomes greater, because lower level units such as districts
are modified more frequently than provinces or states. Fitrani et al.
(2005) describe how decentralization in Indonesia led to a sharp in-
crease in the number of local governments and associated boundaries
(from 292 in 1998 to 434 in 2004). In many countries, changes are less
dramatic, but reconciling boundaries and reporting unit identifiers
nevertheless poses one of the most challenging problems in compiling
detailed, cross-national population databases. Interpolating or ex-
trapolating population figures to a common base year often requires
the use of a hybrid method, whereby growth rates are calculated at a
level where boundaries have not changed (e.g., provinces), and ap-
plied to higher resolution subunits such as districts.

3.1.2. Temporal Aspects of Ancillary Data for Modeled Population
Grids

Unlike the GPW databases, GRUMP and the Accessibility Model
also use other datasets, which represent phenomena that change over
time: changes in urbanization and infrastructure. Unfortunately, the
current versions of these databases are limited to a single snapshot.
The urban extents are derived primarily from a stable city-lights’
database from a 1994-1995 composite and the roads’ data are ap-
proximately as of the year 2004. Users of these databases, interested
in changes over time, should be well aware of this limitation.
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Future versions of this database will be able to incorporate im-
proved temporal coverage, since the nighttime lights’ data are being
processed for additional time periods. Additional research will be
required to confirm that changes in nighttime satellite-derived urban
extents truly reflect land-use changes surrounding major urban areas
rather than changes in sensor characteristics or processing. Should
time series of road networks become available, they too could be
incorporated. Alternatively, historical transport networks can be ap-
proximated by altering the speed of travel over particular surfaces to
represent the poorer condition of the transport network in the past
and envisaged better conditions in the future.

3.2. Limitations of the Ancillary Data

GRUMP and the Accessibility Model rely on ancillary data because
in all instances the best possible data are not available. For this
reason, it is important to understand the strengths and weaknesses of
those data sources before applying them. While some of the issues
associated with the temporal shortcomings have been mentioned,
there are other caveats unrelated to temporal concerns.

There have been many uses of the nighttime lights’ data as a proxy
for urban areas (Elvidge et al., 1997; Sutton et al., 2001; Pozzi et al.,
2003; Schneider et al., 2003) and these data are the only globally
consistent and repeated sources of likely urban areas. Nevertheless,
they have a few key limitations: they are known to over-represent
built-up area, an effect called “blooming.”” The blooming effect de-
pends on intrinsic characteristics of the sensor and on geolocation
errors in the compositing process (Elvidge et al., 2004). Studies have
shown that it is not possible to find a unique threshold to reduce the
blooming effect that would work globally (Small ez al., 2005). In fact,
a 10% threshold could reduce the blooming effect without signif-
icantly affecting many individual small settlements for the 1994/1995
dataset. But this threshold does not provide a globally consistent
basis for relating lighted areas to urban extent, since the character-
istics of the blooming effect are, to some extent, city and country
specific. Thus, heuristic or ad hoc adjustments of this nature would
make data analysis questionable. A second shortcoming of these data
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is that they under-represent small settlements that are either poorly or
infrequently lit due to insufficient detection by the sensor. This is a
particular problem in Africa or rural Asia, where population data are
also often sparse.

Given the limitations with the nighttime lights’ data, GRUMP
protects against overestimation of urban extents that are false pos-
itives—i.e., lights at industrial sites which may not be (or are sparsely)
populated—by requiring additional information for validation (i.e., a
name, location, and population estimate corresponding to the light).
GRUMP also uses additional sources and indirect techniques to es-
timate extents for known populations that fall below the sensor’s
detection threshold as discussed above (see Balk ez al., 2005a).

For small-scale or even regional applications, the urban mask as-
sociated with the GRUMP data may produce areal extents that are
larger than expected. In these instances, use of the urban extent mask
if used with the GRUMP population grid may provide sub-urban
population detail that might assist in further delineating the more-
and less-densely populated areas within these enlarged—or agglom-
erated—urban areas and thus indicating features (density) that are
associated with urban gradients. Reliance on the extent mask in and
of itself may lead to overestimation of urban areas. For example,
Tatem et al. (2005) found that the GRUMP urban mask overesti-
mates urban extents for Kenya when compared with data derived
from higher-resolution satellite imagery.

Future versions may be able to use improved night-lights products,
both in their ability to reduce the blooming (though that work is just
underway) and to make use of lights detected at more than a single
time point. As mentioned, GRUMP was developed when only the
1994-1995 product was available, but subsequent to that, 1992-1993
and 2000 releases have become available. These are not fully anal-
ogous datasets, so additional work to determine their utility for urban
detection would first be required.

Similarly, for use in the Accessibility Model, there are few data
sources that provide consistent, geographically referenced transpor-
tation network data for large areas such as an entire continent. The
combination of the Vector Map Level 0 (VMap0) spatial data
(NIMA, 1997) with the improved attribute data and the transport
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data used for the African Accessibility Model should be viewed as
currently the best available for the given constraints. The spatial data
for the African transport network is derived from the Vector Map th
VMap layers for roads, rivers, and railroads (NIMA, 1997). VMap0
is an updated version of the Digital Chart of the World (DCW) and is
suitable for applications at a scale of 1:1 million. While this provides
a consistent level of spatial detail for Africa, the transport links in the
database do not contain sufficient information about their charac-
teristics (road quality, road type), which is essential for computing the
travel times in the accessibility model. For most of Africa, roads are
the most important means of transport, and so the attributes of the
road links were substantially improved through the use of continen-
tal-scale paper maps of Africa at a scale of 1:4 million (Michelin
Travel Publications, 2004). These maps were used to identify
132000km of major roads and 282000km of secondary roads
(11% and 22% of all roads in the VMap0 layer, respectively).

There are many uncertainties in the spatial and attribute data for
the transportation network. There is often no easy way to determine
the original data source. It is also likely that the original scale of the
data varies from country to country. It is often hard to determine
how current the data are and how data from different sources were
reconciled at country boundaries. Indeed, it is quite possible that the
final transportation network does not represent consistently the state
of the road network for any one year and it needs to be used with
great caution in applications that require data at scales greater than
1:1 million or that require data for the state of the transport network
for Africa pre-1990 or post-2005. Future improvements in the quality
of continental-scale transport networks will most likely depend on the
public release of VMap Level 1 data at 1:250000 or concerted re-
gional efforts to publish consistent key data layers (such as SERVIR
for Central America http://servir.nsstc.nasa.gov/home.html).

4. HEALTH APPLICATIONS

Since the earliest version of GPW and the Accessibility Models in the
mid-1990s, health researchers have been using the data to better
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understand population exposure, vector-habitat, disease distribution,
mortality, and related factors (from habitat change to livestock dis-
tribution to the distribution of underweight children). These data
have been used effectively at the regional and global scale, and in
some instance (large areas or countries), in fairly specific local areas.
Gridded population data have been used to assist in sampling for a
health survey in Chad (Brooker et al., 2002; Beasley et al., 2002) to
estimate the geographic distribution of underweight children (Balk
et al., 2005b), to determine changing habitat (for example, Reid et al.,
2000), and to estimate population at risk of a specific infectious dis-
ease. Measures of population counts and density distributions have
broad-scale health applications. Although the bulk of this section
addresses the latter, a brief review of the former is also included, in
part, because gridded population data act as a proxy for a host of
other health-related data.

4.1. General Health Studies

Regional studies of mortality and malnutrition have focused largely
on understanding biological and socioeconomic factors associated
with those outcomes. Spatially explicit data on those outcomes is
typically not available. When survey or clinic data are georeferenced,
as is increasingly the case, it becomes possible to consider a range of
spatially explicit factors, including population density. Density relates
to disease transmission—and ultimately health status—in a variety of
ways. For example, person-to-person transmission is likely to be high
in densely populated urban areas, though such areas may reduce the
potential for particular vector habitats. Population density estimates
also provide continuous measures of the degree of urbanness (such as
high-density core urban areas or less dense semi-urban areas). In the
absence of explicit data on the mode of disease transmission, or the
vector habitat, and with careful use, population density may be a
useful proxy for an urban continuum.

In a study of West African mortality, Balk and colleagues (2004)
confirm the complexities associated with measuring and interpreting
population density: in urban areas, increases in population density
reduced the risk of infant deaths, and the further away from an urban
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area, the greater the likelihood of infant death. In this study, density
(GPW v3) and the GRUMP urban extent mask (alpha version) are
used as proxy variables for clinic or health services density (which
were not directly measured). In a study of underweight status in
African children, Balk and colleagues (2005b) find that population
density (GPW v3, CIESIN and CIAT, 2004)—again acting as an
urban proxy—decreases the likelihood of children being underweight.
Similarly, Sachs and colleagues (2001) and Gallup and Sachs (2001)
use GPW v2 to explain differences in the spatial pattern of poverty
and disease burden in Africa. These studies find that coastal dwell-
ers—in large part due to their access to ports, urban areas, and in-
frastructure—experience less poverty and a lower economic burden
associated with malaria than inland populations.

4.2. Specific Diseases

Population grids have become a key tool to understanding the pop-
ulations at risk of contracting various infectious diseases. Infectious
diseases have vectors or other transmission routes that are generally
highly location based or geographic in nature. The means to under-
standing the impact of specific disease burdens depends in part on the
ability to identify spatially the areas at risk as well as understanding
the population in those places. Matching these spatial units—disease
numerators with population denominators—is a large part of the
contribution that gridded population data make toward understand-
ing specific infectious diseases.

