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ADVANCES IN CLINICAL COGNITIVE SCIENCE



INTRODUCTION

RICHARD W. J. NEUFELD

This volume is designed to showcase fertile clinical applications of
contemporary quantitative cognitive science. Contributions are from cogni-
tive scientists who have formally modeled clinically relevant aspects of
cognitive functioning or cognition-related symptoms among special popula-
tions and clinical scientists who have adapted techniques of quantitative
cognitive science to advance their clinical research and assessment. Each
addressed disorder or symptom is listed in the Diagnostic and Statistical Manual
of Mental Disorders (American Psychiatric Association, 2000).

The contributions for the most part detail findings from specific clinical
samples, but the methods are intended to have general application. Ways
in which readers can apply the expounded techniques to similar problems
in their own research, and potentially in clinical practice, are made apparent.
Descriptions of results from productive applications are intended to motivate
engagement of the associated methods. Exposition of the latter, along with
provision or citation of supporting resource material, are designed to facilitate
understanding and implementation of the methods.

The target audience includes those doing research on cognitive faculties
in clinical populations or the cognitive neuroscience thereof. It includes as
well those pursuing the development of cognitive assessment instruments
or routinely engaged in the assessment of clients' cognitive efficiency. Often,



the reader will be one who is not indisposed to mathematical developments
but who nevertheless desires a rigorous exposition of promising formal
methods that is less austere than usually is the case in so-called "high-level"
technical sources.

OVERVIEW

In his status check on mathematical psychology as of the mid-1970s,
William K. Estes (1975) wrote, "A fertile interaction between measurement
theory and research seems more likely to evolve when a measurement model
is part and parcel of a theory developed for the interpretation of a process"
(p. 273). Shortly thereafter, Paul Meehl (1978), in lamenting the slow
progress of so-called "soft psychology," and Richard McFall and James
Townsend, in their 1998 update, noted that in older disciplines, notably
physics, measurement is prescribed by substantive theory itself rather than
entailing an exercise in measure selection from an off-the-shelf array. Estes,
in the above inventory of successes and challenges, observed that many
instances of empirical data processing are accompanied by a tacit promise
to eventually supply the theoretical infrastructure needed for rigorous inter-
pretation, a promise seldom fulfilled. R. Duncan Luce (1997), in enumerating
lingering issues in mathematical psychology, pointed to the continuing
artificial and detrimental rift between mathematical psychology (substantive
formal theory development, typically directed to a specific problem or con-
tent domain) and psychometrics (data structure theory and analysis, typically
transcending content domains) that contrasts economies' productive inter-
lacing of mathematical economics and econometrics (see also chap. 2, this
volume). On this note, in a recent high-profile article bemoaning a shortage
of quantitatively trained psychologists (Clay, 2005), opportunities in the
areas of measurement and statistics were extolled, but completely missing
was any mention of mathematical psychology's potential to inspire graduate
students to develop quantitatively grounded theory or, to this end, its provi-
sion of workshops on contemporary developments (e.g., Myung, Forster, &
Browne, 2000; Wagenmakers & Waldorp, 2006; also, workshops routinely
given at meetings of the Society for Chaos Theory in Psychology and the
Life Sciences). As for regard in the broader scientific community, it should
not go unnoticed that the latest Nobel Prize to come psychology's way (in
2002) was for none other than work firmly entrenched in the mathematical
psychology of predictive judgments. Clinical cognitive science and assess-
ment arguably are uniquely poised to benefit from inroads of formal theory
and methodology and even to provide fertile ground in their own right for
progress in quantitative cognitive science.

RICHARD W. ]. NELJFELD



The chapters in this volume exemplify clinically significant returns on
the investment of subjecting sometimes-formidable problems to quantitative
modeling. Otherwise obscured avenues of data collection, analysis, and
interpretation are disclosed, and clinically significant inferences regarding
underlying sources of cognitive functions and symptomatology are unveiled.
Performance levels that are superficially similar by conventional analyses
are shown to emanate from offsetting latent processes that turn out to be
separable via formally contrived measurement tools (e.g., chaps. 1 and 2).
Identified is the multicomponent complexity of certain routinely used
measures—for example, of judgment, selection, and choice—along with
rigorous methods for estimating the integrity of those components (see
chaps. 3 and 4). Embedding data processing and interpretation in formal
theory furthermore demonstrably conveys resolution of enigmas attending
conventional scoring of neuropsychological test batteries (e.g., chap. 1).
Potent methods for capturing subjective relations among disorder-significant
items are shown to educe intractable distortions that ramify to memory and
categorization processes (chap. 6). The construct of automatic-controlled
processing, invoked routinely in clinical studies, is dissected into discrete
components whose mathematical grounding yields quantitative signatures
of their status (chap. 7). New explanations of clinically important phenom-
ena (e.g., prominent symptoms) are forthcoming, and seemingly disparate
phenomena become unified via a single explanatory process (chap. 8). Also
offered up are penetrating numerical diagnostics that indicate the nature
of multivariable dynamical systems governing disordered affect (chap. 9).
Methods of mediating group-level findings on symptom-relevant cognitive
performance to individual group members are shown to be viable (chap. 5).

Quantitatively formulated latent mechanisms of the presence or ab-
sence of statistical interactions entailing diagnostic groups and testing condi-
tions, essential to informed interpretation (Busemeyer, 1980), are made
available by formal process models (chaps. 1, 2, and 5). Cognitive-science-
principled, model-guided paradigms and accompanying platforms of interpre-
tation in principle are at the disposal of electrophysiologists of cognitive
neurocircuitry (e.g., functional magnetic resonance imaging [fMRI], magne-
toencephalography, electroencephalography, etc.).

Intervention stands to be guided by an improved mapping of targets
for cognitive-behavioral rehabilitation, and for pharmacological regimens
whose efficacy ostensibly includes cognitive efficiency. Analogous to neuro-
surgical navigation based on high-resolution fMRI or magnetoencephalogra-
phy, navigation of cognitive behavior therapy has access to gold standard
assessment of the perceptual organization of clinically significant content
and hence to related memory and categorization processes (chap. 6).

Potential contributions from quantitative clinical cognitive science to
progress in quantitative cognitive science at large can be by-products of

INTRODUCTION



successful responses to challenges sui generis to the clinical domain. Adapta-
tions and extensions of extant models of cognitive performance deviations
attending clinical disorder provide an opportunity for what Busemeyer and
Wang (2000) termed the generalization testing of model validity. Models that
accommodate performance abnormalities are preferred to those that do not
or that are strained to do so.

Furthermore, individual differences represent model-exogenous noise
to formal cognitive science but are focal to clinical assessment. Coherence
of model performance at the group and individual levels, impelled by clinical
exigencies, is an extension of the above generalization testing for selection
among competing models.

Models can be excessively complex or overparameterized, with the
theoretical significance of their parameters being poorly understood (Luce,
1997). Substantive meaning of model parameters, however, can accumulate
through their association with measures, psychometric or otherwise, linked
to pathognomonic, prognostic, or etiological entities (Carter, Neufeld, &
Benn, 1998). Other contributions from the clinical field should become
apparent as the frontiers of application continue to recede.

Before leaving this topic, it should be mentioned that contributions
to formal cognitive science from the clinical setting ideally will go beyond
those of supporting roles. Clinical applications in principle can motivate and
figure directly into model construction ab initio by raising rare perspectives on
cognitive phenomena and angles on empirical testing. Unique necessities
can be the mother of otherwise-unrealized mathematical invention (Kline,
1980). If clinical cognitive science acquits itself admirably in its give and
take with the broader field, it does so with some travail.

CHALLENGES TO FORMAL CLINICAL COGNITIVE SCIENCE,
AND AVENUES OF RESOLUTION

The Hilbert-like enumeration of unresolved problems and targets for
mathematical psychology, supplied by Estes (1975) and Luce (1997), is
undiminished when it comes to the arena of clinical science and assessment.
The list of thorny issues continues to entail, among others, effective methods
of model testing and competing model selection; parameter interpretation;
individual differences in model structure and parameter values; intractability
of the inherently dynamical nature of processes under study; managing
model-exogenous noise in empirical data; and coping with the epistemic
status of hypothetical structures, which amidst their demonstrable utility (see
above) are nonetheless latent and unobservable. Because of their salience in
clinical implementations, emphasis below is placed on the related issues of
individual differences and model-exogenous noise.

RICHARD W. ]. NEUFELD



Just what constitutes noise, or variation in data not addressed by the
specified model? First, note that a random feature is directly built into some
models, hence their name, stochastic models. These models "recognize" as
fundamental to the makeup of their target phenomena an element of unpre-
dictability, analogous to Brownian motion in physics (Evans, Hastings, &
Peacock, 2000; Luce, 1986; Townsend & Ashby, 1983). Most of the treat-
ments in this volume entail models of this nature (exceptions being develop-
ments in chaps. 8 and 9). Such models of course may differ in the minuteness
of variation that is expressly incorporated; one modeler's noise is another's
subject matter, depending on the processes being targeted for study (Gilden,
2001; Shavelson &. Webb, 1991). Furthermore, genuine noise may have
substantive significance in its own right. When characterizing fluctuation
in affect, it may signify adaptive spontaneity in responding to environmental
contingencies (chap. 9).

This said, variation in empirical observations defensibly lying beyond
a model's staked-out territory must be addressed. If not, attempts at empirical
fit may inevitably end up in a slough of despond as they are overwhelmed
by extraneous sources of variation. A conventional solution is to intensively
study an individual participant by administering a large number of trials—
sometimes into the thousands and oft-times across multiple testing sessions.
This tactic of course attenuates the noise in noisy data by exploiting the
principle "error tends to cancel." Selected reports in this volume exemplify
the intensive study of one person at a time and the potent inferences that
can result from estimation of participant-specific model properties (chaps.
3 and 4).

Depending on the cognitive task requirements, however, sufficient
testing for stability of estimation may be unworkable owing to clinically
indigenous constraints, including distressed states of participants (although
test-taking tedium seems not to have fazed proponents of some extremely
long but routinely used psychometric tests). When obtaining the necessary
complement of trials at the level of the individual is infeasible, aggregation
across participants within a diagnostic group is indicated.

Such aggregation, however, incurs the well-known hazard of conflating
systematic individual differences within the data amalgam subjected to mod-
eling. Modeling now stands to address what amounts to being a statistical
artifact comprising an aggregate that is unrepresentative of any of its constit-
uents. There are several lines of defense against this pitfall, cogently illus-
trated throughout this volume.

One of these lines of defense is to carry out preliminary analyses
on the candidate data profiles so as to rule out heterogeneity that would
contraindicate their being folded into one another. For example, a chi-
square contingency test may be applied to good advantage where the data
comprise frequencies and can be arrayed into a Participant x Response

INTRODUCTION



Category matrix (chap. 1). Where the data format that is to be subjected
to modeling is other than frequencies, Tukey's (1949) test for nonadditivity
may serve a similar purpose in identifying significant heterogeneity in data
protocols. Likewise, ascertaining requisite data homogeneity may be
achieved through selective adaptations of coefficient alpha applied to data
profiles of individuals within the sample (chap. 7), or where individual data
points are to be aggregated, through application of selected Kolmogorov-
Smirnov tests to their distribution (chap. 5). Another tactic entails the use
of profile-analytic procedures, including the familiar method of principal-
components analysis, or singular-value decomposition (and their exten-
sions), to isolate systematically differing clusters of task performance. Such
isolation may be followed up with aggregation within those clusters (Carter
et al, 1998).

Alternatively, Monte Carlo simulations may be used to establish that
model properties recovered from aggregate data faithfully reproduce popula-
tion values (see chap. 2, this volume; Riefer, Knapp, Batchelder, Bamber,
& Manifold, 2002).

Even without consistent differences in ensembles of data nested within
the aggregate, it is possible to meaningfully implement what otherwise would
be regarded as model-exogenous noise into an expanded model. Provision
for indeterminacy now is extended beyond the performance model proper
(i.e., stochastic model with fixed parameters, above) to variation in model
expression within a given data assembly. Performance model parameters,
for example, can be deemed as randomly distributed across participants. In
any case, distributions of parameter values make for stochastic mixture
models. Among other advantages, ushered in is a principled assault on at
least some of the dispersion in performance (overdispersion) beyond that
embedded in the basic performance model (chap. 1). Also introduced is a
potent method of estimating the mean population parameter values of the
performance model (population parameter mapping; see chap. 2), along
with their probability distributions and related significance tests. Moreover,
exploiting Bayesian statistical methods, a natural outgrowth of mixture
models, improves prediction of individual task performance beyond that
available from classical parameter estimates (e.g., maximum likelihood and
moment-matching estimates; see chap. 5).

VALIDITY STATUS OF MODELS AND THEIR PARAMETERS

Models presented in this volume are accompanied by varying amounts
and types of evidence bearing on construct validity (Cronbach & Meehl,
1955). Construct validity here pertains to the interpretation of model proper-

R1CHARD W. ]. NEUFELD



ties, which often are parameters, and the organization of model components,
which often are constituent processes represented by the parameters or in
which the parameters participate (e.g., stimulus encoding, memory search,
assimilation of encoded stimulus properties, response selection, etc.). When
it comes to varying stages of development, we are reminded of Cronbach
and Meehl's (1955) observation that construct validation is an ongoing
process. We are reminded as well that evidence from multiple and unex-
pected sources can enter into the case for construct validity.

One such source includes observations from clinical applications them-
selves. For example, values of model parameters (e.g., elevated sensitivity
to reward for successful choices; chap. 3) should conform to clinical charac-
terizations of participants (e.g., cocaine abusers). Thus, results from the
present clinical implementations become part of the corpus of evidence
bearing on model (property) validity, potentially to be added to the collective
validity credentials that preceded such implementations.

Persuasive support for the substantive significance of model parameters
notably includes their selective sensitivity to affiliated experimental factors
(e.g., chaps. 1 and 2). Other sources involve coherence with documented
neurophysiology of disorders under study (chaps. 3, 4, and 8). Still others
entail the position and operation of model parameters in a formal deductive
system (Braithwaite, 1968), whereby meaning is endowed by the system's
structure, including roles assigned to the complement of other parameters.
A formal theoretical apparatus also enables the unveiling of substantively
significant mathematical properties of model elements—properties that can
affirm with the backing of precise derivations the claimed understanding of
the elements (Neufeld, in press). This form of support obviously is a province
of formal models.

Model-based estimates of cognitive functions, moreover, arguably are
more valid in key ways than are estimates that rely exclusively on experimen-
tal procedures, as follows. The suggestion has been made that in contrast
to tapping targeted faculties through modeling methodology, the targeted
faculties may well be studied and measured more directly and simply by
isolating them according to function-specific discrete tasks. Extricating the
operations of interest from the global task in which they typically are set,
however, may violate their makeup relative to what it might be within a
context of collateral operations. To illustrate, estimating the integrity of
stimulus encoding subserving stimulus processing with respect to memory-
held information is predicated on the intact assemblage of both the encod-
ing and memory-scanning requirements. Estimating the nature and status
of the encoding process stipulates effective modeling of its architecture and
parameters, specifically as encoding operates in the service of memory search.

In certain instances, it is a stretch to envision how certain elements
of cognitive performance might even exist outside the intact processing
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system. Examples include the anchoring of response selections in accumu-
lated information about advisability of alternatives (e.g., chaps. 3 and 4).
The same could be said about sensitivity to positive versus negative outcomes
attending decision and choice (chap. 3). It also is less cumbersome, and
conceivably less costly, to estimate process parameters from a single well-
designed task than to obtain multiple scores from a battery of tasks, each
addressed to its own designated process (cf. Broga & Neufeld, 1981).

Precedent for concepts being inextricably bound up with the phenom-
ena to which they contribute readily come to the fore in older disciplines.
As Flanagan (1991) stated,

In physics, there are many explanatory constructs, electrons for
example, which cannot be measured independently of the observable
situations in which they figure explanatorily. What vindicates the
explanatory use of such constructs is the fact that, given everything
else we know about nature, electrons best explain the observable
processes in a wide array of experimental tests, and lead to successful
predictions, (p. 380)

Finally, definitions of inferred variables are tightly constrained in formal
models by virtue of their quantitative format. Their specificity, lent in part
by the formal system in which they operate, exposes them to more rigorous
testing and refutation than otherwise would be the case (Staddon, 1984,
1991).

THE ULTIMATE CONSUMER

A sort of mission statement for the present anthology is that it should
endow the pursuit of information, ultimately destined for use with individuals
who have problems in living (i.e., clinical clients), with the latest applicable
advances in cognitive science and associated measurement. Deviations in
model properties accompanying disturbances in principle present themselves
as potential targets for intervention; model properties whose status remains
intact point to functions apparently spared. The upshot is an individualized,
cognitive-science-principled profile of strengths and weaknesses. This same
assessment method comes into play in monitoring the effectiveness of inter-
vention it initially helped to deploy. Demands on the client to provide
cognitive performance samples in principle can be lightened through Bayes-
ian methodology (Batchelder, 1998; Neufeld, Carter, Boksman, Jette, &
Vollick, 2002). Techniques overlapping with those monitoring client prog-
ress moreover are available to evaluate cognitive aspects of the efficacy of
entire treatment regimens (Neufeld, in press).

10 RICHARD W. ]. NEUFELD



More indirectly, but harboring no less benefit, model-based cognitive
assessment has the potential to inform and evaluate pharmacological inter-
ventions. Neurocircuitry, as monitored by fMRI or other technology, can
be activated by paradigms embedding processes identified as disorder affected
(e.g., with the aid of parametrically homogeneous samples; Neufeld et al.,
2002). Pharmacological agents ideally can target the associated neurocircui-
try (e.g., glutamitergic or dopaminergic systems). The very cognitive assess-
ment tools used to guide pharmacological interventions in turn can be used
to evaluate success of the latter with respect to cognitive efficiency. Suffice
it to say that creative applications toward client benefit may take multiple
routes, the reader undoubtedly having envisioned several others.

MATHEMATICAL AND COMPUTATIONAL TOOLS

Mathematics involved in model development tend to go beyond the
usual sequence of introductory calculus and linear algebra. In addition, an
appreciation of discrete and continuous stochastic distributions is essential
to implementations of stochastic models. Such appreciation, however, usu-
ally is acquired in an introductory statistics course as well as courses in
research design and analysis that are part of most graduate psychology
program curricula.

The reader therefore may selectively access one or more of the following
sources in order to buttress his or her understanding of certain parts of the
expositions presented here, to adapt existing models to new instantiations,
or to develop new versions altogether. The glossary of technical terms,
located at the back of this volume, should help. These sources of course
may productively augment collaborations with colleagues who may have
extensive quantitative training. The sources listed below are presented partly
out of personal familiarity, with the full recognition that favorite and possibly
better alternatives may be preferred.

For a refresher on basic calculus, including some first principles, the
venerable Quantitative Methods in Psychology, by Lewis (1960), offers a highly
accessible presentation; so does Dowling's (1980) Theory and Problems of
Mathematics for Economists, part of Schaum's Outline Series in Economics,
which includes linear algebra and several other relevant topics (albeit with-
out much in the way of first principles). Spiegel's (1963) Theory and Problems
of Advanced Calculus and, for certain problems involving continuous stochas-
tic distributions, Theory and Problems of Laplace Transforms (Spiegel, 1965),
both from Schaum's Outline Series in Mathematics, may prove useful, along
with Hildebrand's (1986) Advanced Calculus for Applications. Helpful aids
include The HarperCollins Dictionary of Mathematics, by Borowski and

INTRODUCTION 11



Borwein (1989); Statistical Distributions, by Evans et al. (2000); and A Diction-
ary and Bibliography of Discrete Distributions, by Patil and Joshi (1968).

For exposition of Bayesian methods, the reader may consult O'Hagan
and Forster's (2004) volume, Bayesian Inference, in Kendall's Library of
Statistics series, or Berger's (1985) Statistical Decision Theory and Bayesian
Analysis. Finally, informative treatments of stochastic modeling include
Ross's (1996) Stochastic Processes, Townsend and Ashby's (1983) Stochastic
Modeling of Elementary Psychological Processes (with an extremely helpful
exposition of mathematical essentials), Luce's (1986) Response Times: Their
Role in Inferring Elementary Mental Organization, and Wickens's (1982) Models
for Behavior: Stochastic Processes in Psychology.

Because of the nature of mathematical modeling, entailing as it does
problem- or content-specific developments, readily applicable software is
less available than is the case for routine computations and analyses. There
are, of course, exceptions, as with the widely used methodology of multi-
nomial processing tree (MPT) modeling (see chap. 1, this volume) and
Townsend and colleagues' factorial technology for discerning processing
system structure capacity and process-termination criteria (referred to in
chap. 7, this volume).

On the other hand, symbolic-manipulation computer algebra programs
(e.g., Waterloo MAPLE), highly suited to assist the modeling enterprise,
have been growing more user friendly. It is interesting that a few mathe-
matical preliminaries sometimes can smooth the way even when applying
symbolic-manipulation programs. Occasionally, computational logjams can
be dislodged through feeding to the program certain command modifications
that can be as simple as rigorously rearranging the order of mathematical
operations. Similarly, simple operations can sometimes substantially reduce
total computing time. In some instances, a routine can be "helped along"
by providing it with interim derivations to which it seems "blind." Moreover,
extracting the full complement of information latent in computational
output depends on mathematical insight. Also, exploiting computational
power, whether it be from symbolic or numerical manipulation programs
(e.g., MATLAB), to expose the outworking of a well-developed mathemati-
cal model presupposes a certain understanding of the model's composition
(Luce, 1997).

As a bonus to possessing mathematical tools that equip the owner for
modeling endeavors, options for tapping otherwise overlooked reserves of
information are increased. For example, inferences about the dynamics of
cognitive performance lodged in the more granular properties of data can
be exploited through commensurately detailed analyses (Townsend, 1990).
The potential upshot can be meta-analyses of published or archived data
that are substantively richer than those available from standard effect size
and related calculations.

12 RICHARD W. ]. NEUFELD



THE CONTRIBUTIONS

The contributions to this book address a variety of disorders, with
methods of study and assessment tailored to focal problems. The contribu-
tions are united in their exemplary use of quantitative methods to obtain
information not otherwise available or available only suboptimally.

The first two chapters, by Batchelder and Riefer and by Chechile, are
devoted to MPT modeling of memory performance. This topic reasonably
occupies two chapters because of the relative prominence of this methodol-
ogy in clinical science and assessment and its power for identifying stages
of memory that are spared, and those that are affected, with disorder. The
chapters are complementary. For example, Batchelder and Riefer supply
formalisms that are strategic to the mathematical groundwork for MPT
modeling, and Chechile presents a unique method of parameter estimation
and significance testing. Within the MPT modeling environment, different
paradigms are used to study memory in schizophrenia and other disorders
(chap. 1) and developmental dyslexia (chap. 2). On the face of it, memory
performance has a rather immediate relation to the symptomatology of
developmental dyslexia and a more indirect relation to that of schizophrenia
(be it paranoid or nonparanoid, or so-called "positive" vs. "negative"; e.g.,
Nicholson & Neufeld, 1993). Regardless, individually estimated MPT mod-
eling parameter values are found to be correlated with clinically meaningful
variables. In each treatment, construct validity for the interpretation of
model parameters is established before they are used to explore abnormality.
In particular, parameters are observed to be selectively sensitive to experi-
mental treatments targeting the specific stages of memory the parameters
purportedly express.

Turning to the related domain of decisional and perceptual processes,
chapter 3, by Yechiam, Veinott, Busemeyer, and Stout, begins by describing
pilot exploration of model parameters and the predictive efficacy of compet-
ing decision-model structures. Results are used to guide the examination of
decision processes among patients with Parkinson's disease and Huntington's
disease and cocaine abusers. Problems in living arise when future events
are ignored or misconstrued. By their mathematically informed analysis of
performance on a prototypical gambling task, these authors are able to
isolate reasons for such difficulties among each of the respective groups.
The reasons involve balance of attention to successive gains versus losses,
acquisition of optimal-response information, and compliance of responding
with the available information as updated across trials. The modeled sources
of difficulty, in turn, are coherent with known neurophysiology of the
respective disorders.

In chapter 4, Maddox and Filoteo invoke generalized recognition
theory (Ashby & Townsend, 1986), a multidimensional extension of signal
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detection theory (e.g., Green &. Swets, 1966), to study deviations in the
learning of variously complex stimulus categorization rules. The included
rules arguably encompass classificatory principles fundamental to daily han-
dling of multifaceted stimuli. Mathematically principled tools once more
break down global categorization performance into components that are
either spared or affected with well-charted neurophysiological damage.
Strategies of stimulus classification and consistency in their use are separated
out among amnesic patients and Huntington's and Parkinson's disease pa-
tients. The technique of minimal titration parsimoniously releases hypothesis-
related model properties while clamping the remainder. In addition, a
normative model depicting objectively optimal performance provides a
benchmark to which descriptive models, corresponding to actual perfor-
mance, can be examined for the degree and nature of departure among the
studied groups.

The presentation in chapter 5 by Neufeld et al. capitalizes on pre-
existing identification of deficit among schizophrenia participants in a
component of information processing that subserves collateral functions.
The deficit entails delayed encrypting of presenting stimulation into a
cognitive format that facilitates the operations of so-called "short-term"
working memory. A specific stochastic model parameter of the stimulus-
encoding process has been singled out as the source of delay, with support
for this formulation emanating from divergent sources of behavioral data
and alternate quantitative (neuroconnectionist) levels of analysis. The
parameterized processing deviation has been deemed to ramify to clinically
significant variables, including thought-form disorder and compromised
stress negotiation. Using Bayesian procedures, group-level findings on en-
coding performance are mediated to individual participants, which ushers
in model testing on individual performance data, completing model testing
on group data.

Treat et al. show in chapter 6 how current methods of multidimensional
scaling can rigorously tap perceptual organization of clinically significant
stimuli (those bearing on eating disorders and sexual aggression). Perceptual
organization in turn feeds into memory and item classification processes.
This chapter integrates the quantitative expressions of these three domains,
making for an extensive account of problem-domain cognition. The rigorous
assessment of perceptual organization presented here holds the promise of
serving as a sort of high-resolution guidance system for deploying cognitive
treatment interventions.

If automatic-controlled processing (a certain representation of which
dates all the way back to Hylan, 1903) is perhaps the most ubiquitous
multicomponent construct in clinical cognitive science, then its constituent
component of processing capacity may be the most commonly invoked
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concept in the field. Described by Neufeld, Townsend, and Jette in chapter 7
is a mathematically established definition and measure of processing capacity.
This index is elemental to signatures of capacity properties of investigated
processing systems. The presented indexes provide the diagnostic power
and dynamic processing detail over intervals of cognitive task transaction,
necessary for embarking on an unambiguous determination of capacity char-
acteristics, and their changes across examined groups. The method is used
to characterize anxiety-prone individuals' visual-search capacity and its pat-
tern of deployment over a visual array as well as memory-search capacity
among paranoid schizophrenia patients. In the former instance, a benchmark
of optimal capacity deployment once more is provided by a normative model,
against which the descriptive models of both less and more anxiety-prone
groups are compared.

Addressing clinical symptoms directly, computational modeling, with
its computer simulation of perceptual and cognitive neurocircuitry, is used
effectively in chapter 8 by Hoffman and McGlashan to manufacture salient
aspects of schizophrenia (auditory hallucinations). Many signs and symptoms
of psychopathology have been mimicked to date using computerized neural
networks to represent what might be called the "computational nervous
system." The present work is exemplary in its modeling of the neurophysio-
logical footprints of abnormalities in developmental milestones that accord
with established findings for schizophrenia. Results from theoretically
prescribed perturbations of neuroconnectionist architecture persuasively
converge with related speech-perception data and observed patterns of syn-
aptic elimination.

Using techniques spawned by nonlinear dynamical systems theory
(chaos-theoretic methods), in chapter 9, Heath, Heiby, and Pagano analyze
the variation that takes place in mood over an extended measurement
period. Methods are adapted to the limitations of repeated measurements
from human participants, specifically limited observation sample size and
ordinal data properties. Described methods distinguish between normal and
pathological mood variation using deterministic-chaotic and Gaussian-
stochastic-noise markers. It is intriguing that normal variation is more
proximal to the latter, a result that is considered to express a greater degree
of adaptive spontaneity in response to environmental exigencies. The report
bespeaks groundbreaking, almost futuristic, but decidedly rigorous time-
series-endowed directions of clinical assessment of mood and other disorders.
Apropos of cognition, observe that in the literature on the topic, affect has
a close tie to cognitive processes and, like neuroconnectionist modeling,
the behavioral science home of nonlinear dynamical systems modeling is
squarely in the field of cognitive science (including perception, psycho-
physics, and information processing).
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As a final observation, note that embedded in these contributions is
a general quantitative toolbox. The particular instantiations with selected
clinical problems and data by and large are cases in point.
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1
USING MULTINOMIAL

PROCESSING TREE MODELS TO
MEASURE COGNITIVE DEFICITS

IN CLINICAL POPULATIONS

WILLIAM H. BATCHELDER AND DAVID M. RIEFER

Multinomial processing tree (MPT) models are a well-studied class of
mathematical models that can be used as measurement tools to study cogni-
tive processes. They are structurally simple statistical models that can be
expressed as tree diagrams, with cognitive processes represented as parameters
of the model. Estimates of the values of the parameters provide insight into
the separate contributions of different cognitive factors. This can be of great
help to researchers trying to develop theoretical explanations for various
cognitive phenomena. Many MPT models have been developed by experi-
mental psychologists to study a wide range of theoretical issues, and

We are grateful for the help of Jared Smith in some of the points developed in the "Individual
Differences in Multinomial Processing Tree Modeling" section. William H. Batchelder acknowledges
the support of National Science Foundation Grant SES-0136115 to A. K. Romney and William H.
Batchelder, coprincipal investigators, and Grant IIRG-03-6262 from the Alzheimer's Association to
William H. Batchelder and E. Batchelder, coprincipal investigators.
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Batchelder and Riefer (1999) provided a review of these many experimen-
tal applications.

A recent trend in this field is the use of MPT modeling to study cognitive
deficits in clinical populations. In this application, the parameter estimates
from the model provide information about which cognitive factors differ be-
tween clinical groups and their controls. An overview by Batchelder (1998)
offers the most general treatment of this approach, and examples can also be
found in Batchelder, Chosak-Reiter, Shankle, and Dick (1997) and Riefer,
Knapp, Batchelder, Bamber, and Manifold (2002), as well as a number of
additional examples discussed in the section of this chapter titled "Applica-
tions of Multinomial Processing Tree Modeling to Clinical Populations." As
Batchelder (1998) described, applying MPT modeling to the study of clinical
populations raises a number of methodological issues and potential problems,
the most notable of which is the problem of individual differences. Experimen-
tal work with MPT models typically involves pooling data across participants
and computing parameter estimates for the grouped data. Individual differ-
ences are often ignored in this type of work. In contrast, with groups from
clinical populations, within-group individual differences are likely to be pres-
ent. In these cases, it is important to have methods of detecting individual
differences and, if they are present, to have options for dealing with them.

Many articles have described the statistical properties of MPT models
(e.g., Baldi & Batchelder, 2003; Batchelder & Riefer, 1990, 1999; Hu &
Batchelder, 1994; Knapp & Batchelder, 2004; Riefer & Batchelder, 1988;
Riefer et al., 2002), but only a few have addressed the issue of individual
differences in any detail (e.g., Batchelder, 1998; Klauer, 2006; Riefer &.
Batchelder, 199 Ib). Thus, as clinical applications of MPT modeling become
more popular, the time seems right for a general discussion of these issues.
The rest of this chapter is organized as follows. First, we give a brief overview
of the formal structure of MPT models. Next, we provide a comprehensive
review of the different applications of this type of modeling to clinical
populations in a variety of experimental paradigms. We then present a
detailed discussion regarding how MPT models can be used to study clinical
populations in cases where there are participant and/or item differences. In
particular, we show how to test for individual differences within a clinical
group, and we outline some of the options for addressing these differences
if they exist. Last, we offer specific suggestions for researchers who wish to
study clinical groups with MPT models.

BRIEF REVIEW OF MULTINOMIAL PROCESSING TREE MODELS

MPT models are developed for experimental paradigms that lead to
categorical data; namely, where the responses of participants in an experi-

20 BATCHELDER AND RIEFER



ment can be described in terms of frequency counts in a set of disjoint and
exhaustive response categories. In a typical experimental application, each
of N participants makes a response to each of a set of M items (possibly on
each of a series of trials). The data usually come from pooling responses
over participants and items (however, in the section titled "Individual
Differences in Multinomial Processing Tree Modeling" we look at the case
of individual differences in great detail). Therefore, if there are K categories,
Q, C2, •-., CK, the pooled data consist of frequency counts, Fb F2, ..., FK,

K

where Ffe = N • M.

The values of the parameters of an MPT model measure the capacities
to perform various cognitive skills that are postulated to underlie the pro-
cesses involved in response production. For example, in a simple memory
experiment, one might have a model that defines parameters for the capacity
to attend to presented items, 6>b to store items in memory, 6>2, and to retrieve
items from memory, 03. More generally, each parameter 0S of an MPT model
represents the probability that a particular processing event occurs at an
appropriate point during processing and, correspondently, 1 - 9S represents
the probability that the processing event fails to occur at that point. From
a statistical perspective, the parameters are latent (unobserved) variables
in an MPT model that combine probabilistically to generate the manifest
(observed) category frequencies. Because the parameters refer to probabilities
of latent cognitive events, they take values in the interval (0,1).

Basically, each MPT model postulates that observed categories result
from processing branches (or paths) consisting of a sequence of latent
occurrences or nonoccurrences of hypothetical processing events. Each oc-
currence or nonoccurrence is quantified, respectively, by a corresponding
9, or 1 - 9S. Each such branch in the tree can be viewed as a sequence of
processing links, and the probability that a particular branch occurs during
processing is the product of the parametric probabilities that appear on the
links that make up that branch. Following our earlier example, suppose a
model has a branch in which a participant attends to an item, stores it in
memory, and fails to retrieve it. This branch would have the probability
Q\di ( \ - #3), and if it occurred, then the participant would fail to recall
the item. In MPT models, it is possible that several branches can lead to
the same observed category; for example, a branch in which a participant
fails to attend to an item would have the probability 1 - 0b and it would
lead to a recall failure as well.

The probabilistic assumptions of an MPT model are expressed in a
special binary tree structure. These trees are described in detail with examples
given by Batchelder (1998) and Batchelder and Riefer (1999). Examples
in this volume include the pair-clustering model of this chapter (Figure 1.1)
and the storage-retrieval model by Chechile (see chap. 2, this volume,
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F/gure 7.7. A multinomial processing tree diagram for the pair-clustering model.

Figures 2.1 and 2.2). Any MPT model postulates a set of S parameters to
explain the distribution of category counts over K categories. The model
defines a probability distribution over the categories for each of its parameter
values 6 = (9\, 92, ..., Os) in the parameter space ©, where 0 = (0,1 )s.
Specifically, let

= (Pi, (1.1)

be the set of all possible probability distributions over the K observable
categories. Then an MPT model specifies a function that determines, for
each 6e0, a single member of AK, denoted by (pk(Q))k = i- In general, the
tree structure implies a special form of the ^(6) given by

\
pfc(9) = £ Pr(B!fc; 6),

i= 1
(1.2)

where Pr(Bl((; 0) is the probability of the ith out of Ij, branches (or paths)
leading to category Q. Further, the probabilistic rules illustrated earlier in
the example lead to a general expression for the branch probabilities given by

Pr(Bik;8) = (1.3)
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where afc and bfc are nonnegative integers. The summation sign in Equation
1.2 shows how branch probabilities are combined when more than one
branch of the tree terminates in any particular category, and the probability
of any branch is just the product of terms of the form 9, and 1 - 9S corres-
ponding to the links on that branch. Thus, a,k and bk are integers representing
the number of times 6, and 1 - 9S, respectively, appear on links on branch Blk.

Under the assumption that observations are independently and identi-
cally distributed (i.i.d.), and given the earlier assumption that each of N
participants responds to M items, then the category counts have a multinom-
ial distribution given by

Pr(F!,F2, ...,FK) = ( N . M ) ! n . (1.4)
k = i rfc-

Equation 1.4 is a parameterized multinomial distribution, and given data
in the form of category counts it is possible to infer facts about the unknown
(latent) parameters of the model. Any of the major approaches to statistical
inference, including both classical (frequentist) and Bayesian methods, can
be used to analyze MPT models; however, in this chapter we stress only
classical approaches based on the likelihood function because they are most
familiar to psychological researchers.

In using an MPT model to measure (estimate) uniquely the parameters
of the model, it is necessary that the model be identified. An MPT model
is identified in case different parameter vectors in 0 always lead to different
probability distributions over the categories; that is, the function from the
model parameter space, 0, into the category probabilities, AK, is one to one.
Identification of an MPT model allows recovery of unique estimates of the
parameters for each set of category frequencies, which is a crucial aspect of
any measurement method. Agresti (2002); Bishop, Fienberg, and Holland
(1975); and Read and Cressie (1988) are good sources of the classical
statistical theory of parameterized multinomial models, and Batchelder and
Riefer (1999), Hu and Batchelder (1994), and Riefer and Batchelder (1988)
have discussed this theory in regard to MPT models.

There are several sources of software for analyzing MPT models that
are free and Web accessible, including software developed by Xiangen Hu
and described by Hu and Phillips (1999; see http://irvin.psyc.memphis.edu/
gpt/). Hu's software enables an investigator to represent the model as a
specific set of equations like Equations 1.2 and 1.3. Then one can enter
one or more sets of categorical data for the model and perform point esti-
mation and confidence -interval estimation of the parameters, conduct
goodness-of-fit tests, and test hypotheses about the model's parameters both
within one group and between groups. Hu's software also enables the investi-
gator to simulate data from a model, where the possibility that different
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participants may have different parameter values is allowed (see the "Individ-
ual Differences in Multinomial Processing Tree Modeling" section). These
simulations allow one to obtain point and confidence interval estimates
when the sample size is not large enough to use asymptotic methods based
on the likelihood function. Other software packages include AppleTree for
Macintosh computers by Rothkegel (1999) and HMMTree by Klauer (2006;
see http://www.psychologie.uni-freiburg.de/Members/stahl/HMMTree).

APPLICATIONS OF MULTINOMIAL PROCESSING TREE
MODELING TO CLINICAL POPULATIONS

Multinomial Processing Tree Models for Measuring Storage
and Retrieval

Storage and retrieval are cognitive processes that are fundamental
components of human memory. In our laboratory (Batchelder & Riefer,
1980, 1986), we have developed and tested a model for separately measuring
storage and retrieval that uses a pair-clustering paradigm, in which the study
list contains pairs of words from semantic categories (e.g., dog, horse). People
attempt to memorize the list and then freely recall as many words as they
can in any order. Recall of each category pair can be tabulated into one of
four mutually exclusive recall events: (a) Cb both items recalled consecu-
tively; (b) C2, both items recalled, but not consecutively; (c) C3, one and
only one item recalled; and (d) C4, neither item recalled. The pair-clustering
model assumes that these recall events are a function of three cognitive
processes, represented as parameters of the model. Parameter c is the probabil-
ity that the two category items are clustered and that the cluster is stored
in memory at the time of test. Parameter r is the conditional probability
that a cluster is retrieved from memory, given that it is stored. Parameter
u is the probability that a single item is stored and retrieved, given that it was
not clustered. Basically, parameters c and r constitute the model's measures of
storage and retrieval, respectively, whereas u is an ancillary parameter that
combines both storage and retrieval processes.

According to the model, successful cluster storage and retrieval result
in both items of the pair being recalled consecutively (Ci). If a pair is
clustered and stored in memory but not retrieved, with the probability
c(l - r), then neither item is recalled (C4). And if a pair is not stored in
memory as a cluster, with probability 1 - c, then each item in the pair can
be stored and retrieved independently (with probability u for each item).
Thus, category C2 represents the event that both items are recalled, but not
consecutively (an approximation discussed in Batchelder & Riefer, 1986,
1999), and category C3 represents the case that exactly one of the two items
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is recalled. Notice that failure to recall a category pair (C4) can result from
either a failure of storage, (1 - c)(l - u)1, or a failure of retrieval, c(l - r).
From the above equations, separate estimates for parameters c, r, and u
can be derived from the frequencies over the four recall categories. These
assumptions are represented in the tree diagram in Figure 1.1.

The exact equations expressing the recall events as a function of the
model's parameters can be derived directly from the tree in Figure 1.1. These
equations can be written in the form of Equations 1.2 and 1.3 as

Pr(Q) = cr
Pr(C2) = ( l - c )u 2 (1.5)
Pr(C3) = (1 - c) u(\ -u) + (I- c)(l - u)u
Pr(C4) = c(l -r) + (1 -c)(l -u)2.

The validity of the pair-clustering model has been established through
its successful application to a range of storage-retrieval issues in human
memory, including the effects of spacing, providing category cues at recall,
retroactive inhibition, presentation rate, and part-list cueing (for a review,
see Batchelder & Riefer, 1999). However, it can also be used to examine
memory deficits in different participant populations. For example, Riefer and
Batchelder (199la) used the model to show that memory deficits exhibited by
elderly adults are due more to problems with retrieving information from
memory than with the storage of information. More recently, Riefer et al.
(2002) used the pair-clustering model to examine storage and retrieval
deficits in two well-studied clinical populations: (a) schizophrenics and
(b) alcoholics with organic brain damage. A great deal of research on both
schizophrenics and organic alcoholics has shown that both groups suffer
memory problems compared with normal control individuals. One issue
addressed by theorists in this area is whether these deficits are mainly due
to problems with storage or retrieval, but, as Riefer et al. pointed out,
research and theorizing on this issue are mixed and inconclusive. A number
of empirical measures have been used in an attempt to disentangle the
separate contributions of storage and retrieval factors in clinical populations,
including the contrast between recall and recognition, cued recall of seman-
tic clusters, incidental learning tasks, and forgetting rates. These measures
have often produced conflicting results, and thus there is no theoretical
consensus on the storage—retrieval locus of these memory deficits, with some
theorists concluding that the problem is mainly one of storage and others
that the problem lies with retrieval.

It is under these circumstances that formal modeling can help clarify
these theoretical issues by providing a more direct measure of the underlying
cognitive processes in question. Each group in Riefer et al.'s (2002) study
memorized a list of 20 category pairs over six study-test trials, and the pair-

MULTINOMIAL PROCESSING TREE MODELS 25



clustering model was used to estimate the storage and retrieval parameters
for both groups. Riefer et al. concluded that the schizophrenics had both
storage and retrieval deficits compared with the control group. However,
the deficit was stronger for retrieval, occurring on early trials and continuing
throughout the later trials as well. In contrast, the differences in storage
between the schizophrenics and the control participants were not as pro-
nounced and became statistically significant only on the later trials. A
similar pattern occurred for the organic alcoholics, with retrieval deficits
being stronger than storage deficits and occurring on earlier trials. What
was particularly striking about the organic alcoholics was their performance
across the six study-test trials. Prior research has shown that alcoholics with
organic brain damage often exhibit minimal improvement in their recall of
a list of words even after multiple presentations of that list. Riefer et al.'s
modeling analysis revealed that this deficit is due to problems with retrieval,
not storage. Although the organic alcoholics showed modest improvement
in their storage of clusters over trials, their ability to retrieve clusters was
low and lacked improvement across the six list presentations.

Another example of an MPT model for measuring storage and retrieval
is that of Chechile, described in chapter 2 of this volume. Chechile's model
has been used to explore the storage-retrieval bases of a wide variety of
memory phenomena, including the serial position curve, interference effects,
state-dependent memory, and others (for a review, see Chechile, 2004).
However, as demonstrated in chapter 2, it can also be used to examine
deficits of storage or retrieval processes in clinical populations. Chechile's
application of the model to children with developmental dyslexia suggests
that children who are poor readers have poorer storage but better retrieval
than average readers, a pattern of results that was not evident in the standard
empirical analysis of the data.

Modeling the Results of Neuropsychological Test Batteries

Understanding the cognitive deficits in the early stages of Alzheimer's
disease (AD) and other forms of dementia is crucial is any attempt to
diagnose these afflictions. One assessment device that has been used toward
this end is the neuropsychological test battery of the Consortium to Establish
a Registry for Alzheimer's Disease (CERAD; Morris et al., 1989), which
incorporates many basic tests of cognitive abilities. However, these measures
may be limited in their ability to detect the early stages of these diseases.
Moreover, without a substantive model it is difficult to establish which
specific cognitive processes exhibit deficits in these clinical groups. To
explore the usefulness of mathematical modeling in the assessment of AD,
Batchelder, Chosak-Reiter, et al. (1997) developed an MPT model based
on the free-recall task of the CERAD. In this task, individuals attempt to
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memorize and recall a list of 10 words across three separate study-test
presentations. The model itself is based on earlier Markov learning models
(see Greeno & Bjork, 1973) that assume that memorized items can be in
one of three levels of storage: (a) an unstored state; (b) an intermediate
state, where items are weakly stored and retrieval may be difficult; and (c) a
long-term memory state, where storage is stronger and retrieval is more
likely. The model contains four parameters that describe the transitions
among the states and the probability of retrieval from each state. The data
categories for the model consist of the 8 (23) possible patterns of recall
success or failure across the three test trials, and the MPT model derives
the probabilities of these categories as a function of the four parameters of
the model.

Batchelder, Chosak-Reiter, et al. (1997) analyzed data collected by
the University of California at Irvine Alzheimer's Disease Research Center
to form groups consisting of individuals diagnosed with AD, those diagnosed
with vascular dementia (VD), and a control group of age- and education-
matched nondemented individuals. Each of the two clinical groups consisted
of four subgroups that differed in the severity of the disease, ranging from
very mild to severe as measured by the Mini-Mental State Exam (Folstein,
Folstein, & McHugh, 1975). The important result was that the model's
analysis was able to differentiate between clinical groups even when standard
empirical analyses did not. For example, the model was able to reveal
significant differences between the very mild AD and VD groups compared
with the control group, even when these clinical groups had virtually the
same levels of overall recall performance over the three study—test trials.
In particular, the AD group showed storage deficits compared with the VD
group, but these were compensated by retrieval advantages for the AD group.

Another test that has been used to assess cognitive capacity in AD
patients, in addition to the neuropsychological tests from the CERAD, is
the Boston Naming Test (Kaplan, Goodglass, & Weintraub, 1983). This
test consists of a series of line drawings of familiar objects, and individuals
are asked to provide the name for each object. Chosak-Reiter (2000) devel-
oped and tested an MPT model that is capable of measuring underlying
cognitive processes in this task. She applied the model to AD patients and
individuals with cerebrovascular dementia, plus a comparable control group.
Like Batchelder, Chosak-Reiter, et al.'s (1997) study, Chosak-Reiter's model
was able to differentiate between very mild levels of AD and cerebrovascular
dementia compared with the control group.

Source Monitoring

Source monitoring is a popular experimental task in cognitive psychology
in which items are presented from multiple sources, and individuals must
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keep track of, or monitor, the correct source for each item (M. K. Johnson,
Hashtroudi, & Lindsay, 1993). In a typical source-monitoring experiment,
participants study a list of items coming from two sources (e.g., List 1 vs.
List 2, or pictures vs. words). On a final recognition test, they are shown
previously presented items plus new distractors and are asked to indicate
which items are from Source A, which are from Source B, and which are
new distracters. Because there are three possible responses to three types of
items, the pattern of correct and incorrect identifications can be arranged
in a 3 X 3 data table, which provides a rich set of data for formal modeling.
In our lab, we have developed and tested an MPT model (Batchelder &
Riefer, 1990) that is capable of taking source-monitoring data and deriving
estimates of two underlying cognitive capacities: (a) the ability to detect
whether an item was an old item (item detection) and (b) the ability to
discriminate the source of detected items (source discrimination). In addi-
tion, the model is able to estimate the biases used to respond when the
items are not detected or are detected but not discriminated.

In our original application of this model, we tested it by applying it
to a series of previously published studies. One of these studies was conducted
by Harvey (1985), who examined schizophrenics in a variation of source
monitoring called reality monitoring. In a reality-monitoring task, people
must discriminate between external items that are presented from an outside
source and internal items that they generate themselves. Harvey and others
have speculated that the thought disorders associated with schizophrenia
may be the result of deficits in reality monitoring. To test this, Harvey
presented a list of words in a source-monitoring task to schizophrenics and
normal control participants. In a mixed list, half of the time the participants
had to say the words out loud (external), and the other half of the time
they just had to think of the word (internal). The final memory test required
participants to indicate whether a word had been spoken aloud or thought.
Using traditional empirical measures, Harvey observed very poor source
discrimination for thought-disordered schizophrenics compared with normal
control individuals or schizophrenics without thought disorders. Batchelder
and Riefer (1990) reanalyzed Harvey's data using their source-monitoring
model, which revealed essentially the same pattern of results as Harvey
observed. What was interesting about the model's analysis, however, was
that the source-discrimination parameter for the thought-disordered schizo-
phrenics was so low that source-memory performance was essentially at
chance levels (i.e., a value of the source-discrimination parameter equal
to zero).

More recently, additional applications of MPT models for source moni-
toring to schizophrenics have been conducted by Keefe and associates (Keefe,
Arnold, Bayen, & Harvey, 1999; Keefe, Arnold, Bayen, McEvoy, & Wilson,
2002). The Harvey (1985) study demonstrated that schizophrenics have
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trouble differentiating between internal and external sources of information.
Keefe et al. (1999) explored whether this source-monitoring deficit also
extended to external versus external, as well as to internal versus internal,
source discriminations. Using a modification of the original Batchelder-
Riefer (1990) model, Keefe et al. (1999) found that schizophrenics exhibited
deficits in source discrimination for all of the source comparisons. This is
an important result, because it indicates that the problems that schizophren-
ics have with source monitoring are more far reaching than the reality-
monitoring deficits demonstrated by Harvey. In a related study, Aleman,
Bocker, Hijman, de Haan, and Kahn (2003) found no significant difference
in the item-detection parameters of the model between schizophrenics who
exhibit hallucinations and those who do not.

Keefe et al. (1999) also explored another issue relevant to source
monitoring: the role of response bias. In a source-monitoring task, people
must identify old versus new items and assign them to different sources.
Response bias can play an important role in this process, because people
may have a tendency to favor their responses toward one source over another
or have a tendency to exhibit a large number of false identifications to new
items (Riefer, Hu, & Batchelder, 1994). One of the advantages of formal
mathematical models of source monitoring is that they are capable of sepa-
rately measuring, and thus factoring out, the various response biases inherent
in this task. This is an especially important issue when examining clinical
populations, because it can reasonably be expected that clinical patients
may operate under response biases that are different than the ones used by
normal control participants. Keefe et al. (1999) observed that schizophrenics
in their study did in fact have significantly different response biases than
controls. Specifically, they found that when the schizophrenics could not
remember the correct source of information, they exhibited a bias toward
guessing that the information came from an external source, even when it
actually came from an internal source (see also Nieznanski, 2005).

Although most of the clinical applications of source-monitoring models
have been conducted with schizophrenics, a few studies have applied them
to other clinical populations. For example, Batchelder and Riefer (1990)
also analyzed a study by Harvey (1985) that examined source memory in
manic patients, and Schmitter-Edgecombe, Marks, Wright, and Ventura
(2004) used MPT modeling to study source-monitoring deficits in people
with severe closed-head injury. Similarly, von Hecker and Meiser (2005)
used an MPT model for multiple source dimensions to examine source
memory in depressed college students. They observed no source-memory
differences between depressed and nondepressed students for relevant stimu-
lus dimensions but found that depressed students actually exhibited superior
source memory for irrelevant source dimensions. The authors contended
that these results were inconsistent with a capacity-reduction explanation
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of depression and instead supported the hypothesis that depression leads to
a "defocused" mode of attention in which attentional resources are widely
distributed across all stimulus dimensions.

Another interesting application of the source-monitoring model comes
from a study by Simons et al. (2002), who examined source-monitoring
deficits in patients with semantic (or frontotemporal) dementia. Unlike
prior applications of the source-monitoring model, which examined group
data, Simons et al. (2002) derived parameter estimates for each patient
individually. The model's analysis showed that most patients with semantic
dementia did not exhibit any deficits compared with control participants
on either item detection or source discrimination. An exception to this
came from 3 patients with the highest level of impairment, who showed
deficits in item detection. Because parameter estimates were calculated for
each patient individually, Simons et al. were able to examine the correlations
between the model's parameters and other diagnostic variables. For example,
the value of the source-discrimination parameter was positively correlated
with performance on a neuropsychological battery of frontal lobe tests. In
contrast, source discrimination was uncorrelated with the volume of loss in
the hippocampus of each patient.

Process Dissociation

An experimental paradigm closely related to source monitoring is the
process-dissociation procedure (Jacoby, 1991, 1998). In this task, participants
are presented with items from two lists, A and B, and are then presented
with items from List A, List B, and new items on a memory test. Memory
is tested in one of two ways. In the inclusion task, participants are required
to say "yes" to items from either List A or List B and to say "no" to new
distractors. In the exclusion task they are asked to say "yes" only to List B
items but to say "no" to List A items as well as new items. The theory and
model behind process dissociation are that responding to items is a function
of two cognitive processes: recollection and familiarity. Recollection is repre-
sented by parameter R in the model and happens when an item is consciously
remembered. Familiarity is represented by parameter F and happens when
recollection fails but the item still seems familiar through automatic or
unconscious processes. Thus, for inclusion trials, the probability of saying
"yes" can occur either through recollection or familiarity, with the probability

Pr(yes/old) = R + (1 - R)F. (1.6)

However, if a participant makes an error by saying "yes" to a List A item
on the exclusion trial, that occurs when the item is not recollected but
seems familiar anyway, with the probability
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Pr(yes/old) = ( l -R)F. (1.7)

These two equations are in the form of Equations 1.2 and 1.3 and can
be used to estimate the values of R and F. In fact, it is easy to show that
Equations 1.6 and 1.7 arise from a very simple MPT model. Jacoby (1991)
interpreted R as a measure of conscious processing and F as a measure
of automatic or unconscious processing. Some theorists (e.g., Curran &
Hintzman, 1995; Erdfelder & Buchner, 1998) have criticized the core as-
sumptions behind Equations 1.6 and 1.7, including the assumption of inde-
pendence between the process represented by R and F. One important
criticism stems from the fact that the exclusion and inclusion tasks each
have a substantially different number of items requiring a "yes" response.
For this reason, Buchner, Erdfelder, and Vaterrodt-Plunnecke (1995), as
well as others, have developed more complex MPT models that expand on
Equations 1.6 and 1.7 to include differential response biases for the two
tasks. Bellezza (2003) also developed a series of MPT models to explore the
relationship between process dissociation and source monitoring.

Process-dissociation models based on Equations 1.6 and 1.7 have been
used to examine a wide variety of issues (for a review, see Yonelinas, 2002),
including applications to clinical populations. Probably the most common
clinical application has been in the study of conscious and automatic pro-
cesses in patients with various forms of amnesia. A common research finding
is that patients with amnesia exhibit cognitive deficits through explicit or
direct tests of their memory, but they show little or no memory impairment
on implicit or indirect memory tests. A number of studies using the process-
dissociation model have shown that this is because patients with amnesia
show deficits in conscious processing but not in automatic processing (e.g.,
Bastin et al., 2004; Hay, Moscovitch, & Levine, 2002). However, Yonelinas,
Kroll, Dobbins, Lazzara, and Knight (1998) warned that such conclusions
are suspect when the false-alarm rates differ between groups, which may
happen when clinical groups are compared with normal control individuals.
They reanalyzed the results from a number of studies using a modified
version of the process-dissociation model that incorporates signal detection
procedures to measure and correct for response bias. They concluded that
although amnesiacs showed large deficits in recollection compared with
control participants, they also showed smaller but reliable deficits in auto-
matic processing. In addition to the study of clinical amnesia, the process-
dissociation model has been used to examine other clinical groups, including
schizophrenics (Kazes et al., 1999; Linscott & Knight, 2001, 2004); patients
with AD (Adam, Van der Linden, Collette, Lemauvais, 6k Salmon, 2005;
Kessels, Feijen, & Postma, 2005; Knight, 1998; Koivisto, Portin, Seinela,
& Rinne, 1998; J. A. Smith & Knight, 2002); and individuals with develop-
mental dyslexia (McDougall, Borowsky, MacKinnon, &Hymel, 2005), acute
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distress disorder (Moulds & Bryant, 2004), epilepsy (Del Vecchio, Nei,
Sperling, & Tracy, 2004), depression (Jermann, Van der Linden, Adam,
Ceschi, &. Perroud, 2005), multiple sclerosis (Seinela, Hamalainen, Koivisto,
& Ruutianen, 2002), and Parkinson's disease (Hay et al., 2002).

INDIVIDUAL DIFFERENCES IN MULTINOMIAL PROCESSING
TREE MODELING

It is clear from the above review that MPT modeling is becoming
more frequent as a means for assessing clinical populations. However, most
MPT models in the literature were originally developed for basic theoretical
(as opposed to applied) research. Thus, the most common application of
MPT models has been to standard experimental paradigms in which several
groups of participants are each exposed to a set of items (Batchelder &
Riefer, 1999). In a typical experimental application, the participants are
drawn from an approximately homogeneous group, such as college students
taking introductory psychology. In turn, the items are drawn from a homoge-
neous set defined by narrow ranges on such variables as word length, fre-
quency of occurrence, and concreteness ratings. Differences between groups
are generally traced to differences in the experimenter-controlled manipula-
tions that define each group rather than systematic differences between the
participants in the groups. Consequently, it has become standard practice
to pool observations within a group over items and, except in cases where
each participant provides many observations, to also pool the data over
participants. When such aggregation is done, each group is treated (approxi-
mately) as providing a large set of i.i.d. observations that fall into the
categories of the MPT model. In this case, inferential statistics for the model
are not plagued by small sample sizes. However, despite efforts to achieve
item and participant homogeneity, sometimes there remain reasons to be
concerned with pooling over participants in experimental studies using MPT
models (e.g., Batchelder & Riefer, 1999; J. B. Smith & Batchelder, 2003).

When using MPT models to assess differences in cognitive abilities
among special populations, concerns about item and participant homogene-
ity not only are different than those in experimental studies but also can be
even more severe (for a detailed analysis of these differences, see Batchelder,
1998). Unlike a typical experimental study, in a study involving special
populations each group is defined by properties of the participants, such as
age range; clinical classification in the Diagnostic and Statistical Manual of
Mental Disorders (American Psychiatric Association, 2000); or neuropsycho-
logical tests such as the Mini-Mental State Exam, which is used to indicate
levels of dementia. It is a necessary consequence of creating groups from
special populations that there will be within-group variation on the classifi-
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catory variables used to define the groups. Important covariates are also
likely, such as level of education, gender, and ethnicity, any of which may
contribute to within-group differences even if they are not part of the
classification criteria for defining groups. Because there are several sources
of within-group variation with special populations, it is therefore not enough
simply to apply an MPT model to the pooled data to draw conclusions
about group differences. It is also necessary to examine the data for within-
group differences and provide some statistical analyses that control for them.

One way to assess within-group variability is to determine whether
the conclusions based on the pooled data are robust in simulations where
the parameters underlying the observations are allowed to vary from partici-
pant to participant. This method was used in Riefer et al.'s (2002) study,
discussed earlier, in which groups of schizophrenics and organic alcoholics
were compared with appropriate control groups. The pair-clustering MPT
model in Equation 1.5 was used to analyze the data to see if there were
between-group differences in storage and retrieval capacities. First, the data
within each group were pooled over both items and participants and analyzed
in the usual way using Hu's software, which includes a simulation option
to examine the possible effects of individual differences within a group. The
procedure involves simulating and analyzing many sets of data, where the
parameter values vary from participant to participant by drawing them from
beta distributions. The beta distribution is a flexible family of parametric
distributions useful for modeling individual differences on the interval (0,1)
(Evans, Hastings, & Peacock, 2000).

To illustrate, let 95 be one of the parameters in an MPT model, and
assume that participants' values of 0S are drawn i.i.d. from the beta distribu-
tion given by

flTls-l , .
(1.8)i , . s , ; S - r{ , r, , s - s

I (Ti jS) 1 (T2,s)

where the two parameters of the beta distribution, TljS and T2|S, are in a
parameter space O consisting of pairs of positive numbers, that is,
(T~i iS,T2]S) e O = (0,°°)2, and F(.) is the well-known gamma function (e.g.,
Evans et al, 2000). In the following equations, we use the facts that for
the beta distribution in Equation 1.8, the mean is given by

and the variance is given by

p ( p \ n _ p v f l ^ (i^Q)
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The analysis using Hu's program is done with the constraint that the
mean of each parameter's distribution is matched to its maximum likelihood
estimate (MLE) on the basis of the pooled data, and the variance is set to
a "moderate" value on the basis of prior studies of the pair-clustering model
in Riefer and Batchelder (1991b). For each of the many data sets simulated
in this way, the software enables one to conduct the same series of hypothesis
tests and goodness-of-fit measures that were done with the pooled data from
the experiment. In this way, one can see which scientific conclusions based
on the pooled data are supported by the simulations.