In many low-income countries, lack of resources and capacity
in the health system prevent the development of reliable records of
malaria morbidity and mortality. A large body of work has attempted
to triangulate malaria risk and human population distribution to
define population at risk. This work was pioneered in Africa with the
development of the MARA/ARMA model of climate suitability for
Plasmodium falciparum transmission (Craig et al., 1999). Combina-
tions of this map and the African population database (Deichmann,
1996b) were used to define age-specific populations at risk in 1995.
These estimates were derived using national-level age distribution
data from the UN Population Division applied to subnational
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population totals. In combination with empirical epidemiological
data from local studies, Snow and colleagues (1999a, b) produced
estimates of morbidity and mortality for the total and under five-
year-old populations of Africa (see also Hay et al., 2000). This work
was updated and augmented (Snow et al., 2003) to the year 2000
using the African population database (Deichmann, 1996b) to deter-
mine the proportion of the population in transmission risk categories
and applying these to year 2000 national population estimates from
the United Nations (2001). The most accurate revision of these mor-
tality and morbidity figures for Africa has been done by using new
extractions for the year 2000 using GPWv3 (CIESIN and CIAT,
2004) and the MARA model (Hay et al., 2005a). This work is also
incorporating the location of urban populations in Africa to discount
morbidity and mortality estimates for the significantly lower malaria
transmission rates in these urban areas.

Recently, these “population at risk” assessments have been con-
ducted using historical maps of malaria endemicity and its transmis-
sion extent to evaluate the changing population at risk between 1900
and modern times at the global scale (Hay et al., 2004). Using a
similar approach to MARA/ARMA morbidity, estimates for P.
falciparum have now been conducted globally (Snow et al., 2005). In
addition, some (Rogers and Randolph, 2000; Van Leishout et al.,
2004) have used GPWv2.0 (CIESIN et al., 2000) to estimate popula-
tion at risk under coupled scenarios of population and climate change.
There are many issues involved with the choice of population surfaces
and their derivation and these have been evaluated with respect to
population at risk of malaria in Kenya (Hay et al., 2005b). Hay and
colleagues show the paramount importance of the average spatial
resolution of the input census data by comparing five population
surfaces including GRUMP v1, GPW v2, and v3; the Accessibility
Model (version 3 not the most current); and LandScan. Figure 5
compares the error associated with each dataset at varying levels of
spatial aggregation: they all estimate about the same population at the
most aggregated level (the first administrative level) but two stand
apart, GPW v3 and GRUMP vl, providing notably superior estimates
at the highest spatial resolution. (Note that this publication was not
undertaken on the most recent versions of the Accessibility Model, in
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Figure 5 Cumulative percent of the African population represented by
mean spatial resolution (MSR) (i.e., for version 4, 60% of the population is
represented by an MSR of 50 or better).

which the underlying inputs have been improved, or of LandScan.)
The results also highlight the issues involved and accuracy that can be
obtained using simple interpolation techniques at different adminis-
trative levels, where these might be locally available. Although the
interpolation methods differ, the best-fit datasets are those with inputs
of the highest mean spatial resolution (MSR).

Given the absence of reliable data on the total number of parasitic
infections in a country, estimates have often been based on prevalence
data from a few limited studies and extrapolated to the country as a
whole. In order to make these extrapolations more accurate, global
georeferenced population datasets have been used increasingly. In
particular, population totals and distribution from the Africa Pop-
ulation database (Deichmann, 1996b) and the first version of GPW
(Tobler et al., 1995), along with district-level census data when avail-
able, have been used to estimate population at risk of parasitic dis-
eases or to estimate the number of people infected. For example,
different statistical models have been developed to estimate the
number of individuals to be treated based on the prevalence of in-
fection of a given disease and population structure and distribution
(Brooker et al., 2000; Lindsay & Thomas, 2000; Noma et al., 2002).
Lindsay and Thomas (2000) use climate data to predict the
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distribution of lymphatic filariasis and overlay the resulting risk maps
with a continental population grid (Deichmann, 1994) to estimate the
number of people potentially exposed to the infection in Africa.
The issue of identifying population at risk and priority areas for
treatment has been addressed by combining gridded population data
with remotely sensed data. For instance, a recent methodology was
developed to combine ecological zones defined using satellite-derived
data (land-surface temperature and photosynthetic activity averages)
with population density and prevalence data to map population at
risk of parasitic infections in different countries in Africa (Brooker
et al., 2001a, 2002; Kabatereine et al., 2004) and Asia (Brooker et al.,
2003). The results provide a targeted sampling frame of schools to
guide valid epidemiological surveys and the identification of priority
areas for national school initiatives and mass treatment. Noma et al.
(2002) use GIS to identify bioclimatic zones of potential for oncho-
cerciasis and to select which communities should be surveyed. The
results were used to define areas of varying transmission risk to guide
the implementation of control strategies. Similarly, Brooker and col-
leagues (2001b) used an early version of the African Population grid
(Deichmann, 1996b) to determine populations at risk in particular
locations resulting in observation of a significant relationship between
the prevalence of Schistosoma mansoni and the distance of the schools
from the lakeshore; as a matter of health policy, “‘distance to lake-
shore” can now be used as a means to screen schools in East Africa.
A related application is one where global population data were used
to study the relationship between population distribution changes and
associated habitat changes. For example, Reid and colleagues (2000)
predict that population distributional changes will, in effect, reduce
the cattle population habitat leading to the reduction of the tsetse fly
population and sleeping sickness prevalence in the human population.
Several uses of gridded population surfaces have demonstrated
patterns in the distribution of human population vis-a-vis physio-
graphic, climatic, and other environmental parameters that may be
closely linked to health and disease burdens. For example, Small and
Cohen (2004) use GPW v2 to show that people tend to live at low
altitude (with Mexico City being an important exception) and near
permanent water sources (rivers and coasts), but that population is
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not nearly as localized with respect to climatic variables such as pre-
cipitation or temperature. Disease vectors may be influenced by all of
these factors, thus demonstrating the need for moderate-resolution
population surfaces that allow for these factors to be disentangled in
any given region of interest. In another study, Astrom and colleagues
(2003), using GPW v2, find that populations residing above a certain
altitude—due to the relationship with the physiological processing of
oxygen at high altitude—experience lower tumor incidence.

In the wake of the Indian Ocean tsunami of December 26, 2004, the
GRUMP population grid was used in combination with coastal
buffer distances and elevation to estimate the population exposed to
the great wave (Balk ez al., 2005c): roughly four million persons were
estimated to live within a 2km buffer in the most-affected regions.
These estimates were then used to calculate death rates in some of the
affected regions. National and moderate-resolution subnational pop-
ulation estimates could not be used rapidly, and without considerable
assumptions, to generate estimates of exposure to natural hazards.
(Even if some countries had high-resolution subnational data, they
would need to be gridded to make such calculations.) Further, since
this tragedy occurred across many national borders, it highlighted the
utility of having a global population grid that is agnostic about in-
dependent of country boundaries. A global study of natural disaster
hotspots has used GPW to estimate the risk of mortality and eco-
nomic loss from six major natural hazards (Dilley et al., 2005).

Lastly, an exploratory study considers the relationship of popula-
tion density to the location of newly emerging or re-emerging infec-
tious disease (Patel et al., 2006). While the evidence is preliminary and
complex, it suggests that disease emergence may be causally related to
population dynamics, travel and trade routes.

5. DISCUSSION

Population input data are inevitably highly variable in terms of
quality, resolution, and accuracy, in ways that are not quantifiable. In
part, that is the nature of demographic data, which represent social
processes, but treating them as if they were an easily measurable
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physical variable (on a grid). Administrative units will always be
larger in sparsely populated areas, and perhaps will have more detail
than may be needed for some applications in high-density places.
Users should bear this constraint in mind when using these data.

5.1. Ideal Spatial Resolution

The ideal resolution for the study of infectious diseases and health
will vary. Localized disease outbreaks might require information on
village location, boundaries, and associated population characteris-
tics. Emergency response studies, such as the recent tsunami in the
Indian Ocean (Balk e al., 2005¢) require high-resolution adminis-
trative boundaries, population, and other demographic data associ-
ated with those boundaries as well as infrastructure (e.g., health
clinics) at risk. Where the emergency is brought on by a geophysical
phenomenon that is best estimated with physical data (such as coastal
distance or elevation) gridded data are a prerequisite for establishing
baseline population exposure. For broad synoptic analysis of
health—environment issues, medium-resolution data would likely be
sufficient.

The databases discussed herein have been constructed with enough
information to incorporate uncertainty into the analysis. A simple
measure for each pixel is the resolution—in this case, the size of
geographic area—of the administrative unit from which the pixel
population was derived or modeled. A grid of this indicator is avail-
able for version 3 of GPW. In practice, few people take the trouble to
do serious uncertainty or sensitivity analyses. The responsibility of
data producers is to provide all relevant information about input
data, document modeling, and processing and leave it to the user to
take this information into account.

In the development of the aforementioned data products, it has
been useful to construct a measure of effective resolution. Measured
as the country-specific average resolution, it can be thought of as the
“cell size” if all units in a country were square and of equal size,
which of course they are not. It is calculated as follows:

Mean resolution(km) = \/ (country area)/(number of units)  (3)
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A closer look at the varying resolution (or area) of the administrative
units reveals other key improvements in the database in the GPW
efforts. The average resolution of all countries went from 60 to 46,
with improvements of 10 times or more for particular countries.
Figure 6 shows the resolution improvements in Africa, for four ver-
sions of the Accessibility Model, by cumulative population. In the
current version of the accessibility model, as with GPW v3, more than
60% of Africa’s population is represented by a mean resolution of
50 km or better. This represents a significant improvement over pre-
vious models, including version 2 of the Accessibility Model and
GPW vl1, where 60% of the population was represented by much
coarser resolution, more than three times coarser than the current
resolution (about 170 km).

Though GPW has always sought to be based on inputs of the best-
available resolution at the time, efforts to improve version 3 of GPW
included acquisition of even higher resolution data for countries with
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Figure 6 Graph of error structure by administrative level for the five
large area public-domain human population distribution surfaces (see Hay
et al., 2005b). Left axis is the root mean square error expressed as a per-
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coarse-resolution inputs and islands some of which required labor
inputs to compile the basic data (such as digitizing). Earlier versions
of GPW had less motivation (and resources) to do this, because the
output resolution of 2.5arc-minutes rendered finer input resolution
redundant. The inputs for the third version of GPW were also used
as an input to the GRUMP population surface that includes re-
allocations toward urban areas and whose output resolution is 30
arc-seconds. Given the small footprint of many urban areas, the
considerable investments in obtaining the highest available resolution
population data were necessary to achieve the best-possible match
between input and output resolution for each country. Often, these
new inputs had to be digitized from imperfect source materials, since
digital versions of these data were not available. For countries that
are island chains, the improvements consisted of collecting island-
level population data, and then assigning population to existing
spatial inputs. GPW v2 had 41 countries with country-level (admin-
istrative level 0) data only, 31 of which were islands, which had an
average resolution of 46. In version 3, fewer than half of these coun-
tries remain (with a slightly smaller share of them being islands) with
an average resolution of 22.

5.2. Conclusion

As capabilities in refining the estimates of population distribution,
urban areas, and associated infrastructure networks have increased,
the more evident the localized nature of the distribution of human
population has become. Improved estimates show that less, not more,
land area tends to be occupied by moderate and densely populated
settlements, as shown in Figure 7 (Figure 7 is Plate 4.7 in the Separate
Color Plate Section), for the case of Ecuador. These spatial Lorenz
curves show the cumulative fraction of the population as a function
of cumulative fraction of land area, where units are ordered by in-
creasing population density. Forty percent of Ecuador’s population
lives on 15% of its land area according to GPW v2. The improved
resolution of GRUMP revise estimates substantially, reducing it by
more than half, to only 6% of the land area in this example. People
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live locally, are burdened by disease locally, and receive their health
services locally. Gains in the improved resolution of human popu-
lation distribution will continue to lead to a better understanding of
disease and health, but these gains must also be matched with im-
provements in information on health clinics, health catchments, and
infrastructure.

In the future, more high-resolution data should become available
so that modeling will be less and less necessary for most health anal-
yses. While there may still be a need for modeled population data—
for example, to understand seasonal flows—the basic improvement
would be to the baseline population distribution. Hence what is im-
portant is to ensure long-term funding for maintaining and updating
these data, and to ensure open-data dissemination policies so that
data are made easily available for science and policy. For health
studies, priority next steps, apart from continuing to increase reso-
lution, would be more consistent global time series (e.g., going back
several decades to assess recent trends), and further demographic
variables such as age distribution and other variables required to
make rigorous spatial projections.

6. DATA DISSEMINATION

The following data are available in the accompanying DVD: the
Gridded Population of the World version 3 (beta) at 2.5 arc-minutes:
population counts, land area, and population density; version 1
(alpha) of the GRUMP 30’ population surface; and the Accessibility
Model for Africa. All grids are available in GeoTIFF format. Users
are strongly encouraged to visit the respective websites for updates
and final versions. For GPW and GRUMP, see http://sedac.cie-
sin.columbia.edu/gpw, where users can also download the grids for
2015, the GRUMP settlement points (alpha), and the urban extent
mask (alpha) as well as ancillary data products associated with GPW
(e.g., national coastlines to match the population grid and a grid of
national identifiers). The website for Accessibility Model for Africa is
http://na.unep.net/globalpop/africa/Africa_index.html. An updated
version of the Accessibility Model for Latin America and the
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Caribbean is underway and users should visit CIAT’s website http://
gisweb.ciat.cgiar.org/population/ for updates. Users are strongly en-
couraged to supply feedback, and their publications that make use of
these data, to gpw(@ciesin.columbia.edu.

6.1. Data Selection

Before using the population surfaces in the companion DVD for
analysis, a population model and spatial resolution must be chosen
and the data evaluated to ensure that its precision meets the study
requirements. Population surface and accessibility models should not
be used as ‘independent’ tests of the reliability of nighttime light im-
agery or transportation network data (nor should they be used to
modify such data in attempts to eliminate errors) when they have been
derived from these original datasets in the first place. It is essential to
avoid circularity in ‘improvements’ of both original and derived da-
tasets. The choice of appropriate resolution—a 30arc-second or
2.5 arc-minutes—depends on the scale of the study. In general, the
2.5arc-minute data are most appropriate for continental and large-
region studies; the 30 arc-second data are most appropriate for smaller
regions and national studies. In some cases, subnational studies are
possible with the 30 arc-second data, but it is not possible to derive
meaningful results for small-area studies such as those for a single city.

For the GPW and GRUMP data, the administrative unit area grid
(available from the GPW web site) may be used to determine the
approximate locational precision of the population surfaces on a cell-
by-cell basis. The administrative unit area grid indicates the area of
the administrative unit from which the population value was derived.
Where multiple units contributed to a cell, the value is the weighted
mean of the input administrative unit sizes. A cutoff mean admin-
istrative unit area value can be approximated by calculating the area
based on a given radius. For example, to identify the cells with a
locational accuracy of approximately 10 km or greater, a cutoff value
of 314 would be used, because cells with a value greater than this are
derived from an administrative unit that cannot be enclosed by a
circle with a radius of 10 km. In reality, a larger value should be used,
as very few administrative units are circular in shape.
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6.2. Methods and Issues in Analysis

Using the population data surfaces requires a software package ca-
pable of dealing with raster data, such as ArcGIS™ (with the Spatial
Analyst extension), Erdas Imagine®™, Idrisi, GRASS, MatLab®, or
any number of others. GeoTIFF is a well-known format supported in
most packages that handle raster data. If translation is necessary, the
open source Geospatial Data Abstraction Library (GDAL), available
at: http://www.remotesensing.org/gdal/, can be used to convert files
to a number of other formats.

The most common form of analysis is to aggregate population
totals in the surfaces by some other unit of analysis (such as ecolog-
ical regions or habitats, buffers around points of interest such as
health clinics, and so on) using a zonal statistics function. Population
density grids may be used in a similar manner to characterize the
variability of population within different zones; the minimum, max-
imum, mean, and standard deviation of density values within a given
zone are often more useful for inter-zone comparison than just for the
total populations of the zones.

Regression analysis with population counts or density as an ex-
planatory variable or as a per capita denominator for explanatory
variables other than population is another tool used commonly with
these data. While there are many legitimate uses of these raster pop-
ulation surfaces in quantitative analysis of this type, care must be
taken as raster data can invalidate the assumptions in classic regres-
sion. This occurs simply as a function of the self-replicating feature of
the gridded nature of the data. A raster layer comparison is useful for
explanation but cannot be relied on for rejecting the null hypothesis
at a given probability level (Openshaw, 1991) because these data may
be biased. That is, the original administrative area data would have
had a single value that was distributed across far more grid cells.
While the approximate value of each grid cell would be accurate, each
observed grid cell is not independent of (i.e., they are spatially de-
pendent, being from the same original administrative area polygon;
and they inflate the number of observations). Geostatistical ap-
proaches based on point observations (GPW and GRUMP make
centroids of the units used in gridding available for this purpose), or
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using the data to first construct variables based on zonal statistics,
may be better. The examples given herein have paid attention to this
caveat. These approaches can be accomplished with geostatistical
extensions to any other GIS software or stand-alone software pack-
ages for working with spatial data (e.g., the ArcGIS®™ Geostatistical
Analyst extension or the free GeoDa software package).

ACKNOWLEDGEMENTS

The authors thank Christopher Small for Figure 7. DLB, FP, and
GY were funded, and primary support for the production of the
Gridded Population of the World Data set was given, by National
Aeronautics and Space Administration (Contract no. NAS5-03117)
for the Continued Operation of the Socioeconomic Data and Appli-
cations Center (SEDAC) at CIESIN at Columbia University. SIH is
funded by a Research Career Development Fellowship from the
Wellcome Trust (no. #069045).

REFERENCES

Adams, J. (1968). 4 population map of West Africa. London: Graduate
School of Geography, Discussion paper no. 26, London School of Eco-
nomics.

Astrom, K., Cohen, J.E., Willett-Brozick, J.E., Aston, C.E. and Baysal, B.E.
(2003). Altitude is a phenotypic modifier in hereditary paraganglioma
type 1: evidence for an oxygen-sensing defect. Human Genetics 113,
228-237.

Balk, D., Pullum, T., Storeygard, A., Greenwell, F. and Neuman, M.
(2004b). A spatial analysis of childhood mortality in West Africa. Pop-
ulation, Space and Place 10, 175-216.

Balk, D., Pozzi, F., Yetman, G., Deichmann, U. and Nelson, A. (2005a).
The distribution of people and the dimension of place: methodologies to
improve the global estimation of urban extents. Proceedings of the Urban
Remote Sensing Conference (of the International Society for the Photo-
grammetry and Remote Sensing), Tempe, Arizona: publisher? Interna-
tional Society for Photogrammetry and Remote Sensing.



152 D. L. BALK ET AL.

Balk, D., Levy, M., Storeygard, A., Gaskell, J., Sharma, M. and Flor, R.
(2005b). Child hunger in the developing world: an analysis of environ-
mental and social correlates. Food Policy 30, 584—611.

Balk, D., Gorokhovich, Y. and Levy, M. (2005¢c). Estimation of Coastal
Populations Exposed to the 26 December 2004 Tsunami. Palisades, New
York: Center for International Earth Science Information Network (CIE-
SIN), Columbia University. Available at: http://www.ciesin.columbia.
edu/pdf/tsunami_pop_exposurel.pdf.

Balk, D. and Yetman, G. (2005). The global distribution of population: eval-
uating the gains in resolution refinement (February 2005, draft). Palisades,
New York: Center for International Earth Science Information Network
(CIESIN), Columbia University. Available at: http://beta.sedac.ciesin.
columbia.edu/gpw/docs/gpw3_documentation_final.pdf.