In the case of Riefer et al. (2002), it was shown that despite changes
in the actual values of some of the statistics, the main statistical inferences
from the analyses based on the pooled data remained essentially unchanged
with the simulated data. Because the scientific conclusions were unchanged
when moderate amounts of parameter heterogeneity were introduced into
the data, it was argued that the approximations based on the original pooling
of the data over participants were not misleading. However, there are two
problems with the simulation approach viewed as a general way to deal
with individual differences in MPT model analyses. First, the simulation
option requires one to inject a fixed amount of parameter variability across
participants, but unfortunately, there is no way to know a priori just how
much variation in parameters is needed to match the within-group variation
in latent parameters likely to be present in the data. Second, unlike the result
in Riefer et al. (2002), the statistical inferences made from the simulated data
might not have matched the inferences made by pooling the data over
participants. In this case, one would not be able to draw any conclusions
from the analyses of the pooled data without some additional procedure.

In this section, we provide several approaches to handle the problem
of individual differences. First, we describe a test for the presence of
individual differences in the participants that can be applied to the raw
category frequencies. We then discuss three procedures for dealing with
individual differences if they are present. The first of these provides a
way to analyze the variation in the individuals' frequency count vectors
to suggest a level of variance to use in the simulation approach. The
second approach involves analyzing each participant's data separately with
an MPT model. This method must deal with small sample sizes for each
participant, and this means that the parameters estimated for each partici-
pant may be quite variable. However, the approach provides display methods
that allow one to see trends across participant's in each group. Finally,
we discuss an approach, called hierarchical modeling, that actually models
individual differences within an MPT model. This enables one to analyze
the pooled data with an MPT model that incorporates individual differ-
ences directly.
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Testing for Individual Differences

It is possible to develop a straightforward test on the raw category
frequencies to see if there are individual differences within a group. Suppose
that each of N participants makes a response to each of M items. Also
assume that each response is classified into exactly one of K categories,
C = {Ci, C2, . . . , CK}. Let Xjj = k if the category of the response of participant
i to item j is Ck, for i = 1, 2, . . . , N; j = 1, 2, . . . , M; and k = 1, 2,
. . . , K. These participant-item response random variables can be arrayed
in a matrix, X = (Xjj)NxM . We assume that the X;j are mutually stochastically
independent; however, they may not be identically distributed. The indepen-
dence assumption states that for any realization of X given by (X^N x M =

N M

NxM = (X;J)NXM] = n ni = i i = i
The data for the participants can be arrayed in an N x K contingency

table, where the t'lcth entry, F: k, is the number of times that participant i's
response was in category k, that is, the number of times X,, = k. The hypothesis
that there are no individual differences is equivalent to the assumption that
the N X K contingency table exhibits independence, and one method for
testing this is the well-known chi-square test (e.g., Hays, 1981; Moore &
McCabe, 1999). The test statistic compares the observed values in the
table against the expected values under the independence assumption. The

X/f F
expected values are given by E(F^) = j-; — rj = Fk/N, where Fj, =

and the test statistic is given by

/ •Fk/N

Under the independence hypothesis, which in this case states that there
are no participant differences in the use of categories, X2 has an approximate
chi-square distribution with degrees of freedom given by df = (N - 1) •
( K - l ) .

If the value of X2 falls well into the upper tail of the chi-square
distribution with the above degrees of freedom, then the identically distrib-
uted assumption can be rejected, and this means that there are significant
amounts of individual differences in the data. For X2 to approximate a chi-
square distribution, there must be sufficient numbers of observations in the
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EXHIBIT 1.1
Value of the Statistic X2 Computed for Each Learning Trial for Participants

With Schizophrenia in Riefer et al. (2002)

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6

123.1 172.5 259.4 307.2 306.6 310.7

contingency table. In most statistics texts, a rule of thumb is offered for
when it is reasonably accurate to use the chi-square distribution to test for
independence in an R X C contingency table. For example, Moore and
McCabe (1999, chap. 9) stated that the chi-square statistic can be used if
the average count per category is five or more and each category has at
least one count. Because there are M items and K categories, a necessary
condition to use the chi-square distribution is that M/K> 5. If this condition
is not satisfied, or if there are zero cells, one can use a nonparametric
permutation test called the Fischer exact test that can be applied to sparse
contingency tables to test for independence (e.g., Agresti, 2002; Hays, 1981).

To illustrate the chi-square test, consider the experiment discussed
earlier that was reported by Riefer et al. (2002) in which schizophrenics
were compared with suitable control individuals. We applied the test in
Equation 1.12 to each of the six trials of the group of schizophrenics. There
were 20 items per participant and 4 categories, so the average count per
category was 5, satisfying one of the conditions for the use of the chi-square
test. There were 29 participants, so the test had 84 degrees of freedom. The
values of X2 are reported in Exhibit 1.1 for each trial. Because the critical
value for this test at the p = .01 level is 117.4, we can comfortably reject
the hypothesis of no individual differences in the participants, and in fact
the evidence for participant heterogeneity is seen to increase over the first
few trials. This increase is likely due to the different learning rates of the
participants as well as differences in storage and retrieval capacities. The
data in Exhibit 1.1 suggest that the step of pooling over participants in
analyzing the data with the pair-clustering model is questionable, and in
the case of this study the subsequent analysis using the simulation approach
discussed earlier in this section was crucial in justifying the conclusions
drawn from the pooled data.

Calibrating Hu's Simulation Subroutine

When the test in Equation 1.12 rejects the hypothesis of participant
homogeneity, it is possible that a more general hypothesis holds, namely,
that each individual's frequency counts come from the so-called Dirichlet-
multinomial (D-M) distribution (N. L. Johnson & Kotz, 1969; Mosimann,
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1962), also called the compound multinomial distribution. In this section, we
describe the D-M distribution and show that we can use it to suggest
values of the variances in the beta distribution to use in applying Hu's
simulation option.

In the context of a Bayesian approach, the Dirichlet distribution is
often used as a prior distribution for the category probability vector p =
(ft)i XK> an approach that Chechile uses in chapter 2 of this volume. In our
application, we regard the Dirichlet distribution as a model of how the
category probabilities vary from participant to participant. For the Dirichlet
distribution, the probability of any pattern of probabilities for a participant
is given by

where the parameters of the Dirichlet distribution satisfy ak > 0 for
k = 1, 2, ..., K, and a = 2^CXj<. Actually, it is easy to see that the beta
distribution in Equation 1.8 is a special case of the Dirichlet distribution
in Equation 1.13 for K = 2.

The D-M distribution combines the Dirichlet distribution with the
multinomial distribution. In particular, if we assume that the N participants'
probabilities, p; = ( f r j J ixK, are i.i.d. from a Dirichlet distribution, and that
the N category frequency count vectors, Ff = (F^)^ = j, are independent and
multinomially distributed with the sampled probabilities, then it follows
that the N count vectors are i.i.d. from the D-M distribution given by

P r f F _ / p \ K v _ Mi r(«) fr Y(ak + fij ,pr(F - <Fk)fc = 1) - - — M) 11 r(«k) ' (L14)

fc= 1

and this distribution has K parameters, the «)<, instead of the (K- 1) category
probability parameters in Equation 1.1 for the multinomial distribution.

The D-M distribution has category means given by E(Fk) = MocJ
cxE(Fk) and variances (Mosimann, 1962):

(1.15)

Recall that from the multinomial distribution, the variance of the counts
, . . , E(Fk)[M - E(Fk)] _ . 1 ., , ,

in any category k is given by — . Equation l.lj shows that

the D-M distribution predicts that the variances of the category counts have
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greater dispersion than expected from the multinomial distribution, and this
overdispersion is measured by the right-hand-most factor in the equation.

It is useful to fit the D-M distribution to the category frequencies of
the participants, because the result can suggest values of the variances of
the beta distribution to use in the simulation option of Hu's software. One
way to obtain estimates for the parameters of the D-M distribution is to
maximize a likelihood function based on Equation 1.14. This approach
requires access to computational software and is described in Batchelder and
Smith (2003). For many purposes, a simple method-of-moments approach to
estimation is to use the category means from the data and estimate (X by
solving Equation 1.15. The estimate (X is related to the overall amount of
variance in the underlying category probabilities in the sense that the
variance is a decreasing function of ex. Our suggestion for calibrating the
simulation routine for any parameter 9S is to equate the MLE 6 to the mean
of the beta in Equation 1.9 and estimate the denominator of Equation 1.10
by TJ,S + T2i5 = 2 • &/K. This suggestion is based on the reasonable assump-
tion that parameter variability is approximately proportional to category
probability variability, so each parameter in the beta is approximately a /K.

Assessing Individual Participants

Another approach for examining participant differences is to estimate
parameters for each person individually. To illustrate this approach, we will
use the pair-clustering model in Equation 1.5 to analyze the data separately
for each participant in the schizophrenic and control groups from Riefer
et al.'s (2002) study. As mentioned earlier, Riefer et al. used only combined
data aggregated over the 29 schizophrenic and 25 control participants. In
this demonstration, we illustrate how it is possible to assess storage and
retrieval for each individual participant as well.

Using MPT models to measure individuals' cognitive capacities raises
a number of special methodological concerns. One important consideration
is the minimum number of data observations needed for stable parameter
estimation. For the pair-clustering model, Riefer and Batchelder (1991b)
conducted computer simulations on this issue and recommended that 100
observations are generally sufficient for accurate parameter estimates. In
experimental studies, when data are usually aggregated across participants
in each group, achieving 100 or more data observations is a simple matter.
In fact, 10 participants each recalling 10 category pairs would be sufficient.
However, when the goal is the assessment of storage and retrieval for a
single participant, it is not feasible to record data over 100 or more category
pairs from one list in a single session. Instead, it would be necessary to
present the participant with multiple lists over many test sessions. In the

38 BATCHELDER AND RIEFER



case of Riefer et al.'s (2002) data set, however, participants memorized only
a single list of 20 category pairs—a sample size much too small for producing
stable estimates. Fortunately, each participant memorized this list over a
series of study-test trials. By tabulating responses over multiple trials, it
should be possible to gain larger sample sizes for more accurate parameter
estimation. Of course, combining responses over trials is not optimal, because
it can be assumed that parameter values change somewhat across trials. To
minimize this factor, we decided for the purpose of this demonstration to
combine data over Trials 3, 4, and 5. Performance across these three trials
was relatively stable for both parameters c and r in each group. This created
60 data observations per participant—still fairly small for general purposes
but a sample size that should be reasonably sufficient for this demonstration.

We used Hu's software to compute the MLEs of c and r for each
schizophrenic and control participant in Riefer et al.'s (2002) study. For 12
of the 29 schizophrenic participants and 9 of the 25 control participants,
the estimate of r was 1.00. These cases violated an inequality constraint of
the model described by Batchelder and Riefer (1986, p. 134), suggesting
that the model is not appropriate for these participants, perhaps because of
the small sample size. For the purposes of this demonstration, we excluded
these individuals from the analyses presented below.

Figure 1.2 shows, in the form of a scatter plot, the values of c and r for
the 17 schizophrenic participants and 16 control participants with parameter
values within the unit interval. A quick glance at Figure 1.2 reveals, not
surprisingly, that there is a wide range of storage and retrieval estimates
across both groups. However, it is also easy to see that the schizophrenic
group's performance is generally poorer than that of the control group—
and that this deficit is especially pronounced for the retrieval parameter r.
As indicated above, it is also possible to estimate the standard deviation
for each parameter value using the closed-form solutions from Batchelder
and Riefer (1986). These standard deviations can be useful, for example,
in computing confidence intervals for each individual's parameter values.
There is not enough space in Figure 1.2 to show these standard deviations
for all individuals, but we have included them for one member of each
group as an illustration.

With parameter estimates for each individual, we can evaluate the
performance for the two groups using more traditional statistical analyses.
For example, t tests reveal a significant difference between the schizophrenic
and the control participants for parameter r, t(31) = 3.91, p < .001, whereas
the difference for parameter c just failed to reach statistical significance at
the .05 level, t(31) = 1.96, p = .06. The observation that differences in
retrieval are stronger than those for storage is consistent with Riefer et al.'s
(2002) analysis, using the pooled data. However, unlike in Riefer et al.'s
analysis, because we have parameter estimates for each individual we can
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Figure 1.2. Estimates for parameters c and r for the schizophrenic and control
participants from Riefer et al.'s (2002) study.

compute measures of effect size for these differences. We don't know of a
useful way to define such measures for MPT models when data are pooled
across groups, but they are easy to calculate with parameter estimates for
each participant. The effect size is (O2 = .30 for parameter r and CO2 = .08
for parameter c, indicating stronger differences for retrieval than for storage.

It is also possible to compute the correlation between c and r depicted
in Figure 1.2. This correlation is .57, indicating that individuals with strong
storage capacity also tend to have strong retrieval capacity. In addition to
determining whether parameters are correlated with each other, an advan-
tage of computing parameter estimates for each individual is that one can
also see whether the parameters are correlated with other measures, such
as age or severity of clinical dysfunction. Unfortunately, such data are
unavailable for Riefer et al.'s (2002) study, but an excellent example of this
technique can be found in Simons et al.'s (2002) study on source monitoring,
described earlier. By computing estimates of the source-discrimination pa-
rameter for each patient, they were able to examine the correlations between
source memory and a battery of different diagnostic tests.
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Hierarchical Multinomial Processing Tree Models

Another way to handle individual differences is to structure the MPT
model to incorporate them. One natural approach is to postulate a hierarchical
model. Such models have only recently begun to appear in cognitive modeling
(e.g., Rouder & Lu, 2005), but for many years they have been standard in
classical data analysis models. For example, they can be seen in random-
effects models in analysis of variance, where the levels of an experimental
factor are thought to be sampled from some distribution. In addition, they
constitute an especially popular form of modeling data in Bayesian statistics
(e.g., Gelman, Carlin, Stern, & Rubin, 2004; Gill, 2002). In this section,
we discuss hierarchical modeling from a classical perspective to make it
more accessible to psychologists; however, future work on hierarchical MPT
models will almost certainly use modern Bayesian computational approaches.
(For a Bayesian approach to individual differences in memory search in
schizophrenia, see chap. 5, this volume.)

In cognitive modeling, a sample of observations typically is thought
to be i.i.d. governed by a particular distribution from a parametric family
of distributions. One of the main uses of hierarchical modeling is to handle
cases where the variance of a sample of observations is larger than it would
be if it were governed by a fixed distribution. This situation is called over'
dispersion, and hierarchical models retain the distribution family and explain
the overdispersion by postulating variation in the parameters across the
observations. In fact, the D-M model in Equation 1.14 can be viewed as a
hierarchical model in the sense that each participant's category counts are
governed by a multinomial distribution whose underlying category prob-
ability parameters are drawn independently across participants from a
Dirichlet distribution.

Parametric hierarchical models can be explained by comparing them
to standard parametric models. To be precise, a standard parametric model
assumes that the data sample is characterized by the observations of a
sequence of i.i.d. random variables (possibly vectors) Xb X2, ..., XN, where
each of the X; is marginally distributed as a random variable X with model
density f(x; a), where a (possibly a vector) is a fixed but unknown member
of A, the parameter space of the model. Then the i.i.d. assumption entails
that the joint distribution of the data, f(x}, x2, ..., XN; a), can be written as

N

f(xi,x2,...,xN;cx) = Y[ /few)
i = 1

for some fixed a 6 A. This is exactly the perspective that was developed for
MPT models described in the earlier section, "Brief Review of Multinomial
Processing Tree Models."
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A hierarchical version of the model just mentioned assumes that the
observations are not identically distributed from the model with a fixed
(X e A because of variation in the parameters over observations. For hierarchi-
cal models, the assumption is that each X, has a marginal distribution
/(x; «,), for some fixed value of a, in A. In addition, the N ex, are observations
of a sequence of random variables, otb a2, ..., otN, that are i.i.d. as a random
variable a, with some distribution g(a; T), where T is called the hyperpara'
meter of the model and has its own parameter space, T. Because of the i.i.d.
assumption, the joint distribution of the model's parameters (the a,-) is
given by

g(a1,a2, ...,«N;T) = f g(a,;TJ (1.16)
i = i

for some fixed but unknown hyperparameter T. In addition, the data random
variables are conditionally independent on the sampled parameters (ab «2,
..., CXN) in the sense that

Viewed in this way, the marginal distribution of X, that depends on
a fixed I can be obtained by integrating over the parameter space of a,

h(x;r) = lf(x\(x)g(o(rid(x, (1.18)
A

and, further, the X, are i.i.d. with density h(x; T) for some fixed T e T. Thus,
the hierarchical model in Equations 1.16, 1.17, and 1.18 involves two
component models: (a) the basic model density, f(x; a), for some a e A,
and (b) a distribution, g(cx; i), for some T e T, governing variability in the
model's parameter(s).

Consider the case of an MPT model with S parameters, (<pb <p2, ••• <PS)
eQ = (0, 1 )s, and suppose each participant-item observation Xjj is generated by
the model with its own parameter vector 6^ = (6^1,6^2, ... , 9^) eQ. Without
further model specification, this idea is completely unworkable, because
there are N • M • S parameters required to explain the N • M category
observations (for one possible approach to this issue, see Batchelder, Kumba-
sar, & Boyd, 1997). One way to make a workable hierarchical model for
participant differences is to retain the assumption of item homogeneity
within a participant and postulate that participants' parameters 6j are drawn
i.i.d. from some joint distribution on Q. One convenient joint distribution
to use is characterized by independent beta distributions on each of the
S parameters (cf. Batchelder, 1998). In fact, this is the assumption of parame-
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ter variability represented in the simulation option of Hu's software for
analyzing MPT models discussed earlier.

Now we are in a position to formulate this parameter variability assump-
tion into an explicit hierarchical MPT model rather than just a simulation
option. Let 6S be one of the parameters in an MPT model, and assume that
it is drawn marginally over participants from the beta distribution in Equation
1.8. Now the assumption that each parameter in the MPT model has an
independent beta distribution requires that the hierarchical model has a
2 • S dimensional hyperparameter given by T = (TIJS, T2,5)5 = i- Then the
parameters of the participants are i.i.d. with density given by

g(e l,e2, ...,es;T = (rl:S,r2^= o = s(0s;ri.,T2,s), (1.19)
S = 1

where g(0s; TliS,T2,s) is given by Equation 1.8. The hierarchical model in
Equation 1.19 has 2 • S parameters, and it was analyzed by Batchelder and
Smith (2003).

The distribution in Equation 1.19 is somewhat restricted, because the
independence assumption precludes the possibility of correlations between
parameters. Positive correlations between parameters across participants are a
definite possibility (especially for clinical populations), because a participant
who is strong in one particular cognitive capacity may well be strong in
other, related capacities. Klauer (2006) has introduced a family of hierarchi-
cal latent class MPT models that assume that the participants are drawn
from several latent classes, where participants' responses in any class can
be regarded as i.i.d. Klauer's approach is based on postulating that partici-
pants' data come from a finite mixture model (see Titterington, Smith, &
Makov, 1985), where the base model for each class is a particular MPT
model, and the parameters can vary across classes. This approach allows
parameters to be correlated over participants.

When one considers a hierarchical version of an MPT model, it is
natural to consider the conditions under which it will be identifiable. As
Klauer (2006) showed, a necessary condition for identifiability is that the
base model for each participant be identified. The good news is that in
addition to this requirement, there is only the additional requirement that
the number of parameters not exceed the number of possible data patterns
that can be observed across participants. In general, there are a huge number
of ways that a participant's M responses can be fit into K categories; for
example, there are 84 ways that a participant could place just six responses
into four categories. Thus, when an identified MPT model is posed as a
hierarchical model, one can postulate distributions with many hyperparamet-
ers for the distribution of the parameters of the base model.
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Even though it is easy to pose a variety of hierarchical models for any
identified MPT model, there are substantial computational issues that have
to be overcome to analyze the model. Batchelder and Smith (2003) devel-
oped the computational tools to handle the simple hierarchical model in
Equation 1.19, and Klauer (2006) provided the details for latent class MPTs
and developed the software for carrying out the computations, which is
called HMMTree and can be downloaded for free at http://www.psychologie.
uni-freiburg.de/Members/stahl/HMMTree. In general, the computational
approach that most researchers favor in analyzing such models involves
Markov Chain Monte Carlo methods (see Gelman et al., 2004; Gill, 2002).
It is beyond the scope of this chapter to delve more deeply into the computa-
tional issues involved in hierarchical modeling. Suffice it to say that we
expect that hierarchical modeling will be at the cutting edge of further
applications of MPT models in the clinical area, and thus it is a goal of
future work to develop software to enable routine formulation and analysis
of hierarchical MPT models of the sort constructed in this subsection.

CONCLUSION

MPT models are a popular class of mathematical models that have
been used to study a wide range of theoretical issues in a number of different
experimental paradigms. Their application to clinical studies, however, is a
relatively recent development. In most experimental applications, individual
differences in participant populations are purposely minimized and ignored;
in contrast, in clinical applications differences in the abilities of participants
are usually the primary focus of inquiry. This raises a number of special
issues and concerns when using MPT models to study clinical populations.
We have attempted to address some of these issues in chapter 1 as well as
to outline some specific options and recommendations to researchers with
clinical interests.

Our first recommendation for clinical applications of MPT models is,
whenever feasible, to use homogeneous items and to calculate parameter
estimates for each individual participant. This will require collecting enough
data observations for each individual, possibly over several sessions, to
achieve stable estimates. To determine how many data observations to
collect per individual, one may need to conduct simulation studies for the
MPT model (for how these types of simulations can be conducted, see Riefer
& Batchelder, 1991b). However, with stable individual estimates, it is then
possible to compare groups using traditional statistics, compute measures of
effect size, and determine whether parameter values are correlated with
other relevant clinical variables. If it is not feasible to collect a sufficient
number of data observations from each individual, then it is still possible
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to compare clinical groups with their controls by pooling the responses
across the members of each group. In this case, we recommend that research-
ers examine the raw frequencies for the participants in each group and use
the chi-square test based on Equation 1.12 to determine whether individual
differences exist. If the hypothesis of no individual differences is rejected,
then we recommend either of two approaches. The first, which is easier but
less desirable, is to conduct hypothesis tests with the pooled data as if there
were no individual differences. The D-M model in Equation 1.14 is then
fit to the data to estimate the variances to be used in Hu's simulation option
to see whether the scientific conclusions remain unchanged. The second
approach, namely, to explicitly construct a hierarchical MPT model such
as the one in Equation 1.19, is more desirable. Analysis of the data with
such a model will enable researchers to estimate parameters and conduct
hypothesis tests both within and between groups without a need to worry
about the presence of individual differences.

Each of the options outlined above is relatively straightforward and
computationally tractable. This highlights one of the major advantages of
MPT models as data analysis tools: Their simple structure and design make
it easy to use a wide variety of statistical techniques to explore issues of
individual differences, hypothesis testing, sample size, and many others.
Because of their statistical flexibility, MPT models have been used with
great success to study cognitive processing in many areas of experimental
psychology. Our goal in this chapter has been to demonstrate that they can
also be powerful tools for assessing cognitive deficits in clinical populations.
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2
A MODEL-BASED

STORAGE-RETRIEVAL ANALYSIS
OF DEVELOPMENTAL DYSLEXIA

RICHARD A. CHECHILE

The field of psychological assessment has played a central role in
clinical, educational, and industrial—organization psychology. Consequently,
there has been a close linkage between those applied subfields of psychology
and psychometries. In contradistinction to psychometrics, mathematical
psychology has emerged as a branch of quantitative psychology with a tight
linkage with experimental psychology. To nonquantitative psychologists,
psychometrics and mathematical psychology might appear to be similar areas.
Both use stochastic models as well as other mathematical tools. However, to
quantitative psychologists, these fields are distinctly different. In psycho-
metrics, the data examined are frequently a multiple-item questionnaire or
a psychological test. For such tests, a single question does not capture the
psychological construct, but the test administrator hopes that the concept
is represented by a configuration of responses to a number of questions.
Also, the data in many psychometric applications do not originate from
an experiment with multiple conditions. In mathematical psychology, the
relevant data usually pertain to multiple-condition experiments. Moreover,
the dependent variables in experiments, such as response time, percentage
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correct, or the trade-off of speed and accuracy, are examined for a set of
homogeneous items. For example, a pool of nonsense syllables that are
controlled for length and preexperimental meaningfulness might be used as
the stimuli for a memory experiment. Instead of questions that are designed
to be different, experimental psychologists use stimuli that are designed
to be as similar as possible. Whereas the focus in psychometrics is with
psychological measurement, in mathematical psychology, the focus is on
the development of quantitative theories to account for the experimental
results. The linkage between mathematical psychology and experimental
psychology is thus analogous to the relationship between theoretical and
experimental physics.

Despite the focus on theories for experimental data, some of the models
developed in mathematical psychology can also function as a psychological
assessment tool. For example, Batchelder (1998); Chechile and Roder
(1998); and Riefer, Knapp, Batchelder, Bamber, and Manifold (2002) have
used a class of mathematical models that are called multinomial processing
tree (MPT) models as a vehicle to examine special participant populations.

In this chapter, I use MPT modeling to explore questions about the
fundamental reasons for forgetting. More specifically, when there is a decline
in the rate for retaining information, is the forgetting due to a failure to
retrieve stored information, a degradation of the memory representation, or a
combination of both storage and retrieval factors? Given a specially designed
memory testing procedure, it is possible to estimate the proportion of events
that are stored sufficiently well to support the recall of the target information.
It is also possible to estimate the proportion of the stored memory traces
retrieved at the time of testing. Consequently, when forgetting occurs, it is
possible to ascertain how much of the memory loss is due to storage decre-
ments and how much is due to retrieval failures. In this chapter, I use the
memory measurement model to examine the memory processes of dyslexic
children, and I provide evidence that there is a marked difference between
the memory processes of dyslexic children and normal readers even for words
correctly read initially. Before tackling the issue of storage and retrieval
measurement, in the next section I make the argument that a general model-
based measurement is essential for understanding underlying cognitive
processes.

WHY IS PSYCHOLOGICAL MEASUREMENT VITAL
FOR COGNITIVE PSYCHOLOGY?

Without a model for measuring underlying processes, it is difficult to
make progress in cognitive psychology. The dependent variables recorded
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in psychological experiments do not reflect the influence of a single cognitive
process. This point is clearly accepted for the problem of detecting a faint
signal. The percentage correct on target-present trials and the percentage
incorrect on target-absent trials do not directly measure the strength of the
stimulus. The decision criterion influences both the hit and false-alarm
rates. Signal detection (Green & Swets, 1966) is perhaps the most widely
recognized and used model from mathematical psychology and was developed
to disentangle decision and signal-strength measures. Although there is a
consensus that the data from target-present/target-absent experiments re-
quire a mathematical model to unravel the mixture of cognitive processes
that influence the recorded responses, many investigators have not general-
ized this approach to other dependent measures common in psychological
research. However, a major point in this chapter is that the dependent
variables in psychological experiments usually reflect an entanglement of
psychological processes, and the best available solution for this measurement
problem is to use mathematical models to recover measures of the underlying
psychological processes.

To highlight the problem of process entanglement, consider some
common dependent variables used in experimental psychology. One such
dependent variable is the participant's response time. For example, a psycho-
linguist might be interested in using the response time on a lexical decision
task to learn about the nature of lexical memory. In a lexical decision task,
the respondent is presented with a string of visually presented letters, which
may or may not be a word. Although the organization of lexical memory
can affect the response time, other processes, such as the respondent's
alertness, accuracy, confidence, decision criterion, and motor speed, also
can influence the response time. If there are differences among groups of
respondents on the mean lexical decision time, how can one be sure which
processes are different among the groups? Dissatisfaction with response time
as the key measure in lexical decision research has motivated some research-
ers to use neurological measures of brain activity as alternative dependent
measures for studying underlying language processes. For example, Holcomb
and Neville (1990) used event-related electrical brain potentials to study
lexical access time, yet the event-related potentials are also susceptible to
the influence of a number of other processes. It would be surprising and
wonderful to find a direct neuropsychological signal that is present only
when a basic psychological process is in operation and that otherwise is
absent. Until clear evidence of this type emerges, researchers are left with
the problem of gaining access to the processes of interest from dependent
variables that are influenced by multiple processes. In contradistinction to
a purely experimental approach, mathematical psychologists have developed
models for response time and accuracy data that are applicable to a lexical
decision task. For example, random-walk models, such as Link and Heath's
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(1975) relative judgment random-walk model, can account for the experi-
mental data in terms of latent processes that have parameters that can be
estimated. Many such models of response time have been developed (see
Van Zandt, 2002), and these models can potentially be used to examine
differences among participant populations.

More central to the issues examined in this chapter is that memory
measures, such as the correct recall rate or the correct recognition rate, are
not directly associated with a single psychological process. For example, if
there is a change in the correct recall rate, then that change might be
caused by a change in the storage of the targets, a change in retrieval, or
a combination of changes in both storage and retrieval. Some researchers
(e.g., Belmont & Butterfield, 1969; Buschke, 1974) have attempted to use
the approach of experimental dissociation to study storage and retrieval
processes. The objective of the dissociation approach is to identify an inde-
pendent variable that affects only one of the underlying processes. For
example, an independent variable, such as the time allowed to recall, should
not affect the probability of item storage, but it could affect the likelihood
of retrieving a stored item. However, experimental dissociation by itself is
not a measurement system. Relatively few independent variables are known
to affect only a single psychological process. If one of the few independent
variables that does affect only one memory process is used, then a subsequent
change in memory retention produced by manipulating that variable is
merely an exercise in confirming what is already known. Experimental
dissociation research does not partition the probability of correct recall into
storage and retrieval components. However, if a mathematical model is
developed that does unravel storage and retrieval processes from a set of
dependent measures, then experimental dissociation is a powerful means
for assessing the validity of the measurement model. For example, suppose
that a model-based measure of memory storage is affected by the above-
mentioned recall time manipulation: That would be evidence against the
measurement model. The ability of a measurement model to survive valida-
tion tests of this type helps to build confidence in the model itself. Later
in this chapter, I discuss other methods of model assessment.

If one accepts the general notion that the dependent variables of
cognitive psychology experiments tap more than a single process, then a
measurement technique is required to extract measures of the latent processes
of interest. Consequently, both mathematical psychology and psychometrics
share a common interest in measurement despite historical differences and
differences in focus. Once a valid measurement system has been developed,
then that procedure can be used as an assessment tool to study various
subpopulations. Conversely, if latent psychological processes are not mea-
sured, then differences between experimental conditions and differences
between subpopulations of research participants will not be understood. In
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this chapter, a model-based measurement procedure is used to study storage
and retrieval differences among subpopulations of children who vary widely
in reading skill.

MODELING STORAGE AND RETRIEVAL PROCESSES

A number of models for storage and retrieval measurement have been
developed. In psychology, when multiple theories are in current use, then
there are usually some deep disputes among the theorists. However, that is
not the case among modelers of storage and retrieval processes. One of the
key reasons for the multiple models pertains to the fact that there are
different experimental tasks. The common approach embraced by the various
theorists who are interested in measuring storage and retrieval processes is
to model the specific experimental task. If there is a different task, then
the task model will be different. For example, Chechile and Meyer (1976)
examined a task that involved three types of test trials: (a) recall, (b) old
recognition, and (c) new (or foil) recognition. The experimental procedure
also involves the random intermixing of the three trial types during testing
so that participants do not know in advance how they will be tested.
Moreover, the participants were required to give 3-point confidence judg-
ments on their "yes" or "no" recognition decision. The storage and retrieval
model emerged from the analysis of the multinomial data collected from
this experimental paradigm. This is the approach that has come to be called
MPT modeling. Chechile (1998) and Chechile and Soraci (1999) also have
provided another task for collecting data to measure storage and retrieval.
For this experimental procedure, there is an initial free-recall test that is
followed by a series of forced-choice recognition tests, that is, an initial
four-alternative forced-choice test that is followed up with additional forced-
choice tests. Because the multinomial data are different for this experimental
test procedure, there is a different MPT model for storage-retrieval measure-
ment. Yet another testing procedure is one in which associative learning is
assessed with a free-recall test along with a pair-clustering test. Batchelder
and Riefer (1980) developed an MPT model for this task. Furthermore,
Riefer and Rouder (1992) and Rouder and Batchelder (1998) have developed
a storage—retrieval measurement model for a task that involves free and
cued recall. Consequently, the multiplicity of storage-retrieval measurement
models is due in part to the fact that the testing procedures are different.
Despite the differences in models, there is general agreement on the basic
concepts of storage and retrieval among the various models. Batchelder and
Riefer (1999) provided an extensive review of many MPT models developed
in psychological research; only some of those models are designed to tackle
the problem of storage and retrieval measurement.
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Another source of difference among the models pertains to simplifying
assumptions about secondary processes. For example, for the procedure in
which there is a random intermixing of recall and old-new recognition test
trials with confidence ratings, Chechile and Meyer (1976) provided four
MPT models for measuring storage and retrieval. These models make differ-
ent assumptions about the latent processes. Recently, I (Chechile, 2004)
critiqued the earlier Chechile and Meyer MPT models and developed three
additional models for the task. Later in this chapter, I describe one of these
new models in more detail and relate it to the other models for this task.

The recall test is central for understanding and defining the concepts
of storage and retrieval. In a recall test, the respondent is given a noninforma-
tive cue to output the previously presented memory items. For example, a
tone or a nondescript cue, such as the word recall, is presented. With a
properly designed recall task, the probability of being correct by chance
alone is virtually zero. Thus, correct recall of an item occurs when the item
is both stored and retrieved. The proportion of test items that are sufficiently
stored is denoted as 6S. The insufficient-storage probability is the proportion
of items that have degraded and cannot support the complete reconstruction
of the memory target. The missing information can be either partial or
total. Insufficient storage results in a failure to recall the target completely.
However, sufficient storage does not necessarily result in correct recall. To
recall a memory target, the individual must also gain access to that memory
representation at the time of the test. That search process can fail to find
the target under the time constraints imposed by the experiment. The
probability of successfully retrieving a sufficiently stored target is denoted
as Qr Consequently, the probability of correct recall is equal to the product
OsOr. Conversely, either the retrieval failure of a stored item, with probability
0$(1 - 9r), or the insufficient storage of the item, with probability 1 - 0S,
results in a recall error. A probability tree representation for the underlying
psychological processes involved in the recall task is provided in Figure 2.1.

Note that the above analysis of the recall task underscores the earlier
point that the dependent variable (the proportion of correct recall) is a
result of an entanglement of two important psychological processes. If only
recall tests are used, then it is impossible to know whether a change in the
correct recall rate is due to changes in either storage, retrieval, or both
storage and retrieval.

Chechile and Meyer's (1976) experimental task also includes old and
new recognition test trials that are followed up with a 3-point confidence
rating. The information extracted from these recognition test trials provides
one with a means to disentangle storage and retrieval measures. There were
four different models for these trials in the original Chechile and Meyer
article. More recently, I (Chechile, 2004) critiqued all of those models and
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Figure 2.1. The process tree model for recall trials.

provided three new models for the recognition trials. The model that will
be used in this article is the 6P model from Chechile (2004).

The process trees for recognition test trials for the 6P model are
provided in Figure 2.2. Let us first examine the processes involved in old
recognition. Note that the same storage parameter, 0S, is shown for the
first branch of the old recognition tree. In Chechile and Meyer's (1976)
experimental task the random intermixing of the three test trials (recall,
old recognition, and new recognition) results in a lack of predictability on
the part of the respondent as to how a given memory target will be tested. It
is reasonable and has been demonstrated that accurate participant knowledge
about how they will be tested influences their initial encoding processes
(see Balota & Neely, 1980; Hall, Grossman, & Elwood, 1976; and Neely
6k Balota, 1981). If participants know that the target will be examined by
a recall test, then they can, and do, store the targets at the time of learning
differently than when they know that the target will be examined by recogni-
tion methods. However, with the Chechile and Meyer task, the participants
cannot accurately predict how they will be tested, so it is reasonable to
assume that the same probability of sufficient storage defined for the recall
test trials is applicable during old recognition test trials. If there is sufficient
storage, then it is assumed that the old recognition probe triggers a data-
driven, bottom-up reelicitation of the stored target. In essence, one assumes
here that if the memory target is stored, then the participant recognizes
the target through a direct reactivation of the initial encoding; that is, a
conceptually driven, top-down search of memory is bypassed. It is also
assumed that the participant has highest confidence when the target is
stored. However, if the target is insufficiently stored (fractional storage or

STORAGE-RETRIEVAL AND DEVELOPMENTAL DYSLEXIA 57



Old Recognition Tree

Sufficient
storage Yes 3

Insufficient
storage

Yes 3

Yes 1 or 2

No 3

No 1 or 2

ek

New Recognition Tree

Knowledge
recovery No 3

No knowledge
recovery

No 3

No 1 or 2

0. Yes 3

Yes 1 or 2

Figure 2.2. The process tree for old and new recognition trials for the 6P model.
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no storage), then the participant still can be correct on a yes—no old recogni-
tion test. The parameter 9g is the probability that the participant will give
the correct "yes" response in old recognition in the case of insufficient
storage. The 6\ parameter is the probability that the participant will give
a high confidence rating despite insufficient storage of the target. This model
for old recognition is the same as Chechile and Meyer's Model 2 for old
recognition trials.

For the 6P model, there is a fundamental difference in how new
recognition is represented compared with the earlier Chechile and Meyer
(1976) models. Those earlier models assumed that the same storage parame-
ter, 9S, was also involved on foil trials. However, I have critiqued that
assumption (Chechile, 2004). A foil is different than the target, and it is
not likely that a novel item will trigger a data-driven, bottom-up process
activation of the target item. Nonetheless, the participant might still recol-
lect some aspect of the target and on the basis of that information reject
the foil with certainty. After all, there is some nonzero probability that the
whole target can be recalled in the absence of any cue, so there should be
some probability of recovering enough of the target to reject the foil. The
probability for such a knowledge-based decision during foil recognition test
trials is a new parameter, 9k. The introduction of this parameter is the key
difference between the 6P model and the earlier Chechile and Meyer models.
If no target knowledge is recovered during foil testing, there is still a chance
that the participant will correctly respond "no." The 9g> parameter is the
probability of a correct guess in foil recognition. Thus, the correct guessing
rates are not assumed to be equal between the old and new recognition
tests. Yet the same 9\ parameter is used in the 6P model for the probability
of giving a high-confident response when there is guessing.

The model is called the 6P model because there are six parameters,
that is, 9S, 0r, 0fo Gg, 0S>, and 9^. I (Chechile, 2004) also provided two
additional models (each with seven parameters). Those models differed in
regard to the assumption of the equivalence of the d\ parameter in all cases
where there is guessing. For the seven-parameter models, an additional
parameter (02) is introduced. This parameter is the rate for using a high-
confidence rating in new recognition after an incorrect "yes" response. For
Model 7A, 92 is also the rate of a high-confidence rating in new recognition
after a correct "no" guess. For Model 7B, 92 is the rate of a high-confidence
guess after a "yes," and 0j is the corresponding rate after a "no" response.
On the basis of Monte Carlo simulations, I have recommended that the 6P
model be used as a default model until there is a statistical departure from
the 6P model in favor of one of the other two seven-parameter models
(Chechile, 2004).
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ESTIMATING MODEL PARAMETERS

When the parameters are estimated, one has measured some of the
fundamental memory processes represented in the model. There are several
ways that the parameters of the 6P model can be estimated; for more details,
see Chechile (2004). General-purpose software for obtaining maximum
likelihood estimates for MPT models can be used (see Hu & Phillips, 1999).
Another method for parameter estimation is called population-parameter
mapping (PPM). I (Chechile, 2004) have shown that the two methods
converge for large sample sizes of 1,000 recall, 1,000 old, and 1,000 new
recognition trials. However, for smaller sample sizes, Monte Carlo studies
demonstrated that PPM estimation had less error in recovering known
parameter values. Consequently, the PPM method is used for the research
reported in this chapter.

PPM is a method of estimation that yields (a) point estimates for the
model parameters, (b) a probability distribution for each parameter, and (c) an
estimate of the coherence of the model itself. PPM is a variant of Bayesian
estimation, but it bypasses some of the computational complex aspects of a
Bayesian analysis. Bayesian statistics is an alternative system of statistical
inference that is based on the assumption that the parameters can be repre-
sented by probability distributions; see Box and Tiao (1973), Congdon
(2001), Hartigan (1983), Lad (1996), Lee (1989), and Press (1989). Classical
statistical methods do not allow for population parameters to possess a
probability description (see von Mises, 1957). However, De Finetti (1937/
1964) introduced a subjective probability framework that enables parameters
to be represented by probability distributions. Although Bayesian statistics
is not prevalent in psychological research, it is a rigorous system of statistical
inference that is firmly based on probability theory and has a strong following
in contemporary statistics. However, Bayesian statistics often results in diffi-
cult computational problems. PPM originally emerged as a method for cir-
cumventing some of the computational problems with Bayesian inference
for the case of estimating the latent model parameters associated with
multinomial data, yet PPM has an advantage over a standard Bayesian
analysis in that it is able to assess the quality of the model itself. I have
discussed these issues (Chechile, 1998, 2004), and the details about how
the PPM method is applied to the 6P model is provided in Appendix 2.1.

The 6P model has been used to examine experiments that explore
(a) the effect of retention interval in short-term memory, (b) the effect of
retrieval time, and (c) the effect of target-foil similarity (Chechile, 2004).
These studies were conducted using the Brown-Peterson experimental para-
digm, which involves a series of tests for individual target items. For a typical
trial, a subspan memory target (e.g., a nonsense item, such as BXT) is briefly
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presented and is followed by materials designed to keep the respondent busy
during the retention interval. For example, after the target is presented, the
participants might be required to shadow, or repeat, an auditory string of
digits presented in the retention interval. In the last stage of a Brown-
Peterson trial, the participants are tested on their memory of the target item.

The results of several Brown-Peterson experiments have provided
evidence for the validity of the 6P model (Chechile, 2004). For example,
in one experiment with a fixed duration for the retention interval, the time
allowed for recalling the target in the test phase of the Brown-Peterson
paradigm was varied (either 1.5 seconds or 3.5 seconds). Increasing the time
during testing cannot meaningfully increase the probability of sufficient
storage; however, increased time should affect the retrieval of stored targets,
because the participant is given slightly more time to search his or her
memory. The only reliable change found for the increased recall time was
an increase in the retrieval parameter (Chechile, 2004). Had the storage
measure changed, then there would be evidence against the storage-retrieval
MPT model. The finding that only retrieval is affected by recall time is
thus powerful support for the 6P model. Furthermore, in another experiment
the time allowed for recall was fixed, but the length of the retention interval
was varied (either 4 seconds, 8 seconds, or 12 seconds). Memory declined
for longer retention intervals, but only the storage parameter varied with
retention interval (Chechile, 2004). Hence, there are independent variables
that selectively influence either one or the other of the two components
of recall, that is, either the storage or retrieval components of the correct
recall rate. Moreover, the recall-time experiment underscores that the com-
ponents successfully map onto one's conceptual understanding of storage
and retrieval processes.

Additional validation evidence has been reported based on the study
of the similarity between targets and foils (Chechile, 2004). When items
used in foil recognition are highly similar to the target, there is a substantial
increase in the false-alarm rate. However, a valid decomposition of recall
into storage and retrieval components should not be affected by the degree of
the similarity between the targets and the foils that were used in recognition
testing. The only parameter that did change with the similarity of the foils
to the targets was the 9k parameter (Chechile, 2004). If the foils are dissimi-
lar to a target, then it does not require very much information about the
target to be recovered to reject the foil. However, if the foil is very similar
to a target, then more of the target must be recovered in order to reject
the foil on the basis of recollected information. Hence, it is reasonable that
target—foil similarity results in different 9^. estimates. It is important, however,
that the storage and retrieval measures did not change with the similarity
between targets and foils.
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Further support for the 6P model has been obtained from the PPM
estimation method. With the PPM method, there is a probability associated
with the coherence of the model itself, that is, P(coh). A low value for
P(coh) will occur if the data are inconsistent with the MPT model. In
each condition for the above three experiments, the probability of model
coherence, P(coh), exceeded .995. This finding and the aforementioned
validation evidence provide a strong basis of support for the 6P model. In
the balance of this chapter, the 6P model is used to study the effects of
developmental dyslexia.

COGNITIVE PROCESSES UNDERLYING
DEVELOPMENTAL DYSLEXIA

The term dyslexia is commonly used to denote a developmental problem
in which a child's reading performance is substantially below the level
expected given the child's age and IQ. The Diagnostic and Statistical Manual
of Mental Disorders (American Psychiatric Association, 2000) used the phrase
reading disorder instead of dyslexia, although the International Classification
of Diseases, Clinical Modification (U.S. Department of Health and Human
Services, Centers for Disease Control and Prevention, National Center for
Health Statistics, n.d.), used by neurologists, does accept the term dyslexia,
For school-age children, the prevalence of dyslexia is commonly reported
to be about 4% to 5% (Galaburda, 1999).

To be successful in reading, a host of cognitive processes must operate
smoothly. Eye tracking, visual encoding, lexical access, phonological access,
semantic integration, and memory trace persistence are some of the cognitive
processes that must function well for reading to be effective. Impairment
with any of these processes can result in reading difficulties. Consequently,
the classification of dyslexia might include a mixture of individuals who
have a variety of cognitive deficits that interfere with reading.

Early research on dyslexia emphasized the idea of distortions in sensory
processing (Bryan, 1974; Vellutino, 1977). Poor quality of the iconic or
acoustic encoding of words was thought to underlie the reading impairment.
However, there have been challenges to this notion. Research by Doering
and Rabinovitch (1969); McGrady and Olson (1970); and Morrison,
Giordani, and Nagy (1977) have provided evidence that neither the quality
nor the quantity of information in the iconic store differs between good
and poor readers. For example, Morrison et al. found that good and poor
readers' recognition rates were comparable if the delay between presentation
and test was less than 300 milliseconds. For longer delays, the poor readers'
recognition rates were below that of normal readers; thus, the problem does
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not appear to be with the initial perceptual encoding. In fact, Stanley and
Hall (1973) demonstrated that poor readers have an iconic image that
persists beyond that of normal readers. Lovegrove, Martin, and Slaghuis
(1986) and Lovegrove, Garzia, and Nicholson (1990) also have found evi-
dence of a deficiency in the visual transient system, and this defect is
responsible for longer visual persistence for many reading-disadvantaged
children. These studies indicate that for many poor readers, the visual
problem is not an inaccurate encoding but an iconic representation that
persists for an unusually long time.

Reading also involves the development of phonological information.
There is agreement among researchers that poor readers typically have
problems with reading aloud. Many investigators (e.g., Liberman &
Shankweiler, 1985; Stanovich, 1988; Vellutino & Scanlon, 1987) have
identified the problem with phonological processing as the fundamental
basis for dyslexia. However, other investigators (e.g., Farmer & Klein, 1995;
Tallal, 1984; Tallal & Curtiss, 1990) have argued that the phonological
problems are a symptom of a deficit with the processing of information in
a rapid temporal sequence. Yet the hypothesis of a rapid temporal processing
deficit has also been criticized. Martin (1995); Rayner, Pollatsek, and Bilsky
(1995); and Studdert-Kennedy and Mody (1995) have argued against the
idea that dyslexia is fundamentally caused by a deficit in rapid temporal
processing.

Although the debate about the mechanism of the phonological deficit
is currently not settled, there is evidence that the cognitive problems experi-
enced by poor readers are partially due to short-term memory difficulties
(Chechile & Roder, 1998). Even after poor readers correctly articulated a
word, there were difficulties in short-term retention of the words. If a child
cannot remember the words, then reading comprehension clearly will suf-
fer. This finding by Chechile and Roder (1998) indicates that the phonologi-
cal deficit in itself is not the only reason why dyslexic individuals have
difficulties.

The above-mentioned Chechile and Roder (1998) study was designed
to examine the differences between good and poor readers in terms of storage
and retrieval processes. Chechile and Roder's experiment used the previously
discussed Chechile and Meyer (1976) task of randomly intermixing recall,
old recognition, and new recognition test trials. Chechile and Roder used
Model 4 from Chechile and Meyer's study to obtain measures for storage
and retrieval. However, I have critiqued the earlier Chechile and Meyer
models and have developed improved models for this experimental task—
for example, the previously discussed 6P model (Chechile, 2004). Conse-
quently, it is important to reexamine Chechile and Roder's data with the
more recent 6P model.
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AN ANALYSIS OF CHECHILE AND RODER'S (1998) DATA
WITH THE 6P MODEL

A detailed description of the participant populations, materials, experi-
mental task, and data are provided in Chechile and Roder's (1998) chapter.
I begin with a brief summary to set the stage for the subsequent analyses
and discussion.

Summary of the Test Procedures

From a total of 219 fourth-grade children, 39 carefully screened children
were selected to serve in the experiment. The screening was based on IQ,
age, gender, and reading scores. Three groups were formed on the basis of
reading performance. The groups corresponded to poor, average, and above
average readers. Reading comprehension scores were obtained by school
officials using the Metropolitan Achievement Tests. The reading perfor-
mance for the children in the poor reader group was 1 or more years below
grade level. For the average reader group, the reading level was at grade
level (+ 6 months), and the above average group was 1 or more years beyond
grade level. The age, gender, and IQ of the three groups were comparable
by design.

The memory targets were words selected from Entwisle's (1966) word
association norms of first-grade children. Words were selected to form four
types of lists that varied in intralist similarity. The lists were composed to
be either (a) dissimilar (e.g., stars, fan, race, always); (b) phonologically
similar (e.g., blue, to, shoe, zoo); (c) semantically similar (e.g., bad, awful,
evil, mean); or (d) orthographically similar (e.g., pals, slap, spill, lips).

The experimental task was a delayed serial probe task using Chechile
and Meyer's (1976) procedure of randomly intermixing recall, old, and new
recognition trials. Each child received 16 lists of six words. For any given
list, the children saw a 6 X 2 array of face-down index cards. For each of
the six cards in the first row, the children (a) turned over the card, (b) read
the word on the card aloud three times within 2 seconds, and (c) turned the
card over again. Misread words were noted so those items could be omitted
later in the data analysis. After the presentation phase of the six words,
there was a delay period during which the child verbally repeated a set of
15 digits. After this delay, the second row of six index cards was used to
assess the children's memory of the target words. Two trials per list were
recall tests, two were old recognition tests, and two were new recognition
tests. For the recall tests, the experimenter turned over a blank card below
one of the cards on the first row and asked the child to recall the word in
that position. For the recognition tests, the experimenter turned over a card
and asked, "Was this word here?" In the case of an old recognition test,
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the word on the card was a duplicate of the word in the position above.
For the new recognition trials, the word on the card was a list item from
a different position. After a recognition test, the child was required to give
a 3-point confidence judgment (i.e., "sure," "maybe," or "just guessing";
we scored these as 3, 2, and 1, respectively, but the child just gave the
verbal responses).

The 6P Model Analysis

Chechile and Roder (1998) used Model 4 from Chechile and Meyer
(1976) to study the differences among the reading groups. The model was
used separately for each participant, and the statistical analysis was based
on an analysis of variance of the point estimates from Chechile and Meyer's
Model 4- In the current reanalyses of Chechile and Roder's data, four key
differences are made. First, the 6P model was used (Chechile, 2004); the
rationale for this decision was discussed earlier. Second, the PPM method
of parameter estimation was used as opposed to the standard Bayesian method
of parameter estimation used by Chechile and Roder; Appendix 2.1 contains
the details about this method, and I have described the advantages of the
PPM method in previous work (Chechile, 1998, 2004). Third, the assessment
of condition differences was based on the distributional information that
was obtained from the PPM method. Fourth, the parameter estimation was
done on the basis of the grouped data for each reading group as opposed
to conducting the estimation on an individual basis and later averaging the
parameter estimates. In general, grouping data can be problematic whenever
there are extreme differences among the individuals within a condition;
however, large within-group differences were reduced in this study because
the participants were screened on the basis of IQ, age, gender, and reading
scores. The goal of the study was to examine differences among the reading
groups rather than differences among the individuals within a group, so
grouping did not compromise the research objectives. Grouping also had a
distinct advantage that warrants further discussion.

For small-sample studies, the factoring of the correct recall rate into
storage and retrieval components is less resolved compared with studies
that have larger sample sizes. From a Bayesian perspective, the probability
distributions that describe the model parameters are broadly dispersed when
the sample size is small. To illustrate this subtle point, consider the hypotheti-
cal case where Os = .8, Or = .4, 9g = .6, 0g< = .7, 9k = .5, and d{ = .2. Let
us further suppose that we observe a "perfect" sample with 10 recall trials,
10 old recognition trials, and 10 new recognition trials. By a "perfect" sample
I mean that the multinomial cell frequencies are the expected frequencies
according to the model within the rounding to the nearest integer. In this
case, the estimated values for 0S and Qr are .59 and .58, respectively. These
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values are considerably discrepant from the correct values of .8 and .4 for
the respective storage and retrieval parameters. This discrepancy is mainly
due to the fact that the posterior distributions for the model parameters are
too broad with this sample size. Moreover, the averaging of fuzzy individual
point estimates does not guarantee that the mean converges to the correct
value. Averaging data for a group of people with these inaccurate values
for storage and retrieval will result in means that are also inaccurate, because
the error caused by insufficient sample size is not necessarily random over
the participants in the group. The solution to this problem is to use more
data. For example, suppose that there are 100 recall, 100 old recognition,
and 100 new recognition test trials. Given "perfect" data, the estimates for
storage and retrieval are .76 and .43, respectively, which are close to the
correct values. In general, the sharpness in factoring the storage and retrieval
components of recall and the accuracy of the estimates is a function of both
the sample size and the model. For the 6P model, I found good parameter
recovery for the case in which there are 100 recall trials, 100 old recognition
trials, and 100 new recognition trials (Chechile, 2004). Consequently, in
the reanalysis of Chechile and Roder's (1998) data, I pooled all the informa-
tion for a common list type and reading group, especially because I am
interested in group differences rather than individual differences.

For PPM estimation, there is a posterior distribution for each parameter.
In practice, there are 100 intervals of width .01, and for each interval there
is a posterior probability for the parameter being in the interval. Let us
denote P, (9$\D) as the posterior probability that the storage parameter is
in the ith interval given the data (D); for example, P^(0S I D) is the probabil-
ity that the storage parameter is within the (.29, .30] interval. If we are
interested in assessing the difference in the storage parameter between two
different conditions, then the probability of a difference can be directly
computed. Let us denote the two conditions as (I) and (II). The posterior
probability that the storage parameter is larger in the (I) condition is com-

puted as P[0S(I) > 6S(U)\D] = £ P,-(0s(n)|D) £ P,[0S(I)|D]. If the proba-
j = l > = / + !

bility for a difference equals or exceeds .95, then it is considered highly
likely that there is a credible difference in the parameter between the two
experimental conditions. However, if the probability of a difference is less
than .95, then one should regard the result as being below the desired
probability level for reporting a reliable effect. Consequently, with PPM
estimation, hypotheses about condition differences can be directly assessed
via probability theory without using the classical method of testing hypothe-
ses by assuming a null hypothesis and evaluating whether there is a significant
departure from the null hypothesis.

The data for each group were reported previously by Chechile and
Roder (1998); consequently, the focus here is on the 6P model analyses.
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In order to concentrate only on the participants' memory, the data have
been excluded for any item that was not initially read correctly three times.
The 6P model was used to examine the grouped data for each reading group
and list type. The mean parameter estimates and standard deviations are
provided in Table 2.1.

In comparing the poor readers with the other two groups in regard to
the storage parameter, there is a statistically reliable deficit for the ortho-
graphically similar memory list. The probability of a storage deficit for the
poor readers compared with the average readers is .9971, and the probability
of storage deficit compared with the above average readers is .9986. For the
other list types, the poor readers did not demonstrate a storage deficit relative
to both of the other reading groups. Although the storage means for the
phonologically similar and semantically similar lists are less for the poor
readers compared with the average readers, the above average readers and
poor readers have very close storage values for those list types. Even if the
data are pooled for all the lists other than the orthographically similar list,
there is not a reliable difference in the storage probability between the poor
readers and the control participants. Consequently, there is a reliable storage
deficit for the poor readers only when the list is orthographically similar.
The same conclusion for storage was reached in the Chechile and Roder
(1998) analysis that used Model 4 from Chechile and Meyer (1976). How-
ever, the storage means obtained in the current analysis with the 6P model
are very different from those reported by Chechile and Roder. In all 12
conditions, the storage means in Chechile and Roder's study were larger
than the values obtained with the 6P model. For example, the storage means
in Chechile and Roder's analysis for poor readers were .32, .73, .67, and
.62, for the orthographically similar, phonologically similar, semantically
similar, and dissimilar conditions, respectively.

Unlike the storage measure, the retrieval process was not impaired for
the poor readers. In fact, the poor readers had relatively high retrieval values.
Because of the large standard deviations for the retrieval estimates, the
retrieval parameter for poor readers demonstrates only two reliable between-
groups differences. The poor readers had reliably better retrieval than the
above average readers when the list was orthographically similar; the proba-
bility of a difference was .9727. Also, for dissimilar lists the poor readers
had better retrieval than above average readers; the probability of a difference
was .9846. Thus, poor readers were not demonstrating any difficulties with
respect to memory retrieval.

In all 12 conditions, the retrieval estimates were higher in the current
analysis than the values reported in Chechile and Roder's (1998) analysis.
In addition, the 6P model was able to detect some highly probable group
differences in the retrieval measure that were not detected in Chechile
and Roder's analysis. There is also one noteworthy within-group retrieval
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difference. One of the best list types from which to retrieve information is
one in which the items are semantically similar, whereas one of the most
difficult list types from which to retrieve information is a list of unrelated
items. For each reading group, the retrieval estimate was larger in the
semantically similar condition compared with the dissimilar condition. How-
ever, this difference was statistically reliable only for the above-average
readers; that is, the probability of a difference was .9994-

The 6>i parameter is a novel feature of the 6P model compared with
the original Chechile and Meyer (1976) models. Only one reliable group
difference was identified by this parameter. The poor readers on dissimilar
lists had a lower value for 6^ relative to the average readers; the probability
of difference was .9728.

The other model parameters (i.e., 9g, 6>g<, and 61) are "nuisance" parame-
ters that are valuable only for correcting the recognition data for factors
such as the guessing rates and the rate of high confidence when storage is
incomplete. Yet, one noteworthy observation about the 0j parameter war-
rants further examination. Note that in general, the values for 9\ were
higher for the poor readers than the average readers, who in turn had higher
di values than the above average readers. This ordering suggests that there
may have been differences among the groups in the conditional probabilities
for using the highest confidence rating when incorrect. Those conditional
probabilities were .755, .640, and .455, respectively, for the poor, average,
and above average readers. These conditional probabilities did vary directly
with the 61 values. Consequently, the model correctly adjusted the recogni-
tion data to account for differences in the use of the confidence scale.

It is also important to look at the conditional probabilities for correct
recognition, given that the confidence was high versus low. For the poor
readers, Pr(correct I high) = .761, and Pr(correct I low) = .604. For average
readers, Pr(correct I high) = .808, and Pr(correct I low) = .520. For above
average readers, Pr(correct I high) = .859 and Pr(correct I low ) = .631. Thus,
for each group, these conditional probabilities improved with confidence.
The increase of these conditional probabilities with confidence level is an
indication that the children were using the confidence scale in a meaningful
fashion. The increase in accuracy with confidence is also consistent with
the 6P model, because reduced confidence is reflective of either insufficient
storage in the case of old recognition or the absence of any target knowledge
for foil recognition. However, high confidence can occur with either suffi-
cient or insufficient storage.

With the PPM method for estimating the 6P model parameter it is
possible to assess the probability of the coherence of the model itself. The
mean probability of coherence across the 12 conditions is .834. The following
question arises: What is the expected coherence probability? I conducted
an extensive set of Monte Carlo simulations in which the data were drawn
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from a "true" 6P model (Chechile, 2004). Moreover, these studies were
conducted for various sample sizes. For a sample size of 100 recall trials, 100
old recognition trials, and 100 new recognition trials, the average coherence
probability was found to be .838 (Chechile, 2004). In this chapter, the
actual data had some variability in the sample size because trials on which
the child could not articulate the memory target during learning were
omitted in the analysis. Without any omitted trials, there were 104 recall,
104 old recognition, and 104 new recognition trials for each condition.
Consequently, the mean coherence probability of .834 is very close to the
expected coherence probability for the 6P model for the sample size used.

Finally, it is instructive to examine the difference in the correct recall
rate between poor readers and above average readers for orthographically
similar lists. These rates are .058 and .125 for the poor and above average
groups, respectively. The difference in the correct recall rate is not significant,
X z( l , N = 206) = 2.69, p > .1, but there was a reliable deficit for storage
for the poor readers, and these children also had better retrieval. In essence,
the 6P model was able to detect differences between reading groups for both
storage and retrieval even in a case where the product of the storage and
retrieval measures (i.e., the correct recall rate) was not significantly different.

DISCUSSION

Model'based measurement is a powerful tool for examining underlying
cognitive processes. Without a mathematical model to structure the interplay
of cognitive processes, the dependent measures used in experimental studies
cannot be directly tied to a particular process. Model-based measurement,
however, disentangles these processes. Furthermore, model-based measure-
ment can uncover effects that do not manifest themselves in terms of
behavioral measures. For example, with orthographically similar lists the
recall rate is not significantly different between poor readers and above
average readers, yet for orthographically similar items the storage and re-
trieval model is able to detect two effects (in opposite directions). Relative
to the above average readers, poor readers demonstrate a reliable storage
deficit, but the poor readers also have better retrieval of the information
that is stored. The opposite direction of the storage and retrieval changes
between the two groups obscures the detection of a difference on the correct
recall rate because the recall rate is the product of the storage and retrieval
probabilities. The detection of these two effects illustrates a powerful advan-
tage of model-based measurement.