Beasley, M., Brooker, S., Ndinaromtan, M., Madjiouroum, E.M.,
Baboguel, M., Djenguinabe, E. and Bundy, D.A.P. (2002). First nation-
wide survey of the health of schoolchildren in Chad. Tropical Medicine
and International Health 7, 625-630.

Brooker, S., Donnelly, C.A. and Guyatt, H.L. (2000). Estimating the
number of helminthic infections in the Republic of Cameroon from data
on infection prevalence in schoolchildren. Bulletin of the World Health
Organization 78, 1456-1465.

Brooker, S., Hay, S.1., Issae, W., Hall, A., Kihamia, C.M., Lwambo, N.J.S.,
Wint, W., Rogers, D.J. and Bundy, D.A.P. (2001a). Predicting the dis-
tribution of urinary schistosomiasis in Tanzania using satellite sensor
data. Tropical Medicine and International Health 6, 998—1007.

Brooker, S., Miguel, E.A., Waswa, P., Namunyu, R., Moulin, S., Guyatt, H.
and Bundy, D.A.P. (2001b). The potential of rapid screening methods for
Schistosoma mansoni in western Kenya. Annals of Tropical Medicine and
Parasitology 95, 343-351.

Brooker, S., Beasley, M., Ndinarotan, M., Madjiouroum, E.M., Baboguel,
M., Djenguinabe, E., Hay, S.I. and Bundy, D.A.P. (2002). Use of remote
sensing and a geographical information system in a national helminth
control programme in Chad. Bulletin of the World Health Organization
80, 783-789.

Brooker, S., Pratap, S., Waikagul, J., Suvanee, S., Kojima, S., Takeuchi, T.,
Luong, T.V. and Looareesuwan, S. (2003). Mapping soil-transmitted
helminth infections in Southeast Asia and implications for parasite con-
trol. Southeast Asian Journal of Tropical Medicine and Public Health 34,
24-35.

Center for International Earth Science Information Network (CIESIN),
Columbia University, International Food Policy Research Institute
(IFPRI) and World Resources Institute (WRI). (2000). Gridded Popula-
tion of the World (GPW ), Version 2. Palisades, New York: CIESIN, Co-
lumbia University. Available at: http://sedac.ciesin.columbia.edu/plue/gpw.



DETERMINING GLOBAL POPULATION DISTRIBUTION 153

Center for International Earth Science Information Network (CIESIN),
Columbia University and Centro Internacional de Agricultura Tropical
(CIAT). (2004). Gridded Population of the World (GPW ), Version 3 beta.
Palisades, New York: CIESIN, Columbia University. Available at:
http://sedac.ciesin.columbia.edu/gpw.

Clarke, J.I. and Rhind, D.W. (1992). Population Data and Global Environ-
mental Change. Human Dimensions of Global Environmental Change
Programme Report 3, New York: International Social Science Council.

Craig, M.H., Snow, R.W. and Le Sueur, D. (1999). A climate-based dis-
tribution model of malaria transmission in sub-Saharan Africa. Parasi-
tology Today 15, 105-111.

Deichmann, U. and Eklundh, L. (1991). Global Digital Datasets for Land
Degradation Studies: A GIS Approach. Nairobi, Kenya: United Nations
Environment Programme, Global Resource Information Database, Case
study no. 4.

Deichmann, U. (1994). 4 Medium Resolution Population Database for
Africa. Database Documentation and Digital Database. Santa Barbara,
California: National Center for Geographic Information and Analysis,
University of California.

Deichmann, U. (1996a). A Review of Spatial Population Database Design
and Modeling. NCGIA, Technical report 93-3. Santa Barbara, California:
National Centre for Geographic Information and Analysis, University
of California. Available at: http://www.ncgia.ucsb.edu/Publications/
Tech_Reports/96/96-3.PDF.

Deichmann, U. (1996b). African Population Database. Digital Database and
Documentation. Santa Barbara, California: National Center for Geo-
graphic Information and Analysis, University of California.

Deichmann, U. (1997). Accessibility Indicators in GIS. New York: United
Nations Statistics Division, Department for Economic and Policy Analysis.

Deichmann, U., Balk, D. and Yetman, G. (2001). Transforming Population
Data for Interdisciplinary Usages: From Census to Grid. Palisades, NY:
CIESIN, Columbia University. Working paper available on-line at:
http://sedac.ciesin.columbia.edu/plue/gpw/GPWdocumentation.pdf.

Dilley, M.R.S., Chen, B., Deichmann, U., Lerner-Lam, A. and Arnold, M.
(2005). Natural Disaster Hotspots: A Global Risk Analysis. Washington,
DC: The World Bank, Hazard Management Unit.

Dobson, J.E., Bright, E.A., Coleman, P.R., Durfee, R.C. and Worley, B.A.
(2000). LandScan: a global population database for estimating popula-
tions at risk. Photogrammetric Engineering and Remote Sensing 66,
849-857.

Elvidge, C.D., Baugh, K.E., Hobson, V.R., Kihn, E.A., Kroehl, HW.,
Davis, E.R. and Cocero, D. (1997). Satellite inventory of human settle-
ments using nocturnal radiation emissions: a contribution for the global
tool chest. Global Change Biology 3, 87-395.



154 D. L. BALK ET AL.

Elvidge, C.D., Baugh, K.E., Dietz, J.B., Bland, T., Sutton, P.C. and Kroehl,
H.W. (1999). Radiance calibration of DMSP-OLS low-light imaging data
of human settlements. Remote Sensing of Environment 68, 77-88.

Elvidge, C.D., Safran, J., Nelson, I.L., Tuttle, B.T., Hobson, V.R., Baugh,
K.E., Dietz, J.B. and Erwin, E.H. (2004). Area and position accuracy of
DMSP nighttime lights data. In: Remote Sensing and GIS Accuracy As-
sessment (R.S. Lunetta and J.G. Lyon, eds). Chapter 20, pp. 281-292.
Boca Raton, Florida: CRC Press.

Fitrani, F., Hofman, B. and Kaiser, K. (2005). Unity in diversity? The
creation of new local governments in a decentralising Indonesia. Bulletin
of Indonesian Economic Studies 41, 57-79.

Gallup, J.L. and Sachs, J.D. (2001). The economic burden of malaria.
American Journal of Tropical Medicine and Hygiene 64, 85-96.

Goodchild, M.F., Anselin, L. and Deichmann, U. (1993). A framework for
the areal interpolation of socioeconomic data. Environment and Planning
A 25, 383-397.

Hay, S.I., Omumbo, J.A., Craig, M.H. and Snow, R.W. (2000). Earth ob-
servation, geographic information systems and Plasmodium falciparum
malaria in sub-Saharan Africa. Advances in Parasitology 47, 173-215.

Hay, S.I., Guerra, C.A., Tatem, A.J., Noor, A.M. and Snow, R.-W. (2004).
The global distribution and population at risk of malaria: past, present
and future. Lancet Infectious Diseases 4, 327-336.

Hay, S.I., Guerra, C.A., Tatem, A.J., Atkinson, P.M. and Snow, R.W.
(2005a). Urbanization, malaria transmission and disease burden in
Africa. Nature Reviews Microbiology 3, 81-90.

Hay, S.1., Noor, A.M., Nelson, A. and Tatem, A.J. (2005b). The accuracy of
human population maps for public health application. Tropical Medicine
and International Health 10, 1073-1086.

Haynes, K.E. and Fotheringham, A.S. (1984). Gravity and Spatial Interac-
tion Models. London: Sage Publications.

Kabatereine, N.B., Brooker, S., Tukahebwa, E.M., Kazibwe, F. and Onapa,
A. (2004). Epidemiology and geography of Schistosoma mansoni in
Uganda: implications for planning control. Tropical Medicine and Inter-
national Health 9, 372-380.

Leddy, R. (1994). Small Area Populations for the United States. Paper pre-
sented at the Association of American Geographers Annual Meeting in
San Francisco. Washington, DC: Geographic Studies Branch, Interna-
tional Programs Center, US Bureau of the Census.

Lindsay, S.W. and Thomas, C.J. (2000). Mapping and estimating the pop-
ulation at risk from lymphatic filariasis in Africa. Transactions of the
Royal Society of Tropical Medicine and Hygiene 94, 37-45.

Martin, D. and Bracken, 1. (1991). Techniques for modelling population-
related raster databases. Environment and Planning A 23, 1069-1075.



DETERMINING GLOBAL POPULATION DISTRIBUTION 155

Michelin Travel Publications. (2004). Northwest Africa; Africa Northeast &
Arabia; Central & Southern Africa, Madagascar; 1:4 million scale map
sheets 741, 745 and 746. France: Michelin Maps & Atlases.

Nelson, A. and Deichmann, U. (2004) The African Population Database,
Version 4. New York: United Nations Environment Program (UNEP)
and the Center for International Earth Science Information Network
(CIESIN), Columbia University. Available at: http://www.na.unep.net/
datasets/datalist.php3.

National Imagery and Mapping Agency (NIMA). (1997). Vector Map Level
0 Digital Chart of the World 3rd Edition. Fairfax, Virgina: NIMA. Avail-
able at: http://www.mapability.com/info/vmap0_index.html.

Noma, M., Nwoke, B.E.B., Nutall, I., Tambala, P.A., Enyong, P.,
Namsenmo, A., Remme, J., Amazigo, U.V., Kale, O.0. and Seketeli,
A. (2002). Rapid epidemiological mapping of onchocerciasis (REMO): its
application by the African programme for onchocerciasis control
(APOC). Annals of Tropical Medicine and Parasitology 96, 29-39.

Oak Ridge National Laboratory (ORNL). (2003). LandScan Global Pop-
ulation Database. Oak Ridge, Tenesse: Oak Ridge National Laboratory.
Available at: http://www.ornl.gov/gist/.

Openshaw, S. (1991). A view on the GIS crisis in geography or using GIS to
put Humpty-Dumpty back together again. Environment and Planning A
23, 621-628.