The question arises as to why retrieval is superior for the poor readers
when the memory list has high orthographic similarity. Although the poor
readers did well retrieving stored items in the other list conditions, they

70 RICHARD A. CHECHILE



were not reliably better than the control participants, so the superior retrieval
for the poor readers was restricted to the condition with high orthographic
similarity. However, in that condition the average poor reader stored only
about 2.1 words out of a possible total of 24 words. For comparison purposes,
the average poor reader stored about 8.4 words for each of the other list
types. Hence, the poor readers encoded the words on the orthographically
similar list in a fashion that resulted in few items being retained, but those
items were highly retrievable.

In this experiment, the children were required to know both the
identity of the words and the location of the words within the list. A storage
difficulty could be either a problem with the loss of item information or
the loss of position information. In either case, an increased rate of storage
problems is an impediment to effective reading. The memory of a sequence
of words is essential for language comprehension. Consequently, a partial
explanation of the learning disability experienced by the poor readers is
their lower rate of memory storage. Yet poor readers showed a storage
decrement only for orthographically similar items. When the memory lists
were phonologically similar, semantically similar, or dissimilar, then the
dyslexic participants did not have any additional problems with storing
the memory targets. Also, the retrieval of stored traces was excellent for
the poor readers.

When trying to understand the differences among subpopulations, a
number of difficulties must be addressed (see, e.g., Baumeister, 1967; Chap-
man &. Chapman, 1974). One problem is the suitability of control or
comparison groups. If one group is superior to another group on all measures,
then one just might not have a suitable comparison group. One way to
address this concern is to identify an interaction effect. In this study, the
isolation of the storage deficit to only orthographically similar lists and the
finding of better retrieval for poor readers are reflective of an interactive
effect. It is clear that the average and above average groups were not
performing better under all conditions and for all processes. This finding
provides support for the suitability of comparison groups used to assess the
memory processes of dyslexic children.

In this chapter, the more recent 6P model (Chechile, 2004) was used
instead of the model used by Chechile and Roder (1998). The older storage-
retrieval separation model made a questionable assumption about foil recog-
nition. The 9k parameter represents the success rate in foil recognition test
trials for recovering enough target information to reject the foil with high
confidence. It is not reasonable to assume the equality of 9k and 0S, as was
done in Chechile and Roder's analysis.

For each of the 12 conditions in this study, the resulting estimates for
9S are substantially different from the values previously reported by Chechile
and Roder (1998). Despite these large differences, the between-conditions
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differences detected for storage are still similar to those discussed by Chechile
and Roder. In both analyses, a storage deficit was detected for poor readers
(compared with the other reading groups) only for orthographically similar
lists. Consequently, Chechile and Roder's interpretation as to why this
pattern occurs for poor readers is still reasonable.

Chechile and Roder's (1998) account for the pattern of storage changes
stressed the overreliance of the poor readers on visual encodings. Chechile
and Roder pointed out that poor readers can understand spoken language
without difficulty. Comprehending spoken language requires the activation
of semantic memory codes from phonetic input. In this experiment, the
targets had to be articulated correctly three times over a 2'Second interval
or else the target was excluded in the later data analysis. Each target was
presented in a visual form. Thus, it would seem reasonable to assume that
for a word correctly read aloud, the children developed, at the time of
reading, suitable visual, phonetic, and semantic codes for the word. Yet this
multifaceted encoding needed to be linked to list position information. It
seems reasonable to assume that the multifaceted information was concurrent
with the positional information in a very short-term, immediate, perceptual
trace. However, the three components of the item information (visual,
phonological, and semantic) need not be equally "strong." Chechile and
Roder argued that good readers are flexible in their encoding emphasis. In
most cases, a good reader might stress the semantic code in linking the item
information to the position information. However, these good readers might
switch to a different encoding emphasis for the semantically similar list,
that is, either a phonological or an orthographic emphasis. Such a switch
would reduce intralist interference. Chechile and Roder suggested that poor
readers tended to rely on an orthographic encoding. Orthographic encoding
will work fine for all list types except for the orthographically similar lists.
Chechile and Roder hypothesized that poor readers do not spontaneously
switch to a different encoding emphasis under conditions of high ortho-
graphic similarity. This hypothesis is consistent with those of other investiga-
tors who have provided support for the idea that poor readers overuse visual
encoding (e.g., Fay, Trupin, & Townes, 1981; Gordon, 1984; Rack, 1985;
Snowling, 1991). Recall that Stanley and Hall (1973) found a more persis-
tent iconic image for children with reading disabilities. Also, there is some
physiological evidence of abnormalities in the brains of dyslexic individuals
in the magnocellular layer of the lateral geniculate nucleus (i.e., Livingstone,
Rosen, Drislane, & Galaburda, 1991). The magnocellular system is sensitive
to low spatial frequency and visual persistence (see, e.g., Di Lollo, Hanson,
& Mclntyre, 1983; Lovegrove, Martin, & Slaghuis, 1986).

The hypothesis that poor readers place excessive emphasis on visual
processing provides another perspective in the debate concerning the phono-
logical deficit hypothesis (e.g., Farmer & Klein, 1995; Liberman &
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Shankweiler, 1985; Stanovich, 1988; Vellutino & Scanlon, 1987). Is the
demonstrated difficulty in the articulation of printed words due in part to
the overreliance on visual information? It is important to note, however,
that the problems in memory storage for orthographically similar lists cannot
be attributed to articulation problems, because mispronounced items were
excluded in the data analysis. Furthermore, the memory targets were pre-
sented slowly in this study, so it is difficult to argue that the reading disability
is due to problems with processing a rapid temporal sequence (cf. Tallal,
1984; Tallal & Curtiss, 1990). Also, the hypothesis of a deficit in rapid
temporal processing cannot explain why the poor readers in this study
performed normally with all lists other than the orthographically similar lists.

Finally, many cognitive processes are involved in effective reading,
and if any of these processes are inefficient, then reading difficulties can be
expected. Understanding which processes are impaired requires measures
that are validly linked to cognitive processes. Yet behavioral measures do
not reflect the influence of only one cognitive process, and furthermore,
physiological differences detected in the brains of dyslexic individuals (e.g.,
Livingstone, Rosen, Drislane, & Galaburda, 1991) do not result in an
unambiguous interpretation in terms of information-processing mechanisms.
The central thesis of this chapter is that model-based measurement is the
best available approach for understanding differences in underlying cognitive
processes. Both storage and retrieval mechanisms can and do fail, and the
rate of these failures can vary with different participant populations. Model-
based measurement should become a routine feature in the assessment of
condition and population differences.

SUMMARY

A central concern in psychological assessment is the measurement of
processes that are not directly tapped by a single behavioral response. In
this chapter, a case is advanced for the general need to examine mathematical
models of the latent processes as a means for measuring the set of entangled
cognitive processes. This approach is illustrated for the problem of under-
standing the causes for forgetting in terms of storage and retrieval processes.
The measurement model is also a vehicle for examining differences in
clinical subgroups. In this chapter, a storage and retrieval measurement
model was used to study the memory processes of dyslexic children. The
measurement model uncovered a massive storage problem exhibited by the
poor readers only when the memory items were orthographically similar.
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APPENDIX 2.1

Population Parameter Mapping Method

A key concept in understanding the population parameter mapping
(PPM) method is the distinction between two sets of population parameters.
Chechile and Meyer's (1976) experimental task and the 6P model have six
population parameters (6S, Or, 9k, 9g, 6S', 6\; see main text). The second
set of population parameters is the set of population proportions correspond-
ing to the observational categories. Although the psychological parameters
are denoted by subscripts to a theta (9) symbol, the population proportions
for the mutually exclusive and exhaustive response categories are denoted
by subscripts to a phi (qp) symbol. More specifically, the population proper'
tions for correct and incorrect recall are apl and cp2 = 1 - <Pi, respectively.
In old recognition, the population proportions for "no 3," "no 1 or 2," "yes
1 or 2," and "yes 3" responses are, respectively, q?3, <p4, g?5, g?6 = 1 - cp3 -
cp4 - <p5. The corresponding population proportions for the new recognition
trials are, respectively, (p7, q?8> <Pg, <Pio = 1 ~ <P? ~ <Ps - <P9- When data are
collected, there will be observed frequencies nh . . . , n10 for the 10 response
categories. For a Bayesian analysis in terms of the response category propor-
tions, <PI, . . . , g?10, it is necessary to specify a prior probability for the
parameters. I have recommended a multivariate uniform prior (see Chechile,
1998, 2004), which can be represented as

n'ioPr({g?i, . . . , <Pi0}) = K'<P! " ' « . . . (p10

where n\ = n'2 = . . . = n'10 = 0, cp2 = 1 - <Pi> <P6 = 1 - <Pj ~ <f>4 - <P5,
<pio = 1 - cp-; - qps - q?9, and K' = 36. The subsequent posterior distribution
based on the observed data D, that is, frequencies nb . . . , n10, is

where K is a known constant given the values for nb . . . , n^. I have shown
how a random vector {g3h . . . , cpw\ can be sampled from the posterior
distribution (see Chechile, 1998, 2004). If random sampling is repeated
many times, then the multivariate posterior distribution is approximated by
the distribution of the sampled vectors. However, we are not particularly
interested in the distribution of response category proportions. Our goal is
to obtain the corresponding distribution for the 6P model parameters. PPM
is designed to achieve this goal.

PPM estimation involves a two-step procedure that is repeated many
times. The first step is the drawing of a random vector {<f>i, . . . , <f>io\ from
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the posterior distribution. The second step is to map that random vector
to a corresponding vector of parameters in the 6P model. I have developed
the following set of equations for this mapping (see Chechile, 2004):

0$ = maximum of either (cp6 - qc2)/(l - qc2) or <p\\
0r = minimum of either q?1 (1 - Cic^l((p(,- C1C2) or 1;
dk = maximum of either (cp7 - c1c3)/(l - qc3) or 0;
9g = (cp5 + cp6 - <Pi)/cp2) if Os = <Pr, otherwise, c2;

#g" = <P? + <P8. if 0fc = 0; otherwise, c3;
01 = q, where

q = ((p3 + cpio)/(<P3 + cp4 + cp9

C3 = C8/(C8 + C9).

However, the resulting vector {0S, 6r, 9k, £>g, 0g>, 6>J might be discrepant
from what is permitted according to the 6P model. To understand this point,
let us consider the reverse mapping that is obtained by substituting the
values for the {Os, 9n 6h 9g, 0S>, #J vector back into the process trees to
obtain predicted values for the response category proportions. We denote
the predicted vector as [cp(p\, (p(p)

2, ..., (p
(p\o\. If the sampled vector {q>h q?2,

..., cpio} is perfectly consistent with the 6P model, then it will be the same
as the {(p(f>)i, <f>(t>}2, ..., <plf>)io} vector. However, it might not be exactly
consistent with the 6P model. Because the number of dimensions of the 6P
model parameter space (i.e., six) is less than the number of dimensions of
the response category space (i.e., seven), there will be points in the response
category space that are not exactly consistent with the model but are very
close to a point in the response category space that is consistent with the
model; that is, there might be small modeling error. 1 have defined the
modeling error for the 6P model as 8 = max ( I cp,(|>)- Q?, I ), i = 1, ..., 10. If
5 is too large, then the mapped vector {0S, &„ 9k, 9S, 9S', d\] is considered
inconsistent with the model, and it is rejected (Chechile, 2004). In the
research with the 6P model, the maximum tolerance for the modeling error
is taken as .05. The two-step process of PPM is repeated N times (N =
30,000 for the work reported in this chapter). The number of consistent
vectors divided by N approximates the probability of model coherence.

The set of acceptable [9$, 9n 9k, 9g, 9g, 9\\ vectors is the basis for
describing each of the model parameters. With the PPM procedure, an entire
probability distribution can be approximated for each model parameter. The
mean of the distribution for a parameter is taken as a unique point estimate
of the latent processes. The distribution itself can also be used in assessing
hypotheses about condition differences.
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3
COGNITIVE MODELS

FOR EVALUATING BASIC
DECISION PROCESSES IN
CLINICAL POPULATIONS

ELDAD YECHIAM, ELIZABETH S. VEINOTT, JEROME R. BUSEMEYER,
AND JULIE C. STOUT

Severe frontal lobe brain injury is often associated with impairment
in decision-making ability (Damasio, 1996), After observing a patient with
ventromedial frontal lobe damage whose cognitive abilities were intact but
whose decision making was impaired, Bechara, Damasio, Damasio, and
Anderson (1994) developed a task, now referred to as the Iowa gambling
task, to identify and assess this neurological deficiency. Poor performance
on this task has been observed in patients with ventromedial damage as
characterized by a greater tendency to focus on immediate rewards and
ignore future larger negative consequences. Since the publication of Bechara
et al.'s study, in the tradition of true interdisciplinary work, researchers
interested in clinical neuroscience, psychopathology, and drug abuse have
been using this task to assess both behavioral and neurological characteristics
in different populations. Although this approach has been successful in
determining that schizophrenia (Wilder, Weinberger, & Goldberg, 1998),
panic disorders (Cavedini et al., 2002), and acute mania (Clark, Iversen,



& Goodwin, 2001) do not seem to be associated with ignoring future
consequences, many more neurologically and psychologically distinct popu-
lations have demonstrated similar decision deficits on this task (e.g., Bartzokis
et al., 2000; Bechara et al, 2001; Mazas, Finn, & Steinmetz, 2000; Petty,
Bickel, & Arnett, 1998; Schmitt, Brinkley, & Newman, 1999; Stout, Roda-
wait, & Siemers, 2001).

In the Iowa gambling task, participants select between four alternatives
that appear as decks of cards. Each alternative produces gains and also
occasionally losses, and outcomes vary in the size of the gains to losses and
in the frequency of the losses. It has been suggested that poor performance
on the Iowa gambling task is due to a breakdown in the emotion'based
learning system, because this task cannot be performed successfully on the
basis of a purely cognitive system alone (Bechara et al., 1994; Damasio,
Tranel, & Damasio, 1991), thereby implying that this task involves an
interaction of motivational and cognitive processes. The interaction of these
underlying processes in this complex task poses a theoretical problem in that
it is difficult to independently evaluate the contribution of each component
process. Overall poor performance may be a result of deficits in different
component processes in different populations rather than a single deficit.
As we demonstrate in this chapter, cognitive models, often used in cognitive
psychology and cognitive science, provide a tool for identifying the relative
contributions of distinct subcomponents of a behavior and may be parti-
cularly useful to the study of decision-making deficits in different clinical
populations.

Cognitive models provide a theoretical basis for identifying implicit
basic processes that underlie complex task performance. Thus, they offer
an elegant solution that facilitates the use of relatively complex tasks within
the framework of clinical assessment because they enable one to produce
independent measures of the component processes involved in a task. Cogni-
tive models explain intelligent (human or animal) behavior by building
models that simulate that behavior (usually on a computer). Within the
approach, cognitive mechanisms are mapped onto computational algorithms,
and cognitive representations are mapped onto computational data struc-
tures. Cognitive models range in their complexity and the types of problems
that they are modeling. Some solve highly specific problems; for example,
processing-tree theory (Batchelder & Riefer, 1999) produces independent
measures of memory storage and retrieval. Other cognitive models (e.g., the
executive-process/interactive control [commonly known as "EPIC"] model
[Meyer & Kieras, 1999], and the adaptive control of thought—rational
[commonly known as "ACT-R"] model [Anderson, 1991]) are designed to
address a large family of problems and to simulate many different basic
processes. In this chapter, we review the use of a model that is similar to
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the former class of models and has been specifically designed to simulate
performance on the Iowa gambling task.

Cognitive models are powerful in that they use a quantitative approach
whereby different variants of the model can produce testable predictions
about performance levels (response time, errors, choice made, etc.) at differ-
ent time points and under different conditions. The present model allows one
to independently assess the motivational, learning, and response component
processes that lead to the overall deficient decision-making behavior. It
uses a quantitative learning model that predicts how people learn from
experience. The predictions of the model are tested against the learning
curves of performance, and the similarity represents the descriptive power
of the model.

In this chapter, we demonstrate the use of computational models for
the understanding of underlying processes in complex clinical assessment
tasks, such as the Iowa gambling task. First, we describe the Iowa gambling
task as an example of a complex behavioral task that is used in clinical
assessment. Next, we present the quantitative model used to identify basic
processes that lead to poor task performance. Because different cognitive
models rely on different assumptions about the basic components, we describe
and compare three alternative models. After that, we review three methods
for model comparison (prediction, simulation, and bootstrapping) and dis-
cuss the advantages and disadvantages of the methods. The chapter closes
with a review of the applications of the present approach for analyzing the
Iowa gambling task. In previous work on this topic, Busemeyer and Stout
(2002) tested three very different models for this task and fit the models
to the empirical data. This chapter complements Busemeyer and Stout's
work by analyzing three different variants of the best-fitting model from their
article, providing a more detailed description of the modeling procedures for
those interested in learning how to use computational models to study
underlying processes and by applying this approach to the study of two
disparate populations that show similar overt behavior on the Iowa gambling
task: (a) patients with Huntington's disease and (b) cocaine abusers.

THE BEHAVIORAL TASK

For demonstrating the use of a cognitive model for distilling the basic
processes involved in a complex decision task, we reexamine a series of
studies in which the Iowa gambling task was used (Bechara et al, 1994).
This popular task has been used for neurological assessment of patients with
ventromedial prefrontal cortex (VMPFC) damage by examining a person's
tendency to make risky choices in response to different reward structures.

BASIC DECISION PROCESSES IN CLINICAL POPULATIONS 83



Tally: 2,000

You won 50, but lost 50

Figure 3.1. The layout of the Iowa gambling task (Bechara et al., 1994). There are
four decks of cards, labeled A, B, C, and D. Each time a decision maker selects a
deck, the outcome from that deck is shown. The feedback also includes the
accumulated tally. Note that gains and losses can occur simultaneously on the same
trial, as in this case (the decision maker chose Deck C and had a gain of $50 and a
loss of $50).

In this task, participants start with $2,000 in play money and make a
series of 100 choices from four decks of cards with the goal of maximizing
their net payoff across trials. On each trial, the participant selects one card
from any of the four decks and turns it over to learn the outcome of his or
her choice. There is also an accumulating payoff counter, which is displayed
constantly. In addition to the goal of maximizing their payoff, the partici-
pants are told that they can switch among the decks as often as they wish,
but they are not told how many cards they will be choosing or anything
about the decks. Information about the payoffs of the different decks is
learned over time.

Each choice leads to a gain, and sometimes these gains are coupled
with simultaneous losses (see Figure 3.1 and Table 3.1). Two of the four
decks are disadvantageous because they lead to net losses across multiple
selections. These decks are initially very attractive because they always pay
$100, but they are also associated with larger, infrequent losses (up to
$1,250). The average net loss per trial for these decks is $25. Good perfor-
mance is achieved by avoiding these disadvantageous decks and instead
choosing the two alternative decks, which lead to a net gain of $25 on
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TABLE 3.1
The Payoff Scheme of the Four Alternatives in the Iowa Gambling Task

Deck

A
B
C
D

Wins

$100 every card
$100 every card
$50 every card
$50 every card

Losses

.5 to lose $250

.1 to lose $1,250

.5 to lose $50

.1 to lose $250

Description

Disadvantageous: Risky
Disadvantageous: Risky, rare loss
Advantageous: Safe
Advantageous: Safe, rare loss

Note. A = disadvantageous; losses in 50% of the selections; B = disadvantageous; losses in 10% of the
selections; C = advantageous; losses in 50% of the selections; D = advantageous; losses in 10% of the
selections.

average per trial. The two advantageous decks have smaller immediate
payoffs of $50 but also losses of smaller magnitude. There are three main
characteristics of this task: (a) It involves uncertainty regarding gains and
losses associated with each deck of cards; (b) participants receive immediate
feedback regarding their choices; and (c) the task is complex, because it
requires both motivation (responses to gains and losses) and learning for
participants to perform well.

Typical performance on this task involves initially favoring the disad-
vantageous decks because their immediate reward ($100) is twice as much
as the advantageous decks. Over trials, healthy control participants learn
that although the disadvantageous desks initially seem superior, they are
not, because they are also associated with significantly larger losses, and
thus these participants switch to preferring the advantageous decks. Examin-
ing the overall performance (percentage of disadvantageous decks chosen)
on this task initially proved to be effective in differentiating individuals
with bilateral damage to the VMPFCs from healthy control participants
(Bechara et al., 1994). Individuals with VMPFC lesions possess normal
mental capacities as measured by the Wisconsin Card Sorting Task (Milner,
1963) and working memory tasks. Moreover, these individuals do not show
poor performance in simple choice tasks, such as decisions between safe
and risky gambles (see, e.g., Leland & Grafman, 2005). Yet in real-world
situations, these patients have been observed to have deficits in their
decision-making behavior (Bechara et al., 1994; Eslinger & Damasio, 1985).
Likewise, on the more complex Iowa gambling task, patients with VMPFC
lesions also display poor performance (Bechara et al., 1994).1

'The use of relatively complex tasks, such as the Iowa gambling task, for clinical assessment thus has
pluses and minuses. Complex tasks elicit cognitive processes that are different from those observed
in simpler tasks, because they force individuals to deal with complex stimuli in environments that
include nontrivial attention and memory demands (see Fabiani, Buckely, Gratton, Coles, &
Donchin, 1989). On the positive side, complex task performance is assumed to be more similar to
performance in real-world situations, which can be helpful for clinical assessment. On the negative
side, however, when using complex tasks it is more difficult to interpret the findings and relate them
to basic brain and cognitive mechanisms.
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The Iowa gambling task has been used to test hypotheses regarding
the underlying neuropsychology of different psychological disorders. To that
end, no difference in performance on this task has been found between
healthy control participants and patients with schizophrenia (Wilder et al.,
1998), acute mania (Clark et al., 2001), or panic disorder (Cavedini et al.,
2002). Together, these data suggest that the VMPFC is not affected in these
particular psychological disorders. It is interesting that deficits similar to
those in the VMPFC patients were also found in patients with many other
neuropsychological disorders and clinical populations, such as Huntington's
disease (Stout et al., 2001), obsessive-compulsive disorder (Cavedini et al.,
2002), psychopathic individuals (Blair, Colledge, & Mitchell, 2001; Schmitt
et al., 1999), persons with antisocial personality disorder (Mazas et al.,
2000), and chronic drug abusers (Bartzokis et al., 2000; Bechara et al.,
2001; Grant, Contoreggi, &. London, 2000; Petry et al., 1998), making the
theoretical interpretations of the behavior more difficult.

It is of course possible that a single deficit leads to choice of disadvanta-
geous decks in these different populations, yet in this case one must conclude
that the Iowa gambling task is not sensitive for differentiating among such
distinct clinical populations. An alternative reason for this inability of
the overt task performance measure to distinguish among the different
populations is that there are different component processes that lead to the
overt risk-taking behavior, and these may be different in distinct populations.

The behavioral outcomes of this task may appear on the surface to be
relatively simple. However, on further evaluation, this task involves several
different processes to accomplish it successfully. For example, there are
motivational processes, such as evaluating feelings regarding immediate wins
and infrequent larger losses; cognitive processes, such as learning long-
term deck contingencies and remembering past wins and losses; and choice
strategies, affected by individual strategies such as impulsiveness and need
for consistency. Each of these processes could plausibly lead to the overt
behavior observed.

For example, if a decision maker (DM) chooses from the disadvanta-
geous decks, characterized by higher immediate gains coupled with higher
infrequent losses, then maybe the DM is focusing more on gains than losses.
This motivational explanation of the behavior is similar to the concept of
promotion and prevention focus (Higgins, 1997). Whereas this first compo-
nent that can lead to poor performance is motivational, an alternative
component is related to learning and memory processes, denoting the degree
of forgetting or discounting of past losses. Namely, if DMs discount (or
forget) the past losses from the disadvantageous decks because they are
infrequent, then they are likely to prefer these decks, because some of the
time they supply a payoff that is relatively high. Accordingly, the second
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plausible explanation of poor performance in this task may be due to a
memory component.

Finally, a third factor that may lead to poor performance is an erratic
choice pattern due to such causes as loss of interest, boredom, impulsivity,
or fatigue. This factor implies that although DMs may have high attention
to losses initially, their attention wavers throughout the task, and the choice
becomes more arbitrary as they continue in the task. This is another possible
reason for not learning to choose the advantageous decks more often. These
multiple interpretations provide a problem for theoretically understanding
risk'tasking behavior observed in the Iowa gambling task.

In this chapter, we take the approach that to improve the sensitivity
of the task to the underlying basic processes of different clinical populations,
the overt behavior in the gambling task needs to be distilled so as to examine
potential differences in underlying basic components. The change in these
basic components (e.g., motivational, cognitive, choice consistency) may
be different in distinct clinical populations and thus provide more insight
into the psychological differences in these populations.

THE QUANTITATIVE LEARNING MODEL

For capturing the basic processes involved in the Iowa gambling task,
we use a cognitive model called the expectancy-valence model that was initially
developed by Busemeyer and Stout (2002). This cognitive model is a rein-
forcement learning model, because it simulates the behavior of a person
who makes a series of choices, each based on the outcome from the previous
choices, without any knowledge of the actual distribution of the payoff
associated with each choice. Specifically, the model is a set of stochastic
equations that mimic the psychological processes that are involved in the
decision of which card to choose next in the trial. Each of the equations
is a simple unit that performs a basic element of cognition. However, the
emergent behavior of the ensemble becomes fairly complex, up to the level
where the mathematical model can realistically mimic human behavior (see
Busemeyer & Johnson, 2004)

Expectancy-Valence Model

According to this model, the DM integrates the gains and losses experi-
enced on each trial into a single affective reaction called a valence. Expectan-
cies about the valence produced by each deck are learned by an adaptive
learning mechanism. Finally, these expectancies serve as the inputs into a
probabilistic choice mechanism that selects the choice on each trial
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(Busemeyer & Stout, 2002). The valences (or subjective reactions) and
expectancies (which are the accumulated reactions for a deck) are updated
after each selection on the basis of the outcome of the selection and the
simulated attributes of the player.

As one might expect, when first faced with the four decks, people
have no preference because they have no information about the decks, so
they will randomly choose a card. Consequently, in the first trial, the response
of the model is a random choice. In the next trial, the model's response
depends on the outcome from the previous trial. The model receives this
outcome as its input. Its output answers the question "What is the next
choice ahead given the observed outcome?" The model assumes that there
are three components of the Iowa gambling task and, consequently, the
model: (a) attention to losses or wins, (b) memory for recent outcomes,
and (c) consistency of the choice. Furthermore, recall that the power of this
computational model is that each component can be individually assessed to
provide a specific profile for each individual based on these three compo-
nents, described next.

Attention to Losses and/or Wins: The Motivational Parameter

In the Iowa gambling task, the evaluation of the gains and losses is
called a valence and is represented by a utility function that allows for
different weights for gain and losses (Kahneman & Tversky, 1979). The
utility is denoted u(t) and is calculated as a weighted average of gains and
losses for the chosen deck in trial t.

u(t) = W • win(t) - (1 - W) • loss(t), (3.1)

where win(t) is the amount of money won on trial t, loss(t) is the amount
of money lost on trial t, and W is a parameter that indicates the weight
given to gains versus losses. The attention weight is a motivational difference
in attention distribution. The parameter is limited from 0, denoting attention
only to losses, to 1, denoting attention only to gains. Values between 0 and 1
indicate the comparative weight of gains versus losses. This parameter cap-
tures and formally specifies the motivational component of poor performance
in the Iowa gambling task. Specifically, poor performance in the Iowa task
may be due to persistence in choosing from disadvantageous decks because
of insensitivity to the large losses produced by these decks.

Imagine, for example, a DM who pays much more attention to gains
than to losses (represented as a W = .9). This DM chooses a card from a
disadvantageous deck and receives a gain of $100 and a loss of $250. Accord-
ing to the model, the utility is not a simple average of the two outcomes;
instead, it is a weighted average in which for this DM, gains are more
important than losses. In this case, u(t) is equal to .9 X 100 - .1 X 250, or
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u(t) = 65. Now let us say that the same person chooses from an advantageous
deck and receives a $50 gain and a $50 loss. This leads to u(t), which equals
.9 X 50 - .1 x 50, or 40. Thus, for this DM the subjective outcome from
this disadvantageous deck is higher; hence, according to the model, this
deck is more likely to be chosen. This parameter is therefore useful for
characterizing a motivational deficit (i.e., a strong preference for gains) that
may lead to poor performance in the Iowa gambling task.

Influence of Memory for Recent Outcomes: The Recency Parameter

In the Iowa gambling task, the DM initially does not know anything
about the payoff distributions for the different decks and must attempt to
learn this information over choice trials. When DMs learn from experience,
they need to decide whether to make their next choice on the basis of
recent outcomes or on the basis of the outcomes observed over longer
periods of time. Structural capacities may influence this choice, because
some previous gains or losses are so distant that they are not recalled.

Formally, the term expectancy, E,, is used to denote the accumulated
expected utility for deck j or, in other words, the accumulated experience
one has with a deck. High relative expectancy implies that the propensity
to choose the corresponding deck would be high. The expectancy is updated
by the affective response experienced when a card from a particular deck
is chosen and is a function not only of the new valence or utility of the
outcome for a given trial u(t) but also of old valences from previous trials.
A delta learning rule (see, e.g., Busemeyer & Myung, 1992; Sarin & Vahid,
1999) is used for updating the expectancy after each choice, as follows:

Ej(t) = E j ( t - l ) + <p. [u(t) - Ej(t - 1)] 8j(t). (3.2)

On any trial t, the expectancy is equal to that endowed by the previous
trials Ej(t — 1). In addition, if deck j was selected in trial t, then the
expectancy changes. The formula also includes 5j(t), which is in essence a
weight associated with the chosen deck. It equals 1 if deck j is chosen on
trial t, and 0 otherwise. This means that for all the decks that were not
chosen, the expectancy does not get updated because the second half of
the equation is multiplied by zero. When the expectancy gets updated,
5,(t) = 1, then a change occurs in the direction of the prediction error given
by u(t) - Ej(t). That is, if the new outcome from deck j is higher than the
stored outcome (i.e., the old expectancy), this improves the expectancy,
and the propensity to select the deck increases. If the new outcome is lower,
then the new expectancy of the deck becomes lower.

The recency parameter, <p, describes the degree to which expectancies
of deck consequences reflect the influence of past experiences with particular
decks or rather appear to be affected by the most recent outcome with a
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TABLE 3.2
Simulated Expectancy Outcomes in Different Values of the

Memory Parameter (cp)

Trial DM-A <p = .9 DM-B cp = .1

Expectancy Outcome Expectancy Outcome

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
.9
.99
.999
.9999
.99999
.999999

-11.15
-0.215
.8785
.98785
.998785
.999878
.999988

-11.15

1
1
1
1
1
1

-12.5
1
1
1
1
1
1

-12.5

0
.1
.19
.271
.3439
.40951
.468559

-0.8283
-0.64547
-0.48092
-0.33283
-0.19955
-0.07959
.028368

-1 .22447

1
1
1
1
1
1

-12.5
1
1
1
1
1
1

-12.5

Note. DM-A = Decision Maker A; DM-B = Decision Maker B.

deck. This parameter is also limited from 0 to 1. Large values of cp indicate
strong recency effects such that the most recent trials are more influential
in determining the expectancy, whereas past outcomes are discounted. In
other words, people's deck expectancies change quickly, are influenced
strongly by recent outcomes, and are forgotten easily. In contrast, small
values of cp indicate the persistence of influences of prior trial outcomes
over longer spans of selections and are associated with slow forgetting and
slower incorporating of new outcomes into expectancies. To demonstrate
these processes in the model, we analyze a specific example.

Table 3.2 compares two DMs with different learning strategies (i.e.,
values of <p) who, for the purpose of comparing the effect of these learning
strategies on chosen deck expectancies, are always choosing from a disadvan-
tageous deck (Deck B). Decision Maker A (DM-A) has a cp of .9, implying
high recency, whereas Decision Maker B (DM-B) has a cp of .1, implying
low recency. The initial expectancy (in Trial 1) is assumed to be zero because
there is no prior information about any of the decks. In Trial 1, DM-A
chooses from a disadvantageous deck and receives a gain of 1. The gains
(and losses) in the outcome column refer to the weighted average of gains
and losses, u(t). In the first trial, the expectancy for DM-A's chosen deck
is accordingly updated as follows: E(l) = 0 + .9 X (1 - 0) X 1 = .9. Replacing
the .9 with a .1 in this equation provides one with the updated expectancy
for DM-B's chosen deck. The expectancy for all unchosen decks is still 0.
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After selecting six more cards from the disadvantageous deck (DM-A
or DM-B), leading to five more gains of 1, a loss of 12.5, and additional
gains, an interesting difference between the two DMs' expectancies for the
disadvantageous deck is observed. DM-A reacts more strongly to losses,
which leads to a drastic decrease in the level of expectancy for the chosen
deck in the trial following a large loss (see Trials 8 and 15 in Table 3.2).
However, for DM-A, the expectancy for this disadvantageous deck recovers
quickly and returns to an almost normal level after only two trials (see Trial
10). In contrast, for the low recency DM-B, the expectancy following the
large loss does not return to its high preloss level as quickly. It is thus
likely that DM-A would have a higher propensity to choose from the
disadvantageous deck even after experiencing the losses associated with it.
Therefore, the recency parameter enables the model to represent a second
condition under which DMs might choose disadvantageous decks. This
explains favoring disadvantageous decks because the DM does not remember
infrequently occurring bad outcomes and consequently does not discount
those decks appropriately.

Reliability of Choice Behavior: The Choice Consistency Parameter

The DM's choice on each trial is based not only on the expectancies
produced by each deck but also on the reliability with which the DM applies
those expectancies when making the selections. As we discussed above,
people may be inconsistent in the application of expectancies if they are
bored, impulsive, or tired. In terms of explaining risk-taking behavior, incon-
sistency may impair the DM's ability to learn to choose the advantageous
decks. According to the expectancy- valence model, the probability of choos-
ing a deck is a strength ratio of that deck relative to the sum of the strengths
of all decks:

The sum of strength formula is a commonly used decision rule in risky
choices (see Luce, 1959). An alternative is chosen as a function of its
relative expectancy compared with the sum of the expectancy of the other
alternatives. The formula yields a probability for choosing each deck, and
the probabilities sum to 1. These probabilities are later examined for their
predictive value.

It is assumed that the consistency, denoted by 9(t), changes as a
function of experience and can increase in magnitude, reflecting learning.
It can also decrease, reflecting tiredness or a loss of interest. This is formalized
by a power function for the consistency change over trials:
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= (t/10)c. (3.4)

Reliability is represented by the choice consistency parameter, denoted
as c. The parameter c controls the consistency of the choice probabilities
and the expectancies. The parameter is bounded between -5 and +5. When
the value of c is low, choices are inconsistent, random, impulsive, and
independent of the expectancies. When the value of the consistency para-
meter is very high, then the deck with the maximum expectancy will almost
certainly be chosen on each trial.

The choice consistency parameter represents a third facet of perfor-
mance in the Iowa gambling task. Very low values of the parameter indicate
an erratic choice pattern in which DMs do not update their choices on the
basis of their expectancies, and this is a third reason that one might observe
a DM choosing from disadvantageous decks. For example, patients with
VMPFC damage may lose their ability to concentrate as the task proceeds
and consequently become more inconsistent with their choices over time.
To summarize, the expectancy-valence model has three independent param-
eters: (a) a motivational parameter, representing attention weight given to
losses and gains; (b) a learning parameter, representing memory for past
outcomes; and (c) a choice consistency parameter, representing the degree
of coupling between choices and outcome expectancies. The power in using
a cognitive model, such as the expectancy-valence model designed for the
Iowa gambling task, is that it allows one to decompose overall individual
performance on a task into the underlying component processes. Further-
more, it provides individual estimates of each parameter estimate for each
component that can then be used to assess component differences at the
group level.

Alternative Models

The next step in any type of cognitive modeling is to compare and
test competing models for the task. The best-fitting model in this competition
is selected and used to provide the basis for the underlying basic processes.
In previous work, Busemeyer and Stout (2002) and Yechiam and Busemeyer
(2005) have compared the expectancy-valence learning model, which is a
reinforcement learning model, to two substantially different models: (a) a
strategy-switching model (see, e.g., Payne, Bettman, & Johnson, 1988) and
(b) a Bayesian model (see, e.g., Luce, 1959). Because the reinforcement-
learning model was found to be superior to alternative models in these two
previous works (i.e., Busemeyer & Stout, 2002; Yechiam & Busemeyer,
2005), it is particularly important to fine tune this model to find the variant
of it that best describes a performer's behavior. In the next section, we
provide a more stringent test of the expectancy-valence model by comparing

92 YECHIAM ET AL.



it with two different reinforcement learning models: (a) a decay model and
(b) a model with independent attention weights to gains and losses. As we
discuss next, these models differ in terms of their psychological interpretation
of the attention weight and learning parameters.

Interference Versus Decay

Two general classes of models have been proposed to account for the
way new information is accumulated in a learning task. One is based on
loss of information due to interference from new outcomes, and the other
class is based on decay of information. Under one class of models, similar
to the expectancy-valence model, the weight of an expectancy from an
alternative changes only if the alternative is selected. Thus, the old expec-
tancy from an alternative is discounted only if the alternative is selected
again and new information, u(t), is added about that alternative (in the
form of new outcomes). This class of models has been labeled interference
models, because the memory representation is modified only by relevant
events and not simply as a function of time (e.g., Newell, 1992; Oberauer
StKliegl, 2001).

In an alternative class of models, the weight of the old expectancy of
an alternative can decrease on each choice trial even if an alternative has
not been selected and no new information about it is presented. Thus,
expectations about a deck can change as a result of the selections of other
decks. This class of models can be labeled decay models, because decay of
memory occurs even without the occurrence of interfering events (e.g.,
Atkinson & Shiffrin, 1968; Broadbent, 1958). A popular decay model is
the reinforcement-decay model used by Roth and Erev (1995). It has the
following formula for updating the expectancy in each trial (this equation
is used instead of Equation 3.2):

EJ.(t) = ( p - E j ( t - l ) + 5 j ( t ) - u ( t ) . (3.5)

Note that for this model the past expectancy is always discounted, regardless
of whether any new payoff information is experienced. This is implemented
by the fact that the past expectancy of all decks E;(t - 1) is multiplied in
each trial by the recency parameter cp (whose value is < 1). In other words,
if an option is not chosen, then a payoff of zero is used to update the
expectancy. The assumption of decay implies a difference in the psychologi-
cal interpretation of the recency parameter. It is therefore important to
discern the model that is most suited to describe performers' behavior.
Of course, this does not rule out the possibility that the models provide
complementary perspectives and that a third hybrid model would be needed
to accurately simulate a DM's choices.
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Independent Attention to Gains and Losses

In Equation 3.1, a single parameter is used to denote the relative
attention to gains versus losses. In theory, though, the attention to gains
and losses may not be necessarily dependent. For example, a DM may pay
a lot of attention to both gains and losses very little attention to either.
To more accurately describe the behavior of such DMs, a model should
include the attention to gains and losses as separate components. This is
implemented by providing independent parameters for the attention to gain
and losses, as follows:

u(t) = W • win(t) - L • loss(t). (3.6)

If one compares this equation with Equation 3.1, one can see that the
term 1 - W has been replaced by the parameter L. This is an independent
parameter that denotes the attention to losses. This would allow the model-
ing of a DM who has high or low values for both W and L. Accordingly,
the values of L and W are not necessarily limited by 1 but can be limited
by a higher value (e.g., in Yechiam 6k Busemeyer, 2005, a ceiling value of 3
was used). Furthermore, as opposed to the decay formula discussed in the
preceding section, the implementation of the present formula increases the
number of parameters in the model from three to four. The implication of
this step, as we discuss in more detail in the "Model Evaluation" section,
is that the model is less parsimonious.

Baseline Models

In addition to the two variants of the expectancy-valence model dis-
cussed above, a baseline model is examined as a standard for comparison
with each cognitive model. There are different plausible baseline models.
The most "naive" baseline model is an agent that makes choices arbitrarily,
that is, randomly. A more sophisticated baseline model, which is at present
used in the implementation of the expectancy-valence model, is a statistical
model that generates choices with constant probabilities across trials. The
probability of choosing a card from one of the four decks can be described
in three free parameters (because the fourth deck choice proportion is equal
to 1 minus the proportion of the other decks). Unlike the cognitive models,
this baseline model does not assume any learning or other fluctuations in
selections as a result of training experience. Instead, it assumes that the
choices are identically distributed across trials. In the next section, we
evaluate the two cognitive models and compare them with the baseline
model. Accordingly, a cognitive model will be deemed to have performed
better than the baseline model if it succeeds in explaining how choices are
changed as a function of learning or other trial-to-trial dependencies.
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MODEL EVALUATION

To evaluate the variants of the expectancy-valence models presented
above, one needs to use multiple strategies. We review the use of a prediction,
a simulation, and a bootstrapping approach, because they provide important
and complementary evaluation metrics. For example, in the prediction
method, we examine the accuracy of the one-step-ahead predictions gener-
ated by each model for each individual performer. In contrast, using the
simulation method, predictions for the full learning path are generated and
compared with the average performer's learning curve. Finally, bootstrapping
is an evaluation strategy that does not use empirical data. Instead, the model
is used to generate data, and then it is reused to fit its own data. We follow
with an example that combines the use of different methods in assessing
variants of the expectancy-valence model.

Prediction

The first method of model evaluation examines the accuracy of one-
step-ahead predictions generated by each model for each individual. To be
more specific, define Y,(t) as a t X 1 vector, representing the sequence of
choices made by individual i in t trials. Define X;(t) as the corresponding
sequence of payoffs produced by these choices. Each model is given Xj(t)
and uses this information to generate the probability of choosing deck j
next time, given the outcomes on that deck, Pr[Gj(t + 1 ) 1 Xj(t)]. The accuracy
of these predictions is measured using the log-likelihood criterion:

ln(L I model) = It S, ln(Pr[G;-(t + 1 ) 1 X;(t)]) • 6;(t), (3.7)

where 8j(t) = 1 if deck j was chosen on trial t, and zero otherwise.
In this process, a grid search of the parameter space is used to find the

combination of parameters that has the best prediction for the next step
ahead. One such method is the robust combination of grid-search and
simplex-search methods (Nelder & Mead, 1965). In this method, each point
on the grid serves as a starting position for the simplex search algorithm,
which is then used to find the parameters that maximize the log likelihood for
an individual. For example, the parameter W has a value that is constrained
between 0 (denoting attention to losses only) and 1 (denoting attention
to gains only). To use the grid search, several points along this space are
selected as the starting positions of the search algorithm.

The final outcome is a set of solutions, one for each starting point on
the grid. The best solution is the one that maximizes the log-likelihood
criterion. Once this set of solutions is calculated for each model, one can
compare the model fits, Gz. The difference in the fit of the predictions of
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a baseline model and a cognitive model is evaluated by comparing log-
likelihood scores for two models. Equation 3.8 compares the fit of the baseline
and the expectancy-valence model:

G2 = 2 • ML I model) - ln(L I baseline)]. (3.8)

Positive values of the G2 statistic indicate that a learning model performs
better than the baseline model, whereas negative values indicate the reverse.
Note that the cognitive model that has two separate parameters representing
attention to gains and losses includes an additional parameter, L. Because
the baseline model has only three parameters, whereas this learning model
has four parameters, we need to adjust the fit calculation (G2) for this
difference in number of parameters. This is accomplished by using the
Bayesian information criterion (BIG) statistic (Schwartz, 1978) to com-
pare models:

BIG = G2 - k • ln(N). (3.9)

In Equation 3.9, Ic denotes the difference in the number of parameters, and
N equals the number of observations. For our comparisons, we have Ic = 1
(a one-parameter difference). Assuming that the task has 150 trials, then
N = 150 and 1 • ln(150) = 5. This implies that for the four-parameters
cognitive model, we subtract 5 from the G2 value.

Notice that the advantage of the one-step-ahead prediction method
is that parameter estimation uses each and every trial in the repeated-choice
task as independent observations. The number of trials usually is quite high
(in the Iowa gambling task, it is 100), and this is adequate for producing stable
parameter estimates for individual performers (see chap. 1, this volume).2

In summary, the prediction method allows one to assess the degree of
fit between the average predicted choices for trial t + 1 given outcomes for
all previous trials. In the next section, we discuss an alternative method
that predicts choice for k trials ahead without the advantage of the input
of the actual outcomes of the player.

Simulation

With this approach, many simulations of the full learning paths are
generated to produce a distribution of choice sequences from a given model.
The simulation method does not use any information about the actual

Comparative BIG, although not having a well'charted distribution, importantly penalizes according
to parameter estimation. In addition, this criterion can be complemented by parameter recovery
methods such as the one described in the "Bootstrapping" section.
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choices made by any of the participants. Instead, the outcomes of the model's
choices are entered for updating the valences and expectancies in each
selection. The final results are averaged to produce the probability of choos-
ing each deck on each trial. The predicted probability is then compared with
the observed proportion of choices on each trial, averaged across participants.

This method might seem cruder than the prediction method because
it does not test the model compared with individuals' performance but
against the average learning curve. In theory, a simulation can be used to
examine the fit of a model compared with a single individual. Yet the
statistical power of the simulation is low, because it does not have informa-
tion about payoffs. Accordingly, it is not feasible to use it at the individual
DM level.

Complementing this disadvantage is the following advantage: Some
models, such as the decay model described in the "Alternative Models"
section, allow for faster updating based on new information. Thus, their
predictions might be better, not because of their general ability to predict
the next step but because of their ability to adapt well to performers who
converge quickly into preferring a single alternative and select repeatedly
from that alternative. For example, assume that a DM has to choose between
10 alternatives, labeled A! to AIO. Each alternative produces an equal payoff
with an average of 1 and standard deviation of 1. For the purpose of the
example, we assume a linear relationship between payoff and expectancy.
Under an interference model, the weight of new information is .9 the weight
of old information. Under a decay model, the weight of old information is
reduced by .9 in each trial. Let us say that at some point the player chose
Option A! six times. Under the interference model, the increase in the
expectancy of AI is, on average, (.9 • 1) • 6, or 5.4. Under the decay model,
the value of each of the nine options that were not chosen is reduced by
1 - .96, or 47%. Thus, the decay model is expected to predict the next
choice better but only because it was the sixth in a sequence of similar
choices. This ability implies an inequality in the evaluation that favors the
decay models in cases where individuals reach such a plateau.

Some researchers have indeed suggested that the value of different
models is highly specific to the precise evaluation method (Erev & Haruvy,
2005; Feltovich, 2000). Specifically, they have argued that model evaluation
based on the examination of group averages (e.g., the simulation method)
can lead to different results than the examination of individuals' choices (e.g.,
the prediction method). Likewise, an evaluation based on the prediction of
the next choice ahead may lead to different results than the simulation of
many choices ahead. Because the two evaluation methods have com-
plementary advantages and disadvantages, using both methods is usually
recommended.
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Bootstrapping

A markedly different strategy for model evaluation is the use of a
simulated data set. In this method, called bootstrapping (Efron, 1979), the
quantitative model itself is used to generate data. One might ask why this
method should be used rather than testing the model's predictions with an
actual data set generated by human performers. One reason that it is used
is for estimating model fits errors when empirical approximations are not
available or if they are unreliable (Golden, 1995). However, bootstrapping
is often used to complement empirical data because it enables the comparison
of numerous different agents that have exact specifications in their behav-
ioral characteristics (i.e., a predetermined parameter value).

Here we give an example of a rudimentary form of a method of boot-
strapping. This method is based on the data-informed parametric bootstrap
cross-fitting method (Wagenmakers, Ratcliff, Gomez, & Iverson, 2004), in
which the models used to generate the data have specific parametric values
that have theoretical or empirical significance. The ability of the models
to predict the next step ahead of selections in the generated data is then
compared. This is done using the prediction or simulation method described
in the preceding section. In the present implementation, a supplementary
step is added: In addition to examining the fits of the models for the simulated
data, we examine the accuracy of the estimated (or restored) parameters of
the model compared with the original parameters used to generate the data.

An Example Using Simulated Data

To examine the capability of the different variants of the expectancy-
valence model to capture major differences in the weighting of parameters,
we considered data generated using markedly different parameter values.
The values were empirically derived from data examined using the original
model (Yechiam & Busemeyer, 2005) and reflect realistic differences in the
possible values of these parameters in different individuals. First, we exam-
ined high attention to gains (W = .67, L = .33) versus low attention to
gains (W = .33, L = .67). Second, we considered high recency (qp = .99)
compared with low recency (qp = .5). For the value of c (consistency), we
used a single value (.5) that represents relatively high consistency and is
in the range of the median in our previous work. The final parameter values
appear in Table 3.3.

We generated data using an experiment-like design of 2 (high vs. low
recency) x 2 (attention to gain vs. losses) X 2 (interference vs. decay). The
recency parameter (denoting the degree of recency) and the attention weight
parameter were used as between-subjects conditions. In addition, we used
two models to generate this data. One used an interference expectancy
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TABLE 3.3
Parameter Values in the Simulated Data

Parameters

<P
W
L
c

High recency

High attention High attention
to gains to losses

.99 .99

.67 .33

.33 .67

.5 .5

Low recency

High attention High attention
to gains to losses

.5 .5

.67 .33

.33 .67

.5 .5

Note, cp = recency parameter; W= weight to wins parameter; L = weight to losses parameter; c = choice
consistency parameter.

updating formula (Equation 3.2), and the other used a decay-based formula
(Equation 3.5) for updating the expectancy. Eighty modeling agents were
run in each of the conditions (a total of 720 agents). We then examined
the capability of different variants of the expectancy-valence model to fit
these data using the prediction method as well as to restore the original
parameters following the process of optimization.

The results of this examination appear in Table 3.4. The table shows
the BIG value as the fit index in each cell (in parentheses). Next to this
score are the restored values of parameters W and L (for conciseness, the
two other parameters are not included). The results show the following
interesting differences between the models. First of all, an examination of
the three-parameter interference model compared with the three-parameter
decay model shows that the interference model has higher BICs (108.9
compared with 49.0 on average) and more accuracy in the restored para-
meters in data created by the interference model, whereas the same is true
for the decay model in data created by the decay model (BICs of 125.3 vs.
63.2). On the basis of this analysis of fit, it is clear that neither model
dominates the other. Consequently, an empirical test is necessary to deter-
mine which model is more accurate (see Yechiam Si Busemeyer, 2005).

In contrast, a comparison of the models in which gains and losses are
dependent (the three-parameter model) or independent (the four-parameter
model) shows that the three-parameter model has on average better fit (in
12 of the 16 cells its BIC is higher; on average 86.3 compared with 84.9)3

as well as better accuracy. Although the differences in the BIC are relatively
small, the accuracy of the three-parameter model in restoring the original
parameter values appears to be much better. In fact, severe distortions in
the original values of parameters W and L appear in the four-parameter

3Note that even though the four-parameter model is more general, the addition of a parameter
penalizes its BIC score.
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model (see boldface type in Table 3.4). Note that this is not proof that the
four-parameter model is dominated by the three-parameter model because
we did not examine models generated by high or low values of both para-
meters using the four-parameter model. Yet the analysis shows that for
typical values of these parameters, the three-parameter model outperforms
the four-parameter model.

An analysis of the consistency parameter c shows that in those cases
where the values of the parameters W and L are inflated in the four-parameter
model, the value of c is also inflated. This suggests that the augmented
values of W and L have different implications that interact with the choice
component of the model. In particular, when both W and L are high, this
improves the consistency of the choice. Thus, in essence a new parameter
is created: a degree of consistency that is not dependent on time as in the
case of the consistency parameter.4 The downside is that this change distorts
the value of the W and L parameters. In addition, the value of the c parameter
becomes inflated to match the influence of the W + L parameter. Finally,
this "effort" does not result in an increased fit of the model compared with
the original three-parameter model.

In this section, we used a bootstrapping method to examine different
variants of the expectancy-valence model. The results reveal that whereas
the currently used interference model does not appear to dominate the
alternative decay model, there appears to be no advantage to the use of a
four-parameter model in this parameter range. The addition of the parameter
did not improve the model fit but led to strong and consistent distortions
in the value of the parameters. This should serve as a warning for models
that include many parameters and do not examine unpredicted interactions
between different components.

In this section we also have shown that the original three-parameter
expectancy-valence model is analytically shown to be more accurate than
a more complex variant. In the next section, we describe applications of
the expectancy-valence model to the evaluation of decision-making deficits
on the Iowa gambling task in two different clinical populations: (a) patients
with a neurological disorder, Huntington's disease, and (b) cocaine abusers.

APPLICATIONS OF THE EXPECTANCY-VALENCE MODEL

The expectancy-valence model creates three new measures in addi-
tion to the overt choice from disadvantageous decks: (a) an attention to
gains-losses measure, (b) a learning or recency measure, and (c) a choice

''This is caused because the expectancy in both the numetator and denominator in the ratio of
strength Equation 3.3 is multiplied by a value (>1) derived from W + L.
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consistency measure. This allows one to compare the distribution of these
three measures across groups in order to identify which are driving the
observed group differences. As previously discussed, both Huntington's dis-
ease patients and cocaine abusers resemble VMPFC patients in terms of
their overt behavior on the Iowa gambling task, but do they differ on the
three component processes? In this section, we review studies that have
examined the usefulness of these measures for increasing the sensitivity of
the task to underlying differences between performers with distinct impair-
ments in memory systems (patients with Huntington's disease) and motiva-
tional systems (cocaine abusers).

Huntington's and Parkinson's Disease

Huntington's disease is an extremely rare and fatal syndrome with a
prevalence of approximately 2 to 5 cases per 100,000 people in the United
States (Harper, 1996). Huntington's patients suffer from a gradual loss of
neurons in the caudate nuclei and the putamen of the basal ganglia, cells
that mediate the projections into the VMPFC. Similar to VMPFC patients,
the behavior of Huntington's patients is described as impulsive, risky, and
uncontrollable (see Stout et al., 2001). Therefore, it seems reasonable to
hypothesize that Huntington's patients would show performance deficits
that are similar to those of patients with VMPFC-lesions.5

To test this hypothesis, Stout et al. (2001) compared performance on
the Iowa gambling task by Huntington's disease patients (n = 14); a healthy
control group (n = 33); and a group with Parkinson's disease with no orbital
frontal cortex damage (n = 20), which served as a clinical control group.
The two clinical groups had no comorbid psychological diagnoses, and all
three groups were matched for gender and education; the Huntington group
and the healthy control participants were also matched for age. Each partici-
pant performed the Iowa gambling task, and a reanalysis of the overt perfor-
mance level (see Figure 3.2) shows that as predicted, the Huntington's
disease patients displayed poor performance in the task, whereas the Parkin-
son's disease patients performed similarly to the healthy control participants.

Busemeyer and Stout (2002) reexamined the data from Stout et al.
(2001) using the expectancy-valence learning model to assess the contribut-
ing factors to the poor performance exhibited by Huntington's patients.
Because of the neurological and behavioral similarities between patients
with Huntington's disease and patients with VMPFC lesions, it was predicted
that if the effect is indeed due to the role of somatic markers, a deficit in

' Note that early detection of cognitive impairments is crucial in Huntington's disease because it
improves the assessment of the suitability of the medication to the phase of the illness (Stout et al.,
2001).
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Figure 3.2. The reanalyzed results of Stout et al.'s (2001) study: proportion of
selections from the disadvantageous decks in healthy control participants compared
with individuals with Huntington's disease and Parkinson's disease.

one's ability to attach an emotional evaluation to cognitive stimuli (Damasio,
1996), then the most prominent role of the three parameters would be taken
by the motivational attention weight factor. Table 3.5 presents a reanalysis
of the results that uses the combination of grid-search and simplex-search
methods (Nelder & Mead, 1965) discussed earlier, because the original
analysis used a heuristic method for parameter optimization. The parameters
of the models were optimized separately to fit the selections of each individ-
ual. The model fit was high, with 74% of the participants having a positive
BIG score. Thus, the use of the expectancy-valence model improved the
descriptive power of the performance data over an examination of the choice
proportion of the different decks (similar to the description in Figure 3.2).
The optimized parameters of the three populations are presented in Table 3.5.

TABLE 3.5
Parameter Estimates of the Expectancy-Valence Model:

Healthy Controls Compared With Individuals With Huntington's Disease
and Parkinson's Disease

Attention to
recent outcome

Participants

Healthy
Huntington's
Parkinson's

M

0.28
0.41
0.29

Mdn

0.12
0.20
0.08

SD

0.37
0.46
0.41

Attention to
gains/losses

M

0.65
0.77
0.53

Mdn

0.69
0.88
0.60

SD

0.28
0.34
0.39

Choice consistency

M

0.91
1.40
2.17

Mdn

1.31
0.77
1.34

SD

2.10
3.25
2.46
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The results showed that indeed Huntington's patients had elevated
attention to gains compared with losses. However, the difference along this
dimension was not significant. The main difference between the Hunting-
ton's patients and healthy control participants was in the high recency
displayed by Huntington's patients (see Table 3.5). For example, in the
healthy control group, 18% of the participants had a recency parameter cp
that was equal to 1 (denoting high recency). A similar proportion (20%)
was observed in the group of Parkinson's patients. In contrast, the proportion
of high-recency performers in the group of Huntington's patients was about
36% (an 89% increase; Z = 1.34, p = .08). This indicates that in contrast
to the prediction based on the somatic marker hypothesis, memory is an
important contributing factor to the performance impairments observed in
Huntington's patients. This suggests that the Huntington's patients were
not able to retain the outcomes from past choices as long as control partici-
pants were, and this led to their choosing more frequently from the disadvan-
tageous decks. Indeed, Stout et al. (2001) found that for the Huntington's
patient population, memory deficits on the Mattis Dementia Rating Scale
(Mattis, 1988) were correlated with decision deficits in the gambling task.
This is consistent with the theory that memory processes are partly responsi-
ble for the poor performance observed in this group.

Cocaine Abusers

Although Bechara et al. (2001) did not have specific predictions con-
cerning Huntington's patients, they did contend that severe drug abusers
display neuropsychological changes that are comparable to those of patients
with lesions in their VMPFC. According to the National Institute on Drug
Abuse (1999), in 1997 an estimated 1.5 million Americans age 12 and older
were chronic cocaine users. An interesting and important topic of research
has been to study the decision-making processes of chronic cocaine users.
As part of this effort, several studies have demonstrated that cocaine abusers
perform more poorly on the Iowa gambling task than do matched control
participants, with drug abusers selecting more cards from the disadvantageous
decks and fewer cards from the advantageous decks (e.g., Bechara, Dolan,
& Hindes, 2002; Bechara et al., 2001; Grant et al., 2000).

To examine the underlying factors affecting the performance of drug
abusers, Stout, Busemeyer, Lin, Grant, and Bonson (2005) examined the
behavior of chronic cocaine abusers on the Iowa gambling task. They exam-
ined 12 cocaine-abusing individuals (average age 37, estimated IQ 93.7 ±
10.3) and 14 comparison, or nonabusing individuals (average age 30, esti-
mated IQ 105.0 + 7.62). Control participants were somewhat younger and
had higher IQ levels than the drug abusers, but these differences were
examined statistically and shown to have no effect on task performance.

104 YECHIAMETAL.



c
g'

_
Q)

CO

o
'•c
o
Q.
o

.30

.25

.20

.15

.10

.05

Healthy Controls Cocaine Abusers

Figure 3.3. The reanalyzed results of Stout et al.'s (in press) study: proportion of
selections from the disadvantageous decks in healthy control participants compared
with cocaine abusers.

The cocaine group reported current regular cocaine abuse, although all
members of this group had past experience with other drugs of abuse (stimu-
lants, depressants, marijuana, and opiates). Exclusion criteria included any
history of significant medical illness or head trauma with loss of conscious-
ness. The participants all performed 250 trials on the Iowa gambling task.
The results appear in Figure 3.3.

These results demonstrate that cocaine abusers selected more cards
from the disadvantageous decks. However, as demonstrated throughout this
chapter, different reasons can account for failure to perform well on these
tasks. The crucial question addressed in this study was whether the decision-
making changes exhibited by drug abusers were caused by a memory compo-
nent, as was found in the Huntington's patients, or by motivation or choice
consistency. On the basis of an analysis of the data using the expectancy-
valence learning model, it was found that the motivational processes were
responsible for the decision-making deficit in drug abusers. Table 3.6 presents
a reanalysis of the results from the first 100 trials that enables a comparison
with the modeling results from Busemeyer and Stout's (2001) Hunting-
ton's study.

The model fit was high, with 70% of the participants having positive
BIG scores, denoting an advantage of the expectancy-valence model over
the baseline model. The attention weight parameter was significantly higher
for the cocaine abuse group than the comparison group, t(24) = 1.88, p <
.05, one-tailed, indicating that the card selections of the cocaine abuse
group were more influenced by gains than were the comparison group. This
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TABLE 3.6
Parameter Estimates of the Expectancy-Valence Model:

Healthy Controls Compared With Cocaine Abusers

Participants

Healthy controls
Cocaine abusers

Attention to
recent outcome

M Mdn SD

0.35 0.19 0.39
0.58 0.60 0.39

Attention to
gains-losses

M Mdn SD

0.34 0.24 0.35
0.61 0.79 0.40

Choice consistency

M Mdn SD

0.64 -0.01 2.33
-0.33 0.18 2.46

suggests that differences in motivational processes are a likely source of
the differences in the decision-making styles of cocaine abusers, which is
consistent with several major accounts in the drug abuse literature (e.g.,
Bechara et al., 2001, 2002; Grant et al, 2000; Kirby, Petry, & Bickel, 1999;
London, Ernst, Grant, Bonson, & Weinstein, 2000).