Patel, N., Jones, K., Levy, M., Balk, D. and Daszak, P. (2006). Global
trends in zoonotic disease emergence. In: Wildlife Wealth, and Health:
Tropical Forest Disturbance and Viral Disease Emergence (R. Hardin,
ed.). Cambridge, MA: Harvard University Press.

Pozzi, F., Small, C. and Yetman, G. (2003). Modeling the distribution of
human population with nighttime satellite imagery and gridded popula-
tion of the world. Earth Observation Magazine 12, 1.

Reid, R.S., Kruska, R.L., Deichmann, U., Thornton, P.K. and Leak,
S.G.A. (2000). Human population growth and the extinction of the tsetse
fly. Agriculture, Ecosystems and Environment 77, 227-236.

Rogers, D.J. and Randolph, S.E. (2000). The global spread of malaria in a
future, warmer world. Science 289, 1763-1766.

Sachs, J.D., Mellinger, A.D. and Gallup, J.L. (2001). The geography of
poverty and wealth. Scientific American 284, 70.

Schneider, A., Friedl, M.A., Mclver, D.K. and Woodcock, C.E. (2003).
Mapping urban areas by fusing multiple sources of coarse resolution
remotely sensed data. Photogrammetric Engineering and Remote Sensing
69, 1377-1386.

Small, C. and Cohen, J.E. (2004). Continental physiography, climate, and
the global distribution of human population. Current Anthropology 45,
269-2717.



156 D. L. BALK ET AL.

Small, C., Pozzi, F. and Elvidge, C.D. (2005). Spatial analysis of global
urban extents from the DMSP-OLS night lights. Remote Sensing of En-
vironment 96, 277-291.

Snow, R.W., Craig, M.H., Deichmann, U. and Le Sueur, D. (1999a). A
preliminary continental risk map for malaria mortality among African
children. Parasitology Today 15, 99-104.

Snow, R.W., Craig, M., Deichmann, U. and Marsh, K. (1999b). Estimating
mortality, morbidity and disability due to malaria among Africa’s non-
pregnant population. Bulletin of the World Health Organization 77,
624-640.

Snow, R.W., Craig, M.H., Newton, C.R.J.C. and Steketee, R.W. (2003).
The public health burden of Plasmodium falciparum malaria in Africa:
deriving the numbers. Working paper no. 11, Bethesda, Maryland: Dis-
ease Control Priorities Project, Fogarty International Center, National
Institutes of Health.

Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y. and Hay, S.I. (2005).
The global distribution of clinical episodes of Plasmodium falciparum
malaria. Nature 434, 214-217.

Sutton, P.D., Roberts, C., Elvidge and Baugh, K. (2001). Census from
heaven: an estimate of the global human population using night-time
satellite imagery. International Journal of Remote Sensing 22, 3061-3076.

Tatem, A.J., Noor, A.M. and Hay, S.I. (2005). Assessing the accuracy of
satellite derived global and national urban maps in Kenya. Remote Sens-
ing of Environment 96, 87-97.

Tobler, W.R. (1979). Smooth pycnophylactic interpolation of geographical
regions. Journal of the American Statistical Association 74, 519-530.

Tobler, W., Deichmann, U., Gottsgen, J. and Maloy, K. (1995). The global
demography project. Technical Report TR-6-95. Santa Barbara, Califor-
nia: National Center for Geographic Information and Analysis
(NCGIA), University of California.

Tobler, W., Deichmann, U., Gottsegen, J. and Maloy, K. (1997). World
population in a grid of spherical quadrilaterals. International Journal of
Population Geography 3, 203-225.

Tufte, E.R. (1990). Envisioning Information, pp. 40-41. Cheshire, Connecti-
cut: Graphics Press.

United Nations. (2001). World Urbanization Prospects, 1999 Revision. New
York: United Nations Population Division, Department of Economic
and Social Affairs.

van Leishout, M., Kovats, R.S., Livermore, M.T.J. and Martens, P. (2004).
Climate change and malaria: analysis of the SRES climate and socio-
economic scenarios. Global Environmental Change 14, 87-99.



jon of urban extents

Population Density 2000
<25

26 -50
51-100
101 =250

] [ | [Nl

251 -1.000
> 1001
R e [ | Administrative units

Panel 2A Panel 2B
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crude spatial limits. We first review and amalgamate information on
these guidelines to define malaria risk at national and sub-national
administrative boundary levels globally. We then adopt an iterative
approach to reduce these extents by applying a series of biological
limits imposed by altitude, climate and population density to malaria
transmission, specific to the local dominant vector species. Global
areas of, and population at risk from, P. falciparum and often-
neglected P. vivax malaria are presented for 2005 for all malaria
endemic countries. These results reveal that more than 3 billion
people were at risk of malaria in 2005.

1. INTRODUCTION

During the halcyon days of global malaria eradication, mapping the
precise spatial extent of the disease was central to the control efforts
of the World Health Organization (WHO). Between the 1940s and
1970s, a huge investment was made in synthesising available infor-
mation on the distribution of risk using various combinations of
expert opinion, elevation, climate, presence/absence records of the
disease and vectors, spleen rates, parasite rates, sporozoite rates, bit-
ing rates and haemoglobinopathy prevalence (Boyd, 1949; Pampana
and Russell, 1955; WHO, 1966; Lysenko and Semashko, 1968; Dutta
and Dutt, 1978). Since the 1970s, as the world’s public health focus
shifted from malaria eradication, an interest in mapping global ma-
laria risk waned (Carter and Mendis, 2002; Hay et al., 2004a).
Following a renewed commitment to financing comprehensive ma-
laria control at a global scale, the significance of defining the disecase
burden has re-emerged as a priority (Hay et al., 2004a; Snow et al.,
2005). This will allow regional and national requirements for drugs,
insecticides, bed nets and other commodities to be assessed more
accurately, and so malaria to be rolled back more effectively (Snow,
2004; Sachs, 2005). Despite an obvious need to map risk (Snow et al.,
1996), there remains no comprehensive definition of the spatial limits
of malaria. Previous studies (Rogers and Randolph, 2000; Hay et al.,
2004b) have used information provided by the WHO on the extent of
risks due to P. falciparum and P. vivax from advice to travellers
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(WHO, 2003a, b). Precise details of how the WHO constructed these
limits are difficult to obtain and there are several other public-domain
sources of travel advice (CDC, 2003; IAMAT, 2004), which have not
been harmonised with the WHO data (WHO, 2003b). Here we use
geographic information systems (GIS) to triangulate and standardise
international travel health guideline (ITHG) information and refine
these limits with country-specific altitudinal exclusions, climate suit-
ability criteria and population density, to make a new map of global
malaria risk. The result is a species-specific estimate of the limits of
malaria transmission in 2005.

2. THE DISTRIBUTION OF MALARIA RISK FROM
TRAVEL GUIDELINES

ITHGs have been developed to advise travellers on appropriate ma-
laria chemoprophylaxis. These guidelines are the only contemporary,
global source of information on national and sub-national malaria
risk. Three primary sources are available in the public-domain: the
WHO’s International Travel and Health guidelines (WHO-ITH)
(WHO, 2005), the World Malaria Risk Chart of the International
Association for Medical Assistance to Travellers IAMAT-WMRC)
(IAMAT, 2004) and the Health Information for International Travel
(“Yellow Book™) of the Centres for Disease Control and Prevention
(CDC-YB) (CDC, 2003). These guidelines provide country-specific
information that variously include (i) sub-national risk distribution;
(i1) altitude-based transmission limits; (iii) risk definitions in specific
urban and rural areas; (iv) P. falciparum to P. vivax ratios; (v) dom-
inant vector species; (vi) anti-malarial drug resistance status; and (vii)
prophylaxis regimens recommended. An example entry for Ecuador
is as follows: “Malaria risk—P. falciparum (34%), P. vivax (66% )—
exists throughout the year below 1500 m, with some risk in Cotopaxi,
Loja and Los Rios. Higher transmission risk is found in El Oro,
Esmeraldas and Manabi. There is no risk in Guayaquil or Quito.”
(WHO, 2005). Despite sometimes being incomplete, as in this exam-
ple, it should be acknowledged that ITHGs are inclusive, rather than
exclusive of geographic areas of malaria risk, so that information
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given to potentially non-immune travellers is risk-averse. The empir-
ical data used as input to these national entries are rarely detailed.

To map these data we focussed on the three main criteria: admin-
istrative boundaries, altitudinal limits and urban centres (Table 1).
We combined the sub-national description of malaria with databases
of administrative areas within countries to define crude spatial limits.
We obtained first- and, occasionally, second-level sub-national ad-
ministrative boundaries for all malarious countries from the Food
and Agriculture Organization’s GeoNetwork portal (http://
www.fao.org/geonetwork/) (n = 94), the International Centre for
Tropical Agriculture (CIAT) (http://www.ciat.cgiar.org/) (n = 6),
and the Environmental Systems Research Institute (ArcView Data
& Maps CD, ESRI, Redlands, California, USA) (n = 4).

We defined all classifications of malaria risk in the ITHG entries as
malaria presence, except those of ‘“no risk”, “negligible risk” and
“sporadic cases’’, which we classified as absent. Descriptions of sub-
national malaria risk that were not geographically specific were im-
possible to map and were ignored. An exception was made if malaria
risk was described as present in = 50% of the administrative area, in
which case transmission was considered possible throughout that
administrative unit. Where data were available from more than one
source (Table 1), we used the finest spatial resolution and most com-
prehensive information. A digital elevation model (DEM) at approx-
imately 1 x 1km spatial resolution (Hastings and Dunbar, 1998) was

Table 1 Comprehensiveness of the information provided by interna-
tional travel and health guidelines. Figures indicate the number of entries
per category that prove useful for mapping.