Summary and Additional Studies

The reviewed studies of Huntington's patients and cocaine abusers
show that in overt gambling task performance, there were no differences
between these two populations. Both clinical populations displayed poor
performance, with more choices from the disadvantageous decks compared
with healthy control participants. However, the quantitative learning model
was sensitive enough to detect different underlying processes that led to
the choice of disadvantageous decks in the Iowa gambling task. In the
case of the Huntington's patients, the overt disadvantageous choices were
attributed to the memory component and possibly reflect the effect of
memory impairments. In cocaine abusers, poor choices were attributed to
the motivational component, with higher attention to gains on the part of
the chronic drug abusers.

The present model is in its first phases of validation. So far, the effect
of relevant manipulations (memory, explicit attention to gains and losses)
has not been examined directly, yet several correlational examinations have
demonstrated the construct validity of the model parameters. In one study,
Johnson, Yechiam, Murphy, and Stout (in press) examined the association
between the choice consistency parameter and a self-report measure of
indecisiveness (Frost & Shows, 1993) in healthy adolescents. The results
showed a strong negative correlation between choice consistency and indeci-
siveness (rs = -.76 on a child report and -.68 on a parent report). Another
study, conducted by Yechiam, Hayden, Bodkins, O'Donnell, and Hetrick
(2006), examined the association between the model parameters and mea-
sures of motivation, the Behavioral Inhibition System and Behavioral Acti-
vation System Scales (Carver & White, 1994). The results showed significant
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associations between attention to losses and high Behavioral Inhibition
Scale scores, denoting increased behavioral inhibition (in a nonclinical
group, r = .39, and in a bipolar patient group, r = .46). Finally, although
there are no results linking the recency parameters directly with memory
impairment, it should be noted that new findings show that recency was
found to be elevated in chronic cannabis abusers (see Yechiam, Busemeyer,
Stout, & Bechara, 2005), and an acute administration of cannabis increased
the recency effect (Lane, Yechiam, & Busemeyer, 2006). This is consistent
with the negative effect of cannabis on working memory capacity (Solowij,
1998).

CONCLUSION

In this chapter, we have presented a modeling approach that solves
theoretical issues involved when poor performance on a task can be due to
different component processes, such as in the case of the Iowa gambling
task. We demonstrated that the use of a quantitative learning model can
help in identifying the basic components that determine the performance
characteristics. At the component level, changes in the motivation, learning,
and consistency parameters distinguish among different clinical populations
when the overall task performance failed to do so. Furthermore, the results
of the analysis using our cognitive model are consistent with the behavioral
and neurological characterizations of different clinical syndromes. The cog-
nitive modeling approach is an important step in building a bridge between
the study of neuroscience and behavior.
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4
MODELING VISUAL ATTENTION AND
CATEGORY LEARNING IN PATIENTS

WITH AMNESIA, STRIATAL DAMAGE,
AND NORMAL AGING

W. TODD MADDOX AND ]. VINCENT FILOTEO

In this chapter, we review a body of work conducted in our laboratories
that applies quantitative methods, developed from studies of healthy young
adults, to better understand the perceptual and cognitive processes in certain
clinical populations and healthy older adults. In keeping with the mission
of this volume, we emphasize the details of the methodology but will supple-
ment these with findings from specific clinical applications. Our aim is to
provide a thorough enough presentation of the technical details (and rele-
vant references) for readers to be able to apply these techniques in their
own research.1

This research was supported in part by National Institutes of Health Grant R01 MH59196 to
W. Todd Maddox, National Institute of Neurological Disorders and Stroke Grant R01 41372 to
]. Vincent Filoteo, and a James McDonnell Foundation grant. We thank Jim Neufeld for several
helpful comments on an earlier version of this chapter.
1 Many terms introduced in this chapter are technical. Some are defined in the Glossary. More
extensive definitions for many terms can be found at http://www.wikipedia.com.
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All of our quantitative methods derive from general recognition theory
(GRT; Ashby & Townsend, 1986), a multidimensional extension of signal
detection theory (e.g., Green & Swets, 1966). GRT acknowledges the
existence of noise in the perceptual system and assumes that repeated presen-
tations of the same stimulus yield unique perceptual effects. Each stimulus
presentation is represented by a point in a multidimensional psychological
space, and the distribution of percepts over trials is described by a multivariate
probability distribution. GRT also acknowledges the importance of separat-
ing perceptual processing assumptions from decisional processing assump-
tions. A detailed understanding of human behavior requires knowledge of
the interplay between perceptual and decisional processes and thus requires
a theory that acknowledges their separate and unique influences.

The focus of this chapter is on applications of GRT, and the toolbox
of quantitative methods it holds, toward an understanding of perceptual
and cognitive functioning in clinical populations and normal aging. Our
review focuses on the study of attentional processes and category learning
in patients with medial temporal lobe amnesia; patients with striatal damage,
such as patients with Parkinson's disease (PD) or Huntington's disease (HD);
and healthy older adults. Even though we have focused on these specific
cognitive processes and populations in the past, the techniques described
in this chapter are general enough to be applied to a number of other
cognitive domains and participant populations.2

The chapter is organized as follows. In the first (next) section, we
review briefly the assumptions of GRT. Although much previous research
(not reviewed here) has provided empirical support for many of the theoreti-
cal assumptions of GRT, others have been questioned. Regardless of the
validity of the theory as a whole, the quantitative methods underlying
GRT provide an excellent descriptive tool for understanding perceptual and
cognitive processing and were used as such in the work reviewed below. In
the second section, we describe an experimental paradigm called the general
recognition randomization technique (Ashby & Gott, 1988; hereafter referred
to as the perceptual categorization task), which has been used in all of our
research. The task is flexible enough that a number of important properties
of attention and category learning can be examined but is rigid enough that
powerful control can be maintained to alleviate the possibility of experimen-
tal confounds. The third section provides some background details regarding

2 Our aim is to use quantitative modeling techniques to go beyond simple measures of accuracy in an
attempt to draw substantive conclusions about perceptual and cognitive processing. Even so, it is
important to acknowledge up front that experimental validation of the models and the construct
validity of the parameters and their direct link to perceptual and cognitive processing is an ongoing
process. A strong test of the validity of the models follows when experimental manipulations have
predictable and separable effects on model parameters. As we discuss in the review below, in many
cases experimental manipulations do lead to predictable and separable effects on model parameters.
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the general modeling approach. In the fourth section, we outline some
CRT-based techniques that we have applied to attentional processing in
PD and normal aging and provide a brief summary of the most important
findings. In the fifth section, we outline some GRT-based techniques that
we have applied to category learning and memory in people with medial
temporal lobe amnesia, PD, and HD and in normal elderly individuals, and
we provide a brief summary of some of the more important findings from
these studies. We conclude the chapter with some general comments.

GENERAL RECOGNITION THEORY

GRT provides an extension of signal detection theory to stimuli that
vary along multiple dimensions. Within the framework of GRT, perceptual
processes and decision processes are separate and distinct.

Perceptual Processes

GRT takes as its fundamental axiom that perceptual noise exists (i.e.,
repeated presentations of the same stimulus yield different perceptual effects
because of such things as spontaneous neural activity, sensory adaptation,
etc.) and assumes that a single multidimensional stimulus i can be represented
perceptually by a multivariate probability distribution (Ashby & Lee, 1993).
If stimulus i is a line of length li( and orientation on then a bivariate normal
distribution, f t(x,y), is assumed to describe the set of percepts where x denotes
the perceptual dimension associated with line length and y denotes the
perceptual dimension associated with line orientation. A bivariate normal
distribution is described by a mean (|4.jx, (!„) and variance (a2

jx, O2i,) along
each dimension, as well as a covariance term, covjvr

Decision Processes

In GRT, the experienced participant learns to divide the perceptual
space into response regions and assigns a response to each region. The
partition between response regions is called a decision bound. On each trial,
the participant determines the location of the perceptual effect and gives
the response associated with that region of the perceptual space. Several
versions of the theory can be formulated depending on how the participant
divides the perceptual space into response regions. We detail most of these
in later sections devoted to the specific applications, but for now we introduce
one that is of special importance, namely, the optimal classifier. The optimal
classifier is a hypothetical device that uses the strategy that maximizes long-
run accuracy. All other strategies lead to lower accuracy rates. Observers
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typically perform suboptimally because of the perceptual and decisional
noise associated with human observation and thus tend to perform at levels
lower than the optimal classifier.

Suppose there are two stimuli, 1 and 2, composed of two dimensions
whose percepts are denoted by the bivariate normal distribution, f\(x,y) and
fi(x-,y). For any given percept (x,y), the optimal classifier computes the
likelihood ratio, I0(x,y) = fi(x,y)/f2(x,y). Assuming no bias toward one re-
sponse or the other, the optimal classifier uses the following decision rule:

If \<,(x,y) > 1.0, then respond "1"; otherwise, respond "2." (4-1)

With bivariate normally distributed percepts, the decision bound asso-
ciated with the optimal classifier will always be linear or a quadratic curve.
The shape of the optimal decision bound and the associated parameter
values are determined by the set of percepts that satisfy \0(x,y) = 1.0 (for
details, see Ashby & Townsend, 1986). We turn now to a description of
the perceptual categorization task.

PERCEPTUAL CATEGORIZATION TASK

The perceptual categorization task (Ashby & Gott, 1988) has been
used extensively to study attention, learning, and memory processes in
healthy young adults. In a typical perceptual categorization task the experi-
menter specifies two normally distributed categories of stimuli. In most cases,
the stimuli are two dimensional (examples are provided in Figure 4.1), and
thus each category is defined by a specific bivariate normal distribution.
The experimenter generates a large number of random samples from each
bivariate normal distribution (generally 50 to 100 random samples). Scatter
plots of stimuli sampled from two bivariate normally distributed category
structures are displayed in Panel A of Figure 4.2. Suppose that the stimulus
on each trial is a single line of some fixed length and orientation. On each
trial, one of the two predefined categories is chosen randomly with equal
probability; a stimulus is sampled randomly from this category and is pre-
sented to the participant until he or she generates a response. Using Panel A
of Figure 4.2 categories as an example, on the first trial, Category A might
be selected, and the stimulus might be a short line of low angle. The
participant will view this item and, when he or she is ready, press either
the "A" or "B" button. Once the participant responds, corrective feedback
is provided, a short intertrial interval consisting of a blank screen follows,
and the next trial is initiated. Participants typically complete several hundred
trials (400 to 600 in a 1-hour session). What constitutes category membership
will depend on the specific task under study.
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Figure 4.1. Example stimuli used in the perceptual categorization task.

In CRT, the perceptual distribution for each stimulus is assumed to
be normally distributed, and the optimal classifier partitions the perceptual
space into response regions associated with each stimulus (see Equation 4.1).
Applications using the perceptual categorization task also assume normally
distributed perceptual distributions, but they make more straightforward
assumptions because the stimuli are perceptually discriminable (i.e., the
stimuli within the experiment vary to a greater extent on the various
dimensions) and exposure durations are longer (i.e., stimulus presentations
are terminated after a participant makes a response). In the perceptual
categorization task, variability is shifted from the perceptual distributions
to the category distributions, and the collections of stimuli in each category
are normally distributed. Because the categories are normally distributed, a
single optimal decision bound can be derived in a fashion similar to that
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Figure 4.2. Stimuli and optimal decision bound from a selective-attention or uni-
dimensional rule-based condition (A), a linear-integration condition (B), and a nonlinear
integration categorization condition (C). Open squares denote Category A items, and
filled circles denote Category B items.
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outlined in Equation 4.1. The only difference is that the perceptual distribu-
tions are replaced with the category distributions. Suppose there are two
bivariate normally distributed categories, A and B, defined by the probability
density functions i/^(x,y) and fs(x,y). For any given stimulus (or percept
associated with the presentation of a stimulus), the optimal classifier com-
putes the likelihood ratio, \0(x.,y) = fA(x.,y)/fB(x,y). Assuming no bias toward
one category over the other, the optimal classifier uses the following deci-
sion rule:

If I0(x,;y) > 1.0, then respond "A"; otherwise, respond "B." (4.2)

Note the similarity between this decision rule at the category level
and the Equation 4.1 decision rule at the stimulus level. When one acknowl-
edges the existence of perceptual noise, then the decision rule used to
identify two stimuli, 1 and 2, is essentially equivalent to that used to
categorize stimuli from two categories, A and B. As with Equation 4.1, the
optimal decision bound will be either linear or a quadratic curve. The shape
of the optimal decision bound and the associated parameter values are
determined by the set of percepts that satisfy I0(x,y) = 1.0 (see Ashby, 1992a;
Maddox & Ashby, 1993). We outline a number of specific optimal decision
rules below, but for now we show examples from three important classes
of rules.

Because the stimuli are two dimensional, each stimulus can be denoted
by a point in a two-dimensional space. Panel A of Figure 4.2 depicts the
distribution of stimuli that might be used in an experiment that examines
selective-attention processes using the single-line stimuli displayed in Figure
4-1. The x-axis represents the length of the line, and the y-axis represents
the orientation of the line. The open squares in Figure 4.2 denote Category
A stimuli, and the closed circles denote Category B stimuli. The broken
vertical line in Panel A of Figure 4.2 denotes the experimenter-defined
(optimal) categorization rule. Notice that this optimal rule requires the
participant to place all of his or her attention on the length of the lines
and to ignore the orientation of the lines. The participant is to set a criterion
on line length and respond "A" to short lines and "B" to long lines. This
is also referred to as a unidimensional rule-based category structure, because
only one dimension is relevant, and the optimal decision strategy is able
to be verbalized (we discuss rule-based categorization tasks in detail in the
section "Applications of General Recognition Theory to Category Learning
and Memory"). Panel B of Figure 4.2 depicts a case in which the optimal
rule requires the participant to integrate information about line length
and orientation and apply a linear integration rule. With these stimulus
dimensions, the optimal decision strategy is not able to be verbalized in
that optimal responding requires that the participant make comparisons
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between stimulus dimensions that are in different perceptual units (i.e.,
length and orientation). Finally, Panel C of Figure 4.2 depicts a case in
which the optimal (not able to be verbalized) rule requires the participant
to integrate information about line length and orientation and apply a
nonlinear integration rule.

In the perceptual categorization task, the experimenter has a great
deal of control over potentially important aspects of the categories, such as
the maximum accuracy rate, the structural properties of the categories (e.g.,
the distributions), the number of categories, the number of stimuli sampled
from each category, and the shape of the experimenter-defined categorization
rule (e.g., selective attention/rule based, linear integration, nonlinear inte-
gration), to name a few. It is important to note that the experimental
conditions for the three category structures described above are identical
in a number of respects except for the exact form (i.e., shape and orientation)
of the experimenter-defined categorization rule. Specifically, they use the
same stimulus dimensions (i.e., a line length and line orientation; see Figure
4-1), number of unique stimuli (100), optimal accuracy rate (95%), and
response requirements (select one of the two categories on each trial). Thus,
any observed performance differences must be due to the nature of the
experimenter-defined categorization rule.3 This level of experimental control
minimizes the possibility of extraneous confounding factors.

An additional advantage of the perceptual categorization task is that
a number of quantitative models have been developed specifically for applica-
tion to data collected in this task (Ashby, 1992a; Ashby & Maddox, 1993;
Maddox & Ashby, 1993). The specifics of each model will be reserved for
the two sections on applications ("Applications of General Recognition
Theory to Attentional Processes" and "Applications of General Recognition
Theory to Category Learning and Memory"), but some general comments
regarding the modeling approach are in order.

GENERAL MODELING APPROACH

Generating Predicted Response Probabilities From a General Version
of the Model

Humans rarely use the optimal decision rule but will often use the
same strategy as the optimal classifier (e.g., Ashby & Maddox 1990, 1992).

3 The conditions depicted in Panels A and B of Figure 4.2 include additional controls, because the
stimuli in Panel B were derived from the stimuli in Panel A by applying a 45-degree rotation around
the center of the length-orientation space. Under these conditions, the within-category scatter and
category coherence are identical in both conditions.
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Ashby and Maddox (1993) proposed decision bound theory, which assumes
that the participant attempts to use the same strategy as the optimal classifier
but with less success because of the effects of perceptual and criterial noise.
Perceptual noise exists because there is trial-by-trial variability in the percep-
tual information associated with each stimulus. As outlined above, and using
the same single-line stimulus example, we assume that the participant's
percept of stimulus z on any trial is x.pi = (x;, y,)', where xpi = lf + ep, yp, = o,
+ ep, I/ is the length of stimulus z, Oj is the orientation of stimulus z, and ep

is a univariate normal random variable with mean of zero and standard
deviation, ap, that represents the effect of perceptual noise. Criterial noise
exists because there is trial-by-trial variability in the memory for the decision
bound. The simplest decision bound model is the optimal decision bound
model. The optimal decision bound model is identical to the optimal classifier
(Equation 4.2) except that perceptual and criterial noise are incorporated
into the decision rule. Specifically,

if I0(xj,j) > I + ec, then respond "A"; otherwise, respond "B," (43)

where ec is a univariate normally distributed random variable with zero mean
and standard deviation oc that represents the effects of criterial noise. The
most general version of the model abandons the likelihood ratio on the left
side of Equation 4.3 for a general function h(xp,), although we generally
assume that h will be linear or quadratic. Because h(xpi) is linear or quadratic,
the optimal likelihood ratio value of 1.0 is absorbed into the intercept of
the linear bound or the constant term in the quadratic bound, and we are
left with

if h(xpj) > ec, then respond "A"; otherwise, respond "B." (4.4)

Assuming the Equation 4.4 decision rule, the probability of responding A,
Pr (R A l x ) , IS

,) > e c lx] = (4.5)
Pr[h(xp) - ec > 0 I x] = Pr[h(xj,) + ec > 0 I x].

The latter equality holds because ec is symmetrical with a mean of zero.
Assuming that h(xp) is normally distributed, which holds exactly if h(xp) is
linear and is approximate only when h(xp) is quadratic, then Equation 4.5
can be evaluated from the cumulative normal distribution. The mean and
variance depend on the form of the h(xp) and were derived by detail in
Ashby (1992a, pp. 459-467). A method for approximating the cumulative
normal distribution was given by Ashby (1992b, p. 4, Equation 9).
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Parameter Estimation and Model Testing

Any time a mathematical model is applied to a set of data, two issues
need to be addressed. First, one needs to estimate the model parameters
that provide the best fit to the data. Second, one needs to assess the model's
ability to accurately describe the data. In our work, we use maximum likeli-
hood procedures (-InL) to estimate the unknown parameters. The details
of this procedure have outlined in several excellent texts (e.g., Ashby,
1992b; T. D. Wickens, 1982) and are not repeated here. Suffice it to say
that, in most applications, maximum likelihood is superior to other proce-
dures (e.g., sum of squared errors). In all of our work, we compare a number
of models in their ability to account for a set of data. If the models are
nested, in the sense that a simpler model can be derived from a more general
model by setting some of the parameters of the more general model to
constants, then we use likelihood ratio Gz tests to determine whether the
extra free parameters of the more general model might provide a statistically
significant improvement in fit. As a concrete example, suppose that the
optimal decision bound, I0(xpj), was linear in Equation 4.3 and that the more
general decision bound, h(xp,), in Equation 4-4 was also linear. Under these
conditions, the optimal decision bound would be nested under the more
general linear decision bound and would be equivalent when the slope and
intercept of the more general linear bound were equal to the optimal slope
and intercept. Again, the specifics of these procedures are available in
numerous sources (e.g., Ashby, 1992b; T. D. Wickens, 1982). If the models
are non-nested, then some other procedure is needed to compare the models.
The Akaike information criterion (AIC; Akaike, 1974) can be applied with
non-nested models, and this is the approach we have taken in most of our
work. The AIC measure penalizes a model for each free parameter (i.e.,
parameters estimated from the empirical data) and is computed as follows:
AIC = 2(-lnL) + 2n, where n is the number of free parameters. The best-
fitting model is the model with the smallest AIC value.

Depending on the research question of interest, we have used our
modeling approach in one of two ways to facilitate our understanding of
the attentional and category learning abilities of various clinical populations
and older adults. The first approach focuses on a comparison of model fit
values or model parameter values across experimental and control groups.
For example, to determine how well an experimental group learns the
optimal decision bound, we might compare the fit value for the optimal
decision bound model across experimental and control groups. Similarly,
to determine whether there is more (or less) variability across groups in the
application of the participant's decision bound, we might compare the
criterial noise (also referred to as the rule application variability) parameter
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across experimental and control groups. The second approach we have used
focuses on model comparisons to determine whether groups differ in their
approach to solving the task. For example, we might ask whether one group
of participants is more likely to use an information-integration approach to
solving an information-integration task than another group. Although these
two approaches are clearly related, they address different research questions.

Individual-Participant Analyses

In all of our work, the models are applied at the level of the individual
participant; data are never averaged across participants before model-based
analyses are conducted. There is strong evidence that averaging can lead
to incorrect conclusions regarding perceptual and cognitive processing in
healthy young adults (e.g., Ashby, Maddox, & Lee, 1994; Estes, 1956;
Maddox, 1999), and it is highly likely that these incorrect conclusions would
be magnified in clinical populations. This approach allows us to identify
subgroups of participants who show particular patterns of behavior and has
been extremely fruitful with clinical populations. Of course, individual-
participant analysis is not always viable with clinical populations. One
solution is to ascertain the relative homogeneity of aggregated sets that are
subjected to modeling. Data from participants providing a limited number
of trials in principle can be combined and modeled (as a "homogeneous
participant"). Individual-participant analysis is an ideal for which we should
strive. However, when this approach is unrealistic other strategies for resolv-
ing potential interparticipant heterogeneity of model composition or param-
eters may be impelled by clinical constraints.

This concludes our general methodological review. We turn now to
specific applications of our approach to attentional processing.

APPLICATIONS OF GENERAL RECOGNITION THEORY
TO ATTENTIONAL PROCESSES

Several past studies have indicated that PD patients are impaired on
tasks of attention (Filoteo et al., 1994, 1997), especially when participants
are asked to attend selectively (Brown & Marsden, 1988; Maddox, Filoteo,
Delis, & Salmon, 1996; Sharpe, 1990, 1992). Although these particular
studies indicate that PD patients have impaired selective attention, not all
studies have found such deficits (Brown & Marsden, 1988; Rafal, Posner,
Walker, & Friedrich, 1984), and even those that have found impairment
have not been able to specify the nature of such deficits. That is, selective-
attention deficits in PD patients could be due to impairment in perceptual
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processes, decisional processes, or both, or to processing deficits in specific
subcomponents of each domain. Another complication in characterizing
attentional impairment in PD patients is that this disease is heterogeneous
in that cognition is not affected equally in all patients (Dubois, Boiler,
Pillon, & Agid, 1991; Mayeux & Stern, 1983). Thus, we reasoned that
studies of attentional processes in patients with PD could benefit from an
approach whereby the specific processes involved in selective attention
could be assessed and attentional processes could be evaluated at the level
of the individual participant.

With these issues in mind, we attempted to characterize the selective-
attention deficits in PD by applying the GRT-based modeling techniques
outlined above to data collected in the perceptual categorization task (Filoteo
& Maddox, 1999). Three experimental conditions were constructed. The
(broken line) optimal decision bound along with the response region assign-
ments (A and B) are summarized in the left-most column of Figure 4.3.
The three conditions include (a) a linear integration condition, in which the
participant had to place equal attention on both stimulus dimensions and
use a linear integration rule; (b) a selective attention condition, in which the
participant had to ignore one stimulus dimension and set a criterion along
the other stimulus dimensions; and (c) a baseline condition that was identical
to the selective-attention condition except that the irrelevant dimension
was absent from the stimulus display. Optimal accuracy was 97% in all
conditions. (The selective-attention and baseline conditions were run twice
so that each dimension could serve as the relevant dimension and each
could serve as the irrelevant dimension. For ease of exposition, our discussion
focuses on data collapsed across these two conditions.) Each of the three
conditions was run with the two-line stimuli and the circle stimuli.4 Sample
stimuli from each category in each condition are displayed in the right-
most column of Figure 4.3 separately for each of the three experimental
conditions. A group of PD patients and matched elderly control participants
took part, and each participant completed 30 practice trials followed by
100 experimental trials in each condition. The PD patients were all in the
early stages of the disease in terms of their level of motor impairment, were
not experiencing any deficits in terms of global cognition, and were not
having any problems performing their normal activities of daily living.
Thus, the patients in the study were functioning at a rather high level.
Nevertheless, on the basis of previous findings, we predicted that the PD
patients would be impaired in the selective-attention condition relative to

4 One focus of this study was to examine the effects of stimulus separability-integration on
attentional processes. The two-line stimuli are thought to be integral, and the circle stimuli are
thought to be separable (for a review, see Maddox, 1992). In this review, we collapse the results
across the two types of stimuli.
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Figure 4.3. Category structures and sample stimuli used in Filoteo and Maddox
(1999). Open squares denote Category A items, and filled circles denote Category
B items. "A" = sample stimuli from Category A; "B" = sample stimuli from Category B.

the control participants but that the two groups would not differ in either
the linear-integration condition or the baseline condition, in which selective
attention is not required.

Because the focus of this study was on attentional processes and not
category learning per se, the participants were given a verbal description
of the optimal decision rule in each condition before the experiment started.
For example, in the line orientation selective-attention condition, the par-
ticipant was told to ignore the diameter of the circle and to respond "A"
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to shallow lines and "B" to steep lines. Thus, participants did not have to
learn the basic aspects of the rule when performing the task but rather
had to either attend selectively (as in the selective-attention condition)
or integrate information across the two stimulus dimensions (as in the
linear-integration condition).

Details of the Modeling Approach

Model-based analyses are useful for many reasons. One of the most
important is that model-based analyses allow the researcher to tease apart
the effects of different perceptual and cognitive processes that are usually
nonidentifiable at the level of global accuracy. For example, with respect
to selective-attention processes, a deficit in a participant's ability to learn
the optimal decision criterion or a deficit in his or her ability to accurately
apply the rule on each trial will both lead to an accuracy decrement. Model-
based analyses are required to tease apart the effects of these different
attentional processes and to uniquely identify the locus of the deficit.

Our modeling approach had two aims. The first aim was qualitative
in the sense that we were interested in determining what type of decision
bound participants used in each experimental condition. One possibility is
that the participant used the optimal decision bound. The decision bound
and response regions from hypothetical participants using the optimal deci-
sion bound in both the linear-integration and selective-attention conditions
are depicted in Panels A of Figure 4-4. Another possibility is that the
participant uses a suboptimal decision bound but one that is of the same
form as the optimal decision bound. For example, in the linear-integration
condition, the participant might use a linear bound with a suboptimal slope
and/or intercept, or in the selective-attention condition, the participant
might use a suboptimal decision criterion to separate small circles from large
circles. Decision bounds and response regions from hypothetical participants
using suboptimal linear integration and suboptimal selective attention strate-
gies in the linear-integration and selective-attention conditions, respec-
tively, are depicted in Panel B of Figure 4.4. A final possibility is that the
participant uses a suboptimal decision bound but one of a different form
from the optimal decision bound. For example, in the linear-integration
condition the participant might use a selective-attention bound, or in the
selective-attention condition the participant might use a suboptimal linear-
integration strategy. Decision bounds and response regions from hypothetical
participants using these two strategies are depicted in Panel C of Figure 4-4-
Each model type was fit to each participant's linear-integration and selective-
attention data. Only the optimal and suboptimal selective-attention models
were fit to the baseline data. Because these models are nested, likelihood ratio
tests were used to determine the model that provided the most parsimonious
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Figure 4.4. Hypothetic response regions from a participant using the optimal rule (A),
a suboptimal rule (B), or a deficit rule (C). Open diamonds = Category A responses;
filled triangles = Category B responses.

account of the data where the most parsimonious model was defined as the
model with the fewest free parameters whose fit could not be significantly
improved on by a more general model.

The second aim of the modeling was more quantitative in nature. The
most parsimonious model provides information about the type of decision
bound used by each participant, but the model parameters provide an esti-
mate of the magnitude of any linear-integration or selective-attention deficit.
For example, we can examine the slope of the selective-attention deficit
model and compare it with the optimal slope of zero to determine the
magnitude of a selective-attention deficit. A large selective-attention deficit
would be associated with a slope of 1 or -1, because both imply equal
attention to both dimensions, whereas a slope closer to zero implies only a
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small selective-attention deficit. Similarly, the best-fitting decision criterion
from the suboptimal selective-attention model can be compared with the
optimal selective-attention decision criterion. In addition to the parameters
of the decision bound, each model includes a criterial noise parameter (see
Equations 4-4 and 4.5). The criterial noise parameter provides information
about the participant's ability to accurately apply his or her decision bound
on each trial. We refer to the criterial noise estimate as a measure of rule
application variability. The smaller the magnitude of the rule application
variability, the less variable is the participant's trial-by-trial application of
the rule. Although the decision bound parameters and rule application
variability estimates both provide information about decision processes,
each constitutes a unique subcomponent that should and can be examined
separately using GRT. A selective-attention deficit at the level of the deci-
sion bound, or a large criterial noise variance, would each lead to reduced
accuracy rates and thus are nonidentifiable at the level of accuracy. Fortu-
nately, the CRT-based analyses make these two distinct forms of selective-
attention deficit identifiable and hence observable.

Brief Summary of the Results

The accuracy rates for PD and normal control (NC) participants in
the linear-integration, selective-attention, and baseline conditions are de-
picted in Panel A of Figure 4.5. Three comments are in order. First, PD
patients showed significantly worse selective-attention performance relative
to the NC participants. Second, PD and NC participants showed a statisti-
cally equivalent linear-integration performance, suggesting no deficit in PD
participants' ability to integrate information across the two dimensions.
Finally, PD patients were as good as NCs in the baseline condition, suggesting
no difficulty setting a criterion along a single stimulus dimension when no
other irrelevant dimension was present.

To determine the locus of the selective-attention deficit and to provide
a better understanding of the types of strategies used by each participant,
we fit the models depicted in Figure 4.4 (as outlined above). Panel B in
Figure 4.5 displays the percentage of participants whose data were best fit
by the optimal, suboptimal, or deficit-in-responding models for the PD and
NC participants in the linear-integration and selective-attention conditions.
Three comments are in order. First, approximately half of the PD and
half of the NC participants used the optimal rule in the linear-integration
condition, and the remaining half were distributed among the suboptimal
and deficit models. Second, whereas approximately half of the PD partici-
pants used the optimal rule in the selective-attention condition, over 60%
of the NC participants used the optimal rule. Finally, only a small number
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Figure 4.5. Data from Filoteo and Maddox (1999). Accuracy rates (A), best-fitting
model distributions (B), and rule application variability (C). Asterisks denote a
statistically significant performance difference (p < .05). PD = Parkinson's disease;
NC = normal control participants; LI = linear integration; SA = selective attention;
BL = baseline; Sub-Opt = suboptimal; Opt = optimal.
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(<10%) of PD and NC participants showed a deficit in the selective atten-
tion condition.

Taken together, the model-based analyses suggest that accuracy rates
were the same for the PD and NC participants in the linear-integration
condition, because approximately equal numbers used the optimal decision
rule. On the other hand, the PD selective-attention deficit was likely due
to the fact that a larger proportion of PD participants used a suboptimal
selective-attention rule. It is important to note that these findings indicate
that PD patients' accuracy deficits in the selective-attention condition were
not due to the patients' inability to attend selectively, because if this had
been the case, the deficit-in-responding model would have accounted for a
greater number of the patients' performances. Instead, PD patients were
able to attend selectively, but they did so less optimally than NC participants.

To isolate the locus of PD patients' suboptimal selective-attention
performance more fully, we examined the decision criterion estimates and
the rule application variability estimates from the suboptimal selective-
attention model. The decision criterion estimates did not differ across PD
and NC participants, indicating that the PD patients did not develop a
different criterion than NCs when attending selectively to the relevant
stimulus dimension. That is, their deficit was not due to the use of a more
suboptimal decision criterion. In contrast, however, the rule application
variability estimates were larger for PD patients than NC participants, as
shown in Panel C of Figure 4-5, suggesting that the patients' deficits were
due to greater variability in the placement of the decision criterion. Such
differences in the model parameters were not observed in either the linear-
integration or the baseline conditions, only when an irrelevant stimulus
dimension was present in the display (i.e., the selective-attention condition).
Thus, the results of this study suggest that suboptimal selective attention
in PD patients is secondary to greater response application variability in
the presence of irrelevant visual information. If we had not applied the
quantitative models to our data then we would have not been able to
determine, first, that the PD patients were able to attend selectively but
just did so at suboptimal levels and second, that the nature of this suboptimal-
ity was secondary to a deficit in applying a decision criterion consistently.

This example represents only one application of the CRT-based ap-
proach. Maddox et al. (1996) examined a different set of attention problems
in patients with PD, and using the same experimental paradigm as that used
by Filoteo and Maddox (1999), Maddox, Filoteo, and Huntington (1998)
examined the impact of normal aging on various aspects of attention. In
that study, Maddox et al. (1998) found no age-related difference in selective-
attention performance but did find that older participants were more likely to
be suboptimal when required to integrate information. We direct interested
readers to these research reports for further details.
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It is also worth mentioning that this approach, and the perceptual
categorization task, can be used to tease apart perceptual forms of selective
attention from decisional forms of selective attention. Perceptual forms of
selective attention should affect the perceptual variance along the attended
dimension, whereas decision forms of selective attention should affect the
decision bound—that is, whether the decision bound is parallel to one of
the coordinate axes. For applications of this sort, we again direct interested
readers to several recent reports (Maddox, 2001, 2002; Maddox, Ashby, &
Waldron, 2002).

In our GRT-based model applications to attentional processing, our
aim was to take category learning out of the equation as much as possible.
We achieved this goal by informing participants verbally of the relevant
strategy before they took part in each experimental condition. By doing so,
we learned a great deal about the nature of attentional deficits in patients
with striatal damage and normal aging. We also have a strong interest in
category learning and memory processes. In the next section, we review
some GRT-based techniques that we have applied to category learning in
clinical populations, including patients with medial temporal lobe amnesia,
patients with PD or HD, and normally aging individuals.

APPLICATIONS OF GENERAL RECOGNITION THEORY
TO CATEGORY LEARNING AND MEMORY

Categorization is an important skill that is critical to the survival of
all organisms. Researchers recently have begun to investigate the possible
neural substrates involved in this important cognitive process. One of the
most successful multiple systems models of category learning, and the only
one that specifies the underlying neurobiology, is the COmpetition between
Verbal and Implicit Systems (COVIS; Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; Ashby, Noble, Filoteo, Ell, & Waldron, 2003; Ashby &
Waldron, 1999) model. COVIS postulates two systems that compete
throughout learning. COVIS assumes that the explicit system uses working
memory and executive attention and is mediated primarily by the anterior
cingulate, the prefrontal cortex, and the head of the caudate nucleus. This
system appears to learn through a conscious process of hypothesis generation
and testing. COVIS assumes that the implicit system is based on procedural
learning and is mediated largely within the tail of the caudate nucleus
(Ashby et al., 1998; Ashby & Ell, 2001; Willingham, 1998). It has been
proposed that a dopamine-mediated reward signal is critical for learning in
this system. The idea is that an unexpected reward causes dopamine to be
released from the substantia nigra into the tail of the caudate nucleus and
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that the presence of this dopamine strengthens recently active synapses
(e.g., Schultz, 1992; J. Wickens, 1993).

In COVIS, the explicit, hypothesis-testing system is assumed to
dominate the learning of rule-based tasks, whereas the implicit, procedural
learning system dominates the learning of information-integration tasks.
Ruk'based category learning tasks are those in which the category structures
can be learned by means of some explicit reasoning process. In general, the
rule that maximizes accuracy (i.e., the optimal rule) is easy to describe
verbally (Ashby et al., 1998) and often involves setting a criterion along one
dimension while placing no weight in the decision on the other, irrelevant
dimension. An example of a rule-based task is provided in Panel A of Figure
4.2. In this case, the participant sets a criterion on line length and responds
"A" to short lines and "B" to long lines, completely ignoring the line
orientation. (Notice that the selective-attention tasks reviewed earlier are
rule based; see Figure 4.3, Panel B.) Information-integration category learning
tasks, on the other hand, are those in which accuracy is maximized only if
information from two or more stimulus components is integrated at some
predecisional stage that occurs outside of conscious awareness, such as when
participants adopt a weighted linear combination of the dimensional values
(Ashby & Gott, 1988). Panels B and C of Figure 4.2 display information-
integration tasks. (Notice that the linear integration tasks reviewed earlier
in the attentional processing section are information-integration tasks;
see Figure 4.3, Panel A.) In most cases, the optimal rule in information-
integration tasks is difficult or impossible to describe verbally, often because
the two dimensions are measured in different physical units (Ashby et al.,
1998). In contrast to information-integration rules, a conjunctive rule (e.g.,
respond "B" if the line is long and of shallow orientation; otherwise, respond
"A") is one in which the participant applies separate decisions about each
dimension (e.g., short or long and shallow or steep) and then combines the
outcome of these decisions when making his or her categorization decision
(integration is not predecisional). Such rules can be applied to information-
integration conditions, but they generally lead to suboptimal levels of accu-
racy. Unlike information-integration rules, conjunctive rules are easy to
verbalize. As we will see shortly, conjunctive rules are often used to solve
information-integration category learning tasks.

Comparisons between rule-based and information-integration category
learning that use the perceptual categorization task allow for strong experi-
mental controls, with many aspects of the task (e.g., optimal accuracy,
nature of the stimuli, number of categories, etc.) held constant while only
the form of the optimal decision bound is manipulated. The additional
advantage is that GRT-based modeling techniques are available to tease
apart many subcomponents of perceptual and decisional processing in this
task. We turn now to a description of these modeling techniques as applied
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to category learning. As we make clear in this section, the modeling tech-
niques that we use to study category learning are very similar to those that
we used to study attention.

Categorization Rule Learning and Rule Application
Variability Analyses

Our modeling approach to category learning has evolved over the
years. In our early work, we focused on a comparison of model fit values
and model parameter values across experimental and control groups. In our
more recent work, we have focused on model comparisons to determine
whether groups differed in their approach to solving the task. In three early
studies conducted in our laboratories, we tested patients with amnesia, PD,
and HD and healthy control participants in their ability to learn a nonlinear
information-integration rule with the two-line stimuli shown in Figure 4.1
(Filoteo, Maddox, & Davis, ZOOla, 2001b; Maddox & Filoteo, 2001 ).5 The
stimuli and optimal decision bound are displayed in Figure 4.6. The optimal
rule cannot be verbalized and instead is defined by a quadratic function of
the horizontal and vertical line lengths. In both conditions, optimal accuracy
was 95%. Each experimental condition consisted of six 100-trial blocks.

The aim of our modeling approach with these data was twofold. First,
we were interested in determining how well a participant learned the optimal
decision rule. To achieve this goal, we fit the optimal decision bound model
(Equation 4.3) to each block of data separately for each participant. As a
measure of categorization rule learning, we examined the goodness-of-fit
value (i.e., the maximum likelihood value, -InL, negative log likelihood)
from the optimal model. The smaller the fit, the better the optimal rule
describes the data. Second, as we outlined in the section titled "Applications
of General Recognition Theory to Attentional Processes," we also examined
the magnitude of rule application variability. To achieve this goal, we fit
a suboptimal model that assumed a quadratic decision bound but allowed
the decision bound parameters to be estimated from the data. As a measure
of rule application variability, we examined the criterial noise estimate from
this suboptimal model. It is important to note that poor categorization
rule learning and high rule application variability will lead to performance
decrements at the level of accuracy. Thus, at the level of accuracy rates
these very different processes are nonidentifiable. Only with the model-based
approach can these two subprocesses be teased apart and made identifiable.

The asymptotic accuracy rates obtained during the final block of trials
(i.e., Trials 501-600) for the amnesiac, PD, HD, and the relevant control

5 The PD and HD studies also included a rule-based category learning condition that we do not
review here.
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decision bound.

participants are depicted in Panel A of Figure 4-7. Notice that asymptotic
performance was equivalent between the amnesiac patients and the control
participants,6 whereas both the PD and HD participants showed clear cate-
gory learning deficits. To determine the locus of the information-integration
category learning deficit in PD and HD participants, we examined the

'Some researchers have argued that amnesic patients learn categorization rules using working or
short-term memory processes (Nosofsky & Zaki, 1999; Palmeri & Flanery, 1999). For example, it has
been suggested that amnesic patients are able to take advantage of the repeating stimuli during some
categorization tasks, and this information is then used to categorize (Nosofsky & Zaki, 1999). One
amnesic patient and 1 control participant returned for a second session in the experiment. During
the first block of trials in the second session, the amnesic patient and control participant again
showed equivalent performance, and in fact performance during the first block of the second session
was slightly better than that during the final block of trials from the first session, even though the
amnesic patient had no memory of the task. These results indicate that the categorization rule was
retained over the 1-day delay period and refute the possibility that working or short-term memory
processes mediated category learning in amnesia.
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Figure 4.7. Accuracy rates (A), categorization rule learning (B), and rule application
variability estimates (C) from three studies conducted in our laboratories. Asterisks
denote a statistically significant performance difference (p < .05). NC = normal
control participants; Amn = amnesiac; PD = Parkinson's disease; HD = Huntington's
disease.
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categorization rule learning and rule application variability estimates from
the final block of trials. These values are displayed in Panels B and C of
Figure 4.7. The HD patients showed categorization rule learning deficits,
but not rule application variability deficits (although the trend is in that
direction), suggesting that their performance deficit was due to an inability
to learn the optimal rule but not due to more variability in the application
of their rule. The PD patients evidenced categorization rule learning and
rule application variability deficits, suggesting that their accuracy deficit was
due to an inability to learn the optimal rule and to greater variability in
the application of the rule that they had learned. A regression analysis
indicated that PD patients' goodness-of-fit values and criterial noise values
uniquely predicted their accuracy performance on the categorization task,
suggesting that both categorization learning and rule application variability
were each important factors in determining the degree to which the rule
was learned.

Taken together, the results support the prediction that patients with
striatal damage, such as those with PD or HD, should show deficits in
information-integration category, whereas amnesiac patients with medial
temporal lobe damage should not. This makes sense, because information-
integration category learning is assumed to be mediated within the tail of
the caudate, a region that is affected in patients with PD or HD. The results
also suggest that the locus of the PD and HD participants' deficits was in their
ability to learn the optimal decision bound, with the additional difficulty for
PD patients in accurately applying the rule that they have learned. Our
previous attentional studies with PD patients have indicated that their
deficits in information-integration category learning such as those we just
described were not due to an impairment in attending to the two relevant
stimulus dimensions. Recall that PD patients performed normally relative
to control participants when they were told they had to attend to both
stimulus dimensions. Thus, the deficit in information-integration category
learning observed in PD patients is likely due to striatal dysfunction impairing
the processes specific to category learning.7

'As we elaborate in detail in the next section, these data provide support for a multiple-systems
approach to category learning. Some single-system advocates, however, have argued that single-
system models can account for many of the classic category learning data that have been offered in
support of multiple systems (Nosofsky & Zaki, 1998). For example, Nosofsky and Zaki (1998) argued
that a single-system exemplar-based model could account for the performance dissociations observed
in amnesiac and PD patients by Knowlton and Squire (1993; Squire & Knowlton, 1995). Although
page constraints preclude a detailed discussion, Nosofsky and Zaki suggested that a single-system
exemplar model could account for Knowlton and Squire's amnesia data by assuming that amnesiacs
have poorer memory sensitivity. We tested this model on our data and found that poorer memory
sensitivity was unable to account for our results, mainly because we found no performance deficit at
any stage of learning. Nosofsky and Zaki suggested also that Knowlton and Squire's PD data could
be accounted for by a single-system exemplar model if it was assumed that PD patients were more
likely to use a probabilistic response strategy than control participants. We tested this model on our
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The data reviewed thus far represent only one application of the GRT-
based approach to category learning. In a recent study, Maddox, Aparicio,
Marchant, and Ivry (2005) examined rule-based category learning in PD
patients and patients with cerebellar damage using a task similar to that
displayed in Panel A of Figure 4.2. They found lower accuracy rates for PD
patients relative to control participants but no performance deficit for pa-
tients with cerebellar damage. PD patients did not show rule-based deficits in
the sense that they did not attempt to integrate information inappropriately;
instead, they used highly suboptimal decision criterion values and showed
large rule application variability deficits.

In our more recent work, we have begun to focus on the PD informa-
tion-integration category learning deficit. We wish to determine the breadth
of the information-integration category learning deficit in PD (i.e., can we
identify conditions for which no deficit is observed?) and to examine in
greater detail the types of strategies used by participants. We turn now to
a brief review of the modeling approach taken in this work and to a brief
review of the results from one study.

Quantitative Analyses of Response Strategies in Information-
Integration Category Learning

The focus of our early work was twofold. First, we were interested in
examining category learning by using the perceptual categorization task in
patients with amnesia and patients with striatal damage. Our interest was
to determine whether the striatal patients showed category learning deficits
in the same categorization condition that amnesiac patients showed normal
learning. We achieved this goal and found that PD patients (and HD
patients) were impaired at learning a nonlinear, information-integration
category task, whereas amnesiac patients performed normally. Second, we
were interested in determining whether the accuracy deficit was due to a
deficit in the participants' ability to learn the optimal decision rule, a deficit
in their ability to accurately apply their rule on each trial, or both. We found
that PD patients showed categorization rule learning and rule application
variability deficits, whereas HD patients showed only categorization rule
learning deficits.

Because PD patients showed clear deficits in information-integration
category learning, our more recent work has focused on developing a clearer
understanding of the nature of this deficit by examining category learning

data and found that it could account for some aspects of the data but not others. Although single-
system models are often flexible enough to account for a single data set, it is more important for a
model to account for a complete body of data. The multiple-systems approach seems to achieve this
goal, whereas the single-system exemplar model does not.
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across qualitatively different information-integration category structures. In
a recent study, Filoteo, Maddox, Salmon, and Song (2005) tested a group
of PD patients and healthy elderly control participants by using the linear
information-integration and nonlinear information-integration conditions
displayed in Panels B and C, respectively, of Figure 4.2 with the single-line
stimuli. Each participant completed six 100-trial blocks in each condition.
It is important to reiterate that because this work is couched within the
framework of the perceptual categorization task, a number of important
factors (e.g., optimal accuracy) are equated across conditions, and only the
form of the optimal decision bound is manipulated.

Since we completed our early work (summarized earlier), the focus of
our modeling approach has also changed slightly. Instead of focusing on
estimates of categorization rule learning and rule application variability, we
have begun to attempt to characterize the strategy that participants are
actually using. One conclusion we have drawn from our parallel work with
healthy young adults is that participants will often try to solve information-
integration tasks using hypothesis-testing strategies when the experimental
conditions are not conducive to learning with the procedural learning system
(for a review, see Maddox & Ashby, 2004). This might also occur with PD
patients. Because the neurobiological machinery necessary to solve informa-
tion-integration tasks that use the tail of the caudate is damaged in PD, it
might be that PD patients attempt to use hypothesis-testing (or rule-based)
strategies. Another possibility is that PD patients use the same approach as
control participants when learning information-integration categories but
that they do so less well than control participants. To investigate these
possibilities, we developed a large number of models that were applied to
the data from each block of trials separately for each participant. Some of
these models were hypothesis-testing models, and some were information-
integration models.

Figure 4.8 displays hypothetical decision bounds and the resulting
response regions from specific response strategies that might be applied in
the linear information-integration condition. The four models in the left-
most column are hypothesis-testing models, and the three models on the
right are information-integration models. The top two hypothesis-testing
models instantiate unidimensional rule strategies. One model assumes that
the participant sets a criterion on length and ignores orientation, whereas
the other assumes that the participant sets a criterion on orientation and
ignores length. The bottom two hypothesis-testing models instantiate two-
dimensional, conjunctive rule strategies. Each model assumes that the partici-
pant sets a criterion on the length dimension and a separate criterion on
the orientation dimension. In the first case, the participant responds "A"
if the length is short and the orientation is steep; otherwise, the participant
responds "B." In the second case, the participant responds "B" if the length
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Figure 4.8. Hypothetical response regions from participants using hypothesis-testing
(panels on the left) and information-integration (panels on the right) strategies to solve
the linear information-integration task. "A" and "B" indicate participant responses
(see text).

is long and the orientation is shallow; otherwise, the participant responds
"A." The top-most information-integration strategy assumes that the partici-
pant uses the optimal decision bound. The middle model assumes that the
participant uses a linear decision bound but allows the slope and intercept
to be suboptimal. The bottom model assumes that the participant uses two
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linear decision bounds. This model is called the striatal pattern classifier
(Ashby & Waldron, 1999), and it was developed as a computational model
of the tail of the caudate. The model assumes that there are four units in
the length orientation space, with two being assigned to Category A and
two to Category B. On each trial, the participant determines which unit is
closest to the perceptual effect and gives the associated response. The model
results in two minimum-distance-based decision bounds. This model has
been found to provide a good computational model of participants' response
regions in previous information-integration category learning studies (e.g.,
Ashby & Waldron, 1999; Ashby, Waldron, Lee, & Berkman, 2001; Maddox,
2001, 2002; Maddox, Filoteo, Hejl, & Ing, 2004). Similar response strategies
might be applied in the nonlinear information-integration condition. For
example, the Figure 4.8 hypothesis testing models were applied in the
nonlinear information-integration condition, and nonlinear variants of the
information-integration models were applied. Each model was applied sepa-
rately to the data from each block of trials for each individual participant.

We turn now to a brief summary of the results. The asymptotic accuracy
rates obtained during the final block of trials (i.e., Trials 501-600) for the
PD patients and control participants is depicted in the top panel of Figure
4.9. Notice that PD patients showed relatively normal linear information-
integration learning but a deficit in nonlinear information-integration learn-
ing. The middle left panel shows the percentage of participants whose final
block data were best fit by an information-integration model or a rule-based
model. Notice that the model percentages are similar across PD and control
participants for the linear and nonlinear information-integration conditions,
but many fewer PD and control participants attempted to use hypothesis-
testing strategies in the nonlinear condition. To gain additional insight into
the locus of the PD nonlinear information-integration learning deficit, we
focused only on participants whose data were best fit by an information-
integration model. We computed the accuracy rate for these participants
(displayed in the middle right panel of Figure 4.9) as well as the categori-
zation rule learning and rule application variability indices (displayed in
the bottom two panels of Figure 4.9). These analyses suggest that PD patients
who used information-integration strategies to solve the linear information-
integration task were as accurate as control participants, showed equivalent
rule learning, and demonstrated equivalent variability in the application of
their rule. For PD patients who used information-integration strategies to
solve the nonlinear information-integration task, on the other hand, accu-
racy was lower, categorization rule learning was poorer, and variability in
the application of their rule was higher than that of control participants.

Taken together, these results suggest that PD patients perform relatively
normally on solving linear information-integration tasks but show clear and
large deficits in their ability to solve more complex nonlinear information-
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Figure 4.9. Data from Filoteo et al. (2005). Final block overall accuracy rates, model
distributions, accuracy rates, categorization rule learning, and rule application
variability estimates for participants whose data were best fit by an information-
integration model. Asterisks denote a statistically significant performance difference
(p < .05). PD = Parkinson's disease; NC = normal control participants; LI = linear
information integration; NLI = nonlinear information integration; HT = hypothesis-
testing model fit best; II = information-integration model fit best.

integration tasks. It seems reasonable to suppose (although this is speculative)
that the resolution of the perceptual decision space in the tail of the caudate
must be higher to solve more complex nonlinear information-integration
tasks than to solve simpler linear information-integration tasks. Because the
tail of the caudate is dysfunctional in PD, it perhaps can be expected that
performance in tasks that require more striatal units might be impaired in
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PD relative to performance in tasks that require fewer striatal units. This
is one important line of work that we continue to actively pursue in our
laboratories.

This example represents only one application of this sort. We recently
published a study that examined information-integration category learning
in healthy older adults using the categories depicted in Panels B and C of
Figure 4.2 (Filoteo & Maddox, 2004). It is well known that subcortical
dopamine levels are reduced as a result of the normal aging process (Carlsson
6k Winblad, 1976). In light of this fact, we predicted, and found, that normal
elderly individuals display information-integration category learning deficits.

We are currently examining PD patients' ability to learn other
information-integration tasks and a series of rule-based tasks. We have also
begun to apply this modeling approach to data collected using functional
magnetic resonance imaging (Filoteo, Maddox, Simmons, et al., 2005;
Nomura et al., in press). It would also be straightforward to apply this
approach with other clinical populations (e.g., participants with attention-
deficit/hyperactivity disorder, Alzheimer's disease, etc.) as well.

CONCLUSION

The aim of this chapter was to review the details of a quantitative
model-based approach that we have taken to the study of attentional and
category-learning processes in clinical populations. Our theoretical approach
is grounded in GRT, which is an extension of signal detection theory to
multidimensional stimuli. The fundamental axiom of GRT is that perceptual
processing is noisy and that perceptual and decisional processes are separate
and should be uniquely identifiable. Taking a CRT-based approach, we were
able to examine attentional processes in PD and, importantly, were able to
identify and study subgroups of participants who showed qualitatively differ-
ent attentional-processing strategies. These types of subgroup analyses are
very important and useful in clinical settings, where within-group variability
is so high. We found that PD patients were able to integrate information
from two stimulus dimensions when required to, whereas a large subgroup
of PD patients showed deficits in their ability to attend selectively to one
stimulus dimension while ignoring the other. We also found that this deficit
was restricted primarily to their inability to accurately apply their decision
rule on each trial. Using a similar approach, we were able to examine
category learning in persons with amnesia, PD, and HD. We found that
individuals with amnesia showed normal information-integration category
learning, whereas PD and HD patients showed large information-integration
category learning deficits. The deficit for both PD and HD patients was due
to poor learning of the categorization rule, and only for the PD patients
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was there an additional deficit in consistently applying the learned rule.
Further examination of information-integration learning in PD patients
suggested that these patients show normal learning when the categorization
rule is linear, and their deficit is restricted to cases in which the categorization
rule is highly nonlinear. When the decision rule is highly nonlinear, PD
patients show poor categorization rule learning and highly variable applica-
tion of the learned rule.

Many of the conclusions we have drawn from our past studies would
have been missed if we had relied solely on traditional measures of perfor-
mance (e.g., accuracy rates or reaction times). We hope that through our
review readers have achieved a greater appreciation of our measurement
techniques and how they can lead to a better understanding of the nature
and degree of cognitive changes in various patient populations. We also
hope that this will inspire others to incorporate similar approaches into
their own research programs.
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A MATHEMATICAL PROCESS
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Variations in cognitive performance across clinical or other populations
may stem from one or a combination of sources. Such variation usually
comprises systematic differences in duration, correctness of task performance
across multiple trials, or both. Factors affecting these response properties
may have to do with architecture of the cognitive system executing the
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task, such as its design with respect to the handling of task components
concurrently or successively. Another aspect of the system brought to bear
is that of its capacity for dispatching constituent task components per unit
of time, or the "amount of work" or rate of output over a given interval of
which the system is capable. Still a third aspect of the processing system
impinging on the above response properties entails termination criteria,
notably whether processing ceases on completion of transactions sufficient
for emitting a response or continues beyond the necessary complement (for
elaboration from a clinical science perspective, see chap. 7, this volume,
and Townsend, Fific, & Neufeld, in press).

Interest nevertheless may lie not only with accounts of cognitive
performance characterizing groups and their differences but also with respect
to performance when it comes to the individual. The issue of mediating
group-level findings to the individual is a long-standing one (e.g., Davidson
& Costello, 1969; Neufeld, 1977, chap. 2). Motivation to address individual
differences may emanate from clinical exigencies, as in the case of client-
specific clinical assessment and intervention. It may arise as well because
certain quantitative accounts of cognitive performance, known as mixture
models, provide for random variation in model properties. This variation
potentially is identified with inequities in performance from one individual
to the next, thus becoming tantamount to individual differences in model
expression. So, because such a mixture model simultaneously provides for
group and individual levels of performance, data from both levels impinge
on its validity. Coherence of model predictions at both levels of analysis
thereby qualify as part of the arsenal of methods for model evaluation and
selection (cf. Myung, Forster, & Browne, 2000; Wagenmakers & Waldorp,
2006). In this way, mixture models not only assess cognitive performance
at the individual level, without leaving group-level findings behind, but
also prescribe tactics for empirically evaluating their own effectiveness in
doing so.

Specifics as to how the above possibilities play out in the present
context and how such potential might be realized are explained in this and
the following paragraph. We use the method of illustration, incorporating
a given set of data pertaining to memory search in schizophrenia (elaborated
on below), but we hasten to note that the espoused strategy is general.
Focus is on a specific form of processing capacity, whose composition is
quantitatively defined (cf. Townsend & Ashby, 1983, chap. 4) and concomi-
tantly takes account of both system architecture and termination criteria
(Townsend & Wenger, 2004). We then examine the benefits and practical
challenges of the presented computations. Substantive significance of the
results are drawn out, including discernment of spared and disorder-affected
cognitive functions and possible implications for cognition-intensive forms
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of coping with stress. Clinically significant extensions available from the
present developments are described.

The presentation is organized to convey three things: (a) how research
findings obtained from groups of participants, typifying clinical cogni-
tive science, can be mediated to the individual participant; (b) how such
individual-difference technology can evaluate efficacy of the proposed ex-
planatory measurement model; and (c) to explicate a specific form of cog-
nitive abnormality in schizophrenia that instantiates (a) and (b). First, we
describe the paradigm activating the addressed cognitive performance and
supplying the performance data. Doing so sets the stage for the subsequent
modeling by illustrating the nature of the cognitive operations of interest
and the pattern of deviations attending schizophrenia psychopathology.
Methodological details necessary to appreciate the experimental particulars
serving for the present illustration are provided along the way. Rounding
out the description of the phenomenon being modeled is a description of
the precise data summaries to which modeling is addressed. These necessary
preliminaries usher in the proposed mixture model of performance. Specifics
of evaluating the model predictions of both group and representative individ-
ual data sets are set forth. To enhance the context of this evaluation, we
compare the efficacy of the proposed model with that of a principled, closely
related competitor and with that of a nonmixture model.

EXPERIMENTAL PARADIGM, EMPIRICAL FINDINGS,
AND MODEL DESCRIPTION AND TESTING

Paradigm

We begin this section with an overview of the procedural details, to
follow. The present paradigm was designed initially for the study of functional
asymmetry of brain hemispheres in schizophrenia (George & Neufeld, 1987).
Specifically addressed were deviations in patterns of response to presentations
of visual stimuli composed of words or pictures. When presented in the left
hemifield (right visual field), verbal stimuli are processed more quickly and/
or accurately than when presented in the right hemifield, the opposite being
the case for pictorial stimuli (Alwitt, 1981; Moscovitch 6k Klein, 1980;
Sergent, 1982). The main experimental factors, then, were stimulus type
(four-letter words or pictures effaces) and right or left visual field of presenta-
tion. Individuals were required to indicate as quickly and accurately as
possible whether a presented word or picture matched the one presented
immediately before. Other aspects of the stimulus complex and associated
task requirements were incidental with respect to the present analysis. They
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were implemented to tax differentially processing demands on the hemi-
sphere deemed to be specialized for processing of the given trial's stimulus
type (left hemisphere for words and right hemisphere for faces). The rationale
for their inclusion, and related manipulations, were enumerated by George
and Neufeld (1987). These manipulations are briefly described below, be-
cause they are accommodated in the comprehensive task performance model.

Participants numbered 14 in each of five groups. Note that modeling
is expedited by application to two of these five groups: (a) the paranoid
schizophrenia participants and (b) the student control participants. Because
results nevertheless generalize more broadly to other schizophrenia-control
pairings among the groups at large, all five groups are enumerated. These
were paranoid and nonparanoid schizophrenia patients, nonschizophrenia
psychiatric control participants (13 of the 14 having an affective disorder),
general control participants solicited from Employment Canada and local
newspaper advertisements (similar in age and other demographics to the
patient groups), and university undergraduates (to monitor effects of the
constructed manipulations among the individuals who have provided most of
the literature's data on behavioral lateralities involving brief visual displays).
Provision for diagnostic aspects of group formation and demographic and
clinical variables extraneous to the present purposes, including any sex
differences in group composition and performance (absent throughout), are
detailed in the original report.

Trials proceeded as follows. A target item, either a four-letter word or
a black-and-white photograph of a face, appeared in the central visual field
for 1.5 seconds and was immediately followed by a probe—stimulus display.
This display consisted of three items. If the target was a word, two words
were presented: one in the left visual field and one in the right field. The
central field held an item prescribed by the concomitant hemisphere-load
manipulations. These manipulations were directed to processes appurtenant
to those of the current focus but nevertheless are accommodated in the
performance model, as described above.

If the target was a face, items in the respective visual fields were faces.
Probes were displayed for 20 milliseconds in the case of words and 200
milliseconds for faces (calibrated through extensive pilot testing). Partici-
pants were requested to press a "yes" key as quickly and accurately as possible
if the probe, presented in either the left or right field, was the same as the
target; if neither element matched the target, they were to press the "no"
key as quickly and accurately as possible.