Source Administrative Altitude Urban All
WHO-ITH?* 27 20 14 61
IAMAT-WMRC® 30 41 31 102
CDC-YB* 30 14 26 70
Unique? 42 42 37 121

#International Travel and Health Guidelines of the WHO (WHO, 2005).

®International Association for Medical Assistance to Travellers’ World Malaria
Risk Chart (TAMAT, 2004).

°Centres for Disease Control and Prevention’s Yellow Book (CDC, 2003).

9The maximum number of entries per criteria regardless of source.
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used to implement national altitudinal transmission limits, reported
in the ITHGs in metres above sea level. We could not map non-
specific “highland” or “lowland” descriptions. If the ITHG sources
provided conflicting limits, we used the higher altitude threshold.
Finally, the ITHGs reported 70 cities as malaria free. These were geo-
referenced using electronic geographic databases (Microsoft Corpo-
ration, 2005; The Getty Research Institute, 2005; University of Cal-
ifornia, 2005), co-located to their urban extents as defined by the
Global Rural-Urban Mapping Project (GRUMP) (CIESIN/IFPRI/
WB/CIAT, 2004) and then excluded.

Of the 107 countries reporting some degree of malaria risk, we
mapped 104 according to our ITHG exclusion criteria (Table 2).
Uzbekistan reported only “sporadic cases” and was not mapped as a
malaria endemic country (MEC) in this paper. For Algeria, no corre-
sponding administrative data could be obtained, and for North Korea
there was insufficient detail in the sub-national description of risk. De-
spite the ITHGs being independent documents, there was relatively little
complementary information: of a potential 318 entries (106 MECs x 3,
i.e. risk information defined by administrative boundaries, altitude or
urbanisation), there were only 121 unique reports, with IAMAT-
WMRC the most comprehensive and WHO-ITH the least (Table 1).

3. THE BIOLOGICAL LIMITS OF TRANSMISSION

3.1. Altitudinal Mask

Temperature is inversely related to altitude, dropping by approxi-
mately 0.98°C for every 100-metre increase above absolute sea level
(Henderson-Sellers and Robinson, 1991). Mosquitoes and malaria
transmission are thus sensitive to altitude (Cox et al, 1999). Al-
titudinal limits from the ITHGs were available for 42 countries. The
majority of the countries (44/62) for which no information was avail-
able were in Africa and we assumed no altitudinal limits for most of
these (see Section 3.2). For the 18 remaining non-African MECs, we
defined limits by those of neighbouring countries with similar dom-
inant vector species. To identify the latter, we used a global map



Table 2 Country summary data of area and population at risk (PAR) extractions

Country® ITHGs criteria®  Pfr° Ad1¢ Area® Population®

Ad  Alt Urb Total WHO ITHG  ALT- POP- Pf Py Pf+ Py

2002 MASK MASK

AFRO
Algeria Yes No No 0.610 48 2.32 0.02 n/a 0.01 0.00 0.00 0.00 0.00
Angola No No No 1.000 18 1.25 1.25 1.25 1.24 0.93 12.92 0.00 0.00
Benin No No No 1.000 12 0.12 0.12 0.12 0.12 0.11 6.29 0.00 0.00
Botswana Yes No No 1.000 10 0.58 0.17 0.18 0.18 0.04 0.16 0.00 0.00
Burkina Faso No No No 1.000 45 0.27 0.27 0.27 0.27 0.27 13.49 0.00 0.00
Burundi No No No 1.000 17 0.02 0.02 0.02 0.02 0.02 6.03 0.00 0.00
Cameroon No No No 1.000 10 0.47 0.47 0.47 0.46 0.44 12.56 0.00 0.00
Cape Verde Yes No No 1.000 17 0.00 0.00 0.00 0.00 0.00 0.25 0.00 0.00
Central Af. Republic No No No 1.000 17 0.62 0.62 0.62 0.62 0.27 3.22 0.00 0.00
Chad No No No 1.000 14 1.26 0.81 1.26 0.89 0.52 9.05 0.00 0.00
Comoros No No No 0.950 3 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.00
Congo No No No 1.000 10 0.34 0.34 0.34 0.34 0.24 3.43 0.00 0.00
Cote d’Ivoire No No No 1.000 16 0.32 0.32 0.32 0.32 0.32 14.10 0.00 0.00
Dem. Rep. Congo No No No 1.000 11 2.34 2.33 2.34 2.31 2.06 46.88 0.00 0.00
Equatorial Guinea No No No 1.000 7 0.03 0.03 0.03 0.03 0.02 0.50 0.00 0.00
Eritrea No Yes Yes 0.644 9 0.12 0.12 0.12 0.12 0.12 0.00 0.00 4.21
Ethiopia No Yes Yes 0.622 11 1.13 0.94 0.94 0.89 0.79 0.00 0.62 44.09
Gabon No No No 1.000 9 0.27 0.27 0.27 0.27 0.06 1.30 0.00 0.00
Gambia No No No 1.000 7 0.01 0.01 0.01 0.01 0.01 1.08 0.00 0.00
Ghana No No No 1.000 10 0.24 0.24 0.24 0.24 0.24 18.38 0.00 0.00
Guinea No No No 1.000 8 0.25 0.25 0.25 0.25 0.23 8.02 0.00 0.00
Guinea-Bissau No No No 1.000 9 0.03 0.03 0.03 0.03 0.03 1.39 0.00 0.00
Kenya No Yes Yes 1.000 8 0.57 0.53 0.52 0.51 0.42 23.67 0.00 0.00
Liberia No No No 1.000 9 0.10 0.10 0.10 0.10 0.09 2.39 0.00 0.00
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17.97
1.14
12.20
108.52
5.50
0.15
8.24
4.41
11.12
0.92
5.17
24.44
28.97
11.25
10.68
477.15

0.00
0.00
0.00
0.00
0.00
0.00
0.68
0.00
0.00

0.00
0.00
0.00
0.00
0.57
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
1.19

2.19
0.23
1.71
2.40
0.87
0.70
0.00
0.00
1.09

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
48.31

0.00
0.00
0.53
14.94
12.37
0.00
0.00
3.35
0.00

(continued)
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Table 2 (continued)

Country® ITHGs criteria® Pfr¢ Ad1¢ Area® Population®

Ad Alt Urb Total WHO ITHG ALT- POP- Pf Pv Pf+Pv

2002 MASK  MASK
French Guiana No No No 0.696 2 0.08 0.02 0.04 0.04 0.00 0.00 0.00 0.05
Guatemala Yes Yes Yes 0.051 22 0.11 0.04 0.07 0.07 0.06 0.00 0.00 3.80
Guyana No No Yes  0.470 10 0.21 0.20 0.21 0.20 0.08 0.00 0.00 0.64
Haiti Yes Yes No 1.000 9 0.03 0.03 0.01 0.01 0.01 3.15 0.00 0.00
Honduras No Yes  Yes  0.035 18 0.11 0.11 0.09 0.09 0.08 0.00 4.10 0.00
Mexico Yes Yes No 0.004 32 1.96 0.82 0.41 0.41 0.40 0.00 15.79 0.00
Nicaragua No Yes  Yes  0.133 16 0.12 0.13 0.09 0.09 0.06 0.00 0.00 1.83
Panama Yes Yes Yes 0.150 10 0.08 0.03 0.02 0.02 0.02 0.00 0.00 0.19
Paraguay Yes No No 0.000 18 0.40 0.02 0.05 0.05 0.05 0.00 1.26 0.00
Peru Yes Yes Yes 0.171 25 1.29 0.54 0.76 0.76 0.38 0.00 0.40 5.23
Suriname Yes Yes  Yes 0.787 10 0.15 0.11 0.13 0.13 0.02 0.01 0.00 0.02
Venezuela Yes Yes Yes  0.088 23 0.92 0.20 0.38 0.38 0.15 0.00 1.04 3.02
19.39 8.56 9.33 9.32 4.03 3.83 31.78  45.98

EMRO
Afghanistan No Yes  No 0.385 32 0.64 0.51 0.38 0.38 0.37 1.77 0.14 12.44
Djibouti No No No 0.980 5 0.02 0.02 0.02 0.02 0.02 0.22 0.00 0.00
Egypt Yes No No 4 0.98 0.01 0.01 n/a n/a n/a n/a n/a
Iran No Yes No 0.200 24 1.61 0.56 1.02 1.02 0.98 0.00 0.00 38.83
Iraq Yes Yes  Yes  0.000 19 0.44 0.29 0.10 0.10 0.10 0.00 7.95 0.00
Morocco Yes No Yes  0.000 15 0.41 0.01 0.01 0.00 0.00 0.00 0.06 0.00
Oman Yes Yes No 0.000 8 0.31 0.02 0.00 0.00 0.00 0.00 0.03 0.00
Pakistan No Yes No 0.365 5 0.88 0.85 0.74 0.74 0.68 0.00 0.00 122.99
Saudi Arabia Yes No Yes 0471 14 1.93 0.18 0.86 0.85 0.31 1.20 0.13 12.21
Somalia No No No 0.722 18 0.64 0.64 0.64 0.58 0.54 0.00 0.00 7.52
Sudan No No No 0.851 18 2.49 1.86 2.49 2.13 1.57 26.31 0.00 2.83
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Syrian Arab Rep.
Yemen

EURO
Armenia
Azerbaijan
Georgia
Kyrgyzstan
Tajikistan
Turkey
Turkmenistan
Uzbekistan

SEARO
Bangladesh
Bhutan
India
Indonesia
Korea, D. P. R.
Myanmar
Nepal

Sri Lanka
Thailand
Timor-Leste

WPRO

Cambodia

China

Lao P. D. R.
Malaysia

Papua New Guinea
Philippines

No
No

Yes
Yes

Yes
Yes
Yes

0.540
0.956

0.000
0.000
0.000
0.000
0.003
0.000
0.000
n/a

0.407
0.387
0.278
0.385

0.788
0.090
0.222
0.469
0.534

0.870
0.100
0.960
0.565
0.727
0.605

12
21

11
63
14

81

n/a

18
34
27
12
16

76
14

24
32
18
14
20
16

0.19
0.46
10.99

0.03
0.08
0.07
0.19
0.14
0.78
0.46
n/a
1.76

0.14
0.04
3.09
1.90
0.12
0.67
0.15
0.07
0.52
0.01
6.70

0.18
9.44
0.23
0.33
0.46
0.30

0.03
0.34
5.30

0.01
0.02
0.01
n/a
0.01
0.13
0.02
n/a
0.19

0.14
0.02
293
1.71
0.00
0.66
0.08
0.06
0.35
0.01
5.97

0.18
1.24
0.23
0.33
0.38
0.30

0.04
0.43
6.75

0.00
0.00
0.01
0.08
0.11
0.19
0.09
n/a
0.48

0.14
0.01
2.94
1.75
n/a
0.53
0.06
0.06
0.51
0.01
6.01

0.18
2.36
0.23
0.27
0.41
0.21

0.04
0.43
6.29

0.00
0.00
0.01
0.03
0.04
0.13
0.09
n/a
0.29

0.14
0.01
2.94
1.75
n/a
0.53
0.06
0.06
0.49
0.01
5.99

0.18
2.36
0.23
0.27
0.41
0.21

0.04
0.25
4.86

0.00
0.00
0.01
0.03
0.04
0.13
0.09
n/a
0.30

0.13
0.01
2.86
1.44
n/a
0.47
0.06
0.06
0.50
0.01
5.54

0.16
2.32
0.22
0.26
0.41
0.21

0.00
13.20
42.71

0.00
0.00
0.00
0.00
0.00
0.00
0.00

n/a
0.00

0.00
0.00
0.00
0.00

n/a

0.00
0.00
0.00
0.00
0.00
0.00

2.03
0.00
3.56
0.00
0.47
0.00

0.00
0.00
8.32

0.27
0.17
0.53
1.25
3.23
13.64
1.16
n/a
20.26

0.00
0.00
88.26
0.00
n/a
0.00
7.66
0.00
0.00
0.00

4.02
1.78
202.62

0.00
0.00
0.00
0.00
0.00
0.00
0.00
n/a

0.00

124.61
0.91
857.93
151.08
n/a
38.36
9.64
10.32
58.08
0.62

95.93 1251.55

0.00
453.90
0.00
0.00
0.00
0.00

(continued)

10.79
287.79
2.30
9.69
3.69
46.95
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Table 2 (continued)

Country® ITHGs criteria®  Pfr° Ad1¢ Area® Population®

Ad Alt Urb Total WHO ITHG ALT- POP- Pf Pv Pf+Pv
2002 MASK MASK

Republic of Korea No No No 0.000 15 0.10 0.00 0.03 0.03 0.02 0.00 4.86 0.00
Solomon Islands Yes Yes No 0.646 9 0.03 0.03 0.02 0.02 0.02 0.00 0.00 0.31
Vanuatu No No Yes  0.525 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.18
Viet Nam No Yes Yes 0.590 61 0.33 0.33 0.32 0.32 0.32 0.00 0.00 69.76
11.42 3.03 4.05 4.04 3.95 6.06 458.76  431.47
Global 73.44 39.06 45.15 43.06 31.85 529.75 616.25 1979.93

4The data are presented alphabetically by WHO regional office and country name with totals shown in bold at the end of each

section and at the end of the table for the World.

PRefers to presence or absence of any of the main three mapping criteria used (Ad, administrative, Alt, altitude and Urb, urban).
“The mean P. falciparum ratio as used in Figures 1 and 2A-R (see colour plate section).

9The number of administrative one level divisions per country.

®Area totals are presented for each country as per the WHO 2002 boundaries, the ITHGs and the ITHGs with the altitudinal mask

(ALT-MASK) and the population mask (POP-MASK) exclusions in millions of km?.

fPopulations in 2005 living predominantly under P. falciparum (Pf) and P. vivax (Pv) and mixed (Pf+ Pv) risk are also presented in
millions. Populations were projected to 2005 from GRUMP at ~1 x 1 km? spatial resolution (CIESIN/IFPRI/WB/CIAT, 2004).
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THE GLOBAL SPATIAL LIMITS OF MALARIA TRANSMISSION 167

developed by Kiszewski et al. (2004) and mapped the altitudinal lim-
its using the same 1 x 1 km spatial resolution DEM (Hastings and
Dunbar, 1998).

3.2. Climate Suitability Mask

Since the information in ITHG reports for African countries was so
sparse (Table 2), we used the MARA/ARMA climate suitability
model to further adjust the malaria transmission limits on this con-
tinent (Craig et al.,, 1999). The MARA model describes climatic con-
ditions (or fuzzy climate suitability, FCS) that range from unsuitable
(0) to completely suitable (1) for stable P. falciparum transmission.
Since the MARA model includes climatology-derived temperature
limits, this can also be used as a surrogate altitudinal mask. To do
this we have assumed that FCS values of zero are incompatible with
malaria risk, as supported by a recent analysis of parasite prevalence
and FCS values in East Africa (Omumbo et al, 2004). The spatial
resolution of the MARA model was too coarse to apply exclusions to
the territories of Cape Verde, Comoros, Mauritius, Mayotte and Sao
Tome and Principe. For Comoros, we assumed the same altitudinal
limit as that of Ethiopia (2000 m), based on their similar dominant
vectors. Altitude masks were unnecessary for the remaining low-lying
island states as they have no areas above 1800 m, which is at or below
the lowest altitude threshold reported elsewhere in Africa for the
same dominant vector species compositions (Kiszewski et al., 2004).

3.3. Population Density Mask

Two population density extremes were applied to refine the spatial
limits of transmission further. First masked, are those areas where
environmental conditions may support malaria, but where there are
too few people, so the human malaria parasites cannot complete their
life-cycle and do not pose any public health concern; these include,
for example, dense forests and true deserts. We therefore used the
1 x 1 km resolution GRUMP population density surface, which al-
lows for equal area corrections (CIESIN/IFPRI/WB/CIAT, 2004)
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(see below), to exclude all areas in the remaining distribution with a
population density of <1 person per km?.

Second are those areas where population density is so high that
conditions become unsuitable for transmission through the process of
urbanisation (Hay et al., 2000; Robert et al., 2003; Omumbo et al.,
2005). Urbanisation has been shown to reduce malaria transmission
on average by an order of magnitude across Africa (Hay et al., 2005).
There is no reason to think that the same fundamental processes of
reduced (i) Anopheline diversity; (ii) biting rates; (iii) sporozoite rates;
(iv) transmission; and thus (v) human malaria infections in urban
versus rural areas do not apply globally. This is certainly true for the
70 cities cited as malaria free in ITHGs. Moreover, the 24 cities that
report urban malaria often refer to infection risk on their peripheries.
A potential confounder to this global trend could be the presence of
the urban malaria vector Anopheles stephensi in the Indian sub-
continent (Rowland et al, 2002). A detailed look at the evidence
indicates that vector densities and sporozoite rates show similar de-
clines from rural, through peri-urban, to urban localities in Delhi
(Sharma et al., 1993), Gurgaon (Sharma, 1995) and Karachi (Nalin
et al., 1985) to those in Africa.

We projected population counts for the year 2000 (CIESIN/IFPRI/
WB/CIAT, 2004) to 2005 by applying national, medium variant, in-
tercensal growth rates by country (UNPD, 2004) before deriving
contemporary population densities using an area-by-pixel surface
(CIESIN/IFPRI/WB/CIAT, 2004). We geo-referenced (Microsoft
Corporation, 2005; The Getty Research Institute, 2005; University of
California, 2005) cities with populations equal to or greater than one
million people (UNSD, 2001) in MECs and identified their urban
extents in GRUMP (n = 204). We then investigated population den-
sity frequency statistics within each of these urban extents. Significant
regional differences in population density were apparent, so a con-
servative threshold of intensity of urbanisation was used, corre-
sponding to the median of population density means associated with
the urban extents by region. The medians were 4218, 1533 and 2513
persons per km? for Africa, the Americas and Asia-Europe, respec-
tively. The same median as Asia-Europe was used in Oceania MECs,
where no cities of > 1 million people currently exist. We thus masked
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as no malaria risk all those areas that could be unambiguously clas-
sified as intensely urban relative to their corresponding region.

The resulting map, after applying the three masks described here, is
shown in Figure 1 (Figure 1 is Plate 5.1 in the Separate Color Plate
Section).

4. DISTINGUISHING P. FALCIPARUM AND P. VIVAX RISK

Global information of the distribution of P. falciparum and P. vivax
is not comprehensively detailed in the ITHGs. Sub-national statistics
are available from other sources (FDRE, 2002; PAHO, 2003; Hay
et al., 2004a; Sintasath, 2004; Kolaczinski et al., 2005). For countries
or areas within countries where no sub-national data were available,
national average data were used from ITHGs or other sources
(PAHO, 2003; Korenromp, 2005) (Table 2). Specific data for Mayotte
were not available, so we assumed 100% P. falciparum risk based on
ITHG descriptions. We defined areas reporting >95% P. falciparum
cases as predominantly P. falciparum and those <5% P. falciparum
as predominantly P. vivax endemic. The remainder of the distribution
is of mixed (P. falciparum and P. vivax) endemicity. P. ovale and
P. malariae were not considered here, as these are relatively rare
malaria parasites and infrequently reported in national statistics.
These divisions are shown globally (Figure 1) and in greater detail by
WHO geographic region (Figures 2A—R) (Figures 2A—-R are Plate
5.2A-R in the Separate Color Plate section). We now discuss the
implications of the biological limits to transmission and the parasite
species distributions by region and highlight some known anomalies.