The central-field items of the probe display varied according to four
levels of concomitant-task load directed toward the left or right hemisphere
for the word and picture judgments, respectively. For words, the central
field in the first load condition was blank; it contained a face, to be ignored
in the second load condition. In the third condition, the central field
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contained a word to be ignored, and in the fourth, it contained a word to
be spoken aloud after executing the yes-no probe-match response. Similar
central-field manipulations attended the pictorial target, except that faces
were used in the center rather than words, and words for faces. The fourth
load for the picture stimuli required participants to dispatch the yes-no
match response and then to indicate which of four faces displayed on a card
was the one that had just appeared in the central visual field. Order of the
eight task conditions (face vs. word-matching task x four central-field load
levels) was randomized across participants; within conditions, positive and
negative trial types were randomized, as were right- versus left-field place-
ments of matching items, in the case of positive trials. Practice trials preceded
test trials up to a criterion of four consecutive correct responses for each of
the eight task conditions.

Each condition was assigned 32 trials, 16 positive and 16 negative. Of
the positive trials, 8 probe-to-target matches appeared in the right visual
field, and 8 appeared in the left field. There were therefore a total of 32
trials of the right visual field (left-hemifield compatible) target-matching
words and 32 trials of left visual field target-matching words. Pictorial items
had corresponding trial numbers of right- and left-hemifield compatible
presentations. Only positive trials, generating differential task load according
to side of matching-item presentation, were addressed in the present analysis.

Results

The principal dependent variable is latency of correct responses. Error
rates (presented below) differed significantly across groups but not so as to
compromise interpretation of the latency data (viz., apropos of speed-
accuracy trade-off, e.g., Pachella, 1974; moreover, analyses of variance
[ANOVAs] including and excluding incorrect responses differed trivially).

The principal result of the ANOVA on the correct response time
data, as far as the present developments are concerned, was that of a signifi-
cant Visual Field x Stimulus Type interaction, F(l, 60) = 10.41, p ~ .002.
There was a significant main effect of groups (p < .00005), but despite the
latter's heterogeneity, the Visual Field x Stimulus Type interaction remained
stable, F(4, 60), for its further interaction with groups: 1.085, p = .37215.

The present modeling approach is expedited, without expense to gener-
ality of chief inferences, by expressing the essential configuration of results
in the form of a 2 x 2 factorial layout, with one of the two-level factors
comprising diagnostic group status and the other comprising task load (more
vs. less hemifield-compatible probe item presentation; e.g., Neufeld, Carter,
Boksman, Jette, & Vollick, 2002; Neufeld & Williamson, 1996). Representa-
tive groups evincing the Stimulus Type X Visual Field interaction were the
paranoid schizophrenia patients and the student control participants. The
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second two-level factor entailed right versus left field of target-matching
probe item presentation, specifically for the verbal stimuli. Word item data
were selected because word-related simple main effects of the Stimulus Type
X Visual Field interaction (i.e., faster responding to words presented in the
left hemifield than to those presented in the right hemifield and to words
presented in the left hemifield than to pictures presented in the left hemi-
field) were slightly more pronounced than were corresponding simple main
effects for pictures.

Overall Interpretation

In this section, we enumerate cognitive transactions to which modeling
is addressed, specifically those considered to underlie identification of a
target-probe item match. They include the following: encoding the left- or
right-field presented probe word into a task-facilitative (item comparison)
format; the target—probe item comparison itself; and response processes,
including selection of the yes-no response, prescribed by results of the
memorial comparison as well as response execution. Reaction time data
subjected to modeling may be affected as well by processing of the probe
display's central-field item associated with the concomitant task, above. The
model layout to be presented accommodates this contribution as a residual
component of latency.

Delayed encoding of the presenting target-match item into a
comparison-facilitative format was identified as the agent of group differences
in task performance latency. Detailed accounts of data patterns supporting
this and the following related deductions have been presented by Neufeld,
Vollick, and Highgate (1993); Neufeld and Williamson (1996); and sources
cited in these reviews. Memory scanning and response processes were deemed
to be unimpaired among the schizophrenia participants. Similarly, times for
central-field item concomitant-task operations were held to be common
across the groups.

Moreover, as further detailed in Neufeld etal. (1993, 2002) and Neufeld
and Williamson (1996), schizophrenia participants' protracted encoding has
been identified with a specific aspect of the encoding process. Probe item
encoding is considered to entail extracting physical features, accessing se-
mantic properties, and related preparatory operations providing for ascertain-
ment of probe—target item identity. Mathematical models of performance
data have been constrained to maintaining a constant rate of dispatching the
component encoding operations while allowing the number of constituent
operations themselves to increase among schizophrenia participants (Neu-
feld et al., 1993, 2002; Neufeld & Williamson, 1996). This composition of
elongated encoding—additional subprocesses of the encoding process (cf.
Townsend, 1984)—again is a primary feature of model design, as applied
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to the representative data described above. Possible cognitive-behavioral
agents of the added subprocesses are considered in the Discussion section,
after description and evaluation of the implementing model.

Model-Predicted Performance Data

Data for the 2x2 factorial layout were amalgamated as follows. Perfor-
mance was summarized in terms of the first two moments of the empirical
latency distributions, comprising their means and variances, computed
within participants, across trials. The first two moments were selected in
the interests of moment stability and accuracy of parameter estimation (e.g.,
Townsend & Ashby, 1983). Each cell, in turn, was represented in the form
of a "homogeneous participant" (cf. Townsend, 1984).

For each participant, then, mean latencies were computed for correct
posttrial responses, separately for each visual field of target-matching probe
item presentation and within each of the four concomitant-task loads.
Likewise, participants' variances in correct-trial latencies were computed
within each of these combinations. The means and variances then were
averaged within participants, across the concomitant-task loads, separately
for each visual field of the target-matching word. These mean and variance
averages, in turn, were collapsed across the 14 individuals within the respec-
tive diagnostic groups. Maximum likelihood estimates of variances (Evans,
Hastings, & Peacock, 2000) were used throughout, which can be shown
to positively bias slightly the tests of fit appropriated here—if anything,
disfavoring model acceptance. The resulting values, along with mean error
rates, are presented in Table 5.1.

Data-Predicting Model

The constructed mixture model comprises two categories of distribu-
tions: (a) base distributions and (b) mixing distributions. A base distribution
is used to characterize the dispersion of encoding latencies across trials for
an individual participant. Mixing distributions convey individual differences
in these base distributions. They do so by treating parameters of base distribu-
tions as random variables in their own right. This hierarchical relation of
distributions thus provides for added sources of variability in performance
data overall. Moreover, its Bayesian format, casting mixing distributions as
Bayesian priors, affords potentially important computational options (which
we expand on below).

Mixing distributions can remain constant across experimental factors,
or they can vary, depending on how the base-distribution parameters they
embrace are implicated in the configuration of summary performance data.
In the present instance, one of the mixing distributions embodies variation
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in the number of subprocesses composing the encoding process, and the
other embodies the rate, or capacity, of transacting these subprocesses.
Considering data patterns in conjunction with model composition (e.g.,
Neufeld et al, 2002; Neufeld & Williamson, 1996), the former distribu-
tion tenably is elevated with heightened encoding load (less compatible
hemifield of probe-item presentation), equally for controls and paranoid-
schizophrenia patients. Likewise, paranoid-schizophrenia status elevates this
distribution by a constant amount, under lower and higher encoding
conditions.

In contrast, the distribution of parameter values corresponding to rates
of subprocess completion (seconds per subprocess) defensibly is held constant
across all four factorial combinations. These selective changes in mixing
distributions across experimental factors can be shown to cohere parsimoni-
ously with the absence of nonadditivity of factor effects regarding mean
latencies (above) but also regarding within-participant variances (Vollick,
1994; Vollick & Neufeld, 2006). The required additivity is apparent in
model predictions (see Table 5.1, and developments that follow). The pres-
ent model architecture, then, in the first instance fits with qualitative proper-
ties of the data pattern. Additional tests of fit to group and, further, to
individual participant data, are taken up in the section titled Tests of Model
Fit and Competing Model Fit.

We now turn to details of the appropriated base distribution. Individual
intertrial encoding latencies defensibly were considered to be Erlang distrib-
uted (e.g., Evans et al., 2000), a distribution that has two parameters: (a) k'
(the shape parameter), in this instance expressing the number of encoding
subprocesses, and (b) v ( the intensity parameter), expressing their rate of
dispatch (seconds per subprocess). With k' = 1, the Erlang distribution
reduces to the exponential distribution but becomes increasingly similar to
the normal distribution as k' increases. The mean latency for a given base
distribution becomes k'/v, and the variance becomes k'/v^. This distribution's
probability density function /(t), proportional to the relative frequency of
process completions over time t, is (vt)k ~ ] /(k' — 1)! ve~*'. Figure 5.1 depicts
four latency distributions, hypothetically identified with 4 participants, each
having an unique pair of values for k' and v. The mean of each one is
k'/v, with variance k'/v2.

The distribution of v is designated to be gamma, with parameters k
(shape) and r (intensity). The parameter k is identified with task-related
performer competence, and r is identified with susceptibility to stress effects
on performer efficiency (Neufeld, in press). The mean and variance of v,
according to this distribution, are k/r and Ic/r2, respectively. The probability
density function of v is (r*v)k~ l/T(k) re~n. The symbol F stands for the gamma
function, a continuous analog of the factorial; where k is an integer, F(k) =
(k - 1)! (e.g., Beyer, 1984). A gamma distribution of v, with k = 30, and
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3.0

Figure 5.1. Erlang distributions, expressing hypothetical individual differences in
values of k' and v.

r = 10.743, is presented in Figure 5.2. Interpretation of this distribution's
parameters r and k was dealt with at some length by Neufeld (in press).

As for the base distribution's parameter k', its distribution in turn is
designated as Poisson, the latter having parameter m (see, e.g., Kenny &
Keeping, 1963). Both the mean and variance of this distribution are m, and
its probability function for k', Pr(k'), is mk'/k'l e~m. The value of m for controls
under the low encoding load conditions is m'; m' is incremented by h
and/or g, with heightened encoding load and/or paranoid schizophrenia
diagnostic status. This deployment of parameters again is based on consider-
ation of empirical latencies conjoint with model composition (Neufeld et al.,
2002). Figure 5.3 portrays Poisson distributions of k', for m ranging from
0.0971 to 1.858. A schematic of the mixture model's overall design is
presented in Figure 5.4.

Selection of the parametric distributions used in this mixture model
was defended by Neufeld et al. (2002). Note that such distributions have
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Figure 5.2. Mixing distribution of v, common to all combinations of encoding load
and diagnostic status.

well-charted properties and can be members of larger families of prominently
used distributions (Evans et al, 2000) and that their mixture-model imple-
mentation expedites individualized model appropriation through Bayesian
methodology.

The model's prediction of mean latency for a cell of the 2x2 layout
was structured as follows:

E(T; k,r,m)encodmg + Y + .160, (5.1)

where E(T; /c,r,m)etlcod,ng is the mixture model's prediction of mean encoding
latency, and Y is the time for processes auxiliary to probe item encoding,
including a comparison of the encoded properties of the probe item to those
of the memory-held target and any concomitant-task processing associated
with the probe display's central-field item that precedes registration of the
target-probe match response (as averaged across the four concomitant-
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Figure 5.3. Tentative mixing distributions of k" for various values of m, which varies
from 0.0971 to 1.858. As m increases, the mixing distribution's spread of k' increases
toward higher values.

task conditions). Finally, the value of 0.160 seconds represents response
movement time, as estimated by Woodworth and Schlosberg (1954). This
value has served effectively in similar contexts (e.g., Townsend, 1984), and
replacing it with a free, estimated parameter has rendered similarly small
values with no improvement in model fit (Carter & Neufeld, 1999).

The mixture-model prediction of the average, or expected encoding
latency E(T; k,r,m)encodmj, is

mr / ( f c - l ) , (5.2)

the parameter m being m' for control participants under the lower encoding
load, with the addition to m' of h, g, or both, accompanying the higher
encoding load, paranoid schizophrenia diagnostic status, or both.

The prediction of the variance in latency, averaged across participants
in a cell of the 2x2 layout, in turn is
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Mixing distribution for parameter v.

Gamma with parameters r and k

Mixing distribution for parameter k'.
Poisson, with Parameters m'for low
encoding load, nonpatients;
m' + h for high encoding load,
nonpatients;
m' + g for low encoding load,
paranoid schizophrenic participants;
m' + h + g for high encoding load,
paranoid schizophrenic participants.

Base distribution of encoding
latencies f.
Erlang, with parameters
v and k'.

Figure 5.4. Design of parameter-mixture model.

E[Var(T; k,r,m)]encodmg + Z + .001296, (5.3)

where E[Var(T; k,r,m)]encoding is the mixture model's prediction of average
(i.e., expected) across-trial variance in encoding latency; Z is the estimated
value of the variance in latency contributed by the same sources assigned
to the parameter Y, above, again averaged across the four concomitant-task
conditions; and 0.001296 is the across-trial variance in response-movement
time (after Woodworth & Schlosberg, 1954). The model-predicted expected
variance in encoding latency, E[Var(T; k,r,m])encodins is

mr 2 / [ (k - l ) (k -2 ) ] . (5.4)

Computations underlying the above model-predicted values were presented
by Neufeld and Williamson (1996; see also Neufeld, in press).

Altogether, the estimated parameters (below) totaled six. There were
eight observations and a mean and standard deviation for each of the four
factorial combinations, leaving 2 degrees of freedom for testing of empirical
model fit. Parameter values were estimated by means of a moment-fitting
cost function (detailed by Townsend, 1984; see also Neufeld & McCarty,
1994), which was minimized using the classic and versatile search algorithm
STEPIT 7.4 (Chandler, 1975, whose application was cross-checked against
that of a search algorithm from Waterloo Maple, Waterloo, Ontario, Canada:
MAPLE 9.0). The format of this cost function resembles that of chi-square
but is not necessarily distributed as chi-square. It nevertheless serves well
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for parameter estimation. In the present case, the function settled at a value
of 0.00793, indicating a successful search in terms of closeness of final
predictions to observed values. Significance tests, however, required addi-
tional developments, as we describe in the next section.

As for the parameters themselves, k was fixed at the outset at 30, a
tenable value considering the simplicity of the current encoding require-
ments, along with the substantive role of this parameter (Neufeld, in press).
The remaining six parameters, and their estimated values, were r = 10.7339,
m' = .0971, h = .08175, g = 1.6793, Y = .64794, and Z = .031842. The
resulting model predictions are presented in Table 5.1.

Tests of Model Fit and Competing Model Fit

In this section, we consider empirical consequences of mixture-model
composition and associated model tests. First, we consider the distributions
of latency means and variances subjected to aggregation across participants.
Next, we test fit of model predictions to group-level performance summaries.
Comparison of empirical fit is made with that of a principled competing
model. The predictions of both the proposed and competing models then
are tested with respect to performance latencies of individual participants,
using Bayesian analyses that synthesize individual performance samples with
mixture models' parameter-mixing distributions—thus exploiting the latter's
status as Bayesian priors. To round out, we compare predictive efficacy
with that of classical methodology, which restricts individualized parameter
estimation and model predictions to the performance sample itself.

Distribution of Aggregate Data

We begin by considering the distributions of data that have been
aggregated across individuals, within factorial combinations of the present
research design. If a mixture model stipulating parameter variation over
individuals within a diagnostic-group—encoding-load combination is opera-
tive, then the data summaries for the participants tenably should arise from
a single population. Moreover, considering the central limit theorem, the
distribution arguably should be normal.

Note that a similar scenario holds for model testing with a homogeneous-
participant strategy, where individual differences surrounding groupwise data
aggregates are categorized as model-exogenous noise (Carter & Neufeld,
1999; Townsend, 1984; see also Shavelson & Webb, 1991). Regarding
disorder-affected and spared cognitive functions, theoretical deductions
drawn from model tests likely are the same whether individual differences
are cast as theory-extraneous noise or mixture-model dispersions of base-
distribution parameters (cf. Neufeld & Williamson, 1996). Viewing interpar-
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ticipant variation in response protocols in terms of random dispersion of
parameter values across individuals, however, potentially increases model
comprehensiveness by incorporating stochastic data properties that other-
wise would be regarded as error variance. The structure of the mixture
models moreover opens up important computational options, because the
parameter-mixing distributions de facto become Bayesian priors.

To evaluate the single-population assumption described above, each
sample of individual mean latencies within each of the design's factorial
combinations was subjected to a Kolgomorov-Smirnov test for departure
from an hypothesized single normal distribution. The viability of regarding
dispersions of performance latency as emanating from a single population
was similarly tested. Standard deviations, averaged across concomitant-task
conditions for each participant, again were subjected to a Kolgomorov-
Smirnov test for departure from a single normal distribution.

Probability values for tests applied to the mean latencies, progressing
from control participants under the lower encoding load through paranoid
schizophrenia patients under the higher encoding load, were .905, .959,
.433, and .997. Corresponding values for the measures of dispersion were
.913, .990, .373, and .703. Test statistics therefore were well within the
distributional envelope specified by the model-compatible null hypothesis.

Predictions of Group Performance Data

Model predictions of observed latencies and variances, enumerated in
Table 5.1, were tested using the following ANOVA-based chi-square format
(Carter & Neufeld, 1999; Snodgrass & Townsend, 1980):

V^-observed remodel predicted) 1^* model predicted' \ ^ -^ )

Here, xokervf;d is the empirical sample statistic (e.g., mean or intertrial variance)
drawn from the model-prescribed population, HmM predicted is the population
value of the statistic, and (JL

m<M ^dtaed is the population variance of the
statistic. The sample values are assumed to be normally distributed, by and
large a reasonable assumption in the present case because of the summary
statistics' aggregate format and operation of the central limit theorem.

For mean latency, the numerator of the chi-square statistic is n(Mokmed

~ ^modd)2) where n is taken to be the number of participants serving in each
of the four cells of the design (14 in this case), and jumay = mr/(k - 1) + Y
+ .160.

Providing now for the composition of the denominator of the chi-square
statistic cr1

modeipredKKd, the total mixture model variance can be partitioned
into the required between- and within-participant terms. These terms are
analogous to those used in the F statistic error term, for testing group effects
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in a split-plot factorial ANOVA (e.g., Kirk, 1995). The within-participant
term is

(mr2/[(k - l)(k - 2)] + Z + .036%, (5.6)

where q is designated to be the average number of correct trials among
participants in the cell (unweighted approximation). The between-
participant term, in turn, is

mr 2 [ (k - l ) + m] / [ (k - l ) 2 (k -2 ) ] . (5.7)

Turning to variances, the numerator of the chi-square statistic is
n(V0kerwd ~ ©mo*))2) where 0modei is the model's expected, or average within-
participant variance in latencies across trials, which is

mr2/[(k - l ) (k - 2)] + Z + .0362. (5.8)

As for the denominator o~2
mo<w p,edKted, between- and within-variance terms

again are assembled. The model-defined between-participant variance, spe-
cifically with respect to the variance in latencies across trials, now is

{m(m + l)r4/[(/c - l)(k - 2)(k - 3)(k - 4)]} (5.9)
-{rnV/[(k-l)2(k-2)2]}.

Analogous to the expected within-participant variance in across-trial
latencies, described earlier, within-participant variance in across-trial la-
tency variances takes account of the population variance in encoding-
latency variance for an individual with parameter combination k' and v, to
which is added z and .0362. The variance in across-trial sample variances,
with q trials per sample, then becomes

2(k'/v2 + Z + .0362)2/q. (5.10)

To obtain the expected within-participant variance in such trial-wise vari-
ance, the above expression first is weighted by the probability density of
the given combination of k' and V, which is then taken over all the current
combinations of these two parameters.

The first term in braces of Equation 5.9 plus the expected within-
participant term (temporarily ignoring Z and .036Z), constitute
E[Var(T I k',<u)2; k,r,m]. The second term in braces of Equation 5.9 constitutes
[E(Var(TI k',v)); k,r,m]2, which is subtracted from E[Var(T I k',v)2; k,r,m]
to give the modeled total variance in the within-participant intertrial vari-
ance Var[Var(T I k',v); k,r,m]. This operation altogether is a matter of com-
puting the variance of any variate X, according to Var(X) = E[X — E(X)] =
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E(X2) - [E(X)]2, and is an instance of implementing relations between
conditional and unconditional expectancies (Parzen, 1962, p. 55)

The resulting chi-square (df = 2) value was found to be 1.3356
(p = .51288). Note that the above within-participant term, Equation 5.10,
assumes that the latency distribution for individual trials is normal, which
would be dubious for the present values of m. The fit, however, was deemed
to be close, because for each cell the value of the within-participant variance
component was in essence dwarfed by that of the between-participant com-
ponent, and the computed chi-square was at the median of the model-
prescribed null hypothesis distribution. The specific probabilities stated here
and below nevertheless should be taken cum grano salis.

Turning to the competing model, a structure similar to the proposed
model's structure was put forth. The only difference was that for the compet-
ing model, k' was considered to vary over trials within participants as opposed
to comprising an individual-difference parameter and thus remaining con-
stant across trials. Rather than an Erlang distribution, therefore, the compet-
ing model's base distribution was one known as Compound Poisson (e.g.,
Ross, 1996). Now, m was fixed for each participant within a cell, the base
value again being m' (newly estimated). To m' was added (newly estimated)
h and/or g, as before, accompanying higher encoding load and/or paranoid
schizophrenia diagnostic status.

Once more, additivity of expected latencies and expected variances
was accommodated (see, e.g., Neufeld & Williamson, 1996). The minimized
cost function was .006855, again indicating an excellent solution. Parameter
values were k = 30 (defined as before), r = 5.88125, m = .534, h = .202,
g = 3.037, Y = .565, and Z = .000188.

In this case, the value of chi-square (df = 2), whose structuring (above)
was adapted to the current model, was found to be 2.73989 (p = .2548). Thus,
a reasonable fit to the group summary data emerged once more. The proposed
and competing models therefore performed similarly well at the group-
data level. Because of their Bayesian format, it was possible to carry the
competition of these models to the individual-participant domain of analysis.

Before embarking on this evaluation, however, we note that selected
observations on the present data representation of group performance, as
set against the corresponding model predictions, provide a certain slant on
these computations. According to the nature of the empirical data aggregates
according to the proposed model, the mean latency is tantamount to that
of a participant whose value of k' is m and whose value of v is (k - l)/r.
The latter is the modal value of a gamma-distributed;^)!1. Likewise, the
expected variance is tantamount to that of a participant whose value of k'
is m and whose value for v is [(k - l)(k - 2)]'/:/r. The competing model
would stipulate the same requirements for v, with a fixed value of m governing
variation in k' across trials, as described earlier.
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Predictions of Individual-Performance Data

Inferences about task performance obtained from group data now are
tailored to individuals as follows. The probability density of combinations
of k' and v, prescribed by the prior distributions of the group with which
an individual is identified, is combined with a sample of the individual's
encoding-latency data. This synthesis is accomplished using Bayes's theorem:

Pr(A|B) = Pr(AnB)/Pr(B) = Pr(A)Pr(B|A)/Pr(B). (5.11)

In the present application, Pr(A) corresponds to the prior probability (cur-
rently, probability density) of the parameter combination k',v. Recall that
the prior distribution of k' is Poisson, with its parameter m based on the
participant's group membership and encoding load condition, whereas the
prior distribution of v is gamma, with parameters r and k throughout (see
Figures 5.2 and 5.3). The term Pr(B|A) is the Bayes's likelihood function, or
conditional joint probability density of the sample of performance latencies,
given k' and v. Pr(B) is the unconditional joint probability density of the
performance sample, all combinations of k' and v considered.

In the present instance, a performance sample was taken as of four
encoding-latency values, each one being an average of four correct-response
encoding latencies obtained from the four concomitant-task loads. The
sample is denoted {tb t2, . . . , tN}, where in this case N = 4 and is written
{*} for short. This average-value format is in keeping with attenuation of
model-exogenous noise and the nature of Y and Z as defined in the overall
mixture model. One such sample was obtained for a control participant at
each level of encoding load, and the same was done for a paranoid schizophre-
nia participant. With these four latency samples, and the prior distributions
of k' and v in hand, we are poised to compute the individuals' Bayesian
posterior means and variances under the respective encoding loads.

The desired quantities are calculated as follows (computational specifics
and model-stipulated prepping of performance data are exposited in Neufeld
et al., 2002, p. 285 and Appendix A; for a general exposition on Bayesian
computations, see O'Hagan & Forster, 2004, chap. 6). First, the posterior
probability density function of t given {*} is obtained. To do so, the posterior
probability density of k' and v, given {*}, is multiplied against the probability
density of t, given k' and v, after which the product is integrated, and then
summed, across all combinations of v and k'. Denoting the posterior density
of t as /(t I {*})fc,r,m, the expected value of t" given {*}, or E(T" I {*})/<,r,m is avail-
able by integrating f(t I {*})fc,r,m tn from t = 0 to t = infinity. The posterior
mean is E(T"= ' I H^.J, and the posterior variance is E(T"= 21 {*})/„,„, -
[E(T"=' I {*})j<,r,m]2. These values, then, are the Bayesian individualized predic-
tions, which present themselves for testing against corresponding moments
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of the individual's full set of correct-response data.1 Analogous computations
accompany the competing model, above, against whose predictive efficacy,
that of the proposed model can be compared.

Predictions were tested using two versions of chi-square, each again
fashioned according to Equation 5.5. The first, with the degrees of freedom
equaling the total number of correct trials for the individual under the
encoding-load condition, was formed as follows:

q(Mhtency, observed - E(T|{*air,m)2/Var(T|{*})k,r,m (5.12)

\^ / \ A \ 2 A 7 ^T1! f *i* ~\ \
'-' \X-latency i ~ ^-latency, observed) IVdT\ I || j)k,r,m-

The other, with df = 2, was

^(Mlatency, observed ~ E(T I {*})(c,r,m)2/Var(T I {*})k,r,m (5.13)

+ (V^nc,, ohsemd - Var(T I {*})k,r,m)2/[2 (Var(T I {*})kjiJ
2/q}.

In these cases, q is the number of correct responses out of 32 for the current
individual (values are 29, 28, 32, and 30 for the control participant under
the lower encoding load through the paranoid schizophrenia participant
under the higher encoding load). Note that the lack of any between-
participants term reflects that both predictions and data now were partici-
pant specific.

The maximum-likelihood calculation of variance (i.e., using division
by q, rather than q - 1; see Evans et al., 2000), stands to generate a
slight positive bias disfavoring model acceptance all things considered. Also,
assumption of normality undoubtedly is violated when it comes the individ-
ual observations in the l-to-q summation of Equation 5.12 and the second
denominator of Equation 5.13. The proposed and competing models, how-
ever, did vie head to head on the same (albeit inexact) testing platform.

Moreover, results (presented below) either were markedly inside or
outside the proffered distribution. Other options, such as assumption-
accommodating transformations, are decidedly contraindicated, in part be-
cause of the compromised interpretation of model-predicted latency.

Finally, by way of qualification, in each instance degrees of freedom
are not attenuated from those corresponding to the full set of predicted
observations; that is, degrees of freedom were not adjusted for incomplete
separation of model predictions and observed data. The degrees of freedom
nevertheless were left intact to facilitate computational exposition and
illustration of Bayesian-enhanced predictive accuracy. Predicted individual

1 Not surprisingly, these values are found to be close to those obtained from an Erlang-based
distribution whose parameters k' and v are set according to E(k' I j*])t l i tn and E(v I (*))twll (see Neufeld
et al., 2002, Appendix A).
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data were subsets of the data from the individual's group that provided
parameter estimates of the Bayesian priors (albeit subsets comprising trivial
proportions of the group data) and from which the person's performance
sample was extracted. Note that the ideal prediction setup comprising inde-
pendence among these data sets would be realized, for example, in the
following alternate and realistic scenario: First, a client providing a sample
of empirical latencies is not a member of an earlier prior-supplying group;
second, allowing that model performance at the individual level is being
predicted, the individual's predicted data could be arranged to exclude his
or her performance specimen itself.

This said, the above chi-square tests on the Bayesian predictions are
considered. Table 5.2 presents the latency samples for the control partici-
pants and paranoid schizophrenia participants, performing under the lower
and higher encoding-load conditions; the empirical observations from indi-
viduals' larger data sets; predictions of the latter by proposed and competing
models; and the respective chi-square tests of fit. For the proposed model,
values of the test statistic stated in Equation 5.12 invariably were less than
the expected value for a chi-square distribution, or its degrees of freedom,
which in this case is q. In addition, two of the four tests associated with
Equation 5.13 were nonsignificant. For the competing model, one test was
significant using Equation 5.12, and two were very highly significant by
Equation 5.13.

Recall that independent chi-squares can be added together and tested
using the sum of their respective degrees of freedom. Each sum of the chi-
square values for a pair of control and paranoid schizophrenia participants,
obtained separately for each encoding load, therefore was tested with the
pair's total degrees of freedom. Tested were both the proposed and competing
models, using both Equations 5.12 and 5.13. Thus, for each model four chi-
square summations were available.

Using Equation 5.12, resulting chi-squares for the proposed model
under the lower and higher encoding loads, with 61 and 58 degrees of
freedom, respectively, were 37.122, p = .999, and 42.45, p =.937. Correspond-
ing values using Equation 5.13, with 4 degrees of freedom in each instance,
were 27.84, p -» 0, and 7.031 (p = .134).

In the case of the competing model, %2(df =61) using Equation 5.12
for the lower encoding load was 56.52, p = .639, and for the higher encoding
load, %2(4f = 58) was 96.616, p = .001. Using Equation 5.13 and 4 degrees
of freedom, corresponding values were 20.21, p = .0004, and 39.311, p —> 0.
Thus, one of these four tests on the proposed model was significant, but
three of the four on the competing model were significant.

On balance, the proposed model performed discernably better at the
individual-participant level than the competing model. Such competition
of course could be extended to the remaining participants, and indeed new
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participants for whom the present priors are tenable (Neufeld et al., 2002,
p. 294; see also description of desirable data sources and partitioning, above).

A chief point to be made is that individualized Bayesian-posterior
predictions not only mediate group-level findings to individual participants
but also harbor a potentially useful contribution to the methodology of
model selection. As instantiated here, the proposed model tendering a
combination of v and k' per participant is tenable and competitive.

Note that prior distributions in principle inform predictions about
individual performance augmenting that of the performance sample itself.
Referring a performance sample to the pertinent priors is analogous to the
medical laboratory practice of bringing the larger body of hematological
diagnostic knowledge to bear on a modest blood serum specimen. If prior-
parameter distributions enlighten predictions about the individual's func-
tioning then, compared with predictions that ignore the priors, those
embracing them should be more accurate about the broader picture of the
person's performance.

Accordingly, the same observations subjected to Bayesian posterior
predictions, enumerated in Table 5.2, were subjected to predictions based on
classical parameter estimates. Such estimates are derived from the respective
performance samples and make no reference to the prior parameter distribu-
tions of the group to which the individual belongs. We used the method
of moment matching (see Evans et al., 2000) to estimate k' and v for individual
data in each of the 2x2 factorial combinations (adjusted for movement
time and estimates of Y and Z of the proposed model). Predictions were
submitted to tests corresponding to Equations 5.12 and 5.13. Now each of
the eight calculations indicated the predictions were well wide of the mark;
ps ranged from .035 to .428(10~12), with the average being .007.

To be sure, sample sizes were very small, but no more so than those
entered into the Bayesian posterior predictions. In the latter case, the prior
distributions evidently exercised their correcting influence on the predictions
of individual task transaction, through their involvement in Bayes's theorem.

A phenomenon at work in the above influence is known as shrinkage
(e.g., O'Hagan & Forster, 2004). Specifically, classical parameter estimates
gravitate toward the mean of their prior distribution (see Neufeld et al.,
2002, Equation A6). Its operation is exemplified with respect to parameter
v. The four classical estimates averaged 16.294, with a variance of 18.193.
If error of estimation was assuaged via incorporation of the priors (as attested
by the pattern of empirical fit tests), then the posterior estimates of v,
E(v \ {*})k,r,m should be "attracted" to their prior's mean k/r = 2.796. Such
obviously was the case, as in each of the four instances the posterior estimate
of v was 3.0. The current instance therefore supplies a rather stark example
of the grounding effects conveyed by prior-lodged information.
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On balance, because they bring to bear information about person-
specific performance additional to that lodged in the obtained performance
specimen (see, e.g., Neufeld et al., 2002, Equations A6 and A7 and the
final mathematical Appendix equation), Bayesian posterior predictions fare
considerably better than do classical method predictions. In their present
application, the former nevertheless leave room for improvement. Such
improvement may be attained through the use of larger performance samples
(for more on the interplay of distributional properties and sample size in
determining the posterior dispersion of base distribution parameter values,
see chap. 2, this volume).

DISCUSSION

Overview

The foregoing developments comprise a formal dissection of spared
and affected functions in targeted portions of a memory/visual search task.
Presentation of the task's probe item was lateralized according to hemifield
specialization for probe item processing. Focus was on a specific process,
and form of deficit in that process. The targeted process comprised encoding
of the presented probe into a cognitive format, facilitating collateral pro-
cesses, including memory scanning and comparison. The specific parametric
source of encoding elongation characterizing schizophrenia participants con-
sisted of additional constituent operations, or subprocesses.

The tenability of this theoretical agent of performance deficit has cut
across analytical (stochastic-mathematical, as illustrated here in the analysis
of groupwise performance differences) and connectionist (simulational, com-
putational; Carter & Neufeld, 2006) levels of modeling and has found
support from diverse cognitive—behavioral and cognitive neurophysiological
studies (Boksman et al., 2005; Carter & Neufeld, 1999; Neufeld & William-
son, 1996). The present developments extend the tenability of this source
of deficit to the individual level of analysis. Symptom significance, with
respect to thought-content disorder, and significance with respect to stress-
negotiation deficit, in turn, have been drawn out elsewhere (Neufeld, 2005;
Neufeld et al., 1993; Neufeld & Williamson, 1996).

Competing versions of this form of deficit were similarly viable when
evaluated at the group level of analysis. However, when tested on a selection
of individual-performance data, the model positing individual differences
in the pair of parameters tenably governing individual performance-latency
distributions was at least marginally superior to one restricting individual
differences to only one of the parameters. Thus, support for the favored
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model went beyond the "aesthetic appeal" of each participant having his
or her own set of parameter values.

Finally, the computations surrounding the present source of schizophre-
nia deviation illustrate an additional test for model selection. This option
involves coherence of model performance at group and individual levels of
prediction. It adds to the existing arsenal of Bayesian model selection and
testing (cf. Karabatsos, 2006; Rubin, 1984; Wagenmakers, Ratcliff, Gomez,
& Iverson, 2004) while taking account of clinical constraints on magnitude
of cognitive performance specimens.

Elongated Encoding and Cognitive Capacity

The present modeled account of schizophrenia deviation points to a
particular version of compromised cognitive performance capacity as follows.
Axiomatically principled quantification of processing capacity, a very promi-
nent construct in clinical science, is detailed in chap. 7, this volume. The
capacity index (CI), described there, taps the amount of work done over
an interval t. If sheer amount of work were identified with dispatching of
encoding subprocesses, then schizophrenia and control participants would
be comparable. Specifically, CI is affected by sources labeled statistical advan-
tage and capacity limitation (specified in chap. 7, this volume). Scrutiny of
the present account of protracted encoding contraindicates the involvement
of either of these sources. The value of CI nevertheless is diminished.

The value of CI is computed as — ln[S(t)], or minus one times the
natural logarithm of the survivor function of the process under consideration.
The survivor function S(t) is the integral of the probability density function
of process completion, taken from t to infinity. For the mixture model
adopted here, the survivor function of the encoding process, all combinations
of v and k' considered is

[mk7fc'!exp(-m)] [ £ (F( j + k)t> • rk)/(jir(k)(r + tV + fc)]. (5.14)
Ic' = 0 j = 0

Inspection reveals that, other things being equal (notably, r and k), values
will increase with the current model's schizophrenia-related increase in m,
as follows. Considering the first square-bracketed term, the probability of
higher amounts of k' go up with m; considering the second square-bracketed
term, the summation obviously increases with k'. With higher probabilities
and higher summations, the sum of the cross-products of the square-bracketed
terms obviously increases. Because S(t) increases, ln[S(t)] will increase, and
-ln[S(t)] = CI will decrease, as m goes up.

The current decrease in CI, then, is attributable not to a reduction
in cognitive work capable of being done but the amount necessary to be

170 NEUFELD ET AL.



carried out to complete the encoding process. By this account, statistical
advantage does not come into play (cf. chap. 7, this volume); neither
are schizophrenia participants afflicted with diminished channel capacity,
meaning a reduced rate of dispatching encoding subprocesses. Instead, pre-
sentation of the probe item is met with an endogenous increase in processing
load, entailing the unleashing of additional constituent encoding operations
(cf. Neufeld et al., 2002, footnote 4).

These observations point up the advantage of operationalizing cogni-
tive capacity in quantitatively rigorous terms. Doing so indicates the need
to pin down what is meant by capacity decline in psychopathology, as there
potentially are several sources, any one or combination of which can issue
in a diminution of CI.

Cognitive-Behavioral Correlates of Additional Encoding Subprocesses g

The precise cognitive-behavioral mechanisms behind an elevation in
encoding subprocesses g > 0 remain to be determined. This state of knowledge
is not an indictment of the present quantitative formulation. There is, after
all, much in the way of accepted scientific precedent for mathematical
necessity to precede identification of associated mechanisms (see, e.g.,
Braithwaite, 1968; Gleick, 2003; Kline, 1985; Penrose, 2004; Thorne, 1994).
Moreover, as described at the outset of the Discussion section, the present
quantitative formulation comes through whether attacks on the problem
are sprung from analytical-mathematical or algorithmic—mathematical foun-
dations. Selected cognitive-behavioral correlates of encoding elongation
nevertheless present themselves as instantiating candidates of g > 0.

One such candidate consists of enhanced priming or "ramping up"
of the processing system, which may involve orienting or other activities
preliminary to engagement of encoding proper (Russell 6k Knight, 1977).
Another is a reduced cognizance of previous informational transactions.
This tendency can be termed novelty excess. It comprises failure to tag as
"completed" previously transacted encoding subprocesses (cf. Hemsley, 1993,
1994), or a failure to store or recognize redundancy properties of component
encoding operations (Steffy 6k Galbraith, 1980; Steffy 6k Waldman, 1993).
In each case, the penalty is inefficient repetition of previous processing,
potentially issuing in g > 0.

A further possibility relates to apparent negative-priming deficit (e.g.,
MacQueen, Tipper, Galway, & Goldberg, 2003 ).2 It is made up of a reduction

!Thanks are extended to ]. M. G. Williams for drawing Richard W. J. Neufeld's attention to this
possibility.
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in the usual tendency to inhibit distractors in the service of selective atten-
tion to target stimuli. This deficit could fit into the present context, not in
terms of a failure to detect previousness but as a failure to edit it out.3

Again, the present quantitative formulation tenably antedates pin-
pointing the responsible cognitive-behavioral mechanism(s) and their asso-
ciated neurocircuitry. It does nevertheless recruit the above and, possibly,
other qualifying candidates.

Exigencies of Application

Advantages of appropriating the information conveyed by prior distri-
butions to individual cognitive assessment are contingent on requisite stabil-
ity of the specific prior-distribution parameters that are brought to bear.
Acceptable stability requires a correspondingly sufficient corpus of data,
which, as often as not, involves aggregation across similarly performing
participants. The resulting prior distributions that are formed then may be
integrated with a performance sample from a subsequent individual tenably
belonging to the class of those to whom the prior distributions apply.

Aggregation of data submitted to prior-distribution mixture modeling
brings into play the issue of acceptable homogeneity of that which is aggre-
gated (see the Distribution of Aggregate Data section). Note that an oft-
used technique in cognitive psychology for inducing data stability involves
the running of participants through multiple multitrial sessions. This strategy
of course has its limitations when participants are distressed and/or perform
under stressing conditions. It also encounters its own potential problems
of intersession heterogeneity of aggregated data. Apropos of the present
exigencies, various tacks to addressing the issue of participantwise aggrega-
tion are available and have been reviewed and discussed by Carter, Neufeld,
and Benn (1998; see also Neufeld & Gardner, 1990). They are taken up
further in the Introduction to this volume.

The establishment of Bayesian priors can be challenging; they require
stability-endowing data ensembles and the surmounting of barriers to valid
assembly. Payoff, however, can be substantial. It can take the form of requir-
ing only modest performance samples from subsequently assessed individuals.
Such advantage is seen in the exemplary comparison between Bayesian
posterior, and classical predictions, above—results that by dint of mathemat-
ical necessity are generally emblematic of improved accuracy conveyed by
valid Bayesian priors.

'It currently is indeterminate whether extra subprocesses, g > 0, may be consequential to, or at the
root of, these proffered cognitive-behavioral mechanisms. Mathematical exploration of negative-
priming deficits reveals that the associated pattern of control-schizophrenia differences in principle
can be explained by a Poisson mechanism incorporating schizophrenia-specific additional encoding
subprocesses.
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Bayesian posterior depictions of individual performance, as computed
in this presentation, moreover can be embellished with plots of individualized
posterior probability density and distribution functions (see detailed illustra-
tions in Neufeld et al., 2002). Such stochastic dynamical trajectories, in
turn, stand to be useful in assessing the time course of targeted functions
for neurophysiological studies, such as those involving functional magnetic
resonance imaging (Neufeld, in press; Neufeld et al., 2002).

Extensions

Selected extensions of the present developments unveil additional
potentially important avenues of formally grounded cognitive assessment.
Included are methods for monitoring an individual's treatment response
over a course of intervention. Also provided are similarly dynamic strategies
for evaluating the efficacy of a treatment regimen across participants at
large. The computational techniques use formulations similar to those used
here, conjoint with an extension to finite probability mixtures of priors
(Neufeld, 2006; for background on such hierarchical mixtures, see, e.g.,
O'Hagan & Forster, 2004). Architectural and computational specifics of
these models exceed the mandate and length of the present treatment;
however, readers may access the requisite details in Neufeld (in press).

A different sort of extension pertains to substantive inferences of the
current representation of encoding debility. It bears on stress-negotiation
deficit in psychopathology. The emphasis is placed on cognition-intensive
coping (Kukde & Neufeld, 1994; Morrison, Neufeld, & Lefebvre, 1988;
Neufeld, 1999). Such forms of coping, and the efficiency in cognitive func-
tions they implicate, can be set into terms of a nonlinear dynamical system
(in the popular vernacular, a chaos-theoretic system), incorporating stress,
coping, and related variables (specifics are available in Neufeld, 1999; see
also Levy, Neufeld, & Yao, 2003; Yao, Yu, Essex, & Davison, 2006). This
extension makes for a formal systems platform to explore the nature of
cognition-related stress vulnerability in psychopathology.

CONCLUSION

In this chapter, we have applied a stochastic mixture model to a specific
form of stimulus encoding in schizophrenia, thereby providing for individual
differences in expression of the same basic dysfunction. The application
ushers in Bayesian-based techniques of individual assessment as well as
a method of competing model selection based on consistency of model
performance at group and individual levels of testing.
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Establishment of the quantitative infrastructure, notably Bayesian
priors, may be methodologically demanding. However, once in place, returns
can be substantial. In principle, and as demonstrated in the developments
presented here, precision of assessment of incoming participants can be
sharpened with much less taxation in the way of sampled cognitive perfor-
mance than that of classical methodology.

In general, quantitative constraints tend to make plain prevailing
limitations and uncertainties in a problem area but also provide clues as to
directions for redress. Quantitative formulations, moreover, expedite progress
by making previous efforts self-evident because of the explicitness such
formulations enforce. Thus, blind alleys are exposed, countering wasteful
recapitulation. These assets of quantification have been harnessed here by
interlacing a delineated form of cognitive psychopathology with adaptations
and extensions of contemporary formal cognitive science.
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6
CLINICAL COGNITIVE SCIENCE:

APPLYING QUANTITATIVE MODELS
OF COGNITIVE PROCESSING

TO EXAMINE COGNITIVE ASPECTS
OF PSYCHOPATHOLOGY

TERESA A. TREAT, RICHARD M. McFALL, RICHARD J. VIKEN,
JOHN K. KRUSCHKE, ROBERT M. NOSOFSKY, AND SHIRLEY S. WANG

Numerous theoretical approaches implicate a role for altered cognitive
processing in the development, maintenance, and treatment of a wide range
of clinically relevant behaviors. Clinical scientists have been slow, however,
to capitalize on the wealth of contemporary theoretical, measurement, and
analytical models of cognitive processing when constructing, evaluating,
and extending these theoretical approaches to psychopathology (MacLeod,
1993; McFall & Townsend, 1998; McFall, Treat, & Viken, 1998). To date,
the translation of cognitive science models to clinical science has occurred
primarily at the measurement or task level, leading to an impoverished
understanding and utilization of the multifaceted complexity of the relevant
theoretical constructs, such as attention, classification, memory, and learn-
ing. As a result, clinical scientists have tended to collapse, or ignore the
distinctions between, theoretical and measurement models of cognitive
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processes and to reify cognitive tasks as the theoretical constructs themselves
(e.g., the emotional Stroop and dot-probe paradigms often are assumed to
"be" attention and are pulled off the shelf whenever researchers need a
measure of attention). Clinical scientists' failure to translate many of cog-
nitive scientists' theoretically grounded analytical models also slows the
advancement of clinical cognitive science. Fitting formal analytical models,
or process models, not only forces clinical researchers to quantify and evalu-
ate rigorously their theoretical assumptions about the operation of the cogni-
tive processes of interest but also enhances their understanding of the
mechanisms hypothesized to underlie variation in observed performance on
cognitive-processing tasks.

The overarching aims of this chapter are to introduce a unified class
of theoretical, measurement, and analytical models that can be used to
examine research questions about clinically relevant cognitive processing
and to illustrate the generalizability and applicability of these cognitive
science models to more real-world research questions. This well-established
class of models treats participants' perceptual organizations of stimuli as a
primitive on which other processes—such as classification, memory, and
learning—operate (for evidence of the validity of these models, see Kruschke,
1992; Kruschke & Johansen, 1999; Nosofsky, 1991, 1992a, 1992b). Formal
process models specify mathematically the theorized links among these
interrelated processes and afford rigorous examination of the mechanisms
underlying task performance. Thus, this approach not only accounts simulta-
neously for the operation of multiple cognitive processes but also specifies
well-integrated theoretical, measurement, and analytical models of these
processes.

To examine the feasibility and utility of using tKis clinical cognitive
approach, we deliberately have examined it in parallel across multiple areas
of psychopathology, with a primary focus on problematic eating patterns and
sexually aggressive behaviors. Theoretical approaches within both domains
increasingly have focused on the role of information-processing patterns in
the etiology and maintenance of these behaviors and in the development
of prevention and intervention strategies (e.g., McFall, 1990; Schewe &
O'Donohue, 1993; Vitousek, 1996; Ward, Hudson, Johnston, & Marshall,
1997; Wilson, 1999). In this chapter, we focus on the use of cognitive
science methods to characterize individual differences in men's processing
of women's facial affect and physical appearance, with implications for our
understanding of sexual aggression, and individual differences in women's
processing of other women's facial affect and body size, with implications
for our understanding of eating disorders. We open this chapter with a
section on stimulus-construction issues, given their centrality to the utility
and validity of the approach.
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STIMULUS SET DEVELOPMENT

Cognitive scientists commonly rely on simple, artificial stimulus sets
that vary along a finite number of readily identifiable dimensions that are
perceived in a relatively uniform fashion across participants (e.g., rectangles
that vary in height and width, or color patches that vary in hue and
saturation). These well-controlled and decontextualized stimulus sets facili-
tate investigation of cognitive scientists' research questions about process
models of normative information processing. Clinical scientists, in contrast,
more commonly are interested in characterizing individual differences in
the processing of much more complex, socially relevant stimuli that vary
along numerous dimensions. As a result, the development of an appropriate
stimulus set is a critical and time-consuming process for clinical researchers.

Stimulus development begins by specifying explicitly a small number
of dimensions of theoretical interest. In our experience, the incorporation
of more than three or four systematically manipulated dimensions in a
stimulus set becomes unwieldy, given the need to include multiple stimuli
per dimension. Within the domain of eating disorders, for example, we
have sought to evaluate questions about individual differences in women's
processing of information about other women's body size and facial affect
(Viken, Treat, Nosofky, McFall, & Palmeri, 2002). The stimulus set ideally
should include both dimensions that are predicted to draw more attention
from the clinical population of interest and dimensions that are predicted
to draw equal or less attention from the clinical population. This strategy
facilitates the examination of alternative explanations that are plausible
but less theoretically interesting. For example, demonstrating that high-
symptom women, relative to low-symptom women, attend both significantly
more to body size and significantly less to facial affect is inconsistent with
group differences in intelligence, motivation, level of perfectionism, and so
on. Our use of formal process models to evaluate our hypotheses also facili-
tates the rigorous evaluation of competing models (cf. Knight & Silverstein,
2001; Neufeld, Vollick, Carter, Boksman, & Jette, 2002).

The second step in stimulus development entails selection of an appro-
priate presentation medium. To date, we have relied primarily on photo
stimulus sets, but alternatives include words or phrases describing objects
or people, situations described in brief vignettes, audio or video clips of
interpersonal interactions, and combinations of these possibilities (e.g., pres-
enting photos with accompanying short text). The potential media vary in
terms of the extent to which they provide ecologically valid representation
of relevant stimulus features and the extent to which they afford control
of irrelevant stimulus features. Ideally, the selected medium allows research-
ers to maximize variability along the dimensions of primary theoretical
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interest in an ecologically valid fashion and to minimize or eliminate variabil-
ity along theoretically irrelevant dimensions.

Next, researchers develop a large potential stimulus pool that incorpo-
rates sufficient and representative variability along the dimensions of primary
theoretical interest and minimizes or eliminates variability along unimport-
ant dimensions. Thus, when developing the photo stimulus set for our
eating-disorders research program, we photographed numerous college-age
volunteers as they displayed happy, neutral, and sad facial expressions.
The naturally occurring variability in body size among models was less
pronounced than we had hoped, so we digitally altered the photographs to
increase variability along this dimension. Variability in other aspects of
appearance was of less interest theoretically but likely to draw attention,
so we asked all volunteers to wear similar outfits, to remove makeup, and
to pull their hair back from their faces. Photographs also were taken in
front of a fixed background and under standard lighting conditions, in
an effort to eliminate variability along these theoretically uninteresting
dimensions.

The fourth step in stimulus development involves the collection of
normative data along dimensions of potential relevance to participants'
processing of the stimulus set and the selection of a preliminary stimulus
set. Thus, we asked a sample of undergraduate women to make explicit
ratings of the models' body size, facial affect, attractiveness, friendliness, and
self-esteem along 10-point scales. The average ratings on these dimensions
provided normative values for the stimuli along the body-size and affect
dimensions. When selecting a subset of the stimuli for use in cognitive-
processing studies, we retained only one photo per model and endeavored
to include sufficient and representative variability both along and across
the two theoretical dimensions of greatest interest to us (i.e., we included
women in each of the four quadrants of the desired two-dimensional stimulus
space). We also selected stimuli that minimized the correlation between
the normative ratings of the two dimensions, because we were interested
in characterizing the processing of the two dimensions as independently
as possible.

The final step necessitates conducting a multidimensional scaling
(MDS) study to evaluate four things: (a) whether the population of interest
attends to the dimensions of theoretical interest when processing the stimuli
(i.e., whether the psychological dimensions correspond to the physical di-
mensions); (b) whether participants attend too much to irrelevant dimen-
sions, necessitating a retooling of the stimulus set; (c) whether the two
dimensions are perceived relatively independently; and (d) whether individ-
ual differences in attention to the dimensions emerge. In the next section,
we describe this process.
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Overall, the stimulus development process aims to construct a set of
stimuli that both represents the real-world variability along the dimensions
of greatest theoretical interest and controls or constrains the real-world
variability along the dimensions of least theoretical interest. This frequently
necessitates construction of a stimulus set from scratch, because preexisting
stimuli often fail to meet these criteria. In our experience, this process is
time consuming but invaluable, because the validity and precision of all
inferences about attention to, classification of, memory for, and learning
about the theoretical dimensions of interest depend to a significant extent
on the adequacy of the stimulus set.

PERCEPTUAL ORGANIZATION

Perceptual organization (PO) refers to the representation and organiza-
tion of incoming stimuli in terms of their perceived similarity and dissimilar-
ity. Numerous theoretical perspectives in clinical psychology are consistent
with the perspective that psychopathology is determined or maintained
partly by features of participants' POs, such as attention to stimulus dimen-
sions, the perceived association between stimulus dimensions, and the orga-
nization of stimulus dimensions as discrete versus continuous (e.g., Beck,
1976; Kelly, 1955). The class of cognitive models of interest in this chapter
treats participants' POs as representational bases for the operation of other
higher order cognitive processes, such as classification, memory, and learning
(Kruschke, 1992; Kruschke & Johansen, 1999; Nosofsky, 1991, 1992a,
1992b). For example, the process models outlined in subsequent sections
predict that participants (a) should classify a presented stimulus into a
category containing the most similar members, (b) should recognize a pre-
sented stimulus as previously viewed when it is highly similar to previously
stored stimuli, and (c) should learn a category structure based on a particular
stimulus feature more quickly when stimuli in different categories are per-
ceived to be very dissimilar and stimuli in the same category are perceived
to be very similar.

PO frequently is assessed using a similarity-rating paradigm, in which
participants judge the similarity of pairs of stimuli on a scale anchored by
very different and very similar. Participants are told that there are no right
or wrong answers and usually are encouraged to respond quickly with their
first impression rather than to deliberate extensively about their decisions.
This task provides a relatively implicit assessment of participants' POs,
because it neither specifies the stimulus attributes of interest nor directs
participants to attend to particular stimulus attributes. In an alternative
paradigm, participants judge as quickly as possible whether presented pairs
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of stimuli are the same or different; in this case, either participants' judgments
or their reaction times can be submitted for subsequent analysis (Nosofsky,
1992b). Given the distinctiveness and complexity of the stimuli of interest
to clinical researchers, this latter paradigm may prove to be less useful in
applied contexts.

MDS analyses of participants' similarity ratings provide a spatial repre-
sentation of participants' PO or psychological space, in which the perceived
similarity between two stimuli, 8^ is modeled as a decreasing function of
the distance, dtj, between the perceived values of two stimuli, x, and x,
(Davison, 1992; Treat et al., 2002). Thus, two stimuli that are judged to
be very similar are scaled much closer in the psychological space than two
stimuli that are judged to be very dissimilar (see Figure 6.1). The upper
left-hand panel of Figure 6.1 presents the group psychological space of 24
photo stimuli that portray women who vary along facial-affect and body-
size dimensions. Stimuli A and B, which were judged to be very similar,
are scaled close together. In contrast, both stimuli are judged to be very
dissimilar to stimulus C, which is scaled far away from stimuli A and B.

Metric scaling approaches assume that the function relating similarity
and distance decreases linearly, whereas less restrictive nonmetric approaches
assume only that this function decreases monotonically. Distances typically
are computed using a Euclidean metric (i.e., r = 2 in Equation 6.1) when
the M stimulus dimensions are processed more holistically, or integrally. In
contrast, a city-block metric (i.e., r = 1) is assumed when the M stimulus
dimensions are perceived more distinctively or separably (Nosofsky & Palm-
eri, 1996; Shepard, 1964). In our experience, the correct metric for the
more complex, ecologically valid stimulus sets of interest to clinical research-
ers often lies between these two extremes. Thus, it may prove useful for
researchers to estimate this parameter rather than fixing it at either 1 .0 or 2.0:

r M

= l
Lm = 1

In the weighted MDS (WMDS) model, which also is known as the
individual differences scaling (INDSCAL) model, individual differences in the
k participants' similarity ratings, 5^, are modeled as a decreasing function
of interstimulus distances, dijk (Carroll & Chang, 1970). These distances vary
as a function of individual differences in the participant-specific weighting of
the M stimulus dimensions, <wmk, as specified in Equation 6.2:

,- M -jl/r

= X Wrnk(xim ~ XjmY\ . (6.2)
Urn = 1 J
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Conceptually, these attention weights stretch and shrink the M dimen-
sions of the group psychological space. The psychological space of a partici-
pant who attends much more to body size than to facial affect is presented
in the lower left-hand panel of Figure 6.1. The large attention weight for
body size increases the distance between the heavier and lighter photo
stimuli, which reflects this participant's perception that heavier and lighter
stimuli are very dissimilar to one another. In contrast, the small attention
weight for affect shrinks the distance between the happier and sadder stimuli,
consistent with the participant's judgment that happier and sadder stimuli
are not particularly dissimilar. A particularly nice feature of the WMDS
model is its simultaneous representation of both group- and participant-
specific aspects of PO: Both the dimensions spanning the psychological
space and the organization of the stimuli within each dimension are assumed
to be shared by participants, whereas the relative attention to or importance
of each dimension is allowed to vary across participants.

We have used the WMDS model to test hypotheses about clinically
relevant individual differences in dimensional attention (Treat, McFall,
Viken, & Kruschke, 2001, 2006; Viken et al., 2002; for an alternative
approach to the evaluation of dimensional attention, cf. chap. 4, this vol-
ume). Within the realm of eating disorders, we have demonstrated that
undergraduate women who report clinically significant symptoms of bulimia
nervosa, compared with undergraduate women who report no bulimic symp-
toms, exhibit relatively greater attention to other women's body size than
to their facial affect. Within the realm of sexual aggression, we have found
that undergraduate men who display relatively greater attention to women's
physical exposure (i.e., the extent to which the woman's clothing is reveal-
ing) than to women's facial affect (i.e., sad vs. happy) also construe the
continuation of sexual advances toward an uninterested woman as more
justifiable than men who attend relatively more to women's affect than
exposure.

The WMDS model of participants' POs assumes that all participants
organize the information within the dimensions to which they attend in
the same way. Alternative MDS models of participants' POs, however,
could be used to evaluate hypotheses about clinically relevant individual
differences in the organization of stimuli within a dimension. For example,
women who report eating-disorder symptoms might represent body-size infor-
mation in a more discrete fashion as heavy or light, whereas control partici-
pants might perceive body size as varying more continuously. Evaluating
this kind of research question typically would entail comparing the estimates
of stimulus coordinates across individual-specific MDS solutions. Individual-
specific MDS models estimate far more parameters than the WMDS model
from the same amount of data, however. The resulting parameter estimates,
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therefore, likely will be very imprecise at the individual-participant level
unless each participant provides more than one set of similarity ratings.
Fortunately, Lee and Pope (2003) recently proposed a promising Bayesian
model-fitting strategy that addresses these difficulties when analyzing all
participants' data simultaneously by identifying subgroups of participants
who share similar spatial representations of the stimuli and then estimating
a separate MDS solution for each subgroup.

The WMDS model also assumes that participants perceive the stimulus
dimensions to be uncorrelated (e.g., perception of body size is unrelated to
perception of facial affect). A generalization of the WMDS model relaxes
this constraint and allows investigators to characterize simultaneously both
individual differences in dimensional attention and individual differences
in the perceived correlation between dimensions (Tucker, 1972). It might
be of interest, for example, to evaluate whether women with eating disorders,
relative to control participants, perceive a stronger negative correlation
between body size and affect, such that heavier women are perceived to be
less happy and lighter women are perceived to be more happy. The same
model could be used to evaluate whether sexually aggressive men perceive
a stronger positive correlation between women's sexual interest and the
provocativeness of women's dress than do control participants, whereby
more provocatively dressed women are perceived to be more sexually inter-
ested and less provocatively dressed women are perceived to be less sexu-
ally interested.

All of the MDS models discussed to this point can be characterized
as deterministic, because they model the location of stimuli in participants'
psychological space as a single fixed point (i.e., stimulus values are assumed
to be the same across trials). In contrast, probabilistic scaling approaches
assume that the perceived value of the stimuli in psychological space fluctu-
ates from trial to trial and represent stimulus locations as a multivariate
normal distribution of values. MacKay and colleagues (MacKay & Zinnes,
1986; Zinnes & MacKay, 1992) have demonstrated that deterministic
methods recover systematically biased estimates of stimulus coordinates
whenever stimulus values are perceived variably, either across or within
persons, and whenever stimuli are highly confusable. Under these circum-
stances, deterministic models tend to provide more extreme estimates of
stimulus coordinates, such that high-variability stimuli are scaled toward
the exterior of the psychological space (Zinnes & MacKay, 1992). Treat
et al. (2002) demonstrated the potential incremental utility of probabilistic
methods under more clinically relevant conditions by juxtaposing determin-
istic and probabilistic solutions for men's perceptual organizations of women
after the men had consumed and absorbed either an alcoholic or a placebo
beverage. Deterministic and probabilistic solutions differed markedly for
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men in the alcohol condition, in particular, as would be expected given
the greater perceptual variability presumably induced by alcohol consump-
tion. In particular, dimensions were more difficult to interpret in the deter-
ministic solutions, and the estimated configurations were characterized by
a large empty space in the interior of the scaling solutions. Additionally,
perceptual variability was significantly greater in the alcohol condition than
in the placebo condition, and estimates of perceptual variability for each
stimulus along the dimensions of "appeal" and "provocativeness" varied in
a predictable fashion (e.g., seminude women were perceived homogeneously
along the provocativeness dimension but heterogeneously along the appeal
dimension).