5. REGIONAL ANALYSIS

Before the biological exclusions were applied, the global malaria area at
risk of malaria was 45.15 million km?, considerably higher than the
39.06 million km? derived from the WHO 2002 boundaries (Figure 3A,
Table 2). The altitude and climate mask reduced this slightly to 43.06
million km?. The largest percentage reductions were in countries of the
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Figure 3 A-D Bar charts showing area (A and B) and population at risk
(PAR) (C and D) of malaria according to the WHO 2002 limits (white),
ITHGs (grey), and the progressive implementation of our altitudinal (dark
grey) population (black) masks, globally and stratified by WHO regional
office. The scales of area (km?) and population are in millions. Figures were
calculated using ArcView 3.2 (ESRI, Redlands, California, USA). Area ex-
tractions were undertaken on an equal area projection.

European Regional Office (EURO) (39.9%) and African Regional
Office (AFRO) (7.5%) due to the mountainous areas and large ex-
panses of zero climate suitability in the northern Sahel, respectively
(Figure 3B; Table 2). The population mask had a very considerable
effect in reducing the global area at risk further, to 31.85 million km?
(43.4% of the MEC:s total land area) (Figures 1 and 3A, Table 2). This
incremental reduction was most noticeable in countries of the American
Regional Office (AMRO) (56.8%), AFRO (23.1%) and the Eastern
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Mediterranean Regional Office (EMRO) (22.8%), mainly due to the
exclusion of large, relatively unpopulated areas of forest and desert
land. In the final coverage, the rank of regions by area at risk was
AFRO (13.17 million km? 56.8% of the regional officc MEC land
area), the South East Asian Regional Office (SEARO) (5.54 million
km?, 82.7% of the regional office MEC land area), EMRO (4.86 million
km?, 44.2% of the regional office MEC land area), AMRO (4.03 mil-
lion km?, 20.8% of the regional office MEC land area), the Western
Pacific Regional Office (WPRO) (3.95km? 34.6% of the region’s land
area) and EURO (0.30 million km?, 17.0% of the regional office MEC
land area) (Figure 3B, Table 2). The global malarious area was thus
progressively reduced by iterations of biological exclusions with our
final distribution model 18.5% smaller (7.21 million km?) in area than
that which would be derived from using the WHO 2002 limits (WHO,
2003b) (Figure 3A).

The global heterogeneity in the distribution of human population
(Cohen and Small, 1998) generated some rather striking contrasts in
population at risk (PAR) extractions. Global PAR derived from the
WHO 2002 boundaries is 3.133 billion persons, much less than the 3.616
billion suggested by the crude ITHG limits (Figure 3C). Our altitude and
climate mask marginally reduced this figure further to 3.596 billion
people. After implementing the population mask, the final global PAR is
estimated at 3.126 billion. This was almost entirely due to the removal of
the highly populous urban areas of low to zero malarial risk. This final
PAR estimate is very similar to that extracted from the WHO 2002
boundaries (only 0.22% lower) but critically different in regional dis-
tribution of PAR estimates (Figure 3D, Table 2). Extractions from the
final coverage show the malarious regions by rank PAR were SEARO
(1.347 billion persons), WPRO (0.896 billion persons), AFRO (0.527
billion persons), EMRO (0.254 billion persons), AMRO (0.082 billion
persons) and EURO (0.020 billion persons). These changes in rank show
the important contribution that the very large population concentrations
in SEARO and WPRO make to the PAR estimates. It is essential to
note at this stage that all risk is not equal, and a more detailed discussion
of the P. falciparum and P. vivax partitioning by region follows.

In AFRO (Figures 2A—C), we can see how the various iterations
have refined the transmission limits for malaria infection particularly
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to the arid north and south of the continent, although significant
areas have been excised from the mid-latitude tropical forest range. A
small focus of malaria risk emerged in Illizi department, Algeria, after
our climate masking, which we assumed to correspond to the focus
reported by ITHGs in Ihrir (CDC, 2003). Hence, our final map allows
for a small area of malaria risk in Algeria. The distribution of almost
exclusively P. falciparum on the African continent is remarkable, and
fits with received wisdom about the evolution to fixation of the Duffy
negativity blood group allele, making these populations refractory to
P. vivax infection (Livingstone, 1984; Zimmerman, 2004). Informa-
tion on parasite species ratio is poor in AFRO, however, and the
stark transitions between southern Ethiopia and neighbouring coun-
tries (as well as Sudan and Somalia from EMRO (Figures 2G-I)),
suggest that a more detailed investigation of the distribution of P.
vivax is warranted in these areas on the latitidudinal margins of risk.

In AMRO (Figures 2D-F), by contrast, P. vivax is by far the
dominant parasite (Roberts ez al., 2002). The most obvious exclusions
are those of the low-populated tropical forests. The regional distri-
bution of risk compares favourably with other sources (Roberts et al.,
2002; PAHO, 2003), but the biological exclusions failed to capture
completely the situation in Argentina and Paraguay, where incidence
of malaria is reportedly low (PAHO, 2003), yet our map indicates
non-negligible areas and PARs for these countries (Table 2).

EMRO (Figures 2G-I) is a truly heterogeneous region encompass-
ing Morocco, Somalia and Sudan, as well as the Middle Eastern
block through to Pakistan (Beljaev, 2002). Summary is therefore
difficult but P. falciparum is highest in the south-west with risk de-
clining as one travels north and east. Areas of “very limited risk”
reported by ITHGs in Egypt (CDC, 2003; WHO, 2005) are not cap-
tured by our climate mask and were excluded. Our final map, there-
fore, does not allow for malaria risk in Egypt, where no cases have
been reported since 1998 (WHO, 2005) despite high malaria risk be-
ing documented in Fayoum governorate (Hassan et al., 2003).

The EURO MECs (Figures 2J-L) are essentially Turkey and the
southern states newly independent from the former Soviet Union
(Sabitinelli, 2002). Their small global fraction of malaria PAR is
largely due to P. vivax infections.
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SEARO (Figures 2M-0O) is best characterised as endemic for pre-
dominantly P. vivax, but with significant foci of P. falciparum trans-
mission (Sharma, 2002). A known anomaly in our coverage is evident
from the fact that malaria has long been endemic in the Korean
peninsula (Feighner et al., 1998). After a period of decline following
the Korean War, malaria re-emerged in the Demilitarised Zone,
probably due to an epidemic in North Korea since 1993 (Lee ef al,
2002). ITHGs, however, are ambiguous about the areas of risk in this
country, making them impossible to map.

In WPRO (Figures 2P-R), P. vivax dominance gives way to P.
falciparum as one moves south and east (Schapira, 2002). China
dominates the PAR extractions for this region and introduces a
warming. An overestimation in area, and hence PAR, by our map is
possible in this country, where the average spatial resolution of
heavily populated first administrative units is poor and ITHG sub-
national descriptions fail to capture lower-level administrative detail.

6. DISCUSSION

The most widely cited map of the current global malaria distribution
is WHO 2002 (WHO, 2003b). The information source is cited as
(WHO, 2003a) but there are important discrepancies between the
map (WHO, 2003b) and suggested source data. For example, the
spatial limits according to ITHGs are 6.09 million km? larger than
the WHO 2002 boundary (Table 2). These geographical inconsisten-
cies and a lack of detailed information of their origins make them of
unknown fidelity in risk mapping. In contrast, the methods presented
here are implemented with public-domain data and are hence easily
reproducible, the maps used to generate individual country data are
presented in detail, and the PAR numbers are made available for
scrutiny. In addition, and for the first time, parasite species’ distri-
butions are defined globally (including the often neglected P. vivax)
and are suggested as a more comprehensive map against which to
measure PAR of malaria in 2005.

Our map comes with obvious caveats, since we have implemented
crude rules at the global scale. Noticeable anomalies (e.g. Argentina,
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Egypt, Morocco, North Korea, Paraguay, and possibly China) have
been highlighted and it is clear that, at a sub-national level, discrep-
ancies will be found as, because risk is not a static phenomenon, and
global information is incomplete. We therefore propose these maps as
a working template for future refinement.

Reconnaissance of global malaria data is required to refine distri-
butions at the margins and this can only be done with malaria-risk
data at higher spatial resolution. These data probably exist at the
country level and need to be collated at the global scale within a GIS
framework. In terms of PAR, the top ten countries globally are India,
China, Indonesia, Bangladesh, Pakistan, Nigeria, Vietnam, Thailand,
Democratic Republic of the Congo and the Philippines (Table 2).
Pragmatically, Error in PAR estimates globally would be reduced
most substantially by focussing on improving distribution limits and
P. falciparum ratios for these territories.

Modelling risks within these margins is also critical and is the
subject of planned future work. Local endemicity within these trans-
mission limits will be substantially mediated by the influences of
land-use changes such as deforestation (Walsh er al, 1993) and
urbanisation (Hay et al., 2005), prevalence of other conditions such as
HIV/AIDS, tuberculosis and malnutrition (Bates et al., 2004), as well
as local control and intervention efforts (Korenromp, 2005). Our
immediate goal is to validate historical malaria endemicity maps
(Lysenko and Semashko, 1968) using empirical data and to generate
plausible scenarios of some of the above-mentioned confounding in-
fluences to satisfactorily adjust endemicity to modern day risk. This
will fill pressing needs to estimate global incidence of malaria and
commodity burdens. Our longer-term goal is to construct an inde-
pendent global map of modern day endemicity within the boundaries
we have defined and will continue to refine.

7. CONCLUSIONS

While there will remain uncertainties about the precise global extent
of malaria, we have reduced these as far as possible without system-
atic country-specific surveys and information. Urgent attention is



THE GLOBAL SPATIAL LIMITS OF MALARIA TRANSMISSION 175

required to reduce the uncertainty surrounding factors that affect the
spatial extent of malaria on a global scale and these would sensibly
target the most populous malarious nations. This will allow the in-
ternational community to better define the needs for therapeutic and
disease prevention commodities so that well-intentioned governments
and UN agencies can make requests for sufficient financial resources.
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