Probabilistic MDS methods show clear incremental utility for mapping
participants' psychological spaces whenever marked inter- or intraindividual
perceptual variability either is assumed to be present or is of particular
theoretical interest. These methods not only provide increased confidence
in the accuracy of the estimated stimulus configuration but also estimate
the magnitude of inter- or intraindividual perceptual variability, which
also may interest clinical researchers. Additionally, probabilistic approaches
allow much more statistically rigorous hypothesis testing about the ideal
dimensionality for scaling solutions and the equivalence of stimulus coor-
dinates or variances than typically is possible when using deterministic
methods (Zinnes & MacKay, 1992). The greater complexity of probabilistic
models, however, places greater demands on the similarity-ratings data. As
a result, currently available versions of probabilistic scaling methods do not
estimate individual differences parameters, such as dimensional attention
weights or interdimensional correlations. Additionally, replicated ratings
are necessary for precise parameter estimation in individual-specific analyses.

In the subsequent sections of this chapter, we introduce a class of
theoretical, measurement, and analytical models developed by cognitive
scientists to account for classification, memory, and learning processes. These
models account simultaneously for the operation of very different processes
partly by positing a shared spatial representation of participants' perceptual
organizations (Nosofsky, 1992b). Thus, using similarity-scaling models to
map participants' psychological spaces not only allows clinical researchers
to evaluate clinically relevant questions about participants' POs but also sets
the stage for theoretically coherent and analytically rigorous investigations of
research questions about other higher order cognitive processes.

IMPLICIT CLASSIFICATION

Implicit classification refers to the placement of stimuli into categories
without experimenter instruction as to the stimulus characteristics on which
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to base classifications or feedback about the accuracy of classifications.
Whereas identification entails the assignment of a different category label
to each stimulus, classification involves the assignment of the same category
label to multiple stimuli. Thus, classification involves treating different
stimuli within the psychological space as functionally equivalent. When
women are classified as "heavy" or "light," for example, the variation in
body size that occurs within each category is ignored.

Individual differences in the basis for implicit classifications should be
of interest to clinical researchers, because different behavioral responses to
stimuli may be secondary to variation in partitioning of the psychological
space. In a current ongoing study, for example, college-age men have classi-
fied undergraduate women depicted in photos as "likely to be responsive to
sexual advances" or "not likely to be responsive to sexual advances." The
women in the photos have varied orthogonally along two dimensions that
may be relevant to men's classifications: (a) the provocativeness of the
woman's clothing and (b) the woman's affect (i.e., the extent to which she
is communicating strong sexual interest or strong sexual disinterest by means
of her facial expression or body posture). In an alternative paradigm, the
prototype-classification task, participants might classify stimuli as an example
of one of two types of stimuli that vary along two orthogonal stimulus
dimensions (Cohen & Massaro, 1992). In the current study, one type of
woman might be represented by a sexually interested and provocatively
dressed woman, whereas the other type of woman might be represented by
an angry woman who is not dressed provocatively. Either paradigm could
be used to assess individual differences in college men's sensitivity or atten-
tion to these two dimensions when judging a woman's responsiveness, which
may contribute to individual differences in the extent to which college men
exhibit sexually aggressive behavior.

To date, we have relied primarily on the prototype-classification task
to assess individual differences in participants' sensitivity or attention to
underlying dimensions. In a recent study that examined the role of classifica-
tion processes in eating disorders, participants first viewed a "Type A
woman," who was normatively sad and heavy, and a "Type B woman," who
was happy and light (Viken et al., 2002). See Figure 6.2 for an example of
similar prototypes. Participants then classified each of the remaining stimuli
as more similar to a Type A or a Type B woman. As when completing
the similarity-ratings paradigm, participants were urged to respond quickly,
because their first impressions were of primary interest to the experimenter.

According to Nosofsky's (1987) weighted prototype model, individual
differences in participants' classification patterns partially reflect individual
differences in participants' sensitivity or attention to the underlying dimen-
sions. Suppose, for example, that a participant must classify a normatively
sad and light woman, labeled stimulus i in Figure 6.2. Classification of
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stimulus i as a Type A woman suggests greater attention to affect, whereas
classification as a Type B woman suggests greater attention to body size.
Put more formally, the probability of classifying stimulus i as a member of
Category A, or P(A I i) in Equation 6.3, is modeled as a function of the
bias-weighted relative perceived similarity of stimulus i to Prototypes A and
B, or rjjA and rjJB:

M x l /r

(6.3)

Perceived similarity is assumed to be an exponentially decreasing func-
tion of the weighted distance between stimulus i and the relevant prototype,
or -cdjA, where c indicates the overall level of stimulus discriminability. As
in the previous distance formula, x, and Xj specify the stimulus coordinates,
M refers to the stimulus dimension, and wm indicates dimensional attention.
Biases in the use of the category responses, j8A and /?B, quantify participants'
relative use of the two response categories. Thus, as illustrated in Figure 6.2,
the probability of classifying stimulus i as a member of Category A will be
large when stimulus i is perceived to be very similar to Prototype A and very
dissimilar to Prototype B, because the distance between stimulus i and
Prototype A will be much shorter than the distance between stimulus i and
Prototype B. If a participant also uses the two category responses at a similar
rate (i.e., /3A and /5B have similar values), then P(A I i) will approach 1.0.

Viken et al. (2002) recently used Nosofsky's (1987) weighted prototype
classification model to evaluate rigorously the hypothesis that a group of
college women who reported clinically significant bulimic symptoms, relative
to a group of control participants, would base their implicit classifications
of other women relatively more on their body size than on their facial
affect. In other words, we anticipated that a model specifying group-specific
estimates of dimensional attention, or wn, would fit bulimics' and control
participants' classification patterns significantly better than a model that
specified a shared estimate of dimensional attention across groups. The
former model generalized the latter model (i.e., it adds a parameter to an
otherwise identical set of parameters), so we were able to evaluate this
hypothesis using nested model-comparison techniques (Wickens, 1989). As
expected, the fit of the model to the data improved significantly when
dimensional attention was assumed to be group specific but not when the
remaining parameters were assumed to be group specific. Inspection of param-
eter estimates indicated that bulimic participants, compared with control
participants, attended relatively more to body size than to facial affect.

The theoretical, measurement, and process models of implicit classifi-
cation presented in this section could be used widely to examine clinically
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relevant questions about the role of classification processes in psychopathol-
ogy. Group differences in dimensional attention estimates were of primary
interest to Viken et al. (2002), because the implicit nature of the prototype-
classification task tended to elicit highly homogeneous use of the response
categories across participants (i.e., response bias estimates were nearly identi-
cal for the two categories). Response bias estimates should exhibit much
greater variability in an explicit prototype-classification task, however. Sup-
pose, for example, that participants were instructed to base their classifica-
tions on the women's body size. In this case, group differences in dimensional
attention should decrease sharply, because both groups would direct their
attention to body size, but group differences in response bias estimates should
reflect bulimic participants' less frequent use of the category exemplified by
the thinner woman. Alternatively, we might examine individual differences
in the extent to which men's explicit classifications of women's affect are
influenced by the provocativeness of women's dress. The extent to which
men attend to women's provocativeness, even when directed to attend
to their affect, should increase the likelihood of their exhibiting sexually
aggressive behavior. Overall, the models presented in this section provide
a flexible approach to examination of a variety of questions about the role
of implicit and explicit classification processes in psychopathology.

RECOGNITION MEMORY

Recognition memory refers to the observer's classification of stimuli as
previously viewed or not. Cognitive scientists typically refer to this memory
process as explicit, because participants are instructed to indicate whether
they remember viewing the stimuli previously. Individual differences in
explicit memory for stimulus features interest clinical researchers because
such differences presumably contribute to clinically relevant variability in
behavioral responses to stimuli. For example, college men who exhibit
excellent memory for the provocativeness of women's dress but poor memory
for women's affect should be at higher risk of exhibiting behavior that is
judged to be sexually inappropriate or aggressive, because they are acting
on the basis of incomplete or distorted information. Similarly, college women
who struggle with problematic eating patterns may experience interpersonal
difficulties or construe thinness as a royal road to happiness partially because
they retain impoverished or erroneous information about the affect and
happiness of other women.

Individual differences in explicit memory for stimulus attributes com-
monly are assessed in a recognition-memory task, in which participants first
view, study, or are exposed to a subset of stimuli. Participants typically are
not forewarned about the upcoming memory test or the relevant stimulus
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dimensions, but manipulations of these task features may be of theoretical
interest to some researchers. At test, participants view both old stimuli and
new stimuli that were not viewed previously. Participants classify each
stimulus as old or new. Participants also may judge how confident they feel
about these classifications. In a recently completed study (Treat, McFall,
et al., 2006), college women first studied 28 photos of women who varied
along body-size and facial-affect dimensions for 3 seconds apiece. Next,
participants completed the prototype-classification task described above with
the same 28 stimuli. Finally, participants viewed 56 photos of women and
indicated whether they had seen the exact photo previously and how confi-
dent they were about their judgment by responding "definitely yes," "probably
yes," "maybe yes," "maybe no," "probably no," or "definitely no." Half of
the 56 photos were identical to those viewed previously; the remaining 28
photos showed the same woman, but either her affect or body size differed
from the original (see Figure 6.3). Participants were told at the time of test
that either "the look on her face" or "the shape of her body" might have
been altered in each photo.

Signal-detection theory (SDT) methods (Macmillan & Creelman,
1991) commonly are used to quantify individual differences in participant
memory—that is, individual differences in participants' abilities to detect
the old signal in the presence of either new-affect or new-body-size noise
(for an alternative approach to modeling recall and recognition-memory
data, see chap. 2, this volume). In the present case, we fit an SDT model
to the observed frequencies of each participant's confidence ratings for old,
new-affect, and new-body-size stimuli. Table 6.1 provides the observed data
for a participant who displayed excellent memory for affect, as indicated by
her correct classification of most of the old stimuli (n = 28) as definitely
or probably seen previously, as well as her classification of most of the new-
affect stimuli (n = 14) as definitely or probably not seen previously. In
contrast, her memory for body size was quite poor, as indicated by her
inability to discriminate well between old and new body-size stimuli. The
SDT model for recognition memory in this case, as illustrated in Figure
6.4, assumes that the stimuli are arrayed along a dimension of perceived
familiarity. The stimuli are members of either the old, the new-affect, or
the new-body-size distributions, which are assumed to be normal in form.
Exemplars from the old distribution presumably provoke a greater sense of
familiarity on average, so this distribution is placed to the right of the other
distributions in the figure. The new-affect distribution is placed to the left
of the new-body-size distribution to reflect our expectation that memory
will be greater for affect than for body-size information. Five boundaries,
which are represented by dashed lines in the figure, partition the familiar-
ity dimension into the six confidence rating categories. On a given trial,
a stimulus is assumed to evoke a particular value along the familiarity
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TABLE 6.1
Data Structure and Sample Frequency Data for Recognition-Memory Task

Participant response to "Have you seen this
EXACT PHOTO before?"

Definitely Probably Maybe Maybe Probably Definitely
Photo classification yes yes yes no no no

Old

New affect

New body size

6

0

3

8

1

3

8

2

2

4

2

3

2

4

2

0

5

1

dimension and then is classified into the category associated with that value
of familiarity. For example, presentation of a previously viewed woman with
a startlingly different facial expression might provoke an extremely low
feeling of familiarity that does not clear even the lowest boundary between
"definitely no" and "probably no." Hence, the participant would respond
"definitely no."

Fitting the SDT model to each participant's frequency data entails
using maximum-likelihood methods to estimate the means and standard
deviations of the two new distributions, because the mean and standard

New
Body-Size

Distribution

Old
Distribution

MBody MOM

Familiarity

Definitely Probably
no no

Maybe
no

Maybe Probably Definitely
yes yes yes

Confidence Rating

Figure 6.4. Signal-detection theory model for recognition-memory task, in which
participants judge how confident they are that they have seen the exact photo
previously. Stimuli from the "old" distribution were viewed by participants prior to the
memory task; stimuli from the "new" distributions portray the same women with
opposing values along either the body-size or facial-affect dimensions and are
assumed to evoke a weaker feeling of familiarity. See text for further details.
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deviation of the old distribution can be fixed at 0.0 and 1.0, respectively.
The locations of the five boundaries separating the confidence regions also
are estimated. Given these parameter estimates, the standardized distance
between the mean of the old distribution and the mean of one of the new
distributions indicates the strength of a participant's memory for either affect
or body-size information. In spite of the sparseness of individual participants'
data and the relatively large number of estimated parameters, individual
differences in memory for body size and affect correlated reliably with
women's self-reported symptoms of eating disorders. Relative to control
participants, college women who reported clinically significant symptoms
of eating disorders showed significantly and substantially impaired memory
for affect information, consistent with their markedly decreased attention
to affect in the prototype-classification task. In contrast, control participants
and high-symptom participants showed similar levels of memory for body-size
information, even though high-symptom participants showed significantly
greater attention to body-size information than did control participants in
the prototype-classification task. This finding suggests that future research
should explore whether high-symptom participants, relative to low-symptom
participants, store or retrieve body-size information differently or show
decreased attention to body-size information during the recognition-
memory task.

The SDT model is a commonly used process model of recognition
memory in clinical research, as it specifies the decision-making processes
that operate on the feeling of familiarity evoked by each stimulus to produce
participant responses. The SDT model does not specify the representational
and memory processes that give rise to the feeling of familiarity, however.
In contrast, Nosofsky's (1991, 1992a, 1992b) process model of recognition
memory emphasizes the central role of stimulus representation and memory
processes in producing participant perceptions of stimulus familiarity, or F,
in Equation 6.4. Nosofsky's model operates on the stimulus similarities
implied by the participant's psychological space and formalizes the notion
that a stimulus presented at test, i, will tend to be recognized as old when
its summed similarity to all J stimuli previously stored in memory, F,, clears
an estimated threshold. In the memory model in Equation 6.4, Sj refers to
the strength with which stimulus] is stored in memory. As in the classification
model described above, the similarity of the presented stimulus to each
stored stimulus, r)ij. is modeled as an exponentially decreasing function of
the dimensionally weighted distance between the two stimuli, df

, M

a = I £ wm(xm - Xjj
r . (6.4)

V = i
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Figure 6.3 illustrates the psychological space of the previously stored
stimuli as well as the location of two new stimuli for both body-size and
affect-oriented participants. Note that the Euclidean distance between the
relevant old and the new stimulus—or the perceived dissimilarity of the
relevant old and the new stimulus—varies markedly for these 2 participants.
In particular, the distance between these stimuli is much greater when the
altered dimension is the focus of attention for the participants (e.g., the
distance between old- and new-affect stimuli is much greater for affect-
oriented participants than for body-size-oriented participants). According
to Equation 6.4, this increased distance translates into decreased similarity,
which leads to a feeling of decreased familiarity, other things being equal.
Thus, a body-size-oriented participant should perceive new affect stimuli to
be more familiar than an affect-oriented participant. We anticipate that
when we fit this model to our recently collected memory data, we should
be able to account for the marked group differences in memory for affect
by allowing waffea to be significantly smaller and different for the women
who report clinically significant symptoms of eating disorders. In a similar
study examining individual differences in men's perceptions of women, we
anticipate that men who exhibit sexually aggressive behavior will show
deficient memory for women's affect that can be attributed to their signifi-
cantly reduced attention to women's affect.

Clinical scientists could use the process model of recognition memory
described above to address a wide variety of research questions about the
role of explicit memory processes in psychopathology. To date, we have
focused on the role of dimensional attention in accounting for group differ-
ences in recognition memory. Research questions also might focus on clini-
cally relevant variability in other parameters, however, such as the estimated
cutoffs for old-new or confidence-rating judgments, which capture individual
differences in how conservatively or liberally participants use the response
categories, and the memory strengths for individual stimuli or for stimuli
in particular regions of the psychological space, which represent individual
differences in the strength with which stimuli are stored in memory. Addi-
tionally, clinical researchers may be interested in the impact of various
instructional manipulations on memory processes, as they move researchers
in the direction of considering how to ameliorate problematic memory
deficits. In the described study, participants were not told anything about
the relevant stimulus attributes or the upcoming memory task. Future re-
search should determine which (if any) of the following three manipulations
improve high-symptom women's memory for affect substantially: (a) noting
that the stimuli vary along affect and body-size dimensions before having
participants study the stimuli; (b) alerting participants before they study
the stimuli about the existence of an upcoming memory task for unnamed
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stimulus features; or (c) directing participants' attention, before they famil-
iarize themselves with the stimuli, to the two relevant stimulus attributes
for which memory will be assessed later. Thus, the theoretical, measurement,
and analytical models presented in this section can be used to evaluate a
plethora of research questions about the role of recognition memory processes
in psychopathology.

CATEGORY LEARNING

In contrast to implicit classification, category learning refers to the
placement of stimuli into categories with feedback about the accuracy of
classification, although experimenter instruction about the stimulus charac-
teristics on which to base classifications typically remains absent. Evaluating
individual differences in category learning about clinically relevant informa-
tion should prove to be of particular interest to clinical researchers, for
several reasons. First, this approach facilitates investigations of individual
differences in more dynamic aspects of cognitive processing, which may
afford incremental prediction of clinical difficulties above and beyond more
static characterizations of processing. For example, Viken et al. (2002)
demonstrated previously that body-size-oriented women, who exhibit rela-
tively greater attention to other women's body size than to facial affect, are
more likely to report clinically significant symptoms of eating disorders.
Body-size-oriented women presumably would exhibit variability in how rap-
idly they learn a simple affect category structure, however, in which happy
women are in one category and sad women are in another. In this case,
individual differences in how rapidly participants could learn an affect
category structure might be more diagnostic of eating difficulties than indi-
vidual differences in their pre-existing perceptual organizations.

Second, fitting formal process models of category learning to partici-
pants' observed data (e.g., their trial-by-trial responses) affords examination
of the relative importance of various mechanisms that are hypothesized to
underlie learning. Investigation of the processes underlying learning ulti-
mately should facilitate the development of more targeted and efficient
treatment approaches. Finally, category-learning paradigms may provide
an alternative approach to cognitive therapy that draws on experimental
cognitive psychology to retrain or modify deficient cognitive processing.
Current cognitively oriented treatments rely on verbally mediated tech-
niques that emphasize the identification and modification of specific mal-
adaptive thoughts and beliefs. Using the tools of contemporary cognitive
science, we may be able to develop performance-based interventions that
target specific deficits in cognitive processing. For example, a new form of
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cognitive therapy might entail using learning paradigms to retrain atten-
tional patterns, speed the gradual acquisition of relevant category structures,
or facilitate attention shifting to relevant stimulus features under high-
risk conditions.

Treat et al. (2001) illustrated the use of a category-learning task to
assess individual differences in men's cognitive processing of the physical
appearance and perceived affect of women. A stimulus set containing 26
photos of women from newsstand magazines varied along two dimensions
of primary theoretical interest: women's physical exposure and women's
facial affect. College men viewed one photo at a time, classified it as a
member of one of two categories with arbitrary labels (e.g., "Category F"
and "Category J"), and received feedback on the accuracy of their classifica-
tions (e.g., "Correct! She is a member of Category J"). Participants were
told that initially they would be guessing, and they were not told the basis
for the feedback. Participants also were told that the basis for the feedback
might change during the course of the task and that they should attempt
to learn the new category labels for the stimuli if this occurred. Participants
first completed four blocks of either an exposure or affect category structure.
In the affect category structure, for example, women exhibiting positive
affect were in Category F, and women exhibiting negative affect were in
Category J. After an unannounced shift to the other category structure,
participants completed an additional four blocks of training. Before the
category-learning task, participants had completed a similarity-ratings task
with a subset of the stimuli, which allowed the experimenters to classify
participants' perceptual organizations as either exposure oriented or affect
oriented. As expected, exposure-oriented participants performed better at
learning the exposure category structure than did affect-oriented partici-
pants, whereas affect-oriented participants performed better at learning the
affect category structure. In other words, participants learned a category
structure much more rapidly when it was congruent with their underlying
perceptual organization.

Fitting formal process models of category learning to participants'
observed data (e.g., their trial-by-trial responses) affords examination of the
relative importance of various mechanisms that are hypothesized to under-
lie participants' observed responses. To date, we have relied on process
models developed by Kruschke and colleagues (Kruschke, 1992; Kruschke
& Johansen, 1999), because they also treat a spatial representation of partici-
pants' psychological space as the primitive, as do Nosofsky's (1987, 1991,
1992a, 1992b) prototype-classification and memory models. We fit Kruschke
and Johansen's (1999) "rapid attention shifts 'n' learning" (RASHNL) model
to the learning data described above, so that we could evaluate the im-
portance of three potential influences on participants' learning and group
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differences in participants' learning (for explication of another formal quanti-
tative approach to examination of category-learning processes, see chap. 4,
this volume).

The first mechanism of interest, initial differences in relative attention
to the psychological dimensions of physical exposure and facial affect, may
facilitate or inhibit learning a particular category structure, depending on
their congruence with the structure to be learned. For example, affect-
oriented participants should be at a relative advantage over exposure-
oriented participants when learning the affect category structure, because
they perceive stimuli in the same category to be relatively more similar
than stimuli in different categories. The second mechanism, shifting atten-
tion toward relevant dimensions and away from irrelevant dimensions, sug-
gests that participants learn category structures by modifying their perceptual
organization to be more consistent with the demands of the category struc-
ture. In other words, exposure-oriented participants could learn the affect
category structure by increasing their attention to affect and decreasing
their attention to exposure, thus modifying their perceptual organization to
make it similar to that of the affect-oriented participant. This shift in
dimensional attention would enhance the relatively greater perceived simi-
larity of stimuli in the same category to stimuli in different categories. The
third mechanism attributes participant learning to strengthened associations
between regions of the psychological space and correct category responses.
Participants could learn the affect category structure, for example, by gradu-
ally mapping the region of the psychological space that contains women
displaying positive affect to the "F" response and the region of the psychologi-
cal space that contains women exhibiting negative affect to the "J" response.

We fit the RASHNL model (Kruschke & Johansen, 1999) to the
proportion-correct values of the exposure- and affect-oriented groups on each
of the eight blocks in the learning task to evaluate the relative importance of
these three mechanisms to participants' learning. Preliminary model fits
indicated that participants perceived the stimulus dimensions in a holistic
rather than a separable fashion, so the Euclidean metric was used to define
interstimulus distances in the remaining analyses. As expected, the best-
fitting RASHNL model necessitated retention of a group-specific estimate of
initial differences in relative attention, with exposure-oriented participants
showing significantly greater relative attention to exposure than to affect
compared with the affect-oriented participants. This finding is consistent
with the results of the initial statistical analyses of the observed data that
we described above; however, fitting a process model to the data also provided
group-specific estimates of relative attention to the psychological dimensions
of interest.

Although extensive evidence supports a role for attention shifting in
category learning within cognitive science, the best-fitting RASHNL model
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suggested that shifting attention toward relevant dimensions and away from
irrelevant dimensions did not play a role in participants' learning. The
"stickiness" of participants' perceptual organizations may be attributable in
part to participants' more holistic processing of the stimulus dimensions,
which increases the difficulty of shifting attention toward or away from
specific dimensions (Nosofsky & Palmeri, 1996). Finally, the RASHNL
modeling indicated that learning to map regions of the psychological space
to the correct category label played a central but not group-specific role in
participants' acquisition of the category structures. This association-learning
mechanism produces more gradual, incremental improvement in perfor-
mance than the attention-shifting mechanism.

The ability to shift attention to newly relevant stimulus information
is highly adaptive under some conditions, such as when a person needs to
shift attention away from a potential sexual partner's physical exposure or
sexual characteristics and toward the partner's expressions of sexual interest.
Thus, it may prove fruitful to develop novel treatment strategies that use
category-learning paradigms therapeutically to modify problematic attention
patterns. The present findings are somewhat discouraging in this regard,
because the RASHNL model fits suggested that participants did not learn by
optimizing their dimensional attention patterns. Participants' more integral
processing of the stimulus dimensions presumably rendered attention shifting
more difficult, but this will be a commonly occurring feature of the more
complex stimulus sets of interest to clinical researchers. Thus, future research
should investigate the learning conditions under which participants' percep-
tual organizations exhibit greater flexibility and malleability, even when the
stimulus dimensions are perceived more holistically.

This extended presentation of Treat et al.'s (2001) category-learning
study was intended to illustrate the potential utility of investigating clinically
relevant category-learning processes as well as using formal process models
to characterize the operation of mechanisms hypothesized to underlie both
normal and abnormal learning patterns. This study relied on a relatively
simple category-learning task, in which each category structure was based
on a single dimension and a single unannounced shift to a new category
structure occurred, but more complex associative-learning paradigms (e.g.,
forward- and backward-blocking paradigms, learned-inhibition paradigms)
also should prove useful to clinical researchers. In a recently completed
study using a more complex paradigm, for example, Treat, Kruschke, and
McFall (2006) demonstrated that learning a category structure based on an
initially irrelevant dimension is strikingly more difficult after learning a
category structure based on an initially relevant dimension. In this study,
a significant subgroup of body-size-oriented women were unable to learn an
affect category structure (happy vs. sad) after learning a body-size category
structure (heavy vs. light), although all body-size-oriented women were able
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to learn an affect category structure when it was presented first. Future
research will examine whether women who struggle with eating-disorder
symptoms are overrepresented in this subgroup, because deficient process'
ing of affective information may help to account for the marked interper-
sonal and emotion-regulation difficulties that frequently characterize this
population.

Additionally, Treat et al.'s (2001) study provided deterministic feed-
back to participants (i.e., each stimulus always received the same feedback
within a particular category structure). The administration of probabilistic
feedback (e.g., each stimulus might receive the same feedback 80% of the
time) provides a much more externally valid approximation of real-world
feedback, such as women's responses to sexual advances or women's feelings
about themselves, which rarely are perfectly consistent across occasions.
Thus, it should prove useful to characterize individual differences in partici-
pants' learning about clinically relevant information under more challenging
probabilistic conditions.

CONCLUSION

In this chapter, we have provided an overview of an integrated class
of cognitive science models that can be used to conceptualize, measure, and
model clinically relevant individual differences in cognitive processing. The
process models of classification, memory, and learning account simultane-
ously for performance on very different tasks by positing a shared representa-
tional substrate, which can be assessed using MDS methods (Nosofsky,
1992b). Thus, these models display a high degree of coherence and consis-
tency across their theoretical, measurement, and analytical layers. Addition-
ally, they afford examination of the mechanisms hypothesized to underlie
observed task performance, which provides researchers with a much richer
understanding of individual differences in the operation of the cognitive-
processing system.

Several studies now have demonstrated the feasibility and utility of
adopting this quantitative approach to clinical cognitive science, in which
clinical scientists represent clinically relevant individual differences in cog-
nitive processing within cognitive scientists' formal computational models
by modifying parameter values or architectures (e.g., Busemeyer & Stout,
2002; Filoteo & Maddox, 1999; Neufeld et al., 2002; Treat et al., 2001,
2002; Viken et al., 2002). These studies highlight the generalizability of
cognitive science theories, methods, and process models to more real-world
circumstances, in which individual differences in the processing of socially
complex information are the phenomenon of interest. These quantitative
modeling efforts should advance clinical scientists' theories about cognitive
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influences on psychopathology, suggest novel intervention targets, and foster
the development of novel forms of performance-based cognitive therapy.
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7
QUANTITATIVE RESPONSE TIME
TECHNOLOGY FOR MEASURING

COGNITIVE-PROCESSING CAPACITY
IN CLINICAL STUDIES

RICHARD W. J. NEUFELD, JAMES T. TOWNSEND, AND JENNIFER JETTE

The dichotomy of automatic versus controlled processing has been of
great importance in cognitive psychology (Hasher & Zacks, 1979; Schneider
&. Shiffrin, 1977; Shiffrin & Schneider, 1977; Treisman & Gormican, 1988).
These concepts have often been defined more or less operationally rather
than strictly in terms of theoretical constructs. Performance maintaining
its efficiency as opposed to deteriorating as workload increases has been the
norm. For instance, Schneider and Shiffrin (1977), in a massive study of
these phenomena in the context of visual search, saw automatic processing
as being associated with flat or almost-flat response time functions as the
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We thank Teresa A. Treat, who served as action editor for this chapter.
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visual display set size increased. Increasing response time functions indicated
ordinary controlled, or effortful, processing.

Nonetheless, theoretically oriented processing concepts have been as-
sociated, sometimes relatively loosely, sometimes quite tightly, with the
dichotomy at least since the publication of Schneider and Shiffrin's (1977)
seminal work, which suggested multifaceted change in information process'
ing over the course of repetition. From this viewpoint, automatic processing
entails the processing of task elements in parallel (or synchronously) rather
than in serial (or successively) and does not tax processing capacity, whereby
an increase in task load does not incur deterioration in performance efficiency
(speed and/or accuracy).

Controlled processing, furthermore, has been thought to be self'
terminating, meaning that search can cease as soon as sufficient information
for a correct response is acquired. Nonetheless, the incorporation of unneces-
sary elements can be allowed in the case of automatic processing, at least
for selected paradigms (Schneider & Shiffrin, 1977; see also Kahneman &
Chajczyk, 1983; Shiffrin, 1988). Processing of all items in a trial is referred
to as exhaustive processing; thus, it can be seen that automatic processing
demands the satisfaction of several criteria on processing dimensions (see,
e.g., Townsend, 1974; Townsend & Ashby, 1983).

To be sure, domains of clinical investigation invoking all or part of
this multidimensional construct have included cognition in schizophrenia
(C. S. Carter, Robertson, Chaderjian, Celaya, 6kNordahl, 1992; Gold, Wilk,
McMahon, Buchanan, & Luck, 2003; Granholm, Asarnow, 6k Marder,
1996a, 1996b; Magaro, 1983; Narr, Green, Capetillo-Cunliffe, Toga, &
Zaidel, 2003; Nuechterlein & Dawson, 1984), affective disorders (Hartlage,
Alloy, Vazquez, & Dykman, 1993; MacLeod & Rutherford, 1998; Sheppard
& Teasdale, 2000), addictions (Baxter & Hinson, 2001), and anxiety dis-
orders (Brewin, 1989; Brewin, Dalgleish, & Joseph, 1996; Brewin 6k Holmes,
2003; Teachman 6k Woody, 2003), among others. Even the search for
possible leads for improvements in psychotherapy has not been exempt
(Kirsh 6k Lynn, 1999).

As stated previously, the primary constituents of the automatic and
controlled-effortful characterization of cognitive performance entail archi-
tecture of the processing system, notably whether task elements are trans-
acted in parallel or serial fashion, capacity, and termination criteria. These
components nevertheless are intrinsically bound up with one another in
the ways they affect performance, and as will be apparent in the following
discourse, measurement of any one must take account of the others
(Townsend 6k Ashby, 1983; Townsend 6k Wenger, 2004a).' Despite being

1 Analyses addressing conflation of these constituents occurring to their informal treatment in
clinical science were presented by Neufeld (1996).
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closely interlaced, these components are separable in empirically tractable
ways but not without a methodology rigorously grounded in quantitative
theorizing.

In this chapter, we spotlight what arguably is the most prominent
member of the above trio from the standpoint of clinical science and assess-
ment-processing capacity. Applications in the clinical arena of methods for
deciphering architecture have been taken up in a separate venue (Townsend,
Fific, & Neufeld, in press).

Over the course of presentation, mathematically entrenched measures
and their empirical estimates will be described: the capacity index, H(t);
the Capacity Ratio (CR); and the Capacity OR Coefficient, C0(t). H(t) is
a general measure of cognitive work done over a given time interval. It is
launched from an axiomatic definition of the capacity concept and is linked
to work and energy in physics. CR compares values of H(t) between two
conditions of processing, or between groups under study. It is very versatile
and is useful for bringing to bear the assets of H(t) on the ubiquitous
assessment of capacity of clinical compared with control groups. C0(t) is
used to characterize a processing system of interest with reference to a
benchmark system—one whose efficiency in processing a given cognitive
load is unchanged with an increase in load. The studied system's response
to increased cognitive load is classified as expressing limited capacity, whereby
efficiency decreases with increased load; unlimited capacity, whereby, like the
benchmark system, efficiency remains unchanged; or super capacity, whereby
efficiency actually increases with increased load. C0(t) can be especially
useful in assessing the system of interest as it operates under normal circum-
stances and then to evaluate whether and how it is perturbed with psycho-
pathology. Each of the above quantities is developed with respect to specific
clinical data.

Specific definitions and estimation of H(t) and CR now lead off. They
are developed and then illustratively applied to a study of cognitive function-
ing of anxiety-prone individuals. The remaining index, C0(t), similarly is
developed and then illustrated, this time with respect to memory search in
schizophrenia. Along the way, we examine challenges of implementation
in clinical science and avenues to potential resolution.

QUANTIFYING PROCESSING CAPACITY

A measure of cognitive-processing capacity is presented here. It is
prescribed by formal theoretical developments addressed to task performance
response times. The measure has the desirable features of being robust, in
terms of transcending individual and task differences in latency distributions,
and empirically tractable, in terms of being readily computable from obtained
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data. As part and parcel of derivations emanating from fundamental mathe-
matical concepts (axioms and rigorous definitions and assumptions), such
measures qualify as being mandated specifically by theory, resembling mea-
surement practices of longer established sciences (Meehl, 1978; cf. McFall
& Townsend, 1998). An added bonus turns out to be the construct validity
with which formal theoretical measures are endowed, owing to the substan-
tive properties derived from their analytical infrastructure (Braithwaite,
1968; cf. the "construct representation" of Embretson, 1983).2

We begin by describing summary depictions of probability distributions
(i.e., frequency functions) of events—in this case, cognitive process comple-
tions. That is, some type of cognitive task is performed, typically on a set
of entities that can be perceptual or more cognitive, as in memory search.
These distributions represent the quantitative building blocks of the present
capacity index, H(t). They also capture the essence of latency in its roles
as dependent variable and performance index in studies of cognition gener-
ally. In this treatment, performance inaccuracy is deemed to be inconsequen-
tial, that is, relatively low, and not aligned with latency in ways that
compromise inferences drawn from the latter (see, e.g., Townsend & Wenger,
2004a). Note that the distributions being characterized are both stochastic
and dynamical, features of theory again earmarking longer established sci-
ences (e.g., Penrose, 2004).

DISTRIBUTION PROPERTIES AND THEIR ROLES IN DEFINING
THE CAPACITY INDEX: H(t)

Consider the completion of a cognitive task or task segment (process).
The task, for example, may be one of memory search. The participant must
detect the presence of a visually presented alphanumeric item (probe item)
among a set of memorized items (memory set). Of course, the probe itself
must somehow be transformed and prepared for the comparison process
(probe'item encoding). Unless the interval between memory set presentation
and presentation of the probe is very short, placement of the memory set
in short-term memory should not influence the response times. The critical
cognitive events, particularly the search through memory, obviously are not
completed at the same point in time on every trial. Instead, completion
times vary, and their relative frequencies produce a corresponding probability
distribution. In the case of a continuous distribution, as a function of continu-
ous time t, the frequency function is known as a probability density function,

2 Such ab initio analytical construct validity contrasts that where the claimed substantive significance
of a model parameter is supported from ensuing mathematical explorations of its properties (Neufeld,
in press).
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Figure 7.1. Density function f(t) for a theoretical distribution of processing latencies.

or simply density function, f(t) (not to be confused with the ordinary concept
of density in the field of physics). Hence, /(t) is proportional to completion
frequency (see Figure 7.1). The density function of time t is analogous to
the height of the familiar normal distribution as a function of %.

The probability of event occurrence at or before a specific value of t
(i.e., completion of processing before time t) comprises the cumulative
probability distribution function F(t). Replacing t with t' in f(t), F(t) is the
integral (if time were discrete instead of continuous, it would be a sum) of
/({') from 0 to t. The survivor function S(t) is the complement of F(t), or
the probability of event occurrence after t, and is therefore just S(t) = 1 —
F(t). Accordingly, S(t) is the integral of f(t') from t to infinity. Finally, the
hazard function, h(t), expresses the instantaneous rate of event completion,
given that it has not yet occurred, or/(t)/S(t). That is, given that the event
has not occurred by time t, h(t) gives the likelihood that it will occur in
the next instant. Its curious name derives from its use in actuarial science
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Figure 7.2. Distribution function F(f), survivor function S(f), hazard function h(t), and
integrated hazard function H(f) corresponding with the density function f(t) of
Figure 7.1.

to estimate likelihood of failure (e.g., of a refrigerator or a person [i.e.,
likelihood of death]) within the next small interval, assuming that failure
has not occurred up until that time. These functions, as derived from f(t)
in Figure 7.1, are presented in Figure 7.2.3

The capacity index specifically exploits h(t) and its denominator, S(t).
Note first that h(t) is affiliated with the concept of power in physics (Wenger
& Townsend, 2000). It tells us the momentary intensity of a system's work
potential and stipulates the immediate pressure toward the state transition
of a process, from that of incompletion to completion. It is nevertheless a
transitory function of time and therefore difficult to estimate empirically. An
index summarizing the collective momentary intensities over the continuous
time interval £, however, is H(t). Mathematically, this index is the definite

'Additional explication of these functions, from the standpoint of clinical science, were presented by
Neufeld (1998).
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integral of h(t') between 0 and t, j h(t')dt' (see Figure 7.2). Just as work and

energy in physics are associated with a summing or integration of power
over a time interval, we can think of H(t) as "energy expenditure" in
cognitive operations (Townsend & Ashby, 1978, 1983). As an aggregate,
its empirical estimation necessarily is more reliable than are approximations
of its infinitesimal constituents h(t'). It will turn out that the relation of
this integral to the empirically accessible S(t) further increases the appeal
of this measure.

The desired H(t) is derived from S(t) as follows. Because S(t), by well-
established probability theory, is equivalent to e~H(t), H(t) is simply -ln[S(t)],
where ln(x) stands for the so-called Naperian or natural logarithm of x. It
can also be written as loge(x). Consequently, an estimate of H(t), denoted
H(t), is supplied by -ln[S(t)], where S(t) is a sample estimate of S(t).4 Owing
to this composition, then, H(t) represents a mathematically principled con-
fluence of two things: (a) the computational tractability and stability of
statistical estimation bestowed by data aggregation and (b) the full salvaging
of inferences originating with the preaggregate data format (Neufeld &
Gardner, 1990).

Observe in passing that H(t) can serve as a characterization of decline
in task performance efficiency, historically of considerable interest to clinical
scientists (see Maher, 1966, chap. 1). Wishner (1955), for example, conjec-
tured that an earmark of psychopathology is a reduction in the expenditure
of energy consummating a task at hand, relative to the total energy laid
out during the task's transaction (see also George & Neufeld, 1985; Neufeld,
1990; Nuechterlein & Dawson, 1984). Reduced efficiency, in this view, is
tantamount to a lower ratio of work accomplished to total resource invest-
ment. The value of H(t) obviously would make for a rigorous estimate of
the numerator of this ratio, at least in the case of cognitive performance.

The capacity index in turn enters into two composite indexes of
comparative capacity, CR and C0(t). CR provides a general estimate of
inequalities in capacity across conditions of performance and/or groups.
Whereas CR is a versatile measure that expresses capacity differences gener-
ally, C0(t) does so in liaison with specific increments in task load (detailed
later). Coupled with an experimental paradigm for which it was expressly
developed, this coefficient measures the change, if any, of capacity as work-
load is varied. Both of these composite indexes, moreover, can monitor
comparative capacity repeatedly over time t.

4Further appreciation of this relation is available from the following explication of H(t) (Townsend
& Ashby, 1983, pp. 26, 27). H(t) = JJ H'(t')dt', where H'(t') = d[-ln(S[t'])]/dt' = d[-ln(l -
F(t'))Wt', which by the chain rule is /(t')/[l - F(t')] = h(t').
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These composite indexes, as will be seen, apply in somewhat different
circumstances, depending on the paradigm and research questions involved.
The CR is simply the ratio of H(t) obtained for one performance condition
or designated group to that of a counterpart. We now explicate its applica-
tion to the analysis of processing among stress-susceptible, anxiety-prone
individuals.

PARADIGM, DATA, AND APPLICATION OF H(t) AND THE
CAPACITY RATIO TO HYPOTHESIZED STRESS-SUSCEPTIBILITY

EFFECTS ON COGNITIVE PROCESSING

Vulnerability to stress activation has predictable effects on capacity
to process visual stimuli and to strategically organize available capacity
resources. We develop these points through use of CR, and so we begin
by laying out the essential experimental paradigm used to illustrate such
application. The resultant data and their organization for accommodating
CR are then described. Following these descriptions are specific hypotheses
about stress-susceptibility effects as translated in terms of CR. Complement-
ing the subsequent implementation of CR is a section on selected analyses
that entail a specific theoretical distribution for processing latencies. This
extension elucidates further the nature of CR against this distributional
backdrop and indicates additional nuances of formally defined processing
capacity.

Note that H(t), and hence CR and C0(t), are "distribution general"
in that they require only that/(t) be a continuous function oft. That is, their
meaning is not predicated on a specific shape of the operative distribution, as
defined by a particular composition of/(t). Nevertheless, if a specific version
of f(t) makes for a parametric distribution that reasonably conforms to
empirical observations, then other glimpses into processing operations may
be forthcoming. Included are certain angles on the workings of H(t). In
addition, parameters of a tenable version of f(t) can naturally align with
clinically significant constructs, affording substantively meaningful analyses
and associated predictions. In the present case, the tenable distribution
happens to be a simple but useful one, the exponential (e.g., Evans, Hastings,
& Peacock, 2000).

Paradigm

The following paradigm was used by Jette (1997) in formally modeling
effects of white noise stress and stress susceptibility (physical danger-
discomfort trait anxiety) on visual information processing. It was closely
fashioned after those of prominent studies of auditory noise effects on light-
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flash detection (Hockey, 1970a, 1970b). These studies produce data amena-
ble to stochastic mathematical modeling of capacity deployment (Neufeld,
1996), implicating substantive issues of visual attention in the company of
(noise) stress (Broadbent, 1971).

The participants observed an array of six lamps. Two lamps were
positioned beside each other toward the center of the visual array, and four
were positioned peripherally, two on the left and two on the right of the
central region; a light signal emanated from one of the lamps on each trial.
Instructions were to press with the left index finger the button on a six-
button response panel corresponding to the location of the light, as soon as
it appeared. The light signal remained on pending the correct button press.5

During the performance of light detection, participants engaged in a
pursuit-rotor task with the right hand. This task entailed keeping an L-shaped
stylus on the bright spot of a rotating disk. Although presented as the main
task, pursuit-rotor activity was incidental to actual theoretical and empirical
purposes; in essence, it provided for a common direction of gaze. As in
previous work (Forster & Grierson, 1978; Hockey, 1970a, 1970b), rotor
speed was calibrated to ensure performance of approximately 65% on target.

The performance measure of principal interest was latency of response
to register light appearance. Half of the participants in each anxiety group
(i.e., 23 in each condition out of a total of 46 in each group), described
below, experienced an even distribution of light signals across the six lamp
positions, specifically, 48 in each (unbiased distribution condition). For
these participants, the central region produced one third of the total number
of signals (96 central and 192 peripheral). For the other half of the partici-
pants, each central position produced 96 signals, and each peripheral position
produced 24 signals, with two thirds of the signals in the central location
(biased distribution condition).

The tasks were performed amidst intermittent 1-second bursts of white
noise, delivered through headphones on average every 8 seconds, and always
outside the light-signal intervals (Poulton, 1977). There were three levels
of intensity: (a) 35 dbA, (b) 88 dbA, and (c) 100 dbA sound pressure level
at the ear. Noise levels were evenly dispersed with respect to light signals
in the respective spatial locations, and the order of prevailing levels was
balanced across participants within each group-condition combination. Par-
ticipants were 92 right-handed male undergraduates—right handed to reduce
individual differences in manual dexterity aspects of performance and male
because of documented sex differences in stress response (Neufeld, 1978).

Stress susceptibility was psychometrically identified using the physical
danger portion of the Endler Multidimensional Anxiety Scale (Endler,

sMethodological details, otiose with respect to the present exposition, are available in Jette (1997;
see also Hockey, 1970a, 1970b).
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Edwards, 6k Vitelli, 1991). The scale taps respondent apprehensiveness and
perceived sympathetic reactions to physical danger, discomfort, or pain.
Psychometric properties were enumerated by Endler et al. (1991), and suit-
ability to the present investigative context has been well established (Lefave
& Neufeld, 1980; Neufeld & McCarty, 1994). Participants were separated
by whether their scores were in the upper (more stress susceptible) versus
lower (less susceptible) half of the distribution. Within each division, half
of the 46 participants were randomly assigned to the biased signal distribu-
tion, and the remainder were administered the unbiased distribution.

Before arranging data to facilitate calculation of H(t) and CR, each
value was adjusted to throw into relief signal-processing aspects of latency.
Note that collateral operations contributing to observed latencies, necessary
for task transaction but not deemed to be part and parcel of the focus of
modeling, are labeled base processes. For example, if memory search were of
primary concern (see the section entitled Distribution Properties and Their
Roles in Defining the Capacity Index: H(t), above), probe item encoding
would be considered a base process. Other base processes would include
those involved in translating the results of memory search (probe item
present-absent) into the corresponding response (yes-no) and registering
it. Apropos of the present paradigm, base processes arguably involve mainly
those of converting the result of signal processing into the corresponding
location on the response panel and pressing the button (for an elaboration
of methods for dealing with base processes, see Townsend & Nozawa, 1995;
Townsend & Wenger, 2004a). Thus, estimated duration of response pro-
cesses was subtracted from each measured response time. The estimate was
552 milliseconds, based on Townsend (1984), a value that turns out to be
close to 514 milliseconds, as estimated independently by Bricolo, Gianesini,
Fanini, Bundesen, and Chelazzi (2002).

The adjusted latency for correct responses (>95% throughout and not
aligned with latency in any way that would undermine inferences from the
latter) was aggregated across the group of 23 participants within each stress-
proneness/signal-distribution combination. In turn, the data were separated
according to central—peripheral regions of signal presentation and prevailing
noise level. Latencies were partitioned into bins corresponding to times of
0-600 milliseconds, 600-800 milliseconds, 800-1,000 milliseconds, 1,000-
1,200 milliseconds, and > 1,200 milliseconds. (The boundary of 600 milli-
seconds was based on an arbitrary precedent of Hockey [1970a]). Thus, of
the total number of trials per group, 736 were available per noise level for
the central region under the unbiased distribution, and likewise for the
peripheral region under the biased distribution; 1,472 trials per noise level
in turn were available for the central and peripheral regions under the
biased and unbiased distributions, respectively. Bin entries comprised the
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proportions of total adjusted latencies falling into the successive intervals,
computed separately for each region and noise level, within each stress-
proneness/signal-distribution group.

Aggregation of data across participants within these groups was
undertaken in the interests of stability of modeled data and attenuation of
model-exogenous noise (e.g., J. R. Carter & Neufeld, 1999; Neufeld &
McCarty, 1994). To ensure that resulting data profiles of bin proportions
did not conflate systematically differing individual profiles, we used coeffi-
cient alpha to estimate profile homogeneity. Accordingly, the computation
1 - (MStnniatiamsxh,J/(MSpanK,panls) (Hakstian & Whalen, 1976) was replaced
with 1 - (MSfWtlc,p<mKXbms)/(MS(>jm), affording both statistical and interpretative
validity (Neufeld & McCarty, 1994; cf. Schmitt, 1996). Data collectives
submitted to modeling were verified as representative of their constituents,
because alpha estimates ranged from .97 to .99. (Tactics to avoiding artifacts
arising from data aggregation are discussed in more detail in this volume's
Introduction; see also chaps. 1 and 4, this volume.)

Hypotheses

Hypothesized patterns of CR, as applied to the present data, stemmed
from previous formal analyses of stress and stress-susceptibility effects on
cognitive performance (Neufeld, 1996; Neufeld & McCarty, 1994). The
set of hypothesized patterns now briefly is summarized, followed by the
representative application of CR to their investigation.

First, visual-search processing capacity6 is expected to increase with
noise levels, albeit more so with respect to central signal location. Second,
stress susceptibility is expected to be identified with diminished visual-search
processing capacity. Remaining with stress susceptibility, the third expected
pattern entails strategy in deploying available capacity. Stress susceptibility
is deemed to impair the advantageous appropriation of resources to display
regions, as dictated by target occurrence and task requirements. Investigation
of the third hypothesized pattern is described in detail, because of the three,
it involves the most comprehensive set of CR procedures.

'Inferences are restricted to visual-search performance, in light of the concurrent pursuit-rotor task.
Stress-susceptibility differences in processing capacity applied to this task, making for an equal or
possibly greater overall capacity resource pool among the more stress-susceptible individuals, cannot
be ruled out. Such a possibility nevertheless is unlikely, considering the characteristics of the pursuit-
rotor task, as described above. Moreover, the visual-search results from which the present hypothesis
arose (Neufeld & McCarty, 1994) did not entail a concurrent psychomotor task. Postulated
mechanisms of diminished processing capacity among more anxiety-prone individuals have been
enumerated by Neufeld (1996) and by Neufeld and McCarty (1994).
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Application of Capacity Ratio

Computed values of CR essentially endorsed expectations in each case.
Specifically, noise elevation generated higher values of H(t) for both stress-
prone groups, especially when increasing from low to medium levels, this
effect being most apparent for the central region and among participants
experiencing the centrally biased signal distribution. Corresponding values
of CR comprising H( t)lowerno,S(,fel,e, / H(t)higlKrnoixbwl were generally less than 1.0 and
were homogeneously so under the above conditions. The disproportionate
increase associated with the central region under biased conditions, notably
for the low versus medium noise levels, corresponded to lower values of the
above CR when computed for the central versus peripheral region. That is,
CRcenaai/CRperipheni, the "second-order CR," was less than 1.0. Computational
details were, to all intents and purposes, identical to those addressing stress-
susceptibility and strategies of capacity allocation, below.

The pattern of noise-related capacity changes was accordant with a
noise-induced increased tendency to focus resources toward more important
task features. Such a pattern has been proposed as a mechanism of selectively
improved performance under noise conditions (Broadbent, 1971; Hockey,
1970a, 1970b). Other theoretical accounts of noise-associated capacity in-
crease are available from a stochastic-modeling platform (Neufeld, 1994,
1996).

Note that the present set of inferences stemming from the application
of CR were compatible with those from generic analyses of the adjusted
latencies (e.g., significant analysis of variance higher order interaction among
noise levels, signal distribution, and central-peripheral region, p < .05; cf.
chap. 2, this volume, regarding instances of opposing inferences from formal
modeling and generic analyses). A certain overlap notwithstanding, formal
modeling stands to furnish the informational added value emanating from
a disciplined mathematical abstraction of the process tenably responsible
for the data summaries to which the generic analyses are applied. Added value
includes interpretative insights, data-analytic extensions, and paradigmatic
innovations, illustrated in this chapter and throughout the volume at large.

Table 7.1 presents proportions of adjusted observed latencies in the
respective interval bins. Also listed are the estimated values of H(t), obtained
as -ln[S(t)], where S(t) is equal to 1 minus the cumulative bin proportions;
for example, 1.890 = -ln(0.151) = -ln[l - (0.736 + 0.113)].

Lower values of H(t) accompanied higher stress susceptibility through-
out. This result is exemplified in Table 7.1 for performance under medium
noise and centrally biased signal frequency. (The full set of results is available
in Jette, 1997). On top of diminished capacity overall was evidence of its
less advantageous deployment with respect to task conditions (in line with
the third prediction, see Hypothesis section). In particular, adjusting avail-
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TABLE 7.1
Observed Bin Proportions, Estimated Survivor Functions S(t),

and Capacity-Index H(t) Values for Each Group Under Medium
Noise Level and Centrally Biased Signal Distribution

Bin interval (milliseconds)

Location estimates 0-600 600-800 800-1,000 1,000-1,200

Low stress susceptable
Peripheral

Observed proportion 0.736 0.113 0.055 0.035
Estimated survivor function 0.264 0.151 0.096 0.061
Capacity index 1.332 1.890 2.343 2.797

Central
Observed proportion 0.832 0.090 0.038 0.018
Estimated survivor function 0.168 0.078 0.04 0.022
Capacity index 1.784 2.551 3.219 3.817

High stress susceptible
Peripheral

Observed proportion
Estimated survivor function
Capacity index

Central
Observed proportion
Estimated survivor function
Capacity index

0.72
0.28
1.273

0.737
0.263
1.336

0.113
0.167
1.790

0.131
0.132
2.025

0.053
0.114
2.172

0.048
0.084
2.477

0.045
0.069
2.674

0.029
0.055
2.900

able processing resources according to signal frequencies in the visual array
stands to improve performance. The centrally biased distribution should
draw more processing capacity to that region, and the opposite should be
true for the unbiased distribution. Frequency-based strategy of allocation
was more pronounced for the participants with lower stress proneness, as
educed by H(t) and CR. The results for the biased distribution under the
medium noise level provide a representative example of this pattern (see
Table 7.1). Apropos of analysis of variance on the latency distributions,
this representative selection is analogous to using a simple first-order interac-
tion to dissect an obtained significant second-order Stress Proneness X Distri-
bution Bias X Display Region interaction (p < .05 in the present case).
Values of H(t) were greater for central than peripheral regions for both
lower and higher stress-susceptibility groups, leading to CR = fi(t)periphemi/
^•(t) central < 1-0- Disproportionately greater deployment of processing capacity
to the central region by the participants with lower susceptibility corres-
ponded to values less than 1.0 for the second-order CR, CRjoll,CT stress susce))tM^/
CRugher stress swscepnMifyi that is, more capacity was devoted to the central versus
peripheral region for both groups, resulting in CR < 1.0 for each; the effect,
however, was more pronounced for the low-susceptibility group, leading
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to their greater deflation of CR. Actual values of this second-order CR,
corresponding to the respective bins in Table 7.1 (proceeding from left to
right), are .78, .84, .83, and .80. The question of which group evinced a
division of taskwise capacity closer to the optimum is examined in the
following section.

Parametric Extension

Previous analysis of secondary data from experiments using paradigms
similar to the present one (Hockey, 1970a, 1970b) encouraged consideration
of the exponential distribution as a theoretical account of processing laten-
cies (Neufeld, 1996, adapting Compound Parallel Model 1 of Townsend &
Ashby, 1983, chap. 5). This distribution's density function is ve~", where v
is the rate of completion of a processed element (e.g., region of a visual array)
and t is the elapsed time since processing commencement. The distribution

t
function F(t) is Lve~vt dt' = 1 - e~M and the survivor function S(t) = e~tt,

implying -ln[S(t)] = vt. Dividing the density function by the survivor func-
tion, the hazard function h(t) is seen to be equal to the rate parameter v
and constant across all t. Finally, the mean of the distribution is 1/v, and
its variance is l/v2.

The capacity index can be examined against the backdrop of this
distribution. Note that the validity of this application is supported by multi-
ple tests on empirical fit, applied both to the current binned proportions
and to overall latencies. Probabilities for chi-square tests of goodness of fit
ranged from .30 to .99, with an average of .71. Thus, results were solidly
within the envelope prescribed by the hypothesized distribution.

The maximum likelihood estimate (MLE) of the exponential distribu-
tion's parameter v, MLE(v), based on a set of adjusted latencies of size N

is N/^t^i, or simply the reciprocal of the mean. This estimate entered into
i= 1

the above goodness-of-fit tests. Alternatively, S(t) spawns its own version
of MLE(v), specifically, -ln[S(t)]/t, or H(t)/t, which shows H(t) to be a scaled
maximum-likelihood estimator of capacity in the case of this distribution.
Moreover, where the respective elements (regions) are processed in parallel,
with each region's latencies independent of the other's, the estimated collec-
tive taskwise capacity is simply the sum of the individual estimates, in this
case, l/t[H(t)cemra| + HWf^J = vcemml + vperipherd (Townsend & Ashby, 1983,
p. 249).

Normative and Descriptive Models

The present parametric distribution affords the aforementioned obser-
vations not only on the capacity index but also on selected extensions. The
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slant on capacity endowed by this distribution bears on certain issues of
potential import in clinical cognitive science, in this case involving the
optimal allocation of taskwise capacity to central and peripheral regions of
a visual display. Optimal division of processing capacity can be viewed as
the most efficient division of attention in the present type of task, where
vigilance for the occurrence of an environmental event is called for. The
strategy that maximizes performance can be indicated by linking up the
performance model and prevailing task characteristics.

Such a computed optimum is considered to be defined by a normative
model, as identified with statistically prescribed idealized performance. A
descriptive model depicts how individuals actually perform the task (Edwards,
1998). The descriptive model's capacity allocation for each of the low and
high stress-susceptible participants can be compared for its proximity to
optimal capacity allocation as computed from the normative model.

In the present context, optimal capacity deployment may be viewed
as that resulting in the minimum latency for registering the appearance
of a signal. A complementary angle deals with allocation that maximizes
detection, given a specific time interval of signal duration t. The latter
orientation coincides with the present overall tack to capacity measurement,
because detection failure can be modeled in terms of the survivor function
S(t). This direction of analysis is developed using a signal interval of 600
milliseconds.

The current proportions of adjusted latencies equal to or less than 600
milliseconds now stand as a surrogate for the rates of detecting signals lasting
only 600 milliseconds (the signal duration used in Hockey, 1970a), even
though they actually remained on pending a response (as in Hockey, 1970b).
Estimates of v for this analysis are obtained as -ln[S(t)]/t, where t = 600,
and S(t) is 1 - (proportion of adjusted latencies equal to or less than 600
milliseconds). Results from this analysis are depicted graphically in Figure
7.3; reference to the figure may aid in following the steps described below.

We let the probability of a signal occurrence in the region with the
higher frequencies be denoted u>H, and that in the lower frequency region
be <WL = 1 - u>H. Processing capacity deployed to the 1% region is denoted
VH, and that to the WL region is denoted Vy Taskwise capacity is estimated
as VH + VL = c. The probability of detection failure is

wHSH(t) + wLSL(t), (7.1)

where, in the present instantiation, SH(t) = erv}f and SL(t) = e~(c~l'H)t. After
substituting these expressions in Equation 7.1, and applying the usual opera-
tions of differential calculus to find a minimum, Equation 7.1 is shown to
be minimized with respect to VH when the latter is equal to

l/(2t)[ln(wH) - InWl + c/2. (7.2)
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Figure 7.3. Detection-failure curves for individuals higher and lower in stress
susceptibility. Higher elevation of the "higher stress susceptibility" curve reflects
diminished taskwise capacity. Optimal values of VH, as prescribed by the normative
model, are those minimizing detection failures. Empirical estimates of VH, for the
descriptive model addressed to actual performance, correspond to the left-hand
intersections of the curves with the horizontal lines, the latter in turn depicting resulting
levels of empirical detection-failure rates.

A representative example of the computations for the normative and
descriptive models is supplied by the combination of performance conditions
made up of the centrally biased signal distribution delivered amidst a medium
noise level. With t = 600, and u;H = .67 (corresponding to the central region
light signal frequency), c for the lower susceptibility participants is estimated
to be .00519, and optimal VH = .00318. Corresponding values for the more
highly susceptible individuals are .00435 and .00276.

As for the descriptive model, the value of <UH estimated for the lower
susceptible participants is .00297, lower than the optimum by .00021, and
that for the more highly susceptible counterparts is .00222, a departure from
the optimum of .00054- By the normative model, optimal allocation for the
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lower susceptible individuals would result in a detection-failure rate of .198,
close to the observed value of .200. If their capacity were equally divided
between regions, the detection-failure rate would be .211. Optimal allocation
for the more highly susceptible individuals would produce a detection-failure
rate of .255, the observed value being .269. The amount corresponding to
hypothetical equal allocation is .271. The increase in optimal allocation
detection failure from .198 to .255, when going from the lower to more
highly susceptible individuals, results from the lower value of c for the more
highly susceptible group.

The optimal proportion of c to be dispatched to the central region is
.6127 for the lower susceptible group. The estimated actual proportion is
.5722, a difference of .04. For the more highly susceptible group, the calcu-
lated optimal proportion is .6348, compared with the empirical estimate of
.5106, for a difference of .1242. Detection times for the central region,
obtained as l/vH, are 337 milliseconds for the lower susceptibility group,
compared with 450 milliseconds for the more highly susceptible group;
corresponding values for the peripheral region are 450 milliseconds and 469
milliseconds. Finally, note that a similar set of computations are available
with respect to optimal division of capacity and performance maximization
in terms of minimized processing latencies, rather than maximized light
detection at time t (Neufeld, 1996).

To summarize, the present extension throws light on H(t) according
to its operation within a tenable parametric distribution. The parametric
implementation of H(t) offers up a quantitative gold standard against which
measured performance can be assessed. It does so explicitly in terms of
efficiency in adapting processing resources to the presenting task structure.
Stress proneness associated with trait anxiety not only diminishes capacity
to transact a given cognitive task (cf. Mogg, Bradley, Williams, & Mathews,
1993) but also compromises the interplay of remaining resources with task
exigencies. Quantification of relations between task properties and process-
ing capacity evidently yields pellucid mathematical expressions of selected
cognitive vulnerabilities. Potential consequences, in the form of compro-
mised negotiation of cognition-intensive coping, in turn have been drawn
out from a nonlinear dynamical-systems ("chaos-theoretic") perspective in
Neufeld (1999).

ANALYSIS OF MEMORY SEARCH IN SCHIZOPHRENIA

We turn now to the illustrative application of C0(t) to clinical data.
A cognitive function that appears to have been spared among individuals
with schizophrenia is that comprising the examination of material held in
memory, a function known as memory scanning. In a typical memory-search

QUANTITATIVE RESPONSE TIME TECHNOLOGY 223



task (Steinberg, 1975), for example, this function entails the search through
memory for the presence of a visually presented probe item (see description
in the Distribution Properties and Their Roles in Defining the Capacity
Index section). Speed and accuracy of memory scanning evidently escape
unscathed.7 The collateral process of probe item encoding, however, decid-
edly is affected, an observation that is taken up further in chapter 5 of
this volume.

Identifying and deciphering the nature of spared as well as affected
aspects of cognition are important to producing a balanced profile of cogni-
tive functioning characterizing a disorder. The discerned set of strengths
and weaknesses arguably contributes to a fuller understanding of the symptom
picture (George 6k Neufeld, 1985; Neufeld, Vollick, & Highgate-Maynard,
1993).

Also afforded is the possibility of exploiting apparent strengths in the
service of intervention (cf. Penn & Spaulding, 1997). The capacity coeffi-
cient C0(t) can be used to penetrate capacity properties of cognitive process-
ing in general and is applied here to memory-search operations deemed to
be held in common by patients with schizophrenia and control participants.
We again emphasize the much greater power and dynamic processing detail
available with the current methods.

Paradigm

A study by Highgate-Maynard and Neufeld (1986) extended typical
memory-search methodology by incorporating methods emanating from
Paivio's (1986) dual-coding theory. Individuals with schizophrenia and con-
trol participants indicated "as quickly and accurately as possible" whether
the real-life size—"overall volume"—of a presented item (a probe item
comprising either an object or animal) was similar to that of a member of
a previously memorized set of items (memory set). The number of items in
the memory set (memory-set size) ranged from one to four. Each memory
set of a given size was composed of its own set of items (e.g., breadcrumb,
coffeepot, and bed for a set size of three; dot, teapot, dresser, and airplane
for a set size of four), which in turn stayed the same for that set size
throughout the experiment (known as a fixed set procedure). Correspondence
versus absence of the probe's size properties to those of one of the members
of the memory set (positive vs. negative trials) was balanced with respect
to memory set size. The 4 x 2 , Set Size X Positive Versus Negative trial,
combinations were presented in random order. For reasons tangential to

7 As with tenability of a parametric distribution according to goodness-of-fit testing, above, this
inference currently is based on repeatedly negative statistical findings and stands to be supplemented
with other recommended methods for "accepting the null hypothesis" (Cohen, 1988, pp. 16, 17).
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memory scanning per se (Neufeld et al., 1993), half the participants in each
group were presented with similar-sized drawings of probe items, whereas
the other half were presented with their names.

Scanning memory-held items for the presence of the probe's size proper-
ties was considered to be comparatively taxing. It required comparison
between the probe and memory-held items' overall volume, as set against
subjective criteria of similarity in this property (Hockley & Murdock, 1987;
Wright, 1977). Size attributes of items in the memory set were spaced such
that the means of their normative-size ratings (Paivio, 1975) were at least
2 standard deviations of their Thurstonian discriminal-difference size disper-
sions apart (practically, at least 2 standard deviations of the distribution of
difference scores between their normative size ratings; Highgate-Maynard
& Neufeld, 1986). Responses were designated as correct or incorrect on the
basis of whether they conformed to the following criteria for positive and
negative trials. Negative trials, the correct response to which was a "no"
button press, meant that the probe item's size did not resemble that of a
memory-set item. Here, the probe item's mean real-life size rating was at
least 1 standard deviation of the Thurstonian discriminal-difference disper-
sion from the normative mean rating of each item in the memory set.
Positive trials, the correct response to which was a "yes" button press, were
those where the mean of the probe item, and that of a memory-set member
were, to all intents and purposes, identical. Practice trials, ensuring familiar-
ity with task requirements and the nature of correct responding, were similar
in number for each group.

Further specifics, including those surrounding provision for potentially
confounding clinical and demographic variables and ascertainment of the
viability of the paradigm for each diagnostic group of participants (e.g.,
applicability of normed item properties to each one), were detailed by
Highgate-Maynard and Neufeld (1986) and were summarized by Neufeld,
Carter, Boksman, Jette, and Vollick (2002). Considering the current empha-
sis on latencies, we should emphasize that error rates were comparable across
groups and did not contribute to latencies in any confounding way.

C0(t) in Light of the Memory-Search Paradigm

In explicating H(t) and CR (see p. 210) we followed distribution-
general developments with their instantiation in the exponential distribu-
tion. Conversely, it will be advantageous to launch developments of C0(t)
from a parametric-distribution platform applicable to the results from this
study. Doing so illustrates how the specific capacity properties embodied in
the parametric distributions are expressed in terms of C0(t). Operations of
these coefficients, illustrated in the given parametric case, nevertheless are
distribution general.
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The model applicable to memory search for this task, known as an
independent parallel model with moderately limited capacity (IPMLC), was pre-
sented in Townsend and Ashby (1983). The rationale for its claimed viability
here was detailed by Neufeld et al. (1993). Note that a stochastic model
of parallel processing specifies that items are commenced simultaneously
but that individual item completions are staggered stochastically across time.
In the present model, memory-set items are processed in parallel, each
completion is exponentially distributed with rate parameter vn (see the
description of the exponential distribution, above), and each is independent
of any other completion. The capacity available to each item vn nevertheless
is partly degraded as the set size n increases.8

If capacity were unlimited rather than moderately limited, then the
rate at which an individual item is processed, vn, would be unaltered as n
increases. The rate applicable to a single item being processed in isolation,
n = 1, would remain in effect even as items are added to the memory set,
n = 2,3,4, ... (in the present case, n's maximum value being 4). Thus, v\ =
v2 = V]. . . . It is interesting that with parallel processing of a set size of n and
unlimited capacity, times for the first item completion remain exponentially
distributed, but with the rate parameter applicable to the first completion

of the n-item set being ^ vn - nvn (see Townsend & Ashby, 1983, pp. 90,
!= 1

249, and the Parametric Extension section). This independent-parallel unlim-
ited capacity (IPUC) model furnishes a benchmark for synthesizing IPMLCs'
capacity attributes in terms of C0(t). Transdistribution properties of the
IPUC processing architecture also provide a benchmark in the use of C0(t)
to assess capacity aspects of examined systems in the distribution-general
case, below.

For the IPMLC model, then, the decline in vn as n increases is expressed
n

as vn = Vi /n^l/i, where vl is the rate for a single item processed by itself.
; = i

As n increases from 2 through 4, for example, t^ is scaled by .75, .61, and
.52 to produce v2) v3, and v4, respectively. This system's capacity is moderately
limited because the decline in vn with increasing n is less drastic than for
a fixed-capacity system, where vn = vjn. As with the IPUC model, the
first completion again is exponentially distributed with rate parameter nvn;
however, vn now is that prescribed by the IPMLC model.

The IPMLC model exemplifies certain properties of processing systems
that elucidate the functioning of C0(t). One such property is channel capacity.
It can be helpful to envision each of the set of n items as having a dedicated
processing channel—analogous to a neural circuit but agnostic as to the

8Regarding the representativeness of individuals' memory-scanning performance by aggregated data
subjected to modeling, pertinent alpha coefficients ranged from .92 to .94 (see "Paradigm" section).
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circuitry involved. Among other variations, channel capacity can be un-
limited, very limited, or moderately limited; consider the IPUC, the indepen-
dent parallel fixed-capacity, and IPMLC models, respectively, described
above.

Another concept brought to bear is that of statistical advantage. In an
independent parallel system, the hazard function h(t) for the next completion
of a set of items in progress is the sum of their individual hazard functions.
Thus, the instantaneous rate of an upcoming completion, given the continu-
ation of all members of a set, increases with the size of the set. Formally,
for n items,

where h(t)min is the hazard function corresponding to the minimum of the
n completion latencies, and h(t) j is the hazard function for item i, considered
in isolation (befitting the independence provision); i = 1,2, ..., n. Replacing
t with t' in Equation 7.3 and integrating from t' = 0 to t' = t, we have

H(t)mm = 2 H(t),. Furthermore, because the survivor function of the first

completion S(t)min is equal to e ~H(t)™n, -ln[S(t)]mm is equal to H(t)min.
These relations are instantiated in the case where the latencies for

each item are exponentially distributed. Recall that with n items being
processed independently and concurrently, each with rate parameter vn, the

rate parameter for the first completion is ^ vn = nvn, or n times h(t) for
i= 1

the individual item.
A potentially useful, albeit rough analogy to the interplay of statistical

advantage and channel capacity entails a set of randomly kinetic billiard
balls, as follows. The speed with which the first ball drops into a pocket
increases with the number of balls set in motion, roughly expressing statistical
advantage. As for capacity limitation, with an increase in the number of balls
rambling about on the playing surface, mutual interference, or momentary
adverse effects on the playing surface (to stretch the analogy), may impair
the balls' movement, prolonging the pocketing time.

We now examine how C0(t) captures the properties of statistical advan-
tage and channel capacity. Results from applying this coefficient to assess
targeted systems must be set against those from a system embodying a
referent set of known properties. The IPUC model comes to the fore as the
needed benchmark.

Paradigmatic requirements for the application of C0(t) entail redundant
targets, as follows. In the case of visual search, more than 1 item of a visual
array — say, 2 — would match a previously presented target item. In the
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present case of memory search, the real life-size properties of more than
one member of the memory set would match that of the probe item, according
to the statistical criteria described above. With memory-set sizes n ranging
between 1 and 2, on positive trials, there is a match between the probe
and a single item, or a pair of memory-set items, respectively. Needless to
say, such trials are balanced with randomly interspersed presentations of
negative (no-match) trials. Participants are instructed to give a positive
response ("yes" button press) if the probe's size properties are matched by
those of the single member (n = 1), or either member (n = 2) of the memory
set and to give a negative response otherwise. It is therefore assumed that
responding is self-terminating, meaning that on positive trials where n = 2,
processing ceases and responding occurs on detecting a match to the probe
on the part of either member of the memory set. On these grounds, H(t)min

is thrown into relief, with respect to C0(t). Note that for purposes of exposi-
tion, the present developments are based on an extrapolation of the actual
procedures used by Highgate-Maynard and Neufeld (1986) combined with
the IPMLC model inferred from those results.

Now, C0(t) simply comprises a certain ratio involving capacity indexes
H(t). Its numerator comprises H(t) for the redundant-target trials, where
both of the pair of memory-set items match the probe, denoted H(t)h. The
denominator consists of the sum of H(t) for the single-target trials, or
2H(t)s, assuming as in the present case that the single-target distributions
are identical. Consequently, C0(t) becomes H(t)b/2H(t)s. For the theoretical
IPUC system, the survivor function for the first completion, allowing n = 2
(corresponding to S[t]b) is S(t)s

2, which in turn equals [e~H(t)s]2 = e~
2H(t)*. This

expression makes -ln[S(t)J = 2H(t)s. The IPUC system thereby furnishes
the denominator of C,/t), which anchors evaluation of the assessed system.
The numerator of C0(t), in turn, is the value for that system of H(t)(, =
-ln[S(t)b] for the n - 2 trials.

If C0(t) = 1.0, the most economical interpretation is that the examined
system is one of independent processing and unlimited capacity (although
note that some serial systems can mimic—are empirically equivalent to—
IPUC systems; see, e.g., Townsend, 1990). If C0(t) is less than 1, then the
examined system's task completion capacity is less than that of an IPUC
system, or is one of limited capacity. If, on the other hand, C0(t) is greater
than 1.0, then task-completion capacity exceeds that of the IPUC system,
and supercapacity is said to be operative. Note that in practice each term
of C0(t) is replaced by its empirically observed estimate.

Observe that C0(t) is distribution general. Its computation and interpre-
tation presuppose no specific theoretical distributions, except that they are
continuous across t. Second, we have specified that C0(t) addresses task-
completion capacity. Values of C0(t) departing from 1.0 may indicate any
or some combination of properties dislodging the system's capacity from
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that of the IPUC benchmark. Values less than 1.0 may signal, for example,
a less efficient architecture (e.g., certain types of serial processing), deviation
from a self-terminating stopping rule (notably, processing both items when
one will suffice; recall that completions are stochastically distributed and
therefore not synchronous), or limited channel capacity (reduction in each
channel's speed, on concurrent processing). For that matter, one such prop-
erty may have an elevating effect on C0(t) (e.g., mutual channel facilitation,
as opposed to impedance), only to be overridden by another (e.g., exhaustive
item processing).

Conversely, a value of C0(t) greater than 1.0, a signature of system
supercapacity, may bespeak an architecture conducive to faster completions.
One such architecture has a coactive, channel-summation parallel structure,
whereby the products of channels processing concurrently are funneled into
a repository channel, which is responsive to the cumulative output from its
tributaries (Townsend & Nozawa, 1995; Townsend & Wenger, 2004a).
Another possibility comprises the above mutual channel facilitation within
a regular parallel architecture (Townsend & Wenger, 2004b). Clinical
examples of supercapacity, and postulated mechanisms of its occurrence,
include multidimensional stimulus encoding in schizophrenia (J. R. Carter &
Neufeld, 1999) and the enhancing effects of stress on cognitive performance
(Neufeld, 1996).

On balance, then, C0(t) is a mathematically moored, distribution-
general coefficient that parsimoniously embodies the key ingredients of
system capacity. It incorporates a principled benchmark system and suggests
sources of departure of an assessed system in either direction. Moreover,
C0(t) subsumes prominent system-capacity earmarks, known as the Grice
inequality and the Miller inequality (see Townsend & Nozawa, 1995;
Townsend & Wenger, 2004b). A comprehensive paradigm simultaneously
monitoring C0(t), and its sources of departure from 1.0, is prescribed in
Townsend and Wenger (2004a; this is known as "double factorial technol-
ogy"; see also Townsend & Nozawa, 1995).

Application of C0(t) to Results From the Memory-Search Paradigm

Application of C0(t) to the current IPMLC system unveils the underly-
ing interplay of statistical advantage and channel capacity. Simultaneous
monitoring of C0(t) and the agents of its variation in the case at hand affords
appreciation of candidate reasons for its precise value here and elsewhere.

Under the IPMLC model, statistical advantage remains in play, but
individual channel capacity is diminished. The estimated value of i>i in the
present case was 1.23 (defensibly common to the clinical and nonclinical
groups; Neufeld et al, 1993), the units of measurement now being seconds.
As each item's completion latency is deemed exponentially distributed, the
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denominator of C0(t), specified by the IPUC model with v, = 1.23, is 2H(t)s =
2[-ln(S(t)s)] = 2[-ln(e-n<)] = 2.46t. Whereas the value of vn = 2 for the IPUC
model remains 1.23, that defined by the IPMLC model is 0.9225. So, the
numerator of Q(t) now is -ln[S(t)J = -\n(fm(t}) = -\n[e'2(S225)t] = 1.8450t.
The resultant value of C0(t) is thus 0.75.

If the operative system were one of independent processing, and unlim-
ited capacity, the numerator of C0(t) would be -ln[S(t)b] = -ln[e~2(L23)t] =
2.46t, and C0(t) would be 1.0. Statistical advantage would be fully realized
rather than being somewhat offset through moderately limited channel
capacity.

The detraction from statistical advantage of the current moderately
limited capacity, however, is less severe than that accompanying fixed capac-
ity. There, the value of v\ = 1.23 would be spread across the two items,
resulting in vn ,2 = 0.615, and C0(t) = 0.50. In this case, statistical advantage
would be completely offset by channel-capacity limitation.

A value of 0.50 for C0(t) also would occur if a regular serial architecture
were in place (Townsend & Ashby, 1983, pp. 80, 88). Rather than parallel
processing, with capacity being split between the two items, processing
would begin with one of the items, its rate being 1.23. Statistical advantage
no longer is fully offset by channel-capacity limitation. Instead, being intrin-
sic to parallel processing, it now is absent at the outset.

Values of H(t) = -ln[S(t)] entering into C0(t) are plotted in Figure
7.4- That for the IPUC benchmark composes the upper line. An assessed
system with like architecture and capacity attributes generates identical
values of H(t) for the numerator of C0(t) (apart from sampling and measure-
ment error), yielding C0(t) = 1.0 throughout the range of t. Note that the
constancy of C0(t) across time t in each of the present cases arises from
latencies being exponentially distributed. Values of this coefficient of course
can vary across t for other distributions (see, e.g., Wenger & Townsend,
2000).

Values for the IPMLC structure constitute the middle line, and those
for independent parallel processing with fixed capacity (IPFC) constitute
the lower line. To more closely resemble noise-infiltrated empirical data,
each of the latter depictions is perturbed slightly with the addition of random
values ranging from -0.05 to +0.05. Values of C0(t) for the IPUC system
should approximate [2(.9225)]/[2(1.23)] = 0.75, and those for an IPFC
system should approximate [2(.615)]/[2(1.23)] = 0.50.

In summary, the coordination of H(t) with the redundant-target para-
digm issues in a quantitatively principled measure of capacity of an assessed
system, the capacity OR index, C0(t). The denominator of this index can
be assembled from single-target trials so as to express the value that would
occur with redundant-target trials, as seen in its numerator, if the system
were of an independent parallel architecture with unlimited channel capac-
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Figure 7.4. Values of the capacity coefficient H(t) = -\r\[S(t)] portrayed for the
independent-parallel unlimited capacity model (IPUC) benchmark, and independent
parallel model with moderately limited capacity (IPMLC) and independent parallel
model with fixed capacity (IPFC; empirically equivalent to standard serial for first-
completion time), from t = 0 through t = 5, with S(r) putatively sampled every 0.1
second. The value for i/, for each structure is 1.23. Values specified by the IPMLC
and IPFC models are randomly perturbed to convey some infiltration of empirical
estimates by noise.

ity. Sources of departure from this reference system—channel-capacity limi-
tation in the context of parallel-processing statistical advantage—provide
a parametric glimpse into the overall workings of C,,(t). In other words,
selected mechanisms of cognitive-performance capacity captured by C0(t)
are delineated as they take shape in the particular parametric case.

Some Clinical Inferences

Features of processing architecture affecting C0(t) stand to be shared
by patients and control participants, because processing architecture in and
of itself tends to remain intact with disorder (Neufeld & Broga, 1981;
Neufeld et al., 2002; cf. Townsend et al, in press). Certain properties
endowed by a given architecture therefore are no less present if its bearer
is experiencing schizophrenia than otherwise. In the case at hand, such
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properties include statistical advantage accruing to an independent paral-
lel structure.

Channel capacity conceivably could suffer with disorder. In the present
instance, however, moderately limited capacity defensibly is shared by both
groups. The absence of disproportionate channel-capacity limitation is remi-
niscent of findings for schizophrenia more generally, when capacity has been
delineated within a formal theoretical framework (J. R. Carter & Neufeld,
2006; Neufeld et al, 1993; cf. chap. 5, this volume).

Although not that of unlimited capacity or supercapacity, the speed
of ascertaining the status of an encountered stimulus over that of a fixed-
capacity system stands to convey potentially important adaptive advantage
in self-maintenance and meeting of environmental demands. Moreover,
such comparative advantage potentially is compounded as memory-scanning
requirements mount up in scanning-intensive tasks. It also arguably is rami-
fied according to the constellation of other transactions contingent on the
product of memory scanning (e.g., organizing a response appropriate to the
memory-conveyed properties of a person, object, or event; cf. Schweikert,
1989; Wenger & Townsend, 2000). Again, to the degree that the present
formulation can be brought forth, the temporal advantage imbued by an
IPMLC structure over that of others, such as an IPFC or regular serial
structure, is not lost with schizophrenia. This observation is in accord with
other findings of intact memory search accompanying this disturbance
(reviewed in Neufeld & Broga, 1981; see also Neufeld, 1991).

CONCLUSION

Cognitive processing capacity is a complex construct. Its meaning and
measurement in a given application are intractable without the qualifications
and constraints imposed by formal theory. Overall capacity to perform a
cognitive task is available as the capacity index H(t). Comparative taskwise
capacity across performance conditions and/or groups can be evaluated using
CR. Values are readily computed and have wide application.

The Capacity OR Coefficient C0(t) likewise is readily computable. It
operates in lockstep with a collateral paradigm and assesses a submitted
system against a standard of known architecture and channel-capacity char-
acteristics. A system's unlimited capacity, limited capacity, or supercapacity
depends on the absence, or the direction, of departure from the pivotal
value of 1.0. Because C0(t) invokes a system with defined properties, candi-
date sources of C0(t)'s value for the examined system are forthcoming.

A more recent capacity coefficient, complementing C0(t), is the Capac-
ity AND Coefficient, Ca(t) (Townsend & Wenger, 2004b). This coefficient
resembles C0(t) in its computation and, like C0(t), prescribes an associated
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paradigm as well as the IPUC system as a benchmark. Its focus, however,
is on exhaustive processing (as with completion of both items of a two-
item memory set or visual array). Experimental trials of principal interest
therefore are negative trials, whereby a target is not present in the memorized
or visually inspected item set. Coupled with C0(t), this coefficient increas-
ingly should make for a comprehensive picture of the operative system and
act as a consistency test (Meehl, 1983) for inferences drawn from C0(t).

The capacity measures presented here inform the interpretation of
generic data summaries, such as moments and other summary statistics. For
example, allowing that reaction time reflects a continuous underlying latency
distribution, mean reaction time is the integral from zero to infinity of the
distribution's survivor function. The survivor function at time t is simply e
exponentiated by -1 times the integral of the hazard function, taken between
0 and t. The hazard function, in turn, is explicitly tied to the concept of
processing capacity. In this way, the mean reaction time has its own roots
in an integrand that is elemental to formal capacity measures. Even the
interpretation of a mean reaction time therefore is embellished by unveiling
its dynamic stochastic composition.

The measures presented here clearly spring from decidedly formal
theory. Experimental paradigms and forms of data partitioning are prescribed
by the theoretical developments. Such results are in the spirit of theory-
determined rather than off-the-shelf measurement (McFall & Townsend,
1998; Meehl, 1978), and they are in accord with the Einsteinian edict that
"useful theory indicates where to look and provides a means of interpreting
what is seen." The realization of dynamic stochastic properties in theory
and measurement should advance assessment methodology for prominent
concepts in clinical science as it has in other areas of psychology and older
disciplines.
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8
USING A SPEECH PERCEPTION

NEURAL NETWORK SIMULATION
TO STUDY NORMAL

NEURODEVELOPMENT AND
AUDITORY HALLUCINATIONS

IN SCHIZOPHRENIA

RALPH E. HOFFMAN AND THOMAS H. McGLASHAN

Schizophrenia has a lifetime prevalence of 0.8% to 1.0% that varies
little across countries, cultures, and socioeconomic strata. This illness has
devastating consequences arising from symptoms such as delusions and hallu-
cinations as well as from cognitive impairments and behavioral difficulties.
Important advances in understanding pathophysiology have unfolded over
the past 25 years. These efforts have led to drug therapies that reduce some
symptoms. However, a comprehensive understanding of the neurobiological
basis of schizophrenia, as well as definitive treatments, still elude us, and
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long-term negative outcomes in terms of disability and suffering remain all
too common.

In this chapter, we describe how computer simulations of complex
neural networks may provide new insights into the pathophysiology of
schizophrenia. The focus of this investigation was on auditory hallucinations,
a disruptive and often-disabling manifestation of this illness. Insofar as these
hallucinations are typically experienced as spoken speech, they can be
approached using computer modeling methods that capture normal aspects
of speech perception. Our point of departure is to consider studies of normal
neurodevelopment during adolescence. These studies emphasize a loss of
neural connections during this time period. Schizophrenia is an illness
that emerges during late adolescence and early adulthood. Many studies
appear to demonstrate loss of neural connectivity in schizophrenia as well,
suggesting that this disorder reflects an extension of normal adolescent
neurodevelopment. When reductions in connectivity were imposed on a
simulated speech perception neural network, percepts were generated by the
network spontaneously—in the absence of any input—thereby emulating
hallucinations. These results therefore provide a conceptual linkage between
the actual clinical manifestations of schizophrenia and a potential patho-
physiology that has its origins in neurodevelopmental processes.

SCHIZOPHRENIA VIEWED AS A
NEURODEVELOPMENTAL DISTURBANCE

Researchers have long hypothesized that schizophrenia is a neuro-
developmental disorder (Feinberg, 1982-1983; Margolis, Chuang, & Post,
1995; Weinberger, 1987). This view arises from the fact that this illness
generally emerges within a relatively restricted age range—late adolescence
or young adulthood for men (roughly between the ages of 18 and 25), with
a somewhat later onset for women (roughly between ages 20 and 30). The
relative constraints on age of onset suggest that maturational or develop-
mental processes in the brain referable to that time period may play a role
in illness expression.

A characteristic feature of human brain development during adoles-
cence is the large-scale elimination of cortical synapses in the association
cortex. This process was first highlighted in humans by a now-classic study
reported by Huttenlocher (1979). Examining postmortem tissue obtained
from the middle frontal cortex from normal subjects, synaptic density was
found to peak during childhood with a subsequent decline of 30% to 40% at
adulthood. A more recent postmortem study by Huttenlocher and Dabholkar
(1997) compared synaptic density in the auditory cortex with that of the

240 HOFFMAN AND McGLASHAN



prefrontal cortex and found that synaptic elimination was much more pro-
longed in the latter, extending well into adolescence. Different time frames
of pruning for different cortical regions appear to be a human-specific neuro-
developmental feature. In primates, by comparison, synaptic density appears
to be rise and fall in parallel across different cortical regions.

Feinberg (1982-1983) first speculated that there may be a specific
relationship between normal adolescent synaptic elimination and the char-
acteristic age of onset of schizophrenia and postulated either excessive,
retarded, or abnormal pruning as the primary cause of the disorder. Insofar
as the prefrontal cortex exhibits especially extended synaptic pruning ordi-
narily, this view suggests that the prefrontal cortex may be central to neural
dysfunction in schizophrenia.

Early studies of cerebral blood flow and metabolic brain activation
appeared to support the view that the prefrontal cortex played a key role
in the pathophysiology of schizophrenia (for a review, see Weinberger,
Aloia, Goldberg, 6k Berman, 1994). Studies generally found that the prefron-
tal cortex in schizophrenic patients activates less robustly during performance
of cognitive tasks. In addition, magnetic resonance imaging studies have
detected subtle reductions in prefrontal gray matter in this patient group
(Buchanan, Vladar, Barta, 6k Pearlson, 1998; Our, Cowell, et al., 2000).
Consistent with these functional and volumetric findings are postmortem
studies examining neural density (for a review, see Selemon 6k Goldman-
Rakic, 1999). For instance, neuronal density in prefrontal area 9 was 17%
higher than normal in schizophrenic brains relative to normal brains
(Selemon, Rajkowski, 6k Goldman-Rakic, 1995). A parallel study of prefron-
tal area 46 found a 21% elevation in neuronal density of schizophrenic
brains relative to normal brains (Selemon, Rajkowski, 6k Goldman-Rakic,
1998). Given that the actual number of neurons the cortex of schizophrenic
brains is not increased (Pakkenberg, 1993), the most likely basis for these
findings is that neumpil volume, that is, the entanglement of axons and
dendrites between neurons, is diminished in schizophrenia, at least in pre-
frontal areas. Consistent with this view is a postmortem study by Glantz
and Lewis (2000) that used a Golgi stain method to quantify dendritic
spines. They found a 23% reduction of spines in deep layer 3 pyramidal
neurons in prefrontal area 46 of postmortem schizophrenic brains relative
to normal control brains. Another study by Garey et al. (1998) found even
more dramatic reductions of spine density in schizophrenic brains for this
cell type and brain area. Also suggestive of loss of synaptic terminal are
immunolabeling studies demonstrating that synaptophysin, a phosphoprotein
marker of synaptic terminals, is reduced in frontal brain regions of schizo-
phrenic patients relative to normal control participants (Glantz 6k Lewis,
1997; Honer et al., 1999; Karson et al., 1999).
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Other studies of schizophrenia, however, also suggest functional, volu-
metric, and/or molecular alterations in other brain regions, such as the
hippocampus (Blennow, Bogdanovic, Gottfries, & Davidsson, 1999; Gur,
Turetsky, et al., 2000; Heckers et al., 1998; Velakoulis et al., 1999; Wein-
berger, Berman, Suddath, & Torrey, 1992), the entorhinal cortex (Akil,
Edgar, Pierri, Casali, & Lewis, 2000; Arnold, 2000), and the cingulate gyrus
(Blennow et al., 1999; Tamminga, Vogel, Gao, Lahti, & Holcomb, 2000).
Reduced synaptophysin and SNAP-25, another synapse-associated protein,
have been reported in the medial temporal cortex of schizophrenic patients
(Eastwood & Harrison, 1995; Young et al., 1998). Therefore, a focus on
the prefrontal cortex alone probably will miss important aspects of the
pathophysiology of this disorder.

As data have emerged suggesting that brain disturbances in schizo-
phrenia are more widespread, studies have begun to focus on nonfocal
abnormalities in cortical connectivity that may involve the prefrontal cortex
as well as other cortical or subcortical regions. Diffusion tensor imaging quanti-
fies directional coherence and, possibly, connectivity of white matter fibers
linking cortical areas. Using this method, Lim et al. (1999) demonstrated
that white matter directional coherence in patients with schizophrenia was
reduced. Abnormal findings were detected in both hemispheres and were
widespread, extending from the frontal to occipital brain regions. Friston
and Frith (1995) used a time series analysis of regional brain activation
assessed with positron emission tomography. Schizophrenic patients demon-
strated differences in the level and direction of correlations across prefrontal
and temporal brain regions compared with normal control participants.
These data were interpreted as indicating a disruption of prefrontal-temporal
interactions. Another study used positron emission tomography to delineate
cortical activation during performance of a verbal fluency task (Spence et
al., 2000). The most prominent feature distinguishing patients with schizo-
phrenia from normal control participants was not level of activation in a
particular brain area but reduced correlation of prefrontal and cingulate
activation, which again suggests a breakdown in functional connectivity
linking these brain regions. Finally, metachromatic leukodystrophy provides
a neurological condition that can mimic schizophrenia (Hyde, Ziegler, &
Weinberger, 1992). A variant of this disorder that emerges during adoles-
cence and young adulthood can produce hallucinations, delusions, and disor-
ganized thinking that is initially indistinguishable from that of schizophrenia
and only later evolves into a degenerative picture characteristic of diffuse
neurological impairment. This variant of the disorder attacks white matter
mediating corticocortical connections, especially in frontal regions, while
sparing gray matter. The selectivity of the neuropathology in its early stages
again supports the hypothesis that schizophrenia arises from disrupted corti-
cocortical connectivity.
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SIMULATING AUDITORY HALLUCINATIONS OF SPEECH

Computer models are central to scientific disciplines ranging from
meteorology to physical chemistry. Their usefulness lies in simulating com-
plex, interactive systems. A good model does not attempt to re-create
"reality" in its entirety—if that were the case, the best model would be the
real-life system itself. Instead, model construction proceeds by incorporating
a limited number of properties or observations. The model will have informa-
tive value if, when simulated, critical phenomena that have been previously
unexplained are exhibited or if phenomena previously appearing unrelated
are shown to emerge from a single process. Along these lines, we review in
this chapter a neural network computer simulation of certain aspects of
speech perception (Hoffman & McGlashan, 1997; McGlashan & Hoffman,
2000). Although this simulation represents a vast simplification of actual
cortical networks, some interesting properties were exhibited by the network
that included context-dependent information processing and efficient learn-
ing that suggest plausibility of the model's "perceptual" capacities. The
central purpose of the model was to explore a possible pathophysiology of
auditory hallucinations, a core symptom of schizophrenia. In the process of
exploring the model's properties, an unanticipated finding emerged that was
not deliberately engineered into the simulation. This new finding may
provide insights into normal brain development and suggests a linkage
between the pathophysiology of schizophrenia and neurodevelopmental pro-
cesses. With some cleverness, one can often get models to do rather compli-
cated things that appear to provide support for a wide range of hypotheses.
Thus, it is unanticipated and unsought simulation findings that may have
the most value in advancing knowledge.

Our strategy was not to simulate the entirety of schizophrenia—clearly
an impossible task—but to explore a single exemplar symptom, auditory
hallucinations. This symptom is reported by approximately 50% to 80% of
patients with schizophrenia (Andreasen & Flaum 1991; Sartorius, Shapiro,
& Jablonsky, 1974). If patients manifest auditory hallucinations during one
episode, there is a high likelihood they will recur on subsequent episodes
(Chaturvedi & Sinha, 1990), often with very similar phenomenological
characteristics. Auditory hallucinations therefore appear to delineate a rela-
tively stable vulnerability that warrants additional study.

One clue as to the neurobiological basis of these hallucinations is that
they typically consist of spoken speech or "voices." This phenomenological
feature suggests that hallucinated speech involves neural systems dedicated
to auditory speech perception. This view is reinforced by neuroimaging
evidence of auditory-linguistic association cortex activation when "voices"
occur. Functional magnetic resonance imaging studies have highlighted
activation of primary auditory and language association cortex during
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hallucination periods (Dierks et al, 1999; Shergill, Brammer, Williams,
Murray, & McGuire, 2000). Along these lines, an evoked-potential study
elicited by sound stimuli in hallucinating schizophrenic patients suggested
endogenous activation (Tiihonen et al., 1992). Finally, a study of speech
perception capacity under noisy conditions compared schizophrenic patients
with and without auditory hallucinations (Hoffman et al., 1995; Hoffman,
Rapaport, Mazure, & Quinlan, 1999). Selective impairments in discerning
conversational spoken speech contaminated with background noise were
detected in the former group. In general, these patients were not hallucinat-
ing during the task performance itself. Therefore, perceptual impairments
were likely not due to distraction or interruption by the hallucinations
themselves. These findings suggest that speech perception systems them-
selves are functionally altered in patients with these hallucinations.

Nonlinguistic mechanisms of hallucinated speech, such as sensory gat-
ing abnormalities, have been proposed. In support of this perspective are
studies indicating that patients with schizophrenia are less able to filter out
irrelevant information when responding to certain types of sensory inputs
(Braff, Swerdlow, & Geyer, 1999; Judd, McAdams, Budnick, & Braff, 1992).
There are, however, no studies directly testing this hypothesis by determining
whether such filtering impairments distinguish schizophrenic patients who
are vulnerable to auditory hallucinations and those who are not. Another
popular view is that voices actually are ordinary inner thoughts or auditory
imagery that have been misidentified as deriving from an external, nonself
source (Frith & Done, 1989). In support of this hypothesis, McGuire et al.
(1995) reported reduced activation in patients with auditory hallucinations
compared with nonhallucinators when participants imagined hearing speech
spoken by others. The authors argued that these brain activation failures,
which emerged in the left middle temporal gyrus and the supplementary
motor areas, reflect a defective capacity to remain aware that these images
are self-generated. However, it remains possible that reduced activation
elicited during task performance by hallucinating patients could be due to
higher levels of baseline engagement of these brain areas. A parallel cognitive
study has found impairments in distinguishing self versus nonself vocaliza-
tions heard on headphones in hallucinating versus nonhallucinating patients
(Johns & McGuire, 1999). In this study, biases in attributing phonetically
distorted reproductions of one's own voice as being spoken by another
speaker were studied. Schizophrenic patients were found to have a greater
attributional bias of this sort compared with nonhallucinating patients;
however, this bias could be due to behavioral effects of hallucinations
themselves—that is, hallucinators may be conditioned to expect a higher
frequency of putatively nonself speech percepts compared with nonhalluci-
nators. Finally, if one asks patients to generate inner speech or verbal
thought, they do not report the subsequent experience as a voice or hallucina-
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tion (Hoffman, 1986). If the primary difficulty were misattribution of verbal
thought, then these simple exercises should result in hallucinated voices.

Our strategy for modeling auditory hallucinations therefore was to
simulate certain aspects of the speech perception system based on neuro-
imaging findings suggesting modality-specific involvement of the association
cortex in various types of hallucinations (Shergill et al., 2001) as well as
on our own psycholinguistic studies suggesting direct involvement of this
neural system (Hoffman et al., 1995,1999). A previous study by Hoffman and
Dobscha (1989) examined effects of reduced synaptic density and network
connectivity in associative memory simulations. Excessively pruned simula-
tions revealed certain neural subassemblies within the larger network that
failed to respond to inputs from elsewhere in the network, thereby producing
"autonomous" outputs suggesting aspects of schizophrenia such as thought
disorder and thought control. These neural assemblies demonstrated dynami-
cal behaviors akin to "attractors" characterized by nonlinear systems theory.
Attractor dynamics cause a nonlinear system to reorganize into a stable
state. For overpruned networks, certain subassemblies would be relentlessly
pulled into a particular attractor regardless of what was going on in the rest
of the network.

On the basis of these earlier findings, our objective was to determine
if pruning connections and eliminating synapses could also simulate halluci-
nated voices in a computer neural network simulation of aspects of speech
perception. Hallucinations, by definition, are percepts that emerge in the
absence of corresponding external sensory information. Our hope therefore
was to explore conditions whereby these simulations produced speech per-
cepts autonomously, that is, in the absence of any phonetic inputs.

NETWORK ARCHITECTURE

We developed a network architecture that detected words based on
simplified "phonetic inputs" that are presented in sequence, expressing gram-
matical sentences. We targeted the working memory component of our
neural network to explore effects of reduced corticocortical connectivity.
Ordinary speech, when produced at normal rates, has significant acoustic
ambiguity due to blurring of phonetic information and background sounds
(Kalikow & Stevens, 1977; Warren & Warren, 1970). Consequently, percep-
tion of a word embedded in a stream of spoken speech depends not only
on acoustic input corresponding to the word itself but also on previously
perceived words and intrinsic knowledge of how words are sequenced gram-
matically and semantically into larger message units, a process reflecting
a specialized working memory. Working memory impairments have been
demonstrated in schizophrenia (Gold, Carpenter, Randolph, Goldberg, &
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Figure 8.1. A schematic diagram of the architecture of the network used in this study,
which is based on Elman (1990). From "Synaptic Elimination, Neurodevelopment,
and the Mechanism of Hallucinated 'Voices' in Schizophrenia," by R. E. Hoffman and
T. H. McGlashan, 1997, American Journal of Psychiatry, 154, p. 1685. Copyright 1997
by the American Psychiatric Association; http://ajp.psychiatryonline.org. Reprinted by
permission.

Weinberger, 1997; Park & Holzman, 1992) as well as disturbed interactions
between frontal and medial temporal areas (Weinberger et al., 1992), two
brain areas known to underlie this cognitive function (Goldman-Rakic &
Friedman, 1991). A key functional component of our simulation, therefore,
was the working memory component of a neural network that acquired
knowledge regarding plausible, grammatical sequences of words in its vocabu-
lary and used this knowledge to generate a sequential expectation that
guided translation of the stream of "phonetic inputs" into sequences of
word "percepts." We postulated first that verbal working memory in speech
processing neurocircuitry of patients with auditory hallucinations was not
only impaired but also produced spurious outputs and second, that these
disturbances arose from reductions in working memory network connectivity.

Our simulation of sequential word processing was based on models
developed by Elman (1990) and was a modification of an earlier simulation
(Hoffman et al., 1995) that forced greater reliance on the working memory
capacity of the system during training and reduced the number of neurons
involved in working memory. The network, which consisted of 148 neuronal
elements divided into a four-layered system (see Figure 8.1), was designed
to translate phonetic inputs into perceptual outputs corresponding to strings
of lexical elements. Actual acoustic data were not used. Instead, our simplify-
ing assumption was that the phonetic representation of each word corres-
ponded to a pattern of activation where roughly 25% of the neurons in the
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initial or input layer were turned "on" (see Table 8.1). Each of forty hidden layer
neurons received a weighted sum of inputs from each of the 25 input neurons:

l(x) = X wyA(y), (8.1)

where I(x) is information communicated from the input layer to neuron x
in the hidden layer, <wyx is the weight (which can be positive or negative)
of the projection from neuron y in the input layer to neuron x in the hidden
layer, and a,(y) is the level of activation of neuron y in the input layer.
Each hidden layer neuron also received input from every neuron in the
temporary storage layer (also 40 neurons in size), which stored a replica of
the pattern of activation of the hidden layer emerging from the preceding
phonetic input.

The activation of each neuron in the hidden layer, fl/,(x), ranged from
0 to 1 and was computed as follows:

flhU) = 1/{1 + exp[-g * I(x)+/3]}, (8.2)

where g (gain) and ft (bias) together determine response profiles of simulated
neurons. When the combined input to a neuron was very negative, its
activation approached zero. When the summed input was very positive,
neural activation approached a maximum level of 1. Intermediate levels of
firing were expressed as fractions. The output layer consisted of 43 neurons.
Output layer neurons received inputs exclusively from the hidden layer (see
Figure 8.1) and had the same activation function as hidden layer neurons.

Besides assignment of a phonetic code, each of the words in Table 8.1
was also assigned an activation pattern for the output layer where between
three and six of these neurons were turned on for a given word. These
neurons coded for semantic and syntactic features. For instance, the word
cop was represented by activation of output neurons that individually coded
for NOUN, ANIMATE, and HUMAN, as well as a particular neuron that
referred to cop itself. A sample of output codes for individual words is
provided in Table 8.2.

When the network produced an output layer activation pattern, an
algorithm decided which word was the best fit for that particular pattern;
the best fit became the detected word. When the output activation pattern
demonstrated no clear-cut best fit, the network was assessed as not perceiving
any word at all.

Network training used 60 repetitions of a set of 256 different sentences
with degraded phonetic input to force reliance on working memory. Connec-
tion weights between different neuronal layers were adjusted using an online
variant of back-propagation learning (Miikkulainen, 1993). This procedure
caused learning to occur much more rapidly relative to more standard
versions of back-propagation and more closely approximates actual live

USING A SPEECH PERCEPTION NEURAL NETWORK SIMULATION 247



TABLE 8.1
Phonetic Code for the 30 Words Belonging to the Network's Vocabulary

Word Phonetic code

young 0001000101001110000001000

old 0100011101101011010100101
tell 1001000001100011000100000
omen 0100101100001000010010100

dog 0101001000000000111100000

Jane 1010000010000001110001001

run 0000001011000000000100111
ball 0110000001001000001011010
kick 0000010110011000000001010
give 1100010010000000110100010

boy
miss

0000011000110110000100000

0110010000000010000101011

large 1000001111001100100010001

small 1001101110001011000101100
story 0111000100101010001000100

frightens 0001001000011100010011000

girl 1010010000110000001000010
Bill 1001000011100000111000010

God 0101000001000001011100110
man 1101001001100000000000100

cop 0000001010011000011011100

Sam 0100010001001010000100000

think 0001010101000011001010000
kiss 1000010010011010001000000
won't 0000100101000010010000010
woman 1001000100000010000101110

chase 0001000000101000000010000

fear 1001000010000100001000100

love 0001100101010100010001000

warning 1001110100010010111000000

Note. Patterns of 1s and Os were generated arbitrarily using a random number generator.
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TABLE 8.2
Examples of the Output Semantic Feature Code for Representative Words

Belonging to the Network's Vocabulary

Output Word
neurons Semantic
(n = 43) feature code boy Jane cop kiss miss run small large

1 Noun • • •

3 Human • • •

12 Person-Jane •

14 Cop •

20 Verb . • .

21 Verb-complement- • •
animate

25 Verb-complement- •
nu£

27 Verb-kiss •

28 Verb-miss

39 Adjective

40 Age-attribute

41 Size-attribute

42 Diminutive

43 Superlative

Wore. Examples of how the "meanings" of particular words were represented by the output layer of the net-
work. Activation of Neuron 1 indicated that the input being processed was a noun. Conversely, activation
of Neuron 20 signaled that the network had detected a verb. Activation of Neuron 21 signaled that the net-
work detected a verb requiring a complement that ordinarily requires an animate agent (e.g., "kiss Jane,"
"chase boy"). Dots in cells mean that some of the neurons were skipped in the table.

learning rates. The learning process caused the working memory component
of the network to store and make predictions based on prior information-
processing steps, which aided translation of phonetic information into words.

After the network was trained, it was retested with a set of 23 sentences
not used in training but incorporating the same vocabulary. During testing,
each test sentence was separated from the next by a pause consisting of five
null inputs (activation of all input neurons set to zero). The percentage of
words successfully detected by the network was counted as well as the total
number of misidentifications (when the network confused one word for
another). Hallucinations were scored when output layer activation patterns
yielded word percepts during pauses when phonetic inputs were absent.
Assessment of network performance was undertaken with full phonetic
information for each word and then repeated with degraded phonetic infor-
mation. The latter condition was created by randomly selected two input
neurons ordinarily turned on for each word and resetting them to zero. This
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Figure 8.2. Word detection and misidentification rates for the standard network before
pruning. Effects of reducing phonetic information and randomization of input word
sequences are represented. These data demonstrate that the network uses meaning
intrinsic to grammatical sequences of words to facilitate translating phonetic inputs
into lexical percepts. From "Synaptic Elimination, Neurodevelopment, and the
Mechanism of Hallucinated 'Voices' in Schizophrenia," by R. E. Hoffman and T. H.
McGlashan, 1997, American Journal of Psychiatry, 154, p. 1896. Copyright 1997
by the American Psychiatric Association; http://ajp.psychiatryonline.org. Reprinted
by permission.

manipulation forced the network to rely more on working memory and
linguistic expectations based on previous inputs to fill in the blanks and
produce the correct word percept.

An example of how network performance was assessed is given below.
Suppose the input consisted of phonemes presented in a sequence corres-
ponding to the following words:

cop—chase—old—man—*—*—*—*—#—Jane—kiss—girl,

where the # symbols are null inputs corresponding to a pause. Assume that
the output of the network was

cop—chase—•—dog- I—•—fear—•—jane—kiss—girl,

where • denotes the absence of any output produced by the network. The
number of words correctly identified would be 5 out of 7. One word (man)
would be scored as a misidentification, and fear would be scored as a hal-
lucination. In assessing the simulation, sentences were presented with no
phonetic degradation, and then the process was repeated where two of the
"on" phonetic features for a given word were turned off.

Before any neuroanatomic manipulation, we tested the network's abil-
ity to detect words, first when words were presented in grammatical sentences
and second when the same words were presented in random order. The
results are illustrated in Figure 8.2. Successful word detection was shown
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to be highly dependent on grammatically meaningful word order when
inputs were fully represented and when phonetic information was degraded.
These data provide strong evidence that a specialized verbal working memory
dependent on sequential word order was operative.

A neuroanatomic pruning procedure was then applied that was guided
by the concept of "neurodevelopmental Darwinism" (Edelman, 1987). In
mathematical terms, if the absolute value of a connection weight linking
the temporary and hidden layer was below a certain threshold, it was reset
to zero. We assumed that the number of synapses required to maintain a
projection was directly correlated with the absolute value of the strength
of that projection, an ordinate number with either positive or negative
values. The total strength of connections lost (as an absolute number) was
calculated as a percentage of the sum of connection strengths summed across
all connections in the unpruned network. This fraction was used to estimate
the percentage of synapses lost based on the assumption that the synaptic
density of a connection will covary in a roughly linear fashion with the
computational strength of that connection. This calculation is of interest
insofar as many of the connections pruned in the model were weak in
absolute terms and hence assumed to correspond to a relatively low number
of synapses. It is only when relatively robust connections were eliminated
that the network performance began to shift—initially for the better, but
subsequently for the worse. We assumed that such connections were medi-
ated by higher numbers of synapses.

As a comparison pathology, the consequences of loss of neurons them-
selves were also studied. Animal studies have indicated that neuronal loss
accompanies normal neurodevelopment (Margolis et al, 1995). Along these
lines, Huttenlocher (1979) described postmortem data strongly suggestive
of frontal neuron cell loss in humans during early childhood. Also intriguing
is an etiologic explanation of schizophrenia based on pharmacological studies
of N-methyl-D-aspartate antagonists. Insofar as these drugs have been found
to be psychotomimetic in humans and productive of excitotoxic cell death
in animals, Olney and Farber (1995) have proposed that schizophrenia itself
is due to an excitotoxic process where neurons are lost. Therefore, our neural
network model included an "excitotoxic cell death" condition in which
those neurons most consistently activated were functionally eliminated.
Other methods of cell death, such as working memory neurons knocked
out at random or because they are the least activated (i.e., disuse atrophy),
also were studied.

The effects of pruning connections in the working memory component
of the system are illustrated in Figure 8.3. The initial detection rate in
response to phonetically degraded inputs improved when up to 30% of
synapses were eliminated. In parallel, the number of misperceptions dropped
considerably (see Figure 8.4). However, as pruning progressed to more
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Figure 8,3. The upper curve portrays the effects of different levels of synaptic
elimination on the network's ability to correctly translate phonetic inputs into words.
Inputs were presented with degraded phonetic information. The lower curve illustrates
the emergence of activation patterns in the output layer even when no phonetic
inputs were being processed, thereby simulated hallucinated speech percepts. From
"Schizophrenia as a Disorder of Developmentally Reduced Synaptic Connectivity,"
by T. H. McGlashan and R. E. Hoffman, 2000, Archives of General Psychiatry, 57,
p. 639. Copyright © 2000 by the American Medical Association. All rights reserved.

extensive levels, word detection dropped off, and misperceptions again rose.
Moreover, spontaneous percepts during silent pauses began to emerge in
the absence of any input, thereby simulating hallucinated, spoken speech
(see Figure 8.3). These "hallucinations" consisted of a single word, won't,
that tended to follow sentences ending in a noun. Thus, the hallucination
tended to follow certain "normal" word sequence expectations, namely, that
the word won't follows nouns (e.g., girl won't run). At very high pruning
levels, hallucination rates again dropped back to near-zero levels (see
Figure 8.3).

A comparison study of simulated pathology examining effects of neu-
ronal death in the working memory system was also studied. Different
types of neuron loss (neurotoxic cell loss, disuse atrophy, random neuronal
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Figure 8.4. Effects of different levels of synaptic elimination on the network's tendency
to misperceive words (i.e., to "hear" a word substituting for another word). From
"Neural Network Models of Schizophrenia," by R. E. Hoffman and T. H. McGlashan,
2001, The Neuroscientist, 7, p. 450. Copyright 2001 by Sage Publications. Reprinted
with permission.

dropout) produced impairments in translating inputs into word percepts
but never significant enhancements of network function, as in the case of
Darwinian pruning of connections. Moreover, no form of neuronal dropout
led to spontaneous, "hallucinated" percepts occurring in the absence of
phonetic input.

DISCUSSION

In terms of schizophrenia, the simulation demonstrates how overprun-
ing connections in neural networks can induce hallucinations. This mecha-
nism can be understood intuitively as reflecting the fact that pruning in
our model appeared to enhance the ability of the network to fill in the gaps
secondary to phonetic ambiguity using linguistic knowledge activated by
means of a specialized working memory. When pruning was extended, this
tendency to fill in gaps became so hypertrophied that word detection became
disrupted, misperceptions increased, and "hallucinated" speech percepts
emerged in the absence of any acoustic input whatsoever.
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The behavior of the overpruned, hallucinogenic network helps us
understand certain clinical aspects of actual patients with schizophrenia
who experience "voices." Most important, the simulation demonstrates how
hallucination-prone speech perception systems are also prone to misperceiv-
ing actual external speech, especially when phonetic information is degraded.
This rinding provides an explanation for a phenomenon commonly reported
by patients with schizophrenia, namely, that they tend to hear personalized
messages from television or radio or when they hear background speech,
such as in a crowded room or on the street. Our simulation suggests that a
key factor producing these experiences is speech (or song) that is produced
rapidly or is otherwise unclear in terms of acoustic information that then
results in misperceptions. These substituted words or phrases have personal-
ized meaning—they are not random percepts. Thus, it can be readily appreci-
ated how these patients develop enduring paranoia—believing that people
are talking about them behind their backs or that they are the focus of
some conspiracy or plot as evidenced by the bizarre messages they are
receiving from television or radio.

Second, the simulation demonstrates why there is a characteristic age
of onset for schizophrenia. If overpruning of corticocortical connections is
central to the pathophysiology of this disorder as suggested by these findings,
then one would predict that the age of onset of this disorder would be at
the end of adolescence, which is when neurodevelopmentally induced prun-
ing has run its course. This age of onset is roughly what is observed in actual
cases, although the range of age can be considerably extended.

Third, the simulation produced an unexpected finding that was not
part of the original study plan—at lower, prepsychotic levels of pruning, a
distinct improvement in perceptual processing was demonstrated by the
network. One advantage of corticocortical pruning is a conservation of
energy requirements in the brain (Hoffman 6k Dobscha, 1989). Here we also
have demonstrated a clear-cut information-processing advantage favoring
pruned networks as well. These findings expand on another simulation study
of artificial networks by Le Cun, Denker, and Solla (1990), who found that
pruning promoted better generalization capacities. Our study also suggests
that pruning promoted generalization—in particular regarding those se-
quences of words that produce meaningful sentences. Moreover, these gener-
alizations were put into the service of decoding sequences of sensory inputs
over time so that a specific "perceptual" capacity was itself enhanced.

These simulation findings can furthermore be used to generate some
rough estimates of the percentage of synapses eliminated in order to optimize
network functioning during development. As noted earlier, estimations of
the fraction of synapses lost from the total pool of synapses following elimina-
tion of a particular connection were based on the absolute value of the
weight of that connection. This analytic strategy predicted that optimal
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network function would be achieved after a reduction of synaptic density
of approximately 30%. This estimate is relatively close to the observed 35%
to 40% reduction in frontal cortex synaptic density in adulthood levels
relative to peak childhood levels reported by Huttenlocher (1979). More-
over, our graphs can be used to estimate synaptic density reductions relative
to optimized adult levels that are predicted to induce psychosis. These data
predict that induction of hallucinations occurs at a pruning level of 15%
to 20% beyond optimum synaptic density, a range not far removed from
neuropil reductions of 17% to 21% detected in prefrontal brain regions in
the brains of actual patients with schizophrenia (Selemon et al., 1995, 1998).
However, this approach underestimates the loss of dendritic spines reported
by Glantz and Lewis (2000) and Garey et al. (1998). However, these reduc-
tions were noted only for layer III neurons, not for neurons distributed across
all layers of cortex. If this less selective method of counting dendritic spines
were used, it is likely that reductions observed in the schizophrenic brains
would be much smaller than that reported. It is worth noting also that
neuropil volume and dendritic spines counts are variables that are distinct
from synaptic density per se.

There are no data whatsoever directly assessing the synaptic density
in speech perception neurocircuitry of the human brain across age ranges—
the functional capacity emulated by the simulation. However, a study of
song acquisition in songbirds demonstrated a reduction of synapses over
time in brain areas responsible for this communication function (Scheich,
Wallhausseer-Franke, & Braun, 1991). Birdsong is not speech per se, but
it is, like speech, a highly structured communication system involving sound
sequences. It is at least plausible that a parallel developmental process occurs
in humans where cortical pruning of synapses results in enhanced efficiency
in processing sequential linguistic behavior.

As noted in the beginning of this chapter, females appear to have a
somewhat later onset of schizophrenia than males. Our neurodevelopmental
model of psychosis provides a potential explanation. Animal studies have
found that higher levels of female hormones, such as estrogen, are associated
with delayed developmental pruning of cortical connections and higher
levels of connectivity and neuritic proliferation (Munoz-Cueto, Garcia-
Segura, & Ruiz-Marcos, 1990; Naftolin et al., 1990; Woolley, Wenzel, &
Schwartzkroin, 1996). Our model predicts that a reduced rate of pruning
associated with higher levels of female hormones during puberty could
also determine the epidemiological differences in age of onset for men
and women.

We have undertaken other studies that appear at least consistent with
the simulation findings described above. First, the simulation predicted
that schizophrenic patients would demonstrate subtle alterations of speech
perception—namely, a reduced ability to correctly perceive continuous,
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narrative speech when speech sounds were phonetically degraded. Hoffman
et al. (1999) tested this prediction in a group of 21 schizophrenic patients
with auditory hallucinations, a group of 24 schizophrenic patients without
a history of auditory hallucinations, and 26 normal control participants.
Participants in the three groups were closely matched for level of education,
age, and gender. The two patient groups were closely matched for overall
level of illness. Narrative speech perception capacity was tested at different
decibel levels of superimposed multispeaker babble, which varied phonetic
ambiguity. As predicted by neural network simulations, patients with audi-
tory hallucinations demonstrated a reduced word detection rate and an
increased number of misperceptions compared with nonhallucinating pa-
tients and normal control participants. Using data from a higher noise
condition in a two-variable discriminant analysis enabled us to correctly
classify hallucinating versus nonhallucinating patients with 82.2% accuracy
(p < .002, based on a discriminant function applied to the same data used
to derive the discriminant equation).

We also have used repetitive transcranial magnetic stimulation (rTMS)
to directly probe speech-processing neurocircuitry in hallucinating patients.
This approach has allowed us to test the prediction made by the network
simulation that auditory hallucinations of speech arise from activation of
these neurocircuitry components. One-hertz rTMS was administered to the
left temporoparietal cortex, a brain region known to play a critical role in
semantic processing and verbal memory during speech perception (Fiez,
Raichle, Balota, Tallal, & Petersen, 1996; Ojemann, 1978). Other studies
have demonstrated that 1-Hz rTMS given over approximately 15 minutes
produces sustained reductions in activation in the brain area directly stimu-
lated as well as in other brain areas functionally connected to the former
(for a review, see Hoffman 6k Cavus, 2002). Effects of active stimulation
were compared with sham stimulation, using a double-blind design, that
induced similar scalp sensations but minimized brain stimulation (Hoffman
et al., 2000, 2003). These studies found robust statistical evidence of reduced
hallucinations following active rTMS but not sham rTMS and provide
further support for the hypothesis that speech-processing neurocircuitry plays
a critical role in the genesis of auditory hallucinations.

CONCLUSION

Considerable data now support the hypothesis that schizophrenia is
associated with reduced corticocortical connectivity. Our speech perception
neural network simulation has provided a potentially useful model linking
curtailed network connectivity to the genesis of auditory hallucinations.
These neural network models do not precisely characterize the underlying
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etiology of connectivity disturbances. However, an unexpected finding aris-
ing from the model was that connectivity reductions at a lower level were
observed to enhance information processing. This finding provides an inter-
esting explanation for synaptic pruning observed during the postnatal period
in mammals that appears to be especially prolonged in the association cortex
in humans—extending well into adolescence. Moreover, a specific causal
factor leading to schizophrenia—namely, a failure to turn off neurodevelop-
mental pruning at the end of adolescence—is suggested (McGlashan &
Hoffman, 2000). This explanatory model provides a rationale for the charac-
teristic age of onset of schizophrenia and the difference in age of onset
between men and women, and it provides a detailed account of the mecha-
nisms of auditory hallucinations, an important symptom in schizophrenia.
Regardless of the ultimate validity of this claim, we hope that this line of
research demonstrates the usefulness of neural network simulations in linking
outward manifestations of neuropsychiatric disorders to underlying neuro-
biological processes. Future advances in our understanding of psychiatric
disorders, we believe, will require computational methods to delineate princi-
ples of normal and abnormal neural system information processing. These
insights will, we hope, yield new, more specific methods for treating schizo-
phrenia and other mental illnesses that have remained so enigmatic in terms
of their origins and so resistant to therapeutic intervention.

CLOSING COMMENTS

The simulations described in this chapter were derived from concepts
and simulation methods described in a seminal article written Jeffery Elman
(1990), which is highly recommended reading. A book-length review of
computer simulations of neural network simulations and their usefulness in
studying neuropsychiatric disorders was written by Manfred Spitzer (2000)
and is also highly recommended. More technical discussions of different
neural network methodologies and their conceptual underpinnings can be
found in Rumelhart and McClelland (1986).
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9
COMPLEX DYNAMICS IN DEPRESSION:

AN APPLICATION TO LONG-TERM,
MOOD-RATING TIME SERIES

RACHEL A. HEATH, ELAINE M. HEIBY, AND IAN S. PAGANO

Mood disorders are dynamical behaviors with temporal structures that
have not yet been widely explored. A detailed knowledge of the temporal
structure of mood disorders would inform assessment approaches, diagnostic
criteria, and etiology as well as prevention and treatment strategies. One
reason for the paucity of time-series research is that many assessment devices
commonly used to diagnose mood disorders and their potential determinants
are not conducive to repeated measurements. Another reason is the need
for mathematical modeling procedures that accommodate the restrictions
of the at best ordinal data yielded by current assessment methods.

One purpose of this chapter is to encourage mood disorder research
that uses measures feasible for time-series assessment, such as self-monitoring,
so that the dynamic structure of such measures can be investigated. Another
purpose is to offer a method of dynamic time-series modeling of ordinal
data and provide empirical support for the method. Numerical diagnostics
from the arsenal supplied by nonlinear dynamics are applied to empirical
time-series trajectories of self-monitored dysphoric affect associated with 1
individual with a unipolar mood disorder and 1 control participant. Unveiled
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are selected pathognomonic signatures of mood disturbance indicated by
an in-depth analysis of symptom time course for the depressed and non-
depressed participants.

Previous analyses of these same depressed and nondepressed partici-
pants had revealed that mood fluctuations exhibit nonlinear dynamics with
clear power-law dynamics, as indicated by spectral analysis of the mood-
rating time series (Heiby, Pagano, Blaine, Nelson, & Heath, 2003). Nonline-
arity for a stationary time series, that is, one with its parameters remaining
constant over time, is presumed to occur whenever the characteristic proper-
ties of a linear time series do not apply, such as a constant covariance
structure with possible linear trend.

Herein, we report a more refined analysis of the same time-series data
analyzed by Heiby et al. (2003) on the basis of a new measure of dynamics,
monotonic multiscale entropy. Although the ordinal data, when analyzed
in this way, could not reveal nonlinearity in the mood fluctuations produced
by a depressed participant and a nondepressed participant, there were clear
differences in the temporal profiles of the mood dynamics for the 2 partici-
pants, with the depressed participant indicating less complexity than that
observed for the nondepressed participant. The implications of such a result
for the mathematical modeling of the inherent mood—environment interac-
tion processes involving the interplay between noise and determinism are
considered. In the sections to follow, we briefly describe first emotional
states, mood disorders, current methods of assessment, and the dynamic
nature of mood disorders. We then indicate various techniques for dynamic
modeling, and then we offer and empirically test a method for dealing with
ordinal data yielded by most measures of mood disorders. Finally, we suggest
implications for both the diagnosis and treatment and delineate data analy-
sis issues.

EMOTIONAL STATES AND MOOD DISORDERS

Emotional states such as sadness change in nature and intensity over
time. Transient sadness over a loss, happiness over a gain, and anger toward
an obstruction are generally considered to be adaptive. In response to what
are often seemingly random environmental changes, these emotional states
can serve as discriminative stimuli and reinforcements for cognitive, other
emotional, and sensorimotor behaviors that in turn restore euthymia
(Staats, 1996).

When euthymia is not restored, and the negative emotion and accom-
panying behaviors perseverate over a week or two, the condition is often
considered to be a mood disorder. Sadness becomes depression, happiness
becomes manic euphoria, and anger becomes manic irritability. Because
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emotional states fluctuate over time, it is not surprising that the course of
major mood disorders is recurrent in most cases. About 70% of individuals
with unipolar depression and about 90% of individuals with bipolar dis-
order exhibit more than one episode within various monitored time periods
(Coryell & Winokur, 1992).

Prediction of initial and subsequent episodes of mood disorders has
eluded clinical scientists. This is partly because most attempts to inspect
the course of mood disorders have been based on time-invariant methods
that are more useful for understanding fairly static behaviors (e.g., IQ scores
among persons with severe mental retardation). To capture the dynamic
nature of unstable behavior, such as emotional states and mood disorders,
ongoing assessment is necessary. Adequate assessment of such unstable be-
haviors requires regular monitoring leading to data, such as mood ratings,
that arise from multiple successive observations from individual participants.
These observations constitute a time series and ideally consist of measure-
ments conducted at fixed time intervals over the period of psychological
assessment and treatment. We now review the use of time-series measure-
ments in clinical observations in the context of current assessment practices.

MEASUREMENT OF MOOD DISORDERS

Time-series measurement is one of the hallmarks of behavioral assess-
ment (Haynes & O'Brien, 2000). For some behaviors, time-series assessment
can be conducted by well-validated physiological (e.g., heart rate as an
index of anxiety) or direct observation (e.g., frequency of hitting someone
in a classroom as an index of conduct disorder) devices. For mood disorders,
however, no accepted physiological index exists. Direct observation by others
is not feasible in most outpatient settings and is not possible for the covert
symptoms experienced by patients.

Assessment of mood disorders and consideration of theoretical causal
variables have been conducted primarily by structured interviews, self-report
questionnaires, and self-monitoring devices. These instruments generally
contain items based on nominal or ordinal scaling (including Likert-like
scaling that presumes equality of intervals, when conventional descriptive
statistics are applied). Instruments measuring mood disorders and their
etiologic factors that are designed with true interval scaling await develop-
ment. Nominal and ordinal data place restrictions on numerical diagnostic
methods. Later in this chapter, we offer a dynamic modeling procedure
designed to accommodate ordinal data derived from self-report measures.
Meanwhile, a brief review of current assessment devices for mood disorders
underscores the challenge of identifying their temporal structure.
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Structured interviews have become the psychometric gold standard
for assessment of mood disorders (Summerfeldt & Antony, 2002). Interview
schedules yield nominal data that categorize the presence or absence of
symptoms that meet the criteria of the Diagnostic and Statistical Manual
of Mental Disorders (American Psychiatric Association, 2000). Structured
interviews are expensive to conduct. Their administration involves extensive
interviewer training to ensure sufficiently high interrater reliability. Inter-
views are administered on an individual basis and require 1 to 2 hours to
complete. In both research and clinical settings, structured interviews are
usually administered only once or twice, precluding inspection of the fre-
quency and duration of recurrent episodes of mood disorders. The nominal
data from such interviews, however, could generate diagnostic validity indi-
cators for comparison with cost-efficient measurement methods that use
more precise scaling. Structured interview schedules could also be converted
from nominal to ordinal, or perhaps even interval, scaling to capture a wider
range of scores.

Self-report is a common behavioral assessment method to measure not
only the symptoms of mood disorders but also a range of theoretical factors,
including those based on environmental, cognitive, emotional, sensorimotor,
and organic causes (Heiby & Staats, 1990; Riedel, Heiby, & Kopetskie,
2001). Self-report instruments are subject to numerous sources of measure-
ment error, such as response bias, memory, response set, fatigue, and practice
effects. Therefore, validity estimates for self-report measures are at best
moderate. However, questionnaires are easy, quick, and economical to
administer.

There are dozens of commonly used brief self-report questionnaires de-
signed to assess mood disorders and etiologic factors (Nezu, Ronan, Meadows,
& McClure, 2000). These questionnaires often contain Likert scale items.
Despite being more conducive to time series measurement than interviews,
most clinical and research applications of these questionnaires involve infre-
quent assessment. They fail to yield data needed to mathematically model
the temporal structure of mood disorders (Haynes, Elaine, & Meyer, 1995;
Heiby, 1995; McFall & Townsend, 1998).

Self-monitoring has been the primary behavioral assessment method
for obtaining frequent measurements of mood and other temporally variable
behavior. Self-monitoring data can be collected using paper-and-pencil
forms, cell phones that connect to either an answering machine or a link
to a Web page, and hand-held computers. Self-monitoring instruments
contain items that are generally measured on either a nominal or a Likert-
like ordinal scale. Self-monitoring of mood disorders is inexpensive and
reduces the memory error inherent in retrospective measures. However,
self-monitoring procedures are difficult to implement, because they require
compliance by the participant. Several methods of enhancing compliance
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to self-monitoring, such as accuracy checks and the provision of prompts
and reinforcements, have been demonstrated (Korotitsch & Nelson-Gray,
1999). Nevertheless, only a few studies have investigated the dynamic
structure of self-monitored mood data (e.g., Gottschalk, Bauer, &. Whybrow,
1995; Heiby et al, 2003; Woyshville, Lackamp, Eisengart, & Gilliland,
1999).

Time-series assessment of mood can assist in the diagnosis of a mood
disorder. The Diagnostic and Statistical Manual of Mental Disorders (American
Psychiatric Association, 2000) defined a major depressive episode as involv-
ing "a depressed mood most of the day, nearly every day" (p. 356) for at
least 2 weeks of consecutive days, which is temporally somewhat vague.
From an inspection of hourly mood data reported over a 6-month period,
Nelson and Heiby (2001) found that the number of depressive episodes
exhibited by a participant with a history of depression ranged from zero to
five, depending on how "most of the day" was defined. The use of time-
series assessment and inspection of the dynamic temporal structure of mood
data revealed by such an assessment can assist in refining both the definition
and identification of the onset of mood disorders.

DYNAMIC MOOD DISORDERS

Dynamic disorders such as depression exhibit temporal variability with-
out any obvious cause in each individual case (Belair, Glass, an der Heiden,
& Milton, 1995). Because many disorders present as abrupt changes in their
underlying dynamics, such as when a depressed person suddenly becomes
dysfunctional in social and occupational roles and requires hospitalization,
the most likely representation of the temporal fluctuations is in terms of
nonlinear, rather than linear, dynamics. Even when the depressive episode
is apparently random, closer scrutiny may reveal a mixture of chaos and
stochastic noise, or "stochaos," following an idea originally proposed by
Freeman (2000). The balance between chaos, or nonlinearity, and noise is
important, because it is reasonable to assume that any imbalance, such as
too little noise, might produce mood fluctuations, for example, that are
both too regular for adequate adaptation and insufficiently responsive to
environmental stressors. This imbalance between noise and nonlinearity
may be the precursor to a person's transition to a chronic depressed mood.

A depressed individual's inadequate adjustment to environmental de-
mands might result from a mismatch between his or her lower than normal
level of adaptive resources and the resources needed to adequately function
in a challenging environment (e.g., social skills needed to replace the loss
of a friend). We refer to the current level of adaptive resources as the degrees
of freedom, or complexity, exhibited by the individual's behavioral fluctuations.
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Low degrees of freedom correspond to regular behavior fluctuations, whereas
higher degrees of freedom occur when the fluctuations become more irregular,
or even noisy.

When considered in terms of complexity theory, a general conceptual-
ization of real-world processes that includes nonlinear dynamics as a special
case, the notion that depressed individuals exhibit insufficient degrees of
freedom in their behavior fluctuations has been referred to as the maladaptive
determinism hypothesis (MDH; Heiby et al., 2003; Pagano, Barkhoff, Heiby,
& Schlicht, 2006). Determinism in this instance refers to processes, possibly
nonlinear, that can be distinguished from those that are purely stochastic.
This hypothesis posits coherence between the temporal structure of mood
disorders and mood regulation skills but not between transient sadness
and mood regulation skills. The MDH applies only to relatively stable
mood states.

Adaptive transient sadness in response to seemingly random environ-
mental events is posited to require flexibility in mood regulation skills. In
other words, transient adaptive sadness is characterized by a dominant ran-
dom component because it adjusts to possibly unexpected exogenous factors
that occur over relatively short time periods. In contrast, perseveration
of mood regulation skills regardless of environmental events is posited to
characterize mood disorders. Perhaps maladaptive mood is characterized by
greater determinism because it responds relatively more to endogenous fac-
tors that do occur as a function of time and perseverate even in the presence
of environmental change.

To summarize, it has been suggested by us and others, such as Gott-
schalk et al. (1995), that any stable mood state, such as sadness, is determined
by an interplay of endogenous and exogenous influences. The endogenous
influences are primarily deterministic, possibly nonlinear or even chaotic,
and the exogenous influences influence the mood state by superimposing
stochastic noise upon mood dynamics. During ill health, endogenous pro-
cesses dominate, leading to greater determinism or regularity in mood dynam-
ics, whereas in healthy people there is a greater influence of exogenous
influences, leading to more irregular and complex mood fluctuations. Time-
series analysis is required to detect these subtle effects on mood dynamics
in both healthy and ill people.

The MDH can be evaluated using time-series data of symptoms of
mood disorders and etiologic factors, analyzed using sophisticated nonlinear
data analysis procedures. If this hypothesis is supported, a corollary suggests
that whereas healthy individuals interact with their environments using
established and somewhat automatic mood regulating skills, people with a
history of a mood disorder must be more aware of environmental influences
in order to exhibit a greater level of adjustive behavior and euthymia. The
analogy here is with the progressive automaticity of skilled behavior resulting
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from controlled, or attended, practice (Shiffrin & Schneider, 1977; for
elaboration of a similar proposal, see chap. 7, this volume). The practical
significance of the MDH is that low-complexity mood fluctuation is diagnos-
tic of a mood disorder as distinguished from transient sadness, with therapy
being implemented at the onset of any symptom and designed to gradually
increase the complexity of mood fluctuations over time.

Applications of complexity ideas have become more prevalent in medi-
cine, with additional insight being gained about disease dynamics. In heart
disease, for example, a certain complexity of physiological function is re-
quired for health. Once the complexity of heart function decreases, the risk
of fatal heart disease increases markedly. A similar phenomenon occurs in
neurology, where the electroencephalograph response in epilepsy and coma
is characterized by a sudden decrease in complexity during, and just before,
a seizure (Heath, 2004). Aging, that terminal condition from which we all
suffer to varying degrees, might also be associated with less complex behav-
ioral and physiological systems. However, a relative increase in neural noise
might also contribute to the decline in cognitive function with increasing
age (Vaillancourt & Newell, 2002). As we demonstrate further below, a
loss of complexity might accompany mood disorders.

Complex systems involve a large number of interacting units. Even
when their processing mechanisms are governed by simple rules, the emer-
gent behavior of such a system is often complex, so complexity at a macro-
scopic level arises from simplicity at a microscopic level. Self-organized
criticality is a special feature of some complex systems when they are at
their most adaptive. In this state, excitation of the system by just a small
input is sufficient to cause a considerable change in the system's response.

Chaos occurs when a complex system becomes sensitively dependent
on its initial conditions. If the game of golf were chaotic, then the following
fictitious scenario might occur. The first author of this chapter, Rachel A.
Heath, has always aspired to play golf as proficiently as Laura Davies, but
instead she hits the ball just slightly later than Laura and just to the side
of the ideal spot on the ball. This minuscule difference in golfing abilities
causes Rachel to hit the ball a short distance into the rough, whereas, quite
unfairly, Laura hits hers a long way up the fairway! Chaotic systems have
relatively low degrees of freedom, especially compared with stochastic pro-
cesses that have infinite degrees of freedom, at least theoretically.

We now summarize nonlinear data analysis methods. Most of these
techniques arise from physical applications for which the time series consists
of many thousands of observations. Psychological applications, on the other
hand, are constrained by the relative paucity of data as well as by the
possibility that the time-series observations are measured on scales that do
not adhere to the ratio and interval properties of physical scales such as
length and temperature.
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NONLINEAR ANALYSIS TECHNIQUES

Perhaps the most useful indicator of a nonlinear system's function is
its complexity, a rather difficult concept to define precisely. In behavioral
data, measures such as mood ratings do not lend themselves to analysis by
the nonlinear techniques developed initially by physicists (e.g., Kantz &
Schreiber, 1997) because of their limited range and the complex measure-
ment properties of self-report devices. Frequently, insufficient data militate
against the direct application of the nonlinear diagnostic methods that have
been successfully applied in the physical sciences. Even when measurement
properties do permit a meaningful analysis, rapid fluctuation in the para-
meters generating the nonlinear process leads frequently to nonstationary
outcomes for which there is little consensus about the most appropriate
data analysis procedure. Although time-varying parameters are expected in
mood-rating time series that change in response to therapeutic agents,
including behavioral therapies, such temporal variations can lead to spurious
and unpredictable outcomes if the data analysis method requires time invari-
ance for its proper application.

Useful indexes for quantifying the complexity of sequential data include
the correlation dimension, D2, and the maximum Lyapunov exponent. Both
measures require large amounts of stable data for their accurate estimation,
a problem for the analysis of psychological data in particular (Heath, 2000).
D2 quantifies a lower bound on the number of degrees of freedom required
to represent data fluctuations geometrically. The maximum Lyapunov expo-
nent measures how rapidly nearby data points in this geometric space change
their relative position over time. A positive Lyapunov exponent is a neces-
sary, but not sufficient, condition for chaos. Without further investigation,
D2 and the maximum Lyapunov exponent do not provide unequivocal
evidence for nonlinearity. For example, low D2 estimates suggesting a low-
dimensional geometric data representation can also arise from analyzing
linearly transformed white noise (Shen, Olbrich, Achermann, & Meier,
2003). Thus, more appropriate data analysis methods, such as those based
on the irregularity of fluctuations in a time series, are needed.

Approximate entropy (ApEn; Pincus, 1995), a measure of irregularity in
a time series, was designed for analyzing short series such as those commonly
observed in the social sciences. ApEn measures the likelihood that runs of
successive time-series values maintain a similar pattern when the runs are
expanded to include the next point in time. Regular or highly predictable
data produce low ApEn values, whereas randomness is associated with large
ApEn values because there is minimal similarity in successive runs of errati-
cally changing time-series values.

A disadvantage of ApEn is that estimates from different conditions
can be compared only when the number of data points is similar. ApEn
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changes when data are transformed, even when the means and variances
are equated using normalization. Nevertheless, when there are at least 1,000
observations, the standard error of the ApEn estimate remains relatively
small, facilitating statistical comparisons across conditions. Another advan-
tage lies in its robustness, ApEn being relatively unaffected by extreme
data values.

Torres and Gamero (2000) observed that alternative entropy measures
are more sensitive to changes in the complexity of a time series than is
ApEn. An additional advantage is that such measures can be computed
more efficiently. Other entropy measures are superior to ApEn in tracking
changes in complexity in a physiological time series and, unlike ApEn, are
relatively unaffected by superimposed noise. We now describe in some detail
these new entropy measures.

To overcome the cross-sample comparison and scaling problems with
ApEn, and to compensate for the effects of time scale differences, Richman
and Moorman (2000) developed sample entropy. Consider the time series
|u(l), u(2), ..., u(N)}. Similarly to ApEn, sample entropy measures the
extent to which the dynamics occurring within a time window of length
m, that is, [i, i + 1, i + 2, ..., i + m - 1], for i = 1, N - (m + I), remain
similar when the time window length is increased to m + 1.

For a deterministic process with no measurement uncertainty, the
prediction of future dynamics is determined precisely by the past, whereas
for a random process the dynamics during one time period is unrelated
to that occurring in previous time periods. For most temporal processes
intermediate values of predictability might be expected. So, sample entropy,
as a measure of relative uncertainty, is large for unpredictable data but small
for completely predictable data.

Sample entropy is computed from a normalized data sequence, that
is, one with a mean of zero and a variance of 1, by completing the following
three steps:

1. Representing successive m-tuples of data values as vectors,
that is, points, in an m-dimensional space.

2. Computing all interpoint distances using the max distance
metric defined below.

3. Counting the number of pairs of points lying within a distance
r from each other. This count is defined as B(r).

This process—Steps 1, 2, and 3—is repeated for (m + l)-tuples of
data values in an (m + 1)-dimensional space to yield a count A(r). Sample
entropy is then defined by -Log[A(r)/B(r)], where A(r)/B(r) represents the
conditional probability that successive subsequences of (m + 1) observations
have a similar dynamic progression as subsequences of m observations.
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Figure 9.1. Changes in the relative location of nearby points in two dimensions
when the space becomes three dimensional. Examples are provided for random, or
Gaussian, points (upper graphs) and points produced by a chaotic Henon process
(lower graphs).

More specifically, for a time series containing N data points, \u(i),
i = 1, N}, we first form all of the successive m-dimensional vectors leading
to the embedded vector time series, x(i) = \u(i + k), 0 < k < m - I}. For
example, if m = 2, then the time series {1,2,4,8} is transformed into the
two-dimensional vectors x(l) = {1,2}, x(2) = {2,4}, and x(3) = {4,8}. The
distance between any two vectors is defined most conveniently by the max
distance metric, d[x(i), x(j)] = max{ I u(i + k) - u(j + k) 1, 0 < k < m - 1.
So, the distance between any two vectors equals the maximum of their
intercomponent differences; for example,

d[x(l), x(2)] = max{ 1 1 - 2 1 , I 2 - 4 I } = 2. (9.1)

Using this metric, sample entropy is then defined as explained in the previous
paragraph (Richman & Moorman, 2000).

The computation of sample entropy is illustrated graphically for both
chaotic and Gaussian sequences in Figure 9.1. The clustered points in two
dimensions tend to remain more clustered in three dimensions for the
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chaotic series than is the case for the Gaussian series. This tendency is
quantified by the estimate of sample entropy being larger for the Gaussian
series.

COMPUTING SAMPLE ENTROPY FROM ORDINAL DATA

In Heiby et al. (2003), the data obtained from the 2 participants
consisted of ratings on a 7-point Likert scale. Without further information
on the psychological representation of each of the rating categories, an
analysis in terms of ordinal data scaling is preferable. Because the sample
entropy calculation assumes continuous interval-scale data, we need to
modify the computational procedure to encompass the less detailed informa-
tion obtained in ordinal measurement.

We now present a new method for computing the complexity of ordinal
data time series using logic similar to that employed in calculating sample
entropy. We determine the direction of change—increasing, decreasing, or
constant—for successive time-series values using both triples and quadruples
of successive rating scale values. Next, we compute the relative frequencies
of all possible such transitions, leading to transition probability tables, or
matrices, that are computed separately for both successive triples and quadru-
ples. Using the two transition matrices obtained for successive triples and
successive quadruples of rating scale values allows us to compute the Shannon
information index in both cases. By analogy with the method used to
compute sample entropy, the difference in information for quadruples and
triples provides a complexity index for the ordinal-scale time-series data.

More specifically, the following method takes into consideration the
monotonic invariance of the ordinal scale. By analogy with the sample
entropy method, it takes successive triples and quadruples of data values
and examines the number of changes in direction of the time series over
these three and four values, respectively. So, for three successive time-series
values, u(i), u(i + 1 ) , and u(i + 2), nine possible ordinal relationships exist.
The summed directions of change in time-series values are shown in square
brackets, where an increase from one time period to the next, irrespective
of size, is represented by +1, a decrease is represented by —1, and no change
is represented by 0.

For example, if u(i) < u(i + 1) < u(i + 2), then there are two successive
monotonic increases in time series values, leading to the index [+ 2]. If u(z)
< u(i + 1) = u(i + 2), then there is just the one monotonic increase leading
to an index of [+ 1]. If u(i) < u(i + 1) > u(i + 2), then the initial monotonic
increase is canceled by the following monotonic decrease, leading to an
index of [0]. The other possible monotonic changes in series values, together
with their corresponding index values, are u(i) = u(i + 1) < u(i + 2) [+1],
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u(i) = u(i + 1) = u(i + 2) [0], u(i) = u(i + 1) > u(i + 2) [-1], u(i) >
u(i + 1) < u(i + 2) [0], tt(i) > u(i + 1) = u(i + 2) [-1], and u(i) > u(i + 1)
> u(i + 2) [-2].

Using only the change sums, there are five categories by which we
can classify the ordinal progression of the time series over three successive
time points, {-2,-l,0,+l,+2}. Let h2(s,t) represent the transition probability
for all transitions from state 5 to state t, where such states can be any
pair of the set {-2,-l,0,+l,+2}. The Shannon information for two-step
progressions, 12, is then given by

+2 +2

12 = - £ X h2(s,t)log[h2(s,t)]. (9.2)
s = -2 t = -2

If there is no change in the time-series, then all of the transition
probability will be concentrated at s = t = 0, so that 12 = 0. When there
is a monotonic increase in the time-series values, the nonzero transition
values occur only at s = t = +2, so that once again 12 = 0. A similar outcome
occurs when the time series is monotonic decreasing. Thus, 12 is unaffected
by monotonic trends in the data. The more changes in direction the time
series takes, the more widely the transition probabilities are distributed in
h2(s,t), and the higher will be the 12 value. So, 12 measures the fluctuations
of monotonic persistence in an ordinal-scale time series.

12 will be largest when all types of monotonic trends are equally
likely. This means that two-step persistence should be as likely as one-step
persistence in both increasing and decreasing directions. This pattern is
more likely to arise from time series that have moderate levels of persistence
rather than no persistence, like Gaussian noise, or in time series with
antipersistence, that is, alternations of increases and decreases of time-series
values that minimize the likelihood of changes being categorized as [+2]
or [-2].

We now compute a similar information index for monotonic progres-
sions of the time series through four successive values. In a straightforward
extension of the above method, we obtain seven monotonic progression
categories, {-3, -2, -1, 0, +1, +2, +3}. Let h3(s,t) represent the transition
probability for all transitions from state s to state t, where such states can
be any pair of the set {— 3,— 2,— 1,0, +1, +2, +3}. The Shannon information for
three-step progressions, 13, is then given by

+3 +3
13 = ~ I I h3(s,t)log[h3(s,t)]. (9.3)

s = -3 t = -3

By analogy with the basic principle underlying the computation of
sample entropy, we compute the change in monotonic persistence informa-
tion when the series progresses over a fourth successive value compared
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with that contained in progressions over three successive series values. This
change in information is given by 13 - 12, which is then an estimate of a
new measure known as monotonic sample entropy. A large change in direction
information suggests that the time series has a large number of ordered
fluctuations, including some sequential dependencies, whereas lower non-
zero values suggest that the series is more random with a larger number
of alternations.

So, zero values of monotonic sample entropy signal either no change
in a time series or a monotonic trend. Small positive values represent a
time series with fairly rapid fluctuations, such as Gaussian noise, whereas
larger values of monotonic sample entropy indicate a series with larger,
more regular fluctuations. This relationship between monotonic sample
entropy and fluctuation regularity is somewhat different from that obtained
using the original version of sample entropy. The latter index bases its
information change on proximity measures, whereas the monotonic version
measures variability in persistence, there being no distance metric for ordinal
data equivalent to that used to compute sample entropy.

Recent research has demonstrated the usefulness of rescaling versions
of sample entropy in which the time scale of the time series is contracted
by averaging successive time-series values and applying sample entropy to
the resulting time series. In the next section, we explain how this is done
for continuous data and how a similar rescaling procedure can be devised
for ordinal data.

MULTISCALE ENTROPY

Multiscale entropy (MSE) is a quantitative index originally proposed
as an effective diagnostic procedure for heart pathology (Costa, Goldberger,
& Peng, 2002). One of the very few published applications in other fields
is an analysis of gait dynamics in young and elderly people by Costa, Peng,
Goldberger, and Hausdorff (2003). To our knowledge, there have been no
applications of MSE in psychology.

The MSE method computes sample entropy for increasingly coarser
time scales, S. When S = 1, sample entropy is computed for the original
time series. When S = 2, a new time series is computed by averaging
successive pairs of observations to yield a time series that is half as long,
that is, the interobservation time is doubled compared with the original
time series. When S = 3, a new time series is computed by averaging
successive triples of observations to yield a time series that is one third as
long, that is, the interobservation time is trebled compared with the original
time series. For values of S greater than 3, the original time series is corres-
pondingly further compacted using progressively coarser time scales. In the
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Figure 9.2. Comparison of chaotic Henon and Gaussian series. Monotonic multiscale
entropy (MSB) for the chaotic Henon series and a Gaussian series as the time scale
(S) increases.

following data analyses, S is converted to a logarithmic value to highlight
the changes at low time scales.

In applications to ordinal-scale measures, the successive time-series
values are added, rather than averaged, because the latter operation is not
defined for ordinal scales of measurement. By doing this, new time series
can be obtained for various values of S, ranging from 1 to 20 in the following
application to mood-rating time-series data.1 Using this rescaling of the
original time series, one can compute a multiscale version of monotonic
sample entropy, monotonic MSE.

As shown in Figure 9.2, the monotonic MSE when Log(S) equals zero
is substantially less for the more complex Gaussian series (dashed line) than
for the chaotic Henon series (solid line). So the more complex the series,
the lower the monotonic MSE, but only when Log(S) equals zero, that is,
for the original time series.

Detecting nonlinearity in ordinal time series is difficult, because ordinal
measurement does not change with a monotonic transformation of the
original time-series values. For example, we could square each number in

1 Software for computing monotonic MSE written in the R statistical language can be obtained from
Rachel A. Heath (rachel.heath@newcastle.edu.au).
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a series of positive values and still maintain the same ordinal relationship
between numbers in the series. Indeed, a measure such as monotonic sample
entropy remains the same for any monotonic—that is, nonincreasing or
nondecreasing—transformation of the original time series. However, we can
assess the ability of monotonic sample entropy to detect the presence of
nonlinearity in time series derived from continuous physical processes that
have suitable properties so that surrogate time series can be computed. In
the next section, we explain the computation of surrogate time series from
the original time series and describe their application in hypothesis testing.

USING SURROGATE SERIES TO DETECT NONLINEAR
DYNAMICS IN TIME SERIES

Traditional statistical hypothesis testing assumes a null hypothesis that
specifies the value of a population parameter such as, for example, the mean
being equal to 100. The research hypothesis then specifies an alternative,
such as the population mean being greater than 100. When the null hypothe-
sis is true, a test statistic for sample data will have a known probability
distribution that can be used to determine how likely the sample estimate
of the population parameter is when the null hypothesis is true. Alterna-
tively, when the probability of a Type I error equals a, a (1 - a) X 100%
confidence interval for the population parameter can be estimated from a
known distribution of the sample estimate when the null hypothesis is true.
If the sample estimate lies outside this confidence interval, then the null
hypothesis can be rejected with a maximum Type I error probability, (X. If
the distribution of sample estimates when the null hypothesis is true cannot
be estimated mathematically, then a distribution of estimates from a number
of random samples of the available data can be obtained using resampling.
This procedure is used in the following analyses.

The null hypothesis for any assessment of nonlinearity in a time series
is the assumption that the series is linear. Time series that satisfy the null
hypothesis with respect to any given data series are known as surrogate time
series, or just surrogates. With respect to any experimental time series, the
criterion for linearity requires that both first-order properties, such as the
mean, and second-order properties, such as the variance and autocovariances
of the surrogate time series, match those of the data. This can be achieved
by computing the power spectrum of the experimental time series and then
using it plus different random permutations of the phase spectrum to create
as many surrogate time series as are needed. In the following analyses,
surrogate time series were computed using the surrogates command in the
TISEAN nonlinear time-series analysis package (Hegger, Kantz, &
Schreiber, 1999; Schreiber & Schmitz, 2000).
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The nonlinear index is then computed for the experimental time series
and for all of the surrogate time series, the frequency distribution of the
latter being essentially a resampled distribution under the null hypothesis.
If the experimental time-series index lies outside, say, a 95% confidence
interval based on the surrogate nonlinear index distribution, then we can
reject the null hypothesis and claim nonlinearity at the 5% level of statistical
significance. In the following analyses, 19 surrogates are computed for each
experimental series to represent an approximate 95% confidence interval
centered at the average nonlinear index. Further details of this procedure
are contained in Heath (2000), with applications being illustrated by Heath,
Kelly, and Longstaff (2000). We now apply this hypothesis-testing procedure
based on surrogate data when the null hypothesis is true to detect departures
from linearity in the continuous Henon chaotic time series using monotonic
MSE measures.

DETECTING NONLINEARITY USING MONOTONIC
MULTISCALE ENTROPY

When any new nonlinear data analysis technique is developed, the
question arises as to whether the technique is sensitive to the nonlinearity
contained in a known nonlinear time series. For this purpose, the chaotic
Henon time series that passes all known tests for nonlinearity was used.
Figure 9.3 shows the monotonic MSE results for the Henon time series
(solid line) compared with the 95% confidence interval for surrogate series
computed from the same Henon series. Because the value for the Henon
series lies outside the 95% confidence interval computed under the null
hypothesis that the time series is linear, we conclude that monotonic MSE
provides a sensitive index of nonlinearity, but only for the original time
series, that is, when S = 1. The averaging of successive data values in the
Henon time series probably removes the nonlinearity present in the original
series. Before applying monotonic sample entropy, we first discuss applica-
tions of traditional nonlinear procedures to understand the dynamics evident
in mood rating time series.

APPLICATION TO MOOD TIME SERIES

As noted earlier, mood disorders are often recurrent. These disorders
can be controlled, but not prevented or cured, by medical and psychological
interventions. For such dynamic disorders, a possible investigative strategy
involves devising a mathematical or computer model of the underlying
dynamic mechanisms; evaluating the model's behavior when psychologically
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Figure 9.3. Monotonic multiscale entropy (MSB) for the chaotic Henon time series
compared with the 95% confidence interval for monotonic MSE computed from the
corresponding surrogate time series as the time scale S increases.

meaningful parameters are manipulated; and, finally, comparing the model's
predictions of both normal and pathological behavior. An adequate candi-
date model based on these tests can then be used for both the initial diagnosis
and the continuous evaluation of a person's response to treatment.

At present, this diagnostic and therapeutic process is not universally
available, in part because of the convention of measuring mood disorders
with infrequent administration of interviews and self-report questionnaires.
However, a small number of studies have applied nonlinear dynamical
analyses to depressive disorders by measuring mood with frequently reported
self-monitoring devices. The pioneering study in this area was conducted
by Gottschalk et al. (1995), who examined mood fluctuations in a group
of people with rapid-cycling bipolar disorder who had experienced at least
four mood-changing episodes in the previous 12 months. Each participant,
and his or her age- and gender-matched control who had no mood disorder
symptoms, maintained a daily mood diary over a period ranging from 1 year
to 2.5 years. Each diary entry represented a numerical estimate of how they
felt (from best to worst; see Gottschalk et al., 1995, p. 948) on a high-
resolution (100-millimeter) rating scale. The diary entries yielded time
series with approximately 700 observations, enough to compute some of the
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commonly used nonlinear dynamical indices but with severe limitations
unless the time series has low complexity.

The log-log power spectrum is a linear measure that relates the logarithm
of the relative predominance (power) of each mood fluctuation frequency
to the logarithm of mood frequency. For mood-rating data, the log-log
power spectrum was linear, with a negative slope of -1.29 for the bipolar
participants and a slope of -0.69 for the healthy participants.

In a similar study, Woyshville et al. (1999) obtained 90 daily mood
ratings from 36 participants who had been diagnosed with an affective
disorder as well as from 27 healthy clients. The log-log spectrum slope was
-0.43 for participants with an affective disorder and -0.22 for the healthy
participants, a slope ratio for disordered compared with healthy clients
similar to that obtained by Gottschalk et al. (1995).

Because a zero-slope log-log power spectrum is produced by Gaussian
noise, the greater absolute slope produced by the bipolar participants indi-
cates insufficient noise in their mood fluctuations compared with the control
participants' data. So less noisiness is a dynamic indicator of ill health.
Linear log-log spectra also suggest that mood fluctuations are possibly time-
scale invariant, implying that similar mood dynamics might be measured
using a more frequent, and less time-consuming, sampling strategy for acquir-
ing mood-rating data. For example, analyzing time series consisting of daily,
or even hourly (during the waking hours), mood ratings might provide useful
information on the effects of various therapeutic strategies on depression.

By plotting successive mood ratings against each other, the resulting
phase plots for bipolar clients in Gottschalk et al.'s (1995) study were more
highly structured than those for the healthy clients, except for one bipolar
client who had responded well to treatment. The minimum number of
degrees of freedom required to represent mood fluctuations for bipolar pa-
tients was 4, based on a fractal dimensionality, or D2, estimate of 3.2. For the
healthy participants, the fractal dimensionality was essentially unbounded,
suggesting a high noise component. Such a result indicated that the mood
control system for bipolar clients generated less complex fluctuations com-
pared with that of the healthy participants. Gottschalk et al. proposed that
the different dynamics exhibited by bipolar and healthy clients result from
differences in how endogenous and environmental processes interact to
influence mood dynamics.

Heiby et al. (2003) studied mood fluctuations in 2 young women, one
with a history of recurrent unipolar depression and the other with no history
of depression. The participants rated their mood every hour for 10 hours a
day for 6 months, using prompts from an hourly beep on a watch alarm as well
as periodic telephone calls from an investigator to minimize the likelihood of
a missed rating and to reinforce compliance.
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Figure 9.4. Mood-rating time series for the nondepressed participant (top panel) and
depressed participant (bottom panel; data from Heiby et al., 2003).

Mood ratings were regularly calibrated using a telephone version of the
Beck Depression Inventory (Beck, 1967), yielding 80% agreement between
ratings and the Beck Depression Inventory depression score. Supportive
psychotherapy over the previous 3 years had had no major effect on depress-
ive episode frequency for the depressed participant, leading to relatively
stable mood fluctuations over the 6-month rating period. An examination
of ratings suggested that both time series were reasonably stationary in terms
of their median.

The nondepressed participant provided 1,840 ratings, with just 2.0%
missing values. A similar number of ratings, with 4.4% missing values, was
obtained for the depressed participant. Approximately 2,000 data points are
sufficient to apply basic methods for nonlinear data analysis, provided the
system has less than 4 degrees of freedom (Heath et al., 2000), as was
confirmed by Gottschalk et al.'s (1995) analyses for bipolar clients.

Figure 9.4 shows the time series of mood ratings for the 2 participants.
The higher the rating, the greater the level of depressive mood. The depres-
sion ratings, made on a 7-point scale, were higher for the depressed partici-
pant (bottom panel of figure), there being some evidence for both persistence
and a regular cycling of mood. The nondepressed participant (top panel of
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figure) displayed less persistent mood fluctuations, resulting in greater mood
variability than was observed for the depressed participant.

Because spectral analysis of the two participants' data revealed signifi-
cant periodicities, possibly resulting from menstrual cycle effects, of 26 days
for the depressed participant and 23 days for the nondepressed participant,
fluctuations at these frequencies were removed from each mood-rating time
series before computing further analyses. The log-log power spectrum slope
was -1.95 for the nondepressed participant and -2.15 for the depressed
participant. Although these values are in the same direction as those ob-
served by Gottschalk et al. (1995), they are almost twice as large and exhibit
brown noise, a process characterized by an additive Gaussian process, or
random walk. Furthermore, there is scarcely any difference in the slopes
compared with the values obtained in the earlier studies.

The estimated fractal dimensionality was 2.7 for the depressed par-
ticipant and essentially unbounded for the nondepressed participant. The
estimated dimensionality of a surrogate time series with the same linear
properties as the data, but no nonlinearity, was 4.0, a value significantly
larger than that observed for the depressed participant's mood fluctuations.
This result supported the idea that mood ratings for the depressed participant
exhibited low-complexity nonlinear dynamics.

To account for these findings, Heiby et al. (2003) proposed the MDH,
discussed earlier in this chapter, which states in this instance that the
depressed state exhibits more deterministic (i.e., more predictable) behavior
than is observed for healthy people. Because more predictable behavior is
associated with endogenous resources of low complexity, such individuals
might find it difficult to cope with complex exogenous demands.

Because it is difficult for raters to maintain consistent mood estimates
over extended time periods, self-monitored mood ratings suffer from sub-
jective influences and measurement difficulties. It is important to note that
ordinal-scale mood ratings cannot always be analyzed legitimately using the
available nonlinear quantitative techniques. The following analysis exam-
ined the presence of nonlinearity in mood-rating time series when ordinal
data are available. We assume that a possibly continuous nonlinear process
underlies the data obtained in mood-rating tasks even when the ratings
themselves have ordinal measurement properties. This nonlinear process
can be revealed by surrogate analysis of the mood-rating time series.

ANALYSIS OF MOOD-RATING DATA USING THE MONOTONIC
MULTISCALE ENTROPY METHOD

We analyzed the data collected in Heiby et al. (2003) using the mono-
tonic MSE method. No preprocessing to remove significant periodicities
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F/gure 9.5. Comparison of Heiby et al. (2003) experimental data with Gaussian and
chaos (Henon): monotonic multiscale entropy for the nondepressed participant as
the time scale S increases. Maximum, mean, and minimum refer to values for
surrogate series.

from the mood-rating time series was used, because a reanalysis of the filtered
data did not reveal any major differences in outcome. The results are shown
in Figures 9.5 and 9.6 for the nondepressed and depressed participants,
respectively, and for S = 1, 20. The solid line in each figure plots the results
for the experimental data. The three dashed lines show the maximum,
mean, and minimum values of monotonic MSE for the 19 surrogate series,
representing a pseudo 95% confidence interval under the null hypothesis
that the experimental data are linear.

Because the solid lines in both Figures 9.5 and 9.6 lie mostly between
the maximum and minimum values of monotonic MSE values for the surro-
gate data, there is no substantial evidence for nonlinearity in either data
set. However, there are a couple of points in Figure 9.6 that lie below the
95% confidence interval, suggesting some slight nonlinearity in the system
generating the mood ratings when data are pooled over two and three
successive observations. It is worth noting that the monotonic MSE value
for the depressed participant, 0.26, is greater than that for the nondepressed
participant, 0.15, when S = 0, and for small values of S thereafter. This
finding suggests that the change in monotonic MSE as the mood ratings
progress from three successive values to four successive values is greater for
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F/gure 9.6. Comparison of Heiby et al. (2003) experimental data with surrogate series:
monotonic multiscale entropy (MSB) for the depressed participant as the time scale
S increases. Maximum, mean, and minimum refer to values for surrogate series.

the depressed participant. Hence, the rate of generation of persistent mood
fluctuations is greater, reflecting generally more highly structured mood
ratings for the depressed participant.

Figure 9.7 shows the comparison between the monotonic MSB results
for the nondepressed and depressed participants with those of two benchmark
time series, one a Gaussian series and the other a chaotic Henon series.
The nondepressed participant's data are more closely related to that for
Gaussian data, whereas the depressed participant's data are not so close to
a Gaussian series. Because there is no overlap between the 95% confidence
intervals for both surrogate series in Figures 9.5 and 9.6, we can be confident
that the depressed participant's data have a greater value than that for
Gaussian noise for Log(S) = 0, just as is the case for the Henon series.
However, the previous analysis using surrogate series provides no evidence
for chaos, or nonlinearity, in the system producing this series.

Thus, we are left with the suggestion that there is a substantial qualita-
tive difference in the dynamics of mood fluctuations for the depressed and
nondepressed participants' data, but there is no clear evidence for nonlinear-
ity in the underlying dynamic mood-generating system. The greater proxim-
ity of the depressed participant's data to that of the chaotic series and,
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Figure 9.7. Monotonic multiscale entropy (MSB) for comparing the nondepressed
and depressed participants' mood ratings from the Heiby et al. (2003) experimental
data with Gaussian and chaotic Henon benchmark time series as the time scale
S increases.

likewise, the tendency for the nondepressed participant's data to be similar
to that of a Gaussian process, suggests that depression is associated with a
less complex mood state. A comparison with the data analysis methods used
by Heiby et al. (2003) suggests that detecting nonlinearity depends on the
measurement scale assumptions of the applied data analysis method.

Of course, the calculations involved in computing monotonic sample
entropy are rather different from those used to compute conventional nonlin-
ear indices such as fractal dimensionality. In the case of ordinal time series,
it is not possible to compute nonlinearity indexes from the raw data because
the rankings remain unaltered when a monotonic transformation is applied
to the data. Nevertheless, we can still use monotonic sample entropy to
detect nonlinearity in known continuous nonlinear time series by using the
surrogate time-series method, so evidence against nonlinearity for the mood
rating time series is undoubtedly a valid outcome. In practical terms, how-
ever, it is more constructive to view monotonic sample entropy as a complex-
ity index and compare the data from depressed and nondepressed participants
using this criterion. By doing this, we can still evaluate the validity of the
MDH in this context. In the following section, we summarize the outcomes
of the analyses and consider practical applications of this new method.
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IMPLICATIONS FOR THE DIAGNOSIS AND TREATMENT
OF MOOD DISORDERS

Monotonic MSE analyses of sequential mood data obtained from 2
individuals suggest that their mood fluctuations are not nonlinear. However,
mood fluctuations for the depressed participant indicate lower complexity
than that occurring for the nondepressed participant. Analyzing the time
course of mood disorders and their etiologic factors using modern nonlinear
techniques may provide new insight into a fundamental characteristic of
human behavior, our need to adjust to environmental challenges. Such
analyses illustrate the importance of considering individual participants'
time-series data. They provide a detailed account of idiographic differences
between adaptive transient emotional states and mood disorders. Such infor-
mation is not so readily available from conventional statistical techniques,
such as analysis of variance. The innovative application of monotonic MSE
in psychology reported in this chapter suggests how revealing such technol-
ogies can be for diagnosis, prevention, and treatment programming. For
example, lower complexity of mood ratings could be an indicator of a
pending depressive episode that might be prevented.

The most common effective treatments for mood disorders involve
pharmacotherapy targeting neurotransmitters (Paykel, 1992) and cognitive-
behavioral psychotherapy targeting mood regulation skills (Chambless et al.,
1996). The analyses of time-series mood data presented in this chapter
suggest that effective treatments could involve stochastic infusion and learn-
ing to adjust to seemingly random environmental events. For example, a
cognitive-behavioral technique that has been successfully applied to depres-
sion called cognitive defusion involves replacing perseverative depressogenic
thoughts with a variety of hypotheses related to one's ongoing, changing
situation (Luoma & Hayes, 2003). The temporal structure of mood disorders
also suggests that prevention and treatment interventions may be most
effective if they are implemented on the onset of dysphoric or manic indica-
tors, due to expected perseveration, rather than waiting until the individual
meets clinical diagnostic criteria.

The difference between the current analysis and the more conventional
nonlinear analyses performed by Heiby et al. (2003) relates primarily to the
recognition that the numerical operations required in the conventional
analyses are not directly applicable to ordinal data, unless of course we
consider ratings as interval-scale measures. Because interpoint distances
cannot be unambiguously defined for ordinal data, we used measures based
on the extent and direction of changes over time in the time-series values.
Despite a loss of measurement precision, the new method can detect non-
linearity when it is known to exist. Furthermore, we could readily compare
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the results of monotonic MSE with benchmark Gaussian and chaotic series
and by so doing interpret the results in a more meaningful way.

CONCLUSION

Applications of nonlinear dynamical concepts and techniques in quan-
titative psychology are still in their infancy. Advances in measurement
technology, such as hand-held computers, can assist in the acquisition of
time-series self-monitored data of complex human behavior and some etio-
logic factors (Haynes et al., 1995). However, much research needs to be
completed before the following important issues can be resolved:

• the appropriate choice of nonlinear data analysis procedures,
as well as efficient diagnostic methods;

• the development of a measurement theory for nonlinear dynam-
ical psychological processes, especially for ordinal data; and

• the development of mathematical and computer models that
successfully predict the available data from a variety of psycho-
logical fields and offer insights for future research.

The analyses reported here have provided an initial attempt at evaluat-
ing evidence for nonlinearity in ordinal rating scale time-series data. Al-
though further research needs to be done, there is at least some promise of
future success given that the results for the depressed and nondepressed
participants' data could be contrasted meaningfully with benchmark Gaus-
sian and chaotic series. Other promising techniques for analyzing such time
series include those based on symbolic dynamics and generalized entropy
ideas (Gregson, 2002; Gregson & Leahan, 2003).

The complex interaction between environmental influences and en-
dogenous processes in dynamic behavioral disorders ensures that identifica-
tion of causality is virtually impossible. Moreover, any qualitative change
in dynamic disorders can result from the effects of both exogenous and
endogenous control processes. In depression, the loss in complexity observed
in mood fluctuations is perhaps a sign of endogenous physiological processes
that are decoupled from the environmental as well as the cognitive, emo-
tional, and sensorimotor behavioral mood-regulating resources available to
healthy people. An interesting possibility is that those who have been
diagnosed with mood disorders need to relearn the automaticity that nor-
mally accompanies any environmental effects on mood in healthy people.
During the disease and therapeutic phase of the illness, the mood regulation
system will exhibit fewer degrees of freedom, and lower complexity, compared
with the highly complex mood control system used by healthy people. By

COMPLEX DYNAMICS IN DEPRESSION 287



analogy with the work of Shiffrin and Schneider (1977) in human cognition
and that of the authors of chapter 7 in this book, such automaticity can
occur only once the disrupted mood control system is retrained using both
pharmacological and cognitive-behavioral therapies.

Clinical applications of the methods described in this chapter require
a greater emphasis on quantitative monitoring of client progress than is
common in current clinical practice. However, such monitoring occurs at
the informal and more formal clinical evaluation levels, and there is no
reason why clients should not be requested to monitor their own subjective
experience as part of the therapeutic process. Indeed, those diagnosed with
borderline personality disorder who are undergoing dialectical behavior
therapy (DBT) are required to monitor their urges and feelings on a daily
basis on diary cards using Likert rating scales. Such data are surely the grist
for the new data analysis mill described herein. Our current research involves
assessing how well ordinal time-series analysis of diary card time series can
monitor each client's progress using DBT. This is a valuable application of
the method, because DBT is both time consuming and expensive.

The advantage of obtaining a large amount of sequential behavioral
data in clinical psychology has been clearly demonstrated. Interesting differ-
ences between the behavioral characteristics of those with, and those with-
out, a mental disorder were revealed using a novel quantitative procedure.
Although there was no evidence for nonlinearity in the mood time series,
the ratings provided by the depressed participant were clearly less complex
than those from the nondepressed participant. A speculative interpretation
of this finding suggests that those with a mental disorder exhibit a behavioral
repertoire that is inadequate for efficient functioning in a challenging envi-
ronment. Similar findings replicated across other mental disorders and with
many more participants demonstrate the practical and theoretical benefits
of applying tools developed by cognitive scientists in the challenging field
of clinical psychology.
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GLOSSARY

additivity: A data pattern from a factorial experiment in which the magnitude and
direction of differences across the levels of one factor remain constant despite
changes in the prevailing levels of the other factor(s).

amnesia: Condition resulting in a profound impairment in acquiring new informa-
tion in the face of relatively preserved functioning in other cognitive domains,
often due to damage in the medial temporal lobe or diencephalon.

attractor: A stable state exhibited by a dynamically changing system that tends to
re-create itself when the system is in another state that partially resembles the
attractor state. Attractors occur naturally in complex biological and physical
systems and are commonly produced by connectionist models of neural net-
works involving complex interactions of large numbers of neuronal units.

auditory hallucinations: For patients with schizophrenia and affective disorder,
these hallucinations generally consist of audible speech with timbre characteris-
tics that become well recognized by the patient and that suggest particular
speakers. The content of these hallucinations occasionally consists of single
words but more often reflects phrases or extended, discursive language.

back-propagation: A statistical method for training simulated multilayered networks
to produce specific outputs when presented with specific inputs. The training
method allows the network to represent generalization derived during training
as shifts in the weights of connections linking neurons in one layer to neurons
in an adjacent layer.

base distribution: An account of task performance whose properties, such as parame-
ters, are randomly distributed according to a mixing distribution. (See also
Bayesian statistics, mixture model.)

Bayesian information criterion: A criterion for the fit of model predictions to
empirical observations that imposes a penalty for models that have more free
parameters than others.

Bayesian statistics: A general system for conducting statistical inference by treating
the population parameter as a random variable having a probability distribution
and using Bayes's theorem to revise that distribution after new data are
obtained. (See also prior and posterior distribution.)

capacity index: A quantification of cognitive work accomplished by a system since
t time units after commencement of processing. The quantity is -ln[S(t)], where
S(t) is the survivor function of the distribution of process-completion latencies.

categorical data: A sequence of data observations, each of which falls into one and
only one category of a well-defined set of categories. Thus, a sequence of
observations results in a pattern of counts over the categories, where a category
count is the number of observations that fall into that category.
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category learning: Placing stimuli into categories with feedback about the accuracy
of classification, although experimenter instruction as to the stimulus character-
istics on which to base classifications typically remains absent.

caudate nucleus: Basal ganglia structure receiving input from multiple cortical
regions and projecting to other basal ganglia nuclei and ultimately back to
cortical structures to form cortical-striatal loops; involved in a variety of
cognitive and motor processes.

cerebellum: Large portion of the brain located between the brain stem and the
cerebral cortex; implicated in both motor and cognitive functions.

choice consistency: The degree to which choice behavior is dictated by expectan-
cies. (See also expectancy-valence model.)

cognitive models: Quantitative summaries of cognitive processes and representa-
tions that are used to explain intelligent (human or animal) behavior.

coherence probability: A part of the population-parameter mapping method for
estimating the latent scientific parameters; a measure ascertaining whether a
random Monte Carlo sample from the Bayesian posterior distribution for the
observational categories is consistent with the scientific model. (See also
population-parameter mapping, Bayesian statistics, prior and posterior
distribution.)

complexity: The number of unrelated variables required to represent a system's
dynamics. The larger the number of variables, or degrees of freedom, the larger
the complexity.

confidence ratings: Participants' explicit ratings of their confidence about their
judgments in a cognitive task, typically a recognition memory task.

connection weight: A number assigned to a simulated anatomic projection from
one neuron to another that determines the degree that activation in the former
influences the input registered by the second neuron.

decision boundary: In a classification problem with two classes (or categories), a
hypersurface that partitions the underlying space into one of two response
regions, with items on one side of the hypersurface belonging in one class and
items on the other side belonging to the other class.

deterministic: A system whose temporal evolution can be predicted without error
provided both the initial state and the system's parameters are known precisely.

Dirichlet-multinomial distribution: A particular hierarchical statistical model for
the multinomial distribution. Each data observation in the sequence is governed
by the multinomial distribution; however, the category probability parameters
of the distribution vary independently from observation to observation gov-
erned by a special hyperdistribution called the Dirichlet distribution. (See also
mixture model.)

distribution function: The probability of a process being completed at or before
t time units after commencement. Denoted F(t), it is the complement of the
survivor function, or 1 — S(t).
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e: Approximately 2.72, it is a constant analogous to n; it is fundamental in science
and mathematics. ex is sometimes written exp(x), whereby exp(l) is approxi-
mately 2.72.

Erlang distribution: A process whose subprocesses are k' in number, each being
exponentially distributed and each having the same rate parameter v. Its
probability density function, proportional to the relative frequency of process
completion at t time units since commencement, is (vt)k ~ l / (k ' -1)1 ve.~a; its
mean is k'/v, and its variance is k'jv2.

expectancy: Predicted consequence of selecting a choice alternative. (See also
expectancy-valence model.)

expectancy'Valence model: A computational modeling analysis that includes the
components of choice consistency and expectancy (see entries).

excitotoxicity: A form of neuronal death that is caused by excessive excitation or
activation. This form of neurotoxicity can be induced by certain drugs as well
as disease states, such as epilepsy.

exponential distribution: A one-parameter distribution of process latencies. Its
probability density function, proportional to the relative frequency of process
completion at t time units since process commencement, is ve~n, its mean
being \/v and its variance being l/t>2. An Erlang distribution with only one
subprocess reduces to the exponential distribution.

exponentiate: To raise a value to a power; for example, xy is x exponentiated by y.

hierarchical statistical model: A model designed for the case in which a sequence
of data observation is governed by a fixed parametric statistical model, with
the proviso that the parameters of the model vary independently from observa-
tion to observation. The sequence of parameters is drawn from a distribution
called the hyperdistribution, and it has its own parameters, called hyperparameters.
Thus, the sequence of parameters itself can be regarded as a sequence of
independent and identically distributed observations from a parametric statisti-
cal model, and this two-level structure is why these models are called hierarchi-
cal. Sometimes such models are called random effects models. (See also Bayesian
statistics, mixture model, Dirichlet-multinomial distribution.)

Huntington's disease: A progressive neurological movement disorder that is geneti-
cally determined and is due to cell death in the caudate nucleus. It invariably
results in cognitive deficits in executive functions, memory, and attention and
eventually dementia.

implicit classification: Placing stimuli into categories without experimenter instruc-
tion as to the stimulus characteristics on which to base classifications or
feedback about the accuracy of classifications.

independent and identically distributed: A sequence of data observations is said
to be independent and identically distributed if it arises from a series of
independent random variables, each governed by the same (identical)
distribution.

Kolmogorov-Smirnov test: A test for the departure of data from a specified distribu-
tion, such as normal.
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likelihood distribution: The probability of outcomes (or data) given a probabilistic
model with specified values for the parameters of the model. (See also likeli-
hood function.)

likelihood function: A mathematical expression that indicates the probability or
density of any particular observed data set as a function of the parameters of
the model. (See also Bayesian statistics, likelihood distribution, prior and
posterior distribution.)

maladaptive determinism hypothesis: The idea that highly predictable and regular
fluctuations in some variable, such as heart rate or mood rating, are associated
with illness, that is, a lower level of adaptation to environmental stressors.

maximum-likelihood estimation: Estimation of the value of a parameter whereby
the likelihood for outcomes (or data) is maximized given the model.

mixing distribution: A distribution governing the probabilities, or probability densi-
ties, of properties such as parameters of a base distribution. (See also Bayesian
statistics, hierarchical statistical model, mixture model.)

mixture model: A model whose account of task performance, expressed in terms
of the base distribution of a response parameter, has properties (e.g., parameters)
that are randomly distributed according to a mixing distribution. (See also
Bayesian statistics, hierarchical statistical model.)

moment matching: A method of parameter estimation whereby modeled moments
of response distributions, such as means and variances of response latencies,
are combined so as to isolate their parameters. The parameter k' of the Erlang
distribution, for example, is estimated as mean2/variance = (k^/v^Kk'/v1).
Empirical moments are substituted in the estimation procedure.

Monte Carlo simulation: A method of generating data from a parametric statistical
model by using a random number generator. One selects a particular probability
distribution from the model and then, using a random number generator,
samples a series of independent and identically distributed observations from
the selected distribution.

mood disorder: A condition in which fluctuations in a person's feelings are inappro-
priate, leading to maladaptive behavior and distress.

multidimensional scaling: A mathematical model that provides a spatial representa-
tion of participants' psychological organization of stimuli, in which the per-
ceived similarity between two stimuli is modeled as a decreasing function of
the distance between the two stimuli.

multinomial distribution: A parametric statistical model for categorical data. It
assumes that the sequence of observations is independent and identically
distributed over the categories, and it specifies the probabilities of various
patterns of counts in the categories as a function of category probability
parameters and the total number of observations. In the special case of two
categories, the multinomial distribution becomes the familiar binomial
distribution.

multinomial processing tree models: Specially designed parametric statistical
models for categorical data in information-processing tasks. In a multinomial
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processing tree model of a particular task, the category probabilities are defined
in terms of parameters that have substantive interpretations that arise from
an information processing tree account of the task. Such an account assumes
that each observed response category is the result of one or more unobserved
(latent) sequences of processing events represented in a probabilistic branching
tree structure.

nonlinear dynamics: Fluctuations in a sequence of observations that cannot be
represented by a linear system, that is, one for which the values can be
transformed by multiplying them by a constant and adding a constant without
changing the system's properties.

nonstationary series: A series that has at least one time-varying parameter. The
mean and possibly the variance change with time.

normal distribution: A family of probability distributions that differ in their location
(the mean) and spread (the variance-covariance). It is often called a bell-
shaped distribution because its probability density function resembles a bell.
(Also called a Gaussian distribution; see also parametric statistical model.)

one-step-ahead predictions: Predictions of the choice made on the next trial follow-
ing any given trial in a repeated choice task.

parameter: "An arbitrary constant whose value affects the specific nature but not
the formal properties of a mathematical expression" (Borowski & Borwein,
1989, p. 435). In modeling, a parameter value affects model predictions but
not model structure (i.e., the model's mathematical organization).

parametric statistical model: A family of probability distributions for a particular
data structure. They are indexed by the parameters of the model in the sense
that a particular model distribution on the data structure is specified as a
function of the numerical values of the parameters. The parameters are defined
by specifying a set of all possible parameter values called the parameter space.
A familiar example of a parametric statistical model is the family of (normal)
Gaussian distributions defined for continuous numerical data. The distributions

are given by f(x) = —= exp I — -^ I 1 I, and they are indexed by rwo

parameters, fJ and a, that reside in the parameter space A = {(/J,cr) I - °o <
H < oo; 0 < a < °°}.

Parkinson's disease: A progressive neurological disorder caused by the death of
dopamine-producing cells in the pars compacta of the substantia nigra. Al-
though primarily considered a movement disorder, it often results in deficits
in memory, attention, and executive functions.

perceptual organization: See psychological space.

phase plot: A graphical representation of a time-series trajectory obtained by plot-
ting successive values of the series.

Poisson distribution: A distribution of discrete values, such as number of sub-
processes of an Erlang distribution k', whose probability function is mk'/k'l e~m

and whose mean and variance are both m.
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population parameter mapping: A method developed by Chechile (1998) for esti-
mating the latent parameters of a scientific model that account for the experi-
mental observations. In population parameter mapping estimation, random
vectors are repeatedly sampled from the Bayesian posterior distribution of a
purely statistical representation for the data that does not assume the scientific
model. Each vector is then mapped (if possible) to the corresponding vector
for the parameters of the scientific model.

power law: A relationship between power and frequency in a spectral analysis of
time series data that is not linear. The relationship can be made linear by
applying a logarithmic transformation to both the power and frequency.

prior and posterior distribution: In the Bayesian framework, there is a probability
distribution used to represent the knowledge about the population parameter.
The prior distribution is the probability distribution before data are collected;
the posterior distribution is the corresponding distribution after data are collected.
Bayes's theorem is used to revise the prior distribution to the posterior distribu-
tion. The key agent of this revision is the likelihood function. (See also
Bayesian statistics.)

process model: An analytic model that specifies mathematically the theorized links
between the operation of a cognitive process and task performance. (See also
stochastic model.)

psychological space: Participants' spatial representation of stimuli in terms of their
perceived similarity and dissimilarity; also called perceptual organization,

psychotomimetic drugs: Drugs that induce or mimic psychotic states, such as
hallucinations and paranoia, when ingested.

recency: The degree to which a decision maker weighs recent events in the choice
history compared with events that occurred in the more distant past.

recognition memory: Explicit classification of stimuli as previously viewed or not.

repeated choice task: A task in which a person has to choose repetitively between
multiple alternatives and where each choice is followed by feedback.

response parameter: A property of task performance, such as response latency or
response category (e.g., accuracy, item recognition, or item recall).

signal detection theory: A theory that provides a framework for quantifying the
ability to discern "signal" from "noise," or one category of items from another.
According to the theory, there are a number of perceptual and decisional
factors that determine how well one performs.

spectral analysis: A transformation of a time series from the time domain to the
frequency domain so that the amplitudes and phases of its frequency compo-
nents can be determined.

stochastic model: "The mathematical abstraction of an empirical process whose
development is governed by probabilistic laws" (Doob, 1953, p. v). (See also
process model.)

striatum: Subcortical nuclei, including the caudate and the putamen, which have
extended efferent and afferent connections with the cortex; implicated in both
motor and cognitive functions.
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substantia nigra pars compacta: A subdivision of the substantia nigra within the
midbrain that provides the main source of dopamine to the basal ganglia;
an important area of pathology in Parkinson's disease believed to underlie
motor symptoms.

survivor function: The probability of a process remaining incomplete at t time
units following commencement. Denoted S(t), it is the complement of the
distribution function, or 1 — F(t).

time series: A sequence of observations on the same variable measured at possibly
but not necessarily equal intervals of time.

valence: An affective reaction to stimuli that are of significance to the organism.
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